THE BIG NERD RANCH GUIDE

JOE CONWAY & AARON HILLEGASS

iIPhone Programming

The Big Nerd Ranch Guide

Joe Conway
Aaron Hillegass

iPhone Programming: The Big Nerd Ranch Guide

by Joe Conway and Aaron Hillegass
Copyright © 2010 Big Nerd Ranch, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recoring, or likewise. For informa-
tion regarding permissions, contact

Big Nerd Ranch, Inc.

1963 Hosea L. Williams Drive SE
Suite 209

Atlanta, GA 30317

(404) 478-9005

http://www.bignerdranch.com/
book-comments @bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, Inc.
Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

ISBN-13 978-0321706249
ISBN-10 0321706242

First printing May 2010

The authors and publisher have taken care in writing and printing this book but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or con-
sequential damages in connection with or arising out of the use of the information or programs contained herein.

App Store, Apple, Bonjour, Cocoa, Cocoa Touch, Finder, Instruments, Interface Builder, iPad, iPhone, iPod, iPod
touch, iTunes, iTunes Store,

Keychain, Leopard, Mac, Mac OS, Multi-Touch, Objective-C, Quartz, Snow Leopard, and Xcode are trademarks of
Apple, Inc., registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

Acknowledgements

While our names appear on the cover, many people helped make this book a reality. We
would like to take this chance to thank them.

+ The other instructors who teach the iPhone Bootcamp fed us with a never-ending stream
of suggestions and corrections. They are Scott Ritchie, Brian Hardy, and Alex von Below.

+ Our tireless editor, Susan Loper, took our distracted mumblings and made them into read-
able prose.

« Several technical reviewers helped us find and fix flaws. They are Bill Monk, Mark Miller,
Alex Silverman,
Jonathan Saggau, and Mikey Ward.

+ Ellie Volckhausen designed the cover. (The photo is of the bottom bracket of a bicycle
frame.)

+ The amazing team at Pearson Technology Group patiently guided us through the busi-
ness end of book
publishing.

The final and most important thanks goes to our students whose questions inspired us to write
this book and whose frustrations inspired us to make it clear and comprehensible.

PDF: CrUmp

ERZFTEILE, EIFMEETA,

iPhone Programming: The Big Nerd Ranch Guide

Chapter 1. A Simple iPhone Application

Creating an Xcode Project
Using Interface Builder
Model-View-Controller
Declarations
Declaring methods
Making Connections
Setting pointers
Setting targets and actions
Summary
Implementing Methods
Build and Run on the Simulator
Event-driven Programming
Application Icons
Default Images
Chapter 2. Objective-C
Using Instances
Writing the RandomPossessions Tool
NSAray and NSMutableArray
Subclassing an Objective-C Class
Accessors and properties
Instance methods
Initializers
self
super
Initializer chain
Class methods
Exceptions and the Console Window
Objective-C 2.0 Additions
Chapter 3. Memory Management
Memory Management Concepts
Managing memory in C
Managing memory with cbjects
Reference Counting
Using retain counts

Avoiding memory leaks with autorelease
Managing memory in accessors and properties

Retain count rules

Managing Memory in RandomPossessions 66

Chapter 4. Delegation and Core Location 73

Delegation 73
Beginning the Whereami Application 77
Using frameworks 77
Core Location 78
Receiving updates from CLLocationManager 81
Releasing Controller Instance Variables 83
Challenge: Heading 84
For the More Curious: Compiler and Linker Errors 84
For the More Curious: Protocols 86
Chapter 5. MapKit and Text Input 89
Object Diagrams 89
Interface Properties 92
Being a MapView Delegate 94
Your own MKAnnotation 97
Tagging locations 100

Text Input and the FHrst Responder 101
Putting the Pieces Together 103
Challenge: Annotation Extras 105
Challenge: Reverse Geocoding 105
Challenge: Changing the Map Type 105
For the More Curious: Renaming an Application 105
Chapter 6. Subclassing UlView 108
Creating a Custom View 108
The drawRect: method 110
Instantiating a UMiew 112
Drawing Text and Shadows 114
Using UlIScrollView 115
Zooming 117
Hiding the Status Bar 119
Challenge: Colors 119
For the More Curious: Retain Cycles 119
For the More Curious: Redrawing Views 120
Chapter 7. View Controllers 122
View Controllers and XIB Files 122
Using View Controllers 125
Creating the UITabBarController 126
Creating views for the view controllers 132

The Lifecycle of a View Controller 139
Challenge: Map Tab 141

For the More Curious: Paging 141

Chapter 8. The Accelerometer
Setting Up the Accelerometer
Getting Accelerometer Data
Orientation and Scale of Acceleration
Using Accelerometer Data
Smoothing Accelerometer Data
Detecting Shakes
Challenge: Changing Colors
For the More Curious: Filtering and Frequency
Chapter 9. Notification and Rotation
Notification Center
UlDevice Notifications
Autorotation
For the More Curious: Forcing Landscape Mode
Challenge: Proximity Notifications
For the More Curious: Overriding Autorotation
Chapter 10. UlTableView and UlTableViewController
Beginning the Homepwner Application
UlTableViewController
Subclassing UTableViewController
UlTableView’s Data Source
UlTableViewDataSource protocol
UlTableViewCells
Reusing UlTableViewCells
Challenge: Sections
Chapter 11. Editing UlTableViews
Editing Mode
Deleting Rows
Moving Rows
Chapter 12. UINavigationController
UlINavigationController
UNavigationBar
An Additional UIViewController
The XIB File and File’s Owner
Setting up temDetalViewController
Navigating with UINavigationController
Appearing and disappearing views
Challenge: Number Pad
Chapter 13. Camera and UllmagePickerController
ImageCache: a Singleton
NSDictionary

143
144
145
146
146
148
148

152
152

155
155
156
158
162
164
164

166
167
167

168
173

175
178
181
183

184
184
189
190

198
199

203
206
208

209
211

217
218

219
219

220

Taking pictures and UlmagePickerController
Creating and using keys
Dismissing the Keyboard
Challenge: Removing an Image
For the More Curious: Recording Video
Chapter 14. Saving and Loading
Application Sandbox
Archiving
Writing to Disk with NSData
Challenge: Archiving Wherewasi
For the More Curious: The Application Bundle
Chapter 15. Low-Memory Warnings
Handling Low-Memory Warnings
Simulating Low-Memory Warnings
Chapter 16. Subclassing UlTableViewCell
Creating HomepwnerltemCell
Create subviews
Layout subviews
Using the custom cell
Image Manipulation
Challenge: Accessory Views
Challenge: Make it Pretty

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Touch Events
Creating the TouchTracker Application
Turning Touches Into Lines
The Responder Chain
The ObjectAloc Instrument
The Sampler Instrument
Challenge: Saving and Loading
Challenge: Circles
For the More Curious: UIControl
Chapter 18. Core Animation Layer
Creating a CALayer

For the More Curious: Programmatically Generating Content

For the More Curious: Layers and Views
Challenge: Dynamic Layer Content

Chapter 19. Controlling Animation with CAAnimation

Animation Objects
Spinning the Time with CABasicAnimation

227
232
237
238
238
242
242
245
253
256
258
262
262
266
268
269
270
272
273
275
281
281

282
282
283
288
290
292
296
298
298
298
301
303
312
313
316
317
317
321

Bouncing the Time with a CAKeyframeAnimation
Challenge: More Animation
For the More Curious: Presentation and Model Layers
Chapter 20. Playing Audio and Video
Creating the MediaPlayer Application
Playing System Sounds
Playing Audio Files
Playing Movie Files
Low-level APIs
Challenge: Audio Recording
Chapter 21. Web Services
Creating the TopSongs Application
Setting up the interface
Fetching Data From a URL
Working with NSURLConnection
Parsing X\MIL
For the More Curious: The Request Body
Challenge: More Data
For the More Curious: Credentials
Chapter 22. Address Book
The People Picker
Additions to Possession Class
Address Book Functions
For the More Curious: That Other Delegate Method
Chapter 23. Localization
Internationalization using NSLocale
Localizing Resources
NSLocalizedString and Strings Tables
Challenge: Another Localization
For the More Curious: NSBundle’s Role in Internationalization
Chapter 24. Bonjour
Publishing a Service
Browsing for Services
TXT Record
Socket Connections
Chapter 25. Settings
Settings Bundle
NSUserDefaults
Registering defaults
Using the defaults
Chapter 26. SQLite

327
330
330
332
332
335
339
341
344
344
345
345
347
349
350
353
358
358
358
361
361
366
368
372
374
375
376
381
384
384
386
386
388
392
395
398
398
402
402
403
405

Creating the Nayshunz Application 405

Creating the Database 409
Fetching Data 410
Making and Using the Tree 414
Challenge: Fetching More Data 418
Challenge: Custom Objects 419
Chapter 27. Core Data 420
Creating the Inventory Application 422
Editing the model file 424
AppController 428
LabelSettingViewController 432
LocationListViewController 438
AssetlistViewController 442
CountViewController 448
How It All Works 455
Trade-offs of Persistence Mechanisms 457
Challenge 1: Deleting 458
Challenge 2: Custom NSManagedObject Subclasses 458
Chapter 28. Preparing for the iPad 459
Universal Applications 459
Porting existing projects to the iPad 459
Re-designing Wherewasi’s interface 461
More considerations: universal view controllers 463

New Stuff 464

Chapter 1. A Simple iPhone Application

Chapter 1. A Simple iPhone Application

In this chapter, you are going to write your first iPhone application. You probably
won’t understand everything that you are doing, and you may feel stupid just
going through the motions. But going through the motions is enough for now.
Mimicry is a powerful form of learning; it is how you learned to speak, and it is how
you will start to do iPhone programming. As you become more capable, you can
experiment and challenge yourself to do creative things on the platform. For now,
just do what we show you. The details will be explained in later chapters.

When you are writing an iPhone application, you must answer two basic
questions:

+ How do | get my objects created and configured properly? (Example: “I
want a button here entitled Show Estimate.”)

+ How do | deal with user interaction? (Example: “When the user presses
the button, | want this piece of code to be executed.”)

Most of this book is dedicated to answering these questions.

When an iPhone application starts, it puts a window on the screen. You can think
of the window as the canvas on which everything else appears: buttons, labels,
etc. Anything that can appear on the window is a view.

The iPhone SDK is an object-oriented library, and the window and views are
represented by objects. The window is an instance of the class UIWindow. Each
view is an instance of one of several subclasses of UlView. For example, a button
is an instance of UlButton, which inherits from UlView.

Views can be placed on a window in two different ways:
+ create views and controls programmatically and add them to the UlWindow
+ use Interface Builder to visually lay out views

In this chapter, you will use Interface Builder to visually lay out the views and build
the user interface for your first iPhone application, Quiz (Figure 1.1).

Page 1

Chapter 1. A Simple iPhone Application

Figure 1.1. Your first application

What is the capital of Vermont?

Show Question

Show Answer

Creating an Xcode Project

Open Xcode and select New Project... from the File menu. A window will appear
giving you several application templates to choose from. Create a barebones
Cocoa Touch application by selecting the Window-Based Application icon (Figure
1.2). Click theChoose... button. A sheet will drop down and ask you to name this
new project. Save it as “Quiz.”

Page 2

Chapter 1. A Simple iPhone Application

Figure 1.2. Creating a new project

Choose a template for your new project:

U iPhone 05 -
Library Navigation-based OpenCL ES Tabk Bar Application
' Application Application
Mac 05 X

Application

Audio Units ‘a . %
Automator Action L J

Bundle Utility Application View-based Window-based
Command Line Utility Application Application

Dynamic Library

Framework

Java Options [T} Use Core Data for storage
Kernel Extension
Standard Apple Plug-ins
Static Library

Other

Description This template provides a starting point for any application. It
provides just an application delegate and a window.

(Cancel :1 EE'H!F’
P
T ——

Once the project is created, the project window will appear on your screen (Figure
1.3). Take a look at the contents of the Groups and Files table on the left hand
side of the project window. Overall, there are two kinds of files used to create

an application: code and resources. Code is written in Objective-C, C, or C++.
The code files are listed in the Classes and Other Sources groups. Resources
are things like images and sounds that are used by the application at runtime.
The groups in the project window are purely for the organization of files. You can
rename them whatever you want.

Page 3

Chapter 1. A Simple iPhone Application

Figure 1.3. Xcode project window

ann ™ Quiz —
[Sirmla.tur—ll...'] [ﬂ“] E] & ' o Q- String Matchir
| Crverview Action Breakpoints Build and Run Tasks Infa Search
Groups & Files l= File Name & A Code =] I @
] E\: CoreGraphics. framework .
¥ | Classes K= Foundation.framework o
v| QuizhppDelegate.h | MZIAM v L4
:M QuizappDelegate.m :_'\.: MainWindow,. xib -
¥ || Qther Sources | Quiz=Info,plist I
w| Quiz_Prefix_peh A Quiz.app (&)
:...._ main.m '.._ Quiz_Prefix.pch
¥ | | Rescurces ;u: QuizAppDelegate.h
] ManWindow. xil |si] CuizAppDelegare. m v ™
: Cuiz-info,plist £ 'g'-i: LaKit framewark 4
k| Frarmewarks
¥ | Products
¥ (&) Targets |

b 4 Executables
¥ .4, Find Results
¥ L7 Boakmarks
= soM
B Project Symbaols
¥ [l implementation Files
¥ [l NIE Fides

P

Inside the Resources group you'll find two files: MainWindow.xib and Quiz-Info.
plist. The Info property list (Quiz-Info.plist) contains a list of key-value pairs.
The values in this list specify things like the icon to display on the home screen,
whether the application needs a persistent Wi-Fi connection, and the default
language of the application.

The MainWindow.xib file contains the interface for your application. Double-click
on MainWindow.xib to open it in Interface Builder.

Using Interface Builder

At the simplest level, Interface Builder is a GUI builder. Most GUI builders let the
developer describe what they want the application to look like. Then the developer
presses a button, and the builder generates reams upon reams of code. Interface
Builder, however, is an object editor: the developer creates and configures objects
and then saves them into an archive. This archive is a XIB (pronounced “zib”) or

a NIB file. A XIB file is an XML representation of your objects and their instance
variables, and it is compiled into a NIB file when your application is built. The XIB
file is easier to work with, but the NIB file is smaller and easier to parse, which is

Page 4

Chapter 1. A Simple iPhone Application

why the file that actually ships with your application is a NIB.

When you build your application, the NIB file is copied into the application’s
bundle. (An iPhone application is really a directory containing the executable
and any resources the executable uses. We refer to this directory as a bundle.)
When your application reads in the NIB file, all of the objects in the archive are
brought back to life. This particular application has only one NIB file created from
MainWindow.xib, but a complex application can have many NIB files that are

read in as they are needed.

Once Interface Builder starts up, you will see several windows as shown in Figure

1.4.

Figure 1.4. Windows in Interface Builder

 Window

~
==

"An Instance of UIWindow"

f_ MainWindow.xib =
| Q |

BOO

E]

U@!

File's Owner

First Responder Quiz App Del..

"The Doc Window

oo

000 Window Attributes

2 © | ¢ | ©

¥ Window

Window 7] Visible at Launch
Simulated Metrics

Status Bar [Gray I-G-l

¥ View

Libralr\(

Mode [Scale To Fill A

Alpha —_—

Tag

s 1 he Inspector”

] Clip Subviews

1.00] 3]

["] Clear Context Before Drawing
g User Interaction Enabled
] Multiple Touch

Interaction

fﬁ Library

I'i'l

=2 || | b | st (1]2) [

(ESCE] | el P

Text r m

—

Label |

"The Library"

'ﬂ\'

-”“

4

l. ,l UlButton

Implements a button that intercepts touch

' Round Rect Button

CED|

events and sends an action message to a &
target object when it's tapped. You can set |y

(#-) (QFiler)

Page 5

Chapter 1. A Simple iPhone Application

In Figure 1.4, find the window with the title bar that reads MainWindow.xib. We
call this window the “doc window,” and it represents the open XIB file. The doc
window contains four objects:

File’s Owner An instance of UlApplication. The
event queue for your application is
managed by this object.

First Responder This object doesn’t have much of a use
on the iPhone right now; it is more of
a relic from Desktop Cocoa. You can
ignore it.

QuizAppDelegate An instance of QuizAppDelegate,
a subclass of NSObject that was
created by Xcode specifically for this
project. You will be editing the source
code for this class.

Window An instance of UIWindow that
represents this application’s only
window. (All iPhone applications have
only one window.)

The Library and the Inspector are two tools you will use all the time, so leave
those windows open. (If these windows are not visible, select them from the Tools
menu.) You drag objects from the Library to create new instances in your XIB

file. You use the Inspector to “inspect” and edit the configuration of objects in the
XIB file. The Inspector has four panels: Attributes, Connections, Size, and Info
represented by the icons at the top of the frame. You'll be using the Attributes and
the Connections panels in this chapter.

In the doc window, double-click on the UIWindow object to make it appear full-
sized. (Feel free to close and re-open that window. Sometimes beginners close
the window and fear that they have deleted it.)

From the Library, drag two instances of UlLabel onto the window. Make the labels
nearly as wide as the window (Figure 1.5). Then, drag two instances of UlButton

onto the window. You can change the text an object displays by double-clicking it.

Set the text for one button to Show Question and the other to Show Answer.

Page 6

Chapter 1. A Simple iPhone Application

Figure 1.5. Adding buttons and labels to the window

) 7

e |

000 Library

UlLabel——

UlIButtom———

UIWindow——

UlLabel———

UlButton————

Show Question

Show Answer

Media
Inputs & Values

l-ﬂ

|_1 2_| Label I: :| Text
E «®r =

Label m
UlLabel

Implements a read-only text view. A label el
can contain an arbitrary amount of text, but | *
UlLabel may shrink, wrap, or truncate the 5

(#) (QFiler

Label

Objects have instance variables, and many of these can be set in the Inspector.
As an example, you are going to center the text in the UlLabel objects. Select
a UlLabel. In the Attributes panel of the Inspector, you will see the options for
Alignment (Figure 1.6). Select the option that centers the text.

Page 7

Chapter 1. A Simple iPhone Application

Figure 1.6. Centering the label text

OO0 ~ Window 2 oo i
=l = | 0 & @
¥ Label ™
Text Label
Baseline [Align Centers "5'] c
nter
4 Line Breaks | Tail Truncation = i "
Label o
’ Layout [= == 1 _:,
. Alignment # Lines
Show Question Font [Helvetica, 17.0 |
Font Size M Adjust to fit 10 @
Minimum
cior | (|
Text Highlight
Shadow | [E—
o
Label ol) mlg
H. Offset V. Offset
| Show Answer M Enabled
' : ¥ View
Mode [Scale To Fill 4]
Alpha —_— 100] [F) 12
~ v
Background r——| /4

Now center the text in the other label.
Model-View-Controller

You will hear iPhone programmers speak of the “Model-View-Controller pattern.”
What that means is every object you create will be exactly one of the following: a
model object, a view object, or a controller object.

View objects are visible to the user; the button, the label, and the window are

all view objects. The views are often standard UlView subclasses (UlButton,
UlSlider), but you will sometimes write custom view classes. These typically have
names like DangerMeterView or IncomeGraphView.

Model objects hold data and should know nothing about the user interface. In this
application, the model objects will be two arrays of strings: the questions array
and the answers array. Figure 1.7 displays the object diagram of the Quiz app’s
model objects.

Page 8

Chapter 1. A Simple iPhone Application

Figure 1.7. Diagram of model objects in Quiz

uz'.- | »"What is 7+77?"
= | »"Whatis the captial of Vermont?"
E —®"From what is cognac made?"
B

guestions— ;ﬂ

answers—m| & |——»"14"

S | —»"Montpelier*
E ——"Grapes”
1]
o
3
o
e

Model objects typically use standard collection classes (NSArray, NSDictionary,
NSSet) and standard value types (NSString, NSDate, NSNumber). But there
can be custom classes, which typically have names that sound like data-bearing
objects like InsurancePolicy or PlayerHistory.

Controller objects keep the view and model objects in sync, control the “flow” of
the application, and save the model objects out to the filesystem. Controllers are
the least reusable classes that you will write, and they tend to have names like
ScheduleController and ScoreViewController. When you create a new iPhone
project from a template, as you did at the beginning of this chapter, the template
will automatically give you a controller object called BlahAppDelegate, where
Blah is the name of your application.

The controller for your application is the instance of QuizAppDelegate. Pressing
one of the application’s buttons will trigger a method in that object. The instance of
QuizAppDelegate will have pointers to the questions and answers arrays. It will
use those model objects to update the button label. These interactions are laid out
in the object diagram for Quiz (Figure 1.8).

Page 9

Chapter 1. A Simple iPhone Application

Figure 1.8. Object diagram for Quiz

UlButton

UlLabel

action = showAnswer:

text = “?72"

UlButton

' | action = showQuestion:

UlLabel
text = "Whatis 7 + 77"

L e - 4
 Controller targef answerField
: target questionField

QuizAppDelegate
currentCQuestionindex = 1

: ||1 4- .
"Montpelierst——
"Grapes"#———

Declarations

Z |—»"Whatis 7+77"
E [—>"Whatis the capitol of Vermont?"
T | —»"From what is cognac made?"
>
g

To pull all this off, QuizAppDelegate will need five instance variables
and two methods. In this section, you will declare them in the header file

QuizAppDelegate.h

Declaring instance variables

Here are the five instance variables QuizAppDelegate needs:

questions

answers

a pointer to an NSMutableArray
containing instances of NSString

a pointer to another NSMutableArray
containing instances of NSString

Page 10

Chapter 1. A Simple iPhone Application

currentQuestionindex an int that holds the index of the
current question in the questionsarray

questionField a pointer to the UlLabel object where
the current question will be displayed

answerField a pointer to the UlLabel object where

the current answer will be displayed

Back in Xcode, take a look at the header file QuizAppDelegate.h. Inside the curly
braces, add declarations for five instance variables. (Notice the bold type? In this
book, code that you need to type in is always bold; the code that’s not bold is
there to tell you where to type in the new stuff.)

@interface QuizAppDelegate : NSObject <UIApplicationDelegate>
{

int currentQuestionindex;

// The model objects
NSMutableArray *questions;
NSMutableArray *answers;

// The view objects
IBOutlet UlLabel *questionField;
IBOutlet UlLabel *answerField;

UIWindow *window;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

(Scary syntax? Feelings of dismay? Don’t worry: you will learn the Objective-C
language in the next chapter. For now, just keep going.)

In Interface Builder, you will see items referred to as “Outlets”. An outlet is a
pointer that you can set in Interface Builder. (We’ll see how in just a moment.) In
this header file, we used the macro IBOutlet, which is predefined in the Cocoa
Touch frameworks, to explicitly mark these pointers as outlets that can be set in
Interface Builder.

Page 11

Chapter 1. A Simple iPhone Application

Declaring methods

Each of the buttons needs to trigger a method. A method is a lot like a function — a
list of instructions to be executed. Declare two methods in QuizAppDelegate.h
after the closing curly brace and the line containing @property. (We will talk
about @property later in the book; you can ignore it for now.)

@interface QuizAppDelegate : NSObject <UlApplicationDelegate>
{

int currentQuestionindex;

/I The model objects
NSMutableArray *questions;
NSMutableArray *answers;

/I The view objects

IBOutlet UlLabel *questionField;
IBOutlet UlLabel *answerField;
UlWindow *window;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;

- (IBAction)showQuestion:(id)sender;
- (IBAction)showAnswer:(id)sender;

@end

In Objective-C, instance variables are declared inside the curly braces, and
methods are declared after the closing curly brace. Save QuizAppDelegate.h.

Making Connections

The views and the controller object that your application needs have been
created, but they know nothing about each other. Now you’re going to introduce
them to each other by making these connections:

+ The controller object has two pointers that need to point to the UlLabel objects.

+ The UlButton objects need to be wired up to trigger the appropriate methods in
the controller object.

Page 12

Chapter 1. A Simple iPhone Application

Setting pointers

The instance of QuizAppDelegate has a pointer called questionField. Let’s start
by setting that to point to the instance of UlLabel that is closest to the top of the
window. In Interface Builder, control-click or right-click on the QuizAppDelegate
to bring up the connections panel (Figure 1.9). Then drag from the circle beside
questionField to the UlLabel.

Figure 1.9. Setting questionField

Window -
==3

MainWindow.xib

FEl= o O <

View Mode Inspector Search Field

¥ &

File's aner-__"’r'ﬁ-;-:-?f_;gqnder Quiz App Del... Window

Label «

Show Question

Labe

oO®

Show Answer

) Quiz.xcodeproj v

(If you do not see questionField here, double check your QuizAppDelegate.h
file. Did you end each line with a semicolon? Has the file saved since you added
questionField?)

When the NIB file is read in, the QuizAppDelegate’s questionField pointer will
now automatically point to the instance of UlLabel.

Now drag from the circle beside answerField to the other UlLabel (Figure 1.10).

Page 13

Chapter 1. A Simple iPhone Application

Figure 1.10. Setting answerField

Window

-
==

MainWindow.xib

El=w O @

View Mode Inspectar Search Field

Label
@ &

Show Question

File's Owner First Responder Quiz App Del... Window

a®o

O® ¢

Label —— -

Show Answer

£ Quiz.xcodeproj S

Notice that you drag from the object with the pointer and to the object that you
want that pointer to point at.

Setting targets and actions

UIButton is a subclass of UlControl (which is a subclass of UlView). A control
sends a message to another object when it is activated. So the control needs
answers to two questions: what'’s the action and who’s the target? An action is the
name of the method that is triggered by a control. The target is the object that is
sent the message.

In the case of the Show Question button, the button is activated when the user
touches it. The action the touch triggers is showQuestion:, and the target is
QuizAppDelegate.

In Interface Builder, you set an object’s target and action by Control-dragging
from the control to its target. At that point, a pop-up menu appears that lets you
choose an action. Control-drag (or right-drag) from the Show Question button to
theQuizAppDelegate. Release the mouse button and choose showQuestion:
from the pop-up menu as shown in Figure 1.11.

Page 14

Chapter 1. A Simple iPhone Application

Figure 1.11. Setting Show Question target/action

66 4 Window e
(>
Label
®0O0 MainWindow.xib =]
"" : 32 = — COE
¢ Show Question ~— —— - | El=m (i) 2
e i ¥. B View Mode Info Search Field

——

: Events
First Responder A i e

File's Owner

h Juestion:
5| ow{'.r‘es ion
Label
Window
Show Answer
) Quiz.xcodeproj o
S

Now set the target and action of the Show Answer button. Control-drag from the
button to the QuizAppDelegate. Choose showAnswer: from the pop-up menu
(Figure 1.12). Notice that the choices in this menu are the actions you added to
the header file.

Page 15

Chapter 1. A Simple iPhone Application

Figure 1.12. Setting Show Answer target/action

66 # Window -
=

Label

Show Question |

Events

File's Owner First Resgonder 5h°WA'[5WEF5

show QL.":'_? tion:

Label =

/ e
t Show Answer :

Summary

There are now six connections between your QuizAppDelegate and other
objects. You've set its pointers answerField and questionField. That’s two.
The QuizAppDelegate is the target for both buttons. That’s four. And the
template project had two additional connections. First, the UlApplication object
(File’s Owner in this XIB file) has a pointer called delegate which points at the
QuizAppDelegate. Second, the window pointer of your QuizAppDelegate was
set to the instance of UIWindow. That makes six. You can check all of these
connections in the Connections panel of the Inspector shown in Figure 1.13.

Page 16

Chapter 1. A Simple iPhone Application

Figure 1.13. Checking connections in the Inspector
Connections

® 00 o MainWindow.xib = O 0O O Quiz App Dyé&mnections
- 7
= | O | ¢ | @
¥ Outlets
(answerField (% Label {Label)

{ guestionField (% Label {Label)
{ window (% Window

¥ Received Actions

File's Owner First Responder showAnswer: ® Rounded Rect Butt...
Touch Up Inside

showQuestion: ¥ Rounded Rect Butt...
Touch Up Inside

¥ Referencing Outlets

Window (delegate (% File’s Owner
Mew Referencing Outlet

O@| | @ e eee

Your XIB file is complete. The view objects and the one controller object have
been created. The views have been configured to look and act the way you wish.
All the necessary connections have been made.

Now it’s time to write the methods. Save your XIB file and return to Xcode.

Implementing Methods

Methods and instance variables are declared in the header file (in this case,
QuizAppDelegate.h), but the actual code for the methods is placed in the
implementation file (in this case, QuizAppDelegate.m). In Xcode, open
QuizAppDelegate.m. First, add an init method that creates the two arrays and
fills them with some questions and answers.

@implementation QuizAppDelegate
@synthesize window;

- (id)init

{
// Call the init method implemented by the superclass
[super init];

Page 17

Chapter 1. A Simple iPhone Application

// Create two arrays and make the pointers point to them
questions = [[NSMutableArray alloc] init];
answers = [[NSMutableArray alloc] init];

// Add questions and answers to the arrays
[questions addObject:@”What is 7 + 7?”];
[answers addObject:@”14”];

[questions addObject:@”What is the capitol of Vermont?”];
[answers addObject: @”Montpelier”];

[questions addObject:@”From what is cognac made?”];
[answers addObject:@”Grapes™];

// Return the address of the new object
return self;

}

When an Objective-C object is created and memory is allocated for the object to
live in, all its instance variables are zeroed. The init method is where the instance
variables are given useable initial values.

After the init method, add the two action methods.

- (IBAction)showQuestion:(id)sender

{
// Step to the next question
currentQuestionindex++;

// Am | past the last question?
if (currentQuestionindex == [questions count]) {

// Go back to the first question
currentQuestionindex = 0;

}

// Get the string at that index in the questions array
NSString *question = [questions objectAtindex:currentQuestionindex];

// Log the string to the console

Page 18

Chapter 1. A Simple iPhone Application

NSLog(@”displaying question: %@”, question);

// Display the string in the question field
[questionField setText:question];

// Clear the answer field
[answerField setText:@7???”];

}

- (IBAction)showAnswer:(id)sender
{
// What is the answer to the current question?
NSString *answer = [answers objectAtindex:currentQuestionindex];

// Display it in the answer field
[answerField setText:answer];

You will use the default implementations for dealloc and application:didFinishLa
unchingWithOptions:, so leave those alone.

Build and Run on the Simulator

Now you are ready to build the application and run it in the debugger. Use the
Xcode keyboard shortcut for Build and Debug - Command-Y. If there are any
errors or warnings, a Build Results window with a list of problems will open. Find
and fix any problems (i.e., code typos!) and build and debug again. Repeat this
process until your application compiles. (If you close the Build Results window,
press Command-Shift-B or click on the Failed icon in the bottom right of the
project window to get it back.) Once your application has compiled, it will launch in
the iPhone simulator, and you will be able to test it. Note that the output from the

Page 19

Chapter 1. A Simple iPhone Application

log statements will appear in the debugger console window. To open this window,
select Console from the Run menu. (Or hit Command-Shift-R.)

Event-driven Programming

aow Question

Send touch
eventtoa
view

View
triggers
your
custom
methods &

Views are Quiz App Del. ..
redrawn as

necessary

File's Ovwner

Is the capital of Vermont?

When the application launches, it enters a loop as shown in Figure 1.14.

Figure 1.14. iPhone application event loop

The UlApplication object waits around for an event. When the user touches the
screen, the touch event is forwarded by the UlApplication object to the view
that was touched. This is often a control (like a button) that then sends its action
message to a controller. This triggers your custom code. Your code changes the
state of a view, which redraws itself to reflect the new state.

In iPhone programming, the event loop drives everything. If you are used to a
programming environment where you drive the application from a main function
that calls other functions, the event loop may seem confusing. We will discuss the
event loop in more detail in later chapters.

Deploying an Application

Now that you have finished writing the code for your first iPhone application and
have run it on the simulator, it’s time to deploy it to a device.

Page 20

Chapter 1. A Simple iPhone Application

To install an application onto your development device, you need a developer
certificate from Apple. Developer certificates are issued to registered iPhone
Developers who have paid the developer fee. This certificate grants you the ability
to sign your code, allowing it to run on a device. Without a valid certificate, devices
will not allow your application to run.

Apple’s Developer Program Portal (http://developer.apple.com/iphone/) contains
all the instructions and resources to get a valid certificate. The interface for the
set up process is continually being updated by Apple, so it would be fruitless to
describe it in detail. However, a step-by-step guide, the Development Provisioning
Assistant, is available on the program portal.

Work through the Development Provisioning Assistant, paying careful attention to
each screen. At the end, you will have added the required certificates to Keychain
Access and the mobile provision file to Xcode. You might be curious as to what
exactly is going on here. In the provisioning process, there are four important
items:

Developer Certificate This certificate file is added to your
Mac’s keychain using Keychain
Access. It is used to digitally sign your
code.

App ID The application identifier is a string
that uniquely identifies your application
on the App Store. Application
identifiers typically look like this: com.
bignerdranch.AwesomeApp, where
the name of the application follows
the name of your company. The App
ID in your provisioning profile must
match the bundle identifier of your
application. A development profile, like
you just created, can have a wildcard
character for its App ID and therefore
will match any Bundle Identifier. To see
the bundle identifier for an application,
open the AppName-Info.plist file in
the Resources group of the project
window.

Page 21

Chapter 1. A Simple iPhone Application

Device ID (UDID) Each iPhone OS device has a unique
identifier.
Provisioning Profile This is a file that lives on your

development device and on your
computer. It references a Developer
Certificate, a single App ID, and a list
of the device IDs for the devices that
application can be installed on. This
file is suffixed with mobileprovision.

When an application is deployed to the device, Xcode uses a provisioning

profile on your computer to access the appropriate certificate. This certificate

is used to sign the application binary. Then, the development device’s UDID is
matched to one of the UDIDs contained within the provisioning profile, and the
App ID is matched to the bundle identifier. This signed binary is then sent to your
development device where it is confirmed by the provisioning profile on the device
and launched.

Open Xcode and plug your development device (iPhone or iPod touch) into your
computer. This will automatically open the Organizer window, which can be re-
opened by selecting Organizer from the Window menu. This window is useful for
all things device-related.

To run the Quiz application on your device, you must tell Xcode that it should
deploy to the device instead of the simulator. From the Project menu, mouse
over the Set Active SDK menu item and select Device - iPhone OS 3.0 (Project
Setting). Build and run your application (Command-Y), and it will appear on your
device!

Application Icons

When the quiz application installs on your development device, its icon is a plain
white tile. But don’t worry - you’re going to give Quiz a better icon.

For any iPhone application, the icon image must be a 57x57 pixel PNG file. You
can download Icon.png (along with resources for other chapters) from http://www.
bignerdranch.com/solutions/iPhoneProgramming.zip to use as Quiz’s icon. If you
open this image, you’ll notice that it isn’t glossy and doesn’t have rounded corners
like other application icons; these effects are applied for you. Drag this file into the

Page 22

Chapter 1. A Simple iPhone Application

Resources group in the project window.

There are a couple of options for the application icon that can be set in Quiz-Info.
plist also located in the Resources group. If you want to use an icon filename
other than the default Icon.png, you can set the value of the Icon file key within
this file. Also, if you don’t want the glossy effect added to the application icon, you
can disable it here by adding the key UlPrerenderedlcon and setting its value to
true. To add this key to the property list, select a row within the property list and
click the plus button that appears on the right hand side. A new row will appear
and you can type in UIPrerenderedlcon into the Key column or select Icon already
includes gloss and bevel effects from the pop-up list.

In addition to the 57x57 pixel icon that appears on the home screen, you can
also add a 512x512 pixel JPEG or PNG image to the Resources group named
iTunesArtwork. This image will be shown to iTunes shoppers when viewing your
application iniTunes. (You should create a richer and more detailed version of
your icon for display in the iTunes Store. Users typically won’t be impressed by a
scaled-up, pixellated version of your home screen icon.)

Figure 1.15. The Info Property List

800 | | Quiz-Info.plist =
’x E] O ﬁ - [S|mu|ator -3.1.2 I Debug - @
Build Breakpoints Tasks Clean All Debugger Project
4| » Quiz-Info.plist l ™% |Cy | &y B (B
Key Value
¥ Information Property List (13 items)
Localization native development region English
Bundle display name S{PRODUCT_NAME}
Executable file S{EXECUTABLE_NAME}
lcon file lcon.png
Bundle identifier com.yourcompany.S{PRODUCT_NAME:rfc1034identifier}
InfoDictionary version 6.0
Bundle name F{PRODUCT_MAME}
Bundle OS5 Type code APPL
Bundle creator O5 Type code wnn
Bundle version 1.0
Application requires iPhone environment IEI
Main nib file base name MainWindow
I lcon already includes gloss and bevel effects 'E I

Page 23

Chapter 1. A Simple iPhone Application

Build and run your application again. The Big Nerd Ranch logo will appear as the
icon for Quiz.

Default Images

When launching an application, the code and resources (like MainWindow.xib)
need to be loaded into memory. This takes time, and in the meantime all the user
sees is a black screen. The iPhone is intended to create an interface that feels like
a real object instead of a computer screen, and a delay while loading ruins this
effect.

You can fix this problem by using a default image. A default image appears as the
application is loading, and the name Default.png is reserved for it.

Typically, the default image is a screen shot of your application’s user interface

as it appears in its freshly opened state. This gives the user the illusion that

the application loaded instantly. By the time the user touches the screen, your
application will have seamlessly replaced the default image with the actual user
interface. (Note that this screen shot is not typically a splash screen. A splash
screen draws attention to the loading delay whereas a dummy image of the actual
interface minimizes the user’s experience of the delay.)

Xcode makes the process of creating and using a default image very easy. Open
the Organizer window and select the Screenshots tab while your application is
running on your connected device (Figure 1.16).

Figure 1.16. Setting Default.png in the Organizer

k]

L] feganizer —
N IO T
T RO =i}

T s

| S Ad DfaulL |, | Capluie

Page 24

Chapter 1. A Simple iPhone Application

Press the Capture button. Xcode will save the image currently displaying on your
development device’s screen to the view on the left. Select that image and click
Save as Default Image.... When you’re prompted to add it to an application, add it
to Quiz. The selected image is renamed Default.png and added to your project’s
resources. Run your application again, and the interface will pop up as soon as
you touch the application icon.

Congratulations! You have written your first application and installed it on your
device. Now it is time to dive into the big ideas that make it work.

Page 25

Chapter 2. Objective-C

Chapter 2. Objective-C

iPhone applications are written in the Objective-C language, a simple extension
of the C language. This book doesn’t have enough pages to cover the entire C
language. Instead, this book will assume you know some C and understand the
ideas of object-oriented programming. If C or object-oriented programming makes
you feel uneasy, Kochan’s Programming in Objective-C is a worthwhile read.

In this chapter, you will learn the basics of Objective-C and create
RandomPossessions, a command-line tool that you will reuse in an iPhone
application later in the book. (So even if you’re familiar with Objective-C, you'll still
want to go through this chapter in order to create RandomPossessions.)

Obijects

Let’s say you need a way to represent a car. That car has a few attributes that
are unique to it, like a model name, four wheels, a steering wheel and whatever
other fancy stuff they put on automobiles since the old Model T. The car can also
perform actions, like accelerating and turning left.

In C, you would define a structure to hold all of the data that describes a car. The
structure would have data members, one for each of these attributes. Each data
member would have a name and a type.

To create an individual car, you would use the function malloc to allocate a chunk
of memory large enough to hold the structure. You would write C functions to set
the value of its attributes and have it perform actions.

In Objective-C, instead of using a structure to represent a car, you would use a
class. Following the car analogy, think of this class as a car factory. When you
write the Car class, you build a factory that knows how to create cars.

When you ask the Car class to make you a car, you get back a car object. This
object, like all objects, is a chunk of data allocated from the heap. The car object
is an instance of the Car class, and it stores the values for its attributes in instance
variables (Figure 2.1).

Page 26

Chapter 2. Objective-C

Figure 2.1. A class and its instances

The class acts as a factory

el |

I name : NSString * I
I modelNumber : int I

that creates instances of that class

Car Car
name = @ "White Lightning" name = @ "MelbaToast"
modelNumber = 10084819 modelNumber = 59819001
- turnLeft - turnlLeft
- accelerate - accelerate

A C structure is a chunk of memory, and so is an object. A C structure has
data members, each with a name and a type. Similarly, an object has instance
variables, each with a name and type.

But there is an important difference between a structure in C and a class in
Objective-C: a class has methods. A method is similar to a function: it has a name,
a return type, and a list of parameters that it expects. A method also has access
to an object’s instance variables. If you want an object to run the code in one of its
methods, you send that object a message.

Using Instances

An instance of a class (an object) has a life span: it is created, sent messages,
and then destroyed when it is no longer needed.

To create an object, you send an alloc message to a class. In response, that class
creates an object in memory and gives you a pointer to it. In code, creating an
object looks like this:

NSMutableArray *arraylnstance = [NSMutableArray alloc];

Here an instance of type NSMutableArray is created, and you are returned

Page Page 27

Chapter 2. Objective-C

a pointer to it in the variable arraylnstance. When you have a pointer to an
instance, you can send messages to it. The first message you always send to a
newly allocated instance is an initialization message.

[arraylnstance init];

Although sending the alloc message to a class creates an instance, the object
isn’t valid until it has been initialized. Since an object must be allocated and
initialized before it can be used, we always combine these two messages in one
line.

NSMutableArray *arraylnstance = [[NSMutableArray alloc] init];

This line of code says, “Create an instance of NSMutableArray and send it the
message init.” Both alloc and init return a pointer to the newly created object so
that you have a reference to it. Typically, you will use the assignment operator (=)
to store that pointer in a variable, as in this line of code.

Combining two messages in a single line of code is called nested message
sends. The innermost brackets are evaluated first, so the message alloc is sent
to the class NSMutableArray first. This returns a new, uninitialized instance of
NSMutableArraythat is then sent the message init.

Methods come in two flavors: instance methods and class methods. Instance
methods (like init) are sent to instances of the class, and class methods (like
alloc) are sent to the class itself, typically either to create new instances of the
class or to retrieve some global property of the class. (We will talk more about
class and instance methods later.)

What do you do with an instance that has been initialized? You send it more
messages. Messages have three parts:

receiver a pointer to the object being asked to
execute a method

selector the name of the method to be
executed

arguments the values to be supplied as the

parameters to the method

Page 28

Chapter 2. Objective-C

One such message you can send an NSMutableArray instance is addObject:

[arrayInstance addObject:anotherObiject];

(How do you know you can send this message? addObject: is a method
of NSMutableArray. Sending the addObject: message to an instance of
NSMutableArray will trigger the addObject: method.)

The addObject: message is an example of a message with one argument.
Objective-C methods can take a number of arguments or none at all. The
message init, for instance, has no arguments. On the other hand, you can also
send the message replaceObjectsinRange:withObjectsFromArray:range:,
which takes three arguments (Figure 2.2).

Figure 2.2. Anatomy of a message

The selector is the name The arguments are used
The receiver is a pointer to of the method being triggered by the method
the object being sent the message

[arrayInstance replaceObjectsInRange:aRange
withObjectsFromArray:anotherArray
range:anotherRange];

Each argument has a label, and each label ends with a colon. One thing that
confuses Objective-C beginners is that the name of the message is all of the
labels in a selector. For example, addObject: has one label (addObject:) for its
one argument. The message replaceObjectsinRange:withObjectsFromArray:r
ange: has three arguments, so it has three labels.

In C++ or Java, this method would look like this:

arraylnstance.replaceObjectsInRangeWithObjectsFromArrayRange(aRange,
anotherArray,
anotherRange);

In these languages, it isn’t completely obvious what each of the arguments sent
to this function are. In Objective-C, however, each argument is paired with the
appropriate label:

[arrayInstance replaceObjectsinRange:aRange
withObjectsFromArray:anotherArray
range:anotherRange];

Page Page 29

Chapter 2. Objective-C

Objective-C developers learn to appreciate the clarity of having a label for each
argument even though it requires a little more typing. For example, you can have
two methods replaceObjectsinRange:withObjectsFromArray:range: and
replaceObjectsIinRange:. These methods do not have to be related; they are two
distinct messages that you can send to an instance of NSMutableArray.

To destroy an object, you send it the message release.

[arraylnstance release];

This line of code destroys the object pointed to by the arraylnstance variable.
(It's actually a bit more complicated than that, and you’ll learn about the details of
memory management in the next chapter.) It is important to note that although you
destroyed the object, the variable arraylnstance still has a value — the address

of where the NSMutableArray instance used to exist. If you send a message

to arraylnstance, it will cause a problem because that object no longer exists.
However, if arraylnstance is set to nil, the problem goes away. (nil is the zero
pointer. C programmers know it as NULL. Java programmers know it as null.)

arraylnstance = nil;

Now there is no danger of sending a message to the outdated memory address.
Sending a message to nil is okay in Objective-C; nothing will happen. In a
language like Java, sending messages to nil is illegal, so you see this sort of thing
a lot:

if (rover !=nil) {
[rover doSomething];

}

In Objective-C, this check is unnecessary because a message sent to nil is just
ignored. (A corollary: if your program doesn’t do anything when you think it should
be doing something, an unexpectedly nil pointer is often the culprit.)

Writing the RandomPossessions Tool

Before you dive into the UIKit (the set of libraries you use to create iPhone
applications), you’re going to write a command-line tool that will let you focus on
the Objective-C language. Open Xcode and select New Project... from the File
menu. On the left hand table, select Application from underneath the Mac OS X
section. Select Command Line Tool from the upper right panel. A list of options will

Page 30

Chapter 2. Objective-C

appear in the pop-up menu of the bottom right panel. Choose Foundation from
this pop-up menu as shown in Figure 2.3. Click the Choose... button.

Figure 2.3. Creating a command line utility

800 MNew Project

Choose a template for your new project:

@ iPhone O3

-
Application of =R v E
Library :

- Cocoa Application Cocoa-AppleScript Quartz Compeser
| Mac OS5 X Application Application
| APPIICAlion
Framework & Library o
Application Plug-in
System Plug-in
Lk Command Line Tool
Type | Foundation I i

E Command Line Tool

This project builds a command-line tool that links against the
Foundation library.

Ii Cancel :' (Chuose...)
i

Name this project RandomPossessions. A project window will appear.

One source file (RandomPossessions.m) has been created for you in the
Source group on the left hand side of the project window (Figure 2.4).

Page Bage 31

Chapter 2. Objective-C

Figure 2.4. Project window

|MO [RandomPossessions =
' [10.6 | Debug | x86_64] [#] (=] ‘@s @ €D (o suing maching 3
I Overview Action Breakpoints Build and Run Tasks Info Search
| Groups & Files 1 File Name li 4. Code a A @
! =] E! Foundation.framework L]
P[] Source M RandomPossessions
¥ || Documentation | RandomPossessions.1 =
b || External Frameworks anc |—ﬂ| RandomPossessions.m v)
¥ || Products |1| RandomPossessions_Prefix.pch
[2 Targets

P (% Executables
v »{ Find Results
%] Bookmarks
» 5 som
Wl Project symbols
b (i@ Implementation Files
I (3] MIB Files

Double-click on this file to open it, and you’ll see some code has already been
written for you — most notably, a main function that is the entry point of any C (or
Objective-C) application.

Time to put your knowledge of Objective-C basics to the test. Delete the line
of code that NSLogs “Hello, World!” and replace it with a line that creates an
instance of an NSMutableArray.

#import <Foundation/Foundation.h>
int main (int argc, const char * argv([])

{
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
NSMutableArray *items = [[NSMutableArray alloc] init];
[pool drain];
return O;

}

Once you have an instance of NSMutableArray, you can send it some messages.
In this code, the receiver is the object pointed to by items. Add a few strings to
this array instance.

NSMutableArray *items = [[NSMutableArray alloc] init];

Page 32

Chapter 2. Objective-C

[items addObject:@"One"];

[items addObject:@"Two"];

[items addObject:@" Three"];

[items insertObject:@"Zero" atindex:0];

[pool drain];

When you want a string object in Objective-C, you prefix a literal C string with an
@ symbol. This tells the compiler that you want to use an instance of NSString
(another Objective-C class) to contain this string.

When this application executes, it creates an NSMutableArray and fills it with four
NSString instances. However, you need to confirm your success. After adding the
final object to the array, loop through every item in the array and print them to the
console. (You can find out how many items are in an NSMutableArray by sending
it the message count.)

[items insertObject: @"Zero" atindex:0];
for(inti=0; i <[items count]; i++) {

NSLog(@"%@", [items objectAtindex:i]);
}

[pool drain];

Select Build and Run from the Build menu. It may seem like nothing has
happened since the program exits fairly quickly, but the console tells another story.
From the Run menu, select Console. Ah, there we go — your hard work has paid
off, and you now have output from your application (Figure 2.5).

Figure 2.5. Console output

_' RandomPossessions - Debugger Console =
PO T &
Build and Go Tasks Activate Debugger Clear Log

[Session started at 2009-03-26 00:09:16 -0400.]
2009-03-26 00:09:16.647 RandomPossessions[7111:10b] Zero
2009-03-26 00:09:16.651 RandomPossessions[7111:10b] One
2009-03-26 00:09:16.651 RandomPossessions[7111:10b] Two
2009-03-26 00:09:16.651 RandomPossessions[7111:10b] Three

The Debugger has exited with status 0.

Debugging of “RandomPossessions” ended normally. Y

Page Bage 33

Chapter 2. Objective-C

NSArray and NSMutableArray

What exactly is this NSMutableArray? An array is a collection object (also called
a container). In the Cocoa Touch frameworks, there are a few collection objects,
such as NSDictionary and NSSet, and each has a slightly different use. An array
is an ordered list of objects that are accessed by an index. Other languages might
call it a list or a vector. An NSArray is immutable, which means you cannot add or
remove objects after the array is instantiated. You can, however, access objects
within the array. NSArray’s mutable subclass, NSMutableArray, lets you add and
remove objects dynamically.

In Objective-C, an array does not actually contain the objects that belong to it;
instead it holds a pointer (a reference) to each object. When an object is added to
an array,

[array addObject:object];

the address of that object in memory is stored inside the array.

Arrays can hold any type of Objective-C object. This means primitives and C
structures cannot be added to an array. For example, you cannot have an array of
ints. Also, because arrays only hold a pointer to an object, you can have objects
of different types in a single array. This is different from many other compiled
languages where an array can only hold objects of its declared type.

Note that you cannot add nil to an array. If you need to add holes to an array, you
must use the NSNull object. NSNull is an object that represents nil and is used
specifically for this task.

