
M A N N I N G

Christopher K. Fairbairn
Johannes Fahrenkrug

Collin Ruffenach

Objective-C Fundamentals

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Objective-C
Fundamentals

CHRISTOPHER K. FAIRBAIRN
JOHANNES FAHRENKRUG

COLLIN RUFFENACH

M A N N I N G
SHELTER ISLAND
Download from Wow! eBook <www.wowebook.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Troy Mott
20 Baldwin Road Technical editor: Amos Bannister
PO Box 261 Copyeditor: Linda Kern
Shelter Island, NY 11964 Proofreader: Katie Tennant

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781935182535
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11
Download from Wow! eBook <www.wowebook.com>

www.manning.com

v

brief contents
PART 1 GETTING STARTED WITH OBJECTIVE-C...........................1

1 ■ Building your first iOS application 3
2 ■ Data types, variables, and constants 28
3 ■ An introduction to objects 55
4 ■ Storing data in collections 74

PART 2 BUILDING YOUR OWN OBJECTS95
5 ■ Creating classes 97
6 ■ Extending classes 124
7 ■ Protocols 144
8 ■ Dynamic typing and runtime type information 163
9 ■ Memory management 177

PART 3 MAKING MAXIMUM USE OF FRAMEWORK
FUNCTIONALITY ..201

10 ■ Error and exception handling 203
11 ■ Key-Value Coding and NSPredicate 212
12 ■ Reading and writing application data 228
13 ■ Blocks and Grand Central Dispatch 257
14 ■ Debugging techniques 276

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

contents
preface xv
acknowledgments xvi
about this book xviii
author online xxi
about the cover illustration xxii

PART 1 GETTING STARTED WITH OBJECTIVE-C1

1 Building your first iOS application 3
1.1 Introducing the iOS development tools 4

Adapting the Cocoa frameworks for mobile devices 4

1.2 Adjusting your expectations 5
A survey of hardware specifications, circa mid-2011 6
Expecting an unreliable internet connection 7

1.3 Using Xcode to develop a simple Coin Toss game 7
Introducing Xcode—Apple’s IDE 8
Launching Xcode easily 8 ■ Creating the project 9
Writing the source code 12

1.4 Hooking up the user interface 15
Adding controls to a view 15 ■ Connecting controls
to source code 17
vii

Download from Wow! eBook <www.wowebook.com>

CONTENTSviii
1.5 Compiling the Coin Toss game 21
1.6 Taking Coin Toss for a test run 21

Selecting a destination 22 ■ Using breakpoints to inspect
the state of a running application 23 ■ Running the
CoinToss game in the iPhone simulator 24
Controlling the debugger 25

1.7 Summary 27

2 Data types, variables, and constants 28
2.1 Introducing the Rental Manager application 29

Laying the foundations 29

2.2 The basic data types 32
Counting on your fingers—integral numbers 32
Filling in the gaps—floating-point numbers 35
Characters and strings 37 ■ Boolean truths 39

2.3 Displaying and converting values 40
NSLog and Format Specifiers 40 ■ Type casts and
type conversions 43

2.4 Creating your own data types 44
Enumerations 44 ■ Structures 46 ■ Arrays 48
The importance of descriptive names 50

2.5 Completing Rental Manager v1.0, App Store
here we come! 52

2.6 Summary 54

3 An introduction to objects 55
3.1 A whirlwind tour of object-oriented programming

concepts 56
What’s wrong with procedural-based languages such as C? 56
What are objects? 56 ■ What are classes? 57
Inheritance and polymorphism 57

3.2 The missing data type: id 58
3.3 Pointers and the difference between reference and

value types 59
Memory maps 59 ■ Obtaining the address of a variable 59
Following a pointer 60 ■ Comparing the values
of pointers 61
Download from Wow! eBook <www.wowebook.com>

CONTENTS ix
3.4 Communicating with objects 62
Sending a message to an object 62 ■ Sending a message
to a class 63 ■ Sending nonexistent messages 64
Sending messages to nil 65

3.5 Strings 66
Constructing strings 66 ■ Extracting characters
from strings 67 ■ Modifying strings 68
Comparing strings 69

3.6 Sample application 69
3.7 Summary 72

4 Storing data in collections 74
4.1 Arrays 75

Constructing an array 75 ■ Accessing array elements 76
Searching for array elements 77 ■ Iterating through arrays 79
Adding items to an array 80

4.2 Dictionaries 82
Constructing a dictionary 82 ■ Accessing dictionary
entries 84 ■ Adding key/value pairs 85
Enumerating all keys and values 86

4.3 Boxing 88
The NSNumber class 89 ■ The NSValue class 90
nil vs. NULL vs. NSNull 90

4.4 Making the Rental Manager application data driven 91
4.5 Summary 94

PART 2 BUILDING YOUR OWN OBJECTS.........................95

5 Creating classes 97
5.1 Building custom classes 98

Adding a new class to the project 98

5.2 Declaring the interface of a class 99
Instance variables (ivars) 100 ■ Method declarations 101
Fleshing out the header file for the CTRentalProperty class 105

5.3 Providing an implementation for a class 106
Defining method implementations 106 ■ Accessing instance
variables 106 ■ Sending messages to self 107
Fleshing out the method file for the CTRentalProperty class 108
Download from Wow! eBook <www.wowebook.com>

CONTENTSx
5.4 Declared properties 109
@property syntax 109 ■ Synthesizing property getters
and setters 112 ■ Dot syntax 113

5.5 Creating and destroying objects 115
Creating and initializing objects 115 ■ init is pretty dumb 116
Combining allocation and initialization 118
Destroying objects 119

5.6 Using the class in the Rental Manager application 120
5.7 Summary 123

6 Extending classes 124
6.1 Subclassing 124

What is subclassing? 125

6.2 Adding new instance variables 127
6.3 Accessing existing instance variables 129

Manual getters and setters approach 130

6.4 Overriding methods 131
Overriding the description method 132

6.5 Class clusters 134
Why use class clusters 134 ■ Multiple public clusters 135

6.6 Categories 136
Extending classes without subclassing 136
Using a category 136 ■ Considerations when
using categories 138

6.7 Subclassing in your demo application 138
Creating and subclassing CTLease 139
Creating CTPeriodicLease as a subclass of CTLease 140
Creating CTFixedLease as a subclass of CTLease 141

6.8 Summary 143

7 Protocols 144
7.1 Defining a protocol 145
7.2 Implementing a protocol 146

Creating the protocol method callers 147 ■ Making a class
conform to a protocol 148
Download from Wow! eBook <www.wowebook.com>

CONTENTS xi
7.3 Important protocols 150
<UITableViewDataSource> 150 ■ <UITableViewDelegate> 153
<UIActionSheetDelegate> 157 ■ NSXMLParser 158

7.4 Summary 162

8 Dynamic typing and runtime type information 163
8.1 Static vs. dynamic typing 164

Making assumptions about the runtime type 164

8.2 Dynamic binding 166
8.3 How messaging works 166

Methods, selectors, and implementations 167
Handling unknown selectors 169 ■ Sending
a message to nil 170

8.4 Runtime type information 171
Determining if a message will respond to a message 171
Sending a message generated at runtime 171
Adding new methods to a class at runtime 173

8.5 Practical uses of runtime type introspection 174
8.6 Summary 176

9 Memory management 177
9.1 Object ownership 178
9.2 Reference counting 179

Releasing an object 180 ■ Retaining an object 181
Determining the current retain count 182

9.3 Autorelease pools 184
What is an autorelease pool? 185 ■ Adding objects
to the autorelease pool 185 ■ Creating a new
autorelease pool 185 ■ Releasing objects in a pool 187
Why not use an autorelease pool for everything? 187

9.4 Memory zones 190
9.5 Rules for object ownership 192
9.6 Responding to low-memory warnings 193

Implementing the UIApplicationDelegate protocol 193
Overriding didReceiveMemoryWarning 194 ■ Observing the
UIApplicationDidReceiveMemoryWarningNotification 197

9.7 Summary 199
Download from Wow! eBook <www.wowebook.com>

CONTENTSxii
PART 3 MAKING MAXIMUM USE OF FRAMEWORK
FUNCTIONALITY...201

10 Error and exception handling 203
10.1 NSError—handling errors the Cocoa way 204

Getting NSError to talk 204 ■ Examining NSError’s
userInfo Dictionary 205

10.2 Creating NSError objects 206
Introducing RentalManagerAPI 206 ■ Handling and
displaying RentalManagerAPI errors 209

10.3 Exceptions 210
Throwing exceptions 210 ■ Catching exceptions 211

10.4 Summary 211

11 Key-Value Coding and NSPredicate 212
11.1 Making your objects KVC-compliant 213

Accessing properties via KVC 214 ■ Constructing key paths 215
Returning multiple values 215 ■ Aggregating and collating
values 216

11.2 Handling special cases 217
Handling unknown keys 217 ■ Handling nil values 218

11.3 Filtering and matching with predicates 219
Evaluating a predicate 219 ■ Filtering a collection 220
Expressing your predicate condition 220 ■ More complex
conditions 221 ■ Using key paths in predicate
expressions 222 ■ Parameterizing and templating
predicate expressions 223

11.4 Sample application 224
11.5 Summary 227

12 Reading and writing application data 228
12.1 Core Data history 229

What does Core Data do? 229

12.2 Core Data objects 231
Managed object context 231 ■ Persistent store coordinator 231
Managed object model 232 ■ Persistent object store 232
Download from Wow! eBook <www.wowebook.com>

CONTENTS xiii
12.3 Core Data resources 232
Core Data entities 232 ■ Core Data attributes 233
Core Data relationships 234

12.4 Building the PocketTasks application 234
Examining the Xcode Core Data template 234
Building the data model 235 ■ Defining the relationships 236
Creating Person entities in pure code 237 ■ Fetching Person
entities in pure code 239 ■ Adding a master TableView 240
Adding and deleting people 243 ■ Managing tasks 246
Using model objects 249

12.5 Beyond the basics 251
Changing the data model 251 ■ Performance 253
Error handling and validation 253

12.6 Summary 256

13 Blocks and Grand Central Dispatch 257
13.1 The syntax of blocks 258

Blocks are closures 260 ■ Blocks and memory management 262
Block-based APIs in Apple’s iOS frameworks 264

13.2 Performing work asynchronously 265
Meet GCD 266 ■ GCD fundamentals 266
Building RealEstateViewer 267 ■ Making the image
search asynchronous 271 ■ Making the image
loading asynchronous 273

13.3 Summary 274

14 Debugging techniques 276
14.1 Building an application, complete with bugs 277
14.2 Understanding NSLog 278
14.3 Bringing memory leaks under control with

Instruments 281
14.4 Detecting zombies 284
14.5 Summary 286

appendix A Installing the iOS SDK 288
appendix B The basics of C 293
appendix C Alternatives to Objective-C 312

index 327
Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

preface
Having been involved in the development of applications on a variety of mobile plat-
forms for more than 10 years, I knew the iPhone was something exciting when it was
first introduced back in 2008. From a consumer viewpoint, it had the intangible and
hard-to-define elements required to make a compelling device that you just wanted to
keep coming back to and interact with. To the user, the device “felt right” and it was a
pleasure to use rather than simply being a means to an end to achieve a singular task.

 As new and refreshing as the iPhone user experience was, the development tools
that supported it were also rather unique. For developers without prior exposure to
Apple products, the platform was full of new terms, tools, and concepts to grok. This
book is designed to provide an introduction to these technologies, with emphasis on
covering only those features available for use by iOS applications. For someone learn-
ing a new environment, there’s nothing worse than reading a section of a book and
attempting to implement what you learn in an application of your own design, only to
realize that the Objective-C or Cocoa feature discussed is only applicable to desktop
Mac OS X applications.

 I hope you enjoy reading this book and you’ll remember its tips while you develop
the next iTunes App Store Top 10 application!

CHRISTOPHER FAIRBAIRN
xv

Download from Wow! eBook <www.wowebook.com>

acknowledgments
A technical book has more than what first meets the eye. A significant number of skills
are required to make sure not only that it is technically correct, but that it reads well,
looks good, and is approachable by the intended audience. Thus, we thank the entire
Manning staff, without whom this book would not exist in its present form. They did
more than just correct our errors and polish our words; they also helped make inte-
gral decisions about the organization and the contents of the book—decisions that
improved it dramatically.

 At Manning Publications, we’d like to thank Emily Macel who helped us at an early
stage to shape and focus our writing style. Thanks also to Troy Mott, our acquisitions
editor, who initially approached us to develop the book and who stayed with us every
step of the way. And thanks to Amos Bannister for expertly tech editing the final man-
uscript during production and for testing the code.

 Finally, we’d like to thank the reviewers who generously agreed to read our man-
uscript as we worked on it; they improved the book immensely: Ted Neward, Jason
Jung, Glenn Stokol, Gershon Kagan, Cos DiFazio, Clint Tredway, Christopher
Haupt, Berndt Hamboeck, Rob Allen, Peter Scott, Lester Lobo, Frank Jania, Curtis
Miller, Chuck Hudson, Carlton Gibson, Emeka Okereke, Pratik Patel, Kunal Mittal,
Tyson Maxwell, TVS Murthy, Kevin Butler, David Hanson, Timothy Binkley-Jones,
Carlo Bottiglieri, Barry Ezell, Rob Allen, David Bales, Pierre-Antoine Grégoire,
Kevin Munc, Christopher Schultz, Carlton Gibson, Jordan Duval-Arnould, Robert
McGovern, Carl Douglas, Dave Mateer, Fabrice Dewasmes, David Cuillerier, Dave
Verwer, and Glen Marcus.
xvi

Download from Wow! eBook <www.wowebook.com>

ACKNOWLEDGMENTS xvii
Christopher would like to thank his fiancée Michele for giving support and encour-
agement while he worked on this book. She is in many ways an unsung fourth
“author” and has contributed greatly. Also, he would like to thank the staff at Manning
for their understanding in a trying year involving burglaries, setbacks, and no less
than three significant earthquake events. Last but not least, he is thankful for all the
support from the important people in his life.

Johannes would like to thank Troy Mott for getting him on board with this project,
and Aaron Hillegass for helping him get started with Mac development in the first
place, and for being an all-around nice guy. Most of all, he’d like to thank his loving
and ever-supportive wife Simone (hey, he already did get rid of some of his nerd
T-shirts!) and his parents Fred and Petra.

Collin would like to thank Manning Publications for giving him the opportunity to
work on this book and the language he is so passionate about. He acknowledges
Aaron Hillegass for being a dedicated evangelist for this fantastic language and all its
platforms; most of what he knows about Objective-C can be attributed to Aaron’s
work. He would like to thank Panic, OmniGraffle, Delicious Library, Rouge Amoeba,
MyDreamApp.com, and all the other inspiring software development companies that
set such a high bar in the mobile space with their fantastic desktop software. He also
thanks ELC Technologies for being so supportive in this endeavor. Thanks to his par-
ents Debbie and Steve for all of their support, and his brothers Brett and Stephen for
helping hash out ideas for the book. A big thanks goes to his girlfriend Caitlin
for helping him stay dedicated and focused. And finally, he would like to thank
Brandon Trebitowski, author with Manning Publications, for his dedication to this
platform and for educating young developers.
Download from Wow! eBook <www.wowebook.com>

about this book
Objective-C Fundamentals is an introductory book, intended to complement other
books focused on iPhone and iPad application development such as iOS 4 in Action.
While many books have been written on how to develop iOS applications, most focus
on the individual APIs and frameworks provided by the device, rather than the unique
language, Objective-C, which is a cornerstone of Apple’s development platform. To
truly master the platform, you must have a strong grip on the language, and that is
what this book intends to provide. Objective-C Fundamentals is a book that focuses on
learning Objective-C in the context of iOS application development. No time is spent
discussing aspects or elements of the language that are not relevant to iOS. All exam-
ples are fully usable on your own iOS-powered device. We encourage you to read this
book straight through, from chapter 1 to chapter 14. This process will introduce the
platform, discuss how to program for the iPhone and iPad, and walk you through
the entire process step by step.

The audience

We’ve done our best to make this book accessible to everyone who is interested in creat-
ing successful iOS applications using the native Objective-C–based development tools.

 If you want to learn about iOS programming, you should have some experience
with programming in general. It’d be best if you’ve worked with C or at least one
object-oriented language before, but that’s not a necessity. If you haven’t, you may
find the introduction to the C programming language in appendix B helpful, and you
should expect to do some research on your own to bolster your general programming
xviii

Download from Wow! eBook <www.wowebook.com>

ABOUT THIS BOOK xix
skills. There’s no need to be familiar with Objective-C, Cocoa, or Apple programming
in general. We’ll give you everything you need to become familiar with Apple’s unique
programming style. You’ll probably have a leg-up if you understand object-oriented
concepts; but it’s not necessary (and again, you’ll find an introduction in chapter 3).

Roadmap

Chapter 1 introduces the tools surrounding Objective-C and iOS application develop-
ment, and covers the creation of a basic game, ready to run on your device.

 Chapter 2 kicks things off by highlighting how data is stored and represented
within an Objective-C–based application.

 Chapter 3 looks at how Objective-C takes small quantities of data and packages
them with logic to form reusable components called classes.

 Chapter 4 shifts the focus by taking a look at some of the classes, provided out of
the box by Cocoa Touch, that can be used to store multiple pieces of related data.

 Chapter 5 covers how to create your own custom classes and objects. Learning
how to create your own classes is an important building block to becoming a produc-
tive developer.

 Chapter 6 takes a look at how you can build on top of the foundations provided by
an existing class to create a more specialized or customized version of a class without
needing to rewrite all of its functionality from scratch.

 Chapter 7 discusses how classes can be defined to provide specific functionality,
without resorting to requiring all classes to inherit from a common base class. This
concept is provided with a language construct called a protocol.

 Chapter 8 looks deeply at some of the aspects of Objective-C that make it unique.
The important distinction between message sending and method invocation is dis-
cussed and some powerful programming techniques are demonstrated.

 Chapter 9 covers how to keep track of memory allocation within an Objective-C
application. Since no automatic garbage collector is available, simple rules are discussed
which will allow you to expertly craft applications without introducing memory leaks.

 Chapter 10 looks at NSError and at some real-life use cases for exceptions, which
tools will help you deal with errors gracefully.

 Chapter 11 covers Key Value Coding (KVC) and NSPredicate-based queries,
which are a surprisingly flexible way to filter, search and sort data within Cocoa
Touch–based applications.

 Chapter 12 gets you started with Core Data and teaches you everything you’ll need
to know to leverage Core Data for all of your most common data persistence needs.

 Chapter 13 introduces a language construct called a block and demonstrates this by
showing how Grand Central Dispatch (GCD) can be used to simplify multithreaded
programming, since it takes care of all the complicated heavy lifting for us.

 No application is perfect first time around, so chapter 14 rounds out the book with
a discussion on debugging techniques that can help resolve unwanted logic errors and
memory leaks quickly and efficiently.
Download from Wow! eBook <www.wowebook.com>

ABOUT THIS BOOKxx
 The appendixes contain additional information that didn’t fit with the flow of the
main text. Appendix A outlines how to enroll in the iOS Developer Program and set
up your physical iPhone or iPad device in order to run your own applications on
them. Appendix B provides a basic overview of the C programming language that
Objective-C is a descendant of. This will be ideal for developers with little experience
of a C-based language and those that have previously only developed in languages
such as Ruby, Python, or Java. Appendix C outlines some of the alternatives you can
use to develop iOS applications, and compares their advantages and disadvantages to
Objective-C.

 Writing this book was truly a collaborative effort. Chris wrote chapters 1 through 5,
8, 9, 11, 14, and appendixes B and C. Johannes contributed chapters 10, 12, and 13,
and appendix A; and Collin was responsible for chapters 6 and 7.

Code conventions and downloads

Code examples appear throughout this book. Longer listings appear under clear list-
ing headings, and shorter listings appear between lines of text. All code is set in a
monospace font like this to differentiate it from the regular font. Class names have
also been set in code font; if you want to type it into your computer, you’ll be able to
clearly make it out.

 With the exception of a few cases of abstract code examples, all code snippets began
life as working programs. You can download the complete set of programs from
www.manning.com/Objective-CFundamentals. You’ll find two ZIP files there, one for
each of the SDK programs. We encourage you to try the programs as you read; they
include additional code that doesn’t appear in the book and provide more context. In
addition, we feel that seeing a program work can elucidate the code required to create it.

 The code snippets in this book include extensive explanations. We often include
short annotations beside the code; and sometimes numbered cueballs beside lines of
code link the subsequent discussion to the code lines.

Software requirements

An Intel-based Macintosh running OS X 10.6 or higher is required to develop iOS
applications. You also need to download the Xcode IDE and iOS SDK. Xcode is avail-
able for purchase in the Mac App Store and the iOS SDK is freely downloadable.

 However, the best approach to obtaining Xcode and developing iOS applications is
to pay a yearly subscription fee for the iOS Developer Program (http://developer.apple
.com/programs/ios/). This will provide free access to Xcode and iOS SDK downloads
as well as enable testing and deployment of applications on real iPhone and iPad
devices, and the iTunes App Store.
Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/programs/ios/
http://developer.apple.com/programs/ios/
www.manning.com/Objective-CFundamentals

author online
Purchase of Objective-C Fundamentals includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/Objective-
CFundamentals. This page provides information on how to get on the forum once
you’re registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the Author Online forum remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest their
interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
xxi

Download from Wow! eBook <www.wowebook.com>

www.manning.com/Objective-CFundamentals
www.manning.com/Objective-CFundamentals

about the cover illustration
On the cover of Objective-C Fundamentals is “A man from Tinjan, Istria,” a village in the
interior of the peninsula of Istria in the Adriatic Sea, off Croatia. The illustration is
taken from a reproduction of an album of Croatian traditional costumes from the
mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum
in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at
the Ethnographic Museum in Split, itself situated in the Roman core of the medieval
center of the town: the ruins of Emperor Diocletian’s retirement palace from around
AD 304. The book includes finely colored illustrations of figures from different
regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

 In this region of Croatia, the traditional costume for men consists of black woolen
trousers, jacket, and vest decorated with colorful embroidered trim. The figure on the
cover is wearing a lighter version of the costume, designed for hot Croatian summers,
consisting of black linen trousers and a short, black linen jacket worn over a white
linen shirt. A gray belt and black wide-brimmed hat complete the outfit.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of
different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.
xxii

Download from Wow! eBook <www.wowebook.com>

Part 1

Getting started
with Objective-C

Becoming an iOS application developer can require mastering a number of
new tools and technologies such as the Xcode IDE and the Objective-C program-
ming language. Although plenty of step-by-step how-to tutorials are available
online for developing small example applications, such as a photo viewer or RSS
news feed display application and so on, these typically don’t provide much in
the way of background information to enable you to develop applications of
your own design.

 In this part of the book, you’ll develop a small game as a learning exercise to
become familiar with the development tools surrounding the Objective-C lan-
guage. As you progress through these chapters, you’ll discover more of the
meaning and purpose behind the individual steps and tasks outlined in develop-
ing the game so you can see the theory and purpose behind each step.

 Toward the end of this part, you’ll reach a stage where you can confidently
create a new project within Xcode and describe the purpose of each file and the
meaning behind the various code snippets found within them.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Building your first iOS
application
As a developer starting out on the iOS platform, you’re faced with learning a lot
of new technologies and concepts in a short period of time. At the forefront of
this information overload is a set of development tools you may not be familiar
with and a programming language shaped by a unique set of companies and his-
torical events.

 iOS applications are typically developed in a programming language called Objec-
tive-C and supported by a support library called Cocoa Touch. If you’ve already devel-
oped Mac OS X applications, you’re probably familiar with the desktop cousins of
these technologies. But it’s important to note that the iOS versions of these tools
don’t provide exactly the same capabilities, and it’s important to learn the restric-
tions, limitations, and enhancements provided by the mobile device. In some cases,
you may even need to unlearn some of your desktop development practices.

This chapter covers
■ Understanding the iOS development

environment
■ Learning how to use Xcode and Interface

Builder
■ Building your first application
3

Download from Wow! eBook <www.wowebook.com>

4 CHAPTER 1 Building your first iOS application
 While developing iOS applications, most of your work will be done in an applica-
tion called Xcode. Xcode 4, the latest version of the IDE, has Interface Builder (for cre-
ating the user interface) built directly into it. Xcode 4 enables you to create, manage,
deploy, and debug your applications throughout the entire software development life-
cycle. When creating an application that supports more than one type of device pow-
ered by the iOS, you may wish to present slightly different user interfaces for specific
device types while powering all variants via the same core application logic under-
neath. Doing so is easier if the concept of model-view-controller separation is used,
something that Xcode 4 can help you with.

 This chapter covers the steps required to use these tools to build a small game for
the iPhone, but before we dive into the technical steps, let’s discuss the background of
the iOS development tools and some of the ways mobile development differs from
desktop and web-based application development.

1.1 Introducing the iOS development tools
Objective-C is a strict superset of the procedural-based C programming language. This
fact means that any valid C program is also a valid Objective-C program (albeit one
that doesn’t make use of any Objective-C enhancements).

 Objective-C extends C by providing object-oriented features. The object-oriented
programming model is based on sending messages to objects, which is different
from the model used by C++ and Java, which call methods directly on an object. This
difference is subtle but is also one of the defining features that enables many of
Objective-C’s features that are typically more at home in a dynamic language such as
Ruby or Python.

 A programming language, however, is only as good as the features exposed by its
support libraries. Objective-C provides syntax for performing conditional logic and
looping constructs, but it doesn’t provide any inherent support for interacting with
the user, accessing network resources, or reading files. To facilitate this type of func-
tionality without requiring it to be written from scratch for each application, Apple
includes in the SDK a set of support libraries collectively called Cocoa Touch. If
you’re an existing Java or .NET developer, you can view the Cocoa Touch library as
performing a purpose similar to the Java Class Library or .NET’s Base Class Librar-
ies (BCL).

1.1.1 Adapting the Cocoa frameworks for mobile devices
Cocoa Touch consists of a number of frameworks (commonly called kits). A frame-
work is a collection of classes that are grouped together by a common purpose or task.
The two main frameworks you use in iPhone applications are Foundation Kit and
UIKit. Foundation Kit is a collection of nongraphical system classes consisting of data
structures, networking, file IO, date, time, and string-handling functions, and UIKit is
a framework designed to help develop GUIs with rich animations.

 Cocoa Touch is based on the existing Cocoa frameworks used for developing desk-
top applications on Mac OS X. But rather than making Cocoa Touch a direct line-by-line
Download from Wow! eBook <www.wowebook.com>

5Adjusting your expectations
port to the iPhone, Apple optimized the frameworks for use in iPhone and iPod Touch
applications. Some Cocoa frameworks were even replaced entirely if Apple thought
improvements in functionality, performance, or user experience could be achieved in
the process. UIKit, for example, replaced the desktop-based AppKit framework.

 The software runtime environment for native iOS applications is shown in figure 1.1.
It’s essentially the same software stack for desktop applications if you replace iOS with
Mac OS X at the lowest level and substitute some of the frameworks in the Cocoa layer.

 Although the Cocoa Touch frameworks are Objective-C–based APIs, the iOS devel-
opment platform also enables you to access standard C-based APIs. The ability to
reuse C (or C++) libraries in your Objective-C applications is quite powerful. It
enables you to reuse existing source code you may have originally developed for
other mobile platforms and to tap many powerful open source libraries (license per-
mitting), meaning you don’t need to reinvent the wheel. As an example, a quick
search on Google will find existing C-based source code for augmented reality, image
analysis, and barcode detection, to name a few possibilities, all of which are directly
usable by your Objective-C application.

1.2 Adjusting your expectations
With a development environment that will already be familiar to existing Mac OS X
developers, you may mistakenly think that the iPhone is just another miniature com-
puting device, similar to any old laptop, tablet, or netbook. That idea couldn’t be any
further from the truth. An iPhone is more capable than a simple cell phone but less so
than a standard desktop PC. As a computing device, it fits within a market space simi-
lar to that of netbooks, designed more for casual and occasional use throughout the
day in a variety of situations and environments than for sustained periods of use in a
single session.

Figure 1.1 The software runtime
environment for iOS applications,
showing the operating system,
Objective-C runtime, and Cocoa
Touch framework layers
Download from Wow! eBook <www.wowebook.com>

6 CHAPTER 1 Building your first iOS application
1.2.1 A survey of hardware specifications, circa mid-2011

On taking an initial look at an iPhone 4, you’ll undoubtedly notice the 3.5-inch
screen, 960 x 640 pixels, that virtually dominates the entire front of the device. Its gen-
eral size and the fact that the built-in touch screen is the only way for users to interact
with the device can have important ramifications on application design. Although 960
x 640 is larger than many cell phones, it probably isn’t the screen on which to view a
300-column-by-900-row spreadsheet.

 As an example of the kind of hardware specifications you can expect to see, table 1.1
outlines the specifications of common iPhone, iPod Touch, and iPad models available
in mid-2010. In general, the hardware specifications lag behind those of desktop PCs by
a couple of years, but the number of integrated hardware accessories that your applica-
tions can take advantage of, such as camera, Bluetooth, and GPS, is substantially higher.

Although it’s nice to know the hardware capabilities and specifications of each device,
application developers generally need not concern themselves with the details. New
models will come and go as the iOS platform matures and evolves until it becomes dif-
ficult to keep track of all the possible variants.

 Instead, you should strive to create an application that will adapt at runtime to the
particular device it finds itself running on. Whenever you need to use a feature that’s
present only on a subset of devices, you should explicitly test for its presence and pro-
grammatically deal with it when it isn’t available. For example, instead of checking if
your application is running on an iPhone to determine if a camera is present, you
would be better off checking whether a camera is present, because some models of
iPad now come with cameras.

Table 1.1 Comparison of hardware specifications of various iPhone and iPod Touch devices

Feature iPhone 3G iPhone 3GS iPhone 4 iPad iPad2

RAM 128 MB 256 MB 512 MB 256 MB 512 MB

Flash 8–16 GB 16–32 GB 16–32 GB 16–64 GB 16–64 GB

Processor 412 MHz
ARM11

600 MHz ARM
Cortex

1 GHz Apple A4 1 GHz Apple A4 1 GHz dual-core
Apple A5

Cellular 3.6 Mbps 7.2 Mbps 7.2 Mbps 7.2 Mbps
(optional)

7.2 Mbps
(optional)

Wi-Fi Yes Yes Yes Yes Yes

Camera 2 MP 3 MP AF 5 MP AF (back)
0.3 MP (front)

— 0.92 MP (back)
0.3 MP (front)

Bluetooth Yes Yes — Yes Yes

GPS Yes
(no compass)

Yes — Yes
(3G models only)

Yes
(3G models only)
Download from Wow! eBook <www.wowebook.com>

7Using Xcode to develop a simple Coin Toss game
1.2.2 Expecting an unreliable internet connection

In this age of cloud computing, a number of iOS applications need connectivity to the
internet. The iOS platform provides two main forms of wireless connectivity: local area
in the form of 802.11 Wi-Fi and wide area in the form of various cellular data stan-
dards. These connection choices provide a wide variability in speed, ranging from 300
kilobits to 54 megabits per second. It’s also possible for the connection to disappear
altogether, such as when the user puts the device into flight mode, disables cellular
roaming while overseas, or enters an elevator or tunnel.

 Unlike on a desktop, where most developers assume a network connection is
always present, good iOS applications must be designed to cope with network connec-
tivity being unavailable for long periods of time or unexpectedly disconnecting. The
worst user experience your customers can have is a “sorry, cannot connect to server”
error message while running late to a meeting and needing to access important infor-
mation that shouldn’t require a working internet connection to obtain.

 In general, it’s important to constantly be aware of the environment in which your
iOS application is running. Your development techniques may be shaped not only by
the memory and processing constraints of the device but also by the way in which the
user interacts with your application.

 That’s enough of the background information. Let’s dive right in and create an
iOS application!

1.3 Using Xcode to develop a simple Coin Toss game
Although you might have grand ideas for the next
iTunes App Store smash, let’s start with a relatively sim-
ple application that’s easy to follow without getting
stuck in too many technical details, allowing the unique
features of the development tools to shine through. As
the book progresses, we dig deeper into the finer points
of everything demonstrated. For now the emphasis is on
understanding the general process rather than the spe-
cifics of each technique.

 The application you develop here is a simple game
that simulates a coin toss, such as is often used to settle
an argument or decide who gets to go first in a competi-
tion. The user interface is shown in figure 1.2 and con-
sists of two buttons labeled Heads and Tails. Using these
buttons, the user can request that a new coin toss be
made and call the desired result. The iPhone simulates
the coin toss and updates the screen to indicate if the
user’s choice is correct.

 In developing this game, the first tool we need to
investigate is Xcode.

Figure 1.2 Coin Toss sample
game
Download from Wow! eBook <www.wowebook.com>

8 CHAPTER 1 Building your first iOS application
1.3.1 Introducing Xcode—Apple’s IDE

As mentioned earlier in this chapter, Xcode is an IDE that provides a comprehensive
set of features to enable you to manage the entire lifecycle of your software develop-
ment project. Creating the initial project, defining your class or data model, editing
your source code, building your application, and finally debugging and performance-
tuning the resultant application are all tasks performed in Xcode.

 Xcode is built on the foundation of several open source tools: LLVM (the open
source Low-Level Virtual Machine), GCC (the GNU compiler), GDB (the GNU debug-
ger), and DTrace (instrumentation and profiling by Sun Microsystems).

1.3.2 Launching Xcode easily

Once you install the iOS software development kit (SDK), the first challenge to using
Xcode is locating the application. Unlike most applications that install in the/Appli-
cations folder, Apple separates developer-focused tools into the/Developer/Applica-
tions folder.

 The easiest way to find Xcode is to use the Finder to open the root Macintosh HD
folder (as shown in figure 1.3). From there, you can drill down into the Developer
folder and finally the Applications subfolder. As a developer, you’ll practically live
within Xcode, so you may wish to put the Xcode icon onto your Dock or place the
folder in the Finder sidebar for easy access.

 Once you locate the/Developer/Applications folder, you should be able to easily
locate and launch Xcode.

 It’s important to note that Xcode isn’t your only option. Xcode provides all the fea-
tures you require to develop applications out of the box, but that doesn’t mean you
can’t complement it with your own tools. For example, if you have a favorite text edi-
tor in which you feel more productive, it’s possible to configure Xcode to use your
external text editor in favor of the built-in functionality. The truly masochistic among
you could even revert to using makefiles and the command line.

Figure 1.3 A Finder window showing the location of the Developer folder, which
contains all iPhone developer–related tools and documentation
Download from Wow! eBook <www.wowebook.com>

9Using Xcode to develop a simple Coin Toss game
1.3.3 Creating the project

To create your first project, select the New Project option in the File menu (Shift-
Cmd-N). Xcode displays a New Project dialog similar to the one displayed in figure 1.4.

 Your first decision is to choose the type of project you want to create. This is done
by selecting a template that determines the type of source code and settings Xcode
will automatically add to get your project started.

 For the Coin Toss game, you want the View-based Application template. You first
select Application under the iOS header in the left pane, and then select View-based
Application. Then click Next in the lower-right corner, which prompts you to name
the project and allows you to specify the company identifier required to associate the
application with your iOS Developer account. For this project, use the name CoinToss
and enter a suitable company identifier.

 Xcode uses the product name and company identifier values to produce what is
called a bundle identifier. iOS uniquely identifies each application by this string. In

Help! I don’t see the Xcode application
If you don’t have a/Developer folder or you can’t see any references to iPhone or iPad
project templates when Xcode is launched, refer to appendix A for help on how to
download and install the required software.

Figure 1.4 The New Project dialog in Xcode showing the View-based Application template
Download from Wow! eBook <www.wowebook.com>

10 CHAPTER 1 Building your first iOS application
order for the operating system to allow the CoinToss game to run, its bundle identifier
must match up with one included in a provisioning profile that’s been installed on the
device. If the device can’t find a suitable profile, it refuses to run the application. This
is how Apple controls with an iron fist which applications are allowed in its ecosystem.
If you don’t have a suitable company identifier or are unsure what to enter here, fol-
low the instructions in appendix A before proceeding with the rest of this chapter.

 Once all the details are entered, deselect the Include Unit Tests check box and
click Next, which prompts you to select where you want the project and generated
source code files to be saved.

You may wonder what other kinds of projects you can create. Table 1.2 lists the most
common iOS project templates. Which template you choose depends on the type of
user interface you want your application to have. But don’t get too hung up on template
selection: the decision isn’t as critical as you may think. Once your project is created,

Help! I don’t see any iOS-related options
If you see no iOS-based templates in the New Project dialog, it’s possible you haven’t
correctly installed the iOS SDK. The copy of Xcode you’re running is probably from a
Mac OS X Install DVD or perhaps was downloaded directly from the Apple Developer
Connection (ADC) website and is suitable only for development of desktop applications.

Installing the iOS SDK as outlined in appendix A should replace your copy of Xcode
with an updated version that includes support for iPhone and iPad development.

Table 1.2 Project templates available in Xcode for creating a new iOS project

Project type Description

Navigation-based Application Creates an application similar in style to the built-in Contacts appli-
cation with a navigation bar across the top.

OpenGL ES Application Creates an OpenGL ES–based graphics application suitable for
games and so on.

Split View–based Application Creates an application similar in style to the built-in Mail application
on the iPad. Designed to display master/detail-style information in a
single screen.

Tab Bar Application Creates an application similar in style to the built-in Clock applica-
tion with a tab bar across the bottom.

Utility Application Creates an application similar in style to the built-in Stocks and
Weather applications, which flip over to reveal a second side.

View-based Application Creates an application that consists of a single view. You can draw
and respond to touch events from the custom view.

Window-based Application Creates an application that consists of a single window onto which
you can drag and drop controls.
Download from Wow! eBook <www.wowebook.com>

11Using Xcode to develop a simple Coin Toss game
you can alter the style of your application—it just won’t be as easy because you won’t
have the project template automatically inserting all of the required source code for
you; you’ll need to write it yourself.

 Now that you’ve completed the New Project dialog, a project window similar to the
one in figure 1.5 is displayed. This is Xcode’s main window and consists of a Project
Navigator pane on the left and a large, context-sensitive editor pane on the right.

 The pane on the left lists all the files that make up your application. The group
labeled CoinToss represents the entire game, and if you expand this node, you can
drill down into smaller subgroups until you eventually reach the files that make up the
project. You’re free to create your own groupings to aid in organizing the files in any
manner that suits you.

Figure 1.5 Main Xcode window with the CoinToss group fully expanded to show the project’s various source
code files
Download from Wow! eBook <www.wowebook.com>

12 CHAPTER 1 Building your first iOS application
 When you click a file in the left pane, the right pane updates to provide an editor
suitable for the selected file. For *.h and *.m source code files, a traditional source
code text editor is presented, but other file types (such as *.xib resource files) have
more complex graphical editors associated with them.

 Some groups in the left pane have special behaviors associated with them or don’t
represent files at all. For example, the items listed under the Frameworks group indi-
cate pre-compiled code libraries that the current project makes use of.

 As you become more comfortable with developing applications in Xcode, you’ll
become adept at exploring the various sections presented in the Project Navigator
pane. To begin your discovery, let’s write the source code for your first class.

1.3.4 Writing the source code

The View-based Application template provides enough source code to get a basic
game displayed on the iPhone—so basic, in fact, that if you ran the game right now,
you would simply see a gray rectangle on the screen.

 Let’s start implementing the game by opening the CoinTossViewController.h file
in the Xcode window and using the text editor to replace the contents with the fol-
lowing listing.

#import <UIKit/UIKit.h>

@interface CoinTossViewController : UIViewController {
 UILabel *status;
 UILabel *result;
}

@property (nonatomic, retain) IBOutlet UILabel *status;
@property (nonatomic, retain) IBOutlet UILabel *result;

- (IBAction)callHeads;
- (IBAction)callTails;

@end

Don’t worry if the contents of listing 1.1 don’t make much sense to you. At this stage,
it’s not important to understand the full meaning of this code. Learning these sorts of
details is what the rest of the book is designed for—all will be revealed in time!

 For now, let’s focus on understanding the general structure of an Objective-C–
based project. Objective-C is an object-oriented language, meaning that a large por-
tion of your coding efforts will be spent defining new classes (types of objects).
Listing 1.1 defines a new class called CoinTossViewController. By convention, the
definition of a class is kept in a header file that uses a *.h file extension.

 In the CoinTossViewController header file, the first two lines declare that the
class stores the details of two UILabel controls located somewhere in the user inter-
face. A UILabel can display a single line of text, and you use these labels to display the
results of the coin toss.

Listing 1.1 CoinTossViewController.h
Download from Wow! eBook <www.wowebook.com>

13Using Xcode to develop a simple Coin Toss game
 The second set of statements allows code external to this class to tell you which spe-
cific UILabels you should be using. Finally, you specify that your class responds to two
messages called callHeads and callTails. These messages inform you when the user
has called heads or tails and a new coin toss should be initiated.

 A header (*.h) file specifies what you can expect a class to contain and how other
code should interact with it. Now that you’ve updated the header file, you must provide
the actual implementation of the features you’ve specified. Open the matching Coin-
TossViewController.m file, and replace its contents with that of the following listing.

#import "CoinTossViewController.h"
#import <QuartzCore/QuartzCore.h>

@implementation CoinTossViewController

@synthesize status, result;

- (void) simulateCoinToss:(BOOL)userCalledHeads {
 BOOL coinLandedOnHeads = (arc4random() % 2) == 0;

 result.text = coinLandedOnHeads ? @"Heads" : @"Tails";

 if (coinLandedOnHeads == userCalledHeads)
 status.text = @"Correct!";
 else
 status.text = @"Wrong!";

 CABasicAnimation *rotation = [CABasicAnimation
 animationWithKeyPath:@"transform.rotation"];
 rotation.timingFunction = [CAMediaTimingFunction
 functionWithName:kCAMediaTimingFunctionEaseInEaseOut];
 rotation.fromValue = [NSNumber numberWithFloat:0.0f];
 rotation.toValue = [NSNumber numberWithFloat:720 * M_PI / 180.0f];
 rotation.duration = 2.0f;
 [status.layer addAnimation:rotation forKey:@"rotate"];

 CABasicAnimation *fade = [CABasicAnimation
 animationWithKeyPath:@"opacity"];
 fade.timingFunction = [CAMediaTimingFunction
 functionWithName:kCAMediaTimingFunctionEaseInEaseOut];
 fade.fromValue = [NSNumber numberWithFloat:0.0f];
 fade.toValue = [NSNumber numberWithFloat:1.0f];
 fade.duration = 3.5f;
 [status.layer addAnimation:fade forKey:@"fade"];
}

- (IBAction) callHeads {
 [self simulateCoinToss:YES];
}

- (IBAction) callTails {
 [self simulateCoinToss:NO];
}

- (void) viewDidUnload {
 self.status = nil;

Listing 1.2 CoinTossViewController.m

Match with
@property

B

Set up two
objects

c

Affect
the label

d

Download from Wow! eBook <www.wowebook.com>

14 CHAPTER 1 Building your first iOS application
 self.result = nil;
}

- (void) dealloc {
 [status release];
 [result release];
 [super dealloc];
}

@end

Listing 1.2 at first appears long and scary looking, but when broken down into individ-
ual steps, it’s relatively straightforward to understand.

 The first statement B matches up with the @property declarations in CoinToss-
ViewController.h. The concept of properties and the advantage of synthesized ones in
particular are explored in depth in chapter 5.

 Most of the logic in the CoinTossViewController.m file is contained in the simu-
lateCoinToss: method, which is called whenever the user wants the result of a new
coin toss. The first line simulates a coin toss by generating a random number between
0 and 1 to represent heads and tails respectively. The result is stored in a variable
called coinLandedOnHeads.

 Once the coin toss result is determined, the two UILabel controls in the user inter-
face are updated to match. The first conditional statement updates the result label to
indicate if the simulated coin toss landed on heads or tails; the second statement indi-
cates if the user correctly called the coin toss.

 The rest of the code in the simulateCoinToss: method sets up two CABasic-
Animation objects c, d to cause the label displaying the status of the coin toss to
spin into place and fade in over time rather than abruptly updating. It does this by
requesting that the transform.rotation property of the UILabel control smoothly
rotate from 0 degrees to 720 degrees over 2.0 seconds, while the opacity property
fades in from 0% (0.0) to 100% (1.0) over 3.5 seconds. It’s important to note that
these animations are performed in a declarative manner. You specify the change or
effect you desire and leave it up to the framework to worry about any timing- and
redrawing-related logic required to implement those effects.

 The simulateCoinToss: method expects a single parameter called userCalled-
Heads, which indicates if the user expects the coin toss to result in heads or tails. Two
additional methods, callHeads and callTails, are simple convenience methods that
call simulateCoinToss: with the userCalledHeads parameter set as expected.

 The final method, called dealloc e, deals with memory management–related
issues. We discuss memory management in far greater depth in chapter 9. The impor-
tant thing to note is that Objective-C doesn’t automatically garbage collect unused
memory (at least as far as the current iPhone is concerned). This means if you allocate
memory or system resources, you’re also responsible for releasing (or deallocating) it.
Not doing so will cause your application to artificially consume more resources than it
needs, and in the worst case, you’ll exhaust the device’s limited resources and cause
the application to crash.

Memory
management

E

Download from Wow! eBook <www.wowebook.com>

15Hooking up the user interface
 Now that you have the basic logic of the game developed, you must create the
user interface in Xcode and connect it back to the code in the CoinTossView-
Controller class.

1.4 Hooking up the user interface
At this stage, you can determine from the CoinTossViewController class definition
that the user interface should have at least two UILabel controls and that it should
invoke the callHeads or callTails messages whenever the user wants to call the
result of a new coin toss. You haven’t yet specified where on the screen the labels
should be positioned or how the user requests that a coin toss be made.

 There are two ways to specify this kind of detail. The first is to write source code
that creates the user interface controls, configures their properties such as font size
and color, and positions them onscreen. This code can be time consuming to write,
and you can spend a lot of your time trying to visualize how things look onscreen.

 A better alternative is to use Xcode, which allows you to visually lay out and config-
ure your user interface controls and connect them to your source code. Most iOS proj-
ect templates use this technique and typically include one or more *.xib files designed
to visually describe the user interface. This project is no exception, so click the Coin-
TossViewController.xib file in the Project Navigator pane and notice that the editor
pane displays the contents of the file (figure 1.6).

 Along the left edge of the editor pane are some icons. Each icon represents an
object that’s created when the game runs, and each has a tooltip that displays it name.
The wireframe box labeled File’s Owner represents an instance of the CoinTossView-
Controller class; the white rectangle represents the main view (or screen) of the
application. Using Xcode, you can graphically configure the properties of these
objects and create connections between them.

1.4.1 Adding controls to a view

The first step in defining the user interface for your game is to position the required
user interface controls onto the view.

 To add controls, find them in the Library window, which contains a catalog of avail-
able user interface controls, and drag and drop them onto the view. If the Library win-
dow isn’t visible, you can open it via the View > Utilities > Object Library menu option
(Control-Option-Cmd-3). For the Coin Toss game, you require two Labels and two
Rounded Rect Buttons, so drag two of each control onto the view. The process of
dragging and dropping a control onto the view is shown in figure 1.7.

 After you drag and drop the controls onto the view, you can resize and adjust their
positions to suit your aesthetics. The easiest way to change the text displayed on a but-
ton or label control is to double-click the control and begin typing. To alter other
properties, such as font size and color, you can use the Attributes Inspector pane,
which can be displayed via the View > Utilities > Attributes Inspector menu option
(Alt-Cmd-4). While styling your view, you can refer back to figure 1.2 for guidance.
Download from Wow! eBook <www.wowebook.com>

16 CHAPTER 1 Building your first iOS application
With the controls positioned on the user interface, the only task left is to connect
them to the code you previously wrote. Remember that the class defined in the Coin-
TossViewController.h header file requires three things from the user interface:

■ Something to send the callHeads or callTails messages whenever the user
wishes to initiate a new coin toss

■ A UILabel to display the results of the latest coin toss (heads or tails)
■ A UILabel to display the status of the latest coin toss (correct or incorrect)

Figure 1.6 The main Xcode window demonstrating the editing of a *.xib file. Along the left edge of the editor you
can see three icons, each representing a different object or GUI component stored in the .xib file.
Download from Wow! eBook <www.wowebook.com>

17Hooking up the user interface
1.4.2 Connecting controls to source code

The user interface you just created meets these requirements, but the code can’t
determine which button should indicate that the user calls heads or tails (even if the
text on the buttons makes it inherently obvious to a human). Instead, you must explic-
itly establish these connections. Xcode allows you to do so graphically.

 Hold down the Control key and drag the button labeled Heads toward the icon
representing the CoinTossViewController instance (File’s Owner) located on the left
edge of the editor. As you drag, a blue line should appear between the two elements.

 When you let go of the mouse, a pop-up menu appears that allows you to select
which message should be sent to the CoinTossViewController object whenever the

Figure 1.7 Dragging and dropping new controls onto the view. Notice the snap lines, which help ensure your user
interface conforms to the iOS Human Interface Guidelines (HIG).
Download from Wow! eBook <www.wowebook.com>

18 CHAPTER 1 Building your first iOS application
button is tapped, as shown in figure 1.8. In this case, you select callHeads because this
is the message that matches the intent of the button.

 You can repeat this process to connect the button labeled Tails to the callTails
method. Making these two connections means that tapping either of the buttons in
the user interface will cause the execution of logic in the CoinTossViewController
class. Having these connections specified graphically rather than programmatically is
a flexible approach because it enables you to quickly and easily try out different user
interface concepts by swapping controls around and reconnecting them to the class.

 If Xcode refuses to make a connection between a user interface control and an
object, the most probable cause is a source code error, such as a simple typo or incor-
rect data type. In this case, make sure the application still compiles, and correct any
errors that appear before retrying the connection.

Figure 1.8 Visually forming a connection between the button control and the CoinTossViewController class
by dragging and dropping between items
Download from Wow! eBook <www.wowebook.com>

19Hooking up the user interface
 With the buttons taken care of, you’re left with connecting the label controls to the
CoinTossViewController class to allow the code to update the user interface with the
results of the latest coin toss.

 To connect the label controls, you can use a similar drag-and-drop operation.
This time, while holding down the Control key, click the icon representing the
CoinTossViewController instance and drag it toward the label in the view. When
you release the mouse, a pop-up menu appears that allows you to select which prop-
erty of the CoinTossViewController class you want to connect the label control to.
This process is demonstrated in figure 1.9. Using this process, connect the label
titled Coin Toss to the status property and the label titled Select Heads or Tails to
the result property.

 When deciding which way you should form connections between objects, consider
the flow of information. In the case of the button, tapping the button causes a method

Figure 1.9 Visually forming a connection between the status instance variable and the label control in the user
interface by dragging and dropping between the items (with the Control key held down)
Download from Wow! eBook <www.wowebook.com>

20 CHAPTER 1 Building your first iOS application
in the application to be executed, whereas in the case of connecting the label, chang-
ing the value of the instance variable in the class should update the user interface.

 You may wonder how Xcode determines which items to display in the pop-up
menu. If you refer back to listing 1.1, the answer can be seen by way of the special
IBOutlet and IBAction keywords. Xcode parses your source code and allows you to
connect the user interface to anything marked with one of these special attributes.

 At this stage, you may like to verify that you’ve correctly made the required connec-
tions. If you hold down the Control key and click the icon representing the CoinToss-
ViewController instance, a pop-up menu appears allowing you to review how all the
outlets and actions associated with an object are connected. If you hover the mouse
over one of the connections, Xcode even highlights the associated object. This feature
is shown in figure 1.10.

 At this stage you’re done with the user interface. You’re now ready to kick the tires,
check if you’ve made mistakes, and see how well your game runs.

Figure 1.10 Reviewing connections made to and from the CoinTossViewController object
Download from Wow! eBook <www.wowebook.com>

21Taking Coin Toss for a test run
1.5 Compiling the Coin Toss game
Now that you’ve finished coding your application, you need to convert the source
code into a form useable by the iPhone. This process is called compilation, or building
the project. To build the game, select Build from the Product menu (or press Cmd-B).

 While the project is building, you can keep track of the compiler’s progress by
looking at the progress indicator in the middle of the toolbar. It should read “Build
CoinToss: Succeeded.” If you’ve made mistakes, you’ll see a message similar to “Build
CoinToss: Failed.” In this case, clicking the red exclamation icon underneath the text
(or pressing Cmd-4) displays a list of errors and warnings for you to resolve.

 Clicking an error in this list displays the matching source code file with the lines con-
taining errors highlighted, as illustrated in figure 1.11. After correcting the problem,
you can build the application again, repeating this process until all issues are resolved.

 When you compile the Coin Toss game, you should notice errors mentioning
kCAMediaTimingFunctionEaseInEaseOut, CAMediaTimingFunction, and CABasic-

Animation. To correct these errors, select the CoinToss project in the Project Navigator
(topmost item in the tree view). In the editor that appears for this item, switch to the
Build Phases tab and expand the Link Binary with Libraries section. The expanded
region displays a list of additional frameworks that your application requires. For the
user interface animations to work, you need to click the + button at the bottom of
the window and select QuartzCore.framework from the list that appears.

 To keep things tidy, once you add the QuartzCore framework reference, you may pre-
fer to move it within the project navigator tree view so that it’s located under the Frame-
works section, alongside the other frameworks on which your application depends.

1.6 Taking Coin Toss for a test run
Now that you’ve compiled the game and corrected any obvious compilation errors,
you’re ready to verify that it operates correctly. You could run the game and wait for it
to behave incorrectly or crash, but that would be rather slow going, and you would
have to guess at what was happening internally. To improve this situation, Xcode provides

NIBs vs. XIBs
The user interface for an iOS application is stored in a .xib file. But in the documen-
tation and Cocoa Touch frameworks, these files are commonly called nibs.

These terms are used pretty interchangeably: a .xib file uses a newer XML-based file
format, which makes the file easier to store in revision control systems and so on.

A .nib, on the other hand, is an older binary format, which leads to more efficient file
sizes, parsing speed, and so on.

The documentation commonly refers to NIB files instead of XIB files because, as
Xcode builds your project, it automatically converts your *.xib files into the
*.nib format.
Download from Wow! eBook <www.wowebook.com>

22 CHAPTER 1 Building your first iOS application
an integrated debugger that hooks into the execution of your application and allows
you to temporarily pause it to observe the value of variables and step through source
code line by line. But before you learn how to use it, we must take a slight detour.

1.6.1 Selecting a destination

Before testing your application, you must decide where you want to run it. During ini-
tial development, you’ll commonly test your application via the iOS Simulator. The
simulator is a pretend iPhone or iPad device that runs in a window on your desktop
Mac OS X machine. Using the simulator can speed up application development
because it’s a lot quicker for Xcode to transfer and debug your application in the sim-
ulator than it is to work with a real iPhone.

 Developers with experience in other mobile platforms may be familiar with the use
of device emulators. The terms simulator and emulator aren’t synonymous. Unlike an

Figure 1.11 Xcode’s text editor visually highlights lines of source code with compilation errors. After correcting
any errors, building the project will indicate if you have successfully corrected the problem.
Download from Wow! eBook <www.wowebook.com>

23Taking Coin Toss for a test run
emulator that attempts to emulate the device at the hardware level (and hence can
run virtually identical firmware to a real device), a simulator only attempts to provide
an environment that has a compatible set of APIs.

 The iOS Simulator runs your application on the copy of Mac OS X used by your
desktop, which means that differences between the simulator and a real iPhone occa-
sionally creep in. A simple example of where the simulation “leaks” is filenames. In
the iOS Simulator, filenames are typically case insensitive, whereas on a real iPhone,
they’re case sensitive.

 By default, most project templates are configured to deploy your application to the
iOS Simulator. To deploy your application to a real iPhone, you must change the desti-
nation from iPhone Simulator to iOS Device. The easiest way to achieve this is to select
the desired target in the drop-down menu found toward the left of the toolbar in the
main Xcode window, as shown in figure 1.12.

 Changing the destination to iOS Device ensures that Xcode attempts to deploy
the application to your real iPhone, but an additional change is needed before this
will succeed.

1.6.2 Using breakpoints to inspect the state of a running application

While testing an application, it’s common to want to investigate the behavior of a spe-
cific section of source code. Before you launch the application, it can be handy to con-
figure the debugger to automatically pause execution whenever these points are
reached. You can achieve this through the use of a feature called breakpoints.

 A breakpoint indicates to the debugger a point in the source code where the user
would like to automatically “break into” the debugger to explore the current value of
variables, and so on.

Always test on a real iPhone, iPod Touch, or iPad device
The code samples in this book are designed to run in the iOS Simulator. This is a quick
and easy way to iteratively develop your application without worrying about device con-
nectivity or the delay involved in transferring the application to a real device.

Because the iOS Simulator isn’t a perfect replica of an iPhone, it’s possible for an appli-
cation to work in the simulator but fail on an actual device. Never publish an application
to the iTunes App Store that hasn’t been tested on a real device, or better yet, try to
test your application out on a few variants, such as the iPhone and iPod Touch.

Figure 1.12 The top-left corner of the main Xcode window. Selecting the
CoinToss | iPhone 4.3 Simulator drop-down menu allows you to switch
between iPhone Simulator and iOS Device.
Download from Wow! eBook <www.wowebook.com>

24 CHAPTER 1 Building your first iOS application
For the Coin Toss game, let’s add a breakpoint to the start of the simulateCoinToss:
method. Open the CoinTossViewController.m file and scroll down to the source code
implementing the simulateCoinToss: method. If you then click the left margin
beside the first line, you should see a little blue arrow appear, as shown in figure 1.13.

 The blue arrow indicates that this line has an enabled breakpoint. If you click the
breakpoint, it becomes a lighter shade of blue, indicating a disabled breakpoint, which
causes the debugger to ignore it until it’s clicked again to re-enable it. To permanently
remove a breakpoint, click and drag the breakpoint away from the margin. Releasing
the mouse will show a little “poof” animation, and the breakpoint will be removed.

1.6.3 Running the CoinToss game in the iPhone simulator

With the breakpoint in place, you’re finally ready to run the application and see it in
action. Select Run from the Product menu (Cmd-R). After a few seconds, the application

Figure 1.13 Setting a breakpoint to break into the debugger whenever the first line of the simulateCoinToss:
method is called. Notice the arrow in the margin indicating an active breakpoint.
Download from Wow! eBook <www.wowebook.com>

25Taking Coin Toss for a test run
will appear on your iPhone. All that hard work has finally paid off. Congratulations—
you’re now officially an iPhone developer!

 If you want to run the game but don’t want any of your breakpoints to be enabled,
you can click each one to disable them individually, but this would take a while, and
you would need to manually re-enable all the breakpoints if you wanted to use them
again. As a handy alternative, you can temporarily disable all breakpoints by selecting
Product > Debug > Deactivate Breakpoints (Cmd-Y).

1.6.4 Controlling the debugger

Now that you’ve seen your first iPhone application running, you’ll have undoubtedly
felt the urge and tapped one of the buttons labeled Heads or Tails. When you tap a
button, notice that the Xcode window jumps to the foreground. This is because the
debugger has detected that execution of the application has reached the point where
you inserted a breakpoint.

 The Xcode window that appears should look similar to the one in figure 1.14.
Notice that the main pane of the Xcode window displays the source code of the cur-
rently executing method. Hovering the mouse over a variable in the source code dis-
plays a data tip showing the variable’s current value. The line of source code that’s
about to be executed is highlighted, and a green arrow in the right margin points at it.

 While the debugger is running, you’ll notice the left pane of the Xcode window
switches to display the call stack of each thread in the application. The call stack lists
the order in which currently executing methods have been called, with the current
method listed at the top. Many of the methods listed will be gray, indicating that
source code isn’t available for them, in this case because most are internal details of
the Cocoa Touch framework.

 A new pane at the bottom of the screen is also displayed; it shows the current val-
ues of any variables and arguments relevant to the current position of the debugger as
well as any textual output from the debugger (see figure 1.14).

 Along the top of the bottom debug pane, you may notice a series of small toolbar
buttons similar to those shown in figure 1.15.

 These toolbar options enable you to control the debugger and become important
when the debugger pauses the application or stops at a breakpoint. These toolbar but-
tons (which may not all be present at all points in time) allow you to perform the fol-
lowing actions:

■ Hide—Hide the debugger’s console window and variables pane to maximize the
screen real estate offered to the text editor.

■ Pause—Immediately pause the iPhone application and enter the debugger.
■ Continue—Run the application until another breakpoint is hit.
■ Step Over—Execute the next line of code and return to the debugger.
■ Step Into—Execute the next line of code and return to the debugger. If the line

calls any methods, step through their code as well.
■ Step Out—Continue executing code until the current method returns.
Download from Wow! eBook <www.wowebook.com>

26 CHAPTER 1 Building your first iOS application
Your breakpoint caused the debugger to pause
execution at the beginning of a simulated coin
toss. If you view the variables pane or hover the
mouse over the userCalledHeads argument, you
can determine if the user has called heads (YES)
or tails (NO).

 The first line of the simulateCoinToss:
method simulates flipping a coin (by selecting a random number, 0 or 1). Currently,
the debugger is sitting on this line (indicated by the red arrow in the margin), and the
statements on this line haven’t been executed.

 To request that the debugger execute a single line of source code and then return
to the debugger, you can click the Step Over button to “step over” the next line of
source code. This causes the coin toss to be simulated, and the red arrow should jump
down to the next line that contains source code. At this stage, you can determine the

Figure 1.14 The Xcode debugger window after execution has reached a breakpoint

Figure 1.15 The toolbar options in Xcode
for controlling the debugger
Download from Wow! eBook <www.wowebook.com>

27Summary
result of the coin toss by hovering the mouse over the coinLandedOnHeads variable
name; once again, YES means heads and NO means tails.

 Using the step-over feature a couple more times, you can step over the two if state-
ments, which update the result and status UILabels in the user interface. Unlike what
you may expect, however, if you check the iPhone device at this stage, the labels won’t
have updated! This is because of how the internals of Cocoa Touch operate: the
screen will only update once you release the debugger and allow this method to
return to the operating system.

 To allow the iPhone to update the user interface and to see the fancy animations
that herald in a new coin toss result, you can click Continue (or press Cmd-Option-P)
to allow the application to continue execution until it hits another breakpoint or you
explicitly pause it again. Taking a look at the iPhone, you should see that the results of
the coin toss are finally displayed onscreen.

1.7 Summary
Congratulations, you’ve developed your first iPhone application! Show your friends
and family. It may not be the next iTunes App Store blockbuster release, but while put-
ting together this application, you’ve mastered many of the important features of the
Xcode IDE, so you’re well on your way to achieving success.

 Although Objective-C is a powerful language with many capabilities, you’ll find using
visual tools such as Xcode can lead to a productivity boost, especially during initial proto-
typing of your application. The decoupling of application logic from how it’s presented
to the user is a powerful mechanism that shouldn’t be underestimated. It’s doubtful the
first user interface you design for your application will be perfect, and being able to alter
it without having to modify a single line of code is a powerful advantage.

 By the same token, you were able to rely on the Cocoa Touch framework to handle
the minutiae of how to implement many of the features of your game. For example,
the animations were implemented in a fairly declarative manner: you specified start-
ing and stopping points for the rotations and fading operations and left the Quartz
Core framework to worry about the specifics of redrawing the screen, transitioning
the animation, and speeding up or slowing down as the effect completed.

 As you’ll continue to see, there’s great power in the Cocoa Touch frameworks. If
you find yourself writing a vast amount of code for a particular feature, chances are
you aren’t taking maximum advantage of what Cocoa has to offer.

 In chapter 2, we dive into data types, variables, and constants and are introduced
to the Rental Manager application that you’ll build throughout this book.
Download from Wow! eBook <www.wowebook.com>

Data types, variables,
and constants
Virtually every application needs to store, represent, or process data of some kind,
whether a list of calendar appointments, the current weather conditions in New
York, or the high scores of a game.

 Because Objective-C is a statically typed language, whenever you declare a vari-
able, you must also specify the type of data you expect to store in it. As an example,
the following variable declaration declares a variable named zombieCount, which is
of type int:

int zombieCount;

Short for integer, int is a data type capable of storing a whole number between
–2,147,483,648 and +2,147,483,647. In this chapter, you’ll discover many data

This chapter covers
■ Storing numeric-, logic-, and text-based data
■ Creating your own data types
■ Converting values between different data types
■ Formatting values for presentation
■ Introducing the Rental Manager sample

application
28

Download from Wow! eBook <www.wowebook.com>

29Introducing the Rental Manager application
types that can be used to store a wide range of real-world values. But before we
dive in too far, let’s introduce the Rental Manager application that we build over
the course of this book.

2.1 Introducing the Rental Manager application
Each chapter in this book reinforces what you learned previously by applying the the-
ory to a larger sample application. This application is designed to manage rental
properties in a rental portfolio and to display details such as location, property type,
weekly rent, and a list of current tenants. Figure 2.1 shows what the application looks
like by the time you reach the end of this book.

 Although you might not manage a rental portfolio, hopefully you’ll see how the
concepts in the Rental Manager application could be structured to develop an appli-
cation of interest to you. For example, it could be turned into an application to man-
age details of a sports team or of participants in a running race.

2.1.1 Laying the foundations

To start developing the Rental Manager application, open Xcode and select the File >
New > New Project option. In the dialog that appears, select the Navigation-based
Application template and name the project “RentalManager.” You should end up with
Xcode showing a window similar to the one in figure 2.2.

 Pressing Cmd-R to run the application at this stage displays an almost empty
iPhone screen—but not quite as empty as the display that results from running the

Figure 2.1 Screenshots
demonstrating various
aspects of the Rental
Manager application we build
in this book. As well as
smaller examples, each
chapter reinforces concepts
by adding functionality to this
larger sample project.
Download from Wow! eBook <www.wowebook.com>

30 CHAPTER 2 Data types, variables, and constants
View-based Application (as in the Coin Toss project from chapter 1). The Navigation-
based Application template inserts a few user interface elements, such as a distinctive
blue navigation bar at the top. As the Rental Manager application develops, you’ll
extend the various features provided, but for now, let’s concentrate on adding the
ability to display a list of rental properties.

 When you run the application, you may notice that the white background is
divided into a number of rows by light gray lines, and by using your finger, you can
slide the list up and down. This control was added by the project template and is
called a UITableView. To display data in this control, you must write a small amount of
code to specify how many rows it should add and what each row contains.

 Select the file named RootViewController.m and open it for editing. The project
template has inserted a fair amount of source code into this file for your convenience
(although, at present, most of it’s commented out).

 Locate the two methods named tableView:numberOfRowsInSection: and
tableView:cellForRowAtIndexPath: and replace them with the code in the follow-
ing listing.

Figure 2.2 The main project window in Xcode immediately after creating the Rental Manager application using
the Navigation-based Application template
Download from Wow! eBook <www.wowebook.com>

31Introducing the Rental Manager application
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
{
 return 25;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }

 cell.textLabel.text = [NSString
 stringWithFormat:@"Rental Property %d", indexPath.row];

 NSLog(@"Rental Property %d", indexPath.row);

 return cell;
}

When the Rental Manager application runs, the UITableView control calls your
tableView:numberOfRowsInSection: method to determine how many rows you want
to display B. It then calls tableView:cellForRowAtIndexPath: a number of times as
the user slides up and down the list to obtain the content for each visible row.

 Your implementation of tableView:cellForRowAtIndexPath: is made up of two
steps. The first c creates a new table view cell with the UITableViewCell-
StyleDefault style. This style displays a single line of large, bold text (other built-in
styles replicate the layouts found in the settings or iPod music player applications).
The second step d sets that line of text to the string "Rental Property %d", where %d
is replaced with the index position of the current row.

 Press Cmd-R to rerun the application and you should see the main view displaying
a list of 25 rental properties. Your challenge in this chapter is to learn how to store
data in your application before expanding your tableView:cellForRowAtIndexPath:
method to display some practical information about each rental property.

 Before moving on, take a look at tableView:cellForRowAtIndexPath: and, in par-
ticular, the last line that calls a function named NSLog. Notice that this method takes
arguments similar to those of NSString’s stringWithFormat: method, which gener-
ated the string that was displayed in the table view cells onscreen.

NSLog is a handy function to learn and use. It formats a string but also sends the
result to the Xcode debugger console (see figure 2.3). NSLog can be a useful way to
diagnose the inner workings of your application without relying on breakpoints.

 While the Rental Manager application is running, you can view the output from
calls to NSLog by viewing the debugger console (Shift-Cmd-Y), as shown in figure 2.3.

