Objective-(
undamentals

Christopher K. Fairbairn

Johannes Fahrenkrug
Collin Ruffenach

/Ill MANNING

Objective-C Fundamentals

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Objective-C
Fundamentals

CHRISTOPHER K. FAIRBAIRN
JOHANNES FAHRENKRUG
COLLIN RUFFENACH

MANNING

SHELTER ISLAND

Download from Wow! eBook <www.wowebook.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/l/l Manning Publications Co. Development editor: Troy Mott
20 Baldwin Road Technical editor: Amos Bannister
PO Box 261 Copyeditor: Linda Kern
Shelter Island, NY 11964 Proofreader: Katie Tennant

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781935182535
Printed in the United States of America
128345678910 - MAL - 17 16 15 14 13 12 11

Download from Wow! eBook <www.wowebook.com>

www.manning.com

brief contents

PART 1 GETTING STARTED WITH OBJECTIVE-Ci...cccccvvivecencencnecnessl

1 w Building your first iOS application 3
m Data types, variables, and constants 28
An introduction to objects 55

A W N
u

m Storing data in collections 74

PART 2 BUILDING YOUR OWN OBJECTS ..cccceeecennceeccencencreccancennes 95

n Creating classes 97

m Extending classes 124

Protocols 144

s Dynamic typing and runtime type information 163

© 00 N O O
]

m Memory management 177

PART 3 MAKING MAXIMUM USE OF FRAMEWORK
FUNCTIONALITY ceucveceecrecressessosssssssssscsssssssssssssessessesses 201
10 = Error and exception handling 203
11 wm Key-Value Coding and NSPredicate 212
12 w Reading and writing application data 228
13 wm Blocks and Grand Central Dispatch 257
14 w Debugging techniques 276

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

contents

preface xv

acknowledgments xvi

about this book xviii

author online xxi

about the cover illustration xxii

PART 1 GETTING STARTED WITH OBJECTIVE-C................1

Building your first 10S application 3
1.1 Introducing the iOS development tools 4
Adapting the Cocoa frameworks for mobile devices 4
1.2 Adjusting your expectations 5
A survey of hardware specifications, circa mid-2011 6

Expecting an unreliable internet connection 7
1.3 Using Xcode to develop a simple Coin Toss game 7
Introducing Xcode—Apple’s IDE 8

Launching Xcode easily 8 = Creating the project 9
Writing the source code 12

1.4 Hooking up the user interface 15

Adding controls to a view 15 = Connecting controls
to source code 17

Download from Wow! eBook <www.wowebook.com>

CONTENTS

1.5 Compiling the Coin Toss game 21
1.6 Taking Coin Toss for a test run 21

Selecting a destination 22 = Using breakpoints to inspect
the state of a running application 23 = Running the
CoinToss game in the iPhone simulator 24

Controlling the debugger 25

1.7 Summary 27

Data types, variables, and constants 28
2.1 Introducing the Rental Manager application 29
Laying the foundations 29
2.2 The basic data types 32

Counting on your fingers—integral numbers 32

Filling in the gaps—floating-point numbers 35

Characters and strings 37 = Boolean truths 39
2.3 Displaying and converting values 40

NSLog and Format Specifiers 40 = Type casts and
type conversions 43

2.4 Creating your own data types 44
Enumerations 44 = Structures 46 » Arrays 48
The importance of descriptive names 50

2.5 Completing Rental Manager v1.0, App Store
here we come! 52

2.6 Summary 54

An introduction to objects 55

3.1 A whirlwind tour of object-oriented programming

concepts 56

What’s wrong with procedural-based languages such as C? 56
What are objects? 56 = What are classes? 57
Inheritance and polymorphism 57

3.2 The missing data type:id 58

3.3 Pointers and the difference between reference and
value types 59

Memory maps 59 = Obtaining the address of a variable 59

Following a pointer 60 = Comparing the values
of pointers 61

Download from Wow! eBook <www.wowebook.com>

CONTENTS ix

3.4 Communicating with objects 62

Sending a message to an object 62 = Sending a message
to a class 63 = Sending nonexistent messages 64
Sending messages to nil 65

3.5 Strings 66

Constructing strings 66 ® Extracting characters
from strings 67 = Modifying strings 68
Comparing strings 69

3.6 Sample application 69

3.7 Summary 72

Storing data in collections 74
4.1 Arrays 75

Constructing an array 75 » Accessing array elements 76
Searching for array elements 77 ® Iterating through arrays 79
Adding items to an array 80

4.2 Dictionaries 82

Constructing a dictionary 82 = Accessing dictionary
entries 84 = Adding key/value pairs 85

Enumerating all keys and values 86

4.3 Boxing 88

The NSNumber class 89 = The NSValue class 90
nil vs. NULL vs. NSNull 90

4.4 Making the Rental Manager application data driven 91
4.5 Summary 94

PART 2 BUILDING YOUR OWN OBJECTS...ccceeuceernecreeeess 9D

Creating classes 97
5.1 Building custom classes 98
Adding a new class to the project 98
5.2 Declaring the interface of a class 99

Instance variables (tvars) 100 = Method declarations 101
Fleshing out the header file for the CTRentalProperty class 105

5.3 Providing an implementation for a class 106

Defining method implementations 106 = Accessing instance
variables 106 = Sending messages to self 107
Fleshing out the method file for the CTRentalProperty class 108

Download from Wow! eBook <www.wowebook.com>

CONTENTS

5.4 Declared properties 109
@property syntax 109 = Synthesizing property getters
and setters 112 = Dot syntax 113

5.5 Creating and destroying objects 115

Creating and initializing objects 115 = init is pretty dumb 116
Combining allocation and initialization 118
Destroying objects 119

5.6 Using the class in the Rental Manager application 120
5.7 Summary 123

Extending classes 124

6.1 Subclassing 124
What is subclassing? 125

6.2 Adding new instance variables 127
6.3 Accessing existing instance variables 129
Manual getters and setters approach 130
6.4 Overriding methods 131
Querriding the description method 132
6.5 Class clusters 134
Why use class clusters 134 = Multiple public clusters 135
6.6 Categories 136

Extending classes without subclassing 136
Using a category 136 = Considerations when
using categories 138

6.7 Subclassing in your demo application 138

Creating and subclassing CTLease 139
Creating CTPeriodicLease as a subclass of CTLease 140
Creating CTFixedLease as a subclass of CTLease 141

6.8 Summary 143

Protocols 144

7.1 Defining a protocol 145
7.2 Implementing a protocol 146

Creating the protocol method callers 147 = Making a class
conform to a protocol 148

Download from Wow! eBook <www.wowebook.com>

CONTENTS

7.3 Important protocols 150

<UITableViewDataSource> 150 = <UITableViewDelegate>
<UlActionSheetDelegate> 157 = NSXMLParser 158

7.4 Summary 162

Dynamic typing and runtime type information 163
8.1 Static vs. dynamic typing 164
Making assumptions about the runtime type 164
8.2 Dynamic binding 166
8.3 How messaging works 166

Methods, selectors, and implementations 167
Handling unknown selectors 169 = Sending
a message to nil 170

8.4 Runtime type information 171

Determining if a message will respond to a message 171
Sending a message generated at runtime 171
Adding new methods to a class at runtime 173

8.5 Practical uses of runtime type introspection 174
8.6 Summary 176

Memory management 177
9.1 Object ownership 178
9.2 Reference counting 179

Releasing an object 180 = Retaining an object 181
Determining the current retain count 182

9.3 Autorelease pools 184

What is an autorelease pool? 185 = Adding objects

to the autorelease pool 185 = Creating a new
autorelease pool 185 = Releasing objects in a pool 187
Why not use an autorelease pool for everything? 187

9.4 Memory zones 190
9.5 Rules for object ownership 192
9.6 Responding to low-memory warnings 193

Implementing the UIApplicationDelegate protocol 193
Overriding didRecetveMemoryWarning 194 = Observing the
UlApplicationDidReceiveMemoryWarningNotification 197

9.7 Summary 199

Download from Wow! eBook <www.wowebook.com>

153

CONTENTS

PART 3 MAKING MAXIMUM USE OF FRAMEWORK
FUNCTIONALITY.O..........O..........O..........O.......C.. 201

1 Error and exception handling 203

10.1 NSError—handling errors the Cocoa way 204

Getting NSError to talk 204 = Examining NSError’s
userInfo Dictionary 205

10.2 Creating NSError objects 206

Introducing RentalManagerAPI 206 = Handling and
displaying RentalManagerAPI errors 209

10.3 Exceptions 210

Throwing exceptions 210 = Catching exceptions 211
10.4 Summary 211

1 Key-Value Coding and NSPredicate 212
11.1 Making your objects KVC-compliant 213

Accessing properties via KVC 214 = Constructing key paths 215

Returning multiple values 215 = Aggregating and collating
values 216

11.2 Handling special cases 217
Handling unknown keys 217 = Handling nil values 218
11.3 Filtering and matching with predicates 219

Evaluating a predicate 219 = Filtering a collection 220
Expressing your predicate condition 220 = More complex
conditions 221 = Using key paths in predicate
expressions 222 = Parameterizing and templating
predicate expressions 223

11.4 Sample application 224
11.5 Summary 227

1 Reading and writing application data 228
12.1 Core Data history 229
What does Core Data do? 229
12.2 Core Data objects 231

Managed object context 231 = Persistent store coordinator 231
Managed object model 232 = Persistent object store 232

Download from Wow! eBook <www.wowebook.com>

CONTENTS

12.3 Core Data resources 232

Core Data entities 232 = Core Data attributes 233
Core Data relationships 234

12.4 Building the PocketTasks application 234

Examining the Xcode Core Data template 234

Building the data model 235 = Defining the relationships 236
Creating Person entities in pure code 237 = Felching Person
entities in pure code 239 » Adding a master TableView 240
Adding and deleting people 243 » Managing tasks 246
Using model objects 249

12.5 Beyond the basics 251

Changing the data model 251 = Performance 253
Error handling and validation 253

12.6 Summary 256

1 Blocks and Grand Central Dispatch 257
13.1 The syntax of blocks 258

Blocks are closures 260 = Blocks and memory management 262
Block-based APIs in Apple’s iOS frameworks 264

13.2 Performing work asynchronously 265

Meet GCD 266 = GCD fundamentals 266
Building RealEstateViewer 267 = Making the image
search asynchronous 271 = Making the image
loading asynchronous 273

13.3 Summary 274

1 Debugging techniques 276
14.1 Building an application, complete with bugs 277
14.2 Understanding NSLog 278
14.3 Bringing memory leaks under control with
Instruments 281
14.4 Detecting zombies 284
14.5 Summary 286

appendix A Installing the :OS SDK 288
appendix B The basics of C 293
appendix C Alternatives to Objective-C = 312

index 327

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

preface

Having been involved in the development of applications on a variety of mobile plat-
forms for more than 10 years, I knew the iPhone was something exciting when it was
first introduced back in 2008. From a consumer viewpoint, it had the intangible and
hard-to-define elements required to make a compelling device that you just wanted to
keep coming back to and interact with. To the user, the device “felt right” and it was a
pleasure to use rather than simply being a means to an end to achieve a singular task.

As new and refreshing as the iPhone user experience was, the development tools
that supported it were also rather unique. For developers without prior exposure to
Apple products, the platform was full of new terms, tools, and concepts to grok. This
book is designed to provide an introduction to these technologies, with emphasis on
covering only those features available for use by iOS applications. For someone learn-
ing a new environment, there’s nothing worse than reading a section of a book and
attempting to implement what you learn in an application of your own design, only to
realize that the Objective-C or Cocoa feature discussed is only applicable to desktop
Mac OS X applications.

I hope you enjoy reading this book and you’ll remember its tips while you develop
the next iTunes App Store Top 10 application!

CHRISTOPHER FAIRBAIRN

XV

Download from Wow! eBook <www.wowebook.com>

acknowledgments

A technical book has more than what first meets the eye. A significant number of skills
are required to make sure not only that it is technically correct, but that it reads well,
looks good, and is approachable by the intended audience. Thus, we thank the entire
Manning staff, without whom this book would not exist in its present form. They did
more than just correct our errors and polish our words; they also helped make inte-
gral decisions about the organization and the contents of the book—decisions that
improved it dramatically.

At Manning Publications, we’d like to thank Emily Macel who helped us at an early
stage to shape and focus our writing style. Thanks also to Troy Mott, our acquisitions
editor, who initially approached us to develop the book and who stayed with us every
step of the way. And thanks to Amos Bannister for expertly tech editing the final man-
uscript during production and for testing the code.

Finally, we’d like to thank the reviewers who generously agreed to read our man-
uscript as we worked on it; they improved the book immensely: Ted Neward, Jason
Jung, Glenn Stokol, Gershon Kagan, Cos DiFazio, Clint Tredway, Christopher
Haupt, Berndt Hamboeck, Rob Allen, Peter Scott, Lester Lobo, Frank Jania, Curtis
Miller, Chuck Hudson, Carlton Gibson, Emeka Okereke, Pratik Patel, Kunal Mittal,
Tyson Maxwell, TVS Murthy, Kevin Butler, David Hanson, Timothy Binkley-Jones,
Carlo Bottiglieri, Barry Ezell, Rob Allen, David Bales, Pierre-Antoine Grégoire,
Kevin Munc, Christopher Schultz, Carlton Gibson, Jordan Duval-Arnould, Robert
McGovern, Carl Douglas, Dave Mateer, Fabrice Dewasmes, David Cuillerier, Dave
Verwer, and Glen Marcus.

xvi

Download from Wow! eBook <www.wowebook.com>

ACKNOWLEDGMENTS xvii

Christopher would like to thank his fiancée Michele for giving support and encour-
agement while he worked on this book. She is in many ways an unsung fourth
“author” and has contributed greatly. Also, he would like to thank the staff at Manning
for their understanding in a trying year involving burglaries, setbacks, and no less
than three significant earthquake events. Last but not least, he is thankful for all the
support from the important people in his life.

Johannes would like to thank Troy Mott for getting him on board with this project,
and Aaron Hillegass for helping him get started with Mac development in the first
place, and for being an all-around nice guy. Most of all, he’d like to thank his loving
and ever-supportive wife Simone (hey, he already did get rid of some of his nerd
T-shirts!) and his parents Fred and Petra.

Collin would like to thank Manning Publications for giving him the opportunity to
work on this book and the language he is so passionate about. He acknowledges
Aaron Hillegass for being a dedicated evangelist for this fantastic language and all its
platforms; most of what he knows about Objective-C can be attributed to Aaron’s
work. He would like to thank Panic, OmniGraffle, Delicious Library, Rouge Amoeba,
MyDreamApp.com, and all the other inspiring software development companies that
set such a high bar in the mobile space with their fantastic desktop software. He also
thanks ELC Technologies for being so supportive in this endeavor. Thanks to his par-
ents Debbie and Steve for all of their support, and his brothers Brett and Stephen for
helping hash out ideas for the book. A big thanks goes to his girlfriend Caitlin
for helping him stay dedicated and focused. And finally, he would like to thank
Brandon Trebitowski, author with Manning Publications, for his dedication to this
platform and for educating young developers.

Download from Wow! eBook <www.wowebook.com>

about this book

Objective-C Fundamentals is an introductory book, intended to complement other
books focused on iPhone and iPad application development such as (0S 4 in Action.
While many books have been written on how to develop iOS applications, most focus
on the individual APIs and frameworks provided by the device, rather than the unique
language, Objective-C, which is a cornerstone of Apple’s development platform. To
truly master the platform, you must have a strong grip on the language, and that is
what this book intends to provide. Objective-C Fundamentals is a book that focuses on
learning Objective-C in the context of iOS application development. No time is spent
discussing aspects or elements of the language that are not relevant to iOS. All exam-
ples are fully usable on your own iOS-powered device. We encourage you to read this
book straight through, from chapter 1 to chapter 14. This process will introduce the
platform, discuss how to program for the iPhone and iPad, and walk you through
the entire process step by step.

The audience

We’ve done our best to make this book accessible to everyone who is interested in creat
ing successful i0OS applications using the native Objective-C-based development tools.
If you want to learn about iOS programming, you should have some experience
with programming in general. It'd be best if you’ve worked with C or at least one
object-oriented language before, but that’s not a necessity. If you haven’t, you may
find the introduction to the C programming language in appendix B helpful, and you
should expect to do some research on your own to bolster your general programming

Xviii

Download from Wow! eBook <www.wowebook.com>

ABOUT THIS BOOK xix

skills. There’s no need to be familiar with Objective-C, Cocoa, or Apple programming
in general. We’ll give you everything you need to become familiar with Apple’s unique
programming style. You’ll probably have a leg-up if you understand object-oriented
concepts; but it’s not necessary (and again, you’ll find an introduction in chapter 3).

Roadmap

Chapter 1 introduces the tools surrounding Objective-C and iOS application develop-
ment, and covers the creation of a basic game, ready to run on your device.

Chapter 2 kicks things off by highlighting how data is stored and represented
within an Objective-C-based application.

Chapter 3 looks at how Objective-C takes small quantities of data and packages
them with logic to form reusable components called classes.

Chapter 4 shifts the focus by taking a look at some of the classes, provided out of
the box by Cocoa Touch, that can be used to store multiple pieces of related data.

Chapter 5 covers how to create your own custom classes and objects. Learning
how to create your own classes is an important building block to becoming a produc-
tive developer.

Chapter 6 takes a look at how you can build on top of the foundations provided by
an existing class to create a more specialized or customized version of a class without
needing to rewrite all of its functionality from scratch.

Chapter 7 discusses how classes can be defined to provide specific functionality,
without resorting to requiring all classes to inherit from a common base class. This
concept is provided with a language construct called a protocol.

Chapter 8 looks deeply at some of the aspects of Objective-C that make it unique.
The important distinction between message sending and method invocation is dis-
cussed and some powerful programming techniques are demonstrated.

Chapter 9 covers how to keep track of memory allocation within an Objective-C
application. Since no automatic garbage collector is available, simple rules are discussed
which will allow you to expertly craft applications without introducing memory leaks.

Chapter 10 looks at NSError and at some real-life use cases for exceptions, which
tools will help you deal with errors gracefully.

Chapter 11 covers Key Value Coding (KVC) and NSPredicate-based queries,
which are a surprisingly flexible way to filter, search and sort data within Cocoa
Touch—-based applications.

Chapter 12 gets you started with Core Data and teaches you everything you’ll need
to know to leverage Core Data for all of your most common data persistence needs.

Chapter 13 introduces a language construct called a block and demonstrates this by
showing how Grand Central Dispatch (GCD) can be used to simplify multithreaded
programming, since it takes care of all the complicated heavy lifting for us.

No application is perfect first time around, so chapter 14 rounds out the book with
a discussion on debugging techniques that can help resolve unwanted logic errors and
memory leaks quickly and efficiently.

Download from Wow! eBook <www.wowebook.com>

ABOUT THIS BOOK

The appendixes contain additional information that didn’t fit with the flow of the
main text. Appendix A outlines how to enroll in the iOS Developer Program and set
up your physical iPhone or iPad device in order to run your own applications on
them. Appendix B provides a basic overview of the C programming language that
Objective-C is a descendant of. This will be ideal for developers with little experience
of a C-based language and those that have previously only developed in languages
such as Ruby, Python, or Java. Appendix C outlines some of the alternatives you can
use to develop iOS applications, and compares their advantages and disadvantages to
Objective-C.

Writing this book was truly a collaborative effort. Chris wrote chapters 1 through 5,
8,9, 11, 14, and appendixes B and C. Johannes contributed chapters 10, 12, and 13,
and appendix A; and Collin was responsible for chapters 6 and 7.

Code conventions and downloads

Code examples appear throughout this book. Longer listings appear under clear list-
ing headings, and shorter listings appear between lines of text. All code is set in a
monospace font like this to differentiate it from the regular font. Class names have
also been set in code font; if you want to type it into your computer, you’ll be able to
clearly make it out.

With the exception of a few cases of abstract code examples, all code snippets began
life as working programs. You can download the complete set of programs from
www.manning.com/Objective-CFundamentals. You’ll find two ZIP files there, one for
each of the SDK programs. We encourage you to try the programs as you read; they
include additional code that doesn’t appear in the book and provide more context. In
addition, we feel that seeing a program work can elucidate the code required to create it.

The code snippets in this book include extensive explanations. We often include
short annotations beside the code; and sometimes numbered cueballs beside lines of
code link the subsequent discussion to the code lines.

Software requirements

An Intel-based Macintosh running OS X 10.6 or higher is required to develop iOS
applications. You also need to download the Xcode IDE and iOS SDK. Xcode is avail-
able for purchase in the Mac App Store and the iOS SDK is freely downloadable.

However, the best approach to obtaining Xcode and developing iOS applications is
to pay a yearly subscription fee for the i0OS Developer Program (http://developer.apple
.com/programs/ios/). This will provide free access to Xcode and iOS SDK downloads
as well as enable testing and deployment of applications on real iPhone and iPad
devices, and the iTunes App Store.

Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/programs/ios/
http://developer.apple.com/programs/ios/
www.manning.com/Objective-CFundamentals

author online

Purchase of Objective-C Fundamentals includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/Objective-
CFundamentals. This page provides information on how to get on the forum once
you’re registered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the Author Online forum remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest their
interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

Download from Wow! eBook <www.wowebook.com>

www.manning.com/Objective-CFundamentals
www.manning.com/Objective-CFundamentals

about the cover illustration

On the cover of Objective-C Fundamentals is “A man from Tinjan, Istria,” a village in the
interior of the peninsula of Istria in the Adriatic Sea, off Croatia. The illustration is
taken from a reproduction of an album of Croatian traditional costumes from the
mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum
in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at
the Ethnographic Museum in Split, itself situated in the Roman core of the medieval
center of the town: the ruins of Emperor Diocletian’s retirement palace from around
AD 304. The book includes finely colored illustrations of figures from different
regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

In this region of Croatia, the traditional costume for men consists of black woolen
trousers, jacket, and vest decorated with colorful embroidered trim. The figure on the
cover is wearing a lighter version of the costume, designed for hot Croatian summers,
consisting of black linen trousers and a short, black linen jacket worn over a white
linen shirt. A gray belt and black wide-brimmed hat complete the outfit.

Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of
different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

xxii

Download from Wow! eBook <www.wowebook.com>

Part 1

Getting started
with Objective-C

Becoming an iOS application developer can require mastering a number of
new tools and technologies such as the Xcode IDE and the Objective-C program-
ming language. Although plenty of step-by-step how-to tutorials are available
online for developing small example applications, such as a photo viewer or RSS
news feed display application and so on, these typically don’t provide much in
the way of background information to enable you to develop applications of
your own design.

In this part of the book, you’ll develop a small game as a learning exercise to
become familiar with the development tools surrounding the Objective-C lan-
guage. As you progress through these chapters, you’ll discover more of the
meaning and purpose behind the individual steps and tasks outlined in develop-
ing the game so you can see the theory and purpose behind each step.

Toward the end of this part, you’ll reach a stage where you can confidently
create a new project within Xcode and describe the purpose of each file and the
meaning behind the various code snippets found within them.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Building your first 1O5
application

This chapter covers

m Understanding the iOS development
environment

®m [earning how to use Xcode and Interface
Builder

m Building your first application

As a developer starting out on the iOS platform, you're faced with learning a lot
of new technologies and concepts in a short period of time. At the forefront of
this information overload is a set of development tools you may not be familiar
with and a programming language shaped by a unique set of companies and his-
torical events.

i0S applications are typically developed in a programming language called Objec-
tive-C and supported by a support library called Cocoa Touch. If you’ve already devel-
oped Mac OS X applications, you’re probably familiar with the desktop cousins of
these technologies. But it’s important to note that the iOS versions of these tools
don’t provide exactly the same capabilities, and it’s important to learn the restric-
tions, limitations, and enhancements provided by the mobile device. In some cases,
you may even need to unlearn some of your desktop development practices.

Download from Wow! eBook <www.wowebook.com>

1.1

111

CHAPTER 1 Building your first iOS application

While developing iOS applications, most of your work will be done in an applica-
tion called Xcode. Xcode 4, the latest version of the IDE, has Interface Builder (for cre-
ating the user interface) built directly into it. Xcode 4 enables you to create, manage,
deploy, and debug your applications throughout the entire software development life-
cycle. When creating an application that supports more than one type of device pow-
ered by the iOS, you may wish to present slightly different user interfaces for specific
device types while powering all variants via the same core application logic under-
neath. Doing so is easier if the concept of model-view-controller separation is used,
something that Xcode 4 can help you with.

This chapter covers the steps required to use these tools to build a small game for
the iPhone, but before we dive into the technical steps, let’s discuss the background of
the iOS development tools and some of the ways mobile development differs from
desktop and web-based application development.

Introducing the iOS development tools

Objective-C is a strict superset of the procedural-based C programming language. This
fact means that any valid C program is also a valid Objective-C program (albeit one
that doesn’t make use of any Objective-C enhancements).

Objective-C extends C by providing object-oriented features. The object-oriented
programming model is based on sending messages to objects, which is different
from the model used by C++ and Java, which call methods directly on an object. This
difference is subtle but is also one of the defining features that enables many of
Objective-C’s features that are typically more at home in a dynamic language such as
Ruby or Python.

A programming language, however, is only as good as the features exposed by its
support libraries. Objective-C provides syntax for performing conditional logic and
looping constructs, but it doesn’t provide any inherent support for interacting with
the user, accessing network resources, or reading files. To facilitate this type of func-
tionality without requiring it to be written from scratch for each application, Apple
includes in the SDK a set of support libraries collectively called Cocoa Touch. If
you’re an existing Java or .NET developer, you can view the Cocoa Touch library as
performing a purpose similar to the Java Class Library or .NET’s Base Class Librar-
ies (BCL).

Adapting the Cocoa frameworks for mobile devices
Cocoa Touch consists of a number of frameworks (commonly called kits). A frame-
work is a collection of classes that are grouped together by a common purpose or task.
The two main frameworks you use in iPhone applications are Foundation Kit and
UIKit. Foundation Kit is a collection of nongraphical system classes consisting of data
structures, networking, file IO, date, time, and string-handling functions, and UIKit is
a framework designed to help develop GUIs with rich animations.