[array addObject:[NSNull null]];

To retrieve the pointer to an object later, you send the message objectAtindex: to
the array,

NSString *object = [array objectAtindex:0];

How do you know the order of the objects in an array? When an object is added to
an array with the message addObiject:, it is added at the end of the array. You can
ask an array how many objects it is currently storing by sending it the message
count. This information is important because if you ask for an object from an array
at an index that is greater than the number of objects in the array, an exception
will be thrown. (Exceptions are very bad; they will most likely ruin your application

Page 34

Chapter 2. Objective-C

and cause it to crash.)
int numberOfObjects = [array count];

You can also insert objects at a specific index — as long as that index is less than
or equal to the current number of objects in the array.

int numberOfObjects = [array count];
[array insertObject:object
atIndex:numberOfObjects];

Objects added to an array are sent the message retain. When an object is
removed from an array, it is sent the message release. When an array is
deallocated, all of its objects are sent the message release. If you don’t know
what retain, release, and deallocate mean, that’s okay; you’ll learn about them in
the following chapter.

So, to recap, you created an instance of NSMutableArray to which you added
four instances of NSString as shown in Figure 2.6.

Figure 2.6. NSMutableArray instance

NSString
“Zero"
2 NSString
item*—-—.. E' 1 _-—-—-—-_" ||Dm||
=3
® 2~——0u_ | NSString
E 3 \\ ITWD"
NSString
IThm“

Then, you looped through every instance in that array. Each time you iterated
through this loop, you called the C function NSLog with a single parameter. That
single parameter was the description of the object at the ith index of the array.

The NSLog function is to Objective-C as the printf function is to C. The NSLog
function uses the same format list with one addition: you can print Objective-C
objects. To print an Objective-C object, the format is “%@”. When the format string
is parsed, the NSLog function finds the matching argument in the argument list
and sends it the message description. (Every object has a description method.)
The string returned from that method then replaces the format string. And

Page Bage 35

Chapter 2. Objective-C

remember, the NSLog function expects an NSString for the format list, so you
have to prefix an @ character before the string literal.

Subclassing an Objective-C Class

Where does the description method come from? Every class has exactly one
superclass — except for the root class of the entire hierarchy: NSObject. That
means, at minimum, every class inherits from NSObject. NSObject implements a
method named description.

Sending the description message to an NSObject returns an NSString
containing information about that instance. By default, that string is the object’s
class and its address in memory. A subclass of NSObject, like NSString, will
override this method to return something that does a better job describing an
instance of that subclass. For NSString, description just returns the string itself
since that is the best way to describe an NSString instance.

So how do these subclasses get created? Glad you asked because now you are
going to create one of your own. From the File menu, select New File.... Select
Cocoa Class from the Mac OS X section in the left hand table. Then, select
Objective-C class from the upper right panel. Choose NSObject from the pop-up
menu as shown in Figure 2.7.

Page 36

Chapter 2. Objective-C

Figure 2.7. Creating a class

w

Choose a template for your new file:

U iPhone OS5 L. L.
Cocoa Touch Class : ‘ I .m
User Interface
Resource Objective-C class Objective-C Objective-C test
Code Signing protecol case class

"

Mac OS5 X

& %
CoCH .‘/

O Od el
Cand C++ TEXT
User Interface AppleScript class
Resource
Interface Builder Kit
Other

Subclass of | NSObject F

e
m Objective-C class

An Objective-C class file, with an optional header which includes the
<Cocoa/Cocoa.h> header.

“ Previous | (Mext)

Hit the Next button, and you will be given a chance to configure this new

Objective-C class. Change the filename to Possession.m. The files for this class

A

will be created and added to your project when you click Finish (Figure 2.8).

Page Bage 37

Chapter 2. Objective-C

Figure 2.8. Configuring a new class

Q00 New File

New Objective-C class

File Name: IPossessicn.m I

E Also create “Possession.h”

Location: |~/Desktop/Homepwner/RandomPossessions j': Choose...)
Add to Project: [RandomPossessions H-'{

Targets: @ [RandomPossessions

I: Previous :] E—Frmsh'—a

A

For every Obijective-C class, there are two files: a header file and an
implementation file. The header file (also called an interface file) declares the
name of the new class, its superclass, the instance variables that each instance
of this class has, and any methods this class implements. This file is suffixed with
.h. Open Possession.h by double-clicking on it in the Groups & Files table in the
project window.

The goal of the header file is to declare an Objective-C class.

@interface Possession : NSObject {

}
@end

Let’s break down this interface declaration to figure out what it all means. First,
note that the C language retains all of its keywords and any additional keywords
from Objective-C are distinguishable by the @ prefix. To declare a class in
Objective-C, you use the keyword @interface followed by the name of this new
class. After a colon comes the name of the superclass. Possession’s superclass

Page 38

Chapter 2. Objective-C

is NSObject. Objective-C only allows single inheritance, so you will only ever see
the following pattern:

@interface ClassName : SuperclassName

Next comes the space for declaring instance variables. Instance variables must
be declared inside the curly brace block immediately following the class and
superclass declaration. After the the closing curly brace, you declare any methods
that this class implements. Once you declare methods here, you must implement
them in the implementation file or the compiler will give you a warning. Finally, the
@end keyword finishes off the declaration for your new class.

Instance variables

So far, the Possession class doesn’t add a whole lot of interesting information to
its superclass NSObiject, so let’s give it some possession-like instance variables.
A possession, in our world, is going to have a name, serial number, value, and
date of creation. You are going to declare an instance variable for each of these
attributes (Figure 2.9).

Figure 2.9. A Possession instance

NSString
Possession .r-—-"‘” @ Red Sofa”
possessionMame — -
serialNumber . .NSS"'“QH
valuelnDollars = 120 @™2A139B
dateCreated —___ |
———»{ NSDate
May 12, 2004

Type this new code into Possession.h. Also, make sure to change the imported
header from Cocoa to Foundation. We are going to reuse this class later for an
iPhone application, and the Cocoa framework doesn’t exist on the iPhone.

// Don't forget to change this line from Cocoa/Cocoa.h!
#import <Foundation/Foundation.h>
@interface Possession : NSObject
{
NSString *possessionName;
NSString *serialNumber;
int valuelnDollars;

Page Bege 39

Chapter 2. Objective-C

NSDate *dateCreated;

}
@end

Accessors and properties

Now that you have instance variables, you need a way to get and set them. In
object-oriented languages, we call methods that get and set instance variables
accessors. Individually, we call them getters and setters. Without these methods,
one object cannot access the instance variables of another object.

Prior to Objective-C version 2.0, we had to explicitly declare and define every
accessor method. That was a lot of typing. Fortunately, Objective-C 2.0 introduces
a shortcut called properties. By creating a property, you are declaring two
accessor methods. Before properties were introduced, you would have declared
those two accessor methods as follows:

/l Getter
- (int)fido;

/] Setter
- (void)setFido:(int)v;

You might wonder why the name of the getter is simply fido instead of getFido.
This is another Objective-C style convention. The name of the instance variable
you are accessing is the name of the getter method for it. While there is no
compiler warning or error if you use get, stylish iPhone programmers stick to the
convention.

With properties, you can declare the same two accessors in one line of code:
@property int fido;

When you create a property, the accessors are declared according to the naming
convention above. Properties also declare how the accessors are implemented
by setting property attributes. One attribute addresses how the setter method

will set the variable. The default is simple assignment. You can change this to
copy or retain. (The reasons why you might do this will make more sense after
we talk about memory management in the next chapter.) Another attribute deals
with whether the variable can be changed. The default is readwrite, but it can be
set to readonly. In that case, only the getter method is declared. A third attribute
tells us if the variable requires a lock. This attribute defaults to atomic, which

Page 40

Chapter 2. Objective-C

means a lock must be acquired to get or set the variable. Specifying a property
as nonatomic means no lock is required. In this book, you’ll stick to nonatomic
because it’s a touch faster.

Property declarations are made in the same place as method declarations — after
the closing curly brace. Add the following property declarations to Possession.h.

#import <Foundation/Foundation.h>
@interface Possession : NSObject
{

NSString *possessionName;

NSString *serialNumber;

int valuelnDollars;

NSDate *dateCreated;
¥
@property (nonatomic, copy) NSString *possessionName;
@property (nonatomic, copy) NSString *serialNumber;
@property (nonatomic) int valuelnDollars;
@property (nonatomic, readonly) NSDate *dateCreated;
@end

Just declaring these properties doesn’t implement the accessor methods; you
have to synthesize them. To do this, you turn to the second file associated with
an Objective-C class — the implementation file with the .m extension. This file
is where you implement all of your methods and synthesize any properties.
Synthesizing properties defines their accessor methods.

At the top of an implementation file, you always import the header (.h) file

of that class. The implementation of a class needs to know how it has been
declared. All of the method definitions in the implementation file will be inside an
implementation block. An implementation block begins with the @implementation
keyword followed by the name of the class that is being implemented. Methods
are defined until you close out the block with the @end keyword.

Open Possession.m. Use the @synthesize keyword followed by a comma-
delimited list of all properties you are synthesizing. Remember that this must
occur inside the implementation block.

#import "Possession.h"

@implementation Possession
@synthesize possessionName, serialNumber, valuelnDollars, dateCreated,;

PageBage 41

Chapter 2. Objective-C

@end

If you chose to write your own accessors for valuelnDollars, instead of using @
synthesize, they would look like this:

// Getter
- (int)valuelnDollars

{

return valuelnDollars;

}

// Setter
- (void)setValuelnDollars:(int)x

{

valuelnDollars = x;

}

Build your application to ensure that there are no compiler errors or warnings.
Now that your properties have been synthesized, you can send messages

to Possession instances to get and set instance variables. For example,
synthesizing valuelnDollars allows you to send the messages valuelnDollars
and setValuelnDollars: to instances of Possession.

Instance methods

Not all instance methods are accessors. You will regularly find yourself wanting to
send messages to instances that perform other code, like description. Because
Possession is a subclass of NSObject (the class that originally declares the
description method), when you re-implement this method in the Possession
class, you are said to be overriding that method.

When overriding a method, all you need to do is define it in the implementation
file, you do not need to declare it in the header file because it has already been
declared by the superclass. Override the description method in Possession.m.
(Be sure to include the - in the first line of code. It denotes that description is an
instance method, not a class method.)

Page 42

Chapter 2. Objective-C

- (NSString *)description
{
NSString *descriptionString =
[[NSString alloc] initWithFormat: @" %@ (% @): Worth $%d, Recorded on

% @",
possessionName,
serialNumber,
valuelnDollars,
dateCreated];

return descriptionString;

}

Now whenever you send the message description to an instance of Possession,
it returns an NSString that describes that instance. (To those of you familiar with
Objective-C and managing memory, don’t panic — you will fix the obvious problem
with this code soon.)

What if you want to create an entirely new instance method, one that you are not
overriding from its superclass? You typically declare a method in the header file
and define it in the implementation file. A good method to begin with is an object’s
initializer.

Initializers

At the beginning of this chapter, we talked about how an instance is created:

its class is sent the message alloc, which creates an instance of that class

and returns a pointer to it, and that instance is sent the message init. The init
message isn'’t a special type of instance method, though; it is simply a naming
convention. Your initialization method could have a totally different name, like
finishMakinglnstance. However, by convention, all initialization methods begin
with the word init. Objective-C is all about naming conventions, which you should
strictly adhere to. (Seriously. Disregarding naming conventions in Objective-C
results in problems that are worse than most beginners would imagine.)

The class NSObject implements a method named init. This is the initializer
message you need to send to an instance of NSObject to initialize it. Because
init is the main (or, in this case, only) initialization method for NSObject, we call it
thedesignated initializer. Classes can have multiple initializers, but for every class,
there is one designated initializer. The designated initializer must make sure that

Page Bage 43

Chapter 2. Objective-C

each of the instance variables has a valid value. Only then will the newly created

instance be valid. (“Valid” has different meanings, but the meaning in this context

is, “When you send messages to this object after initializing it, you can predict the
outcome and nothing bad will happen.”) Typically, the designated initializer is the

initialization method with the most arguments.

Your Possession class has four instance variables, but only three are writeable.
(The NSDate object used to set the read-only variable dateCreated is created
inside the body of the method instead of being passed in.) Possession’s
designated initializer needs to accept three arguments: one for each of the
writable instance variables. In Possession.h, declare the designated initializer:

@property (nonatomic, readonly) NSDate *dateCreated;

- (id)initWithPossessionName:(NSString *)pName
valuelnDollars:(int)value
serialNumber:(NSString *)sNumber;
@end

Take another look at this method declaration. Its return type is id. The id type
definition is “a pointer to any object.” (This is a lot like void * in C.) init methods
are always declared to return id. (Why? If Possession gets subclassed, its
initializer will need to return the subclass’s type. When you override a method, you
cannot change its return type in the subclass. Therefore, initialization methods
should always return id. Objects know which class created them anyway; the type
they are declared is more or less a hint for the compiler.)

This method’s name, or selector, is initWithPossessionName:valuelnDollar
s:serialNumber:. This selector has three labels (initWithPossessionName:,
valuelnDollars:, and serialNumber:), and the method accepts three arguments.

These arguments each have a type and a parameter name. The type follows the
label in parentheses. The parameter name then follows the type. So the label
initWithPossessionName: is expecting an instance of type NSString. Within the
body of that method, you can use pName to reference the object that was passed
in.

Now that you have declared the designated initializer, you need to implement
it. Open Possession.m. Recall that the definitions for methods go within the
implementation block in the implementation file. Add the designated initializer
inside the implementation block.

Page 44

Chapter 2. Objective-C

@implementation Possession

- (id)initWithPossessionName:(NSString *)pName
valuelnDollars:(int)value
serialNumber:(NSString *)sNumber

// Call the superclass's designated initializer
[super init];

// Give the instance variables initial values
[self setPossessionName:pName];

[self setSerialNumber:sNumber];

[self setValuelnDollars:value];
dateCreated = [[NSDate alloc] init];

// Return the address of the newly initialized object
return self;

}

In the designated initializer, you always call the superclass’s designed initializer
using super. The last thing you do is return a pointer to the successfully initialized
object using self. So to understand what’s going on in an initializer, you will need
to know about self and super.

self

Inside a method, self is an implicit local variable. There is no need to declare it,
and it is automatically initialized to the address of the object running the method.
Typically, self is used so that an object can send a message to itself:

- (void)chickenDance

{
[self pretendHandsAreBeaks];
[self flapWings];
[self shakeTailFeathers];

}

Most object-oriented languages have this concept, but some call it this instead of
self.

In the last line of an init method, you always return the newly initialized object:

Page Bage 45

Chapter 2. Objective-C

return self;

If things go badly and the init method fails, you will return nil instead of the new
object.

super

Often when you are overriding a method in a subclass, you want to do some
special subclass stuff and then invoke the implementation of the method as it was
defined in the superclass. To make this possible, there is a compiler directive in
Objective-C called super:

- (void)someMethod

{
[self doSomeSpecialStuff];
[super someMethod];

}

How does super work? Usually when you send a message to an object, the
search for a method of that name starts in the object’s class. If there is no such
method, the search continues in the superclass of the object. The search will
continue up the inheritance hierarchy until a suitable method is found. (If it gets to
the top of the hierarchy and no method is found, an exception is thrown.) When
you send a message to super, you are sending a message to self but demanding
that the search for the method begin at the superclass.

In a designated initializer, the first thing you do is call the superclass’s designated
initializer using super. What if the superclass’s initializer fails and returns nil? It

is probably a good idea to save the return value of the superclass’s initializer into

theself variable and confirm that it is not nil before doing any further initialization.

In Possession.m, edit your designated initializer to confirm the initialization of the
superclass.

- (id)initWithPossessionName:(NSString *)pName
valuelnDollars:(int)value
serialNumber:(NSString *)sNumber

{

// Call the superclass's designated initializer
self = [super init];

// Did the superclass's designated initializer fail?
if (!self)

Page 46

Chapter 2. Objective-C

return nil;

/l Give the instance variables initial values
[self setPossessionName:pName];

[self setSerialNumber:sNumber];

[self setValuelnDollars:value];
dateCreated = [[NSDate alloc] init];

/I Return the address of the newly initialized object
return self;

}
Initializer chain

Let’s say you are creating an instance of Possession, but you only know its name
— not its value or serial number. You can create another initializer that accepts just
one NSString meant for the possessionName instance variable. Declare another
initializer for when you only know the name of the possession in Possession.h.

@property (nonatomic, readonly) NSDate *dateCreated;

- (id)initWithPossessionName:(NSString *)pName
valuelnDollars:(int)value
serialNumber:(NSString *)sNumber;

- (id)initWithPossessionName:(NSString *)pName;
@end

An initializer that is not the designated initializer must always call its own class’s
designated initializer message with default values for the parameters that not
specified. To implement your new initializer in Possession.m, simply call the
designated initializer using the passed-in parameter and default values for the
other arguments. (Make sure this code is in between the @implementation and
@end directives and not inside the curly brackets of another method!)

- (id)initWithPossessionName:(NSString *)pName
{
return [self initWithPossessionName:pName
valuelnDollars:0
serialNumber:@""];

Page Bage 47

Chapter 2. Objective-C

When an instance of Possession is created with this initializer, it uses the name
of the possession passed to it. The valuelnDollars instance variable defaults

to 0, and the serialNumber defaults to the empty string. Using initializers as a
chain like this reduces the chance for error and makes maintaining code easier.
You only write the core of the initializer once in the designated initializer; other
initialization methods simply call that core with default values.

Furthermore, a subclass needs to override its superclass’s designated initializer
to invoke its own designated initializer. Right now, an instance of Possession
could be sent the message init. To the programmer and compiler, the object
would appear valid. However, only the superclass’s (NSObject) instance variables
would have been initialized — all of the stuff added by the Possession class would
not be. To make sure this doesn’t happen, override init to invoke Possession’s
designated initializer with default values in Possession.m.

- (id)init
{
return [self initWithPossessionName:@"Possession"
valuelnDollars:0
serialNumber:@""];

}

(Remember, because you’re overriding this method, you don’t have to declare it in
Possession.h.)

Class methods

So far, you have been creating instance methods. These are messages you can
send to any instance of Possession. However, in Objective-C, classes can also
receive messages. We call these class methods. (alloc is an example of a class
method.) Class methods do not operate on an instance or have any access to
instance variables.

Syntactically, class methods differ from instance methods by the first character in
their declaration. While an instance method uses the - character right before the
return type, a class method uses the + character. Also, class methods can only be
sent to the class itself, never to an instance of that class.

One common use for class methods is to provide convenient ways to create
instances of that class. For the Possession class, it would be nice if you could
create a random possession. That way, you could test your possession class

Page 48

Chapter 2. Objective-C

without having to think up a bunch of clever names. Declare a class method in
Possession.h that will create a random possession.

@interface Possession : NSObject
{

NSString *possessionName;

NSString *serialNumber;

int valuelnDollars;

NSDate *dateCreated;
}
@property
@property
@property
@property

nonatomic, copy) NSString *possessionName;
nonatomic, copy) NSString *serialNumber;
nonatomic) int valuelnDollars;

nonatomic, readonly) NSDate *dateCreated;

A~ A~~~

+ (id)randomPossession;

- (id)initWithPossessionName:(NSString *)pName
valuelnDollars:(int)value
serialNumber:(NSString *)sNumber;

- (id)initWithPossessionName:(NSString *)pName;

@end

Notice the order of the declarations for properties and methods. Properties
come first, followed by class methods, followed by initialization methods. Further
instance methods will follow after these. This is a convention that makes your
header files easier to read.

Class methods that return an instance of their type are simply creating an instance
as you normally would (with alloc and init), configuring it, and then returning it. In

Possession.m, implement randomPossession to create, configure, and return a
Possession instance:

+ (id)randomPossession

{
static NSString *randomAdjectiveList[3] =

{
@"Fluffy",
@"Rusty",
@"Shiny"

b

Page Bage 49

Chapter 2. Objective-C

static NSString *randomNounList[3] =

{
@"Bear",

@"Spork",
@"Mac"
};

NSString *randomName = [NSString stringWithFormat: @" %@ %@",
randomAdjectiveList[random() % 3],
randomNounList[random() % 3]];

int randomValue = random() % 100;

NSString *randomSerialNumber = [NSString

stringWithFormat: @" %c%c%c%c%c",

}

'0' + random() % 10,
'A' + random() % 26,
'0' + random() % 10,
'A' + random() % 26,
'0' + random() % 10];

// Once again, ignore the memory problems with this method
// We use "self" instead of the name of the class in class methods...
// Keep reading to find out why
Possession *newPossession =
[[self alloc] initWithPossessionName:randomName
valuelnDollars:randomValue
serialNumber:randomSerialNumber];
return newPossession;

This method creates a string from a random adjective and noun, another string
from some random numbers and letters, and a random integer value. It then
creates an instance of Possession and sends it the designated initializer with
these random objects as parameters.

You might notice that you actually used a class method of NSString in the
implementation of this method. The message stringWithFormat: is sent directly
to NSString; it is a class method that returns an NSString instance with the
parameters that are sent to it. In Objective-C, class methods that return an
object of their type (like stringWithFormat: and randomPossession) are called

Page 50

Chapter 2. Objective-C

convenience methods.

Notice the use of self in randomPossession. This method is a class method,

so self refers to the Possession class itself. Class methods should use self in
convenience methods instead of their class name so that if you create a subclass
of Possession, you can send that subclass the message randomPossession.
Using self (instead of Possession) guarantees that the object returned by this
method is the same type as the class being sent the message.

Now you get to use the neat little class you've created. Open
RandomPossessions.m. In the main function, you were adding NSString
instances to the NSMutableArray instance you created and then printing them to
the console. Now you can add Possession instances to the array instead. Don’t
forget to import the header file Possession.h.

#import <Foundation/Foundation.h>
#import "Possession.h"

int main (int argc, const char * argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSMutableArray *items = [[NSMutableArray alloc] init];

for (inti=0;i<10; i++) {
[items addObject:[Possession randomPossession]];

}

for (inti =0;i < [items count]; i++) {
NSLog(@"%@", [items objectAtindex:i]);

}

[pool drain];

return O;

}

Build and run your application, making sure to show the console again. All you did
was replace what objects you added to the array, and the code runs perfectly fine
with a wildly different output (Figure 2.10). Creating this subclass was a success.

PageBage 51

Chapter 2. Objective-C

Figure 2.10. Application result

800 ﬁ RandomPossessions - Debugger Console 2

[Session started at 2009-03-26 20:02:02 -0400.]

2009-03-26 20:02:02.238 RandomPossessions[9066:10b] Rusty Spork (2M5B5): Worth $77, Recorded on 2009-03-26 20:02:02 -0400
2009-03-26 20:02:02.240 RandomPossessions[9066:10b] Rusty Bear (6Z9AT7): Worth $62, Recorded on 2009-03-26 20:02:02 -0400
2009-03-26 20:02:02.241 RandomPossessions[9066:10b] Fluffy Bear (9D8H6): Worth $72, Recorded on 2009-03-26 20:02:02 -0400
2009-03-26 20:02:02.242 RandomPossessions[9066:10b] Shiny Mac (2J5X3): Worth $62, Recorded on 2009-03-26 20:02:02 -0400
2009-03-26 20:02:02.243 RandomPossessions[9066:10b] Fluffy Bear (2J6X7): Worth $69, Recorded on 2009-03-26 20:02:02 -0400
2009=-03=-26 20:02:02.244 RandomPossessions[9066:10b] Fluffy Bear (4S7E9): Worth $21, Recorded on 2009-03-26 20:02:02 -0400
2009-03-26 20:02:02.245 RandomPossessions[9066:10b] Fluffy Mac (3CONG): Worth $13, Recorded on 2Z009-03-26 20:02:02 -0400
2009-03-26 20:02:02.245 RandomPossessions[9066:10b] Shiny Mac (7K5X1): Worth $96, Recorded on 2009-03-26 20:02:02 -0400
2009-03-26 20:02:02.246 RandomPossessions[9066:10b] Shiny Mac (5M7L9): Worth $46, Recorded on 2009-03-26 20:02:02 -0400
2009-03-26 20:02:02.247 RandomPossessions[9066:10b] Fluffy Bear (OH4W7): Worth $14, Recorded on 2009-03-26 20:02:02 -0400

The Debugger has exited with status 0.|

D of * ions" ended normally. Y

Check out the new #import statement at the top of RandomPossessions.m.
Why did you have to import Possession.h when you didn’t you have to import,
say, NSMutableArray.h? Well, NSMutableArray comes from the Foundation
framework, so it is included when you import Foundation/Foundation.h. On the
other hand, your subclass exists in its own file, so you have to explicitly import it
into RandomPossession.m. Otherwise, the compiler won’t know it exists and will
complain loudly.

Importing a file is the same as including a file in the C language except you are
ensured that the file will only be included once.

If you don’t want to import the header file for a class, but you want the compiler to
know that the class exists, you can use a forward declaration like this:

@class Possession;

In a large project, judicious use of @class can speed up compiles considerably.

Exceptions and the Console Window

In a language like C, we have functions. When we call a function, code is
executed. If we try and call a function that doesn’t exist, the compiler says, “Hey,
that’s not right!” and the code will fail to compile. This is known as a compile-time
error.

Objective-C, being a dynamically typed language, isn’t able to figure out at
compile time whether an object can respond to a message. The compiler will warn
you if it thinks you are sending a message to an object that won’t respond, but

Page 52

Chapter 2. Objective-C

the code will still compile. If, for some reason (and there are many), you end up
sending a message to an object whose class doesn’t implement the associated
method, your application will throw an exception.

In RandomPossessions.m, add the following line of code after you create your
array:

NSMutableArray *items = [[NSMutableArray alloc] init];
[items doSomethingWeird];

The class NSMutableArray does not implement a method called
doSomethingWeird. Sending this message to an instance of NSMutableArray is
going to throw an exception. Build and run your application.

Open the console window. When you ran this application before, the console
contained the contents of the array. Now it is saying this:

2009-07-19 01:34:53.602 RandomPossessions[25326:10b]
*** .[NSCFArray doSomethingWeird]: unrecognized selector sent to instance
0x104b40

This is what an exception looks like. What exactly is this output saying? In every
output statement to the console, the date, time, and name of the application

are printed out. You can ignore that information. You are concerned with the
information after the “***.” That line tells us that an unrecognized selector was sent
to an instance. You know that selector means message. You sent a message to
an object, and that object does not implement that method.

The type of the receiver and the name of the message sent are also in this output.
This makes it easier for you to debug. An instance of NSCFArray was sent the
message doSomethingWeird. (The - at the beginning tells you the receiver was
an instance of NSCFArray. A + would mean the class was the receiver.) Remove
the line of code you added and take away this very important lesson: always keep
the console window open. Run-time errors are just as important as compile-time
errors.

(What does NSCFArray mean? The CF stands for Core Foundation. We'll get
into that later in the book. For now, you can just drop the CF out of the name. An
NSArray, the superclass of NSMutableArray is the type of the object that was
sent this bad message.)

Page Bage 53

Chapter 2. Objective-C

Some languages use try and catch blocks to handle exceptions. While
Objective-C has this ability, we don’t use it very often. Typically, an exception is a
programmer error and should be fixed in the code instead of handled at runtime.

Objective-C 2.0 Additions

The newest version of Objective-C added a few syntax-level changes to
the language specification. The most useful one is fast enumeration. Before
Objective-C 2.0, iterating through an NSArray looked like this:

for (inti=0; i < [items count]; i++) {
Possession *item = [items objectAtindex:i];
NSLog(@"%@", item);

}

Now you can write that code segment much more succinctly with fast
enumeration.

for (Possession *item in items)
NSLog(@"%@", item);

Try changing the for loop in your main function to use fast enumeration.

Another addition to Objective-C 2.0 is dot-notation for property accessors. Instead
of using brackets to invoke an accessor method, you can use a . operator instead
and get the same results.

int v = [object foo];
[object setFoo:v];

...is identical to...

int v = object.foo;
object.foo = v;

According to the compiler, these two snippets are the same. There is no difference
in speed — they are seriously identical.

Because these lines are identical, | think dot-notation is goofy. However, others do
not. Whether to use dot-notation has become something of a religious war in the

Page 54

Chapter 2. Objective-C

Objective-C community. (And no one is ever right in those wars.)

The argument for using dot-notation is that the dot signifies that the code is
accessing the state of an object whereas using the brackets signifies that it is
asking the object to perform some behavior. This supposedly gives the code
clarity. The arguments against dot-notation are that it creates ambiguity with the
C structure access operator and it confuses beginning programmers, especially
when it comes to memory management.

This book will not use dot-notation because it is confusing to beginning
programmers. If you choose to use dot-notation after you’'ve mastered the
concepts behind Objective-C, more power to you. For now, you will be better
served by sticking with the brackets.

Page Bage 55

Chapter 3. Memory Management

Chapter 3. Memory Management

Understanding memory management in the Cocoa Touch framework is one of the
first major roadblocks for newcomers. Unlike Objective-C on the Mac, Objective-C
on the iPhone has no garbage collector. Thus, it is your responsibility to clean up
after yourself.

Memory Management Concepts

This book assumes you are coming from a C background, so the words “pointer,”
“allocate,” and “deallocate” shouldn’t scare you. If your memory is a little fuzzy,
here’s a review. The iPhone has a limited amount of random access memory.
Random access memory (RAM) is much faster to write to and read from than a
hard drive, so when an application is executing, all of the memory it consumes

is taken from RAM. When an operating system like iPhone OS launches your
application, it reserves a heaping pile of the system’s unused RAM for your
application. Not-so-coincidentally, the memory your application has to work with is
called the heap. The heap is your application’s playground; it can do whatever it
wants to it, and it won't affect the rest of the OS or any other applications.

When your application creates an instance of a class, it goes to the giant heap
of memory it was given and takes a little scoop. As you typically create objects
during the course of your application’s execution, you start using more and more
of the heap. Most objects are not permanent, and when an object is no longer
needed, the memory it was consuming should be returned to the heap. This way,
it can be reused for another object created later.

There are two major problems in managing memory:

premature deallocation You must never return memory to the
heap until you are sure that no part of
the program is still using it.

memory leaks When a chunk of memory is no longer
needed by any part of a program, it
must be freed so that the memory can
be used again.

Page 56

Chapter 3. Memory Management

Managing memory in C

In the C programming language, you have to explicitly ask the heap for a certain
number of bytes. This is called allocation. It is the first stage of the heap life cycle
shown in Figure 3.1. To do this, you use a function like malloc. If you want 100
bytes from that heap, you do something like this:

void function(void)

{

char *buffer = malloc(100);

}

Figure 3.1. Heap allocation life cycle

pointer = mallee (100} ; strepy (pointer, "abbbaee");

2 I' Available Memory (Heap)

11 Available Memory (Heap)

[pointer | | pointer |

free (pointer); pointer = NULL;

31 Available Memory (Heap) 4| Available Memory (Heap)

[pointer | | pointer=0 |

You then have 100 bytes with which you can perform some task like writing a
string to it and then printing that string (which would require reading from those
bytes). The location of the first of those 100 bytes is stored in the pointer buffer.

Page 57

Chapter 3. Memory Management

You access the 100 bytes by using this pointer.

When you don’t want to use those bytes anymore, you have to give them back to
the heap by using the free function. This is called deallocation.

void function(void)

{
char *buffer = malloc(100);
... Fill the buffer with text ...
... Print to the console ...
free(buffer);

}

By calling free, those 100 bytes (starting at the address stored in buffer) are
returned to the heap. If another malloc function is executed, any of these 100
bytes are fair game to be returned. Those bytes could be divvied up into smaller
sections, or they could become part of a larger allocation. Because you don'’t
know what will happen with those bytes when they are returned to the heap, it isn’t
safe to access them through the buffer pointer anymore.

Managing memory with objects

Even though at the base level an object is bytes allocated from the heap, you
never explicitly call malloc or free with objects.

Every class knows how many bytes of memory it needs to allocate for an instance.
When you create an instance of a class by sending it the alloc message, the
correct number of bytes is allocated from the heap. Like with malloc, you are
returned a pointer to this memory (Figure 3.2). However, when using Objective-C,
we think in terms of objects rather than raw memory. While our pointers are still
pointing to a spot in memory, we don’t need to know the details of that memory;
we just know we have an object.

Page 58

Chapter 3. Memory Management

Figure 3.2. Allocating an object
Owner creates instance of Dog... canine = [[Dog alloc] init];

Owner
He:
e ______Hemp ____]
““““““ ! I
| Hagt 12 :
canine I 8 By I
| e e I
e I
Dog e — — 7 | :
retainCount = 1 ... memory allocated from the heap for instance.

Of course, once you allocate memory from the heap, you need a way to return
that memory back to the heap. Every object implements the method dealloc.
When an object receives this message it returns its memory back to the heap.

So, malloc is replaced with the class method alloc, and the function free is
replaced with the instance method dealloc. However, you never explicitly send
a dealloc message to an object; an object is responsible for sending dealloc to
itself. That begs the question: if an object is in charge of destroying itself, how
can it know if other objects are relying on its existence? This is where reference
counting comes into play.

Reference Counting

In the Cocoa Touch framework, Apple has adopted manual reference counting to
manage memory and avoid premature deallocation and memory leaks.

To understand reference counting, imagine a puppy. When the puppy is born, it
has an owner. That owner later gets married, and the new spouse also becomes
an owner of that dog. The dog is alive because they feed it. Later on, this couple
gives the dog away. The new owner of the dog decides he doesn'’t like the dog
and lets it know by kicking it out of the house. Having no owner, the dog runs
away and, after a series of unfortunate events, ends up in doggy heaven.

What is the moral of this story? As long as the dog had an owner to care for it, it
was fine. When it no longer had an owner, it ran away and ceased to exist. This
is how reference counting works. When an object is created, it has an owner.
Throughout its existence, it can have different owners, and it can have more than
one owner at a time. When it has zero owners, it deallocates itself and goes to
instance heaven.

Page 59

Chapter 3. Memory Management

Using retain counts

An object never knows who its owners are. It only knows its retain count as
diagrammed in Figure 3.3.

Figure 3.3. Retain count for a dog
Owner

Shelter Person

Deog
retainCount = 3

When an object is created — and therefore has one owner — its retain count is set
to 1. When an object gains an owner, its retain count is incremented. When an
object loses an owner, its retain count is decremented. When that retain count
reaches 0, the object sends itself the message dealloc, which returns all of the
memory it occupied to the heap.

Imagine how you would write the code to implement this scheme yourself:
- (id)retain

{

retainCount++;
return self;

(void)release

P

retainCount--;
if (retainCount == 0)
[self dealloc];

}

Simple, right? Now let’s consider how retain counts work between objects. If
object A creates object B (through alloc and init), A must send B the message
release at some point in the future. Releasing B doesn’t necessarily deallocate it;
it is left to B to decide if it should be deallocated. (If B has another owner, it won't
destroy itself.)

Page 60

Chapter 3. Memory Management

If some other object C wants to keep B around, C becomes an owner of B by
sending it the message retain. What reason does C have to keep B around? C
wants to send B messages.

Let’s imagine you have a grocery list. You created it, so you own it. Later on, you
give that grocery list to your friend to do the shopping. You don’t need to keep the
grocery list anymore, so you release it. Your friend is smart, so he retained the list
as soon as he was given it. Therefore, the grocery list will still exist whenever he

needs it, and your friend is now the sole owner of the list.

Here is your code:

- (void)createAndGiveAwayTheGroceryList

{

}

/I Create a list
GroceryList *g = [[GroceryList alloc] init];

/I (The retain count of g is 1)

/I Share it with your friend who retains it
[smartFriend takeGroceryList:g];

/I (The retain count of g is 2)

/I Give up ownership
[g release];

/I (The retain count of g is 1)
// But we don't really care here, as this method's
/Il responsibility is finished.

Here is your friend’s code:

- (void)takeGroceryList:(GroceryList *)x

{

/l Take ownership

[X retain];

// Hold onto a pointer to the object
myList = x

Page 61

Chapter 3. Memory Management

Retain counts can still go wrong in the two classic ways: leaks and premature
deallocation. First, you could give the grocery list to your friend who retains it, but
you don’t release it. Your friend finishes the shopping and releases the list. You
have forgotten where it is, but because you never released it, it still exists. Nobody
has this grocery list anymore, but it still exists because its retain count is greater
than 0. This is a leak.

Now think of the grocery list as an NSString. You have a pointer to this NSString
in the method where you created it. If you leave the scope of the method without
releasing the NSString, you’ll lose the pointer along with the ability to release
theNSString later. Even if every other object releases the NSString, it will never
be deallocated.

Consider the other way this process can go wrong - premature deallocation.
You create a grocery list and give it to a friend who doesn’t retain it. When you
release it (thinking it was safe with your friend), it is deallocated because you
were its only owner. When your friend attempts to use the list, he can’t find it
because it doesn’t exist anymore.

When an object attempts to access another object that no longer exists, your
application accesses bad memory, starts to fail, and eventually (although sooner
is better than later for debugging) crashes.

If an object retains another object, that other object is guaranteed to exist. So
correct use of retain counts avoids premature deallocation. Now let’s look more
closely at memory leaks.

Avoiding memory leaks with autorelease

You already know that an object is responsible for returning its own bytes to the
heap and that an object will do that when it has no owners. What happens when
you want to create an object to give away, not to own? You own it by virtue of
creating it, but you don’t have any use for it.

Let’s make this idea more concrete with an example from the
RandomPossessions tool you wrote last chapter. In the Possession class, you
implemented a convenience method called randomPossession that would
return an instance of Possession with random parameters. The owner of this
instance is the class Possession (because the object was created inside of a
Possession class method), but Possession is only creating it because another
object wants it. The pointer to the Possession instance is lost when the scope of
randomPossession runs out, but the object still has a retain count of 1.

Page 62

Chapter 3. Memory Management

Now, in your main function, you could release the instance returned to you

by this method. But, you didn’t allocate the random possession in the main
function. Therefore, releasing the memory isn’t main’s responsibility. Since the
alloc message was sent to the Possession class inside randomPossession’s
implementation, it is randomPossession’s responsibility to release the memory.
But looking at the following block of code, where could you safely release it?

+ (id)randomPossession
{
... Create random variables ...
Possession *newPossession = [[self alloc]
initWithPossessionName:randomName
valuelnDollars:randomValue
serialNumber:randomSerialNumber];
/I If we release newPossession here,
// the object is deallocated before it is returned.
return newPossession;
/I If we release newPossession here, this code is never executed.

}

How can you avoid this memory leak? You need some way of saying “Don’t
release this object yet, but | don’t want to be an owner of it anymore.” Fortunately,
you can mark an object for future release by sending it the message autorelease.
When an object is sent autorelease, it is not immediately released; instead, it

is added to an instance of the NSAutoreleasePool. This NSAutoreleasePool
keeps track of all the objects that have been autoreleased. Periodically, the
autorelease pool is drained; it sends the message release to the objects in the
pool and then removes them.

An object marked for autorelease after its creation has two possible destinies: it
can either continue its death march to deallocation or another object can retain it.
If another object retains it, its retain count is now 2. (It is owned by the retaining
object, and it has not yet been sent release by the autorelease pool.) Sometime in
the future that autorelease pool will release it, which will set its retain count back
to 1. (The return value for autorelease is the instance that is sent the message, so
you can method chain autorelease.)

/l Because autorelease returns the object being autoreleased, we can do this:
NSObject *x = [[[NSObject alloc] init] autorelease];

Page 63

Chapter 3. Memory Management

Sometimes the idea of “the object will be released some time in the future”
confuses developers. When an iPhone application is running, there is a run

loop that is continually cycling. This run loop checks for events (like a touch or

a timer firing) and then processes that event by calling the methods you have
written in your classes. Whenever an event occurs, it breaks from that loop and
starts executing your code. When your code is finished executing, the application
returns to the loop. At the end of the loop, all autoreleased objects are sent the
message release as shown in Figure 3.4. So, while you are executing a method,
which may call other methods, you can safely assume that an autoreleased object
will not be released.

Figure 3.4. Autorelease pool draining
Application launches Draining the pool sends
release to all the objects in

the pool.The pool is
deallocated

Waiting for anevent ¥y In handling the event, objects are
added to the autorelease pool

A new awtorelease pool is created

Application terminates ¥
Managing memory in accessors and properties

Accessors are methods that get and set instance variables. Getter methods don’t
require any additional memory management:

- (Dog *)pet
{

}

Setters, however, need to take care to properly retain new values and release old
ones.

return pet;

Page 64

Chapter 3. Memory Management

- (void)setPet:(Dog *)d

{

[d retain]; /I Retain the new value

[pet release]; // Release the old value

pet = d; /I Make the pointer point at the new value
}

Notice that if the pet hasn’t been set, it is nil, and [pet release] would have no
effect.

It is important to retain the new value before releasing the old one. Why? What if
pet and d are pointers to the same object? What if that object has a retain count
of 1? If you release it before you retain it, the retain count goes to 0, and the
object is deallocated.

Here is the same thing in another style:

- (void)setPet:(Dog *)d
{
if (pet !=d) {
[d retain];
[pet release];
pet =d;
}
}

Once again, properties come to the rescue. If you use properties, all of the
memory management code for your accessors is written for you when you
synthesize the property. To have the compiler generate an accessor that properly
releases and retains for you, you can use the retain attribute when declaring your
properties in a header file:

@property (nonatomic, retain) Dog *pet;

Then, in the implementation file, synthesize the method:
@synthesize pet;

Retain count rules

Let’s make a few rules from these ideas:

Page 65

Chapter 3. Memory Management

+ If you send the message alloc to a class, the instance returned has a
retain count of 1, and you are responsible for releasing it.

+ If you send the message copy (or mutableCopy) to an instance, the
instance returned has a retain count of 1, and you are responsible for
releasing it (just as if you had allocated it).

+ Assume that an object created through any other means (like a
convenience method) has a retain count of 1 and is marked for
autorelease.

+ If an object wants to keep another object around (and the keeper didn’t
allocate it), it must send the wanted object the message retain.

+ If an object no longer wants to keep another object around, it sends that
object the message release.

There is one exception to the rules: in any method that starts with new, the object
returned should be assumed to not be autoreleased.

Managing Memory in RandomPossessions

Now that you have the theory and some rules, you can implement better
memory management in RandomPossessions. Open the RandomPossessions.
xcodeproj file that you created in the last chapter. There are four memory
management problems to fix in this project.

The first is found in the main function of RandomPossessions.m where you
created an instance of NSMutableArray named items. You know two things
about this instance: its owner is the main function and it has a retain count of
one. It is then main’s responsibility to send this instance the message release
when it no longer needs it. The last time you reference items in this function is
when you print out all of its entries, so you can release it after that:

for(inti = 0; i < [items count]; i++) {
NSLog(@"%@", [items objectAtindex:i]);
}

[items release];

The object pointed to by items decrements its retain count when this line of code

Page 66

Chapter 3. Memory Management

is executed. In this case, that object is deallocated because main was the only
owner. If another object had retained items, it wouldn’t have been deallocated.

There is one more detail to take care of. The instance of NSMutableArray that
items pointed to is now gone. However, items is still storing the address that was
the instance’s location in memory. It is much safer to set the value of items to nil.
Then any messages mistakenly sent to items will have no effect.

[items release];
items = nil;

The ordering of those two statements is important. Ordering them this way says,
“Send the object release, and then clear my pointer to it.” What would happen

if you swapped the order of these statements? It would be the same thing as
saying, “Set my pointer to this object to nil and then send the message release
to.... Oh, no! | don’t know where that object went!” You would leak that object: it
wasn’t released before you erased your pointer to it.

The second memory problem occurs when you create an instance of
NSMutableArray and fill it with instances of Possession returned from the
randomPossession convenience method:

NSMutableArray *items = [[NSMutableArray alloc] init];
for (inti=0;i<10;i++) {
[items addObject:[Possession randomPossession]];

}

The implementation for randomPossession returns an instance of type
Possession that it created by sending the message alloc. This object is owned
by this class method and therefore has a retain count of 1.

When you add a Possession instance to an NSMutableArray, the array
becomes an owner of that object, so its retain count is increased to 2. After
randomPossession finishes executing, however, it loses its pointer to the
Possession it created. The Possession instance still has two owners — but only
one still has a pointer to it (items). Memory leak!

This is a perfect opportunity to use autorelease. The method randomPossession
should send autorelease to an instance it creates and relinquish its ownership

of that instance. The object will still exist temporarily and be retained when it is
added to the NSMutableArray. The instance of NSMutableArray will then be the
sole owner of this new Possession. In effect, you have transferred ownership

Page 67

Chapter 3. Memory Management

of the instance from randomPossession to items. When the array deallocates
itself and releases the objects it contains, each object will have a retain count of 0
and will deallocate itself. Memory leak solved.

Now fix the leak in the randomPossession method in Possession.m.

+ (id)randomPossession

{
... Create random variables ...
Possession *newPossession = [[self alloc]

initWithPossessionName:randomName
valuelnDollars:randomValue
serialNumber:randomSerialNumber];

return [newPossession autorelease];

}

When working with an instance of NSMutableArray, three rules apply to object
ownership:

« When an object is added to an NSMutableArray, that object gets sent the
message retain; the array becomes an owner of that object and has a
pointer to it.

« When an object is removed from an NSMutableArray, that object gets sent the
message release; the array relinquishes ownership of that object and no
longer has a pointer to it.

+ When an NSMutableArray is deallocated, it sends the message release
to all of its entries as shown in Figure 3.5.Figure 3.5. Deallocating an
NSMutableArray

The third memory problem in RandomPossessions is in the description method
that Possession implements. This method creates and returns an instance of
NSString that needs to be autoreleased.

- (NSString *)description
{
NSString *descriptionString =
[[NSString alloc] initWithFormat: @"% @ (% @): Worth $%d, Recorded on
%@",
possessionName,

Page 68

Chapter 3. Memory Management

serialNumber,
valuelnDollars,
dateCreated];

return [descriptionString autorelease];

}

You can make this even simpler by using a convenience method. NSString
(as well as many other other classes in the iPhone SDK) includes convenience
methods that return autoreleased objects. Update description to use the
convenience method stringWithFormat: to ensure that the NSString instance
that description creates will be autoreleased.

- (NSString *)description
{
return [NSString stringWithFormat:@"%@ (% @): Worth $%d, Recorded on
% @",
possessionName,
serialNumber,
valuelnDollars,
dateCreated];

}

The final memory problem has to do with the instance variables within
Possession objects.

When the retain count of a Possession instance hits zero, it will send itself the
message dealloc. The dealloc method of Possession has been implemented
by its superclass, NSObject, but NSObject knows nothing about the instance
variables added to Possession. So you must override dealloc in Possession.m
to release any instance variables that have been retained.

- (void)dealloc

{
[possessionName release];
[serialNumber release];
[dateCreated release];
[super dealloc];

}

Always call the superclass implementation of dealloc at the end of the method.
When an object is deallocated, it should release all of its own instance variables

Page 69

Chapter 3. Memory Management

first. Then, it should go up its class hierarchy and release any instance variables
of its superclass. In the end, the implementation of dealloc in NSObject will return
the object’s memory to the heap.

Now let’s check your understanding of memory management.
Why send release to instance variables and not dealloc?

One object should never send dealloc to another. Always use release and let the
object check its own retain count and decide whether to send itself dealloc.

Why do you need to release these instance variables in the first place? Where are
the calls to alloc, retain, or copy that make an instance of Possession an owner
of these objects?

Let’s start with the instance variable dateCreated. Because it is allocated in the
designated initializer for Possession, that instance of Possession becomes an
owner and needs to release the object pointed to by dateCreated according to
the first of the retain count rules laid out on page 57.

To figure out the other two instance variables, possessionName and
serialNumber, you have to go back to their property declarations in
Possession.h.

@property (nonatomic, copy) NSString *possessionName;
@property (nonatomic, copy) NSString *serialNumber;

Both of the properties associated with these instance variables have the copy
attribute. When the message setPossessionName: is sent to an instance of
Possession, the incoming parameter is sent the message copy. The instance
variable possessionName is then set to point at that copied instance. If you
wrote the code for setSerialNumber: instead of using @synthesize, it would look
something like this:

- (void)setSerialNumber:(NSString *)newSerialNumber

{

newSerialNumber = [newSerialNumber copy];
[serialNumber release];
serialNumber = newSerialNumber;

}

The second retain count rule states that, if an object copies something, the object

Page 70

Chapter 3. Memory Management

becomes an owner of that thing. Therefore, the owning object needs to release
the copied object in its dealloc method. The same would hold true of these
instance variables if their property attribute was retain (but not if the attribute were
assign, which is a simple pointer assignment).

Strings come in two flavors: NSString and NSMutableString. Because an
NSString can never be changed, there is seldom a need to copy it. Thus, in the
case of NSString (and most other immutable objects), the copy method looks like
this:

- (id)copyWithZone:(NSZone *)z
{

[self retain];

return self;

}

This approach prevents unnecessary copying. For example, the code above is
basically equivalent to this:
- (void)setSerialNumber:(NSString *)newSerialNumber

{
NSString *newValue;

/I ls it a mutable string?
if ((newSerialNumber isKindOfClass:[NSMutableString class]])
/I'l need to copy it
newValue = [newSerialNumber copy];
else
/It is sufficient to retain it
newValue = [newSerialNumber retain];

[serialNumber release];

Page 71

Chapter 3. Memory Management

serialNumber = newValue;

}

Congratulations! You’ve implemented retain counts and fixed four memory leaks.
Your RandomPossessions application now manages its memory like a champ!

Keep this code around because you are going to use it in later chapters.

Possession
.
- -
UZ} IEleHSE
= L--
E, Possession
= dealloc =>|r [~ = — release —
o
-
o -
= release
™ Possession
=~

Page 72

Chapter 4. Delegation and Core Location

Chapter 4. Delegation and Core Location

In this chapter we introduce delegation, a recurring design pattern of Cocoa Touch
development, and demonstrate its use with the Core Location service, which
provides the location-finding features of the iPhone.

Delegation

We spend a lot of time sending messages to objects. Sometimes, however, we
want objects to send messages to us — a callback. A callback is a function that is
triggered when an event occurs. Usually, this is an event that happens in response
to user input. We don’t exactly know when this event might occur, but we set up

a callback so that when it does occur, our code will be called. In some systems,
callbacks are sent to objects that are known as listeners.

In Cocoa Touch, callbacks are implemented using a technique known as
delegation. Let’s start with an example. Every instance of UlTextView has a
delegate property, which is a pointer to an object. That object is “the delegate” of
the text view. You can set that pointer to refer to any object, as long as that object
conforms to the protocol of the class for which it is a delegate. For instance,

when you create a class that will be a UlTextView delegate, you need to declare
it to conform to the UlTextViewDelegate protocol. You declare which protocols a
class conforms to by listing the names of the protocols in a comma-delimited list in
angled brackets after the name of the superclass:

/I SuperGoodController conforms to the UlTextViewDelegate

/I and SomeOtherDelegate protocol.