Listing 2.1 Handling UITableView requests for the contents to display in the table

Determine
number of rows

B

Create table
view cell

c

Set the line
of text

d

Download from Wow! eBook <www.wowebook.com>

32 CHAPTER 2 Data types, variables, and constants
As you scroll up and down the list of rental properties, you should see the console win-
dow logging which rows the UITableView has requested details of.

 Now that the Rental Manager application has been introduced, and you have the
initial shell up and running, let’s get back to the subject at hand: how to store data in
your applications. Throughout the rest of the chapter, feel free to insert the various
code snippets shown into tableView:cellForRowAtIndexPath: and experiment. At
the end of the chapter, we come back to this application and flesh it out for real.

2.2 The basic data types
The Objective-C language defines a set of standard data types that are provided as sim-
ple building blocks. These built-in data types are often called primitive data types,
because each type can store a single value and can’t be broken down into smaller units.

 Once you master the use of primitive data types, it’s also possible to combine mul-
tiple primitive data types to produce larger, more complex composite data types.
These complex data types have names such as enum, union, and struct.

 The primitive data types we cover in this chapter include int, float, double, char,
and bool. Let’s get started and discuss what kinds of data types you can use to store
numerical data in your Rental Manager application.

2.2.1 Counting on your fingers—integral numbers
Integers are an integral part of any programming language. An integer is a whole
number that can be negative or positive. The values 27, -5, and 0 are all valid integer
values, but 0.82 isn’t because it contains a decimal point.

 To declare an integer variable, use the data type int (which is shorthand for inte-
ger), as demonstrated here:

int a;

By default, variables of type int are signed and can represent both positive and nega-
tive values. Sometimes you may want to restrict an integer variable to store only posi-
tive numbers. You can do this by adding the special qualifier unsigned before the data
type, as shown in the following variable declaration:

unsigned int a;

This means the variable a will be allowed to store only positive numbers. Conversely,
you can explicitly create a signed integer variable by using the signed qualifier:

signed int a;

Figure 2.3 The Debugger Console window can be handy place to view diagnostic messages from the internal
workings of your application as it’s running.
Download from Wow! eBook <www.wowebook.com>

33The basic data types
Because variables of type int are signed by default, it’s uncommon to see the signed
qualifier used in most applications—its use is somewhat redundant.

 Once you declare a variable, you can assign it a value with the assignment operator,
which is represented by an equals sign. For example, the following statements declare
a new variable called a and then assign it the value 15.

int a;

a = 15;

Because it’s common to declare a variable and then assign it an initial value, both
statements can be combined:

int a = 15;

The value 15 used in this assignment statement is called a constant. A constant is any
value that can never change its value while the application is running. A constant
doesn’t have to be a single number; for example, the following variable declaration
also makes use of a constant value.

int a = 5 + 3;

The value calculated by the expression 5 + 3 can never result in a number other than 8.
The Objective-C compiler calculates the value of this expression during compilation
and replaces it with a single constant value.

 By default, integer constants are specified in decimal, or base 10, which is the most
familiar notation for most people. It’s also possible to specify integer constants in a
number of other bases by using a special prefix in front of the number, as detailed in
table 2.1.

One trap new developers occasionally make is to include a leading zero at the start of
a decimal number. As far as Objective-C is concerned, 017 isn’t the same value as 17.
The leading zero in front of the first constant means the number is interpreted as an
octal (base 8) number and hence equals the decimal value 15.

FACING THE LESS-THAN-IDEAL REAL WORLD

The iPhone is a vast improvement over the hardware and memory constraints of a tra-
ditional cell phone, but it’s still constrained by real-world realities such as a fixed
amount of memory being available to applications. In an ideal world, developers

Table 2.1 Different ways to express the value 15 as an integer constant. Each format is identified by a
special prefix that precedes the number.

Name Base Prefix Example constant

Octal 8 0 017

Decimal 10 — 15

Hexadecimal 16 0x 0x0F
Download from Wow! eBook <www.wowebook.com>

34 CHAPTER 2 Data types, variables, and constants
wouldn’t have any constraint on the value of integers—they could be infinitely high or
low—but, unfortunately, constraints do exist. Declaring a variable of type int allocates
a set amount of memory in which to store the value, and hence it can represent only a
limited range of values. If you wanted to store infinitely large values, the variable
would also require an infinite amount of memory, and that’s clearly not possible.

 This is one reason for having unsigned and signed qualifiers. Using the unsigned
qualifier trades off the ability to store negative numbers with the ability to double the
range of positive values you can store in the same amount of memory. Other qualifiers
include short and long, which can be added to an int data type to expand or con-
tract the size of the variable. The most common sizes are listed in table 2.2.

In Objective-C, int is the default data type for variables and parameters. This means
you can remove the keyword int from your variable declaration statement and,
in most cases, it will still compile. Therefore, the following two variable declarations
are equivalent:

unsigned a;
unsigned int a;

The first variable declaration implicitly implies the presence of the data type int by
the presence of the unsigned qualifier. In the second declaration, the int data type is
said to be explicitly specified because it’s present in the declaration.

THE LEGACY OF CONTINUAL PROGRESS—NSINTEGER, NSUINTEGER, AND THEIR ILK

As you explore Cocoa Touch, you’ll find that most APIs use data types with names such
as NSInteger or NSUInteger instead of int and unsigned int. These additional types
are part of Apple’s progress toward 64-bit computing.

 Currently, all iOS-powered devices (and older versions of Mac OS X) use a program-
ming model called ILP32, which supports a 32-bit address space. Since Mac OS X 10.4,
the desktop has been moving toward a different programming model, LP64, which sup-
ports a 64-bit address space. Under the LP64 model, variables of type long int and mem-
ory addresses are increased to 64 bits in size (compared to the 32 bits shown in
table 2.2), whereas the size of all other primitive types, such as int, remain the same.

 As part of the effort to take full advantage of 64-bit platforms, Cocoa introduced the
NSInteger data type to provide a data type that was a 32-bit integer on 32-bit platforms

Table 2.2 Common integer data types. Various modifiers can be used to alter the size of a variable and
hence the valid range of values that can safely be stored in them.

Data type Size (bits) Unsigned range Signed range

short int 16 0—65,535 –32,768—32,767

int 32 0—4,294,967,295 –2,147,483,648—2,147,483,647

long int 32 0—4,294,967,295 –2,147,483,648—2,147,483,647

long long int 64 0—(264 – 1) –263—(263 – 1)
Download from Wow! eBook <www.wowebook.com>

35The basic data types
while growing to a 64-bit integer when compiling the same source code on a 64-bit
platform. This allows code to take advantage of the increased range provided by 64-bit
integers while not using excessive memory when targeting 32-bit systems.

 Eagled-eyed developers may wonder why new data types such as NSInteger were
introduced when existing data types such as long int would appear to already fit the
desired role. NSInteger exists for use in APIs that should be 64-bit integers on 64-bit
platforms but for one reason or another must be typed as int instead of long int on
32-bit platforms.

2.2.2 Filling in the gaps—floating-point numbers

When modeling the real world, it’s common to come across numbers that contain a
fractional part, such as 0.25 or 1234.56. An integer variable can’t store such values, so
Objective-C provides alternative data types called float and double for storing this
kind of data. As an example, you can declare a variable f of type float and assign it
the value 1.4 as follows:

float f = 1.4;

Floating-point constants can also be expressed in scientific or exponential notation by
using the character e to separate the mantissa from the exponent. The following two
variable declarations are both initialized to the same value:

float a = 0.0001;
float b = 1e-4;

The first variable is assigned the value 0.0001 via a familiar decimal constant. The second
variable is assigned the same value but this time via a constant expressed in scientific
notation. The constant 1e-4 is shorthand for 1 × 10-4, which, once calculated, produces
the result 0.0001. The e can be thought of as representing “times 10 to the power of.”

 In Objective-C, floating-point variables are available via two main data types, which
trade off the range of possible values they can represent and the amount of memory
they use, as shown in table 2.3.

 You may wonder how a variable of type float or double can store such a wide
range of values when a similar sized int can only store a much smaller range of values.
The answer lies in how floating-point variables store their values.

Good habits learned now mean less hassle in the future
Declaring your variables using data types such as NSInteger and NSUInteger can
be considered a form of future-proofing your source code. Although they’re identical
to int and unsigned int when compiling for the iPhone today, who knows what’s
around the corner? Perhaps a future iPhone or iPad will be a 64-bit device, or you’ll
want to reuse some of your source code in a matching desktop application.

It’s much easier to establish the habit of using portable data types such as NSInte-
ger or NSUInteger now (even if you don’t get much immediate benefit from it) than
to have to correct such portability issues in the future.
Download from Wow! eBook <www.wowebook.com>

36 CHAPTER 2 Data types, variables, and constants
On the iPhone, as with most modern platforms, floating-point values are stored in a for-
mat called the IEEE 754 Standard (http://grouper.ieee.org/groups/754). This format is
similar in concept to scientific notation. With a lot of hand waving to gloss over more
complex details, you can imagine that the 32 or 64 bits that make up a float or double
value are divided into two smaller fields representing a mantissa and an exponent.

 By using an exponent-based format, you can represent very large or very small
numbers. But as with most things, this doesn’t come completely for free. With only a
restricted set of values you can use for the mantissa (due to the limited number of bits
assigned to store it), you can’t represent every value in the extended range enabled by
the exponent. This leads to the interesting discovery that certain decimal values can’t
be stored precisely. As an example, the output of the following code snippet may sur-
prise you:

float f = 0.6f;
NSLog(@"0.6 = %0.10f", f);

The %0.10f bit in the call to NSLog requests that the value be printed to 10 decimal
places, but instead of the value 0.6000000000, the value 0.6000000238 gets printed.
The reason for this inaccuracy is that when the decimal value 0.6 is converted to a
binary, or base 2, number, it produces an infinitely repeating sequence (similar in
concept to how the value 0.33 behaves in decimal). Because a float variable has only
a certain number of bits in which to store the number, a cut-off has to be made at
some stage, leading to the observed error.

 Many calculations with floats produce results that require rounding in order to fit
in 32-bits. In general, a variable of type float should be relied on to be accurate to
only about 7 significant digits, but a double extends this to about 15.

 Careful consideration should be given when using floating-point numbers. Unlike
integer values that can represent all values in their specified ranges, calculations on
floating-point numbers are at worst an approximation of the result. This means you
should rarely perform an equality comparison between two floating-point numbers
because any intermediate calculations may introduce subtly different rounding type
errors. Instead, floating-point numbers are traditionally compared by subtracting
one value from another and checking that the difference is less than a suitably small
epsilon value.

Table 2.3 Common floating-point data types. A double takes twice the amount of memory as a
float but can store numbers in a significantly larger range.

Data type Size (bits) Range Significant digits (approx.)

float 32 ±1.5 x 10-45 to ±3.4 x 1038 7

double 64 ±5.0 x 10-324 to ±1.7 x 10308 15
Download from Wow! eBook <www.wowebook.com>

http://grouper.ieee.org/groups/754

37The basic data types
2.2.3 Characters and strings

In addition to data types that enable the storage of numerical data are a number of
other types that allow storage of other categories of data. For example, the char data
type can be used as the basis for storing textual data in your application.

IN THE BEGINNING THERE WAS TYPE CHAR

A variable of type char can store a single character, such as the letter a, the digit 6, or
a symbol such as an asterisk. Because some of these characters (such as a semicolon or
curly brace) already have special meaning in Objective-C, special care must be taken
when defining character constants. In general, a character constant is formed by
enclosing the desired character in a pair of single quotation marks. As an example,
the letter a can be assigned to a variable as shown here:

char c = 'a';

The char data type can be considered to be a tiny 8-bit integer, so it’s also possible to
manually consult an ASCII character chart and assign a numeric value directly:

char d = 97;

If you refer to an ASCII character chart, you’ll notice that the value 97 represents a low-
ercase a, so variables c and d in the preceding examples will both store identical values.

 Enclosing character constants in single quotation marks helps specify most char-
acters that are printable. But a few, such as the carriage return and newline charac-
ters, are impossible to enter into your program’s source code in this manner.
Objective-C therefore recognizes several escape sequences, which allow these special
characters to be placed in character constants. See table 2.4 for a list of common
backslash escape sequences.

 By default, char is an unsigned value that can store a value between 0 and 255. Using
the signed qualifier allows storage of a value between −128 and 127. In most cases, how-
ever, you should probably stick with the int data type if you want to store numbers.

What does floating point mean?
In computing, floating point means that the equivalent of the decimal (or radix) point
in the number can “float”: the decimal point can be placed anywhere between the
significant digits that make up the number, on a number-by-number basis.

By contrast, in a fixed-point number, the decimal point is always positioned with a
fixed number of digits after it.

Objective-C doesn’t provide any standard fixed-point data types; you can typically
implement them yourself by using the existing integer data types. As an example,
storing monetary values as a number of cents could be considered a fixed-point for-
mat with an implied (or fixed) decimal point positioned before the last two decimal
digits. For instance, the integer value 12345 could be considered to represent the
value $123.45.
Download from Wow! eBook <www.wowebook.com>

38 CHAPTER 2 Data types, variables, and constants
After declaring a variable that can store a single character, you’ll undoubtedly want to
expand on this to store sequences of characters to form entire words, sentences, or
paragraphs. Objective-C calls such a sequence of characters a string.

STRINGING THINGS ALONG

A string is a sequence of characters placed one after another. Objective-C supports two
types of strings: a traditional C-style string picked up via the C-based heritage of Objec-
tive-C and a new object-oriented type called NSString.

 To declare a C-style string variable, you use the data type char *. A string constant
is represented by a set of characters enclosed in double quotation marks and can also
use character escape sequences such as those listed in table 2.4. For example, the fol-
lowing code snippet stores the string "Hello, World!" in a variable called myString:

char *myString = "Hello, World!";

The standard C runtime library provides various functions that work with C-style strings.
For example, strlen can be used to determine the length of a particular string:

int length = strlen(myString);

When using C-style strings, you’re responsible for ensuring enough memory is allocated
to store any resultant string that might be generated by an operation. This is a critically
important fact to remember, especially when using functions such as strcat or strcpy,
which are used to build or append to existing strings. To append the text "are awe-
some!" to the end of an existing string stored in a variable called msg, you could use the
following statement, which uses strcat to perform a string concatenation:

char msg[32] = "iPhones";
strcat(msg, " are awesome!");

Although this code snippet is correct, it has a problem if the resultant string could
ever become larger than 31 characters. The square brackets after msg cause the com-
piler to allocate space for 31 characters (plus a so-called NULL character, which indi-
cates the end of the string). If the string concatenation result ever becomes larger
than the allocated space, it overwrites whatever lies next in memory, even if that stores
an unrelated variable. This situation, called a buffer overrun, leads to subtle and hard-
to-detect bugs such as variables randomly changing values or application crashes
depending on how the user interacts with your application.

Table 2.4 Common backslash escape sequences used to specify special characters in a character
constant. Most characters in this list require special handling because they have no visible representation
on a printed page.

Escape sequence Description Escape sequence Description

\r Carriage return \" Double quotation marks

\n Newline \' Single quotation marks

\t Horizontal tab \\ Backslash
Download from Wow! eBook <www.wowebook.com>

39The basic data types
 Objective-C therefore defines a much more practical data type, called NSString,
which we discuss in depth in chapter 3.

2.2.4 Boolean truths

Many languages have a Boolean data type capable of storing two states, commonly
referred to as true and false. Objective-C is no exception: it provides the BOOL data
type, which by convention uses the predefined values YES and NO (although TRUE and
FALSE are also defined). You can assign a value via a simple constant as follows:

BOOL result = YES;

But it’s more common to calculate Boolean values by performing a comparison
between one or more values of another data type, as demonstrated here:

int a = 10;
int b = 45;
BOOL result = a > b;

As in most languages, the > operator compares the value on the left against the value
on the right and returns true if the left side is greater than the right side. Table 2.5
lists the most common comparison and logical operators available in Objective-C.

Hello, hola, bonjour, ciao, 餵, привет
The char data type was created at a time when internationalization of software
wasn’t much of a concern. Therefore, most iPhone applications using C-style strings
will probably make use of other closely related data types such as unichar. unichar
is a 16-bit character data type that stores character data in UTF-16 format.

Table 2.5 Common comparison and logical operators available in Objective-C for use in Boolean
expressions. Don’t confuse && and || with the & and | operators, which perform a different task.

Operator Description Example expression

> Greater than x > y

< Less than x < y

>= Greater than or equal x >= y

<= Less than or equal x <= y

== Equal x == y

!= Not equal x != y

! Not (logical negation) !x

&& Logical And x && y

|| Logical Or x || y
Download from Wow! eBook <www.wowebook.com>

40 CHAPTER 2 Data types, variables, and constants
Unlike some languages with a true Boolean data type, Objective-C doesn’t restrict
variables of type BOOL to storing only the two values YES and NO. Internally, the frame-
work defines BOOL as another name for the signed char data type discussed previ-
ously. When Objective-C evaluates a Boolean expression, it assumes any nonzero value
indicates true and a value of zero indicates false. This choice of storage formats can
lead to some interesting quirks. For example, the following code snippet tries to sug-
gest that a BOOL variable can store values of both true and false at the same time:

BOOL result = 45;

if (result) {
 NSLog(@"the value is true");
}
if (result != YES) {
 NSLog(@"the value is false");
}

This quirk occurs because the result variable stores a nonzero value (hence indicating
truth) but doesn’t store exactly the same value that YES is defined as (1). In general,
it’s best to compare BOOL values against the value NO. Because only one value can ever
indicate false, you can be assured hard-to-spot errors such as the one demonstrated
here don’t occur in your source code.

 This completes our initial coverage of how to declare and store values of built-in
primitive data types. You still have much to learn about them, though, and we con-
tinue to discuss them throughout the rest of the book.

2.3 Displaying and converting values
Using variables to store values is useful, but at some stage, you’ll want to display them
to the user. Usually this will necessitate converting a raw value into a nicer, more for-
matted form. For example, a floating-point calculation may result in the value
1.000000000000276, but a user may not be interested in an answer to this level of pre-
cision (if indeed the result was ever that precise given the potential inaccuracies dis-
cussed in section 2.2.2). It may be more suitable to present this value only to two
decimal places, as 1.00.

 In the following section, we discuss in detail how you can alter the display of argu-
ments provided to a call to NSLog by altering what is called the format string. We also
take a brief look at how numeric values can be converted between the various repre-
sentations and how this too can affect the results of a calculation.

2.3.1 NSLog and Format Specifiers

The first argument provided in a call to NSLog specifies what is called the format string.
NSLog processes this string and displays it in the Xcode debugger console. In most
cases, the format string contains one or more placeholders that are indicated by a %
character. If placeholders are present, NSLog expects to be passed a matching number
of additional arguments. As NSLog emits its message, it substitutes each placeholder
Download from Wow! eBook <www.wowebook.com>

41Displaying and converting values
with the value of the next argument. As an example, when the following code snippet
is executed, NSLog replaces the first instance of %d with the value of variable a and the
second instance with the value of variable b, resulting in the string "Current values
are 10 and 25" being emitted to the debug console:

int a = 10;
int b = 25;
NSLog(@"Current values are %d and %d", a, b);

In a placeholder definition, the character immediately following the % character spec-
ifies the expected data type of the next argument and how that value should be for-
matted into a text string. Table 2.6 contains some common data types you may use and
their associated format specifiers.

A couple of entries in table 2.6 deserve additional comment. For integers, you can
choose to display values with %d (or %u) for decimal, %o for octal, or %x for hexadeci-
mal. Because there are multiple sizes of integer variables, you may also need to prefix
these specifiers with additional letters that indicate the size of the argument. You can
use h for a short, l for a long, or ll for a long long. To format a long long int into
hexadecimal, for example, you utilize the format specifier %llx.

 In a similar fashion, float and double types have three options: %e for scientific
notation, %f for decimal notation, or %g to have NSLog determine the most suitable
format based on the particular value to be displayed.

 The % character has special meaning in the format string, so special care must be
taken if you want to include a percentage sign in the generated text. Whenever you
want a % sign, you must provide two in a row to signify that you aren’t specifying a new
placeholder but inserting the percent symbol (%). This can be handy when displaying
values expressed as percentages. The following code snippet emits the text "Satis-
faction is currently at 10%":

int a = 10;
NSLog(@"Satisfaction is currently at %d%%", a);

Table 2.6 Common format specifiers used in NSLog format strings. Notice some data types have
multiple format specifiers to control the way their particular values are presented. For example, integers
can be displayed in decimal, octal, or hexadecimal form.

Data type Format specifier(s)

char %c (or %C for unichar)

char * (C-style string) %s (or %S for unichar *)

Signed int %d, %o, %x

Unsigned int %u, %o, %x

float (or double) %e, %f, %g

Object %@
Download from Wow! eBook <www.wowebook.com>

42 CHAPTER 2 Data types, variables, and constants
To further control the presentation of values, you can place a number between the %
and the field data type. This acts as a minimum field width and will right-align the value
by padding out the string with spaces if it’s not already long enough. For example:

int a = 92;
int b = 145;
NSLog(@"Numbers:\nA: %6d\nB: %6d", a, b);

This should result in the console window displaying output similar to the following:

Numbers:
A: 92
B: 145

Placing a negative sign in front of the number causes NSLog to instead left-align the
field, whereas prefixing the number with a zero pads with zeros instead of spaces.
When formatting floating-point numbers, it’s also possible to specify the desired num-
ber of decimal places by preceding the minimum field-width specifier with a decimal
point and the desired number of decimal places. As an example, the following code
snippet emits the string "Current temperature is 40.54 Fahrenheit":

float temp = 40.53914;
NSLog(@"Current temperature is %0.2f Fahrenheit", temp);

Portability is never as simple as it first seems
If you followed our previous advice and made use of data types such as NSInteger
and NSUInteger, you must be extra careful when using functions, such as NSLog,
which accept format specifiers. On 32-bit targets, such as the iPhone, it’s common
to use the %d specifier to format integer values, as demonstrated in the following
code sample:

NSInteger i = 45;
NSLog(@"My value is %d", i);

If you reuse this code in a 64-bit-based desktop application, however, it could result
in incorrect behavior. In a 64-bit environment, a variable declared of type int stays
at 32 bits in size, whereas a variable declared of type NSInteger is redefined to be
equivalent to long, which makes it now 64 bits in size. Hence, the correct format
specifier for NSInteger in a 64-bit environment is %ld:

NSLog(@"My value is %ld", i);

To avoid altering source code like this, Apple’s 64-bit Transition Guide for Cocoa rec-
ommends always casting such values to long or unsigned long (as appropriate).
For example:

NSLog(@"My value is %ld", (long)i);

The typecast to long ensures that NSLog is always provided a 64-bit argument even
if the current platform is 32 bit. This means %ld will always be the correct specifier.
Download from Wow! eBook <www.wowebook.com>

43Displaying and converting values
2.3.2 Type casts and type conversions

It’s common to perform calculations using expressions that contain variables or con-
stants of different data types. For example, a calculation may involve a variable of type
float and another of type int. A CPU can typically perform calculations only on simi-
larly typed values, so when such an expression is encountered, the compiler must tem-
porarily convert at least one of the values into an alternative format.

 These conversions fall under two categories: explicit type conversions, which you
must manually specify in code, and implicit type conversions, which are performed
automatically by the compiler under specific circumstances. Let’s investigate the fol-
lowing expression:

int a = 2, b = 4;
int c = a / b;
NSLog(@"%d / %d = %d", a, b, c);

This code snippet performs a division between variables a and b and stores the result
in c. At first blush, you may believe that the value of variable c will be 0.5, because this
is the result a pocket calculator would get when dividing 2 by 4. But if you execute the
code, it will report that the answer is 0. Variable c can’t store the value 0.5 because it’s
typed as an integer, which can store only whole numbers.

 You may think the answer is to store the result of the division in a variable of type
float, as demonstrated here:

int a = 2, b = 4;
float c = a / b;
NSLog(@"%d / %d = %f", a, b, c);

Unfortunately, this snippet will still print the incorrect answer. Although the result of
the calculation is stored in a floating-point variable, the division operation still sees
that both operands (variables a and b) are of type int. This causes the division to be
performed as an integer division (you may remember from your school days that 2
divided by 4 equals 0, remainder 2). Once the result of the integer division is calcu-
lated, the compiler notices you want to store the integer value in a variable of type
float and performs an implicit type conversion between the two number formats.

 In order for the division to be performed as a floating-point division, you must
force at least one of its operands to be of type float. Although you could modify the
data types of variables a or b to achieve this, doing so may not be practical in all sce-
narios. As an alternative, you can modify the expression by placing (float) in front of
one of the operands.

int a = 2, b = 4;
float c = (float)a / b;
NSLog(@"%d / %d = %f", a, b, c);

Placing the name of a data type inside parentheses is a request to the compiler to con-
vert the current value (or expression) into the specified data type. This operation is
called an explicit type conversion, or typecast, because you must explicitly provide the
hint to the compiler.
Download from Wow! eBook <www.wowebook.com>

44 CHAPTER 2 Data types, variables, and constants
 In the code snippet given, you typecast variable a to force it to be converted into a
float value before the rest of the expression is evaluated. This means the division
operation now sees one operand of type float and another of type int. This causes
the compiler to implicitly convert the other operand to type float to make them com-
patible with each other and then perform a floating-point division. This calculation
results in the desired result of 0.5.

 It’s important to note that not all typecasts result in a perfect conversion. It’s possi-
ble for data to become “lost” or truncated in the process. For example, when the fol-
lowing statements are executed, the explicit typecast between a floating-point
constant and the int data type causes data loss.

int result1 = (int)29.55 + (int)21.99;
int result2 = 29 + 21;

NSLog(@"Totals are %d and %d", result1, result2);

Notice that the first expression involving floating-point constants is evaluated to have
the same result as the calculation using the values 29 + 21. Typecasting a floating-
point number into an integer removes anything after the decimal point: it performs
a truncation instead of a rounding operation (which would have resulted in the total
52 for result1).

 This concludes our look at the primitive data types available to Objective-C devel-
opers. Using these types, you can express most forms of data, numerical in the form of
int and float, Boolean in the form of BOOL, and textual via various data types such as
char, char*, and NSString.

 As nice as this is, however, you’ll still come across situations where these data types
are lacking. As an example, you may need a variable that can store a limited subset of
values, or you may want to group multiple related values. In such scenarios, Objective-
C allows you to create your own custom data types, which is the topic we discuss next.

2.4 Creating your own data types
Objective-C provides a number of language constructs that allow you to define your
own custom data types. These can be as simple as providing an additional name for
an existing type or as complex as creating new types that can store multiple elements
of information.

 The first custom data type we investigate is called an enumeration and enables us to
restrict the valid set of values an integer variable can store.

2.4.1 Enumerations

When analyzing the real world, it’s common to summarize data into a small set of pos-
sible values. Rather than saying it was 52 degrees yesterday, you’re perhaps more likely
to state it was hot, warm, cold, or freezing. Likewise, a loan may have a state of
approved, pending, or rejected, and a simple digital compass could point North,
South, East, or West.
Download from Wow! eBook <www.wowebook.com>

45Creating your own data types
 With what we’ve covered so far, the best approach to store such values would be to
use an integer variable and to assign each state a unique value. For example, a value of 1
could indicate the compass was pointing North, whereas a value of 2 could indicate it
was pointing East. As a human, however, it can be rather tricky to manage this because
you don’t tend to think in terms of numbers. Seeing a variable set to the value 2, you
don’t immediately think “East.” Objective-C has a custom data type called an enumer-
ation that’s designed to resolve this.

 To define a new enumerated data type, you use the special keyword enum. This is
followed by a name and a list of possible values in curly braces. For example, you
could declare an enumerated data type to store compass directions as follows:

enum direction { North, South, East, West };

Once the new enumeration data type is declared, you can create a variable of type
enum direction and assign it the value North, as shown here:

enum direction currentHeading = North;

You may wonder what integer value North represents because you didn’t explicitly spec-
ify this during the declaration of the enumerated data type. By default, the first enu-
merated value (North) is given the integer value 0, and each value thereafter is given a
value one greater than the name that preceded it. This convention can be overridden
when the enumeration is declared. As an example, with the following declaration:

enum direction { North, South = 10, East, West };

North has the value 0 because it’s the first enumerated value. South has the value 10
because it’s explicitly specified via an initializer, and East and West have the values 11
and 12 respectively because they immediately follow South. It’s even possible for more
than one name to map to the same integer value, although in this case there’s no way
to tell the two values apart.

 In theory, an enumerated data type should be used to store only one of the values
specified in the enumeration. Unfortunately, Objective-C won’t generate a warning if
this rule is violated. As an example, the following is perfectly valid in an Objective-C
program and in many cases won’t produce a compilation error or warning:

enum direction currentHeading = 99;

Even if this is possible, you shouldn’t rely on it. Try to restrict yourself to storing and
comparing only the symbolic names you specified in the type declaration. Doing so
allows you to easily change the values in a single place and have confidence that all
logic in your application is correctly updated. If you make assumptions based on the
value of an enumerated data type (or store random integer values), you defeat one of
their main benefits, which is the association of a symbolic name to a specific value.

 The association of integer value and symbolic name has a number of benefits,
including an improved debugging experience, as can be seen in figure 2.4.
Download from Wow! eBook <www.wowebook.com>

46 CHAPTER 2 Data types, variables, and constants
In the code snippet shown, the variables currentHeading1 and currentHeading2 are
both set to the enumerated value South; the difference is that one variable is of type
enum direction, whereas the other is of type int. As you can see, the debugger is able
to determine if a variable is of an enumerated data type and will display the name
associated with the variable’s current value rather than displaying the raw integer
value. This can be an immense benefit during long debugging sessions when the enu-
meration values represent the state of the application.

2.4.2 Structures

In more complex applications, another common scenario is to have a set of variables
that are related in concept. For example, you may want to record the width, height,
and depth of a box. You could use individual variables to represent this information:

int width;
int height;
int depth;

Figure 2.4 The benefit of using enumerations extends into the debugger. The variable pane displays the name
associated with the current value instead of its raw integer value. Even though the variable currentHeading2
is assigned the value South (like currentHeading1), the debugger displays the value 10 due to its data type
being int.
Download from Wow! eBook <www.wowebook.com>

47Creating your own data types
And if you wanted to store details of multiple boxes, you could duplicate this set of
variables to come up with something similar to the following:

int width_box1, width_box2, width_box3;
int height_box1, height_box2, height_box3;
int depth_box1, depth_box2, depth_box3;

This process could become a laborious one if you decided in the future to add addi-
tional details you wanted to record for each box, such as its color. You would need to
find all occurrences of box details and manually update the variable declarations.

 Using individual variables also makes passing details of a specific box more diffi-
cult. Rather than passing a single variable, you must pass multiple values, and there’s
nothing stopping you from accidentally transposing the variables representing the
width and height of a box. These kinds of bugs can be subtle and hard to detect.

 It would be better if you could declare a variable of data type box and have the
compiler automatically know that it must provide space for individual width, height,
and depth values. By doing this, you’d have a single variable that can be easily passed
and a single definition of what a box consists of.

 Objective-C calls such custom data types structures. Structures are declared with the
struct keyword and consist of a name followed by a semicolon-separated list of field
declarations. You could define a box structure as follows:

struct box {
 int width;
 int height;
 int depth;
};

This statement declares that a box is a data structure that contains three integer
fields, called width, height, and depth. Once a structure is declared, you can create
variables of type struct box, and they’ll be allocated space to store three integer val-
ues. For example, you could create enough variables to store information about five
boxes as follows:

struct box a, b, c, d, e;

Each variable would have a unique width, height, and depth value associated with it.
When using a structure-based variable, you must specify which field you want a partic-
ular statement to access. You do this by placing a period after the variable name fol-
lowed by the desired field name. For example, to set the width of the second box, you
could use the following statement:

b.width = 99;

As another example, you could calculate the volume of box b as follows:

int volume = b.width * b.height * b.depth;
Download from Wow! eBook <www.wowebook.com>

48 CHAPTER 2 Data types, variables, and constants
Like variables of primitive data types, structure variables can be initialized with an ini-
tial value. You can achieve this through two forms of syntax. The first is to provide a
value for each field in a set of curly braces:

struct box a = { 10, 20, 30 };

This line specifies a box 10 wide 20 high 30 deep. The values in the curly braces are
specified in the same order as the fields were defined in the structure declaration. If
you don’t specify enough values, any unspecified fields are left uninitialized. An alter-
native syntax explicitly specifies the name of each field being initialized, as follows:

struct box a = { .width=10, .height=20, .depth=30 };

This alternative syntax can be clearer in intent and will also cope if the order of the
fields in the structure declaration changes. It’s even possible to initialize only select
fields in the structure when using this syntax:

struct box a = { .depth=30 };

This last example sets the depth field to 30 and leaves the width and height fields
uninitialized. In this sense, uninitialized means the field will have the value 0 or its
equivalent, such as nil, although this depends on the storage class of the variable.

 Structures are a handy way to group related sets of variables into easier-to-manage
chunks, but they don’t solve all of the problems you may encounter with storing
details about multiple highly similar objects. For example, you may need to calculate
the total width of all the boxes in your application. To do this, you could come up with
an expression similar to the following:

struct box a, b, c, d, e, f;
int totalWidth = a.width + b.width + c.width + d.width + e.width;

Although this is manageable with only five boxes, imagine how torturous the expression
would be to write if the application instead needed to store details of 150 different boxes.
There would be a lot of repetitive typing involved, and it would be easy to miss a box or
include a box multiple times. Each time you change the number of boxes your applica-
tion needs to store, you’d also need to update this calculation. That sounds like a lot of
pain! What you want the expression to say is “add the width of every box” and have the
statement work without modification no matter the number of boxes your application
currently keeps track of. Not surprisingly, Objective-C has a data type to help you out.

2.4.3 Arrays
Another common scenario is the need to store multiple values of the same data type.
C provides a handy data structure called an array to make this task easier. An array is a
data structure that stores a list of items. Each item (or element) is stored consecu-
tively, one after the other, in memory and can only be accessed by its relative position.
This position is often called the item’s index. To declare an array capable of storing
details of 150 boxes, you could write a variable declaration similar to this:

struct box boxes[150];
Download from Wow! eBook <www.wowebook.com>

49Creating your own data types
With this statement, you’ve declared enough space to store 150 boxes but used only
one variable name, boxes, to identify them all. The number specified in square brack-
ets indicates the number of items that can be stored in the array.

 To access the details of each box, you must provide the name of the array along
with the index value of the desired element. By convention, the first element in an
array has an index of 0, and each element thereafter has an increasing index value.
This means that the last entry in a 150-element array will be accessible via index 149.
The following statement will access and print the width of the sixth box:

NSLog(@"The 6th box has a width of %d inches", boxes[5].width);

Notice that to access the sixth element, you specified index 5. That’s because indexes
start at 0 and not the more “natural” value of 1. When accessing array elements, the
array index need not be specified as a simple constant. You can use any valid expres-
sion that results in an integer value. This allows you to write code that accesses differ-
ent array items based on the state of the application. For example, consider the
following code sample, which adds the widths of all 150 boxes:

int totalWidth = 0;
for (int i = 0; i < 150; i++) {
 totalWidth = totalWidth + boxes[i].width;
}

This example uses a for loop to repeat the statement totalWidth = totalWidth +
boxes[i].width with the value of variable i incrementing between 0 and 149. Con-
trasting this expression with the one mentioned toward the end of section 2.4.2, you
can see that this version can easily be updated to cope with different numbers of
boxes by changing the value 150 in the second line. Using an array in this scenario
makes for an easier and vastly more maintainable solution.

INITIALIZING ARRAYS

When declaring array variables, it can be helpful to provide each element in the array
with an initial value. To do so, place a comma-separated list of initial values in a set of
curly braces, similar to how structures are initialized:

int count1[5] = { 10, 20, 30, 40, 50 };
int count2[] = { 10, 20, 30, 40, 50 };

This code snippet creates two integer arrays with five elements. In each array, the first
element stores the value 10, the second element stores 20, and so on.

 In the first array, the array is explicitly sized to store five elements. It’s an error to
provide more initialization values than the size of the array, but if fewer are provided,
any uninitialized elements at the end of the array will be set to zero.

 The second array demonstrates that when initializing an array, it’s possible to omit
its size. In this scenario, the C compiler infers the size from the number of initializa-
tion values provided.
Download from Wow! eBook <www.wowebook.com>

50 CHAPTER 2 Data types, variables, and constants
HOW DO ARRAYS DIFFER FROM SIMPLE TYPES?
Arrays behave a little bit differently from the data types we’ve discussed up to this
point. For example, you may expect the following code snippet to print the result
A=1, B=2, C=3 because of the assignment statement array2 = array1 setting the sec-
ond array to the contents of the first:

int array1[3] = { 1, 2, 3 };
int array2[3] = { 4, 5, 6 };

array2 = array1;
NSLog(@"A=%d, B=%d, C=%d", array2[0], array2[1], array2[2]);

But if you attempt to build this code sample, you should notice a compiler error com-
plaining cryptically about “incompatible types in assignment.” What this error is
attempting to convey is that the variable array2 can’t be used on the left-hand side of
the assignment (=) operator: it can’t be assigned a new value, at least not in the man-
ner shown here.

 In chapter 3, as we discuss the object-oriented features of Objective-C, we explore
concepts such as pointers and the difference between value and reference types,
which will help explain why Objective-C refuses to accept what on initial glance looks
like a perfectly acceptable request.

2.4.4 The importance of descriptive names

Objective-C provides a way to declare an alternative name for an existing data type via
a statement known as a type definition, or typedef for short. Typedefs can be useful
when the built-in data type names aren’t descriptive enough or if you want to differen-
tiate the purpose or intent of a variable from its physical data type (which you may
decide to change at some point in time).

 You’ve already seen typedefs, although they weren’t pointed out as such: the NSIn-
teger and NSUInteger data types discussed earlier are typedefs that map back to the
built-in datatypes int and long int as required. This isn’t Apple-specific magic, simply
a couple of lines of prespecified source code that automatically get included in every
Cocoa Touch application.

 To declare your own typedefs, you use the typedef keyword followed by the name
of an existing data type (or even the specification of an entirely new one) followed by
the new name you want to associate with it.

 As an example, you could assign the alternative name cube to the struct box data
type you previously declared by adding the following type definition:

typedef struct box cube;

Or you could merge the declaration of struct box into the typedef statement:

typedef struct box {
 int width;
 int height;
 int depth;
} cube;
Download from Wow! eBook <www.wowebook.com>

51Creating your own data types
Both type definitions say that struct box can also be referred to by the name cube.
This allows you to declare variables in your application as follows:

struct box a;
cube b;

The new data type cube created via the typedef statement is purely an element of syntac-
tic sugar. As far as the Objective-C compiler is concerned, struct box and cube both
mean the same thing: you’ve specified alternative names for the developer’s convenience.

 Although you can use typedefs to rename enums, structs, and unions, they can also
be beneficial to provide alternative names for primitive data types such as int or
double. One problem with the basic numeric data types is that they can sometimes
seem meaningless in isolation. If you were presented with the following statement

double x = 42;

you wouldn’t be able to determine what the value 42 represents. Is it a temperature,
weight, price, or count? Giving an existing data type a new name can make such a state-
ment more self-documenting. As an example, listing 2.2 contains a type definition that
can be found in the Core Location API, which is responsible for GPS positioning.

// CLLocationDegrees
// Type used to represent a latitude or longitude coordinate
// in degrees under the WGS 84 reference frame. The degree can
// be positive (North and East) or negative (South and West).
typedef double CLLocationDegrees;

Although the type definition provides an alternative name for double, it enables us to
declare a variable using a statement similar to the following:

CLLocationDegrees x = 42;

This new statement, although essentially identical to the previous, makes the meaning
of the value 42 much more apparent.

Listing 2.2 Example typedef from Core Location’s CLLocation.h header file

Good variable names are equally as important
Although the use of the typedef statement can provide more descriptive names to
existing data types, this feature should not be relied on in isolation. For example, look
at the given variable declaration:

CLLocationDegrees x = 42;

This could have arguably been made even more descriptive by using a better variable
name instead of the typedef. For instance:

double currentHeadingOfCar = 42;

In general, try to be as descriptive as possible with any form of identifier, be that a
variable, datatype, method, or argument name. The more self-documenting your
code, the easier it is to maintain and come back to after periods of inactivity.
Download from Wow! eBook <www.wowebook.com>

52 CHAPTER 2 Data types, variables, and constants
Let’s put some of the concepts you’ve learned in this chapter into practice by complet-
ing the remaining tasks required to get the Rental Manager application to display
details about the set of rental properties in your portfolio.

2.5 Completing Rental Manager v1.0, App Store here we come!
Now that you have a well-rounded understanding of how data can be stored in an
Objective-C application and of the different data types involved, you’re ready to get
back to the Rental Manager application.

 You may remember that when you left it earlier in the chapter, it was displaying a
list of 25 rental properties, but each property was labeled “Rental Property x.” This
didn’t provide you with much detail about each property! You now have the knowl-
edge and skills required to resolve this problem.

 The first step is to define the information you would like to associate with each
rental property. Some good details to start with could be

■ The physical address of the property
■ The cost to rent the property per week
■ The type of property (townhouse, unit, or mansion)

To store this information, you can define a custom data type based on a structure.
Open up the RootViewController.h header file for editing and insert the definitions
found in the following listing at the bottom of the file’s existing content.

typedef enum PropertyType {
 Unit,
 TownHouse,
 Mansion
} PropertyType;

typedef struct {
 NSString *address;
 PropertyType type;
 double weeklyRentalPrice;
} RentalProperty;

The first addition is the definition of an enumeration called PropertyType. It’s used
to group the rental properties you manage into three distinct categories: units in a
larger property, townhouses, or mansions.

 The second addition is a custom data type called RentalProperty that nicely
encapsulates all of the details you want to store about a rental property. This typedef
statement declares that the RentalProperty data type is a structure containing indi-
vidual address, property type, and weekly rental price fields. If you pay close attention,
you’ll notice there’s no name specified after the struct keyword. When using a
typedef, it isn’t strictly necessary to name the struct because you usually don’t
intend people to refer to the data type in this manner but via the name assigned to it
with the typedef.

Listing 2.3 RootViewController.h
Download from Wow! eBook <www.wowebook.com>

53Completing Rental Manager v1.0, App Store here we come!
 Having modified RootViewController.h to specify the new data types related to
storing rental property details, you’re ready to declare details about an initial set of
rental properties. Open up RootViewController.m and insert the contents of the fol-
lowing listing directly below the line #import "RootViewController.h".

#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))

RentalProperty properties[] = {
 { @"13 Waverly Crescent, Sumner", TownHouse, 420.0f },
 { @"74 Roberson Lane, Christchurch", Unit, 365.0f },
 { @"17 Kipling Street, Riccarton", Unit, 275.9f },
 { @"4 Everglade Ridge, Sumner", Mansion, 1500.0f },
 { @"19 Islington Road, Clifton", Mansion, 2000.0f }
};

The main portion of listing 2.4 declares a variable called properties. This is an array
of RentalProperty structures. The array is initialized with details of five example
properties in your portfolio by using a combination of the array and structure initial-
ization syntaxes discussed earlier in this chapter.

 Now all that’s left to do is to provide suitable tableView:numberOfRowsInSection:
and tableView:cellForRowAtIndexPath: replacements that refer back to the data in
the properties array to satisfy their requests. These can be found in the following listing.

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
{
 return ARRAY_SIZE(properties);
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
{
 static NSString *CellIdentifier = @"Cell";

 UITableView *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier] autorelease];
 }

 cell.textLabel.text = properties[indexPath.row].address;
 cell.detailTextLabel.text =
 [NSString stringWithFormat:@"Rents for $%0.2f per week",
 properties[indexPath.row].weeklyRentalPrice];

return cell;
}

Listing 2.4 RootViewController.m

Listing 2.5 RootViewController.m
Download from Wow! eBook <www.wowebook.com>

54 CHAPTER 2 Data types, variables, and constants
The tableView:numberOfRowsInSection: implementation isn’t notable. It returns
the number of items present in the properties array (5). It makes use of a C preproces-
sor macro defined in listing 2.4 to determine this number, but more about that later.

 The tableView:cellForRowAtIndexPath: implementation has a couple of changes.
The first is a change in table view cell styles. You’re now requesting UITableViewCell-
StyleSubtitle, which provides an iPod application–style cell with two horizontal
lines of text: a main one that’s black followed by a gray line designed to show addi-
tional details.

 In tableView:cellForRowAtIndexPath: you’re provided with the index of the row
the UITableView wants data for via the indexPath.row property. You can use this
expression to index into the properties array to access the details, such as the
address, of the associated property. Likewise, you can format a similar string detailing
the rental price of the property to two decimal places for use as the details line.

 Build and run the application (Cmd-R), and you should be rewarded with a much
better list of rental properties. Your first practical version of the Rental Manager appli-
cation is completed!

2.6 Summary
All software applications are ultimately about data and how to interpret, process, and
present it to the user. Even games are required to store maps, enemy positions, and
scoring information, for example. It’s important to have a strong grasp of how to rep-
resent and store data in your applications.

 In this chapter, you met some of the most basic data types available to Objective-C
developers, including int, float, char, and bool. We also highlighted some of the
potential issues these data types could throw up, such as the inability of floating-point
numbers to accurately represent all values in their stated ranges.

 As programs start to develop and grow in complexity, managing a large number of
individual variables becomes untenable, so we investigated a number of Objective-C
features such as enumeration, structures, and arrays that allow you to group multiple
fields and constants.

 In chapter 3, we complete our coverage of Objective-C data types by discussing the
concept of objects. Objects are another form of data type, but clearly, because
Objective-C begins with the word object, understanding them is fairly critical to the suc-
cess use of Objective-C.
Download from Wow! eBook <www.wowebook.com>

An introduction to objects
In Objective-C the use of object-oriented programming is optional. Because
Objective-C is based on a C foundation, it’s possible to use C-style functions (as evi-
denced by calls to NSLog in the previous chapter), but Objective-C’s full power is
unlocked only if you make full use of its object-oriented extensions.

 In this chapter we reveal some of the benefits of object-oriented development
by covering how the NSString class, provided by Foundation Kit, can improve your
productivity while increasing the robustness of any code that interacts with text.

 Before we go too far in depth on that particular topic, let’s first take a look at
the most basic concepts of object-oriented programming.

This chapter covers
■ The concepts of objects, classes, and

instances
■ Class hierarchies, inheritance, and

polymorphism
■ Foundation Kit
■ The NSString class
55

Download from Wow! eBook <www.wowebook.com>

56 CHAPTER 3 An introduction to objects
3.1 A whirlwind tour of object-oriented programming concepts
In this chapter we can’t do justice to every concept associated with object-oriented
programming (also termed OOP, for short). Instead, the goal of this chapter is to
make sure you have a solid understanding of the fundamental concepts and benefits
of object-oriented programming and a working knowledge of the terminology.
Throughout this book, we discuss object-oriented programming concepts as they
apply to Objective-C and expand on what’s covered in this chapter. Let’s get started by
learning what’s so wrong with C.

3.1.1 What’s wrong with procedural-based languages such as C?

In very broad brush strokes, a procedural language requires greater concentration
and observance of manually enforced or informal rules than does an object-oriented
language.

 One reason for this is that procedural languages focus on dividing the applica-
tion’s source code into individual functions, but generally their ability to control
access to data is less fine-grained. Data will generally belong to a particular function or
be globally accessible by any function. This causes problems when several functions
need to access the same data. To be available to more than one function, such vari-
ables must be global, but global data can be accessed (or worse yet, modified in inap-
propriate ways) by any function in the application.

 Object-oriented programming, on the other hand, attempts to merge these two con-
cepts. When developing a new application, you first think of the different kinds of
things represented in it, then the type of data it’s required to store, and then the actions
each thing should be able to perform. These “things” are commonly called objects.

3.1.2 What are objects?

When developing an object-oriented application, you’re creating a miniature model
of a system. That model is constructed from one or more building blocks called objects.

 As an example, in a drawing application, a user may create three objects represent-
ing a circle and two rectangles. Each object has associated data that is relevant to itself.
The circle object’s data may describe a radius, while the rectangle objects, to be recog-
nized as rectangles, will probably require a width and height to be stored as their data.

 Objects in an application can usually be grouped into similar types. For example,
all circles will require that similar attributes be specified to describe their size, shape,
and color. But the attributes required to describe circles will most likely be different
from the attributes required for all of the objects of type rectangle.

 Individual objects in an application are created from a cookie-cutter-type template
called a class. A class describes what type of data an object must store and the type of
actions or operations it can perform.
Download from Wow! eBook <www.wowebook.com>

57A whirlwind tour of object-oriented programming concepts
3.1.3 What are classes?

A class is a specification, or blueprint, designed to describe the structure of one or
more objects in a system that share a similar purpose. Classes are the most basic form
of encapsulation in Objective-C: they combine a small amount of data with a set of rel-
evant functions to manipulate or interact with that data.

 Once a class is defined, its name becomes a new data type, meaning that you can
declare a variable to be of that type. The class is like a factory line, rolling out cookie
after cookie on demand. When instantiated, each newly created object has its own
copy of the data and methods defined by the class. By convention, class names begin
with a capital letter to differentiate them from method and instance variable names,
which typically start with a lowercase letter.

3.1.4 Inheritance and polymorphism
An advantage of object-oriented programming is the ability to reuse existing classes
time and time again. Not only can you create additional objects with little effort, but
one class can build on the foundations of another. This technique, called inheritance, is
similar to a family tree. One class in the system inherits, or derives, from another.

 Inheritance has two major benefits:

■ Code reuse—A subclass inherits all the data and logic defined by its superclass
(ancestor). This avoids duplicating identical code in the definition of similar
classes.

■ Specialization—A subclass can append additional data or logic and/or override
existing behavior provided by the superclass.

Class clusters
While researching Objective-C you may come across the concept of class clusters.
These are an example of inheritance and polymorphism. In a class cluster, a super-
class is documented, while a number of subclasses are purposely left undocumented
(as private, implementation-specific details).

As an example, virtually all Objective-C tutorials, including this book, discuss using
the NSString class to store text. It may surprise you that in most cases there will
never be an object of type NSString created in your application.

Instead, when you request a new NSString object, one of a number of subclasses
with names such as NSCFString is created in its place. Because these subclasses
inherit from NSString, they can be used in its place. As the old saying goes, “If it
walks like a duck, quacks like a duck, and swims like a duck, it’s probably a duck.”

NSString uses these “hidden” subclasses to allow itself to optimize memory and
resource usage based on the specifics of each string generated.

The next time you’re in the Xcode debugger, hover the mouse over a variable of type
NSString. In the data tip that appears, you’ll probably see the object’s data type
listed as NSCFString. This is a class cluster in action.
Download from Wow! eBook <www.wowebook.com>

58 CHAPTER 3 An introduction to objects
The core concept of inheritance is that a subclass becomes a more specialized version
of its superclass. Rather than describing all of the logic contained in the subclass from
scratch, only the differences in behavior from the superclass need to be specified.

 Polymorphism is a related concept that enables you to treat any object, no matter
its class, as if it were typed as one of its superclasses. This works because subclasses can
only extend or modify the behavior of a class; they can’t remove functionality.

3.2 The missing data type: id
In chapter 2 we made one glaringly large omission when discussing the data types
available to represent data in an application. We didn’t cover how to store an object—
something rather important for a language starting with the word Objective!

 In Objective-C a variable, which can represent an object, makes use of a data type
called id. For example:

id name = @"Christopher Fairbairn";

id is a special kind of data type in that it can store a reference to an object of any type.
Objective-C also enables you to be more specific about the type of object you expect to
store in a variable. For example, you would more commonly see the previous variable
declaration declared as follows:

NSString *name = @"Christopher Fairbairn";

Here the id data type is replaced by NSString *. Being more explicit about the type of
object you expect to store in the variable enables a number of helpful compile-time
checks. For starters, the compiler will produce an error if you attempt to assign or
store an object of another type to the variable, and a warning will be produced if you
attempt to send the object a message that, to the best of the compiler’s knowledge, it
can’t handle.

There’s no magic with id
You may think there’s some kind of magic occurring with the id data type. How can a
variable of type id store an object of any data type, and why don’t you need to specify
a * character after the data type, as you do with other class names such as NSString?
To answer these questions, declare a variable of type id and then double-click it while
holding down the Cmd key. You should see something similar to the following:

typedef struct objc_object { Class isa; } * id;

This is the declaration of the id data type. It’s another name (a type definition) for a
pointer to a struct called objc_object. The objc_object struct can be considered
as low-level “plumbing” in the Objective-C runtime. With a slight amount of hand wav-
ing, you can consider it to be the same as NSObject. Because all objects in Objec-
tive-C ultimately derive from NSObject, a variable of type id can store a pointer to
any object, no matter its type. Because the declaration of the id data type contains
a *, one isn’t required when it’s utilized in an application.
Download from Wow! eBook <www.wowebook.com>

59Pointers and the difference between reference and value types
You may have noticed that the NSString example contained a * character before the
variable name. This character has special significance (you’ll notice it’s also present in
the declaration of the id data type discussed in the sidebar). This additional character
indicates that the data type is a pointer. But what exactly does this mean?

3.3 Pointers and the difference between reference and value types
A variable in an application consists of four components:

■ Name
■ Location (where it’s stored in memory)
■ Type (what kind of data it can store)
■ Current value

Until now, we haven’t covered where variables are located or whether they are accessi-
ble by means other than their names. Understanding these concepts is closely related
to the concept of pointers.

3.3.1 Memory maps
You can consider the memory of the iPhone as being made up of a large pile of bytes,
each stacked one on top of another. Each byte has a number associated with it, called
an address, similar to houses having an associated street number. Figure 3.1 represents
several bytes of the iPhone’s memory, starting at address 924 and extending through
address 940.

 When you allocate a variable in your application, the compiler reserves an explicit
amount of memory for it. For example, a statement such as int x = 45 causes the com-
piler to reserve 4 bytes of memory to store the current value of x. This is represented
in figure 3.1 by the 4 bytes starting at address 928.

3.3.2 Obtaining the address of a variable
Referring to the name of a variable in an expression will access or update its current
value. By placing the address-of (&) operator in front of a variable name, you can learn
the address at which the variable is currently stored.

 A variable that can store the address of another variable is called a pointer because
it’s said to “point to” the location of another value. The following code snippet dem-
onstrates how you can use the address-of operator.

int x = 45;
int *y = &x;

Figure 3.1 Representation of a region of the iPhone’s memory showing the location
of variable x
Download from Wow! eBook <www.wowebook.com>

60 CHAPTER 3 An introduction to objects
This code snippet declares an integer variable x that’s initialized to the value 45. It
also declares variable y with a data type of int *. The * at the end of the data type indi-
cates a pointer and means you don’t want to store an actual integer value but rather
the memory address at which one can be found. This pointer is then initialized with
the address of variable x via use of the address-of operator. If variable x had been
stored at address 928 (as previously mentioned), you could graphically represent the
result of executing this code snippet by updating the memory map to be similar to
that shown in figure 3.2.

 Notice how the 4 bytes allocated to store variable y now store the number 928.
When interpreted as an address, this indicates the location of variable x, as indicated
by the arrow. The expression y = &x can be read as “place the address of variable x into
variable y.”

3.3.3 Following a pointer

Once you have an address stored in a pointer variable, it’s only natural to want to
determine the value of whatever it points to. This operation is called dereferencing the
pointer and is also achieved by using the * symbol:

int x = 45;
int *y = &x;
NSLog(@"The value was %d", *y);

The statement on the last line prints out the message "The value was 45" because the
* in front of variable y causes the compiler to follow the pointer and access the value it
currently points to. In addition to reading the value, it’s possible to replace it, as dem-
onstrated next. Confusingly, this operation also makes use of the * operator:

int x = 45;
int *y = &x;

*y = 92;

The statement on the last line stores the value 92 at the address located in variable y.
Referring to figure 3.2, you’ll see that variable y stores (or points to) address 928, so
executing this statement updates the value of variable x even though x is never explic-
itly referred to in the statement.

Figure 3.2 An updated memory map showing how variable y stores the address of
variable x
Download from Wow! eBook <www.wowebook.com>

61Pointers and the difference between reference and value types
When working with pointers to structure-based data types, a special dereferencing syn-
tax is available that allows you to deference the pointer and access a specific field in
the structure in a single step, using the -> operator:

struct box *p = ...;
p->width = 20;

The -> operator on the second line dereferences the pointer p and then accesses the
width field in the structure. While following a pointer to read or alter the value it
points at, it’s sometimes helpful to compare two pointers to check if they point to
identical values.

3.3.4 Comparing the values of pointers

When comparing the values of two pointers, it’s important to ensure you’re perform-
ing the intended comparison. Consider the following code snippet:

int data[2] = { 99, 99 };
int *x = &data[0];
int *y = &data[1];

if (x == y) { NSLog(@"The two values are the same"); }

You might expect this code to emit the message "The two values are the same" but it
doesn’t. The statement x == y compares the address of each pointer, and because x
and y both point to different elements in the data array, the statement returns NO.

 If you want to determine if the values pointed to by each pointer are identical, you
dereference both pointers:

if (*x == *y) { NSLog(@"The two values are the same"); }

Now that you understand the concept of pointers and how multiple pointers can ref-
erence the same object, you’re ready to communicate with the object. Communicat-
ing with an object enables you to interrogate it for details it stores or to request that
the object perform a specific task using the information and resources at its disposal.

Arrays are pointers in disguise
A variable identifier for a C-style array can at some level be thought of as a simple
pointer. This pointer always points to the first element in the array. As an example,
the following is perfectly valid Objective-C source code:

int ages[50];
int *p = ages;
NSLog(@"Age of 10th person is %d", p[9]);

Notice you can assign the array variable to a pointer variable directly without using
the & operator, and you can use the familiar [] syntax to calculate an offset from the
pointer. A statement such as p[9] is another way to express *(p + 9): it’s a short-
hand way to say “add 9 to the pointer’s current value and then dereference it.”
Download from Wow! eBook <www.wowebook.com>

62 CHAPTER 3 An introduction to objects
3.4 Communicating with objects
In most C-inspired languages such as C++, Java, and C#, developers call a method
implemented by an object. Developers using Objective-C, on the other hand, don’t
“call” a method directly; instead, they “send” a message to an object. The object
“receives” the message and decides if it wants to process it, usually by invoking a
method with the same name. This is a fundamentally different approach and is one of
the many features that make Objective-C a more dynamic language because it enables
the object to have finer-grained control over how method dispatch occurs.

3.4.1 Sending a message to an object

Figure 3.3 outlines the basic Objective-C syntax for sending a message to an object. In
source code, a message send is represented by a set of square brackets; immediately
after the opening bracket is the target, followed by the name of the message itself. The
target can be any expression that evaluates to an object that should receive the message.

 You can consider a basic message send such as the one
shown in figure 3.3 as analogous to addressing an envelope
with a person’s name and address. It sets up a container
that can then be delivered to its intended recipient.

 Sometimes, for an object to make sense of a message,
additional information must be sent along with it, similar
to placing a letter or invoice in an envelope. Additional
information provided in a message send is represented by
one or more values called arguments. When sending a
message, arguments are provided by placing a colon char-
acter after the method name, as shown in figure 3.4.

Indicating the absence of a value
Sometimes you want to detect if a pointer variable is currently pointing at anything of
relevance. For this purpose, you’ll most likely initialize the pointer to one of the spe-
cial constants NULL or nil:

int *x = NULL;
NSString *y = nil;

Both constants are equivalent to the value 0 and are used to indicate that the pointer
isn’t currently pointing to anything. The Objective-C convention is to use nil when
referring to an object and relegating NULL for use with older C-style data types.

Initializing the pointer to one of these special values enables an if (y != nil)
check to determine if the pointer is currently pointing to anything. Because nil is
equivalent to the value 0, you may also see this condition written as if (!y).

Also be careful not to dereference a NULL pointer. Trying to read or write from a
pointer that points to nothing causes an access violation error, which immediately
exits your application.

Figure 3.3 The basic syntax
for sending a message to an
object in Objective-C. In a pair
of square brackets, the target
(or object that receives the
message) is specified,
followed by the name of the
message itself.
Download from Wow! eBook <www.wowebook.com>

63Communicating with objects
When myString receives the message sent in figure 3.4, it also gains access to the val-
ues @"Hello" and @"Goodbye". One interesting thing to note from figure 3.4 is how
messages that expect multiple arguments are handled. The message sent in the figure
is named stringByReplacingOccurrencesOfString:withString:; each colon char-
acter represents where an argument can be placed. It’s common for Objective-C mes-
sage names to be descriptive and verbose, almost making small sentences when
combined with their arguments: figure 3.4 could be read as “string by replacing occur-
rences of string hello with string goodbye.”

3.4.2 Sending a message to a class

Say you have two objects of type dog, one called Puggsie and another called Mr Pug-
gington. If you wanted both dogs to sit, you could individually send each object a mes-
sage called sit. Both dogs would receive this message and (assuming they don’t have
minds of their own) sit down on request.

 Sometimes you may want to request information or provide instructions that aren’t
specific to a particular instance of a class. For example, you may want to inquire about
the number of dog breeds available. It doesn’t make sense to ask either Mr Pugging-
ton or Puggsie (instances of the Dog class) this question, but the question is clearly
related to the concept of Dog.

 In such cases, it’s possible to send a message directly to the class. The syntax for
this is similar to sending a message to an object, but because you don’t have a particu-
lar object to target the message to, you use the name of the class as the target:

int numberOfDogBreeds = [Dog numberOfDogBreeds];

Many requests can be made of Puggsie and Mr Puggington, but there are limitations
to what you can request. For example, sending a Dog object (Mr Puggington, perhaps)
a message called makeThreeCourseDinnerForHumanOwner isn’t likely to result in a
meal. Compilers for many languages can detect such infeasible method calls and halt
compilation as soon as one is found. Objective-C, however, allows such infeasible
requests to be made. Who knows—the dog may be the next Einstein.

Figure 3.4 A slight change in syntax allows you to send a message that passes along one or more
arguments for the object to use as it attempts to process the message.
Download from Wow! eBook <www.wowebook.com>

64 CHAPTER 3 An introduction to objects
3.4.3 Sending nonexistent messages

With the message send concept, it’s possible to send an object a message that it may not
be able to handle. Unlike in a language such as C++ where a method must be declared
in order for it to be called, requesting that a message be sent is just that: a request.

 Because of Objective-C’s dynamic typing, there’s no guarantee that the recipient of
a message will understand how to process it, and no check is made at compile time to
ensure it exists. The following code snippet will successfully compile even though the
NSString class doesn’t implement a method called mainBundle:

NSString *myString = @"Hello World!";
[myString mainBundle];

The best that the Objective-C compiler can do in a situation like this is produce the
following warning during compilation:

'NSString' may not respond to '-mainBundle'

You may be wondering why Objective-C produces only a warning when other lan-
guages are more heavy handed and produce a fatal error during compilation. The
answer is that Objective-C allows objects to dynamically add and remove methods and
also gives them an opportunity to process any unhandled messages. Consequently, the
compiler can never really be sure that a particular object won’t respond to an arbitrary
message without giving it a go at runtime.

 If you want to get rid of the compile-time warning, the easiest way is to change the
variable’s data type to id:

id myString = @"Hello World!";
[myString mainBundle];

Alternatively, you could use a typecast:

NSString *myString = @"Hello World";
[(id)myString mainBundle];

Because the id data type can reference an object of any type, the compiler is more
lenient with its warnings. If it didn’t make this concession, it would have to warn about
every message sent to an object typed as id because this type doesn’t explicitly declare
the existence of any methods to the compiler.

 It’s important to note that although all the code snippets in this section success-
fully compile, they will all fail at runtime because NSString doesn’t handle a message
called mainBundle. If the target object doesn’t define a suitable method, the message
will eventually be rejected, just as addressing an envelope to a nonexistent address will
cause it to become undeliverable. You’ll most likely come across this situation when
you see the following fatal error in the debugger:

*** Terminating app due to uncaught exception 'NSInvalidArgumentException',
reason: '*** -[NSCFString mainBundle]: unrecognized selector sent to
instance 0x3b0a1e0'
Download from Wow! eBook <www.wowebook.com>

65Communicating with objects
This is the ultimate sign that Objective-C looked for a suitable method to handle this
message and came up short. We return to this topic in chapter 8 where we discuss how
a class can be modified to intercept unknown messages and perform tricks such as
redirecting them to another method.

 Although sending a message you know will result in a fatal exception isn’t wise, this
technique has some practical uses. It’s heavily used by the Core Data framework dis-
cussed in chapter 12, for example.

 Another unusual quirk of the message send implementation, one that’s widely
used, is sending a message to nil, which is similar in concept to mailing an envelope
without an address.

3.4.4 Sending messages to nil

An interesting feature of Objective-C is the behavior of sending a message when the
target is nil—when the message is addressed to no one. In many languages, doing so
would produce a fatal error at runtime, typically called a NULL Reference exception,
and to guard against such errors, developers commonly use code snippets similar to
the following:

NSString *str = ...expression which returns a string or nil...;
NSUInteger length;

if (str != nil)
 length = [str length];
else
 length = 0;

The if statement checks to see if the str variable is currently pointing to a valid object
and sends the length message (which returns the length of the string) only if a valid
object is available. If str currently contains the value nil, indicating no object is avail-
able to send the message to, a default length of 0 is assumed. In Objective-C these checks
are commonly not required, meaning you can simplify the code snippet as follows:

NSString *str = ...expression which returns a string or nil...;
NSUInteger length = [str length];

Both code snippets are identical in behavior. Looking at the simplified code snippet,
you may wonder how it’s safe to execute the statement [str length] when the target
is nil. The answer is that, as part of the message send process, Objective-C internally
checks if the target is nil and avoids sending the message. If the Objective-C runtime
decides not to send the message, the return value will typically be 0 (or its equivalent,
such as 0.0, or NO).

 Now that you have a firm grasp of the concepts of object-oriented programming,
the difference between objects and classes, and how to communicate with objects, let’s
investigate a common class undoubtedly used by almost every application: NSString,
which represents a sequence of characters.

 The NSString class provides a good example of the benefits of object-oriented pro-
gramming. For starters, you don’t need to write the code for this class: it’s provided
Download from Wow! eBook <www.wowebook.com>

66 CHAPTER 3 An introduction to objects
for you out of the box, and you can reuse existing classes without needing to reinvent
the wheel with each application. Reuse makes you more productive, allowing you to
focus on differentiating and perfecting your application instead of spending days
building a basic foundation.

3.5 Strings
The NSString class provides a nice object-oriented interface to represent, interact
with, and modify a string of characters. Unlike in a C-style char * null-terminated
string or char[] array, all aspects of memory allocation, text encoding, and string
manipulation are hidden from the application developer as internal implementa-
tion details of the NSString class. This allows you to worry about the more impor-
tant and unique aspects of your application logic rather than the nitty-gritty details
of how strings are stored in a computer or how operations such as string concatena-
tion operate.

 This abstraction also means that common sources of error, such as attempting to
store a 250-character string in a variable that has allocated space for only 200 charac-
ters, are easily avoided in Objective-C. Let’s start our discussion of strings by learning
how to create new strings in your source code.

3.5.1 Constructing strings

The easiest way to create a new NSString instance is via the convenient @"..." lan-
guage syntax introduced in previous chapters. For example, the statement

NSString *myString = @"Hello, World!";

creates a new NSString object and initializes it with the value "Hello, World!". This
form of syntax, however, is a special case for the NSString class. It’s impossible to use
this syntax to create instances of any other class. The use of text strings in applications
is so pervasive that the Objective-C language designers decided it was beneficial to
have dedicated (and concise) syntax to create them. A more generic technique to
construct an object of a particular class is to send that class an alloc message to allo-
cate memory for a new object, followed by some kind of initialization message. For
example, here’s another way to create a string:

NSString *myString = [NSString alloc];
myString = [myString initWithString:@"Hello, World!"];

This code sample explicitly demonstrates the two stages of constructing a new object
in Objective-C: allocation and initialization. The first line sends the alloc (short for
allocate) message to the NSString class. This causes NSString to assign enough mem-
ory to store a new string and returns a C-style pointer to that memory. At this stage,
however, the object is rather blank, so the next step is to call an initialization method
to initialize the object with some kind of sensible value.