Cocoa Touch is based on the existing Cocoa frameworks used for developing desk-
top applications on Mac OS X. But rather than making Cocoa Touch a direct line-by-line

Download from Wow! eBook <www.wowebook.com>

1.2

Adjusting your expectations 5

User’s application

Foundation .
Kit UIKit
C-based
APIs
Obj-C runtime
Figure 1.1 The software runtime
environment for i0OS applications,
i0S showing the operating system,

Objective-C runtime, and Cocoa
Touch framework layers

port to the iPhone, Apple optimized the frameworks for use in iPhone and iPod Touch
applications. Some Cocoa frameworks were even replaced entirely if Apple thought
improvements in functionality, performance, or user experience could be achieved in
the process. UIKit, for example, replaced the desktop-based AppKit framework.

The software runtime environment for native iOS applications is shown in figure 1.1.
It’s essentially the same software stack for desktop applications if you replace iOS with
Mac OS X at the lowest level and substitute some of the frameworks in the Cocoa layer.

Although the Cocoa Touch frameworks are Objective-C—based APIs, the iOS devel-
opment platform also enables you to access standard C-based APIs. The ability to
reuse C (or G++) libraries in your Objective-C applications is quite powerful. It
enables you to reuse existing source code you may have originally developed for
other mobile platforms and to tap many powerful open source libraries (license per-
mitting), meaning you don’t need to reinvent the wheel. As an example, a quick
search on Google will find existing C-based source code for augmented reality, image
analysis, and barcode detection, to name a few possibilities, all of which are directly
usable by your Objective-C application.

Adjusting your expectations

With a development environment that will already be familiar to existing Mac OS X
developers, you may mistakenly think that the iPhone is just another miniature com-
puting device, similar to any old laptop, tablet, or netbook. That idea couldn’t be any
further from the truth. An iPhone is more capable than a simple cell phone but less so
than a standard desktop PC. As a computing device, it fits within a market space simi-
lar to that of netbooks, designed more for casual and occasional use throughout the
day in a variety of situations and environments than for sustained periods of use in a
single session.

Download from Wow! eBook <www.wowebook.com>

1.2.1

CHAPTER 1 Building your first iOS application

A survey of hardware specifications, circa mid-2011

On taking an initial look at an iPhone 4, you’ll undoubtedly notice the 3.5-inch
screen, 960 x 640 pixels, that virtually dominates the entire front of the device. Its gen-
eral size and the fact that the built-in touch screen is the only way for users to interact
with the device can have important ramifications on application design. Although 960
x 640 is larger than many cell phones, it probably isn’t the screen on which to view a
300-column-by-900-row spreadsheet.

As an example of the kind of hardware specifications you can expect to see, table 1.1
outlines the specifications of common iPhone, iPod Touch, and iPad models available
in mid-2010. In general, the hardware specifications lag behind those of desktop PCs by
a couple of years, but the number of integrated hardware accessories that your applica-
tions can take advantage of, such as camera, Bluetooth, and GPS, is substantially higher.

Table 1.1 Comparison of hardware specifications of various iPhone and iPod Touch devices

Feature iPhone 3G iPhone 3GS iPhone 4 iPad iPad2
RAM 128 MB 256 MB 512 MB 256 MB 512 MB
Flash 8-16 GB 16-32 GB 16-32 GB 16-64 GB 16-64 GB
Processor | 412 MHz 600 MHz ARM | 1 GHz Apple A4 | 1 GHz Apple A4 1 GHz dual-core
ARM11 Cortex Apple A5
Cellular 3.6 Mbps 7.2 Mbps 7.2 Mbps 7.2 Mbps 7.2 Mbps
(optional) (optional)
Wi-Fi Yes Yes Yes Yes Yes
Camera 2 MP 3 MP AF 5 MP AF (back) | — 0.92 MP (back)
0.3 MP (front) 0.3 MP (front)
Bluetooth | Yes Yes — Yes Yes
GPS Yes Yes — Yes Yes
(no compass) (3G models only) | (3G models only)

Although it’s nice to know the hardware capabilities and specifications of each device,
application developers generally need not concern themselves with the details. New
models will come and go as the iOS platform matures and evolves until it becomes dif-
ficult to keep track of all the possible variants.

Instead, you should strive to create an application that will adapt at runtime to the
particular device it finds itself running on. Whenever you need to use a feature that’s
present only on a subset of devices, you should explicitly test for its presence and pro-
grammatically deal with it when it isn’t available. For example, instead of checking if
your application is running on an iPhone to determine if a camera is present, you
would be better off checking whether a camera is present, because some models of
iPad now come with cameras.

Download from Wow! eBook <www.wowebook.com>

122

1.3

Using Xcode to develop a simple Coin Toss game 7

Expecting an unreliable internet connection

In this age of cloud computing, a number of iOS applications need connectivity to the
internet. The iOS platform provides two main forms of wireless connectivity: local area
in the form of 802.11 Wi-Fi and wide area in the form of various cellular data stan-
dards. These connection choices provide a wide variability in speed, ranging from 300
kilobits to 54 megabits per second. It’s also possible for the connection to disappear
altogether, such as when the user puts the device into flight mode, disables cellular
roaming while overseas, or enters an elevator or tunnel.

Unlike on a desktop, where most developers assume a network connection is
always present, good iOS applications must be designed to cope with network connec-
tivity being unavailable for long periods of time or unexpectedly disconnecting. The
Wworst user experience your customers can have is a “sorry, cannot connect to server”
error message while running late to a meeting and needing to access important infor-
mation that shouldn’t require a working internet connection to obtain.

In general, it’s important to constantly be aware of the environment in which your
iOS application is running. Your development techniques may be shaped not only by
the memory and processing constraints of the device but also by the way in which the
user interacts with your application.

That’s enough of the background information. Let’s dive right in and create an
i0S application!

Using Xcode to develop a simple Coin Toss game

Although you might have grand ideas for the next
iTunes App Store smash, let’s start with a relatively sim-

ple application that’s easy to follow without getting
stuck in too many technical details, allowing the unique

features of the development tools to shine through. As i Cartier > ___8:49 Al
the book progresses, we dig deeper into the finer points
of everything demonstrated. For now the emphasis is on
understanding the general process rather than the spe-
cifics of each technique.

Coin Toss

The application you develop here is a simple game
that simulates a coin toss, such as is often used to settle Select Heads or Tails
an argument or decide who gets to go first in a competi-
tion. The user interface is shown in figure 1.2 and con-
sists of two buttons labeled Heads and Tails. Using these
buttons, the user can request that a new coin toss be

made and call the desired result. The iPhone simulates
the coin toss and updates the screen to indicate if the

user’s choice is correct.
In developing this game, the first tool we need to Figure 1.2 Coin Toss sample
investigate is Xcode. game

Download from Wow! eBook <www.wowebook.com>

1.3.1

1.3.2

CHAPTER 1 Building your first iOS application

Introducing Xcode—Apple’s IDE

As mentioned earlier in this chapter, Xcode is an IDE that provides a comprehensive
set of features to enable you to manage the entire lifecycle of your software develop-
ment project. Creating the initial project, defining your class or data model, editing
your source code, building your application, and finally debugging and performance-
tuning the resultant application are all tasks performed in Xcode.

Xcode is built on the foundation of several open source tools: LLVM (the open
source Low-Level Virtual Machine), GCC (the GNU compiler), GDB (the GNU debug-
ger), and DTrace (instrumentation and profiling by Sun Microsystems).

Launching Xcode easily

Once you install the iOS software development kit (SDK), the first challenge to using
Xcode is locating the application. Unlike most applications that install in the/Appli-
cations folder, Apple separates developerfocused tools into the/Developer/Applica-
tions folder.

The easiest way to find Xcode is to use the Finder to open the root Macintosh HD
folder (as shown in figure 1.3). From there, you can drill down into the Developer
folder and finally the Applications subfolder. As a developer, you’ll practically live
within Xcode, so you may wish to put the Xcode icon onto your Dock or place the
folder in the Finder sidebar for easy access.

Once you locate the/Developer/Applications folder, you should be able to easily
locate and launch Xcode.

It’s important to note that Xcode isn’t your only option. Xcode provides all the fea-
tures you require to develop applications out of the box, but that doesn’t mean you
can’t complement it with your own tools. For example, if you have a favorite text edi-
tor in which you feel more productive, it’s possible to configure Xcode to use your
external text editor in favor of the builtin functionality. The truly masochistic among
you could even revert to using makefiles and the command line.

o6 .~/ Macintosh HD =) — L
[<[>] Q =
DEVICES X
| B macintoshvo | i
I iDisk yfma . L o
PLACES
& chris Applications Library
E Desktop

4}\ Applications
| Documents

AN [
SEARCH FOR 2
System User Guides And Users
Information
1 of 6 selected, 901.87 GB available e E—

Figure 1.3 A Finder window showing the location of the Developer folder, which
contains all iPhone developer-related tools and documentation

Download from Wow! eBook <www.wowebook.com>

133

Using Xcode to develop a simple Coin Toss game 9

Help! | don’t see the Xcode application

If you don’t have a/Developer folder or you can’t see any references to iPhone or iPad
project templates when Xcode is launched, refer to appendix A for help on how to
download and install the required software.

Creating the project

To create your first project, select the New Project option in the File menu (Shift-
Cmd-N). Xcode displays a New Project dialog similar to the one displayed in figure 1.4.

Your first decision is to choose the type of project you want to create. This is done
by selecting a template that determines the type of source code and settings Xcode
will automatically add to get your project started.

For the Coin Toss game, you want the View-based Application template. You first
select Application under the iOS header in the left pane, and then select View-based
Application. Then click Next in the lowerright corner, which prompts you to name
the project and allows you to specify the company identifier required to associate the
application with your iOS Developer account. For this project, use the name CoinToss
and enter a suitable company identifier.

Xcode uses the product name and company identifier values to produce what is
called a bundle identifier. i0S uniquely identifies each application by this string. In

S_— -
O'O'mm - ‘

Run Stop Scheme Editor View Organizer

| | T | S
Choose a template for your new project:

mios

— s
Framework & Library
Other i o de
Navigation-based OpenGL ES Split View-based Tab Bar Application
‘; Mac 0S X Application Application Application
Application
Framework & Library @ \
Application Plug-in | "N
System Plug-in
Other Utility Application View-based Window-based
Application Application

. View-based Application

This template provides a starting point for an application that uses a single view. It provides a
view controller to manage the view, and a nib file that contains the view.

| ——— .
(Cancel) Previous Next
S~————

Figure 1.4 The New Project dialog in Xcode showing the View-based Application template

Download from Wow! eBook <www.wowebook.com>

10

CHAPTER 1 Building your first iOS application

order for the operating system to allow the CoinToss game to run, its bundle identifier
must match up with one included in a provisioning profile that’s been installed on the
device. If the device can’t find a suitable profile, it refuses to run the application. This
is how Apple controls with an iron fist which applications are allowed in its ecosystem.
If you don’t have a suitable company identifier or are unsure what to enter here, fol-
low the instructions in appendix A before proceeding with the rest of this chapter.

Once all the details are entered, deselect the Include Unit Tests check box and
click Next, which prompts you to select where you want the project and generated
source code files to be saved.

Help! | don’t see any iOS-related options

If you see no i0S-based templates in the New Project dialog, it’s possible you haven’t
correctly installed the iOS SDK. The copy of Xcode you're running is probably from a
Mac OS X Install DVD or perhaps was downloaded directly from the Apple Developer
Connection (ADC) website and is suitable only for development of desktop applications.

Installing the i0S SDK as outlined in appendix A should replace your copy of Xcode
with an updated version that includes support for iPhone and iPad development.

You may wonder what other kinds of projects you can create. Table 1.2 lists the most
common iOS project templates. Which template you choose depends on the type of
user interface you want your application to have. But don’t get too hung up on template
selection: the decision isn’t as critical as you may think. Once your project is created,

Table 1.2 Project templates available in Xcode for creating a new iOS project

Project type Description

Navigation-based Application Creates an application similar in style to the built-in Contacts appli-
cation with a navigation bar across the top.

OpenGL ES Application Creates an OpenGL ES-based graphics application suitable for
games and so on.

Split View-based Application Creates an application similar in style to the built-in Mail application
on the iPad. Designed to display master/detail-style information in a
single screen.

Tab Bar Application Creates an application similar in style to the built-in Clock applica-
tion with a tab bar across the bottom.

Utility Application Creates an application similar in style to the built-in Stocks and
Weather applications, which flip over to reveal a second side.

View-based Application Creates an application that consists of a single view. You can draw
and respond to touch events from the custom view.

Window-based Application Creates an application that consists of a single window onto which
you can drag and drop controls.

Download from Wow! eBook <www.wowebook.com>

Using Xcode to develop a simple Coin Toss game

11

1 CoinToss - CoinToss.xcodeproj

7N = = s —
@ ’\E/"‘ CoinToss | iPh... & - Build CoinToss: Succeeded | Today at 1:50 AM FE] ‘ E E‘ Q‘
~
Run Stop Scheme B; No issues Editor View Organizer
W @ A = » B] @ | « » | BcoinToss
ColnToss = | PROJECT | Summary Info Build Settings Build Phases Build Rules
GolnTosE ‘ ™ CoinToss | i0S Application Target
[h] CoinTossAppDelegate.h TARGETS
I g Identifier nz.co.christec.demos.CoinToss
|m| CoinTossAppDelegate.m | ﬁ
& MainWindow.xib [Version | 1.0
|h| CoinTossViewController.h .
Devices | iPhone 5]

h‘ CoinTossViewController.m
CoinTossViewController.xib
|| Supporting Files
[CoinToss-Info.plist
InfoPlist.strings
|h] CoinToss-Prefix.pch
@ main.m
|| Frameworks
&= UIKit.framework
&> Foundation.framework
§* CoreGraphics.framework
|| Products
9 CoinToss.app

©

+ 0RE® Add Target

J

Deployment Target 4.3

| ¥ iPhone / iPod Deployment Info

Main Interface | MainWindow

Supported Device Orientations

App Icons

Launch Images

Retina Display

Retina Display

Landscape
Right

Figure 1.5 Main Xcode window with the CoinToss group fully expanded to show the project’s various source

code files

4

you can alter the style of your application—it just won’t be as easy because you won’t
have the project template automatically inserting all of the required source code for
you; you’ll need to write it yourself.

Now that you’ve completed the New Project dialog, a project window similar to the
one in figure 1.5 is displayed. This is Xcode’s main window and consists of a Project
Navigator pane on the left and a large, context-sensitive editor pane on the right.

The pane on the left lists all the files that make up your application. The group

labeled CoinToss represents the entire game, and if you expand this node, you can
drill down into smaller subgroups until you eventually reach the files that make up the
project. You're free to create your own groupings to aid in organizing the files in any
manner that suits you.

Download from Wow! eBook <www.wowebook.com>

12

134

CHAPTER 1 Building your first iOS application

When you click a file in the left pane, the right pane updates to provide an editor
suitable for the selected file. For *.h and *.m source code files, a traditional source
code text editor is presented, but other file types (such as *.xib resource files) have
more complex graphical editors associated with them.

Some groups in the left pane have special behaviors associated with them or don’t
represent files at all. For example, the items listed under the Frameworks group indi-
cate pre-compiled code libraries that the current project makes use of.

As you become more comfortable with developing applications in Xcode, you’ll
become adept at exploring the various sections presented in the Project Navigator
pane. To begin your discovery, let’s write the source code for your first class.

Writing the source code

The View-based Application template provides enough source code to get a basic
game displayed on the iPhone—so basic, in fact, that if you ran the game right now,
you would simply see a gray rectangle on the screen.

Let’s start implementing the game by opening the CoinTossViewController.h file
in the Xcode window and using the text editor to replace the contents with the fol-
lowing listing.

#import <UIKit/UIKit.h>

@interface CoinTossViewController : UlIViewController (
UlILabel *status;
UILabel *result;

}

@property (nonatomic, retain) IBOutlet UILabel *status;
@property (nonatomic, retain) IBOutlet UILabel *result;

- (IBAction)callHeads;
- (IBAction)callTails;

@end

Don’t worry if the contents of listing 1.1 don’t make much sense to you. At this stage,
it’s not important to understand the full meaning of this code. Learning these sorts of
details is what the rest of the book is designed for—all will be revealed in time!

For now, let’s focus on understanding the general structure of an Objective-C—
based project. Objective-C is an object-oriented language, meaning that a large por-
tion of your coding efforts will be spent defining new classes (types of objects).
Listing 1.1 defines a new class called CoinTossViewController. By convention, the
definition of a class is kept in a header file that uses a *.h file extension.

In the CoinTossViewController header file, the first two lines declare that the
class stores the details of two UILabel controls located somewhere in the user inter-
face. A UILabel can display a single line of text, and you use these labels to display the
results of the coin toss.

Download from Wow! eBook <www.wowebook.com>

Using Xcode to develop a simple Coin Toss game 13

The second set of statements allows code external to this class to tell you which spe-
cific UILabels you should be using. Finally, you specify that your class responds to two
messages called callHeads and callTails. These messages inform you when the user
has called heads or tails and a new coin toss should be initiated.

A header (*.h) file specifies what you can expect a class to contain and how other
code should interact with it. Now that you’ve updated the header file, you must provide
the actual implementation of the features you've specified. Open the matching Coin-
TossViewController.m file, and replace its contents with that of the following listing.

Listing 1.2 CoinTossViewController.m

#import "CoinTossViewController.h"
#import <QuartzCore/QuartzCore.h>
@implementation CoinTossViewController Match with

@synthesize status, result; @property

- (void) simulateCoinToss: (BOOL)userCalledHeads {
BOOL coinLandedOnHeads = (arc4random() % 2) == 0;

result.text = coinLandedOnHeads ? @"Heads" : @"Tails";

if (coinLandedOnHeads == userCalledHeads)
status.text = @"Correct!";
else

= n rn.
status.text @"Wrong!"; Set up two

CABasicAnimation *rotation = [CABasicAnimation objects
animationWithKeyPath:@"transform.rotation"];

rotation.timingFunction = [CAMediaTimingFunction
functionWithName:kCAMediaTimingFunctionEaseInEaseOut] ;

rotation.fromvalue = [NSNumber numberWithFloat:0.0f];

rotation.toValue = [NSNumber numberWithFloat:720 * M_PI / 180.0f];

rotation.duration = 2.0f;

[status.layer addAnimation:rotation forKey:@"rotate"]; Affect

CABasicAnimation *fade = [CABasicAnimation the label
animationWithKeyPath:@"opacity"];

fade.timingFunction = [CAMediaTimingFunction
functionWithName:kCAMediaTimingFunctionEaseInEaseOut] ;

fade.fromValue = [NSNumber numberWithFloat:0.0£f];

fade.tovalue = [NSNumber numberWithFloat:1.0f];

fade.duration = 3.5f;

[status.layer addAnimation:fade forKey:@"fade"];

- (IBAction) callHeads ({
[self simulateCoinToss:YES];

- (IBAction) callTails ({
[self simulateCoinToss:NO]J ;

- (void) viewDidUnload ({
self.status = nil;

Download from Wow! eBook <www.wowebook.com>

14

CHAPTER 1 Building your first iOS application
self.result = nil;

- (void) dealloc ({
[status release]; Memory
[result release]; management
[super dealloc];

}

@end

Listing 1.2 at first appears long and scary looking, but when broken down into individ-
ual steps, it’s relatively straightforward to understand.

The first statement @ matches up with the @property declarations in CoinToss-
ViewController.h. The concept of properties and the advantage of synthesized ones in
particular are explored in depth in chapter 5.

Most of the logic in the CoinTossViewController.m file is contained in the simu-
lateCoinToss: method, which is called whenever the user wants the result of a new
coin toss. The first line simulates a coin toss by generating a random number between
0 and 1 to represent heads and tails respectively. The result is stored in a variable
called coinLandedOnHeads.

Once the coin toss result is determined, the two UILabel controls in the user inter-
face are updated to match. The first conditional statement updates the result label to
indicate if the simulated coin toss landed on heads or tails; the second statement indi-
cates if the user correctly called the coin toss.

The rest of the code in the simulateCoinToss: method sets up two CABasic-
Animation objects @, @ to cause the label displaying the status of the coin toss to
spin into place and fade in over time rather than abruptly updating. It does this by
requesting that the transform.rotation property of the UILabel control smoothly
rotate from 0 degrees to 720 degrees over 2.0 seconds, while the opacity property
fades in from 0% (0.0) to 100% (1.0) over 3.5 seconds. It’s important to note that
these animations are performed in a declarative manner. You specify the change or
effect you desire and leave it up to the framework to worry about any timing- and
redrawing-related logic required to implement those effects.

The simulateCoinToss: method expects a single parameter called userCalled-
Heads, which indicates if the user expects the coin toss to result in heads or tails. Two
additional methods, callHeads and callTails, are simple convenience methods that
call simulateCoinToss: with the userCalledHeads parameter set as expected.

The final method, called dealloc @, deals with memory management-related
issues. We discuss memory management in far greater depth in chapter 9. The impor-
tant thing to note is that Objective-C doesn’t automatically garbage collect unused
memory (at least as far as the current iPhone is concerned). This means if you allocate
memory or system resources, you're also responsible for releasing (or deallocating) it.
Not doing so will cause your application to artificially consume more resources than it
needs, and in the worst case, you’ll exhaust the device’s limited resources and cause
the application to crash.

Download from Wow! eBook <www.wowebook.com>

1.4

14.1

Hooking up the user interface 15

Now that you have the basic logic of the game developed, you must create the
user interface in Xcode and connect it back to the code in the CoinTossView-
Controller class.

Hooking up the user interface

At this stage, you can determine from the CoinTossViewController class definition
that the user interface should have at least two UILabel controls and that it should
invoke the callHeads or callTails messages whenever the user wants to call the
result of a new coin toss. You haven’t yet specified where on the screen the labels
should be positioned or how the user requests that a coin toss be made.

There are two ways to specify this kind of detail. The first is to write source code
that creates the user interface controls, configures their properties such as font size
and color, and positions them onscreen. This code can be time consuming to write,
and you can spend a lot of your time trying to visualize how things look onscreen.

A better alternative is to use Xcode, which allows you to visually lay out and config-
ure your user interface controls and connect them to your source code. Most iOS proj-
ect templates use this technique and typically include one or more *.xib files designed
to visually describe the user interface. This project is no exception, so click the Coin-
TossViewControllerxib file in the Project Navigator pane and notice that the editor
pane displays the contents of the file (figure 1.6).

Along the left edge of the editor pane are some icons. Each icon represents an
object that’s created when the game runs, and each has a tooltip that displays it name.
The wireframe box labeled File’s Owner represents an instance of the CoinTossView-
Controller class; the white rectangle represents the main view (or screen) of the
application. Using Xcode, you can graphically configure the properties of these
objects and create connections between them.

Adding controls to a view

The first step in defining the user interface for your game is to position the required
user interface controls onto the view.

To add controls, find them in the Library window, which contains a catalog of avail-
able user interface controls, and drag and drop them onto the view. If the Library win-
dow isn’t visible, you can open it via the View > Utilities > Object Library menu option
(Control-Option-Cmd-3). For the Coin Toss game, you require two Labels and two
Rounded Rect Buttons, so drag two of each control onto the view. The process of
dragging and dropping a control onto the view is shown in figure 1.7.

After you drag and drop the controls onto the view, you can resize and adjust their
positions to suit your aesthetics. The easiest way to change the text displayed on a but-
ton or label control is to double-click the control and begin typing. To alter other
properties, such as font size and color, you can use the Attributes Inspector pane,
which can be displayed via the View > Utilities > Attributes Inspector menu option
(Al-Cmd-4). While styling your view, you can refer back to figure 1.2 for guidance.

Download from Wow! eBook <www.wowebook.com>

16 CHAPTER 1 Building your first iOS application

1 CoinToss - CoinTossViewController.xi =
®e006 CoinT CoinTossViewControll b =
‘m) X Build CoinToss: Failed | Toda
() () (ontos 3] [=] =) O 1)
Run Stop Scheme kpoi Project @3 Editor View Organizer
Il A = - E I ml o< > | DCoinToss »|_|CoinToss » = CoinTossViewController.xib » + CoinTossViewController.xib (English) » | |View
CoinToss
1target, iOS SDK 4.3
|l S:oinToss

|h| CoinTossAppDelegate.h
m| CoinTossAppDelegate.m

* MainWindow.xib

|h| CoinTossViewController.h
i\ CoinTossViewController.m

| CoinTossViewControl|l

|| Supporting Files
D CoinToss-Info.plist
| InfoPlist.strings =
|h] CoinToss-Prefix.pch
@ main.m

|| Frameworks
&= UIKit.framework
&> Foundation.framework
&% CoreGraphics.framework
|| Products
oA CoinToss.app

+ ORAE S |

Figure 1.6 The main Xcode window demonstrating the editing of a *.xib file. Along the left edge of the editor you
can see three icons, each representing a different object or GUI component stored in the .xib file.