@interface SuperGoodController : NSObject
<UITextViewDelegate, SomeOtherDelegate>

A protocol is simply a list of method declarations. (Other languages, like Java,
sometimes call them interfaces.) When a class conforms to a protocol, it is
promising to implement all required methods from that protocol and reserving the
option to implement any optional methods. For example, here is the protocol that
declares all the delegate methods for UlTextView:

@protocol UlTextViewDelegate

@optional
- (BOOL)textViewShouldBeginEditing:(UITextView *)textView;

Page 73

Chapter 4. Delegation and Core Location

- (BOOL)textViewShouldEndEditing:(UlTextView *)textView;

- (void)textViewDidBeginEditing:(UlTextView *)textView;
- (void)textViewDidEndEditing:(UITextView *)textView;

- (BOOL)textView:(UITextView *)textView
shouldChangeTextlInRange:(NSRange)range
replacementText:(NSString *)text;

- (void)textViewDidChange:(UlTextView *)textView;

- (void)textViewDidChangeSelection:(UITextView *)textView;
@end

Notice that this particular protocol doesn’t have any required methods (which is
not unusual). Also notice that the first argument to all of the delegate methods is
a pointer to the object that is sending the callback. This lets the delegate know
exactly which object is sending it a delegate message and is always the case with
delegate methods.

In Apple’s developer documentation, each protocol has its own page that lists
and describes each method. To get to the documentation, go to the Help menu
and click Developer Documentation. There you can search for the protocol.

By convention, the name of a delegate protocol is the name of the class

doing the delegation suffixed with Delegate. For example, to find all of the
delegate methods for a UlTextView, search for UlTextViewDelegate. The
“UlTextViewDelegate Protocol Reference” is shown in Figure 4.1.

Page 74

Chapter 4. Delegation and Core Location

Figure 4.1. UlTextViewDelegate Documentation

UlTextViewDelegate Protocol Reference |:| PDF
¥ Table of Contents Jump To... = 4 Previous | Next)
TSUTIT &5 1T e CASE U7 & SPer LITeCKEr prograrty or Moy Ore MEenued msertion pomt.
Overview
+» Tasks

» Instance Methods

Revision History Tas ks

Index

Responding to Editing Notifications
- textViewShouldBeginEditing:
- textViewDidBeginEditing: opti
- textViewShouldEndEditing:
- textViewDidEndEditing: optional method

Responding to Text Changes

- textView:shouldChangeTextInRange: replacementText: antinnal merhad
— textViewDidCh - apticial rmethod Asks the delegate whether the
ErEiLEnE - specified text should be
replaced in the text view. This

Responding to Selection Changes methodjisionHons.:

- textViewDidChangeSelection: optional method

Once you have declared a class as conforming to a protocol, you find the methods
you need in the documentation, implement them for that class, and you’re good

to go. For example, if the delegate of a UlTextView has implemented the method
textViewDidChange:, that method will be called every time the user changes the
text of that text view as shown in Figure 4.2.

Figure 4.2. A UlTextView delegate

UlTextView RexController

delegate)

- (voidtextViewDidChange:(UlTextView *)v

When implementing a delegate method, it is important to make sure you match
the name and the types of arguments exactly as they are declared in the protocol.
If you change the name in any way (capitalization or spelling errors are the most
common “changes”), the method will not get called. If you change the types of the
arguments, your application may not work as you intend it to.

There are two basic categories of delegate methods. Some are “for-your-
information” methods. These methods are sent to a delegate to inform

Page 75

Chapter 4. Delegation and Core Location

it that something has happened. For example, you would implement
textViewDidChange: to be informed when the text in a UlTextView changes.

Other delegate methods are “what-should-1-do?” methods. These methods expect
a response back from the delegate that will dictate the behavior of the delegating
object. For example, if a delegate implements textView:shouldChangeTextinRa
nge:replacementText:, it can prevent an inappropriate edit by returning NO.

Sometimes protocols have required methods. A class that conforms to a protocol
that has required methods must implement those methods or else the compiler will
warn you and your application will probably crash. How can you tell if a method is
required? In the protocol reference, the absence of the text optional method next
to the method name indicates that it is a required method. (Some versions of the
documentation label the required methods instead of optional methods.)

You can also determine which methods are required by looking at the header

file in which the protocol is declared. Any required methods appear above the @
optional directive in the protocol body. Methods that appear below the @optional
directive are optional and do not have to be implemented by a class that conforms
to that protocol. (If there is no @optional tag, then all methods in that protocol are
required.)

/I SuperCoolProtocol is a protocol that also

/l includes methods from the NSObiject protocol
@protocol SuperCoolProtocol <NSObject>

- (void)requiredMethod;

@optional

- (void)optionalMethod1;

- (void)optionalMethod?2;

@end

Many classes use delegates: AVAudioPlayer, CLLocationManager,
NSNetServices, NSStream, NSURLConnection, NSXMLParser, CALayer,
UlAccelerometer, UlApplication, UIPickerView, UllmagePickerController,
UlScrollView, UlTableView,UITextField, UIWebView, and UIWindow. Take a
moment to browse through some of these protocol references. (Here’s a shortcut:
in Xcode, hold down the Option and Command keys and double-click the name
of the protocol. The documentation browser will appear displaying a list of every
method for that protocol.)

To review, in order implement delegate methods for an object, you must:

Page 76

Chapter 4. Delegation and Core Location

1. declare a class to conform to the object’s delegate protocol

2. implement the necessary delegate methods (required ones and optional
ones you want to use) in the class

3. set the delegate pointer of the object to point to an instance of your class
Beginning the Whereami Application

To help you understand delegation, you’re going to write an application called
Whereami that uses it over and over again. This application will display a map
and allow the user to scroll, zoom, and tag the device’s current location with

a pin and a title. This exercise spans two chapters. At the end of this chapter,

the application won't look like much, but the final product — and the clearer
understanding of delegation — will be worth it. Create a Window-Based Application
and name it Whereami.

Using frameworks

Open WhereamiAppDelegate.h and find the following line of code at the top.
(You may have noticed it at the top of your other application delegate files, too.)

#import <UIKit/UIKit.h>

This translates to “From the UIKit framework, import the UIKit.h header.”

A framework is a collection of related classes, and Cocoa Touch is a set of
frameworks. One of the benefits of Cocoa Touch being organized into frameworks
is that you only need to import what your application needs. The UIKit framework
is in every iPhone application because it contains all of the user interface

classes like UIButton and UlLabel. Whereami will also need the Core Location
framework. It won't, for example, need the Media Player framework.

The UIKit framework is added automatically by Xcode, but to use the code in the
Core Location framework, you need to add it to your project. Select Edit Active
Target from the Project menu. In the Target Info window that appears, select

the General tab. At the bottom of the window is a list of Linked Libraries. Click

the + button on the bottom-left corner of the window. A sheet will drop down

from this window listing all of the available frameworks for iPhone OS. Choose
CoreLocation.framework from that list and click the Add button as shown in
Figure 4.3. This application can now use the classes and functions available in the
Core Location framework.

Page 77

Chapter 4. Delegation and Core Location

Figure 4.3. Adding the Core Location framework

CROLO) Target "Whereami” Info

| Gemeral Build Rubes Properties Comments |

Name: Wheream! Al Py |
ew IZETEEd Build Run Design SCM__ Windo Tree: Agplcation
iject %0 Direct Depandencie)
Class Browser a4 #8C Address Book. framework
AgddressBaokUl framework
AudioTool box. frarmewark
New Group TEN
AudioUnit.framework
NEW Sman Gmup > CFNetwork._framework
CoreAudio.framewark
Add to Project TaeA CoreData framewark
CoreFoundation. framewark
CoreGraphics.framework
New Targ et... ExternalAccessory. framework
Foundation framework
New Build Phase > Gamekit framework
New Custom Executable. .. Mapkit.framework
MediaPMayer. framework
Set Active Target » Messagell framework
a i = MobileCoreSenyi fran vork
Set Active Architecture 3 e
Set Active SDK. 4 Linked Librasies OpenCLES framewsrk Tyoe
Set Active Build Configuration » B Foundation f: o QuanzCare framework Requiced
Set Active Executable > B9 Uikt frameny Security.framework Requied *

§= CoreGraphics Required &

- Storekit framewark
= CorcLocation,! o Sewm Required 7

Edit Project Settings K5 Magkit.frameb - (Add Other. Cancel) (Fhaan) Required +

Edit Active Target *Whereami” X®E

Edit Active Executable “Whereami” “CEX

53

While there are other ways to add frameworks to your project, this is the
recommended way because it allows you to switch freely between target SDKs.
For example, you could recompile your application for a different version of the
iPhone OS without making any other changes to your project in Xcode.

Make sure you remember how to add a framework to a project — you will have to
do it fairly frequently!

Core Location

Location Services enables applications to determine the device’s geographical
location. Core Location is the framework that you use to talk to Location Services.
No matter what type of device is being used, the Core Location code you write
does not change.

The class that interfaces with the hardware is called CLLocationManager.
Instances of this class are given a pointer to a delegate and then told to find
the device’s location in the world. At this point, the CLLocationManager starts
doing its own thing while the rest of the application continues with other tasks —

Page 78

Chapter 4. Delegation and Core Location

like accepting user input or updating the interface. This is possible because the
location manager operates on another thread.

When a CLLocationManager instance succeeds or fails in determining the
location of the device, it informs its delegate by sending it one of the messages in
the CLLocationManagerDelegate protocol.

For the Whereami application, you need to create an instance of
CLLocationManager and give it a delegate. WhereamiAppDelegate is
the controller object for this exercise; it will contain a CLLocationManager
and also be its delegate. Therefore, WhereamiAppDelegate must conform
to the CLLocationManagerDelegate protocol. Add the following code to
WhereamiAppDelegate.h

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface WhereamiAppDelegate : NSObject
<UlApplicationDelegate, CLLocationManagerDelegate>
{
UIWindow *window;
CLLocationManager *locationManager;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

A CLLocationManager instance has properties you can set to specify how often
it should update and how accurate it should be. The property distanceFilter
determines how far the device must move in meters before CLLocationManager
informs its delegate of a new location. Its setter method is setDistanceFilter:.

The second property, desiredAccuracy, can be set with the method
setDesiredAccuracy:. The desired accuracy is important because it has
consequences for battery power and CPU time. There is a tradeoff between the
accuracy and the amount of battery life and CPU time required to determine a
location. Moreover, the accuracy is ultimately dependent on the type of device the
user has, the availability of cellular towers and satellites, and the availability of
known wireless access points.

In the method application:didFinishLaunchingWithOptions:, you will instantiate
a CLLocationManager to track a device’s location. For this application, you will
set its properties to request the most accurate location data available from the

Page 79

Chapter 4. Delegation and Core Location

CLLocationManager as often as possible. (This will use the most amount of
battery and take the longest amount of time.)

Add the following to WhereamiAppDelegate.m.

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

// Create location manager object -

locationManager = [[CLLocationManager alloc] init];

// Make this instance of WhereamiAppDelegate the delegate
// it will send its messages to our WhereamiAppDelegate
[locationManager setDelegate:self];

// We want all results from the location manager
[locationManager setDistanceFilter:kCLDistanceFilterNone];

// And we want it to be as accurate as possible
// regardless of how much time/power it takes
[locationManager setDesiredAccuracy:kCLLocationAccuracyBest];

// Tell our manager to start looking for its location immediately
[locationManager startUpdatingLocation];

[window makeKeyAndVisible];
return YES;

}

Notice that you have set the locationManager’s delegate to self. Because we
are within the implementation block for WhereamiAppDelegate, self refers

to this instance of WhereamiAppDelegate. Therefore, all of the delegate
methods for this instance of CLLocationManager will be implemented in
WhereamiAppDelegate.m.

Also, the locationManager does not retain its delegate. In fact, delegates are
never retained by the object doing the delegating. Why? Because a controller
object usually owns the object for which it is a delegate. If an object then retains
its delegate, it would create a problem called a retain cycle. Right now, you have
other things to concentrate on, so we will leave the discussion of retain cycles for
a future chapter; just remember that setting a delegate is always an assignment

Page 80

Chapter 4. Delegation and Core Location

and that delegates are never retained or copied.

Because the delegate is not retained, it is important that the delegate pointer is
never “dangling.” For example, if the instance of WhereamiAppDelegate could
get deallocated, we would be sure to set the delegate pointer to nil:

- (void)dealloc

{
[locationManager setDelegate:nil];
[super dealloc];

}
Receiving updates from CLLocationManager

When a CLLocationManager has enough data to produce a new location,

it creates an instance of CLLocation. That CLLocation object is sent to the
CLLocationManager’s delegate via the locationManager:didUpdateToLocati
on:fromLocation:delegate method as shown in Figure 4.4. (This method is from
the CLLocationManagerDelegate protocol.)

Figure 4.4. A CLLocation object

ClLLocation
horizontalAccuracy = 10000

CLLocationCoordinate2D
latitude = 43.13
longitude = 89.33

CLLocation objects contain the latitude and longitude of the user’s device.
Each location object will also contain the accuracy of its reading in the
horizontalAccuracy property. Depending on the device, information like the
elevation above sea level and the current heading of the device may also be

Page 81

Chapter 4. Delegation and Core Location

recorded.

You must implement the delegate method locationManager:didUpdateToLoca
tion:fromLocation: from the CLLocationManagerDelegate protocol in order to
start receiving CLLocation instances from the CLLocationManager. For now,
implement this method in WhereamiAppDelegate.m so that it prints out the
CLLocation’s description to the console. (Be careful that there are no typos in
the method signature; remember, the name of the method must exactly match
the declaration in the protocol. The compiler won'’t tell you if you made a mistake.
It will just think you are defining a brand new method. Most developers copy and
paste the method from the documentation.)

- (void)locationManager:(CLLocationManager *)manager
didUpdateToLocation:(CLLocation *)newLocation
fromLocation:(CLLocation *)oldLocation

{
NSLog(@"%@", newLocation);

}

You also need to know if the CLLocationManager fails to find its location and
why. When it fails, it sends a different message to its delegate. Implement that
method in WhereamiAppDelegate.m.

- (void)locationManager:(CLLocationManager *)manager
didFailWithError:(NSError *)error
{

NSLog(@" Could not find location: %@", error);
}

Build and run the application. After giving permission for the application to use
location services and waiting for a few seconds while the location is determined,
your console should read something like this:

<+37.33168900, -122.03073100> +/- 100.00m (speed -1.00 mps / course -1.00)

So that’s how delegation works with a real example. If it feels odd or doesn’t quite
make sense, don’t worry. It can be hard to understand at first, but you’ll get it in
time. In the next chapter, you are going to finish off the Whereami application.
And yeah, you guessed it, you will be using more delegation in that chapter, too.

Page 82

Chapter 4. Delegation and Core Location

Releasing Controller Instance Variables

Deallocating objects while an application is running is important because it frees
up memory for future objects. When an application terminates, the memory it was
consuming is returned to the operating system. In most applications, however,
controller objects exist the entire time an application is running. They never get
released and therefore never get deallocated.

This holds true for Whereami: the instance of WhereamiAppDelegate will never
get released because it needs to exist the entire time the application is running.
Therefore, you do not need to implement the dealloc method for this class. Most
of the applications in this book have controller objects that exist the entire time
an application is running. This is the behavior for many controller objects in real
applications for two reasons:

+ Controller objects are the brains of an application. They take on a lot of roles
and typically are needed throughout the execution of an application.

+ Controller objects do not consume a lot of memory themselves. They only hold
pointers to view and model objects, which are the two types of classes that
consume the majority of memory. If memory is running low, the controller
can get rid of the big objects it has pointers to (and, ideally, be able to
reload those objects when needed).

Now, this isn’t to say that all controller objects exist throughout an application’s
lifetime. Some controller objects can exist temporarily for a specific task. In these
circumstances, you will need to release the appropriate instance variables in the
controller’s dealloc method.

We won’t waste your time showing you the implementation of dealloc methods
that will never get called, but you can’t go wrong by getting in the habit of always
writing correct dealloc methods. (An unused method never hurts you.)

In Snow Leopard, a static analyzer was added to Xcode. The static analyzer
evaluates your code and looks for potential problems like memory leaks or
uninitialized variables. (You can run the static analyzer on your code by selecting
Build and Analyze from the Project menu.) It’s not without flaws, though. If you

Page 83

Chapter 4. Delegation and Core Location

have a controller object that you never intend to release, the static analyzer may
warn you that you are leaking that object. You can ignore those warnings.

Challenge: Heading

Using delegation, retrieve the heading information from the CLLocationManager
and print it to the console. (Hint: You need to implement at least one more
delegate method and send another message to the location manager.)

For the More Curious: Compiler and Linker Errors

Building an application in Xcode is a multi-step process. Two of these steps are
compiling and linking, and each comes with its own type of error.

One of the first building steps, compiling, takes your Objective-C code and turns it
into the binary code a computer understands. Each implementation file (suffixed
with .m) is turned into an object file that contains that binary code.

If an error is found in your code during this phase, the compile fails. (And if an
implementation file fails to compile, the corresponding object file is not created.)
An error during this phase is called a compile-time error or syntax error. These
errors mean that the compiler cannot understand your source code — usually
because of little things like misplaced semicolons, unbalanced brackets ([]) or
braces ({}), spelling or capitalization errors.

A syntax error is also generated if you declare a variable of a type that the
compiler doesn’t recognize. For each Objective-C class, there is a header
file that declares it, and importing the header file tells the compiler about that
class. To see an example of a syntax error, comment out the following line in
WhereamiAppDelegate.h:

/l#import <CoreLocation/CorelLocation.h>

Build your application again. It will fail, and the Build Results window will show you
several errors (Figure 4.5).

Page 84

Chapter 4. Delegation and Core Location

Figure 4.5. Build results with compile-time error

ano [h| WhereamiAppDelegate.h: Whereami - Build Results =

[Simulator - 3.... '] [:] "(3 & o Q

Overview Breakpoints Build Build and Run Tasks Search

All Results | By Issue | Issues Only

= '?,rl‘ Build Whereami ™
!’ Project Whereami | Configuration Debug

v B Compile WhereamiAppDelegate.m ...in fiphone/Solutions /Whereami/Classes 0c
p @ Cannot find protocol declaration for 'CLLocationManagerDelegate”
» @ Expected specifier-qualifier-list before 'ClLLocationManager’
@ 'locationManager’ undeclared (first use in this function)
@ 'ClLocationManager' undeclared (first use in this function)
D 'kCLDistanceFilterMone' undeclared (first use in this function)
D '®ClLocationAccuracyBest' undeclared (first use in this function)

-

o Build Failed 12/15/09 10:11 PM A

6 errors v

_:ll; | [WhereamiAppDelegate.h:19 = [@ @interface WhereamidppDe ™. [C, #, & @
Build failed (& errors) @Failed 06

These errors tell you that the compiler doesn’t know about CLLocationManager
or its delegate protocol. That’s because the declarations for these things are

in CoreLocation/CoreLocation.h. Now that you’ve seen this error, you know
how to fix it. Uncomment the #import directive, build again, and the errors will
disappear. (So, what does importing a file really do? When an implementation file
is compiled, each import directive is replaced with the text of the imported file. The
text is effectively copied and pasted at the spot of the import directive.)

The next step in the building process is linking. The linker reads all of the object
files, determines what functions and classes are being used, and then links them
to the object file that contains the definition for those functions and classes. If the
linker cannot find a definition, it generates a linker error. Typically, you get this
error when you forget to add a framework to a project.

Linker errors are more difficult for new developers to understand because they
use unfamiliar terms (like “symbol” and “literal-pointer”). So let’s go ahead and
cause a linker error just for practice. Select the CoreLocation.framework icon
from the project window and press the delete key to remove it from your project.
Build your application again, and the Build Results window will tell you of your folly
(Figure 4.6).

Page 85

Chapter 4. Delegation and Core Location

Figure 4.6. Build results with linker error

e®aO0n [Whereami - Build Results —

‘ ’Simulator - 3.0 'l E] "S & a Q

|You tried to use the class CLLocationManager...| Build Build and Run Tasks Search

TN Latest Rasults | Bulsens | lesysc Onle =
v @ Link /iphone/Solutions/fgereami/build/L in the object file generated by WhereamiAppDelegate.m ...

| '.uhjc__class_narrle,,CLLo-catIonManager', referenced from:

@ “_kCLDistanceFilterNone”, referenced from:
_kClLDistanceFilterNonefnon_lazy_ptr in WhereamiAppDelegate.o
0 "_kClLocationAccuracyBest”, referenced from:
_kClLocationAccuracyBestSnon_lazy_ptr in WhereamiAppDelegate.o

B R

1
—————————————— ! | but | can't find the object file that defines CLLocationManagar.J

Collect?: Id returned 1 exit staco

o Build Failed 12/15/09 10:12 PM
3 errors

4+ [WhereamiAppDelegate.h:19 + [& @interface WhereamidppDelegate ., " . C, #, ﬂ_
Y
Build failed (3 errors) @ Failed O 3 A

This error tells you that the compiler knew about CLLocationManager (because
you imported the header file), but the linker can’t find the object file that defines it.
Add the Core Location framework back to your project to eliminate this error.

For the More Curious: Protocols
A protocol is a list of methods. Here’s an example:

@protocol CLLocationManagerDelegate<NSObject>

@optional
- (void)locationManager:(CLLocationManager *)manager
didUpdateTolLocation:(CLLocation *)newLocation
fromLocation:(CLLocation *)oldLocation;

- (void)locationManager:(CLLocationManager *)manager
didUpdateHeading:(CLHeading *)newHeading;

- (BOOL)locationManagerShouldDisplayHeadingCalibration:

Page 86

Chapter 4. Delegation and Core Location

(CLLocationManager *)manager;
- (void)locationManager:(CLLocationManager *)manager
didFailWithError:(NSError *)error;

@end

In the iPhone SDK, most classes that have a delegate property define a protocol
that declares the methods that can be sent to their delegate. Typically, a delegate
protocol only has optional methods. (Not all protocols are delegate protocols;
you’ll work with other protocols later in this book. In fact, while “delegate protocol”
is a handy term for a protocol that declares delegate methods, there is no

such thing as a delegate protocol according to the compiler; a protocol is just a
protocol.)

When an object wants to send an optional delegate message to its delegate, it
first sends the message respondsToSelector: to see if the delegate implements
the optional method. (If the response is negative, the object won’t send the
corresponding message.) For example, when text is added to an instance of
UlTextView, it informs its delegate through an optional delegate method. If you
were writing the UlTextView class, the implementation of UlTextView would look
something like this:

@implementation UlTextView
- (void)setText:(NSString *)t
{
NSString *tCopy = [t copy];
[text release];
text = tCopy;

// Find out if the delegate responds to textViewDidChange:

if ([[self delegate] respondsToSelector:@selector(textViewDidChange:)]) {
// Send the delegate a message saying the text did change!
[[self delegate] textViewDidChange:self];

}
}

However, with a required method, an object does not check before sending the
message; it assumes that this method is implemented. If you don’t implement

a required delegate method for an object, your application will throw an
unrecognized selector exception when the object sends the required message to

Page 87

Chapter 4. Delegation and Core Location

its delegate.

Some classes in the iPhone SDK are borrowed from Mac OS X and do not
declare a delegate protocol even if they have a delegate property. (Usually

these classes are prefixed with NS and are part of the Foundation framework.)
These classes were written before Objective-C 2.0 when there was no @optional
directive. Back then, every method in a given protocol had to be implemented by a
class that conformed to that protocol.

In order to have optional delegate methods, these classes declared their
protocols in informal protocols. Informal protocols are a bit of a legacy and beyond
the scope of this book. However, it's good to know about them for the purpose

of reading the documentation. If you’re looking for delegate methods for one

of these classes, you'll find them in the same documentation page as the class
that uses them instead of in a separate protocol reference. For example, the
delegate methods forNSXMLParser are documented in the “NSXMLParser Class
Reference” page (Figure 4.7).

Figure 4.7. NSXMLParser Documentation

NSXMLParser Class Reference | PDF
¥ Table of Contents | Jump To... ¢] a[»)
Overview enparse.
» Tasks — abortParsing m
— parserError

» Instance Methods

» Delegate Methods Handling XML

* Constants
— parserDidStartDocument: deleg d

Revision History — parserDidEndDocument: delegate method

Index _
| parser:didStartElement:namespaceURI: qualifiedMame:attributes:
COMPANION GUIDE delegate method
Event- Driven XML — parser:didEndElement:namespacelRI:qualifiedMame: delegate method
Programming Guide for Cocoa — parser:didStartMappingPrefix: toURI: d ate method

— parser:didEndMappingPrefix: deleg
— parser:resolveExternalEntityNa
— parser:parseErrorOccurred: dele
— parser:validationErrorOccurred
— parser:foundCharacters: delegate
— parser:foundIgnorablewhitespace:
— parser:foundProcessingInstructionWithTarget:data: delegate method

emID: delegate method

hod

te method

legate method

— parser: foundComment: del thod
— parser:foundCDATA: deleg

Handling the DTD

parser: foundAttributeDeclarationWithMame: forElement: type:defaultValue:
delegate method
— parser:foundElementDeclarationWithName:model: delegate method

) 14| »

-~

Chapter 5. MapKit and Text Input

Chapter 5. MapKit and Text Input

In this chapter, you will finish the Whereami application using delegation with the
MapKit framework and UlTextField, a text input control from the UIKit framework
(Figure 5.1). MapKit is the framework that allows you to display maps and the
geographical data associated with them. It is only available on iPhone OS 3.0 and
greater.

Figure 5.1. Finished Whereami

San Miguel

Sunnyvale

Braly
Comers

:
$

Cupertinﬂ
Rancho
- Rinconada
Calabazas
Fremont|Dider Morth
Open Space Chlab
Prese alabazas
ERETVE Sarth Rai
Fremont Oilder

Regional
Open Space

1&U&I':ﬂr&ﬁk Cax Ave

Co Park

Google

Object Diagrams

iPhone applications can get very large and use many classes and methods. One
way to keep your head wrapped around a large and complex project is to draw an
object diagram. Object diagrams show the major objects in an application and any

Page 89

Chapter 5. MapKit and Text Input

objects they have as instance variables. (At Big Nerd Ranch, we use a program
called OmniGraffle to draw our object diagrams.) Most exercises in this book will
show you an object diagram to give you the “big picture” of the application you
are developing. Figure 5.2 shows the object diagram for the complete Whereami
application.

Figure 5.2. Whereami object diagram

annotation

WhereamiAppDelegate

Controller

lecationManager:didUpdateToLocation:fremLocation:
-~

4 locationManager delegate

\
N
————— 3‘&\——{‘—/
L o |

I —

I E MapPoint CLLocationManager |
q

I

NSString *title;
CLLocationCoordinate2D coordinate; |

Let’s look more closely at this diagram. At the top, there are three view objects:
+ An MKMapView displays the map and the labels for the recorded locations.
+ A UlActivitylndicatorView indicates that the device is working and not stalled.

+ A UlTextField allows the user to input text to label the current location on the
map.

On the bottom are the model objects. One is an instance of CLLocationManager.
A CLLocationManager interacts with the device’s hardware to determine the
user’s location.

Finally, in the middle of everything is the controller object,

Page 90

Chapter 5. MapKit and Text Input

WhereamiAppDelegate. WhereamiAppDelegate is responsible for processing
updates and requests from objects and for updating the user interface. It is the
delegate for MKMapView,UITextField, and CLLocationManager.

Now take a look at the messages sent to WhereamiAppDelegate by these
objects. MKMapView sends mapViewDidAddAnnotationViews: when a view
(or views) is added. UlTextField sends textFieldShouldReturn: when the user
has finished entering text. CLLocationManager sends locationManager:didUp
dateToLocation:fromLocation: to inform WhereamiAppDelegate of a location
update.

MapKit Framework

The Core Location framework tells us where we are in the world; the MapKit
framework shows us that world. At the end of this chapter, the user will be able
place a MapKit annotation at their current location and name it. The default
MapKit annotation appears as a red pin on the map.

Add the MapKit framework to your project. (If you’ve forgotten how, flip back to
page 65 and refresh your memory.) Once you have added the MapKit framework,
you must import the header file in any file that will use classes from that
framework. At the top of WhereamiAppDelegate.h, import the MapKit header.

#import <CoreLocation/CorelLocation.h>
#import <MapKit/MapKit.h>

Most of MapKit’s work is done by the class MKMapView. Instances of this type
display a map, track touches, and display annotations. (They also do quite a bit
more, but that’s all you’ll need for this application.) To determine the necessary
instance variables for the Whereami project, review the object diagram in Figure
5.2. You’ll need an instance of MKMapView, an instance of UlTextField, and
an instance of UlActivitylndicatorView. Declare these instance variables in
WhereamiAppDelegate.h.

@interface WhereamiAppDelegate : NSObject
<UlApplicationDelegate, CLLocationManagerDelegate>

{
UIWindow *window;
CLLocationManager *locationManager;

IBOutlet MKMapView *mapView;

Page 91

Chapter 5. MapKit and Text Input

IBOutlet UlActivitylndicatorView *activitylndicator;
IBOutlet UlTextField *locationTitleField;
¥

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

In Interface Builder, open the file MainWindow.xib in the Resources group of the
Whereami project. Then open the UlWindow instance in this XIB file by double-
clicking on the Window object in the doc window.

Interface Properties

Drag an MKMapView onto the window. Then drop a UlTextField and a
UlActivitylndicatorView on the MKMapView. (If you are having trouble finding
these objects, use the search box at the bottom of the Library window.) Reposition
them and make the outlet connections as shown in Figure 5.3. When connecting
the delegate for an object, remember to drag from the object that is delegating

to the object that will be the delegate. For example, to set the MKMapView’s
delegate, Control-click the MKMapView to bring up the connection panel and drag
to the WhereamiAppDelegate instance.

Figure 5.3. Whereami XIB layout

56006 « Window ~
[= =]
®O0 .+ MainWindow.xib —)
El= (o (] Q|| locationTitField

© -t
5 @ §
2 S 3 —
N~ e I activitvindi
File's Owner First Respender ‘Whereami Ap.* \\

map View

e

Window delegate

. /
é'______,delegate - /
—

Page 92

Chapter 5. MapKit and Text Input

Now you’re going to change some of the properties of your UlTextField and
UlActivitylndicatorView to improve the user interface. When a UlTextField

is activated, a keyboard appears on the screen. (We’ll see why this happens
later.) The keyboard’s appearance is determined by a set of the UlTextField’s
properties called UlTextInputTraits. For Whereami, the keyboard should display
the placeholder text “Enter Location Name” and a blue-tinted Search key. To make
these changes, select the UlTextField to get to its attributes in the Inspector
window. Change the values for Placeholder and Return Key to match what is
shown in Figure 5.4.

Figure 5.4. UlTextField attributes

OO0 i i
= | © ¢ | @
¥ Text Field
Text
Placeholder IEnter Location Name I
Background j
Disabled [j
Alignment IEI
Border ==
Clear Button [Mewver appears I-H

E Clear When Editing Begins

Font | Helvetica, 12.0 |
FontSize [Adjust To Fit |17 B
Min Size

Text Input Traits

Capitalize [Mone

Correction [Default

Keyboard [Default

Appearance [Defaulr

CORCORLOREGEED

Return Key [Search

[] Auto-enable Return Key
[] Secure

= Control
P View

Page 93

Chapter 5. MapKit and Text Input

Wouldn't it be nice if the UlActivitylndicatorView hid itself when it’s not
animating? Select UlActivitylndicatorView and check the box labeled Hide When
Stopped in the Attributes panel as shown in Figure 5.5 to make this happen.

Figure 5.5. UlActivitylndicator attributes

800 ivi icator View Artributes
r) & o
¥ Activity Indicator View
Style [Gray l-H
E Hide When Stopped
[Animating
= View
e

Save MainWindow.xib and quit Interface Builder.

Being a MapView Delegate

When Whereami launches, the user will be shown a map around the current
location and be able to tag the location by entering a name in the UlTextField.
Core Location will get the latitude and longitude of the current location and

create an object to represent it. WhereamiAppDelegate will then annotate the
MKMapView at that location. In effect, the user will label locations that have been
visited for future reference.

An MKMapView knows how to use Core Location to place the user’s location on
itself; you do not have to use Core Location directly when dealing with this type of
object. If you set the showsUserLocation property of an MKMapView to YES, it
will show the location of the user on the map. At the end of application:didFinis
hLaunchingWithOptions:, replace the message that tells the locationManager
to update its location with one that tells the MKMapView to show the current
location.

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

Page 94

Chapter 5. MapKit and Text Input

locationManager = [[CLLocationManager alloc] init];
[locationManager setDelegate:self];

[locationManager setDistanceFilter:kCLDistanceFilterNone];
[locationManager setDesiredAccuracy:kCLLocationAccuracyBest];

// [locationManager startUpdatingLocation];
[mapView setShowsUserLocation:YES];
[window makeKeyAndVisible];

return YES;
}

Build and run the application. A few moments after the application launches, the
map will display a blue annotation dot on your current location. (If you are using
the simulator, the current location is always Apple’s Headquarters.) However,
because you are still looking at the entire world, that blue dot is the size of Brazil
and not exactly useful for figuring out where you are! Clearly, the application
needs to zoom in closer to the current location.

To fix this problem, you could send some message to mapView telling it to zoom
in on a region, but when would you do that? You can’t do it when the application
starts because mapView needs a moment to figure out where the user is. Nor
do you want to continually tell the MKMapView to update its viewing region; that
would be a waste of time.

Instead, how about delegation? MKMapView has a delegate —
the WhereamiAppDelegate instance. So, first, declare that the
WhereamiAppDelegate instance conforms to that protocol in
WhereamiAppDelegate.h:

@interface WhereamiAppDelegate : NSObject
<UlApplicationDelegate, CLLocationManagerDelegate, MKMapViewDelegate>

{

When an annotation is added to the map (like the blue dot that represents the
user’s current location), the map view should zoom in on a small area around the
annotation. In the protocol documentation for MKMapViewDelegate, try to find a
delegate method that will do that (Figure 5.6).

Page 95

Chapter 5. MapKit and Text Input

Figure 5.6. MKMapViewDelegate Protocol Reference

4 » & MKMapViewDelegate Protocol Reference 5 MEMapViewDelegate 2

MKMapViEwDelegatE Protocol Refﬂence F_| PDF

¥ Table of Contents Jump To... %« Previous | Next »
Overview

e Tasks

» Instance Methods
Revision History Responding to Map Position Changes U
Index - mapView:regionWillChangeAnimated: op

—~ mapView:regionDidChangeAnimated:

Loading the Map Data

- mapViewWillStartLoadingMap: optional met

L'J T
[=]
!

- mapViewDidFinishLoadingMap: o
- mapViewDidFaillLoadingMap: '-nthError' optional method

Managing Annotation Views
- mapView:viewForAnnotation: optional method
- mapView:didAddAnnotationViews: opri

- mapView:annotationView: callouthccessor‘yﬂontmlTupped

optional method

2

L4) IR RS

One method sticks out here: mapView:didAddAnnotationViews:. The
documentation explains what the message name already makes rather
clear — mapView:didAddAnnotationViews: will be called whenever an
annotation is added to the map. This method can initiate the zoom any
time an annotation is added. In WhereamiAppDelegate.m, implement
mapView:didAddAnnotationViews:

- (void)mapView:(MKMapView *)mv didAddAnnotationViews:(NSArray *)
views
{

MKAnnotationView *annotationView = [views objectAtindex:0];

id <MKAnnotation> mp

= [annotationView annotation];

MKCoordinateRegion region = MKCoordinateRegionMakeWithDistance([
mp coordinate], 250, 250);

[mv setRegion:region animated:YES];

}

Take a closer look at this method body. You will need an MKCoordinateRegion

Page 96

Chapter 5. MapKit and Text Input

to send to the MKMapView’s method setRegion:animated:. The
MKCoordinateRegion is a structure (not an Objective-C object), so

you can’t send it messages. To create a region, you call the function
MKCoordinateRegionMakeWithDistance with the center and two distances:
meters east-west and meters north-south. The coordinate of the annotation is
passed along with the number of meters the region spans.

Skip the type declaration of the variable mp for a moment and focus on the

array access. When the message mapView:didAddAnnotationViews: is sent
to the delegate, an NSArray of MKAnnotationViews is also passed as an
argument. This array contains all of the views that were just added to the map.
An MKAnnotationView is a view that is displayed on the MKMapView. It has a
pointer to an object that contains the name, coordinate, and other annotation
data. Here are where things get fun: the object that MKAnnotationView points
to can be any object that conforms to the MKAnnotation protocol. You don’t
have to worry about what kind of object the annotation is; you know that you can
send it the messages in the MKAnnotation protocol, and, therefore, its data can
be used by an MKAnnotationView. (There may be more objects in the views
array, depending on how many annotations were added to the map. In this simple
exercise, you only care about the first one.)

Why is MKAnnotation a protocol and not a class? Any object can conform to a
protocol, and that lets your application display different types of objects on one
map. Imagine an application that maps everything in a neighborhood including
restaurants and movie theaters. A restaurant has a menu, and a theater has a list
of showtimes; they are different types of objects. However, both can be displayed
on the map if they conform to MKAnnotation. It’s brilliant!

Now consider the variable mp. Its type is id, which means “any Objective-C
object.” The angled brackets further specify “as long it conforms to this protocol.”
The MKAnnotation protocol says you can send the message coordinate to any
conforming object, and it will return a CLLocationCoordinate2D structure. Here
you use that structure to set the center of the region. Then, you hand the region
off to the MKMapView with setRegion:animated: to do the zoom.

Build and run the application again. When the map figures out where you are in
the world, it zooms in on that location.

Your own MKAnnotation

Now, you will write a class MapPoint that conforms to the MKAnnotation protocol
and use instances of it for tagging locations in Whereami. From the File menu in

Page 97

Chapter 5. MapKit and Text Input

Xcode, select New File.... A window will appear, and on the lefthand side of the
window, select Cocoa Touch Class from the iPhone OS section. On the upper-
right side, choose Objective-C class. Select NSObject from the pop-up menu and
hit the Next button (Figure 5.7).

Figure 5.7. Creating an NSObject subclass

NN %) New File
Choose a template for your new file:
\!‘ iPhone OS5 N L
User Interface
Resource Objective-C class Objective-C test UlViewController
Code Signing case class subclass
ﬂ Mac OS5 X
Cocoa Class Subclass of | NSObject J :]
Cand C++
User Interface
Resource -) o
Interface Builder Kit _m Objective-C class
Other
An Objective-C class file, with an optional header which includes the
<Foundation/Foundation.h> header.
I
[Cancel) Previous m

4

When prompted, name this class MapPoint.m and check the box labeled Also
create “MapPoint.h”. Click Finish, and the class files for this object will be added
to your project (Figure 5.8).

Page 98

Chapter 5. MapKit and Text Input

Figure 5.8. Naming the subclass

New N5Object subclass

File Name: [Machinﬂ.m I
E Also create “MapPoint.h™

Location: |~/Desktop/Whereami/Classes ﬂf Choose...)
Add to Project: | Whereami FH

Targets: # glyWhereami

[: Previous] f ‘Finish '"3
P

While most of the methods declared in the MKAnnotation protocol are optional,
there is one required method — coordinate. If MapPoint is to conform to the
MKAnNnotation protocol, it must implement that method. (The protocol actually
defines coordinate as a property, so you will as well. Remember from our
discussion of accessors that a property is essentially a collection of method
declarations.)

MKAnnotationView will interact with its annotation object through the methods
declared in the MKAnnotation protocol. However, because a protocol can’t
declare instance variables, it is up to MapPoint to store the data that will be
returned from the methods declared in the MKAnnotation protocol. Change
MapPoint.h to read as follows:

#import <Foundation/Foundation.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

Page 99

Chapter 5. MapKit and Text Input

@interface MapPoint : NSObject <MKAnnotation>
{
NSString *title;
CLLocationCoordinate2D coordinate;
¥
@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title;

- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t;
@end

Switch to MapPoint.m to enter the implementation. (The keyboard shortcut for
switching between the header file and the implementation file is Command-
Option-Up Arrow.)

#import "MapPoint.h"

@implementation MapPoint
@synthesize coordinate, title;
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t
{
[super init];
coordinate = c;
[self setTitle:t];
return self;

}

- (void)dealloc

{
[title release];
[super dealloc];

}
@end

Note that you don’t release coordinate in the dealloc method because it is not an
Objective-C object and can’t receive messages. The CLLocationCoordinate2D
structure’s memory will live inside each instance of MapPoint, and it will be
created and destroyed automatically along with the object.

Tagging locations

Page 100

Chapter 5. MapKit and Text Input

Now that you have your own class that conforms to MKAnnotation, you can

start tagging locations on the MKMapView. As we decided earlier, the user can
enter text into the UlTextField and tap the Search button on the keyboard to tag a
location. But you don’t have an IBAction hooked up to that button, so how will you
know when the Search button was tapped?

Delegation, once again, comes to the rescue. Whenever a keyboard is dismissed
from the screen by its return key, the UlTextField that displayed the keyboard

is told to return. When that happens, the UlTextField sends its delegate the
message textFieldShouldReturn: to see if it really should return. Because you
set up locationTitleField’s delegate to be WhereamiAppDelegate, you can
implement this delegate method in WhereamiAppDelegate.m.

- (BOOL)textFieldShouldReturn:(UITextField *)tf
{

[self findLocation];

[tf resignFirstResponder];

return YES;

}
Text Input and the First Responder

For now, ignore findLocation. You will write the implementation for that in a
moment. Let’s talk about text editing and the first responder.

There is a class in the UIKit framework named UIResponder. A responder is
responsible for receiving events and processing them. A UlTextField is a direct
subclass of UlControl, which is a subclass of UIView which is a subclass of
UIResponder(Figure 5.9). Thus, UlTextField can receive events, like a touch.

Page 101

Chapter 5. MapKit and Text Input

Figure 5.9. Class hierarchy of a UlControl object

UlResponder

i Handles raw touches

- (void)touchesBegan:(NSSet *jtouches withEvent:(UIEvent *)evt;
- (voidjtouchesMoved:(NSSet *Jtouches withEvent:(UIEvent *)ewt;
- (wvoidytouchesEnded:(NSSet *jtouches withEvent:{UIEvent *jewt;

inherits fmom T
UlView
I Draws stuiff
- (void)drawRect(CGRect)r;
inherits from |
UlControl

/! Process raw touches to send messages to a target
- (void)addTarget:(idjtarg action:(SEL)act forControlEvent:(LIControlE vent)evt;

When a UlTextField receives a touch, it becomes a special type of responder:
the first responder. On the iPhone, the first responder only has a few uses. (On
the Desktop, it has significantly more.) There can only be one first responder for a
window at a time, and, since there is only one window in an application, there can
only be one first responder for an application.

Every UIResponder has a pointer called nextResponder. A view’s
nextResponder is typically its superview. Thus, you can think of the responder
chain as a linked list of objects — each responder has a pointer to the next
responder in the chain.

When an object is the first responder, it gets a chance to handle keyboard and
motion events (like shakes) first. (Touch events go to whatever view was touched
first, regardless of what object is the first responder.) If the first responder
doesn’t handle the event, the event is passed to its nextResponder. If the
nextResponder doesn’t handle that event, it goes to its nextResponder and so
on.

When a UlTextField becomes the first responder, it slides a keyboard onto the
screen. This keyboard will remain on the screen as long as the UlTextField
remains the first responder. When you want to dismiss the keyboard, you send the
message resignFirstResponder to the text field that put it there.

(Everything about UlTextField holds true for instances of UlTextView, too. The
difference between UlTextView and UlTextField is that a UlTextView allows
for multi-line editing. As a result, a text view’s Return key enters the newline

Page 102

Chapter 5. MapKit and Text Input

character whereas a text field’s Return key dispatches the delegate method
textFieldShouldReturn:.)

Putting the Pieces Together

Now you need to implement the method findLocation. This method tells the
locationManager to start looking for the current location. It also updates the user
interface so that the user can’t re-enter text into the text field and starts the activity
indicator spinning. Declare findLocation in WhereamiAppDelegate.h along with
its counterpart, foundLocation.

@interface WhereamiAppDelegate : NSObject
<UlApplicationDelegate, CLLocationManagerDelegate, MKMapViewDelegate>

{

UIWindow *window;
CLLocationManager *locationManager;

IBOutlet MKMapView *mapView;
IBOutlet UlActivitylndicatorView *activityIndicator;
IBOutlet UlTextField *locationTitleField;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;

- (void)findLocation;
- (void)foundLocation;

@end

In WhereamiAppDelegate.m, implement these two methods. They set the state
of your Ul elements and the locationManager.

- (void)findLocation

{

[locationManager startUpdatingLocation];
[activityIndicator startAnimating];
[locationTitleField setHidden:YES];

}

- (void)foundLocation

Page 103

Chapter 5. MapKit and Text Input

{
[locationTitleField setText:@""];

[activityIndicator stopAnimating];
[locationTitleField setHidden:NO];
[locationManager stopUpdatingLocation];

}

One last bit: when the locationManager finds the current location, it should create
a new MapPoint and add it to the MKMapView instead of printing the description
on the console. Add the following code to locationManager:didUpdateToLocatio
n:fromLocation: in WhereamiAppDelegate.m.

- (void)locationManager:(CLLocationManager *)manager
didUpdateTolLocation:(CLLocation *)newLocation
fromLocation:(CLLocation *)oldLocation

NSLog(@"%@", newLocation);
// How many seconds ago was this new location created?
NSTimelnterval t = [[newLocation timestamp] timelntervalSinceNow];
// CLLocationManagers will return the last found location of the
// device first, you don't want that data in this case.
// If this location was made was more than 3 minutes ago, ignore it.
if (t<-180) {
// This is cached data, you don't want it, keep looking
return;
}
MapPoint *mp = [[MapPoint alloc]
initWithCoordinate:[newLocation coordinate]
title:[locationTitleField text]];
[mapView addAnnotation:mp];
[mp release];

[self foundLocation];

}

Of course, WhereamiAppDelegate.m needs to know about the MapPoint class
in order to use it. So, at the top of this file, import the MapPoint header.

#import "WhereamiAppDelegate.h"
#import "MapPoint.h"

Page 104

Chapter 5. MapKit and Text Input

@implementation WhereamiAppDelegate

Note that you use quotation marks for this import and angled brackets for
frameworks. Angled brackets tell the compiler, “Only look in your system libraries
for this file.” Quotation marks say, “Look in all the directories for this project first,
and if you don’t find something, then look in the system libraries.”

Build and run the application. Enter a title into the text field and watch as an
annotation with that title is displayed on the map at your current location!

Challenge: Annotation Extras

Using the NSDate and NSDateFormatter classes, have your tagged annotations
show the dates they were tagged.

Challenge: Reverse Geocoding

Use delegation and the class MKReverseGeocoder to display the city and state
of a MapPoint on the map.

Challenge: Changing the Map Type

Add a UlSegmentedControl to the interface. Have this segmented control switch
the MKMapView between the standard, satellite, and hybrid maps.

For the More Curious: Renaming an Application

Page 105

Chapter 5. MapKit and Text Input

When you create an application, you give it a name. But you aren’t stuck with that
name for life, and there are at least a couple of reasons you might want to change
it.

You can change your mind. Usually when I’'m working on a new application, |
come up with a totally cool name. | show all of my friends every time | see them
and talk non-stop about how “SupercoolApp” is going to be so great. When |

finish the application, however, | look at the name and think, “That’s a really stupid
name.”

Or you can be too late. Once in a blue moon, | write an application and still
love the name when I’'m finished. (Baaahlast, for example, still makes me laugh
when | see it.) Then reality hits, and | find out someone else has already used
the name!Whereami is one of those applications. Another iPhone book has a
Whereami application example, so our (way cooler) application needs a name
change. How does Wherewasi sound?

To change the name of an application, choose Edit Active Target from the Project
menu. You’ve been here before, but this time select the Build tab at the top of the
window. Select All Configurations from the Configuration: popup button. While
there are many groups in the table (and each contains plenty of settings for the
target), you are looking for the Packaging group. Find the Product Name setting
within that group and double-click on that row (Figure 5.10).

Page 106

Chapter 5. MapKit and Text Input

Figure 5.10. Renaming an application

{ General | Build | Rules Properties Comments }

Configuration: [All Configurations H-‘ I(—Q,- Search in Build Settings B
Show: [All Settings hﬂ

Setting | Value | |
» Architectures
» Build Locations
» Build Options
» Code Signing
» Compiler Version
» Deployment
» Kernel Module
» Linking
¥ Packaging
Compress PNG Files g
Convert Copied Files H
Executable Extension
Executable Prefix

Expand Build Settings in Info.plist File w1

Force Package Info Generation]

Framewoark Version A

Info.plist File Whereami-Info.plist

Info.plist Other Preprocessor Flags

Info.plist Output Encoding binary 5

Info.plist Preprocessor Definitions
Info.plist Preprocessor Prefix File

Preprocess Info.plist File B
Preserve HFS Data H
Private Headers Folder Path ‘Whereami.app/PrivateHeaders
Property List Qutput Encoding binary -
Public Headers Folder Path Whereami.app/Headers
Strings file Qutput Encoding hinary .
Wrapper Extension app

» Search Paths

¥ Unit Testing -
Other Test Flaas X

Based On: | Mothing +] @

A sheet will drop down. Enter Wherewasi into this box and hit OK. Build and run
your application again. Check out the name of the application on the home screen
now.

Page 107

Chapter 6. Subclassing UlView

Chapter 6. Subclassing UlView

In previous chapters, you’ve created several views: a UlButton, a UlLabel, etc.
But what exactly is a view?

+ Aview is an instance of a subclass of UlView.
+ Aview knows how to draw itself on the application’s window.

A view is arranged within a hierarchy: the window (an instance of
UIWindow) is itself a view and the root of the hierarchy. It has subviews
(that appear on the window). Those views can also have subviews.

A view handles touch events.

In this chapter, you are going to create your own UlView subclass that fills the
screen with concentric circles as shown in Figure 6.1. You will also learn how to
add text and enable scrolling and zooming.

Figure 6.1. View that draws concentric circles

Creating a Custom View
In Xcode, create a new Window-based Application. Name it Hypnosister.

To create a new UlView subclass, select New File... from the File menu. On the
lefthand side of the next window, select Cocoa Touch Class within the iPhone OS
group. Choose the Objective-C class option for the template. In the pop-up menu
labeled Subclass of, select UlView. (Figure 6.2)

Page 108

Chapter 6. Subclassing UlView

Figure 6.2. Creating a UlView subclass

80060

MNew File

Choose a template for your new file:

I iPhone OS5

Cocoa Touch Class .I I I .I l I .I I I
User Interface

Resaurce Objective-C class Objective-C test UlViewController
Code Signing case class subclass

ﬂ Mac OS X

Cocoa Class | : .
Cand C++ Subclass of | Ulview |]

User Interface

Resource

Interface Builder Kit m Objective-C class

Dther
An Objective-C class which is a subclass of UlView, with an optional
header file which includes the <UIKit/UIKit.h> header.
Cancel)

A

Apple frequently (and pointlessly) changes this interface, so your window may

look different. If it does, make sure you are finding a template that is a subclass of
UlView (not UlViewController). Click the Next button.