 Many classes provide a number of initialization messages. In this example, you sent
the initWithString: message, which initializes the new string object with the contents
Download from Wow! eBook <www.wowebook.com>

67Strings
of a string constant. It’s much more common to see both of these statements written
on a single line by nesting one message send inside of another:

NSString *myString = [[NSString alloc] initWithString:@"Hello, World!"];

As an alternative to the alloc- and init-based object creation process, most classes
also provide factory methods that allow you to perform both steps at the same time. The
following snippet shows another way to create a new string:

NSString *myString = [NSString stringWithString:@"Hello, World!"];

This statement is identical in behavior to calling alloc, followed by initWithString:,
but it’s slightly easier to read and quicker to type. In general, many initialization mes-
sages named in the form initWithXYZ: have a matching classnameWithXYZ: factory
method available that performs an implicit alloc behind the scenes. A subtle but
important difference in memory management between the two techniques is dis-
cussed in depth in chapter 9. For now, let’s stick to using factory methods.

 Using your newfound knowledge of object construction techniques, you can look
at some of the previous code samples in a new light. For example, in the current ver-
sion of the Rental Manager application is the following line of source code:

cell.detailTextLabel.text =
 [NSString stringWithFormat:@"Rents for $%0.2f per week",
 properties[indexPath.row].weeklyRentalPrice];

With your knowledge of message-naming conventions, you can see that this statement
creates a new string by sending the NSString class the stringWithFormat: message.
This message constructs a new string by interpreting an NSLog-style format string. Now
that you know how to create new string objects, let’s look at how to work with them.

3.5.2 Extracting characters from strings

Once you create a string object, you’re ready to interact with it by sending the object a
message. Perhaps the simplest message you can send to a string is the length message,
which returns the total number of characters in the string:

int len = [myString length];
NSLog(@"'%@' contains %d characters", myString, len);

Because a string is made up of a sequence of individual characters, another message
that is useful is characterAtIndex:, which allows you to obtain the character at a par-
ticular index within a string:

NSString *myString = @"Hello, World!";
unichar ch = [myString characterAtIndex:7];
NSLog(@"The 8th character in the string '%@' is '%C'", myString, ch);

Notice that the characterAtIndex: message works in a fashion similar to the array
indexing operator [], available for C-style arrays. If instead of a single character you
want to obtain a particular range of characters within a string, you can use the sub-
stringWithRange: message, as demonstrated by the following listing.
Download from Wow! eBook <www.wowebook.com>

68 CHAPTER 3 An introduction to objects
NSString *str1 = @"Hello, World!";

NSRange range;
range.location = 7; <----- or call NSRangeMake(7, 5);
range.length = 5;

NSString *str2 = [str1 substringWithRange:range];
NSLog(@"The last word in the string '%@' is '%@'", str1, str2);

The substringWithRange: message returns a new string made up of a sequence of
characters obtained from the original string. The range is specified by providing an
NSRange. This is a typedef for a small C-style structure that consists of a location and
length field. The location field is the index of the first character in the string that
should be returned; the length field indicates how many characters from that posi-
tion should be included.

 While extracting individual characters and substrings of a larger string is handy,
how do you go about modifying the original string instead?

3.5.3 Modifying strings

NSString provides many messages that enable you to modify the contents of an exist-
ing string. For example, the following statement converts the contents of str1 into
lowercase form and stores the resultant string in the variable str2:

NSString *str1 = @"I am in MiXeD CaSe!";
NSString *str2 = [str1 lowercaseString];

Likewise, if you wanted to convert the string "Hello, World!" into "Hello, Chris!",
you could use stringByReplacingOccurrencesOfString:withString: to replace any
occurrence of “World” with “Chris”:

NSString *str1 = @"Hello, World!";
NSString *str2 = [str1 stringByReplacingOccurrencesOfString:@"World"
 withString:@"Chris"];

Listing 3.1 Using substringWithRange: to obtain the last word in a string

Immutable vs. mutable objects
You may notice that statements such as NSString *str2 = [str1 lowercase]
return a new string in lowercase form rather than modifying the existing contents of
str1 itself. After executing the statement, you end up with two strings, the original
string in str1 and a lowercase form in str2.

A string is an example of an immutable object. An object that is immutable can’t be
modified in any way after it has been initially created. The only way to modify an immu-
table object is to create an entirely new one and initialize it with the desired value.

The opposite of an immutable object is a mutable one, an object that can “mutate” or
change its value. In many cases, Foundation Kit gives you the choice of immutable or
mutable variants of a class. With strings, you have NSString and NSMutableString.
Download from Wow! eBook <www.wowebook.com>

69Sample application
To append one string onto the end of another, you can use the stringByAppending-
String: message:

NSString *str2 = [str1 stringByAppendingString:@"Cool!"];

This statement appends "Cool!" to the end of str1 and stores the result in str2. You
can’t state str2 = str1 + @"Cool!" for reasons that will soon become clear.

 Now that you know how to create and manipulate string objects, it’s only natural to
want to compare one against another to determine if they’re identical.

3.5.4 Comparing strings

To compare two string variables against each other, you may come up with a code snip-
pet such as the following based on what you’ve learned about pointers in this chapter:

NSString *str1 = [NSString stringWithFormat:@"Hello %@", @"World"];
NSString *str2 = [NSString stringWithFormat:@"Hello %@", @"World"];

if (str1 == str2) {
 NSLog(@"The two strings are identical");
}

Surprisingly, when this code is executed, you’ll notice it indicates that the two freshly
created strings aren’t equal! To understand why, you need to realize that the two vari-
ables str1 and str2 are both simple C-style pointers. With its C-based roots, the ==
operator checks for equality by determining if both variables point to the same piece
of memory. Because you create two separate string instances, the two pointers point to
distinct locations, and the expression evaluates to false. That both strings contain an
identical sequence of characters is irrelevant because the == operator only considers
the string’s memory location.

 To work around this problem, Objective-C, like most object-oriented languages
with pointers, provides a message to compare the contents of an object instead of its
location in memory. In Objective-C this message is called isEqual:

if ([str1 isEqual:str2]) {
 NSLog(@"The two strings are identical");
}

It’s for a similar reason that the + operator can’t be used for string concatenation: it’s
already used with C-style pointers for pointer arithmetic.

3.6 Sample application
To put the concepts you’ve learned in this chapter into practice, let’s expand the Rental
Manager application to make greater use of the services provided by NSString to search
and modify string content. Figure 3.5 shows how the application will look once you fin-
ish this round of modifications. Each rental property has an image beside it that catego-
rizes the property’s location, such as near the sea, in the city, or in an alpine setting.

 To display images in your iPhone application, the obvious first step is to include
some image resources in your project. To add images to the Xcode project, drag and
Download from Wow! eBook <www.wowebook.com>

70 CHAPTER 3 An introduction to objects
drop the image files from a Finder window into the Supporting Files group located in
Xcode’s project navigator pane. A sheet will appear from which you can select a but-
ton labeled Add. For this task, you need to source three images. Details of the images
we utilized are listed in table 3.1. You can use a service such as Google Image Search to
source your own.

Table 3.1 The images used to represent different property locations. Selection of the image for a
particular property is based on the city found in its associated address. Some city names that map to
each image are provided as examples.

Image Filename Example cities

sea.png Sumner

mountain.png Clifton

city.png Riccarton, Christchurch

Figure 3.5 An updated version of the Rental Manager
application. Notice each property has an image beside it
indicating the type of geographical location of the property.
Download from Wow! eBook <www.wowebook.com>

71Sample application
Now that you have the required image resources included in your project, you’re
ready to modify the application’s source code to use them. Open the RootView-
Controller.m file in the editor and replace the existing version of the tableView:
cellForRowAtIndexPath: method with that in the following listing.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier] autorelease];
 }

 RentalProperty *details = &properties[indexPath.row];

 int indexOfComma = [details->address rangeOfString:@","].location;
 NSString *address = [details->address
 substringToIndex:indexOfComma];
 NSString *city = [details->address
 substringFromIndex:indexOfComma + 2];

 cell.textLabel.text = address;

 if ([city isEqual:@"Clifton"])
 cell.imageView.image = [UIImage imageNamed:@"mountain.png"];
 else if ([city isEqual:@"Sumner"])
 cell.imageView.image = [UIImage imageNamed:@"sea.png"];
 else
 cell.imageView.image = [UIImage imageNamed:@"city.png"];

 cell.detailTextLabel.text =
 [NSString stringWithFormat:@"Rents for $%0.2f per week",
 details->weeklyRentalPrice];

 return cell;
}

Most of the code in listing 3.2 is similar to its previous incarnation, but some of the
features discussed in this chapter are added.

 To start with, pointers are used to avoid having to constantly retype the expression
properties[indexPath.row] whenever you want to access details about the property
for which you are currently generating a cell. Instead, calculate the expression once
and store the memory address at which the resultant property can be found in the
details variable. This pointer is then used throughout the rest of the method and
dereferenced to access the various fields of rental property information you store. If
you ever need to change or update how you determine the current property, you now
need only do it in one place, and you get to type less to boot!

Listing 3.2 Replacement tableView:cellForRowAtIndexPath: method
implementation

Determine
semicolon

location

b

Separate
street
address
and city

c

Display proper imageD
Download from Wow! eBook <www.wowebook.com>

72 CHAPTER 3 An introduction to objects
 The hardest challenge in providing images for each rental property in the list is
determining in which city each property is located. At this stage, you’ll be fairly naive
and split the address field on the sole semicolon it contains. In the future, you may
like to revisit this solution and find a more robust mechanism or use some of the
iPhone SDK geocoding APIs.

 Using the rangeOfString: message available on the NSString class, b you can
determine the location of the semicolon in the property’s address, and by passing this
index into additional NSString methods, substringFromIndex: and substringTo-
Index:, you can separate the street address and city into two separate strings c. In
the call to substringFromIndex: you have to add 2 to the index returned by rangeOf-
String: to skip over the semicolon and the space that follows it.

 Now that you’ve extracted a rental property’s city from its address, you’re ready to
determine which image to display and attach it to the table view cell d. You do this by
comparing the contents of the city variable against a couple of hardcoded city
names. Once you determine the type of location, use UIImage’s imageNamed function-
ality to load the images you previously included in the application.

 One obvious problem with the technique demonstrated in this revision of the Rental
Manager application is that the list of cities and their mappings to location types is hard-
coded and specified in code. This makes it difficult and more time consuming (espe-
cially with the App Store submission process) to update the behavior of the application
as your rental portfolio expands and covers properties in other cities. Ideally, you want
to separate the logic from the data so you can easily update the city mappings without
needing to recompile or to resubmit the application: more on this in the next chapter.

3.7 Summary
Enhancing the procedural C language to have object-oriented features is essentially
what brought Objective-C to life. The benefits of developing applications in an object-
oriented manner generally far outweigh the extra effort required to learn the addi-
tional terminology and techniques that object-orientation entails.

 Chief among the advantages of object-oriented programming is an improved abil-
ity to separate a complex application into a number of smaller, discrete building
blocks, or classes. Rather than considering a large, complex system, the developer’s
task becomes one of developing multiple smaller systems that combine and build on
top of each other to perform tasks far more complex than any one part can do alone.

 The ability to package data plus logic into modules, called classes, also makes it
easier to transplant an object designed and developed in one application into
another. Application frameworks such as Cocoa Touch and Foundation Kit take this to
another level. Their sole purpose is to provide developers with a large number of
classes out of the box and ready to be put to work in their applications. Developers
need not spend time ironing out bugs and quirks in the 900th string concatenation
implementation the world has seen. Application developers can instead focus on the
distinct features of their own applications.
Download from Wow! eBook <www.wowebook.com>

73Summary
 In chapter 4, we continue our discussion of how various classes in Foundation Kit
improve upon the basic data types provided by the procedural-based C language. We
look at the collection classes such as NSArray and NSDictionary, which are designed
to replace and improve upon C-style arrays.
Download from Wow! eBook <www.wowebook.com>

Storing data in collections
Chapter 3 introduced the concept of object-oriented programming and demon-
strated some of its advantages by using the services of the prebuilt NSString class,
which provides common text manipulation and query-related functionality.

 A large part of Foundation Kit is concentrated on the storage of data in collec-
tion data structures with names such as arrays, dictionaries, sets, and hashmaps.
These data structures allow you to efficiently collect, group, sort, and filter data in a
way that’s convenient for the application at hand. Discussing these commonly used
classes is what this chapter is all about.

 Let’s start by discussing how Foundation Kit improves upon a data structure
you’re currently familiar with: a simple array.

This chapter covers
■ NSArray
■ NSDictionary

■ Storing nil and other special values in
collections

■ Boxing and unboxing non-object-based data
74

Download from Wow! eBook <www.wowebook.com>

75Arrays
4.1 Arrays
The Rental Manager application, as it currently stands, stores a list of rental property
details in a C-style array called properties. Inherently, nothing’s wrong with this tech-
nique, but it has some limitations. For example, when you declare a C-style array, you
create it with a fixed number of elements, and it’s not possible to add or remove addi-
tional elements from the array without recompiling the application. Your rental man-
agement business may become more successful and require the ability to add new
properties to the list at runtime.

 The Foundation Kit provides a convenient array-like data structure called NSArray
that overcomes this and other limitations. An NSArray is an ordered collection of
objects, just like a C-style array, except it also has the ability to grow or shrink as required.

 Like strings, arrays can be immutable or mutable. Immutable arrays are handled
by the NSArray class, and mutable ones are handled by the NSMutableArray subclass.
Let’s learn how creating an NSArray instance is different from creating a C-style array.

4.1.1 Constructing an array

You can create a new NSArray in various ways, depending on your needs. If you want
to create an array consisting of a single element, the easiest way is to use the array-
WithObject: factory message:

NSArray *array = [NSArray arrayWithObject:@"Hi"];

This statement creates an array consisting of a single element, in this case the string
"Hi", although it could be any other object, even another NSArray instance, for exam-
ple. A similarly named factory message, arrayWithObjects:, can be used for the more
typical scenario of initializing an array with more than one element:

NSArray *array = [NSArray arrayWithObjects:@"Cat", @"Dog", @"Mouse", nil];

arrayWithObjects: is an example of a vardic method. A vardic method is a method
which expects a variable number of arguments. Vardic methods must have some way
to know when they’ve reached the end of the list of arguments. arrayWithObjects:
detects this condition by looking for the special value nil. An array can’t store a nil
value, so its presence indicates the end of the list. It’s an error to call arrayWith-
Objects: without the last argument being nil. If arrayWithObjects: is causing your
application to crash, make sure you’ve got a nil at the end.

 When bridging between C-based code and Objective-C, you may come across the
need to convert a C-style array into an NSArray instance. NSArray provides a factory
method to make this task easy:

NSString *cArray[] = {@"Cat", @"Dog", @"Mouse"};
NSArray *array = [NSArray arrayWithObjects:cArray count:3];

The arrayWithObjects:count: message creates a new NSArray instance and initial-
izes it with a copy of the first count elements from the C-style array. This trick isn’t the
only one available in NSArray’s toolbox. For example, another factory message called
Download from Wow! eBook <www.wowebook.com>

76 CHAPTER 4 Storing data in collections
arrayWithContentsOfURL: allows you to populate an array with the contents of a file
fetched from the internet.

NSArray *array = [NSArray arrayWithContentsOfURL:
 [NSURL URLWithString:@"http://www.christec.co.nz/example.plist"]];

This code snippet fetches the file located at http://www.christec.co.nz/example.plist
and expects it to be an XML file that conforms to the Property List (plist) schema. An
example plist file containing an array is displayed in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/

DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <array>
 <string>Cat</string>
 <string>Dog</string>
 <integer>42</integer>
 </array>
</plist>

Another important thing demonstrated by this plist file is that NSArray-based arrays
don’t have to be homogeneous. It’s possible for each element in an NSArray to have a
different data type. This is unlike a C-style array in which each array element must be
of the same data type. The plist in listing 4.1 creates an array that consists of two
strings and an integer.

 All the arrays demonstrated so far are immutable (once they’re created, it’s impos-
sible to add or remove elements or even replace existing ones) because you used
NSArray, which represents an immutable array. To create an array that can have ele-
ments added, removed, or updated, you use the NSMutableArray class. As an example,
each of the following two statements creates a new array consisting of one element.

NSArray *array1 = [NSArray arrayWithObject:@"Hi"];
NSMutableArray *array2 = [NSMutableArray arrayWithObject:@"Hi"];

The only difference between the two arrays is their immutability. array1 is effectively
read-only and allows no modifications, while array2 allows you to add and remove ele-
ments from the array to your heart’s content. Let’s leave the topic of array creation
and learn how to interact with the various elements contained in them.

4.1.2 Accessing array elements

With your existing knowledge of C, it’s not easy to determine the number of elements
in a C-style array, but the NSArray and NSMutableArray classes provide a straightfor-
ward way to determine the number of elements stored in them. You just send the
instance a count message:

int numberOfItems = [myArray count];

Listing 4.1 A property list XML file describing an array of three elements
Download from Wow! eBook <www.wowebook.com>

http://www.christec.co.nz/example.plist

77Arrays
On return, the variable numberOfItems tells you how many elements are in the array.
To access each element in an NSArray, you can use another message called objectAt-
Index:, which behaves similarly to the [] indexing operator used with C-style arrays:

id item = [myArray objectAtIndex:5];

You could imagine this last statement as being equivalent to myArray[5] if myArray
had instead been declared as a C-style array. The intent and behavior is identical.
Using the techniques you learned in this section, you could access the last element of
an array with the following code snippet:

int indexOfLastItem = [myArray count] - 1;
id item = [myArray objectAtIndex:indexOfLastItem];

You could even condense this into a single statement by nesting the two method calls:

id item = [myArray objectAtIndex:[myArray count] - 1];

The -1 in the index calculation accounts for the fact that the last element in the array
will have an index of 1 less than the number of items in the array. Because this is a
common code pattern and Foundation Kit is all about developer efficiency, NSArray
provides a lastObject message that performs the same task in a cleaner manner:

id item = [myArray lastObject];

Using this concept of simplifying common coding tasks, let’s investigate some of the
other aspects of the NSArray class.

4.1.3 Searching for array elements

You now have the building blocks for determining if a particular value is present in an
array. To achieve this goal, you can use a for loop to step through each element in the
array and use an if statement to compare the current element with the value you’re
looking for. This process is demonstrated in the following listing.

NSArray *pets = [NSArray arrayWithObjects:@"Cat", @"Dog", @"Rat", nil];
NSString *valueWeAreLookingFor = @"Fish";

int i;
BOOL found = NO;

for (i = 0; i < [pets count]; i++)
{
 if ([[pets objectAtIndex:i]
 isEqual:valueWeAreLookingFor])
 {
 found = YES;
 break;
 }
}

if (found)
{

Listing 4.2 Determining if an NSArray contains the word “Fish” using C-style code

Step through
the array

B

Check array
element value

c

Break out
for loopd
Download from Wow! eBook <www.wowebook.com>

78 CHAPTER 4 Storing data in collections
 NSLog(@"We found '%@' within the array",
 valueWeAreLookingFor);
} else {
 NSLog(@"We didn't find '%@' within the array",
 valueWeAreLookingFor);
}

In this listing you set up a loop B to step through each element in the array. The loop
sets the loop counter variable i to the values 0 through [pets count] - 1. In the loop
you fetch the array element at index i via the objectAtIndex: method and check to
see if it’s equal to the value you are looking for c. If a match is found, you set the
found variable to YES d and break out of the for loop immediately, because there’s
no need to check any remaining array elements.

 We think that’s a lot of code for such a simple task! It also allows ample opportu-
nity for subtle bugs to creep in. Luckily, Foundation Kit provides a much more conve-
nient technique to check if an array contains a specific value in the form of NSArray’s
containsObject: message:

BOOL found = [pets containsObject:@"Fish"];
if (found) {
 NSLog(@"We found 'Fish' within the array");
}

Internally, containsObject: performs a similar search through the array, comparing
each element as it goes; however, this action is hidden from you, and more important,
there’s no opportunity for you to introduce errors. This technique demonstrates
another advantage of using objects: the ability to easily reuse methods instead of con-
tinually writing them from scratch.

 Sometimes you’re interested in determining not only if a value exists in an array
but also its position. The indexOfObject: message performs a similar task to con-
tainsObject:, but instead of returning a Boolean flag to indicate if the object is
found, it returns the index at which the item is found or a special value NSNotFound if
it’s not found:

int indexOfItem = [pets indexOfObject:@"Dog"];
if (indexOfItem != NSNotFound) {
 NSLog(@"We found the value 'Dog' at index %d", indexOfItem);
}

Although messages such as indexOfObject: and containsObject: allow you to
remove, or at least hide, logic that loops over each element in an array, some cases
may require such logic. For example, you may want to convert the name of each pet
into uppercase form, and NSArray has no built-in method to achieve this task. But
Objective-C and Foundation Kit provide mechanisms to perform iteration over an
array more efficiently and safely than was done in listing 4.2.
Download from Wow! eBook <www.wowebook.com>

79Arrays
4.1.4 Iterating through arrays

Using the count and objectAtIndex: messages of the NSArray class, you can loop
over each element in an array with a code snippet similar to the following:

int i;
for (i = 0; i < [pets count]; i++) {
 NSString *pet = [pets objectAtIndex:i];

 NSLog(@"Pet: %@", pet);
}

This code may not be the most efficient or cleanest of techniques. Each iteration
through the loop, when it’s time to evaluate the condition i < [pets count], you are
asking the array to recalculate its length; and depending on how the array is internally
stored (a dynamic array or linked list), repeatedly calling objectAtIndex: may not be
efficient because of repeated walks through the data structure to reach the required
element. One solution Objective-C provides for more efficient iteration through a
data structure is the enumerator.

NSENUMERATOR

An enumerator is an object that allows you to step through a sequence of related items in
an efficient manner. In Objective-C an enumerator is represented by the NSEnumerator
class. Because an enumerator must step through a set of data, you typically ask a data
structure such as an array to create a suitable enumerator on your behalf rather than
create an NSEnumerator instance directly.

 As an example, the following code snippet uses NSArray’s objectEnumerator mes-
sage to obtain an NSEnumerator instance that enables you to step through each type of
pet stored in the pets array:

NSArray *pets = [NSArray arrayWithObjects:@"Cat", @"Dog", @"Rat", nil];

NSEnumerator *enumerator = [pets objectEnumerator];
NSString *pet;

while (pet = [enumerator nextObject]) {
 NSLog(@"Pet: %@", pet);
}

The objectEnumerator method returns an instance of the NSEnumerator class that’s
suitable for enumeration of each element in the specified array.

NSEnumerator is a simple class that provides a single method called nextObject.
This method, as its name suggests, returns the next object in the sequence the enu-
merator is enumerating over. By placing it in a while loop, you’ll eventually be pro-
vided with the value of each element in the array. Once you reach the end of the
sequence, nextObject returns nil to indicate the end of the sequence (another rea-
son NSArray can’t store the value nil). Executing the code snippet on the array of pet
types results in output similar to the following:

Pet: Cat
Pet: Dog
Pet: Rat
Download from Wow! eBook <www.wowebook.com>

80 CHAPTER 4 Storing data in collections
Notice that at no point do you specify in which order you want to step through the array.
This logic is inherently built into the particular NSEnumerator instance you obtain. Dif-
ferent versions of NSEnumerator may step through the sequence in different orders.

 As an example, try replacing the existing call to objectEnumerator with a call to
reverseObjectEnumerator. Both NSArray messages provide NSEnumerator instances,
but the enumerator provided by reverseObjectEnumerator steps through the array
in reverse order, starting at the last element and working toward the first.

 Using an enumerator can be efficient because the NSEnumerator instance can keep
track of additional state about the internal structure of the object it’s enumerating, but
it’s not the only weapon available in Objective-C’s toolbox of performance tricks.

FAST ENUMERATION

As the name suggests, fast enumeration is a feature designed to make the process of
enumeration even faster and more efficient. It’s one part Objective-C language syntax
and one part runtime library support. For fast enumeration, you can use a special
form of the for statement:

NSEnumerator enumerator = [pets reverseObjectEnumerator];
for (NSString *pet in enumerator) {
 NSLog(@"Next Pet: %@", pet);
}

The syntax is cleaner and more concise, but how does it work? In the brackets of the
for statement, you declare a new variable followed by the keyword in and the object
to which you want to apply fast enumeration. Each time through the loop, the for
statement assigns the next element in the enumeration to the specified variable.

 Fast enumeration can be used with any NSEnumerator, and it can also be used
directly on an instance of the NSArray or NSMutableArray class. For example, the fol-
lowing snippet also works and leads to some very clean code:

for (NSString *pet in pets) {
 NSLog(@"Next Pet: %@", pet);
}

Fast enumeration can’t be used with every object, however. It requires the object that
is after the in keyword to implement the NSFastEnumeration protocol. Protocols are
discussed in detail in chapter 7.

4.1.5 Adding items to an array
If you create an instance of the NSArray class, the array is said to be immutable because
you can’t modify the structure or contents of the array after it’s been initially con-
structed. If you attempt to modify an NSArray instance, you’ll get an exception mes-
sage such as the following listed to the Xcode debugger console, and your application
will crash:

*** Terminating app due to uncaught exception
'NSInternalInconsistencyException', reason: '*** - [NSCFArray
replaceObjectAtIndex:withObject:]: mutating method sent to immutable
object'
Download from Wow! eBook <www.wowebook.com>

81Arrays
If you need to modify an array after it’s been created, you must make sure you create a
mutable array. A good way to get started is by creating an empty array using the array
factory method on the NSMutableArray class instead of the NSArray class. This creates
an array that’s initially empty, but because the array is mutable, you’ll be able to
append new elements to it at runtime as desired.

NSMutableArray *array = [NSMutableArray array];

An NSMutableArray grows in size whenever you add elements to it. You can conceptu-
ally think of the array as allocating additional memory to the array to store each ele-
ment as it’s added. But this isn’t the most efficient way to use memory. If you know
ahead of time how many elements you intend to add to the array, it’s more efficient
for the array to allocate enough memory to store all the elements in one go. As you
may expect, NSMutableArray is smart: it provides another factory method called
arrayWithCapacity: for this very case:

NSMutableArray *pets = [NSMutableArray arrayWithCapacity:50];

This code snippet creates a new NSMutableArray and internally allocates enough
memory to store a minimum of 50 elements. It’s important to note, however, that this
is only a hint as to the number of items expected to eventually be added to the array.
An array created via such a technique is perfectly able to store more than 50 elements
and will allocate additional memory once the specified capacity is exceeded.

 It’s also important not to confuse the capacity of an array with its length or count.
Although the array just created has memory set aside to store at least 50 elements, if
you ask for its current size via the count message, it will indicate 0 because you still
haven’t physically added anything to it. The capacity is only a hint that allows the
NSMutableArray class to avoid excessive memory allocations. Specifying a capacity of
50 means there won’t be any additional memory allocations until at least the 51st ele-
ment is added to the array. Doing this may lead to potential performance gains and
less memory fragmentation.

 Now that you know how to create an NSMutableArray instance that allows you to
dynamically modify its contents, how do you add additional elements to an array? One
answer is to use the addObject: message, which allows you to add a new element to
the end of an existing array:

[pets addObject:@"Pony"];

This snippet expands the size of the array by one element and stores the string "Pony"
in the newly added element. It’s also possible to insert an element into the middle of
an array. For this, you can use insertObject:atIndex:, which expects the array index
at which to insert the new element:

[pets insertObject:@"Hamster" atIndex:2];

When this statement is executed, every element starting from array index 2 is shifted
one place higher: the object at index 2 becomes the element at index 3, and so on.
The vacated space at index 2 is then filled by inserting the string "Hamster". Instead of
Download from Wow! eBook <www.wowebook.com>

82 CHAPTER 4 Storing data in collections
inserting a new array element, you can replace an existing one by using the replace-
ObjectAtIndex:withObject: message:

[myArray replaceObjectAtIndex:0 withObject:@"Snake"];

This statement replaces the first element in the array with the string "Snake". One
final operation worth noting is how to reduce the size of an array by removing existing
elements. You can do this by providing the removeObjectAtIndex: message with the
index of the element you want to remove:

[myArray removeObjectAtIndex:5];

This statement causes the element at index 5 to be removed from the array, and all
elements after it are moved one index position to reclaim the “hole” left in the
array. The array is hence reduced in length by one, as can be verified by a call to
the count method.

 Arrays are useful data structures with many practical applications, but they’re not
the most flexible of data structures. A more flexible data structure is the dictionary.

4.2 Dictionaries
An array is only one form of data structure provided by Foundation Kit. Another use-
ful data structure is the dictionary or map. A dictionary is a collection of key/value
pairs. You use one value, termed a key, to look up a related value of interest.

 In Foundation Kit, a dictionary is represented by the NSDictionary and NSMutable-
Dictionary classes. Each entry you place in a dictionary consists of a key and its
matching value—much like a physical dictionary uses a word as a key and a brief defi-
nition as a value, or a phone book matches names to numbers.

 In a dictionary each key must be unique; otherwise confusion may occur when a
key is provided and multiple matching values are found. If you must store multiple
values against a given key, you can always store an NSArray instance as your single
value. A key can be any object: one dictionary might use numbers, while another
might use strings.

 If you have a computer science background, you may be more familiar with
the concept of a hash table and hashing functions. A hash table is one way in which the
abstract concept of a dictionary can be implemented, but NSDictionary and NSMutable-
Dictionary insulate you from such implementation minutiae and allow you to con-
centrate on their practical benefits to your application instead of on how they’re
physically implemented.

 Let’s start our investigation of dictionaries by learning how to create a new one and
populate it with some initial entries.

4.2.1 Constructing a dictionary

The distinction between the immutable NSDictionary class and mutable NSMutable-
Dictionary classes is similar to that between NSArray and NSMutableArray. An
NSDictionary can’t be modified, whereas an NSMutableDictionary can freely have
Download from Wow! eBook <www.wowebook.com>

83Dictionaries
new entries added, removed, or updated. To create an empty dictionary, you use the
dictionary factory message:

NSDictionary *myDetails = [NSDictionary dictionary];

This message is primarily of use only with the NSMutableDictionary subclass. Other-
wise, your empty dictionary will forever stay empty because it’s immutable!

 A message called dictionaryWithObject:forKey: enables you to create a diction-
ary that initially consists of a single key/value pair:

NSDictionary *myDetails = [NSDictionary dictionaryWithObject:@"Christopher"
 forKey:@"Name"];

This code creates a new dictionary containing a single entry consisting of the key
"Name" with a value of "Christopher", both of which are strings. More than likely,
however, you’ll want to initialize a dictionary with multiple key/value pairs. A similarly
named dictionaryWithObjects:forKeys: message allows for doing so:

NSArray *keys = [NSArray arrayWithObjects:@"Name", @"Cell", @"City", nil];
NSArray *values = [NSArray arrayWithObjects:@"Christopher", @"+643123456",
 @"Christchurch", nil];

NSDictionary *myDetails = [NSDictionary dictionaryWithObjects:values
 forKeys:keys];

In this example, you create a new dictionary with details about a particular person.
The dictionaryWithObjects:forKeys: message expects to be provided with two
arrays of equal length. The first value from the keys array is matched up with the first
value from the values array, and so on, to create the key/value pairs that will populate
the dictionary.

 The creation of temporary arrays can be tiresome, especially if your only intent is
to populate a dictionary and you don’t need the arrays for other purposes. Naturally,
the designers of the NSDictionary class considered this scenario, and they provided a
more convenient factory method to allow you to specify multiple key/value pairs with-
out creating temporary arrays:

NSDictionary *myDetails = [NSDictionary dictionaryWithObjectsAndKeys:
 @"Christopher", @"Name",
 @"+643123456", @"Cell",
 @"Christchurch", @"City",
 nil];

This message expects a variable number of parameters to be provided to it. The param-
eters alternate between being interpreted as a value or a key and are matched up into
pairs until a nil value is detected to indicate the end of the list. Other than providing an
alternative way to specify the list of key/value pairs, dictionaryWithObjectsAndKeys:
and dictionaryWithObjects:forKeys: perform identical functionality.

 A number of other factory methods are also available on the NSDictionary and
NSMutableDictionary classes. For example, dictionaryWithContentsOfURL: per-
forms a function similar to NSArray’s arrayWithContentsOfURL: and enables a dic-
tionary to easily be populated with contents of a file located on a website.
Download from Wow! eBook <www.wowebook.com>

84 CHAPTER 4 Storing data in collections
 Due to the use of the NSDictionary class, all of the dictionaries constructed by the
code samples in this section result in immutable dictionaries, which are read-only. If
you want to create a dictionary that can be modified after creation, you need to
replace the class name NSDictionary with NSMutableDictionary.

 Now that you can construct dictionary instances, let’s proceed to determine how to
query a dictionary for details about the key/value pairs it contains.

4.2.2 Accessing dictionary entries

The methods for interacting with a dictionary are similar to those for an array. For
example, you can send the count message to determine how many entries are cur-
rently contained in the dictionary:

int count = [myDetails count];
NSLog(@"There are %d details in the dictionary", count);

Rather than an objectAtIndex: message, which accesses an element by index posi-
tion, you’re provided with a similar message called objectForKey:, which enables you
to obtain the value associated with a given key:

NSString *value = [myDetails objectForKey:@"Name"];
NSLog(@"My name is %@", value);

This statement searches the dictionary to determine if a key named "Name" exists and
then returns the value associated with it. Unlike NSArray’s objectAtIndex: message,
it’s not an error to provide a key to objectForKey: that doesn’t exist in the dictionary.
In this case, the special value nil will be returned, indicating that the key was not
found in the dictionary.

 One common use of dictionaries is to store related but flexible data about a
given item. For example, the dictionaries you constructed over the previous couple
of pages store various bits of information about a particular person, such as name,
cellphone number, and location. When interacting with such dictionaries, you’ll
likely want to query the value of multiple keys in quick succession. For example, if
you were printing address labels, you would probably want the person’s name and
location details. Although you could make multiple calls to objectForKey:, you can
also perform multiple lookups in a single statement via the objectsForKeys:not-
FoundMarker: message:

NSArray *keys = [NSArray arrayWithObjects:@"Name", @"City", @"Age", nil];
NSArray *values = [myDetails objectsForKeys:keys notFoundMarker:@"???"];

NSLog(@"%@ is located in %@ and is %@ years old",
 [values objectAtIndex:0],
 [values objectAtIndex:1],
 [values objectAtIndex:2]);

objectsForKeys:notFoundMarker: expects to be provided with an array consisting of
the keys of the dictionary entries you want to query. It then returns an array with the val-
ues of those keys. If a particular key you request isn’t present in the dictionary (such
Download from Wow! eBook <www.wowebook.com>

85Dictionaries
as the person’s age in this example), the value you provide via the notFoundMarker
argument is placed in the array. The returned array has a one-for-one correspondence
to the keys array that you pass in, so the value for the key specified in array element 0
of the keys array will be found in array element 0 of the returned values array.

 Now that you have a strong handle on how to access and query the existing con-
tents of a dictionary, let’s look at how you can manipulate the contents of a dictionary
by adding and removing additional key/value pairs.

4.2.3 Adding key/value pairs

Assuming you’ve created a mutable dictionary of type NSMutableDictionary, you can
store additional key/value pairs in the dictionary by using the setObject:forKey:
message:

[myDetails setObject:@"Wellington" forKey:@"City"];

If the key already exists in the dictionary, the previous value is discarded and the spec-
ified value takes its place. It’s an error for the value or key arguments to be nil
because, as previously discussed, messages such as objectForKey: use nil as a special
value to indicate the absence of an entry.

 If you have an existing dictionary of key/value pairs, it’s possible to merge those
entries into another dictionary by way of the addEntriesFromDictionary: message,
as follows:

NSDictionary *otherDict = [NSDictionary dictionaryWithObjectsAndKeys:
 @"Auckland", @"City",
 @"New Zealander", @"Nationality",
 @"Software Developer", @"Occupation",
 nil];

[myDetails addEntriesFromDictionary:otherDict];

This code adds each key/value pair found in otherDict into myDict, replacing the
value of any key/value pairs that were already present. Instead of adding new key/
value pairs, you can remove one by passing its associated key to the removeObjectFor-
Key: message.

[myDetails removeObjectForKey:@"Name"];

This code deletes the entry associated with the key "Name". If you have a number of
entries you want to delete, you can store the keys in an array and use the handy remove-
ObjectsForKeys: message to delete them in one step. As an example, you could
remove the details identifying the person’s location by removing the key/value pairs
identified by the strings "City" and "Nationality" using the following statement:

NSArray *locationRelatedKeys =
 [NSArray arrayWithObjects:@"City", @"Nationality", nil];

[myDetails removeObjectsForKeys:locationRelatedKeys];
Download from Wow! eBook <www.wowebook.com>

86 CHAPTER 4 Storing data in collections
Finally, it’s possible to empty the dictionary completely by calling the removeAllObjects
method, which, as its name suggests, deletes every key/value pair from the dictionary:

[myDetails removeAllObjects];
NSLog(@"There are %d details in the dictionary", [myDetails count]);

This code snippet results in the string "There are 0 details in the dictionary"
because the call to removeAllObjects emptied it completely.

 One message that can easily be confused with setObject:forKey: is the message
setValue:forKey:. Although these two messages have similar names, their behavior is
subtly different with regard to how they handle the special value nil, which, as you
may recall, typically represents the absence of a value.

 As the following code snippet demonstrates, both setObject:forKey: and set-
Value:forKey: can be used to update the value stored in a dictionary for a particular key:

[myDetails setObject:@"Australian" forKey:@"Nationality"];
[myDetails setValue:@"Melbourne" forKey:@"City"];

These two messages diverge in how they handle a nil value being specified for the
key’s value. Sending setObject:forKey: with the object parameter specified as nil
results in an exception that crashes your application because nil isn’t a valid value to
store in a dictionary. Passing nil to setValue:forObject: is acceptable, however,
because it is interpreted as though you had instead called

[myDetails removeObjectForKey:@"Nationality"];

Although it hardly makes a difference in the example code snippets (and arguably
makes the code harder to understand), the benefits of using setValue:forKey: to
remove a key/value pair really come to light when cleaning up a code snippet such as
the following:

NSString *myNewValue = ...get new value from somewhere...
if (myNewValue == nil)
 [myDetails removeObjectForKey:@"Nationality"];
else
 [myDetails setObject: myNewValue forKey:@"Nationality"];

With setValue:forKey:, this entire code snippet can be replaced with a single line of
source code. setValue:forKey: will be discussed in greater detail in chapter 11,
which introduces the concept of Key-Value Coding. Throughout the rest of the book,
we come back to the subject of dictionaries, but let’s round off this discussion with a
look at how to list all entries in a dictionary, similar to an index or table of contents in
a book.

4.2.4 Enumerating all keys and values

Like arrays, dictionaries can be enumerated to list all of the key/value pairs contained
in them. But because dictionaries don’t retain any ordering, the order in which key/
value pairs are enumerated may not match the sequence in which they were added to
the dictionary.
Download from Wow! eBook <www.wowebook.com>

87Dictionaries
 Because a dictionary is made up of key/value pairs, NSDictionary provides two
convenient messages to obtain enumerators to iterate over each entry in the diction-
ary. The keyEnumerator message provides an enumerator that iterates over all keys in
the dictionary, while objectEnumerator performs a similar task but iterates over all
the values instead:

NSEnumerator *enumerator = [myDetails keyEnumerator];
id key;

while (key = [enumerator nextObject]) {
 NSLog(@"Entry has key: %@", key);
}

Using the keyEnumerator message, this code snippet lists the name of each key cur-
rently stored in the dictionary. Try using the objectEnumerator message on the first
line, and you’ll see the values listed instead. Fast enumeration is also possible, and if
you use the dictionary object directly, it iterates over all of the keys:

for (id key in myDetails) {
 id value = [myDetails objectForKey:key];

 NSLog(@"Entry with key '%@' has value '%@'", key, value);
}

This code sample also demonstrates that in the iteration loop it’s possible to use
objectForKey: to obtain the value that matches the current key. When placing code
in an enumeration loop, such as the one just shown, you must be careful that you
don’t mutate the data structure. As an example, you may think that one way to remove
all the entries in a dictionary (other than the more logical removeAllObjects) would
be the following code snippet:

for (id key in dictionary) {
 [dictionary removeObjectForKey:key];
}

Although this appears conceptually correct, the code snippet has a fundamental flaw
that will result in an exception similar to the following and crash the application:

*** Terminating app due to uncaught exception 'NSGenericException', reason:
'*** Collection <NSCFDictionary: 0x3b11900> was mutated while being
enumerated.'

If you enumerate over a data structure by using fast enumeration or an NSEnumerator,
your code shouldn’t modify the associated data structure until your enumeration has
completed. Modifying the contents of an array or dictionary that’s currently being
enumerated will alter its internal data structure and cause any associated enumerators
to become invalid. If you need to enumerate through a dictionary and potentially add
or remove entries before enumeration has completed, you should first make a copy of
all the keys by calling a method such as allKeys. This method creates an array and
copies a list of all keys currently in the dictionary into that array. This allows you to
Download from Wow! eBook <www.wowebook.com>

88 CHAPTER 4 Storing data in collections
create a snapshot of the dictionary’s keys and then enumerate through the snapshot
while modifying the original dictionary. Here’s an example of this process:

NSArray *myKeys = [myDetails allKeys];
for (NSString *key in myKeys) {
 [myDetails removeObjectForKey:key];
}

This works because the allKeys message creates a copy of the keys in the myDetails
dictionary. The enumerator then loops through the contents of the array (and not the
dictionary). Because the array is never modified, it’s safe to enumerate its contents.
Each time through the loop, you modify the dictionary, indirectly causing its internal
data structures to change. This doesn’t matter, however, because technically you’re
not currently enumerating its contents.

 While discussing arrays and dictionaries, we casually mentioned that various mes-
sages won’t accept nil or that they use nil to indicate special conditions. We also
mentioned that these data structures are only capable of storing objects, not primitive
values such as integer or float. But most applications need to store a list of numbers,
so how can you force an NSArray or NSDictionary instance to store a set of primitive
values? The answer is a technique called boxing.

4.3 Boxing
Undoubtedly in your application you’ll come across the need to store a number such
as 3, 4.86, or even a Boolean YES or NO value in an NSArray- or NSDictionary-based
data structure. You may think you could accomplish this task with a code snippet such
as the following:

[myArray addObject:5];

But when you attempt to compile this statement, the compiler will warn you that
"passing argument 1 of addObject: makes pointer from integer without a cast,"
hinting that something isn’t quite right. This example is a classic demonstration of the
procedural C-based side of Objective-C running up against the newer object-oriented
additions to the language.

 Classes such as NSArray and NSDictionary expect their keys and values to be
objects of some kind. The integer number 5 isn’t an object: it’s a simple primitive data
type. As such, it’s not possible to directly store an integer in an array.

 Many languages such as Java 5 and C# take care of this problem automatically
through a concept called autoboxing. Behind the scenes, the primitive (non-object-
oriented) value is wrapped inside a container object (a box), and this container is
passed around instead of the raw value. Likewise, when you attempt to access the array
and extract the value, the compiler detects a boxed value and automatically extracts
the primitive payload for you. You as a developer are none the wiser to this process
occurring. This process can be conceptualized in much the same way as a gift being
placed inside a FedEx box and removed once it reaches its destination. FedEx can
only deal with boxes of certain sizes, not your oddly shaped teapot for Aunt Betty, but
Download from Wow! eBook <www.wowebook.com>

89Boxing
that doesn’t stop you from shipping it by temporarily placing it inside a box that meets
FedEx’s requirements.

 Unfortunately, Objective-C doesn’t provide for the automatic boxing and unbox-
ing of primitive data types. Therefore, to store an integer or other primitive value in
an array or dictionary, you must perform the boxing and unboxing yourself. This is
the purpose of the NSNumber class.

4.3.1 The NSNumber class

NSNumber is an Objective-C class that can be used to wrap a value of a primitive data
type such as int, char, or BOOL into an object and then allow that value to be extracted
at a later stage. It’s most useful for allowing you to place values of primitive data types
into data structures such as NSArray or NSDictionary that can only store objects.

 Manually boxing a primitive value into an NSNumber instance is fairly straightfor-
ward: you call one of NSNumber’s factory methods, such as numberWithInt:

NSNumber *myNumber = [NSNumber numberWithInt:5];

There are similar factory messages called numberWithFloat:, numberWithBool:, and
so on, to allow boxing of other common primitive data types.

 Now that the integer value is boxed inside an NSNumber (which is an object), you
can store it in your array, as you originally intended:

[myArray addObject:myNumber];

Boxing the integer inside an NSNumber also means that when you go to fetch the value
from the array, you need to perform the reverse operation to extract the primitive
value from the NSNumber instance. You can do this with a code snippet similar to the
following that uses NSNumber’s intValue message:

NSNumber *myNumber = [myArray objectAtIndex:0];
int i = [myNumber intValue];

The NSNumber class has various other methods that conform to the naming conven-
tion xxxValue, where xxx is replaced with the name of a primitive data type. It’s not
an error to box a value via numberWithInt: and then retrieve it via a method such as
floatValue. Although you stored an integer and fetched a float, this is acceptable. In
this scenario, the NSNumber class performs a typecast operation similar to those dis-
cussed in chapter 2 to convert the value into your desired data type.

 A little bit of fancy footwork was required, but in the end, boxing and unboxing
primitive values so you can use them as if they were objects wasn’t too bad. What hap-
pens, though, if you want to store one or more RentalProperty structures in an
NSArray? These structures are also not objects, but it’s doubtful that the NSNumber
class has a numberWithRentalPropertyDetail method available for you to box them.
The answer to this conundrum is another closely related class called NSValue.
Download from Wow! eBook <www.wowebook.com>

90 CHAPTER 4 Storing data in collections
4.3.2 The NSValue class

NSNumber is a special subclass of NSValue. While NSNumber provides a convenient and
clean interface for boxing and unboxing numeric-based primitive types, NSValue
allows you to box and unbox any C-style value at the expense of having a slightly more
complex interface to program against.

 To box the value of an arbitrary C structure or union, you can take advantage of
NSValue’s valueWithBytes:objCType: message. For example, the following code sam-
ple boxes a RentalProperty structure similar to those created in chapter 3:

RentalProperty myRentalProperty =
 {270.0f, @"13 Adamson Crescent", TownHouse};

NSValue *value = [NSValue valueWithBytes:&myRentalProperty
 objCType:@encode(RentalProperty)];

This code snippet creates a copy of the rental property structure and places it inside
the NSValue object created by the call to valueWithBytes:objCType:. The valueWith-
Bytes argument is the address of the value you want to store in the NSValue instance,
while objCType and the strange @encode statement allow you to tell NSValue what kind
of data you want it to store.

 The process of unboxing an NSValue is different but still relatively straightforward.
Rather than returning the unboxed value directly, the getValue message expects you
to pass in a pointer to a variable it should populate with the value it contains, as dem-
onstrated here:

RentalProperty myRentalProperty;
[value getValue:&myRentalProperty];

On return, getValue: will have populated the myRentalProperty variable with the
value you previously stored. You might be asking yourself, if NSNumber and NSValue
allow you to get around the restriction of only being able to store objects in an array
or dictionary, will a similar technique allow you to store the equivalent of a nil value?
The answer is, yes.

4.3.3 nil vs. NULL vs. NSNull

In this chapter you learned that nil can’t be stored in an array or dictionary and it’s
used to indicate the absence of a value or entry. But what exactly is nil?

 With a standard C-style pointer, the special value NULL indicates the absence of a
value. nil represents the very same concept, except applied to a variable that’s
designed to point to an Objective-C object.

 Because nil represents the absence of a value, it can’t be stored in an array or dic-
tionary. But if you really want to store an empty or nil value, you can use a special
class called NSNull. You can conceptualize NSNull as being another kind of boxing,
similar to NSNumber or NSValue but specialized for storing nil.
Download from Wow! eBook <www.wowebook.com>

91Making the Rental Manager application data driven
 To store a nil value in an array or dictionary, you can use the null factory method
located on the NSNull class:

NSNull myValue = [NSNull null];
[myArray addObject:myValue];

An instance of the NSNull class is an object, so it can be stored in an NSArray or
NSDictionary instance or used anywhere else an object is expected. Because an
NSNull instance represents the absence of a value, the class doesn’t provide any way in
which to extract a value, so when it comes time to pull your NSNull value out of an
array, you can compare it against itself:

id value = [myArray objectAtIndex:5];
if (value == [NSNull null]) {
 NSLog(@"The 6th element within the array was empty");
} else {
 NSLog("@The 6th element within the array had the value %@", value);
}

Unlike the problems you had comparing NSString instances with the == operator,
this technique works for NSNull instances. The statement [NSNull null] doesn’t cre-
ate a new object each time it’s called. Instead, [NSNull null] always returns the
memory location of a sole instance of the NSNull class. This means that two vari-
ables that are storing a pointer to an NSNull value will have an identical address, and
hence the == operator will consider them the same. This is an example of the Single-
ton design pattern.

 This completes our coverage of the basics of Foundation Kit’s core classes and the
data structure implementations they provide. With your newfound knowledge, you
can also resolve the issue with the Rental Manager application highlighted at the end
of chapter 3.

4.4 Making the Rental Manager application data driven
One outstanding problem with the Rental Manager application is that the mapping
of city names to geographical locations is hardcoded, when what you ideally want
is for it to be data driven and easily updateable without the need to recompile the
entire application.

 These concepts nicely match the functionality provided by an NSDictionary object
(with the key being the city name and the value being its matching location type) that
obtains its initial contents from a plist file.

 Let’s add a new plist file called CityMappings.plist to your project. As you may
expect, the New File dialog (located in File > New > New File… and shown in figure 4.1)
has a suitable template to get you started. Once the new file is added to your project,
Xcode presents a graphical plist file editor that quickly allows you to edit its contents
without worrying about balancing XML open and closing brackets, and so on. Using
this editor, populate your new plist file with the contents shown in figure 4.2.
Download from Wow! eBook <www.wowebook.com>

92 CHAPTER 4 Storing data in collections
With the easily editable plist file populated and added to your project, you can now
make the few minor code changes required to make use of it.

 The first change is to update the definition of the RootViewController class available
in the RootViewController.h file to provide a place to store an NSDictionary containing
the city-to-location mappings. You should end up with something like the following:

@interface RootViewController : UITableViewController {
 NSDictionary *cityMappings;
}

Figure 4.1 Adding a new Property List file to your project via the New File dialog. Watch
out! The Property List file template is located in the Resource section, not in Cocoa Touch
with the rest of the iOS-related templates.

Figure 4.2 The graphical plist file editor available in Xcode whenever a plist file is selected
Download from Wow! eBook <www.wowebook.com>

93Making the Rental Manager application data driven
With the storage of the dictionary taken care of, you can now switch to the RootView-
Controller.m file and make a couple of additional changes that’ll create a new diction-
ary object and initialize it with the contents of the CityMappings.plist file.

 Open your copy of RootViewController.m and replace the existing versions of the
viewDidLoad and dealloc methods with those in the following listing.

- (void)viewDidLoad {
 [super viewDidLoad];

 NSString *path = [[NSBundle mainBundle]
 pathForResource:@"CityMappings"
 ofType:@"plist"];
 cityMappings = [[NSDictionary alloc] initWithContentsOfFile:path];
}

- (void)dealloc {
 [cityMappings release];

 [super dealloc];
}

The first additional line of source code determines the full path to the CityMap-
pings.plist file in the application bundle. You could conceivably also replace this
line with one that fetches the plist file from an internet site (as discussed previously
in this chapter), allowing the mappings to be truly dynamic and updated almost
instantaneously.

 Once the location of the plist file is determined, you use NSDictionary’s init-
WithContentsOfFile: method to create a new immutable dictionary with the
required city-to-geographical-location mappings.

 Because you allocated memory, you must take care to return it to the operating sys-
tem when you’re done using it. This is the purpose of the release message seen in the
dealloc method.

 The only remaining modification required to get the Rental Manager application
to use the cityMapping dictionary is to replace the if statement in the table-
View:cellForRowAtIndexPath: method that loads a suitable image with the following
two lines:

NSString *imageName = [cityMappings objectForKey:city];
cell.imageView.image = [UIImage imageNamed:imageName];

These two lines use NSDictionary’s objectForKey: message to look up a city name
(the key) and find the matching image filename, which is then loaded and displayed
to the user in the second line of source code.

 Rebuild the application and run it in the debugger. If everything goes correctly,
you should see no visible change from the previous version. But with the modified
structure, no matter how many city-to-filename mappings are appended to the plist
file, the previous two lines of source code will happily perform the task with no further
attention or maintenance required. Score one for developer productivity!

Listing 4.3 Creating and destroying the city-to-geolocation mapping dictionary
Download from Wow! eBook <www.wowebook.com>

94 CHAPTER 4 Storing data in collections
4.5 Summary
Object-oriented programming, as implemented by Objective-C, has many advantages
to the application developer over procedural-based languages such as C. The ability to
combine data with logic means that you can encapsulate common functionality and
avoid developing the same algorithms for enumeration, searching, and other actions
in each application you develop. This enables you to concentrate on differentiating
your product and to avoid common types of bugs. Nothing comes for free, however,
and you’ve seen a number of limitations where the procedural world meets the object-
oriented, such as the challenges of testing for object equality or storing values of prim-
itive data types such as int in an object.

 By using the reusable classes provided by Foundation Kit, you were quickly able to
modify the Rental Manager application from being hardcoded to being a dynamic
and rather easily modified application. Rather than requiring code changes to alter
the city-to-image mappings, the updated version, which uses an NSDictionary, can
easily be updated from a plist, a file on the internet, or any other source the devel-
oper’s imagination dreams up.

 In chapter 5, we cover some of the more technical aspects of Objective-C by learn-
ing how you can define and implement your own classes. You do this by turning the
RentalProperty structure into an Objective-C class, so your sample application is
truly object oriented. This is the last major C-style holdover left in your Rental Man-
ager application.
Download from Wow! eBook <www.wowebook.com>

Part 2

Building your
own objects

If you’re developing an Objective-C–based application, it won’t be long
before you’re faced with the challenge of developing your own custom classes
and objects. The classes provided by Foundation and UIKit can only take you so
far. This part of the book begins with an explanation of how to create a class, and
then expands into how to extend classes to specialize them, or adapt them for
slightly different needs.

 You’ll also delve deeper into the process of message sending, and how the
dynamic nature of Objective-C allows for classes to behave in dynamic ways. With
custom objects, memory allocation and management is always an important
topic to master, so we round out with a discussion of proper memory manage-
ment techniques, and the five simple rules of object ownership.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Creating classes
The real power of object-oriented programming comes into play when you start to
create your own custom objects that perform application-specific tasks, and this is
what we explore in this chapter. By creating a custom class, you can encapsulate a
common set of functionality into a reusable component that you can use repeat-
edly throughout an application (or even a set of applications).

 To put the concepts into context, we concentrate on updating the Rental Man-
ager application to use object-oriented design principles, replacing the Rental-
Property structure with a class that provides equivalent functionality. The new class
will store and maintain the details of a single rental property, which means you
must specify what data each object should keep track of and add instance and class
methods to allow safe and controlled access to that data.

This chapter covers
■ Creating custom Objective-C classes
■ Adding instance variables
■ Adding class and instance methods
■ Adding properties
■ Implementing init and dealloc
97

Download from Wow! eBook <www.wowebook.com>

98 CHAPTER 5 Creating classes
 We also cover the concept of properties and how they make calling common meth-
ods that set or get the value of a field stored by an object easier and quicker. Let’s start
by defining the shell of the new class.

5.1 Building custom classes
Creating a new class in Objective-C is relatively straightforward and typically consists
of three steps:

1 Specifying the data you want associated with each object. This data is commonly
called instance variables (or ivars for short).

2 Specifying the behavior or actions that an object can be expected to perform.
This is commonly called message or method declarations.

3 Specifying the logic that implements the behavior declared in step 2. This is
commonly called providing an implementation of the class.

By convention, the source code for a class tends to be spread over two files. A header file
(*.h) provides a declaration of the instance variables and expected behavior, and a
matching implementation, or method file (*.m), contains the source code to implement
that functionality. You start by adding a header and method implementation file to the
Rental Manager project to store the source code for a class called CTRentalProperty.

5.1.1 Adding a new class to the project
The easiest way to create a new class in Xcode is to select the New File menu option
(Cmd-N). The New File dialog is displayed in figure 5.1.

Figure 5.1 The New File dialog in Xcode enables you to add new files to your project.
Selecting a different template allows you to alter the type of file generated and the default
contents it’ll contain.
Download from Wow! eBook <www.wowebook.com>

99Declaring the interface of a class
The most suitable template for your purposes is Objective-C Class, which creates the
basic structure of a class using Objective-C features without being designed for a spe-
cific purpose. This template is found in the Cocoa Touch Class subsection. Once you
click Next, a pop-up menu is displayed that allows you to select the superclass of your
new object (the default NSObject is the best option for you). Clicking Next brings up
the last part of the New File dialog.

 In this step you can specify the name and location of the files that are about to be
created. Specify the name CTRentalProperty.m in the Save As box.

 Clicking Save creates the method (*.m) and matching header (*.h) files and
returns you to the main Xcode window with CTRentalProperty.m open in the editor.

 Exploring the contents of the two newly created files, you’ll notice that they aren’t
completely blank: the template has added a number of special directives such as
@interface and @implementation to them. Let’s look at how to create a custom class
by opening the CTRentalProperty.h file and investigating the code it contains, starting
with the @interface directive.

5.2 Declaring the interface of a class
The interface of a class defines the “public face” of a class—what the class looks like
and how it can be interacted with. The interface declaration describes the kind of data
the class stores and the various messages you can send it to perform tasks on your
behalf. It’s designed to provide enough details for other sections of an application to
make use of the class without providing any details on how the class physically achieves
its stated capabilities.

 The declaration of a new class is signaled by the @interface compiler directive.
Everything from this point on, until a matching @end directive, makes up the interface
of the class. You may think the use of a directive named @class would make more
sense. One way to remember this apparent discrepancy is to realize that your interface
must eventually be matched with a suitable implementation, and indeed there is a
matching @implementation directive that we cover later in this chapter.

 The general form of a class definition is as follows:

@interface ClassName : SuperClass {
 ... instance variable declarations ...
}

... method declarations ...

@end

As you can see, immediately after the @interface directive is the name of the new
class, followed by a colon and the name of the class it inherits from (its base class,
or superclass).

 After you specify the name of the class and outline its position in the class hierar-
chy, the body of the class interface declaration is split into two main sections, roughly
divided by a pair of curly braces. The first section declares the list of instance variables
Download from Wow! eBook <www.wowebook.com>

100 CHAPTER 5 Creating classes
the class associates with each object created, while the second section declares any
methods and properties the class wishes to allow clients to access.

 Before discussing how objects can provide logic to manipulate or work with the
instance data they store, let’s look at how you store data in a class.

5.2.1 Instance variables (ivars)

One of the first steps in defining a new class is to determine the type of data it needs
to store. For the CTRentalProperty class, you want to store data similar to that which
you previously stored in the RentalProperty structure. At a minimum, you’d like to
store the following data for each rental property:

■ Rental price per week (float)
■ Address of property (NSString *)
■ Property type (enum)

In the context of a class, such fields are called instance variables (or ivars, for short).
Instance variables are specified inside a set of curly braces in a class’s @interface dec-
laration and appear just like ordinary variable declarations: you provide the data type
and name of each variable and terminate each statement with a semicolon. For exam-
ple, you could declare the instance variables of the CTRentalProperty class as follows:

float rentalPrice;
NSString *address;
PropertyType propertyType;

Each time you create a new object of the CTRentalProperty class, a unique set of
these variables will be allocated to store the details of this particular instance. There-
fore, if you create multiple CTRentalProperty instances to represent a group of rental
properties, each will be able to store its own unique rentalPrice, address, and
propertyType values.

Sometimes subtle differences have the most profound effect
In Objective-C code it’s common to see the superclass explicitly declared as NSOb-
ject. If you’re a Java or C# developer, this may seem redundant, because in those
languages omitting the superclass causes the compiler to automatically inherit your
class from a predefined superclass (java.lang.Object or System.Object, respec-
tively). Objective-C is similar to these languages in that it supports only single inher-
itance but, unlike those languages, it allows for multiple root classes. Not every class
must ultimately inherit from NSObject.

If you don’t explicitly provide a superclass, Objective-C declares your class as a new
root class. In other words, the class will sit beside NSObject in the class hierarchy
rather than below it. While this is possible, it generally isn’t desirable because it
means your new class won’t inherit any of the standard functionality typically associ-
ated with an Objective-C object. Helpful methods such as isEqual: and memory
management such as alloc, init, and dealloc are all implemented by NSObject.
Download from Wow! eBook <www.wowebook.com>

101Declaring the interface of a class
 Although declaring instance variables looks similar to declaring normal variables,
there’s a little more to their syntax than what we’ve discussed. Just as an employee may
not want her boss to know she’s searching for a new job, an object may want to restrict
access to some of its internal data. The declaration of an instance variable can be pre-
ceded by an optional directive such as @private to alter who can access (or alter) its
current value. Table 5.1 outlines the available directives. Once a visibility directive is
specified, it applies to all additional instance variables declared until another accessi-
bility directive is found. By default, instance variables are @protected.

To see why the concept of instance variable visibility is important, imagine that you
had access to a class that represented a loan in a banking system. The bank wouldn’t
be happy if anyone with access to a loan object could reach inside and change the sta-
tus instance variable from “rejected” to “accepted” or change the interest rate to –10%
so the bank would pay the loan holder for the privilege of having a loan! Access and
modification of this data would need to be tightly controlled, and this is exactly the
intent of directives such as @protected and @private.

 At the other end of the spectrum, you could mark an instance variable as @public,
which means any piece of code can directly access the instance variable with no checks
or balances to ensure it’s done correctly. This practice is usually discouraged because
it provides less control and flexibility over how instance variables are utilized. If direct
access is discouraged, then how are you meant to access or change their values? The
answer leads nicely onto the subject of how to declare methods in a class.

5.2.2 Method declarations

Because allowing direct access to instance variables is discouraged, you must find
another way to allow users to query and alter their values. This alternative technique
should allow you to tightly control access and optionally provide other services such as
logging and validation. One solution is to provide a set of messages that the object can
be sent in order to update or access the instance variables on your behalf. Because the
code implementing the method is part of the class, it’ll have access to the instance
variables no matter their protection level.

Table 5.1 Standard visibility directives available for instance variables in Objective-C

Visibility level Description

@private Accessible only by the class that declared it

@protected Accessible only by the class that declared it or by any subclass

@public Accessible from anywhere

@package Accessible from anywhere in the current code image (the application or static
library in which the class is compiled)
Download from Wow! eBook <www.wowebook.com>

102 CHAPTER 5 Creating classes
For the CTRentalProperty class, you want clients to be able to

■ Get or set the rental price to an absolute dollar amount
■ Get or set the address of the property
■ Get or set the property type

You can easily come up with additional helpful messages that improve the usability of
the class, such as

■ Increase the rental price per week by a fixed percentage
■ Decrease the rental price per week by a fixed percentage

The messages understood by a class are declared in the @implementation section after
the curly braces enclosing instance variables and before the @end directive. This sec-
tion is like a list of steps in a recipe. It gives you a general idea of how the final product
is put together, but it doesn’t go into great detail about how each step is achieved.

 The simplest form of method declaration is one that expects no parameters and
returns a single value. For example, the following declares a method called rental-
Price, which returns a floating-point number:

- (float)rentalPrice;

The data type of the value returned by the method is enclosed in parentheses and can
be any valid Objective-C type, such as those discussed in chapter 2. A special data type,
void, can also be used to indicate that no value is returned.

 Now that you have a method declared that allows you to query the current rental
price, it’s only natural to want to complement it with a method to allow you to change

Falling on the side of caution
Although it may be tempting to declare all instance variables as @public, in general,
you should try to keep them as tightly restricted as possible. Once access to an
instance variable is granted, it can be hard to remove or alter the purpose of the ivar
as your application continues to grow and develop. This is especially true if your class
is designed to be part of a widely used framework or support class.

With the default visibility of @protected, a subclass can access any instance vari-
able declared by its superclass. Once it does, however, an updated version of the
superclass can’t easily remove that variable or alter its purpose. If it does, the sub-
class might break, as it now relies on a nonexistent instance variable or at least is
potentially using it in an incorrect manner.

By making the instance variable @private and providing methods to indirectly access
its value, you can isolate the storage of the value from its behavior. If an update to
the superclass means you want to remove the instance variable and instead obtain
its value via a calculation, you can do this in the accessor methods without affecting
any users of the class. As the saying goes, most things in computer science can be
solved by adding another layer of indirection.
Download from Wow! eBook <www.wowebook.com>

103Declaring the interface of a class
the rental price. To do so, you need to specify that the method expects a parameter,
or argument:

- (void)setRentalPrice:(float)newPrice;

In a method declaration, a parameter is introduced by the colon (:) character, which
is followed by the parameter’s data type and name. In this case you’ve declared a
method called setRentalPrice:, which has a single parameter called newPrice of
type float.

 It’s possible to declare a method that expects multiple parameters. For example,
you could declare a method to decrease the rental price by a fixed percentage, ensur-
ing it doesn’t drop below a predetermined minimum value, by declaring a method
as follows:

- (void)decreaseRentalByPercent:(float)percentage withMinimum:(float)min;

This code declares a method named decreaseRentalByPercent:withMinimum: that
accepts two parameters (percentage and min). Notice how the position of each colon
character in the name indicates where a parameter is expected and that the method
name is interspersed between the parameter declarations rather than being a single
identifier at the start of the declaration.

 It’s important to realize that in a method signature, the colons aren’t optional. As
an example, the identifiers rentalPrice and rentalPrice: identify different meth-
ods. The first accepts no parameters, while the second expects a single parameter (as
indicated by the colon). It’s possible (although rather confusing) for a class to declare
both methods.

 It isn’t essential to provide a part of the method name before each parameter. For
example, the following declaration is equally valid even though no part of the method
name is provided before the last argument named min:

- (void)decreaseRentalByPercent:(float)percentage :(float)min;

This alternative method is named decreaseRentalByPercent:: and is generally con-
sidered bad form because the name of the method is less self-documenting than

By sticking with conventions, you won’t rock the boat
In Objective-C it’s traditional to name methods that return the value of instance variables
the same as the instance variables themselves.. This is unlike languages such as Java
in which such methods would commonly use a “get” prefix, as in getRentalPrice.

You can name your methods using any convention you like, but by using the time-hon-
ored Objective-C conventions, you’ll have a smoother voyage as you develop your
application. Many features of Cocoa Touch, such as Core Data, Key-Value Coding,
and Key-Value Observing, rely in part on language conventions—or at least work nicer
out of the box if these conventions are respected. If you use other conventions, you
may discover that you have additional work to do before being able to fully use all
features of Objective-C or Cocoa Touch.
Download from Wow! eBook <www.wowebook.com>

104 CHAPTER 5 Creating classes
decreaseRentalByPercent:withMinimum:, where the purpose of the last argument is
more obvious without needing to refer to additional documentation.

 It’s important to note that a method signature, such as decreaseRentalByPercent:
withMinimum:, doesn’t contain any details about the data types of expected argu-
ments. This fact means that method overloading isn’t possible in an Objective-C class.

CLASS VS. INSTANCE METHODS

You may have noticed that every method declaration so far has had a leading -
character. This symbol indicates that the method is an instance method. When you
invoke the method, you must specify a particular object (or instance) of the class
for the method to operate on, and as a result, the method has access to all of its
instance variables.

 Another type of method is the class method, also commonly called a static method.
Class methods are identified by a + character instead of a - character. The obvious
advantage of class methods is that you don’t need to create an instance of the class in
order to be able to call them. But this can also be a disadvantage because it means
class methods are unable to access any information (such as instance variables) spe-
cific to a particular object or instance.

 Class methods are commonly used to provide simpler ways to create new objects
(for example, NSString’s stringWithFormat:) or to provide access to shared data (for
example, UIColor’s greenColor). These methods don’t need any instance-specific data
in order to perform their intended task, so they’re ideal class method candidates.

Named parameters aren’t the same as optional parameters
At first glance, it may appear that methods in Objective-C support named parameters.
For example, a method such as decreaseRentalByPercent:withMinimum: would
be called as follows:

[myProperty decreaseRentalByPercent:25 withMinimum:150];

where decreaseRentalByPercent: and withMinimum: could be considered names
for the two parameters. This appearance is only skin deep, however. Unlike lan-
guages that support true named parameters, Objective-C requires when you call a
method that you specify the parameters in the exact order they’re declared in the
method declaration. Likewise, it isn’t possible to omit parameters in order to have
default values assumed.