With the controls positioned on the user interface, the only task left is to connect
them to the code you previously wrote. Remember that the class defined in the Coin-
TossViewController.h header file requires three things from the user interface:

= Something to send the callHeads or callTails messages whenever the user
wishes to initiate a new coin toss

= A UILabel to display the results of the latest coin toss (heads or tails)

= A UILabel to display the status of the latest coin toss (correct or incorrect)

Download from Wow! eBook <www.wowebook.com>

Hooking up the user interface 17

e0o [CoinToss - CoinTossViewController.xib
@ f!> CoinToss | iPhone... E] Build CoinToss: Failed | Today at 2:04 AM
\E
mmv Stop Scheme Project @3
Wl @ A = » B | mi | 4 » | [McCoinToss) [|Coin...) B Coin... » I CoinTossViewController.xib (English) » | _|View DI B » s ©
5 CoinToss | Location | Relative to Group
1 target, iOS SDK 4.3 en.lproj/
(] CoinToss ‘ CoinTossViewController.xi (7]
[h] CoinTossAppDelegate.h | b !
[M CoinTossAppDelegate.m Full Path /Users/chris/book~ :
* MainWindow.xib code/Chapterl/ |
|h| CoinTossViewController.h f:llr;Tzls/s/ComToss/ !
: .1proj
|m] CoinTossViewController.m ‘ CoinTossViewController. |
Coin flewC [xib |
(& supporting Fllefs : | ¥ Interface Builder Document |
D CoinToss~-Info.plist (=) e S }
| InfoPlist.strings = T on N |
|h] CoinToss-Prefix.pch Project SDK Version (... |¥] |
m] main.m Development | Interface Builder 3.1 WJ |
("] Frameworks T —\
£ UIKit.framework Localization Locking |
&= Foundation.framework Default | Nothing =]
&% CoreGraphics.framework (Reset Locking Controls) |
|_|Products it !
s,AgComToss.app ¥ Localization !
|English |
|
!
[he= t
w | ¥ Target Membership }
™ oA CoinToss |
|
| | :
: |
[|
| ¥ Source Control |
Version 081970fdbf4d !
Status No changes |
Location /Users/chris/book~ |
| code/Chapterl/)
| CoinToss/CoinToss/ |
en.lproj/ W
[CoinTossViewController. 4
; xib O |y
D v =
\—m Objects e |88 =
Label - A variably sized amount of m
Label static text.
|
| Round Rect Button - Intercepts
| touch events and sends an action
message to a target object when...
Segmented Control - Displays "
1 2 | multiple segments, each of which T
| " functinne ac a diccrata hutton 17
+ ORAE(® oY cy .

Figure 1.7 Dragging and dropping new controls onto the view. Notice the snap lines, which help ensure your user
interface conforms to the i0S Human Interface Guidelines (HIG).

1.4.2 Connecting controls to source code

The user interface you just created meets these requirements, but the code can’t
determine which button should indicate that the user calls heads or tails (even if the
text on the buttons makes it inherently obvious to a human). Instead, you must explic-
itly establish these connections. Xcode allows you to do so graphically.

Hold down the Control key and drag the button labeled Heads toward the icon
representing the CoinTossViewController instance (File’s Owner) located on the left
edge of the editor. As you drag, a blue line should appear between the two elements.

When you let go of the mouse, a pop-up menu appears that allows you to select
which message should be sent to the CoinTossViewController object whenever the

Download from Wow! eBook <www.wowebook.com>

18 CHAPTER 1 Building your first iOS application

Ao N [CoinToss - CoinTossViewController.xib
~ = i i R
@ (m) [CoinToss | Phore... 1] [m] Build CoinToss: Succeeded | Today at 2:31 AM O [=] 0
~
Run Stop Scheme i dalssuxs Editor View Organizer
T Q@ A = » B8 | u | €4 » | [N CoinToss » [|CoinToss ») CoinTos... » B CoinTos... » | |View | |Button - Heads | D B Bl w s ©
CoinToss | v Button
=11 target, iOS SDK 4.3 | T —
&% QuartzCore.framework | et — 4
s |
_S'"T“s | State Config | Default H
h| CoinTossAppDelegate.h e
@ CoinTossAppDelegate.m Title | Heads
* MainWindow.xib | Image | Default Image ae

[h] CoinTossviewController.n
Im| CoinTossViewController.m

Background | Default Background Imac|®

|
|
|
J | Font Helvetica Bold 15.0 [T)
|
|

=] Text Color | EEEER | Default 3]

n ntr
|| Supporting Files
]:] CoinToss-Info.plist - = Shadow Coler
_| InfoPlist.strings
|h] CoinToss-Prefix.pch
m] main.m
|| Frameworks

|

|

|

|

|

|

|

|

|

|

|
————
Shadow Offset ol o|@) !
Width Height !

O Highlight Reverses Dire.... ||

&= UIKit.framework Drawing (] Shows Touch On Highlight ||
&% Foundation.framework Highlighted Adjusts Image :
|

|

|

|

|

|

-
&% CoreGraphics.framework [I n I ™ Disabled Adjusts Image
(] Products | Line Break | Truncate Middle B)

A CoinToss.app

Sent Events
callHeads
callTails

Edge | Content B
Select Heads or Tails Inset o) 0

Top Bottom
ol 0

\/\ \ Left Right
| Heads Tails

f
| () ¥ Control

' e ==
Alignment [[| { O | B8

: Horizontal
; O el 01 @

«

@

)

Vertical
| Content () Highlighted
[Selected ™ Enabled

v View

Mode (ScaleToFRill 18} |
Alpha 10016 ¥
: D {}| v =

(il objects 2

Label - A variably sized amount of m
Label static text.

Round Rect Button - Intercepts
touch events and sends an action
message to a target object when...

| Segmented Control - Displays
| 1 | 2 | multiple segments, each of which 73
S | functinne ac 3 diccrata hists L
+ 0R6(® &= | e < p

Figure 1.8 Visually forming a connection between the button control and the CoinTossViewController class
by dragging and dropping between items

button is tapped, as shown in figure 1.8. In this case, you select callHeads because this
is the message that matches the intent of the button.

You can repeat this process to connect the button labeled Tails to the callTails
method. Making these two connections means that tapping either of the buttons in
the user interface will cause the execution of logic in the CoinTossViewController
class. Having these connections specified graphically rather than programmatically is
a flexible approach because it enables you to quickly and easily try out different user
interface concepts by swapping controls around and reconnecting them to the class.

If Xcode refuses to make a connection between a user interface control and an
object, the most probable cause is a source code error, such as a simple typo or incor-
rect data type. In this case, make sure the application still compiles, and correct any
errors that appear before retrying the connection.

Download from Wow! eBook <www.wowebook.com>

Hooking up the user interface

19

With the buttons taken care of, you're left with connecting the label controls to the
CoinTossViewController class to allow the code to update the user interface with the
results of the latest coin toss.

To connect the label controls, you can use a similar drag-and-drop operation.
This time, while holding down the Control key, click the icon representing the
CoinTossViewController instance and drag it toward the label in the view. When
you release the mouse, a pop-up menu appears that allows you to select which prop-
erty of the CoinTossViewController class you want to connect the label control to.
This process is demonstrated in figure 1.9. Using this process, connect the label

titled Coin Toss to the status property and the label titled Select Heads or Tails to
the result property.

When deciding which way you should form connections between objects, consider
the flow of information. In the case of the button, tapping the button causes a method

e 06 ™ CoinToss - CoinTossViewController.xib (@)
‘m) Build CoinToss: Succeeded | Today at 2:
@ ‘\,E,«" CoinToss | iPhone 4.3 ... 5 @ = EI [] IEI
Run Stop Scheme i Hajlssues: Editor View Organizer
| Q@ A = =» B8 | ui | €4 » | [YCoinToss) [|CoinToss » [CoinTossViewController.xib) [CoinTossViewController.xib (English) > File's Owner
., CoinToss

E3 1 target, i05 SDK 4.3
&= QuartzCore.framework
(] CoinToss
[h] CoinTossAppDelegate.h
|m| CoinTossAppDelegate.m
MainWindow.xib
CoinTossViewController.h
inTossViewController.m

(| Supporting Files
[} CoinToss-Info.plist
InfoPlist.strings
|h| CoinToss-Prefix.pch
m] main.m
| Frameworks
&= UIKit.framework
&% Foundation.framework
&= CoreGraphics.framework
__| Products
A CoinToss.app

+ ORA (O

Sé

=

Heads

Tails

Figure 1.9 Visually forming a connection between the status instance variable and the label control in the user
interface by dragging and dropping between the items (with the Control key held down)

Download from Wow! eBook <www.wowebook.com>

20 CHAPTER 1 Building your first iOS application

in the application to be executed, whereas in the case of connecting the label, chang-
ing the value of the instance variable in the class should update the user interface.

You may wonder how Xcode determines which items to display in the pop-up
menu. If you refer back to listing 1.1, the answer can be seen by way of the special
IBOutlet and IBAction keywords. Xcode parses your source code and allows you to
connect the user interface to anything marked with one of these special attributes.

At this stage, you may like to verify that you’ve correctly made the required connec-
tions. If you hold down the Control key and click the icon representing the CoinToss-
ViewController instance, a pop-up menu appears allowing you to review how all the
outlets and actions associated with an object are connected. If you hover the mouse
over one of the connections, Xcode even highlights the associated object. This feature
is shown in figure 1.10.

At this stage you’re done with the user interface. You’re now ready to kick the tires,
check if you’ve made mistakes, and see how well your game runs.

1 CoinToss - CoinTossViewController.xib

@v iE; CoinToss | iPhone 4.3 ... = ‘ Build CoinToss: Succeeded | Today at 2:31 AM Eu E‘ =] Lrj Q\]
Run Stop Scheme poil Hojissues Editor View Organizer
w7 @ A = » B | wi | €4 » | [HCoinToss) []CoinToss » [CoinTossViewController.xib) [l CoinTossViewController.xib (English) » . File's Owner

i, CoinToss

= 1 target, iOS SDK 4.3
& QuartzCore.framework
(] CoinToss
[h] CoinTossAppDelegate.h
Im| CoinTossAppDelegate.m
MainWindow.xib

|} CoinTossViewController.h
CoinTossViewController.m

(| Supporting Files
[} coinToss-Info.plist =
InfoPlist.strings
|h| CoinToss-Prefix.pch
m] main.m
(] Frameworks
& UIKit.framework
&% Foundation.framework

-
&% CoreGraphics.framework
(] Products

CoinToss.app

File's Owner H
v Outlets s or Tails

resuit % Label - Select Heads or Tails
searchDisplayController

status. % Label - Coin Toss

view x View

Referencing Outlets

New Referencing Outlet

Referencing Outlet Collections

Tails

New Referencing Outlet Collection

Received Actions

callHeads * Button - Heads
Touch Up Inside

callTails * Button - Talls
Touch Up Inside

® ©®© O O @®0®

+ ORBE (S (]

Figure 1.10 Reviewing connections made to and from the CoinTossViewController object

Download from Wow! eBook <www.wowebook.com>

1.5

1.6

Taking Coin Toss for a test run 21

NIBs vs. XIBs

The user interface for an iOS application is stored in a .xib file. But in the documen-
tation and Cocoa Touch frameworks, these files are commonly called nibs.

These terms are used pretty interchangeably: a .xib file uses a newer XML-based file
format, which makes the file easier to store in revision control systems and so on.

A .nib, on the other hand, is an older binary format, which leads to more efficient file
sizes, parsing speed, and so on.

The documentation commonly refers to NIB files instead of XIB files because, as
Xcode builds your project, it automatically converts your *.xib files into the
*.nib format.

Compiling the Coin Toss game

Now that you’ve finished coding your application, you need to convert the source
code into a form useable by the iPhone. This process is called compilation, or building
the project. To build the game, select Build from the Product menu (or press Cmd-B).

While the project is building, you can keep track of the compiler’s progress by
looking at the progress indicator in the middle of the toolbar. It should read “Build
CoinToss: Succeeded.” If you've made mistakes, you’ll see a message similar to “Build
CoinToss: Failed.” In this case, clicking the red exclamation icon underneath the text
(or pressing Cmd-4) displays a list of errors and warnings for you to resolve.

Clicking an error in this list displays the matching source code file with the lines con-
taining errors highlighted, as illustrated in figure 1.11. After correcting the problem,
you can build the application again, repeating this process until all issues are resolved.

When you compile the Coin Toss game, you should notice errors mentioning
kCAMediaTimingFunctionEaseInEaseOut, CAMediaTimingFunction, and CABasic-
Animation. To correct these errors, select the CoinToss project in the Project Navigator
(topmost item in the tree view). In the editor that appears for this item, switch to the
Build Phases tab and expand the Link Binary with Libraries section. The expanded
region displays a list of additional frameworks that your application requires. For the
user interface animations to work, you need to click the + button at the bottom of
the window and select QuartzCore. framework from the list that appears.

To keep things tidy, once you add the QuartzCore framework reference, you may pre-
fer to move it within the project navigator tree view so that it’s located under the Frame-
works section, alongside the other frameworks on which your application depends.

Taking Coin Toss for a test run

Now that you’ve compiled the game and corrected any obvious compilation errors,
you’re ready to verify that it operates correctly. You could run the game and wait for it
to behave incorrectly or crash, but that would be rather slow going, and you would
have to guess at what was happening internally. To improve this situation, Xcode provides

Download from Wow! eBook <www.wowebook.com>

22 CHAPTER 1 Building your first iOS application

(L Xe)) [CoinToss
@ ! CoinToss | iPhone4:34 (=] , Build CoinToss: Failed | Today at 2:51 AM] = [EIE)] o == .
Run Stup i Piclect O3 Editor View Organizer
D QA= m» a [s | <« » | A Build target CoinToss : 2:51:07 AM
GIED 8y Type All | All Messages TP Errors Only Q
CoinToss Build target CoinToss

A Sissues L ? ”\ Project CoinToss | Configuration Debug

C R TR L CACIICHMNMI v '+ Link /Users/chris/Library/Developer/Xcode/DerivedDatal CoinToss-aliptnxbcazpedoaggfkoozimn/Build/Products/ Debug-iphonesimulator/C... + 3

oADDle Mach Ol.mkev (1d) Error Ld /Users/chris/Library/Developer/Xcode/DerivedData/CoinToss-aiiptnxqbcgzpedlogggfkoozimn/Build/Products/Debug-

OBJC_(S_S_CAMediaTimingFunc... | iphonesimulator/CoinToss.app/CoinToss normal 1386
cd /Users/chris/book-code/Chapterl/CoinToss
«CAMediaTimingFunctionEaselnEasq setenv MACOSX_DEPLOYMENT_TARGET 10.6

setenv PATH "/Developer/Platforms/iPhoneSimulator.platform/Developer/usr/bin:/Developer/usr/bin:/usr/bin:/bin:/
usr/sbin:/sbin"

/Developer/Platforms/iPhoneSimulator.platform/Developer/usr/bin/\lvm-gcc-4.2 -arch i386 -isysroot /Developer/
Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator4.3.sdk -L/Users/chris/Library/Developer/Xcode/
DerivedData/CoinToss-aiiptnxqbcqzpedloqggfkoozimn/Build/Products/Debug-iphonesimulator —F/Users/chris/Library/
Developer/Xcode/DerivedData/CoinToss-aiiptnxqbcqzpedloqagfkoozimn/Build/Products/Debug-iphonesimulator -filelist /
Users/chris/Library/Developer/Xcode/DerivedData/CoinToss-aiiptnxgbcqzpedlogagfkoozimn/Build/Intermediates/
CoinToss.build/Debug-iphonesimulator/CoinToss.build/Objects-normal/i386/CoinToss.LinkFileList -mmacosx-version—
min=10.6 -Xlinker -objc_abi_version -Xlinker 2 -framework UIKit -framework Foundation -framework CoreGraphics -o /
Users/chrls/ubrary/l)eveloper/Xcode/Der1vedData/Coanoss aiiptnxgbcqzpedloqggfkoozimn/Build/Products/Debug-
iphonesimulator/CoinToss.app/CoinToss

Undefined symbols for architecture i386:
"_0BIC_CLASS_$_CABasicAnimation", referenced from:
objc-class-ref in CoinTossViewController.o
"'_0BIC_CLASS_$_CAMediaTimingFunction", referenced from:
objc-class-ref in CoinTossViewController.o
"_KCAMediaTimingFunctionEaseInEaseOut", referenced from:
~[CoinTossViewController simulateCoinToss:] in CoinTossViewController.o
1d: symbol(s) not found for architecture i386
collect2: ld returned 1 exit status
© "_OBJC_CLASS_S_CABasicAnimation", referenced from:
Objc-class-ref in CoinTossViewController.o
© "_OBJC_CLASS_S_CAMediaTimingFunction", referenced from
Objc-class-ref in CoinTossViewController.o
@ "_kCAMediaTimingFunctionEaselnEaseOut", referenced from:
~[CoinTossViewController simulateCoinToss:] in CoinTossViewController.o
Symbol(s) not found for architecture i386
Collect2: Id returned 1 exit status
Activity Log Complete 22/03/11 2:51 AM
3 errors

omo (&

Figure 1.11 Xcode’s text editor visually highlights lines of source code with compilation errors. After correcting
any errors, building the project will indicate if you have successfully corrected the problem.

an integrated debugger that hooks into the execution of your application and allows
you to temporarily pause it to observe the value of variables and step through source
code line by line. But before you learn how to use it, we must take a slight detour.

1.6.1 Selecting a destination

Before testing your application, you must decide where you want to run it. During ini-
tial development, you’ll commonly test your application via the iOS Simulator. The
simulator is a pretend iPhone or iPad device that runs in a window on your desktop
Mac OS X machine. Using the simulator can speed up application development
because it’s a lot quicker for Xcode to transfer and debug your application in the sim-
ulator than it is to work with a real iPhone.

Developers with experience in other mobile platforms may be familiar with the use
of device emulators. The terms simulator and emulator aren’t synonymous. Unlike an

Download from Wow! eBook <www.wowebook.com>

1.6.2

Taking Coin Toss for a test run 23

Always test on a real iPhone, iPod Touch, or iPad device

The code samples in this book are designed to run in the i0S Simulator. This is a quick
and easy way to iteratively develop your application without worrying about device con-
nectivity or the delay involved in transferring the application to a real device.

Because the iOS Simulator isn’t a perfect replica of an iPhone, it’s possible for an appli
cation to work in the simulator but fail on an actual device. Never publish an application
to the iTunes App Store that hasn’t been tested on a real device, or better yet, try to
test your application out on a few variants, such as the iPhone and iPod Touch.

emulator that attempts to emulate the device at the hardware level (and hence can
run virtually identical firmware to a real device), a simulator only attempts to provide
an environment that has a compatible set of APIs.

The i0OS Simulator runs your application on the copy of Mac OS X used by your
desktop, which means that differences between the simulator and a real iPhone occa-
sionally creep in. A simple example of where the simulation “leaks” is filenames. In
the i0S Simulator, filenames are typically case insensitive, whereas on a real iPhone,
they’re case sensitive.

By default, most project templates are configured to deploy your application to the
10S Simulator. To deploy your application to a real iPhone, you must change the desti-
nation from iPhone Simulator to iOS Device. The easiest way to achieve this is to select
the desired target in the drop-down menu found toward the left of the toolbar in the
main Xcode window, as shown in figure 1.12.

Changing the destination to iOS Device ensures that Xcode attempts to deploy
the application to your real iPhone, but an additional change is needed before this
will succeed.

Using breakpoints to inspect the state of a running application

While testing an application, it’s common to want to investigate the behavior of a spe-
cific section of source code. Before you launch the application, it can be handy to con-
figure the debugger to automatically pause execution whenever these points are
reached. You can achieve this through the use of a feature called breakpoints.

A breakpoint indicates to the debugger a point in the source code where the user
would like to automatically “break into” the debugger to explore the current value of
variables, and so on.

0o [CoinToss - CoinT¢
7\ = =
{ \ 7 . a Build CoinToss: Succeeded
@v .\;/ [ComToss | iPhone 4.3 ... v] E]
Run Stop. Scheme Breakpoints ST

Figure 1.12 The top-left corner of the main Xcode window. Selecting the
CoinToss | iPhone 4.3 Simulator drop-down menu allows you to switch
between iPhone Simulator and iOS Device.

Download from Wow! eBook <www.wowebook.com>

24

CHAPTER 1 Building your first iOS application

m,

(L Xe)) [CoinToss - CoinTossViewController.m (e}
@ <!> n Build CoinToss: Succeeded | Today at 2:59 AM ‘ =] El
Run Stop Scheme i Ndlssues Editor View Organizer
. T O A = » B8 | ui | €4 » | [YCoinToss) [|CoinToss) [m| CoinTossViewController.m » [-dealloc
i, CoinToss /7

1 target, i0S SDK 4.3 /1 CoinTossViewController.m

(- CoinToss x CoinToss
h CoinTossAppDelegate.h // Created by Christopher Fairbairn on 22/03/11.
|m| CoinTossAppDelegate.m // Copyright 2011 ChrisTec. ALl rights reserved.
/* MainWindow.xib &
|h| CoinTossViewController.h | #import "CoinTossViewController.h"

CoinTossViewController.xib
(| Supporting Files

[} coinToss-Info.plist @synthesize status, result;
InfoPlist.strings
e - (void) simulateCoinToss: (B00L)userCalledHeads {
h] CoinToss-Prefix.pch - BOOL coinLandedOnHeads = (arcdrandom() % 2) == 0;
m) main.m
(& Frameworks result.text = coinLandedOnHeads ? @"Heads" : @'Tails";
oD e nae if (coinLandedOnHeads == userCalledHeads)
&% UIKit.framework status.text = @"Correct!";
&% Foundation.framework else

&% CoreGraphics.framework

|| Products CABasicAnimation * rotation = [CABasicAnimation
A CoinToss.app animationWithKeyPath:@"transform. rotation"];
rotation. timingFunction = [CAMediaTimingFunction functionWithName:KkCAMediaTimingFunctionEaseInEaseOut];
rotation.fromValue = [NSNumber numberWithFloat:@.0f];
rotation.toValue = [NSNumber numberWithFloat:720 * M_PI / 180.0f];
rotation.duration = 2.0f;
[status.layer addAnimation:rotation forKey:@"rotate"];
CABasicAnimation * fade = [CABasicAnimation
animationWithKeyPath:@"opacity"];

fade. timingFunction = [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionEaseInEaseOut];
fade.fromValue = [NSNumber numberWithFloat:0.0f];
fade.toValue = [NSNumber numberWithFloat:1.0f];
fade.duration = 3.5f;
[status.layer addAnimation:fade forKey:@"fade"];

}

- (IBAction) callHeads {
[self simulateCoinToss:YES];

}

- (IBAction) callTails {
[self simulateCoinToss:NOI;

}

- (void) viewDidUnload {
self.status = nil;
self.result = nil;

}

- (void) dealloc {
[status release];
[result releasel;

| [super deallocl;

}

@end

+ ORA (O

#import <QuartzCore/QuartzCore.h>

@implementation CoinTossViewController

status.text = @'Wrong!";

Figure 1.13 Setting a breakpoint to break into the debugger whenever the first line of the simulateCoinToss:

method is

1.6.3

called. Notice the arrow in the margin indicating an active breakpoint.

For the Coin Toss game, let’s add a breakpoint to the start of the simulateCoinToss:
method. Open the CoinTossViewController.m file and scroll down to the source code
implementing the simulateCoinToss: method. If you then click the left margin
beside the first line, you should see a little blue arrow appear, as shown in figure 1.13.

The blue arrow indicates that this line has an enabled breakpoint. If you click the
breakpoint, it becomes a lighter shade of blue, indicating a disabled breakpoint, which
causes the debugger to ignore it until it’s clicked again to re-enable it. To permanently
remove a breakpoint, click and drag the breakpoint away from the margin. Releasing
the mouse will show a little “poof” animation, and the breakpoint will be removed.

Running the CoinToss game in the iPhone simulator

With the breakpoint in place, you're finally ready to run the application and see it in
action. Select Run from the Product menu (Cmd-R). After a few seconds, the application

Download from Wow! eBook <www.wowebook.com>

1.64

Taking Coin Toss for a test run 25

will appear on your iPhone. All that hard work has finally paid off. Congratulations—
you’re now officially an iPhone developer!

If you want to run the game but don’t want any of your breakpoints to be enabled,
you can click each one to disable them individually, but this would take a while, and
you would need to manually re-enable all the breakpoints if you wanted to use them
again. As a handy alternative, you can temporarily disable all breakpoints by selecting
Product > Debug > Deactivate Breakpoints (Cmd-Y).

Controlling the debugger

Now that you’ve seen your first iPhone application running, you’ll have undoubtedly
felt the urge and tapped one of the buttons labeled Heads or Tails. When you tap a
button, notice that the Xcode window jumps to the foreground. This is because the
debugger has detected that execution of the application has reached the point where
you inserted a breakpoint.

The Xcode window that appears should look similar to the one in figure 1.14.
Notice that the main pane of the Xcode window displays the source code of the cur-
rently executing method. Hovering the mouse over a variable in the source code dis-
plays a data tip showing the variable’s current value. The line of source code that’s
about to be executed is highlighted, and a green arrow in the right margin points at it.

While the debugger is running, you’ll notice the left pane of the Xcode window
switches to display the call stack of each thread in the application. The call stack lists
the order in which currently executing methods have been called, with the current
method listed at the top. Many of the methods listed will be gray, indicating that
source code isn’t available for them, in this case because most are internal details of
the Cocoa Touch framework.

A new pane at the bottom of the screen is also displayed; it shows the current val-
ues of any variables and arguments relevant to the current position of the debugger as
well as any textual output from the debugger (see figure 1.14).

Along the top of the bottom debug pane, you may notice a series of small toolbar
buttons similar to those shown in figure 1.15.

These toolbar options enable you to control the debugger and become important
when the debugger pauses the application or stops at a breakpoint. These toolbar but-
tons (which may not all be present at all points in time) allow you to perform the fol-
lowing actions:

» Hide—Hide the debugger’s console window and variables pane to maximize the
screen real estate offered to the text editor.

» Pause—Immediately pause the iPhone application and enter the debugger.

= Continue—Run the application until another breakpoint is hit.

= Step Over—Execute the next line of code and return to the debugger.

» Step Into—Execute the next line of code and return to the debugger. If the line
calls any methods, step through their code as well.

= Step Out—Continue executing code until the current method returns.

Download from Wow! eBook <www.wowebook.com>

26

CHAPTER 1 Building your first iOS application

@ @ CoinToss | iPhone 4.3 ... Running CoinToss on iPhone Simulator

1 CoinToss - CoinTossViewController.m

Elas [@[Ea

Run Stop Scheme i Balsues Editor View Organizer
DO A== B8 I wmla > }CoinToss » []CoinToss) [m| CoinTossViewController.m) [-simulateCoinToss:
8 1" N
| QORULEED ByQuewe | | /7 coinTossViewController.n
_ Thread 1 // CoinToss
* com.apple.main-thread 7
Ty | // Created by Christopher Fairbairn on 22/03/11.

18 main

1 -[CoinTossViewController callHeads]
2 -[UlApplication sendAction:to:from:f.