Name this file HypnosisView.m and make sure that Also create
“HypnosisView.h” is toggled on as shown in Figure 6.3. Click the Finish button.

Page 109

Chapter 6. Subclassing UlView

Figure 6.3. Creating a HypnosisView

Q00 New File

New UlView subclass

File Name: IvanosisView.m I

E Also create "HypnosisView.h"

Location: | ~/Desktop/Hypnosister j (Choose...)
Add to Project: I' Hypnosister I-ﬂ

Targets: ® s Hypnosister

[Previous} (Finish)

£
e —

The HypnosisView.h file will open automatically. Open its counterpart,
HypnosisView.m. Locate the drawRect: method in this file.

The drawRect: method

Every UlView subclass implements the method drawRect:. The drawRect:
method is where the drawing code for the view goes. For example, a UlButton’s
drawRect: method draws a rounded rectangle with a title string in the center.

Each time an instance of UlView is drawn, the system prepares a graphics
context specifically for that view. The context is then activated, and the message
drawRect: is sent to the instance of UIView that is being drawn. The graphics
context’s type is CGContextRef (Core Graphics Context Reference), and it is
responsible for aggregating drawing commands and producing an image as a
result. This image is the appearance of the view instance. A graphics context
also stores its drawing state, which includes things like the current drawing color,

Page 110

Chapter 6. Subclassing UlView

coordinate system, and the width of lines.

When drawing a view, you will sometimes use Objective-C to make calls defined
in UIKit that implicitly use the active graphics context. Other times, you will get
hold of the graphics context explicitly and draw using the C functions of the Core
Graphics framework. In this chapter, you will do both.

In HypnosisView.m, change the drawRect: method:

- (void)drawRect:(CGRect)rect

{

// What rectangle am I filling?
CGRect bounds = [self bounds];

// Where is its center?

CGPoint center;

center.x = bounds.origin.x + bounds.size.width / 2.0;
center.y = bounds.origin.y + bounds.size.height / 2.0;

// From the center how far out to a corner?
float maxRadius = hypot(bounds.size.width, bounds.size.height) / 2.0;

// Get the context being draw upon
CGContextRef context = UlGraphicsGetCurrentContext();

// All lines will be drawn 10 points wide
CGContextSetLineWidth(context, 10);

// Set the stroke color to light gray
[[UIColor lightGrayColor] setStroke];

// Draw concentric circles from the outside in
for (float currentRadius = maxRadius; currentRadius > 0; currentRadius -=

20)

}

{

CGContextAddArc(context, center.x, center.y,
currentRadius, 0.0, M_PI * 2.0, YES);
CGContextStrokePath(context);

}

Page 111

Chapter 6. Subclassing UlView

Notice that you are passed a CGRect structure. This is the rectangle that needs
to be redrawn, sometimes called a dirty rectangle. Typically, you ignore the dirty
rectangle and issue the drawing instructions as though the entire view needed to
be redrawn. If, however, your drawing code is particularly intricate, you might be
more careful and only redraw the parts in the dirty rectangle to speed up drawing.

A CGRect structure (Figure 6.4) contains the members origin and size. These
two members are also structures. The origin is of type CGPoint and contains two
more float members: x and y. The size is of type CGSize and also has two float
members: width and height. These three structures are the basic building blocks
of Core Graphics routines.

Figure 6.4. CGRect

“*+, origin: CGPoint
width : float :

]

"
0 L]
E ~ :
i L s - ¥
H - g] '
: N]
! : . =
] . i, H
H {;: T :n :
v T =3 i
' H o .-r
] s =__"‘ :
: "* ig '
H . W i
' s CGRect S
: FRsmEEEEEES LA 1} '.-s
[

...

Instantiating a UlView
Recall that there are two ways to create an instance of your view:

+ create it programmatically with alloc and initWithFrame: and make the new
view a subview of the window

« create it in Interface Builder
In this chapter, you are going to create the view programmatically.
Open HypnosisterAppDelegate.h and add an instance variable for the new view:

#import <UIKit/UIKit.h>
@class HypnosisView;

Page 112

Chapter 6. Subclassing UlView

@interface HypnosisterAppDelegate : NSObject <UIApplicationDelegate>
{

UIWindow *window;

HypnosisView *view;
¥

@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

In HypnosisterAppDelegate.m, create the new instance and place it on the
window:

#import "HypnosisterAppDelegate.h"
#import "HypnosisView.h"

@implementation HypnosisterAppDelegate
@synthesize window;

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
CGRect wholeWindow = [window bounds];
view = [[HypnosisView alloc] initWithFrame:wholeWindow];
[view setBackgroundColor:[UIColor clearColor]];
[window addSubview:view];
[window makeKeyAndVisible];
return YES;
}
/I A dealloc method that will never get called because
/I HypnosisterAppDelegate will exist for the life of the application
- (void)dealloc
{
[view release];
[window release];
[super dealloc];

}
@end

Page 113

Chapter 6. Subclassing UlView

Notice that you are calling initWithFrame:, the designated initializer for UlView.
The view then has a size and position. When it is added to a view hierarchy
(addSubview:), its position will be in the coordinate system of its superview
(window).

(Retain count trivia: Because you created the view with alloc and added it

to the window, the view is being retained by HypnosisterAppDelegate and

the window, and therefore it has a retain count of two. But note that neither
HypnosisterAppDelegate nor the window will ever get released or deallocated
because they exist the entire time the application is running.)

Build and run your application.
Drawing Text and Shadows

While we are talking about drawing, let’s add some text with a shadow to the view
as shown in Figure 6.5.

Figure 6.5. View that draws text

Open HypnosisView.m and add the following code to the end of your drawRect:
method:

for (float currentRadius = maxRadius; currentRadius > 0; currentRadius -= 20)

{

CGContextAddArc(context, center.x, center.y,

Page 114

Chapter 6. Subclassing UlView

currentRadius, 0, M_PI * 2.0, YES);
CGContextStrokePath(context);

}

// Create a string
NSString *text = @"You are getting sleepy.";

// Get a font to draw it in
UIFont *font = [UIFont boldSystemFontOfSize:28];

// Where am | going to draw it?

CGRect textRect;

textRect.size = [text sizeWithFont:font];
textRect.origin.x = center.x - textRect.size.width / 2.0;
textRect.origin.y = center.y - textRect.size.height / 2.0;

// Set the fill color
[[UIColor blackColor] setFill];

// Set the shadow

CGSize offset = CGSizeMake(4, -3);

CGColorRef color = [[UIColor darkGrayColor] CGColor];
CGContextSetShadowWithColor(context, offset, 2.0, color);

// Draw the string
[text drawInRect:textRect
withFont:font];

}

Build and run the application. You will see the text with a shadow appear on the
view.

Notice that you only call drawing routines inside drawRect:. Outside of a
drawRect: method, there is no active CGContextRef and drawing routines will
fail. (In a later chapter, you will manage your own CGContextRef for offscreen
drawing. Only then can you draw outside of drawRect:.)

Using UlScrollView

When you want to let the user scroll around your view, you typically make your
view the subview of a UlScrollView as shown in Figure 6.6.

Page 115

Chapter 6. Subclassing UlView

Figure 6.6. Object diagram

UlWindow UlScrollView

HypnosisView

subviews

fevuyalgeiniNsn
Reuys|geinpysn

In HypnosisterAppDelegate.m, put your view inside a scroll view and add that

scroll view to the window:

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

CGRect wholeWindow = [window bounds];

UlIScrollView *scrollView = [[UIScrollView alloc]
initWithFrame:wholeWindow];

[window addSubview:scrollView];

[scrollView release];

// Make your view twice as large as the window

CGRect reallyBigRect;

reallyBigRect.origin = CGPointZero;

reallyBigRect.size.width = wholeWindow.size.width * 2.0;

reallyBigRect.size.height = wholeWindow.size.height * 2.0;

[scrollView setContentSize:reallyBigRect.size];

// Center it in the scroll view

CGPoint offset;

offset.x = wholeWindow.size.width * 0.5;
offset.y = wholeWindow.size.height * 0.5;
[scrollView setContentOffset:offset];

// Create the view

view = [[HypnosisView alloc] initWithFrame:reallyBigRect];
[view setBackgroundColor:[UIColor clearColor]];
[scrollView addSubview:view];

[window makeKeyAndVisible];
return YES;

Page 116

Chapter 6. Subclassing UlView

}

Build and run your application. You will be able to push your view up and down,
left and right as shown in Figure 6.7.

Figure 6.7. HypnosisView in UlScrollView

However, zooming doesn’t work. Yet.
Zooming

To add zooming, you need to give the scroll view a delegate. The

delegate will tell the scroll view which view needs to be transformed. In
HypnosisterAppDelegate.h, declare that HypnosisterAppDelegate conforms to
the UlScrollViewDelegate protocol:

@interface HypnosisterAppDelegate : NSObject
<UlApplicationDelegate, UlScrollViewDelegate>

Open HypnosisterAppDelegate.m. In application:didFinishLaunchingWithOp
tions:, set the delegate and the limits of the zoom:

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

CGRect wholeWindow = [window bounds];

Page 117

Chapter 6. Subclassing UlView

UlIScrollView *scrollView = [[UIScrollView alloc] initWithFrame:wholeWindow];
[window addSubview:scrollView];
[scrollView release];

// Make your view twice as large as the window

CGRect reallyBigRect;

reallyBigRect.origin = CGPointZero;
reallyBigRect.size.width = wholeWindow.size.width * 2.0;
reallyBigRect.size.height = wholeWindow.size.height * 2.0;
[scrollView setContentSize:reallyBigRect.size];

/I Center it in the scroll view

CGPoint offset;

offset.x = wholeWindow.size.width * 0.5;
offset.y = wholeWindow.size.height * 0.5;
[scrollView setContentOffset:offset];

/l Enable zooming

[scrollView setMinimumZoomScale:0.5];
[scrollView setMaximumZoomScale:5];
[scrollView setDelegate:self];

/I Create the view

view = [[HypnosisView alloc] initWithFrame:reallyBigRect];
[view setBackgroundColor:[UIColor clearColor]];
[scrollView addSubview:view];

[window makeKeyAndVisible];
return YES;

In that same file, implement the necessary delegate method:

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView

{

return view;

}

Page 118

Chapter 6. Subclassing UlView

Build and run the application and zoom away!
Hiding the Status Bar

When you’re being hypnotized, you probably don’t want to see the time or your
remaining battery charge; these things cause anxiety. So, hide the status bar
before you make the window visible. Add a line near the end of application:didFi
nishLaunchingWithOptions: in HypnosisterAppDelegate.m:

[scrollView addSubview:view];

[[UlApplication sharedApplication] setStatusBarHidden:YES
animated:NOJ;

[window makeKeyAndVisible];

return YES;

}

Build and run the application again. The status bar will no longer be visible while
Hypnosister is running.

Challenge: Colors
Make the circles appear in assorted colors.
For the More Curious: Retain Cycles

A view hierarchy is made up of many parent-child relationships. When we talk
about view hierarchies, we call parents superviews and their children subviews.
When a view is added it to a view hierarchy, it is retained by its superview as

superview ﬁ uperview
/ Sy

UlView UIView
—subviews» > —subviews
M~ ¥ I~ L5

g -7 owns -

- - . -
Bl ——

UiView

L J

Figure 6.8. View hierarchy ownership

It is sometimes necessary for a subview to send a message to its superview.
Every subview, then, has a pointer back to its superview. The superview

Page 119

Chapter 6. Subclassing UlView

property of a UlView is set to its superview when the view is added to a view
hierarchy. (When a view is not part of a view hierarchy, superview is nil.)

Superviews are not retained by their subviews. Why not? Well, imagine what
would happen if they were. Every time a subview was added to a view (let’s call
it BigView), BigView would increment its retain count. For example, if BigView
had six subviews, it would have a retain count of seven — one for each subview
and one for its superview.

What would happen if BigView’s superview wanted to get rid of BigView? The
superview would send BigView the message release. However, BigView would
still be retained by each of its subviews and would not be deallocated. As a result,
BigView’s subviews would never be sent the message release. BigView, and all
of its subviews, would be cut off from the rest of the application and exist in their
own little cycle of independent objects where no other object could reach them.

We call this problem a retain cycle, and it can arise in any parent-child
relationship, not just with view objects. The solution is simple: children should
never retain their parents. In fact, a child should never retain its parent’s

parent, or its parent’s parent’s parent, and so on. When you adhere to this rule,
deallocating a parent object will appropriately release its children objects. If the
parent is the only owner of its children, these children objects will be deallocated.

For the More Curious: Redrawing Views

When a UlView instance is sent the message setNeedsDisplay, that view

is marked for re-display. View subclasses send themselves the message
setNeedsDisplay when their drawable content changes. For example,
UlTextField will be marked for re-display if it is sent the message setText:. (It has
to redraw if the text it displays changes, right?)

When a view is marked for re-display, it is not immediately redrawn; it is simply
added to a list of views that need to be updated. Why? Because your application
is actually one giant infinite loop called the run loop. The run loop’s job is to check
for input (a touch, Core Location updates, data coming in through a network
interface, etc.) and then find the appropriate handlers for that event (like an action
or delegate method for an object). Those handler methods call other methods,
those other methods call more methods, and so on. Views are not redrawn until
after your methods have completed and control returns to the run loop as shown
in Figure 6.9.

Page 120

Chapter 6. Subclassing UlView

Run Loop receives
event, calls your
method...

- (void)buttonTapped:(id)sender

[someView setNeedsDisplay]; - (void)setData:(NSData *)d
-(void)dataChanged:(id)o
Run Loop i iyRiats =
waits [someObject setData:data]; [delegate dataChanged:selfl; ¥ | NSLog(@"Data changed!");
for events

[anotherView setN eedsnlsplay]\/ \/

(Autorelease
Pool
Drained)

Run Loop redraws:
someView
anotherView

Figure 6.9. Redrawing views with the run loop

When control returns to the run loop, it says, “Well, a bunch of code was just
executed. I’'m going to check if any views need to be redrawn.” The run loop
prepares the necessary drawing contexts and sends the message drawRect: to
all of the views that have been sent setNeedsDisplay in this iteration of the loop.

Page 121

Chapter 7. View Controllers

Chapter 7. View Controllers

In the Quiz application, you had one “screen,” one controller, and one XIB file:

Figure 7.1. Quiz, a single screen application

MainWindow.xib

il Carrier < 2:46 PM f—

What is the capital of Vermont?

-

/ = Show Question

I 22?2

QuizAppDelegate

[~~~

Show Answer

View Controllers and XIB Files

But what about applications with multiple “screens”? Typically, each screen gets
its own controller and XIB file. Figure 7.2 shows an example application with two
screens and the resulting controllers and XIB files.

Page 122

Chapter 7. View Controllers

Figure 7.2. Example of an application with two screens

ContactsViewController.xib

om > B

Aaron Hillegass

Lou + Terry Hillegass

Michele Hillegass

rrc ITomm

Moses Hillegass
Sarah Hillegass

ContactsViewController / Suz Hillegass

Tom+Suz Hillegass

NI OoOTOE

TP E

=lamac Hillhouce

KeypadViewController.xib

KeypadViewController

=
5
8.
0

L Call L X |

Each controller has a view that gets placed on the window. (The view often has
subviews like buttons and labels.) Thus, we call these controllers view controllers.
A view controller is a subclass of UIViewController that acts as the controller for
its view. And, we typically need an object to take care of the view swapping for us.

Page 123

Chapter 7. View Controllers

In the example application below, the swapping is done by a UlTabBarController.
The object diagram for this application is shown in Figure 7.3.

Figure 7.3. Object diagram for tab bar application

ContactsViewController.xib

Aaron Hillegass

TInmmonms

Lou + Terry Hillegass
Michele Hillegass
Moses Hillegass

Sarah Hillegass

<c-umowOZRF®

Suz Hillegass
view Tom+Suz Hillegass _
mlames Hillbouse
PhoneAppDelegate R UlTabBarController ContactsViewController
I | T
window] viewControllers
view
KeypadViewController
blank window
1o be filled with views from view
view from tab bar controllers swap in here view
controller KeypadViewController.xib
MainWindow.xib

Note that this approach means that when you write an application with seven
screens, you will typically write seven subclasses of UlViewController. Therefore,
you may have up to eight XIB files (one for the window and one for each view
controller).

However, sometimes there are fewer XIB files. When a view controller has just

Page 124

Chapter 7. View Controllers

one view, it is usually easier to create a single view programmatically as you did in
the last chapter.

Ready to have your mind blown a little? UlTabBarController is also a subclass
of UlViewController. It is a view controller that swaps in and out other view
controllers.

Using View Controllers

In this chapter, you are going to write an application with two screens. One will
display the HypnosisView you created in the last chapter, and the other will let
the user get the current time by tapping a button (Figure 7.4). We will swap in the
views using a UlTabBarController.

Figure 7.4. HypnoTime screens

Thursday, April 2, 2009 10:16:18 AM ET

What time is it?

Hypnosis

Page 125

Chapter 7. View Controllers

In Xcode, create a new Window-based Application project named HypnoTime.
(Yes, there is a Tab Bar Application project template, but using that template
makes things seem more complicated and magical than they are. Do not use it for
this application.)

You will re-use HypnosisView in this application. Use Finder to locate
HypnosisView.h and HypnosisView.m and drag them into the Classes group
in Xcode (not the Classes directory in the filesystem). When the next sheet
appears, check the box labeled Copy items into destination group’s folder and
click Add. Also, add the icons Hypno.png and Time.png (available at http://www.
bignerdranch.com/solutions/iPhoneProgramming.zip) to the Resources group.

Creating the UlTabBarController

Open HypnoTimeAppDelegate.h and add an instance variable for the tab bar
controller:

#import <UIKit/UIKit.h>

@interface HypnoTimeAppDelegate : NSObject <UIApplicationDelegate> {
UIWindow *window;
UlTabBarController *tabBarController;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

In HypnoTimeAppDelegate.m, create the tab bar controller and put its view on
the window:
- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
// Create the tabBarController
tabBarController = [[UITabBarController alloc] init];

// Put the tabBarController's view on the window
[window addSubview:[tabBarController view]];

/I Show the window
[window makeKeyAndVisible];

Page 126

Chapter 7. View Controllers

}

Build and run the application. Notice that the black tab bar appears at the bottom
of the window, but there are no tab bar items. Notice, also, the big white space
where your views will get swapped in.

Creating view controllers and tab bar items

To create the first view controller for HypnoTime, select the New File... menu
item and then UlViewController subclass. For this view controller, toggle

on the checkbox titled With XIB for user interface (Figure 7.5). Name the file
CurrentTimeViewController.m.

Figure 7.5. Creating CurrentTimeViewController

W

Choose a template for your new file:

H iPhone OS T =

L. L,
ocoa Touch Class -m -m .m

Code Signing Objective-C class Objective-C test UlviewController
Resource case class subclass

User Interface

";Jruacosx

AppleScript

SangCa Options E With XIB for user interface

Carbon

Cocoa Description An Objective-C class which is a subclass of

Interface Builder SDK ulViewController, _with an optional header f'il_e which

includes the <UIKit/UIKith> header. A XIB file
Pure Java iL containing a view configured for this View Controller is
Pure Python also included.
A=

Ruby 4

Sync Services 1 |
[Previous) E Next 3

i
e

Now create another UlViewController subclass. This time, toggle off the XIB
checkbox. Name this file HypnosisViewController.m.

Page 127

Chapter 7. View Controllers

Every view controller has a tab bar item that controls the text or icon that appears
in the tab bar as shown in Figure 7.6.

Figure 7.6. UlITabBarltem example
KeypadViewController.xib

KeypadViewController

/

tabBaritem

'

UlTabBarltem
title
image

view

Let’s start by putting a title on the tab bar items.

Open HypnosisViewController.m. Create a new init method, override the
designated initializer for the superclass, UlViewController, and edit the
viewDidLoad method to match the code below:

- (id)init
{
// Call the superclass's designated initializer
[super initWithNibName:nil
bundle:nil];

// Get the tab bar item
UlTabBarltem *tbi = [self tabBarltem];

// Give it a label
[tbi setTitle:@"Hypnosis"];

Page 128

Chapter 7. View Controllers

return self;

}

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
{

// Disregard parameters - nib name is an implementation detail
return [self init];

}

// This method gets called automatically when the view is created
- (void)viewDidLoad

{

[super viewDidLoad];

// Set the background color of the view so we can see it
[[self view] setBackgroundColor:[UIColor orangeColor]];

}

Open CurrentTimeViewController.m and do the same thing:

- (id)init
{
// Call the superclass's designated initializer
[super initWithNibName:nil
bundle:nil];

// Get the tab bar item
UlTabBarltem *tbi = [self tabBarltem];

// Give it a label
[tbi setTitle:@"Time"];

return self;

}

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
{

// Disregard parameters - implementation detail
return [self init];

Page 129

Chapter 7. View Controllers

}

- (void)viewDidLoad

{

[super viewDidLoad];

// Set the background color of the view so we can see it
[[self view] setBackgroundColor:[UIColor greenColor]];

}

Now you need to create instances of the view controllers and add them to the
tab bar controller. Open HypnoTimeAppDelegate.m and make the following
changes:

#import "HypnoTimeAppDelegate.h"
#import "HypnosisViewController.h"
#import "CurrentTimeViewController.h"

@implementation HypnoTimeAppDelegate

@synthesize window;

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
/l Create the tabBarController
tabBarController = [[UITabBarController alloc] init];

// Create two view controllers
UlViewController *vc1 = [[HypnosisViewController alloc] init];
UlViewController *vc2 = [[CurrentTimeViewController alloc] init];

// Make an array containing the two view controllers
NSArray *viewControllers = [NSArray arrayWithObjects:vc1, vc2, nil];

[vcl release];
[vec2 release];

Page 130

Chapter 7. View Controllers

// Attach them to the tab bar controller
[tabBarController setViewControllers:viewControllers];

// Put the tabBarController's view on the window
[window addSubview:[tabBarController view]];

/I Show the window
[window makeKeyAndVisible];
b

/I A dealloc method that will never get called
- (void)dealloc
{

[tabBarController release];

[window release];

[super dealloc];

}
@end

Build and run the application. Two labeled tab bar items will appear on the tab bar
(Figure 7.7). Tap one and then the other, and you will see that the views for the
view controllers are getting swapped in.

Figure 7.7. Tab bar items with labels

Hypnosis

Now let’s put an icon on the tab bar items. Open HypnosisViewController.m and
edit the init method:

- (id)init
{
[super initWithNibName:nil
bundle:nil];

UlTabBarltem *tbi = [self tabBarltem];
[tbi setTitle:@"Hypnosis"];

Page 131

Chapter 7. View Controllers

// Create a Ullmage from a file
Ullmage *i = [Ullmage imageNamed:@"Hypno.png"];

// Put that image on the tab bar item
[tbi setimage:i];

return self;

}

Next, open CurrentTimeViewController.m and edit its init method:
- (id)init
{
[super initWithNibName:nil
bundle:nil];

UlTabBarltem *tbi = [self tabBarltem];

[tbi setTitle:@"Time"];

Ullimage *i = [Ullmage imageNamed:@" Time.png"];
[tbi setimage:i];

return self;

}

Now when you build and run the application, you will also see icons in the tab bar
(Figure 7.8).

Figure 7.8. Tab bar items with labels and icons

Creating views for the view controllers

Now that you have a perfectly nice tab bar with two view controllers (and the two
corresponding tab bar items), it’s time to give your view controllers views. There
are two ways to do this:

+ create the view programmatically

- create a XIB file

Page 132

Chapter 7. View Controllers

How do you know when to do one versus the other? Here’s a good rule-of-thumb:
if the view has no subviews, create it programmatically; if it has subviews, create a
XIB file.

When the view needs to be created, the view controller is sent the message
loadView. In HypnosisViewController, you are going to override this method
so that it creates an instance of HypnosisView programmatically. When an
instance of a UlViewController is instantiated, its view is not created right away.
A UlViewController’s view is created when it is placed in a view hierarchy (also
known as “the first time it appears on screen”). Add the following method to
HypnosisViewController.m:

- (void)loadView

{
HypnosisView *hv = [[HypnosisView alloc] initWithFrame:CGRectZero];

[hv setBackgroundColor:[UIColor whiteColor]];
[self setView:hv];
[hv release];

}

HypnosisViewController.m needs to know about the class HypnosisView. At
this top of this file, import HypnosisView’s header file.

#import "HypnosisViewController.h"
#import "HypnosisView.h"

@implementation HypnosisViewController

We no longer want the background of the view to be orange; delete the following
line from the viewDidLoad method in HypnosisViewController.m:

[[self view] setBackgroundColor:[UIColor orangeColor]];

Also, delete the similar line of code from the viewDidLoad method in
CurrentTimeViewController.m.

[[self view] setBackgroundColor:[UIColor greenColor]];

(These two lines of code were just to test that the UlITabBarController was
working properly.)

Page 133

Chapter 7. View Controllers

Build and run the application. You should see a HypnosisView like the one in
Figure 7.9.

Figure 7.9. HypnosisViewController

Double-click on CurrentTimeViewController.xib to open it in Interface Builder.
Double-click on the View object in the doc window to open it. From the Library,
drop a button and a label on the View’s window. Make them both nearly as wide
as the window. Change the title on the button to What time is it?. Change the label
to ??? and set the alignment to centered (Figure 7.10).

Page 134

Chapter 7. View Controllers

Figure 7.10. Button and Label

277

What time is it?

A

Text wr
Baseline [Align Centers l-é-]
Line Breaks [Tail Truncation F-H
Layout [= =] =] 1 D
Alignment # Lines
Font | Helvetica, 17.0 |
Font Size E Adjust to fit 10 @
Minimum .
v
coor NN —

See that icon labeled File’s Owner? It is a placeholder for an object to be supplied
when the XIB file is read in. When the view controller loads the XIB file, it says
“Load the XIB named CurrentTimeViewController.xib, and | will act as File’s
Owner.” Thus, you can know that the file’s owner is the view controller for this
XIB. You know it is going to be an instance of CurrentTimeViewController, but

Interface Builder does not.

In Xcode, add the necessary outlet and action to CurrentTimeViewController.h:

#import <UIKit/UIKit.h>

@interface CurrentTimeViewController : UIViewController

{

Page 135

Chapter 7. View Controllers

IBOutlet UlLabel *timeLabel;
}

- (IBAction)showCurrentTime:(id)sender;

@end
Save that file and return to Interface Builder.

Control-click on File’s Owner to see its connection panel (Figure 7.11). Drag from
timeLabel to the UlLabel.

Figure 7.11. Connecting timeLabel and UlLabel

anse CurrentTimeController.xib = 8.8 8 View e |
— m —_—
=[m) (4 Q —
View Mode Infa Search Field
File's Owner i
> = Label (777)

navigationltem
tabBarttem
timeLabel
view

¥ Received Actions
showCurrentTime:

{

What time is it?

¥ Referencing Outlets
New Referencing Outlet

The view controller has a pointer called view that needs to point to the entire view
that is to be displayed. Notice that the view outlet is already connected to the
instance of UlView in the doc window. (The template did this for you.)

Control-drag from the button to the File’s Owner (Figure 7.12). Choose the action
showCurrentTime:.

Page 136

Chapter 7. View Controllers

Figure 7.12. Setting the showCurrentTime: action

aeee % CurrentTimeController.xib = 6006 “ View -
Ell=m (i) Q =
View Mode Info Search Field

D
Llﬁl‘“‘ﬁ b 277

File's Owner First Respm
—

1

T i
{ —* What time is it? |'

A HypnoTime.xcodeproj e

Return to Xcode and open CurrentTimeViewController.m. In init, tell it the name
of the XIB file it is to load. Also delete the line that sets the background color to
green:

- (id)init
{
[super initWithNibName: @"CurrentTimeViewController"
bundle:nil];
UlTabBarltem *tbi = [self tabBarltem];
[tbi setTitle:@"Time"];
Ullmage *i = [Ullmage imageNamed:@"Time.png"];
[tbi setlmage:i];

return self;

}

Finally, implement the action method:
- (IBAction)showCurrentTime:(id)sender
{
NSDate *now = [NSDate date];
static NSDateFormatter *formatter = nil;
if (formatter) {
formatter = [[NSDateFormatter alloc] init];
[formatter setTimeStyle:NSDateFormatterShortStyle];

}

Page 137

Chapter 7. View Controllers

[timeLabel setText:[formatter stringFromDate:now]];

}

Build and run the application. You will be able to switch back and forth between
the two views. Clicking the button on the time view will display the current time.

viewWillAppear

UlViewController has several methods that get called at certain times:

viewWillAppear: when its view is about to be added to
the window

viewDidAppear: when its view has been added to the
window

viewWillDisappear: when its view is about to be dismissed,
covered, or otherwise hidden from
view

viewDidDisappear: when its view has been dismissed,
covered, or otherwise hidden from
view

These methods are useful because a view controller is only created once but
usually gets displayed (and dismissed or hidden) several times. You often

need a way to override the default behavior at these times in the life of view
controller. For example, you may want to do some sort of initialization each time
the view controller is moved on screen. Here you would use viewWillAppear:
or viewDidAppear:. Similarly, if you had a large data structure that you only
need while the view controller is being displayed, you might want to do some
clean-up each time the view controller is moved off screen. Then you would use
viewWillDisappear: or viewDidDisappear:.

Note that these methods, as defined in UIViewController, do nothing. They are
there so that your subclasses can override them.

- (void)viewWillAppear:(BOOL)animated;
- (void)viewDidAppear:(BOOL)animated;

Page 138

Chapter 7. View Controllers

- (void)viewWillDisappear:(BOOL)animated;
- (void)viewDidDisappear:(BOOL)animated;

Now let’s override viewWillAppear: to initialize the time label of the
CurrentTimeViewController to the current time each time it is displayed. In
CurrentTimeViewController.m, make the following changes:

- (void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[self showCurrentTime:nil];

}

Build and run the application. Note that each time you return to the Time page, the
time label is updated.

The Lifecycle of a View Controller

A view controller is created through alloc and init. It does not, however, create its
view at that time. Instead, it waits until the view is really needed before it executes
loadView. (Remember that the default implementation of loadView reads in a
NIB file, but you can override it to create the view programmatically.) This lazy
creation of the view is good. For example, if you have a tab view with a dozen
view controllers, the view for any particular view controller will only be created if
that particular tab is selected.

First rule: Never manipulate your view in init. Wait until loadView or viewDidLoad
before sending messages to the view. Trying to interact with the view in init will
cause it to be created, which will destroy the lazy nature of your view controller.

Furthermore, a view controller’s view may get created and destroyed several
times. Let’s say that you have several view controllers in memory (but

only one on screen) and that all their views have been created. This could
take up a lot of memory and trigger a low-memory warning. At that point,
didReceiveMemoryWarning is sent to all the view controllers. The default
implementation of didReceiveMemoryWarning releases the view if it has no
superview. (No superview indicates it is not on screen and no other view cares
about it.) After the view is released, the view controller is sent viewDidUnload.

If the view is needed again, the view controller is sent loadView again. Thus,
loadView may be called many times on a single view controller. However, init
is only sent to a view controller once. If you were to send messages to a view

Page 139

Chapter 7. View Controllers

controller’s view in init, they would not be sent to a reloaded view.

(When the view controller is deallocated, it releases its view, but viewDidUnload
is not called.)

Second rule: For a view controller, any outlets that you set in Interface Builder
must be released and set to nil in viewDidUnload. They must also be released in
dealloc.

By default, any outlet from your view controller to a subview is retained by that
subview. For example, CurrentTimeViewController retains a UlLabel because
it has the outlet timeLabel. Thus, the timeLabel has a retain count of two: it is
being retained its superview and by CurrentTimeViewController directly. Thus,
if the view is unloaded because of a low-memory warning, it will not be correctly
deallocated. Add a viewDidUnload method to CurrentTimeViewController.m to
release timelLabel: and fix this problem:

- (void)viewDidUnload
{

NSLog(@"Must have received a low-memory warning. Releasing timeLa-
bel");

[super viewDidUnload];

[timeLabel release];

timeLabel = nil;

}

Also, you need to release timeLabel in dealloc. While
CurrentTimeViewController will never be deallocated HypnoTime, other view
controllers in other applications may. Accordingly, subviews of a view controller’s
view that are also retained by the view controller must be released in dealloc:

- (void)dealloc

{
[timeLabel release];
[super dealloc];

}

Build and run the application in the simulator. While the
CurrentTimeViewController is off-screen, simulate a low-memory warning by
selecting Simulate Low Memory Warning from the Hardware menu. You should

Page 140

Chapter 7. View Controllers

see the log statement from viewDidUnload on the console.
Challenge: Map Tab

Add another view controller to the tab bar controller that displays an MKMapView.
When the map view appears on the screen, have it show the user’s location.

For the More Curious: Paging

Some applications, like Weather, allow you to “page” through views by swiping
your finger from left to right. People occasionally mistake this behavior for
something that UlTabBarController can do. It is actually the work of another class
you have already used, UlScrollView.

Each page is a UlView subclass. All of the pages are typically controlled by a
single UlViewController, and the UlScrollView is responsible for managing
which view is currently on screen. There actually is not a whole lot to it once you
have used a UlScrollView.

Let’s say you wanted two views to be pages within a UlScrollView that is
controlled by a UlViewController. The view controller’s view would be an instance
of UlScrollView, and the scroll view’s subviews would be the two pages.

- (void)loadView
{
CGRect frame = [[UIScreen mainScreen] applicationFrame];
UlScrollView *sv = [[[UIScrollView alloc]
initWithFrame:frame] autorelease];

frame.origin.y = 0O;
UlView *aView = [[[UIView alloc]
initWithFrame:frame] autorelease];

frame.origin.x += frame.size.width;
UlView *bView = [[[UIView alloc]
initWithFrame:frame] autorelease];

[aView setBackgroundColor:[UIColor redColor]];
[bView setBackgroundColor:[UIColor greenColor]];

[sv addSubview:aView];

Page 141

Chapter 7. View Controllers

[sv addSubview:bView];

/I ContentSize should be wide enough for 2 pages
[sv setContentSize:CGSizeMake(2 * frame.size.width, frame.size.height)];
[self setView:sv];

Notice how the second page view is offset from the first page view by the width of
the screen. This puts the two views side-by-side, but the second one is off to the
righthand side of the screen. The contentSize of the scroll view accommodates
for this by having a width that is twice the size of the screen (and a height that is
the same as the screen).

If you stopped here, the scroll view will work normally: the user can move around
the double screen-sized area and see the content of the two pages. However, a
scroll view can also automatically stop at each page. To enforce the display of
only one page at a time, the scroll view needs to enable paging:

[sv setPagingEnabled:YES];

Now when the user swipes to the left or right, one of the pages will lock itself onto
the screen. The scroll view will automatically stop and recenter its content based
on the bounds of the scroll view. Just make sure the UlScrollView’s size matches
the size of each page and that the contentSize has enough room for all of the
pages.

Page 142

Chapter 8. The Accelerometer

Chapter 8. The Accelerometer

One of the flashiest features of the iPhone is the accelerometer. The
accelerometer detects the device’s real-world orientation by tracking the force of
the earth’s gravity on its X, Y, and Z axes. You can also use the accelerometer
data to detect changes in the device’s velocity.

In this chapter, you are going to use the accelerometer to skew the center of the
HypnosisView according to orientation: when the user tilts the phone, the center
will slide in the direction of the tilt (Figure 8.1).

Figure 8.1. HypnosisView

Page 143

Chapter 8. The Accelerometer

Setting Up the Accelerometer

To receive accelerometer data, your application needs to give the single instance
of UlAccelerometer an updatelnterval and a delegate. The delegate needs

to implement the method accelerometer:didAccelerate:. This method reports
changes in the accelerometer data every updatelnterval seconds in the form of a
UlAcceleration object.

Open your HypnoTime project. Before you add any code, you need to decide
which object will be the UlAccelerometer delegate. There are two options:

+ Make the HypnosisView the delegate. It will handle changing the center of
drawing internally.

+ Make the HypnosisViewController the delegate. In this case, you will also
need to set a “center” property for view when the orientation of the device
changes.

If the HypnosisView is the accelerometer delegate, it becomes a self-contained
object, which makes reusing it simpler. However, there can only be one
accelerometer delegate. If other objects need input from the accelerometer,
HypnosisView, a view object, can’t forward that information on to those objects
— it’s not a controller. Therefore, the more stylish option is to let the controller
object, HypnosisViewController, be the delegate and receive the accelerometer
updates as shown in Figure 8.2.HypnosisViewController can easily inform

the HypnosisView of a change in orientation, and it can inform other objects if
necessary.

Figure 8.2. Object diagram for HypnoTime

You are getting
: HypnosisView
TP delects HypnosisViewController view _ ypnosisvi
- .- ~ - T |
accelerometer:didAccelerate: *+_ setYShift: ’,'

~ -
Ed

setXShift:

Page 144

Chapter 8. The Accelerometer

In HypnosisViewController.m, instantiate the accelerometer and set its update
interval and delegate in viewWillAppear:.

- (void)viewWillAppear:(BOOL)animated
{

[super viewWillAppear:animated];

NSLog(@"Monitoring accelerometer");

UlAccelerometer *a = [UlAccelerometer sharedAccelerometer];
// Receive updates every 1/10th of a second.

[a setUpdatelnterval:0.1];

[a setDelegate:self];

}

When the HypnosisViewController’s view is moved off of the screen, the
controller should stop receiving accelerometer updates. Also, when the singleton
instance of UlIAccelerometer does not have a delegate object, the accelerometer
hardware is powered down to conserve battery life. In general, you should set

the accelerometer’s delegate to nil when it is not in use. Make this change in
HypnosisViewController.m:

- (void)viewWillDisappear:(BOOL)animated
{

[super viewWillDisappear:animated];
[[UIAccelerometer sharedAccelerometer] setDelegate:nil];

}

Getting Accelerometer Data

Write a stub implementation of the UIAccelerometer delegate method in
HypnosisViewController.m. Notice that the parameters for this method are two
different types even though they look similar:

- (void)accelerometer:(UlAccelerometer *)meter
didAccelerate:(UlAcceleration *)accel

{
NSLog(@"%f, %f, %f", [accel x], [accel y], [accel z]);

}

In HypnosisViewController.h, declare that the class conforms to the

Page 145

Chapter 8. The Accelerometer

UlAccelerometerDelegate protocol:

#import <UIKit/UIKit.h>

@interface HypnosisViewController : UIViewController <UIAccelerometerDel-
egate>

{

}
@end

Build and run the application on your device. Watch the console as you rotate and
shake the phone to get a feel for the data that the accelerometer will produce.

Orientation and Scale of Acceleration

The device’s acceleration is measured in Gs. 1G is the force due to the earth’s
gravity. (When the device is still, the accelerometer doesn’t know if it is moving
at a constant velocity in the earth’s gravity well or if it is far out in space and
accelerating upwards at 9.8 meters per second every second.)

While the application is running, hold the device vertically in front of your face

as if you were using it. The y-component of the acceleration is about -1, and the
x- and z-components are approximately 0. If you lay the device on its back, the
z-component of the acceleration is about -1, and the others are approximately

0. If you balance the device on the edge with the volume switch down, the
x-component of the acceleration is about -1, and the others are approximately 0. If
you drop your device, it will feel weightless as it falls: all three components will be
0. Well, until it hits the floor.

Using Accelerometer Data

This application will use the accelerometer data to offset the center of drawing in
the HypnosisView. HypnosisViewController receives the accelerometer data

and must send it to the view. Therefore, HypnosisView needs two properties to
define the offset. Add them in HypnosisView.h.

@interface HypnosisView : UlView

{
float xShift, yShift;

}

Page 146

Chapter 8. The Accelerometer

@property (nonatomic, assign) float xShift;
@property (nonatomic, assign) float yShift;
@end

Now synthesize these properties in HypnosisView.m:
@implementation HypnosisView
@synthesize xShift, yShift;

HypnosisView needs to know how to use these properties when it draws. In
HypnosisView.m, add code to drawRect: that uses the xShift and yShift
instance variables:

// Draw concentric circles
for (float currentRadius = maxRadius; currentRadius > 0; currentRadius -= 20)
{

center.x += xShift;

center.y += yShift;

CGContextAddArc(context, center.x, center.y,

currentRadius, 0, M_PI * 2.0, YES);
CGContextStrokePath(context);

Using the UlAcceleration object the accelerometer gives you, set xShift and
yShift and redraw the view. In HypnosisViewController.m, replace the following
method:

- (void)accelerometer:(UlAccelerometer *)meter
didAccelerate:(UlAcceleration *)accel
{
HypnosisView *hv = (HypnosisView *)[self view];
[hv setXShift:10.0 * [accel x]];
[hv setYShift:-10.0 * [accel y]];

// Redraw the view
[hv setNeedsDisplay];

}

Build and run your application. The center of the view will move as the phone is

Page 147

Chapter 8. The Accelerometer

rotated and shaken.
Smoothing Accelerometer Data

The movement of the HypnosisView does not have a smooth feel. (And this is
not conducive to hypnosis.) Each time the accelerometer updates, the center

of the view changes to represent the orientation of the device. Because the
updatelnterval is constant and the device’s movement is not, the center appears
to jump around. It would be more appropriate to “smooth” the data from the
accelerometer, thus smoothing the movement of the center of the view. To smooth
the accelerometer data, you need to apply a low-pass filter.

In HypnosisViewController.m, apply a low-pass filter to the accelerometer data:

- (void)accelerometer:(UlAccelerometer *)meter
didAccelerate:(UlAcceleration *)accel

{
HypnosisView *hv = (HypnosisView *)[self view];
float xShift = [hv xShift] * 0.8 + [accel x] * 2.0;
float yShift = [hv yShift] * 0.8 - [accel y] * 2.0;
[hv setXShift:xShift];
[hv setYShift:yShift];

// Redraw the view
[hv setNeedsDisplay];

}

Build and run your application. The application will have a smoother response and
a nicer feel.

Detecting Shakes

In the original iPhone SDK, developers had to implement their own shake-
detection algorithms in the accelerometer delegates. However, the 3.0 SDK
contains three new methods for UIResponder (the superclass of UlView) that
make detecting shakes easier.

/I Triggered when a shake is detected
- (void)motionBegan:(UIEventSubtype)motion
withEvent:(UIEvent *)event;

/l Triggered when the shake is complete

Page 148

Chapter 8. The Accelerometer

- (void)motionEnded:(UIEventSubtype)motion
withEvent:(UIEvent *)event;

/I Triggered when a shake is interrupted (by a call for example)

// Or if a shake lasts for more than a second

- (void)motionCancelled:(UIEventSubtype)motion
withEvent:(UIEvent *)event;

In this chapter, you are going to override motionBegan:withEvent: to change
the stripe color when the phone is shaken. First, add an instance variable to
HypnosisView.h to hold on to the new color:

#import <UIKit/UIKit.h>

@interface HypnosisView : UlView <UlAccelerometerDelegate> {
UlColor *stripeColor;
float xShift, yShift;

¥

@property (nonatomic, assign) float xShift;

@property (nonatomic, assign) float yShift;

@end

Now initialize stripeColor in the initWithFrame: method of HypnosisView.m:

- (id)initWithFrame:(CGRect)r
{

[super initWithFrame:r];
stripeColor = [[UIColor lightGrayColor] retain];
return self;

}

Finally, use the stripeColor in your drawRect: method of HypnosisView.m.

CGContextSetLineWidth(context, 10);

// Set the stroke color to light gray
[stripeColor setStroke];

/I Draw concentric circles
for (float currentRadius = maxRadius; currentRadius > 0; currentRadius -= 20)

{

Page 149

Chapter 8. The Accelerometer

Build and run the application just to make sure you haven’t broken anything. It
should work exactly as before.

Because stripeColor is owned by HypnosisView, it must be released in the
view’s dealloc method.

- (void)dealloc

{
[stripeColor release];
[super dealloc];

}

Now override motionBegan:withEvent: to change the color and redraw the view
in HypnosisView.m.

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
// Shake is the only kind of motion for now,
// but we should (for future compatibility)
// check the motion type.
if (motion == UIEventSubtypeMotionShake) {
NSLog(@"shake started");
floatr, g, b;
r = random() % 256 / 256.0;
g = random() % 256 / 256.0;
b = random() % 256 / 256.0;
[stripeColor release];
stripeColor = [UIColor colorWithRed:r
green:g
blue:b
alpha:1];
[stripeColor retain];
[self setNeedsDisplay];

}
}

There’s one more important detail: the window’s firstResponder is the only
object that gets sent motion events. Right now, HypnosisView is not the first

Page 150

Chapter 8. The Accelerometer

responder, but you can make it so in two steps. First, you need to override
canBecomeFirstResponder so that your view can become a first responder. Add
this method to HypnosisView.m:

- (BOOL)canBecomeFirstResponder

{
return YES;

}

(You may remember that instances of UlTextField become the first responder
of the window when tapped, and then the keyboard slides onto the screen.
UlTextField implements this same method to return YES.)

Then, when your view appears on the screen, you need to make it become the
first responder. In HypnosisViewController.m, add the following line of code:

- (void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
NSLog(@"Monitoring accelerometer");
UlAccelerometer *a = [UIAccelerometer sharedAccelerometer];
[a setUpdatelnterval:0.1];
[a setDelegate:self];

[[self view] becomeFirstResponder];

}

Build and run the application. Shake the device and watch the color of the
stripes change. Notice that the color does not continue to change if you
continue shaking it. This is because motion events happen when a motion
begins and when a motion ends, but not in the middle. There is no “while
motion continues” method. To change the color, you have to shake the device,
stop shaking it, and then shake it again. (The fix for this would be to use an
NSTimer to send periodic “Change the color now.” messages. Create the timer
in motionBegan:withEvent:, and destroy it in motionEnded:withEvent: and
motionCancelled:withEvent:.)

Also note that motion events have nothing to do with the UlAccelerometer
delegate. The system determines there is a shake by querying the accelerometer
hardware and then sending the appropriate messages to the firstResponder

Page 151

Chapter 8. The Accelerometer

of the application. The accelerometer data is delivered to the UlAccelerometer
delegate separately.

Challenge: Changing Colors

Change the colors of the stripes based on the orientation of the device. There
are three color channels (Red, Green, Blue) and three axes of movement (X, Y,
Z). Assign a color to each axis. When the G force on an axis is closer to -1, set
its color channel to 0 and when it is closer to 1 set its color channel to 1. Use the
documentation!

For the More Curious: Filtering and Frequency

In general, there are two ways of altering the accelerometer data in order to suit
your needs: you can change the frequency of accelerometer data updates and
you can apply a filter to the data. An application that relies on accelerometer data
needs to be carefully tuned to find an update interval and filtering algorithm that
gives the user the best experience.

Here are some examples of types of applications and their recommended update
frequencies to give you a starting point:

Orientation Applications If your application relies on the current
orientation of the device, for example,
to rotate an arrow to point in a certain
direction, the accelerometer can
update infrequently. A value of 1/20 to
1/10 seconds for the updatelnterval is
sufficient.

Game Applications An application that uses accelerometer
data as input for controlling a visual
object in real-time needs a slightly
faster update interval. For applications
like this, the updatelntervalshould be
between 1/30 to 1/60 seconds.

Page 152

Chapter 8. The Accelerometer

High-Frequency Applications Applications that need to squeeze
every little update out of the
accelerometer should set the
updatelnterval between 1/70 and
1/100 seconds (the smallest possible
interval). An application that detects
shakes is updating at a high frequency.

Once you have chosen the right update interval, you need to choose what type of
filter is best for your application. Typically, you’ll choose either a low-pass filter or
a high-pass filter.

Using a low-pass filter, as you did in the exercise, isolates the gravity component
of the acceleration data and reduces the effect of sudden changes in the device’s
orientation. In most situations, it gives you just the orientation of the device. A
basic low-pass filter equation looks like this:

float filteringFactor = 0.1;
lowPassed = newValue * filteringFactor + lowPassed * (1.0 - filteringFactor);

where lowPassed is the output. Notice that the previous output is used the next
time the equation is solved and that the new value produced by the accelerometer
is blended with all of the previous values. The output of a low-pass filter is
essentially a weighted average of previous inputs. Therefore, sudden movements
will not affect the output as much as they would with unfiltered data.

On the other hand, sometimes you want to ignore the orientation (which is usually
constant) and focus on sudden changes such as a shake. For this, you would use
a high-pass filter. Now that you have mastered the low-pass filter, the high-pass
signal is what’s left if you subtract out the low-pass signal:

float filteringFactor = 0.1;

Page 153

Chapter 8. The Accelerometer

lowPassed = newValue * filteringFactor + lowPassed * (1.0 - filteringFactor);

Original

Low pass

High pass

Page 154

Chapter 8. The Accelerometer

Chapter 9. Notification and Rotation

Objective-C code is all about objects sending messages to other objects. This
communication usually occurs between two objects — the sender and receiver.
However, sometimes a bunch of objects are concerned with one object. They all
want to know when this object does something interesting. But it’s just not feasible
for that object to keep track of every interested object and send every one a
message.

Instead, an object can post notifications about what it is doing to a centralized
notification center. Interested objects can register to receive a message when a
particular notification is posted or when a particular object posts. In this chapter,
you will learn how to use a notification center to handle these notifications. You will
also learn about the autorotation behavior of UIViewController.

Notification Center

In every application, there is an instance of NSNotificationCenter, which works
like a smart bulletin board. An object can register as an observer (“Send any
‘lost dog’ notifications to me.”). When another object posts a notification (“I lost
my dog.”), the notification center forwards that notification to the appropriate
registered observers.

These notifications are instances of NSNotification. Every NSNotification object
has a name and a pointer back to the object that posted it. When you register as
an observer, you can specify a notification name and a posting object that you
care about.

Here’s is a snippet of code that shows how you would register for notifications with
the name LostDog posted by any object:

NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
[nc addObserver:self
selector:@selector(thatMethodThatShouldBeTriggered:)
name:@"LostDog"
object:nil];

Note that nil works as a wildcard; in this case, the code requests that this method
be triggered regardless of who posts the notification.

The method that is triggered when the notification arrives takes an NSNotification

Page 155

Chapter 8. The Accelerometer

object as the argument:

- (void)thatMethodThatShouldBeTriggered:(NSNotification *)note
{

id poster = [note object];

NSString *name = [note name];

NSDictionary *extralnformation = [note userinfo];

,

Notice that the notification object may also have a userinfo dictionary attached
to it. This dictionary is used to pass added information. For example, when a
keyboard is coming onto the screen, it posts a UlIKeyboardDidShowNotification
that has a userInfo dictionary. This dictionary contains the on-screen region that
the newly visible keyboard occupies.