Naming parameters leads to more descriptive code. For example, to call a C function
called addWidget, you may using the following statement:

addWidget(myOrder, 92, NO);

From the call alone, it’s impossible to determine what this achieves. Comparing it to
the following Objective-C–based code, the benefit of naming parameters becomes
more obvious:

[myOrder addWidgetWithPartNumber:92 andRestockWarehouse:NO];
Download from Wow! eBook <www.wowebook.com>

105Declaring the interface of a class
 As an example, you could define a method that takes a PropertyType enumera-
tion value and returns a string containing a brief description of that value:

+ (NSString *)descriptionForPropertyType:(PropertyType)propertyType;

To invoke such a method, slightly different syntax is required. Because an instance or
object isn’t required to execute the method against, you instead specify the name of
the class as the target, or receiver, of the message:

NSString *description = [CTRentalProperty
 descriptionForPropertyType:TownHouse];

Well, that’s enough of the abstract theory—let’s put the concepts you’ve just learned
into practice by completing the CTRentalProperty.h header file stubbed out by the
Objective-C class file template.

5.2.3 Fleshing out the header file for the CTRentalProperty class

If you’ve been following along, you should have CTRentalProperty.h open in Xcode.
Replace the current contents with that of the following listing.

#import <Foundation/Foundation.h>

typedef enum PropertyType {
 TownHouse, Unit, Mansion
} PropertyType;

@interface CTRentalProperty : NSObject {
 float rentalPrice;
 NSString *address;
 PropertyType propertyType;
}

- (void)increaseRentalByPercent:(float)percent
 withMaximum:(float)max;
- (void)decreaseRentalByPercent:(float)percent
 withMinimum:(float)min;

- (void)setRentalPrice:(float)newRentalPrice;
- (float)rentalPrice;

- (void)setAddress:(NSString *)newAddress;
- (NSString *)address;

- (void)setPropertyType:(PropertyType)newPropertyType;
- (PropertyType)propertyType;

@end

The contents of CTRentalProperty.h declare B a new class called CTRentalProperty
that derives (or inherits) from the NSObject base class. The class contains a number of
instance variables c which are all protected due to the absence of any directives such
as @public or @private. The class is then completed by declaring a set of setter and
getter methods e to allow you to provide controlled access to the instance variables.

Listing 5.1 Defining the interface of the CTRentalProperty class

Declare
new class

B

Protected instance
variables

c

Two methodsd

Setter
and getter
methods

e

Download from Wow! eBook <www.wowebook.com>

106 CHAPTER 5 Creating classes
 To demonstrate that classes can contain methods other than simple getters and
setters, the CTRentalProperty class also declares d two methods with the names
increaseRentalByPercent:withMaximum: and decreaseRentalByPercent:with-

Minimum:. These methods act as special setters that update the rentalPrice instance
variable by performing a simple calculation based on the provided parameters.

 This class interface declaration is enough for anybody to go off and develop code
that makes use of the CTRentalProperty class. It has outlined to the compiler, and to
any interested users of the class, what kind of data you store and what kind of behavior
they can expect from you. With the classes interface specified, it’s time to provide the
compiler with the logic that implements the class.

5.3 Providing an implementation for a class
The @interface section of a class only declares what an object will look like. It doesn’t
provide details on how methods are implemented. Instead, this source code is typi-
cally contained in a separate implementation (or method) file that commonly has the
file extension *.m.

 Similar to the @interface section, the implementation of a class is started by an
@implementation directive followed by the class name and ending with an @end directive:

@implementation CTRentalProperty
 ... method implementations ...
@end

The class name is required after the @implementation directive because it’s possible
for a single *.m file to contain the implementations of multiple classes. With the loca-
tion of a particular class’s implementation determined, let’s look at how you specify
the behavior of a particular method.

5.3.1 Defining method implementations

You define the logic and behavior of a method by repeating its declaration. But
instead of ending the declaration with a semicolon, you use a set of curly braces and
provide the required logic that should be executed whenever the method is invoked.
The following is one possible implementation of the setRentalPrice: method:

- (void)setRentalPrice:(float)newRentalPrice {
 NSLog(@"TODO: Change the rental price to $%f", newRentalPrice);
}

This implementation, however, simply logs a to-do message requesting you provide a
more practical implementation. To flesh out the implementation, you must be able
to access the instance variables associated with the current object. Luckily, this is
easy to do.

5.3.2 Accessing instance variables

When the body of an instance method is declared, the method automatically has
access to any instance variables associated with the current object. You can refer to
Download from Wow! eBook <www.wowebook.com>

107Providing an implementation for a class
them by their name. The following is a possible implementation of CTRentalProp-
erty’s setRentalPrice: method:

- (void)setRentalPrice:(float)newRentalPrice {
 rentalPrice = newRentalPrice;
}

Notice how the assignment statement can assign a new value to the rentalPrice
instance variable without any fuss. You may wonder how this statement knows which
object to update in the case that multiple CTRentalProperty objects have been cre-
ated. You don’t pass in any reference to an object of interest. The answer is that,
behind the scenes, every instance method is passed two additional hidden parameters
called self and _cmd. We leave discussion of _cmd for chapter 8, but self is the magic
that enables the method to know which object it should work with. You could explicitly
make this linkage more apparent by rewriting the setRentalPrice: method as follows:

- (void)setRentalPrice:(float)newRentalPrice {
 self->rentalPrice = newRentalPrice;
}

The -> operator allows you to access the instance variables associated with the variable
referenced on the left-hand side. Because the compiler can pass different objects into
the method via the hidden self parameter, it can change which object the method
works with.

Knowing that self is a hidden parameter that always represents the current object is
handy, but as demonstrated previously, it isn’t typically necessary to use it to access
instance variables. There is, however, another practical use of self that’s unavoidable.

5.3.3 Sending messages to self

When implementing an instance method, you may wish for it to call on the services of
other methods defined by the class. But to send a message, you must first have a refer-
ence to the object you want to send it to. This reference is usually provided in the
form of a variable. When you want to refer to the current object, whatever it may be,
the hidden self parameter neatly fills the role, as follows:

- (void)handleComplaint {
 NSLog(@"Send out formal complaint letter");
 numberOfComplaints = numberOfComplaints + 1;

Check out your debugger window
The next time you use the Xcode debugger and hit a break point, check out the Argu-
ments section in the variables panel. You should be able to clearly see the self and
_cmd parameters listed.

Congratulations! You’re well on your way to becoming an Objective-C guru. Another
slightly mysterious piece of the IDE suddenly makes a little more sense.
Download from Wow! eBook <www.wowebook.com>

108 CHAPTER 5 Creating classes
 if (numberOfComplaints > 3) {
 [self increaseRentalByPercent:15 withMaximum:400];
 }
}

The handleComplaint method (something you might like to add as the Rental Prop-
erty application continues to grow) increases the numberOfComplaints instance vari-
able by 1. If a rental property has had more than three formal complaints, the method
also invokes the increaseRentalByPercent:withMaximum: method on the same
object, as indicated by the use of self as the target for the message.

5.3.4 Fleshing out the method file for the CTRentalProperty class

Using your newfound knowledge of how to implement methods, you’re ready to com-
plete the first revision of your CTRentalProperty class. Replace the contents of
CTRentalProperty.m with the code in the following listing.

#import "CTRentalProperty.h"

@implementation CTRentalProperty

- (void)increaseRentalByPercent:(float)percent
 withMaximum:(float)max {

 rentalPrice = rentalPrice * (100 + percent) / 100;
 rentalPrice = fmin(rentalPrice, max);
}

- (void)decreaseRentalByPercent:(float)percent
 withMinimum:(float)min {

 rentalPrice = rentalPrice * (100 - percent) / 100;
 rentalPrice = fmax(rentalPrice, min);
}

- (void)setRentalPrice:(float)newRentalPrice {
 rentalPrice = newRentalPrice;
}

- (float)rentalPrice {
 return rentalPrice;
}

- (void)setAddress:(NSString *)newAddress {
 [address autorelease];
 address = [newAddress copy];
}

- (NSString *)address {
 return address;
}

- (void)setPropertyType:(PropertyType)newPropertyType {
 propertyType = newPropertyType;
}

Listing 5.2 Providing an initial implementation of the CTRentalProperty class

Update instance
variable

b

Free previous
address

c

Make a
copyd
Download from Wow! eBook <www.wowebook.com>

109Declared properties
- (PropertyType)propertyType {
 return propertyType;
}

@end

Most of the methods in CTRentalProperty.h are relatively straightforward (for exam-
ple, setRentalPrice: B updates the value of an instance variable). One method that
deserves extra attention is setAddress: because it must deal with memory manage-
ment issues. Rather than storing the new address in the instance variable directly, it
makes a copy d (taking care to free any previous address first c). This is done so
code similar to the following will work as expected:

NSMutableString *anAddress =
 [NSMutableString stringWithString:@"13 Adamson Crescent"];
myRental.address = anAddress;
[anAddress replaceOccurrencesOfString:@"Crescent"
 withString:@"Street"
 options:NSCaseInsensitiveSearch
 range:NSMakeRange(0, [anAddress length])];
NSLog(@"The address is %@", myRental.address);

Most developers would expect this code snippet to indicate the address is 13 Adamson
Crescent even though the string variable is updated to 13 Adamson Street. Making a
copy of the string provided to setAddress: ensures this works as expected. Writing
code to handle conditions like these can get arduous and error prone fairly quickly. It’s
just the kind of thing you let slip toward the end of a late-night, caffeine-aided coding
session. Luckily, Objective-C provides special features to make writing such code easier.

5.4 Declared properties
In listings 5.1 and 5.2, much of the code is related to the declaration and implementa-
tion of getter and setter methods to provide safe access to associated instance variables
and provide extensibility points for future logging or validation. Objective-C can auto-
matically implement most of the code required to implement these methods using a
feature called Declared Properties.

 A property allows you to describe the intent of a setter and getter method pair
while leaving it up to the compiler to provide the actual implementation. This is more
convenient to write and ensures consistent code quality.

5.4.1 @property syntax
The first step in using a property is to declare its presence in the @interface section
of a class. To do this, you use a special @property directive. As an example, you can
declare a property called rentalPrice of type float as follows:

@property float rentalPrice;

You can consider this property declaration as being equivalent to manually declaring
the following two methods:

- (float)rentalPrice;
- (void)setRentalPrice:(float)newRentalPrice;
Download from Wow! eBook <www.wowebook.com>

110 CHAPTER 5 Creating classes
By default, the @property statement declares a getter method with the specified name
and a matching setter by prepending the prefix “set.”

 As an example of using properties, update the contents of CTRentalProperty.h with
the following listing. Notice you removed the manual setter and getter method decla-
rations and replaced them with equivalent @property declarations.

#import <Foundation/Foundation.h>

typedef enum PropertyType {
 TownHouse, Unit, Mansion
} PropertyType;

@interface CTRentalProperty : NSObject {
 float rentalPrice;
 NSString *address;
 PropertyType propertyType;
}

- (void)increaseRentalByPercent:(float)percent
 withMaximum:(float)max;
- (void)decreaseRentalByPercent:(float)percent
 withMinimum:(float)min;

@property(nonatomic) float rentalPrice;
@property(nonatomic, copy) NSString *address;
@property(nonatomic) PropertyType propertyType;

@end

By using declared properties c, you’ve replaced six lines of source code with three.
Notice, however, that methods such as increaseRentalByPercent:withMaximum: b
and decreaseRentalByPercent:withMaximum: couldn’t be specified as properties
because they don’t perform simple get- and set-style operations. Each property decla-
ration can contain an optional list of attributes enclosed in parentheses (such as the
nonatomic or copy attributes seen in listing 5.3). These attributes provide information
about how the getter and setter methods generated by Objective-C should behave.
Table 5.2 summarizes the available property attributes and their purposes.

Listing 5.3 Simplifying CTRentalProperty.h by using declared properties

Table 5.2 Common attributes that can affect the behavior of declared properties

Category Example attributes Description

Method
naming

setter, getter Allow the developer to override the name of the
generated methods.

Writeability readonly,
readwrite

Allow the developer to specify that a property is read-only
(it doesn’t have a setter method).

Setter
semantics

assign, retain,
copy

Allow the developer to control how memory management of
property values is handled.

Thread
safety

nonatomic Properties are safe to use in multithreaded code. This safety
can be removed to gain a potential performance increase.

Methods can’t be
properties

b

Declared
properties

c

Download from Wow! eBook <www.wowebook.com>

111Declared properties
Let’s briefly look at how to use the optional @property attributes listed in table 5.2 to
alter the behavior of the declared properties.

METHOD NAMING

By default for a property named foo, the Objective-C compiler produces a getter
method named foo and a setter method named setFoo:. You can override these names
by explicitly specifying an alternative name via the optional getter and setter attributes.

 As an example, the following property declaration provides a getter called
isSelected and a setter called setSelected:

@property (getter=isSelected) BOOL selected;

This attribute is commonly used with properties with a BOOL data type to rename their
getter methods into the form isXYZ, another Objective-C naming convention.

WRITEABILITY

A property typically indicates the presence of both a getter and setter method. By
adding the readonly attribute to a property declaration, you can ensure that users of
the class can only query the current value of the property and can’t change its value.
For example, the following declaration specifies that the age property has only a get-
ter method:

@property (readonly) int age;

The default behavior of each property having a getter and setter method can also explic-
itly be specified using the readwrite attribute. Because a readonly property has no set-
ter, code in the class would have to modify the associated instance variable directly.

SETTER SEMANTICS

These attributes enable you to specify how a setter method will deal with memory
management. Following are the three mutually exclusive options:

■ Assign—The setter uses a simple assignment statement (the default option).
■ Retain—The setter calls retain on the new value and release on the old one.
■ Copy—A copy of the new value is made and retained.

Memory management can become a complex topic (look out for chapter 9). For now,
it’s enough to understand that assign indicates that no additional memory manage-
ment behavior is required (the property assignment is treated as if it were a simple
variable). The copy attribute requests that a “carbon-copy” duplicate of the value
being provided be made and the copy stored, and the retain attribute does some-
thing in between.

THREAD SAFETY

By default, properties are atomic. This is fancy-speak for indicating that in a multi-
threaded environment, Objective-C ensures the value obtained via a getter or set via a
setter is always consistent and not corrupted by concurrent access by other threads.

 This protection, however, doesn’t come for free and may have a performance cost
associated with it due to the time taken to acquire the locks needed to protect against
Download from Wow! eBook <www.wowebook.com>

112 CHAPTER 5 Creating classes
concurrent access. If your property is unlikely to be called from multiple threads, you
can specify the nonatomic attribute to opt out of this protection:

@property (nonatomic) int age;

Most iPhone tutorials and sample source code specify properties with the nonatomic
attribute because it’s unlikely that properties in a view controller or view subclass will
find themselves used in a multithreaded scenario. Hence, the use of nonatomic may
cause a slight performance improvement, especially if the property is heavily utilized.

 This concludes our look at how to declare properties in the @implementation sec-
tion of a class. Although you updated the CTRentalProperty class to use properties,
you’ll notice you still have the original method implementations in CTRentalProp-
erty.m. This is perfectly acceptable (in fact, now would be a good time to compile the
project to make sure no typos have crept in), but you can improve on this situation by
allowing the compiler to provide automatic implementations for you.

5.4.2 Synthesizing property getters and setters

Using the @property directive allows you to simplify the declaration of getter and set-
ter methods, but Objective-C can go even further and automatically write the getter
and setter method implementations for you. To do this, you use a directive called
@synthesize in the class’s @implementation section.

 As an example, you can simplify listing 5.2, removing all the setter and getter meth-
ods you manually wrote and replacing them with an additional directive called
@synthesize, as shown in the following listing.

#import "CTRentalProperty.h"

@implementation CTRentalProperty

@synthesize rentalPrice, address, propertyType;

- (void)increaseRentalByPercent:(float)percent
 withMaximum:(float)max {

 rentalPrice = rentalPrice * (100 + percent) / 100;
 rentalPrice = fmin(rentalPrice, max);
}

- (void)decreaseRentalByPercent:(float)percent
 withMinimum:(float)min {

 rentalPrice = rentalPrice * (100 - percent) / 100;
 rentalPrice = fmax(rentalPrice, min);
}

@end

The @synthesize directive B requests that the Objective-C compiler automatically
generate the getter and setter methods associated with the specified properties.

Listing 5.4 Using synthesized properties to automatically generate setters and getters

Generate setter and
getter methods

B

Download from Wow! eBook <www.wowebook.com>

113Declared properties
 Although @synthesize is commonly used in tandem with the @property directive,
its use is entirely optional. The @synthesize directive is intelligent and will generate
getter or setter methods only if it can’t find a suitable method already declared else-
where in the @implementation section. This can be helpful if you’d like the compiler
to generate most of your getter and setter methods, but you’d like to override one or
two of them in order to perform special behavior, such as logging or input validation.
An example of this functionality is demonstrated here:

@synthesize rentalPrice;

- (void)setRentalPrice:(float)newRentalPrice {
 NSLog(@"You changed the rental per week to %f", newRentalPrice);
 rentalPrice = newRentalPrice;
}

In this case, the @synthesize directive generates a getter method for the rentalPrice
property but uses the explicitly specified setRentalPrice: setter.

 By default, the @synthesize directive assumes that a property named foo will store
its value in an instance variable also named foo. If for some reason this isn’t desirable,
you can override the name of the instance variable in the @synthesize statement. The
following declaration, for example, synthesizes a rentalPrice property by using an
instance variable called rentalPerWeek:

@synthesize rentalPrice = rentalPerWeek;

Use of the @synthesize directive results in the compiler generating, or synthesizing,
the methods required for a property. Unlike manually written code, the generated
code is well tested, thread safe, and efficient while handling the nuances of memory
management without a second thought from the developer. Using properties not only
reduces the amount of code you need to write but also ensures you avoid common
opportunities to introduce bugs. You can have your cake and eat it too!

5.4.3 Dot syntax

With your current knowledge of Objective-C syntax to obtain the current address of a
rental property, you must send the object an address message, as demonstrated here:

CTRentalProperty *property = ...some rental property...
NSString *address = [property address];

Likewise, you could update the address property by sending the setAddress: message:

CTRentalProperty *property = ...some rental property...
[property setAddress:@"45 Some Lane"];

Objective-C, however, provides an alternative syntax for use with properties. This syn-
tax is based on the dot (.) operator and may be more comfortable for developers with
a C or Java background:

CTRentalProperty *property = ...some rental property...
NSString *address = property.address;
NSLog(@"Old address is: %@", address);
Download from Wow! eBook <www.wowebook.com>

114 CHAPTER 5 Creating classes
property.address = @"45 Some Lane";
NSLog(@"New address is: %@" property.address);

This code sample is identical in behavior to the previous ones that used standard mes-
sage-send syntax. The dot operator is pure syntactic sugar, and behind the scenes,
assigning the value xyz to property.address is converted into an equivalent call to
[property setAddress:xyz]. It’s important to note, however, that unlike in C# or
Java, the dot-style syntax can be used only with getter and setter messages associated
with @propertys; for any other method, the standard Objective-C message syntax is
still required.

One advantage of the dot syntax over calling setter or getter methods directly is that
the compiler can signal an error if it detects an assignment to a read-only property.
On the other hand, due to the dynamic nature of Objective-C, if you call a nonexis-
tent setter method, the compiler can only generate a warning that the class may not
respond to this message. Apart from the warning, the application will successfully
compile, and it’s only when the application is run that you’ll notice that it fails. We dis-
cuss the reason why the compiler can’t complain about missing setter methods in

Danger, Will Robinson, here be sleeping dragons
With great power comes great responsibility and traps for the unwary. When using
properties, you should be careful to clearly understand the difference between
accessing a property and accessing an associated instance variable directly.
Because you use the same identifier for the property and instance variable, the syn-
tax for accessing both can be confusingly similar at times.

As an example, in the implementation of the CTRentalProperty class, the following
statement updates the value of the rentalPrice instance variable,

rentalPrice = 175.0f;

while the following statement performs the same task by calling the setRental-
Price: setter method:

self.rentalPrice = 175.0f;

Although at first glance the two statements appear similar, the subtle change in
source code has a significant impact on observed behavior.

If you directly access an instance variable, you bypass all the memory management,
thread safety, and additional logic that may have been implemented in the setter and
getter methods. No logic gets executed when the instance variable is read or altered.

As a general rule of thumb, if a property or accessor method exists, it’s probably a
good idea to prefer these methods over direct access to instance variables. This is
especially true if you intend to use features such as Key-Value Observing (KVO). KVO
uses dynamic features of Objective-C to effectively “hook” or spy on calls to setter
methods to determine changes in an object’s state, so direct access of an instance
variable may be missed.
Download from Wow! eBook <www.wowebook.com>

115Creating and destroying objects
chapter 8. For now, let’s move on and discuss how you can create new instances of the
CTRentalProperty class.

5.5 Creating and destroying objects
One of the most common tasks to perform with classes is the creation of new objects.
In Objective-C it takes two steps to create an object; in order, you must

■ Allocate memory to store the new object.
■ Initialize the newly allocated memory to appropriate values.

An object isn’t fully functional until both steps are completed.

5.5.1 Creating and initializing objects

For objects that inherit from NSObject, memory for new objects is typically allocated
by calling the class method alloc (short for allocate). As an example, you could create
a new CTRentalProperty object by executing the following line of source code:

CTRentalProperty *newRental = [CTRentalProperty alloc];

This statement uses the alloc method to reserve enough memory to store all the
instance variables associated with a CTRentalProperty object and assigns it to a vari-
able named newRental. You don’t need to write your own implementation of the
alloc method because the default version inherited from NSObject is suitable. Most
objects, however, do require additional initialization once the memory has been allo-
cated. By convention, this initialization is achieved by calling a method named init:

CTRentalProperty *newRental = [CTRentalProperty alloc];
[newRental init];

It’s even possible to perform both of these steps in a single line by nesting the message
sends as follows:

CTRentalProperty *newRental = [[CTRentalProperty alloc] init];

This works because the init method conveniently returns the object it’s called upon
(self) to support such usage.

What do uninitialized instance variables get set to?
You may wonder what value your instance variables will have if your initialization
method doesn’t explicitly initialize them. Unlike typical C-style memory allocation
strategies, the memory returned by alloc has each instance variable initialized to
the value zero (or its equivalent: nil, NULL, NO, 0.0, and so on). This means you
don’t need to redundantly initialize variables to such values.

In fact, you should consider choosing meanings for Boolean variables such that NO
is the appropriate state of object allocation. For example, isConfigured may be a
better instance variable name than needsConfiguration.
Download from Wow! eBook <www.wowebook.com>

116 CHAPTER 5 Creating classes
It’s important to understand the two-step initialization process used by Objective-C
because there are a number of nuisances that can appear subtle but jump up and bite
you when you least expect it.

BEWARE OF LURKING GOBLINS

The code snippet that called alloc and init on separate lines has a silent but poten-
tially fatal flaw. Although it may not be a problem with most classes (CTRental-
Property included), it’s possible for init to return an object different from the one
created by alloc. If this occurs, the original object becomes invalid, and you can only
use the object returned by init. In coding terms this means you should always store
the return value of init; here is a bad example:

CTRentalProperty *newRental = [CTRentalProperty alloc];
[newRental init];

And here is a good example:

CTRentalProperty newRental = [CTRentalProperty alloc];
newRental = [newRental init];

Rather than worry about handling such scenarios, it’s generally easier to perform both
steps at once, as in [[CTRentalProperty alloc] init] and not give it a second thought.

 You may wonder under what conditions init may return a different object from the
one you allocated via alloc. For most classes this will never occur, but in special circum-
stances (implementing singletons, caches, or named instances, and so on), a class devel-
oper may decide to more tightly control when objects are created, preferring to return
an existing object that’s equivalent rather than initialize a new one, for example.

FAILURE IS A FACT OF LIFE

It isn’t always possible for an initialization method to perform its intended task. For
example, an initWithURL: method may initialize an object with data fetched from a
website. If the URL provided is invalid or the iPhone is in flight mode, initWithURL:
may not be able to complete its task. In such cases it’s common for the init method
to free the memory associated with the new object and return nil, indicating that the
requested object couldn’t be initialized.

 If there’s a chance that your initialization method may fail, you may like to explic-
itly check for this condition, as demonstrated here:

CTRentalProperty newRental = [[CTRentalProperty alloc] init];
if (newRental == nil)
 NSLog(@"Failed to create new rental property");

Perhaps you’ve picked up on the fact that initialization methods aren’t always called
init and that they can accept additional parameters. This is quite common, if not the
norm, so let’s take a look at the why and how behind this.

5.5.2 init is pretty dumb

An initialization method that accepts no parameters has limited practical use. You
often need to provide additional details to the initialization method in order for it to
Download from Wow! eBook <www.wowebook.com>

117Creating and destroying objects
correctly configure the object. Typically, a class provides one or more specialized ini-
tialization methods. These methods are commonly named using the form initWith-
XYZ:, where XYZ is replaced with a description of any additional parameters required
to properly initialize the object.

 As an example, add the following method declaration to the @interface section of
the CTRentalProperty class:

- (id)initWithAddress:(NSString *)newAddress
 rentalPrice:(float)newRentalPrice
 andType:(PropertyType)newPropertyType;

This instance method enables you to provide a new address, rental price, and prop-
erty type for the object about to be initialized. The next step is to provide an imple-
mentation for the method in the @implementation section of the CTRentalProperty
class. Do this by adding the following code.

- (id)initWithAddress:(NSString *)newAddress
 rentalPrice:(float)newRentalPrice
 andType:(PropertyType)newPropertyType
{
 if ((self = [super init])) {
 self.address = newAddress;
 self.rentalPrice = newRentalPrice;
 self.propertyType = newPropertyType;
 }

 return self;
}

The main part of this method sets the various properties of the object to the new val-
ues specified by the parameters. There are, however, a couple of additional features in
this listing that deserve extra attention.

 The if statement performs a number of important steps in a single, condensed
line of source code. Working from right to left, it first sends the init message to
super. super is a keyword, similar to self, that enables you to send messages to the
superclass. Before you initialize any of your own instance variables, it’s important to
provide your superclass a chance to initialize its own state.

 The object returned by the superclass’s init method is then assigned to self in
case it has substituted your object for another. You then check this value to ensure it
isn’t nil, which would indicate the superclass has determined it can’t successfully ini-
tialize the object. If you prefer, you could expand these steps into two separate state-
ments, as follows:

self = [super init];
if (self != nil) {
 ...
}

Listing 5.5 Implementing a custom initialization method for CTRentalProperty
Download from Wow! eBook <www.wowebook.com>

118 CHAPTER 5 Creating classes
The behavior of the application would be identical. The first form is a more con-
densed version of the second. Finally, the method returns the value of self, in part to
enable the condensed [[CTRentalProperty alloc] init]–style creation syntax men-
tioned previously.

5.5.3 Combining allocation and initialization

Because it’s common to allocate an object and then want to immediately initialize it,
many classes provide convenience methods that combine the two steps into one.
These class methods are typically named after the class that contains them. A good
example is NSString’s stringWithFormat: method, which allocates and initializes a
new string with the contents generated by the specified format string.

 To allow users to easily create a new rental property object, add the following class
method to the CTRentalProperty class:

+ (id)rentalPropertyOfType:(PropertyType)newPropertyType
 rentingFor:(float)newRentalPrice
 atAddress:(NSString *)newAddress;

This method draws close parallels to the initialization method (listing 5.5) you just
added. The main difference, apart from a slightly different name, is that rental-
PropertyOfType:rentingFor:atAddress: is a class method, whereas initWithAddress:
andPrice:andType: is an instance method. Being a class method, rentalPropertyOf-
Type:rentingFor:atAddress: allows you to invoke the method without first creating an
object. Implement the method as shown in the following listing.

+ (id)rentalPropertyOfType:(PropertyType)newPropertyType
 rentingFor:(float)newRentalPrice
 atAddress:(NSString *)newAddress
{
 id newObject = [[CTRentalProperty alloc]
 initWithAddress:newAddress
 rentalPrice:newRentalPrice
 andType:newPropertyType];
 return [newObject autorelease];
}

Notice that the implementation uses the existing alloc and initWithAddress:renting-
For:andType: methods and returns the newly initialized object to the caller. Another dif-
ference is that the object is also sent an autorelease message. This additional step deals
with a memory-related convention, which we cover in depth in chapter 9.

 This just about wraps up our coverage of how to create new classes, but we have
one unpleasant task left to cover: how to dispose of, or deallocate, old and unwanted
objects. If you don’t destroy these objects, they’ll eventually consume enough memory
that the iPhone will think your application is the next Chernobyl and shut it down to
avoid impacting other phone functionality!

Listing 5.6 Merging allocation and initialization into one easy-to-call method
Download from Wow! eBook <www.wowebook.com>

119Creating and destroying objects
5.5.4 Destroying objects

Once you finish using an object, you must put up your hand and tell the runtime that
the memory allocated to the object can be reutilized for other purposes. If you forget
this step, the memory will forever hold your object even if you never use it again.
Unused objects gradually consume the limited memory available to an iPhone until the
OS decides you’ve exhausted your fair share and abruptly shuts down your application.

 In Objective-C (at least when targeting the iPhone), it’s your responsibility to man-
age memory usage explicitly. Unlike languages such as C# and Java, Objective-C has
no automated detection and reclaiming of unwanted objects, a feature commonly
known as garbage collection. The following listing demonstrates the typical lifecycle of
an Objective-C object from cradle to grave.

CTRentalProperty *newRental = [[CTRentalProperty alloc]
 initWithAddress:@"13 Adamson Crescent"
 rentingFor:275.0f
 andType:TownHouse];
... make use of the object ...
[newRental release];
newRental = nil;

The object is allocated by a call to alloc. Once allocated and initialized, the object is
used until it’s no longer necessary. At this stage a release message indicates that the
object exceeds requirements and its memory can be reused. It can also be handy to
blank out (or nil) the associated variable to make it easier to determine whether or
not a given variable is pointing to a valid object.

 Although you should call release to indicate your lack of interest in an object,
that doesn’t immediately guarantee that the object will be destroyed. Other parts of
your application may be interested in keeping the same object alive, and it’s only
when the last reference is released that the object will be freed (more about this in
chapter 9).

 When release finally determines that nobody is interested in keeping the current
object alive, it automatically invokes another method, called dealloc, to clean up the
object. The following listing demonstrates how to implement CTRentalProperty’s
dealloc method.

- (void)dealloc {
 [address release];
 [super dealloc];
}

dealloc is an ideal place not only to free any memory allocated by your class but also
to tidy up any system resources (such as files, network sockets, or database handles)
the class may be holding onto.

Listing 5.7 The typical lifecycle of an Objective-C object

Listing 5.8 Implementing dealloc to clean up the resources acquired by an object
Download from Wow! eBook <www.wowebook.com>

120 CHAPTER 5 Creating classes
 One thing to note is that, although declared properties can automatically provide
getter and setter implementations, they won’t generate code in dealloc to free their
associated memory. If your class contains properties using retain or copy semantics,
you must manually place code in your class’s dealloc method to clean up their mem-
ory usage. In listing 5.8 this is demonstrated by the address property. When destroy-
ing a rental property object, you want the copy of the address string you made in the
property’s setter to be cleaned up.

 Finally, most dealloc method implementations end with a call to [super deal-
loc]. This gives the superclass a chance to free any resources it has allocated. Notice
that the order here is important. Unlike with an init implementation, where it’s
important to give the superclass a chance to initialize before you initialize your own
content, with a dealloc method, you must tidy up your own resources, and then give
the superclass a chance to tidy up.

5.6 Using the class in the Rental Manager application
Now that you’ve created a class called CTRentalProperty and gone through various
iterations to improve its source code, let’s update the Rental Manager application.

 The first step is to open RootViewController.h and remove the existing definitions
for the PropertyType enumeration and RentalProperty structure. Replace them with
the CTRentalProperty class. At the same time, you can add an NSArray-based instance
variable to store the list of rental properties. With these changes made, you should
end up with RootViewController.h looking similar to the following listing.

@interface RootViewController : UITableViewController {
 NSDictionary *cityMappings;
 NSArray *properties;
}
@end

Using an NSArray to store the rental properties enables you to eventually add and
remove properties while your application runs. This is something you can’t easily do
with the C-style array used previously.

 In comparison, RootViewController.m requires a number of larger source code
changes, so replace its existing contents with the following listing.

#import "RootViewController.h"
#import "CTRentalProperty.h"

@implementation RootViewController

- (void)viewDidLoad {
 [super viewDidLoad];

 NSString *path = [[NSBundle mainBundle]
 pathForResource:@"CityMappings"

Listing 5.9 RootViewController.h storing rental properties in an object-oriented manner

Listing 5.10 RootViewController.m updated to use the CTRentalProperty class

Import the CTRentalProperty
definitionb
Download from Wow! eBook <www.wowebook.com>

121Using the class in the Rental Manager application
 ofType:@"plist"];
 cityMappings = [[NSDictionary alloc]
 initWithContentsOfFile:path];

 properties =
 [[NSArray alloc] initWithObjects:
 [CTRentalProperty
 rentalPropertyOfType:TownHouse
 rentingFor:420.0f
 atAddress:@"13 Waverly Crescent, Sumner"],
 [CTRentalProperty
 rentalPropertyOfType:Unit
 rentingFor:365.0f
 atAddress:@"74 Roberson Lane, Christchurch"],
 [CTRentalProperty
 rentalPropertyOfType:Unit
 rentingFor:275.9f
 atAddress:@"17 Kipling Street, Riccarton"],
 [CTRentalProperty
 rentalPropertyOfType:Mansion
 rentingFor:1500.0f
 atAddress:@"4 Everglade Ridge, Sumner"],
 [CTRentalProperty
 rentalPropertyOfType:Mansion
 rentingFor:2000.0f
 atAddress:@"19 Islington Road, Clifton"],
 nil];
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 return [properties count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *cellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:cellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:cellIdentifier]
 autorelease];
 }

 CTRentalProperty *property =
 [properties objectAtIndex:indexPath.row];

 int indexOfComma = [property.address
 rangeOfString:@","].location;
 NSString *address = [property.address
 substringToIndex:indexOfComma];
 NSString *city = [property.address
 substringFromIndex:indexOfComma + 2];

Create
new
object

c

Update
the
method

d

Download from Wow! eBook <www.wowebook.com>

122 CHAPTER 5 Creating classes
 cell.textLabel.text = address;

 NSString *imageName =
 [cityMappings objectForKey:city];
 cell.imageView.image =
 [UIImage imageNamed:imageName];

 cell.detailTextLabel.text =
 [NSString
 stringWithFormat:@"Rents for $%0.2f per week",
 property.rentalPrice];

 return cell;
}

- (void)dealloc {
 [cityMappings release];
 [properties release];
 [super dealloc];
}

@end

The first change found in RootViewController.m is the importation of the CTRental-
Property.h header file B via an #import statement. This statement requests that the
Objective-C compiler read the contents of the specified file and interpret it as if its con-
tents were written directly at the point of the #import statement. In other words, this
line makes the compiler aware of the definition of the CTRentalProperty class and
allows you to use it. Without this line, the compiler wouldn’t know about the existence
of the CTRentalProperty class—at least, not while compiling RootViewController.m.

The next major change is found in viewDidLoad c. When your Rental Manager
application first becomes visible, you create a new NSArray object and populate it with

What about #include? What’s this nonstandard #import?
If you have knowledge of C or C++, you may know that C-based languages traditionally
use an #include statement to include the contents of another file. Objective-C, by
contrast, introduced and recommends the use of the #import statement.

The difference in behavior is subtle. If two #include statements specify the same
file, the compiler will probably complain that it has seen multiple definitions for the
classes and type definitions found in the file. This is because the #include state-
ment reads the contents of the specified file and passes it to the Objective-C com-
piler. With multiple #include statements for the same file, the compiler sees the
source code multiple times.

The #import statement, on the other hand, has slightly more smarts to it. If a second
#import statement is found for the same file, it is, in effect, ignored. This means the
contents of the header file are seen only once by the compiler, no matter how many
times they’re requested to be imported.

#import is similar to #pragma once and other such solutions that many C and C++
compilers support as extensions to provide similar convenience.

Update
the
method

d

Release the
memory

e

Download from Wow! eBook <www.wowebook.com>

123Summary
a number of rental property objects, which are created using CTRental’s rental-
PropertyOfType:rentingFor:atAddress: class method.

 With the array of rental property objects constructed, you’re ready to update your
implementation of the tableView:cellForRowAtIndexPath: method d. The first
change uses the objectAtIndex: method available on an NSArray to obtain the
CTRentalProperty object for a particular table view cell and assign it to a variable
called property. You then access the CTRentalProperty object’s various properties,
such as address and rentalPrice, to update the display.

 The final change e makes sure you release the memory storing your array of
rental property details when the view gets deallocated as the application shuts down.

 This completes the changes required to make the main data storage in the Rental
Manager application object-oriented. Although the advantages of your work in this
chapter aren’t yet obvious, the next few chapters reveal the power of developing the
application in an object-oriented manner.

5.7 Summary
Implementing custom classes is a great way to organize your application logic into dis-
crete and easily maintainable units. With a well-structured class hierarchy, it should be
possible to make significant changes to the internal implementation of a class without
affecting other aspects of your code, as long as you keep the same public interface. As
an example, you could separate the storage of a rental property’s address into sepa-
rate street number, street name, suburb, and city instance variables, and then recom-
bine them as part of the setter method for the address property. Users of the
CTRentalProperty class wouldn’t need to be aware of this change because the inter-
face of the class wouldn’t have changed.

 In the discussions of declared properties, you may have noticed that the same iden-
tifier can be used to name multiple elements in a class without causing an error. For
example, in an Objective-C class it’s possible for

■ An instance method to have the same name as a class method
■ A method to have the same name as an instance variable

Declared properties are a good example of this. It’s common (but not required) for
the backing instance variable to have the same name as the property’s getter method.

 One oddity of Objective-C is the lack of class-level variables. If you require a vari-
able to belong to a class but not to any particular instance, your best solution is to
declare a C-style global variable as follows:

static NSMutableDictionary *sharedCache;

On a similar note, Objective-C lacks visibility modifiers for methods and properties.
Unlike instance variables, there are no @public, @protected, or @private attributes for
methods. In chapter 6, we cover a partial solution to this situation and explore how to
build on the foundations of a single class to create groups of closely related classes.
Download from Wow! eBook <www.wowebook.com>

Extending classes
Classes, which consist of instance variables and methods, can be extended by being
modified, expanded, or abstracted. Class extension is one of the fundamental ideas
of object-oriented programming. The ability to extend a class promotes code reuse
and compartmentalization, and it’s the sign of a well-thought-out project. We inves-
tigate the subtleties of the various approaches to extending classes.

6.1 Subclassing
In chapter 5, you learned how to create your own classes. If you look back, you’ll
see that the classes you made, such as CTRentalProperty, are subclasses of NSObject.
NSObject is the most basic class that Objective-C provides. You’ll subclass NSObject
many times when creating original classes for your application. This isn’t to say it’s

This chapter covers
■ Subclassing
■ Extending classes
■ Creating custom objects
■ Class clusters
■ Categories
■ Existing class modification
124

Download from Wow! eBook <www.wowebook.com>

125Subclassing
the only class you can subclass: any class in Objective-C can be extended by subclass-
ing. NSObject is explored in more detail later in this chapter.

6.1.1 What is subclassing?

Subclassing is the act of taking a class, with all of its methods and instance variables,
and adding to it. A classic example of subclassing logic is used in taxonomy, when clas-
sifying species. A human is a mammal; a tiger is a mammal as well. Tigers and humans
can both be thought of as subclasses of the mammal class because they share some
common features:

■ Warm blood
■ Vertebrae
■ Hair

While tigers and humans don’t share a ton of similarities, they do share these features
and, as a result, they’re both subclasses of the mammal class. This is exactly the idea
that’s applied when subclassing in an object-oriented programming language. You
subclass something when you want to keep everything about it and add to it. Let’s go
through an example of subclassing in Objective-C.

 You’ll create a small iPhone application that utilizes some simple subclassing. First,
you create a class called Person that describes some general attributes of a person:
name, age, and gender.

1 Open Xcode and create a new View-based iPhone application called PersonClass.
2 Click File > New File and create a new Objective-C Class called Person as a sub-

class of NSObject.
3 Fill in Person.h with the content of the following listing.

#import <Foundation/Foundation.h>

typedef enum {
 Male, Female
} Gender;

@interface Person : NSObject {
 NSString *name;
 NSNumber *age;
 Gender gender;
}

- (id)initWithName:(NSString *)_name;
- (id)initWithAge:(NSNumber *)_age;
- (id)initWithGender:(Gender)_gender;
- (id)initWithName:(NSString *)_name
 age:(NSNumber *)_age
 gender:(Gender)_gender;

@end

Listing 6.1 Creating the Person class
Download from Wow! eBook <www.wowebook.com>

126 CHAPTER 6 Extending classes
This is a very simple class that has instance variables (ivars) that all people share. Every
person has a name, age, and gender. Let’s subclass the Person class by making
Teacher and Student classes.

 Click File > New File and create a new Objective-C Class called Teacher as a sub-
class of Person, as shown in the following listing.

#import <Foundation/Foundation.h>
#import "Person.h"

@interface Teacher: Person {
 NSArray *classes;
 NSNumber *salary;
 NSString *areaOfExpertise;
}

- (id)initWithName:(NSString *)_name
 age:(NSNumber *)_age
 gender:(Gender)_gender
 classes:(NSArray *)_classes
 salary:(NSNumber *)_salary
 areaOfExpertise:(NSString *)_areaOfExpertise;

@end

Next, click File > New File and create a new Objective-C Class called Student as a sub-
class of Person, as shown in the following listing.

#import <Foundation/Foundation.h>
#import "Person.h"

@interface Student: Person {
 NSArray *classes;
 NSNumber *numberOfCredits;
 NSString *major;
}

- (id)initWithName:(NSString *)_name
 age:(NSNumber *)_age
 gender:(Gender)_gender
 classes:(NSArray *)_classes
 numberOfCredits:(NSNumber *)_numberOfCredits
 major:(NSString *)_major;

@end

Now you’ve created your Teacher and Student classes as subclasses of Person. A
Teacher object now has a name, age, and gender, as defined in Person, but it is
extended by adding a list of classes, salary, and area of expertise. Similarly, a Student
has a name, age, and gender as well as a list of classes, a number of credits, and a
major. In this example, the superclass of both Teacher and Student is Person. The

Listing 6.2 Creating the Teacher class

Listing 6.3 Creating the Student class
Download from Wow! eBook <www.wowebook.com>

127Adding new instance variables
superclass of a class is the class that a new class is subclassing. Although this is the most
straightforward example of subclassing, you can subclass in many different ways, with
subtle distinctions between them.

6.2 Adding new instance variables
Now that your class files are created and their header files filled in, you can continue
to implement them. You need to start filling in the .m files for all the classes you cre-
ated. The .h file simply outlines what types of operations and variables a class uses.
The .m file is the piece of code that implements the creation of these variables and
the execution of the declared methods.

 Any instance variable that your subclass has must be initialized. Right now, these
variables have types and names, but you must tell the application to allocate some
space in memory for them and to connect these variable names to actual memory.
This is usually done in two parts. First, the variable needs to have space allocated for it,
using the alloc method. Second, the variable must be initialized, using the init
method of your class. Every class should have an init method where the instance vari-
ables and general setup for the class are performed. Let’s set up the init methods for
your new classes.

 Go into the Person.m file. You’ll see an essentially blank class. You’ll make the ini-
tialization method for this class so that you can use it in your project. Enter the code
from the following listing into Person.m.

#import "Person.h"

@implementation Person

- (id)init {
 if ((self = [super init])) {
 name = @"Person";
 age = [NSNumber numberWithInt:-1];
 gender = Male;
 }

 return self;
}

- (id)initWithName:(NSString *)_name {
 if ((self = [super init])) {
 name = _name;
 age = [NSNumber numberWithInt:-1];
 gender = Male;
 }

 return self;
}

- (id)initWithAge:(NSNumber *)_age {
 if ((self = [super init])) {

Listing 6.4 Creating the init method for the Person class

A blank initialization
method

b

Method takes
name for person

c

Method takes
age for person

d

Download from Wow! eBook <www.wowebook.com>

128 CHAPTER 6 Extending classes
 name = @"Person";
 age = _age;
 gender = Male;
 }

 return self;
}

- (id)initWithGender:(Gender)_gender {
 if ((self = [super init])) {
 name = @"Person";
 age = [NSNumber numberWithInt:-1];
 gender = _gender;
 }

 return self;
}

- (id)initWithName:(NSString *)_name
 age:(NSNumber *)_age
 gender:(Gender)_gender {

 if ((self = [super init])) {
 name = _name;
 age = _age;
 gender = _gender;
 }

 return self;
}

@end

With this listing, you create several different init methods that you can use when cre-
ating the Person class. Let’s go over them:

B This is a blank initialization method. Calling it creates a Person object that has
no name, age, or gender defined. The default values are automatically assigned.

c This method takes in the name for the person. The name variable is assigned to
whatever was passed in, and the remaining variables are set to the default values.

d This method takes in the age for the person. The age variable is assigned to what-
ever was passed in, and the remaining variables are set to the default values.

e This method takes in the gender for the person. The gender variable is assigned to
whatever was passed in, and the remaining variables are set to the default values.

f This method takes in a value for the name, age, and gender of the Person object
being created. This method defines all the variables of the person class to be
nondefault values.

The init methods show all the different ways a class can be initialized. If you were
making a project that needs to initialize with any of the instance variables that are set,
then you would do something like this. Most classes, however, need only one initializa-
tion method. In the following listing, you create only one initialization method for the
Teacher and Student classes.

Method takes
gender for person

e

Method takes name,
age, and gender values

f

Download from Wow! eBook <www.wowebook.com>

129Accessing existing instance variables
- (id)initWithName:(NSString *)_name
 age:(NSNumber *)_age
 gender:(Gender)_gender
 classes:(NSArray *)_classes
 salary:(NSNumber *)_salary
 areaOfExpertise:(NSString *)_areaOfExpertise {

 if ((self = [super init])) {
 name = _name;
 age = _age;
 gender = _gender;
 classes = _classes;
 salary = _salary;
 areaOfExpertise = _areaOfExpertise;
 }

 return self;
}

Now you create a similar method for the Student class. The Student initializer takes
the name, age, and gender parameters because it’s a subclass of Person as well, but it
takes slightly different parameters than the Teacher class. Overall, the method is simi-
lar to the Teacher init method, as the following listing shows.

- (id)initWithName:(NSString *)_name
 age:(NSNumber *)_age
 gender:(Gender)_gender
 classes:(NSArray *)_classes
 numberOfCredits:(NSNumber *)_numberOfCredits
 major:(NSString *)_major {

 if ((self = [super init])) {
 name = _name;
 age = _age;
 gender = _gender;
 classes = _classes;
 numberOfCredits = _numberOfCredits;
 major = _major;
 }

 return self;
}

Now that you have all of these methods filled in, you can create Person, Teacher, and
Student objects. Before you start using these classes, let’s look into expanding the
ways you can access all of the attributes of these classes.

6.3 Accessing existing instance variables
You now have these three classes, each with instance variables. You created some ini-
tialization methods to fill in the instance variables, but what do you do if you create a

Listing 6.5 Creating the init method for the Teacher class

Listing 6.6 Creating the init method for the Student class
Download from Wow! eBook <www.wowebook.com>

130 CHAPTER 6 Extending classes
Person object with only a name, and later in your execution you want to fill in the age
and gender? Moreover, after you create a Person object, how can you access the name
you’ve set? This issue is handled through getter and setter methods. Getter methods
return the value of some instance variable. Setter methods can set the value of an
instance variable.

 There are many different approaches to making these types of methods for classes,
because they’re a very common part of an object-oriented class. You’ll use a method of
manually making the get and set methods for your class.

6.3.1 Manual getters and setters approach

The first way to create getters and setters for the instance variables of a class is to man-
ually create the methods. The getter method name retrieves a variable named
instanceVariable of type VariableType, and it should have the following format:

- (VariableType)instanceVariable

The setter methods should be formatted like this:

- setInstanceVariable:(VariableType)_instanceVariable

For the Person class, you make getter and setter methods for the name, age, and
gender instance variables that the class contains. Add the following code into the
Person.h file so that the methods are declared:

- (NSString *)name;
- (NSNumber *)age;
- (Gender)gender;

- (void)setName:(NSString *)_name;
- (void)setAge:(NSNumber *)_age;
- (void)setGender:(Gender)_gender;

Now you need to fill in the methods in Person.m, as shown in the following listing.

- (NSString *)name {
 if(name) {
 return name;
 }

 return @"--unknown--";
}

- (NSNumber *)age {
 if(age) {
 return age;
 }

 return [NSNumber numberWithInt:-1];
}

- (Gender)gender {
 if(gender){

Listing 6.7 Declaring Person’s getter and setter methods
Download from Wow! eBook <www.wowebook.com>

131Overriding methods
 return gender;
 }

 return -1;
}

- (void)setName:(NSString *)_name {
 name = _name;
}

- (void)setAge:(NSNumber *)_age {
 age = _age;
}

- (void)setGender:(Gender)_gender {
 gender = _gender;
}

Getter and setter methods are pretty self-explanatory. Getter methods return an
instance variable with the same name. Setter methods take in an object and set it to
an instance variable. The only point of note here is that in the getter methods, make
sure to check if the variables exist. If the name getter was called, for instance, and the
name was never set, an error would be returned without the check. If the name didn’t
exist, a nil value would be returned.

 This method is more time consuming than the method we examine next, but it
also allows a nice cutoff point to perform operations when a class’s instance variables
are requested. If, for instance, you want to count the number of times a variable is
called or set, you can do so with these methods.

 This is the classic way that getters and setters used to be created, but most develop-
ers now use properties to create them. Properties were introduced by Apple to auto-
matically generate these very common methods. Refer to section 5.4 for more
information on this automated approach.

6.4 Overriding methods
Overriding methods is another important aspect of subclassing in Objective-C. Just as
a subclass of any class retains the class’s instance variables, it also gains access to all the
class’s instance methods. If you call a method to a class and the compiler sees that a
method with that name doesn’t exist in the class, it goes to the superclass and checks
for the method there (see figure 6.1).

 Generally, method overriding is the act of replacing a method from the parent
class with a method that does something different. This is commonly done when cre-
ating class structures, because methods may need to perform slightly differently in a
subclass than they do in the class in which they’re first declared.

 Let’s do some method overriding in your new classes. The NSObject class has a
method called

- (NSString)description;

This is a helpful class to override when creating custom classes. It’s likely that during
development you’ll be taking advantage of the NSLog operation to help debug your
Download from Wow! eBook <www.wowebook.com>

132 CHAPTER 6 Extending classes
applications. NSLog supports C-based placeholders such as %@ and %d. When the %@
placeholder is put in an NSString, the placeholder is filled with what is returned by this
method. You’ll implement this method in your three classes and see it work in an NSLog.

6.4.1 Overriding the description method

Overriding a method is done by simply declaring it in the class in which you would
like to call it. Start in the Person class, go into the Person.m file, and declare the
method shown here:

- (NSString *)description {
 if (gender == Male) {
 return [NSString stringWithFormat:
 @"Hi! I am a man, named %@, who is %@ years old",
 name, age];
 } else {
 return [NSString stringWithFormat:
 @"Hi! I am a woman, named %@, who is a %@ years old",
 name, age];
 }
}

The description method is declared in NSObject. By placing the same method in your
class, you’re telling this class that rather than using the NSObject version of the
description method, you want this method to be called. Now you override the descrip-
tion methods for both Teacher and Student, taking advantage of Person’s description
method in the ones you create in Student and Teacher so that you can write as little
code as possible:

- (NSString *)description {
 if(gender == Male) {
 return [NSString stringWithFormat:
 @"%@. I am a male currently teaching %@ "

Figure 6.1 The compiler
checking the superclass
Download from Wow! eBook <www.wowebook.com>

133Overriding methods
 "for $%@ per year with expertise in %@",
 [super description], classes, salary, areaOfExpertise];
 } else {
 return [NSString stringWithFormat:
 @"%@. I am a female currently teaching %@ "
 "for $%@ per year with expertise in %@",
 [super description], classes, salary, areaOfExpertise];
 }
}

Once again, you’ve overridden the description method so that when you use it in your
NSLog method, it will be called rather than the NSObject version of it (see the follow-
ing listing).

- (NSString *)description {
 if(gender == Male) {
 return [NSString stringWithFormat:
 @"%@. I am a male currently enrolled in %@ "
 "for %@ credits with %@ as my major",
 [super description], classes, numberOfCredits, major];
 } else {
 return [NSString stringWithFormat:
 @"%@. I am a female currently enrolled in %@ "
 "for %@ credits with %@ as my major",
 [super description], classes, numberOfCredits, major];
 }
}

In Teacher and Student, you use their superclass’s (Person) description method to
fill in the first part of the string and then use the individual instance variables of
Student and Teacher, respectively. Custom methods you create can be overridden,
and so can almost all of the include libraries’ methods. Another commonly overrid-
den method is

- (void)dealloc

This is the method used for memory management when objects need to be released.
This method and its implementation are covered in more detail in chapter 9.

 All that’s left to do with these classes is test them and the methods you’ve made for
them. If you go into your Application Delegate and enter the following code into the
applicationDidFinishLaunching:withOptions: method, you’ll be able to see all of
your classes and subclasses working together.

- (void)applicationDidFinishLaunching:(UIApplication *)application
 withOptions:(NSDictionary*)options {

 // Override point for customization after app launch

 [self.window makeKeyAndVisible];

Listing 6.8 Overriding the description method in Student

Listing 6.9 Test code for your subclasses
Download from Wow! eBook <www.wowebook.com>

134 CHAPTER 6 Extending classes
 Person *person = [[Person alloc]
 initWithName:@"Collin"
 age:[NSNumber numberWithInt:23]
 gender:Male];

 Student *student = [[Student alloc]
 initWithName:@"Collin”
 age:[NSNumber numberWithInt:23]
 gender:Male
 classes:[NSArray arrayWithObjects:@"English",
 @"Spanish",
 @"Math", nil]
 numberOfCredits:[NSNumber numberWithInt:12]
 major:@"CS"];

 Teacher *teacher = [[Teacher alloc]
 initWithName:@"Winslow"
 age:[NSNumber numberWithInt:30]
 gender:Male
 classes:[NSArray arrayWithObjects:@"ARM",
 @"Imerssive Gaming",
 @"Physical Computing", nil]
 salary:[NSNumber numberWithInt:60000]
 areaOfExpertise:@"HCI"];

 NSLog(@"My person description is:\n%@", person);
 NSLog(@"My student description is:\n%@", student);
 NSLog(@"My teacher description is:\n%@", teacher);
}

Here you create Person, Teacher, and Student objects. At the end, you place a %@
placeholder in your NSLog input. When you pass an object in after the string, the %@ is
replaced with what is returned from each object’s description: method. With this
done, you’re going to look at another way to modify classes’ functionality behind the
scenes through a design method called clusters.

6.5 Class clusters
Class clusters is the Objective-C answer for the idea of abstraction. Generally, an abstract
superclass is declared with methods that are implemented in nonvisible, concrete sub-
classes. This type of design is called an abstract factory design in Apple’s documentation. It
has the benefit of simplifying the complexity of public classes by revealing only the
methods declared in the abstract parent class. The abstract superclass is responsible for
providing methods that create instances of the private subclasses.

6.5.1 Why use class clusters
Class clusters is really just a fancy way of saying “secret subclassing.” They allow develop-
ers to create a single doorway into multiple rooms. There are two common motiva-
tions for taking this design approach:

1 Performance/Memory
This type of design allows a developer to make a single class that can represent
the creation point for multiple objects that have significantly different memory
Download from Wow! eBook <www.wowebook.com>

135Class clusters
requirements. The classic example of this is the NSNumber class that Apple pro-
vides. NSNumber is a cluster representing all sorts of different number types
(Integer, Double, Long, Float, Char). All of these types can be converted from
one to another, and all share many different methods that act on them. But
they all require different amounts of memory. Therefore, Apple made NSNum-
ber the cluster that handles the management of all the hidden subclasses that
handle the different types. Figure 6.2 gives a graphical representation of the
structure of NSNumber.

2 Simplicity
The other motivation for implementing this design is simplicity. As shown previ-
ously, creating a class cluster can seriously simplify the interface to a collection
of similar classes. All the different objects contained in NSNumber would be very
unwieldy to develop without the NSNumber wrapper. Operations such as conver-
sion, or arithmetic operations like division would require developers to be very
careful about memory management. NSNumber, however, shifts this responsibil-
ity from the developer to the class cluster, greatly simplifying the use of these
similar classes.

6.5.2 Multiple public clusters
Clusters also give developers the ability to create multiple public class clusters that ref-
erence the same private implementation class. NSArray and NSMutableArray act as
class cluster interfaces for a hidden implementation class that handles a lot of the
class’s functionality. The hidden implementation class is also called NSArray but isn’t
visible to developers. This is a memory- and simplicity-driven design decision. It allows
developers of this class to create a single entry point for methods that will act slightly
differently depending on the object being worked with. This takes the responsibility
to choose the correct method to call from the developer using the class and shifts it to
the intelligence embedded in the class cluster design. This means easy development
when using Apple’s class clusters and lots of flexibility if you want to make your own.

 Clusters are a great design scheme for creating some type of custom object or col-
lection of objects. Sometimes, however, you don’t want to make something completely

Figure 6.2 Graphical representation of NSNumber
Download from Wow! eBook <www.wowebook.com>

136 CHAPTER 6 Extending classes
unique, or you don’t want to make it a subclass. Sometimes the best thing is to add
to an existing class. A common example of this is when an application often needs to
perform an operation on a String. Twitter, for example, uses a method that adds an @
symbol before a username string, which is very useful. To address this issue, Objective-C
supports a design scheme called categories.

6.6 Categories
In the previous section, you learned how to override methods in subclasses using
the description method from NSObject. The categories design scheme is similar to the
subclass method of overriding: it allows developers to add methods to a class that may
not be there by default. Rather than creating a subclass and adding the method to it,
categories allow a developer to add methods to any existing class without subclassing.
This is usually done with the common data structure classes in Objective-C (NSString,
NSArray, NSData). It’s often convenient to add a method or two to these classes that
will assist with an application you’re making.

6.6.1 Extending classes without subclassing

Reuse is one of the core values of programming. Extending classes is often an effort
to minimize the redundancy of code. It compartmentalizes objects and their abilities
in a way that allows code reuse instead of copying and pasting code. Sometimes, how-
ever, developers want to add to existing classes rather than create their own. Subclass-
ing has an inherent cost because it requires nonstandard class calls throughout an
application. If a developer can write a method that attaches to the NSString class, for
example, it would lend that piece of code to more common reuse.

 Categories append content to the interface (header file) and implementation
(main file) of existing classes, allowing a developer to create an application with
lots of custom functions but few custom classes. Many people who are extending
the API provided by Apple use this approach rather than making something com-
pletely original.

6.6.2 Using a category

Let’s make a simple category class for NSString. For this example, assume your appli-
cation needs to take all the vowels out of strings. You make a category class for
NSString to accomplish this.

1 Create a new View-based project VowelDestroyer.
2 Click File > New File and create a new Objective-C Class called VowelDestroyer

as a subclass of NSObject.
3 Insert the following code into VowelDestroyer.h:

#import <Foundation/NSString.h>
@interface NSString (VowelDestroyer)
- (NSString *)stringByDestroyingVowels;
@end
Download from Wow! eBook <www.wowebook.com>

137Categories
This code tells the compiler that you’re adding to the NSString an interface called
VowelDestroyer. This category adds a method called stringByDestroyingVowels
that takes no parameters and returns an NSString.

 You implement the method in VowelDestroyer.m so that it can be called when
this method is called on an NSString object. Insert the following code into Vowel-
Destroyer.m.

#import "VowelDestroyer.h"

@implementation NSString (VowelDestroyer)

- (NSString *)stringByDestroyingVowels {
 NSMutableString *mutableString =
 [NSMutableString stringWithString:self];

 [mutableString replaceOccurrencesOfString:@"a"
 withString:@""
 options:NSCaseInsensitiveSearch
 range:NSMakeRange(0, [mutableString length])];
 [mutableString replaceOccurrencesOfString:@"e"
 withString:@""
 options:NSCaseInsensitiveSearch
 range:NSMakeRange(0, [mutableString length])];
 [mutableString replaceOccurrencesOfString:@"i"
 withString:@""
 options:NSCaseInsensitiveSearch
 range:NSMakeRange(0, [mutableString length])];
 [mutableString replaceOccurrencesOfString:@"o"
 withString:@""
 options:NSCaseInsensitiveSearch
 range:NSMakeRange(0, [mutableString length])];
 [mutableString replaceOccurrencesOfString:@"u"
 withString:@""
 options:NSCaseInsensitiveSearch
 range:NSMakeRange(0, [mutableString length])];

 return [NSString stringWithString:mutableString];
}

@end

In this code, you declare the file to be an implementation of NSString again and
declare your category name once more B. Then you implement the method appro-
priately. In this case you create a new type of string called an NSMutableString. If you
notice, NSStrings can’t be modified. NSString provides methods that modify a string
and return a whole new one, but NSMutableString can be used to modify an existing
string without having the modification methods return a whole new string. If this
method were to be used a lot in an application, this implementation would be the best
use of memory. After creating the NSMutableString c, you replace each vowel with
an empty string using the replaceOccurrencesOfString:withString:options:

range: method. Using the NSCaseInsensitive option with this method matches both

Listing 6.10 VowelDestroyer.m

Declare category
name

b

Create
NSMutableStringc
Download from Wow! eBook <www.wowebook.com>

138 CHAPTER 6 Extending classes
uppercase and lowercase variations of the target string you provide. Once all the vow-
els have been replaced, you create a new NSString object from the mutable string and
return it. Remember, you need to import this class into any class that you want to use
it, but once you do so, you can call stringByDestroyingVowels on any NSString or
NSString subclass.

6.6.3 Considerations when using categories

Categories are great for a lot of class extensions, but their limitations should be con-
sidered when using them in a project. First of all, a category can add only methods,
not instance variables, to a class. If you need to add instance variables to a class, you
have to subclass it. With some creativity, a lot of the functionality developers are look-
ing for can be completed in a single method. The other limitation relates to overrid-
ing methods. Overriding should be done in subclasses rather than in categories.
Otherwise, the compiler may get confused about which method to use, or worse,
existing methods using that method and the whole class breaking. This practice
should be avoided.

 In order to see this category in action you can go to the app delegate of the project
you’ve made to test it out. You’ll need to import this class into your VowelDestroyer-
AppDelegate.m using the statement

#import “VowelDestroyer.h”

With this done, you can make a string in this class and call the stringByDestroying-
Vowels method. To make it easy we put some test code in the applicationDidFinish-
Launching:withOptions method. You can see the code below.

- (void)applicationDidFinishLaunching:(UIApplication *)application
 withOptions:(NSDictionary*)options {

 // Override point for customization after app launch

 [self.window makeKeyAndVisible];
 NSString *originalString = @”Hello World”;
 NSLog(@”Original String: %@”, originalString);
 NSString *vowelFreeString = [originalString stringByDestroyingVowels];
 NSLog(@”Vowel Free String: %@”, vowelFreeString);

 return YES;
}

6.7 Subclassing in your demo application
Your Property Rental application is coming along and is already full of code that takes
advantage of subclassing. To illustrate the overall structure of your application, see the
inheritance chart for your existing code (figure 6.3). The chart shows what classes
you’ve created and from which parent classes they’re subclassed. Currently, your
application contains three classes and their subclasses.

 Keeping the overall structure and inheritance chart of the classes in your project is
important when developing. Remember, nearly all classes in Objective-C are eventually
Download from Wow! eBook <www.wowebook.com>

139Subclassing in your demo application
going to inherit from NSObject; it’s important to keep in mind the superclass of the
class you’re implementing.

6.7.1 Creating and subclassing CTLease

The final activity for this chapter is to create a few convenience methods for your
rental application. You create a class called CTLease, which you subclass to represent a
fixed-term lease or a periodic lease. These classes are nice examples of how class
extension can be used within the context of a specific project, but will not end up
being a part of your overall final design of the Rental Manager. Let’s begin by making
the CTLease class, which will be the parent. In your project, go to File > New File…
and create a new NSObject subclass called CTLease. For now, you’ll make this class as
minimal as possible. In the header, insert the code shown in the following listing.

#import <Foundation/Foundation.h>

@interface CTLease : NSObject {

}

+ (CTLease *)periodicLease:(float)weeklyPrice;
+ (CTLease *)fixedTermLeaseWithPrice:(float)totalRental
 forWeeks:(int)numberOfWeeks;

@end

Listing 6.11 CTLease.h

Figure 6.3 The inheritance chart of your project’s current classes
Download from Wow! eBook <www.wowebook.com>

140 CHAPTER 6 Extending classes
The base class (CTLease) is a subclass of NSObject. It acts as a wrapper for the two hid-
den classes it represents. The class has two class methods for returning either a peri-
odic lease or a fixed-term lease. The + sign before the declaration of the methods
signifies each of these methods as a class method, meaning that these methods are
called on CTLease itself rather than on some instance of the CTLease class. Let’s look
at implementing these methods. Input the code in the following listing to the main
file of CTLease.

#import "CTLease.h"

#import "CTPeriodicLease.h"
#import "CTFixedLease.h"

@implementation CTLease

+ (CTLease *)periodicLease:(float)weeklyPrice {
 CTLease *lease = [CTPeriodicLease
 periodicLeaseWithWeeklyPrice:weeklyPrice];
 return [lease autorelease];
}

+ (CTLease *)fixedTermLeaseWithPrice:(float)totalRental
 forWeeks:(int)numberOfWeeks {

 CTLease *lease = [CTFixedLease fixedTermLeaseWithPrice:totalRental
 forWeeks:numberOfWeeks];
 return [lease autorelease];
}

@end

The first thing to note here is that the code won’t compile until you create the two
accompanying subclasses (CTPeriodicLease and CTFixedTermLease), so when you
build, you’ll get errors. Don’t worry about it right now: you’ll remedy this problem
shortly. CTLease doesn’t even have an initializer in this case because it provides a sin-
gle interface to create two different types of leases. You take in the appropriate param-
eters to create each type of lease and then return an autoreleased version of that
object. While these methods seem simple, they’re important in the overall architec-
ture of your application. Let’s look at creating the accompanying CTPeriodicLease
and CTFixedTermLease.

6.7.2 Creating CTPeriodicLease as a subclass of CTLease

You need to make a concrete subclass for your periodicLease method in CTLease
and call it CTPeriodicLease. Once again, you create a new file by going to File > New
File…. You create an NSObject subclass, but you’ll be changing it once the file is
made. Name the file CTPeriodicLease. Once it’s created, go into the header and
replace it with the code in the following listing.

Listing 6.12 CTLease.m
Download from Wow! eBook <www.wowebook.com>

141Subclassing in your demo application
#import "CTLease.h"

@interface CTPeriodicLease : CTLease {
 float weeklyRental;
}

@property(nonatomic) float weeklyRental;

+ (CTLease *)periodicLeaseWithWeeklyPrice:(float)weeklyPrice;

@end

Here a CTPeriodicLease is declared as a subclass of CTLease. A CTPeriodicLease
contains a float number representing the weeklyrentalCost and provides a class
method to create a CTLease object using the weekly price. Now all that’s left to do is
implement the method in your main file. Use the code shown in the following listing.

#import "CTPeriodicLease.h"

@implementation CTPeriodicLease

@synthesize weeklyRental;

+ (CTLease *)periodicLeaseWithWeeklyPrice:(float)weeklyPrice {
 CTPeriodicLease *lease = [CTPeriodicLease alloc];
 lease.weeklyRental = weeklyPrice;
 return [lease autorelease];
}

- (NSString *)description {
 return [NSString stringWithFormat:@"$%0.2f per week",
 self.weeklyRental];
}

@end

The creation of an object occurs B where you allocate a CTPeriodicLease object. You
set the lease’s weekly rental price and return the autoreleased version of the object.
One point of interest here is that this method is designated as returning a CTLease
object, yet a CTPeriodicLease object is allocated and returned. The reason this is
valid is that CTPeriodicLease is a subclass of CTLease, so CTPeriodicLease is a
CTLease but a CTLease isn’t necessarily a CTPeriodicLease. Next, the NSObject method
description is overridden. You can do this because CTPeriodicLease is also a sub-
class of NSObject. As you learned earlier, this technique is useful when you want
objects to print their attributes out of an NSLog.

6.7.3 Creating CTFixedLease as a subclass of CTLease

You now make another CTLease subclass called CTFixedLease so you can represent a
lease as having a different set of terms rather than some periodic set amount. This

Listing 6.13 CTPeriodicLease.h

Listing 6.14 CTPeriodicLease.m

Alloc
CTPeriodicLease b
Download from Wow! eBook <www.wowebook.com>

142 CHAPTER 6 Extending classes
type of lease will have a fixed time and a fixed amount, and it won’t recur. The header
of CTFixedLease is similar to that of CTLease but in this case has ivars: totalRental
and numberOfWeeks. Insert the code from the following listing into the header file.