17 UlApplicationMain
¥ Thread 2
¥ Thread 3

¥ Thread 4 WebThread

» [self = (CoinTossViewController *) 0xb011690 GDB 1s free software, covered by the GNU General Public License, and you are
g [7] welcome to change it and/or distribute copies of it under certain conditions. |
I3 _cmd = (struct objc_selector *) 0x3¢c39 ||| Type “show copying" to see the conditions.)
[} userCalledHeads = (BOOL) YES | | There is absolutely no warranty for GDB. Type "show warranty" for details.
[4 coinLandedOnHeads = (BOOL) YES '/ This GDB was configured as "xB6_64-apple-darwin".sharedlibrary apply-load-rules *
— » [fade = (CABasicAnimation *) Oxbfffd768 all Y
B | = e——Oe— = ,gmalio“:w R e v | Attaching to process 1617.

// Copyright 2011 ChrisTec. All rights reserved.
/

#import "CoinTossViewController.h"

#import <QuartzCore/QuartzCore.h>
@implementation CoinTossViewController
@synthesize status, result;

- (void) simulateCoinToss:(BOOL)userCalledHeads {

& BOOL coinLandedOnHeads = (arc4random() % 2) == @ Thread 1: Stopped at breakpoint 1

result.text = coinLandedOnHeads ? @"Heads" : @"Tails";

if (coinLandedOnHeads == userCalledHeads)
status.text = @'Correct!";

else
status.text = @'Wrong!";

CABasicAnimation * rotation = [CABasicAnimation
animationWithKeyPath:@"transform. rotation"];
rotation. timingFunction = [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionEaseInEaseOut];
rotation.fromValue = [NSNumber numberWithFloat:0.0f];
rotation.toValue = [NSNumber numberWithFloat:720 * M_PI / 180.0f];
rotation.duration = 2.0f;
[status.layer addAnimation:rotation forKey:@"rotate"];

CABasicAnimation * fade = [CABasicAnimation
animationWithKeyPath:@"opacity"];
fade. timingFunction = [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionEaseInEaseOutl;
fade. fromValue = [NSNumber numberWithFloat:0.0f];
fade.toValue = [NSNumber numberWithFloat:1.0f];
fade.duration = 3.5f;
[status.layer addAnimation:fade forKey:@"fade"];

- (IBAction) callHeads {
[self simulateCoinToss:YES];

- (IBAction) callTails {
[self simulateCoinToss:NO];

- (void) viewDidUnload {
self.status = nil;
self.result = nil;

7oy ST Y T

E 1 2 & 2 |CoinToss) ¥ Thread 1

~[CoinTossViewController simulateCoinToss:]

Local 5 Q All Output + Clear) (IO

Figure 1.14 The Xcode debugger window after execution has reached a breakpoint

Your breakpoint caused the debugger to pause |m 1 o & 2 |CoinToss) ¥ Thread 1) [I1

execution at the beginning of a simulated coin et Q
. . > [self = (CoinTossViewController *) 0xb011b90
toss. If you view the variables pane or hover the B _cmd = (struct obic_selector *) Ox3c2f

mouse over the userCalledHeads argument, you
can determine if the user has called heads (YES) Figure1.15 The toolbar options in Xcode
or tails (NO). for controlling the debugger

The first line of the simulateCoinToss:
method simulates flipping a coin (by selecting a random number, 0 or 1). Currently,
the debugger is sitting on this line (indicated by the red arrow in the margin), and the
statements on this line haven’t been executed.

To request that the debugger execute a single line of source code and then return
to the debugger, you can click the Step Over button to “step over” the next line of
source code. This causes the coin toss to be simulated, and the red arrow should jump
down to the next line that contains source code. At this stage, you can determine the

Download from Wow! eBook <www.wowebook.com>

1.7

Summary 27

result of the coin toss by hovering the mouse over the coinLandedOnHeads variable
name; once again, YES means heads and NO means tails.

Using the step-over feature a couple more times, you can step over the two if state-
ments, which update the result and status UILabels in the user interface. Unlike what
you may expect, however, if you check the iPhone device at this stage, the labels won’t
have updated! This is because of how the internals of Cocoa Touch operate: the
screen will only update once you release the debugger and allow this method to
return to the operating system.

To allow the iPhone to update the user interface and to see the fancy animations
that herald in a new coin toss result, you can click Continue (or press Cmd-Option-P)
to allow the application to continue execution until it hits another breakpoint or you
explicitly pause it again. Taking a look at the iPhone, you should see that the results of
the coin toss are finally displayed onscreen.

Summary

Congratulations, you’ve developed your first iPhone application! Show your friends
and family. It may not be the next iTunes App Store blockbuster release, but while put-
ting together this application, you’ve mastered many of the important features of the
Xcode IDE, so you’re well on your way to achieving success.

Although Objective-C is a powerful language with many capabilities, you’ll find using
visual tools such as Xcode can lead to a productivity boost, especially during initial proto-
typing of your application. The decoupling of application logic from how it’s presented
to the user is a powerful mechanism that shouldn’t be underestimated. It’s doubtful the
first user interface you design for your application will be perfect, and being able to alter
it without having to modify a single line of code is a powerful advantage.

By the same token, you were able to rely on the Cocoa Touch framework to handle
the minutiae of how to implement many of the features of your game. For example,
the animations were implemented in a fairly declarative manner: you specified start-
ing and stopping points for the rotations and fading operations and left the Quartz
Core framework to worry about the specifics of redrawing the screen, transitioning
the animation, and speeding up or slowing down as the effect completed.

As you’ll continue to see, there’s great power in the Cocoa Touch frameworks. If
you find yourself writing a vast amount of code for a particular feature, chances are
you aren’t taking maximum advantage of what Cocoa has to offer.

In chapter 2, we dive into data types, variables, and constants and are introduced
to the Rental Manager application that you’ll build throughout this book.

Download from Wow! eBook <www.wowebook.com>

Data types, variables,
and constgils

This chapter covers

m Storing numeric-, logic-, and text-based data

m Creating your own data types

m Converting values between different data types
® Formatting values for presentation

® |ntroducing the Rental Manager sample
application

Virtually every application needs to store, represent, or process data of some kind,
whether a list of calendar appointments, the current weather conditions in New
York, or the high scores of a game.

Because Objective-C is a statically typed language, whenever you declare a vari-
able, you must also specify the type of data you expect to store in it. As an example,
the following variable declaration declares a variable named zombieCount, which is
of type int:

int zombieCount;

Short for integer, int is a data type capable of storing a whole number between
-2,147,483,648 and +2,147,483,647. In this chapter, you’ll discover many data

28

Download from Wow! eBook <www.wowebook.com>

2.1

211

Introducing the Rental Manager application 29

types that can be used to store a wide range of real-world values. But before we
dive in too far, let’s introduce the Rental Manager application that we build over
the course of this book.

Introducing the Rental Manager application

Each chapter in this book reinforces what you learned previously by applying the the-
ory to a larger sample application. This application is designed to manage rental
properties in a rental portfolio and to display details such as location, property type,
weekly rent, and a list of current tenants. Figure 2.1 shows what the application looks
like by the time you reach the end of this book.

Although you might not manage a rental portfolio, hopefully you’ll see how the
concepts in the Rental Manager application could be structured to develop an appli-
cation of interest to you. For example, it could be turned into an application to man-
age details of a sports team or of participants in a running race.

Laying the foundations

To start developing the Rental Manager application, open Xcode and select the File >
New > New Project option. In the dialog that appears, select the Navigation-based
Application template and name the project “RentalManager.” You should end up with
Xcode showing a window similar to the one in figure 2.2.

Pressing Cmd-R to run the application at this stage displays an almost empty
iPhone screen—but not quite as empty as the display that results from running the

\

Carrier =

Carrier = 2:36 AM

amsterdam
E 13 Waverly Crescent
| 74 Roberson Lane
4 17 Kipling Street
. 4 Everglade Ridge

", 19 Islington Road

Figure 2.1 Screenshots
demonstrating various
aspects of the Rental
Manager application we build
in this book. As well as
smaller examples, each
chapter reinforces concepts
by adding functionality to this
larger sample project.

Download from Wow! eBook <www.wowebook.com>

30

‘@00

CHAPTER 2 Data types, variables, and constants

B - odeproj (=)
P
(), (m) [RenaiVanager [Phone 43 3] [m] [Xeode 2 [EE) O =
Run Stop Scheme Breakpoints Editor View Organizer
(M| @ A = » © [um| < »|[RenaManager
A REnGNarager | ProjJECT summary | Info Build Settings Build Phases Build Rules
RencilManages B i0S Application Target
h| RentalManagerAppDelegate.h TARGETS < "
B e aa e AneDie e o~ Identifier ' nz.co.christec.demos.RentalManager
 MainWindow.xib B o o Version | 1.0
[h] RootViewController.h . =
m] RootViewController.m Devices (iPhone __13)
RootViewController.xib Deployment Target | 4.3 2]
(] Supporting Files
[FEneiis ¥ iPhone / iPod Deployment Info
(| Products
Main Interface | MainWindow 3
Supported Device Orientations
=
[
Portrait Upside Landscape Landscape
Down Left Right
App lcons
Retina Display
Launch Images
Retina Display
+ oRE® Add Target

Figure 2.2 The main project window in Xcode immediately after creating the Rental Manager application using
the Navigation-based Application template

View-based Application (as in the Coin Toss project from chapter 1). The Navigation-
based Application template inserts a few user interface elements, such as a distinctive
blue navigation bar at the top. As the Rental Manager application develops, you’ll
extend the various features provided, but for now, let’s concentrate on adding the
ability to display a list of rental properties.

When you run the application, you may notice that the white background is
divided into a number of rows by light gray lines, and by using your finger, you can
slide the list up and down. This control was added by the project template and is
called a UITableView. To display data in this control, you must write a small amount of
code to specify how many rows it should add and what each row contains.

Select the file named RootViewController.m and open it for editing. The project
template has inserted a fair amount of source code into this file for your convenience
(although, at present, most of it’s commented out).

Locate the two methods named tableView:numberOfRowsInSection: and
tableView:cellForRowAtIndexPath: and replace them with the code in the follow-
ing listing.

Download from Wow! eBook <www.wowebook.com>

Introducing the Rental Manager application 31

- (NSInteger)tableView: (UITableView *)tableView

numberOfRowsInSection: (NSInteger)section { Det .
{ etermine

return 25; number of rows

- (UITablevViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"Cell";

UITablevViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

if (cell == nil) { Create table
cell = [[[UITableViewCell alloc] view cell

initWithStyle:UITableViewCellStyleDefault
reuseldentifier:CellIdentifier] autorelease];

}

cell.textLabel.text = [NSString ‘, Set the line
stringWithFormat:@"Rental Property %d", indexPath.row]; - of text

NSLog (@"Rental Property %d", indexPath.row) ;

return cell;
}
When the Rental Manager application runs, the UITableView control calls your
tableView:numberOfRowsInSection: method to determine how many rows you want
to display @. It then calls tableView:cellForRowAt IndexPath: a number of times as
the user slides up and down the list to obtain the content for each visible row.

Your implementation of tableView:cellForRowAtIndexPath: is made up of two
steps. The first @ creates a new table view cell with the UITableViewCell-
StyleDefault style. This style displays a single line of large, bold text (other built-in
styles replicate the layouts found in the settings or iPod music player applications).
The second step @ sets that line of text to the string "Rental Property %d", where %d
is replaced with the index position of the current row.

Press Cmd-R to rerun the application and you should see the main view displaying
a list of 25 rental properties. Your challenge in this chapter is to learn how to store
data in your application before expanding your tableView:cellForRowAt IndexPath:
method to display some practical information about each rental property.

Before moving on, take a look at tableView:cellForRowAt IndexPath: and, in par-
ticular, the last line that calls a function named NSLog. Notice that this method takes
arguments similar to those of NSString’s stringWithFormat: method, which gener-
ated the string that was displayed in the table view cells onscreen.

NSLog is a handy function to learn and use. It formats a string but also sends the
result to the Xcode debugger console (see figure 2.3). NSLog can be a useful way to
diagnose the inner workings of your application without relying on breakpoints.

While the Rental Manager application is running, you can view the output from
calls to NSLog by viewing the debugger console (Shift-Cmd-Y), as shown in figure 2.3.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 2 Data types, variables, and constants

2 % 1 |RentalManager

Q All Output * Clear) (I0 Il O0
2011-94-01 ©2:14:25.689 RentalManager|857:207] Rental Property 11
2011-04-01 82:14:25.755 RentalManager[857:207] Rental Property 10
2011-04-01 02:14:25.822 RentalManager[857:207] Rental Property
2011-04-01 02:14:25.905 RentalManager[857:207] Rental Property
2011-04-01 02:14:26.005 RentalManager[857:207] Rental Property
2011-04-01 02:14:26.142 RentalManager[857:207] Rental Property 17

4

N®®

Figure 2.3 The Debugger Console window can be handy place to view diagnostic messages from the internal
workings of your application as it’s running.

2.2

221

As you scroll up and down the list of rental properties, you should see the console win-
dow logging which rows the UITableView has requested details of.

Now that the Rental Manager application has been introduced, and you have the
initial shell up and running, let’s get back to the subject at hand: how to store data in
your applications. Throughout the rest of the chapter, feel free to insert the various
code snippets shown into tableView:cellForRowAtIndexPath: and experiment. At
the end of the chapter, we come back to this application and flesh it out for real.

The basic data types
The Objective-C language defines a set of standard data types that are provided as sim-
ple building blocks. These builtin data types are often called primitive data types,
because each type can store a single value and can’t be broken down into smaller units.
Once you master the use of primitive data types, it’s also possible to combine mul-
tiple primitive data types to produce larger, more complex composite data types.
These complex data types have names such as enum, union, and struct.
The primitive data types we cover in this chapter include int, float, double, char,
and bool. Let’s get started and discuss what kinds of data types you can use to store
numerical data in your Rental Manager application.

Counting on your fingers—integral numbers
Integers are an integral part of any programming language. An integer is a whole
number that can be negative or positive. The values 27, -5, and o0 are all valid integer
values, but 0.82 isn’t because it contains a decimal point.

To declare an integer variable, use the data type int (which is shorthand for inte-
ger), as demonstrated here:

int a;

By default, variables of type int are signed and can represent both positive and nega-
tive values. Sometimes you may want to restrict an integer variable to store only posi-
tive numbers. You can do this by adding the special qualifier unsigned before the data
type, as shown in the following variable declaration:

unsigned int a;

This means the variable a will be allowed to store only positive numbers. Conversely,
you can explicitly create a signed integer variable by using the signed qualifier:

signed int a;

Download from Wow! eBook <www.wowebook.com>

The basic data types 33

Because variables of type int are signed by default, it’s uncommon to see the signed
qualifier used in most applications—its use is somewhat redundant.

Once you declare a variable, you can assign it a value with the assignment operator,
which is represented by an equals sign. For example, the following statements declare
a new variable called a and then assign it the value 15.

int a;
a = 15;

Because it’s common to declare a variable and then assign it an initial value, both
statements can be combined:

int a = 15;

The value 15 used in this assignment statement is called a constant. A constant is any
value that can never change its value while the application is running. A constant
doesn’t have to be a single number; for example, the following variable declaration
also makes use of a constant value.

int a = 5 + 3;

The value calculated by the expression 5 + 3 can never result in a number other than 8.
The Objective-C compiler calculates the value of this expression during compilation
and replaces it with a single constant value.

By default, integer constants are specified in decimal, or base 10, which is the most
familiar notation for most people. It’s also possible to specify integer constants in a
number of other bases by using a special prefix in front of the number, as detailed in
table 2.1.

Table 2.1 Different ways to express the value 15 as an integer constant. Each format is identified by a
special prefix that precedes the number.

Name Base Prefix Example constant
Octal 8 0 017
Decimal 10 — 15
Hexadecimal 16 Ox OxOF

One trap new developers occasionally make is to include a leading zero at the start of
a decimal number. As far as Objective-C is concerned, 017 isn’t the same value as 17.
The leading zero in front of the first constant means the number is interpreted as an
octal (base 8) number and hence equals the decimal value 15.

FACING THE LESS-THAN-IDEAL REAL WORLD

The iPhone is a vast improvement over the hardware and memory constraints of a tra-
ditional cell phone, but it’s still constrained by real-world realities such as a fixed
amount of memory being available to applications. In an ideal world, developers

Download from Wow! eBook <www.wowebook.com>

34

CHAPTER 2 Data types, variables, and constants

wouldn’t have any constraint on the value of integers—they could be infinitely high or
low—Dbut, unfortunately, constraints do exist. Declaring a variable of type int allocates
a set amount of memory in which to store the value, and hence it can represent only a
limited range of values. If you wanted to store infinitely large values, the variable
would also require an infinite amount of memory, and that’s clearly not possible.

This is one reason for having unsigned and signed qualifiers. Using the unsigned
qualifier trades off the ability to store negative numbers with the ability to double the
range of positive values you can store in the same amount of memory. Other qualifiers
include short and long, which can be added to an int data type to expand or con-
tract the size of the variable. The most common sizes are listed in table 2.2.

Table 2.2 Common integer data types. Various modifiers can be used to alter the size of a variable and
hence the valid range of values that can safely be stored in them.

Data type Size (bits) Unsigned range Signed range
short int 16 0—65,535 -32,768—32,767
int 32 0—4,294,967,295 -2,147,483,648—2,147,483,647
long int 32 0—4,294,967,295 -2,147,483,648—2,147,483,647
long long int 64 0—(2%4-1) —263__ (283 _ 1)

In Objective-C, int is the default data type for variables and parameters. This means
you can remove the keyword int from your variable declaration statement and,
in most cases, it will still compile. Therefore, the following two variable declarations
are equivalent:

unsigned a;

unsigned int a;

The first variable declaration implicitly implies the presence of the data type int by
the presence of the unsigned qualifier. In the second declaration, the int data type is
said to be explicitly specified because it’s present in the declaration.

THE LEGACY OF CONTINUAL PROGRESS—NSINTEGER, NSUINTEGER, AND THEIR ILK

As you explore Cocoa Touch, you’ll find that most APIs use data types with names such
as NSInteger or NSUInteger instead of int and unsigned int. These additional types
are part of Apple’s progress toward 64-bit computing.

Currently, all i0S-powered devices (and older versions of Mac OS X) use a program-
ming model called TLP32, which supports a 32-bit address space. Since Mac OS X 10.4,
the desktop has been moving toward a different programming model, LP64, which sup-
ports a 64-bit address space. Under the LP64 model, variables of type long int and mem-
ory addresses are increased to 64 bits in size (compared to the 32 bits shown in
table 2.2), whereas the size of all other primitive types, such as int, remain the same.

As part of the effort to take full advantage of 64-bit platforms, Cocoa introduced the
NSInteger data type to provide a data type that was a 32-bit integer on 32-bit platforms

Download from Wow! eBook <www.wowebook.com>

222

The basic data types 35

while growing to a 64-bit integer when compiling the same source code on a 64-bit
platform. This allows code to take advantage of the increased range provided by 64-bit
integers while not using excessive memory when targeting 32-bit systems.

Eagled-eyed developers may wonder why new data types such as NSInteger were
introduced when existing data types such as long int would appear to already fit the
desired role. NSInteger exists for use in APIs that should be 64-bit integers on 64-bit
platforms but for one reason or another must be typed as int instead of long int on
32-bit platforms.

Good habits learned now mean less hassle in the future

Declaring your variables using data types such as NSInteger and NSUInteger can
be considered a form of future-proofing your source code. Although they’re identical
to int and unsigned int when compiling for the iPhone today, who knows what’s
around the corner? Perhaps a future iPhone or iPad will be a 64-bit device, or you'll
want to reuse some of your source code in a matching desktop application.

It’'s much easier to establish the habit of using portable data types such as NSInte-
ger or NSUInteger now (even if you don’t get much immediate benefit from it) than
to have to correct such portability issues in the future.

Filling in the gaps—floating-point numbers

When modeling the real world, it’s common to come across numbers that contain a
fractional part, such as 0.25 or 1234.56. An integer variable can’t store such values, so
Objective-C provides alternative data types called float and double for storing this
kind of data. As an example, you can declare a variable f of type float and assign it
the value 1.4 as follows:

float £ = 1.4;

Floating-point constants can also be expressed in scientific or exponential notation by
using the character e to separate the mantissa from the exponent. The following two
variable declarations are both initialized to the same value:

float a = 0.0001;
float b le-4;

The first variable is assigned the value 0.0001 via a familiar decimal constant. The second
variable is assigned the same value but this time via a constant expressed in scientific
notation. The constant le-4 is shorthand for 1 x 1074, which, once calculated, produces
the result 0.0001. The e can be thought of as representing “times 10 to the power of.”

In Objective-C, floating-point variables are available via two main data types, which
trade off the range of possible values they can represent and the amount of memory
they use, as shown in table 2.3.

You may wonder how a variable of type float or double can store such a wide
range of values when a similar sized int can only store a much smaller range of values.
The answer lies in how floating-point variables store their values.

Download from Wow! eBook <www.wowebook.com>

36

CHAPTER 2 Data types, variables, and constants

Table 2.3 Common floating-point data types. A double takes twice the amount of memory as a
float but can store numbers in a significantly larger range.

Data type Size (bits) Range Significant digits (approx.)
float 32 +1.5 x 10%° to £3.4 x 103 7
double 64 +5.0 x 103?* to +1.7 x 103°8 15

On the iPhone, as with most modern platforms, floating-point values are stored in a for-
mat called the IEEE 754 Standard (http://grouper.ieee.org/groups/754). This format is
similar in concept to scientific notation. With a lot of hand waving to gloss over more
complex details, you can imagine that the 32 or 64 bits that make up a float or double
value are divided into two smaller fields representing a mantissa and an exponent.

By using an exponent-based format, you can represent very large or very small
numbers. But as with most things, this doesn’t come completely for free. With only a
restricted set of values you can use for the mantissa (due to the limited number of bits
assigned to store it), you can’t represent every value in the extended range enabled by
the exponent. This leads to the interesting discovery that certain decimal values can’t
be stored precisely. As an example, the output of the following code snippet may sur-
prise you:
float £ = 0.6f;

NSLog(@"0.6 = %0.10f", f);

The %0.10f bit in the call to NSLog requests that the value be printed to 10 decimal
places, but instead of the value 0.6000000000, the value 0.6000000238 gets printed.
The reason for this inaccuracy is that when the decimal value 0.6 is converted to a
binary, or base 2, number, it produces an infinitely repeating sequence (similar in
concept to how the value 0.33 behaves in decimal). Because a float variable has only
a certain number of bits in which to store the number, a cut-off has to be made at
some stage, leading to the observed error.

Many calculations with floats produce results that require rounding in order to fit
in 32-bits. In general, a variable of type float should be relied on to be accurate to
only about 7 significant digits, but a double extends this to about 15.

Careful consideration should be given when using floating-point numbers. Unlike
integer values that can represent all values in their specified ranges, calculations on
floating-point numbers are at worst an approximation of the result. This means you
should rarely perform an equality comparison between two floating-point numbers
because any intermediate calculations may introduce subtly different rounding type
errors. Instead, floating-point numbers are traditionally compared by subtracting
one value from another and checking that the difference is less than a suitably small
epsilon value.

Download from Wow! eBook <www.wowebook.com>

http://grouper.ieee.org/groups/754

223

The basic data types 37

What does floating point mean?

In computing, floating point means that the equivalent of the decimal (or radix) point
in the number can “float”: the decimal point can be placed anywhere between the
significant digits that make up the number, on a number-by-number basis.

By contrast, in a fixed-point number, the decimal point is always positioned with a
fixed number of digits after it.

Objective-C doesn’t provide any standard fixed-point data types; you can typically
implement them yourself by using the existing integer data types. As an example,
storing monetary values as a number of cents could be considered a fixed-point for-
mat with an implied (or fixed) decimal point positioned before the last two decimal
digits. For instance, the integer value 12345 could be considered to represent the
value $123.45.

Characters and strings

In addition to data types that enable the storage of numerical data are a number of
other types that allow storage of other categories of data. For example, the char data
type can be used as the basis for storing textual data in your application.

IN THE BEGINNING THERE WAS TYPE CHAR

A variable of type char can store a single character, such as the letter a, the digit 6, or
a symbol such as an asterisk. Because some of these characters (such as a semicolon or
curly brace) already have special meaning in Objective-C, special care must be taken
when defining character constants. In general, a character constant is formed by
enclosing the desired character in a pair of single quotation marks. As an example,
the letter a can be assigned to a variable as shown here:

char ¢ = 'a';

The char data type can be considered to be a tiny 8-bit integer, so it’s also possible to
manually consult an ASCII character chart and assign a numeric value directly:

char d = 97;

If you refer to an ASCII character chart, you’ll notice that the value 97 represents a low-
ercase a, so variables ¢ and d in the preceding examples will both store identical values.

Enclosing character constants in single quotation marks helps specify most char-
acters that are printable. But a few, such as the carriage return and newline charac-
ters, are impossible to enter into your program’s source code in this manner.
Objective-C therefore recognizes several escape sequences, which allow these special
characters to be placed in character constants. See table 2.4 for a list of common
backslash escape sequences.

By default, char is an unsigned value that can store a value between 0 and 255. Using
the signed qualifier allows storage of a value between -128 and 127. In most cases, how-
ever, you should probably stick with the int data type if you want to store numbers.

Download from Wow! eBook <www.wowebook.com>

38

CHAPTER 2 Data types, variables, and constants

Table 2.4 Common backslash escape sequences used to specify special characters in a character
constant. Most characters in this list require special handling because they have no visible representation
on a printed page.

Escape sequence Description Escape sequence Description

\r Carriage return \" Double quotation marks
\n Newline \' Single quotation marks
\t Horizontal tab A\ Backslash

After declaring a variable that can store a single character, you’ll undoubtedly want to
expand on this to store sequences of characters to form entire words, sentences, or
paragraphs. Objective-C calls such a sequence of characters a string.

STRINGING THINGS ALONG

A string is a sequence of characters placed one after another. Objective-C supports two
types of strings: a traditional C-style string picked up via the C-based heritage of Objec-
tive-C and a new object-oriented type called NSString.