Here’s an example of an object posting a notification:

NSDictionary *extralnfo = ...;
NSNotification *note = [[NSNotification notificationWithName:@"LostDog"
object:self
userinfo:extralnfo];
[[NSNotificationCenter defaultCenter] postNotification:note];

This is important: the notification center does not retain the observers. If you

have an object that registered itself with the notification center, that object should
unregister itself before it is deallocated. If an object does not unregister itself from
the notification center, the next time any notification it was registered for is posted,
the center will try and send the object a message. But that object will have been
deallocated, and your application will crash.

- (void)dealloc

{

[[NSNotificationCenter defaultCenter] removeObserver:self];
[super dealloc];

}
UIDevice Notifications

One object that regularly posts notifications is UIDevice. Here are the constants
for the notifications that a UlDevice posts:

Page 156

Chapter 8. The Accelerometer

UlDeviceOrientationDidChangeNotification
UlDeviceBatteryStateDidChangeNotification
UlDeviceBatteryLevelDidChangeNotification
UlDeviceProximityStateDidChangeNotification

Wouldn't it be cool to get a message when the phone rotates? Or when the phone
is placed next to the user’s face? These notifications do just that.

Create a new Window-based Application project and name it HeavyRotation.
In HeavyRotationAppDelegate.m, register to receive notifications when the
orientation of the device changes:

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

// Get the device object
UlDevice *device = [UIDevice currentDevice];

// Tell it to start monitoring the accelerometer for orientation
[device beginGeneratingDeviceOrientationNotifications];

// Get the notification center for the app
NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];

// Add yourself as an observer
[nc addObserver:self
selector:@selector(orientationChanged:)
name:UlDeviceOrientationDidChangeNotification
object:device];
[window makeKeyAndVisible];
}

Now, whenever the device’s orientation changes, the message
orientationChanged: will be sent to the instance of HeavyAppDelegate. In the
same file, add an orientationChanged: method:

- (void)orientationChanged:(NSNotification *)note

{

/I Log the constant that represents the current orientation

Page 157

Chapter 8. The Accelerometer

NSLog(@"orientationChanged: %d", [[note object] orientation]);
}

Build and run the application. (This is best run on the device because the
simulator won't let you achieve some orientations.)

Many classes post notifications including UIApplication,
NSManagedObjectContext, MPMoviePlayerController, NSFileHandle, UIWindow,
UlTextField, and UlTextView. See the reference pages for these classes in the
docs for details.

Autorotation

Many applications rotate and resize all of their views when the user rotates the
phone. You could implement this using notifications, but it would be a lot of work.
Thankfully, Apple created autorotation to simplify the process.

When the device is rotated and if the view on screen is controlled by a view
controller, the view controller is asked if it is okay to rotate the view. If the view
controller agrees, the view is resized and rotated. The subviews are also resized
and rotated.

To implement autorotation in HeavyRotation, you must

- override shouldAutorotateTolnterfaceOrientation: in HeavyViewController to
allow autorotation

« carefully set the autoresize mask on each subview so that it acts reasonably
when the superview is resized to fill the rotated window.

In Xcode, create a UIViewController subclass with a XIB file and name it
HeavyViewController.m.

In HeavyViewController.m, you could create an init method that specifies the
NIB to load and override the designated initializer of the superclass to call that init
method:

- (id)init
{
[super initWithNibName: @"HeavyViewController"
bundle:nil];

Page 158

Chapter 8. The Accelerometer

return self;

}

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
(

return [self init];

}

However, it really isn’t necessary. The init method of UlViewController calls [self
initWithNibName:nil bundle:nil]. And if the nibName is nil, the view controller
assumes that the name of the NIB file is the same as the name of the view
controller. Because you don’t need to initialize any instance variables, this class
doesn’t need an initializer at all; the default behavior is perfect.

Have your view controller allow autorotation for any orientation except upside-
down:

- (BOOL)shouldAutorotateTolnterfaceOrientation:(UlInterfaceOrientation)x
{
return (x == UlInterfaceOrientationPortrait)
Il UlinterfaceOrientationlsLandscape(x);
}

(Other UlDevice orientation constants can be found in the documentation page for
UlDevice.)

Drag any image from Finder into your project under the Resources group.

Double-click HeavyViewController.xib to open it in Interface Builder. Drop a slider,
an image view, and two buttons onto the window. In the Attributes panel of the
Inspector for the image view, set Image to your image file. Choose Aspect Fit
mode to fit the image to the view without changing its aspect ratio and set the
background color to gray as shown in Figure 9.1.

Page 159

Chapter 8. The Accelerometer

Figure 9.1. UllmageView

—— >
.l''\. ./'_'
._ .f' '_ .

¥ Image View
Image |joeeye.jpg =)
¥ View
Mode [Aspect Fit H
Alpha — | 100 3]
Background | [T
Tag . 0 !
Drawing ["] Opaque ["] Hidden

[Clear Context Before Drawing

[T Clip Subviews
E Autoresize Subviews

Interaction | | User Interaction Enabled

[7] Multiple Touch

&’
"y
/"
L

Now you need to set the autoresize mask for each view. The autoresize mask
controls what happens to the view when its superview resizes. In the Size
inspector, a view is a rectangle within a rectangle. The inner rectangle represents
the selected view, and the outer rectangle represents its superview (Figure 9.2).

Figure 9.2. Autosizing in Size inspector

Autosizing

1

Page 160

Chapter 8. The Accelerometer

Clicking to turn on a red arrow inside the inner box means “It’s okay if this view
resizes in this dimension.” Turning on a red strut between the inner and outer box
means “The distance between this edge of the view and the corresponding edge
of the superview is never allowed to change.” Still confused? Check out the little
movie inside the inspector that demonstrates these choices.

Select each view and set the autoresize mask appropriately. The image view
should resize with the window. The slider should get wider but not taller. The
buttons should stay with their respective corners but not resize (Figure 9.3).

Figure 9.3. Autoresizing mask for views

] I

i

I L

Finally, you need to create an instance of HeavyViewController and place its view

Page 161

Chapter 8. The Accelerometer

into your view hierarchy. Add the following lines of code to application:didFinishLa
unchingWithOptions: in HeavyRotationAppDelegate.m. Make sure to include the
import statement at the top of the file.

#import "HeavyViewController.h"

@implementation HeavyRotationAppDelegate

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

HeavyViewController *hvc = [[HeavyViewController alloc] init];
[window addSubview:[hvc view]];

[window makeKeyAndVisible];
}

Build and run the application. It should autorotate when you rotate the device as
shown in Figure 9.4.

Figure 9.4. Running rotated

For the More Curious: Forcing Landscape Mode

If your application only makes sense in landscape mode, you can force it to run
that way. First, make your view controller only allow autorotation to landscape
orientations:

- (BOOL)shouldAutorotateTolnterfaceOrientation:(UlInterfaceOrientation)x

{

return UlinterfaceOrientationlsLandscape(x);

¥

Page 162

Chapter 8. The Accelerometer

Figure 9.5. Choosing the Initial Orientation

@0 | HeawvyRotation-Info.plist —
’x E O ﬁ - [Slmulator -3.0]| Debug -
Build Breakpoints Tas<s Clean All Debugger Project
< | » [HeawyRotation-Info.plist * J, "™ |Cyl#,| B B
Key Value
¥ Information Property List (13 itemns)

Localization native development re English

Bundle display name £{PRODUCT_NAME}

Executable file £{EXECUTABLE_NAME}

lcon file

Bundle identifier com.yourcompany.S{PRODUCT_NAME:rfc 103 4identifier}

InfoDictionary version 6.0

Bundle name £{PRODUCT_NAME}

Bundle OS5 Type code APPL

Bundle creator OS5 Type code N

Bundle version 1.0

Application requires iPhone enviror E

Main nib file base name MainWindow

Initial interface orientation + |Landscape (right home button) b= +]
|

Localization native developmen. ..

Localizations

Localized resources can be mixed

Main nib file base name

Renders with edge antialisasing

Renders with group opacity |_ A

Required device capabilities r

Status bar is initially hidden 2

Status bar style v

In an application’s Info.plist, you can specify that the device be launched in a
particular orientation. Double-click on the application’s Info.plist to open it. Add
a key-value pair by selecting a row and clicking the plus button next to it. From
the Keycolumn’s pop-up menu, choose Initial interface orientation (or type in
UlinterfaceOrientation) and select the desired orientation from the pop-up list in
the Value column.

Build and run your application. Regardless of how you rotate the device, it will only
appear in landscape mode.

Page 163

Chapter 8. The Accelerometer

Challenge: Proximity Notifications

Register for proximity notifications too. You will need to turn on proximity
monitoring:

[device setProximityMonitoringEnabled:YES];

For the More Curious: Overriding Autorotation

In most cases, autorotation does the right thing as long as the autoresizing
masks are properly set. However, you might want to take additional action on an
autorotation or override the autorotation process altogether to change the way the
view looks when it rotates. You can do this by overriding willAnimateRotationTolnt
erfaceOrientation:duration: in a view controller subclass.

When a view controller is about to autorotate its view, it checks to see if you have
implemented this method. If you have, it invokes this method during the animation
block of the rotation code. Therefore, all changes to subviews in this method will
be animated as well. You can also perform some custom code within this method.
Here is an example that will reposition a button and change the background color
on autorotation:

- (void)willAnimateRotationTolnterfaceOrientation:(UlInterfaceOrientation)x
duration:(NSTimelnterval)duration

{

// Assume "button" is a subview of this view controller's view

UlColor *color = nil;

CGRect bounds = [[self view] bounds];

/'If the orientation is rotating to Portrait mode...
if (UllinterfaceQrientationlsPortrait(x)) {

// Put the button in the top right corner
[button setCenter:CGPointMake(bounds.size.width - 30,
20)];

/I the background color of the view will be red
color = [UIColor redColor];
} else { /I If the orientation is rotating to Landscape mode

/I Put the button in the bottom right corner

Page 164

Chapter 8. The Accelerometer

[button setCenter:CGPointMake(bounds.size.width - 30,
bounds.size.height - 20)];

// the background color of the view will be blue
color = [UIColor blueColor];

}

[[self view] setBackgroundColor:color];

}

Overriding this method is useful when you want to update your user interface for
a different orientation. For example, you could change the zoom or position of a
scroll view or a table view (which you will learn about shortly) or even swap in an
entirely different view. Make sure, however, that you do not replace the view of the
view controller in this method. If you wish to swap in another view, you must swap
a subview of the view controller’s view.

This method is only available in iPhone OS 3.0. In earlier versions of the OS,
autorotation was performed in two steps. To implement additional actions for
applications that support earlier versions of the OS, you can override two metho
ds,willAnimateFirstHalfOfRotationTolnterfaceOrientation:duration: and willAnim
ateSecondHalfOfRotationFromInterfaceOrientation:duration:. One caveat: if you
implement either of these two methods, the one-step method,willAnimateRotation
TolnterfaceOrientation:duration:, will not be invoked.

Page 165

Chapter 10. UlTableView and UlTableViewController

Chapter 10. UlTableView and UlTableViewController

iPhone applications frequently show an interactive list of items that allows the user
to select, delete, or reorder items on the list. Whether it’s a list of people in the
user’s address book or a list of items on the App Store, a UlTableView is doing
the work. A UlTableView displays a single column of data with a variable number
of rows. Figure 10.1 shows some examples of UlTableView.

Figure 10.1. Examples of UlTableView

{ Settings ' S'aund's-

3\ silent

Vibrate (on [.

' Joe Conway
A Ring B

Vibrate m_ Mark Fenoglio

4 ossseee————) 4}

| Brian Hardy
Ringtone Harp >
| Aaron Hillegass

New Text Message Tri-tone »

New Voicemail m_ Scott Ritchie

. New Mail [on |

s

oy <c/Ellh D0 T0OZ DEEc - — D™ MmO s O

Alex Silverman

" All Contacts Info . Calendar

Joe Conway

mobile 555-5555 5:4 New Event

ringtone Default > I

Text Share Add to
Message Contact Favorites

Today List Day Month

Page 166

Chapter 10. UlTableView and UlTableViewController

Beginning the Homepwner Application

Over the next six chapters, you’re going to develop an application called
Homepwner that keeps an inventory of all your possessions. In the case of a
fire or other catastrophe, you’ll have a record for your insurance company. So
far, all of your iPhone projects have been small, but Homepwner will grow into
a realistically complex application. This will give you a feeling for what it is like to
work on a large iPhone application. (By the way, “Homepwner” is not a typo. If
you need a definition for the word “pwn,” please visit http://www.urbandictionary.
com.)

Select New Project from the File menu. In the New Project window, select
Window-Based Application template (without Core Data). Click the Choose...
button and name this project Homepwner. At that point, you will be taken to the
familiar project window.

UlTableViewController

By the end of this chapter, Homepwner will present a list of Possession objects
in a UlTableView as shown in Figure 10.2.

Figure 10.2. Homepwner: phase 1

Rusty Spork (SB5M2): Worth 57...
Fluffy Spork (TA926): Worth $6...
Fluffy Bear (6H8D9): Worth $72,...
Shiny Mac (3X5J2): Worth $62,...
Fluffy Bear (TX6J2): Worth $69,...
Fluffy Bear (9E7S4): Worth $21,...

Shiny Bear (6NOC3): Worth $13,...

Shiny Mac (1X5K7): Worth $96,...

Shiny Mac (9L7M5): Worth $46, ...

Fluffy Bear (TW4HD): Worth $14,...

Page 167

Chapter 10. UlTableView and UlTableViewController

UlTableView is a view object, so, according to Model-View-Controller, it knows
how to draw itself, but it doesn’t handle application logic or data. Thus, when
using a UlTableView, you must consider what helper objects are necessary. A
UlTableView usually occupies the entire screen, so it needs a UlViewController
to handle placing it on the screen. A UlTableView also typically needs a delegate
so that other objects can be informed of events involving the UlTableView.

The delegate can be any object that (you guessed it!) conforms to the
UlTableViewDelegate protocol.

Additionally, a UlTableView always needs a data source. A UlTableView will
ask its data source for the number of rows, the data to be shown in those

rows, and many other tidbits that make a UlTableView useful. Without a data
source, a table view would be just an empty container. The dataSource for a
UlTableView can be any type of Objective-C object as long as it conforms to the
UlTableViewDataSource protocol.

Meet UlTableViewController, a class that can fill all three roles: view

controller, delegate, and data source. A UlTableViewController is a subclass

of UlViewController, and it handles most of the preparation and presentation

of a UlTableView. AUITableViewController’s view is always an instance

of UlTableView. The delegate and dataSource instance variables of the
UlTableView are automatically set to point at its UlTableViewController (Figure
10.3).

________ Fiaure 10.3. UlTableViewCaontroller-UlTableView relationshio

_UnTableViewDataSource 1 | UlTableViewDelegate ,
I

‘ f‘r Rusty Spork (5B5M2): Worth §7...
conforms to conforms to
A s UlTableView

Y ra
UliTableViewController view——" ar (6H8D3Y): Worth $72,...

.r-*"'f

tableView

ork (7TASZ6): Worth $6...

Shiny Mac (3X5J2): Worth $62,...

dataSource

Subclassing UlTableViewController

Now you’re going to write a subclass of UlTableViewController for Homepwner.
To create a UlTableViewController subclass, select New File... from the File
menu and select UlViewController subclass from iPhone OS’s Cocoa Touch

Page 168

Chapter 10. UlTableView and UlTableViewController

Classes group. While there is a checkbox for a UlTableViewController, do not
check this. (The Xcode template for a UlTableViewController subclass fills in too
much code.) Also, uncheck the box for With XIB for user interface (Figure 10.4).
Click the Next button, and you will be prompted for the name of this subclass. Call
it temsViewController.m and click the Finish button.

Figure 10.4. Creating a UlTableViewController subclass

Ol ™ New File

Choose a template for your new file:

M iPhone OS5 - - -
Cocoa Touch Class | M .m .M
Code Signing ! Objective-C class Objective-C test case UlViewController
Resource | class subclass
User Interface |

I
ﬂ Mac 05 X |
AppleScript I
Cand C++
Carb | Options [} WiTableViewController subclass

arbon

| [with XIB for user interface
Cocoa |
Interface Builder SDK | Description An Objective-C class which is a subclass of UlViewController, with
Pure Java ! an optional header file which includes the <UIKit/UIKit.h>
Pure Python nL header.
Buby 1
Sync Services ¥

1
[Cancel) Previous Next

Open ItemsViewController.h. Change the superclass of temsViewController
from UIViewController to UlTableViewController

#import <UIKit/UIKit.h>
@interface ltemsViewController : UlTableViewController

{

}
@end

Once you have a UlTableViewController subclass, you need to add its
UlTableView to the window’s view hierarchy in order for the UlTableView to
appear on the screen.

Page 169

Chapter 10. UlTableView and UlTableViewController

Every UlViewController has a property named view. A UlTableViewController’s
view is always its UlTableView. Every UlTableViewController also has a
property named tableView. This property will return the same object as view,

but the compiler will see the object’s type as UlTableView instead of the generic
UlView. This is useful for sending messages to a UlTableViewController’s table
view that are specific to table views.

Once you have a UlTableViewController instantiated and thus have a pointer to
its UlTableView, you can add the table view to the window. You have access to
your application’s UIWindow in HomepwnerAppDelegate where the template
connected it in Interface Builder. But first, HomepwnerAppDelegate needs to
know about ItemsViewController. Open the fle HomepwnerAppDelegate.m
import the header for ItemsViewController.

#import "HomepwnerAppDelegate.h"
#import "ltemsViewController.h"

When your application launches, you will create an instance of
ItemsViewController and add its view to the window. Once this happens,

user events will go to the UlTableView and get handled by its controller,
ItemsViewController. Add an instance variable to HomepwnerAppDelegate.h to
hold on to the the instance of temsViewController.

#import <UIKit/UIKit.h>
@class ItemsViewController;

@interface HomepwnerAppDelegate : NSObject <UIApplicationDelegate>
{

UIWindow *window;
ItemsViewController *itemsViewController;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

In application:didFinishLaunchingWithOptions: in HomepwnerAppDelegate,
create an instance of ltemsViewController and add its view to the window.

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

Page 170

Chapter 10. UlTableView and UlTableViewController

// Create a ltemsViewController
itemsViewController = [[ItemsViewController alloc] init];

// Place ltemsViewController's table view in the window hierarchy
[window addSubview:[itemsViewController view]];
[window makeKeyAndVisible];

}

(Note that the itemsViewController doesn’t leak or need to be released because
it will be alive the entire time the application is running. If you did release it here,
you would also release the data source and delegate for its UlTableView. That
would be bad.)

Build and run your application. You will see the default appearance of a plain
UlTableView with no content as shown in Figure 10.5.

Figure 10.5. Empty UlTableView

Lall Carrier = 12:02 AM

Poor empty table view! You should give it some rows to display. In Chapter 2, you
wrote a class that can describe a possession. Now you’re going to use that class
again to have each row of your table view display an instance of Possession.
Locate the interface and implementation files for Possession (Possession.h and

Page 171

Chapter 10. UlTableView and UlTableViewController

Possession.m) and drag them onto Homepwner’s project window and into the
Classes group on the Groups & Files table.

When dragging these files into your project window, make sure to select the
checkbox labeled Copy items into destination group’s folder as shown in Figure
10.6.

Figure 10.6. Adding files to a project

E Copy items into destination group's folder (if needed)

Reference Type: | Default F%'l

Text Encoding: | Unicode (UTF-8) F%'l

*) Recursively create groups for any added folders
() Create Folder References for any added folders

Add To Targets

iy Homepwner

[Cancel } E—ﬁdd'-a

P

This will copy the files from their current directory to your project’s directory on the
filesystem and add them to your project. The project window will now appear as
shown in Figure 10.7.

Page 172

Chapter 10. UlTableView and UlTableViewController

Figure 10.7. Project window with possession files added

®00 Homepwner —

| Simulator - iPh... &

Groups & Files
‘rﬁ Homepwner | E| Possession.h
w [1] Classes E| Possession.m v]

E Possession.h
E Possession.m
E HomepwnerAppDeleg
E HomepwnerAppDeleg
Y|:| Other Sources
E Homepwner_Prefix.pc
E main.m
> D Resources
b [| Frameworks
» [| Products

E| ItemsViewController.h 1-'

o
Fy

Debugging terminated. @ Succeeded A

UlTableView’s Data Source

The process of providing a UlTableView with rows in Cocoa Touch is different
from a procedural programming task. In a procedural design, you would tell the
table view what it should display. In Cocoa Touch, the table view asks another
object — its datasource — what it should display. Its data source is prepared to
answer that question; it just needs to know for which row it should provide the
content.

As a view object, a UlTableView displays rows but doesn’t store the data

used to populate those rows. That’s the job of the data source; therefore,
ItemsViewController needs a way to store possession data. In Chapter 2, you
used anNSMutableArray to store Possession instances and then print them out.
You’'ll do the same thing in this exercise, but instead of printing to the console,
you’ll “print” to a UlTableView (Figure 10.8).

Page 173

Chapter 10. UlTableView and UlTableViewController

Figure 10.8. Homepwner object diagram

UIWindow

f————ii
subviews

UlTableView

Rusty Spork (5B5M2): Worth $7...
Flutty Spork (TA9Z6): Worth $6...

Flutty Beay (6H8D9): Worth §72,...

(3%5J2): Worth $62,...

window tableView view dataSource _delegate
I ~ »
HomepwnerAppDelegate ltemsViewController
Controllers
-
possessions

/ Possession

Possession

Possession

First, add an instance variable to ltemsViewController.h.

@interface ltemsViewController : UlTableViewController

{

}
@end

NSMutableArray *possessions;

The possessions array will be a list of Possession instances, and the
UlTableView will display these objects in its rows. Fortunately, you’ve already
written a convenience method to create random Possession objects, and you
already know how to populate an NSMutableArray. Implement the initialization

methods in ltemsViewController.m.

#import "ltemsViewController.h"

Page 174

Chapter 10. UlTableView and UlTableViewController

#import "Possession.h"
@implementation ltemsViewController

- (id)init
{

// Call the superclass's designated initializer
[super initWithStyle:UlTableViewStyleGrouped];

// Create an array of 10 random possession objects
possessions = [[NSMutableArray alloc] init];
for(inti=0;i<10; i++) {

[possessions addObject:[Possession randomPossession]];

}

return self;

}

- (id)initWithStyle:(UlTableViewStyle)style
{

return [self init];

}

In the code above, initWithStyle: (the designated initializer of the superclass) is
overridden to call the new designated initializer, init. One reason for this change
is users of this class now only have to send it the message init; they don’t have

to worry about passing it any arguments. It also forces ItemsViewController to

appear in grouped table view style. (It looks prettier this way.)

UlTableViewDataSource protocol

Now that ItemsViewController has some possessions, you need to teach it
how to turn those possessions into rows that its UlTableView can display. When
a UlTableView needs to know what to display, it has a set of messages it sends
to itsdataSource. These methods are declared in the UlTableViewDataSource
protocol.

Once again, you will peer into the iPhone SDK documentation to find these
methods. In ltemsViewController.h, Command-Option-double click on the string
UlTableViewController to pull up the Developer Documentation window and the
class reference for UlTableViewController (Figure 10.9).

Page 175

Chapter 10. UlTableView and UlTableViewController

Figure 10.9. Documentation window

UiTableViewController Class Reference ["| PDF
¥ Table of Contents | Jump To... = <4 I‘
Overview
*» Tasks
*» Properties bl H I I I
UlTableViewController Class
* Instance Methods
Revision History REfe re nce
Index
COMPANION GUIDE Inherits from UlViewController : UIResponder : NSObject
Table View Programming Guide
for iPhone OS Conforms to UlTableViewDelegate
UlTableviewDataSource
NSCoding (UlIViewController)
NSObject (NSObject)
Framework JSystem/Library/Frameworks/ UlKit.framework
Availability Available in iPhone OS 2.0 and later.
Companion guide Table View Programming Guide for iPhone 0S
Declared in UlTableviewController.h
Related sample code EBonjourWeb
iPhoneCoreDataRecipes
TableViewSuite
TaggedLocations
UlCatalog

This reference will tell you everything you would ever want to know about
UlTableViewController. The basic information about the class is in a table at
the top of the page. For instance, the Inherits from section tells you the class
hierarchy ofUITableViewController; temsViewController will also respond to
any methods these classes implement. You can click on any of the items in this
table to get to the reference for them.

Experienced iPhone developers spend a lot of time in the documentation. Many
developers new to the Apple way of doing things don’t understand the importance
of the documentation. Regardless of the amount of experience you have with

the iPhone SDK, you will still spend a lot of time checking the documentation for
the method or class you need. (The documentation browser is always open on
any Big Nerd Ranch employee’s computer.) When starting or struggling with an
implementation, browse the documentation to find the appropriate classes and
methods to work with. Remember, if a common task is difficult in Cocoa Touch,
you are probably doing it wrong. The documentation will usually show you the
easy way.

Page 176

Chapter 10. UlTableView and UlTableViewController

Right now, you are looking for the methods from the UlTableViewDataSource
protocol that temsViewController could implement to turn Possession instances
into rows for the table view. Click on UlTableViewDataSource in the Conforms to
section to get to the protocol reference. There you can scroll down and see all the
messages that a UlTableView can send to its dataSource.

There are many methods here, but the two that are marked required method
must be implemented. For UlTableViewController to properly conform to
UlTableViewDataSource, it must implement tableView:numberOfRowsInSecti
on: andtableView:cellForRowAtIndexPath:. These methods tell the table view
how many rows it should display and what content to display in each row.

In ItemsViewController.m, you can see that the required methods have already
been implemented by the template. Delete the implementation for them because
you’re going to write your own. (If you aren’t sure which methods to delete, just
delete everything between @implementation and @end except for the init
methods you already implemented.)

Whenever a UlTableView needs to display itself, it sends a series of messages
(the required methods plus any optional ones that have been implemented) to its
dataSource. The required method tableView:numberOfRowsInSection: returns
an integer value for the number of rows that the UlTableView should display.
Because there needs to be a row for each entry in the possessions array, the
implementation of this method should return the number of entries in the array as
shown inFigure 10.10.

Figure 10.10. Obtaining the number of rows

ItemsViewController

tableView: numherﬂmuwalnSecﬂun -’ / \ \ cnunt
, dataSource \.
. h |
UlTableView NSMutableArray

Now implement tableView:numberOfRowsInSection: in
ItemsViewController.m.

- (NSinteger)tableView:(UlTableView *)tableView
numberOfRowsInSection:(NSinteger)section

Page 177

Chapter 10. UlTableView and UlTableViewController
{

return [possessions count];

}

(You might be wondering what a “section” means in this method name. Table
views can be broken up into sections, and each section can have its own set

of rows. For example, in the address book, all the names beginning with “D” are
grouped together in a section. By default, a table view has one section. For this
exercise, we will work with only one section. Once you understand how a table
view works, it’s not hard to use multiple sections. In fact, using multiple sections is
one of the challenges at the end of this chapter.)

UlTableViewCells

A UlTableViewCell is a subclass of UlView, and each row in a UlTableView is
represented by a UlTableViewCell. (Recall that a table on the iPhone can only
have one column, so a row will only have one cell.) UlITableView is a container for
UlTableViewCells. A cell consists of a content view where the cell displays data
and an accessory view (Figure 10.11). In the accessory view, the cell can display
an action-oriented icon — like a checkbox, a disclosure button, or a fancy blue dot
with a chevron inside. These icons are accessed through pre-defined constants
for the appearance of the accessory view. (See the docs for UlTableViewCell for
details.)

Figure 10.11. UlTableViewCell layout

. w &

-] I

- 1 (]

o i 1

-~ H 0

UlTable ViewCell contentView “UUC-‘”‘“;'F.‘}"'*'F“! w

s i

"_‘ : :

M # v

This is the content view. >

However, the real meat of a UlTableViewCell is the content view. Each cell’s
contentView has three subviews. Two of those subviews are UlLabel instances,
textLabel and detailTextLabel. The third is a UllmageView called imageView
(Figure 10.12).

Page 178

Chapter 10. UlTableView and UlTableViewController
Figure 10.12. UlTableViewCell hierarchy

UlTableViewCell

—

UlView

miwieml

.

UlLabel UlLabel UlimageView

textlabel detailTextLabel imageV iew

Each cell also has a UlTableViewCellStyle that determines which of these
subviews are used and their position within the contentView. These styles are

show in Figure 10.13.
Figure 10.13. UlTableViewCellStyles

UlTable ViewCellStyle De fault &@ Text Label ’

UlTable ViewCellStyle Subtitle Te;t L_abefhl_ _ >
Detail Text Label

UlTable ViewCellStyle Value 1| | Text Label Detail Text Label >

UlTable ViewCellStyle Value 2 Text Label Detail Text Label >

In this chapter, each cell will display the description of a Possession. To make
this happen, you will implement the tableView:cellForRowAtIindexPath: in

the data source (ItemsViewController). This method will create a cell, set its
textLabel to the description of the corresponding Possession, and return it to

Page 179

Chapter 10. UlTableView and UlTableViewController
the UlTableView that requested it (Figure 10.14).

Figure 10.14. UlTableViewCell retrieval

ItemsViewContraller

tableView:cellForRowAtindexPath: . — % \ e
.r, “ objectAtindex:
ossessions A\
, dataSource P \
/ 4
UlTableView NEMutableArray
UITableViewCell Possession
UiTableViewCell Possession
UiTableViewCell Possession
UlTableViewCell Possession

How do you decide which cell a Possession corresponds to? One of the
parameters sent to tableView:cellForRowAtindexPath: is an NSindexPath,
which has two properties, section and row. When this message is sent to a data
source, the table view is asking, “Can | have a cell to display in section X at row
Y?” Because there is only one section in this exercise, the row is the only value
of consequence. Therefore, implement this method in ItemsViewController.m so
that the nth row displays the nth entry in the possessions array.

- (UITableViewCell *)tableView:(UlTableView *)tableView
cellForRowAtindexPath:(NSindexPath *)indexPath
{
// Create an instance of UlTableViewCell, with default appearance
UlTableViewCell *cell =
[[[UITableViewCell alloc] initWithStyle:UlTableViewCellStyleDefault
reuseldentifier:@" UlTableViewCell"] autorelease];

// Set the text on the cell with the description of the possession
// that is at the nth index of possessions, where n = row this cell

Page 180

Chapter 10. UlTableView and UlTableViewController

// will appear in on the tableview

Possession *p = [possessions objectAtindex:[indexPath row]];
[[cell textLabel] setText:[p description]];

return cell;

You can build and run the application now, and you’ll see a UlTableView
populated with a list of random Possessions. Yep, it was that easy! Thanks,
Cocoa Touch! Also note that you didn’t have to change anything about
Possession — you simply changed the controller object to interface with a
different view. This is why Model-View-Controller is such a powerful concept. With
a minimal amount of code, you were able to show the same data in an entirely
different way.

Reusing UlTableViewCells

The iPhone has a limited amount of memory. If we were displaying a list with
thousands of entries in a UlTableView, we would have thousands of instances

of UlTableViewCell. And the iPhone would sputter and die. In its dying breath, it
would say “You only needed enough cells to fill the screen... arrrghhh!” It would be
right.

Reusing UlTableViewCells prevents senseless iPhone death. A UlTableView
retains any UlTableViewCell returned to it by the method tableView:cellForRow
AtindexPath: (which is why you can autorelease it in tableView:cellForRowAtI
ndexPath:). When the user scrolls the table, some cells are moved offscreen and
put into a pool of cells available for reuse. Then, instead of creating a brand new
cell for every request, the data source can check the pool. If there is an unused
cell, the data source configures it with new data and returns it to the table view.

Page 181

Chapter 10. UlTableView and UlTableViewController
Figure 10.15. Reusable UlTableViewCells

Crll1 gons UlTableViewCell 1
offscreen...

UlTableViewCell 2

UlTableViewCell 3

UlTableViewCell 4
Visihle Portion
of UlTable View

this direction
UlTableViewCell 5

UlTableViewCell 6

... and is reinserted
inte new visible spot

UlTableViewCall 1

I
I
I
I
I
I
I
I
I
I
|
|
I
I
- . |
labhle View scrolls :
i
I
i
i
i
I
I
I
I
I
I
I
I
I

3

There is one problem: sometimes a UlTableView has different types of cells.
Occasionally, you have to subclass UlTableViewCell to create a special look or
behavior. However, subclasses floating around the pool of reusable cells create
the possibility of getting back a cell of the wrong type. You must be sure of the
type of the cell returned to you so that you can be sure of what properties and
methods it has.

Note that you don’t care about getting any specific cell out of the pool because
you’re going to change the cell data anyway. What you want is a cell of a specific
type. The good news is every cell has a reuseldentifier (an NSString) that the
table view uses to distinguish it from other cells. If the reuse identifier is the name
of the cell class, then it becomes easy to ask for a specific type of a cell. Update
tableView:cellForRowAtIindexPath: to implement reusable cells:

- (UITableViewCell *)tableView:(UlTableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
// Check for a reusable cell first, use that if it exists
UlTableViewCell *cell =
[tableView dequeueReusableCellWithldentifier:@" UlTableViewCell"];

// If there is no reusable cell of this type, create a new one
if (cell) {

Page 182

Chapter 10. UlTableView and UlTableViewController

cell = [[[UITableViewCell alloc]
initWithStyle:UlTableViewCellStyleDefault
reuseldentifier:@" UlTableViewCell"] autorelease];

Possession *p = [possessions objectAtindex:[indexPath row]];
[[cell textLabel] setText:[p description]];
return cell;

}

Reusing cells means that you only have to create a handful of cells. When one
needs to be reinserted in the table, you simply update its contents with new
information. Your iPhone (and your application’s users) will thank you for it. Build
and run the application. The behavior of the application should remain the same.

In the next chapter, you’re going to expand Homepwner and allow the user to
reorder, delete, and insert new rows.

Challenge: Sections

Have the UlTableView display two sections — one for possessions worth more
than $50 and one for the rest. To make this process easier, use two separate
possessions arrays. Before you start this challenge, copy the folder containing
the project and all of its source files in the Finder. Then tackle the challenge in the
copied project; you’ll need the original to build on in the coming chapters.

Page 183

Chapter 11. Editing UlTableViews

Chapter 11. Editing UlTableViews

In the last chapter, you began an application that displayed a list of Possession
instances in a UlTableView. The next step in this application is allowing the user
to interact with that table by moving, deleting, and inserting rows. Figure 11.1

shows what your Homepwner application will look like by the end of this chapter.

Figure 11.1. Homepwner in Editing Mode
Toggles edit mode

Allows deletion Allows reordering

Done

(1]

Rusty Spork (5B5M2)....

Fluffy Spork (7A9Z6):...

0 ©

Fluffy Bear (6H8D9): Wo...

(1)

Shiny Mac (3X5J2): Wor...

D

Eliifhi Raar (TYE 121 WaA

Editing Mode

Every UlTableView has an editing variable. When this boolean variable is set

to YES, the UlTableView enters editing mode, and the rows of the table can be
manipulated by the user. The user can change the order of the rows, add rows, or
remove rows. Editing mode, however, does not allow the user to edit the content
of a row.

But before any of this can happen, the user needs a way to put the UlTableView
in editing mode. For now, you’re going to display a button that toggles editing
mode in the header view of the table. A header view appears at the top of a
section of a table and is useful for adding section-wide or table-wide titles or
controls. It can be any UlView subclass. There’s also a footer view for the bottom
of a section that works the same way. Figure 11.2 shows a table with two sections.
Each section has a UlSlider for a header view and a UlLabel for a footer view.

Page 184

Chapter 11. Editing UlTableViews

Figure 11.2. UlTableView header and footer views

This is a cell
7 e
1 i & Header View
JﬂThIE is a cell (UISlider)
I'm a label! el
Cells Febd .-~
o S . . Haner View
8 This is a cell (UlLabel)
\n '.’F_..-"'
This is a cell e
I'm a label!

Open Homepwner.xcodeproj again. In ltemsViewController.h, declare an
instance variable of type UlView for your header view. Also, declare a new method
that will create this header view.

@interface ltemsViewController : UlTableViewController
{
UlView *headerView;
NSMutableArray *possessions;
}
- (UIlView *)headerView;
@end

The standard UlView you’ve declared will be a container for a UlButton
that toggles editing mode on and off. Now implement headerView in

Page 185

Chapter 11. Editing UlTableViews

ItemsViewController.m.

- (UIlView *)headerView
{
if (headerView)
return headerView;

// Create a UlButton object, simple rounded rect style
UlButton *editButton = [UIButton buttonWithType:UlButtonTypeRoundedR
ect];

// Set the title of this button to "Edit"
[editButton setTitle:@" Edit" forState:UlControlStateNormal];

// How wide is the screen?
float w = [[UIScreen mainScreen] bounds].size.width;

// Create a rectangle for the button
CGRect editButtonFrame = CGRectMake(8.0, 8.0, w - 16.0, 30.0);
[editButton setFrame:editButtonFrame];

// When this button is tapped, send the message
// editingButtonPressed: to this instance of ltemsViewController
[editButton addTarget:self
action: @selector(editingButtonPressed:)
forControlEvents:UlControlEventTouchUpinside];

// Create a rectangle for the headerView that will contain the button
CGRect headerViewFrame = CGRectMake(0, 0, w, 48);
headerView = [[UIView alloc] initWithFrame:headerViewFrame];

// Add button to the headerView's view hierarchy
[headerView addSubview:editButton];

return headerView;

}

In the method above, you added the target-action pair for the button in the code
as opposed to previous chapters where you used Interface Builder. Remember
when you Control-clicked a button and dragged back to the application delegate

Chapter 11. Editing UlTableViews

or view controller in the doc window? You were adding a target-action pair to that
button so that whenever it received an event, it would send the action message to
the target object. When you added this bit of code to headerView

[editButton addTarget:self
action:@selector(editingButtonPressed:)
forControlEvents:UIControlEventTouchUplnside];

you were doing the same thing as making the connection in Interface Builder.
Now, whenever the editButton is tapped (UlControlEventTouchUpinside),
it will send the message editingButtonPressed: to the instance of
ItemsViewController as shown in Figure 11.3.

Figure 11.3. Target-Action pair

ItemsViewController UlView
—headeryie w —

" |
\
\ subviews
\
A v
! target
\
S

edﬁnﬁuﬂmPresseﬁ . l

=~ UlButton

To get your header view to appear in a UlTableView, you need to implement two
UlTableViewDelegate methods to check for a header view and obtain the view
and its height. Implement these two methods in ItemsViewController.m.

- (UlView *)tableView:(UITableView *)tv viewForHeaderInSection:(NSinteger)
sec

{

return [self headerView];

}

- (CGFloat)tableView:(UlTableView *)tv heightForHeaderIinSection:(NSinteg
er)sec

{

Chapter 11. Editing UlTableViews

return [[self headerView] frame].size.height;
}
Build and run the application. An Edit button will appear at the top of the table,
but pressing it will generate an exception, of course, because you haven’t yet
implemented its action — editingButtonPressed:.

The implementation of editingButtonPressed: needs to toggle the editing
mode of the table view. In this method, you could set the editing property

of UlTableView directly. However, a UlTableViewController, like every
UlViewController, also has an editing property. A UlTableViewController
instance automatically sets the editing property of its table view to the same
value as its own editing property. To set the editing property for a view controller
and toggle editing mode, you send it the message setEditing:animated.:.
Therefore, both the view controller and the table view will know whether editing
is occurring, which will be important for implementing controller logic. Implement
editingButtonPressed: in ltemsViewController.m.

- (void)editingButtonPressed:(id)sender
{
// If we are currently in editing mode...
if ([self isEditing]) {
// Change text of button to inform user of state
[sender setTitle:@"Edit" forState:UlControlStateNormal];
// Turn off editing mode
[self setEditing:NO animated:YES];
} else {
// Change text of button to inform user of state
[sender setTitle:@"Done" forState:UlControlStateNormal];
// Enter editing mode
[self setEditing:YES animated:YES];

}
}

Build and run your application and touch the Edit button. The UlTableView will
enter editing mode (Figure 11.4)!

Chapter 11. Editing UlTableViews

Figure 11.4. UlTableView in editing mode

Done

Rusty Spork (2M5B5): Worth...

.jo

Rusty Bear (629A7): Worth...

0 O

Fluffy Bear (SDBHE): Worth...
Shiny Mac (2J5X3): Worth...

Fluffy Bear (2J6X7): Worth...

=
=)
=

Fluffy Bear (4S7ES): Worth...
Fluffy Mac (3CON6): Worth...

Shiny Mac (7K5X1): Worth...

0 © ©

Shiny Mac (5M7L9): Worth...

Deleting Rows

The red circles with the dash (shown in Figure 11.4) are deletion controls, and
touching one will delete that row. However, at this point, touching a deletion
control deletes nothing. (Test it for yourself.) Before a row can be deleted, the
table view needs to ask the data source how to delete that row. This includes
choosing what type of animation to display and how the data being displayed is
affected by the deletion of that row.

A UlTableView asks its data source for the cells it should display when it is first
added to the screen and at least three other times:

« when the user scrolls the table view

+ when the table view is removed from the view hierarchy and then added back to
the view hierarchy

+ when your code sends the message reloadData to the UlTableView

Chapter 11. Editing UlTableViews

Now consider what would happen if deleting a row only removed the row from the
table view and not the data source. The possessions array would still have the
Possession instance displayed by that row, and the next time the UlTableView
reloaded its rows, the data source would create a cell for that supposedly deleted
Possession. The unwanted row would rise from the dead and return to the table.

Therefore, when a row is deleted, you must remove the object that the

row displayed from the data source. The method to implement is tableV
iew:commitEditingStyle:forRowAtIndexPath:. When that message is

sent to your data source, two extra arguments are passed along with it.

The first is the UlTableViewCellEditingStyle, which, in this case, will be
UlTableViewCellEditingStyleDelete. The other argument is the NSindexPath of
the row within the table. Implement this method in ltemsViewController.m.

- (void)tableView:(UlTableView *)tableView
commitEditingStyle:(UlTableViewCellEditingStyle)editingStyle
forRowAtIindexPath:(NSindexPath *)indexPath
{
// If the table view is asking to commit a delete command...
if (editingStyle == UlTableViewCellEditingStyleDelete) {

// We remove the row being deleted from the possessions array
[possessions removeObjectAtindex:[indexPath row]];

// We also remove that row from the table view with an animation
[tableView deleteRowsAtindexPaths:[NSArray
arrayWithObject:indexPath]
withRowAnimation:UlTableViewRowAnimationFade];
}
}

Build and run your application and then delete a row. It will disappear. Now scroll
the list, return to where the deleted row was, and check to see if your data source
was updated. No zombie cells — hooray!

Moving Rows

To change the order of rows in a UlTableView, you will use another data source
method — tableView:moveRowAtIindexPath:tolndexPath:. The implementation

Chapter 11. Editing UlTableViews

of this method needs to remove the object at fromIindexPath from the
possessions array and re-insert it at tolndexPath. Implement this method in
ItemsViewController.m.

- (void)tableView:(UlTableView *)tableView
moveRowAtIndexPath:(NSindexPath *)fromindexPath
toIndexPath:(NSIndexPath *)tolndexPath

// Get pointer to object being moved
Possession *p = [possessions objectAtindex:[fromindexPath row]];

// Retain p so that it is not deallocated when it is removed from the array
[p retain];
// Retain count of p is now 2

// Remove p from our array, it is automatically sent release
[possessions removeObjectAtindex:[fromindexPath row]];
// Retain count of p is now 1

// Re-insert p into array at new location, it is automatically retained
[possessions insertObject:p atindex:[tolndexPath row]];
// Retain count of p is now 2

// Release p
[p release];
// Retain count of p is now 1

When you were deleting a row, you had to explicitly send the message deleteRo
wsAtindexPaths:withRowAnimation: to the UlTableView. When moving rows,
however, you don’t have to send a message to the table view that it’s okay to
move a row; the table view will move it without further instruction. You just have
to catch the message to update your data source. Build and run your application.
Then touch and hold the reordering control (the three horizontal lines) on the side
of a row and move it to a new position (Figure 11.5).

Chapter 11. Editing UlTableViews

Figure 11.5. Moving a row

Done

Rusty Spork (5SB5M2):...
Fluffy Spork (7A9Z8):...
Fluffy Bear (6H8D9): Wo...
Shiny Mac (3X5J2): Wor...
Fluffy Bear (7X6J2): Wo...
Shiny Bear (ENOC3): Wo...

Shiny Mac (1X5K7): Wor...

Fluffy Bear (SE754): Wo...
Shiny Mac (9L7M5): Wor...

Note that before you implemented this method, the reordering controls did not
appear on the table view. Simply implementing this method made them appear.
This is because Objective-C is a very smart language. The UlTableView can ask
its data source whether it implements tableView:moveRowAtindexPath:toinde
xPath: at runtime. If it does, the table view says, “Good, you can handle moving
rows. I'll add the re-ordering controls.” If not, it says, “You bum. If you are too lazy
to implement that method, I'm too lazy to put the controls there.”

Inserting Rows

Deleting and moving rows is easy; inserting them is trickier. First, let’s discuss the
one way of inserting a row that isn’t tricky at all: sending the message reloadData.
You know that a UlTableView displays rows based on what its dataSource

tells it to display. If you wanted to add a row, you could simply insert an entry

into possessions and send the message reloadData to the UlTableView. The
method reloadData restarts the process of asking the data source for the number
of rows and getting the cells, and the new row would be added as part of that

Chapter 11. Editing UlTableViews

process. (You could do the same thing for deleting and moving rows, too, but the
implementation would be more difficult — how would the user select which row to
delete or move?)

Figure 11.6. Adding a row

Rusty Bear (6Z9A7): Wo...
Fluffy Bear (9D8HE): Wo...
Shiny Mac (2J5X3): Wor...

Fluffy Bear (2J6XT7): Wo...

Fluffy Bear (4S7E9): Wo...

Fluffy Mac (3CONE): Wor...
Shiny Mac (TK5X1): Wor...
Shiny Mac (SM7L3): Wor...
Fluffy Bear (OH4W7)....

Add New Item...

The approach you’re going to implement is more difficult but totally worth it in
terms of user experience. What you want is a row at the bottom of the table that
has an insertion control (a green icon with a plus symbol) next to it. This row will
only be visible during editing mode, and touching it will place a new random
Possession at the bottom of the list along with an animation.

To begin, the table view needs to display an additional row when it is in editing

mode. Override setEditing:animated: for temsViewController so that it either
adds or removes a row at the bottom of the table depending on whether you are
entering or leaving editing mode. (Recall that this is the method that is invoked

when the editing button is tapped.)

- (void)setEditing:(BOOL)flag animated:(BOOL)animated
{

// Always call super implementation of this method, it needs to do work
[super setEditing:flag animated:animated];

Chapter 11. Editing UlTableViews

// You need to insert/remove a new row in to table view
if (flag) {
// If entering edit mode, we add another row to our table view
NSIndexPath *indexPath =
[NSIindexPath indexPathForRow:[possessions count] inSection:0];
NSArray *paths = [NSArray arrayWithObject:indexPath];

[[self tableView] insertRowsAtindexPaths:paths
withRowAnimation:UlTableViewRowAnimationLeft];
} else {
// If leaving edit mode, we remove last row from table view
NSIndexPath *indexPath =
[NSIindexPath indexPathForRow:[possessions count] inSection:0];
NSArray *paths = [NSArray arrayWithObject:indexPath];

[[self tableView] deleteRowsAtindexPaths:paths
withRowAnimation:UlTableViewRowAnimationFade];
}

}

Notice that you send the same message to the superclass. This is to take
advantage of UlTableViewController’s special property that matches the
UlTableView’s editing property with its own.

When the user enters editing mode, another row is added to the bottom.
However, now the view is out of sync with the data source: there are eleven rows
visible, but the data source only has ten entries in possessions. Change the
following method in ItemsViewController.m to resolve this conflict:

- (NSiInteger)tableView:(UlTableView *)tableView
numberOfRowsInSection:(NSinteger)section

{
int numberOfRows = [possessions count];
// If we are editing, we will have one more row than we have possessions
if ([self isEditing])
numberOfRows++;

return numberOfRows;
¥

Chapter 11. Editing UlTableViews

The UlTableView will now have the correct number of rows while it

is being edited. Now update tableView:cellForRowAtindexPath: in
ItemsViewController.m so that the last row in editing mode displays something
useful like “Add New Item...”:

- (UITableViewCell *)tableView:(UlTableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
UlTableViewCell *cell =
[tableView dequeueReusableCellWithldentifier:@"UITableViewCell"];

if (Icell) {
cell = [[[UITableViewCell alloc]
initWithStyle:UlTableViewCellStyleDefault
reuseldentifier:@"UlTableViewCell"] autorelease];

}

// If the table view is filling a row with a possession in it, do as normal
if ([indexPath row] < [possessions count]) {
Possession *p = [possessions objectAtindex:[indexPath row]];
[[cell textLabel] setText:[p description]];
} else { / Otherwise, if we are editing we have one extra row...
[[cell textLabel] setText:@" Add New Item..."];

}

return cell;

}

Build and run your application. Touch the Edit button and scroll down to the bottom
of the table. There’s your new row... but it still has a deletion control next to it. To
give this row an insertion control instead, you’ll need to change the row’s editing
style. When a UlTableView begins editing, it asks its delegate for the editing
style at each row. Implement the following method in ItemsViewController.m so
that the last row has a UlTableViewCellEditingStylelnsert style.

- (UITableViewCellEditingStyle)tableView:(UlTableView *)tableView
editingStyleForRowAtindexPath:(NSindexPath *)indexPath
{

Chapter 11. Editing UlTableViews

if ([self isEditing] && [indexPath row] == [possessions count]) {

// The last row during editing will show an insert style button
return UlTableViewCellEditingStylelnsert;

}

// All other rows remain deleteable

return UlTableViewCellEditingStyleDelete;

}

Building and running now shows an insertion control next to the last row.

Now, you have to implement code to handle what happens when this control is
touched. You have already written the data source method for this; you just need
to write some additional code to handle inserts. Add the following code to tableVie
w:commitEditingStyle:forRowAtindexPath: in ltemsViewController.m.

- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UlTableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath

{
if (editingStyle == UlTableViewCellEditingStyleDelete) {

[possessions removeObjectAtindex:[indexPath row]];
[tableView deleteRowsAtindexPaths:[NSArray arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationFade];
} else if (editingStyle == UlTableViewCellEditingStylelnsert) {

// If the editing style of the row was insertion,
// we add a new possession object and new row to the table view
[possessions addObject:[Possession randomPossession]];
[tableView insertRowsAtindexPaths:[NSArray
arrayWithObject:indexPath]
withRowAnimation:UlTableViewRowAnimationLeft];
}

}

Adding the Add New Item... row introduces two potential bugs in Homepwner.
First, the user could use the reordering control to move the Add New Item...

row. This would blow up the entire application. (Try it —it’s fun!) The table view
assumes that all rows can move in editing mode because its data source
implemented the method to move rows. However, you can trim the set of
moveable rows by implementing another data source method, tableView:canMo

Chapter 11. Editing UlTableViews

veRowAtIindexPath:, in temsViewController.m. This method will return NO for
the last row, and that row will not show a reordering control.

- (BOOL)tableView:(UlTableView *)tableView
canMoveRowAtIndexPath:(NSindexPath *)indexPath
{
// Only allow rows showing possessions to move
if (indexPath row] < [possessions count])
return YES;
return NO;

}

The second problem will occur if the user moves another row beneath the Add
New Item... row. This will cause all sorts of havoc in the data source methods.
Fixing this problem requires another delegate method, and yes, you may scream
“l knew it!” This method gives you the NSIndexPath of the row that wants to move
as well as the row it wants to occupy. If you don’t want to allow the proposed
move to take place, you return the NSIindexPath of the row that it should move to
instead. Add the following implementation to ltemsViewController.m.

- (NSIndexPath *)tableView:(UlTableView *)tableView
targetindexPathForMoveFromRowAtindexPath:(NSindexPath *)sourcelnd-
exPath
toProposedindexPath:(NSindexPath *)proposedDestinationindexPath
{
if ([proposedDestinationindexPath row] < [possessions count]) {
// If we are moving to a row that currently is showing a possession,
// then we return the row the user wanted to move to
return proposedDestinationindexPath;
}
// We get here if we are trying to move a row to under the "Add New
ltem..."
// row, have the moving row go one row above it instead.
NSindexPath *betterindexPath =
[NSIndexPath indexPathForRow:[possessions count] - 1 inSection:0];

return betterindexPath;

}

Build and run the application. Try moving the last row. Now try moving another
row beneath it. Ha! You can’tl Homepwner is so safe that even a child could use it.

Chapter 12. UINavigationController

Chapter 12. UINavigationController

Earlier in this book, you learned about UlTabBarController and how it allows
a user to access different screens. A tab bar controller is great when you have
screens that don’t rely on each other, but what if you want to move between
related screens?

For example, the iPhone Settings application has multiple related screens of
information: a list of settings (like Sounds), a detailed page for each setting,
and a selection page for each detail. This type of interface is called a drill-down
interface. In this chapter, you will use a UINavigationController to add a drill-
down interface to Homepwner (Figure 12.1).

Figure 12.1. Homepwner with UINavigationController

. Homepwner

Rusty Spork (2M5B5): Worth $7...

Fluffy Bear
Rusty Bear (6Z9A7): Worth $62,... .

Serial Number Value

Fluffy Bear (9D8H6): Worth $72,... v | ™
Shiny Mac (2J5X3): Worth $62,... Oct 30, 2009
Fluffy Bear (2J6X7): Worth $69,...
Fluffy Bear (4S7E9): Worth $21,...
Fluffy Mac (3CONG6): Worth $13,...
Shiny Mac (7K5X1): Worth $96,...

Shiny Mac (5M7L9): Worth $46....

Page 198

Chapter 12. UINavigationController

UINavigationController

When you have an application that presents multiple screens of information,
UINavigationController maintains a stack of those screens. The stack is an
NSArray of view controllers, and each screen is the view instance controlled by
a UlViewController. When a UlViewController is on top of the stack, its view is
visible.

When you initialize an instance of UINavigationController, you give it one
UlViewController. This UlViewController is called the root view controller, and
its position in the stack is shown in Figure 12.2. In the Homepwner application,
the root view controller will be ItemsViewController. It is the first screen the user
sees and can navigate from.

Figure 12.2. UINavigationController’s stack

UlNavigationController

viewControllers

rootViewController topViewController

NSArray
Joo Conway ListViewController | | DetailViewController | ~ Jo¢ Conway
Mark Fenoglio
X maoblle 555-5555
Brian Hardy : ringtone Default >

Aaron Hillegass

Text Message Add to Favorites

Scott Ritchie

The root view controller is always on the bottom of the stack (which is also

the top if there is only one item). More UlViewControllers can be pushed

on top of this stack during execution. When this happens, the view of the
pushedUIViewController slides onto the screen. When the stack is popped, the
top view controller is removed from the stack, and the view of the one below it
slides onto the screen. This ability to add to the stack during execution is missing
in UlITabBarController, which must have all of the view controllers it maintains at
initialization time. Navigation controllers are more dynamic, and only the root view

Page 199

Chapter 12. UINavigationController

controller is guaranteed to always be in the stack.

The UlViewController that is on top of the stack can be accessed by sending the
message topViewController to the UINavigationController instance. You can
also get the entire stack as an NSArray by sending the navigation controller the
message viewControllers. The viewControllers array is ordered so that the root
view controller is the first entry and the top view controller is the last entry.

UINavigationController is actually a subclass of UIViewController, so it also has
a view instance. Its view always has at least two subviews: a UINavigationBar
and the view of the UIViewController that is on top of the stack (Figure 12.3).
The only requirements for using a UINavigationController are that you add its
view to the visible view hierarchy and give it a root view controller.

Figure 12.3. A UINavigationController’s view

UlNavigationController

N

topViewController view navigationBar

I | Y

PersonViewController UINavigationBar

All Contacts

]
i
I
view ! Joe Conway
I
y |
I
UlView !
_____ 4 moblle 555-5555
ringtone Default >
Text Message Add to Favorites

Page 200

Chapter 12. UINavigationController

In this chapter, you will be adding a UINavigationController to the Homepwner
application. When the user selects one of the possession rows, a new
UlViewController’s view will slide onto the screen. That view controller will allow
the user to view and edit the properties of the Possession. The object diagram
for the updated Homepwner application is shown in Figure 12.4.

Figure 12.4. Homepwner object diagram

: Views UlView i
| — subviews —# I
Placeholder for]
1
: view of Name :
' A topViewController Flutly Boar !
1
' subviews UINavigationBar UlView Serial Number Value :
| S |
: / SDaHE 72 :
] : |
! UlWindow A Oct 30, 2000 !
i |
1 |
1 |
1 |
1 |
1 |
1 |
1 |

view navigationBar serialNumberField vlew dateLabel valueField nameField

1

1

‘ L /

- UlNavigationController view

i

i

1

. rootViewController I e T

1 . temsViewController
window

i \\

]

1

:

1

]

]

]

]

1

1

v
UlTableView
__ .
Controllers

itemsViewController
ItemDetailViewController
detall\fewController

HomepwnerAppDelegate
possessions) \)
_______________________________________ \ __editingPossession
s '
H NSArray Possession
I ———————»
1
i
| Model

This application is starting to get fairly large, as demonstrated by the massive
object diagram. Fortunately, view controllers and UINavigationController know
how to deal with this type of complicated object diagram. When writing iPhone
applications, it is important to treat each UlViewController as its own little world.
The stuff that has already been implemented in Cocoa Touch will do the heavy
lifting.

In Homepwner.xcodeproj that you created earlier, open the file
HomepwnerAppDelegate.m. Instead of adding the ItemsViewController’s
view directly to the window as before, you are going to create an instance

Page 201

Chapter 12. UINavigationController

of UINavigationController and add its view to the window instead. This
UINavigationController will be initialized with ltemsViewController as its root
view controller. Make these changes in application:didFinishLaunchingWithOp
tions:.

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

itemsViewController = [[ItemsViewController alloc] init];

// Create an instance of a UINavigationController

// its stack contains only itemsViewController

UINavigationController *navController = [[UINavigationController alloc]
initWithRootViewController:itemsViewController];

// Place navigation controller's view in the window hierarchy
[window addSubview:[navController view]];

[window makeKeyAndVisible];
return YES;

}

Build and run the application. Homepwner will look the same as it did before
— except now it has a UINavigationBar at the top of the screen (Figure 12.5).
Notice how IltemsViewController’s view was resized to fit the screen with a
navigation bar.UINavigationController did this for you.

Figure 12.5. Homepwner with an empty navigation bar

Edit

Rusty Spork (2M5B5): Worth $7...
Rusty Bear (6Z9A7): Worth $62,...
Fluffy Bear (9D8HE): Worth $72,...

Shinv Mac (2J5X3): Worth $62....

Page 202

Chapter 12. UINavigationController

UINavigationBar

The UINavigationBar isn’t very interesting right now. At a minimum, a
UINavigationBar should display a descriptive title for the UlViewController that
is currently on top of the UINavigationController’s stack.

Every UlViewController has a property navigationltem of type
UINavigationltem. While UINavigationBar is a subclass of UIView (which
means it can be appear on screen), UINavigationltem is not. However, it supplies
the navigation bar with the content it needs to draw. When a UlViewController
comes to the top of a UINavigationController’s stack, the navigation controller’s
UINavigationBar uses the UlViewController’s navigationltem to configure itself
as shown in Figure 12.6.

Figure 12.6. UINavigationltem

UlNavigationController UlNavigationBar
— navigationBar —»
l |
topViewController configures itself from
]
' v
ltemsViewController UlNavigationitemn

—— navigationltem —»|

That’s not the easiest thing to understand at first glance. So, consider the
following analogy. Think of UlViewController as an NFL football team, and
moving to the top of the stack as going to the Super Bowl. The UINavigationltem
is the team logo design, and, no matter what, its team logo remains unchanged;
it’s an internal design. The UINavigationController is the stadium, and

the UINavigationBar is an end zone. When a team makes it to the Super

Bowl, its team logo is painted in one end zone of the stadium. And when a
UlViewController is moved to the top of the stack, its UINavigationltem is
painted on the UINavigationBar within the UINavigationController.

By default, a UINavigationltem is empty. At the most basic level, a
UINavigationltem has a simple title string. When a UlViewController is moved
to the top of the navigation stack and its navigationltem has a valid string for its
title property, the navigation bar will display that string (Figure 12.7).

Page 203

Chapter 12. UINavigationController

Figure 12.7. UINavigationltem with title

UlNavigationController UlViewController
—topViewController —e

navigationBar navigationltem

y '

i UlNavigationltem
——— o

A navigation item can hold more than just a title string, as shown in Figure 12.8.
There are three customizable areas for each UINavigationltem: a titleView, a
leftBarButtonltem, and a rightBarButtonltem. The left and right bar button items
are pointers to instances of UlBarButtonltem, a type of button that can only be
displayed on a UINavigationBar or a UlToolbar.

Figure 12.8. UINavigationltem with everything

UlNavigationController
—““‘ga“““ﬂ”*m

|
topViewController

¥
UlViewContraoller UlNavigationltem
—— navigationltern —s
leftBarButt ;rlt/rn ! \
e‘// WHONEEM fitleview rightBarButtonitem
UlBarButtonltem J’
title = @"Edit" UlButton UlBarButtonltern
title = @"Press me." systemltem = UIBarButtonSystemitemAction

Like UINavigationltem, UIBarButtonltem is not a subclass of UlView but
supplies the content that a UINavigationBar needs to draw. Consider the
UINavigationltem and its UIBarButtonltems to be containers for strings,
images, and other content. A UINavigationBar knows how to look in those
containers and draw the content that’s there.

The third customizable area of a UINavigationltem is its titleView. You have a
choice with each navigation item: use a basic string as the title (as you’ll do in this
chapter) or have any subclass of UlView sit in the center of the navigation item.
You cannot have both. If it suits the context of a specific view controller to have a

Page 204

Chapter 12. UINavigationController

custom view (such as a button, a slider, an image view, or even a map) instead
of a title, you would set the titleView of the navigation item to that custom view.
Typically, however, a title string is sufficient.

Set up ItemsViewController to have a proper navigationltem. Update the init
method by adding the following lines of code to ItemsViewController.m.

- (id)init
{
[super initWithStyle:UlTableViewStyleGrouped];

possessions = [[NSMutableArray alloc] init];
for (inti=0;i<10; i++) {
[possessions addObject:[Possession randomPossession]];
}
// Set the nav bar to have the pre-fab'ed Edit button when
// ltemsViewController is on top of the stack
[[self navigationltem] setLeftBarButtonltem:[self editButtonltem]];

// Set the title of the nav bar to Homepwner when ItemsViewController
// is on top of the stack
[[self navigationltem] setTitle:@"Homepwner"];

return self;

}

Building and running the application now will show a lovely UINavigationBar
with a title and — surprise! — an Edit button. Go ahead and tap that Edit button
and watch the UlTableView enter editing mode! Where did editButtonltem
come from? Every UlViewController has a editButtonltem property. When
sent editButtonltem, the view controller creates a UlBarButtonltem with the
title Edit. This button came with a target-action pair: it will send the message
setEditing:animated: to its UIViewController when tapped.

This means you can simplify the code a bit. You no longer need the header view
with the button labeled Edit. To get rid of the header view, delete the following two
methods from ltemsViewController.m.

// Delete these!

Page 205

Chapter 12. UINavigationController

- (UlView *)tableView:(UlTableView *)aTableView
viewForHeaderInSection:(NSinteger)section

{

return [self headerView];

}

- (CGFloat)tableView:(UlTableView *)tableView
heightForHeaderInSection:(NSinteger)section

{

return [[self headerView] frame].size.height;

}

The headerView will no longer be used, and your code will still build the correct
application. Also, you will want to remove the instance variable headerView along
with the implementation of the methods headerView and editingButtonPressed:.

Now you can build and run again. The old Edit button is gone, and you have a
much more efficient editButtonltem in the UINavigationBar that does the same
thing (Figure 12.9).

Figure 12.9. Homepwner with navigation bar

" Edit Homepwner

Rusty Spork (2M5B5): Worth $7...
Rusty Bear (6Z9A7): Worth $62,...
Fluffy Bear (9D8H6): Worth $72,...

Shiny Mac (2J5X3): Worth $62,...

An Additional UlViewController

To see the real power of UINavigationController, you need another
UlViewController to put on its stack. Create a new UlViewController subclass by
selecting New File... from the File menu. Choose UlViewController subclass and
select With XIB for user interface only. Name this class ItemDetailViewController

Page 206

Chapter 12. UINavigationController

and add it to the Homepwner project (Figure 12.10).

Figure 12.10. Creating an IltemDetailViewController

W

Choose a template for your new file:

U iPhone OS5 - | e
Cocoa Touch Class -m om .m
Code Signing Objective-C class Objective-C test UlviewController
Resource case class subclass

User Interface

‘:J Mac 05 X

AppleScript
el Options [UImableViewController subclass
Carb
arbon E With XIB for user interface
Cocoa
Interface Builder SDK Description An Objective-C class which is a subclass of
Pure Java UlViewController, with an opticnal header file which
! includes the <UIKit/UIKit.h= header. A XIB file

Pure Python containing a view configured for this View Controller is
Ruby also included.

Sync Services b

" Previous) MNext
5
e

.

In Homepwner, the user will be able to tap one of the rows and have
another view slide onto the screen with editable text fields for each
property of that Possession. This view will be controlled by an instance of
ItemDetailViewController.

You need four subviews for each instance variable of a Possession instance.
ItemDetailViewController’s view will display these and allow the user to edit
them. And because you need to be able to access these subviews during runtim
e,ltemDetailViewController needs outlets for these subviews. Add the following
instance variables to IltemDetailViewController.h.

@interface ltemDetailViewController : UIViewController

{

Page 207

Chapter 12. UINavigationController

IBOutlet UlTextField *nameField;
IBOutlet UlTextField *serialNumberField;
IBOutlet UlTextField *valueField;
IBOutlet UlLabel *dateLabel;

}
@end

Save this file. The IBOutlet in front of each of these instance variables should clue
you into the fact you are going to use Interface Builder to lay out the interface for
ItemDetailViewController’s view. When you created ItemDetailViewController,
a XIB file of the same name was also created and added to the project. Open
ItemDetailViewController.xib now.

The XIB File and File’s Owner

You have seen a XIB file in previous exercises. You've also added subviews to the
window, made outlet connections, and connected action messages. In those XIB
files, there was a File’s Owner object in the Doc Window that you used without
really understanding. Now, it is time to learn what the File’s Owner really is.

File’s Owner is a placeholder for an object that is supplied when the NIB file is
read in. That is, File’s Owner is a hole, and whatever causes the NIB file to be
unarchived, supplies something to go into that hole.

This is a little abstract because you have never explicitly unarchived a NIB file.
Instead, the UlApplication object implicitly unarchived the MainWindow.nib file
and your view controllers have implicitly unarchived their NIB files. How does
this work? When a view controller loads its NIB file, it will supply itself to fill the
role of File’s Owner. The implementation of loadView in UlViewController looks
something like this:

- (void)loadView
{
NSBundle *bundle = [self nibBundle];
NSString *nibName = [self nibName];
if (bundle == nil)
bundle = [NSBundle mainBundle];
if (nibName == nil)
nibName = NSStringFromClass([self class]);

[bundle loadNibNamed:nibName owner:self options:nil];

Page 208

Chapter 12. UINavigationController

So, this object (which exists before the NIB file is read in) gets wired to the newly
created objects.

Setting up ItemDetailViewController

Back in IltemDetailViewController.xib, double-click the View object in the doc
window. This view will be the view of IltemDetailViewController when it is loaded
from this XIB file. (Don’t believe me? Check the connections for the File’s Owner.)
Drag four UlLabels and three UlTextFields from the Library window onto the
view so that it matches Figure 12.11.

Figure 12.11. IltemDetailViewController’s configured view

5606 View -
ontroller Connections ittt
o] Name ___________ _ l
¥ Outlets »)
(‘dateLabel (% Label (Label) ‘/‘_—_— __________________________________
: = ! R [[
(nameFlelId)—(l Round Style Test Field : SBrIaJ Number : : VHIUE‘ :
searchDisplayController Q R e s s ssss
(‘serialNumberField }—(# Round Style Text Field @—-—K—_._.,
{(valueField (% Round Style Text Field @—— I
(view (% View O] _/.,; Label
HeRaiasanoingGl sl | 0 9~ " leccmcmmmmmacmcmcmaccccccccccccccccaaa
New Referencing Outlet O
P

Make connections from the File’s Owner to each of these objects as shown in
Figure 12.11.

For each UlTextField instance, uncheck the Clear When Editing Begins checkbox
on the Inspector window (Figure 12.12). Save this XIB file and quit Interface

Page 209

Chapter 12. UINavigationController

Builder.
Figure 12.12. UlTextField attributes

800 Text Field Attributes
e o & o
¥ Text Field
Text | B
Placeholder - |
Background . E
Disabled -]
Alignmemt (= = = | NG
Border =EE=-EE=-E"
Clear Button | Never appears ﬂ
Uncheck this box----7-------- =[] Clear When Editing Begins
Font ' Helvetica, 12.0 '

While you are here, fancy the application up a bit. Right now, the view for
ItemDetailViewController has a plain white background. Let’s give it the
same background as the UlTableView. When should you do this? After

a UlViewController loads its view, it is immediately sent the message
viewDidLoad. Whether that view is loaded from a XIB file or using the method
loadView, this message gets sent to the view controller. If you need to do

any extra initialization to a UIViewController that requires its view to already
exist, you must override loadView. (Remember, instantiating a view controller
doesn’t create the view. The view is created only when it is needed.) Override
viewDidLoad in ltemDetailViewController.m.

- (void)viewDidLoad
{

[super viewDidLoad];

[[self view] setBackgroundColor:[UIColor groupTableViewBackground-
Color]];

}

Page 210

Chapter 12. UINavigationController

When ItemDetailViewController’s view gets unloaded, its subviews will still be
retained by IltemDetailViewController. They need to be released and set to nil in
viewDidUnload. Override this method in ItemDetailViewController.m.

- (void)viewDidUnload

{

[super viewDidUnload];

[nameField release];
nameField = nil;

[serialNumberField release];
serialNumberField = nil;

[valueField release];
valueField = nil;

[dateLabel release];
dateLabel = nil;

}
And, finally, you need a dealloc method:

- (void)dealloc

{
[nameField release];
[serialNumberField release];
[valueField release];
[dateLabel release];
[super dealloc];

}
Navigating with UINavigationController

Now you have a navigation controller, navigation bar, and two view

controllers. Time to put all the pieces together. The user should be able to

tap on one of the rows in ltemsViewController’s table view and have the
ItemDetailViewController’s view slide onto the screen displaying the properties
of the selected Possession instance.

Page 211

Chapter 12. UINavigationController

Of course, you then need to create an instance of ltemDetailViewController.
Where should this object be created and what object should hold the pointer to
it? Think back to previous exercises where you instantiated all of your controllers
in the method application:didFinishLaunchingWithOptions:. For example, in
the tab bar controller chapter, you created both view controllers and immediately
added them to tab bar controller’s viewControllers array.

However, when using a UINavigationController, you cannot simply store
all of the possible view controllers in its stack. The viewControllers array
of a navigation controller is dynamic — you start with a root view controller
and additional view controllers are added depending on user input.
Therefore, some object other than the navigation controller needs to own
the instance of ltemDetailViewController and be responsible for adding it
to the stack. This owner needs two things: it needs to know when to push
ItemDetailViewController onto the stack, and it needs a pointer to the
navigation controller. Why must this object have a pointer to the navigation
controller? If it is to dynamically add view controllers to the navigation controller’s
stack, it must be able to send the navigation controller messages, namely,
pushViewController:animated:.

ItemsViewController meets both of these needs. Whenever a row is tapped in a
table view, the table view’s delegate receives the message tableView:didSele
ctRowAtIindexPath:. Therefore, ItemsViewController knows when to push the
other view controller on the stack. Furthermore, when a view controller belongs to
a navigation controller’s stack, it can be sent the message navigationController
to get a pointer to the navigation controller it belongs to. As the root view
controller,ltemsViewController always belongs to the navigation controller and
thus can always access it.

In any application that uses a UINavigationController, there is one root view
controller. It often owns the next view controller, and the next view controller owns
the one after that and so on. Some applications, like the Photos application, may
have more than one combination of view controllers that can be on the stack at a
given time. In Photos, there are four view controllers:

AlbumListViewController This view controller displays a list of
all of the albums in the user’s media
library. It is the root view controller.

AlbumViewController This view controller displays
thumbnails for all of the videos and
images.

Page 212

Chapter 12. UINavigationController

ImageViewController When an image is selected in the
AlbumViewController, this view
controller is pushed onto the stack and
it will display that image.

VideoViewController If the user chooses to view a video,
this view controller is pushed on the
stack to watch the movie.

Therefore, AlbumListViewController owns AlbumViewController.
AlbumViewController owns both ImageViewController, and
VideoViewController (Figure 12.13).

Figure 12.13. Controller hierarchy in Photos

AlbumListViewController

|
albumViewController

¥

AlbumViewController

e ~

imageController videoController

ImageViewController VideoViewController

Back in ltemsViewController.h, add an instance variable for an
ItemDetailViewController.

@class ItemDetailViewController;

@interface ltemsViewController : UlTableViewController

{
ItemDetailViewController *detailViewController;

Recall that when a row is tapped in a table view, its delegate is sent a message
containing the index path of the selected row. In ltemsViewController.m,
implement this method to lazily allocate the ltemDetailViewController and then
push it on top of the navigation controller’s stack.

Page 213

Chapter 12. UINavigationController

- (void)tableView:(UlTableView *)aTableView
didSelectRowAtindexPath:(NSindexPath *)indexPath
{
// Do | need to create the instance of IltemDetailViewController?
if ('detailViewController) {
detailViewController = [[ItemDetailViewController alloc] init];

}

// Push it onto the top of the navigation controller's stack
[[self navigationController] pushViewController:detailViewController
animated:YES];

}

Finally, at the top of ItemsViewController.m, import the header file for
ItemDetailViewController.

#import "ltemsViewController.h"
#import "ltemDetailViewController.h"

@implementation ItemsViewController

Build and run the application. Select one of the rows from the UlTableView. Not
only will you be taken to ltemDetailViewController’s view, but you will get a
free animation and a button in the UINavigationBar titted Homepwner. Tapping
this button will take you back to ltemsViewController. All of that comes for free.
Thanks, UINavigationController!

Of course, the UlTextFields on the screen are currently empty. How do

you pass data between these two UlViewControllers? You have all of the
Possessions in IltemsViewController, and you want to display a single
Possession inltemDetailViewController. You need to implement a method
in ItemDetailViewController that will take a Possession instance and fill
the contents of its UlTextFields with it. temsViewController will select the
appropriate possession from its array and pass it through that method to the
ItemDetailViewController.

In ltemDetailViewController.h, add an instance variable to hold the Possession
that is being edited and declare a method to set that instance variable. The class
declaration should now look like this:

#import <UIKit/UIKit.h>

Page 214

Chapter 12. UINavigationController

@class Possession;
@interface ItemDetailViewController : UIViewController
{

IBOutlet UlTextField *nameField;

IBOutlet UlTextField *serialNumberField;

IBOutlet UlTextField *valueField;

IBOutlet UlLabel *datelLabel;

Possession *editingPossession;
¥
@property (nonatomic, assign) Possession *editingPossession;
@end

Use @synthesize to create accessors for editingPossession in
ItemDetailViewController.m.

@implementation ItemDetailViewController
@synthesize editingPossession;

At the top of ItemDetailViewController.m, make sure to import the header file for
the Possession class.

#import "ltemDetailViewController.h"
#import "Possession.h"

@implementation IltemDetailViewController

When the ItemDetailViewController’s view appears on the screen, it needs to
set the values of its subviews to match the properties of the editingPossession.
Override viewWillAppear: in ltemDetailViewController.m to transfer
theeditingPossession’s properties to the various UlTextFields.

- (void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[nameField setText:[editingPossession possessionName]];
[serialNumberField setText:[editingPossession serialNumber]];
[valueField setText:[NSString stringWithFormat:@" %d",
[editingPossession valuelnDollars]]];

Page 215

Chapter 12. UINavigationController

// Create a NSDateFormatter that will turn a date into a simple date string

NSDateFormatter *dateFormatter = [[[NSDateFormatter alloc] init]
autorelease];

[dateFormatter setDateStyle:NSDateFormatterMediumStyle];

[dateFormatter setTimeStyle:NSDateFormatterNoStyle];

// Use filtered NSDate object to set dateLabel contents
[dateLabel setText:

[dateFormatter stringFromDate:[editingPossession dateCreated]]];

// Change the navigation item to display name of possession
[[self navigationltem] setTitle:[editingPossession possessionNamel]];

Now you must invoke this method when the ltemDetailViewController is being
pushed onto the navigation stack. Add the following line of code to this method in
ItemsViewController.m.

- (void)tableView:(UlTableView *)aTableView
didSelectRowAtIindexPath:(NSIndexPath *)indexPath
{
/I Do | need to create the instance of ItemDetailViewController?
if (\detailViewController) {
detailViewController = [[IltemDetailViewController alloc] init];
}

// Give detail view controller a pointer to the possession object in row
[detailViewController setEditingPossession:

[possessions objectAtindex:[indexPath row]]];

[[self navigationController] pushViewController:detailViewController
animated:YES];}

Many programmers new to the iPhone SDK struggle with how data is passed
between UlViewControllers. The technique you just implemented, having all
of the data in the root view controller and passing subsets of that data to the

Page 216

Chapter 12. UINavigationController

nextUIViewController, is a very clean and efficient way of performing this task.

Build and run your application. Select one of the rows of the UlTableView, and
the view that appears on your screen will contain all of the information for the
Possession that was in that row. While you can edit this data, the UlTableView
won’t have changed when you return to it. To fix this problem, you need to
implement code to update the properties of the Possession being edited.

Appearing and disappearing views

Whenever a UINavigationController is about to swap views, it sends out two
messages: viewWillDisappear: and viewWillAppear:. The UlViewController
that is about to be popped off the stack is sent the message viewWillDisappear:.
The UlViewController that will then be on top of the stack is sent
viewWillAppear-.

When ItemDetailViewController is popped off the stack, you will set the
properties of the editingPossession to the values in the UlTextFields. When
implementing these methods for views appearing and disappearing, it is important
to call the superclass’s implementation — it has some work to do as well.
Implement viewWillDisappear: in temDetailViewController.m.

- (void)viewWillDisappear:(BOOL)animated
{

[super viewWillDisappear:animated];

// Clear first responder

[nameField resignFirstResponder];
[serialNumberField resignFirstResponder];
[valueField resignFirstResponder];

//"Save" changes to editingPossession

[editingPossession setPossessionName:[nameField text]];
[editingPossession setSerialNumber:[serialNumberField text]];
[editingPossession setValuelnDollars:[[valueField text] intValue]];

}

Now the values of the Possession will be updated when the user taps the
Homepwner back button on the UINavigationBar. When ItemsViewController
appears back on the screen, it is sent the message viewWillAppear:. Take

Page 217

Chapter 12. UINavigationController

this opportunity to reload its UlTableView so the user can immediately see the
changes. Implement that viewWillAppear: in ltemsViewController.m.

- (void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[[self tableView] reloadData];

}

Build and run your application now. You will be able to move back and forth
between each of the UlViewControllers you created and change the data with
ease.

Challenge: Number Pad

The keyboard for the UlTextField that displays a Possession’s valuelnDollars
is a QWERTY keyboard. It would look better if it was a number pad. Change the
Keyboard Type of that UlTextField to the Number Pad. (Hint: You can do this in
Interface Builder in the Attributes tab of the Inspector.)

Page 218

Chapter 13. Camera And UlimagePickerController

Chapter 13. Camera and UlimagePickerController

In this chapter, you’re going to use UllmagePickerController, a subclass of
UlViewController, to add photos to the Homepwner application. You will present
a UllmagePickerController so that the user can take and save a picture of each
possession. The image will then be associated with a Possession instance,
stored in an image cache, and viewable in the possession’s detail view. Then,
when the insurance company demands proof, the user has a visual record of
owning that 70” HDTV.

Figure 13.1. Homepwner with camera addition

. Homepwner

i

Rusty Spork

Serial Number

I

2MsBS

ImageCache: a Singleton

First, you are going to create an image cache to hold all the pictures the user

Page 219

Chapter 13. Camera And UllmagePickerController

will take. In Chapter 14, the Possession objects will write out their instance
variables to a file, which will then be read in when the application starts. However,
images tend to be very large, so you’re going to keep them in the image cache
and separate from the other possession data. The image cache will fetch the
images as they are needed and flush the cache when the device runs low on free
memory.

All of that nifty saving/fetching/loading stuff comes later; in this chapter the image
cache is little more than a dictionary of key-value pairs in which the keys are
unigue strings and the values are images. Open Homepwner.xcodeproj and, in
Xcode, create a new subclass of NSObject (from the Cocoa Touch Class section)
called ImageCache. Open ImageCache.h and create its interface:

#import <UIKit/UIKit.h>

@interface ImageCache : NSObject

{
NSMutableDictionary *dictionary;

}

+ (ImageCache *)sharedimageCache;

- (void)setimage:(Ulimage *)i forKey:(NSString *)s;
- (Ullmage *)imageForKey:(NSString *)s;

- (void)deletelmageForKey:(NSString *)s;

@end

NSDictionary

The dictionary is an instance of NSMutableDictionary, the mutable subclass

of NSDictionary. An NSDictionary is a collection object and similar to an
NSArray. However, an NSArray is an ordered list of pointers to objects that can
be accessed by an index. When you have an array, you can ask it for the object at
the nth index:

/I Put some object at the end of an array

[someArray addObject:someObject];

/I Get that same object out

someQObject = [someArray objectAtindex:[someArray count] - 1];

On the other hand, dictionary objects are not ordered within the collection. So
instead of accessing entries with an index, you use a key. The key is usually an
instance of NSString.

Page 220

Chapter 13. Camera And UlimagePickerController

/l Add some object to a dictionary for the key, "MyKey"
[someDictionary setObject:someObject forKey: @"MyKey"];
/I Get that same object out

someObject = [someDictionary objectForKey:@"MyKey"];

Here are some more important facts about NSDictionary:

+ Whenever you add an object to a dictionary, the dictionary retains it.
Whenever you remove an object from a dictionary, the dictionary
releases it.

+ There can only be one object for each key. Therefore, if you add an object to a
dictionary and an object is already stored with that key, the new object is
added to the dictionary and the previous one is removed.

+ If you want to associate multiple objects with one key, you can add them to the
dictionary as an array.

« An NSDictionary is useful when you want to name the entries within a
collection. In other development environments, this is called a hash map or
hash table (Figure 13.2).Figure 13.2. NSDictionary diagram

Open ImageCache.m and add the following methods to save and retrieve images
from a dictionary:

- (id)init

{
[super init];
dictionary = [[NSMutableDictionary alloc] init];
return self;

}

#pragma mark Accessing the cache

- (void)setimage:(Ulimage *)i forKey:(NSString *)s
{

[dictionary setObject:i forKey:s];

}

- (Ullmage *)imageForKey:(NSString *)s
{

return [dictionary objectForKey:s];

Page 221

Chapter 13. Camera And UllmagePickerController

}

- (void)deletelmageForKey:(NSString *)s
{

[dictionary removeObjectForKey:s];

}

Note that there is no dealloc method because the cache itself will live for the
entire life of the application.

Singletons

Note that there will be exactly one instance of ImageCache that will hold all the
images and be accessible to all the controllers in the application. We call this a
singleton. A singleton is a class that can only be instantiated once. (You've already
used a singleton: UlAccelerometer.) The instance of a singleton class often
represents a single resource that must be shared by many objects. Singletons
also might contain instance variables that act as global variables without the
possibility of a namespace collision.

Add a static variable in ImageCache.m that will hold on to the single instance:

#import "ImageCache.h"
static ImageCache *sharedimageCache;
@implementation ImageCache

(Some object-oriented languages have class variables. Static variables declared
in the .m file serve the same purpose for Objective-C programmers.)

Now make it impossible to decrement the retain count of that instance or create
another instance. Add the following methods to ImageCache.m:

#pragma mark Singleton stuff

+ (ImageCache *)sharedimageCache

{

if ('sharedlmageCache) {
sharedlmageCache = [[ImageCache alloc] init];

}

return sharedimageCache;

Page 222

Chapter 13. Camera And UlimagePickerController

}

+ (id)allocWithZone:(NSZone *)zone
{
if ('sharedimageCache) {
sharedimageCache = [super allocWithZone:zone];
return sharedimageCache;
} else {
return nil;
}
}

- (id)copyWithZone:(NSZone *)zone
{

return self;

}

- (void)release

{
// No op

}
@end

Displaying Images and UllmageView

Once you have an image cache, you’ll want to get images from it to display using
the ltemDetailViewController. An easy way to display an image is to put an
instance of UllmageView on the window. Open ItemDetailViewController.h and
add an outlet for an image view:

@interface ltemDetailViewController : UIViewController

{

IBOutlet UllmageView *imageView;

Save ItemDetailViewController.h or Interface Builder won’t recognize the
changes.

As a new subview of ItemDetailViewController’s view that is instantiated by
loading a XIB file, imageView needs to be released and its pointer cleared in
viewDidUnload. Make the following changes to ltemDetailViewController.m.

Page 223

Chapter 13. Camera And UllmagePickerController

- (void)viewDidUnload

{

[super viewDidUnload];

[nameField release];
nameField = nil;

[serialNumberField release];
serialNumberField = nil;

[valueField release];
valueField = nil;

[dateLabel release];
datelLabel = nil;

[imageView release];
imageView = nil;

}

Also release the image view in dealloc:

- (void)dealloc

{
[nameField release];
[serialNumberField release];
[valueField release];
[dateLabel release];
[imageView release];
[super dealloc];

}

Open ItemDetailViewController.xib. Double-click on the View instance
in the doc window and drag a UllmageView onto it. The interface of
ItemDetailViewController should look like Figure 13.3.

Page 224

Chapter 13. Camera And UllmagePickerController

Figure 13.3. ItemDetailViewController’s interface with a UllmageView

Name

Serial Number

~

The UllmageView will display an image according to its contentMode

property. This property determines where to position and how to resize the
content of a view within its frame. The default value for contentMode is
UlViewContentModeCenter, which centers but does not appropriately resize the
content to fit within the bounds of the view. If you keep the default, the large image
produced by the camera takes up most of the screen.

To change the contentMode of the image view so that it resizes the image,

Page 225

Chapter 13. Camera And UllmagePickerController

select the UllmageView and open the Inspector window to the first tab, Attributes.
Change the popup button titled Mode to Aspect Fit as shown in Figure 13.4. This
will resize the image to fit within the bounds of the UllmageView.

Figure 13.4. Image view attributes

Ml Image View Attributes
= | © | ¢ | @

¥ Image View

Image ﬁ
¥ View

Mode | Aspect Fit |--H
Alpha — [1.00] @
Background El

Tag 0

Drawing "] Opague [Hidden

["] Clear Context Before Drawing

[Clip Subviews

E Autoresize Subviews
Interaction [| User Interaction Enabled

[7] Multiple Touch

4

Finally, make the connection from File’s Owner to the UllmageView, selecting
imageView as the outlet. (Remember, anything you can do in Interface
Builder can be done in code; to change the contentMode a UlilmageView
programmatically, you would send it the message setContentMode:.)

Before exiting Interface Builder, find the UlTextFields that display Possession
instance variables and hook up their delegate outlets to the File’s Owner
object. This is necessary because you’re going to implement a method from
the UlTextFieldDelegate protocol in temDetailViewController.m later in this
chapter. Save the XIB file and quit Interface Builder.

Page 226

Chapter 13. Camera And UlimagePickerController

Taking pictures and UllmagePickerController

Now you need a button to initiate the photo-taking process. There is plenty of
room on the UINavigationBar to add a UlBarButtonltem. UlBarButtonltems
have a few stock icons they can display including a camera icon. Create

a bar button item with a camera icon and add it to right slot of the
ItemDetailViewController’s navigationltem. You also need to instantiate the
imageCache instance variable. In temDetailViewController.m, replace the
method init to make these changes:

- (id)init
{

[super initWithNibName:@" ltemDetailViewController" bundle:nil];

// Create a UlBarButtonltem with a camera icon, will send
// takePicture: to our IltemDetailViewController when tapped
UlBarButtonltem *cameraBarButtonltem =
[[UIBarButtonltem alloc]
initWithBarButtonSystemltem:UIBarButtonSystemitemCamera
target:self
action:@selector(takePicture:)];

// Place this image on our navigation bar when this viewcontroller
// is on top of the navigation stack
[[self navigationltem] setRightBarButtonltem:cameraBarButtonltem];

// cameraBarButton is retained by the navigation item
[cameraBarButtonltem release];
return self;

}

When this button is tapped, it sends the message takePicture: to the
instance of ItemDetailViewController. This method will create an instance of

UlimagePickerController, if one has not yet been created, and then present it on
the screen.

Page 227

Chapter 13. Camera And UllmagePickerController

Figure 13.5. Interface with camera button

- Homepwner

- Rusty Bear

Serial Number

- N

| 6Z9A7 62

Dec 28, 2009

When creating an instance of UllmagePickerController, you must set its
sourceType property. The sourceType is a constant that tells the image picker
where to get the images. There are three possible values:

* UlimagePickerControllerSourceTypeCamera The image picker will allow the
user to take a new picture.

» UllmagePickerControllerSourceTypePhotoLibrary The user will be prompted
to select an album and then a photo from that album.

» UllmagePickerControllerSourceTypeSavedPhotosAlbum The user picks
from the most recently taken photos.

Page 228

Chapter 13. Camera And UlimagePickerController

Figure 13.6 shows the results of using each constant.

Figure 13.6. UllmagePickerControllerTypes

Camera PhotoLibrary SavedPhotoAlbums
==

E l Camera Roll S

The first source type, UllmagePickerControllerSourceTypeCamera, won’t
work on a device that doesn’t have a camera. So you have to check for device
support before using this type by sending the UllmagePickerController

class methodisSourceTypeAvailable:. When you send this message to the
UllmagePickerController class with one of the image picking constants, you are
returned a boolean value for whether the device supports that source type.

In addition to a source type, the UllmagePickerController also needs a
delegate to handle requests from its view. When the user taps Use button on
UlimagePickerController’s interface, the delegate is sent the messageimag
ePickerController:didFinishPickingMediaWithinfo:. (The delegate receives
another message — imagePickerControllerDidCancel: — if the process was
cancelled.)

Once the UllmagePickerController has a source type and a delegate, it’s time
to put its view on the screen. Unlike other UlViewController subclasses you've
used before, UllmagePickerControllers are presented modally. When a view
controller is modal, it takes over the entire screen until it has finished its work. (On
the desktop, modal windows are windows that cannot be dismissed until a specific
task is completed.) To present a view modally, presentModalViewController:an
imated: is sent to the UlIViewController whose view is on the screen. The view

Page 229

Chapter 13. Camera And UllmagePickerController

controller to be presented is passed to it, and its view slides up from the bottom of
the screen.

Implement the method takePicture: in ltemDetailViewController.m to create,
configure, and present the UllmagePickerController.

- (void)takePicture:(id)sender
{
UllimagePickerController *imagePicker =
[[UllmagePickerController alloc] init];

// If our device has a camera, we want to take a picture, otherwise, we
// just pick from photo library
if ((UllmagePickerController
isSourceTypeAvailable:UlimagePickerControllerSourceTypeCamera])
{
[imagePicker setSourceType:UlimagePickerControllerSourceTypeCame
ra;
} else {
[imagePicker setSourceType:UlimagePickerControllerSourceTypePhoto
Library];
}
// image picker needs a delegate so we can respond to its messages
[imagePicker setDelegate:self];

// Place image picker on the screen
[self presentModalViewController:imagePicker animated:YES];

// The image picker will be retained by ItemDetailViewController
// until it has been dismissed
[imagePicker release];

}

Build and run the application on your device. Navigate to the
ItemDetailViewController and tap the camera button on the UINavigationBar.
UllimagePickerController’s interface will appear on the screen, and you can
take a picture (or choose an existing image if you’re developing on a device

that doesn’t have a camera). Tapping the Use Photo button will dismiss the
UlimagePickerController. But, wait! — you don’t yet have a reference to the
image anywhere in the code. You need to implement the delegate method image

Page 230

Chapter 13. Camera And UlimagePickerController

PickerController:didFinishPickingMediaWithinfo: in ltemDetailViewController
to hold on to the selected image.

Figure 13.7. UllmagePickerController preview interface

Preview

Before you implement this method, you have to address the two warnings

that appeared when you last built the application: “ltemDetailViewController
does not conform to the UllmagePickerControllerDelegate or
UINavigationControllerDelegate protocol.” In ltemDetailViewController.h, add
the protocols to the class declaration. (Why UINavigationControllerDelegate?
UllmagePickerController is a subclass of UINavigationController.)

@interface ltemDetailViewController : UlViewController
<UINavigationControllerDelegate, UllmagePickerControllerDelegate>

{

Page 231

Chapter 13. Camera And UllmagePickerController

When the Use Photo button is tapped, the message imagePickerController:di
dFinishPickingMediaWithInfo: will be sent to its delegate. In this method, put
the image into the UllmageView you created earlier. Implement this method in
ItemDetailViewController.m.

- (void)imagePickerController:(UllmagePickerController *)picker
didFinishPickingMediaWithinfo:(NSDictionary *)info
{

// Get picked image from info dictionary

Ullimage *image = [info objectForKey:UllmagePickerControllerOriginallma

gel;

// Put that image onto the screen in our image view
[imageView setimage:image];

// Take image picker off the screen -
// you must call this dismiss method
[self dismissModalViewControllerAnimated:YES];

Build and run the application again. Take a photo and tap the Use Photo button.
After the image picker slides off the screen, you will see a scaled version of the
image in the UllmageView. That’s great, but, if you choose another possession,
you will see the same image. You need a way to identify individual images and tie
them to specific possessions.

Creating and using keys

How can a Possession know which photo in the cache is its very own? Because
you’re using a dictionary as the image cache, a Possession only needs to know
the key for its image to find the right one in the cache. Add an instance variable to
Possession.h to store the key.

NSDate *dateCreated;

NSString *imageKey;
¥
@property (nonatomic, copy) NSString *imageKey;
Synthesize this new property in the implementation file.
@implementation Possession
@synthesize imageKey;

Page 232

Chapter 13. Camera And UlimagePickerController

You also need to release this object when a Possession is deallocated. Add this
code to Possession.m.

- (void)dealloc

{

[imageKey release];

The image keys need to be unique in order for your dictionary to work. While
there are many ways to hack together a unique string, Cocoa Touch has a
mechanism for creating universally unique identifiers (UUIDs), also known as
globally unique identifiers (GUIDs). Objects of type CFUUIDRef can represent
a UUID and are generated using the time, a counter, and a hardware identifier,
usually the MAC address of the ethernet card.

However, CFUUIDRef is not an Objective-C object; it is a C structure and part of
the Core Foundation API. Core Foundation is a C API that is already included in
the template projects and contains the building blocks for applications including
strings, arrays, and dictionaries. Core Foundation “classes” are prefixed with CF
and suffixed with Ref. Other examples include CFArrayRef and CFStringRef.
Many objects in Core Foundation have an Objective-C counterpart, and NSString
is the Objective-C version of CFStringRef. However, CFUUIDRef does not have
an Objective-C counterpart and knows nothing at all about Objective-C. Thus,
when it produces a UUID as a string, that string cannot be an NSString — it must
be a CFStringRef.

Recall that your instance variable for the image key is of type NSString. Do you
have to change it to CFStringRef? Nope. Many Core Foundation objects can
simply be typecast as their Objective-C counterpart. Here’s an example:

// Create an instance of a CFStringRef
CFStringRef someString = CFSTR("String");

// Turn it in to an NSString

NSString *coolerString = (NSString *)someString;

We call this toll-free bridging. (And it works because the structures in memory are
equivalent. How smart is that?)

Now, in ltemDetailViewController.m, make changes to imagePickerControll
er:didFinishPickingMediaWithInfo: to create and use a key for a possession
image.

Page 233

Chapter 13. Camera And UllmagePickerController

- (void)imagePickerController:(UllmagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info

{
NSString *oldKey = [editingPossession imageKey];

// Did the possession already have an image?
if (oldKey) {
// Delete the old image
[[ImageCache sharedimageCache] deleteimageForKey:oldKey];

}

Ullmage *image = [info objectForKey:UllmagePickerControllerOriginalimage];

// Create a CFUUID object - it knows how to create unique identifiers
CFUUIDRef newUniquelD = CFUUIDCreate (kCFAIllocatorDefault);

// Create a string from unique identifier
CFStringRef newUniquelDString =
CFUUIDCreateString (kCFAllocatorDefault, newUniquelD);

// Use that unique ID to set our possessions imageKey
[editingPossession setimageKey:(NSString *)newUniquelDString];

// We used "Create" in the functions to make objects, we need to release
them

CFRelease(newUniquelDString);

CFRelease(newUniquelD);

// Store image in the ImageCache with this key
[[ImageCache sharedimageCache] setimage:image
forKey:[editingPossession imageKeyl]];

// Put that image on to the screen in our image view
[imageView setimage:image];

// Take image picker off the screen
[self dismissModalViewControllerAnimated:YES];

}
In this method, we call the C functions CFUUIDCreate and CFUUIDCreateString.

Page 234

Chapter 13. Camera And UlimagePickerController

When a C function name contains the word Create, you are responsible for
releasing its memory just as if you had sent the message alloc to a class. To
release a Core Foundation object, you call the function CFRelease with the object
as a parameter.

Fi

gure 13.8. Cache

Possession

possessionName = @ "Red Sofa”
serialNumber = @™14G32"
valuelnDollars = 120
dateCreated = May 17, 2001
imageKey = @"459723AB212"

Possession

possessionName = @ "Blue Bike"
serialNumber = @"432XB12"
valuelnDollars = 254

dateCreated = May 23, 2009
imageKey = @'032012BA298"

Ullmage

ImageCache

NSMutableDictionary |

dictionary

@"032012BA298" — |

@"459723AB212" N R

Ulimage

Now, when ItemDetailViewController’s view appears on the screen, it should
grab an image from the imageCache using the imageKey of the Possession
to be displayed. Then, it should place the image in the UllmageView. Add the
following code to viewWillAppear: in temDetailViewController.m.

- (void)viewWillAppear:(BOOL)animated

{

[super viewWillAppear:animated];

[nameField setText:[editingPossession possessionName]];
[serialNumberField setText:[editingPossession serialNumber]];
[valueField setText:[NSString stringWithFormat: @"%d",

[editingPossession valuelnDollars]]];

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];
[dateFormatter setTimeStyle:NSDateFormatterNoStyle];

Page 235

Chapter 13. Camera And UllmagePickerController

[dateLabel setText:

[dateFormatter stringFromDate:[editingPossession dateCreated]]];

[dateFormatter release];

[[self navigationltem] setTitle:[editingPossession possessionName]];
NSString *imageKey = [editingPossession imageKey];

if (imageKey) {

// Get image for image key from image cache
Ulimage *imageToDisplay =

[[ImageCache sharedimageCache] imageForKey:imageKey];

// Use that image to put on the screen in imageView
[imageView setimage:imageToDisplay];
} else {
// Clear the imageView
[imageView setimage:nil];
}
}

Notice that if no image exists in the cache for that key (or there is no key for that
possession), the pointer to the image will be nil and that UllmageView just won’t

display an image.

Make sure to import the header file that contains the ImageCache class
declaration at the top of ItemDetailViewController.m.

#import "ImageCache.h"
@implementation ItemDetailViewController

Build and run the application. Select the first row of the UlTableView and tap
the camera button. After taking a picture, return to the list of possessions, tap a

Page 236

Chapter 13. Camera And UlimagePickerController

different row, and take another picture. Now verify that the appropriate image is
displayed for each possession.

Dismissing the Keyboard

When the keyboard appears on the screen in the possession detail view, it
obscures ItemDetailViewController’s imageView. Because this is annoying
when you’re trying to see an image, the user may want to get rid of the keyboard.
You’re going to allow the user to dismiss the keyboard by implementing the
delegate method textFieldShouldReturn: in ItemDetailViewController.m. (This
is why you hooked up the delegate outlets earlier in the chapter.)

- (BOOL)textFieldShouldReturn:(UITextField *)textField
{

[textField resignFirstResponder];

return YES;

}

However, it would also be stylish to dismiss the keyboard automatically when the
user taps the camera button. In order to dismiss the keyboard, you must send the
message resignFirstResponder to the first responder.

Unfortunately, when the camera button is tapped, you don’t know which
UlTextField in the detail view is currently the first responder. While you could
send resignFirstResponder to every UlTextField, it’s easier to let UlView do it.
UlViewimplements an endEditing: method that will send resignFirstResponder
to all of its subviews. In ItemDetailViewController.m, send this message to
ItemDetailViewController’s view when the camera button is tapped.