#import "CTLease.h"

@interface CTFixedLease : CTLease {
 float totalRental;
 int numberOfWeeks;
}

@property(nonatomic) float totalRental;
@property(nonatomic) int numberOfWeeks;

+ (CTLease *)fixedTermLeaseWithPrice:(float)totalRental
 forWeeks:(int)numberOfWeeks;

@end

The implementation of CTFixedLease is similar to that of CTPeriodicLease. You set
both instance variables for the class and return an autoreleased instance. You also
make sure the description method prints out both of your instance messages in the
description. Use the code in the following listing for the implementation of
CTFixedLease’s main file.

#import "CTFixedLease.h"

@implementation CTFixedLease

@synthesize totalRental, numberOfWeeks;

+ (CTLease *)fixedTermLeaseWithPrice:(float)totalRental
 forWeeks:(int)numberOfWeeks {

 CTFixedLease *lease = [CTFixedLease alloc];
 lease.totalRental = totalRental;
 lease.numberOfWeeks = numberOfWeeks;
 return [lease autorelease];
}

- (NSString *)description {
 return [NSString stringWithFormat:@"$%0.2f for %d weeks",
 self.totalRental, self.numberOfWeeks];
}

@end

With this useful collection of classes in place, you can properly model the data for
your application as you continue to build it.

Listing 6.15 CTFixedLease.h

Listing 6.16 CTFixedLease.m
Download from Wow! eBook <www.wowebook.com>

143Summary
6.8 Summary
Object-oriented programming languages have evolved to incorporate all sorts of
design practices so that developers are empowered with the tools they need to create
large, rich, and efficient applications in as little time as possible. Subclassing is one of
the design foundations that have made this achievable. Before diving into coding a
project, we recommend that you draw out your class design and look for opportunities
to employ subclassing, clusters, and categories. The take-home points for these class
extension strategies are as follows:

■ If you want to add new instance variables to a class or override a method of a
class, use subclassing.

■ If you want to hide the implementation of a class, simplify a class’s interface, or
incorporate more code reuse, create a class cluster.

■ If you want to add a method to a class, create a class category.

With a good dose of scrutiny and these design methods in mind, you can create the
kind of code that will make your application a pleasure to use. In chapter 7 we look at
an important design method applied throughout Objective-C and the Cocoa libraries:
protocols. Protocols are sets of methods that a class can expect other classes to imple-
ment. This is useful when different classes are passing data and actions among them-
selves. Protocols are used in many of the APIs provided by Apple and are vital when
using UIKit elements in your applications.

 Now that you’ve learned all of the ways to create, modify, and group classes based
on your design, you need to investigate how you can have these objects interact. By
using protocols, the new classes you create can broadcast the kind requirements to
objects that it will be interacting with. Apple relies heavily on this design method
through all the UIKit objects and many Core Foundation objects. Chapter 7 presents
an overview of the technology and a look at some of the most popular protocols in the
software development kit.
Download from Wow! eBook <www.wowebook.com>

Protocols
Now that you have some experience creating standard and custom objects, you
need to look at how these objects interact. If two objects are to work together, you
need to make sure they know how to talk to each other. For objects to talk to each
other, they need to know what conversation they’re having. The conversation
between objects is usually represented by the protocol design scheme.

 Sometimes when you create a class, you design it to be used as a tool for some
other class. If you’re going to do this, two things must be in place. First, your object
must have a way to send callbacks to whatever class is trying to use it. Second, a class
must be able to verify that whatever class is using it has the correct structure for it to
communicate whatever it needs. This design pattern is used extensively through
the classes provided in the iPhone software development kit (SDK) from Apple.
You’ll implement some type of protocol methods in every application you make.

This chapter covers
■ Protocol overview
■ Defining protocols
■ Conforming to a protocol
■ Looking at examples of commonly used

protocols
144

Download from Wow! eBook <www.wowebook.com>

145Defining a protocol
Mastering the creation of a protocol for your own class and conforming to protocols
for another class are vital to making a sturdy application.

 Apple highlights three main motivations for using protocols in your design:

■ To declare methods that others are expected to implement
■ To declare the interface to an object while concealing its class
■ To capture similarities among classes that aren’t hierarchically related

The first reason is the most common reason for using protocols. A class will often
require some kind of callback method to communicate with the object that’s using it.
A Map object would ask the object using it for the points of interest on the map where
it should put pins, for instance. An alert view would want a way to tell the view using it
that the user has selected a button from the alert. This idea is used commonly
through many of Apple’s provided classes. You can tell when a class is using protocols
because they’ll usually have an instance variable called delegate or data source. The
methods that delegates or data sources are supposed to implement either provide
some data that the caller needs or are given the result from the object implementing
the protocol. This may seem abstract at the moment, but with more use of the Apple
frameworks and the examples in this chapter, the relationship between the protocol
definer and implementer will become clearer.

 The second and third reasons for creating protocols have to do with design deci-
sions that can come about. Sometimes when creating a reusable piece of code, you
want to conceal the actual classes or code implementing some functionality. If so,
you can create a protocol to represent the class, which means the user will create a ver-
sion of the object you created and also complete its protocol methods. This gives a
concealed class the ability to call back to a class using it without revealing its “secrets.”
On those philosophical notes, let’s look into some concrete examples of this abstract
idea to see how it can assist you in your development and design.

7.1 Defining a protocol
When you want to create a protocol for a project, the first step is to define what the
protocol consists of. Protocols, much like instance variables and methods, need to be
declared in the header file of a class and defined in the main file. There are two sides
to a protocol: the side that defines and calls them and the side that implements them.
Protocols are used in many of the classes provided by Apple. When a table view needs
to be informed of how many cells are in a given section, it asks its delegate that con-
forms to the UITableViewDataSource protocol. Here we focus on outlining a protocol
for a class that another class will conform to.

 Let’s build a small example using the idea of protocols. You create a class with a
protocol, and later in the chapter, you implement that protocol in another class to see
how it all fits together. The class you create is a subclass of UIView. It’ll have a protocol
that can inform its delegate when it has finished a certain animation that you’ll per-
form. Let’s get started:
Download from Wow! eBook <www.wowebook.com>

146 CHAPTER 7 Protocols
1 Create a new Window-based iPhone Application project called myProtocol.
2 Click File > New File….
3 Create a UIView subclass called myView. You define your protocol in the

myView.h file. Put the code from the following listing there.

#import <UIKit/UIKit.h>

@protocol animationNotification

- (void)animationHasFinishedWithView:(UIView *)animatedView;

@optional

- (void)animationStartedWithView:(UIView *)animatedView;

@end

@interface myView : UIView {
 id <animationNotification> delegate;
 UIView *boxView;
}
@property (nonatomic, assign) id delegate;

- (void)animate;

@end

This code defines all of the things that make up the UIView subclass you’ll use along
with the animationNotification protocol that it defines. Line B is particularly
important to defining a protocol in this class: it defines a variable of type id with name
delegate. This is the holder for the class that will implement your protocol. It gives
you a way to communicate to that class when you need your protocol methods to fire.
The class that implements this protocol must set the delegate to be itself. We go over
code for this when we look into implementing a protocol.

 Now that a delegate is defined, you can start to define animationNotification
methods. Once you describe the interface for myView, you use the @ syntax to start the
definition of your protocol. Any methods you list after this protocol will be required
for a class to implement your protocol. You can use the @optional marker to list
methods that aren’t required for a class implementing your protocol. This is all that
needs to be done for a protocol to be defined.

7.2 Implementing a protocol
Now that your protocol is declared, it’s time to implement it. This takes place in two
steps. The first is implementing the functionality of calling the protocol methods from
the class declaring the protocol. The second is writing these protocol methods into a
class that implements the protocol.

Listing 7.1 Filling in myView.h, part 1

Declare the
animationNotification delegateb
Download from Wow! eBook <www.wowebook.com>

147Implementing a protocol
7.2.1 Creating the protocol method callers
Here is where you fill in the code for myView.m. This class makes a view with a red
square in the middle of it. You add the square to your view and make a method called
animate that moves the square down by 100 pixels. Let’s see what this code looks like
in the following listing. The listing shows each method individually so that their pur-
poses can be explained.

#import "myView.h"

@implementation myView

@synthesize delegate;

- (id)initWithFrame:(CGRect)frame {
 if ((self = [super initWithFrame:frame])) {
 [self setBackgroundColor:[UIColor blackColor]];
 boxView = [[UIView alloc]
 initWithFrame:CGRectMake(50, 30, 220, 220)];
 [boxView setBackgroundColor:[UIColor redColor]];
 [self addSubview:boxView];
 }

 return self;
}

This initialization method sets up the view. You turn the main view’s background to
black, initialize boxView, and set its background to red. Then you add the boxView as a
subclass of the myView class you’re working with, and finally you return an instance of
the myView class. Notice that no work needs to be done in reference to the protocol
that myView defines. Next we look at the method you call to get the square to move
down the screen (see listing 7.3). You accomplish this with the beginAnimations:
context: method provided by UIView. This method is convenient for changing things
about UIKit elements. Once you set up the animation properties, any attribute you
change to UIKit elements (position, size, rotation, alpha) will animate from its cur-
rent state to the altered state.

- (void)animate {
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:2];
 [UIView setAnimationDelegate:self];
 [UIView setAnimationWillStartSelector:@selector(animationStarted)];
 [UIView setAnimationDidStopSelector:@selector(animationStopped)];
 CGRect newFrame = CGRectMake(boxView.frame.origin.x,
 boxView.frame.origin.y + 100,
 boxView.frame.size.width,
 boxView.frame.size.height);
 [boxView setFrame:newFrame];
 [UIView commitAnimations];
}

Listing 7.2 Filling in myView.m, part 2

Listing 7.3 Filling in myView.m, part 3
Download from Wow! eBook <www.wowebook.com>

148 CHAPTER 7 Protocols
In this animation, you take the boxView and move it down the screen by 100 pixels.
Calling the commitAnimations method executes the animation. An important con-
figuration step of this animation was setting animationWillStartSelector and
animationDidStopSelector. These tell UIView to call certain classes when the anima-
tion starts and ends. These method calls are forwarded to the delegate and the proto-
col methods are called. The only thing left to do is create the animationStarted and
animationStopped methods that alert the delegate (see the following listing).

- (void)animationStarted {
 if ([delegate
 respondsToSelector:@selector(animationStartedWithView:)])
 {
 [delegate animationStartedWithView:self];
 }
}

- (void)animationStopped {
 if ([delegate
 respondsToSelector:@selector(animationHasFinishedWithView:)])
 {
 [delegate animationHasFinishedWithView:self];
 }
}

- (void)dealloc {
 [boxView release];
 [super dealloc];
}

@end

Here is where the protocol methods are called. You tell the delegate to fire off the
appropriate method when the animation has started and stopped. You don’t want to
assume that a delegate is set or that the delegate has implemented the protocol meth-
ods. To check this, you use the respondsToSelector method. NSObject implements
this method, so you can call it on nearly any object. It’s a great check to include in
your code to avoid crashing and generally a good coding practice. If the delegate is
assigned and it does implement the protocol methods, you call the method and pass it
the view in which the protocols are defined. Now that you’ve defined your protocol,
let’s create a class that will conform to it.

7.2.2 Making a class conform to a protocol

To make your application delegate conform to the animationNotification protocol,
you implement both methods from the protocol in your application delegate. First
you signal that the application delegate does conform to the animationNotification
protocol. This is done in the myProtocolAppDelegate.h file. The following listing
shows the new code for your App Delegate header file.

Listing 7.4 Filling in myView.m, part 4
Download from Wow! eBook <www.wowebook.com>

149Implementing a protocol
#import <UIKit/UIKit.h>
#import "myView.h"

@interface myProtocolAppDelegate : NSObject
 <UIApplicationDelegate, animationNotification> {

 UIWindow *window;
 myView *view;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

- (void)animate;

@end

The class declares that it implements the animationNotification protocol. This class
also implements the UIApplicationDelegate protocol. You can list however many
protocols you want your class to conform to between the <> with commas separating
them. Aside from that, an instance of the UIView subclass is declared so that you can
tell it to animate when a button is pressed. All that’s left to do is fill in the AppDelegate
with the methods specified by the protocol.

 Insert the code from the following listing into your myProtocolAppDelegate.m file.

#import "myProtocolAppDelegate.h"

@implementation myProtocolAppDelegate

@synthesize window;

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 view = [[myView alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];
 [view setDelegate:self];
 [window addSubview:view];

 UIButton *animateButton = [UIButton
 buttonWithType:UIButtonTypeRoundedRect];
 [animateButton setTitle:@"Animate"
 forState:UIControlStateNormal];
 [animateButton
 addTarget:self
 action:@selector(animate)
 forControlEvents:UIControlEventTouchUpInside];
 [animateButton setFrame:CGRectMake(25, 380, 270, 30)];
 [window addSubview:animateButton];

 [window makeKeyAndVisible];

 return YES;
}

Listing 7.5 Filling in myProtocolAppDelegate.h

Listing 7.6 Filling in myProtocolAppDelegate.m, part 1

Create
myViewb

Create the
button to call
the methodc

Make the button
animate when tapped d
Download from Wow! eBook <www.wowebook.com>

150 CHAPTER 7 Protocols
The first thing this code does is fill in the applicationDidFinishLaunching method,
which is part of the UIApplicationDelegate protocol. In here you create a button
that calls another method you’ll define. You create the myView object and set the
myView delegate to this class B. Then you add the view into your window. Next you
make a button in code c. This is the button you’ll tap to call the animate method in
myView d. With this done, you must make a method that tells myView to animate
when the button is pressed. The code is short—check it out; this should be added as a
method to myProtocolAppDelegate.m:

- (void)animate {
 [view animate];
}

This code calls the animate method in myView. All that’s left to do is define the proto-
col methods and implement what you want them to do. For this example, two things
happen when the animation starts, as shown in the following listing.

- (void)animationStartedWithView:(UIView*)animatedView {
 NSLog(@"The animation has started");
 [animatedView setBackgroundColor:[UIColor whiteColor]];
}

- (void)animationHasFinishedWithView:(UIView*)animatedView {
 NSLog(@"The animation has finished");
 [animatedView setBackgroundColor:[UIColor blackColor]];
}

- (void)dealloc {
 [view release];
 [window release];
 [super dealloc];
}
@end

Fire up the simulator and see this in action. If your terminal is up, you can see the log
messages as well. You’ve successfully defined and implemented a custom protocol.

7.3 Important protocols
Now that you’ve seen all the guts of making and implementing a protocol, let’s look at
the most popular protocols used in the development of an iPhone application. Apple
relies on the protocol design method for many of its Cocoa classes. In this section we
review four sets of protocols that you’ll likely use when developing your application.
Let’s dive in.

7.3.1 <UITableViewDataSource>

The UITableViewDataSource protocol is a mandatory protocol to have implemented
for any table view in your application. A table view is a visual element that’s meant to
display some collection of information. Unlike any other user interface element in the

Listing 7.7 Filling in myProtocolAppDelegate.m, part 2

Write a log
message

Set background to white

Write a log message

Set background
to black
Download from Wow! eBook <www.wowebook.com>

151Important protocols
iPhone UIKit, UITableView must be provided the data it’ll display. Without the data
source protocol for a UITableView connected, a table view has no functionality. Let’s
look at the required methods of this protocol and then look at some of the more pop-
ular optional methods.

<UITABLEVIEWDATASOURCE> REQUIRED METHOD

This is the first method that needs to be implemented in a class conforming to the
UITableViewDataSource:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section

This code specifies how many cells should be requested in a given section. To under-
stand this method, you must first understand what sections are. Table views present sec-
tions in two different manners, depending on the style set for the table view.

 If the table view has its style set to UITableViewStylePlain, the sections will be
separated, by default, by a gray line with some text in it. This is seen in the Contacts
portion of the Phone application on the iPhone or when listing artists in the iPod. It’s
commonly used to separate the first letter of items in a list, but it can also be used to
segment data in any way you choose.

 If the table view has its style set to UITableViewStyleGrouped, each section will be
separated by some space with the top and bottom table view cells having rounded cor-
ners. An example of this can be seen in the Settings section of the iPhone. Depending
on the look you want in your application, you can select the style.

 Many tables in applications have only one section, so this method can usually be
implemented with something such as the following:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return 5;
}

This code specifies five cells for every section that the table view has. To define how
many sections a table view has, you’ll need to implement an optional method. If that
method isn’t defined in the <UITableViewDataSource> protocol, the table view
defaults to having only one section:

- (UITableViewCell*)tableView:(UITableView*)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

The other required method for a UITableViewDataSource to implement is the above
method. It’s called as many times as there are cells. Each time it’s called, the data source
is responsible for returning a UITableViewCell object or subclass. UITableViewCell is a
subclass of UIView and is the actual object that the user sees in the table view.

 Much like the table view itself, Apple provides a standard UITableViewCell with a
few basic configurations:

■ UITableViewCellStyleDefault

This is the default style for UITableViewCells. It’s a cell view with a black, left-
aligned text label. There’s also an optional left-aligned image view.
Download from Wow! eBook <www.wowebook.com>

152 CHAPTER 7 Protocols
■ UITableViewCellStyleValue1

This type of cell has a black, left-aligned label and a blue, right-aligned label.
This style is used commonly around the iPhone OS, specifically in the Set-
tings application.

■ UITableViewCellStyleValue2

This type of cell is similar to a UITableViewCellStyleValue1: a black, left-
aligned label and a blue, right-aligned label. In addition, this view provides a
smaller gray, left-aligned text field under the primary text field. These cells are
seen in the Phone application.

■ UITableViewCellStyleSubtitle

This type of cell is similar to a UITableViewCellStyleValue2, a black, left-
aligned label and a smaller gray, left-aligned text field under the primary text
field. The blue, right-aligned label isn’t available in this view. These cells are
seen in the iPod application.

While many applications use customized subclasses of UITableViewCell, the standard
cells work well in many cases. The structure for the tableView:cellForRowAtIndex-
Path: is similar for all applications. Apple provides special cell-view retrieval methods
to help with memory management when implementing this method. Let’s look at the
general structure of this method’s implementation, shown in the following listing.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell;
 NSString *reuseID = @"cellID";

 cell = [tableView dequeueReusableCellWithIdentifier:reuseID];

 if(cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:reuseID] autorelease];

NSLog(@"Made a new cell view");
 }

 [[cell textLabel] setText:@"Hello World!"];

 return cell;
}

The most important parts of this code happen on three consecutive lines. The first
part B attempts to initialize the cell that’s being requested from the tableView by
using the dequeueReusableCellWithIdentifier method. This method looks for a
cell that has scrolled off the screen and attempts to reuse it. If it finds a cell that can be
recycled, the cell is initialized; otherwise, the if statement c returns true and d is

Listing 7.8 Returning table view cells for a table view

Initialize
tableView cell

 b

True if statementc

If true, the cell
is executed d
Download from Wow! eBook <www.wowebook.com>

153Important protocols
executed. This is the manual instantiation of the cell, which is used only if there’s no
cell to recycle that has recently been scrolled offscreen.

 This coding strategy is used in several other places in the iPhone SDK. To show that
the view allocation is working, you make a project with a table view and implement
dequeueReusableCellWithIdentifier just as you see right above. You fill in
tableView: numberOfRowsInSection with the following:

return 100;

You can see the resulting application and its terminal output using the following code:

Insert UITableViewDataSourceTerminalOutput.png and
UITableViewDataSourceProtocolApp

You have 100 cells that you can scroll through here, with 11 active on the screen at any
one time. This means that at the minimum you must create 11 UITableViewCells.
When you look at your terminal output, you can see that 12 UITableViewCells were
created. This is efficient and ensures that as little memory as possible is used to allow
the user to scroll through all 100 cells. This technique is used for memory manage-
ment with the <MKMapViewDelegate> protocol as well. Whether you’re using a
UITableViewCell standard class or a custom subclass, this should be your approach to
deliver the cells to the view.

<UITABLEVIEWDATASOURCE> OPTIONAL METHODS

The following method is used when a table view is to have more than one section:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

When this method isn’t implemented, the method defaults to one. One thing to note
is that the iPhone OS uses a zero-based count for section and row numbers, so the first
element of the first section of a table view will have an index path like the following:

 NSIndexPath.row = 0
 NSIndexPath.section = 0

The following code is used to set the title of the header for sections when using
default table view headers with the UITableViewStyleDefault:

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section

Every section begins with a header and can also have a footer at the end. If the following
method isn’t defined, there’ll be only headers, no footers, to separate your sections:

- (NSString *)tableView:(UITableView *)tableView
 titleForFooterInSection:(NSInteger)section

7.3.2 <UITableViewDelegate>

Unlike the <UITableViewDataSource>, the <UITableViewDelegate> has no required
methods. All the methods in this protocol fall into the following functions:
Download from Wow! eBook <www.wowebook.com>

154 CHAPTER 7 Protocols
■ Setting information such as cell height and indentation for the entire table view
■ Being informed when actions occur to the table view

Let’s look at some of the most common functions used in the delegate.

<UITABLEVIEWDELEGATE> SETTER METHODS

The following method is commonly used when doing a modification to the standard
table view cells:

- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath

Sometimes, with a thumbnail image or when you want to use bigger text, you need to
make the height of table view cells larger. Many developers waste time trying to supply
larger table view cells but get frustrated when the cells don’t display properly. You
must implement the heightForRowAtIndexPath: method if you want cells to be larger
than the default 44 pixels. This height can also be modified through Interface Builder
in Xcode 4, but a best practice is to modify the height using this delegate method:

- (NSInteger)tableView:(UITableView *)tableView
 indentationLevelForRowAtIndexPath:(NSIndexPath *)indexPath

This method can modify the entire horizontal alignment of a returned table view cell.
Setting the indentation level moves the view content over about 11 pixels per indenta-
tion. For example, if you set the indentation level of a cell to three, the content of the
cell is moved over approximately 33 pixels. Using the same code from the UITable-
ViewDataSource section, implement this method for the table with the code shown in
the following listing.

- (NSInteger)tableView:(UITableView *)tableView
 indentationLevelForRowAtIndexPath:(NSIndexPath *)indexPath
{
 int val = indexPath.row % 56;

 if(val < 28)
 return indexPath.row;
 else
 return 56 - val;
}

This listing shows what incrementing the indentation level for each cell will do. When
the indention level reaches 28, the indentation level is decremented in order to keep
the content in the view. You can see an example of what this table view looks like now
in figure 7.1.

 These methods are required to be implemented together:

- (CGFloat)tableView:(UITableView *)tableView
 heightForHeaderInSection:(NSInteger)section

- (UIView *)tableView:(UITableView *)tableView
 viewForHeaderInSection:(NSInteger)section

Listing 7.9 Setting an indentation level for a table view
Download from Wow! eBook <www.wowebook.com>

155Important protocols
Any table view (grouped or standard) may have a
header view. This view can be anything: a single
UIView, UIImageView, or UILabel, for instance, or
a more complex custom UIView subclass. Using the
header view delegate method saves a number of
lines of code required to customize the headers,
and generally is a better practice than attempting
to implement a header yourself. If you have a rea-
son to add some type of custom view before your
table data is shown, these are the methods you
should implement:

- (CGFloat)tableView:(UITableView *)tableView
 heightForFooterInSection:

(NSInteger)section

- (UIView *)tableView:(UITableView
*)tableView

 viewForFooterInSection:(NSInteger)section

This set of methods is identical to the header view
methods and likewise must be implemented
together. Once again, this is the best practice
when you need to add some custom content after
your table view section data is presented.

<UITABLEVIEWDELEGATE> ACTION METHODS

Most methods that a class conforming to the
<UITableViewDelegate> can implement are meth-
ods that respond to events that occur in the table view. These methods will inform you
of things like cells being added, cells being removed, cells being modified, cells being
selected, and a few more types of events that can occur:

 - (void)tableView:(UITableView *)tableView
 accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath

Apple provides some standard-style accessory views for UITableViewCells. Accessory
views are placed on the right-hand side of a UITableViewCell. They’re distinct parts
of a cell that can be hidden or modified when a table view is being edited. UITable-
ViewCellAccessoryTypes come in four default flavors:

■ UITableViewCellAccessoryNone

This method leaves the accessory view of the UITableViewCell blank. This is
the default set for UITableViewCells.

■ UITableViewCellAccessoryDisclosureIndicator

This method leaves the accessory view of the UITableViewCell as a bold
greater-than sign.

Figure 7.1 Setting an indentation level
for a table view
Download from Wow! eBook <www.wowebook.com>

156 CHAPTER 7 Protocols
■ UITableViewCellAccessoryDetailDisclosureButton

This method leaves the accessory view of the UITableViewCell as an open right-
bracket image in a blue background.

■ UITableViewCellAccessoryCheckmark

This method leaves the accessory view of the UITableViewCell as a check-
mark image.

In order for this delegate method to be called, your table view cell must have an acces-
sory for the user to tap. The accessory type of a cell is set during the creation of the
cell itself, usually in the tableView:cellForRowAtIndexPath:. UITableViewCell has
two methods for setting an accessory view:

■ setAccessoryType:

This method takes a UITableViewCellAccessoryType parameter. Any other
object passed into this method will result in an error.

■ setAccessoryView:
If you want to have some other type of custom accessory presented in the acces-
sory view, use this method. It takes in a general UIView or any subclass of it. This
method is useful when you’re trying to style an application that doesn’t work
with the default accessory types provided by Apple. Be careful when providing
UIButtons here: you can get a single button firing off to two separate methods
when it’s tapped.

The following methods are similar to the tableView: accessoryButtonTappedFor-
RowWithIndexPath: except they’re called when any other section of a table view cell is
selected. Two points of entry are provided for the selection of a cell, willSelect and
didSelect. This is commonly done throughout other Apple-provided delegates. Mul-
tiple methods like these exist to allow developers the ability to react to users at any
point during the application flow. willSelect is called before the didSelect, but a
call to willSelect is always followed by a call to didSelect:

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

Just as there’s an entry point to react to the user selecting any given cell, the following
methods provide points at which to react when a cell is being deselected:

- (NSIndexPath *)tableView:(UITableView *)tableView
 willDeselectRowAtIndexPath:(NSIndexPath *)indexPath

- (void)tableView:(UITableView *)tableView
 didDeselectRowAtIndexPath:(NSIndexPath *)indexPath

It’s common for table views to have alternating background colors, as can be seen in
the App Store and iTunes Music Store. Some developers might think the background
colors should be set when they create the cell, either in the UITableViewCell subclass
Download from Wow! eBook <www.wowebook.com>

157Important protocols
or in tableView:cellForRowAtIndexPath:, but that isn’t the case. When the
UITableView is delivered a UITableViewCell, Apple modifies certain parts of the cell
to make it fit nicely into the UITableView. When the table view is completely done
doing what it needs to do with the cell, it passes the cell through the following method
for any final modifications. After this method finishes, the cell is put into the table
view and displayed to the user:

- (void)tableView:(UITableView *)tableView
 willDisplayCell:(UITableViewCell *)cell
 forRowAtIndexPath:(NSIndexPath *)indexPath

7.3.3 <UIActionSheetDelegate>

The UIActionSheet is a great interface element provided by Apple. It’s used either to
inform the user of an alert that takes over an entire application or to provide a
prompt that a process is being conducted for the user. Examples of this include choos-
ing a language for an application’s content and informing a user that an application is
uploading some kind of file. Action sheets have a protocol associated with them to
inform the presenting view controller of their activity. Let’s look at the methods that
compose the <UIActionSheetDelegate>.

 The following method is called when a button from the UIActionSheet is pushed.
After this method executes, the UIActionSheet is automatically dismissed. Here you
respond appropriately to whatever button was selected but don’t have to worry about
returning anything or dismissing the action sheet. That’s all taken care of automatically:

- (void)actionSheet:(UIActionSheet *)actionSheet
 clickedButtonAtIndex:(NSInteger)buttonIndex

The following methods are available, providing hooks into the application flow. will-
PresentActionSheet: is called just before the action sheet animation begins, and
didPresentActionSheet: is called as the animation finishes. These different access
points allow developers to get the kind of responsiveness that they’re shooting for:

- (void)willPresentActionSheet:(UIActionSheet *)actionSheet

- (void)didPresentActionSheet:(UIActionSheet *)actionSheet

Like the presentation methods, the following methods provide hooks into the action
sheet when it’s being dismissed. The actionSheet:willDismissWithButtonIndex: is
called just before the action sheet dismissal animation begins, and actionSheet: did-
DismissWithButtonIndex: is called as the dismissal animation finishes:

- (void)actionSheet:(UIActionSheet *)actionSheet
 willDismissWithButtonIndex:(NSInteger)buttonIndex

- (void)actionSheet:(UIActionSheet *)actionSheet
 didDismissWithButtonIndex:(NSInteger)buttonIndex

The following is the final method you need to implement when creating an action
sheet, and it might not be necessary every time you make one. Action sheets, when
they’re being created, allow developers to set a “destructive button title.” If a developer
Download from Wow! eBook <www.wowebook.com>

158 CHAPTER 7 Protocols
sets a title here, this button fits the actionSheetCancel: method. It’s commonly red
(you can see it in the contacts section of the iPhone), and is used to confirm actions
such as deleting data or logging off:

- (void)actionSheetCancel:(UIActionSheet *)actionSheet

7.3.4 NSXMLParser
The final protocol we review differs slightly from the protocols we already covered.
Apple provides a class to iPhone developers called NSXMLParser. Developers use this
class when parsing XML. It should be noted that several open source alternatives to
NSXMLParser are available and used by many developers, but for the sake of consis-
tency, we look at the delegate methods of the standard Cocoa XML Parser.

 There is no <NSXMLParser> protocol; you’ll receive no warning if you don’t declare
this in the header of the application you’re creating. NSXMLParser is a fringe design
class that follows the principles of protocol design but doesn’t explicitly define a pro-
tocol. An NSXMLParser object, like the other objects, has a parameter called delegate
that must be defined. Any object defined as the delegate has the option of implement-
ing and collecting 20 different delegate methods. NSXMLParser provides delegate
methods that handle every point of parsing for both XML- and Document Type Defini-
tion (DTD)-based documents.

XML is a type of file that can hold data in a very structured manner. As a quick intro-
duction, XML uses syntax similar to HTML in order to create unique data structures. An
example of an XML element to describe a person is shown in the following listing.

<Author>
 <name>Collin Ruffenach</name>
 <age>23</age>
 <gender>male</gender>
 <Books>
 <Book>
 <title>Objective C for the iPhone</title>
 <year>2010</year>
 <level>intermediate</level>
 </Book>
 </Books>
</Author>

XML is a common means of getting data from online sources such as Twitter. XML is
also used to facilitate the data required to run your specific iPhone project. iOS devel-
opment relies heavily on plist files. These files are really just XML and are used by
Xcode to get things like your icon name and other application data. Xcode handles
the setup of these values.

DTD is a document that describes the structure of the XML that you’re working
with. The DTD for the XML in listing 7.10 would be the following:

<!ELEMENT Author (name, age, gender, books_list(book*))>
<!ELEMENT name (#PCDATA)>

Listing 7.10 An author in XML
Download from Wow! eBook <www.wowebook.com>

159Important protocols
<!ELEMENT age (#PCDATA)>
<!ELEMENT gender (#PCDATA)>
<!ELEMENT Book (title, year, level)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT level (#PCDATA)>

For some applications, examining the structure of the XML they’re receiving will
change the manner in which the application parses. In this case, you say that the XML
contains an element called Author. An Author is defined by a name, age, and gender,
which are simple strings. An author also has a list of Book elements. A Book is defined
by a title, year, and level, which are all simple strings. This analysis ensures that the
NSXMLParser knows what to do.

 Most of the time when you parse XML, you’ll be aware of its structure when writing
your parser class and won’t need to investigate the XML feed’s DTD. An example of
this would be the Twitter XML feed for a timeline. You’ll assume you know the XML
structure for your XML and only implement the parsing functions of the NSXMLParser
delegate to parse the Author XML you already looked at.

PARSING AN AUTHOR WITH NSXMLPARSER DELEGATE

The first step when implementing NSXMLParser is to create a class that contains the
parser object and implement its delegate methods. Let’s create a new View-based
project called Parser_Project and a new NSObject subclass called Parser. The only
instance variables you declare for the Parser class are an NSXMLParser and an
NSMutableString to help with some parsing logic you’ll implement. Make the
Parser.h file look like the following:

#import <Foundation/Foundation.h>

@interface Parser : NSObject <NSXMLParserDelegate> {
 NSXMLParser *parser;
 NSMutableString *element;
}

@end

You now need an XML file to parse. You can take the XML in listing 7.10 and place it in
a regular text file. Save the file as Sample.xml, and add it to the project. This gives you
a local XML file to parse.

 Now you need to fill in Parser.m, which will contain an init method and the
implementation of the three most common NSXMLParser Delegate methods. Let’s
start with the init method; add the code shown in the following listing into Parser.m.

- (id)init {
 if ((self == [super init])) {
 parser = [[NSXMLParser alloc]
 initWithContentsOfURL:
 [NSURL fileURLWithPath:[[NSBundle mainBundle]

Listing 7.11 Parser.m initializer
Download from Wow! eBook <www.wowebook.com>

160 CHAPTER 7 Protocols
 pathForResource:@"Sample"
 ofType: @"xml"]]];
 [parser setDelegate:self];
 [parser parse];
 }
 return self;
}

Here you initialized your NSXMLParser parser using a file URL pointing to the Sam-
ple.xml file you imported into your project. NSURL is a large class with all sorts of ini-
tializers. In this case, you’re telling the NSXMLParser you’ll provide a path to a file
URL, or a local resource. Then you tell the NSXMLParser that the class you’re currently
in is the delegate of the parser, and finally you tell it you’re ready to parse by calling
the parse method.

 Once the parse method is called on NSXMLParser, the parser begins to call its dele-
gate methods. The parser reads down an XML file much like Latin/English characters
are read: left to right, top to bottom. While there are many delegate methods, we
focus on three of them:

- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
 attributes:(NSDictionary *)attributeDict

parser:didStartElement:namespaceURI:qualifiedName:attributes: has a lot of
parameters passed into it, but it’s quite simple for your purposes. This method is
called when an element is seen starting. This means any element (between <>) that
doesn’t have a /. In this method you first print the element you see starting, and then
clear the NSMutableString element. You’ll see as you implement the next few meth-
ods that the element variable is used as a string that you add to as delegate methods
are called. The element variable is meant to hold the value of only one XML element,
so when a new element is started, you must be sure to clear the element variable. Use
the code shown in the following listing for this delegate method.

- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
 attributes:(NSDictionary *)attributeDict {

 NSLog(@"Started Element %@", elementName);
 element = [NSMutableString string];
}

This method is called when an XML element is seen ending, which is indicated by a /
preceding an element tag name in the xml, such as </person>. When this method is
called, the NSMutableString’s element variable is complete. Now print out the value,
as seen in the following listing.

Listing 7.12 NSXMLParser methods
Download from Wow! eBook <www.wowebook.com>

161Important protocols
- (void)parser:(NSXMLParser *)parser
 didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
{
 NSLog(@"Found an element named: %@ with a value of: %@",
 elementName, element);
}

This method is called when the parser sees anything between an element’s beginning
and end. You use this entry point as a way to collect all the characters that are between
an XML element beginning and ending: you call the appendString method on the
NSMutableString (listing 7.14). By doing this every time the parser:foundCharacters:
method is called, by the time the parser:didEndElement method is called, the
NSMutableString will be complete. In this method, you first make sure you’ve initial-
ized your NSMutableString element, and then you append the string you’ve provided,
shown in the next listing.

- (void)parser:(NSXMLParser *)parser
 foundCharacters:(NSString *)string
{
 if (element == nil)
 element = [[NSMutableString alloc] init];
 [element appendString:string];
}

Now all that’s left to do is create an instance of your parser and watch it go. Go to
Parser_ProjectAppDelegate.m and add the code shown in the following listing into
the already existing method.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];

 Parser *parser = [[Parser alloc] init];

 return YES;
}

If you run the application and bring up the terminal window (Shift-Command-R), the
output shown in the following listing should be generated.

Listing 7.13 NSXMLParser methods

Listing 7.14 NSXMLParser methods

Listing 7.15 Initializing the Parser
Download from Wow! eBook <www.wowebook.com>

162 CHAPTER 7 Protocols
Parser_Project[57815:207] Started Element Author
Parser_Project[57815:207] Started Element name
Parser_Project[57815:207] Found an element named: name with a value of:

Collin Ruffenach
Parser_Project[57815:207] Started Element age
Parser_Project[57815:207] Found an element named: age with a value of: 23
Parser_Project[57815:207] Started Element gender
Parser_Project[57815:207] Found an element named: gender with a value of:

male
Parser_Project[57815:207] Started Element Books
Parser_Project[57815:207] Started Element Book
Parser_Project[57815:207] Started Element title
Parser_Project[57815:207] Found an element named: title with a value of:

Objective C for the iPhone
Parser_Project[57815:207] Started Element year
Parser_Project[57815:207] Found an element named: year with a value of: 2010
Parser_Project[57815:207] Started Element level
Parser_Project[57815:207] Found an element named: level with a value of:

intermediate
Parser_Project[57815:207] Found an element named: Book with a value of:

intermediate
Parser_Project[57815:207] Found an element named: Books with a value of:

intermediate
Parser_Project[57815:207] Found an element named: Author with a value of:

intermediate

You can see that, using the NSXMLParser delegate methods, you successfully parsed all
of the information in your XML file. From here you could create Objective-C objects
to represent the XML and use it throughout your application. XML processing is a vital
part of most applications that get their content from some kind of web source: Twitter
clients, News clients, or YouTube.

7.4 Summary
Protocols are regularly seen when developing using UIKit and Core Foundation for
the iPhone. They’re one of the foundation design decisions for most of the classes
Apple provides. With attentive coding, protocols can make your application efficient
and error proof.

 We looked at defining your own protocol for a variety of reasons, conforming to
protocols, and some specific popular protocols from the iPhone SDK. These protocols
are also great to use when creating code you want to reuse. Through a proper under-
standing and implementation of the protocol design method, you can ensure a well-
designed application.

 In chapter 8, we look at how you can define your classes to have dynamic typing.
Dynamic typing is an important principle to apply when considering memory for your
applications. It’s used in many protocol implementations, and a good grasp of
dynamic styping will further your understanding of protocol design.

Listing 7.16 Parser output
Download from Wow! eBook <www.wowebook.com>

Dynamic typing and
runtime type information
Objective-C is a class-based object system in which each object is an instance of a
particular class. At runtime, each object is aware of its class by way of a pointer
named isa that points to a Class object (take a look in the debugger window the
next time you’re stuck at a breakpoint, and you should see isa listed in the variable
window). The class object describes the data requirements for an instance of the
class and its behavior in the form of the instance methods it implements.

 Objective-C is also an inherently dynamic environment. As many decisions
as possible are delayed until runtime rather than made during compile time.
For example:

■ Objects are dynamically allocated (via class methods such as alloc).
■ Objects are dynamically typed. Any object can be referenced by a variable of

type id. The exact class of the object and therefore the particular methods it
provides aren’t determined until runtime, but this delay doesn’t stop code
that sends messages to those objects from being written.

This chapter covers
■ Static versus dynamic typing
■ Messaging
■ Runtime type information and implementation
163

Download from Wow! eBook <www.wowebook.com>

164 CHAPTER 8 Dynamic typing and runtime type information
■ Messages are dynamically bound to methods. A runtime procedure matches the
method selector in a message with a particular method implementation that
“belongs to” the receiver object. The mapping can change or be modified
dynamically to change the behavior of the application and to introduce aspects
such as logging without recompilation.

These features give object-oriented programs a great deal of flexibility and power, but
there’s a price to pay. To permit better compile-time type checking and to make code
more self-documenting, you can also choose to more statically type your use of objects
in Objective-C.

8.1 Static vs. dynamic typing
If you declare a variable with a particular object type, the variable can only hold an
object of the specified type or one of its subclasses. The Objective-C compiler also
issues warning if, from the static type information available to it, it appears that an
object assigned to that variable won’t be able to respond to a particular message. As
an example, considering the following code snippet:

CTRentalProperty *house = ...;
[house setAddress:@"13 Adamson Crescent"];
[house setFlag:YES];

Because the variable is statically typed to be of type CTRentalProperty, the compiler
can verify that it should respond to the setAddress: message. On checking the
CTRentalProperty class, however, the compiler will issue a warning that the class may
not respond to the setFlag: message, because according to the static type informa-
tion available to the compiler, the CTRentalProperty class doesn’t provide such a mes-
sage. Static type checks such as the one demonstrated here can be a helpful
development aid because they enable errors such as typos or incorrect capitalization
to be detected at compile time rather than runtime.

 Static typing contrasts with the dynamic typing available when the id datatype is
utilized, as in the following code sample:

id house = ...;
[house setAddress:@"13 Adamson Crescent"];
[house setFlag:YES];

Statically typed objects have the same internal data structure as objects declared to be
ids. The type doesn’t affect the object. It affects only the amount of information given
to the compiler about the object and the amount of information available to those
reading the source code.

8.1.1 Making assumptions about the runtime type

It’s possible to have your cake and eat it too. By this we mean that you can have some
of the benefits of the flexibility associated with dynamic typing while having greater
compile-time checks approaching the level of those offered by fully static typing.
Download from Wow! eBook <www.wowebook.com>

165Static vs. dynamic typing
 If you type a variable or return value as an id on either side of an assignment oper-
ator, no type checking is performed. A statically typed object can be freely assigned to
an id, or an id to a statically typed object. For example, no type checking is per-
formed by the compiler in either of the following two variable assignments:

CTRentalProperty *myProperty1 = [someArray objectAtIndex:3];
id myProperty1 = [[CTRentalProperty alloc] initWithRandomData];

In the first assignment, NSArray’s objectAtIndex: message is typed to return an id
(because an array can hold an object of any type). This means the compiler is happy
to allow the value to be assigned to a variable of type CTRentalProperty. No error will
occur, even if the array is storing an object of an incompatible type (such as NSNumber
or NSString) at array index 3. Those kinds of errors will be detected only when you
attempt to access the object later.

 For similar reasons, because methods such as alloc and init return values of type
id, the compiler doesn’t ensure that a compatible object is assigned to a statically
typed variable. The following code is error prone and will compile without a warning:

CTRentalProperty *house = [NSArray array];

Obviously an NSArray instance isn’t a valid subclass of the CTRentalProperty class,
and apart from NSObject, they share no common inheritance.

 A middle ground between the fully dynamic nature of the id datatype and a fully
static variable declaration is to constrain an id variable to any object that implements
a specific protocol. This can be done by appending the protocol name to the id data-
type via a pair of angle brackets, as follows:

id<SomeProtocol> house;

In this variable declaration, house can store an instance of any class, but the class must
implement the SomeProtocol protocol. If you try to assign an object to a house vari-
able that doesn’t implement the SomeProtocol protocol, the Objective-C compiler
will warn during compilation that the object doesn’t appear to be a suitable match.

 A variable or argument datatype generally can be declared in three different ways:

id house;
id<SomeProtocol> house;
CTRentalProperty *house;

All three statements provide identical behavior at runtime, but the additional infor-
mation progressively provided to the compiler enables the compiler to warn the pro-
grammer of type incompatibilities.

 It’s unusual to need to declare an object of type id. Generally, you’ll know the type
of object you’re expecting, or at least expect it to provide a certain set of functionality,
best described by an id<Protocol> style data type.
Download from Wow! eBook <www.wowebook.com>

166 CHAPTER 8 Dynamic typing and runtime type information
8.2 Dynamic binding
Objective-C, like Smalltalk, can use dynamic typing; an object can be sent a message
that isn’t specified in its interface. Flexibility is increased because an object can “cap-
ture” a message and pass the message along to a different object that can respond to
the message appropriately. This behavior is known as message forwarding or delegation.
Alternatively, an error handler can be used in case the message can’t be forwarded. If
an object doesn’t forward a message, respond to it, or handle an error, the message is
silently discarded.

8.3 How messaging works
A lot of introductory texts about Objective-C make a big deal that messages are sent to
objects rather than methods being invoked on an object, but what does this really mean,
and how does the distinction affect how you go about developing your applications?

 If an Objective-C compiler sees a message expression such as the following

[myRentalProperty setAddress:@"13 Adamson Crescent"];

it doesn’t determine which method in the CTRentalProperty class implements the
setAddress: message and hardcode a call to it. Instead, the Objective-C compiler
converts the message expression into a call to a messaging function called
objc_msgSend. This C-style function takes the receiver (object to receive the message)
and the name of the message (the method selector) as its first two arguments fol-
lowed, conceptually at least, by the rest of the arguments specified in the message
send, as follows:

objc_msgSend(
 myRentalProperty,
 @selector(setAddress:),
 @"13 Adamson Crescent"
);

The message send function does everything required to implement dynamic binding. It
uses the message name and receiver object to determine the correct method implemen-
tation to invoke and then calls it before returning the value as its own return value.

Statically typed objects are still dynamically bound
Messages sent to statically typed objects are dynamically bound, just as objects
typed id are. The exact type of a statically typed receiver is still determined at
runtime as part of the messaging process. Here is a display message sent to
thisObject:

Rectangle *thisObject = [[Square alloc] init];
[thisObject display];

This code performs the version of the method defined in the Square class, not the
one in its Rectangle superclass.
Download from Wow! eBook <www.wowebook.com>

167How messaging works
Behind the scenes, an Objective-C method ends up being transformed and compiled
as a straight C function, designed to be invoked via objc_msgSend. A method like this

- (void)setAddress:(NSString *)newAddress { ... }

can be imagined to be translated into a C function similar to the following:

void CTRentalProperty_setAddress(
 CTRentalProperty *self,
 SEL _cmd,
 NSString *str
)
{
 ...
}

The C-style function isn’t given a name because it can’t be accessed directly, so it isn’t
made visible to the linker. The C function expects two arguments in addition to those
explicitly declared in the Objective-C method declaration. We previously discussed the
self parameter, which is implicitly sent in a message send to indicate the object that
received the message; the lesser-known implicit parameter is named _cmd. This param-
eter holds the selector (and hence name) of the message that was sent in order to
invoke this method implementation. Later in this chapter we discuss a couple of tech-
niques whereby a single method implementation can in fact respond to more than
one unique method selector.

8.3.1 Methods, selectors, and implementations
In the previous section, a number of new concepts were introduced: method, selector,
implementation, message, and message send. What exactly are these terms, and how
do they relate to source code?

■ Method—A piece of code associated with a class and given a particular name,
such as (void)setAddress:(NSString *)newValue { ... }.

■ Selector—An efficient way to present the name of a message at runtime. Repre-
sented by the SEL data type.

■ Implementation—A pointer to the machine code that implements a method.
Represented by the IMP data type.

Messages are slower than function calls
Message sending is somewhat slower than calling a function directly. Typically this
overhead is insignificant compared to the amount of work performed in the method.
The overhead is also reduced by some internal tricks in the implementation of
objc_msgSend, which manages to reduce the amount of repetitive work performed in
scenarios such as a message being sent to all objects in an array.

In the rare case that method sending causes an undue performance hit, it’s possible
to bypass several aspects of Objective-C’s dynamism. Bypassing should be per-
formed, however, only after analysis using tools such as Instruments.
Download from Wow! eBook <www.wowebook.com>

168 CHAPTER 8 Dynamic typing and runtime type information
■ Message—A message selector and set of arguments to be sent to an object, such
as send "setAddress:" and "13 Adamson Crescent" to object 0x12345678.

■ Message send—The process of taking a message, determining the appropriate
method implementation to call, and invoking it.

A method selector is a C string that has been registered with the Objective-C runtime.
Selectors generated by the compiler are automatically mapped by the runtime when
the class is loaded.

 For efficiency, the full C string name isn’t used for method selectors in compiled
code. Instead, the compiler stores each method selector name in a table and then
pairs each name with a unique identifier that represents the method at runtime.

 A method selector is represented in source code by the SEL data type. In source
code you refer to a selector using the @selector(...) directive. Internally the com-
piler looks up the specified method name and replaces it with the more efficient selec-
tor value. As an example, you could determine the selector for a message named
setAddress: as follows:

SEL selSetAddress = @selector(setAddress:);

Although it’s more efficient to determine method selectors at compile time with the
@selector directive, you may encounter the need to convert a string containing a
message name into a selector. For this purpose, there is a function called NSSelector-
FromString:

SEL selSetAddress = NSSelectorFromString(@"setAddress:");

Because the selector is specified as a string, it can be dynamically generated or even
specified by the user.

 Compiled selectors identify method names, not method implementations. The dis-
play method for one class, for example, has the same selector as display methods
defined in other classes. This is essential for polymorphism and dynamic binding; it
lets you send the same message to receivers belonging to different classes. If there
were one selector per method implementation, a message would be no different from
a direct function call.

 Given a method selector, it’s also possible to convert it back into a text string. This
is a handy debugging tip to remember. Because every Objective-C method is passed a
hidden selector argument named _cmd, it’s possible to determine the name of mes-
sage that invoked the method, as follows:

- (void)setAddress:(NSString *)newAddress {
 NSLog(@"We are within the %@ method", NSStringFromSelector(_cmd));
 ...
}

The NSStringFromSelector method takes a selector and returns its string representa-
tion, resulting in the following log message:

We are within the setAddress: method
Download from Wow! eBook <www.wowebook.com>

169How messaging works
8.3.2 Handling unknown selectors

Because method binding occurs at runtime, it’s possible for an object to receive a mes-
sage to which it doesn’t know how to respond. This situation is an error, but before
announcing the error, the runtime system gives the receiving object a second chance to
handle the message. The process is commonly called message forwarding and can be used
to easily implement certain design patterns such as the Decorator or Proxy patterns.

 When Objective-C can’t determine via class metadata which method to invoke for a
message selector, it first checks to see if the class wants the entire message sent
unchanged to another object. It attempts to invoke the forwardingTargetForSelector:
message, which could be implemented by a class as follows:

- (id)forwardingTargetForSelector:(SEL)sel {
 return anotherObject;
}

With this implementation, any unknown message sent to the object is redirected, or
forwarded, to the object represented by anotherObject. This makes the original
object appear from the outside as though it combined the features of both objects.

 Obviously the implementation of forwardingTargetForSelector: could become
more complex. As an example, you could dynamically return different objects on the
basis of the particular method selector passed in as an argument.

forwardingTargetForSelector: is commonly called the “fast-forwarding path,”
because it quickly and easily causes a message to be forwarded to another object without
requiring too much code to be developed (or executed during runtime). It does have
limitations, however: for instance, it isn’t possible to “rewrite” a message send to redirect
a message addressed to one selector to be processed by another; nor is it possible to
“drop” a message and ignore it. Fortunately, a “normal forwarding path” goes into
action whenever the fast path doesn’t provide a suitable implementation for a missing
method selector, and this feature provides more flexibility in how a message is handled.

 If forwardingTargetForSelector: isn’t implemented or fails to find a suitable tar-
get object (it returns nil), the runtime, before announcing an error, sends the object
a forwardInvocation: message with an NSInvocation object as its sole argument.

 An NSInvocation object encapsulates the message being sent. It contains details
about the target, selector, and all arguments specified in a message send and allows
full control over the return value.

 Because your implementation of forwardInvocation: has full access to the
NSInvocation object, it can inspect the selector and arguments, modify them, and poten-
tially replace them, leading to a wide range of possibilities for altering the behavior.

NSObject’s default implementation of forwardInvocation
Every object that inherits from NSObject has a default implementation of the for-
wardInvocation: message. But NSObject’s version of the method invokes
doesNotRecognizeSelector:, which logs an error message.
Download from Wow! eBook <www.wowebook.com>

170 CHAPTER 8 Dynamic typing and runtime type information
As an example, the following implementation of forwardInvocation: manages to
rewrite the name of a message:

- (void)forwardInvocation:(NSInvocation *)anInvocation {
 if (anInvocation.selector == @selector(fancyAddress:)) {
 anInvocation.selector = @selector(address:);
 [anInvocation invoke];
 } else {
 [super forwardInvocation:anInvocation];
 }
}

The if statement detects if the message being sent to the object uses the fancy-
Address: selector. If it does, the selector is replaced with address: and the message is
resent (or invoked):

NSString *addr = [myRentalProperty fancyAddress];

This message would be equivalent to the following:

NSString *addr = [myRentalProperty address];

One interesting thing to note when using NSInvocation is that you send the object an
invoke message in order for it to dispatch the message send it encapsulates, but you
don’t get the message’s return value. There’s no return statement in the forward-
Invocation: method implementation, yet it does return a value to the caller. While
using NSInvocation, you must instead query the NSInvocation’s returnValue prop-
erty, something the caller of forwardInvocation: does behind the scenes.

 A forwardInvocation: method can redirect unrecognized messages, delivering
them to alternative receivers, or it can translate one message into another or “swallow”
some messages so there’s no response and no error.

8.3.3 Sending a message to nil

How is it possible for a message to be swallowed with no resulting response or error?
And what would the return value be in the case of messages that are expected to
return a value? For answers, you need to look at another situation, that of sending a
message with nil as the receiver object.

 In C++ or other object-oriented languages, such as Java or C#, attempting to
invoke a method on a NULL object reference is an error. In Objective-C parlance, it
would be like attempting to send a message with a nil receiver. Unlike in other lan-
guages, though, in Objective-C this is commonly not an error and is completely safe
and natural to perform. As an example, a C# developer moving to Objective-C may
initially write the following source code:

NSString *someString = ...;

int numberOfCharacters = 0;
if (someString != nil)
 numberOfCharacters = [someString length];
Download from Wow! eBook <www.wowebook.com>

171Runtime type information
The if statement is designed to avoid the length method call when someString is
nil, indicating no string is available:

NSString *someString = ...;

int numberOfCharacters = [someString length];

If a message is sent to nil, or if a target object decides to completely ignore a message,
the message in most cases will return the equivalent of zero. This means the code snip-
pet just outlined would set numberOfCharacters to zero when you attempted to send
the length message to the someString object.

8.4 Runtime type information
Objective-C provides rich type information at runtime about the objects and classes
that live in your application. At its simplest, you can query an object to determine its
type by sending it an isKindOfClass: message, as shown here:

id someObject = ...;
if ([someObject isKindOfClass:[CTRentalProperty class]]) {
 NSLog(@"This object is a kind of CTRentalProperty (or a subclass)");
}

The isKindOfClass: message returns true if the object is an instance of the specified
class or is compatible with it (the object is of a subclass).

8.4.1 Determining if a message will respond to a message

If an object receives a message and determines it can’t process it, an error typically
results. In some scenarios, especially with protocols with @optional messages, it can
be helpful to determine if a particular message send will successfully execute or result
in an error.

 Therefore, the NSObject class provides a message named respondsToSelector:
that can be used to determine if an object will respond to (if it’ll handle or process) a
given selector. You can use the respondsToSelector: message as follows:

if ([anObject respondsToSelector:@selector(setAddress:)])
 [anObject setAddress:@"13 Adamson Crescent"];
else
 NSLog(@"This object does not respond to the setAddress: selector");

The respondsToSelector: test is especially important when sending messages to
objects that you don’t have control over at compile time, particularly if the object is
typed as id. For example, if you write code that sends a message to an object repre-
sented by a variable that others can set, you should make sure the receiver implements
a method that can respond to the message.

8.4.2 Sending a message generated at runtime

Sometimes you need to send a message to an object but don’t know the name or set of
arguments that must be included until runtime. NSObject comes to the rescue again by
providing messages named performSelector:, performSelector:withObject:, and
Download from Wow! eBook <www.wowebook.com>

172 CHAPTER 8 Dynamic typing and runtime type information
performSelector:withObject:withObject:. All of these methods take a selector indi-
cating the message to send and map directly to the messaging function. For example:

[house performSelector:@selector(setAddress:)
 withObject:@"13 Adamson Crescent"];

This line is equivalent to

[house setAddress:@"13 Adamson Crescent"];

The power of these methods comes from the fact that you can vary the message being
sent at runtime just as easily as it’s possible to vary the object that receives the message. A
variable can be used in place of the method selector, unlike in a traditional message
send, which accepts only a constant in this location. In other words, the following is valid:

id obj = get_object_from_somewhere();
SEL msg = get_selector_from_somewhere();
id argument = get_argument_from_somewhere();
[obj performSelector:msg withObject:argument];

But this isn’t valid:

id obj = get_object_from_somewhere();
SEL msg = get_selector_from_somewhere();
id argument = get_argument_from_somewhere();
[obj msg:argument];

In this example, the receiver of the message (obj) is chosen at runtime, and the mes-
sage it’s sent is also determined at runtime. This leads to a lot of flexibility in the
design of an application; with functions such as NSSelectorFromString, discussed
previously, it’s even possible to use selectors that exist only at runtime.

The Target-Action design pattern
The UIKit framework makes good use of the ability to programmatically vary both the
receiver and message sent via a message send. UIView objects such as UISlider
and UIButton interpret events from hardware such as the touch screen or Bluetooth-
connected keyboard and convert these events into application-specific actions.

For instance, when the user taps on a button, a UIButton object sends a message
instructing the application that it should do something in response to the button press.
A UIButton object is initialized with details on which message to send and where to
send it. This is a common design pattern in UIKit called the Target-Action design pattern.

As an example, you could request that a button send the buttonPressed: message
to the myObject object when the user lifts their finger off the screen with the following
initialization:

[btn addTarget:myObject
 action:@selector(buttonPressed:)
 forControlEvents:UIControlEventTouchUpInside];

The UIButton class sends the message using NSObject’s performSelector: with-
Object: method, just as we discussed in this section. If Objective-C didn’t allow the
message name or target to be varied programmatically, UIButton objects would all have
to send the same message, and the name would be frozen in UIButton’s source code.
Download from Wow! eBook <www.wowebook.com>

173Runtime type information
8.4.3 Adding new methods to a class at runtime

The Objective-C statement [CTRentalProperty class] returns a Class object that
represents the CTRentalProperty class. With Objective-C’s dynamic features, it’s possi-
ble to add or remove methods, protocols, and properties from a class by interacting
with this object at runtime.

 We demonstrate how to dynamically add a new method implementation to an
existing class by responding to the class’s resolveInstanceMethod: message. This is
another method invoked on an object when a message sent to it doesn’t find a match-
ing method implementation.

 At the lowest level of the Objective-C runtime, an Objective-C method is a C function
that takes, at a minimum, two additional arguments named self and _cmd (as discussed
previously). Once a suitable function is developed, it can be registered as a method of
an Objective-C class using a function called class_addMethod:. Add the following code
to CTRentalProperty.m in the current version of the Rental Manager application:

void aSimpleDynamicMethodIMP(id self, SEL _cmd) {
 NSLog(@"You called a method named %@", NSStringFromSelector(_cmd));
}

+ (BOOL)resolveInstanceMethod:(SEL)sel {
 if (sel == @selector(aSimpleDynamicMethod)) {
 NSLog(@"Adding a method named %@ to class %@",
 NSStringFromSelector(sel),
 NSStringFromClass([self class]));
 class_addMethod([self class],
 sel,
 (IMP)aSimpleDynamicMethodIMP,
 "v@:");
 return YES;
 }

 return [super resolveInstanceMethod:sel];
}

In the current version of the Rental Manager application, you can then add the
following calls to a convenient location, such as the RootViewController’s viewDid-
Load method:

id house = [CTRentalProperty rentalPropertyOfType:TownHouse
 rentingFor:420.0f
 atAddress:@"13 Waverly Crescent, Sumner"];
[house aSimpleDynamicMethod];
[house aSimpleDynamicMethod];
[house aSimpleDynamicMethod];
[house aSimpleDynamicMethod];
[house aSimpleDynamicMethod];

When this code is executed, you should notice that the debug console lists the follow-
ing content:

Adding a method named aSimpleDynamicMethod to class CTRentalProperty
You called a method named aSimpleDynamicMethod
Download from Wow! eBook <www.wowebook.com>

174 CHAPTER 8 Dynamic typing and runtime type information
You called a method named aSimpleDynamicMethod
You called a method named aSimpleDynamicMethod
You called a method named aSimpleDynamicMethod
You called a method named aSimpleDynamicMethod

The five messages that sent the aSimpleDynamicMethod message to the CTRental-
Property object all correctly invoked the aSimpleDynamicMethod function, as evi-
denced by the results of the NSLog call it contains.

 An interesting point to notice is the first NSLog message, indicating that a method
named aSimpleDynamicMethod was added to the CTRentalProperty class. This
method results because the first time the house object receives the aSimpleDynamic-
Method message, it detects that the object doesn’t respond to this selector. Therefore,
the Objective-C runtime automatically invokes the object’s resolveInstanceMethod:
method to see if it’s possible to correct this problem. In the implementation of
resolveInstanceMethod:, the Objective-C runtime function class_addMethod

dynamically adds a method to the class and returns YES, indicating that you’ve
resolved the missing method. The four future message sends, which send the
aSimpleDynamicMethod selector, don’t all produce equivalent log messages, because
when these copies of the message are received, the Objective-C runtime finds that the
object does have a method implementation for the aSimpleDynamicMethod selector,
and hence it doesn’t need to dynamically attempt to resolve the situation.

 Forwarding methods and dynamic method resolution are largely orthogonal. A
class has the opportunity to dynamically resolve a method before the forwarding
mechanism kicks in. If resolveInstanceMethod: returns YES, message forwarding
isn’t actioned.

8.5 Practical uses of runtime type introspection
The iOS development platform has matured with multiple versions of the iPhone
operating system and variants for the iPad all exhibiting slightly different capabilities
and restrictions.

The dangerous practice of method swizzling
Because you can add new methods at runtime, you might be interested to learn that
you can also replace an existing method with a new implementation at runtime, even
without access to source code for the class in question.

The Objective-C runtime function method_exchangeImplementations accepts two
methods and swaps them, so that calling one causes the implementation of the other
one to be invoked.

This technique is commonly called method swizzling, but it’s a particularly dangerous
practice that usually indicates you’re doing something wrong or something not
intended by the original creators of the object in question. It’s dangerous because it
relies on so many undocumented or brittle aspects of a class’s implementation.
Download from Wow! eBook <www.wowebook.com>

175Practical uses of runtime type introspection
 It’s now common to want to develop an application that can use features specific to
a newer version of the iOS operating system yet still be able to run the application on a
device with an older version of the operating system that doesn’t provide the feature.
Using a number of techniques discussed in this chapter, this goal can often be achieved.

 The first technique to be aware of is the macro UI_USER_INTERFACE_IDIOM, which
can be used as follows:

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 ... this code will only execute if the device is an iPad ...
}

The UI_USER_INTERFACE_IDIOM macro can be used to determine if the current device
is an iPad or iPhone and to conditionally change the behavior of an application to
make sure the look and feel integrates well with the slightly different usage model of
both platforms.

 In other cases, a class may exist in multiple versions of the iOS software develop-
ment kit (SDK), yet have new properties or methods added to it. In these scenarios,
you can use the respondsToSelector: message to determine if the device the applica-
tion is currently running on provides the specified property or method.

 As an example, the version of iOS that introduced multitasking capabilities intro-
duced a property named isMultitaskingSupported on the UIDevice class to deter-
mine if the current device supports multitasking (devices such as the iPhone 3G can’t
multitask even though they can run the latest version of iOS). If, however, an iPhone
owner hasn’t updated the device to the newest iOS version, it’s possible that attempt-
ing to access this property will cause an exception due to the class not responding to
the selector. The workaround is as follows:

UIDevice *device = [UIDevice currentDevice];
BOOL backgroundSupported = NO;
if ([device respondsToSelector:@selector(isMultitaskingSupported)])
 backgroundSupported = device.multitaskingSupported;

In this scenario, the device is assumed not to support background processing, but if
the UIDevice object indicates it responds to the isMultitaskingSupported property,
you query it for the final answer.

 In cases in which an entire class has been introduced in a new version of iOS, you can
check for the availability of the class by using a code sample similar to the following:

if ([UIPrintInteractionController class]) {
 ... make use of the UIPrintInteractionController class ...
} else {
 ... do something if the UIPrintInteractionController isn't available ...
}

If the UIPrintInteractionController (or any other class placed in a similar code
snippet) isn’t available, the class message responds with nil, which evaluates to false.
Otherwise, it returns a non-nil value and proceeds to execute the code in the first
block of the if statement.
Download from Wow! eBook <www.wowebook.com>

176 CHAPTER 8 Dynamic typing and runtime type information
 This process works only in applications compiled using version 4.2 of the iOS SDK
(or later), because it requires a feature called weak-linking support. With code compiled
with previous versions of the SDK, an application would fail to load on devices without
the UIPrintInteractionController class, because part of the application startup
process would be verification that all Objective-C classes referenced are available.
With the weak-linking support in the iOS SDK4.2, it isn’t an error to run an application
on a device that’s missing a required class, but it does mean the application developer
can’t rely on the application startup checks verifying everything is available in order
for the application to run. Instead, they must implement runtime checks for any fea-
ture or class that may not be present across all devices.

 The iOS SDK enables a similar feature with C-based APIs. For example, the iOS 3.2 SDK
introduced the CoreText.Framework. If you want to use its CTFontCreateWithName()
function in code that must also run on pre-iOS 3.2 devices, you must check for the func-
tion’s availability before running the application. This can be achieved as follows:

if (CTFontCreateWithName != NULL)
 CTFontFontRef font = CTFontCreateWithName(@"Marker Felt", 14.0, NULL);

Because of the weak-linking feature of the iOS SDK, if an imported C function isn’t
available, the function pointer is set to an address of NULL. This means you can check
whether or not a function exists by checking whether or not the function pointer is
NULL. Weak linking is unlike a more traditional dynamic-linking scenario in which a
missing imported function would result in the application refusing to load at all.

8.6 Summary
Objective-C is a mixture of both strongly statically and dynamically typed aspects. Its
C-based origins are statically typed and bound, while the Objective-C object-oriented
features are, at their heart, very dynamic and perform late, or dynamic, binding of
message selectors to method implementations.

 The ease of class introspection and modification at runtime enables a number of
interesting programming techniques to be implemented with ease. Message forward-
ing in particular enables the creation of proxy or delay loading objects to be easily
developed in a maintainable way that doesn’t require modifications to the proxy class
each time the proxied class is updated to include a new method or property. In the
next chapter, we dive into memory management issues in Objective-C.
Download from Wow! eBook <www.wowebook.com>

Memory management
Many developers new to Objective-C find memory management one of the most
difficult concepts to wrap their heads around. This is especially true for those com-
ing from an environment such as Java, .NET, ActiveScript, or Ruby, where memory
management is a much more automated, behind-the-scenes process.

 In Objective-C all objects are created on the heap (unlike languages such as
C++, which also allow objects to be placed on the stack). This means objects con-
tinue to consume memory until they’re explicitly deallocated. They aren’t cleaned
up automatically when the code that uses them goes out of scope.

 This feature has important connotations for how you program. If your applica-
tion loses all references (pointers) to an object but doesn’t deallocate it first, the

This chapter covers
■ Object lifetime management
■ Manual memory management via retain and

release messages
■ Autorelease pools and the autorelease

message
■ Object ownership rules
■ Memory management rules for custom classes
177

Download from Wow! eBook <www.wowebook.com>

178 CHAPTER 9 Memory management
memory it consumes is wasted. This waste is typically called a memory leak, and if your
application has too many memory leaks, it becomes sluggish or, in worst-case scenar-
ios, crashes due to running out of available memory. On the other hand, if you deallo-
cate an object too early and then reference it again, your application could crash or
exhibit incorrect and random behavior.

 Memory management isn’t exactly tedious manual work, however. The NSObject
base class provides support for determining how many other objects are interested in
using a particular object and automatically deallocating the object if this count ever
returns to zero. The difference between Objective-C and languages such as Java is that
this support isn’t automatic. You must adjust the count yourself as parts of your appli-
cation use or lose interest in an object.

 Quite a few of the problems encountered by novice Objective-C developers can be
traced to incorrectly adjusting this count. Let’s begin our coverage of Objective-C
memory management by looking at exactly what this count represents.

9.1 Object ownership
Although most Objective-C memory management tutorials start off discussing the pur-
pose of NSObject’s retain and release messages, it’s important to step back and con-
sider the general principles at play. The memory model in Objective-C is based on the
abstract concept of object ownership—it just happens that the current implementa-
tion achieves these concepts via the use of reference counting.

In Objective-C an owner of an object is simply something (a piece of code or another
object) that has explicitly said the equivalent of, “I need this object; please make sure it
doesn’t get deallocated.” This could be the code that created the object, or it could be
another section of code that receives the object and requires it services. This concept is
illustrated by figure 9.1 in which a rental property object has three “owners”: an object
representing the property owner, another representing the real estate agent attempt-
ing to sell the property, and a general contractor employed to repaint the exterior.