To declare a C-style string variable, you use the data type char *. A string constant
is represented by a set of characters enclosed in double quotation marks and can also
use character escape sequences such as those listed in table 2.4. For example, the fol-
lowing code snippet stores the string "Hello, World!" in a variable called myString:

char *myString = "Hello, World!";

The standard C runtime library provides various functions that work with C-style strings.
For example, strlen can be used to determine the length of a particular string:

int length = strlen(myString) ;

When using C-style strings, you’re responsible for ensuring enough memory is allocated
to store any resultant string that might be generated by an operation. This is a critically
important fact to remember, especially when using functions such as strcat or strcpy,
which are used to build or append to existing strings. To append the text "are awe-
some!" to the end of an existing string stored in a variable called msg, you could use the
following statement, which uses strcat to perform a string concatenation:

char msg([32] = "iPhones";

strcat (msg, " are awesome!");

Although this code snippet is correct, it has a problem if the resultant string could
ever become larger than 31 characters. The square brackets after msg cause the com-
piler to allocate space for 31 characters (plus a so-called NULL character, which indi-
cates the end of the string). If the string concatenation result ever becomes larger
than the allocated space, it overwrites whatever lies next in memory, even if that stores
an unrelated variable. This situation, called a buffer overrun, leads to subtle and hard-
to-detect bugs such as variables randomly changing values or application crashes
depending on how the user interacts with your application.

Download from Wow! eBook <www.wowebook.com>

224

The basic data types 39

Objective-C therefore defines a much more practical data type, called NSString,
which we discuss in depth in chapter 3.

Hello, hola, bonjour, ciao, &, npuset

The char data type was created at a time when internationalization of software
wasn’t much of a concern. Therefore, most iPhone applications using C-style strings
will probably make use of other closely related data types such as unichar. unichar
is a 16-bit character data type that stores character data in UTF-16 format.

Boolean truths

Many languages have a Boolean data type capable of storing two states, commonly
referred to as true and false. Objective-C is no exception: it provides the BOOL data
type, which by convention uses the predefined values YES and NO (although TRUE and
FALSE are also defined). You can assign a value via a simple constant as follows:

BOOL result = YES;

But it’s more common to calculate Boolean values by performing a comparison
between one or more values of another data type, as demonstrated here:

int a = 10;

int b = 45;

BOOL result = a > b;

As in most languages, the > operator compares the value on the left against the value
on the right and returns true if the left side is greater than the right side. Table 2.5
lists the most common comparison and logical operators available in Objective-C.

Table 2.5 Common comparison and logical operators available in Objective-C for use in Boolean
expressions. Don’t confuse && and | | with the & and | operators, which perform a different task.

Operator Description Example expression

> Greater than X >y
< Less than X <y
>= Greater than or equal X >=y
<= Less than or equal X <=y
== Equal X ==Yy
l= Not equal X l=vy
! Not (logical negation) Ix

&& Logical And X && ¥y
| Logical Or x ||y

Download from Wow! eBook <www.wowebook.com>

40

2.3

23.1

CHAPTER 2 Data types, variables, and constants

Unlike some languages with a true Boolean data type, Objective-C doesn’t restrict
variables of type BOOL to storing only the two values YES and NO. Internally, the frame-
work defines BOOL as another name for the signed char data type discussed previ-
ously. When Objective-C evaluates a Boolean expression, it assumes any nonzero value
indicates true and a value of zero indicates false. This choice of storage formats can
lead to some interesting quirks. For example, the following code snippet tries to sug-
gest that a BOOL variable can store values of both true and false at the same time:

BOOL result = 45;

if (result) {
NSLog (@"the value is true");

if (result != YES) ({
NSLog (@"the value is false");

}
This quirk occurs because the result variable stores a nonzero value (hence indicating
truth) but doesn’t store exactly the same value that YES is defined as (1). In general,
it’s best to compare BOOL values against the value NO. Because only one value can ever
indicate false, you can be assured hard-to-spot errors such as the one demonstrated
here don’t occur in your source code.

This completes our initial coverage of how to declare and store values of built-in
primitive data types. You still have much to learn about them, though, and we con-
tinue to discuss them throughout the rest of the book.

Displaying and converting values

Using variables to store values is useful, but at some stage, you’ll want to display them
to the user. Usually this will necessitate converting a raw value into a nicer, more for-
matted form. For example, a floating-point calculation may result in the value
1.000000000000276, but a user may not be interested in an answer to this level of pre-
cision (if indeed the result was ever that precise given the potential inaccuracies dis-
cussed in section 2.2.2). It may be more suitable to present this value only to two
decimal places, as 1.00.

In the following section, we discuss in detail how you can alter the display of argu-
ments provided to a call to NSLog by altering what is called the format string. We also
take a brief look at how numeric values can be converted between the various repre-
sentations and how this too can affect the results of a calculation.

NSLog and Format Specifiers

The first argument provided in a call to NSLog specifies what is called the format string.
NSLog processes this string and displays it in the Xcode debugger console. In most
cases, the format string contains one or more placeholders that are indicated by a %
character. If placeholders are present, NSLog expects to be passed a matching number
of additional arguments. As NSLog emits its message, it substitutes each placeholder

Download from Wow! eBook <www.wowebook.com>

Displaying and converting values 41

with the value of the next argument. As an example, when the following code snippet
is executed, NSLog replaces the first instance of $d with the value of variable a and the
second instance with the value of variable b, resulting in the string "Current values
are 10 and 25" being emitted to the debug console:

int a = 10;

int b = 25;

NSLog (@"Current values are %d and %d", a, b);

In a placeholder definition, the character immediately following the % character spec-
ifies the expected data type of the next argument and how that value should be for-
matted into a text string. Table 2.6 contains some common data types you may use and
their associated format specifiers.

Table 2.6 Common format specifiers used in NSLog format strings. Notice some data types have
multiple format specifiers to control the way their particular values are presented. For example, integers
can be displayed in decimal, octal, or hexadecimal form.

Data type Format specifier(s)

o°
Q

char (or %C for unichar)

char * (C-style string)

o°
n

(or $S for unichar *)

Signed int

a0
&
o
S
o
b

Unsigned int

op
£
o
o
o
»

float (or double)

op
o
oe
>
op

Qo

Object

o
®

A couple of entries in table 2.6 deserve additional comment. For integers, you can
choose to display values with %d (or %u) for decimal, %o for octal, or %$x for hexadeci-
mal. Because there are multiple sizes of integer variables, you may also need to prefix
these specifiers with additional letters that indicate the size of the argument. You can
use h for a short, 1 for a long, or 11 for a long long. To format a long long int into
hexadecimal, for example, you utilize the format specifier $11x.

In a similar fashion, float and double types have three options: %e for scientific
notation, %f for decimal notation, or %g to have NSLog determine the most suitable
format based on the particular value to be displayed.

The % character has special meaning in the format string, so special care must be
taken if you want to include a percentage sign in the generated text. Whenever you
want a % sign, you must provide two in a row to signify that you aren’t specifying a new
placeholder but inserting the percent symbol (%). This can be handy when displaying
values expressed as percentages. The following code snippet emits the text "Satis-
faction is currently at 10%":

int a = 10;
NSLog (@"Satisfaction is currently at %d%%", a);

Download from Wow! eBook <www.wowebook.com>

CHAPTER 2 Data types, variables, and constants

Portability is never as simple as it first seems

If you followed our previous advice and made use of data types such as NSInteger
and NSUInteger, you must be extra careful when using functions, such as NSLog,
which accept format specifiers. On 32-bit targets, such as the iPhone, it’'s common
to use the %d specifier to format integer values, as demonstrated in the following
code sample:

NSInteger i = 45;
NSLog (@"My value is %d", 1i);

If you reuse this code in a 64-bit-based desktop application, however, it could result
in incorrect behavior. In a 64-bit environment, a variable declared of type int stays
at 32 bits in size, whereas a variable declared of type NSInteger is redefined to be
equivalent to long, which makes it now 64 bits in size. Hence, the correct format
specifier for NSInteger in a 64-bit environment is $1d:

NSLog (@"My value is %1d", 1i);

To avoid altering source code like this, Apple’s 64-bit Transition Guide for Cocoa rec-
ommends always casting such values to long or unsigned long (as appropriate).
For example:

NSLog (@"My value is %1d", (long)i);

The typecast to 1long ensures that NSLog is always provided a 64-bit argument even
if the current platform is 32 bit. This means $1d will always be the correct specifier.

)

To further control the presentation of values, you can place a number between the %
and the field data type. This acts as a minimum field width and will right-align the value
by padding out the string with spaces if it’s not already long enough. For example:

int a = 92;

int b = 145;
NSLog (@"Numbers:\nA: %6d\nB: %6d", a, Db);

This should result in the console window displaying output similar to the following:

Numbers:
A: 92
B: 145

Placing a negative sign in front of the number causes NSLog to instead left-align the
field, whereas prefixing the number with a zero pads with zeros instead of spaces.
When formatting floating-point numbers, it’s also possible to specify the desired num-
ber of decimal places by preceding the minimum field-width specifier with a decimal
point and the desired number of decimal places. As an example, the following code
snippet emits the string "Current temperature is 40.54 Fahrenheit":

float temp = 40.53914;
NSLog (@"Current temperature is %0.2f Fahrenheit", temp) ;

Download from Wow! eBook <www.wowebook.com>

23.2

Displaying and converting values 43

Type casts and type conversions

It’s common to perform calculations using expressions that contain variables or con-
stants of different data types. For example, a calculation may involve a variable of type
float and another of type int. A CPU can typically perform calculations only on simi-
larly typed values, so when such an expression is encountered, the compiler must tem-
porarily convert at least one of the values into an alternative format.

These conversions fall under two categories: explicit type conversions, which you
must manually specify in code, and implicit type conversions, which are performed
automatically by the compiler under specific circumstances. Let’s investigate the fol-
lowing expression:
int a = 2, b = 4;
int ¢ = a / b;

NSLog(@"%d / %d = %4", a, b, c);

This code snippet performs a division between variables a and b and stores the result
in c. At first blush, you may believe that the value of variable ¢ will be 0.5, because this
is the result a pocket calculator would get when dividing 2 by 4. But if you execute the
code, it will report that the answer is 0. Variable ¢ can’t store the value 0.5 because it’s
typed as an integer, which can store only whole numbers.

You may think the answer is to store the result of the division in a variable of type
float, as demonstrated here:
int a = 2, b = 4;
float ¢ = a / b;

NSLog(@"%d / %d = %f", a, b, <¢);

Unfortunately, this snippet will still print the incorrect answer. Although the result of
the calculation is stored in a floating-point variable, the division operation still sees
that both operands (variables a and b) are of type int. This causes the division to be
performed as an integer division (you may remember from your school days that 2
divided by 4 equals 0, remainder 2). Once the result of the integer division is calcu-
lated, the compiler notices you want to store the integer value in a variable of type
float and performs an implicit type conversion between the two number formats.

In order for the division to be performed as a floating-point division, you must
force at least one of its operands to be of type float. Although you could modify the
data types of variables a or b to achieve this, doing so may not be practical in all sce-
narios. As an alternative, you can modify the expression by placing (float) in front of
one of the operands.
int a = 2, b =

4;
float ¢ = (float)a

/ b;
NSLog (@"%d / %d = %f°

$f", a, b, ¢);

Placing the name of a data type inside parentheses is a request to the compiler to con-
vert the current value (or expression) into the specified data type. This operation is
called an explicit type conversion, or typecast, because you must explicitly provide the
hint to the compiler.

Download from Wow! eBook <www.wowebook.com>

44

24

24.1

CHAPTER 2 Data types, variables, and constants

In the code snippet given, you typecast variable a to force it to be converted into a
float value before the rest of the expression is evaluated. This means the division
operation now sees one operand of type float and another of type int. This causes
the compiler to implicitly convert the other operand to type float to make them com-
patible with each other and then perform a floating-point division. This calculation
results in the desired result of 0.5.

It’s important to note that not all typecasts result in a perfect conversion. It’s possi-
ble for data to become “lost” or truncated in the process. For example, when the fol-
lowing statements are executed, the explicit typecast between a floating-point
constant and the int data type causes data loss.

int resultl = (int)29.55 + (int)21.99;
int result2 = 29 + 21;

NSLog (@"Totals are %d and %d", resultl, result2);

Notice that the first expression involving floating-point constants is evaluated to have
the same result as the calculation using the values 29 + 21. Typecasting a floating-
point number into an integer removes anything after the decimal point: it performs
a truncation instead of a rounding operation (which would have resulted in the total
52 for resultl).

This concludes our look at the primitive data types available to Objective-C devel-
opers. Using these types, you can express most forms of data, numerical in the form of
int and float, Boolean in the form of BOOL, and textual via various data types such as
char, char*, and NSString.

As nice as this is, however, you’ll still come across situations where these data types
are lacking. As an example, you may need a variable that can store a limited subset of
values, or you may want to group multiple related values. In such scenarios, Objective-
C allows you to create your own custom data types, which is the topic we discuss next.

Creating your own data types

Objective-C provides a number of language constructs that allow you to define your
own custom data types. These can be as simple as providing an additional name for
an existing type or as complex as creating new types that can store multiple elements
of information.

The first custom data type we investigate is called an enumeration and enables us to
restrict the valid set of values an integer variable can store.

Enumerations

When analyzing the real world, it’s common to summarize data into a small set of pos-
sible values. Rather than saying it was 52 degrees yesterday, you’re perhaps more likely
to state it was hot, warm, cold, or freezing. Likewise, a loan may have a state of
approved, pending, or rejected, and a simple digital compass could point North,
South, East, or West.

Download from Wow! eBook <www.wowebook.com>

Creating your own data types 45

With what we’ve covered so far, the best approach to store such values would be to
use an integer variable and to assign each state a unique value. For example, a value of 1
could indicate the compass was pointing North, whereas a value of 2 could indicate it
was pointing East. As a human, however, it can be rather tricky to manage this because
you don’t tend to think in terms of numbers. Seeing a variable set to the value 2, you
don’t immediately think “East.” Objective-C has a custom data type called an enumer-
ation that’s designed to resolve this.

To define a new enumerated data type, you use the special keyword enum. This is
followed by a name and a list of possible values in curly braces. For example, you
could declare an enumerated data type to store compass directions as follows:

enum direction { North, South, East, West };

Once the new enumeration data type is declared, you can create a variable of type
enum direction and assign it the value North, as shown here:

enum direction currentHeading = North;

You may wonder what integer value North represents because you didn’t explicitly spec-
ify this during the declaration of the enumerated data type. By default, the first enu-
merated value (North) is given the integer value 0, and each value thereafter is given a
value one greater than the name that preceded it. This convention can be overridden
when the enumeration is declared. As an example, with the following declaration:

enum direction { North, South = 10, East, West };

North has the value 0 because it’s the first enumerated value. South has the value 10
because it’s explicitly specified via an initializer, and East and West have the values 11
and 12 respectively because they immediately follow South. It’s even possible for more
than one name to map to the same integer value, although in this case there’s no way
to tell the two values apart.

In theory, an enumerated data type should be used to store only one of the values
specified in the enumeration. Unfortunately, Objective-C won’t generate a warning if
this rule is violated. As an example, the following is perfectly valid in an Objective-C
program and in many cases won’t produce a compilation error or warning:

enum direction currentHeading = 99;

Even if this is possible, you shouldn’t rely on it. Try to restrict yourself to storing and
comparing only the symbolic names you specified in the type declaration. Doing so
allows you to easily change the values in a single place and have confidence that all
logic in your application is correctly updated. If you make assumptions based on the
value of an enumerated data type (or store random integer values), you defeat one of
their main benefits, which is the association of a symbolic name to a specific value.

The association of integer value and symbolic name has a number of benefits,
including an improved debugging experience, as can be seen in figure 2.4.

Download from Wow! eBook <www.wowebook.com>

46 CHAPTER 2 Data types, variables, and constants

// Customize the number of sections in the table view.
- (NSInteger)numberOfSectionsInTableView: (UITableView *)tableView
£

return 1;

- (NSInteger)tableView: (UITableView *)tableView number0fRowsInSection:(NSInteger)section

! return 25;

// Customize the appearance of table view cells.

- (UITableViewCell *)tableView: (UITableView *)tableView cellForRowAtIndexPath: (NSIndexPath *)indexPath
static NSString *Cellldentifier = @"Cell";
UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:Cellldentifier];

if (cell == nil) {
cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseldentifier:Cellldentifier] autoreleasel;

enum direction { North, South = 10, East, West };

enum_direction currentHeading = South;
in = South;

: int currendHeading2 10
// Configure the cellv
cell.textlabel.text = [NSString stringWithFormat:@'Rental Property %d", indexPath.rowl]; Thread 1: Stopped at breakpoint 1
NSLog(@"Rental Property %d", indexPath.row);
return cell;

}

/* A
// Override to support conditional editing of the table view.
AL D AS Tndaunabh s (AICTad

> o 2 2 0 iewController)
beal All Output # Clear) (I JHNI (M
» [self = (RootViewController *) 0x4d0d170 GNU gdb 6.3.50-20050815 (Apple version gdb-1518) (Sat Feb 12 ©2:52:12 UTC 2011)
[_cmd = (struct objc_selector *) 0x48285¢ Copyright 2004 Free Software Foundation, Inc.
» [tableView = (UlTableView *) 0x581bc00 GDB is free software, covered by the GNU General Public License, and you are
= = = welcome to change it and/or distribute copies of it under certain conditions.
> mmdexmh—(nm_nde)_(mh) 0x4d24e40 Type "show copying” to see the conditions.
[North = (enum direction) North There is absolutely no warranty for GDB. Type “show warranty" for details.
) South = (enum direction) South This GDB was configured as '"x86_64-apple-darwin".sharedlibrary apply-load-rules all
[East = (enum direction) East Attaching to process 900. .
B W= G diredion West Pending breakpoint 1 - ""RootViewController.m":73" resolved
Current language: auto; currently objective-c
» [cell = (UITableViewCell *) 0x4d25100 (gdb)

» [1 Cellidentifier = (NSCFString *) 0x3580 Cell
¥ currendHeading?2 = (int) 10
I8 currentHeading = (enum direction) South
I8 East = (enum direction) East
North = (enum direction) North
[South = (enum direction) South
8 West = (enum direction) West

Figure 2.4 The benefit of using enumerations extends into the debugger. The variable pane displays the name
associated with the current value instead of its raw integer value. Even though the variable currentHeading2
is assigned the value South (like currentHeadingl), the debugger displays the value 10 due to its data type
being int.

In the code snippet shown, the variables currentHeadingl and currentHeading2 are
both set to the enumerated value South; the difference is that one variable is of type
enum direction, whereas the other is of type int. As you can see, the debugger is able
to determine if a variable is of an enumerated data type and will display the name
associated with the variable’s current value rather than displaying the raw integer
value. This can be an immense benefit during long debugging sessions when the enu-
meration values represent the state of the application.

2.4.2 Structures

In more complex applications, another common scenario is to have a set of variables
that are related in concept. For example, you may want to record the width, height,
and depth of a box. You could use individual variables to represent this information:
int width;

int height;
int depth;

Download from Wow! eBook <www.wowebook.com>

Creating your own data types 47

And if you wanted to store details of multiple boxes, you could duplicate this set of
variables to come up with something similar to the following:

int width boxl, width box2, width box3;

int height_box1l, height_box2, height_ box3;

int depth boxl, depth box2, depth box3;

This process could become a laborious one if you decided in the future to add addi-
tional details you wanted to record for each box, such as its color. You would need to
find all occurrences of box details and manually update the variable declarations.

Using individual variables also makes passing details of a specific box more diffi-
cult. Rather than passing a single variable, you must pass multiple values, and there’s
nothing stopping you from accidentally transposing the variables representing the
width and height of a box. These kinds of bugs can be subtle and hard to detect.

It would be better if you could declare a variable of data type box and have the
compiler automatically know that it must provide space for individual width, height,
and depth values. By doing this, you’d have a single variable that can be easily passed
and a single definition of what a box consists of.

Objective-C calls such custom data types structures. Structures are declared with the
struct keyword and consist of a name followed by a semicolon-separated list of field
declarations. You could define a box structure as follows:

struct box {

int width;

int height;

int depth;
Vi
This statement declares that a box is a data structure that contains three integer
fields, called width, height, and depth. Once a structure is declared, you can create
variables of type struct box, and they’ll be allocated space to store three integer val-
ues. For example, you could create enough variables to store information about five
boxes as follows:

struct box a, b, ¢, d, e;

Each variable would have a unique width, height, and depth value associated with it.
When using a structure-based variable, you must specify which field you want a partic-
ular statement to access. You do this by placing a period after the variable name fol-
lowed by the desired field name. For example, to set the width of the second box, you
could use the following statement:

b.width = 99;
As another example, you could calculate the volume of box b as follows:

int volume = b.width * b.height * b.depth;

Download from Wow! eBook <www.wowebook.com>

48

24.3

CHAPTER 2 Data types, variables, and constants

Like variables of primitive data types, structure variables can be initialized with an ini-
tial value. You can achieve this through two forms of syntax. The first is to provide a
value for each field in a set of curly braces:

struct box a = { 10, 20, 30 };

This line specifies a box 10 wide x 20 high x 30 deep. The values in the curly braces are
specified in the same order as the fields were defined in the structure declaration. If
you don’t specify enough values, any unspecified fields are left uninitialized. An alter-
native syntax explicitly specifies the name of each field being initialized, as follows:

struct box a = { .width=10, .height=20, .depth=30 };

This alternative syntax can be clearer in intent and will also cope if the order of the
fields in the structure declaration changes. It’s even possible to initialize only select
fields in the structure when using this syntax:

struct box a = { .depth=30 };

This last example sets the depth field to 30 and leaves the width and height fields
uninitialized. In this sense, uninitialized means the field will have the value 0 or its
equivalent, such as nil, although this depends on the storage class of the variable.
Structures are a handy way to group related sets of variables into easier-to-manage
chunks, but they don’t solve all of the problems you may encounter with storing
details about multiple highly similar objects. For example, you may need to calculate
the total width of all the boxes in your application. To do this, you could come up with
an expression similar to the following:
struct box a, b, ¢, d, e, £f;
int totalWidth = a.width + b.width + c.width + d.width + e.width;
Although this is manageable with only five boxes, imagine how torturous the expression
would be to write if the application instead needed to store details of 150 different boxes.
There would be a lot of repetitive typing involved, and it would be easy to miss a box or
include a box multiple times. Each time you change the number of boxes your applica-
tion needs to store, you'd also need to update this calculation. That sounds like a lot of
pain! What you want the expression to say is “add the width of every box” and have the
statement work without modification no matter the number of boxes your application
currently keeps track of. Not surprisingly, Objective-C has a data type to help you out.

Arrays

Another common scenario is the need to store multiple values of the same data type.
C provides a handy data structure called an array to make this task easier. An array is a
data structure that stores a list of items. Each item (or element) is stored consecu-
tively, one after the other, in memory and can only be accessed by its relative position.
This position is often called the item’s index. To declare an array capable of storing
details of 150 boxes, you could write a variable declaration similar to this:

struct box boxes[150] ;

Download from Wow! eBook <www.wowebook.com>

Creating your own data types 49

With this statement, you've declared enough space to store 150 boxes but used only
one variable name, boxes, to identify them all. The number specified in square brack-
ets indicates the number of items that can be stored in the array.

To access the details of each box, you must provide the name of the array along
with the index value of the desired element. By convention, the first element in an
array has an index of 0, and each element thereafter has an increasing index value.
This means that the last entry in a 150-element array will be accessible via index 149.
The following statement will access and print the width of the sixth box:

NSLog (@"The 6th box has a width of %d inches", boxes[5].width);

Notice that to access the sixth element, you specified index 5. That’s because indexes
start at 0 and not the more “natural” value of 1. When accessing array elements, the
array index need not be specified as a simple constant. You can use any valid expres-
sion that results in an integer value. This allows you to write code that accesses differ-
ent array items based on the state of the application. For example, consider the
following code sample, which adds the widths of all 150 boxes:

int totalWidth = 0;

for (int i = 0; i < 150; i++)
totalWidth = totalWidth + boxes[i] .width;
1

This example uses a for loop to repeat the statement totalWidth = totalWidth +
boxes [1] .width with the value of variable i incrementing between 0 and 149. Con-
trasting this expression with the one mentioned toward the end of section 2.4.2, you
can see that this version can easily be updated to cope with different numbers of
boxes by changing the value 150 in the second line. Using an array in this scenario
makes for an easier and vastly more maintainable solution.

INITIALIZING ARRAYS

When declaring array variables, it can be helpful to provide each element in the array
with an initial value. To do so, place a comma-separated list of initial values in a set of
curly braces, similar to how structures are initialized:

int countl1[5] = { 10, 20, 30, 40, 50 };

int count2[] = { 10, 20, 30, 40, 50 };

This code snippet creates two integer arrays with five elements. In each array, the first
element stores the value 10, the second element stores 20, and so on.

In the first array, the array is explicitly sized to store five elements. It’s an error to
provide more initialization values than the size of the array, but if fewer are provided,
any uninitialized elements at the end of the array will be set to zero.

The second array demonstrates that when initializing an array, it’s possible to omit
its size. In this scenario, the C compiler infers the size from the number of initializa-
tion values provided.

Download from Wow! eBook <www.wowebook.com>

50

244

CHAPTER 2 Data types, variables, and constants

How DO ARRAYS DIFFER FROM SIMPLE TYPES?

Arrays behave a little bit differently from the data types we’ve discussed up to this
point. For example, you may expect the following code snippet to print the result
A=1, B=2, C=3 because of the assignment statement array2 = arrayl setting the sec-
ond array to the contents of the first:

int array1l[3] = { 1, 2, 3
int array2([3] = { 4, 5, 6 };

array2 = arrayl;

NSLog (@"A=%d, B=%d, C=%d", array2[0], array2[l], array2[2]);

But if you attempt to build this code sample, you should notice a compiler error com-
plaining cryptically about “incompatible types in assignment.” What this error is
attempting to convey is that the variable array2 can’t be used on the left-hand side of
the assignment (=) operator: it can’t be assigned a new value, at least not in the man-
ner shown here.