- (void)takePicture:(id)sender

{
[[self view] endEditing:YES];

UllmagePickerController *imagePicker = [[UlImagePickerController alloc] init];

if ((UllmagePickerController
isSourceTypeAvailable:UlimagePickerControllerSource TypeCamera]) {
[imagePicker setSourceType:UllmagePickerControllerSource TypeCamera];
}else {
[imagePicker
setSourceType:UllmagePickerControllerSource TypePhotoLibrary];

Page 237

Chapter 13. Camera And UllmagePickerController

}

[imagePicker setDelegate:self];
[self presentModalViewController:imagePicker animated:YES];

[imagePicker release];

}

You've done a lot in this chapter with Homepwner: accessed the camera, created
an image cache, stored images in the cache, and tied them to possessions

with unique identifiers. In the next chapter, you’ll learn more about the nuts and
bolts of saving and loading data in an iPhone application and add that ability to
Homepwner.

Challenge: Removing an Image
Add a button that clears the image for a possession.
For the More Curious: Recording Video

Once you understand how to use UllmagePickerController to take pictures,
making the transition to recording video is trivial. Recall that an image picker
controller has a sourceType property that determines whether an image comes
from the camera, photo library, or saved photos album. Image picker controllers
also have a mediaTypes property, an array of strings that contains identifiers for
what types of media can be selected from the three source types.

There are two types of media a UllmagePickerController can select: still images
and video. By default, the mediaTypes array only contains the constant string
kUTTypelmage. Thus, if you do not change the mediaTypes property of an
image picker controller, the camera will only allow the user to take still photos, and
the photo library and saved photos album will only display images.

Adding the ability to record video or choose a video from the disk is as simple as
adding the constant string kUTTypeMovie to the mediaTypes array. However,

not all devices support video through the UllmagePickerController. Just like the
class method is SourceTypeAvailable: allows you to determine if the device has

Page 238

Chapter 13. Camera And UlimagePickerController

a camera, the availableMediaTypesForSourceType: method is for checking
if that camera can capture video. To set up an image picker controller that can
record video or take still images, you would write the following code:

UllmagePickerController *ipc = [[UlImagePickerController alloc] init];

NSArray *availableTypes = [UlImagePickerController availableMediaTypes
ForSourceType:UlimagePickerControllerSourceTypeCameral;

[ipc setMediaTypes:availableTypes];

lipc setSourceType:UlimagePickerControllerSourceTypeCameral;

[ipc setDelegate:self];

Now, when this image picker controller interface is presented to the user, there
will be a switch that allows them to choose between the still image camera or the
video recorder. If the user chooses to record a video, you need to handle that in
the UllmagePickerController delegate method imagePickerController:didFin
ishPickingMediaWithinfo:. When dealing with images, the info dictionary that
is passed as an argument to this method contains the full image as a Ullmage
object.

However, there is no “UlVideo” class (loading an entire video into memory at once
would be tough to do with the iPhone’s memory constraints). Therefore, recorded
video is written to disk in a temporary directory. When the user finalizes the video
recording, imagePickerController:didFinishPickingMediaWithinfo: is sent to
the image picker controller’s delegate, and the path of the video on the disk will
be in the info dictionary. You can get the path in the delegate method like so:

- (void)imagePickerController:(UllmagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info

{
NSURL *mediaURL = [info objectForKey:UllmagePickerControllerMediaURL];

}

While we will talk about the filesystem in the next chapter in depth, what you
should know now is that the temporary directory is not a safe place to store the
video. It needs to be moved to another location.

- (void)imagePickerController:(UllmagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
NSURL *mediaURL = [info objectForKey:UllmagePickerControllerMediaURL];
if (mediaURL) {

Page 239

Chapter 13. Camera And UllmagePickerController

/I Make sure this device supports videos in its photo album
if (UIVideoAtPathlsCompatibleWithSavedPhotosAlbum([mediaURL path])) {

// Save the video to the photos album
UlSaveVideoAtPathToSavedPhotosAlbum([mediaURL path], nil, nil, nil);

/I Remove the video from the temporary directory it was saved at
[[NSFileManager defaultManager] removeltemAtPath:[mediaURL path]
error:nil];

That is really all there is to it. There is just one situation that requires some
additional information: suppose you want to restrict the user to choosing only
videos. Restricting the user to images only is simple (leave mediaTypes as the
default). Allowing the user to choose between images and videos is just as simple
(pass the return value from availableMediaTypesForSourceType:). However, to
allow video only, you have to jump through a few hoops. First, you must makes
sure the device supports video and then set the mediaTypes property to an array
containing the identifier for video only.

NSArray *availableTypes =
[UlimagePickerController availableMedia
TypesForSourceType:UllmagePickerControllerSource TypeCameral;

if(favailableTypes containsObject:(NSString *)kUT TypeMovie])
[ipc setMediaTypes:[NSArray arrayWithObject:(NSString *)kUTTypeMovie]];

If you build this code it will fail, and Xcode will complain about not knowing what
kUTTypeMovie is. Oddly enough, both kUTTypeMovie and kUTTypelmage are
declared and defined in another framework — MobileCoreServices. You will have
to explicitly add this framework and import its header file into your project to use
these two constants.

You might also wonder why kUTTypeMovie is cast to an NSString. This constant
is declared as:

Page 240

Chapter 13. Camera And UlimagePickerController

const CFStringRef kUTTypeVideo;

A CFStringRef is the standard string type in Core Foundation. Core Foundation
is another API that is a bit lower-level than Cocoa Touch. Core Foundation
technically doesn’t know anything about Objective-C — it is a C APIl. Some bits of
the iPhone SDK, like this constant, use Core Foundation and C instead of Cocoa
Touch and Objective-C.

The string pointed to by kUTTypeMovie is of type CFStringRef. Two methods

in this code snippet (containsObject: and arrayWithObject:) want Objective-C
objects as arguments — not a Core Foundation C object. To fix this problem,

some Core Foundation objects are toll-free bridged with Cocoa Touch objects. A
toll-free bridged object can be cast back and forth between its Core Foundation
and Cocoa Touch counterpart. Underneath the hood, the objects are essentially
the same and by casting them, the compiler won’t complain that an object is the
wrong type. CFStringRef and NSString are toll-free bridged. Note that casting an
object changes nothing about it — only the compiler cares about this detail.

Page 241

Chapter 14. Saving and Loading

Chapter 14. Saving and Loading

On iPhone OS, every application has its own application sandbox. An application
sandbox is a directory on the filesystem that is barricaded from the rest of the
filesystem. Your application must stay in its sandbox, and no other application can
access its sandbox.

Application Sandbox

Figure 14.1. Application sandbox

;2'1 Application 15 11 ||
> E_ Documents -‘—u;.;kup.—p

v [l Library
> — Caches
— B
> || Preferences e Buckup w—] iTunes

[ﬁtmp

The application sandbox has a number of directories, and each of them has a
different use.

Application bundle This directory contains all the
resources and the executable. It is
read-only.

Library/Preferences/ This directory is where any

preferences are stored and where
the Settings application will look

for application preferences.Library/
Preferences is handled automatically
by the class NSUserDefaults (which
you will learn about in Chapter 25)
and is backed up when the device is
synchronized with iTunes.

Page 242

Chapter 14. Saving and Loading

tmp/ directory

Documents/

This directory is where you write data
that you will use temporarily during

an application’s runtime. You should
remove files from this directory when
done with them, but the operating
system may purge them while your
application is not running. It does

not get backed up when the device

is synchronized with iTunes. The
convenience function for getting

the path to the tmp directory in the
application sandbox is:

NSString *tmpDirectory =
NSTemporaryDirectory();

This directory is where you write

data that the application generates
during runtime that you want to persist
between runs of the application.

It is backed up when the device is
synchronized with iTunes. If something
goes wrong with the device, files in this
directory can be restored from iTunes.
For example, if you were writing a
game, the saved game files would be
stored here.

Page 243

Chapter 14. Saving and Loading

Library/Caches/ This directory is where you write
data that the application generates
during runtime that you want
to persist between runs of the
application. However, unlike the
Documentsdirectory, it does not
get backed up when the device is
synchronized with iTunes. A major
reason for not backing up cached data
is that the data can be very large and
extend the time it takes to synchronize
your device. Data stored somewhere
else — like a web server — can be
placed in this directory. If the user
ever needs to restore the device, this
data can be downloaded from the web
server again.

To get the full path for one of these directories in the sandbox, you use the C
function NSSearchPathForDirectoriesinDomains. This function takes three
parameters: the type of directory, the domain mask, and a boolean value that
decides if it should expand a tilde (~) if one exists in the path. The last two
parameters are always the same on the iPhone: NSUserDomainMask and YES.
The first parameter is an NSSearchPathDirectory constant. For example, if you
wanted to get the Documents directory for an application, you would call the
function as follows:

NSArray *documentPaths =
NSSearchPathForDirectoriesinDomains(NSDocumentDirectory,
NSUserDomainMask, YES);

NSString *ourDocumentPath = [documentPaths objectAtindex:0];

The function returns an NSArray because this function comes from Mac OS X
where there could be multiple directories for the parameters. On the iPhone,
however, there is only one directory for the possible constants, and it is safe to
grab the firstNSString from the array.

You can also get the path for the sandbox itself and navigate within it using the
function NSHomeDirectory.

Page 244

Chapter 14. Saving and Loading

NSString *sandboxPath = NSHomeDirectory();

/I Once you have the full sandbox path, you can create a path from it

NSString *documentPath = [sandboxPath
stringByAppendingPathComponent:@"Documents"];

However, you cannot write files or create directories at the root-level of the
sandbox (the path returned by the NSHomeDirectory function). Any new
directories or files must be created within one of the writable directories in the
sandbox: Documents,Library, or tmp.

Armed with these functions, you can read and write to the appropriate directories
within the application sandbox.

Archiving

There are many ways to write data to the disk on the iPhone, and one of the most
important is called archiving. Archiving is handled by the NSCoding protocol

and its two required methods: encodeWithCoder: and initWithCoder:. You can
implement these two methods in any class, and instances of that class will know
how to save and load themselves from disk. Therefore, when a class conforms to
the NSCoding protocol, it can be archived and later reloaded into an application.
(In fact, this is exactly what a XIB file is — a bunch of archived objects.)

In this chapter, you will make Possession instances in Homepwner conform to
the NSCoding protocol. These possessions will then persist between runs of the
application. Open Homepwner.xcodeproj.

Implementing the two NSCoding methods is easy. First, declare that Possession
conforms to NSCoding. In Possession.h, declare the protocol in the interface
declaration.

@interface Possession : NSObject <NSCoding>

When an object needs to be archived, it is sent the message encodeWithCoder:.
An NSCoder instance is passed to the object, and all of the instance variables
are encoded into it. If any of those instance variables are objects, those objects
are then told to encodeWithCoder:. So archiving is a recursive process that
starts at one object that encodes his friends, and they encode their friends, and
so on. Thus, you can only encode supported primitives like int and objects that
conform to the NSCoding protocol. This is because these objects are also sent
encodeWithCoder: as shown in Figure 14.2.

Page 245

Chapter 14. Saving and Loading

Figure 14.2. Encoding an object

NSDate
7
en cudeﬂlthﬂuaer:
e NSString
- - i - e
Possession | = __ encodeWithCoder:
R— "
————— encodeWithCoder: e
* encodeWithCoder: NSString
[~ e
encudeW[jh Coder:
i NSString
~a

Implement encodeWithCoder: in Possession.m.

- (void)encodeWithCoder:(NSCoder *)encoder

{
// For each instance variable, archive it under its variable name
[encoder encodeObject:possessionName forKey:@"possessionName"];
[encoder encodeObject:serialNumber forKey:@"serialNumber"];
[encoder encodelnt:valuelnDollars forKey:@"valuelnDollars"];
[encoder encodeObject:dateCreated forKey:@"dateCreated"];
[encoder encodeObject:imageKey forKey: @"imageKey"];

}

So what exactly is this NSCoder instance? It is an abstract superclass for
different types of data transfers. On the iPhone, NSCoder has only one available
concrete subclass: NSKeyedArchiver. (Desktop Cocoa has two more options.)
A NSKeyedArchiver knows how transfer data from disk to RAM and vice versa.
NSKeyedArchiver instances work a lot like an NSMutableDictionary; you add
an object to it with a key. When you want that object back, you use the key to
retrieve it. Typically, you use the name of the instance variable you are encoding
as the key.

To unarchive an instance of Possession, you allocate a Possession instance
and send it the message initWithCoder:. This method will use the keys to
decode the same objects you encoded with encodeWithCoder:. Implement

Page 246

Chapter 14. Saving and Loading

initWithCoder: in Possession.m.

- (id)initWithCoder:(NSCoder *)decoder
{

[super init];

// For each instance variable that is archived, we decode it,

// and pass it to our setters. (Where it is retained)

[self setPossessionName:[decoder decodeObjectForKey:@"possessionN
ame"]];

[self setSerialNumber:[decoder decodeObjectForKey:@"serialNumber"]];

[self setValuelnDollars:[decoder decodelntForKey:@" valuelnDollars"]];

[self setimageKey:[decoder decodeObjectForKey:@"imageKey"1];

// dateCreated is read only, we have no setter. We explicitly
// retain it and set our instance variable pointer to it
dateCreated = [[decoder decodeObjectForKey:@" dateCreated"] retain];

return self;

Build your application to check for any syntax errors. Your application should run
the same as before.

Note that initWithCoder: does not replace the other initialization methods. If you
wish to create a Possession in code, you use the other initialization methods. If
you want to create an instance from an archive, you use initWithCoder:.

You actually don’t create an NSCoder explicitly; instead NSKeyedArchiver
creates it for you and sends the appropriate messages to your Possession
instances. In fact, you never invoke initWithCoder: or encodeWithCoder: on
your own;NSKeyedArchiver handles these methods.

Here’s where it gets fun. You’ve implemented these two methods, and now the
Possession class conforms to the NSCoding protocol. Not only can Possession
instances be written to a file by itself, but other objects that contain Possession
instances can also be written to a file.

What object in your code contains Possession instances? The possessions
array in ltemsViewController. Its type, NSMutableArray, also conforms to

Page 247

Chapter 14. Saving and Loading

NSCoding. Because the array and its contents conform to NSCoding, you can
simply archive the entire array and unarchive it the next time the application
launches. Brilliant!

To archive this array, you need to have a path on the filesystem to write to. You
will create a function that will return the full path of a file in the Documents
directory. This function will not be part of an Objective-C class but a stand-alone

C function. You are going to want to use this function many different places, so
create a separate file for it. From the New File... window, select C and C++ from
underneath the Mac OS X group. Choose C File from the template list as shown in
Figure 14.3. Name this file FileHelpers.m. (Make sure to change the file suffix to

.m!)

Choose a template for your new file:

Figure 14.3. Creating a C file

” iPhone OS5

Cocoa Touch Class
Code Signing
Resource

User Interface

‘:_,JMacDSx

AppleScript

Carbon

Cocoa

Interface Builder SDK
Pure Java

Pure Python

Ruby

Sync Services

Cancel

T

£
| -

PRI

<

C File

C++ File

Y e

Cr+ h

Header File

Description A C file, with an optional header file.

[Previous |

o)

Page 248

Chapter 14. Saving and Loading

Open FileHelpers.h, import the header file from UIKit, and declare this new
function.

#import <UIKit/UIKit.h>

NSString *pathInDocumentDirectory(NSString *fileName);

In FileHelpers.m, define the following function. To use this function, you pass it a
file name, and it will construct the full path for that file in the Documents directory.

NSString *pathiInDocumentDirectory(NSString *fileName)
{
// Get list of document directories in sandbox
NSArray *documentDirectories =
NSSearchPathForDirectoriesinDomains(NSDocumentDirectory,
NSUserDomainMask, YES);

// Get one and only document directory from that list
NSString *documentDirectory = [documentDirectories objectAtindex:0];

// Append passed in file name to that directory, return it
return [documentDirectory stringByAppendingPathComponent:fileName];

}

You want to load all of the Possession instances when the application launches
and then save them all when the application terminates. The object that receives
messages for these two events is HomepwnerAppDelegate. You are going

to create the possessions array when the application launches and pass it to

ItemsViewController. Change the interface of HomepwnerAppDelegate to the
following:

@interface HomepwnerAppDelegate : NSObject <UIApplicationDelegate>
{

UIWindow *window;

ltemsViewController *itemsViewController;
}
- (NSString *)possessionArrayPath;

@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

Page 249

Chapter 14. Saving and Loading

The method possessionArrayPath will return the full path to where you will save
the possessions array. Implement that method in HomepwnerAppDelegate.m.

- (NSString *)possessionArrayPath
{

return pathiInDocumentDirectory(@"Possessions.data");

}

Because HomepwnerAppDelegate.m uses pathiInDocumentDirectory, it

must import the header file that this function was declared in. You could import
FileHelpers.h at the top of HomepwnerAppDelegate.m, but you are going to
use this function in other files, too. You would then have to import this file in every
file that used pathInDocumentDirectory. Wouldn't it be great if you could tell the
compiler, “Import FileHelpers.h into ALL of my files.”? Well, you can.

Every project has a prefix file, and any declarations or compiler directives in this
file are prefixed to all of your source code. Open the prefix file for this project,
Homepwner_Prefix.pch (pch stands for precompiled header). In this file, import
FileHelpers.h.

#ifdef __ OBJC__
#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h>
#import "FileHelpers.h"

#endif

In application:didFinishLaunchingWithOptions:, you will unarchive

all of the possession instances. To do this, you will use the class method
unarchiveObjectWithFile: of NSKeyedUnarchiver. By passing it a path, the
contents at that path are unarchived by reading the data, creating the archived
objects, and sending initWithCoder: to each of them. Replace the code for ap
plication:didFinishLaunchingWithOptions: in HomepwnerAppDelegate.m.
(Because there are subtle changes to the previous lines of code in this method,
replace the whole thing — don’t try and edit it!)

- (BOOL)application:(UlApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
// Get the full path of our possession archive file
NSString *possessionPath = [self possessionArrayPath];

Page 250

Chapter 14. Saving and Loading

// Unarchive it into an array
NSMutableArray *possessionArray =
[NSKeyedUnarchiver unarchiveObjectWithFile:possessionPath];

// If the file did not exist, our possession array will not either
// Create one in its absence.
if (lpossessionArray)

possessionArray = [NSMutableArray array];

// Create an instance of ItemsViewController
itemsViewController = [[ItemsViewController alloc] init];

// Give it the possessionArray
[itemsViewController setPossessions:possessionArray];

// Push it onto the navController's stack
UINavigationController *navController = [[UINavigationController alloc]
initWithRootViewController:itemsViewController];

// Place navigation controller's view into window hierarchy
[window addSubview:[navController view]];

[window makeKeyAndVisible];

return YES;

}

Notice that you create an empty NSMutableArray if nothing was returned from
unarchiving the data at possessionPath. This is important because the first

time the application launches, there won’t be any data at that path, and nil will

be returned from unarchiveObjectWithFile:. You must create an empty array if
this happens so that you can add Possessions to it during execution. (You will
implement the method that does this, setPossessions: shortly; ignore it for now.)

When the application terminates, you need to get the possessions array

from the ItemsViewController. (This is why you created the instance variable
for it in HomepwnerAppDelegate — so that you have a pointer to it here.) To
write objects that conform to NSCoding to disk, you will use the class method
archiveRootObject:toFile: of NSKeyedArchiver. When the possessions array
and possessionArrayPath are passed through this method, the array and all of
the Possession instances inside of it are sent the method encodeWithCoder:
and the archive is written to the path (Figure 14.4).

Page 251

Chapter 14. Saving and Loading

Figure 14.4. Archived object

Possession Possession
px ionName = @"Rover" possessionName = @"Rover”
NSMutableArray — | dateCreated = 11/6/2010 NSMutableArray — | dateCreated = 11/6/2010
e Possession 7 B Possession
possessionName = @"Fido" 7 possessionName = @"Fido"
dateCreated = 1/6/2009 e dateCreated = 1/6/2009

N
s ‘
archiveRootObject:toFile: .
! . unarchiveObjectWithFile:
P

N .
N Sandbox ,-”
SA Ll

Possessionl.archive

The UlApplicationDelegate protocol has a method that you can implement to
perform tasks right before the application terminates. Implement that method in
HomepwnerAppDelegate.m.

- (void)applicationWillTerminate:(UlApplication *)application
{

// Get full path of possession archive

NSString *possessionPath = [self possessionArrayPath];

// Get the possession list
NSMutableArray *possessionArray = [itemsViewController possessions];

// Archive possession list to file
[NSKeyedArchiver archiveRootObject:possessionArray
toFile:possessionPath];

}

Let’s review what you have done so far. When the application launches, it creates
an NSMutableArray (either by unarchiving one from disk or by making a brand
new one) and passes it to temsViewController. temsViewController uses the
array as its possessions instance. When the application terminates, you grab
that array back from IltemsViewController and write it to disk. Simple enough,
right? Now in IltemsViewController.h, declare a new property.

}

Page 252

Chapter 14. Saving and Loading

@property (nonatomic, retain) NSMutableArray *possessions;
@end

Synthesize this property in the implementation file.

@implementation ItemsViewController
@synthesize possessions;

The @synthesize directive will implement the two new messages
(setPossessions: and possessions) you are sending to ltemsViewController
in HomepwnerAppDelegate. Now that your data can persist between

runs of the application, you will no longer fill the possessions array with
random possessions. Remove the following code in the init method in
ItemsViewController.m.

/l Delete this stuff!
possessions = [[NSMutableArray alloc] init];
for(inti=0;i<10; i++) {

[possessions addObject:[Possession randomPossession]];

}

Build and run the application. There will be an empty table on the screen. Add
some possessions using the Edit button. Play with some of the values of the
Possessions and exit the application. (If you are using the simulator to run this
application, you must click the Home button on the simulator window for the
application to exit properly and archive the possessions. Quitting the simulator
or stopping execution in Xcode will not properly exit the application.) Reopen the
application, and your possessions will be there. So far, so good. However, you
still have to write out the possession images to disk.

Writing to Disk with NSData

The images for Possession instances are created by user interaction and are
only stored within the application. Therefore, the Documents directory is the best
choice to store them. Let’s extend the image cache to save images as they are
added and fetch them as they are needed. You can use the image key generated
when the user takes a picture to name the image in the file system.

In this section, you are going to copy the JPEG representation of an image into
a buffer in memory. Instead of just malloc’ing a buffer, Objective-C programmers
have found it handy to have an object to create, maintain, and destroy these sorts

Page 253

Chapter 14. Saving and Loading

of buffers. Thus, NSData instances hold some number of bytes of binary data, and
you’ll use NSData in this exercise.

Open ImageCache.m and extend the setimage:forKey: method to write a JPEG
of the image to the Documents directory.

- (void)setimage:(Ulimage *)i forKey:(NSString *)s
{

/[Put it in the dictionary

[dictionary setObiject:i forKey:s];

// Create full path for image
NSString *imagePath = pathinDocumentDirectory(s);

// Turn image into JPEG data,
NSData *d = UllmageJPEGRepresentation(i, 0.5);

// Write it to full path
[d writeToFile:imagePath atomically:YES];

}

When an image is deleted from the cache, make sure to delete it from the
filesystem:

- (void)deletelmageForKey:(NSString *)s
{
[dictionary removeObjectForKey:s];
NSString *path = pathiInDocumentDirectory(s);
[[NSFileManager defaultManager] removeltemAtPath:path error:nil];

}

The function UllmageJPEGRepresentation takes two parameters, a Ullmage
and a compression quality. The compression quality is a float from 0 to 1, where

1 is the highest quality. The function returns an instance of NSData, a wrapper for
a buffer of bytes. This NSData instance can be written to disk by sending it the
message writeToFile:atomically:. The bytes held in this NSData instance are
then written to the path of the first parameter. The second parameter, atomically,
is a boolean value. If it is YES, the file is written to a temporary place on the disk,
and, once the writing operation is complete, that file is renamed to the path of the
first parameter, replacing any previously existing file. This prevents data corruption
should your application crash during the write procedure.

Page 254

Chapter 14. Saving and Loading

It is worth noting that the way you are writing the image data to disk is not
archiving. While NSData instances can be archived, using the method
writeToFile:atomically: is a binary write to disk. Other classes, like NSString,
have similar methods, and those are not archiving either. When an NSString is
written to disk by sending it the message writeToFile:atomically:encoding:err
or:, the data written is a text file. These methods are useful when you are saving
binary or text data to the disk.

Now when the user takes a picture, the image is stored to disk, and
ImageCache will need to load that image when it is requested. The class method
imageWithContentsOfFile: of Ullmage will read in an image from a file, given a
path. In ImageCache.m, replace the method imageForKey:.

- (Ullmage *)imageForKey:(NSString *)s

{
// If possible, get it from the dictionary

Ulimage *result = [dictionary objectForKey:s];

if ('result) {
// Create Ulimage object from file
result = [Ullmage imageWithContentsOfFile:pathinDocumentDirectory

()

// If we found an image on the file system, place it into the cache

if (result)
[dictionary setObject:result forKey:s];
else
NSLog(@"Error: unable to find % @", pathinDocumentDirectory(s));
}
return result;
}

Build and run the application again. Take a photo of one of the possessions and
exit the application. Launch the application again. Selecting that same possession
will reveal the photo you took.

Page 255

Chapter 14. Saving and Loading

Challenge: Archiving Wherewasi

Another application you wrote could benefit from archiving: Wherewasi. Go back
to that application and archive the MapPoint objects so they can be reused.

For the More Curious: Reading and Writing to Disk

In addition to archiving and NSData’s binary read and write methods, there are a
few more methods for transferring data to and from the disk. A few of them, like
SQLite and Core Data, will be discussed in their own chapters later. The others
are worth mentioning here.

You have access to the standard file 1/0 functions from the C library. These
functions look like this:

FILE *inFile = fopen("textfile", "rt");
char* buffer = malloc(someSize);
fread(buffer, byteCount, 1, inFile);

FILE *outFile = fopen("binaryfile", "w");
fwrite(buffer, byteCount, 1, outFile);

You won't see these functions used much because there are more convenient
ways of reading and writing text and binary data. You already implemented code
in this exercise that read and writes binary data when you save and load the
images for a Possession. For text data, NSString has two instance methods wr
iteToFile:atomically:encoding:error: and initWithContentsOfFile:. They are
used as follows:

/I A'local variable to store an error object if one comes back
NSError *err;

NSString *someString = @"Text Data";
BOOL success = [someString writeToFile:@"/some/path/"
atomically:YES
encoding:NSUTF8StringEncoding
error:&err];
if (lsuccess) {
NSLog(@"Error writing file: %@", [err localizedDescription]);
}

Page 256

Chapter 14. Saving and Loading

NSString *x = [[NSString alloc] initWithContentsOfFile: @"/some/path/"
encoding:NSUTF8StringEncoding
error:&err];
if (Ix) {
NSLog(@"Error reading file: %@", [err localizedDescription]);

}

What'’s that NSError object? Some methods might fail for a variety of reasons
— for example, writing to disk might fail because the path is invalid or the user
doesn’t have permission to write to the specified path. NSError objects contain
the reason for failure. You can send the message localizedDescription to

an instance of NSError for a human-readable description of the error. This is
something you can show to the user or print out to a debug console.

Error objects also have code and domain properties. The code is an integer
representing the error. The domain represents the error domain. For example, not
having permission to write to a directory results in error code 513 in error domain
NSCocoaErrorDomain. Each domain has its own set of error codes and those
codes within different domains can have the same integer value, therefore, an
error is uniquely specified by its code within an error domain. You can check out
most of the error codes for the NSCocoaErrorDomain in the file Foundation/
FoundationErrors.h.

The syntax for getting back an NSError instance is a little strange, though. Error
objects are only created if an error occurred; otherwise, there is no need for the
object. When a method can return an error through one of its arguments, you
create a local variable that is a pointer to an NSError object. Notice that you don’t
instantiate the error object — that is the job of the method you are calling. You pass
the address of the pointer variable you have to the method that might generate an
error. If an error occurs in the implementation of that method, an NSError instance
is created and your pointer is set to point at that new object. (The error object is
autoreleased.) If you don’t care about the error object, you can always pass nil.

In addition to NSString, two other objects have writeToFile: and
initWithContentsOfFile: methods: NSDictionary and NSArray. In order to write
objects of these types to disk in this fashion, they must contain only property

list serializableobjects. The only objects that are property list serializable are
NSString, NSNumber, NSDate, NSData, NSArray, and NSDictionary. When an
NSArray or NSDictionary is written to disk with these methods, an XML property
list is created. (XML is a markup language, similar to HTML.) An XML property list
is therefore a collection of values that are tagged.

Page 257

Chapter 14. Saving and Loading

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0/EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
<dict>
<key>firstName</key>
<string>Joe</string>
<key>lastName</key>
<string>Conway</string>
</dict>
<dict>
<key>firstName</key>
<string>Aaron</string>
<key>lastName</key>
<string>Hillegass</string>
</dict>
</array>
</plist>

XML property lists are a convenient way to store data because they can be read
on nearly any system. Many web service applications use property lists as input
and output. The code for writing and reading a property list looks like this:

NSMutableDictionary *d = [NSMutableDictionary dictionary];
[d setObject:@"A string" forKey: @"String"];
[d writeToFile:@"/some/path" atomically:YES];

NSMutableDictionary *anotherD = [[NSMutableDictionary alloc]
initWithContentsOfFile:@"/some/path"];

For the More Curious: The Application Bundle

When you build an iPhone application project in Xcode, you create an application
bundle. The application bundle contains the application executable and any
resources you have bundled with your application. Resources are things like NIB
files, images, audio files — any files that will be used at runtime. When you add

a resource file to a project, Xcode is smart enough to realize that it should be
bundled with your application and categorizes it accordingly.

Page 258

Chapter 14. Saving and Loading

How can you tell which files are being bundled with your application? In the
Homepwner project window, open the Targets group by clicking the disclosure
button next to it. The Homepwner target will appear. Click the disclosure button
next to it. Three gray boxes will appear underneath it as shown in Figure 14.5.

Figure 14.5. Target Details

e D Homepwner =
[Simulator - '] [* '] E] é L‘ 6 Q- String Matchin o
COwverview Action Breakpoints Build and Run Tasks Info Search
| Groups & Files G File Name & (Role A |Code a A

v E Homepwner =] E| ItemDetailViewCo
P[] Classes T E| MainWindow.xib

b| | Other Sources |
¥ | | Resources |
El ltemDetailViewController.xib |
|—_a,| MainWindow.xib |
E| Homepwner-Info.plist |
b | Frameworks |
F[| Products |
v Targets |
b4 ,rb Homepwner "
™ W Copy Bundie Resources @ |

E| MainWindow.xib
E| ltemDetailViewController.xib
b || Compile Sources (7)
b || Link Binary With Libraries (3)
b 4 Executables

Each item in the Homepwner target group is one of the phases that occurs
when you build a project. The Copy Bundle Resources phase is where all of the
resources in your project get copied into the application bundle.

You can check out what an application bundle looks like on the filesystem after
you install an application on the simulator. Navigate to ~/Library/Application
Support/iPhone Simulator/(version number)/Applications. The directories
within this directory are the application sandboxes for applications installed on
your computer’s iPhone Simulator. Opening one of these directories will show

you what you expect in an application sandbox: an application bundle and the
Documents, tmp and Library directories. Right or Command-click the application
bundle and choose Show Package Contents from the contextual menu.

Page 259

Chapter 14. Saving and Loading

Figure 14.6. Viewing an Application Bundle

ano [|ED25B286-7BB8C-436D-0FF7-1DA3F2C21ATF =

(<[> J (2 [= [omi] Q |
DEVICES T (1 Applications » [12C73DB9...EC3A3E8S | (] Documents " \
I iDisk || (3 ubrary ~ [990D7399...CBC3A317 | Open
= macintosh Hp || | £ Media - [ED25B286...3F2C21A7F = [] Library
@) Civilizat... & [}| B3 Root " 1 tmp Show Package Contents
- || B3 tmp " Move to Trash
PLACES |
A Desktop | Cet Info

| Compress “"Homepwner”
A Applications I Burn "Homepwner” to Disc...
Documents || Duplicate
Ef Movies | Make Alias
3 music | Quick Look "Homepwner”
[ig] Pictures .L Copy “"Homepwner”
[-;I Users M 1
Y — — — — — — — — ———— . Show View Options
SEARCH FOR 4| ' _ : [.
(© Today v| Sv @ Qv G G- G- G- G- [FD258286-788C-436D-OFF7-1DA3F v \ 4 | apol:
1 of 4 selected, 232.78 GB available x| OB LUEEES

A Finder window will appear, showing you the contents of the application bundle.
When a user downloads your application from the App Store, these files are
copied to their device.

Figure 14.7. The Application Bundle

(Nl 4 Homepwner —]
Wel>] Q
DEVICES Name Date Modified ~
Bl iDisk ™ Homepwner Today, 12:44 PM
! Macintosh HD ' Pkalnfo Today, 12:44 PM
(7) Civilization IV Gold & _| MainWindow.nib Today, 12:44 PM
- | ItemDetailViewController.nib Today, 12:44 PM
PLACES | Info.plist Today, 12:44 PM
A Desktop -
fﬁ joeconway
5&; Applications
@ Documents
B} Movies s | — e
J Music vy @ Q- Em- G363 £3 - CF v [ED258286-788C-43 » | .4 Homepwner

5 itemns, 232.78 GB available A

You can load files in the application’s bundle at runtime. To get the full path for
files in the application bundle, you need to get a pointer to the application bundle
and ask it for the path of a resource.

Page 260

Chapter 14. Saving and Loading

/I Get a pointer to the application bundle
NSBundle *applicationBundle = [NSBundle mainBundle];

/I Ask for the path to a resource named mylmage.png in the bundle
NSString *path = [applicationBundle pathForResource:@"mylmage"
of Type:@"png"];

If you ask for the path to a file that is not in the application’s bundle, this method
will return nil. If the file does exist, then the full path is returned and you can use
this path to load the file with the appropriate class.

Also, files within the application bundle are read-only. You cannot modify them
nor can you dynamically add files to the application bundle at runtime. Files in the
application bundle are typically things like button images, interface sound effects,
or the initial state of a database you ship with your application. You will use this
method in later chapters to load these types of resources at runtime.

Page 261

Chapter 15. Low-Memory Warnings

Chapter 15. Low-Memory Warnings

The iPhone, while extremely powerful, still has its limitations. One of
the most important and often overlooked limitations is the amount of
memory an application can consume before the device simply gives
up. iPhone OS constantly monitors an application’s memory usage and
alerts the application when it is in danger of running out of memory.

When the operating system detects that it is low on memory, it sends
your application a low-memory warning. A low-memory warning will
occur when the device is consuming a large percentage of the available
RAM. Overuse of graphical memory is typically the reason why an
application receives a low-memory warning. Apple suggests that you
don’t use more than 24 MB of graphics memory. For an image the

size of the iPhone screen, the amount of memory used is over half a
megabyte. Each UlView, image, Core Animation layer, and anything else
that can be displayed on the screen consumes some of the allotted 24
MB. (Apple doesn’t suggest any maximum for other types of data like
NSStrings.)

It is up to your application to release reload-able resources or unneeded
memory back to the heap. If your application does not release enough
memory for the operating system to continue running it, iPhone OS

will terminate your application. Unfortunately, there is no indication of
how much memory should be released or at what percentage of used
memory a low-memory warning occurs. Therefore, handling a low-
memory warning is not an exact science, and you should simply free up
any memory that you can.

Handling Low-Memory Warnings

When an application receives a low-memory warning, it

forwards that event to its delegate by sending the message
applicationDidReceiveMemoryWarning: as shown in Figure 15.1. You
can also register any object for the low-memory warning notification:
UlApplicationDidReceiveMemoryWarningNotification.

Page 262

Chapter 15. Low-Memory Warnings

Figure 15.1. Low-memory warning handlers

UlApplicationDelegate
E 4
e
Fd
-
-
. -
appiminnmdﬁﬁcemrulamryWamhg:
g ItemDetailViewController
Fd

-, -

-~ I

UlApplication s e .r# #dmm' leceiveMemoryWaming
e = —
S —
Y —— —
e s
~ \tldFlmainBmeg‘minﬂ ltemsViewController
-~ =~
e
Y
\ -
postiotifcationName:object:
= .
.
et ugn =
~ % NSNotificationCenter

If Homepwner receives a low-memory warning, the culprit is likely the
ImageCache. The ImageCache is maintaining a dictionary of images and
could be huge. It'd be a good idea to have the cache register to receive
memory warning notifications and clear the cache when a notification
arrives. In ImageCache.m, extend the init method:

- (id)init
{
[super init];
dictionary = [[NSMutableDictionary alloc] init];
NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
[nc addObserver:self
selector:@selector(clearCache:)
name:UlApplicationDidReceiveMemoryWarningNotification
object:nil];

return self;

Page 263

Chapter 15. Low-Memory Warnings

}
Now implement clearCache: in ImageCache.m:

- (void)clearCache:(NSNotification *)note

{
NSLog(@"flushing %d images out of the cache", [dictionary count]);
[dictionary removeAllObjects];

}

Build and run your application on the device. Take a few pictures

and watch the output from the NSLog statement in the console.

The operating system will see these memory-hogging images being
allocated and will issue a low-memory warning to your application. If
your application doesn’t shut down and the user is not at all interrupted
after the memory warning is issued, your memory warning was handled
successfully.

Remember that the notification center does not retain its observers. If
the image cache were ever deallocated, it would need to also remove
itself from the notification center. The dealloc method would look like
this:

- (void)dealloc

{
[dictionary release];
[[NSNotificationCenter defaultCenter] removeObserver:self];
[super dealloc];

}

View controller memory warnings

In addition to the application delegate and registered observers,
every instantiated UlViewController is sent the message
didReceiveMemoryWarning when a low-memory warning occurs.
Thus, in Homepwner, the instances of ItemsViewController

and ItemDetailViewController are both sent the message
didReceiveMemoryWarning when the operating system decides too
much memory is being used (Figure 15.1).

The default implementation of this method will release the view of

Page 264

Chapter 15. Low-Memory Warnings

the view controller if it has no superview. (A view controller typically
only has a superview when it is on the screen.) The view of a
UlViewController is a reload-able resource. View controllers know how
to reload their views by reloading from the XIB file or invoking their
loadview method. A view controller’s view will be reloaded if it needs to
go back on the screen; you don’t have to handle this yourself.

Figure 15.2. View controller memory warning cycle

Property view is released and
set to nil

Sent Sent
didReceiveMemoryWarning viewDidUnload
. ' View asked to
1 ‘ _____
Low Memory ----..+ * appear on screen
Warning Received | B
Sent Sent
viewDidLoad loadView

There are three steps to take when handling a low-memory warning for
a view controller.

First, if a view controller needs to free up any memory for objects

that are not views but can be reloaded later, you will override
didReceiveMemoryWarning. It is important to always invoke the
superclass’s implementation of this method because it is responsible for
destroying the view of the view controller.

/l Example implementation:
- (void)didReceiveMemoryWarning

{

[self cleanupCaches];

Page 265

Chapter 15. Low-Memory Warnings

[super didReceiveMemoryWarning];

}

Second, if a view controller is initialized with a XIB file and its view has
subviews that are IBOutlets connected in that XIB file, the subviews

are being retained twice: once by their superview and once by the
controller with the outlets. You will need to override viewDidUnload to
release them and set them to nil. Because the view controller still exists
after a memory warning, it is possible that a message might be sent to
one of its instance variables after that object was released. By releasing
the object and setting the pointer to it to nil, you avoid sending a
message to an object that doesn’t exist anymore.

/I Example implementation - myButton declared as: IBOutlet UIButton *myButton;
- (void)viewDidUnload
{

/l the view property has already been released and set to

/I nil by the time this method is invoked.

[super viewDidUnload];

[myButton release];
myButton = nil;

Last, make sure that you can fully reconstruct a view controller’s view
hierarchy with the 1oadview and viewDidLoad methods. These two
messages will be sent to a view controller when it needs to reload its
view after a low-memory warning occurs. Some view controllers may
dynamically change their interface during runtime. It is important that
you keep track of those changes so that you can replicate them if a
view controller receives a memory warning.

Simulating Low-Memory Warnings

Most applications will not consume the entirety of the iPhone’s memory
on their own; however, as a developer, you must always plan for the
worst. The simulator allows you to simulate a low-memory warning by

Page 266

Chapter 15. Low-Memory Warnings

selecting Simulate Low-Memory Warningfrom the Hardware menu.

In general, you should simulate a low-memory warning for every
UlViewController in an application. Navigate to each view controller
in Homepwner, simulate a warning, and then make sure your application
doesn’t crash and can still run smoothly.

Finally, remember that just releasing some memory during a low-
memory warning doesn’t guarantee that your application will survive. If
you are simply using too much memory, the OS will have no choice but
to shut down your application.

Page 267

Chapter 16. Subclassing UlTableViewCell

Chapter 16. Subclassing UlTableViewCell

UlTableViews display a list of UlTableViewCells. For many applications, the
basic cell, with its textLabel, detailTextLabel, and imageView, is sufficient.
However, when you need a cell with more detail or a different layout, you subclass
UlTableViewCell.

In this chapter, you are going to create a subclass of UlTableViewCell to display
Possession instances more eloquently. Each one of these cells will show a
Possession’s name, its value in dollars, and a thumbnail of its image as shown
in Figure 16.1.

Figure 16.1. Homepwner with subclassed UlTableViewCells

Rusty Bear
= Fluffy Bear
- Shiny Mac

Page 268

Chapter 16. Subclassing UlTableViewCell

Open Homepwner.xcodeproj. Select the New File... menu item from the File
menu and create a new subclass of UlTableViewCell (Figure 16.2). Name this
subclass HomepwnerltemCell.m.

Figure 16.2. Creating a UlTableViewCell subclass

W

Choose a template for your new file:

U iPhone 05 M N (. N
Cocoa Touch Class -m .m .m
Code Sgning Objective-C class Objective-C tast UlviewController
Resource case class subclass

User Interface

‘;l Mac OS5 X

AppleScript

Cand C++ Subclass of | UableviewCell 4]

Carbon

Cocoa Description An Objective-C class which is a subclass of

UITableviewCell, with an optional header file which

Interface Builder SDK - L .
includes the <UIKit/UIKit.h> header.

Pure Java
Pure Python
Ruby

Sync Services

Cancel (Previous Eﬁ

[i
=

A e

Creating HomepwnerltemCell

A UlTableViewCell is a UlView subclass. When subclassing UlView (or any of
its subclasses), you typically override its drawRect: method to customize the
view’s appearance. However, subclassing UlTableViewCell requires a different
approach. Each cell has a subview named contentView, which is a container for
the various view objects that will make up the layout of a cell subclass (Figure
16.3). For instance, you could create instances of the classes UlTextField,
UlLabel, and UIButton and add them to the contentView. (If you wanted
something even more daring, you could create a UlView subclass, override its
drawRect:, and add an instance of it to the contentView.)

Page 269

Chapter 16. Subclassing UlTableViewCell

Figure 16.3. HomepwnerltemCell hierarchy

I
|
| UlimageView I
subviews T imageView ;> :
e !
I
HomepwnerltemCell UlView : UlLabel |
> nameLabel—— I
contentView \ |
|
I
voLabel! UlLabel :
va ——»
I
I I
|

The contentView is important because it knows about the editing controls on
either side of the row and automatically adjusts its subviews to allow for the
presence of these controls when a cell enters editing mode (Figure 16.4). If you
were to add subviews directly to the UlTableViewCell, these editing controls
would appear on top and obscure the cell’s content.

Figure 16.4. Table view cell layout in standard and editing mode
[contentView bounds).size.width |
]

contentView
UlTableViewCell< enters| | editing mode

“\‘ Delete Control contentView Reorder Control

[contentView bounds].size. width

Create subviews

In your cell subclass, you need an instance variable for each subview so that you
can set its content as it is displayed in a table view. In HomepwnerltemCell.h,

Page 270

Chapter 16. Subclassing UlTableViewCell

create instance variables for the necessary subviews and declare a method to set
their values with a Possession instance.

@class Possession;
@interface HomepwnerltemCell : UlTableViewCell
{
UlLabel *valueLabel;
UlLabel *namelLabel;
UllmageView *imageView;
}
- (void)setPossession:(Possession *)possession;
@end

When an instance of HomepwnerltemCell is created, its valuelLabel,
nameLabel, and imageView are instantiated. Then, these subviews are

added to the cell’s contentView. Override the designated initializer in
HomepwnerltemCell.m to create each of the subviews. HomepwnerltemCell.m
should now look like this:

#import "HomepwnerltemCell.h"
#import "Possession.h"
@implementation HomepwnerltemCell
- (id)initWithStyle:(UlTableViewCellStyle)style
reuseldentifier:(NSString *)reuseldentifier
{
if (self = [super initWithStyle:style reuseldentifier:reuseldentifier])
{
// Create a subview - don't need to specify its position/size
valueLabel = [[UlLabel alloc] initWithFrame:CGRectZero];

// Put it on the content view of the cell
[[self contentView] addSubview:valueLabel];

// It is being retained by its superview
[valueLabel release];

// Same thing with the name

namelLabel = [[UlLabel alloc] initWithFrame:CGRectZero];
[[self contentView] addSubview:nameLabel];

[nameLabel release];

Page 271

Chapter 16. Subclassing UlTableViewCell

// Same thing with the image view
imageView = [[UllmageView alloc] initWithFrame:CGRectZero];
[[self contentView] addSubview:imageView];

// Tell the imageview to resize its image to fit inside its frame
[imageView setContentMode:UlViewContentModeScaleAspectFit];
[imageView release];

}

return self;

}
@end

Layout subviews

Note that you don’t set the size or position of the cell’s subviews here in the
initialization method; you need to know the dimensions of the cell itself before
you can set the subviews. Instead, the subviews should be sized and positioned
in the methodl ayoutSubviews. This message is sent to the cell right before it is
displayed and, thus, after its size has been determined. (In fact, layoutSubviews
is an instance method of UlView and is sent to any instance of UIView that is
about to be displayed.)

Implement layoutSubviews in HomepwnerltemCell.m. (If you have a hard time
picturing the sizes of frame rectangles in your head, draw them out on a piece of
paper first.)

- (void)layoutSubviews

{
// We always call this, the table view cell needs to do its own work first
[super layoutSubviews];

float inset = 5.0;

CGRect bounds = [[self contentView] bounds];
float h = bounds.size.height;

float w = bounds.size.width;

float valueWidth = 40.0;

// Make a rectangle that is inset and roughly square

Page 272

Chapter 16. Subclassing UlTableViewCell

// (using the height of the contentView as the width

// and height of the image view)

CGRect innerFrame = CGRectMake(inset, inset, h, h - inset * 2.0);
[imageView setFrame:innerFrame];

// Move that rectangle over and resize the width for the nameLabel
innerFrame.origin.x += innerFrame.size.width + inset;
innerFrame.size.width = w - (h + valueWidth + inset * 4);
[nameLabel setFrame:innerFrame];

// Move that rectangle over again and resize the width for valueLabel
innerFrame.origin.x += innerFrame.size.width + inset;
innerFrame.size.width = valueWidth;

[valueLabel setFrame:innerFrame];

This method is fairly ugly, but let’s look at it more closely. First, you always
invoke the superclass’s implementation of layoutSubviews. Invoking this
method allows the UlTableViewCell to layout its subview, its contentView.

Then, you get the bounds of the contentView to find out how much area you
have to work with when sizing and positioning all of the subviews. (If you don’t
invoke the superclass’ implementation of layoutSubviews, the bounds of the
contentView may not be correct.) Finally, you set the frame of each subview
relative to the contentView’s bounds. This process ensures that instances of
HomepwnerltemCell will have an appropriate layout regardless of the size of the
UlTableViewCell.

Using the custom cell

Now let’s look at the two options for setting the content of the subviews
(imageView, nameLabel, and valueLabel). The first option is to create a property
for each subview to use when you set the cell content in tableView:cellForRowA
tindexPath:(similar to the way you have been accessing the textLabel property
of each cell). The second option is to pass the cell an instance of Possession

and have it fill its own subviews. In this chapter, you will use the second option.
Either way is perfectly reasonable; however, in the second option, the cell is made
specifically to represent a Possession instance, so the code is written in a way
that’s easier to follow. (The drawback is that HomepwnerltemCell will only be

Page 273

Chapter 16. Subclassing UlTableViewCell

able to represent Possession instances.) Implement the method setPossession:
in HomepwnerltemCell.m to extract values from a Possession instance and
display them in the cell.

- (void)setPossession:(Possession *)possession
{
// Using a Possession instance, we can set the values of the subviews
[valueLabel setText:
[NSString stringWithFormat:@"$%d", [possession valuelnDollars]]];
[nameLabel setText:[possession possessionNamel]];

}

You can build the application to make sure there are no compile errors. Running it
won’t show anything new because you aren’t yet returning HomepwnerltemCells
from the UlTableView data source method implemented by ItemsViewController.
In ItemsViewController.m, import the header file for HomepwnerltemCell.

#import "HomepwnerltemCell.h"
@implementation ItemsViewController

Replace the method tableView:cellForRowAtindexPath: to return instances of
your new cell subclass. However, for the Add New ltem..., you still need to return
a standard cell. Check the incoming NSIndexPath before you decide what type of
cell to return.

- (UITableViewCell *)tableView:(UlTableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

// This will occur when editing, extra row that shows "Add New Item..."
if ([indexPath row] >= [possessions count]) {

// Create a basic cell
UlTableViewCell *basicCell = [tableView
dequeueReusableCellWithldentifier:@" UlTableViewCell"];
if ('basicCell)
basicCell = [[[UITableViewCell alloc]
initWithStyle:UlTableViewCellStyleDefault

Page 274

Chapter 16. Subclassing UlTableViewCell

reuseldentifier:@" UlTableViewCell"] autorelease];

// Set its label to say "Add New Item..."
[[basicCell textLabel] setText:@" Add New ltem..."];

return basicCell;

}

// Get instance of a HomepwnerltemCell - either an unused one or a new
one
HomepwnerltemCell *cell = (HomepwnerltemCell *)[tableView
dequeueReusableCellWithldentifier:@"HomepwnerltemCell"];
if (!cell)
cell = [[[HomepwnerltemCell alloc]
initWithStyle:UlTableViewCellStyleDefault
reuseldentifier:@"HomepwnerltemCell"] autorelease];
// Instead of setting each label directly, we pass it a possession object
// it knows how to configure its own subviews
Possession *p = [possessions objectAtindex:[indexPath row]];
[cell setPossession:p];

return cell;

}

When creating a cell for a row that is intended to display Add New ltem..., this
method creates and returns a standard UlTableViewCell. When creating a cell

to display a Possession instance, this method creates and returns your new
HomepwnerltemCell. Notice that you use different reuse identifiers for each type
of cell; if you didnt, you might get a UlTableViewCell back for a cell intended

to display a Possession. Then, the UlTableViewCell’s lack of response to the
message setPossession: would throw an exception and kill the application.
(That’s bad.)