 Each object in figure 9.1 has a vested interest in keeping the rental property object
from being deallocated. As an owner of an object, each is responsible for informing
the object when its services are no longer required. When an object, such as the rental
property in figure 9.1, has no active owners (nobody needs it anymore), it can be auto-
matically deallocated by the Objective-C runtime.

Automatic garbage collection is available on some Objective-C platforms
Objective-C 2.0 introduced an optional garbage collection feature. You won’t see an
iPhone book discuss this in depth, though, because it’s currently unavailable when
targeting the iPhone or iPad platforms. The garbage collection features can be utilized
only in applications designed to run on desktop Mac OS X devices, which makes dis-
cussion of how it works a rather moot point in an iPhone-focused book.
Download from Wow! eBook <www.wowebook.com>

179Reference counting
In general, it’s important to own an object before interacting with it. But it’s possible
to use an object without becoming its owner. In such cases it’s important to ensure
that something else maintains ownership of the object for the entire span of your
interaction with it so it doesn’t get deallocated before you’re done using it.

9.2 Reference counting
Objective-C uses reference counting to implement the concept of object ownership.
Every object keeps an internal count of how many times it has been owned (com-
monly called the object’s retain count). Each time something puts its hand up and says,
“I need this object,” the retain count is incremented, and each time something says it
no longer needs an object, the count is decremented.

 If the counter is decremented back to zero, the object has no current owner and
hence can be deallocated by the runtime.

Reference counting isn’t another term for garbage collection
Although reference counting ensures objects that are in use aren’t deallocated and
automatically deallocates objects once they become unwanted, it isn’t a form of auto-
matic garbage collection.

In a garbage collection–based environment, a separate thread runs periodically in the
background to determine which objects have become inaccessible (have no owners).
This thread deallocates any object it comes across that can’t be accessed by the
application’s source code. The programmer doesn’t need to do anything manually to
ensure this occurs and doesn’t need to carefully maintain each object’s retain count.

On the other hand, in a reference counting–based environment, the programmer
must be careful to manually increment or decrement each object’s retain count as
code becomes interested or disinterested in the services of an object. Any mistake
by the developer in handling the reference count for an object could lead to fatal
application errors.

Figure 9.1 An example of an object having more than one owner. Ownership of (and
responsibility for) the CTRentalProperty object representing 4 Everglade Ridge is
shared among three instance variables.
Download from Wow! eBook <www.wowebook.com>

180 CHAPTER 9 Memory management
The advantages of a reference counting–based memory management scheme include
the following:

■ Minimal overhead—Relatively little runtime support is required to implement
reference counting. This helps increase performance and reduce power con-
sumption, both of which are important on a mobile device.

■ Deterministic behavior—Because the developers are responsible for allocating
and releasing objects, they also have explicit control over exactly when and
where these events occur.

The potential disadvantages include the following:

■ Control implies responsibility—There’s a greater risk of the developer making
a mistake that will lead to memory leaks or random application crashes and
malfunctions.

■ Additional overhead—Including the developer in the memory management pro-
cess means there’s yet another item for developers to consider while developing
their applications rather than focusing on the core task of what makes their
application unique.

Now that you’re familiar with the concepts involved in reference counting–based
memory management, let’s look at how it’s implemented in Objective-C via the retain,
release, and autorelease messages and how to avoid memory leaks or the dreaded
"Program received signal: "EXC_BAD_ACCESS"." exception.

9.2.1 Releasing an object
When an owner of an object is finished using the object, it must tell the object that it
wants to give up ownership. This process reduces the internal reference count of the
object by one and is typically called releasing an object because the operation is per-
formed by sending the object a message called release, as demonstrated here:

NSMutableString *msg =
 [[NSMutableString alloc] initWithString:@"Hello, world!"];
NSLog(@"The message is: %@", msg);
[msg release];

Because this code snippet creates the NSMutableString object (via the alloc mes-
sage), it inherently owns the string and must explicitly give up ownership when the
object becomes excess to requirements. This is achieved by the release message sent
to the object on the last line.

 In this example, the release message also indirectly causes the Objective-C run-
time to send the object a dealloc message to destroy the object. This occurs because
the release message is releasing the last (and only) owner of the object. The object’s
retain count returns to zero when its last owner is released. If the object has more
than one owner, a call to release has no visible effect on the application, other than
to reduce the retain count, leaving the object with one less owner.

 It’s important to note that once ownership of an object is given up, it’s generally
not safe to refer to or utilize that object again from the current section of code, even if
Download from Wow! eBook <www.wowebook.com>

181Reference counting
the object is also owned, or kept alive, by another object. For example, the following
code snippet, which simply rearranges some of the lines from the previous code snip-
pet, has a major flaw:

NSMutableString *msg =
 [[NSMutableString alloc] initWithString:@"Hello, world!"];
[msg release];
NSLog(@"The message '%@' has %d characters", msg, [msg length]);

Because the third line releases ownership of the NSMutableString object, you can’t
utilize the object on the last line; the object will have become deallocated. Worse yet,
if you execute this code snippet, it may occasionally work! Yet on another run of the
application, it may crash or lead to an incorrect message being logged to the debug
console. (You’ll see in chapter 14 some tools that can help detect such errors.) Such
errors typically don’t appear as straightforward as demonstrated in the example code
snippet and can be rather tricky to find.

 One convention to make it easier to detect if a variable is referring to a usable
object is to assign the value nil to a variable as soon as you release ownership. This is
demonstrated next:

NSMutableString *msg =
 [[NSMutableString alloc] initWithString:@"Hello, world!"];
[msg release];
msg = nil;
NSLog(@"The message '%@' has %d characters", msg, [msg length]);

Assigning nil to a variable makes it easier to determine if it’s currently pointing to a
valid object. As you may remember from previous chapters, nil indicates the absence
of a value and hence can never be a valid pointer value. For reasons covered in chap-
ter 8, the last line is also perfectly safe to execute even though it attempts to send the
length message to nil. Unlike in other languages, in which attempting to access or
refer a variable set to nil would crash or generate a NULL reference exception, in
Objective-C this construct is perfectly valid and has predictable results.

9.2.2 Retaining an object
The opposite of releasing ownership of an object is to claim ownership. In Objective-C
this is performed by sending the object a retain message. This message essentially says, “I
would like to make use of this object; please don’t deallocate it until I have completed
using it.” Internally this causes the object to simply increment its retain count. This means
it’s important to match calls to retain with an equal number of calls to release.

Be careful with your bookkeeping
If you don’t balance the number of retain and release messages sent to an object,
the object will either be deallocated too early (in the case of too many release mes-
sages) or not be released at all (in the case of too few releases or additional retains).
With manual reference counting, you as the developer must keep track of ownership
requirements of the objects you use and when they need to be retained or released.
Download from Wow! eBook <www.wowebook.com>

182 CHAPTER 9 Memory management
As an example, the following listing explicitly sends the msg object two additional
retain messages, so three release messages must be sent in order to ensure the object
eventually returns to a retain count of zero.

NSMutableString *msg =
 [[NSMutableString alloc] initWithString:@"Hello, world!"];
[msg retain];
[msg retain];
NSLog(@"The message '%@' has %d characters", msg, [msg length]);
[msg release];
[msg release];
[msg release];

At first glance, the code in listing 9.1 may appear incorrect. The msg object is sent
three release messages, yet there are only two calls to retain. The calls seem unbal-
anced. But remember from our previous discussions that a call to alloc (as shown on
the first line) implicitly makes you the owner of the created object. You can consider
alloc as making an internal call to retain on your behalf, and as such, it must be
matched with a call to release.

9.2.3 Determining the current retain count

For diagnostic purposes, it may be desirable to query an object to determine how
many owners it currently has. This can be done by sending it a retainCount message,
as demonstrated by the following listing. This listing is the same as listing 9.1 except
for additional calls to NSLog, which log out the current retain count after each state-
ment is executed.

NSMutableString *msg = [[NSMutableString alloc]
 initWithString: @"Hello, world!"];
NSLog(@"After alloc: retain count is %d", [msg retainCount]);

[msg retain];
NSLog(@"After retain: retain count is %d", [msg retainCount]);

NSLog(@"The message '%@' has %d characters", msg, [msg length]);

[msg release];
NSLog(@"After 1st release: retain count is %d", [msg retainCount]);

[msg release];
// NSLog(@"After 2nd release: retain count is %d", [msg retainCount]);

Notice that the log statements report the same values as those manually placed in list-
ing 9.1 and that the last call to NSLog is commented out. This is because the last
release message caused the object to return to a retain count of zero and hence
become deallocated. Once the object is deallocated, it’s impossible to communicate
with it.

Listing 9.1 Correctly matching calls to retain and release

Listing 9.2 Querying the retain count of an object during its lifecycle
Download from Wow! eBook <www.wowebook.com>

183Reference counting
As you experiment with querying retain counts, you may notice that some objects
return interesting results. For example, based on your current knowledge, you may
expect the following code snippet to print the message "Retain count is 1".

NSString *str = @"Hello, world!";
NSLog(@"Retain count is %d", [str retainCount]);

If you run this snippet, you’ll notice that the retain count is reported as 2147483647.
That’s a lot of owners interested in keeping this seemingly unimportant string alive!
This example highlights a special case. A constant string, such as one introduced via
the @"..." construct, is hardcoded into your application’s executable. A retain count
of 2147483647 (0x7FFFFFFF in hexadecimal) indicates that an object doesn’t partici-
pate in standard reference counting behavior. If you send such an object a retain or
release message and query its retainCount before and after, you’ll notice it contin-
ues to report the same value.

Keep yourself honest
If you regularly find yourself querying objects for their retain count, you should take a
second look at what you’re doing. Typically there’s no reason to be interested in an
object’s actual retain count, and the result can often be misleading because you may
be unaware of other objects that may have also retained the object.

In debugging memory management issues, you should be concerned only with ensur-
ing that your code adheres to the ownership rules and that any calls you make to
retain are matched with calls to release.

If you find yourself needing to write code similar to the following to force an object to
become deallocated, look for mismatched calls to retain and release or a misun-
derstanding of memory management rules rather than brute-forcing a solution:

int count = [anObject retainCount];
for (int i = 0; i < count; i++)
 [anObject release];

Always consider things could change in the future
Just because an object doesn’t do anything obvious when sent a retain or release
doesn’t mean that you shouldn’t observe standard retain and release practices
when using it.

If you write code that’s arbitrarily provided an object, you generally won’t know if it’s
been allocated in such a way that it requires standard memory management or was
created in such a manner that improper management of the retain count may be less
critical. It’s generally easier to treat all objects as if they follow the retain and
release model. It’s better safe than sorry—you never know how you might update
or alter your application in the future, potentially invalidating assumptions about how
a particular object may behave.
Download from Wow! eBook <www.wowebook.com>

184 CHAPTER 9 Memory management
Now that you have a solid understanding of the retain and release messages, you
can apply that knowledge to virtually any Objective-C or Cocoa Touch memory man-
agement technique. These two messages are the fundamental building blocks upon
which all other techniques are ultimately placed.

 This isn’t to say that retain and release are the perfect memory management
tools. Both messages have deficiencies or scenarios under which their usage can be
painful. As an example, manual management of an object’s retain count can get labo-
rious if an object is constantly passed among numerous owners. The next memory
management technique we investigate builds on top of the retain and release foun-
dations and is designed to ease such burdens.

9.3 Autorelease pools
The retain/release model has difficulties when ownership of an object needs to be
transferred or handed off to something else. The code performing the transfer
doesn’t want to continue retaining the object, but neither do you want the object to
be destroyed before the handoff can take place.

 Consider the following method, which attempts to create a new NSString object
and return it to the caller:

- (NSString *)CreateMessageForPerson:(NSString *)name {
 NSString *msg = [[NSString alloc] initWithFormat:@"Hello, %@", name);
 return msg;
}

The first line of the CreateMessageForPerson: method allocates a new string object.
Since the string is created via the alloc message, the method currently owns the cre-
ated string. Once the method returns, however, it’ll never need to refer to the string
again, so before returning, it should release its ownership.

 A temping solution may be to rework the CreateMessageForPerson method
as follows:

- (NSString *)CreateMessageForPerson:(NSString *)name {
 NSString *msg = [[NSString alloc] initWithFormat:@"Hello, %@", name];
 [msg release];
 return msg;
}

This solution, however, has the same bug as previously discussed. The first line creates
a new string object with a retain count of 1, and the next decrements the retain count
back to zero, causing the string to be deallocated. The pointer to the deallocated
object is then returned.

 The problem with the retain/release model in this solution is that there’s no suit-
able location to place the call to release.

 If the call to release occurs in the CreateMessageForPerson method, you can’t pass
the string back to the caller. On the other hand, if you don’t release the object in the
method, you push the responsibility of freeing the string object onto every caller. This
not only is error prone but breaks the principle of “match every retain with a release.”
Download from Wow! eBook <www.wowebook.com>

185Autorelease pools
 Ideally, you’d have a way to signal to Objective-C that you’re ready for ownership of
an object to be released, but instead of relinquishing ownership immediately, you pre-
fer it to be performed at some point in the future, once the caller has had a chance to
claim ownership for itself. The answer to this scenario is called an autorelease pool.

 To use an autorelease pool, you simply send the object an autorelease message
instead of the more immediate release message. This technique is demonstrated by
the following version of the CreateMessageForPerson method:

- (NSString *)CreateMessageForPerson:(NSString *)name
{
 NSString *msg = [[NSString alloc] initWithFormat:@"Hello, %@", name];
 [msg autorelease];
 return msg;
}

With the string added to the autorelease pool, you’ve relinquished ownership of the
string, yet it’s safe to continue referring to and accessing it until some point in the future
when it’ll be sent a more traditional release message on your behalf. But what exactly
is an autorelease pool, and when will the string be deallocated?

9.3.1 What is an autorelease pool?
An autorelease pool is simply an instance of the NSAutoreleasePool class. As your appli-
cation runs, ownership of objects can be transferred to the most current autorelease
pool. When an object is added to an autorelease pool, it takes over ownership of the
object and sends the object a release message only when the pool itself is deallocated.

 This can be handy when you want to create a bunch of temporary objects. Instead
of manually keeping track of each retain and release message you send, you can
simply use the objects, safe in the knowledge that they will all eventually be released.

9.3.2 Adding objects to the autorelease pool
Adding an object to the current autorelease pool is easy. You simply send the object an
autorelease message instead of a release:

[myObject autorelease];

This causes the current autorelease pool to retain the object after relinquishing the
current owner of its ownership responsibilities.

9.3.3 Creating a new autorelease pool
In general, it’s possible to use the services of an autorelease pool without having to
explicitly create one. This is because Cocoa Touch creates pools behind the scenes for
your use. But it’s important to at least know when and how these pools are created so
you know when objects will eventually be deallocated and how much “garbage” may
accumulate beforehand.

 To create a new autorelease pool, you simply create an instance of the NSAutorelease-
Pool class:

NSAutoreleasePool *myPool = [[NSAutoreleasePool alloc] init];
Download from Wow! eBook <www.wowebook.com>

186 CHAPTER 9 Memory management
The NSAutoreleasePool class is slightly magic in that creating a new pool also adds
the pool to a stack. Any object that receives an autorelease message is automatically
added to the pool currently on the top of the stack (the most recently created one).

Applications that use UIKit can take advantage of the fact that Cocoa Touch automati-
cally creates and releases a new autorelease pool each time through the application’s
run loop.

 A GUI-based application can be considered to be one big while(true) loop. This
loop, called a run loop, continues to cycle until the application exits. At the top of the
loop, Cocoa Touch waits for a new event to occur, such as the device’s orientation
changing or the user tapping on a control. Cocoa Touch then dispatches this event to
your code, most likely a UIViewController, to be processed, before returning to the
top of the loop and waiting for the next event to occur.

 At the beginning of an iteration through the run loop, Cocoa Touch allocates a
new NSAutoreleasePool instance, and once your view controller has processed the
event, the run loop will release the pool before returning to the top of the run loop
to await the next event.

Extra for experts
The stack of NSAutoreleasePool instances is thread specific, so each thread in your
application maintains its own stack of autorelease pools.

If you attempt to send an autorelease message while on a thread that doesn’t cur-
rently have an autorelease pool, you’ll get the following output in the Xcode debugger
console:

*** _NSAutoreleaseNoPool(): Object 0x3807490 of class NSCFstring
autoreleased with no pool in place - just leaking

This output indicates that the autorelease message hasn’t managed to find an
autorelease pool so has simply cast the object to one side, never to be released until
the application exits.

You’ve already created an autorelease pool
In every application you’ve written so far, you’ve created an explicit NSAutorelease-
Pool, probably without even knowing it. As an example, open the Rental Manager
project and view the file named main.c. This should be located in the Other Sources
folder and will contain the following code snippet:

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
int retVal = UIApplicationMain(argc, argv, nil, nil);
[pool release];

This code creates an autorelease pool that exists for the entire lifetime of your
application.
Download from Wow! eBook <www.wowebook.com>

187Autorelease pools
With knowledge of how to create autorelease pools and assign objects to them, we can
finally discuss the important concept of how objects in an autorelease pool are eventu-
ally deallocated.

9.3.4 Releasing objects in a pool

Once a pool is created, objects that are sent an autorelease message will automati-
cally find it. When the owner of the autorelease pool wants to release ownership of all
objects held by the pool, it releases the pool as follows:

[myPool release];

When the pool is deallocated, it automatically sends a release message to each object
assigned to the pool.

 Sometimes you want to release all objects in a pool but keep the pool functional
for future use. Although you could do the following

NSAutoreleasePool *myPool = [[NSAutoreleasePool alloc] init];
...
[myPool release];
myPool = [[NSAutoreleasePool alloc] init];
...
[myPool release];

the overhead of creating and deallocating each pool could become significant. For
this reason, the NSAutoreleasePool class also provides a drain message, which
releases any currently contained objects but keeps the pool ready to accept additional
objects. Using drain, the previous code snippet can be rewritten as follows:

NSAutoreleasePool *myPool = [[NSAutoreleasePool alloc] init];
...
[myPool drain];
...
[myPool release];

Both code snippets are identical in memory management behavior and the associated
object lifetimes, but the second avoids the overhead of creating and destroying a sec-
ond autorelease pool.

9.3.5 Why not use an autorelease pool for everything?

After discovering the concept of autorelease pools, you may wonder why you can’t just
add every object to an autorelease pool and avoid the need to carefully match retain
and release messages. The answer to this is generally one of performance and mem-
ory consumption—two issues that are vitally important on a constrained and typically
battery-powered mobile device.

 When adding objects to an autorelease pool, you’re ensured that the object will
eventually be released on your behalf, but implicitly you also know this will be at some
point in the future. Depending on your application logic, these objects could persist
for a comparatively long time after you’re done using them—in effect, artificially
Download from Wow! eBook <www.wowebook.com>

188 CHAPTER 9 Memory management
inflating the memory consumption of your application. This may not be much of a
problem on a desktop, but it can be a big problem on a memory-constrained device
such as the iPhone. As an extreme case, consider the following code snippet:

for (int i = 0; i < 100; i++) {
 for (int j = 0; j < 1000; j++) {
 NSString *msg = [[NSString alloc] initWithFormat:
 @"Message number %d is 'Hello, World!'",
 i * 1000 + j];
 [msg autorelease];

 NSLog(@"%@", msg);
 }
}

This code creates 100,000 string objects. At the end of each iteration through the
inner loop, an additional string is added to the autorelease pool even though that
string will never be referred to again by the code snippet. All 100,000 string objects
will pile up in the pool, only to be released when the entire code snippet completes
and returns to the application’s run loop. At least in theory…

 If you run this code snippet, you’ll probably find that your application crashes well
before the 100,000th message is displayed with a message similar to the following:

RentalManager (4888) malloc: *** mmap(size=16777216) failed (error code=12)
*** error: can't allocate region
*** set a breakpoint in malloc_error_break to debug

This indicates that the Objective-C runtime attempted to allocate some memory for a
new object but failed to find enough. This seems extreme considering the code inter-
acts with only a single string at any given point in time.

 One solution is to explicitly create your own autorelease pool so you can release
the string objects earlier, as demonstrated by the following code snippet:

for (int i = 0; i < 100; i++) {
 NSAutoreleasePool *myPool = [[NSAutoreleasePool alloc] init];

 for (int j = 0; j < 1000; j++) {
 NSString *msg = [[NSString alloc] initWithFormat:
 @"Message number %d is 'Hello, World!'",

Be careful of macro optimizations
When developing your application, be careful not to optimize for performance on a macro
level. Although there are performance-based overheads to using an NSAutorelease-
Pool, these overheads could be an insignificant factor in the overall performance of
your application.

It’s generally better to use performance-monitoring and analysis tools, such as those
mentioned in chapter 14, to determine where the bottlenecks occur in your applica-
tion’s performance than to apply general rules of thumb, such as “manual retain/
release is more efficient than retain/autorelease.”
Download from Wow! eBook <www.wowebook.com>

189Autorelease pools
 i * 1000 + j];
 [msg autorelease];

 NSLog(@"%@", msg);
 }

 [myPool release];
}

In this code snippet, you alloc and release an autorelease pool each time around
the outer loop. This ensures that the pool has, at most, 1000 objects before it’s
released. Notice that the positioning of the autorelease pool is a tradeoff between
efficiency and object lifetimes. The code sample would work equally well if the
NSAutoreleasePool were placed in the inner loop. But then you would have incurred
the expense of allocating and deallocating an NSAutoreleasePool 100,000 times, with
only one object ever assigned to each pool.

 By placing the NSAutoreleasePool in the outer loop, you reduce this expense
1000-fold, but you’ll consume more memory as the pool grows to 1000 objects.

 In some cases, object lifetimes are easily managed without the need for an autore-
lease pool. For example, the previous two examples could easily be modified to use a
release message instead of an autorelease, as demonstrated here:

for (int i = 0; i < 100; i++) {
 for (int j = 0; j < 1000; j++) {
 NSString *msg = [[NSString alloc] initWithFormat:
 @"Message number %d is 'Hello, World!'",
 i * 1000 + j];

 NSLog(@"%@", msg);

 [msg release];
 }
}

Be careful running these code samples in the iPhone Simulator
When trying out the autorelease-based examples in this section, be aware that the
iPhone Simulator won’t behave the same as an actual iPhone device (and an iPhone
3GS will behave differently from an original iPhone, iPod Touch, or iPad, and so on).

The iPhone Simulator runs your iPhone applications on your desktop machine using
the resources available to it. This means an application running in the simulator typ-
ically has access to significantly greater amounts of memory than a real iPhone pro-
vides. Likewise, as your desktop machine starts to run out of memory, it’ll likely start
paging some out to disk, another feature not present on a real iPhone.

You therefore might find that all three examples succeed when run in the iPhone Sim-
ulator environment. If so, increase the outer loop counter (i) to a much larger number,
which will make the application consume more memory. Alternatively, you can run
these examples on an actual iPhone device.
Download from Wow! eBook <www.wowebook.com>

190 CHAPTER 9 Memory management
You know the string object isn’t required after its contents are logged to the console, so
you can explicitly release the object. This means only one NSString object exists at a
time, drastically reducing the memory usage of the code snippet. Notice also that the
release message had to be moved to the end of the inner loop: because the string
object is explicitly deallocated, it’s no longer safe to refer to it after you’ve called
release. This is unlike the situation in which you sent the object an autorelease object
and could have happily continued to use the object until the autorelease pool itself was
released. If you didn’t move the release message send to come after the NSLog state-
ment, the log statement would be attempting to log a potentially deallocated object.

9.4 Memory zones
As you investigate the Apple Developer documentation or use Xcode’s Code Sense
feature, you may notice that many objects have an allocWithZone: message as well
as the more familiar alloc. This message and others, such as copyWithZone: and
mutableCopyWithZone:, hint at a concept called memory zones, which Objective-C rep-
resents via the NSZone struct.

 By default, when you request an object to be allocated (by sending the class an alloc
message), Objective-C allocates the required amount of memory from the default mem-
ory zone. If your application allocates a large number of objects with varying lifetimes,
this can lead to a situation called memory fragmentation, as demonstrated by figure 9.2.

 Memory fragmentation means that, although there’s enough free memory avail-
able to the application, it’s spread throughout the entire memory space and in poten-
tially inconveniently sized blocks. If your application is allocating a number of objects
of similar size or wants to keep them close to each other, the solution may be to place
these objects in a separate memory zone.

 To create a new memory zone, you use the NSCreateZone function, which allocates
a specific amount of memory to service future memory allocation requests directed
toward it:

#define MB (1024 * 1024)
NSZone *myZone = NSCreateZone(2 * MB, 1 * MB, FALSE);

Figure 9.2 A conceptual view of the memory fragmentation problem. Although there are 4
bytes of spare memory available, a request to allocate 4 bytes for a variable of type int will fail
because those 4 bytes aren’t available in a contiguous block.
Download from Wow! eBook <www.wowebook.com>

191Memory zones
The first argument to NSCreateZone specifies how much memory to initially reserve
for the pool, and the second argument specifies the granularity of future memory
allocations for the pool. In this example, 2 megabytes of memory are preallocated for
use by the pool; if all of this memory is eventually consumed, a request to allocate one
additional byte will expand the memory zone by a further 1 megabyte. This helps
reduce fragmentation and helps ensure the locality of different objects allocated from
the same zone.

 Once a memory zone is created, you can allocate a new object using memory from
the zone by sending an allocWithZone: message:

NSString *myString = [[NSString allocWithZone:myZone] init];

Incidentally, another way to allocate an object from the default zone is as follows. See-
ing this example should also help cement the relationship between init and init-
WithZone: for you:

NSZone *defaultZone = NSDefaultMallocZone();
NSString *myString = [[NSString allocWithZone:defaultZone] init];

Sending a class an alloc message (or passing nil to allocWithZone:) causes the
object to be allocated from the default memory zone, which can also be obtained via a
call to the NSDefaultMallocZone function.

Objects allocated to a custom memory zone respond to standard memory manage-
ment methods such as retain, release, and autorelease. But there are a couple of
additional functions worth mentioning. When an object is deallocated, the zone

Memory zones have additional advantages
Although not a consideration for the iPhone and iPad, which don’t implement paging
to a secondary storage mechanism (such as disk) in their virtual memory implemen-
tations, another use of custom memory zones is to ensure the locality of related data.

Custom memory zones are commonly used in audio buffer or streaming-related code,
for example, because they help prevent performance impacts caused by swapping
buffers in and out of disk-based storage if two commonly used buffers happen to be
allocated on different memory pages.

Which zone does my object belong to?
To determine which zone an object is allocated to, you can send it a zone message
and compare the value to a list of known memory zones:

NSZone *zoneOfObject = [myObject zone];
if (zoneOfObject == NSDefaultMallocZone()) {
 NSLog(@"The object was allocated from the default zone");
}

Download from Wow! eBook <www.wowebook.com>

192 CHAPTER 9 Memory management
doesn’t immediately return that memory to the operating system for reuse. It keeps it
in case a future allocation request is made. At any time, a call to NSRecycleZone causes
such memory to be freed. To free the entire zone, a function called malloc_destroy_
zone is available. This function deallocates all memory associated with a zone even if
that memory is associated with active objects. It’s your responsibility to ensure all
objects in a zone are properly deallocated before calling malloc_destroy_zone.

 Using additional memory zones helps prevent memory fragmentation and
improves performance. But their use brings an increase in the memory consumption
of your application, as memory allocated to a zone can be used to service memory
requests only for objects explicitly added to that zone. Therefore, creating additional
memory zones should be considered only when performance requirements dictate
their need, not as a standard part of your toolbox.

9.5 Rules for object ownership
We’ve discussed two ways to become the owner of an object:

■ Create the object via an alloc or allocWithZone: message
■ Send the object a retain message

There are other cases to consider, though. For example, a message such as NSString’s
stringWithObject creates a new object but is clearly not named alloc, so who owns
the resultant object?

 In Cocoa Touch all memory management rules ultimately boil down to the follow-
ing set of principles:

1 You own any object you explicitly create.
2 You create an object using a message whose name begins with alloc, new, or

contains copy (alloc, mutableCopy, and so on).
3 You can share ownership of an existing object by sending it a retain message.
4 You must relinquish ownership of any object you own by sending it a release or

autorelease message.
5 You must not relinquish ownership of an object you don’t own.

Based on these more formalized principles, you can determine that the following
code snippet observes correct memory management techniques:

NSString *stringA = [[NSString alloc] initWithString:@"Hello, world!"];
NSString *stringB = [NSString stringWithString:@"Hello, world!"];
[stringA release];

The first string is created by a method named alloc, so rules 1 and 2 indicate you own it.
Therefore, when you’re finished using the object, you must send it a release message to
satisfy rule 4. The second string is created by a message named stringWithString:, so
rule 2 indicates you don’t own it. Therefore, rule 5 suggests you shouldn’t release it.

 Taking a look at classes in Cocoa Touch, you’ll notice that many follow a pattern
whereby an initWithXYZ message is matched with a similar class method named
classNameWithXYZ. For example, NSString has
Download from Wow! eBook <www.wowebook.com>

193Responding to low-memory warnings
- (NSString *)initWithString:(NSString *)str;
+ (NSString *)stringWithString:(NSString *)str;

The first line initializes a string you’ve explicitly allocated with a call to alloc. The sec-
ond performs a similar task, but it doesn’t need a string to be allocated beforehand.
Internally this method allocates a new string object and initializes it as required before
sending it an autorelease message and returning it.

9.6 Responding to low-memory warnings
The iPhone operating system implements a cooperative approach when it comes to
memory management and provides a warning to each application when the device
finds itself in a low-memory situation.

 If the amount of free memory drops below a threshold, the operating system
attempts to release any excess memory that it holds, and if this doesn’t free up enough
memory, it also sends currently running applications a warning. If your application
receives a low-memory warning, it’s your chance to free up as much memory as possi-
ble by deallocating unneeded objects or by clearing out cached information that can
easily be regenerated when next required.

 The UIKit application framework provides access to the low-memory warning via a
number of mechanisms:

■ Implementing the applicationDidReceiveMemoryWarning: message in your
application delegate

■ Overriding the didReceiveMemoryWarning message in your UIViewController
subclass

■ Registering for the UIApplicationDidReceiveMemoryWarningNotification

notification

We cover each of these scenarios in turn. It’s important that your application responds
to these warnings. If your application doesn’t respond, or you don’t manage to free
enough memory, the operating system may take even more drastic measures such
as “randomly” and abruptly exiting your application in its effort to gain additional
free memory.

9.6.1 Implementing the UIApplicationDelegate protocol

As discussed in chapter 7, protocols can have optional messages, which you can selec-
tively decide to implement. The UIApplicationDelegate protocol (implemented by
the RentalManagerAppDelegate class in the Rental Manager application) has an
optional message called applicationDidReceiveMemoryWarning:, which is sent when-
ever the application detects a low-memory situation. This message can be imple-
mented as follows:

- (void)applicationDidReceiveMemoryWarning:(UIApplication *)application
{
 NSLog(@"Hello, we are in a low-memory situation!");
}

Download from Wow! eBook <www.wowebook.com>

194 CHAPTER 9 Memory management
For reasons outlined previously, the iPhone Simulator isn’t a representative example
of the kinds of memory constraints your applications will find themselves in while run-
ning on a real device. To help developers test their applications in low-memory condi-
tions, the iPhone Simulator provides a way to generate a simulated low-memory
situation. This feature can be initiated by selecting Simulate Memory Warning in the
Hardware menu (see figure 9.3). The simulator fakes a low-memory situation, no mat-
ter how much memory is currently available on your computer.

 When you select the Simulate Memory Warning option, you should see that your
application delegate is sent an applicationDidReceiveMemoryWarning: message, as
demonstrated by the following log messages appearing in the Xcode debugger console:

Received simulated memory warning.
Hello, we are in a low-memory situation!

Notice that the iPhone Simulator also emits a log message stating that the low-memory
situation was faked. Obviously, if a real low-memory situation occurs on a device, you
wouldn’t see this additional log message.

 In a typical application it’s possible that your UIApplicationDelegate implemen-
tation may not have easy access to significant resources that it can free on a moment’s
notice. It’s more probable that the individual UIViews and UIViewControllers that
make up the visual aspects of your application will have access to the memory
resources that can be returned to the operating system. Therefore, the UIView-
Controller class provides an alternative mechanism to access low-memory warnings
in the form of a method called didReceiveMemoryWarning that can be overridden by
interested subclasses.

9.6.2 Overriding didReceiveMemoryWarning

In a UIViewController subclass, such as the RootViewController class in the Rental
Manager application, you can handle the low-memory warning condition by imple-
menting a method named didReceiveMemoryWarning:

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];

 [cityMappings release];

Figure 9.3 The Simulate Memory
Warning option found in the Hardware
menu of the iPhone Simulator can be
used to test how well your application
responds to low-memory scenarios.
Download from Wow! eBook <www.wowebook.com>

195Responding to low-memory warnings
 cityMappings = nil;
}

In this implementation, when the operating system requests additional memory to be
freed, the RootViewController class releases the city mapping NSDictionary. This
frees memory immediately, but before you next need to look up an image to display
for a given city, you’ll have to re-create the dictionary and its contents. You’ll see how
this scenario is handled by the existing source code in a minute, but let’s first investi-
gate the implications of a comment inserted by the iPhone project templates.

 If you create a new project in Xcode and select the Navigation-based Application
template, you may notice that it provides an override for the didReceiveMemoryWarning
method. This default implementation doesn’t perform any additional functionality. It
simply forwards the message onto the UIViewController superclass, but it does
include a comment hinting at an important fact to remember. This comment and a
related one in the viewDidUnload method are repeated here:

didReceiveMemoryWarning
 // Releases the view if it doesn't have a superview.

viewDidUnload
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;

These comments hint that the UIKit framework will cache views that are currently off-
screen, such as when the user temporarily switches to another tab in a tab bar applica-
tion or drills down to another view in a navigation-based application.

 When a view controller is initialized, it loads the associated view from a NIB file (or
creates it from scratch via code). Once loaded, the view controller keeps the user
interface controls in memory even if the view is temporarily moved offscreen.

 Keeping the view in memory is efficient from a performance perspective because it
allows the view to be redisplayed without repeating the construction process, but it
comes with a potential negative in the form of increased memory consumption. This
is especially true if you have a deep hierarchy in a navigation-based UI or if you have
many tabs with complex UI requirements that will cause a number of offscreen views
to be cached.

 The UIKit framework is designed to cope with this scenario. It automatically
changes its view-caching behavior whenever your application finds itself in a low-
memory situation. When a UIViewController receives a didReceiveMemoryWarning
message, and the view it controls is currently offscreen (it doesn’t have a superview, or
parent), the UIViewController sends the view a release message. In most cases, this
is enough to cause the view to immediately become deallocated, and hence this fea-
ture reduces the amount of memory consumed by the application without affecting
the visual appearance or behavior of what the user can currently see or interact with.

 This memory optimization, however, can be undone if your view controller keeps
objects in the view alive because they haven’t yet been released. This is what is hinted
at by the comment in viewDidUnload: "Release any retained subviews of the main
Download from Wow! eBook <www.wowebook.com>

196 CHAPTER 9 Memory management
view". If you refer back to chapter 1, you’ll notice that the CoinTossViewController
class implemented viewDidUnload as follows:

- (void)viewDidUnload {
 self.status = nil;
 self.result = nil;
}

These statements, which were not discussed at the time, ensure that when the view
controller receives a didReceiveMemoryWarning message and decides to release the
view, the two UILabel controls are also released. As a rule of thumb, any subview or
control that’s retained by an ivar or property in the view controller class should be
released whenever the viewDidUnload message is received.

Knowing that a UIViewController could decide to deallocate its view and re-create it
when next required can have important implications for where you can place initial-
ization logic or store application state. Get it wrong, and the application may appear
to behave correctly during development, only to fail the first time your customer sees
a low-memory situation develop.

 To see this process in action, create a new iPhone application using the Tab Bar
Application template and uncomment the source code for the viewDidLoad method
within the FirstViewController class. Then add a breakpoint to the beginning of the
viewDidLoad and viewDidUnload methods.

 When you launch the application, you should see that viewDidLoad is immediately
called to initialize the UI controls loaded from the FirstView NIB file.

 If you switch to the second tab and then return to the first, you shouldn’t notice
any additional breakpoints being hit. This is because the UIKit framework keeps the

Correct memory management requires careful attention to detail
As mentioned in the sidebar “Danger, Will Robinson, here be sleeping dragons” in
chapter 5, it’s important to note the difference between the following three statements:

[status release]; status = nil; self.status = nil;

The first statement sends the object pointed to via the status instance variable a
release message, hopefully freeing its associated resources. The statement doesn’t
alter the value of the status variable, leaving it to point to the now nonexistent object.

The second statement attempts to resolve this by setting the variable to nil. Doing
this doesn’t send the object a release message, and hence the UILabel control will
never be deallocated even though you’ve lost the ability to refer to it.

The last statement (and its logical equivalent [self setStatus:nil]) performs
both tasks by invoking the setter method associated with the status property. From
chapter 5, remember that a property with the retain attribute specified automati-
cally sends a release message to its old value when the property is being set to a
new value, such as the nil specified here.
Download from Wow! eBook <www.wowebook.com>

197Responding to low-memory warnings
original view in memory and simply reuses it when the user returns to it (you could
handle the viewDidAppear message if you needed to perform an action each time the
view becomes visible to the user).

 By comparison, if you switch to the second tab and then simulate a low-memory sit-
uation, the debugger should break in FirstViewController’s viewDidUnload method,
indicating the view controller has decided it can help resolve the low-memory situa-
tion by deallocating the view that’s currently invisible to the user.

 Once the root view has been unloaded, you can continue using the application
with no obvious difference in behavior. The next time you return to the first tab, you
should notice that your viewDidLoad implementation is automatically invoked in
order to reinitialize the view that the framework has just reloaded from your NIB file.

 Knowing that a view can suddenly and perhaps unexpectedly become deallocated,
you should be careful not to store important application state in the view. Apart from
breaking the model-view-controller design pattern principles, it won’t work reliably. As
an example, if you use the enabled state of a UIButton or a selected item in a
UITableView to control the logic or behavior of your application, you may notice your
application enters an unexpected state when the view becomes deallocated and then
re-created, causing all of the controls to return to the state in which they were
declared in the NIB file.

 In general, the correct place for view initialization logic is in the viewDidLoad
method. This logic is invoked whenever the view associated with the view controller is
constructed. If you take a look at RootViewController’s viewDidLoad method imple-
mentation within the Rental Manager application, you’ll notice this is exactly where
the cityMappings dictionary is created, ensuring it’s also re-created if it’s destroyed
due to a low-memory situation.

 As an extension to this rule of thumb, you may also like to override the matching
viewDidUnload message as an ideal place to save application state just before the view
is removed from memory.

9.6.3 Observing the
UIApplicationDidReceiveMemoryWarningNotification
Sometimes when writing a support class deep in your application logic, it may be
inconvenient for a view controller or application delegate to be responsible for free-
ing any associated resources in a low-memory situation. For one thing, doing so would
break encapsulation, as something external to the class would require knowledge of
and access to its internals in order to free them. For such situations, Cocoa Touch pro-
vides an alternative solution via a feature called notifications.

 A notification allows a class to respond to an event, such as a low-memory situation,
no matter where the class is positioned in the application; it no longer needs to be a
UIViewController subclass. In general, an object called the sender will generate a
notification and dispatch it to be received by zero or more objects called observers.

 The glue that connects notification senders with observers is a class called
NSNotificationCenter. This class provides a mechanism for senders to broadcast
Download from Wow! eBook <www.wowebook.com>

198 CHAPTER 9 Memory management
new notifications and observers to register their interest in receiving particular types
of notifications. A notification center is similar in concept to an email distribution list.
One or more email addresses (observers) are registered with the mailing list (notifica-
tion center), and when a new email (notification) is sent by a sender, the mailing list
distributes it to all currently registered email addresses. A given email address may not
receive all emails sent to the server because it’s unlikely the address will be registered
with every email list offered by the mail server.

 In Objective-C the first step in handling a notification is to define a method you
want invoked whenever a suitable notification occurs. For example, you could define
the following method in the CTRentalProperty class:

- (void)HandleLowMemoryWarning:(NSNotification *)notification
{
 NSLog(@"HandleLowMemoryWarning was called");
}

Once the method is defined, you must inform the NSNotificationCenter that you’re
interested in observing a particular type of notification. This can be done by sending
an addObserver:selector:name:object: message, as shown in the following listing.

- (id)initWithAddress:(NSString *)newAddress
 rentalPrice:(float)newRentalPrice
 andType:(PropertyType)newPropertyType {
 if ((self = [super init])) {
 self.address = newAddress;
 self.rentalPrice = newRentalPrice;
 self.propertyType = newPropertyType;

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(HandleLowMemoryWarning)
 name:UIApplicationDidReceiveMemoryWarningNotification
 object:nil];
 }

 return self;
}

The observer and selector arguments specify which object should act as the observer
and the message that object wishes to be sent when a suitable notification occurs. The
last two arguments specify the particular notification you’re interested in observing.
This example specifies that you want to observe a notification called UIApplication-
DidReceiveMemoryWarningNotification. Passing nil for the object argument means
that you’re interested in observing this event no matter who the sender is. If you’re
interested only in notifications generated by a particular object, you can specify that
object instead to filter out notifications generated by other objects.

 Registering with a notification center indicates your intent to observe a notifica-
tion event, so it’s natural to need to unregister your intent when you no longer want to

Listing 9.3 Registering intent to observe memory warning notifications
Download from Wow! eBook <www.wowebook.com>

199Summary
receive notification events. This can be done by sending a removeObserver:name:
object:, as demonstrated here:

- (void)dealloc {
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIApplicationDidReceiveMemoryWarningNotification
 object:nil];

 [address release];
 [super dealloc];
}

It’s important to unregister your observers before your object is deallocated. Other-
wise, when the notification is next generated, the NSNotificationCenter will attempt
to send a message to the nonexistent object and your application may crash.

9.7 Summary
Responsibility for correct memory management in Objective-C rests significantly with
you, the developer. Unlike in garbage-collected environments, which tend to be use-
and-forget type environments, the deallocation of objects in Objective-C will occur at
the correct point in time only through the proper use of the retain, release, and
autorelease messages. Make a mistake, and the object will never be deallocated or,
worse yet, it may be deallocated too early and lead to application crashes.

 To make things easier, most Objective-C classes strive to stick to a common mem-
ory management pattern, which was discussed in section 9.5. By handling memory
allocation in a consistent manner, you won’t need to constantly refer to documenta-
tion in order to determine who’s responsible for keeping track of a given object.

 An autorelease pool enables some of the benefits of a garbage-collected environ-
ment without the implied overhead. An object can be registered to be sent a release
message at some point in the future. This means you don’t use the traditional retain

addObserver:selector:name:object: provides a lot of flexibility
The addObserver:selector:name:object: message provides a lot of flexibility
when it comes to deciding how notifications are handled by an observer.

Since it’s possible to call addObserver:selector:name:object: multiple times for
the same observer object, with a different name argument each time, it’s possible for
a single object to process more than one type of notification.

Likewise, via use of the selector argument, you can determine if different notifica-
tion types are handled by separate methods or lumped together and processed by a
single method.

If you decide a single method can process multiple types of notifications, the NSNo-
tification object passed into the method has a name property, which can help dis-
tinguish why it is currently invoked.
Download from Wow! eBook <www.wowebook.com>

200 CHAPTER 9 Memory management
and release messages for the object but are still safe in the knowledge that the object
will eventually be deallocated.

 Since the release of iOS 4.0 and its multitasking capabilities, it’s even more impor-
tant for your application to be a good iPhone citizen. While developing your applica-
tions, you should take the extra couple of minutes required to make your application
listen to and respond to low-memory notifications. Provided your calls to retain and
release are correctly matched and you can free some resources in response to a low-
memory situation, your end user shouldn’t see any difference in behavior in your
application. Implementing the low-memory notifications may be the difference
between a happy customer and an iTunes review comment stating your application
randomly crashes.

 In chapter 10 you learn all about error and exception handling when developing
with Objective-C in your iOS applications.
Download from Wow! eBook <www.wowebook.com>

Part 3

Making maximum
use of framework

functionality

If every iOS application had to reinvent the wheel, there would be signifi-
cantly fewer applications in the iTunes App Store, because developers would
waste time recreating classes to perform similar functionality. The Cocoa Touch
environment provides a number of support libraries and classes that, with a few
simple lines of code, enable fairly powerful and complex behavior to be avail-
able for application developers to use. To quickly come to market, and focus
more time on the aspects of your applications that make it unique, it’s important
for application developers to know what kind of services the iOS SDK provides,
and how to take advantage of them.

 This part of the book begins by showing how Objective-C frameworks typi-
cally handle error conditions and exceptions. It then takes a deep dive into two
semi-related technologies, called Key Value Coding (KVC) and NSPredicate, that
allow flexible sorting and filtering to be introduced within your applications.
These two technologies also demonstrate how certain knowledge can be reuti-
lized, as shown in the discussion about using Core Data to work with databases
using KVC and NSPredicate.

 The second half of this part shows how you can deliver a great user experi-
ence within your application while performing many tasks as once, or waiting for
external web services to respond. Nothing is worse than an application that
Download from Wow! eBook <www.wowebook.com>

202 PART 3 Making maximum use of framework functionality
becomes unresponsive for long periods of time, and Grand Central Dispatch (GCD)
can help with this. We also introduce some tools that can help with debugging and
diagnosing performance- and memory-related issues as your own applications become
more complex.
Download from Wow! eBook <www.wowebook.com>

Error and
exception handling
Things go wrong. That’s no surprise. And things go wrong in the software you
build. Maybe the server that hosts the API you want to talk to isn’t reachable, or the
XML file you need to parse is corrupt, or the file you want to open doesn’t exist.
You need to prepare for such cases and handle them gracefully, which means not
crashing and giving the user an appropriate message.

 Cocoa Touch and Objective-C offer two ways of dealing with errors: NSError
and exceptions. NSError is the preferred and advisable way to deal with expected
errors (like an unreachable host). Exceptions are meant to report and handle pro-
gramming errors during development and shouldn’t be used to handle and report
errors to the user at runtime. That makes the purpose of exceptions in Objective-C
quite different from other languages, such as Java, where they’re used frequently.

 In this chapter we look mainly at NSError and at some real-life use cases
for exceptions.

This chapter covers
■ Dealing with NSError
■ Creating your own NSError objects
■ When and when not to use exceptions
203

Download from Wow! eBook <www.wowebook.com>

204 CHAPTER 10 Error and exception handling
10.1 NSError—handling errors the Cocoa way
In Cocoa and Cocoa Touch, nearly all methods that could possibly fail for reasons you
as a developer can’t control take a pointer to an NSError pointer as their last parame-
ter. Why a pointer to a pointer? Because that way the called method can create an
instance of NSError and you can access it afterwards through your NSError pointer.

 Before we go any further, let’s look at an example in the following listing.

NSError *error;
NSData *data = nil;

data = [[NSData dataWithContentsOfFile:@"i-dont-exist"
 options:NSDataReadingUncached
 error:&error] retain];

if (data == nil) {
 NSLog(@"An error occurred: %@",
 [error localizedDescription]);
} else {
 NSLog(@"Everything's fine");
}

This example is simple: you create an NSError pointer variable called error. Then you
try to initialize an NSData object with a nonexistent file and pass in the address of your
pointer variable (&error). Next you check whether or not you got a data object. This
step is extremely important: when no error has occurred, the state of the passed-in
error pointer is undefined! It’s unsafe to do anything with the error pointer unless
you’re sure that an error did occur. That’s why you always need to check the return
value of a method before accessing the error object.

 When you run this code, you’ll notice that the localized description of the error in
listing 10.1 wouldn’t be very helpful to your users, though:

"An error occurred: The operation couldn't be completed. (Cocoa error 260.)"

Let’s look at NSError in more depth so you know how to get useful information from
it to display to your users.

10.1.1 Getting NSError to talk

NSError objects have both an error domain and an error code. The domain exists
mostly for historical reasons, but it provides useful information because it tells you
which subsystem reported the error. The error domain is a string, and the Foundation
framework declares four major error domains: NSMachErrorDomain, NSPOSIXError-
Domain, NSOSStatusErrorDomain, and NSCocoaErrorDomain. Frameworks like Core Data
have their own error domains. They provide namespaces for error codes or group them.

 Error codes are numeric and tell you which error occurred. The error codes for
the different subsystems are usually defined in header files and can also be found in
the online documentation (http://developer.apple.com/library/ios/navigation/). The

Listing 10.1 Trying to load a nonexistent file
Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/library/ios/navigation/

205NSError—handling errors the Cocoa way
error codes for Foundation, for example, are defined in <Foundation/Foundation-
Errors.h>. Because they’re numeric, it’s convenient to use them in a switch statement
to handle each expected error code in the appropriate way. Neither the domain nor the
code is useful to users, though. Luckily, NSError provides much more information.

 The localizedDescription method is guaranteed to always return a string that
can be displayed to the user. Often it gives a useful explanation of the error. (We look
at what to do when the localized description isn’t enough in the next section.)
NSError also has three other methods that might provide useful information to the
user: localizedFailureReason, localizedRecoverySuggestion, and localized-
RecoveryOptions. These methods aren’t guaranteed to return anything, though.

 So what can you do when all of these pieces of information aren’t enough? You can
examine the userInfo dictionary!

10.1.2 Examining NSError’s userInfo Dictionary
The userInfo dictionary of NSError is a flexible way to provide a wealth of additional
information about an error. You can easily examine its contents by simply writing it to
the console with NSLog. Let’s do that now, and go back to listing 10.1 and change
NSLog(@"An error occurred: %@", [error localizedDescription]); to NSLog(@"An
error occurred: %@", [error userInfo]); and run it again. The output will look
something like this now:

An error occurred: {
 NSFilePath = "i-dont-exist";
 NSUnderlyingError = "Error Domain=NSPOSIXErrorDomain Code=2 \"The operation

couldn\U2019t be completed. No such file or directory\"";
}

Obviously, the information in the NSUnderlyingError key would be much more use-
ful to users: "No such file or directory" describes it quite well. The value of
NSUnderlyingError in the userInfo dictionary contains—if it exists—another
NSError object, the one that actually describes the root of the problem. To display the
most detailed error message to your users, you can do something like the code in the
following listing.

NSDictionary *userInfo = [error userInfo];
NSString *message;

if (userInfo && [userInfo
 objectForKey:NSUnderlyingErrorKey]) {
 NSError *underlyingError = [userInfo
 objectForKey:NSUnderlyingErrorKey];
 message = [underlyingError localizedDescription];
} else {
 message = [error localizedDescription];
}

UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Error"

Listing 10.2 Displaying a more detailed message
Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/library/ios/navigation/

206 CHAPTER 10 Error and exception handling
 message:message
 delegate:nil
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];
[alert show];
[alert release];

Listing 10.2 first checks whether the error object has a userInfo dictionary and whether
that dictionary has a value for the NSUnderlyingErrorKey. If so, it displays its localized-
Description. If not, it displays the main error object’s localizedDescription.

 This technique doesn’t produce the best message for users in all cases. During
development it’s always important to test for different error conditions and look at the
contents of the userInfo dictionary because different frameworks and different sub-
systems provide different amounts and kinds of information in the NSError objects
they create. There’s no one-size-fits-all solution to display error messages to your users.
In most cases, you know what could go wrong in a certain piece of code. Use that
knowledge to create and display the most helpful and user-friendly message possible.

 What if you want to create your own NSError objects? Let’s look at that next.

10.2 Creating NSError objects
Adopting Cocoa’s error-handling pattern in your own code is simple. You just need to
accept a pointer to an NSError pointer as an argument to your method, check if one
has been provided by the caller, and create an instance of NSError with the informa-
tion describing the error if something went wrong.

 Let’s look at an example.

10.2.1 Introducing RentalManagerAPI

Pretend you have to build a framework that talks to the
my-awesome-rental-manager.com website. You want to
give this framework to third-party developers to use in
their iOS projects, and naturally you want to build a beauti-
ful API that handles errors gracefully. One of the frame-
work’s methods takes a dictionary of values that represents
a classified ad, which is used here for simplicity’s sake; in
real life you’d use a custom class to represent such an ad.
The method publishes the ad to the website after check-
ing that all required values are present. If not, it creates
and reports an error that indicates which fields are miss-
ing, as shown in figure 10.1.

 Since we’re concentrating on how to create and han-
dle errors in this chapter, we won’t go into every detail of
setting up a demo project or designing the user interface
for this application in Interface Builder. If you want
to use the techniques you’ve learned in the previous

Figure 10.1 The
RentalManagerAPI
application displaying an error
Download from Wow! eBook <www.wowebook.com>

207Creating NSError objects
chapters to follow along, by all means do so. Creating a new View-based application
in Xcode should get you on the right track. Otherwise you can always examine the
RentalManagerAPI project in the downloadable source code for this chapter.

 Take a look at the code in the following listing.

#import <Foundation/Foundation.h>

extern NSString * const RMAMissingValuesKey;
extern NSString * const RMAAccountExpirationDateKey;

extern NSString * const RMAErrorDomain;

enum {
 RMAValidationError = 1,
 RMAAccountExpiredError = 2,
 RMAWrongCredentialsError = 3
};

@interface RentalManagerAPI : NSObject {

}

+ (BOOL)publishAd:(NSDictionary *)anAd
 error:(NSError **)anError;

@end

The next listing contains the rest of the code.

#import "RentalManagerAPI.h"

NSString * const RMAErrorDomain =
 @"com.my-awesome-rental-manager.API";
NSString * const RMAMissingValuesKey = @"RMAMissingValuesKey";
NSString * const RMAAccountExpirationDateKey =
 @"RMAAccountExpirationDateKey";

@implementation RentalManagerAPI

+ (BOOL)publishAd:(NSDictionary *)anAd error:(NSError **)anError {
 if (anAd == nil) {
 @throw [NSException exceptionWithName:@"RMABadAPICall"
 reason:@"anAd dictionary is nil"
 userInfo:nil];
 }

 NSMutableArray *missingValues = [NSMutableArray array];
 for (NSString *key in [@"name price city"
 componentsSeparatedByString:@" "]) {
 if ([[anAd objectForKey:key] length] == 0) {
 [missingValues addObject:key];
 }
 }

 if ([missingValues count] > 0) {

Listing 10.3 RentalManagerAPI.h

Listing 10.4 RentalManagerAPI.m

Required value missing

Account expired

Wrong user/password

Define custom
error domain

If no ad object,
throw an exception

Check values
missing, if any
Download from Wow! eBook <www.wowebook.com>

208 CHAPTER 10 Error and exception handling
 if (anError != NULL) {
 NSString *description = @"The ad could not be \
 published because some required \
 values are missing.";
 NSString *recoverySuggestion = @"Please provide \
 the missing values and try again.";
 NSArray *keys = [NSArray arrayWithObjects:
 NSLocalizedDescriptionKey,
 NSLocalizedRecoverySuggestionErrorKey,
 RMAMissingValuesKey, nil];
 NSArray *values = [NSArray arrayWithObjects:
 description,
 recoverySuggestion,
 missingValues, nil];
 NSDictionary *userDict = [NSDictionary
 dictionaryWithObjects:values
 forKeys:keys];

 *anError = [[[NSError alloc] initWithDomain:
 RMAErrorDomain
 code:RMAValidationError
 userInfo:userDict] autorelease];
 }
 return NO;
 } else {
 return YES;
 }
}

@end

Let’s examine the code. In the header file, some constants are set up: a custom error
domain, some special keys for the userInfo dictionary, and some error codes. Using
constants and enumerators for these things makes your code much more readable
and maintainable. In the implementation of the publishAd:error: method, you’ll
notice one interesting thing right away: the use of the @throw directive. We briefly
look at exceptions in the next section of this chapter, but here you see one common
use case for them: catching programming errors. Your method should never be called
without an instance of NSDictionary, and with this exception you make sure that such
an error gets caught during development.

 The rest of the method isn’t rocket science: it checks if any required values are
missing and collects them in an array. If some values are missing, you create a descrip-
tion and some recovery suggestions and put them in a dictionary together with the array
of missing values. With that, you create an instance of NSError and have the pointer to
a pointer (anError) point to it by using the asterisk in front of the variable name
(*anError). That tells the compiler that you want to change the value of the pointer
that anError is pointing to, not the value of anError itself. This is a little confusing, no
doubt, but you’ll wrap your head around it in no time.

 Finally you return NO when an error occurred and YES otherwise. Now how do you
call this method and handle the error it might return?

Caller
interested
in errors?

Create an
instance of
NSError
Download from Wow! eBook <www.wowebook.com>

209Creating NSError objects
10.2.2 Handling and displaying RentalManagerAPI errors

Let’s look at listing 10.5. What does this code do? First it prepares the ad dictionary
from the values of some text fields. Then it declares a pointer of type NSError and
calls the publishAd:error: method, checking its return value. If it’s YES, a success
message is displayed. If it’s NO (which indicates an error), you check if the error
domain is that of the RentalManagerAPI. If so, you check for different error codes and
construct an appropriate message. Otherwise, you just use the localizedDescription
and finally display it in a UIAlertView. That’s it.

- (IBAction)publishAd:(id)sender {
 NSArray *keys = [NSArray arrayWithObjects:@"name", @"city",
 @"price", nil];
 NSArray *values = [NSArray arrayWithObjects:nameTextField.text,
 cityTextField.text,
 priceTextField.text, nil];
 NSDictionary *ad = [NSDictionary dictionaryWithObjects:values
 forKeys:keys];

 NSError *error;

 if ([RentalManagerAPI publishAd:ad error:&error]) {
 UIAlertView *av = [[UIAlertView alloc]
 initWithTitle:@"Success"
 message:@"Ad published successfully."
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [av show];
 [av release];
 } else {
 NSString *message;

 if ([error domain] == RMAErrorDomain) {
 switch ([error code]) {
 case RMAValidationError:
 message = [NSString
 stringWithFormat:@"%@\nMissing values: %@.",
 [error localizedDescription],
 [[[error userInfo] objectForKey:
 RMAMissingValuesKey]
 componentsJoinedByString:@", "]];
 break;
 case RMAWrongCredentialsError:
 break;
 default:
 message = [error localizedDescription];
 break;
 }
 } else {
 message = [error localizedDescription];
 }

Listing 10.5 Calling the publishAd:error: method

Create
the “ad”Create NSError pointer Call

RentalManagerAPI

On success,
display message

Custom error
domain only

Handle errors
differently

Messages for
validation

errors

Other errors, use
its message
Download from Wow! eBook <www.wowebook.com>

210 CHAPTER 10 Error and exception handling
 UIAlertView *av = [[UIAlertView alloc]
 initWithTitle:@"Error"
 message:message
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [av show];
 [av release];
 }
}

You should now have a good fundamental understanding of how to deal with errors in
Cocoa and how to create your own.

10.3 Exceptions
Exceptions play a different role in Objective-C and Cocoa than they do in languages
like Java. In Cocoa, exceptions should be used only for programmer errors, and the
program should quit quickly after such an exception is caught. Exceptions should
never be used to report or handle expected errors (like an unreachable host or a file
that can’t be found). Instead, use them to catch programming errors like an argu-
ment being nil that should never be nil or an array having only one item when it’s
expected to have at least two. You get the idea.

 So how do you create and throw exceptions?

10.3.1 Throwing exceptions

Exceptions are instances of NSException (or of a subclass thereof). They consist of a
name, a reason, and an optional userInfo dictionary, much like NSError. You can use
any string as an exception name or use one of Cocoa’s predefined names that can be
found at http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/
Exceptions/Concepts/PredefinedExceptions.html.

 Exceptions can be thrown either by using the @throw directive or by calling the
raise method on an instance of NSException. The following listing shows an example
of creating and throwing an exception with a predefined exception name.

if (aRequiredValue == nil) {
 @throw [NSException
 exceptionWithName:NSInvalidArgumentException
 reason:@"aRequiredValue is nil"
 userInfo:nil];
}

Uncaught exceptions cause an application to terminate. During development, that
might be just what you want to be alerted that you did something wrong in your pro-
gram code or logic. How would you go about catching exceptions, though?

Listing 10.6 Throwing an exception

Display error
message
Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/Exceptions/Concepts/PredefinedExceptions.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/Exceptions/Concepts/PredefinedExceptions.html

211Summary
10.3.2 Catching exceptions

Code that you expect to potentially throw an exception should be wrapped in a @try
block, followed by one or more @catch() blocks that will catch exceptions that might
get thrown or raised by the code in the @try block. Optionally, you can add a
@finally block. The code in a @finally block gets run regardless of whether or not
an exception occurred. Why can there be multiple @catch blocks? Because you can
catch different kinds of exceptions, and the Objective-C runtime will pick the best-
matching @catch block for the exception that’s been thrown. Note that each @try,
@catch, and @finally block has its own scope, so you can’t access an object in the
@finally block that’s been declared in the @try block, for example. If you want to
accomplish that, you must declare the variable outside of the @try block, in its enclos-
ing scope. The following listing shows a simple example.

@try {
 NSLog(@"Trying to add nil to an array...");
 NSMutableArray *array = [NSMutableArray array];
 [array addObject:nil];
}
@catch (NSException *e) {
 NSLog(@"Caught exception: %@, Reason: %@", [e name], [e reason]);
}
@finally {
 NSLog(@"Executed whether an exception was thrown or not.");
}

Inside the @try block, you attempt to insert nil into an array. The exception is caught
by the @catch block, and afterwards the @finally block is run. The console output of
this code looks like this:

Trying to add nil to an array...
Caught exception: NSInvalidArgumentException, Reason: *** -
[NSMutableArray insertObject:atIndex:]: attempt to insert nil object at 0
Executed whether or not an exception was thrown.

These exception-handling fundamentals should get you far, especially because excep-
tions are rarely used in Cocoa development—but they’re useful for catching program-
ming errors.

10.4 Summary
Error handling in Cocoa and Cocoa Touch is both simple and flexible. Don’t ignore
errors in your applications: handle them gracefully and tell your users about errors
they need to know about in an understandable way. The concept of exceptions is pres-
ent in Cocoa as well but plays a minor role compared to other frameworks and lan-
guages. Use them as intended: to catch errors during development.

 In chapter 11, we dive into an important Cocoa concept that lets you access and
manipulate values in powerful ways: Key-Value Coding and NSPredicate.

Listing 10.7 Catching an exception
Download from Wow! eBook <www.wowebook.com>

Key-Value Coding
and NSPredicate
KVC is a feature of the Foundation framework that allows you to access the proper-
ties of an object using strings. To obtain the current value of an object’s property,
you usually send the object an explicit getter message, as demonstrated here:

CTRentalProperty *house = ...;
NSString *addressOfProperty = [house address];

Given an instance of the CTRentalProperty class developed in chapter 5, this
would return the current value of the house’s address property. In Objective C 2.0
you could also use the following alternative property accessor syntax:

NSString *addressOfProperty = house.address;

When using either syntax, it isn’t possible at runtime to change which property is
accessed, because the property name is explicitly hardcoded into the source code.
You can work around this potential problem by using an if statement:

This chapter covers
■ Key-Value Coding (KVC)
■ Handling nil values in KVC
■ Filtering a collection with predicates
■ Using key paths in predicate expressions
212

Download from Wow! eBook <www.wowebook.com>

213Making your objects KVC-compliant
id value;
if (someConditionIsTrue)
 value = [house address];
else
 value = [house propertyType];

One issue with this kind of code structure is that you’d need to be aware of all possible
properties at compile time. It’s also a potential code maintenance nightmare, because
each time a new property is added to the class, you must remember to also add a new
clause to the if statement. KVC allows you to replace this brittle logic with a single
statement similar to the following:

NSString *key = @"address";
NSString *value = [house valueForKey:key];

The valueForKey: message expects a string containing the name of a property and
returns its current value. Because the property you want to access is expressed by a
string, it’s possible to change it at runtime or even generate it dynamically in response
to user input and, in the process, modify which property is accessed.

KVC is one of the many technologies that enable more advanced frameworks such
as Core Data to successfully interact with your own custom objects that were created
separate from the framework. Core Data is covered in detail in chapter 12.

 It’s common to compare an object against a condition and then perform an action
based on this comparison. This is commonly called a predicate condition, and in the
Foundation framework, it’s represented by the NSPredicate class. This class internally
uses KVC and key paths, and we also cover how to take advantage of NSPredicate later
in this chapter.

11.1 Making your objects KVC-compliant
KVC is all about conventions. In order for KVC to determine which setter or getter
message should be sent to access a given key, you must conform to a specific set of
rules. If you attempt to use a non-KVC-compliant object with KVC, you’ll get an excep-
tion similar to the following at runtime:

[<CTRentalProperty 0x1322> valueForUndefinedKey:] this class is not key value
coding-compliant for the key age

Luckily, the conventions are straightforward and easy to satisfy while developing your
own custom classes. To support querying a property for its current value via the value-
ForKey: message, an object must provide at least one of the following (in order of
preference by the framework):

■ A getter method named getKey or key
■ A getter method named isKey (typically used for properties of type BOOL)
■ An instance variable named _key or _isKey
■ An instance variable named key or isKey
Download from Wow! eBook <www.wowebook.com>

214 CHAPTER 11 Key-Value Coding and NSPredicate
For the matching setValue:forKey: message to work correctly, the object must pro-
vide one of the following messages:

■ A setter method named setKey:
■ An instance variable named _key or _isKey
■ An instance variable named key or isKey

By conforming to these conventions, you enable the KVC framework to use Objective-C
class metadata to determine how to interact with your objects at runtime. Although
the framework supports instance variables beginning with an underscore (_) prefix,
they should be avoided because the underscore prefix is typically reserved for internal
use by Apple and the Objective-C runtime.

11.1.1 Accessing properties via KVC

Now that you know how to make objects compatible with KVC, let’s look at how the
KVC mechanism can be used to get and update the current value of properties.

 To query an object for the current value of one of its properties, you can use the
valueForKey: message. A similar setValue:forKey: message allows you to specify a
new value for a property:

NSLog(@"House address is: %@", [house valueForKey:@"address"]);

[house setValue:@"42 Campbell Street" forKey:@"address"];

Notice the prototype of the valueForKey: method indicates that it accepts an object
(id). This means you can’t pass in values for primitive data types such as int, float, or
BOOL directly. You must box these via an instance of the NSNumber class. The KVC
framework automatically unboxes these values as required, as shown here:

NSNumber *price = [house valueForKey:@"rentalPrice"];
NSLog(@"House rental price is $%f ", [price floatValue]);

[house setValue:[NSNumber numberWithFloat:19.25] forKey:@"rentalPrice"];

As a convenience measure, KVC also provides the dictionaryWithValuesForKeys:
and setValuesForKeysWithDictionary: methods that enable you to pass in multiple
KVC requests at once. In the case of the dictionaryWithValuesForKeys: message,
you pass in an NSArray of property names and get back an NSDictionary of property
name/value pairs.

Most objects are KVC-compliant by default
It’s important to realize that almost all Objective-C objects, including those in Foun-
dation framework, such as NSString, are by default suitable for use with KVC tech-
niques. This is because every object ultimately inherits from NSObject, and the
@synthesize compiler feature discussed in chapter 5 produces suitable getter and
setter methods automatically by default. In general, you have to go out of your way
to produce an object that’s incompatible with KVC.
Download from Wow! eBook <www.wowebook.com>

215Making your objects KVC-compliant
11.1.2 Constructing key paths

KVC is much more interesting once you discover that as well as using simple keys that
access properties directly on the object being queried, it’s possible to use more
advanced key paths to drill down into child objects. To enable this functionality, you
use the valueForKeyPath: message instead of valueForKey:.

 In the key path string, you separate the name of properties with periods, and as the
KVC framework parses the string, it steps through your object hierarchy using KVC
queries to reach the next level. As an example, the CTRentalProperty class has an
address property that returns an NSString, and an NSString object has a length
property. You can query the character length of a property’s address via the following
KVC key path query:

NSNumber *len = [house valueForKeyPath:@"address.length"];
NSLog(@"The address has %d characters in it", [len intValue]);

There is also an equivalent setValue:forKeyPath: that can be used to update the
current value of a property of a child object, provided it has a suitable setter message.

11.1.3 Returning multiple values

While traversing key paths, you may encounter a property that represents zero or more
values. For example, within chapter 6 you created a Teacher class which contained an
NSArray property listing the classes taught by that teacher.

 An array property represents a one-to-many relationship. Once an array is found in
a key path, the remaining part is evaluated for each element in the array, and the
results collated into an array.