In chapter 3, as we discuss the object-oriented features of Objective-C, we explore
concepts such as pointers and the difference between value and reference types,
which will help explain why Objective-C refuses to accept what on initial glance looks
like a perfectly acceptable request.

The importance of descriptive names

Objective-C provides a way to declare an alternative name for an existing data type via
a statement known as a ype definition, or typedef for short. Typedefs can be useful
when the built-in data type names aren’t descriptive enough or if you want to differen-
tiate the purpose or intent of a variable from its physical data type (which you may
decide to change at some point in time).

You've already seen typedefs, although they weren’t pointed out as such: the NSIn-
teger and NSUInteger data types discussed earlier are typedefs that map back to the
built-in datatypes int and long int as required. This isn’t Apple-specific magic, simply
a couple of lines of prespecified source code that automatically get included in every
Cocoa Touch application.

To declare your own typedefs, you use the typedef keyword followed by the name
of an existing data type (or even the specification of an entirely new one) followed by
the new name you want to associate with it.

As an example, you could assign the alternative name cube to the struct box data
type you previously declared by adding the following type definition:

typedef struct box cube;
Or you could merge the declaration of struct box into the typedef statement:

typedef struct box {
int width;
int height;
int depth;

} cube;

Download from Wow! eBook <www.wowebook.com>

Creating your own data types 51

Both type definitions say that struct box can also be referred to by the name cube.
This allows you to declare variables in your application as follows:

struct box a;

cube b;

The new data type cube created via the typedef statement is purely an element of syntac-

tic sugar. As far as the Objective-C compiler is concerned, struct box and cube both

mean the same thing: you've specified alternative names for the developer’s convenience.
Although you can use typedefs to rename enums, structs, and unions, they can also

be beneficial to provide alternative names for primitive data types such as int or

double. One problem with the basic numeric data types is that they can sometimes

seem meaningless in isolation. If you were presented with the following statement

double x = 42;

you wouldn’t be able to determine what the value 42 represents. Is it a temperature,
weight, price, or count? Giving an existing data type a new name can make such a state-
ment more self-documenting. As an example, listing 2.2 contains a type definition that
can be found in the Core Location API, which is responsible for GPS positioning.

// CLLocationDegrees

// Type used to represent a latitude or longitude coordinate
// in degrees under the WGS 84 reference frame. The degree can
// be positive (North and East) or negative (South and West) .

typedef double CLLocationDegrees;

Although the type definition provides an alternative name for double, it enables us to
declare a variable using a statement similar to the following:

CLLocationDegrees x = 42;

This new statement, although essentially identical to the previous, makes the meaning
of the value 42 much more apparent.

Good variable names are equally as important

Although the use of the typedef statement can provide more descriptive hames to
existing data types, this feature should not be relied on in isolation. For example, look
at the given variable declaration:

CLLocationDegrees x = 42;

This could have arguably been made even more descriptive by using a better variable
name instead of the typedef. For instance:

double currentHeadingOfCar = 42;

In general, try to be as descriptive as possible with any form of identifier, be that a
variable, datatype, method, or argument name. The more self-documenting your
code, the easier it is to maintain and come back to after periods of inactivity.

Download from Wow! eBook <www.wowebook.com>

52

2.5

CHAPTER 2 Data types, variables, and constants

Let’s put some of the concepts you've learned in this chapter into practice by complet-
ing the remaining tasks required to get the Rental Manager application to display
details about the set of rental properties in your portfolio.

Completing Rental Manager v1.0, App Store here we come!

Now that you have a well-rounded understanding of how data can be stored in an
Objective-C application and of the different data types involved, you're ready to get
back to the Rental Manager application.

You may remember that when you left it earlier in the chapter, it was displaying a
list of 25 rental properties, but each property was labeled “Rental Property x.” This
didn’t provide you with much detail about each property! You now have the knowl-
edge and skills required to resolve this problem.

The first step is to define the information you would like to associate with each
rental property. Some good details to start with could be

= The physical address of the property
= The cost to rent the property per week
= The type of property (townhouse, unit, or mansion)

To store this information, you can define a custom data type based on a structure.
Open up the RootViewController.h header file for editing and insert the definitions
found in the following listing at the bottom of the file’s existing content.

typedef enum PropertyType {
Unit,
TownHouse,
Mansion

} PropertyType;

typedef struct {

NSString *address;

PropertyType type;

double weeklyRentalPrice;
} RentalProperty;
The first addition is the definition of an enumeration called PropertyType. It’s used
to group the rental properties you manage into three distinct categories: units in a
larger property, townhouses, or mansions.

The second addition is a custom data type called RentalProperty that nicely
encapsulates all of the details you want to store about a rental property. This typedef
statement declares that the RentalProperty data type is a structure containing indi-
vidual address, property type, and weekly rental price fields. If you pay close attention,
you’ll notice there’s no name specified after the struct keyword. When using a
typedef, it isn’t strictly necessary to name the struct because you usually don’t
intend people to refer to the data type in this manner but via the name assigned to it
with the typedef.

Download from Wow! eBook <www.wowebook.com>

Completing Rental Manager v1.0, App Store here we come! 53

Having modified RootViewController.h to specify the new data types related to
storing rental property details, you're ready to declare details about an initial set of
rental properties. Open up RootViewController.m and insert the contents of the fol-
lowing listing directly below the line #import "RootViewController.h".

Listing 2.4 RootViewController.m

#define ARRAY SIZE(x) (sizeof(x) / sizeof (x[0]))

RentalProperty properties([] = {

{ @"13 Waverly Crescent, Sumner", TownHouse, 420.0f },
@"74 Roberson Lane, Christchurch", Unit, 365.0f },
@"17 Kipling Street, Riccarton", Unit, 275.9f },

@"4 Everglade Ridge, Sumner", Mansion, 1500.0f },
@"19 Islington Road, Clifton", Mansion, 2000.0f }

—

}i

The main portion of listing 2.4 declares a variable called properties. This is an array
of RentalProperty structures. The array is initialized with details of five example
properties in your portfolio by using a combination of the array and structure initial-
ization syntaxes discussed earlier in this chapter.

Now all that’s left to do is to provide suitable tableView:numberOfRowsInSection:
and tableView:cellForRowAtIndexPath: replacements that refer back to the data in
the properties array to satisfy their requests. These can be found in the following listing.

Listing 2.5 RootViewController.m

- (NSInteger)tableView: (UITableView *)tableView
numberOfRowsInSection: (NSInteger)section {

return ARRAY SIZE (properties);

- (UITablevViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"Cell";

UlTableView *cell =
[tableView dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier] autorelease];

}

cell.textLabel.text = properties[indexPath.row] .address;
cell.detailTextLabel.text =
[NSString stringWithFormat:@"Rents for $%0.2f per week",
properties[indexPath.row] .weeklyRentalPrice] ;

return cell;

}

Download from Wow! eBook <www.wowebook.com>

54

2.6

CHAPTER 2 Data types, variables, and constants

The tableView:numberOfRowsInSection: implementation isn’t notable. It returns
the number of items present in the properties array (5). It makes use of a C preproces-
sor macro defined in listing 2.4 to determine this number, but more about that later.

The tableView:cellForRowAt IndexPath: implementation has a couple of changes.
The first is a change in table view cell styles. You’re now requesting UITableViewCell-
StyleSubtitle, which provides an iPod application—style cell with two horizontal
lines of text: a main one that’s black followed by a gray line designed to show addi-
tional details.

In tableView:cellForRowAtIndexPath: you’'re provided with the index of the row
the UITableView wants data for via the indexPath.row property. You can use this
expression to index into the properties array to access the details, such as the
address, of the associated property. Likewise, you can format a similar string detailing
the rental price of the property to two decimal places for use as the details line.

Build and run the application (Cmd-R), and you should be rewarded with a much
better list of rental properties. Your first practical version of the Rental Manager appli-
cation is completed!

Summary

All software applications are ultimately about data and how to interpret, process, and
present it to the user. Even games are required to store maps, enemy positions, and
scoring information, for example. It’s important to have a strong grasp of how to rep-
resent and store data in your applications.

In this chapter, you met some of the most basic data types available to Objective-C
developers, including int, float, char, and bool. We also highlighted some of the
potential issues these data types could throw up, such as the inability of floating-point
numbers to accurately represent all values in their stated ranges.

As programs start to develop and grow in complexity, managing a large number of
individual variables becomes untenable, so we investigated a number of Objective-C
features such as enumeration, structures, and arrays that allow you to group multiple
fields and constants.

In chapter 3, we complete our coverage of Objective-C data types by discussing the
concept of objects. Objects are another form of data type, but clearly, because
Objective-C begins with the word object, understanding them is fairly critical to the suc-
cess use of Objective-C.

Download from Wow! eBook <www.wowebook.com>

An initroduction to obeets

This chapter covers

m The concepts of objects, classes, and
instances

m Class hierarchies, inheritance, and
polymorphism

® Foundation Kit

® The NSString class

In Objective-C the use of object-oriented programming is optional. Because
Objective-C is based on a C foundation, it’s possible to use C-style functions (as evi-
denced by calls to NSLog in the previous chapter), but Objective-C’s full power is
unlocked only if you make full use of its object-oriented extensions.

In this chapter we reveal some of the benefits of object-oriented development
by covering how the NSString class, provided by Foundation Kit, can improve your
productivity while increasing the robustness of any code that interacts with text.

Before we go too far in depth on that particular topic, let’s first take a look at
the most basic concepts of object-oriented programming.

55

Download from Wow! eBook <www.wowebook.com>

56

3.1

3.1.1

3.1.2

CHAPTER 3 An introduction to objects

A whirlwind tour of object-oriented programming concepts

In this chapter we can’t do justice to every concept associated with object-oriented
programming (also termed OOP, for short). Instead, the goal of this chapter is to
make sure you have a solid understanding of the fundamental concepts and benefits
of objectoriented programming and a working knowledge of the terminology.
Throughout this book, we discuss object-oriented programming concepts as they
apply to Objective-C and expand on what’s covered in this chapter. Let’s get started by
learning what’s so wrong with C.

What’s wrong with procedural-based languages such as C?

In very broad brush strokes, a procedural language requires greater concentration
and observance of manually enforced or informal rules than does an object-oriented
language.

One reason for this is that procedural languages focus on dividing the applica-
tion’s source code into individual functions, but generally their ability to control
access to data is less fine-grained. Data will generally belong to a particular function or
be globally accessible by any function. This causes problems when several functions
need to access the same data. To be available to more than one function, such vari-
ables must be global, but global data can be accessed (or worse yet, modified in inap-
propriate ways) by any function in the application.

Object-oriented programming, on the other hand, attempts to merge these two con-
cepts. When developing a new application, you first think of the different kinds of
things represented in it, then the type of data it’s required to store, and then the actions
each thing should be able to perform. These “things” are commonly called objects.

What are objects?

When developing an object-oriented application, you’re creating a miniature model
of a system. That model is constructed from one or more building blocks called objects.

As an example, in a drawing application, a user may create three objects represent-
ing a circle and two rectangles. Each object has associated data that is relevant to itself.
The circle object’s data may describe a radius, while the rectangle objects, to be recog-
nized as rectangles, will probably require a width and height to be stored as their data.

Objects in an application can usually be grouped into similar types. For example,
all circles will require that similar attributes be specified to describe their size, shape,
and color. But the attributes required to describe circles will most likely be different
from the attributes required for all of the objects of type rectangle.

Individual objects in an application are created from a cookie-cutter-type template
called a class. A class describes what type of data an object must store and the type of
actions or operations it can perform.

Download from Wow! eBook <www.wowebook.com>

3.13

3.1.4

A whirlwind tour of object-oriented programming concepts 57

What are classes?

A class is a specification, or blueprint, designed to describe the structure of one or
more objects in a system that share a similar purpose. Classes are the most basic form
of encapsulation in Objective-C: they combine a small amount of data with a set of rel-
evant functions to manipulate or interact with that data.

Once a class is defined, its name becomes a new data type, meaning that you can
declare a variable to be of that type. The class is like a factory line, rolling out cookie
after cookie on demand. When instantiated, each newly created object has its own
copy of the data and methods defined by the class. By convention, class names begin
with a capital letter to differentiate them from method and instance variable names,
which typically start with a lowercase letter.

Inheritance and polymorphism

An advantage of object-oriented programming is the ability to reuse existing classes

time and time again. Not only can you create additional objects with little effort, but

one class can build on the foundations of another. This technique, called inheritance, is

similar to a family tree. One class in the system inherits, or derives, from another.
Inheritance has two major benefits:

» Code reuse—A subclass inherits all the data and logic defined by its superclass
(ancestor). This avoids duplicating identical code in the definition of similar
classes.

» Specialization—A subclass can append additional data or logic and/or override
existing behavior provided by the superclass.

Class clusters

While researching Objective-C you may come across the concept of class clusters.
These are an example of inheritance and polymorphism. In a class cluster, a super-
class is documented, while a number of subclasses are purposely left undocumented
(as private, implementation-specific details).

As an example, virtually all Objective-C tutorials, including this book, discuss using
the NSString class to store text. It may surprise you that in most cases there will
never be an object of type NSString created in your application.

Instead, when you request a new NSString object, one of a number of subclasses
with names such as NSCFString is created in its place. Because these subclasses
inherit from NSString, they can be used in its place. As the old saying goes, “If it
walks like a duck, quacks like a duck, and swims like a duck, it’s probably a duck.”

NSString uses these “hidden” subclasses to allow itself to optimize memory and
resource usage based on the specifics of each string generated.

The next time you’re in the Xcode debugger, hover the mouse over a variable of type
NSString. In the data tip that appears, you’ll probably see the object’s data type
listed as NSCFString. This is a class cluster in action.

Download from Wow! eBook <www.wowebook.com>

58

3.2

CHAPTER 3 An introduction to objects

The core concept of inheritance is that a subclass becomes a more specialized version
of its superclass. Rather than describing all of the logic contained in the subclass from
scratch, only the differences in behavior from the superclass need to be specified.

Polymorphism is a related concept that enables you to treat any object, no matter
its class, as if it were typed as one of its superclasses. This works because subclasses can
only extend or modify the behavior of a class; they can’t remove functionality.

The missing data type: id

In chapter 2 we made one glaringly large omission when discussing the data types
available to represent data in an application. We didn’t cover how to store an object—
something rather important for a language starting with the word Objective!

In Objective-C a variable, which can represent an object, makes use of a data type
called id. For example:

id name = @"Christopher Fairbairn";

idis a special kind of data type in that it can store a reference to an object of any type.
Objective-C also enables you to be more specific about the type of object you expect to
store in a variable. For example, you would more commonly see the previous variable
declaration declared as follows:

NSString *name = @"Christopher Fairbairn";

Here the id data type is replaced by NSString *. Being more explicit about the type of
object you expect to store in the variable enables a number of helpful compile-time
checks. For starters, the compiler will produce an error if you attempt to assign or
store an object of another type to the variable, and a warning will be produced if you
attempt to send the object a message that, to the best of the compiler’s knowledge, it
can’t handle.

There’s no magic with id

You may think there’s some kind of magic occurring with the id data type. How can a
variable of type id store an object of any data type, and why don’t you need to specify
a * character after the data type, as you do with other class names such as NSString?
To answer these questions, declare a variable of type id and then double-click it while
holding down the Cmd key. You should see something similar to the following:

typedef struct objc object { Class isa; } * id;

This is the declaration of the id data type. It's another name (a type definition) for a
pointer to a struct called objc_object. The objc_object struct can be considered
as low-level “plumbing” in the Objective-C runtime. With a slight amount of hand wav-
ing, you can consider it to be the same as NSObject. Because all objects in Objec-
tive-C ultimately derive from NSObject, a variable of type id can store a pointer to
any object, no matter its type. Because the declaration of the id data type contains
a *, one isn’t required when it’s utilized in an application.

Download from Wow! eBook <www.wowebook.com>

3.3

3.3.1

3.3.2

Pointers and the difference between reference and value types 59

You may have noticed that the NSString example contained a * character before the
variable name. This character has special significance (you’ll notice it’s also present in
the declaration of the id data type discussed in the sidebar). This additional character
indicates that the data type is a pointer. But what exactly does this mean?

Pointers and the difference between reference and value types

A variable in an application consists of four components:

= Name

» Location (where it’s stored in memory)
= Type (what kind of data it can store)

» Current value

Until now, we haven’t covered where variables are located or whether they are accessi-
ble by means other than their names. Understanding these concepts is closely related
to the concept of pointers.

Memory maps

You can consider the memory of the iPhone as being made up of a large pile of bytes,
each stacked one on top of another. Each byte has a number associated with it, called
an addpress, similar to houses having an associated street number. Figure 3.1 represents
several bytes of the iPhone’s memory, starting at address 924 and extending through
address 940.

When you allocate a variable in your application, the compiler reserves an explicit
amount of memory for it. For example, a statement such as int x = 45 causes the com-
piler to reserve 4 bytes of memory to store the current value of x. This is represented
in figure 3.1 by the 4 bytes starting at address 928.

Obtaining the address of a variable
Referring to the name of a variable in an expression will access or update its current
value. By placing the address-of (&) operator in front of a variable name, you can learn
the address at which the variable is currently stored.

A variable that can store the address of another variable is called a pointer because
it’s said to “point to” the location of another value. The following code snippet dem-
onstrates how you can use the address-of operator.

int x = 45;
int *y = &x;

45

T T T
% % Y % % Y

2

X

9. 9. 9
% e B

9. 9. 9. 9 9. 9.
% o e > Yo T

Figure 3.1 Representation of a region of the iPhone’s memory showing the location
of variable x

Download from Wow! eBook <www.wowebook.com>

60

3.3.3

CHAPTER 3 An introduction to objects

45 90

T T T
208 9 Y 9

X Y

9, "9, 9 9
Y > <5 3

U

9 9 9 9. 9.
% 2 D, o B B %

~

Figure 3.2 An updated memory map showing how variable y stores the address of
variable x

This code snippet declares an integer variable x that’s initialized to the value 45. It
also declares variable y with a data type of int *. The * at the end of the data type indi-
cates a pointer and means you don’t want to store an actual integer value but rather
the memory address at which one can be found. This pointer is then initialized with
the address of variable x via use of the address-of operator. If variable x had been
stored at address 928 (as previously mentioned), you could graphically represent the
result of executing this code snippet by updating the memory map to be similar to
that shown in figure 3.2.

Notice how the 4 bytes allocated to store variable y now store the number 928.
When interpreted as an address, this indicates the location of variable x, as indicated
by the arrow. The expression y = &x can be read as “place the address of variable x into
variable y.”

Following a pointer

Once you have an address stored in a pointer variable, it’s only natural to want to
determine the value of whatever it points to. This operation is called dereferencing the
pointer and is also achieved by using the * symbol:

int x = 45;

int *y = &x;

NSLog (@"The value was %d", *y);

The statement on the last line prints out the message "The value was 45" because the
* in front of variable y causes the compiler to follow the pointer and access the value it
currently points to. In addition to reading the value, it’s possible to replace it, as dem-
onstrated next. Confusingly, this operation also makes use of the * operator:

int x = 45;
int *y = &x;

*y = 92;
The statement on the last line stores the value 92 at the address located in variable vy.
Referring to figure 3.2, you’ll see that variable y stores (or points to) address 928, so

executing this statement updates the value of variable x even though x is never explic-
itly referred to in the statement.

Download from Wow! eBook <www.wowebook.com>

3.34

Pointers and the difference between reference and value types 61

Arrays are pointers in disguise

A variable identifier for a C-style array can at some level be thought of as a simple
pointer. This pointer always points to the first element in the array. As an example,
the following is perfectly valid Objective-C source code:

int ages[50] ;

int *p = ages;

NSLog (@"Age of 10th person is %d", pl[9]);

Notice you can assign the array variable to a pointer variable directly without using
the & operator, and you can use the familiar [] syntax to calculate an offset from the

pointer. A statement such as p[9] is another way to express * (p + 9):it’s a short-
hand way to say “add 9 to the pointer’s current value and then dereference it.”

When working with pointers to structure-based data types, a special dereferencing syn-
tax is available that allows you to deference the pointer and access a specific field in
the structure in a single step, using the -> operator:

struct box *p = ...;

p->width = 20;

The -> operator on the second line dereferences the pointer p and then accesses the
width field in the structure. While following a pointer to read or alter the value it
points at, it’s sometimes helpful to compare two pointers to check if they point to
identical values.

Comparing the values of pointers

When comparing the values of two pointers, it’s important to ensure you’re perform-
ing the intended comparison. Consider the following code snippet:
int datal[2] = { 99, 99 };

int *x = &datal[O0];
int *y = &datall];

if (x == y) { NSLog(@"The two values are the same"); }

You might expect this code to emit the message "The two values are the same" but it
doesn’t. The statement x == y compares the address of each pointer, and because x
and y both point to different elements in the data array, the statement returns NO.

If you want to determine if the values pointed to by each pointer are identical, you
dereference both pointers:

if (*x == *y) { NSLog(@"The two values are the same"); }

Now that you understand the concept of pointers and how multiple pointers can ref-
erence the same object, you're ready to communicate with the object. Communicat-
ing with an object enables you to interrogate it for details it stores or to request that
the object perform a specific task using the information and resources at its disposal.

Download from Wow! eBook <www.wowebook.com>

62

3.4

34.1

CHAPTER 3 An introduction to objects

Indicating the absence of a value

Sometimes you want to detect if a pointer variable is currently pointing at anything of
relevance. For this purpose, you’ll most likely initialize the pointer to one of the spe-
cial constants NULL or nil:

int *x = NULL;
NSString *y = nil;

Both constants are equivalent to the value 0 and are used to indicate that the pointer
isn’t currently pointing to anything. The Objective-C convention is to use nil when
referring to an object and relegating NULL for use with older C-style data types.

Initializing the pointer to one of these special values enables an if (y != nil)
check to determine if the pointer is currently pointing to anything. Because nil is
equivalent to the value 0, you may also see this condition written as if (!y).

Also be careful not to dereference a NULL pointer. Trying to read or write from a
pointer that points to nothing causes an access violation error, which immediately
exits your application.

Communicating with objects

In most C-inspired languages such as C++, Java, and C#, developers call a method
implemented by an object. Developers using Objective-C, on the other hand, don’t
“call” a method directly; instead, they “send” a message to an object. The object
“receives” the message and decides if it wants to process it, usually by invoking a
method with the same name. This is a fundamentally different approach and is one of
the many features that make Objective-C a more dynamic language because it enables
the object to have finer-grained control over how method dispatch occurs.

Sending a message to an object

Figure 3.3 outlines the basic Objective-C syntax for sending a message to an object. In

source code, a message send is represented by a set of square brackets; immediately

after the opening bracket is the target, followed by the name of the message itself. The

target can be any expression that evaluates to an object that should receive the message.
You can consider a basic message send such as the one

shown in figure 3.3 as analogous to addressing an envelope

with a person’s name and address. It sets up a container | "YOPIect myMessage J:

that can then be delivered to its intended recipient. Target Message
Sometimes, for an object to make sense of a message,
Figure 3.3 The basic syntax
for sending a message to an
to placing a letter or invoice in an envelope. Additional gpject in Objective-C. In a pair
information provided in a message send is represented by of square brackets, the target
(or object that receives the
message) is specified,
followed by the name of the
acter after the method name, as shown in figure 3.4. message itself.

additional information must be sent along with it, similar

one or more values called arguments. When sending a
message, arguments are provided by placing a colon char-

Download from Wow! eBook <www.wowebook.com>

3.4.2

Communicating with objects 63

Arguments

I

myString stringByReplacingOccurrencesOfStrings@"Hello" withStrings@"Goodbye"]:

Target T
Message
Figure 3.4 A slight change in syntax allows you to send a nr ge that p along one or more

arguments for the object to use as it attempts to process the message.

When myString receives the message sent in figure 3.4, it also gains access to the val-
ues @"Hello" and @"Goodbye". One interesting thing to note from figure 3.4 is how
messages that expect multiple arguments are handled. The message sent in the figure
is named stringByReplacingOccurrencesOfString:withString:; each colon char-
acter represents where an argument can be placed. It’s common for Objective-C mes-
sage names to be descriptive and verbose, almost making small sentences when
combined with their arguments: figure 3.4 could be read as “string by replacing occur-
rences of string hello with string goodbye.”

Sending a message to a class

Say you have two objects of type dog, one called Puggsie and another called Mr Pug-
gington. If you wanted both dogs to sit, you could individually send each object a mes-
sage called sit. Both dogs would receive this message and (assuming they don’t have
minds of their own) sit down on request.

Sometimes you may want to request information or provide instructions that aren’t
specific to a particular instance of a class. For example, you may want to inquire about
the number of dog breeds available. It doesn’t make sense to ask either Mr Pugging-
ton or Puggsie (instances of the Dog class) this question, but the question is clearly
related to the concept of Dog.

In such cases, it’s possible to send a message directly to the class. The syntax for
this is similar to sending a message to an object, but because you don’t have a particu-
lar object to target the message to, you use the name of the class as the target:

int numberOfDogBreeds = [Dog numberOfDogBreeds] ;

Many requests can be made of Puggsie and Mr Puggington, but there are limitations
to what you can request. For example, sending a Dog object (Mr Puggington, perhaps)
a message called makeThreeCourseDinnerForHumanOwner isn’t likely to result in a
meal. Compilers for many languages can detect such infeasible method calls and halt
compilation as soon as one is found. Objective-C, however, allows such infeasible
requests to be made. Who knows—the dog may be the next Einstein.