Build and run the application. Your new cells will display the name and value of a
Possession. However, remember that you also want to display an image of the
Possession within the cell.

Image Manipulation

To display an image within a cell, you could just resize the 1024x1024 image of
the possession already in the image cache. However, it would be better to create

Page 275

Chapter 16. Subclassing UlTableViewCell

and use a thumbnail of the image instead. Using the larger image would incur a
performance penalty because a larger number of bytes need to be read, filtered,
and resized to fit within the cell whereas a thumbnail requires far fewer bytes. To
create a thumbnail of an image, you are going to draw a scaled down version of
the full image to an offscreen context and keep a pointer to that new image inside
a Possession instance.

However, this application will only create a thumbnail when an image is taken,
and, if the user exits the application, the thumbnails are lost. Therefore, you
need a place to store this thumbnail image so that it can be reloaded when

the application launches again — like the archive along with the rest of the
Possession instance variables. (It’s okay to store thumbnails in the archive
because they are so much smaller than the original images. Those images are
still in the image cache where they can easily be flushed if there is a low memory
warning.)

Big problem, though: Ullmage doesn’t conform to the NSCoding protocol, so it
can’t be encoded in an NSCoder. The thumbnail can, however, be encoded as
data (JPEG format) and wrapped in an NSData object (which does conform to
NSCoding). Open Possession.h. Declare two instance variables: a Ullmage
and an NSData. You will also want a method to turn a full-sized image into a
thumbnail.

@interface Possession : NSObject <NSCoding> {
NSString *possessionName;
NSString *serialNumber;
int valuelnDollars;
NSDate *dateCreated;
NSString *imageKey;
Ulimage *thumbnail;
NSData *thumbnailData;
}
@property (readonly) Ullmage *thumbnail;
- (void)setThumbnailDataFromimage:(Ulimage *)image;

In Possession.m, create a getter method for thumbnail that will create it from the
data if necessary:
- (Ullmage *)thumbnail
{
// Am | imageless?
if ('thumbnailData) {

Page 276

Chapter 16. Subclassing UlTableViewCell

return nil;
}
// Is there no cached thumbnail image?
if ('thumbnail) {
// Create the image from the data
thumbnail = [[UllImage imageWithData:thumbnailData] retain];

}

return thumbnail;

}

Both objects (the data and the image) will be retained. Therefore, you need to
send a matching release message to them when a Possession instance is
deallocated.

- (void)dealloc

{
[thumbnail release];
[thumbnailData release]
[possessionName release];
[serialNumber release];
[dateCreated release];
[imageKey release];
[super dealloc];

}

The setThumbnailDataFromimage: method will take a full size image, create a
smaller representation of it in an offscreen context object, and set the thumbnail
pointer to the image produced by the offscreen context. The iPhone SDK
provides a convenient function suite to create offscreen contexts and produce
images from them. To create an offscreen image context, you use the function
UlGraphicsBeginimageContext. This function accepts a CGSize structure that
specifies the width and height of the image context.

When this function is called, a new CGContextRef is created and becomes the
current context. To draw to a CGContextRef, you use Core Graphics, just as
though you were implementing a drawRect: method for a UlView subclass. To
get a Ullmage from this context after it has been drawn, you call the function
UlGraphicsGetlmageFromCurrentimageContext. Finally, once you have
produced an image from an image context, you must clean up that context with
the function UlGraphicsEndimageContext.

Page 277

Chapter 16. Subclassing UlTableViewCell

Implement the following method in Possession.m to create a thumbnail using an
offscreen context.

- (void)setThumbnailDataFromimage:(Ulimage *)image

{

}

// Release the old thumbnail data
[thumbnailData release];

// Release the old thumbnail
[thumbnail release];

// Create an empty image of size 70 x 70
CGRect imageRect = CGRectMake(0, 0, 70, 70);
UlGraphicsBeginlmageContext(imageRect.size);

// Render the big image onto the image context
[image drawIinRect:imageRect];

// Make a new one from the image context
thumbnail = UlGraphicsGetimageFromCurrentimageContext();

// Retain the new one
[thumbnail retain];

// Clean up image context resources
UlGraphicsEndimageContext();

// Make a new data object from the image

thumbnailData = UllmageJPEGRepresentation(thumbnail, 0.5);
// You may get malloc warnings from the simulator on this line
// That is a bug in the simulator.

// Retain it
[thumbnailData retain];

Because you create a thumbnail when the camera takes the original image, you
need to add the following line of code to imagePickerController:didFinishPickin
gMediaWithinfo: in ltemDetailViewController.m.

- (void)imagePickerController:(UllmagePickerController *)picker

Page 278

Chapter 16. Subclassing UlTableViewCell

didFinishPickingMediaWithInfo:(NSDictionary *)info

{
NSString *oldKey = [editingPossession imageKey];

if (oldKey) {

/l Delete the old image
[[lmageCache sharedlmageCache] deletelmageForKey:oldKey];

}

Ullmage *image = [info objectForKey:UlimagePickerControllerOriginallmage];
CFUUIDRef newUniquelD = CFUUIDCreate (kCFAllocatorDefault);

CFStringRef newUniquelDString =
CFUUIDCreateString (kCFAllocatorDefault, newUniquelD);

[editingPossession setimageKey:(NSString *)newUniquelDString];

CFRelease(newUniquelDString);
CFRelease(newUniquelD);

[[ImageCache sharedlmageCache] setimage:image
forKey:[editingPossession imageKey]];
[imageView setimage:image];

[editingPossession setThumbnailDataFromimage:image];

/l Take image picker off the screen
[self dismissModalViewControllerAnimated:YES];

Because you use this thumbnail to set the imageView of the cells when they are
configured for the table view, add the following line of code to setPossession: in
HomepwnerltemCell.m.

- (void)setPossession:(Possession *)possession

{

[valueLabel setText:
[NSString stringWithFormat: @"$%d", [possession valuelnDollars]]];

Page 279

Chapter 16. Subclassing UlTableViewCell

[nameLabel setText:[possession possessionName]];
[imageView setimage:[possession thumbnail]];

}

Build and run the application now. Take a picture for a Possession instance.
That row will display a thumbnail image along with the name and value of the
Possession.

Don’t forget to add the thumbnail data to your archive! Open Possession.m:

- (id)initWithCoder:(NSCoder *)decoder
{
self = [super init];
[self setPossessionName:[decoder decodeObjectForKey:@"possessionNa
me"]];
[self setSerialNumber:[decoder decodeObjectForKey:@"serialNumber"]];
[self setValuelnDollars:[decoder decodelntForKey:@"valuelnDollars"]];
[self setimageKey:[decoder decodeObjectForKey: @"imageKey"]];
dateCreated = [[decoder decodeObjectForKey:@"dateCreated"] retain];

thumbnailData = [[decoder decodeObjectForKey:@"thumbnailData"] re-
tain];

return self;

}

- (void)encodeWithCoder:(NSCoder *)encoder

{
/I For each instance variable, archive it under its variable name
[encoder encodeObject:possessionName forKey:@"possessionName"];
[encoder encodeObject:serialNumber forKey: @"serialNumber"];
[encoder encodelnt:valuelnDollars forKey:@"valuelnDollars"];
[encoder encodeObject:dateCreated forKey: @"dateCreated"];
[encoder encodeObject:imageKey forKey:@"imageKey"];

[encoder encodeObject:thumbnailData forKey: @"thumbnailData"];

}

Build and run the application. Take some photos of possessions and then exit and

Page 280

Chapter 16. Subclassing UlTableViewCell

relaunch the application. The thumbnails will now appear for saved possession
objects.

Challenge: Accessory Views

HomepwnerltemCell only displays three properties of a Possession instance in
the content. Allow HomepwnerltemCell to have an accessory view. When that
accessory view is tapped, it will toggle between two different display modes: one
that shows the serial number and date created of a Possession and another that
shows the name and value in dollars.

Challenge: Make it Pretty

The thumbnail could be much prettier. Make it preserve the aspect ratio of the
original image. Round the corners. You might even want to add a nice glossy
gradient to make it look 3-dimensional.

Page 281

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Chapter 17. Multi-Touch, UIResponder, and Using
Instruments

In Chapter 6, you created a UlScrollView that dealt with multi-touch events to
translate and scale your view. You have also used UlControl, setting a target/
action pair to be triggered for certain types of events. What if you want to do
something else, something special or unique, with touch events?

In this chapter, your are going to create a view that lets the user draw lines by
dragging across the view (Figure 17.1). Using multi-touch, the user will be able to
draw more than one line at a time. Double-tapping will clear the screen and allow
the user to begin again.

Figure 17.1. A drawing program

Touch Events

A UlTouch object represents one finger touching the screen. Because you can
use multiple fingers simultaneously, touches are processed in sets. NSSet is a
container class like NSArray, but it has no order and an object can only appear in
a set once.

Page 282

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

As a subclass of UIResponder, your view can override four methods to handle
touch events:

+ afinger or fingers touches the screen
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;

+ afinger or fingers move across the screen (This message is sent repeatedly
as a finger moves.)
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;

- afinger or fingers is removed from the screen
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;

+ asystem event, like an incoming phone call, interrupts a touch before it ends
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event;

When the user touches the screen, a UlTouch instance is created. The same
UlTouch object is updated and reused for all touch events associated with an
individual finger. It holds all of the information about that finger: where it is, its
state, when its state last changed, the view it is on, the number of times it has
tapped the screen, and where it has been most recently. When that finger is
removed from the screen, the UlTouch is discarded.

After the UlTouch instance is created, it is sent to the UlView on which the touch
occurred via the message touchesBegan:withEvent:. This method has two
arguments: an NSSet and a UIEvent. The NSSet instance contains the touch
object. Why send an NSSet and not a UITouch? An NSSet is necessary in case
two (or more) fingers touch the screen at the exact same time. (In practice, this is
very unlikely; we humans are not as precise as we think we are.) If simultaneous
touches occur, multiple UITouch instances can be sent in the NSSet.

(Apple could have used NSArray instead of NSSet, but the implementation of
NSSet makes it faster to use in this context. The good news is you can iterate
over an NSSet in the same way you do an array using fast enumeration in
Objective C 2.0.)

Creating the TouchTracker Application

Now let’s get started with your application. In Xcode, create a new Window-based
Application and name it TouchTracker. Create a new UlView subclass called
TouchDrawView.

The TouchDrawView is going to need an object that can hold the two end points

Page 283

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

of a line. Create a new NSObject subclass named Line. In Line.h, declare two
CGPoint instance variables and the accessors for setting and getting them:

#import <Foundation/Foundation.h>

@interface Line : NSObject {

CGPoint begin;

CGPoint end;
}
@property (nonatomic) CGPoint begin;
@property (nonatomic) CGPoint end;
@end

In Line.m, synthesize the accessors:
#import "Line.h"

@implementation Line
@synthesize begin, end;

@end

In TouchDrawView.h declare two collections: an array to hold complete lines and
a dictionary to hold lines that are still being drawn.

#import <UIKit/UIKit.h>

@interface TouchDrawView : UlView {
NSMutableDictionary *linesinProcess;
NSMutableArray *completeLines;

}
@end

You might be surprised to see that you are using a dictionary to hold the lines that
are in the process of being drawn. What do lines have to do with key-value pairs?
In this case, you’re using a dictionary to keep track of which UlTouch created
whichLine. So you’ll want to use the UlTouch as the key and the Line as the
value. However, only objects that have a v method (from the NSCoding protocol)
can be used as keys in a dictionary. UITouch does not implement this method, so
you can’t use UlTouch instances themselves as keys. However, you can wrap a

Page 284

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

pointer to the UlTouch in an NSValue instance and use the NSValue as the key.

Figure 17.2 shows the object diagram for TouchTracker. Take a moment to look it
over before continuing on with the creation of your view.

Figure 17.2. Object diagram for TouchTracker

= Line

i CGPoint begin

5 G

E. L Ling
TouchDraw\View | — —* = * CGPoint begin

z Line -

2 CGPuoint begin

CGPoint end

linesinProcess

UITouch = Line
NSValue
E — | CGPoint begin
a CGPoint end
=)
=1
UIT: i
ouch - NSValug |g— E e Line
CGPaint bagin
CGPoint end

In Chapter 6, you instantiated your custom view programmatically. This time,

you will instantiate a custom view in Interface Builder. Open up MainWindow.
xib. From the Library, drag an instance of UIView onto the window. In the Identity
panel of thelnspector, set its class to TouchDrawView as shown in Figure 17.3.

Page 285

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Figure 17.3. Identity Inspector

a MmO - Window ~ D OO Touch Draw View Identity
== - o & @
¥ Class ldentity
Class TouchDraw\View j

- Accessibility
P Interface Builder Identity

Views created programmatically have their initWithFrame: method called; views
created in Interface Builder are unarchived using initWithCoder:. Thus, for
TouchDrawView, you will override initWithCoder: instead of initWithFrame:.

Save MainWindow.xib and return to Xcode. In TouchDrawView.m, take care of
the creation and destruction of the two collections:

#import "TouchDrawView.h"
#import "Line.h"

@implementation TouchDrawView

- (id)initWithCoder:(NSCoder *)c
{

Page 286

Chapter 17. Multi-Touch, UIResponder, and Using Instruments
[super initWithCoder:c];
linesIinProcess = [[NSMutableDictionary alloc] init];
completeLines = [[NSMutableArray alloc] init];
[self setMultipleTouchEnabled:YES];
return self;

}

- (void)dealloc

{
[linesInProcess release];
[completeLines release];
[super dealloc];

}

Notice that you had to explicitly enable multi-touch events. Without this, only one
touch at a time can be active on a view.

Now edit the drawRect: method:

- (void)drawRect:(CGRect)rect

{
CGContextRef context = UlGraphicsGetCurrentContext();
CGContextSetLineWidth(context, 10.0);
CGContextSetLineCap(context, kCGLineCapRound);

// Draw complete lines in black

[[UIColor blackColor] set];

for (Line *line in completeLines) {
CGContextMoveToPoint(context, [line begin].x, [line begin].y);
CGContextAddLineToPoint(context, [line end].x, [line end].y);
CGContextStrokePath(context);

}

// Draw lines in process in red

[[UIColor redColor] set];

for (NSValue *v in linesInProcess) {
Line *line = [linesIinProcess objectForKey:v];
CGContextMoveToPoint(context, [line begin].x, [line begin].y);
CGContextAddLineToPoint(context, [line end].x, [line end].y);
CGContextStrokePath(context);

Page 287

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

}

Finally, create a method that clears the collections and redraws the view:

- (void)clearAll

{
/l Clear the containers
[linesInProcess removeAllObjects];
[completeLines removeAllObjects];

/l Redraw
[self setNeedsDisplay];

}
Turning Touches Into Lines

When a touch begins, you will create a new Line instance and store it in an
NSMutableDictionary. The key to retrieve the line is the address of the UlTouch
object stored in an NSValue.

Override touchesBegan:withEvent: in TouchDrawView.m.

- (void)touchesBegan:(NSSet *)touches
withEvent:(UIEvent *)event

{
for (UITouch *t in touches) {

/l'Is this a double tap?

if ([t tapCount] > 1) {
[self clearAll];
return;

}

/I Use the touch object (packed in an NSValue) as the key
NSValue *key = [NSValue valueWithPointer:t];

/I Create a line for the value
CGPoint loc = [t locationInView:self];
Line *newLine = [[Line alloc] init];
[newLine setBegin:loc];

[newLine setEnd:loc];

Page 288

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

/[Put pair in dictionary
[linesInProcess setObject:newLine forKey:key];

/I There is a memory leak in this method
/I You will find it using Instruments later in the chapter

}
}

In this method, you will update the end point of the line associated with the moving
touch. Override this method in TouchDrawView.m.

- (void)touchesMoved:(NSSet *)touches
withEvent:(UIEvent *)event
{
// Update linesInProcess with moved touches
for (UITouch *t in touches) {
NSValue *key = [NSValue valueWithPointer:t];

// Find the line for this touch
Line *line = [linesinProcess objectForKey:key];

// Update the line
CGPoint loc = [t locationInView:self];
[line setEnd:loc];

}

// Redraw

[self setNeedsDisplay];

}

When a touch ends, you need to finalize the line. However, a touch can

end for two reasons: the user lifts the finger off the screen or the operating
system interrupts your application. A phone call, for example, will interrupt

your application. In many applications, you’ll want to handle these two events
differently. However, for TouchTracker, you’re going to write one single method to
handle both cases. Implement these methods in TouchDrawView.m.

- (void)endTouches:(NSSet *)touches
{

// Remove ending touches from dictionary
for (UITouch *t in touches) {

Page 289

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

NSValue *key = [NSValue valueWithPointer:t];
Line *line = [lineslnProcess objectForKey:key];

// If this is a double tap, 'line' will be nil
if (line) {
[completeLines addObject:line];
[linesInProcess removeObjectForKey:key];
}

}
// Redraw

[self setNeedsDisplay];
}

- (void)touchesEnded:(NSSet *)touches
withEvent:(UIEvent *)event
{

[self endTouches:touches];

}

- (void)touchesCancelled:(NSSet *)touches
withEvent:(UIEvent *)event
{

[self endTouches:touches];

}

Build and run the application. Then draw lines with one or more fingers.

The Responder Chain

Every UIResponder can receive touch events. UlView is one example, but

there are many other UIResponder subclasses including UlViewController,
UlApplication, and UIWindow. You are probably thinking, “But you can’t touch

a UlViewController. It’'s not an on-screen object!” And you are right — you can’t
send a touch event directly to a UIViewController. (And you get two bonus points
for keeping the view controller and its view separate in your brain.)

In Chapter 4, you learned a little about the responder chain. When a responder
doesn’t handle an event, it passes it to its nextResponder. How does a
UIResponder not handle an event? For starters, the default implementation of

Page 290

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

methods like touchesBegan:withEvent: simply passes the message to the next
responder. So if a method is not overridden, you ensure its next responder will
attempt to handle the touch event.

You can explicitly send a message to a next responder, too. Let’s say there is a
view that wants to track touches, but if a double tap occurs, its next responder
should handle it. The code would look like this:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
UlTouch *touch = [touches anyObiject];
if ([touch tapCount] == 2)
[[self nextResponder] touchesBegan:touches withEvent:event];

... Go on to do code that isn't a double tap

}

Figure 17.4 shows the objects that make up the responder chain. An event

starts at the view that was touched. The nextResponder of a view is its
UlViewController. If that view has a view controller that owns it, then the
controller is next in line. After that, the superview of the view is given a chance to
handle the event. If the touch runs out of views and view controllers, it goes to the
window. If the window doesn’t handle it, the singleton instance of UlApplication
does. (Note that the window and application objects won’t do anything with an
event unless you subclass them.) If the application doesn’t handle the event, then
it is discarded.

Figure 17.4. Responder chain

UIViewController nextRes , UlWindow PO M Y UlApplication
—————— R
view nextResponder subview
UlView
subview f
nemﬁesl.pu'nder
Ulview

. Touch Event ™ ... with no view controller...

Page 291

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Instruments

After Xcode and Interface Builder, the most important tool that Apple gives
developers is Instruments. When you run your applications in Instruments, it
shows you the objects that are allocated, where the CPU is spending all its time,
file 1/0, network 1/O, etc.Instruments has plug-ins that enable you to inspect these
issues in more detail. Each plugin is known as an Instrument. Together, they can
help you track down inefficiencies in your application so that you can optimize
your code.

The ObjectAlloc Instrument

There is a memory leak in TouchTracker. When the user double-taps, the screen
clears. At this point, all instances of Line should be deallocated, but they aren’t.
You’re now going to use the ObjectAlloc instrument to confirm this.

While you can profile the application running on the simulator, you’ll get more
accurate data on the device. So, build the application for the device, and under
the Run menu, choose Run with Performance Tool -> Object Allocations.

Instruments will launch, and, as you interact with your application, it will keep track
of every object created and destroyed. Draw a while, double-tapping a few times
to clear the lines, and switch back to Instruments and click the Stop button to stop
recording.

In the Instruments window, find the row for instances of Line by scrolling through
the table or using the search bar underneath the table. Notice two counts for the
instance, Overall and Living.

Overall is a count of all the instances of Line that have been created during this
run of the application. It is the number of times alloc has been sent to the class
Line. Living is a count of all the instances of Line that have been created minus
those that have been deallocated (the number of Line objects that exist currently).
Because the overall and living Line counts are the same in this sampling, you
know that no instances of Line were deallocated even when you double-tapped to
clear lines from the screen. These Lines were leaked.

At the top of Instruments, there is a graph next to the ObjectAlloc instrument.
Right now, it is graphing all memory allocations. You can modify that list by
checking and unchecking the boxes in the Graph column of the table. Uncheck
the box next to “* All Allocations *” and check Line as shown in Figure 17.5. (If you
don’t see “* All Allocations *”, clear the search bar.)

Page 292

Chapter 17. Multi-Touch, UlIResponder, and Using Instruments
Figure 17.5. Basic ObjectAlloc

®00 Instruments1 =]
@Q@ (M TouchTracker__:] el n)| 00:03:43 @ =1,
Default Target Flags il Run 1 of 1 i Inspection Range Mini Wiew
Instruments [oooe "= - To1-00 u
ObjectAlloc i
o~
VM Tracker 0| -y sz
al als Al & .] R
ObjectAlloc |Grapn Category Live Bytes # Living # Transitory Owerall Bytes # Overallv |#Allo(at\ons (Net / Overall)
 Allocation Lifespan [Malloc 304 Bytes 304 Bytes 1 2 912 Bytes 3
@ All Objects Created : [] Malloc 208 Bytes 624 Bytes 3 0 624 Bytes 3 |
O Created & Still Living | [] UITouchData 48 Bytes 144 Bytes
O Created & Destroyed | ____
w-Call Tree : g UITou_ch] 0 Bytes 0 3 192 Bytes
Separate by Category | H CFUtilities (file-bytes) 0 Bytes o 2 145 KB 2 m
Separate by Thread | O crpate 32 Bytes 2 0 32 Bytes 2|
\nvert Call Tree :] NSRunLoop 96 Bytes 2 0 96 Bytes 2|
=
Hide Missing Symbals | = __NSPlaceholderArray 32 Bytes 2 1] 32 Bytes 2|
Hide System Libraries : = Ma"“(}‘m KB 3.50 KB 1 1 7.00 KB
Show Obj-C Only L H UlIRuntimeQutletConn. .. 0 Bytes o 2 32 Bytes L
Flatten Recursion = 2?:“”’:IE e 32 Bytes ; E 32 Bytes ; : e
v
I+ Call Tree Constraints 4 O enter Bytes EyIes
v
B~ ‘ Sy | = | =] | = | -+ |)= | {= | m | | Object Summary) Q- Category %
/ 4

If your Line objects were being properly deallocated, the graph would drop to zero
when you double-tapped to clear the drawing. Want to know more about those
pesky Line instances that won'’t die? If you select the row for Line, a small arrow
will appear in the Category column next to the word Line. Click that arrow to see
the detailed view (Figure 17.6). Select a particular instance to see the call stack as
it appeared when the instance was allocated. If you don’t see the stack, choose
View -> Extended Detail from the menu. Also, if the stack does not show the
names of the methods being called, make sure your application is being built with
the most recent version of the SDK. (In Xcode, choose the most recent version
from the Project menu’sSet Active SDK menu item and rebuild.)

Page 293

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Figure 17.6. Detail of one instance’s allocation

Separate by Category
Separate by Thread
Invert Call Tree
Hide Missing Symbols
Hide System Libraries
Show Obj-C Only
Flatten Recursion
I~ Call Tree Constraints
- Specific Data Mining

Instruments3 =
@0@ W TouchTacker] [[B[W) 00:00:350 (=.)
>
Default Target Flags al Run 1of 1 ion Range View Library
Instruments Joo.00 < - To1.00 Extended Detail
Craphics3ervices
i 12 GSEventRunModal
bjectalloc i A
‘_ Ry CraphicsServices
11 CFRunl
CoreFoundation
> ﬁ WM Tracker (1] 10 CFRunLoopRunSpecific
5 " - R CoreFoundation
S PurpleEventCallback
CraphicsServices
[— a— 8 _UlApplicationHandleEvent
ObjectAlloc # Object Add... Category Creation Time Live Size Responsible L. Responsible Caller 7 [UWApplication S‘:::‘E“m‘] T
v Allocation Lifespan 0 0x38066390 Line 00:06.867 32 TouchTracker -[TouchDrawView touch... 2 Ik]
@ All Objects Created 1 0x38091e0 Line 00:07.256 32 TouchTracker -[TouchDrawView touch... 6 -[UWindow _sendTouchesForEvent:] :
O Created & Still Living 2 0x3c0eff0 Line 00:07.814 32 TouchTracker -[TouchDrawView touch... ki)
() Created & Destroyed 3 Ox3811... Line 00:08.758 . 32 TouchTracker -[TouchDrawView touch... ~[TouchDrawView touchesBagan wi...]
w Call Tree 4 Ox3cOebB80 Line 00:09.734 . 32 TouchTracker -[TouchDrawView touch... |
5 0x380ch30 Line 00:10.486 . 32 TouchTracker -[TouchDrawView touch... |

4 +[NSObject alloc]

|

CoreFoundation :

3 +[NSObject allocWithZaone:|]
CoreFoundation]

2 _internal_class_createlnstance :
libobjc. A.dylib \

1 _internal_class_createlnstanceFrom...|
libobje.Adylib |

0 calloc "
libSystem. B.dylib v

L]

| = | = ‘ {= | (= | |0bject Summ. Instances : Line

cn

line

A

You can also set Instruments to show you every retain and release. While
Instruments is not recording, open the Inspector for the ObjectAlloc instrument by
clicking on the info button next to it. Check Record Reference Counts as shown in
Figure 17.7. Run the application again by clicking the Record button.

Figure 17.7. Record reference counts

Instruments3

:

Y

F%@G‘@ [M TouchTracker

W) 0O:02:39 0
« Runlofl >

-@-

Separate by Category
Separate by Thread

Tl Ignore types with 'NS' prefixes

Default Target Flags ge Mini View
Instruments l i) v - lar:nc Extended Detail
CraphicsServices
- ; e
CraphicsServices
- {JouchTracker - 11 CFRunLoopRuninMode
Launch Configuration CoreFoundation
¥ Discard unrecorded data upen stap 10 CFRunLoopRunSpecific
¥ Record reference counts CorefFoundation
 Only track active allocations 9 FurpleEvemtCallback
 Identify C++ Objects __ GraphicsServices
] Enable NSZombie detection [) 8 _UlApplicationHandleEvent
] ObjectAlloc Track Display . me Live | Size Responsible L... Responsible Caller 7 -UlApplication s‘:‘r:;‘ivem:]
= Allocation Lifespan Style: { Current Bytes) 32 TouchTracker -[TouchDrawView touch. . o
@ All Objects Created Type: (Overlay) 32 TouchTracker -[TouchDrawView touch... T e
O Created & Still Living Zoom: @ T 32 TouchTracker -[TouchDrawView touch...
O Created & Destroyed . 32 TouchTracker -[TouchDrawView touch...
Recorded Types .
w Call Tree o Record all . 32 TouchTracker -[TouchDrawView touch...
SRR S - 32 TouchTracker -[TouchDrawView touch...

[T 1gnore types with 'CF' prefixes CoreFoundation
Invert Call Tree [Ignore types with "Malloc’ prefixes 3 +[NSObject allocWithZone:]
Hide Missing Symbols CoreFoundation
Hide System Libraries (__Configure 2 _internal_class_createlnstance
Show Obj-C Only libobjc. A.dylib
Flatten Recursion 1 _internal_class_createlnstanceFrom...
I+ Call Tree Constraints libobjc.A-dylib
» Specific Data Mining ol
libSystem. B.dylib

4 +[NSObject alloc]

.y — |

tw |

| =2 | = | = | m | ‘OmecISumm(Instances : Line) (Q-

line

s,

Page 294

Chapter 17. Multi-Touch, UlIResponder, and Using Instruments

Now when you browse the instances, you can see how the stack appeared for
every retain and release (Figure 17.8).

Figure 17.8. Inspecting a release

eno Instruments3 =1
W@ (@) Mrochiacker] [[S] w){ 00:00:/50 (=.]
Stop. Default Target Flags « Run 2 of 2 > ion Range Mini View Library
Instruments Joo:e v - Tn1:00 Extended Detall
v Description M
g ObjectAlloc i Category: Line |
& A Type: Malloc :
& Pointer: 0x3813dc0 |
Retain Count: 1 |
ﬁ VM Tracker 0| szs Size: 32 |
|
. e Stack Trace &*a |
17 ox1 I
TouchTracker I}
—_——
ry 1 16 start |
ObjectAlloc |# Category Event Type RefCt Timestamp Address Size Respon... Responsible Caller TouchTracker :
+ Allocation Lifespan | ofune [Malloc | 1| 00:03.044] 0x3813de0| 32 [TouchTra | -[TouchDrawView... JFCITET \
=) All Objects Created 1 Line Retain 2 00:03.044 O0x3813dcO 0 Foundati -[NSCFDictionary ... TouchTracker /ip...acker/main.m.14|
O Created & Still Living 2 Line Release 1 00:03.044 0x3813dec0 0 TouchTra -[TouchDrawView. 14 UlApplicationMain :
O) Created & Destroyed 3 Line Retain 2 00:03.403 0x3813dcO 0 Foundati -[NSCFArray inser... UnKir L
w Call Tree 4 Line Release 1 00:03.403 0x3813dc0 0 TouchTra -[TouchDrawView... 13 CSEventRun
Separate by Category GraphicsServices
Separate by Thread 12 CSEventRunModal
Invert Call Tree CraphicsServices
Hide Missing Symbols 11 CFRunLoopRuninMode
Hide System Libraries I i“”:"”"_g“"’"
Show Obj-C Only S
Flarten Recursion (R T
= 9 PurpleEventCallback
I~ Call Tree Constraints .
= e GraphicsServices
fanfposifinCnigliining 8 _UlApplicationHandlevent .
. -
FEEED B =21)=[=] 00 Obje ns) History: 0x3813dc0) Q- _ine T -
i/ dhiy / A

OK, time to fix the memory leak. In touchesBegan:withEvent:, release newLine
after you add it to the dictionary:

- (void)touchesBegan:(NSSet *)touches
withEvent:(UIEvent *)event
{
for (UITouch *t in touches) {
if ([t tapCount] > 1) {
[self clearAll];
return;
}
NSValue *key = [NSValue valueWithPointer:1];
CGPoint loc = [t locationInView:self];
Line *newLine = [[Line alloc] init];
[newLine setBegin:loc];
[newLine setEnd:loc];
[linesInProcess setObject:newLine forKey:key];
[newLine release];

Page 295

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

The Sampler Instrument

Now that you have hunted down wasted memory, let’s look for wasted CPU cycles
using the Sampler instrument. Add the following CPU wasting code to the end of
your drawRect: method:

float f = 0.0;
for (inti = 0; i < 1000; i++) {

f =f + sin(sin(time(NULL) + i));
}

NSLog(@"f = %f", f);

Build your application. (Make sure you do this; otherwise Instruments will

use the previously built application.) Under the Run menu, select Run with
Performance Tool->CPU Sampler to install the application on your device and
launch Instruments with the Samplerand the CPU Monitor instruments. Run your
application by clicking the Record button and then draw something pretty.

CPU Sampler is useful for finding bottlenecks in your code. The time that your
application takes to call each function is compared to the total running time of
your application and expressed as a percentage. In a responsive application, the
majority of time will be spent in a function called mach_msg_trap. This is the
function your application sits in when it is doing nothing. Therefore, you want most
of your application’s time to be spent in this function.

Many developers using Instruments for the first time will be concerned over

this mach_msg_trap function. Don’t worry about it — a responsive application
may report near 100% for this function. However, just because your application
does not spend near 100% of its time in mach_msg_trap does not mean it is
performing poorly. An application might spend a lot of time performing a task that
requires no user input — like processing an image after the user takes a picture.
This application would report a lot of time spent in some image processing
method. Therefore, there is no rule that says, “If X percentage is spent in this
function, your application has a problem.”

Without a handy rule, how do you determine if you have a problem, then? You
need to use the results of Instruments in conjunction with the user experience

of your application. If, for example, you draw a line in TouchTracker and the
application feels unresponsive, you should be concerned with the amount of time
being spent in methods while your finger is on the screen. When you want to look
at a specific time interval (like when your finger is on the screen), you can drag the

Page 296

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

playhead on top of the graph and click on the Inspection Range buttons to set the
start and stop time of the interval you are interested in.

Now, TouchTracker purposely wastes CPU time by calling the sin function over
and over again every time the view is redrawn. Find the number of samples that
your CPU spent running the sin function by locating sin symbol name in the table
(Figure 17.9).

Figure 17.9. Sampler

nstruments:
eno Inst ts4 =)
@@@ W TouchTracker ¢] (]3] n)| 00:00:26 @
L | >
| Default Target Flags Run 1 of 1 Inspection Range Mini View Library |
Instruments Ja0:00 v Tor.00 '
i
= CPU Monitor 0 Pdlsystem Load |
.
HUsEr Load
| [l
Sampler | Self % Total % # Samplesw |Library Symbol Name |
|7 Sample Perspective 98.7 98.7 4502 libSystem.B.dylib Fmach_msg_trap
@ All sample Counts j _a libSystem.B.dylib _Fr
) Running Sample Times | 0.3 14 libmathCommon.A fesetenv |
| v Call Tree 0.1 0.1 5 libmathCommon.A Ffegeteny |
separate by Thread 0 a 4 commpage F__nanotime !
e 0 3 libSystem.B.dylib bgettimeofday |
™ Hide Missing Symbals 0 a 3 CoreGraphics FCGSFillDRAMBbyY1 |
J Hide System Libraries 0 0 1 libSystem.B.dylib Pmk_timer_arm !
) Shaw Obj-C Only | 0 0 1 libRIP.A.dylib Iripr_stroke_iterate |
[Flatten Recursion 0 1] 1 CoreFoundation F_CFAllocatorAllocate GC I
[> _Call Tree.Constraints 1 0 1] 2 I!DobJ(.A.dY\Ib. Pobjc_msgSend .L
e ific Data Mi | 0 a 1 libSystem.B.dylib bszone_free /|
I sP!iCI _ — o 0 o 1| commpage F__gettimeofday A
jiimfiatisiegineac . 0 1] 1 TouchTracker P -[TouchDrawView drawRect:] b §
| all Thread L E = — = = — = = = — = = = = = = — — BEIL

| 8- | ®w | | @\ = 2 | (= O | Samples) Q- Involves Symbol

You will notice that a small percentage of time is spent in this function; however,
relative to the rest of the function calls, the percentage is very high. You can
select the row with sin in it and click the arrow next to it to see the call stack trace
for when this function is called. This will show you where you can optimize your
code. In this case, you aren’t using sin for anything other than learning how to
use Instruments, so the optimization is just to delete the CPU wasting code from
drawRect:.

When you get more comfortable with Instruments, you will see some common
function calls that always use a lot of CPU time. Most of the time, these are
harmless and unavoidable. For example, the objc_msgSend function will
occasionally creep up to the top of the list when you are sending a lot of
messages to objects. (It is the central dispatch function for any Objective-C
message.) Usually, it’s nothing to worry about. However, if you are spending more

Page 297

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

time dispatching messages than actually doing the work in the methods that are
triggered and your application isn’t performing well, there is a problem that needs
solving.

As a real world example, some Objective-C developers might be tempted to
create classes for things like vectors, points, and rectangles for drawing. These
classes would likely have methods to add, subtract, or multiply instances in
addition to accessor methods to get and set instance variables. When such
classes are used, however, the drawing code has to send a lot of messages

to do simple things, like creating two vectors and adding them together. These
messages add excessive overhead to the simple operation that is being
performed. Therefore, the better alternative is to create data types like these as
structures and access their memory directly. (This is why CGRect and CGPoint
are structures and not Objective-C classes.)

This should give you a good start with the Instruments application. The more you
play with it, the more adept at using it you will become. However, there is one final
word of warning before you invest a significant amount of your development time
using Instruments: if there is no performance problem, don’t fret over every little
row in Instruments. It is a tool for finding problems, not for creating them. Write
clean code that works first; then, if there is a problem, you can find and fix it with
the help ofInstruments.

Challenge: Saving and Loading

Save the lines when the application terminates. Reload them when the application
resumes.

Challenge: Circles

Use two fingers to draw circles. Try having each finger represent one corner of the
bounding box around the circle. (Hint: This is much easier if you track touches that
are working on a circle in a separate dictionary.) You can simulate two fingers on
the simulator by holding down the option button.

For the More Curious: UlControl

The class UlControl is the superclass for many objects in Cocoa Touch:
UIButton, UlSlider, UlTextField, etc. These objects seem magical — when a
touch event occurs in one of these views, an action message is dispatched

Page 298

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

to a target. But there is no magic to any of these; UlControl simply overrides
UIResponder methods.

Consider a very common control event: UlControlEventTouchUplnside. You've
used this control event for the target-action pairs of all of the buttons in this book.
Now it’s time to see how UlControl implements it:

/I In UlControl.m - Not the exact code. There is a bit more going on!
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{

/I Reference to the touch that is ending

UlTouch *touch = [touches anyObiject];

/I Location of that point in this control's coordinate system
CGPoint touchLocation = [touch locationInView:self];

/I'ls that point still in my viewing bounds?
if (CGRectContainsPoint([self bounds], touchLocation))
{
/I Send out action messages to all targets registered for this event!
[self sendActionsForControlEvents:UlControlEventTouchUplnside];
}else {
[self sendActionsForControlEvents:UlControlEventTouchUpQutside];
}
}

Pretty simple, right? Let’s look at UIControlEventTouchDownRepeat:

/I In UlControl.m - Not the exact code. There is a bit more going on!
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
if ([[touches anyObject] tapCount] > 1)
[self sendActionForControlEvents:UlControlEventTouchDownRepeat];
}

Those are easy. What about a UlSlider? When a touch is dragged across a slider,
the control knob moves, and then all targets are sent their action message for
UlControlEventValueChanged.

/I In UISlider.m - Not the exact code. There is a bit more going on!

Page 299

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{

UlTouch *touch = [touches anyObiject];

CGPoint touchLocation = [touch locationInView:self];

CGRect bounds = [self bounds];

float sliderWidth = bounds.size.width;

/I Make sure the knob stays within the bounds

if (ftouchLocation.x < bounds.origin.x)
touchLocation.x = bounds.origin.x;

if (ftouchLocation.x > bounds.origin.x + sliderWidth)
touchLocation.x = bounds.origin.x + sliderWidth;

/I Update interface
[self moveSliderKnobTo:touchLocation];

/l Figure out the new value
float normalizedPositionOfKnob
= (touchLocation.x - bounds.origin.x) / sliderWidth;
float range = [self maximumValue] - [self minimumValue];
float newValue = [self minimumValue]
+ normalizedPositionOfKnob * range;
[self setValue:newValue];

[self sendActionsForControlEvents:UlControlEventValueChanged];

}

So how do these actions get sent to the right target? The

method sendActionsForControlEvents: sends the message
sendAction:to:from:forEvent: to the singleton UlApplication instance for
each target-action pair registered for that event.UlApplication then delivers the
message to the appropriate target.

The controls could send the action messages to the target on their own, but
controls can also have nil-targeted actions. In fact, having nil-targeted actions
can be very useful. If a UlControl’s target is nil, UlApplication finds the first
responder of its UIWindow and sends the action message to it. This is exactly
how keyboard input works — each of the buttons on the keyboard have nil-
targeted actions, and UlApplication sends the action message to the first
responder, which is the active UlTextField. How cool is that?

Page 300

Chapter 18. Core Animation Layer

Chapter 18. Core Animation Layer

One of the things that makes iPhone interfaces so beautiful is the use of
animation. When used properly, animation can increase the functionality of an
application by giving the user visual cues about the workflow of the application.

On the iPhone, the Core Animation API contains the classes and functions needed
to animate an application’s interface.

There are two classes that make Core Animation work: CALayer and
CAAnimation.

CALayer is, at its core, a buffer containing a bitmap. When you draw a layer (or,
more importantly, a stack of layers), the rendering is hardware-accelerated. This
makes drawing a layer to the screen incredibly fast. The idea of layers may be
new, but you’ve been been using layers this entire time: every view has a layer,
and when a view draws, it is drawing upon its layer.

CAAnimation is an object that causes a change over time. Typically, it is
changing one property (like opacity) of a layer while being driven by a timer
object.

In this chapter, we are going to focus on CALayer, and in the next chapter, we'll
focus on CAAnimation.

To use any part of Core Animation, you need to add the QuartzCore framework to
your project. (In addition to Core Animation, the QuartzCore framework contains
the Core Image and Core Video APIs, although neither are available on the
iPhone yet.) Open your HypnoTime project. Double-click on the Target called
HypnoTime. In the General page of the info panel, add QuartzCore.framework to

Page 301

Chapter 18. Core Animation Layer

the linked libraries for the project as shown in Figure 18.1.

Figure 18.1. QuartzCore.framework

Build Rules Properties Comments

Name: HypnoTime

Type: Application

Direct Dependencies

=

Linked Libraries

ﬁ Foundaticn.frarmework
ﬁ UIKit.framework

A® CoreGraphics.framework
A= QuartzCore.framework

Page 302

Chapter 18. Core Animation Layer

Creating a CALayer

Like views, layers are arranged hierarchically: each layer can have sublayers.
Your HypnosisView, like all views, already has one layer. In this section, you are
going to explicitly add a sublayer to it.

Figure 18.2. Object diagram
CALayer

HypnosisView

layer

boxLayer

Add an instance variable to HypnosisView.h to hold on to the layer object you are
about to create:

#import <UIKit/UIKit.h>
#import <QuartzCore/QuartzCore.h>
@interface HypnosisView : UlView {
CALayer *boxLayer;
UlColor *stripeColor;

Page 303

Chapter 18. Core Animation Layer

float xShift, yShift;
}

@end

The designated initializer for a CALayer is simply init. After you instantiate a
layer, you set its size, position (relative to its superlayer), and contents. In
HypnosisView.m, change the initWithFrame: method to create a new layer and
add it as a sublayer to HypnosisView’s layer.

- (id)initWithFrame:(CGRect)r
{

[super initWithFrame:r];
stripeColor = [[UIColor lightGrayColor] retain];

// Create the new layer object
boxLayer = [[CALayer alloc] init];

// Give it a size
[boxLayer setBounds:CGRectMake(0.0, 0.0, 85.0, 85.0)];

// Give it a location
[boxLayer setPosition:CGPointMake(160.0, 100.0)];

// Make half-transparent red the background color for the layer
UlColor *reddish = [UIColor colorWithRed:1.0 green:0.0 blue:0.0 al-
pha:0.5];

// Get a CGColor object with the same color values
CGColorRef cgReddish = [reddish CGColor];
[boxLayer setBackgroundColor:cgReddish];

// Make it a sublayer of the view's layer
[[self layer] addSublayer:boxLayer];

// boxLayer is retained by its superlayer
[boxLayer release];

return self;

Page 304

Chapter 18. Core Animation Layer

Build and run the application. You will see a semi-transparent, red block appear on
the view as shown in Figure 18.3.

Figure 18.3. Red layer

Layer Content

Layers interpret their size and position a little differently than views do. With
a UlView, we typically define the frame of the view to establish its size and
position. The origin of the frame rectangle is the upper-left corner of the view,
and the size stretches right and down from the origin.

For a CALayer, instead of defining a frame, you set the bounds and position
properties of the layer. By default, the position is the center of the layer in its
superlayer. (The anchorPoint property determines where the position lies within

Page 305

Chapter 18. Core Animation Layer

the layer’s bounds: the default value is (0.5, 0.5), the center.) Therefore, you can
change the size of the layer, but if the position remains constant, the layer will still
be centered on the same point.

You can still set or get the frame of a layer by sending it the messages setFrame:
and frame. However, it is considered better practice to use the position and
bounds properties. Why? You cannot animate a layer’s frame. In fact, layers

do not have a frame property at all. When a layer is sent the message frame, it
computes a rectangle from its position and bounds properties. Similarly, when
sending a layer the message setFrame:, it does some math and then sets the
bounds and position properties. The mental math you will need to do to animate
a layer will be much simpler if you stick to setting the bounds and position
properties separately.

A layer is simply a bitmap. We refer to a layer’s appearance as its contents,
which can be set from an image or programmatically. To draw to a layer
programmatically, you either subclass CALayer or assign a delegate to an
instance of CALayer. The delegate will then implement drawing routines. The
drawing in these methods is done using Core Graphics. We will discuss these two
approaches for drawing a layer at the end of this chapter. For now, however, you
will use an image file to set the contents of the layer. Add the following code to
the initWithFrame: method:

- (id)initWithFrame:(CGRect)r
{

[super initWithFrame:r];
stripeColor = [[UIColor lightGrayColor] retain];

boxLayer = [[CALayer alloc] init];
[boxLayer setBounds:CGRectMake(0.0, 0.0, 85.0, 85.0)];
[boxLayer setPosition:CGPointMake(160.0, 100.0)];

UlColor *reddish = [UIColor colorWithRed:1.0 green:0.0 blue:0.0 alpha:0.5];
CGColorRef cgReddish = [reddish CGColor];
[boxLayer setBackgroundColor:cgReddish];

// Create a Ulilmage
Ulimage *layerimage = [UllImage imageNamed:@"Hypno.png"];

// Get the underlying CGlmage
CGIimageRef image = [layerimage CGlmage];

Page 306

Chapter 18. Core Animation Layer

// Put the CGlmage on the layer
[boxLayer setContents:(id)imagel];

// Inset the image a bit on each side
[boxLayer setContentsRect:CGRectMake(-0.1, -0.1, 1.2, 1.2)];

// Let the image resize (without changing the aspect ratio)
/ to fill the contentRect

[boxLayer setContentsGravity:kCAGravityResizeAspect];

[[self layer] addSublayer:boxLayer];
[boxLayer release];
return self;

}

Build and run the application. You will see an image on the layer as shown in
Figure 18.4.

Figure 18.4. Layer with image

Hypnosis

Page 307

Chapter 18. Core Animation Layer

The contents and backgroundColor properties of the CALayer were set with
objects of type CGImageRef and CGColorRef, respectively. You are used to
working with Ullmage and UlColor, so why doesn’t Core Animation just use these
types of objects?

UIKit (where we get Ullmage and anything else prefixed with Ul) only exists on
the iPhone. Core Animation, however, exists on the iPhone and on the Mac.
This means using the Core Graphics types makes your code portable between
systems. Fortunately, UIKit objects have methods to easily switch between
themselves and their Core Graphics counterparts (for example, Ullmage’s
CGlImage and initWithCGlmage: methods).

Just like with views, layers have a pointer to their parent layer. While views

call this pointer superview, layers, as you may have guessed, call this pointer
superlayer. When a layer is drawn, it copies its contents to the screen, and then
each sublayer copies its contents to the screen. Therefore, a layer always draws
on top of its superlayer.

Each layer has a property, zPosition, that determines how far away it is from

the plane of the screen. If two layers are siblings (that is, they have the same
superlayer) and they overlap, then the layer with the higher z-position is drawn
last. (A sublayer always draws on top of its superlayer, regardless of zPosition.)
A layer’s zPosition defaults to 0 and can be set to a negative value.

[aLayer setZPosition:-5];
[bLayer setZPosition:5];
[parentLayer addSublayer:bLayer];
[parentLayer addSublayer:alLayer];

/l bLayer draws on top of aLayer!

Page 308

Chapter 18. Core Animation Layer

Figure 18.5. Perspective vs. Orthographic

Objects viewed with Perspective Objects viewed without Perspective
Ay Ay

N N

-

F
L J
F 3
A J

Y

When the Z-axis is discussed, some developers think there is perspective applied,
and they expect a layer to appear larger as its zPosition increases. However,
Core Animation layers are presented orthographically and thus, will not appear as
a different size based on their zPositions. (You can of course fake perspective

by changing the transform or bounds properties of a layer, but at that point, you
might be better served using OpenGL ES directly.)

Implicitly Animatable Properties

Several of the properties of CALayer are implicitly animatable. Changes to these
properties are animated just by invoking the setter method for them. The property
position is an example of an implicitly animatable property. Therefore, sending
the message setPosition: to a CALayer will trigger an animation that changes
the position of that layer over a small amount of time.

In this section, you are going to add a response to user taps: the layer will move
to wherever the user starts a touch by sending it the message setPosition:. The
motion will be animated because position is an implicitly animatable property.
Add the following to HypnosisView.m:

- (void)touchesBegan:(NSSet *)touches
withEvent:(UIEvent *)event

{

Page 309

Chapter 18. Core Animation Layer

UlTouch *t = [touches anyObject];
CGPoint p = [t locationinView:self];
[boxLayer setPosition:p];

}

Build and run the application. The layer will move smoothly to where you start a
touch.

What if the user drags? The layer should follow the user’s finger. Implement a
similar method:

- (void)touchesMoved:(NSSet *)touches
withEvent:(UIEvent *)event
{
UlTouch *t = [touches anyObject];
CGPoint p = [t locationInView:self];
[boxLayer setPosition:p];

}

Build and run the application. Notice how the animation makes the layer lag
behind the drag. This makes the application seem sluggish.

Implicit animation is convenient, but it causes problems in some cases. All
implicitly animatable properties change to their destination value over a constant
time interval. However, changes to the property of a layer while it is currently
being animated restarts an implicit animation. Therefore, if a layer is in the middle
of traveling from point A to point B, and you tell it to go to point C, it will never
reach B; and that little instantaneous change of direction coupled with the timer
restarting is what makes the animation look choppy. (Figure 18.6)

Page 310

Chapter 18. Core Animation Layer

Figure 18.6. Animation missing waypoints

Destination Set

Original Position During First
Animation

Original Destination
(FirstAnimation)

If you wish to disable an implicit animation, you can use an animation transaction.
Animation transactions allow you to batch implicit animations and set the
parameters of the animation, like the duration and animation curve. To begin

a transaction, you send the message begin to the class CATransaction. To

end a transaction, you send commit to CATransaction. Within the begin and
commit block, you can set properties of a layer as normal and also set values for
CATransaction. In touchesMoved:withEvent:, use CATransaction to disable
the animation during a drag:

- (void)touchesMoved:(NSSet *)touches
withEvent:(UIEvent *)event
{
UlTouch *t = [touches anyObject];
CGPoint p = [t locationInView:self];
[CATransaction begin];
[CATransaction setValue:[NSNumber numberWithBool:YES]
forKey:kCATransaction