 As an example, the following query uses valueForKeyPath: to determine the
classes taught by the list of teachers found within an array called myTeachers:

NSArray * courses = [myTeachers valueForKeyPath:@"classes"];
NSLog(@"Courses taught by teachers: %@", courses);

This query generates output similar to this:

Courses taught by teachers: (English, Spanish, Math, ARM, Immersive Gaming,
Physical Computing)

KVC can use collections other than NSArrays
Although the examples in this chapter heavily rely on properties that return an
NSArray collection, the KVC infrastructure can operate with other collection-based
data structures, even custom ones you develop yourself.

The key, yet again, is ensuring your class provides support for messages that con-
form to a specific convention to enable access to the collection. For more informa-
tion, refer to the section titled “Collection Accessor Patterns for To-Many Properties”
in the Key-Value Coding Programming Guide.
Download from Wow! eBook <www.wowebook.com>

216 CHAPTER 11 Key-Value Coding and NSPredicate
11.1.4 Aggregating and collating values

While working with one-to-many relationships in key paths, you may sometimes prefer an
aggregate result that summarizes the raw data instead of an individual result for each
value a key path matches. For example, rather than a list of tenants, you may just need the
age of the oldest tenant, the average age of all tenants, or a list of all unique last names.

 Key-value paths can perform such calculations by introducing a collection opera-
tor into the key path using the @ prefix. In practice, most key paths consist of two
parts; see table 11.1.

As an example, the following code snippet uses the @count operator to determine the
number of rental properties located in the rentalProperties array:

NSNumber *count = [rentalProperties valueForKeyPath:"@count"];
NSLog(@"There are %d rental properties for available", [count intValue]);

Internally, KVC queries a key path as normal, but when it detects an aggregate func-
tion, it creates a loop that iterates over all matching elements and performs the
required calculation. The neat thing is that this process is all hidden from you: you
express in a string the result you need. For example, the following two queries return
the maximum and average length of all rental property addresses:

NSNumber *avg = [rentalProperties valueForKeyPath:@"@avg.address.length"];
NSNumber *max = [rentalProeprties valueForKeyPath:@"@max.address.length"];

Another thing you might need is a set of unique values assigned to a given property,
such as a list of all unique rental prices. You may be tempted to generate the list via
the KVC query:

NSArray *rentalPrices = [rentalProperties valueForKeyPath:@"rentalPrice"];

Table 11.1 Common key path collection operators that aggregate and summarize items in a collection

Operator Description

@avg Converts the key path to the right of the operator to a collec-
tion of doubles and returns the average value

@count Returns the number of objects in the key path to the left of
the operator

@max Converts the key path to the right of the operator to a collec-
tion of doubles and returns the maximum value

@min Converts the key path to the right of the operator to a collec-
tion of doubles and returns the minimum value

@sum Converts the key path to the right of the operator to a collec-
tion of doubles and returns their sum

@distinctUnionOfObjects Returns an array containing the distinct objects in the property
specified by the key path to the right of the operator
Download from Wow! eBook <www.wowebook.com>

217Handling special cases
This query, however, would result in an array with duplicates if two or more rental
properties were rented for the same monetary figure. Using the @distinctUnion-
OfObjects aggregate function resolves this situation:

NSArray *rentalPrices =
[rentalPropertiesvalueForKeyPath:@"@distinctUnionOfObjects.rentalPrice"];

The @distinctUnionOfObjects operator causes the KVC framework to walk through
the array of objects to be returned and filter out duplicates, leaving only unique objects.

11.2 Handling special cases
While using KVC, you may encounter corner cases that can’t occur with more traditional
property getter and setter access code. Some errors that an Objective-C compiler would
normally warn about during compilation will instead be detected at only runtime.

11.2.1 Handling unknown keys

One problem with using strings to specify properties is that there’s nothing stopping
you from writing a KVC query such as the following

id value = [house valueForKeyPath:@"advert"];

The CTRentalProperty class doesn’t contain a property called advert, but the
Objective-C compiler can’t flag this as an error or warning at compile time because all
it sees is a valid string constant. The compiler is unaware of how the string will be
interpreted or utilized by the KVC framework during runtime.

 At runtime, however, attempting to access such as key path will result in the follow-
ing exception:

[<CTRentalProperty 0x1322> valueForUndefinedKey:] this class is not key value
coding-compilant for the key advert]

The exception indicates that the KVC infrastructure can’t determine how to access a
property named advert on the current CTRentalProperty object (at least according
to the rules outlined earlier in this chapter).

 Sometimes, however, you may want an object to respond to getting or setting val-
ues for key(s) that don’t physically exist on the object or at least don’t conform to
the rules outlined previously. You can make the CTRentalProperty object respond
to the advert key, even though it doesn’t contain a property by that name, by overrid-
ing the setValue:forUndefinedKey: and valueForUndefinedKey: messages in the
CTRentalProperty class, as shown in the following listing.

- (void)setValue:(id)value forUndefinedKey:(NSString *)key {
 if ([key isEqualToString:@"advert"]) {
 NSArray *bits = [value componentsSeparatedByString:@", "];
 self.rentalPrice = [[bits objectAtIndex:0] floatValue;
 self.address = [bits objectAtIndex:1];
 } else {

Listing 11.1 setValue:forUndefinedKey: and valueForUndefinedKey:
Download from Wow! eBook <www.wowebook.com>

218 CHAPTER 11 Key-Value Coding and NSPredicate
 [super setValue:value forUndefinedKey:key];
 }
}

- (id)valueForUndefinedKey:(NSString *)key {
 if ([key isEqualToString:@"advert"]) {
 return [NSString stringWithFormat:@"$%f, %@",
 rentalPrice, address];
 } else {
 [super valueForUndefinedKey:key];
 }
}

An important point to consider about custom setValue:forUndefinedKey: and value-
ForUndefinedKey: message implementations is that, internally, they should access set-
ter methods or properties rather than their backing ivars directly. If you access or
update an instance variable directly, Key-Value Observing won’t always correctly detect
changes in a key’s value and hence won’t notify interested observers. In listing 11.1,
therefore, it’s important that you refer to rentalPrice and address as self.rental-
Price and self.address because, instead of updating the instance variable, this syn-
tax (or the alternative [self rentalPrice], [self address]) will invoke the matching
setter methods giving KVO a chance to observe the change.

 With the additional method implementations in listing 11.1, the CTRentalProperty
object now appears to have an additional property called advert that returns a string
in the format "$price, address"—for example, "$175, 46 Coleburn Street". Follow-
ing is an example of how this property would be accessed:

NSLog(@"Rental price is: %@", [house valueForKey:@"rentalPrice"]);
NSLog(@"Address is: %@", [house valueForKey:@"address"]);

NSString *advert = [house valueForKey:@"advert"];
NSLog(@"Advert for rental property is '%@'", advert);

This is not a very realistic implementation of the setValue:forUndefinedKey: and
valueForUndefinedKey: messages. It would have perhaps been easier, more efficient,
and cleaner to add a physical property named advert to the CTRentalProperty class. A
more realistic implementation could use something like an NSMutableDictionary to
enable a CTRentalProperty object to store arbitrary metadata about a rental property.

11.2.2 Handling nil values

A similar problem can occur when a nil value is passed to setValue:forKey:. As an
example, what happens if you execute the following statement?

[house setValue:nil forKey:@"rentalPrice"];

Because the rentalPrice property of the CTRentalProperty class is a primitive data-
type (float), it can’t store the value nil. In this case, the default behavior is for the KVC
infrastructure to throw an exception, as follows:

[<CTRentalProperty 0x123232> setNilValueForKey]: Could not set nil as the
value for the key rentalPrice.
Download from Wow! eBook <www.wowebook.com>

219Filtering and matching with predicates
In some cases, this is less than desirable. It’s possible to override how nil values (typi-
cally used to represent the absence of a value) are handled. In the example of
CTRentalProperty’s rentalPrice property, a more sensible approach may be to set
the rentalPrice value to 0 whenever nil is received. You can do so by overriding
another message called setNilValueForKey:, as demonstrated here:

- (void)setNilValueForKey:(NSString *)key {
 if ([key isEqualToString:@"rentalPrice"]) {
 rentalPrice = 0;
 } else {
 [super setNilValueForKey:key];
 }
}

With this implementation of setNilValueForKey:, attempting to use KVC to set the
rentalPrice property to nil instead causes the property to be updated to the value 0.

11.3 Filtering and matching with predicates
Now that you know how to reference and access object properties via string-based
key paths, it may not surprise you that a layer of other technologies is built on top of
this foundation.

 Often, when provided with an object, you’ll want to compare it against a certain
condition and perform different actions based on the result of the comparison. Simi-
larly, if you have a collection of data, such as an NSArray or NSSet, you may want to use
a specific set of criteria to filter, or select, subsets of the data.

 These forms of expressions are commonly called predicate conditions and are repre-
sented in the Foundation framework by the NSPredicate class, which internally uses
KVC, and key paths in particular.

11.3.1 Evaluating a predicate
Suppose you want to quickly determine if a CTRentalProperty object’s rental price
is greater than $500. Mathematically, this can be expressed by the following predi-
cate expression:

rentalPrice > 500

You can programmatically perform this check with an Objective-C statement such as
the following:

BOOL conditionMet = (house.rentalPrice > 500);

The condition is hardcoded into the source code and can’t easily change during run-
time or in response to user input. In such a case, the NSPredicate class decouples
things in a manner similar to what KVC does for getter and setter operations. The
example condition could also be evaluated by the following code snippet, which uses
the NSPredicate class:

NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@"rentalPrice > 500"];

BOOL conditionMet = [predicate evaluateWithObject:house];
Download from Wow! eBook <www.wowebook.com>

220 CHAPTER 11 Key-Value Coding and NSPredicate
Here the predicate expression "rentalPrice > 500" is expressed as a string, which
opens up a number of opportunities for it to be generated or changed at runtime.
Once an NSPredicate object is created with the required expression, you can utilize
its evaluateWithObject: message to compare a specified object against the predicate
expression and determine if the object is a match or not.

NSPredicate is used in a number of frameworks as a way to enable clients to pass
in application-specific query or filter conditions.

11.3.2 Filtering a collection

Now that you can express a generic predicate condition, you can use it for a number
of purposes. A common task is to want to compare a predicate against each object in a
collection, such as an NSArray. If you had an array of CTRentalProperty objects called
allProperties, for example, you could determine which ones had a rental price
greater than $500 by implementing a code snippet similar to the following:

NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@"rentalPrice > 500"];

NSArray *housesThatMatched =
 [allProperties filteredArrayUsingPredicate:predicate];

for (CTRentalProperty *house in housesThatMatched) {
 NSLog(@"%@ matches", house.address);
}

Once you have an NSPredicate expressing your desired condition, NSArray’s filtered-
ArrayUsingPredicate: message can be used to evaluate the predicate against each
object in the array and return a new array containing only those objects that match
the condition. If instead you have a mutable array, a similar filterUsingPredicate:
message allows you to remove any objects that don’t match the predicate from an
existing array rather than creating a new copy.

11.3.3 Expressing your predicate condition

The simplest form of predicate condition is one that compares a property key path
against another value, commonly a constant. An example of this is the rentalPrice >
500 predicate expression demonstrated previously. Other common comparison oper-
ators are listed in table 11.2.

Table 11.2 Common comparison operators for use with NSPredicate expressions. Notice that a
number of operators have alternative symbols.

Operator Description Example

==, = Equal to rentalPrice == 350

!=, <> Not equal to rentalPrice <> 350

> Greater than rentalPrice > 350
Download from Wow! eBook <www.wowebook.com>

221Filtering and matching with predicates
In a predicate expression, numeric constants can be expressed as normal (7, 1.2343,
and so on), while string constants are enclosed in single or double quotation marks.
Boolean values are expressed as true and false, but unlike most expression lan-
guages, a single constant such as true or false isn’t a valid expression. If you want an
NSPredicate to always evaluate to true or to false, you must instead use the key-
words TRUEPREDICATE or FALSEPREDICATE respectively (or use a more complex expres-
sion such as "true = true").

 It’s even possible for predicate expressions to involve calculations. Although some-
what overly complex for the task, another way to express the predicate of rental prices
greater than $500 would be as follows:

rentalPrice > 5 * 100

Such expressions often don’t make a lot of sense, especially when the complete
expression is stored as a compile-time string in source code. As you’ll discover later,
though, they can be helpful when predicates are built at runtime based on user input.

11.3.4 More complex conditions

NSPredicate also supports a full range of conditional operators designed for use with
properties consisting of string-based content, as shown in table 11.3.

 It’s also possible to make compound predicates by using the AND (&&), OR (||), and
NOT (!) operators as well as parentheses. As an example, the following code sample
returns a list of rental properties that rent for less than $500 or are located in Sumner.

NSPredicate *predicate = [NSPredicate predicateWithFormat:
 @"rentalPrice < 500 || address ENDSWITH 'Sumner'"];

NSArray *housesThatMatched =
 [allProperties filteredArrayUsingPredicate:predicate];

for (CTRentalProperty *house in housesThatMatched) {
 NSLog(@"%@ matches", house.address);
}

>=, => Greater than or equal to rentalPrice >= 350

< Less than rentalPrice < 350

<=, =< Less than or equal to rentalPrice <= 350

BETWEEN rentalPrice BETWEEN{ 400, 1000 }

TRUEPREDICATE Always evaluates to true TRUEPREDICATE

FALSEPREDICATE Always evaluates to false FALSEPREDICATE

Table 11.2 Common comparison operators for use with NSPredicate expressions. Notice that a
number of operators have alternative symbols. (continued)

Operator Description Example
Download from Wow! eBook <www.wowebook.com>

222 CHAPTER 11 Key-Value Coding and NSPredicate
Similar to a number of comparison operators that have alternative symbols, the com-
pound predicates all have two valid forms. Parentheses can be utilized to ensure evalu-
ation order is correct in the case of more complex expressions, especially those that
include calculations.

 Another operator worth mentioning, especially if your object contains enumer-
ated data types such as CTRentalProperty’s propertyType property, is the IN opera-
tor. This allows you to simplify the syntax for comparing a value against a number of
possible values. For example, if you want to match rental properties that are Town-
Houses or Units, you can use the following NSPredicate expression:

propertyType IN { 0, 1 }

The values 0 and 1 match the enumerated types TownHouse and Unit respectively,
meaning that this expression is logically equivalent to the much wordier expression:

(propertyType = 0) or (propertyType = 1)

11.3.5 Using key paths in predicate expressions

We’ve demonstrated the use of NSPredicate with expressions that compare single
property values against hardcoded constants, but it’s possible to use virtually any key
path in an NSPredicate expression. This means you can develop some pretty complex
filter conditions.

 For example, the following predicate will match all rental properties with
addresses consisting of at least 30 characters:

address.length > 30

It’s also possible, using a range of additional operators, to perform set-based condi-
tions whenever an array or similar collection is present in a key path. Table 11.4 lists
some examples.

Table 11.3 String operators available to NSPredicate-based predicate expressions. Regular
expressions are a powerful way to validate string values against patterns, such as "valid email
address" or "valid phone number".

Operator Description Example

BEGINSWITH Does string begin with the specified prefix? address BEGINSWITH '17'

ENDSWITH Does string end with the specified postfix? address ENDSWITH 'Street'

CONTAINS Does string contain the specified string
somewhere?

address CONTAINS 'egg'

LIKE Does string match the specified pattern? A ?
will match any character, while * matches 0
or more.

address LIKE '?? Kipling*'

MATCHES Does string match the specified regular
expression? In the example to the right, this
matches any string that starts with a 4 or a 7.

address MATCHES '[47].*'
Download from Wow! eBook <www.wowebook.com>

223Filtering and matching with predicates
11.3.6 Parameterizing and templating predicate expressions

So far, all examples of creating an NSPredicate object have used the predicateWith-
Format: class message and consisted of a simple string. As the name of the message
alludes to, the predicateWithFormat: message accepts NSString stringWith-
Format:–style format arguments as well. For example, the following code snippet pro-
duces the predicate expression rentalPrice > 500 || address ENDSWITH 'Sumner':

NSPredicate *predicate = [NSPredicate predicateWithFormat:
 @"rentalPrice > %f || address ENDSWITH %@", 500.0f, @"Sumner"];

Notice that, unlike the original example in which the string Sumner had to be escaped
with quotation marks, this example uses the %@ format specifier, and NSPredicate is
smart enough to introduce the required quote marks. The following code sample
emits the final predicate expression generated by the previous code snippet:

NSLog(@"The predicate expression is %@", [predicate predicateFormat]);

This feature and others like it can be handy, and they help avoid common problems in
generating dynamic expressions, such as improperly escaping strings that contain
internal quotation marks.

 If you parameterize a predicate expression because you want to dynamically
adjust its values, perhaps by hooking up a numeric value to a UISlider control, the
NSPredicate class can go one better. Altering the previous code snippet, you can use
the following predicate template definition

NSPredicate *template = [NSPredicate predicateWithFormat:
 @"rentalPrice > $MINPRICE || address ENDSWITH $SUBURB"];

where names beginning with a dollar sign indicate placeholders in the templates
where you can substitute different values at runtime. If you attempt to use this tem-
plate predicate directly, an NSInvalidArgumentException is thrown, indicating that
you haven’t provided values for MINPRICE and SUBURB. To specify these values, you use
the predicateWithSubstitutionVariables: message, passing in an NSDictionary of
variable name/value pairs, as follows:

Table 11.4 Set-based operators that can be used in NSPredicate-based expressions when a
collection of objects is present in a key path

Operator Description Example

ANY Do one or more objects satisfy the key path
expression?

ANY address.length > 50

ALL Do all objects satisfy the key path expression? ALL address.length < 20

NONE Do all objects not match the key path
expression?

NONE address.length < 20
Download from Wow! eBook <www.wowebook.com>

224 CHAPTER 11 Key-Value Coding and NSPredicate
NSDictionary *variables = [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithFloat:500],
 @"MINPRICE",
 @"Sumner",
 @"SUBURB",
 nil];

NSPredicate *predicate = [template
 predicateWithSubstitutionVariables:variables];

From this point on, the predicate can be used as demonstrated in the previous sections.

11.4 Sample application
To demonstrate in a real-world situation the power of NSPredicate-based filtering and
KVC, let’s update the Rental Manager application to allow the user to filter the list of
available rental properties to show only those properties matching a set of conditions
specified by the user.

 Replace the contents of RootViewController.h with the following listing.

@interface RootViewController : UITableViewController<UIAlertViewDelegate> {
 NSDictionary *cityMappings;
 NSArray *allProperties;
 NSArray *filteredProperties;
}

@end

Make sure you also replace the contents of RootViewController.m with the follow-
ing listing.

#import "RootViewController.h"
#import "CTRentalProperty.h"

@implementation RootViewController

- (void)viewDidLoad {
 [super viewDidLoad];

 NSString *path = [[NSBundle mainBundle]
 pathForResource:@"CityMappings"
 ofType:@"plist"];
 cityMappings = [[NSDictionary alloc] initWithContentsOfFile:path];

 allProperties = [[NSArray alloc] initWithObjects:
 [CTRentalProperty rentalPropertyOfType:TownHouse
 rentingFor:420.0f
 atAddress:@"13 Waverly Crescent, Sumner"],
 [CTRentalProperty rentalPropertyOfType:Unit
 rentingFor:365.0f
 atAddress:@"74 Roberson Lane, Christchurch"],
 [CTRentalProperty rentalPropertyOfType:Unit

Listing 11.2 RootViewController.h updated to store a filtered set of rental properties

Listing 11.3 RootViewController.m is updated

Load city
image names

Create array
for all
properties
Download from Wow! eBook <www.wowebook.com>

225Sample application
 rentingFor:275.9f
 atAddress:@"17 Kipling Street, Riccarton"],
 [CTRentalProperty rentalPropertyOfType:Mansion
 rentingFor:1500.0f
 atAddress:@"4 Everglade Ridge, Sumner"],
 [CTRentalProperty rentalPropertyOfType:Mansion
 rentingFor:2000.0f
 atAddress:@"19 Islington Road, Clifton"],
 nil];
 filteredProperties = [[NSMutableArray alloc]
 initWithArray:allProperties];

 self.navigationItem.rightBarButtonItem =
 [[UIBarButtonItem alloc]
 initWithTitle:@"Filter"
 style:UIBarButtonItemStylePlain
 target:self
 action:@selector(filterList)];
}

- (void)filterList {
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Filter"
 message:nil delegate:self
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:nil];

 [alert addButtonWithTitle:@"All"];
 [alert addButtonWithTitle:@"Properties on Roads"];
 [alert addButtonWithTitle:@"Less than $300pw"];
 [alert addButtonWithTitle:@"Between $250 and $450pw"];

 [alert show];
 [alert release];
}

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex

{
 if (buttonIndex != 0)
 {
 NSPredicate *predicate;

 switch (buttonIndex) {
 case 1:
 predicate = [NSPredicate
 predicateWithFormat:@"TRUEPREDICATE"];
 break;
 case 2:
 predicate = [NSPredicate
 predicateWithFormat:@"address CONTAINS 'Road'"];
 break;
 case 3:
 predicate = [NSPredicate
 predicateWithFormat:@"rentalPrice < 300"];
 break;
 case 4:

Create array for
filtered properties

Add “Filter”
button

Create alert for
filtered options

Check user doesn’t
click Cancel

Create filter
predicate
Download from Wow! eBook <www.wowebook.com>

226 CHAPTER 11 Key-Value Coding and NSPredicate
 predicate = [NSPredicate
 predicateWithFormat:
 @"rentalPrice BETWEEN { 250, 450 }"];
 break;
 }

 [filteredProperties release];
 filteredProperties = [[allProperties
 filteredArrayUsingPredicate:predicate] retain];

 [self.tableView reloadData];
 }
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [filteredProperties count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier] autorelease];
 }

 CTRentalProperty *property =
 [filteredProperties objectAtIndex:indexPath.row];

 int indexOfComma = [property.address rangeOfString:@","].location;
 NSString *address = [property.address
 substringToIndex:indexOfComma];
 NSString *city = [property.address
 substringFromIndex:indexOfComma + 2];

 cell.textLabel.text = address;

 NSString *imageName = [cityMappings objectForKey:city];
 cell.imageView.image = [UIImage imageNamed:imageName];

 cell.detailTextLabel.text =
 [NSString stringWithFormat:@"Rents for $%0.2f per week",
 property.rentalPrice];

 return cell;
}

- (void)dealloc {
 [cityMappings release];
 [allProperties release];
 [filteredProperties release];

 [super dealloc];
}

@end

Save new
filtered values

Get property from filteredProperties

Get and
display
correct city
image
Download from Wow! eBook <www.wowebook.com>

227Summary
The core of the logic occurs in the alertView:clickedButtonAtIndex: method. This
method is invoked when the user taps the right-hand button on the navigation bar
and selects a desired filter condition. The method first creates an NSPredicate
instance detailing which properties should still be displayed in the UITableView.

 This predicate then filters the array of all rental properties (allProperties) using
the predicate to come up with a new array (filteredProperties) consisting of the
subset of rental properties that meet the specified conditions. The UITableView is
then requested to reload using this second array to display the filtered set of rental
properties to the user.

11.5 Summary
KVC- and NSPredicate-based logic is a powerful way to query, filter, analyze, and
access data from an in-memory object-based data model. And this is just the tip of the
iceberg of KVC’s true power.

 The real power of KVC begins to shine when you realize the level of abstraction it can
provide. When we discussed key-path operators such as @min, @max, and @distinct-
UnionOfObjects, you may have noticed that you expressed, in a simple string format,
what operation was required, then left it up to the framework to determine how to
iterate over the data model and any memory management issues or temporary data
structures required to produce the results.

 In chapter 12 you discover that all the concepts discussed in this chapter are trans-
ferrable for use with Core Data–based object models. Although the programming
model is equivalent and familiar, behind the scenes, the implementation couldn’t be
more different. In the case of Core Data, KVC converts key paths and NSPredicate-
based filter expressions into Structured Query Language (SQL) queries that are exe-
cuted at the database level.

 As a programmer, you for the most part don’t care. You worry about the creation of
the required filter conditions and leave it up to the framework to determine how best
to implement the required logic.

 Next up in chapter 12, you’ll learn all about Core Data and how it can help you in
the creation of robust iOS applications.
Download from Wow! eBook <www.wowebook.com>

Reading and writing
application data
How useful would the Contacts application be if all your contacts were gone when
you quit the application? Or how useful would the Notes application be if all your
notes were lost when you turned off your iPhone? Not very useful at all. What is the
one thing that makes these and most other applications useful? It’s data persis-
tence: the permanent storage of data that “survives” the closing of an application or
even the restart or shutdown of the device.

 Data persistence is needed in almost every application in one way or another. In
a game, you might need to save high scores, user data, or game progress. In a pro-
ductivity application, you want to save, edit, and delete to-do list items. Or in an RSS
reader application, you want to save which feeds the user subscribes to. How do you
persist data on the iPhone?

 When the iPhone was first introduced, Apple included support for SQLite.
SQLite is a lightweight, embeddable database system that can be accessed using the

This chapter covers
■ Core Data basics
■ Data models
■ The NSFetchedResultsController class
■ Data validation and performance
228

Download from Wow! eBook <www.wowebook.com>

229Core Data history
Structured Query Language (SQL). It was the primary method for persisting (or stor-
ing) data on the iPhone. It got the job done, but it required a lot of overhead during
development. To use SQLite, you had to do everything “by hand”: You had to create
and initialize the database. You had to write SQL code for all CRUD (create, read,
update, and delete) operations. You had to manually set up and manage relationships.
And as a good object-oriented developer, you had to put the data you got from the
database into Objective-C data model objects and take data from those objects again
when you wanted to build a database query that updated, created, or deleted data. On
top of that, you had to manage primary and foreign keys, and so on and so forth. You
get the picture. It was no fun at all to write all that code.

 Fortunately, Apple realized that too and brought the Core Data framework to the
iPhone with the 3.0 software development kit (SDK). Core Data can be compared to
ActiveRecord (if you know Ruby on Rails) or Hibernate (if you’re a Java developer). It
handles all the low-level nitty-gritty details of data persistence for you: you don’t have
to write SQL code, you don’t have to map between data and data objects, and you
don’t have to handle relationships (it won’t fix your marriage, though).

 In this chapter, we take a high-level look at all the different moving parts of Core
Data and then get our hands dirty by building a simple Core Data application. Please
keep in mind that Core Data is an advanced topic, and it would take a whole book to
cover everything there is to know about it. But this chapter teaches you everything you
need to know to leverage Core Data for all your most common data persistence needs.

12.1 Core Data history
Nearly every application has a data model and model objects (people, invoices, prod-
ucts, departments—you name it). And nearly every application has to save some or all
of that data to disk. Functionality that is needed by a substantial number of applica-
tions and solutions to problems that developers face repeatedly calls for a framework.
That’s why Apple put this data modeling and persistence functionality into a frame-
work and called it Core Data. It was first introduced in 2005 with Mac OS X (10.4)
Tiger. Core Data is the M in MVC (model-view-controller). It takes care of the com-
plete model layer, including the relationships among the model objects, and makes it
extremely easy to save an object graph to and load it from disk.

 Before we dive into using Core Data, let’s look into the objects that make Core
Data work.

12.1.1 What does Core Data do?

Core Data isn’t just a wrapper for database access. In most cases, however, Core Data
uses a SQLite database to store the data on disk. On Mac OS X, developers usually also
choose SQLite when working with Core Data, but the option to save the data in XML
format is available too, which shows that Core Data isn’t simply a database access
library. To explain what’s going on under the hood, we take a brief look at SQLite
because it’ll make some of the underpinnings easier to understand.
Download from Wow! eBook <www.wowebook.com>

230 CHAPTER 12 Reading and writing application data
 In this book we’ve talked extensively about objects as the building blocks of appli-
cations. You’ve seen objects as containing instance variables with types such as
NSString, NSNumber, NSArray, and so on. Traditionally developers would create a data-
base table to hold the attributes of these instance variables. A database table can be
thought of as a spreadsheet. Each row represents the data needed to make a specific
instance of an object, and each column represents one of the instance variables. If you
wanted to store four Person objects, like the ones you made for chapter 6, the table
might look like this.

Each of the four rows represents a Person object, and the four columns represent the
instance variables: ID as a unique identifier of the object, Name as a string, Age as an
integer, and Gender as an integer. You’d have to write translations for the integers in
the database access class, with 0 corresponding to Male and 1 corresponding to
Female. Before Core Data, if you wanted to store Person objects in a database, you’d
create a similar table. Then you’d create a class called something like DBController.
DBController would know the location of the SQLite database in the file directories of
the application. It would have methods for accessing the database, as shown in the fol-
lowing listing.

- (void)addPersonToDatabase:(Person *)aPerson;

- (Person *)personWithName:(NSString *)aName
- (NSArray *)peopleWithAge:(int)anAge;

- (void)removePeopleWithGender:(Gender)aGender;

- (BOOL)updatePersonWithName:(NSString *)aName toAge:(int)anAge;

Any time an action in the application required interaction with the database, these
methods had to be used. For a large application with complex objects, DBController
classes were burdensome. They added a lot of code to a project just to facilitate storage.

 Core Data automates the creation of all of these access methods and hides the guts
of the database access from the developer. It greatly reduces the amount of code
required by a project and improves the access time for most database queries. Unless
you’re storing a small preference, such as something that can fit easily with a plist,
Apple recommends Core Data over a manual SQLite implementation.

ID (INT) Name (String) Age (INT) Gender (INT)

1 "Jimmy Miller" 16 0

2 "Brian Shedlock" 22 0

3 "Caitlin Acker" 28 1

4 "Collin Ruffenach" 35 0

Listing 12.1 Example database access methods (DBController)
Download from Wow! eBook <www.wowebook.com>

231Core Data objects
 In Xcode you can create a new project configured to use Core Data as the storage
mechanism, which involves importing the CoreData.framework. Projects configured
to use Core Data also create the Xcode data model that’s used to define what your
data looks like, also known as its schema.

12.2 Core Data objects
The functionality of Core Data is achieved through four distinct objects that compose
what is known as the Core Data stack. These are the four major objects that make up Core
Data’s functionality. We investigate the purpose of each in the next several sections. The
singular point of access is through the managed object context, discussed next, so if
you’re less concerned with the nuts and bolts of the system, you don’t need to be too
concerned about the persistent store coordinator and the persistent object store.

12.2.1 Managed object context
NSManagedObjectContext is the object that you work with to add, access, modify, or
delete objects. When you access a single element out of a managed object context, an
NSManagedObject or a subclass of it is returned. In the Person example, a returned
NSManagedObject could be a Person object. You aren’t required to create subclasses
for every entity, though. You can also work directly with NSManagedObject instances, as
you’ll see in this chapter’s demo application.

 When you’re working with an NSManagedObject retrieved from your managed
object context, a good way to think of how the logic works is to compare it to a text
file: if you open a text file, change a whole bunch of the text, add some, remove some,
nothing matters unless and until you save it. So when you retrieve an NSManaged-
Object from your managed object context, the changes you make to it are applied to
the database only when you tell the managed object context to save it. We get into the
details of these activities later in this chapter, but the important point is to know that
by using the managed object context, you can add, retrieve, and save NSManaged-
Objects or your custom subclasses.

12.2.2 Persistent store coordinator
In the stack, you work exclusively with the managed object context, and while a com-
plex application may have several managed object contexts, all Core Data–based proj-
ects have only a single store coordinator. The persistent store coordinator sits between
a managed object context and a persistent object store. You can think of it as the key
holder to the databases. The managed object context must ask the persistent object
coordinator if the requested access modification or deletion is allowed. It’s important
that a storage controller contains lots of checks to validate actions by its user, which is
why you use only a single persistent store coordinator. If more than one coordinator
exists, conflicting access to the database may occur. The persistent store coordinator
manages all of the logic necessary to safely access and modify database tables.
Download from Wow! eBook <www.wowebook.com>

232 CHAPTER 12 Reading and writing application data
12.2.3 Managed object model

The managed object model is an object connected to the persistent store coordinator.
The persistent store coordinator uses the managed object model to understand the
data it’s pulling out of the persistent object store. The model is the actual definition of
the data you plan to use with Core Data. It’s like a blueprint. Rather than manually
making classes for the object you plan to store, you define a managed object model
and either work straight with the instances of NSManagedObject that Core Data popu-
lates for you or let Xcode generate the object classes for you (subclasses of NSManaged-
Object). Xcode provides a special user interface for developers to create and manage
their models. Later in the chapter you’ll create a model, have it generate Objective-C
classes for your objects, and use them through a persistent object store.

12.2.4 Persistent object store

At the bottom of the Core Data stack are the persistent object stores. A persistent
object store bridges the gap between the objects in a managed object context and a
file on disk. There are different types of persistent stores, but on the iOS the NSSQLite-
StoreType is usually used. A Core Data application can have several persistent object
stores, but in iOS applications, you commonly use only one.

12.3 Core Data resources
To take advantage of the Core Data technologies, you need to have certain files in
your project. These files and their calls rely on the Core Data framework. As discussed
in chapters 6 and 7, frameworks are what put the magic in the iPhone SDK. They
expose the precreated classes that you take advantage of to make your applications do
all the cool things you need them to do. By default, when you create a project, only
UIKit.framework and Foundation.framework are included. There are two ways to
configure a project to use Core Data. You can manually add CoreData.framework
to your project and set everything up by hand, or you can let Xcode do the work for
you. Xcode allows you to create projects that utilize Core Data for its storage mecha-
nism. It generates CoreData.framework and an Xcode data model, which is the pri-
mary file you work with to generate your Core Data models.

12.3.1 Core Data entities

Core Data provides an extremely simple interface to use native Objective-C classes as
the input and output to a persistent store (mostly a database). In Core Data’s terms, a
class is an entity. Entities are the building blocks of Core Data. They represent Core
Data–friendly custom objects—essentially NSObjects that Core Data creates, stores,
and modifies so that the objects are stored in a database and easy to query. An entity,
by default, is a subclass of NSManagedObject. NSManagedObject is a robust class capa-
ble of providing all the functionality most Core Data entity declarations require.
Sometimes, however, you need to subclass NSManagedObject to add the methods your
application specifically requires. Apple promotes the subclassing of this method but is
Download from Wow! eBook <www.wowebook.com>

233Core Data resources
careful to note that you should not override the core behavior methods. Following are
the methods of NSManagedObject that should not be overridden:

- (id)primitiveValueForKey:(NSString *)key
- (void)setPrimitiveValue:(id)value forKey:(NSString *)key
- (BOOL)isEqual:(id)anObject
- (NSUInteger)hash
- (Class)superclass
- (Class)class
- (id)self
- (NSZone *)zone
- (BOOL)isProxy
- (BOOL)isKindOfClass:(Class)aClass
- (BOOL)isMemberOfClass:(Class)aClass
- (BOOL)conformsToProtocol:(Protocol *)aProtocol
- (BOOL)respondsToSelector:(SEL)aSelector
- (id)retain
- (oneway void)release
- (id)autorelease
- (NSUInteger)retainCount
- (NSManagedObjectContext *)managedObjectContext
- (NSEntityDescription *)entity
- (NSManagedObjectID *)objected
- (BOOL)isInserted
- (BOOL)isUpdated
- (BOOL)isDeleted
- (BOOL)isFault

In most cases, when using Core Data, you won’t need to subclass or worry about any of
these issues. But if you do, make sure to leave these methods unaltered so that Core
Data’s functionality isn’t impacted.

12.3.2 Core Data attributes

An entity is composed of attributes and relationships. An attribute is a simple type,
such as a string or an integer. Table 12.1 lists Core Data’s simple attribute types that
transform into the listed Objective-C objects.

Table 12.1 Simple and native Core Data object types

Simple type Objective-C type

Int (16, 32, 64) NSNumber

Decimal NSNumber

Float NSNumber

String NSString

BOOL NSNumber

Date NSDate

Binary NSData
Download from Wow! eBook <www.wowebook.com>

234 CHAPTER 12 Reading and writing application data
Many objects can be composed solely of these simple types. Defining them in an entity
tells Core Data what the data type of each column for the database table will be. Later
you can create usable Objective-C classes out of these entities. Core Data generates the
class files that represent these entities and hides all of the nasty work usually required
to synthesize a native object in and out of a database table. Besides a type, certain attri-
butes can have other parameters defined. Number values (integers, floats, and so on)
can have maximums and minimums defined. Strings can have maximum and mini-
mum lengths specified, along with attached regular expressions. Finally, all attributes,
no matter what the type, can be defined as optional or mandatory and be given
default values. This is useful for modeling information such as a checkout for a store,
because during that process, you don’t want to allow the creation of an “order” object
without access to all the information you need. There’s still a problem, however. Most
objects require some combination of simple and complex types. To handle this prob-
lem, you can define relationships for Core Data entities.

12.3.3 Core Data relationships
Relationships are the connections among entities—a class’s complex instance vari-
ables. A relationship points to another entity defined in your Xcode data model.
When defining a relationship, you must also define the kind of association the object
has to the class. It can be a one-to-one or a one-to-many relationship. An element with
a one-to-many relationship is represented by a mutable set in the entry. With one-to-
many relationships, much like with attribute definitions, you can also assign mini-
mums and maximums for the set composing the relationship. A simple example is a
task list that tracks multiple tasks assigned to multiple people. As a companion to your
Rental Manager application, to help busy agents manage their schedules and tasks,
you’ll build an iPhone application that can do the job, including checking off tasks
when they’re completed. Let’s make these objects using Core Data’s tools.

12.4 Building the PocketTasks application
You start by creating a new Window-based project that uses Core Data for storage
(check the Use Core Data for Storage check box when creating the project). Let’s call
it PocketTasks. Xcode automatically creates a PocketTasks.xcdatamodel where you’ll
define all of your entities. One quick note about the listings in this chapter: for brev-
ity’s sake, releasing instance variables in the dealloc methods of the different classes
you build isn’t always explicitly mentioned. You’ll find them in the downloadable
source code for this chapter, though.

12.4.1 Examining the Xcode Core Data template
Before we look at the data model file, let’s quickly take a peek at the PocketTasksApp-
Delegate.m. Notice the following three methods:

- (NSManagedObjectContext *)managedObjectContext
- (NSManagedObjectModel *)managedObjectModel
- (NSPersistentStoreCoordinator *)persistentStoreCoordinator
Download from Wow! eBook <www.wowebook.com>

235Building the PocketTasks application
They take care of the Core Data stack. The managedObjectModel method creates a
new instance of NSManagedObjectModel with the data model description file that
you’ll create in the next step. The persistentStoreCoordinator method takes care
of accessing the underlying SQLite database file in the application’s document direc-
tory and creating a new instance of NSPersistentStoreCoordinator, which uses it
along with the managedObjectModel. The managedObjectContext method brings it all
together by creating a new instance of NSManagedObjectContext backed by the
persistentStoreCoordinator. In most use cases, you won’t have to directly deal with
the persistentStoreCoordinator and the managedObjectModel once it’s set up here.
The managedObjectContext is used more frequently, especially to load and save data.

 Now that you have an idea about the underpinnings, let’s define the data model of
the PocketTasks application.

12.4.2 Building the data model

Clicking PocketTasks.xcdatamodel brings up Xcode’s Data Modeling tool, which you
use to define all the entities as well as the attributes and relationships you need.

 To create a new entity, click the plus sign labeled Add Entity in the lower-left cor-
ner of the editor pane of the Xcode window. Call the entity “Person.” To add first
name and last name attributes to the Person entity, click the + sign in the lower-left
corner of the Attributes list and type in the name of the attribute. Call the first attri-
bute “firstName” and, from the Type list, select its datatype to be String. Because all
Person objects should have a firstName attribute specified, you should also open the
Data Model Inspector (Cmd-Option-3 or View > Utilities > Data Model Inspector) and
uncheck the Optional check box. Create a second attribute with the same settings
and call it “lastName.” You’ve just created your first entity model definition!

 But you’re not quite done yet: as you’ve probably guessed, you need a second
entity for the tasks. Add another entity, call it “Task,” and give it two attributes called
“name” of type String and “isDone” of type Boolean. The isDone attribute should be
optional, the name attribute mandatory (so you have to uncheck the checkmark next
to Optional).

 The Xcode data model editor can also show the data model graphically. In the
bottom-right corner of the main editor pane, you should see a toggle button
labeled Editor Style, which allows
toggling between table and graph
styles. The graph view is shown in
figure 12.1. This graph represents
the same data model but displays
the data in a manner that may be
more familiar and comfortable to
database developers.

Figure 12.1 Xcode’s Data Modeling tool shows a visual
representation of the entities in your data model.
Download from Wow! eBook <www.wowebook.com>

236 CHAPTER 12 Reading and writing application data
12.4.3 Defining the relationships

As the Person and Task models stand right now, they won’t be of much use. You want
to be able to add multiple tasks to a person. That means you must create a relation-
ship between both of your entities: a task “belongs to” a person, and a person “has
many” tasks.

 With the Data Modeling tool in the Table Editor style, select the Person entity and
click the + button in the Relationships section. Call the relationship “tasks,” and select
the Task entity as its destination. In the Data Model Inspector pane, next to Plural,
check the To-Many Relationship box to tell Core Data that the Person entity can have
more than one task. Finally, set the Delete Rule to Cascade. Cascade causes all the
tasks that belong to a given Person entity to be deleted when the Person entity is
deleted. Take, for example, a person called Peter. Peter has three tasks: go shopping,
clean the car, and learn Core Data. When you delete Peter, those three tasks are
deleted as well. The other two settings do the following:

■ Nullify—The child entities (in this case, the tasks) won’t be deleted, but they
won’t “belong” to the deleted Person entity anymore. They’ll be orphans.

■ Deny—Core Data won’t allow a parent entity to be deleted as long as it still has
children. In this case, Peter can’t be deleted if he still has three tasks.

■ No Action—Leave the destination objects as they are. That means they’ll most
likely point to a parent entity that no longer exists. In this case, the three tasks
would still belong to Peter even though he was deleted—a situation you gener-
ally want to avoid.

You’ve specified that a person has many tasks; now you must specify that a task belongs
to a person. Select the Task entity and add a new relationship called “person.”
Uncheck Optional because you don’t want to be able to create unassigned tasks. The
destination entity is obviously Person. The Inverse Relationship field lets you select
the corresponding relationship in the destination entity (in this case, the tasks rela-
tionship of the Person entity). Why is that important? For data integrity, you always
want to connect both sides of a relationship: you must always be able to access a per-
son object’s tasks, and you must always be able to access a task object’s person. That
way, you can change a task’s assignment from Peter to Mary, and Core Data knows it
must update the task’s person to Mary and update Peter’s and Mary’s lists of tasks.
With inverse relationships, you can always be sure your data stays consistent and Core
Data does The Right Thing. Never forget to set up the inverse relationship.

 Leave the Delete Rule at Nullify because you don’t want a person to be deleted just
because one of their tasks is deleted, but don’t want a finished task to stay connected
to the person before it’s deleted.

 Your tasks relationship should look like figure 12.2, and your person relationship
should look like figure 12.3.

 You’re done with the data model. Make sure to save it before moving on to the
next step.
Download from Wow! eBook <www.wowebook.com>

237Building the PocketTasks application
12.4.4 Creating Person entities in pure code

Now that the Core Data stack and the data model are set up, let’s start using them!
Instead of focusing too much on building a pretty UI, you first add some data pro-
grammatically and also read data programmatically and output it to the Console.
You’ll make it pretty later.

 Open PocketTasksAppDelegate.h and add the two methods from the following listing.

Figure 12.2 The tasks relationship for the Person entity. Relationships can be optional and point to many entities
(for example, one person can have many tasks). Notice the inverse relationship that points back to the person.

Figure 12.3 The person relationship for the Task entity. It isn’t optional (a task has to belong to a person), and it
points to only one person, not to many.
Download from Wow! eBook <www.wowebook.com>

238 CHAPTER 12 Reading and writing application data
- (void)createSampleData;
- (void)dumpDataToConsole;

Now switch to PocketTasksAppDelegate.m and implement the methods from the fol-
lowing listing.

- (void)createSampleData {
 NSArray *peopleToAdd =
 [NSArray arrayWithObjects:
 [NSArray arrayWithObjects:@"Peter", @"Pan", nil],
 [NSArray arrayWithObjects:@"Bob", @"Dylan", nil],
 [NSArray arrayWithObjects:@"Weird Al", @"Yankovic", nil],
 nil];

 for (NSArray *names in peopleToAdd) {
 NSManagedObject *newPerson =
 [NSEntityDescription
 insertNewObjectForEntityForName:@"Person"
 inManagedObjectContext:[self managedObjectContext]];

 [newPerson setValue:[names objectAtIndex:0] forKey:@"firstName"];
 [newPerson setValue:[names objectAtIndex:1] forKey:@"lastName"];

 NSLog(@"Creating %@ %@...", [names objectAtIndex:0],
 [names objectAtIndex:1]);
 }

 NSError *error = nil;
 if (![[self managedObjectContext] save:&error]) {
 NSLog(@"Error saving the managedObjectContext: %@", error);
 } else {
 NSLog(@"managedObjectContext successfully saved!");
 }
}

- (void)dumpDataToConsole {
 // we’ll implement this later
}

Once your application is finished launching, you call the createSampleData method by
making application:didFinishLaunchingWithOptions: look like the following listing.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 [self createSampleData];
 [self.window makeKeyAndVisible];
 return YES;
}

When you build and run this, you’ll see only a white screen on your iPhone, but if you
watch the Console, you’ll see that three new person entities have been created. The

Listing 12.2 Method declarations in PocketTasksAppDelegate.h

Listing 12.3 Method implementations in PocketTasksAppDelegate.m

Listing 12.4 Calling the method to create sample data in PocketTasksAppDelegate.m
Download from Wow! eBook <www.wowebook.com>

239Building the PocketTasks application
important line here is the call to NSEntityDescription’s insertNewObjectForEntity-
ForName:inManagedObjectContext: method. It creates a new Person managed object
and returns it. You can set its values in the next two lines. Notice, however, that this doesn’t
save anything yet! Only the call to save: on managedObjectContext saves the data.

 For some extra fun, comment the line that sets either the first or the last name and
build and run again. Notice in the Console that Core Data refuses to save your data
because you defined that both the first and last names are required.

12.4.5 Fetching Person entities in pure code

Naturally, you want access to the data you’ve saved (otherwise, this whole thing would
be pretty pointless, wouldn’t it?). Listing 12.5 shows the implementation of the dump-
DataToConsole method. And it does just that: fetches all Person entities ordered by
the last name and outputs them to the Console. The ordering is accomplished by an
array of NSSortDescriptors (just one, in this case). An instance of NSSortDescriptor
describes how objects should be ordered by setting the name of the property and,
optionally, a method or block that should be used to compare objects and by specify-
ing whether the order should be ascending or descending. The method setSort-
Descriptors: of NSFetchRequest takes an array of NSSortDescriptors because you
might want to order by last name and then first name, for example.

- (void)dumpDataToConsole {
 NSManagedObjectContext *moc = [self managedObjectContext];
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 [request setEntity:[NSEntityDescription entityForName:@"Person"
 inManagedObjectContext:moc]];
 // Tell the request that the people should be sorted by their last name
 [request setSortDescriptors:[NSArray arrayWithObject:
 [NSSortDescriptor sortDescriptorWithKey:@"lastName"
 ascending:YES]]];
 NSError *error = nil;
 NSArray *people = [moc executeFetchRequest:request error:&error];
 [request release];

 if (error) {
 NSLog(@"Error fetching the person entities: %@", error);
 } else {
 for (NSManagedObject *person in people) {
 NSLog(@"Found: %@ %@", [person valueForKey:@"firstName"],
 [person valueForKey:@"lastName"]);
 }
 }
}

Finally, you just need to change the application:didFinishLaunchingWith-
Options: method to call the dumpDataToConsole method instead of the create-
SampleData method, as in the following listing.

Listing 12.5 Dumping all Person entities to the Console in
PocketTasksAppDelegate.m
Download from Wow! eBook <www.wowebook.com>

240 CHAPTER 12 Reading and writing application data
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 [self dumpDataToConsole];
 [self.window makeKeyAndVisible];

 return YES;
}

Build this and run it. You should see the following output in the Console:

Found: Bob Dylan
Found: Peter Pan
Found: Weird Al Yankovic

You created an instance of NSFetchRequest and set it up to fetch the Person entities
and told it sort the array of results by last name. If you’re familiar with database pro-
gramming, you can imagine NSFetchRequest to be your SQL SELECT statement: you
can tell it what kind of data you want, how it should be sorted, and possibly also how it
should be filtered (“only people whose last name is ‘Smith’”).

 You can see that both creating and fetching data with Core Data isn’t too hard.
Now that you’re sure your data model works and the Core Data stack is set up cor-
rectly, you can move on to fleshing out a usable application.

12.4.6 Adding a master TableView

Being able to create only the same three people over and over is unlikely to meet
users’ needs. Let’s fix that and build a UI that allows users to add, edit, and delete
people. We won’t go over every line of code needed to build this UI; instead we
focus on the parts that are relevant to Core Data. You can find the complete
source code online.

 In Xcode select File > New > New File…. In the sheet that appears select iOS >
Cocoa Touch > UIViewController subclass and click Next. Then select UITableView-
Controller as the class to subclass and uncheck With XIB for User Interface. Click
Next and call it “PeopleViewController.” Open PeopleViewController.h and add one
instance variable and a custom init method, as shown in the following listing.

#import <UIKit/UIKit.h>

@interface PeopleViewController : UITableViewController
 <NSFetchedResultsControllerDelegate> {
 NSFetchedResultsController *resultsController;
 NSManagedObjectContext *managedObjectContext;
}

- (id)initWithManagedObjectContext:(NSManagedObjectContext *)moc;

@end

Listing 12.6 Changes to application:didFinishLaunchingWithOptions:

Listing 12.7 The PeopleViewController.h file
Download from Wow! eBook <www.wowebook.com>

241Building the PocketTasks application
The NSFetchedResultsController class makes it easy and memory efficient to fetch
data with Core Data and display it in a table view. In most of your Core Data iOS appli-
cations, you’ll want to use an NSFetchedResultsController, especially when you’re
dealing with large amounts of data.

 Now switch to PeopleViewController.m and implement the methods shown in the
following listing.

- (id)initWithManagedObjectContext:(NSManagedObjectContext *)moc {
 if ((self = [super initWithStyle:UITableViewStylePlain])) {
 managedObjectContext = [moc retain];

 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 [request setEntity:[NSEntityDescription entityForName:@"Person"
 inManagedObjectContext:moc]];
 [request setSortDescriptors:[NSArray arrayWithObject:
 [NSSortDescriptor sortDescriptorWithKey:@"lastName"
 ascending:YES]]];

 resultsController = [[NSFetchedResultsController alloc]
 initWithFetchRequest:request
 managedObjectContext:moc
 sectionNameKeyPath:nil
 cacheName:nil];

 resultsController.delegate = self;

 [request release];

 NSError *error = nil;

 if (![resultsController performFetch:&error]) {
 NSLog(@"Error while performing fetch: %@", error);
 }
 }

 return self;
}
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return [[resultsController sections] count];
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 return [[[resultsController sections]
 objectAtIndex:section] numberOfObjects];
}

- (void)configureCell:(UITableViewCell *)cell
 atIndexPath:(NSIndexPath *)indexPath {

 NSManagedObject *person =
 [resultsController objectAtIndexPath:indexPath];
 cell.textLabel.text = [NSString stringWithFormat:@"%@ %@",
 [person valueForKey:@"firstName"],
 [person valueForKey:@"lastName"]];

Listing 12.8 Methods to add to PeopleViewController.m

Create
NSFetchRequest

by lastName

Create
NSFetchedResultsController

Performing
the fetch
request

Configure the
table cell
Download from Wow! eBook <www.wowebook.com>

242 CHAPTER 12 Reading and writing application data
 cell.detailTextLabel.text = [NSString stringWithFormat:@"%i tasks",
 [[person valueForKey:@"tasks"] count]];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"PersonCell";

 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier] autorelease];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

 [self configureCell:cell atIndexPath:indexPath];

 return cell;
}

In the init method you set up the same NSFetchRequest you use in the dumpData-
ToConsole method. Then you set up the NSFetchedResultsController with that
NSFetchRequest and your model object context (don’t worry about the cacheName for
now). Finally you perform the fetch request.

 You can guess what the numberOfSectionsInTableView: and the tableView:
numberOfRowsInSection methods do. But it’s good to note how easy NSFetched-
ResultsController makes it to implement these methods. In this example you have
only one section, but if the data were sectioned and you provided an appropriate
sectionNameKeyPath while setting up NSFetchedResultsController, you’d get all the
section handling for free.

 Finally, the tableView:cellForRowAtIndexPath: method sets up each cell that
should be displayed: it calls configureCell:atIndexPath: to set the title to the full
name of the person and the subtitle to the number of tasks that person has. Notice the
use of the tasks relationship you created while setting up the data model. Why config-
ure the cell in a separate method? So you can reuse the code when you need to
update a cell and thus avoid duplicating code.

 Make sure you also add [managedObjectContext release]; to PeopleView-
Controller’s dealloc method so you don’t create any memory leaks.

 All that’s left to do before you try out NSFetchedResultsController is to once
again change the application:didFinishLaunchingWithOptions: method in Pocket-
TasksAppDelegate.m, as shown in the following listing.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 PeopleViewController *peopleVC =
 [[PeopleViewController alloc]

Listing 12.9 Putting PeopleViewController to use in PocketTasksAppDelegate.m

Call configureCell
Download from Wow! eBook <www.wowebook.com>

243Building the PocketTasks application
 initWithManagedObjectContext:[self managedObjectContext]];
 UINavigationController * navCtrl =
 [[UINavigationController alloc]
 initWithRootViewController:peopleVC];
 [peopleVC release];
 peopleVC = nil;

 [self.window addSubview:[navCtrl view]];

 [self.window makeKeyAndVisible];

 return YES;
}

You also need to import PeopleViewController.h. But
you’re a pro now, so we won’t tell you how to do that.

 Next, build and run. If everything’s set up correctly,
you should see the result in figure 12.4.

12.4.7 Adding and deleting people
Displaying the sample people is quite nice, but adding
and deleting them would be the cherry on top. Let’s add
that cherry.

 Using listings 12.10 and 12.11, you first add a Person-
DetailViewController by selecting File > New > New
File… and creating a new UIViewController subclass
with an XIB for the user interface. You add two UIText-
Field IBOutlets, an ivar of the type NSManagedObject
for the new person and one for the managed object con-
text, and an initializer that takes an NSManagedObject-
Context. Next, you add the two text fields in Interface
Builder and connect them to the outlets. Here’s what the
PersonDetailViewController.h file should look like.

#import <UIKit/UIKit.h>

@interface PersonDetailViewController : UIViewController {
 IBOutlet UITextField *firstNameTextField;
 IBOutlet UITextField *lastNameTextField;

 NSManagedObjectContext *managedObjectContext;
 NSManagedObject *person;
}

- (id)initWithManagedObjectContext:(NSManagedObjectContext *)moc;

@end

The interesting part of the PersonDetailViewController is the saveAndDismiss
method. It creates a new person entity and dismisses the modal view controller if the
save was successful.

Listing 12.10 PersonDetailViewController.h

Figure 12.4 People in the
PocketTasks application are
loaded using Core Data and
displayed in a tableview.
Download from Wow! eBook <www.wowebook.com>

244 CHAPTER 12 Reading and writing application data
- (id)initWithManagedObjectContext:(NSManagedObjectContext *)moc {
 if ((self =
 [super initWithNibName:@"PersonDetailViewController"
 bundle:nil])) {

 managedObjectContext = [moc retain];
 }

 return self;
}

- (void)saveAndDismiss {
 if (!person) {
 person = [NSEntityDescription
 insertNewObjectForEntityForName:@"Person"
 inManagedObjectContext:managedObjectContext];
 }

 if ([[firstNameTextField text] length] < 1 ||
 [[lastNameTextField text] length] < 1) {

 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Error"
 message:@"First and last name can't be empty."
 delegate:nil
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];
 [alert show];
 [alert release];
 } else {
 [person setValue:[firstNameTextField text] forKey:@"firstName"];
 [person setValue:[lastNameTextField text] forKey:@"lastName"];

 NSError *error = nil;
 if (![managedObjectContext save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 } else {
 [self dismissModalViewControllerAnimated:YES];
 }
 }
}

To use your new detail view controller, import it to PeopleViewController.m and add a
slew of methods shown in the following listing.

- (void)viewDidLoad {
 [super viewDidLoad];

 self.navigationItem.leftBarButtonItem = self.editButtonItem;

 UIBarButtonItem *addButton =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self

Listing 12.11 init and saveAndDismiss methods in PersonDetailViewController.m

Listing 12.12 Using PersonDetailViewController in PeopleViewController.m

Add UIViewController’s
editButtonItem

Add an Add button to right navigation bar
Download from Wow! eBook <www.wowebook.com>

245Building the PocketTasks application
 action:@selector(addPerson)];
 self.navigationItem.rightBarButtonItem = addButton;
 [addButton release];
}

- (void)addPerson {
 PersonDetailViewController *detailController =
 [[PersonDetailViewController alloc]
 initWithManagedObjectContext:managedObjectContext];

 UINavigationController *controller =
 [[UINavigationController alloc]
 initWithRootViewController:detailController];

 detailController.navigationItem.rightBarButtonItem =
 [[[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemSave
 target:detailController
 action:@selector(saveAndDismiss)]
 autorelease];

 [self presentModalViewController:controller animated:YES];

 [controller release];
 [detailController release];
}

- (void)tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath {

 if (editingStyle == UITableViewCellEditingStyleDelete) {
 [managedObjectContext deleteObject:[resultsController
 objectAtIndexPath:indexPath]];

 NSError *error = nil;
 if (![managedObjectContext save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
 }
}

- (void)controllerWillChangeContent:
 (NSFetchedResultsController *)controller {

 [self.tableView beginUpdates];
}

- (void)controller:(NSFetchedResultsController *)controller
 didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)indexPath
 forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath {

 UITableView *tableView = self.tableView;

 switch(type) {
 case NSFetchedResultsChangeInsert:
 [self.tableView

Create a
PersonDetailViewController

Add a Save
button

Present it
modally

Delete the Core
Data object

Set table view
for changes

Content changes from
results controller
Download from Wow! eBook <www.wowebook.com>

246 CHAPTER 12 Reading and writing application data
 insertRowsAtIndexPaths:[NSArray arrayWithObject:newIndexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;

 case NSFetchedResultsChangeDelete:
 [self.tableView
 deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;

 case NSFetchedResultsChangeUpdate:
 [self.tableView
 reloadRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;

 case NSFetchedResultsChangeMove:
 [self.tableView
 deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 [self.tableView
 insertRowsAtIndexPaths:[NSArray arrayWithObject:newIndexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 }
}

- (void)controllerDidChangeContent:(NSFetchedResultsController *)controller {
 [self.tableView endUpdates];
}

What does all this code do? First, in the viewDidLoad method, you set up Edit and
Add buttons. Notice that you get editButtonItem for free from UIViewController. In
the addPerson method, you set up and present the view controller to add a new per-
son. Next, in the tableView:commitEditingStyle:forRowAtIndexPath: method, you
take care of deleting entries from the managed object context and save it afterwards.
Finally, that really long method at the end, controller:didChangeObject:atIndex-
Path:forChangeType:newIndexPath:, gets called by the NSFetchedResultsController
every time the result set changes in any way. Now when you add or delete a person
from the managed object context, the fetched results controller calls this method, and
it updates the table view because you set the instance of PeopleViewController as the
delegate of the NSFetchedResultsController in listing 12.8.

 Build and run your application: you should be able to add and delete people now.

12.4.8 Managing tasks

Okay, you can list, add, and delete people in your application. The only thing missing
is the ability to add tasks to a person. To do that, you create another UITableView-
Controller subclass and call it TasksViewController. It’ll look basically the same as
the PeopleViewController with only a few differences (you can copy and paste the
code from PeopleViewController as a starting point): it’ll have a person instance

All changes complete, so animate them
Download from Wow! eBook <www.wowebook.com>

247Building the PocketTasks application
variable of the type NSManagedObject and an init method called initWithPerson:
that looks like the following listing.

- (id)initWithPerson:(NSManagedObject *)aPerson {
 if ((self = [super initWithStyle:UITableViewStylePlain])) {
 NSManagedObjectContext *moc = [aPerson managedObjectContext];
 person = [aPerson retain];

 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 [request setEntity:[NSEntityDescription entityForName:@"Task"
 inManagedObjectContext:moc]];
 [request setSortDescriptors:
 [NSArray arrayWithObject:
 [NSSortDescriptor sortDescriptorWithKey:@"name"
 ascending:YES]]];

 [request setPredicate:
 [NSPredicate predicateWithFormat:@"person == %@", person]];

 resultsController = [[NSFetchedResultsController alloc]
 initWithFetchRequest:request
 managedObjectContext:moc
 sectionNameKeyPath:nil
 cacheName:nil];

 resultsController.delegate = self;

 [request release];

 NSError *error = nil;

 if (![resultsController performFetch:&error]) {
 NSLog(@"Error while performing fetch: %@", error);
 }
 }

 return self;
}

Most of this method should look familiar, but you’ll notice one difference: the use of a
predicate. What does the predicate do? It’s a filter statement, much like the WHERE
clause in a SQL query. In this case you want to fetch only tasks that belong to a given
person, so you create a predicate that uses the person relationship, defined in the
Task entity, as a filter criteria to return only those tasks whose person relationship
matches the specified person.

 The following listing shows the rest of the interesting methods.

- (void)viewDidLoad {
 [super viewDidLoad];

 UIBarButtonItem *addButton =
 [[UIBarButtonItem alloc]

Listing 12.13 Initializing TasksViewController with a person
(TasksViewController.m)

Listing 12.14 Necessary methods in TasksViewController.m

Add an Add button to
right navigation bar
Download from Wow! eBook <www.wowebook.com>

248 CHAPTER 12 Reading and writing application data
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self
 action:@selector(addTask)];
 self.navigationItem.rightBarButtonItem = addButton;
 [addButton release];
}

- (void)configureCell:(UITableViewCell *)cell
 atIndexPath:(NSIndexPath *)indexPath {

 NSManagedObject *task =
 [resultsController objectAtIndexPath:indexPath];
 cell.textLabel.text = [task valueForKey:@"name"];

 if ([[task valueForKey:@"isDone"] boolValue]) {
 cell.accessoryType = UITableViewCellAccessoryCheckmark;
 } else {
 cell.accessoryType = UITableViewCellAccessoryNone;
 }

}

- (void)addTask {
 NSManagedObject *task =
 [NSEntityDescription
 insertNewObjectForEntityForName:@"Task"
 inManagedObjectContext:[person managedObjectContext]];

 [task setValue:[NSString stringWithFormat:@"Task %i",
 [[person valueForKey:@"tasks"] count] + 1]
 forKey:@"name"];
 [task setValue:[NSNumber numberWithBool:NO] forKey:@"isDone"];
 [task setValue:person forKey:@"person"];

 NSError *error = nil;
 if (![[person managedObjectContext] save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 } else {
 }
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 [tableView deselectRowAtIndexPath:indexPath animated:YES];
 NSManagedObject *task =
 [resultsController objectAtIndexPath:indexPath];
 if (![[task valueForKey:@"isDone"] boolValue]) {
 [task setValue:[NSNumber numberWithBool:YES] forKey:@"isDone"];

 NSError *error = nil;
 if (![[task managedObjectContext] save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
 [self.tableView
 reloadRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 }
}

Display a checkmark
for complete tasks

Create a
new Task

Associate task with person

Save it

Update the
task in the row
Download from Wow! eBook <www.wowebook.com>

249Building the PocketTasks application
In viewDidLoad you add a button to add new tasks. The configureCell:atIndex-
Path: method configures a table cell to display the name of the task and to show a
checkmark if the task is done. The addTask method adds a new task and sets its name
to Task 1, Task 2, and so on. Feel free to add a user interface that lets the user enter
a real name for a task. Notice that the person relationship of the task in this method
is set to make the new task belong to the selected person. Also notice the use of
[NSNumber numberWithBool:NO]. Why can’t you just say [task setValue:NO forKey:
@"isDone"]? Because you always have to provide an object for the value, never a prim-
itive value. That’s why you have to box an integer, double, float, or Boolean value in an
instance of NSNumber.

 Finally, the tableView:didSelectRowAtIndexPath: method marks a task as done
by setting the value, saving the context, and calling configureCell:atIndexPath: to
display the checkmark.

 To make your new TasksViewController appear when you tap on a person, you
have to go back to PeopleViewController.m once more. Using the code in listing 12.15,
import TasksViewController.h and implement the tableView:didSelectRowAtIndex-
Path: method to create an instance of TasksViewController and push it onto the
navigation controller stack.

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 TasksViewController *tasksVC =
 [[TasksViewController alloc]
 initWithPerson:[resultsController objectAtIndexPath:indexPath]];
 [self.navigationController pushViewController:tasksVC animated:YES];
 [tasksVC release];
}

Now build and run the application. You should be able to add tasks and set them to
done by tapping on them (see figure 12.5).

12.4.9 Using model objects

So far you’ve been using NSManagedObject to access your people and tasks. While this
works just fine, it would be much nicer to be able to say [person firstName] (or
person.firstName, the dot notation for properties) instead of [person valueFor-
Key:@"firstName"]. You also need the full name of a person in several places in your
application. Rather than putting the first and last names together every time you need
the full name, you can more efficiently just say [person fullName]. Core Data pro-
vides an easy way to do so using model object classes, which are custom subclasses of
NSManagedObject. You can add your own methods to model object classes and have
nice accessor methods for all the properties and relationships.

 To convert PocketTasks to use model object classes, you first let Xcode generate
the appropriate classes for you. Select File > New > New File…, and then select

Listing 12.15 tableView:didSelectRowAtIndexPath: in PeopleViewController.m
Download from Wow! eBook <www.wowebook.com>

250 CHAPTER 12 Reading and writing application data
NSManagedObject subclass from the iOS > Core Data sec-
tion. Click Next and select the PocketTasks data model.
Click Next again and put a checkmark next to Person and
Task (see figure 12.6).

 Finally, click Finish.
 Build and run the application. Your project should still

work just as before.
 When you examine the source files for the Person and

the Task classes, you’ll find accessors for your properties
and relationships. Let’s add one method to the Person
class. Open Person.h and add this line:

@property (readonly) NSString *fullName;

Next, open Person.m and add the implementation:

- (NSString *)fullName {
 return [NSString stringWithFormat:@"%@ %@",
 self.firstName, self.lastName];
}

Now you have the code to put together the full name in a
single place: in the model. You can see why it almost always
makes sense to work with these NSManagedObject sub-
classes in your Core Data project: it’s easier to access the
properties and relationships, it gives you the opportunity to
add custom logic to your models, and it makes the code easier to read and maintain.

Figure 12.6 Xcode can automatically generate Objective-C classes for the entities
in a data model.

Figure 12.5 Tasks can be
added and marked as done by
tapping on them. Completed
tasks have a checkmark on
the right.
Download from Wow! eBook <www.wowebook.com>

251Beyond the basics
How do you use your new model classes now? We look at the addTask method in
TasksViewController.m together, and you’ll be able to convert the rest of the applica-
tion yourself. If you get stuck, check out the code for the completed project online.

 First, make sure you import Person.h and Task.h and that you change the person
instance variable type from NSManagedObject to Person. The new addTask method
will look like the following listing.

- (void)addTask {
 Task *task = [NSEntityDescription
 insertNewObjectForEntityForName:@"Task"
 inManagedObjectContext:[person managedObjectContext]];
 task.name =
 [NSString stringWithFormat:@"Task %i", [person.tasks count] + 1];
 task.isDone = [NSNumber numberWithBool:NO];

 [person addTasksObject:task];

 NSError *error = nil;
 if (![[person managedObjectContext] save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 } else {
 }
}

That looks much nicer, doesn’t it? And notice that the addTasksObject: method of
the Person class is used to add new tasks to the current person. That makes your code
a lot more readable, and it’s much clearer to see what’s going on. It won’t be a prob-
lem for you to change the rest of the code to use the new model classes.

12.5 Beyond the basics
You’ve built your first Core Data application. You know how to create a data model
and how to fetch, save, and even filter and sort data. That’s really all you need to know
to use Core Data in your own applications. As mentioned earlier, however, Core Data
is a complex framework, and there’s still more to learn. It’s beyond the scope of this
chapter to cover Core Data in depth, but in the next three sections, we touch on a few
important topics and provide further resources to point you in the right direction.