Download from Wow! eBook <www.wowebook.com>

64

3.4.3

CHAPTER 3 An introduction to objects

Sending nonexistent messages

With the message send concept, it’s possible to send an object a message that it may not

be able to handle. Unlike in a language such as C++ where a method must be declared

in order for it to be called, requesting that a message be sent is just that: a request.
Because of Objective-C’s dynamic typing, there’s no guarantee that the recipient of

a message will understand how to process it, and no check is made at compile time to

ensure it exists. The following code snippet will successfully compile even though the

NSString class doesn’t implement a method called mainBundle:

NSString *myString = @"Hello World!";

[myString mainBundle] ;

The best that the Objective-C compiler can do in a situation like this is produce the

following warning during compilation:

'NSString' may not respond to '-mainBundle'

You may be wondering why Objective-C produces only a warning when other lan-
guages are more heavy handed and produce a fatal error during compilation. The
answer is that Objective-C allows objects to dynamically add and remove methods and
also gives them an opportunity to process any unhandled messages. Consequently, the
compiler can never really be sure that a particular object won’t respond to an arbitrary
message without giving it a go at runtime.

If you want to get rid of the compile-time warning, the easiest way is to change the
variable’s data type to id:

id myString = @"Hello World!";
[myString mainBundle] ;

Alternatively, you could use a typecast:

NSString *myString = @"Hello World";

[(id)myString mainBundle] ;

Because the id data type can reference an object of any type, the compiler is more
lenient with its warnings. If it didn’t make this concession, it would have to warn about
every message sent to an object typed as id because this type doesn’t explicitly declare
the existence of any methods to the compiler.

It’s important to note that although all the code snippets in this section success-
fully compile, they will all fail at runtime because NSString doesn’t handle a message
called mainBundle. If the target object doesn’t define a suitable method, the message
will eventually be rejected, just as addressing an envelope to a nonexistent address will
cause it to become undeliverable. You’ll most likely come across this situation when
you see the following fatal error in the debugger:

*** Terminating app due to uncaught exception 'NSInvalidArgumentException',

reason: '*** - [NSCFString mainBundle] : unrecognized selector sent to
instance 0x3b0OaleO'

Download from Wow! eBook <www.wowebook.com>

3.4.4

Communicating with objects 65

This is the ultimate sign that Objective-C looked for a suitable method to handle this
message and came up short. We return to this topic in chapter 8 where we discuss how
a class can be modified to intercept unknown messages and perform tricks such as
redirecting them to another method.

Although sending a message you know will result in a fatal exception isn’t wise, this
technique has some practical uses. It’s heavily used by the Core Data framework dis-
cussed in chapter 12, for example.

Another unusual quirk of the message send implementation, one that’s widely
used, is sending a message to nil, which is similar in concept to mailing an envelope
without an address.

Sending messages to nil

An interesting feature of Objective-C is the behavior of sending a message when the
target is nil—when the message is addressed to no one. In many languages, doing so
would produce a fatal error at runtime, typically called a NULL Reference exception,
and to guard against such errors, developers commonly use code snippets similar to
the following:

NSString *str = ...expression which returns a string or nil...;
NSUInteger length;

if (str != nil)

length = [str length];
else

length = 0;

The if statement checks to see if the str variable is currently pointing to a valid object
and sends the length message (which returns the length of the string) only if a valid
object is available. If str currently contains the value nil, indicating no object is avail-
able to send the message to, a default length of 0 is assumed. In Objective-C these checks
are commonly not required, meaning you can simplify the code snippet as follows:

NSString *str = ...expression which returns a string or nil...;

NSUInteger length = [str length];

Both code snippets are identical in behavior. Looking at the simplified code snippet,
you may wonder how it’s safe to execute the statement [str length] when the target
is nil. The answer is that, as part of the message send process, Objective-C internally
checks if the target is nil and avoids sending the message. If the Objective-C runtime
decides not to send the message, the return value will typically be 0 (or its equivalent,
such as 0.0, or NO).

Now that you have a firm grasp of the concepts of object-oriented programming,
the difference between objects and classes, and how to communicate with objects, let’s
investigate a common class undoubtedly used by almost every application: NSString,
which represents a sequence of characters.

The NSString class provides a good example of the benefits of object-oriented pro-
gramming. For starters, you don’t need to write the code for this class: it’s provided

Download from Wow! eBook <www.wowebook.com>

66

3.5

3.5.1

CHAPTER 3 An introduction to objects

for you out of the box, and you can reuse existing classes without needing to reinvent
the wheel with each application. Reuse makes you more productive, allowing you to
focus on differentiating and perfecting your application instead of spending days
building a basic foundation.

Strings

The NSString class provides a nice object-oriented interface to represent, interact
with, and modify a string of characters. Unlike in a C-style char * null-terminated
string or char[] array, all aspects of memory allocation, text encoding, and string
manipulation are hidden from the application developer as internal implementa-
tion details of the NSString class. This allows you to worry about the more impor-
tant and unique aspects of your application logic rather than the nitty-gritty details
of how strings are stored in a computer or how operations such as string concatena-
tion operate.

This abstraction also means that common sources of error, such as attempting to
store a 250-character string in a variable that has allocated space for only 200 charac-
ters, are easily avoided in Objective-C. Let’s start our discussion of strings by learning
how to create new strings in your source code.

Constructing strings

The easiest way to create a new NSString instance is via the convenient @"..." lan-
guage syntax introduced in previous chapters. For example, the statement

NSString *myString = @"Hello, World!";

creates a new NSString object and initializes it with the value "Hello, World!". This
form of syntax, however, is a special case for the NSString class. It’s impossible to use
this syntax to create instances of any other class. The use of text strings in applications
is so pervasive that the Objective-C language designers decided it was beneficial to
have dedicated (and concise) syntax to create them. A more generic technique to
construct an object of a particular class is to send that class an alloc message to allo-
cate memory for a new object, followed by some kind of initialization message. For
example, here’s another way to create a string:
NSString *myString = [NSString alloc];
myString = [myString initWithString:@"Hello, World!"];
This code sample explicitly demonstrates the two stages of constructing a new object
in Objective-C: allocation and initialization. The first line sends the alloc (short for
allocate) message to the NSString class. This causes NSString to assign enough mem-
ory to store a new string and returns a C-style pointer to that memory. At this stage,
however, the object is rather blank, so the next step is to call an initialization method
to initialize the object with some kind of sensible value.

Many classes provide a number of initialization messages. In this example, you sent
the initWithString: message, which initializes the new string object with the contents

Download from Wow! eBook <www.wowebook.com>

3.5.2

Strings 67

of a string constant. It’s much more common to see both of these statements written
on a single line by nesting one message send inside of another:

NSString *myString = [[NSString alloc] initWithString:@"Hello, World!"];

As an alternative to the alloc- and init-based object creation process, most classes
also provide factory methods that allow you to perform both steps at the same time. The
following snippet shows another way to create a new string:

NSString *myString = [NSString stringWithString:@"Hello, World!"];

This statement is identical in behavior to calling alloc, followed by initWithString:,
but it’s slightly easier to read and quicker to type. In general, many initialization mes-
sages named in the form initWithXYZ: have a matching classnameWithXYZ: factory
method available that performs an implicit alloc behind the scenes. A subtle but
important difference in memory management between the two techniques is dis-
cussed in depth in chapter 9. For now, let’s stick to using factory methods.

Using your newfound knowledge of object construction techniques, you can look
at some of the previous code samples in a new light. For example, in the current ver-
sion of the Rental Manager application is the following line of source code:
cell.detailTextLabel.text =

[NSString stringWithFormat:@"Rents for $%0.2f per week",
properties[indexPath.row] .weeklyRentalPrice] ;
With your knowledge of message-naming conventions, you can see that this statement
creates a new string by sending the NSString class the stringWithFormat: message.
This message constructs a new string by interpreting an NSLog-style format string. Now
that you know how to create new string objects, let’s look at how to work with them.

Extracting characters from strings

Once you create a string object, you're ready to interact with it by sending the objecta
message. Perhaps the simplest message you can send to a string is the length message,
which returns the total number of characters in the string:

int len = [myString length];

NSLog (@"'%$@' contains %d characters", myString, len);

Because a string is made up of a sequence of individual characters, another message
that is useful is characterAtIndex:, which allows you to obtain the character at a par-
ticular index within a string:

NSString *myString = @"Hello, World!";

unichar ch = [myString characterAtIndex:7];

NSLog (@"The 8th character in the string '%@' is '%C'", myString, ch);

Notice that the characterAtIndex: message works in a fashion similar to the array
indexing operator [], available for C-style arrays. If instead of a single character you
want to obtain a particular range of characters within a string, you can use the sub-
stringWithRange: message, as demonstrated by the following listing.

Download from Wow! eBook <www.wowebook.com>

68

3.5.3

CHAPTER 3 An introduction to objects

NSString *strl = @"Hello, World!";

NSRange range;
range.location = 7; <----- or call NSRangeMake (7, 5);
range.length = 5;

NSString *str2 = [strl substringWithRange:range] ;
NSLog (@"The last word in the string '$e@' is '%$@'", strl, str2);
The substringWithRange: message returns a new string made up of a sequence of
characters obtained from the original string. The range is specified by providing an
NSRange. This is a typedef for a small C-style structure that consists of a location and
length field. The location field is the index of the first character in the string that
should be returned; the length field indicates how many characters from that posi-
tion should be included.

While extracting individual characters and substrings of a larger string is handy,
how do you go about modifying the original string instead?

Modifying strings

NSString provides many messages that enable you to modify the contents of an exist-
ing string. For example, the following statement converts the contents of strl into
lowercase form and stores the resultant string in the variable str2:

NSString *strl = @"I am in MiXeD CaSe!";
NSString *str2 = [strl lowercaseString];

Likewise, if you wanted to convert the string "Hello, World!" into "Hello, Chris!",

you could use stringByReplacingOccurrencesOfString:withString: to replace any
occurrence of “World” with “Chris”:

NSString *strl = @"Hello, World!";
NSString *str2 = [strl stringByReplacingOccurrencesOfString:@"World"
withString:@"Chris"];

Immutable vs. mutable objects

You may notice that statements such as NSString *str2 = [strl lowercasel]
return a new string in lowercase form rather than modifying the existing contents of
strl itself. After executing the statement, you end up with two strings, the original
string in strl and a lowercase form in str2.

A string is an example of an immutable object. An object that is immutable can’t be
modified in any way after it has been initially created. The only way to modify an immu-
table object is to create an entirely new one and initialize it with the desired value.

The opposite of an immutable object is a mutable one, an object that can “mutate” or
change its value. In many cases, Foundation Kit gives you the choice of immutable or
mutable variants of a class. With strings, you have NSString and NSMutableString.

Download from Wow! eBook <www.wowebook.com>

3.54

3.6

Sample application 69

To append one string onto the end of another, you can use the stringByAppending-
String: message:

NSString *str2 = [strl stringByAppendingString:@"Cool!"];

This statement appends "Cool!" to the end of strl and stores the result in str2. You
can’t state str2 = strl + @"Cool!" for reasons that will soon become clear.

Now that you know how to create and manipulate string objects, it’s only natural to
want to compare one against another to determine if they’re identical.

Comparing strings
To compare two string variables against each other, you may come up with a code snip-
pet such as the following based on what you’ve learned about pointers in this chapter:

NSString *strl = [NSString stringWithFormat:@"Hello %@", @"World"];
NSString *str2 = [NSString stringWithFormat:@"Hello %@", @"World"];
if (strl == str2) {

NSLog (@"The two strings are identical");
}
Surprisingly, when this code is executed, you’ll notice it indicates that the two freshly
created strings aren’t equal! To understand why, you need to realize that the two vari-
ables strl and str2 are both simple C-style pointers. With its C-based roots, the ==
operator checks for equality by determining if both variables point to the same piece
of memory. Because you create two separate string instances, the two pointers point to
distinct locations, and the expression evaluates to false. That both strings contain an
identical sequence of characters is irrelevant because the == operator only considers
the string’s memory location.

To work around this problem, Objective-C, like most object-oriented languages
with pointers, provides a message to compare the contents of an object instead of its
location in memory. In Objective-C this message is called isEqual:

if ([strl isEqual:str2]) {
NSLog (@"The two strings are identical");
}

It’s for a similar reason that the + operator can’t be used for string concatenation: it’s
already used with C-style pointers for pointer arithmetic.

Sample application

To put the concepts you've learned in this chapter into practice, let’s expand the Rental
Manager application to make greater use of the services provided by NSString to search
and modify string content. Figure 3.5 shows how the application will look once you fin-
ish this round of modifications. Each rental property has an image beside it that catego-
rizes the property’s location, such as near the sea, in the city, or in an alpine setting.

To display images in your iPhone application, the obvious first step is to include
some image resources in your project. To add images to the Xcode project, drag and

Download from Wow! eBook <www.wowebook.com>

70

CHAPTER 3 An introduction to objects

Carrier = 2:36 AM

.

dbiree

A

; 13 Waverly Crescent

Rents for $420.00 per week

i 74 Roberson Lane

Rents for $365.00 per week

17 Kipling Street

Rents for $275.90 per week

; 4 Everglade Ridge

Rents for $1500.00 per week

19 Islington Road

Rents for $2000.00 per week

Figure 3.5 An updated version of the Rental Manager
J application. Notice each property has an image beside it
indicating the type of geographical location of the property.

drop the image files from a Finder window into the Supporting Files group located in
Xcode’s project navigator pane. A sheet will appear from which you can select a but-
ton labeled Add. For this task, you need to source three images. Details of the images
we utilized are listed in table 3.1. You can use a service such as Google Image Search to

source your own.

Table 3.1 The images used to represent different property locations. Selection of the image for a
particular property is based on the city found in its associated address. Some city names that map to
each image are provided as examples.

Image Filename Example cities
sea.png Sumner
mountain.png Clifton

city.png

Riccarton, Christchurch

Download from Wow! eBook <www.wowebook.com>

Sample application 71

Now that you have the required image resources included in your project, you're
ready to modify the application’s source code to use them. Open the RootView-
Controller.m file in the editor and replace the existing version of the tableView:
cellForRowAtIndexPath: method with that in the following listing.

Listing 3.2 Replacement tableView:cellForRowAtIndexPath: method

implementation

- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath

static NSString *CellIdentifier = @"Cell";

UlITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

if (cell == nil) {
cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle

reuseIdentifier:CellIdentifier] autorelease]; Dmxpnhe
} semicolon

location
RentalProperty *details = &properties[indexPath.row];

int indexOfComma = [details->address rangeOfString:@","].location;
NSString *address = [details->address
substringToIndex:indexOfCommal ;
NSString *city = [details->address
substringFromIndex:indexOfComma + 2] ;

Separate
street
address

and city
cell.textLabel.text = address; 4? Display proper image

if ([city isEqual:@"Clifton"])

cell.imageView.image = [UIImage imageNamed:@"mountain.png"];
else if ([city isEqual:@"Sumner"])

cell.imageView.image = [UIImage imageNamed:@"sea.png"l];
else

cell.imageView.image = [UIImage imageNamed:@"city.png"];

cell.detailTextLabel.text =
[NSString stringWithFormat:@"Rents for $%0.2f per week",
details->weeklyRentalPrice] ;

return cell;
}
Most of the code in listing 3.2 is similar to its previous incarnation, but some of the
features discussed in this chapter are added.

To start with, pointers are used to avoid having to constantly retype the expression
properties [indexPath.row] whenever you want to access details about the property
for which you are currently generating a cell. Instead, calculate the expression once
and store the memory address at which the resultant property can be found in the
details variable. This pointer is then used throughout the rest of the method and
dereferenced to access the various fields of rental property information you store. If
you ever need to change or update how you determine the current property, you now
need only do it in one place, and you get to type less to boot!

Download from Wow! eBook <www.wowebook.com>

72

3.7

CHAPTER 3 An introduction to objects

The hardest challenge in providing images for each rental property in the list is
determining in which city each property is located. At this stage, you’ll be fairly naive
and split the address field on the sole semicolon it contains. In the future, you may
like to revisit this solution and find a more robust mechanism or use some of the
iPhone SDK geocoding APIs.

Using the rangeOfString: message available on the NSString class, @ you can
determine the location of the semicolon in the property’s address, and by passing this
index into additional NSString methods, substringFromIndex: and substringTo-
Index:, you can separate the street address and city into two separate strings @. In
the call to substringFromIndex: you have to add 2 to the index returned by rangeOf -
String: to skip over the semicolon and the space that follows it.

Now that you’ve extracted a rental property’s city from its address, you’re ready to
determine which image to display and attach it to the table view cell @. You do this by
comparing the contents of the city variable against a couple of hardcoded city
names. Once you determine the type of location, use UIImage’s imageNamed function-
ality to load the images you previously included in the application.

One obvious problem with the technique demonstrated in this revision of the Rental
Manager application is that the list of cities and their mappings to location types is hard-
coded and specified in code. This makes it difficult and more time consuming (espe-
cially with the App Store submission process) to update the behavior of the application
as your rental portfolio expands and covers properties in other cities. Ideally, you want
to separate the logic from the data so you can easily update the city mappings without
needing to recompile or to resubmit the application: more on this in the next chapter.

Summary

Enhancing the procedural C language to have object-oriented features is essentially
what brought Objective-C to life. The benefits of developing applications in an object-
oriented manner generally far outweigh the extra effort required to learn the addi-
tional terminology and techniques that object-orientation entails.

Chief among the advantages of object-oriented programming is an improved abil-
ity to separate a complex application into a number of smaller, discrete building
blocks, or classes. Rather than considering a large, complex system, the developer’s
task becomes one of developing multiple smaller systems that combine and build on
top of each other to perform tasks far more complex than any one part can do alone.

The ability to package data plus logic into modules, called classes, also makes it
easier to transplant an object designed and developed in one application into
another. Application frameworks such as Cocoa Touch and Foundation Kit take this to
another level. Their sole purpose is to provide developers with a large number of
classes out of the box and ready to be put to work in their applications. Developers
need not spend time ironing out bugs and quirks in the 900th string concatenation
implementation the world has seen. Application developers can instead focus on the
distinct features of their own applications.

Download from Wow! eBook <www.wowebook.com>

Summary 73

In chapter 4, we continue our discussion of how various classes in Foundation Kit
improve upon the basic data types provided by the procedural-based C language. We
look at the collection classes such as NSArray and NSDictionary, which are designed
to replace and improve upon C-style arrays.

Download from Wow! eBook <www.wowebook.com>

Storing data n collegtions

This chapter covers

B NSArray

B NSDictionary

m Storing nil and other special values in
collections

®m Boxing and unboxing non-object-based data

Chapter 3 introduced the concept of object-oriented programming and demon-
strated some of its advantages by using the services of the prebuilt NSString class,
which provides common text manipulation and query-related functionality.

A large part of Foundation Kit is concentrated on the storage of data in collec-
tion data structures with names such as arrays, dictionaries, sets, and hashmaps.
These data structures allow you to efficiently collect, group, sort, and filter data in a
way that’s convenient for the application at hand. Discussing these commonly used
classes is what this chapter is all about.

Let’s start by discussing how Foundation Kit improves upon a data structure
you’re currently familiar with: a simple array.

74

Download from Wow! eBook <www.wowebook.com>

4.1

4.1.1

Arrays 75

Arrays

The Rental Manager application, as it currently stands, stores a list of rental property
details in a C-style array called properties. Inherently, nothing’s wrong with this tech-
nique, but it has some limitations. For example, when you declare a C-style array, you
create it with a fixed number of elements, and it’s not possible to add or remove addi-
tional elements from the array without recompiling the application. Your rental man-
agement business may become more successful and require the ability to add new
properties to the list at runtime.

The Foundation Kit provides a convenient array-like data structure called NSArray
that overcomes this and other limitations. An NSArray is an ordered collection of
objects, just like a C-style array, except it also has the ability to grow or shrink as required.

Like strings, arrays can be immutable or mutable. Immutable arrays are handled
by the NSArray class, and mutable ones are handled by the NSMutableArray subclass.
Let’s learn how creating an NSArray instance is different from creating a C-style array.

Constructing an array

You can create a new NSArray in various ways, depending on your needs. If you want
to create an array consisting of a single element, the easiest way is to use the array-
WithObject: factory message:

NSArray *array = [NSArray arrayWithObject:@"Hi"];

This statement creates an array consisting of a single element, in this case the string
"Hi", although it could be any other object, even another NSArray instance, for exam-
ple. A similarly named factory message, arrayWithObjects:, can be used for the more
typical scenario of initializing an array with more than one element:

NSArray *array = [NSArray arrayWithObjects:@"Cat", @"Dog", @"Mouse", nil];

arrayWithObjects: is an example of a vardic method. A vardic method is a method
which expects a variable number of arguments. Vardic methods must have some way
to know when they’ve reached the end of the list of arguments. arrayWithObjects:
detects this condition by looking for the special value nil. An array can’t store a nil
value, so its presence indicates the end of the list. It’s an error to call arrayWith-
Objects: without the last argument being nil. If arrayWithObjects: is causing your
application to crash, make sure you’ve got anil at the end.

When bridging between C-based code and Objective-C, you may come across the
need to convert a C-style array into an NSArray instance. NSArray provides a factory
method to make this task easy:

NSString *cArray[] = {@e"Cat", @"Dog", @"Mouse"};

NSArray *array = [NSArray arrayWithObjects:cArray count:3];

The arrayWithObjects:count: message creates a new NSArray instance and initial-
izes it with a copy of the first count elements from the C-style array. This trick isn’t the
only one available in NSArray’s toolbox. For example, another factory message called

Download from Wow! eBook <www.wowebook.com>

76

4.1.2

CHAPTER 4 Storing data in collections

arrayWithContentsOfURL: allows you to populate an array with the contents of a file
fetched from the internet.

NSArray *array = [NSArray arrayWithContentsOfURL:

[NSURL URLWithString:@"http://www.christec.co.nz/example.plist"]];
This code snippet fetches the file located at http://www.christec.co.nz/example.plist
and expects it to be an XML file that conforms to the Property List (plist) schema. An
example plist file containing an array is displayed in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
<string>Cat</string>
<strings>Dog</strings>
<integer>42</integers>

</array>
</plist>
Another important thing demonstrated by this plist file is that NSArray-based arrays
don’t have to be homogeneous. It’s possible for each element in an NSArray to have a
different data type. This is unlike a C-style array in which each array element must be
of the same data type. The plist in listing 4.1 creates an array that consists of two
strings and an integer.

All the arrays demonstrated so far are immutable (once they’re created, it’s impos-
sible to add or remove elements or even replace existing ones) because you used
NSArray, which represents an immutable array. To create an array that can have ele-
ments added, removed, or updated, you use the NSMutableArray class. As an example,
each of the following two statements creates a new array consisting of one element.
NSArray *arrayl = [NSArray arrayWithObject:@"Hi"];

NSMutableArray *array2 = [NSMutableArray arrayWithObject:@"Hi"];
The only difference between the two arrays is their immutability. arrayl is effectively
read-only and allows no modifications, while array2 allows you to add and remove ele-
ments from the array to your heart’s content. Let’s leave the topic of array creation
and learn how to interact with the various elements contained in them.

Accessing array elements

With your existing knowledge of C, it’s not easy to determine the number of elements
in a C-style array, but the NSArray and NSMutableArray classes provide a straightfor-
ward way to determine the number of elements stored in them. You just send the
instance a count message:

int numberOfItems = [myArray count];

Download from Wow! eBook <www.wowebook.com>

http://www.christec.co.nz/example.plist

4.1.3

Arrays 77

On return, the variable numberOfItems tells you how many elements are in the array.
To access each element in an NSArray, you can use another message called objectAt-
Index:, which behaves similarly to the [] indexing operator used with C-style arrays:

id item = [myArray objectAtIndex:5];

You could imagine this last statement as being equivalent to myArray [5] if myArray
had instead been declared as a C-style array. The intent and behavior is identical.
Using the techniques you learned in this section, you could access the last element of
an array with the following code snippet:

int indexOfLastItem = [myArray count] - 1;
id item = [myArray objectAtIndex:indexOfLastItem] ;

You could even condense this into a single statement by nesting the two method calls:
id item = [myArray objectAtIndex: [myArray count] - 1];

The -1 in the index calculation accounts for the fact that the last element in the array
will have an index of 1 less than the number of items in the array. Because this is a
common code pattern and Foundation Kit is all about developer efficiency, NSArray
provides a lastObject message that performs the same task in a cleaner manner:

id item = [myArray lastObject];

Using this concept of simplifying common coding tasks, let’s investigate some of the
other aspects of the NSArray class.

Searching for array elements

You now have the building blocks for determining if a particular value is present in an
array. To achieve this goal, you can use a for loop to step through each element in the
array and use an if statement to compare the current element with the value you're
looking for. This process is demonstrated in the following listing.

Listing 4.2 Determining if an NSArray contains the word “Fish” using C-style code

NSArray *pets = [NSArray arrayWithObjects:@"Cat", @"Dog", @"Rat", nill];
NSString *valueWeArelLookingFor = @"Fish";

int i;

BOOL found = NO; Step through
for (i = 0; 1 < [pets countl]; i++) the array

{

if ([[pets objectAtIndex:i] ‘Q Check array
isEqual:valueWeAreLookingFor]) element value
{

found = YES;
break;

Break out
for loop

if (found)

Download from Wow! eBook <www.wowebook.com>

78

CHAPTER 4 Storing data in collections

NSLog (@"We found '%@' within the array",
valueWeAreLookingFor) ;
} else {
NSLog (@"We didn't find '%@' within the array",
valueWeAreLookingFor) ;

}
In this listing you set up a loop @ to step through each element in the array. The loop
sets the loop counter variable i to the values 0 through [pets count] - 1. In the loop
you fetch the array element at index 1 via the objectAtIndex: method and check to
see if it’s equal to the value you are looking for @. If a match is found, you set the
found variable to YES @ and break out of the for loop immediately, because there’s
no need to check any remaining array elements.

We think that’s a lot of code for such a simple task! It also allows ample opportu-
nity for subtle bugs to creep in. Luckily, Foundation Kit provides a much more conve-
nient technique to check if an array contains a specific value in the form of NSArray’s
containsObject: message:

BOOL found

if (found) f{
NSLog (@"We found 'Fish' within the array");

[pets containsObject:@"Fish"];

}

Internally, containsObject: performs a similar search through the array, comparing
each element as it goes; however, this action is hidden from you, and more important,
there’s no opportunity for you to introduce errors. This technique demonstrates
another advantage of using objects: the ability to easily reuse methods instead of con-
tinually writing them from scratch.

Sometimes you’re interested in determining not only if a value exists in an array
but also its position. The indexOfObject: message performs a similar task to con-
tainsObject:, but instead of returning a Boolean flag to indicate if the object is
found, it returns the index at which the item is found or a special value NSNot Found if
it’s not found:
int indexOfItem = [pets indexOfObject:@"Dog"] ;

if (indexOfItem != NSNotFound) ({
NSLog (@"We found the value 'Dog' at index %d", indexOfItem) ;

}

Although messages such as indexOfObject: and containsObject: allow you to
remove, or at least hide, logic that loops over each element in an array, some cases
may require such logic. For example, you may want to convert the name of each pet
into uppercase form, and NSArray has no builtin method to achieve this task. But
Objective-C and Foundation Kit provide mechanisms to perform iteration over an
array more efficiently and safely than was done in listing 4.2.

Download from Wow! eBook <www.wowebook.com>

4.14

Arrays 79

Iterating through arrays

Using the count and objectAtIndex: messages of the NSArray class, you can loop
over each element in an array with a code snippet similar to the following:

int 1i;

for (i = 0; i < [pets countl; i++) {

NSString *pet = [pets objectAtIndex:i];

NSLog (@"Pet: %@", pet);

}

This code may not be the most efficient or cleanest of techniques. Each iteration
through the loop, when it’s time to evaluate the condition i < [pets count], you are
asking the array to recalculate its length; and depending on how the array is internally
stored (a dynamic array or linked list), repeatedly calling objectAtIndex: may not be
efficient because of repeated walks through the data structure to reach the required
element. One solution Objective-C provides for more efficient iteration through a
data structure is the enumerator.

NSENUMERATOR

An enumeratoris an object that allows you to step through a sequence of related items in
an efficient manner. In Objective-C an enumerator is represented by the NSEnumerator
class. Because an enumerator must step through a set of data, you typically ask a data
structure such as an array to create a suitable enumerator on your behalf rather than
create an NSEnumerator instance directly.

As an example, the following code snippet uses NSArray’s objectEnumerator mes-
sage to obtain an NSEnumerator instance that enables you to step through each type of
pet stored in the pets array:

NSArray *pets = [NSArray arrayWithObjects:@"Cat", @"Dog", @"Rat", nill];
NSEnumerator *enumerator = [pets objectEnumerator];
NSString *pet;

while (pet = [enumerator nextObject])
NSLog (@"Pet: %@", pet);
1

The objectEnumerator method returns an instance of the NSEnumerator class that’s
suitable for enumeration of each element in the specified array.

NSEnumerator is a simple class that provides a single method called nextObject.
This method, as its name suggests, returns the next object in the sequence the enu-
merator is enumerating over. By placing it in a while loop, you’ll eventually be pro-
vided with the value of each element in the array. Once you reach the end of the
sequence, nextObject returns nil to indicate the end of the sequence (another rea-
son NSArray can’t store the value nil). Executing the code snippet on the array of pet
types results in output similar to the following:

Pet: Cat
Pet: Dog
Pet: Rat

Download from Wow! eBook <www.wowebook.com>

80

4.1.5

CHAPTER 4 Storing data in collections

Notice that at no point do you specify in which order you want to step through the array.
This logic is inherently built into the particular NSEnumerator instance you obtain. Dif-
ferent versions of NSEnumerator may step through the sequence in different orders.

As an example, try replacing the existing call to objectEnumerator with a call to
reverseObjectEnumerator. Both NSArray messages provide NSEnumerator instances,
but the enumerator provided by reverseObjectEnumerator steps through the array
in reverse order, starting at the last element and working toward the first.

Using an enumerator can be efficient because the NSEnumerator instance can keep
track of additional state about the internal structure of the object it’s enumerating, but
it’s not the only weapon available in Objective-C’s toolbox of performance tricks.

FAST ENUMERATION

As the name suggests, fast enumeration is a feature designed to make the process of
enumeration even faster and more efficient. It’s one part Objective-C language syntax
and one part runtime library support. For fast enumeration, you can use a special
form of the for statement:

NSEnumerator enumerator = [pets reverseObjectEnumerator];

for (NSString *pet in enumerator) {
NSLog (@"Next Pet: %@", pet);
}

The syntax is cleaner and more concise, but how does it work? In the brackets of the
for statement, you declare a new variable followed by the keyword in and the object
to which you want to apply fast enumeration. Each time through the loop, the for
statement assigns the next element in the enumeration to the specified variable.

Fast enumeration can be used with any NSEnumerator, and it can also be used
directly on an instance of the NSArray or NSMutableArray class. For example, the fol-
lowing snippet also works and leads to some very clean code:

for (NSString *pet in pets) {
NSLog (@"Next Pet: %@", pet);
}

Fast enumeration can’t be used with every object, however. It requires the object that
is after the in keyword to implement the NSFastEnumeration protocol. Protocols are
discussed in detail in chapter 7.

Adding items to an array

If you create an instance of the NSArray class, the array is said to be immutable because
you can’t modify the structure or contents of the array after it’s been initially con-
structed. If you attempt to modify an NSArray instance, you’ll get an exception mes-
sage such as the following listed to the Xcode debugger console, and your application
will crash:

x Terminating app due to uncaught exception

'NSInternalInconsistencyException', reason: '*** - [NSCFArray
replaceObjectAtIndex:withObject:]: mutating method sent to immutable
object'

Download from Wow! eBook <www.wowebook.com>

Arrays 81

If you need to modify an array after it’s been created, you must make sure you create a
mutable array. A good way to get started is by creating an empty array using the array
factory method on the NSMutableArray class instead of the NSArray class. This creates
an array that’s initially empty, but because the array is mutable, you’ll be able to
append new elements to it at runtime as desired.

NSMutableArray *array = [NSMutableArray arrayl];

An NSMutableArray grows in size whenever you add elements to it. You can conceptu-
ally think of the array as allocating additional memory to the array to store each ele-
ment as it’s added. But this isn’t the most efficient way to use memory. If you know
ahead of time how many elements you intend to add to the array, it’s more efficient
for the array to allocate enough memory to store all the elements in one go. As you
may expect, NSMutableArray is smart: it provides another factory method called
arrayWithCapacity: for this very case:

NSMutableArray *pets = [NSMutableArray arrayWithCapacity:50];

This code snippet creates a new NSMutableArray and internally allocates enough
memory to store a minimum of 50 elements. It’s important to note, however, that this
is only a hint as to the number of items expected to eventually be added to the array.
An array created via such a technique is perfectly able to store more than 50 elements
and will allocate additional memory once the specified capacity is exceeded.

It’s also important not to confuse the capacity of an array with its length or count.
Although the array just created has memory set aside to store at least 50 elements, if
you ask for its current size via the count message, it will indicate 0 because you still
haven’t physically added anything to it. The capacity is only a hint that allows the
NSMutableArray class to avoid excessive memory allocations. Specifying a capacity of
50 means there won’t be any additional memory allocations until at least the 51st ele-
ment is added to the array. Doing this may lead to potential performance gains and
less memory fragmentation.

Now that you know how to create an NSMutableArray instance that allows you to
dynamically modify its contents, how do you add additional elements to an array? One
answer is to use the addObject: message, which allows you to add a new element to
the end of an existing array:

[pets addObject:@"Pony"] ;

This snippet expands the size of the array by one element and stores the string "Pony"
in the newly added element. It’s also possible to insert an element into the middle of
an array. For this, you can use insertObject:atIndex:, which expects the array index
at which to insert the new element:

[pets insertObject:@"Hamster" atIndex:2];

When this statement is executed, every element starting from array index 2 is shifted
one place higher: the object at index 2 becomes the element at index 3, and so on.
The vacated space at index 2 is then filled by inserting the string "Hamster". Instead of

Download from Wow! eBook <www.wowebook.com>

82

4.2

4.2.1

CHAPTER 4 Storing data in collections

inserting a new array element, you can replace an existing one by using the replace-
ObjectAtIndex:withObject: message:

[myArray replaceObjectAtIndex:0 withObject:@"Snake"];

This statement replaces the first element in the array with the string "Snake". One
final operation worth noting is how to reduce the size of an array by removing existing
elements. You can do this by providing the removeObjectAtIndex: message with the
index of the element you want to remove:

[myArray removeObjectAtIndex:5];

This statement causes the element at index 5 to be removed from the array, and all
elements after it are moved one index position to reclaim the “hole” left in the
array. The array is hence reduced in length by one, as can be verified by a call to
the count method.

Arrays are useful data structures with many practical applications, but they’re not
the most flexible of data structures. A more flexible data structure is the dictionary.

Dictionaries

An array is only one form of data structure provided by Foundation Kit. Another use-
ful data structure is the dictionary or map. A dictionary is a collection of key/value
pairs. You use one value, termed a key, to look up a related value of interest.

In Foundation Kit, a dictionary is represented by the NSDictionary and NSMutable-
Dictionary classes. Each entry you place in a dictionary consists of a key and its
matching value—much like a physical dictionary uses a word as a key and a brief defi-
nition as a value, or a phone book matches names to numbers.

In a dictionary each key must be unique; otherwise confusion may occur when a
key is provided and multiple matching values are found. If you must store multiple
values against a given key, you can always store an NSArray instance as your single
value. A key can be any object: one dictionary might use numbers, while another
might use strings.

If you have a computer science background, you may be more familiar with
the concept of a hash table and hashing functions. A hash table is one way in which the
abstract concept of a dictionary can be implemented, but NSDictionary and NSMutable-
Dictionary insulate you from such implementation minutiae and allow you to con-
centrate on their practical benefits to your application instead of on how they’re
physically implemented.

Let’s start our investigation of dictionaries by learning how to create a new one and
populate it with some initial entries.

Constructing a dictionary

The distinction between the immutable NSDictionary class and mutable NSMutable-
Dictionary classes is similar to that between NSArray and NSMutableArray. An
NSDictionary can’t be modified, whereas an NSMutableDictionary can freely have

Download from Wow! eBook <www.wowebook.com>

Dictionaries 83

new entries added, removed, or updated. To create an empty dictionary, you use the
dictionary factory message:

NSDictionary *myDetails = [NSDictionary dictionaryl];

This message is primarily of use only with the NSMutableDictionary subclass. Other-
wise, your empty dictionary will forever stay empty because it’s immutable!

A message called dictionaryWithObject:forKey: enables you to create a diction-
ary that initially consists of a single key/value pair:
NSDictionary *myDetails = [NSDictionary dictionaryWithObject:@"Christopher"

forKey:@"Name"] ;

This code creates a new dictionary containing a single entry consisting of the key
"Name" with a value of "Christopher", both of which are strings. More than likely,
however, you’ll want to initialize a dictionary with multiple key/value pairs. A similarly
named dictionaryWithObjects:forKeys: message allows for doing so:
NSArray *keys = [NSArray arrayWithObjects:@"Name", @"Cell", @"City", nil];

NSArray *values = [NSArray arrayWithObjects:@"Christopher", @"+643123456",
@"Christchurch", nill];

NSDictionary *myDetails = [NSDictionary dictionaryWithObjects:values
forKeys:keys] ;

In this example, you create a new dictionary with details about a particular person.

The dictionaryWithObjects:forKeys: message expects to be provided with two

arrays of equal length. The first value from the keys array is matched up with the first

value from the values array, and so on, to create the key/value pairs that will populate

the dictionary.

The creation of temporary arrays can be tiresome, especially if your only intent is
to populate a dictionary and you don’t need the arrays for other purposes. Naturally,
the designers of the NSDictionary class considered this scenario, and they provided a
more convenient factory method to allow you to specify multiple key/value pairs with-
out creating temporary arrays:

NSDictionary *myDetails = [NSDictionary dictionaryWithObjectsAndKeys:
@"Christopher", @"Name",
@"+643123456", @"Cell™",
@"Christchurch", @"City",
nil];

This message expects a variable number of parameters to be provided to it. The param-
eters alternate between being interpreted as a value or a key and are matched up into
pairs until a nil value is detected to indicate the end of the list. Other than providing an
alternative way to specify the list of key/value pairs, dictionaryWithObjectsAndKeys:
and dictionaryWithObjects:forKeys: perform identical functionality.

A number of other factory methods are also available on the NSDictionary and
NSMutableDictionary classes. For example, dictionaryWithContentsOfURL: per-
forms a function similar to NSArray’s arrayWithContentsOfURL: and enables a dic-
tionary to easily be populated with contents of a file located on a website.

Download from Wow! eBook <www.wowebook.com>

84

4.2.2

CHAPTER 4 Storing data in collections

Due to the use of the NSDictionary class, all of the dictionaries constructed by the
code samples in this section result in immutable dictionaries, which are read-only. If
you want to create a dictionary that can be modified after creation, you need to
replace the class name NSDictionary with NSMutableDictionary.

Now that you can construct dictionary instances, let’s proceed to determine how to
query a dictionary for details about the key/value pairs it contains.

Accessing dictionary entries

The methods for interacting with a dictionary are similar to those for an array. For
example, you can send the count message to determine how many entries are cur-
rently contained in the dictionary:

int count = [myDetails count];

NSLog (@"There are %d details in the dictionary", count);

Rather than an objectAtIndex: message, which accesses an element by index posi-
tion, you’re provided with a similar message called objectForKey:, which enables you
to obtain the value associated with a given key:

NSString *value = [myDetails objectForKey:@"Name"] ;

NSLog (@"My name is %@", value);

This statement searches the dictionary to determine if a key named "Name" exists and
then returns the value associated with it. Unlike NSArray’s objectAtIndex: message,
it’s not an error to provide a key to objectForKey: that doesn’t exist in the dictionary.
In this case, the special value nil will be returned, indicating that the key was not
found in the dictionary.

One common use of dictionaries is to store related but flexible data about a
given item. For example, the dictionaries you constructed over the previous couple
of pages store various bits of information about a particular person, such as name,
cellphone number, and location. When interacting with such dictionaries, you’ll
likely want to query the value of multiple keys in quick succession. For example, if
you were printing address labels, you would probably want the person’s name and
location details. Although you could make multiple calls to objectForKey:, you can
also perform multiple lookups in a single statement via the objectsForKeys:not-
FoundMarker: message:

NSArray *keys = [NSArray arrayWithObjects:@"Name", @"City", @"Age", nill];
NSArray *values = [myDetails objectsForKeys:keys notFoundMarker:@"???"];

NSLog (@"%@ is located in %@ and is %@ years old",

[values objectAtIndex:0],

[values objectAtIndex:1],

[values objectAtIndex:2]);
objectsForKeys:notFoundMarker: expects to be provided with an array consisting of
the keys of the dictionary entries you want to query. It then returns an array with the val-
ues of those keys. If a particular key you request isn’t present in the dictionary (such

Download from Wow! eBook <www.wowebook.com>

4.2.3

Dictionaries 85

as the person’s age in this example), the value you provide via the notFoundMarker
argument is placed in the array. The returned array has a one-for-one correspondence
to the keys array that you pass in, so the value for the key specified in array element 0
of the keys array will be found in array element 0 of the returned values array.

Now that you have a strong handle on how to access and query the existing con-
tents of a dictionary, let’s look at how you can manipulate the contents of a dictionary
by adding and removing additional key/value pairs.

Adding key/value pairs

Assuming you’ve created a mutable dictionary of type NSMutableDictionary, you can
store additional key/value pairs in the dictionary by using the setObject:forKey:
message:

[myDetails setObject:@"Wellington" forKey:@"City"];

If the key already exists in the dictionary, the previous value is discarded and the spec-
ified value takes its place. It’s an error for the value or key arguments to be nil
because, as previously discussed, messages such as objectForKey: use nil as a special
value to indicate the absence of an entry.

If you have an existing dictionary of key/value pairs, it’s possible to merge those
entries into another dictionary by way of the addEntriesFromDictionary: message,
as follows:

NSDictionary *otherDict = [NSDictionary dictionaryWithObjectsAndKeys:
@"Auckland", @"City",
@"New Zealander", @"Nationality",
@"Software Developer", @"Occupation",
nill];

[myDetails addEntriesFromDictionary:otherDict];
This code adds each key/value pair found in otherDict into myDict, replacing the
value of any key/value pairs that were already present. Instead of adding new key/

value pairs, you can remove one by passing its associated key to the removeObjectFor-
Key: message.

[myDetails removeObjectForKey:@"Name"] ;

This code deletes the entry associated with the key "Name". If you have a number of
entries you want to delete, you can store the keys in an array and use the handy remove-
ObjectsForKeys: message to delete them in one step. As an example, you could
remove the details identifying the person’s location by removing the key/value pairs
identified by the strings "City" and "Nationality" using the following statement:

NSArray *locationRelatedKeys =
[NSArray arrayWithObjects:@"City", @"Nationality", nill;

[myDetails removeObjectsForKeys:locationRelatedKeys];

Download from Wow! eBook <www.wowebook.com>

86

4.2.4

CHAPTER 4 Storing data in collections

Finally, it’s possible to empty the dictionary completely by calling the removeAllObjects
method, which, as its name suggests, deletes every key/value pair from the dictionary:
[myDetails removeAllObjects];

NSLog (@"There are %d details in the dictionary", [myDetails count]) ;

This code snippet results in the string "There are 0 details in the dictionary"
because the call to removeAllObjects emptied it completely.

One message that can easily be confused with setObject:forKey: is the message
setValue: forKey:. Although these two messages have similar names, their behavior is
subtly different with regard to how they handle the special value nil, which, as you
may recall, typically represents the absence of a value.

As the following code snippet demonstrates, both setObject:forKey: and set-
Value:forKey: can be used to update the value stored in a dictionary for a particular key:
[myDetails setObject:@"Australian" forKey:@"Nationality"];

[myDetails setValue:@"Melbourne" forKey:@"City"];

These two messages diverge in how they handle a nil value being specified for the
key’s value. Sending setObject:forKey: with the object parameter specified as nil
results in an exception that crashes your application because nil isn’t a valid value to
store in a dictionary. Passing nil to setValue:forObject: is acceptable, however,
because it is interpreted as though you had instead called

[myDetails removeObjectForKey:@"Nationality"];

Although it hardly makes a difference in the example code snippets (and arguably
makes the code harder to understand), the benefits of using setValue:forKey: to
remove a key/value pair really come to light when cleaning up a code snippet such as
the following:

NSString *myNewValue = ...get new value from somewhere...
if (myNewValue == nil)

[myDetails removeObjectForKey:@"Nationality"];
else

[myDetails setObject: myNewValue forKey:@"Nationality"];

With setValue:forKey:, this entire code snippet can be replaced with a single line of
source code. setValue:forKey: will be discussed in greater detail in chapter 11,
which introduces the concept of Key-Value Coding. Throughout the rest of the book,
we come back to the subject of dictionaries, but let’s round off this discussion with a
look at how to list all entries in a dictionary, similar to an index or table of contents in
a book.

Enumerating all keys and values

Like arrays, dictionaries can be enumerated to list all of the key/value pairs contained
in them. But because dictionaries don’t retain any ordering, the order in which key/
value pairs are enumerated may not match the sequence in which they were added to
the dictionary.

Download from Wow! eBook <www.wowebook.com>

Dictionaries 87

Because a dictionary is made up of key/value pairs, NSDictionary provides two
convenient messages to obtain enumerators to iterate over each entry in the diction-
ary. The keyEnumerator message provides an enumerator that iterates over all keys in
the dictionary, while objectEnumerator performs a similar task but iterates over all
the values instead:

NSEnumerator *enumerator = [myDetails keyEnumerator];
id key;
while (key = [enumerator nextObject]) ({

NSLog (@"Entry has key: %@", key);
}
Using the keyEnumerator message, this code snippet lists the name of each key cur-
rently stored in the dictionary. Try using the objectEnumerator message on the first
line, and you’ll see the values listed instead. Fast enumeration is also possible, and if
you use the dictionary object directly, it iterates over all of the keys:

for (id key in myDetails) ({
id value = [myDetails objectForKey:key];

NSLog (@"Entry with key '%@' has value '$e@'", key, value);

}

This code sample also demonstrates that in the iteration loop it’s possible to use
objectForKey: to obtain the value that matches the current key. When placing code
in an enumeration loop, such as the one just shown, you must be careful that you
don’t mutate the data structure. As an example, you may think that one way to remove
all the entries in a dictionary (other than the more logical removeAllObjects) would
be the following code snippet:

for (id key in dictionary) ({
[dictionary removeObjectForKey:key] ;
}

Although this appears conceptually correct, the code snippet has a fundamental flaw
that will result in an exception similar to the following and crash the application:

*** Terminating app due to uncaught exception 'NSGenericException', reason:
'*x* Collection <NSCFDictionary: 0x3b11900> was mutated while being
enumerated. '

If you enumerate over a data structure by using fast enumeration or an NSEnumerator,
your code shouldn’t modify the associated data structure until your enumeration has
completed. Modifying the contents of an array or dictionary that’s currently being
enumerated will alter its internal data structure and cause any associated enumerators
to become invalid. If you need to enumerate through a dictionary and potentially add
or remove entries before enumeration has completed, you should first make a copy of
all the keys by calling a method such as allKeys. This method creates an array and
copies a list of all keys currently in the dictionary into that array. This allows you to

Download from Wow! eBook <www.wowebook.com>

88

4.3

CHAPTER 4 Storing data in collections

create a snapshot of the dictionary’s keys and then enumerate through the snapshot
while modifying the original dictionary. Here’s an example of this process:
NSArray *myKeys = [myDetails allKeys];

for (NSString *key in myKeys) {
[myDetails removeObjectForKey:key] ;
}

This works because the allKeys message creates a copy of the keys in the myDetails
dictionary. The enumerator then loops through the contents of the array (and not the
dictionary). Because the array is never modified, it’s safe to enumerate its contents.
Each time through the loop, you modify the dictionary, indirectly causing its internal
data structures to change. This doesn’t matter, however, because technically you’re
not currently enumerating its contents.

While discussing arrays and dictionaries, we casually mentioned that various mes-
sages won’t accept nil or that they use nil to indicate special conditions. We also
mentioned that these data structures are only capable of storing objects, not primitive
values such as integer or float. But most applications need to store a list of numbers,
so how can you force an NSArray or NSDictionary instance to store a set of primitive
values? The answer is a technique called boxing.

Boxing

Undoubtedly in your application you’ll come across the need to store a number such
as 3, 4.86, or even a Boolean YES or NO value in an NSArray- or NSDictionary-based
data structure. You may think you could accomplish this task with a code snippet such
as the following:

[myArray addObject:5];

But when you attempt to compile this statement, the compiler will warn you that
"passing argument 1 of addObject: makes pointer from integer without a cast,”
hinting that something isn’t quite right. This example is a classic demonstration of the
procedural C-based side of Objective-C running up against the newer object-oriented
additions to the language.

Classes such as NSArray and NSDictionary expect their keys and values to be
objects of some kind. The integer number 5 isn’t an object: it’s a simple primitive data
type. As such, it’s not possible to directly store an integer in an array.

Many languages such as Java 5 and C# take care of this problem automatically
through a concept called autoboxing. Behind the scenes, the primitive (non-object-
oriented) value is wrapped inside a container object (a box), and this container is
passed around instead of the raw value. Likewise, when you attempt to access the array
and extract the value, the compiler detects a boxed value and automatically extracts
the primitive payload for you. You as a developer are none the wiser to this process
occurring. This process can be conceptualized in much the same way as a gift being
placed inside a FedEx box and removed once it reaches its destination. FedEx can
only deal with boxes of certain sizes, not your oddly shaped teapot for Aunt Betty, but

Download from Wow! eBook <www.wowebook.com>

4.3.1

Boxing 89

that doesn’t stop you from shipping it by temporarily placing it inside a box that meets
FedEx’s requirements.

Unfortunately, Objective-C doesn’t provide for the automatic boxing and unbox-
ing of primitive data types. Therefore, to store an integer or other primitive value in
an array or dictionary, you must perform the boxing and unboxing yourself. This is
the purpose of the NSNumber class.

The NSNumber class

NSNumber is an Objective-C class that can be used to wrap a value of a primitive data
type such as int, char, or BOOL into an object and then allow that value to be extracted
at a later stage. It’s most useful for allowing you to place values of primitive data types
into data structures such as NSArray or NSDictionary that can only store objects.

Manually boxing a primitive value into an NSNumber instance is fairly straightfor-
ward: you call one of NSNumber’s factory methods, such as numberWithInt:

NSNumber *myNumber = [NSNumber numberWithInt:5];

There are similar factory messages called numberWithFloat:, numberWithBool:, and
so on, to allow boxing of other common primitive data types.

Now that the integer value is boxed inside an NSNumber (which is an object), you
can store it in your array, as you originally intended:

[myArray addObject :myNumber] ;

Boxing the integer inside an NSNumber also means that when you go to fetch the value
from the array, you need to perform the reverse operation to extract the primitive
value from the NSNumber instance. You can do this with a code snippet similar to the
following that uses NSNumber’s intValue message:

NSNumber *myNumber = [myArray objectAtIndex:0];

int i = [myNumber intValuel];

The NSNumber class has various other methods that conform to the naming conven-
tion xxxValue, where xxx is replaced with the name of a primitive data type. It’s not
an error to box a value via numberWithInt: and then retrieve it via a method such as
floatVvalue. Although you stored an integer and fetched a float, this is acceptable. In
this scenario, the NSNumber class performs a typecast operation similar to those dis-
cussed in chapter 2 to convert the value into your desired data type.

A little bit of fancy footwork was required, but in the end, boxing and unboxing
primitive values so you can use them as if they were objects wasn’t too bad. What hap-
pens, though, if you want to store one or more RentalProperty structures in an
NSArray? These structures are also not objects, but it’s doubtful that the NSNumber
class has a numberWithRentalPropertyDetail method available for you to box them.
The answer to this conundrum is another closely related class called NSvalue.

Download from Wow! eBook <www.wowebook.com>

90

4.3.2

4.3.3

CHAPTER 4 Storing data in collections

The NSValue class

NSNumber is a special subclass of NSvValue. While NSNumber provides a convenient and
clean interface for boxing and unboxing numeric-based primitive types, NSValue
allows you to box and unbox any C-style value at the expense of having a slightly more
complex interface to program against.

To