12.5.1 Changing the data model

Change is the one thing that’s constant in every software project. The day will likely
come when you’ll have to add a property to an entity, add a new entity, or add a new
relationship to your data model. When you do, you’ll have to take some extra steps to
ensure that your user’s data will still work with the new version of your application.
You won’t change your data model—instead, you’ll add a new one but keep the old
version so it can read data that was saved with that version of your data model.

 Data migration can be a complex task, but when the change to the data model
is small (for example, adding a new property or making a non-optional property

Listing 12.16 Modifying addTask in TasksViewController.m to use Person class
Download from Wow! eBook <www.wowebook.com>

252 CHAPTER 12 Reading and writing application data
optional), Core Data does most of the work for you. Such migrations are called light-
weight migrations. Let’s see what this looks like in practice: you’ll add a new property—
age—to the Person entity. To do that, you must first create a new version of your data
model. Select the PocketTasks.xcodedatamodel, then select Editor > Add Model Ver-
sion from the menu. A new file called PocketTasks 2.xcdatamodel will appear in the
PocketTasks.xcdatamodeld directory. This new version should be used by your appli-
cation from now on. For that to take effect, select PocketTasks.xcdatamodeld and
choose “PocketTasks 2” from the “Current” select box in the “Versioned Data Model”
section of the first tab of the Utilities pane. The file will get a little green checkmark.
Now add the new age property to the Person entity in the new version you just cre-
ated. Make it optional, and set the type to Integer16. Save it and build and run. The
application will crash and report errors in the Console: the saved data is incompatible
with the new data model! You have to tell Core Data to automatically migrate it for
you. Open PocketTasksAppDelegate.m and find the persistentStoreCoordinator
method. Change it to look like the following listing.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (__ persistentStoreCoordinator != nil) {
 return __persistentStoreCoordinator;
 }

 NSURL *storeURL =
 [[self applicationDocumentsDirectory]
 URLByAppendingPathComponent:@"PocketTasks.sqlite"];

 NSDictionary *options =
 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithBool:YES],
 NSMigratePersistentStoresAutomaticallyOption,
 [NSNumber numberWithBool:YES],
 NSInferMappingModelAutomaticallyOption, nil];

 NSError *error = nil;
 __persistentStoreCoordinator =
 [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel:[self managedObjectModel]];

 if (![__persistentStoreCoordinator
 addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:storeURL
 options:options
 error:&error])
 {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

 return __persistentStoreCoordinator;
}

Listing 12.17 Automatically migrate a data model in PocketTasksAppDelegate.m
Download from Wow! eBook <www.wowebook.com>

253Beyond the basics
All you do is pass in two options that tell Core Data to try to automatically determine
what has changed between the data models and to try to automatically migrate the data.

 Build and run it again—everything should work.
 If you can, you should try to avoid substantial changes to your data model, espe-

cially after you’ve shipped your application and people are already using it. Put some
time and thought into your data model before you start coding.

 If you need to perform a more complex migration, check out Apple’s Core Data
Model Versioning and Data Migration Programming Guide (http://developer.apple
.com/iphone/library/documentation/Cocoa/Conceptual/CoreDataVersioning/
Introduction/Introduction.html).

12.5.2 Performance

Using NSFetchedResultsController is already one of the best things you can do
regarding performance of your iOS Core Data application. There are a few more
things to keep in mind, though. If you know that you’ll always need access to a certain
relationship of your entity, you should tell Core Data to fetch those child entities with
the initial fetch request. Otherwise, Core Data would have to execute another fetch
request for every entity. With 100 people, that would make 101 fetch requests (the ini-
tial one to fetch the people and one for each person to get the tasks). Using
NSFetchResult’s setRelationshipKeyPathsForPrefetching: method avoids this over-
head. In your example, to improve the performance when you fetch people, it would
look like this:

[request setRelationshipKeyPathsForPrefetching:[NSArray
arrayWithObject:@"tasks"]];

This code loads the tasks right away along with the people.
 Another performance concern is binary data: unless the data is very small (smaller

than 100 kb), you shouldn’t store it directly in the entity it belongs to. If the data is
bigger than 100 kb, consider storing it in a separate entity and setting up a relation-
ship between the data entity and the entity it belongs to (maybe a profile picture that
belongs to a person). Anything bigger than 1 MB should not be stored in a Core Data
entity but on disk as a file. Only the path to the file should be stored using Core Data.

 More information about performance can be found in Apple’s Core Data Pro-
gramming Guide: http://developer.apple.com/mac/library/documentation/Cocoa/
Conceptual/CoreData/Articles/cdPerformance.html.

12.5.3 Error handling and validation

You undoubtedly noticed that every time you save the managed object context, you
pass in a pointer to an NSError object. So far, you haven’t really handled those errors.
In a real application users have a right to be informed about anything that goes wrong
with their data. So how do you handle errors in Core Data?

 If you encounter an error from which you can’t recover (can’t write data to disk or
something catastrophic like that), you should inform the user about it with an
Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/CoreDataVersioning/Introduction/Introduction.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CoreData/Articles/cdPerformance.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/CoreDataVersioning/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/CoreDataVersioning/Introduction/Introduction.html
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CoreData/Articles/cdPerformance.html

254 CHAPTER 12 Reading and writing application data
UIAlertView and then use the abort() function to exit the application. Apple dis-
courages the use of the abort() function and asks developers to display a message that
tells the user to quit the application by pressing the Home button. While this works too,
the abort() function has one advantage: it generates a crash log. The log can be
extremely useful for tracking down the problem. It’s up to you to decide how you’ll han-
dle fatal errors, but abort() isn’t as bad as it’s made out to be if you use it responsibly.

 Validation errors must also be dealt with: a required value is missing, a string is too
short, or a number is too large. Such errors can be recovered from, and you should
tell the user about them and the user a chance to fix them.

 Listing 12.18 shows one way to handle and display validation errors (for example,
in PersonDetailViewController). Please note that you should adapt this method to
your application and your user’s needs. As it stands, the messages aren’t quite user
friendly but are definitely better than just saying “Saving failed.”

- (void)displayValidationError:(NSError *)anError {
 if (anError &&
 [[anError domain] isEqualToString:@"NSCocoaErrorDomain"]) {

 NSArray *errors = nil;

 if ([anError code] == NSValidationMultipleErrorsError) {
 errors = [[anError userInfo] objectForKey:NSDetailedErrorsKey];
 } else {
 errors = [NSArray arrayWithObject:anError];
 }

 if (errors && [errors count] > 0) {
 NSString *messages = @"Reason(s):\n";

 for (NSError *error in errors) {
 NSString *entityName =
 [[[[error userInfo]
 objectForKey:@"NSValidationErrorObject"]
 entity]
 name];
 NSString *attributeName =
 [[error userInfo] objectForKey:@"NSValidationErrorKey"];
 NSString *msg;

 switch ([error code]) {
 case NSManagedObjectValidationError:
 msg = @"Generic validation error.";
 break;
 case NSValidationMissingMandatoryPropertyError:
 msg = [NSString stringWithFormat:
 @"The attribute '%@' mustn't be empty.",
 attributeName];
 break;
 case NSValidationRelationshipLacksMinimumCountError:
 msg = [NSString stringWithFormat:
 @"The relationship '%@' doesn't have enough entries.",

Listing 12.18 One way to handle and display validation errors

Make sure it’s a built-in error

Extract multiple errors;
wrap single errors

Iterate over
the errors

Get entity
name

Get attribute
name

Build appropriate
error messages
Download from Wow! eBook <www.wowebook.com>

255Beyond the basics
 attributeName];
 break;
 case NSValidationRelationshipExceedsMaximumCountError:
 msg = [NSString stringWithFormat:
 @"The relationship '%@' has too many entries.",
 attributeName];
 break;
 case NSValidationRelationshipDeniedDeleteError:
 msg = [NSString stringWithFormat:
 @"To delete, the relationship '%@' must be empty.",
 attributeName];
 break;
 case NSValidationNumberTooLargeError:
 msg = [NSString stringWithFormat:
 @"The number of the attribute '%@' is too large.",
 attributeName];
 break;
 case NSValidationNumberTooSmallError:
 msg = [NSString stringWithFormat:
 @"The number of the attribute '%@' is too small.",
 attributeName];
 break;
 case NSValidationDateTooLateError:
 msg = [NSString stringWithFormat:
 @"The date of the attribute '%@' is too late.",
 attributeName];
 break;
 case NSValidationDateTooSoonError:
 msg = [NSString stringWithFormat:
 @"The date of the attribute '%@' is too soon.",
 attributeName];
 break;
 case NSValidationInvalidDateError:
 msg = [NSString stringWithFormat:
 @"The date of the attribute '%@' is invalid.",
 attributeName];
 break;
 case NSValidationStringTooLongError:
 msg = [NSString stringWithFormat:
 @"The text of the attribute '%@' is too long.",
 attributeName];
 break;
 case NSValidationStringTooShortError:
 msg = [NSString stringWithFormat:
 @"The text of the attribute '%@' is too short.",
 attributeName];
 break;
 case NSValidationStringPatternMatchingError:
 msg = [NSString stringWithFormat:
 @"The text of the attribute '%@' "
 "doesn't match the required pattern.",
 attributeName];
 break;
 default:
 msg = [NSString stringWithFormat:
Download from Wow! eBook <www.wowebook.com>

256 CHAPTER 12 Reading and writing application data
 @"Unknown error (code %i).", [error code]];
 break;
 }

 messages = [messages stringByAppendingFormat:@"%@%@%@\n",
 (entityName?:@""),
 (entityName?@": ":@""),
 msg];
 }

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Validation Error"
 message:messages
 delegate:nil
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];
 [alert show];
 [alert release];
 }
 }
}

12.6 Summary
Core Data is a sophisticated framework for all your data needs. It’s powerful yet easy
to use. Now that you’re done with this chapter you have all the knowledge you need to
go out there and use Core Data in your awesome iOS applications. Make sure you put
this knowledge to use, because if your application has to store any kind of data that
goes beyond a volume setting or a username, you should use Core Data.

 In chapter 13, we explore what New York City’s Grand Central Terminal has to do
with programming when we learn about Grand Central Dispatch and blocks.

Append message to
string of messages

Display the
message(s)
Download from Wow! eBook <www.wowebook.com>

Blocks and Grand
Central Dispatch
Have you ever been to New York City’s Grand Central Terminal? It’s a huge place with
trains arriving and departing constantly. Imagine having to manage such an operation
by hand—Which train should come in on which track? Which one should change
tracks at what time? Which engine should be attached to which train?—and so on and
so forth. You’d probably quit your job after 30 minutes and go back to programming!

 Being a programmer, however, you might find yourself in a similar situation
when you have to write a multithreaded application with different parts of your
application being executed at the same time: you must make sure you have enough
resources to run another thread; you must make sure that multiple threads can’t
manipulate the same data at the same time; you must somehow handle the case of
one thread being dependent on other threads, and so on. It’s a headache. And it’s
error prone, just like trying to run Grand Central Terminal by yourself.

This chapter covers
■ Understanding block syntax
■ Handling memory management
■ Using blocks in system frameworks
■ Learning Grand Central Dispatch
■ Performing work asynchronously
257

Download from Wow! eBook <www.wowebook.com>

258 CHAPTER 13 Blocks and Grand Central Dispatch
 Thankfully, Apple introduced a technology called Grand Central Dispatch (GCD)
in Mac OS X 10.6 and brought it over to iOS devices in iOS 4. GCD dramatically simpli-
fies multithreaded programming because it takes care of all the complicated heavy
lifting. Along with GCD, Apple added a new language feature to C: blocks. Blocks are
just that: blocks of code, or anonymous functions, if you will. GCD and blocks make for
a very powerful duo. You can now write little pieces of code and hand them over to
GCD to be executed in a parallel thread without any of the pain multithreaded pro-
gramming normally causes. Parallel execution has never been easier, and with GCD
there’s no longer an excuse not to do it.

 Before we dig any deeper into GCD, let’s examine blocks: how to create them, how
to run them, and what to watch out for.

13.1 The syntax of blocks
The syntax of blocks might scare you at first—it scared us! But we’ll hold your hand as
we decrypt and demystify it together, so don’t fret.

 Let’s first look at a simple block example in the following listing.

int (^myMultiplier)(int, int) = ^int (int a, int b){
 return a * b;
};

int result = myMultiplier(7, 8);

We told you it would look a little scary. This listing creates a new block that takes two
integers as arguments, returns an integer, and stores it in a variable called myMulti-
plier. Then the block gets executed, and the result of 56 gets stored in the integer
variable called result.

 The listing has two parts: the variable
declaration and the block literal (the part
after the equals sign). Let’s look at both in
depth (see figure 13.1).

 You can think of a block variable decla-
ration as a C function declaration because
the syntax is almost identical. The differ-
ence is that the block name is enclosed in parentheses and has to be introduced by a
caret (^). The following listing might clarify it even more.

int (^myMultiplier) (int, int);

myMultiplier = ^int (int a, int b){
 return a * b;
};

myMultiplier(4, 2);

Listing 13.1 Simple block example

Listing 13.2 Declaring a block variable and assigning to it

Figure 13.1 The syntax of a block variable
declaration
Download from Wow! eBook <www.wowebook.com>

259The syntax of blocks
What if you want to declare multiple block variables of the same type (meaning taking
the same arguments and having the same return type)? The following listing illus-
trates the wrong way and the right way to do it.

int (^myTimes2Multiplier) (int);
int (^myTimes5Multiplier) (int);
int (^myTimes10Multiplier) (int);

myTimes2Multiplier = ^(int a) { return a * 2; };
myTimes5Multiplier = ^(int a) { return a * 5; };
myTimes10Multiplier = ^(int a) { return a * 10; };

typedef int (^MultiplierBlock) (int);

MultiplierBlock myX2Multi = ^(int a) { return a * 2; };
MultiplierBlock myX5Multi = ^(int a) { return a * 5; };
MultiplierBlock myX10Multi = ^(int a) { return a * 10;};

The wrong way is to declare each block variable the long way. Although the code will
compile and work fine, it isn’t good style to do it this way, plus it might get difficult to
maintain this kind of code later. The right way to use typedef is to define your own
block type. It works exactly the same way as declaring a block variable, but this time
the name in the parentheses is treated as a type name, not as a variable name. That
way, you can declare as many blocks of the type MultiplierBlock as you like.

 With the block variable declara-
tion out of the way, let’s look at the
more interesting part, the part you’ll
use much more often: block literals.
In the previous code examples, you
saw a lot of block literals, but let’s
take a closer look at their syntax now
(see figure 13.2).

 A block literal always starts with the caret (^), followed by the return type, the argu-
ments, and finally the body—the actual code—in curly braces. Both the return type
and the arguments are optional. If the return type is void, you can omit it altogether,
and the same applies to arguments. The return type is also optional if it can be
inferred automatically by the compiler through the return statement in the block’s
body. The next listing shows some valid long and short ways to write block literals.

^void (void) { NSLog(@"Hello Block!"); };
^{ NSLog(@"Hello Block!"); };

^int { return 2001; };
^{ return 2001; };

^int (int a, int b) { return a + b; };
^(int a, int b) { return a + b; };

Listing 13.3 Using typedef to declare a block type for reuse

Listing 13.4 Some long and short ways to write block literals

Figure 13.2 The syntax of a block literal
Download from Wow! eBook <www.wowebook.com>

260 CHAPTER 13 Blocks and Grand Central Dispatch
You see that it’s convenient to omit unnecessary void arguments or return types in
block literals. Note that if you try to run the code in listing 13.4, it won’t do anything
because you never actually execute these blocks. It’s like declaring a list of functions
that are never called. Blocks are executed the same way functions are: by adding a pair
of opening and a closing parentheses to them. Normally, you’d assign a block literal to
a variable and then execute the block using the variable (as you saw in listings 13.1
and 13.2). You can also execute block literals that don’t take any arguments directly.
The following listing shows both approaches.

int (^myMultiplier)(int, int) = ^int (int a, int b){
 return a * b;
};

myMultiplier(7, 8);

^{ NSLog(@"Hello Block!"); }();

So far, blocks don’t seem that different from functions—but they’re very different in
one special way.

13.1.1 Blocks are closures

Blocks have access to the variables that are available or defined in their lexical scope.
What does that mean? Let’s look at an example in the following listing.

void (^myBlock) (void);

int year = 2525;

myBlock = ^{ NSLog(@"In the year %i", year); };
myBlock();

You can access the local variable year from inside the block. Technically, though,
you’re not accessing the variable. Instead, the variable is copied or frozen into the
block by the time you create it. The following listing illustrates frozen variables.

void (^myBlock) (void);

int year = 2525;

myBlock = ^{ NSLog(@"In the year %i", year); };
myBlock();

year = 1984;

myBlock();

Changing the value of a variable after it’s captured by a block doesn’t affect the frozen
copy in the block. But what if you want it to do that? Or what if you want to also

Listing 13.5 Executing blocks

Listing 13.6 Capturing variables

Listing 13.7 Captured variables are frozen
Download from Wow! eBook <www.wowebook.com>

261The syntax of blocks
change the value from inside the block? Then you need to use the __block storage
type, which practically marks the variables inside a block as mutable. The effect is that
changes made to the variable outside the block are picked up inside the block, and
vice versa (see the following listing).

void (^myBlock) (void);

__block int year = 2525;
__block int runs = 0;

myBlock = ^{
 NSLog(@"In the year %i", year);
 runs++;
};

myBlock();

year = 1984;

myBlock();

NSLog(@"%i runs.", runs);

The interesting thing is that the local variables that are captured by a block live on
even when the function or method they’re defined in ends. That’s a very powerful fea-
ture that we explore in more depth later in this chapter. For now, let’s at least look at
an example in the following listing.

typedef void (^MyTestBlock)(void);

MyTestBlock createBlock() {
 int year = 2525;

 MyTestBlock myBlock = ^{
 NSLog(@"In the year %i", year);
 };

 return Block_copy(myBlock);
}

void runTheBlock() {
 MyTestBlock block = createBlock();

 block();

 Block_release(block);
}

Listing 13.9 clearly shows that the local variable year gets captured in the block and is
still available in the block after the createBlock function returns. Also notice the use
of Block_copy and Block_release, which brings us to our next topic.

Listing 13.8 The __block storage type

Listing 13.9 Captured variables survive the end of a function
Download from Wow! eBook <www.wowebook.com>

262 CHAPTER 13 Blocks and Grand Central Dispatch
13.1.2 Blocks and memory management

Blocks start their life on the stack, just like any other local variable in a function or
method. If you want to use your block after the destruction of the scope in which it
was declared (for example, after a function returns as in listing 13.9), you must use
Block_copy to copy it to the heap. To avoid memory leaks, you must always use Block_
release to release any block that you’ve copied with Block_copy when you don’t
need it anymore.

 In Objective-C, blocks are also always Objective-C objects, so you can send them
the familiar copy and release messages too.

 What about objects that are captured by a block? In Objective-C all objects refer-
enced inside a block are automatically sent a retain message. When the block gets
released, all those objects are sent a release message. The only exceptions are objects
with the __block storage type: they aren’t automatically retained and released. When
objects that are instance variables are referenced inside a block, the owning object
instead of the instance object is sent a retain message. The following listing should
make this clearer.

typedef void (^SimpleBlock)(void);

@interface MyBlockTest : NSObject
{
 NSMutableArray *things;
}

- (void)runMemoryTest;
- (SimpleBlock)makeBlock;

@end

@implementation MyBlockTest

- (id)init {
 if ((self = [super init])) {
 things = [[NSMutableArray alloc] init];
 NSLog(@"1) retain count: %i", [self retainCount]);
 }
 return self;
}

- (SimpleBlock)makeBlock {
 __block MyBlockTest *mySelf = self;

 SimpleBlock block = ^{
 [things addObject:@"Mr. Horse"];
 NSLog(@"2) retain count: %i", [mySelf retainCount]);
 };
 return Block_copy(block);
}

- (void)dealloc {
 [things release];

Listing 13.10 Automatic retain and release

SimpleBlock type
definition

ivar used inside
of a block

Pointer to
MyTestBlock

“things” ivar of
current MyTestBlock

Print retainCount
with non-
auto-retained
reference
Download from Wow! eBook <www.wowebook.com>

263The syntax of blocks
 [super dealloc];
}

- (void)runMemoryTest {
 SimpleBlock block = [self makeBlock];
 block();
 Block_release(block);
 NSLog(@"3) retain count: %i", [self retainCount]);
}

@end

When you create an instance of the class MyBlockTest and run its runMemoryTest
method, you’ll see this result in the console:

1 retain count: 1
2 retain count: 2
3 retain count: 1

Let’s examine what’s happening here. You have an instance variable called things. In
the makeBlock method, you create a reference to the current instance of MyBlockTest
with the __block storage type. Why? You don’t want the block to retain self because
you use self in the NSLog statement inside the block, you want the block to retain
self because you use one of its instance variables, things. Next, you reference things
in the block and print the current retainCount of the object that owns things to the
console. Finally, you return a copy of the block.

 In the runMemoryTest method, you call the makeBlock method, run the returned
block, and release it. Finally you print the retainCount again. This example demon-
strates that your instance of MyBlockTest has been automatically retained because you
used one of its instance variables—things—in a block that you copied to the heap. To
make this even clearer, comment out the first line of the block ([things addObject...])
and run it again. You’ll see that the retain count of the MyBlockTest instance is
always 1. Because you’re no longer referencing any of its instance variables inside the
block, the instance of MyBlockTest is no longer automatically retained.

 A final caveat you about working with blocks: A block literal (^{...}) is the mem-
ory address of a stack-local data structure representing the block. That means that the
scope of that data structure is its enclosing statement (for example, a for loop or
the body of an if statement). Why is that important to know? Because you’ll enter a
world of pain if you write code similar to the following listing.

void (^myBlock) (void);

if (true) {

 myBlock = ^{
 NSLog(@"I will die right away.");
 };
} else {

Listing 13.11 Be careful about block literal scopes
Download from Wow! eBook <www.wowebook.com>

264 CHAPTER 13 Blocks and Grand Central Dispatch
 myBlock = Block_copy(^{
 NSLog(@"I will live on.");
 });
}

myBlock();

Remember that block literals are valid only in the scope in which they are defined. If
you want to use them outside of that scope, you must copy them to the heap with
Block_copy. If you don’t, your program will crash.

 Now that you have a fundamental understanding of blocks, let’s look at some com-
mon places where you’ll encounter them in Cocoa Touch.

13.1.3 Block-based APIs in Apple’s iOS frameworks

A great and growing number of Apple’s framework classes take blocks as parameters,
often greatly simplifying and reducing the amount of code you have to write. Typi-
cally, blocks are used as completion, error, and notification handlers, for sorting and
enumeration, and for view animations and transitions.

 In this section we look at a few simple but practical examples so you can get famil-
iar with how blocks are used in the system frameworks.

 The following listing shows how you can easily invoke a block for each line in a string.

NSString *string = @"Soylent\nGreen\nis\npeople";

[string enumerateLinesUsingBlock:
 ^(NSString *line, BOOL *stop) {
 NSLog(@"Line: %@", line);
 }];

You can surely guess what the output will look like. Pretty nifty, right?
 Listing 13.13 demonstrates the use of two block-based APIs. The first one,

objectsPassingTest:, invokes a given block for each object in a set. The block then
returns either YES or NO for each object, and the method returns a new set consisting
of all the objects that passed the test. The second one, enumerateObjectsUsing-
Block:, invokes the given block once for every object in the set. It’s basically equiva-
lent to a for loop.

NSSet *set = [NSSet setWithObjects:@"a", @"b", @"cat",
 @"c", @"mouse", @"ox", @"d", nil];

NSSet *longStrings =
 [set objectsPassingTest:
 ^BOOL (id obj, BOOL *stop) {
 return [obj length] > 1;
 }];

Listing 13.12 Enumerating every line in a string with a block

Listing 13.13 Filtering and enumeration using blocks
Download from Wow! eBook <www.wowebook.com>

265Performing work asynchronously
[longStrings enumerateObjectsUsingBlock:
 ^(id obj, BOOL *stop) {
 NSLog(@"string: %@", obj);
 }];

Running the code in listing 13.13 will write the words cat, mouse, and ox to the con-
sole because they passed the test of being longer than one character.

 The example in the following listing shows how to use a block as a notification
handler.

NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
[[UIDevice currentDevice]
 beginGeneratingDeviceOrientationNotifications];

[nc addObserverForName:
 UIDeviceOrientationDidChangeNotification
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *notif){
 UIDeviceOrientation orientation;
 orientation = [[UIDevice currentDevice] orientation];
 if (UIDeviceOrientationIsPortrait(orientation)) {
 NSLog(@"portrait");
 } else {
 NSLog(@"landscape");
 }
 }];

Listing 13.14 first gets a reference to the default notification center and then tells the
current device instance to start sending notifications when the device’s orientation
has changed. Finally, a block is added to the notification center as an observer for the
orientation change notification. Don’t worry about the use of NSOperationQueue
here—we cover that later. The great thing about using blocks as handlers for various
events is that you have the code that handles the event right there. You don’t have to
search for some target method somewhere else in your code. Your code is much more
readable, less cluttered, more concise, and easier to understand.

 It’s clear how versatile blocks are and that they will undoubtedly make your work
easier. Next we talk about a very special area in which blocks really shine: asynchro-
nous and parallel execution.

13.2 Performing work asynchronously
Performing work asynchronously means doing multiple things at the same time—or
at least making it seem as if you do.

 To illustrate, think of a big supermarket with 20 employees who can work the regis-
ter but only a single register is open. What a disaster! The employees would fight over
the register, and the customers would get furious because they have to wait in long
lines. It’s much better when the store has 20 cash registers open: 20 customers can be

Listing 13.14 Using a block as a notification handler
Download from Wow! eBook <www.wowebook.com>

266 CHAPTER 13 Blocks and Grand Central Dispatch
helped at the same time, everything moves a lot quicker, customers don’t get mad,
and everyone has something to do. In your iOS app, you don’t want to have only a sin-
gle cash register open—your customers would get mad too. Certain tasks, such as
downloading data from the internet, can take a long time. Performing such tasks syn-
chronously—one after another—would block your application and render it unre-
sponsive to the user until the tasks are done. You don’t want that. Instead, you want
your application to stay responsive at all times and to perform tasks—especially long-
running ones—asynchronously, notifying your user or updating the UI once the task
has finished. GCD in connection with blocks makes this extremely easy to do.

13.2.1 Meet GCD

GCD manages a pool of threads and safely runs blocks on those threads depending on
how many system resources are available. You don’t have to worry about any of the
thread management: GCD does all the work for you.

 To explain how GCD works, let’s go back to our analogy of New York City’s Grand
Central Terminal. Everyone knows that trains are made up of cars and that they run
on tracks. A train station often has multiple tracks so that multiple trains can enter
and leave the station at the same time. In GCD, blocks are the cars that make up a
train. And dispatch queues are the tracks that these trains run on. GCD comes with
four prebuilt queues: three global queues with low, default, and high priority and one
main queue that corresponds with your application’s main thread. GCD also allows
you to build your own dispatch queues and run blocks on them. Both the main dis-
patch queue and the dispatch queues that you create on your own are serial queues.
The blocks you put on a serial queue are executed one after the other, first in, first out
(FIFO). Blocks that you put on the same serial queue are guaranteed to never run con-
currently, but blocks on different serial queues do run concurrently, just like multiple
trains on different tracks can run parallel to each other.

 The only exceptions are the three concurrent global queues: they do run blocks
concurrently. They start them in the order they were added to the queue, but they
don’t wait for one block to finish before they start running the next one.

 All this might still seem a bit confusing and theoretical, so let’s look at some code.

13.2.2 GCD fundamentals

The following listing shows how to run an anonymous block on the default priority
global queue.

dispatch_async(
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),
 ^{
 NSLog(@"Hello GCD!");
 });

Listing 13.15 Running a block on a global queue
Download from Wow! eBook <www.wowebook.com>

267Performing work asynchronously
The function dispatch_async takes two arguments: the queue the block should be
run on and the block itself. dispatch_get_global_queue does just that: it returns one
of the three global queues (low, default, or high priority). The second parameter
should always be 0 because it’s reserved for future use. The dispatch_async function
returns right away and dispatches the block to GCD to be run on the given queue.
Pretty easy, right?

 You can also create your own serial dispatch queues, as shown in the following listing.

dispatch_queue_t queue;
queue = dispatch_queue_create("com.springenwerk.Test", NULL);

dispatch_async(queue, ^{
 NSLog(@"Hello from my own queue!");
});

dispatch_release(queue);

The function dispatch_queue_create takes a name and a second parameter, which
should always be NULL because it’s reserved for future use. To avoid naming conflicts,
you should use your reverse domain name to name the serial dispatch queues you cre-
ate. You then pass them to dispatch_async just like any other queue. Because dis-
patch queues are reference-counted objects, you have to release them to avoid
memory leaks.

 That’s all the basics you need to get up and running with GCD. That wasn’t too
bad, was it?

 It might still seem like dry theory to you, though, so
let’s build a small application that uses GCD and shows
how all this works in real life.

 Real estate agents like to show their clients pictures of
beautiful homes in the area they’re interested in. That’s
exactly what you’ll build: an application called RealEstate-
Viewer that lets you search for images of real estate in any
location of your choice.

13.2.3 Building RealEstateViewer

Create a new Window-based application in Xcode and
call it RealEstateViewer. Add a new UITableView-

Controller subclass to your project (Cocoa Touch Class
> UIViewController subclass with the UITableView-
Controller subclass selected). Call it ImageTable-

ViewController. Next, include it in your application
delegate and set the window’s view to the imageTable-
ViewController’s view, as shown in listings 13.17 and
13.18 (see figure 13.3).

Listing 13.16 Creating your own serial dispatch queue

Figure 13.3 The finished
RealEstateViewer application
Download from Wow! eBook <www.wowebook.com>

268 CHAPTER 13 Blocks and Grand Central Dispatch
#import <UIKit/UIKit.h>
#import "ImageTableViewController.h"

@interface RealEstateViewerAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 ImageTableViewController *imageTableViewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

Be sure to also implement the following listing.

#import "RealEstateViewerAppDelegate.h"

@implementation RealEstateViewerAppDelegate
@synthesize window;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 imageTableViewController = [[ImageTableViewController alloc] init];

 [window addSubview:[imageTableViewController view]];
 [window makeKeyAndVisible];

 return YES;
}

- (void)dealloc {
 [imageTableViewController release];
 [window release];
 [super dealloc];
}
@end

That’s all the boilerplate code you have to write. The rest of the action takes place
inside the ImageTableViewController. Because you’ll be talking to Google’s Image
Search API, which returns data in the JSON format, you must add Stig Brautaset’s JSON
framework to your application. That sounds more complicated than it is: just down-
load it from http://stig.github.com/json-framework/ and copy all the files from the
Classes folder to your application’s Classes folder (or you can take the files from
the source code for this chapter).

 Now you’ll add a search bar to the top of the table, a few delegate methods, an
ivar to hold your search results, and a little bit of code to perform the image search.
The next two listings show you what your ImageTableViewController should look
like at this point.

Listing 13.17 RealEstateViewerAppDelegate.h

Listing 13.18 RealEstateViewerAppDelegate.m
Download from Wow! eBook <www.wowebook.com>

http://stig.github.com/json-framework/
http://stig.github.com/json-framework/

269Performing work asynchronously
#import <UIKit/UIKit.h>

@interface ImageTableViewController : UITableViewController
 <UISearchBarDelegate> {
 NSArray *results;
}

@property (nonatomic, retain) NSArray *results;

@end

#import "ImageTableViewController.h"
#import "JSON.h"

@implementation ImageTableViewController
@synthesize results;

#pragma mark -
#pragma mark Initialization

- (id)initWithStyle:(UITableViewStyle)style {
 if ((self = [super initWithStyle:style])) {
 results = [NSArray array];

 UISearchBar *searchBar =
 [[UISearchBar alloc]
 initWithFrame:CGRectMake(0, 0,
 self.tableView.frame.size.width, 0)];
 searchBar.delegate = self;
 searchBar.showsCancelButton = YES;
 [searchBar sizeToFit];

 self.tableView.tableHeaderView = searchBar;
 [searchBar release];

 self.tableView.rowHeight = 160;
 }
 return self;
}

#pragma mark -
#pragma mark UISearchBarDelegate methods

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 NSLog(@"Searching for: %@", searchBar.text);
 NSString *api = @"http://ajax.googleapis.com/ajax/"
 "services/search/images?v=1.0&rsz=large&q=";
 NSString *urlString =
 [NSString
 stringWithFormat:@"%@real%%20estate%%20%@",
 api,
 [searchBar.text
 stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding]];
 NSURL *url = [NSURL URLWithString:urlString];

Listing 13.19 ImageTableViewController.h

Listing 13.20 ImageTableViewController.m

Create UISearchBar;
set as headerView

Create a URL
with a search

string
Download from Wow! eBook <www.wowebook.com>

270 CHAPTER 13 Blocks and Grand Central Dispatch
 [NSThread sleepForTimeInterval:1.5];

 NSData *data = [NSData dataWithContentsOfURL:url];
 NSString *res = [[NSString alloc] initWithData:data
 encoding:NSUTF8StringEncoding];

 self.results = [[[res JSONValue] objectForKey:@"responseData"]
 objectForKey:@"results"];

 [res release];
 [searchBar resignFirstResponder];
 [self.tableView reloadData];
}

- (void)searchBarCancelButtonClicked:(UISearchBar *)searchBar {
 [searchBar resignFirstResponder];
}

#pragma mark -
#pragma mark Table view data source

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 return [results count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 } else {
 for (UIView *view in cell.contentView.subviews) {
 [view removeFromSuperview];
 }
 }

 UIImage *image =
 [[results objectAtIndex:indexPath.row] objectForKey:@"image"];

 if (!image) {
 image = [UIImage imageWithData:
 [NSData dataWithContentsOfURL:
 [NSURL URLWithString:
 [[results objectAtIndex:indexPath.row]
 objectForKey:@"unescapedUrl"]]]];

Use blocking
method to

load network
results

Parse
JSON data;
assign to
results
ivar

Sleep for 1.5
seconds; fake
slow network

Attempt to get
cached image for

requested row

Load image with a
blocking method
Download from Wow! eBook <www.wowebook.com>

271Performing work asynchronously
 [[results objectAtIndex:indexPath.row]
 setValue:image forKey:@"image"];
 }

 UIImageView *imageView =
 [[[UIImageView alloc] initWithImage:image] autorelease];

 imageView.contentMode = UIViewContentModeScaleAspectFit;
 imageView.autoresizingMask =
 UIViewAutoresizingFlexibleWidth | UIViewAutoresizingFlexibleHeight;
 imageView.frame = cell.contentView.frame;

 [cell.contentView addSubview:imageView];

 return cell;
}

#pragma mark -
#pragma mark Memory management

- (void)dealloc {
 [results release];
 [super dealloc];
}

@end

Now build and run your application. You should have a fully functional real estate
image searcher. But you’ll notice immediately how terrible the user experience is:
when you put in a search term, the whole application freezes for a few seconds, and
when you scroll down, it freezes a couple of more times. Completely unacceptable!
What’s happening here? This code is doing a horribly wrong thing: executing long-
running blocking tasks—getting the search results and downloading the images—on
the main thread. The main thread must always be free to handle UI updates and
incoming events. That’s why you should never do anything “expensive” on the main
thread. How can you use blocks and GCD to fix these problems? You can put both the
code that queries the image search API and the code that downloads an image into
blocks and then hand those blocks to GCD. GCD will execute them in a parallel thread
and thus not block the main thread.

13.2.4 Making the image search asynchronous

The following listing shows what the GCD-based asynchronous image search looks like.

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 NSLog(@"Searching for: %@", searchBar.text);
 NSString *api = @"http://ajax.googleapis.com/ajax/"
 "services/search/images?v=1.0&rsz=large&q=";
 NSString *urlString = [NSString
 stringWithFormat:@"%@real%%20estate%%20%@",
 api,
 [searchBar.text
 stringByAddingPercentEscapesUsingEncoding:

Listing 13.21 Asynchronous image search with GCD

Cache the
image
Download from Wow! eBook <www.wowebook.com>

272 CHAPTER 13 Blocks and Grand Central Dispatch
 NSUTF8StringEncoding]];
 NSURL *url = [NSURL URLWithString:urlString];

 // get the global default priority queue
 dispatch_queue_t defQueue =
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 void (^imageAPIBlock)(void);

 imageAPIBlock = ^{
 [NSThread sleepForTimeInterval:1.5];

 NSData *data = [NSData dataWithContentsOfURL:url];

 NSString *res = [[NSString alloc]
 initWithData:data
 encoding:NSUTF8StringEncoding];

 NSArray *newResults =
 [[[res JSONValue] objectForKey:@"responseData"]
 objectForKey:@"results"];

 [res release];

 dispatch_async(dispatch_get_main_queue(), ^{
 self.results = newResults;
 [self.tableView reloadData];
 });
 };

 dispatch_async(defQueue, imageAPIBlock);

 [searchBar resignFirstResponder];
}

What does this code do? First it references one of the three global concurrent queues:
the default priority queue. Then it declares a block that performs the network com-
munication with the image search API and takes care of the JSON parsing. When it’s
done, it calls dispatch_async again (that’s right, you can call dispatch_async from
inside a block). The target is the main queue, which corresponds to the application’s
main thread (the one that takes care of the UI and events). You pass in an anonymous
block that sets the new results and tells the tableview to reload. Why don’t you do this
right in the imageAPIBlock? For two reasons: First, UI elements should be updated
only from the main thread. Second, an ugly race condition is prevented: imagine start-
ing two searches in very quick succession. Because the three global queues execute
blocks concurrently, it could happen that two blocks try to update the results array at
the same time, which would most likely make your application crash. Because the
main queue always waits for one block to be done before it executes the next, you can
always be sure that only one block tries to update the results array at any given time.

 When you run your application now, notice that the search works much more
smoothly. But it still freezes for a short time and multiple times when you scroll. You
still have to get the loading of the images off of the main thread. Let’s do that next.
Download from Wow! eBook <www.wowebook.com>

273Performing work asynchronously
13.2.5 Making the image loading asynchronous

With listing 13.22, you change your tableView:cellForRowAtIndexPath: method
quite a bit. You check whether you already have the requested image. If so, you just set
up a UIImageView with it and return the cell. If not, you load the image in a block, and
the block calls back to the main thread by dispatching another block to the main
queue, which caches the image and tells the tableView to reload the cell for the
affected row. That causes the tableView:cellForRowAtIndexPath: method to be
called again, but this time it finds a cached image and is happy.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 } else {
 for (UIView *view in cell.contentView.subviews){
 [view removeFromSuperview];
 }
 }

 __block UIImage *image =
 [[results objectAtIndex:indexPath.row] objectForKey:@"image"];

 if (!image) {
 void (^imageLoadingBlock)(void);

 UIActivityIndicatorView *spinner =
 [[UIActivityIndicatorView alloc]
 initWithActivityIndicatorStyle:
 UIActivityIndicatorViewStyleGray];

 spinner.autoresizingMask =
 UIViewAutoresizingFlexibleLeftMargin |
 UIViewAutoresizingFlexibleRightMargin |
 UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleBottomMargin;

 spinner.contentMode = UIViewContentModeCenter;
 spinner.center = cell.contentView.center;
 [spinner startAnimating];

 [cell.contentView addSubview:spinner];
 [spinner release];

 imageLoadingBlock = ^{
 image = [UIImage imageWithData:
 [NSData dataWithContentsOfURL:

Listing 13.22 Asynchronous image loading with GCD

Attempt to fetch cached image;
mark variable editable

Create variable
to hold a block

Create a spinner to add
to the table view cell

Create block to
load the image
Download from Wow! eBook <www.wowebook.com>

274 CHAPTER 13 Blocks and Grand Central Dispatch
 [NSURL URLWithString:
 [[results objectAtIndex:indexPath.row]
 objectForKey:@"unescapedUrl"]]]];

 [image retain];

 dispatch_async(dispatch_get_main_queue(),^{
 [[results objectAtIndex:indexPath.row]
 setValue:image
 forKey:@"image"];

 [image release];
 [spinner stopAnimating];

 // reload the affected row
 [self.tableView
 reloadRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:NO];
 });
 };

 dispatch_async(
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),
 imageLoadingBlock);
 } else {
 UIImageView *imageView =
 [[[UIImageView alloc] initWithImage:image] autorelease];

 imageView.contentMode = UIViewContentModeScaleAspectFit;
 imageView.autoresizingMask =
 UIViewAutoresizingFlexibleWidth |
 UIViewAutoresizingFlexibleHeight;
 imageView.frame = cell.contentView.frame;

 [cell.contentView addSubview:imageView];
 }

 return cell;
}

This code first checks whether a cell is available for reuse. If so, it removes all of the
cell’s subviews (the image view and the spinner). Then the __block storage type is
used for the image variable because you want to be able to set its value from inside the
block in case you don’t have a cached version of it yet. Inside the block, you need to
retain the image because __block keeps it from being retained automatically. Finally
you release the image again in the block that’s run on the main queue because you
first added it to the matching results dictionary, which retains the image for you.

 When you run your application now, everything should work smoothly and never
freeze once.

13.3 Summary
We covered a lot of ground in this chapter. We looked at blocks, a powerful and versa-
tile new addition to the C language, and we got our feet wet with GCD, an easy way to
add concurrency to your application and keep it responsive at all times. There’s a lot

Dispatch anonymous
block to main queue

Cache
image

Reload
affected row

Asynchronously dispatch
image loading block

Use and display
cached image
Download from Wow! eBook <www.wowebook.com>

275Summary
more to learn about GCD, but that would go beyond the scope of this chapter. We cov-
ered the most important use case: performing work in the background and calling
back to the main thread to update the UI. To dig deeper into GCD, you should look at
Apple’s Concurrent Programming Guide at http://developer.apple.com/library/ios.

 Chapter 14, our final chapter, covers advanced debugging techniques.
Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/library/ios

Debugging techniques
There’s nothing worse than being close to releasing a new application and in your
final once-over finding a particularly nasty application crash that seems to have no
obvious cause. Even during day-to-day development of your application, it’s
unlikely that you’ll write perfect code the first time around, so understanding how
to debug your application in the Xcode environment is an important skill.

 The Xcode environment integrates a large number of debugging and code
analysis tools, but as usual, their true power is only unleashed if you know which
tool to use and how and when to use it. A common complaint for new Objective-C
developers who are used to managed environments such as C# or Java is that mem-
ory management and correct handling of object retain counts (retain, release,
autorelease, and dealloc message handling) is hard; so Xcode provides extensive
support for detecting and diagnosing memory-related errors.

This chapter covers
■ Creating a buggy application
■ Using NSLog
■ Controlling leaks with Instruments
■ Detecting zombies
276

Download from Wow! eBook <www.wowebook.com>

277Building an application, complete with bugs
14.1 Building an application, complete with bugs
Let’s create an application and purposely add some errors so that you can discover,
observe, and resolve them. The application isn’t overly complex, but it helps demon-
strate the debugging tools at your disposal. In Xcode create a new Navigation-based
application named DebugSample, and then replace its RootViewController tableview:
numberOfRowsInSection: and tableView:cellForRowAtIndexPath: methods with
the implementation in the following listing.

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 return 450;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 NSLog(@"We are creating a brand new UITableViewCell...");
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }

 NSLog(@"Configuring cell %d", indexPath.row);
 cell.textLabel.text =
 [[NSString stringWithFormat:@"Item %d", indexPath.row] retain];

 return cell;
}

When you build and run this application, you should see a UITableView consisting of
450 items. You should also notice that, as you flick through the table, it emits a log
message indicating which cell is currently being configured, as shown in figure 14.1.

Listing 14.1 A sample tableview implementation with intentional bug

Figure 14.1 Console output from the DebugSample application: a new log message is
emitted for each cell that’s configured for the UITableView.
Download from Wow! eBook <www.wowebook.com>

278 CHAPTER 14 Debugging techniques
14.2 Understanding NSLog
In this book you’ve utilized the NSLog function extensively to emit diagnostic messages
to the Xcode debugger console window. What you may not realize is that NSLog con-
tinues to log messages even when your application is used outside of the debugger. It
even logs messages once a user purchases your application from the iTunes App Store
and runs it on their own device. Where do these log messages end up, and how do you
retrieve them?

 To answer these questions, deploy the DebugSample application onto your real
iPhone or iPad device, and run the application a couple of times (see appendix A for
details if you haven’t done this before). When you reconnect the device to your com-
puter, you can bring up the Xcode Organizer window (Shift-Cmd-2), which should
look similar to figure 14.2.

 This window can be used for a wide range of tasks, such as uninstalling applications,
maintaining device provisioning profiles, and capturing application crash reports or
screenshots. In this case, you want to be in the Console section, as shown in figure 14.3.

Figure 14.2 The Xcode Organizer window showing a list of connected iOS devices. Using the various
tabs, you can control different aspects of your connected device, such as installing and uninstalling
applications, maintaining provisioning profiles, capturing screenshots, and reviewing application
crashes and log files.
Download from Wow! eBook <www.wowebook.com>

279Understanding NSLog
Scrolling through the console, you should be able to find the log entries produced by
DebugSample’s calls to NSLog while the device was disconnected from the computer.
While connected, if you launch the application on your device, you should even
notice that the console window updates in real time.

 Although it can be handy during development to log a large amount of content via
NSLog, it’s often less than desirable in builds which customers will obtain. Instead of
manually commenting out unnecessary calls to NSLog, you can use some C preproces-
sor magic to automatically ensure calls to NSLog appear only in debug builds. Open the
DebugSample_Prefix.pch file and insert the contents shown in the following listing.

#ifdef DEBUG
define LogDebug(...) NSLog(__VA_ARGS__)
#else
define LogDebug(...) do {} while (0)
#endif

#define LogAlways(...) NSLog(__VA_ARGS__)

Listing 14.2 Helpful macros that improve logging flexibility during development

Figure 14.3 The Devices console section of the Organizer window shows log messages not only from
your application’s NSLog calls but also from other system applications and iOS platform services.
Download from Wow! eBook <www.wowebook.com>

280 CHAPTER 14 Debugging techniques
Listing 14.2 defines two C preprocessor macros called LogAlways and LogDebug.
LogAlways is an alias for NSLog. The definition of LogDebug alters depending on
whether or not the state of DEBUG is defined. If DEBUG is defined, LogDebug is defined
to be a call to NSLog, but if DEBUG isn’t defined, the following do while statement is
substituted for calls to LogDebug:

do { } while (0)

You may think this a strange substitution to make and that you could replace calls to
LogDebug with an empty statement such as follows:

#define LogDebug(...)

The problem with this implementation is that it could introduce subtle and hard-to-
detect changes into your application’s behavior. Imagine the following source code is
using the LogDebug macro:

LogAlways("Process started");
if (a != b)
 LogDebug(@"A and B don’t match!");
LogAlways("Process completed");

If, during release builds, calls to LogDebug were replaced with an empty statement, the
Objective-C compiler would, in effect, see the following source code, which is com-
pletely different from the behavior you originally intended:

LogAlways("Process started");
if (a != b)
 LogAlways("Process completed!");

By substituting calls to LogDebug with do {} while (0), you can safely assume that end
users won’t see the debug messages emitted by NSLog and at the same time ensure the
substitution won’t cause compilation errors or unexpected changes in behavior. Dur-
ing debug builds, any use of the LogDebug macro is automatically converted to a stan-
dard call to NSLog, so builds you create in Xcode for development or diagnostic
purposes retain the full set of log messages.

 In the source code for tableView:cellForRowAtIndexPath: replace one of the
calls to NSLog with LogAlways, and replace the other with a call to LogDebug. Then
rerun your application and notice that, as you scroll through the table view, the Xcode
console window is logging content identical to what it previously logged. This is
because, by default, iOS project templates in Xcode configure their projects to define
the DEBUG preprocessor symbol. But if you stop the application, switch to Xcode to
make a release version of your application (Product > Edit Scheme… > Info, then
change the Build Configuration option), and rerun the application, you should
notice that only the calls to LogAlways make it to the console window. Calls to Log-
Debug are stripped out by the C preprocessor before the Objective-C compiler has a
chance to compile the source code.

 As you start to introduce macros such as LogDebug and LogAlways into an existing
code base, it can become laborious to search and replace all instances of NSLog or
Download from Wow! eBook <www.wowebook.com>

281Bringing memory leaks under control with Instruments
other functions that need to be updated. Luckily, Xcode provides support for per-
forming such tasks in a more efficient manner. From a terminal window, you can navi-
gate to your project’s folder and use the following command:

tops replace "NSLog" with "LogAlways" *.m

This command replaces all calls to the NSLog function with calls to LogAlways. It per-
forms this task for all *.m source code files found in the current directory. Tops is
smart enough not to alter other references to NSLog, such as those in comments; it has
built-in knowledge of Objective-C syntax and performs more than a simple search and
replace. For safety purposes, if you want to double check what a call to tops will per-
form, add the -dont argument to the command line. This argument causes tops to
perform as normal, except it won’t modify a single file. Instead, it sends to the console
a list of changes it would have performed had the -dont argument not been present.

 It’s also possible to perform this task directly from Xcode’s text editor: move the
mouse over a call to NSLog, right-click, and select Refactor. In the dialog box that
appears, type in LogAlways and click the preview button. You’ll get a list of files Xcode
will change, and selecting each one will graphically highlight the changes that will
occur once you click the Apply button.

 That sums up improved the NSLog situation—but there’s another problem with the
sample application. If you run the application, it appears to be working correctly, but
with time (and especially on a real device), it will eventually crash. It has a memory
leak, but how do you find it?

14.3 Bringing memory leaks under control with Instruments
In Xcode select Product > Profile. In addition to the iOS Simulator, you’ll see an appli-
cation called Instruments. From Instruments’ initial screen, select the Leaks trace
template and click Profile. A screen similar to figure 14.4 will be displayed.

 While Instruments is monitoring the execution of your application, select the Alloca-
tions instrument and scroll around the UITableView. Notice that the line labeled All
Allocations (representing all memory allocated in the application) keeps indicating that

Additional schemes can be helpful
Although the Xcode project templates produce a project with one scheme by default,
you can add other schemes to your project.

You could, for instance, create different schemes for “light” and “full” versions of
your application. Using different C preprocessor defines, you could configure your
source code with code similar to the following

#ifdef FULL_VERSION
...
#endif

to alter the behavior of the two application variants without needing to maintain two
completely separate Xcode projects.
Download from Wow! eBook <www.wowebook.com>

282 CHAPTER 14 Debugging techniques
memory is being consumed. You can confirm this by looking at the column labeled #
Living, which indicates the total number of objects currently alive in the application.
As you continue to scroll around the UITableView, this number steadily increases at a
rate that seems proportional to your scrolling. Notice also that the graph labeled
Leaks indicates that leaks have been detected and a steadily increasing blue line indi-
cates how much memory is being leaked.

 Stop the application by clicking the Stop button in the Instruments toolbar, and
you’ll get a list of all the objects in memory that Instruments has detected as being
potentially leaked. It appears your application has leaked a number of string objects.

 While it’s handy to know that a memory leak is present, it’s more useful to deter-
mine how the leak came about. With one of the memory leaks selected, display the
Extended Details pane (Cmd-E) and you’ll see a call stack showing where the memory
originally became allocated.

 As you switch between the various memory leaks, notice that most of the call stacks
appear virtually the same. This is a good sign that you have a single bug to track down.
You’ll also notice that there’s a line in the stack trace for RootViewController’s
tableView:cellForRowAtIndexPath: method. If you double-click it, you’ll see the
source code of the method with the following line highlighted:

Figure 14.4 Instruments is a flexible application that can attach one or more diagnostics tools, called
instruments, to your application. As your application runs, the instruments monitor its performance and
behavior and can highlight potential problems or opportunities to improve your application.
Download from Wow! eBook <www.wowebook.com>

283Bringing memory leaks under control with Instruments
 cell.textLabel.text =
 [[NSString stringWithFormat:@"Item %d", indexPath.row] retain];

Looking at this line and reviewing the object ownership rules discussed in chapter 9,
you can see that this line is the source of the memory leak.

 The line allocates a new NSString object, which is added to the autorelease pool
(by virtue of using a class method named using the classnameWithxxxx naming con-
vention). It then takes ownership of the string object by sending it a retain message,
and finally assigns it to the text property of the UITableViewCell’s textLabel.
Although the text property also takes ownership of the object, it’s not the source of
the memory leak, because when the UITableViewCell is deallocated, it’ll take care of
releasing ownership of the string.

 The source of the memory leak is the explicit retain message sent to the object.
By sending a retain message, the current code takes responsibility for the object,
but it never decrements the reference count by sending a matching release or
autorelease message. Therefore, string objects created by the line

 cell.textLabel.text =
 [[NSString stringWithFormat:@"Item %d", indexPath.row] retain];

are never returned to a reference count of zero and are never deallocated. This is the
source of the memory leak. Replace the line with the following version, which cor-
rectly maintains the reference count:

 cell.textLabel.text =
 [NSString stringWithFormat:@"Item %d", indexPath.row];

With the memory leak resolved, rerun the application using Instruments to verify your
analysis is correct and that the memory leak has been resolved. This time you should
see that Instruments doesn’t detect any leaks and that the total number of living
objects, although fluctuating, stays fairly static. It no longer increases as you scroll
through the tableview.

 In this section we discussed how to debug a situation in which an object’s retain
count is accidentally incremented too much, in effect keeping the object alive for too
long. It’s also possible for the opposite scenario to occur: an object’s retain count can
decrement back to zero too quickly, resulting in the object being deallocated before
you’ve finished using it.

 This is potentially worse than a memory leak, because once an object is deallo-
cated, any code attempting to access that object will cause a variety of more fatal out-
comes depending on the luck of the draw. Your application could continue on
without any apparent problem, it could crash entirely, or it could calculate an incor-
rect result or perform the wrong operation.

 Let’s purposely insert another type of error in your DebugSample application so
you can see how to detect and resolve such bugs when they accidentally creep into
your applications.
Download from Wow! eBook <www.wowebook.com>

284 CHAPTER 14 Debugging techniques
14.4 Detecting zombies
Once an object is deallocated, the Objective-C runtime is free to reuse the associated
memory for other memory allocation requests. The object doesn’t exist anymore. It’s
“dead” compared to a “live” object that has one or more active owners.

 When you attempt to access a dead object, you may get lucky—the object may still
be sitting in memory and you won’t notice a difference (when an object is deallocated,
the bookkeeping is updated, but what is in memory isn’t overwritten until that mem-
ory is reused). But the more likely scenario is that the Objective-C runtime has reas-
signed the associated memory for another task and attempting to access the dead
object will cause an application crash.

 Detecting object references to dead objects can be difficult, but Instruments and
the Objective-C runtime provide a feature called NSZombies, which makes detecting
them much easier and ensures they always fail in an identifiable manner. It turns dead
objects into zombies. A zombie object is “the living dead.” When the NSZombies fea-
ture is enabled, an object that should be deallocated (sent a dealloc message) is
instead kept alive in memory. By using some of the dynamic features of Objective-C,
the type of the object is modified to be _NSZombie_xxx where xxx is the original class
name. The NSZombie class responds to any message sent to an object by logging a mes-
sage to the console that something has attempted to communicate with an object that
wouldn’t exist if the NSZombie feature wasn’t in use.

 To demonstrate zombie object detection, add the code in the following listing to
RootViewController.m.

static NSString *mymsg = nil;

- (NSString *)generateMessage:(int) x {
 NSString *newMessage;

 if (x > 1000)
 newMessage = @"X was a large value";
 else if (x < 100)
 newMessage = [NSString stringWithFormat:@"X was %d", x];

 return newMessage;
}
- (void)viewDidLoad {
 [super viewDidLoad];
 mymsg = [self generateMessage:10];
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSLog(@"Your message has %d characters in it", mymsg.length);
}

With the code changed, run the application in Instruments by selecting Product > Pro-
file > Allocations Trace Template. As soon as the application starts, stop Instruments

Listing 14.3 Using NSZombies
Download from Wow! eBook <www.wowebook.com>

285Detecting zombies
(and the application) by clicking the Stop button in the toolbar. Then click the (i) icon
at the right-hand side of the Allocations instrument. Now you can configure the instru-
ment. Tick the Enable NSZombie Detection and Record Reference Counts check
boxes. Then restart the application by clicking the Record button in the toolbar.

 A warning will be displayed that traditional memory leak detection won’t work
with NSZombies enabled. This is a natural side effect of this feature because enabling
NSZombies means objects are never deallocated; they’re all converted to zombies and
kept in memory in case future code attempts to access them.

 In the DebugSample application, tap on a cell in the tableview and notice that the
application crashes and displays a pop-up message in Instruments similar to that
shown in figure 14.5.

 If you click the small arrow beside the second line of the zombie message, the bot-
tom pane in Instruments will update to display the reference-count history of the
object in question.

 From the history listed in figure 14.5, you can see that the object was originally
allocated (malloc’ed) some memory, then added to the autorelease pool by
NSString’s stringWithFormat: message (as detailed by the column titled Responsible
Caller), and then released when the NSAutoreleasepool was released.

 This series of events brought the object’s reference count (listed in the RefCt col-
umn) back to zero, and the object was deallocated. But because the NSZombies feature
was enabled, the object was instead converted into a zombie, and this object was then
accessed by RootViewController’s tableView:didSelectRowAtIndexPath: method.

Figure 14.5 Instruments demonstrating a detected attempt to communicate with a zombie object. The
bottom pane details the complete reference-count history of the object.
Download from Wow! eBook <www.wowebook.com>

286 CHAPTER 14 Debugging techniques
Double-clicking anywhere on the row associated with tableView:didSelectRowAt-
IndexPath: will bring up the source code, indicating where you attempted to access
an object that no longer existed.

 In this case, you can see the error occurred because the string object pointed to by
the mymsg variable in the viewDidLoad method had no explicit retain message. The
following source code would resolve the problem:

 mymsg = [[self generateMessage:10] retain];

This bug was engineered to be easy to detect; listing 14.3 contains other bugs. Luck-
ily, Xcode is smart enough to detect some of them without your even running the
application and waiting for it to crash! To get Xcode to perform a static analysis of
your source code, select Product > Analyze. Notice that the return statement in the
generateMessage: method is highlighted with the message “Undefined or garbage
value returned to caller.” This message indicates that in at least one scenario, the
generateMessage: method may fail to return a valid string object and instead return
some random “garbage” that’s likely to crash the application. To find how this is pos-
sible, click the error message on the right-hand side of the Code Editor window. The
blue arrows on top of the source code guide you through interpreting the error, as
shown in figure 14.6.

 Notice in the figure that the variable newMessage isn’t assigned an initial value.
Based on the value of x, the first if statement could evaluate to false, which would
cause execution to jump to the second if statement. This statement could also evalu-
ate to false, in which case execution would proceed to the return statement. At that
point, an attempt to return the value of newMessage, the value of which isn’t explicitly
set, will result in an error.

 When the code analysis feature of Xcode detects errors such as this, it’s a cue for
you to analyze your logic and determine if there’s a corner case you haven’t covered
or if a variable has accidentally been left uninitialized.

14.5 Summary
Xcode provides an extensive range of debugging tools and integrates well with a num-
ber of open source tools. The technology behind Instruments is mostly open source,

Figure 14.6 An error detected by the static code analysis tool can be displayed
graphically in the Xcode IDE. Notice how the execution path required to trigger the
error is visually demonstrated by arrows overlaid on the original source code.
Download from Wow! eBook <www.wowebook.com>

287Summary
and its ease of use and visual nature permitting exploration and interpretation of cap-
tured data is unrivaled.

 Debugging applications that you’ve deployed via the iTunes App Store requires
additional forethought if you want to maximize your ability to diagnose crashes that
you yourself can’t replicate. At a minimum, you should archive a copy of your source
code and debugging symbols (*.dsym files) for each update of the application you
submit. Doing so increases your chances of being able to quickly zero in on probable
causes of crashes that occur “out in the wild.”
Download from Wow! eBook <www.wowebook.com>

appendix A
Installing the iOS SDK

In this appendix we briefly walk you through the installation of the iOS software
development kit (SDK).

A.1 Installing the iOS SDK
The first step is to select and sign up for the Apple developer program and down-
load the SDK.

A.1.1 Becoming an Apple developer and downloading the SDK
Apple frequently changes the way you can download and install Xcode. At the time
of this writing, you simply have to search for “Xcode” on the Mac App Store, where
you can then download Xcode 4.1 for Mac OS X Lion for free. You should always be
able to find the latest version and instructions at <http://developer.apple.com/
xcode/>. To get access to valuable and up-to-date developer resources you should
also set up a free developer account at <http://developer.apple.com/programs/
register>. Click the blue Get Started button, and complete the registration steps.
The free account also gives you access to the previous versions of Xcode for Mac OS
X Snow Leopard and below.

 However, simply downloading or purchasing Xcode through the Mac App Store
will not enable you to test and run your apps on an actual iOS device. If you plan to
test your applications on an actual device—which you should—or to submit them
to the App Store, choose the $99/year iOS developer program. You can enroll by
going to <http://developer.apple.com/programs/ios/>, clicking the blue Enroll
Now button, and completing the enrollment. That will enable you to test your apps
on devices and submit them to the App Store.

A.1.2 System requirements
At the time of this writing, the requirements to install Xcode and the iOS SDK from
the Mac App Store are an Intel-based Mac that runs Mac OS X Lion 10.7 or later and
288

Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/xcode/
http://developer.apple.com/xcode/
http://developer.apple.com/programs/register
http://developer.apple.com/programs/register
http://developer.apple.com/programs/ios/

289Preparing your iOS device for development
about 10 GB of free disk space. If you signed up for the free or paid developer program,
you can also download older versions of Xcode for Mac OS X Snow Leopard.

A.1.3 Downloading Xcode and the iOS SDK
If you chose to purchase Xcode through the Mac App Store, Xcode won’t be installed
directly. Instead, an application to install Xcode will be downloaded and installed. If
that’s what you did, you can continue with the next step.

 If instead you signed up for the iOS developer program, go to http://developer
.apple.com/xcode/index.php and log in with your username and password. To start
the download, click the big link in the Download Xcode 4 box as shown in figure A.1.
It’s a huge download, roughly 4.5 GB, so be patient.

A.1.4 Installing Xcode and the iOS SDK
If you’ve purchased Xcode from the Mac App Store, just double click on the “Install
Xcode” app to start the installation process. If instead you’ve downloaded Xcode from
Apple’s developer website, the disk image (DMG) normally automatically opens in
Finder once the download is complete (if not, double-click the .dmg file). Double-
clicking on the Xcode and iOS SDK icon starts the installation process. Unless you
have very specific needs and you know what you’re doing, you should leave all the set-
tings as they are and just click Continue until the installation starts. Once again,
patience is needed because the installation takes a little while. After the installation
finishes, you’ll find Xcode in /Developer/Applications/Xcode.

A.2 Preparing your iOS device for development
When you develop applications for iOS devices, you naturally also want to test them on
an actual device and not just in the simulator. Because iOS applications have to be dig-
itally signed in order to run on a device, you have to get a digital certificate from
Apple and install a Provisioning Profile on your device. Let’s do that next.

A.2.1 Creating a certificate
First, launch an application on your Mac called Keychain Access (it’s in the Applica-
tions folder inside the Utilities folder). In the menu bar, select Keychain Access > Pref-
erences, and set both Online Certificate Status Protocol and Certificate Revocation
List on the Certificates tab to Off. Next, select Keychain Access > Certificate Assistant >
Request a Certificate From a Certificate Authority...” from the menu bar. You should
see the window depicted in figure A.2.

Figure A.1 The Downloads section
of the Apple Developer page
Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/xcode/index.php
http://developer.apple.com/xcode/index.php
http://developer.apple.com/xcode/index.php

290 APPENDIX A Installing the iOS SDK
Fill in your email address (the same one you used to sign up as an Apple developer)
and your name, select Saved to Disk in the Request Is section, and check the Let Me
Specify Key Pair Information check box. Click Continue, save the file, and remember
where you saved it. You need to upload it to the Apple website in the next step. On the
next screen, make sure the key size is 2048 bits and RSA is chosen as the algorithm.
Click Continue and then Done.

 Now head over to http://developer.apple.com/ios, log in, and select iOS Provision-
ing Portal at the top right. Once there, select Certificates from the left sidebar and
click the Add Certificate button. On the bottom of the Certificates page, after a lot of
text, you’ll see a Choose File button. Click it and select the file you saved in the previ-
ous step. Click the Submit button to upload the Certificate Signing Request to Apple.
It might take between a few seconds and a few minutes for the certificate to be cre-
ated. When the Approve button is available next to your certificate in the Certificates
section of the Provisioning Portal, click it, reload the page, and click Download.
Double-click the downloaded file to install it in your keychain.

 You also need to download and install the WWDC intermediate certificate. A link to
it also appears on the Certificates page. After downloading it, double-click it to install
it in your keychain.

A.2.2 Provisioning a device using Xcode

For generic development (for example, to run all the sample code from this book),
Xcode can take care of setting up your device for development. But if you need to use

Figure A.2 Requesting a certificate using the Keychain Access application
Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com/ios

291Preparing your iOS device for development
advanced features like in-app purchases or push notifications, you must set up your
device manually on the website. Section A.2.3 explains how to do that.

 To provision your device with Xcode, launch Xcode and
select Window > Organizer. The Organizer window is where
you manage your devices, provisioning profiles, archived
applications, and source control repositories. On the
Devices tab, select Provisioning Profiles from the Library
section on the left (figure A.3).

 On the bottom of the window, check the Automatic
Device Provisioning check box (figure A.4).

 Now plug in your iOS device using the USB cable. It’ll
show up in the Devices section. Select it and click the Use
for Development button. A dialog will come up asking you for your Apple developer
credentials. Enter them and click Submit Request in case Xcode asks you whether you
want it to request a development
certificate. Xcode will then log in
to the Provisioning Portal, regis-
ter your device ID, and create a
provisioning profile called Team
Provisioning Profile: * and install
it on your device.

 Your device is now ready for development!

A.2.3 Provisioning a device manually

If you want to provision your device manually, you should still first follow the steps in
the previous section to add your device to the developer portal. If you’d rather do this
step manually as well, connect your device to your Mac, open the Xcode Organizer,
select the device, and copy the long string of numbers and letters called Identifier.
Then log in to the iOS Provisioning Portal and select Devices. Click the Add Devices
button, enter a meaningful name, and paste the device ID into the second text field.
Click Submit to save your device.

 Applications that you want to submit to the Apple App Store require a unique App
ID. An App ID consists of the reversed URL of your company and an application name,
such as com.mygreatcompany.myamazingapp (this is why Xcode asks you to enter
such an App ID when you create a new project). To add a new App ID, select App IDs
from the sidebar and click the New App ID button. Enter a meaningful name and the
bundle identifier (the reversed URL with the application name) into the second text
field. This bundle identifier must match the one you specify in the settings of your
Xcode project.

 Finally, a provisioning profile is the combination of an App ID and a device ID,
practically allowing a device (or a group of devices) to install and run an application
with a certain App ID. You can create provisioning profiles for both development and

Figure A.3 The
Provisioning Profiles
section of the Xcode
Organizer

Figure A.4 Enabling Automatic Device Provisioning in the
Xcode Organizer
Download from Wow! eBook <www.wowebook.com>

292 APPENDIX A Installing the iOS SDK
distribution. Section A.2.2 took care of creating one for development; now let’s look
at how to create one for distribution.

 In the Provisioning Portal, select Provisioning and then the Distribution tab. Click
the New Profile button. On the next page, you can select if you want to create a profile
for submitting your application to the App Store or for giving it to beta testers via Ad
Hoc distribution. The following steps are the same for App Store and Ad Hoc distribu-
tion; the only difference is that you don’t have to specify devices for an App Store pro-
file. For now, select Ad Hoc, enter a meaningful name (such as My Awesome App Ad
Hoc), select the desired App ID from the Select box, and select the device(s) this pro-
visioning profile should be valid for. Click Submit and go back to the Distribution tab
and click the Download button next to your brand new Ad Hoc provisioning profile.
Once the profile is downloaded, double-click it to install it. That’s it.

A.2.4 Running an application on a device

To learn how to run an application on a device, you’ll create a blank new project in
Xcode and run it on your device. Fire up Xcode and select File > New > New Project.
Select Tab Bar Application and click Next. Name the product “My Great App” and put
your company’s reversed URL as the Company Identifier. Click Next and save the project.
Now plug in your iOS device and select your iOS device from the Scheme selector right
next to the Run and Stop buttons in Xcode. Press the Run button: the project should
compile and run on your device.

 You can change which provision-
ing profile should be used (if you
have multiple ones) by selecting the
project in the Navigator view in
Xcode, selecting the Build Settings
tab, and scrolling down to the Code
Signing section. There, under the
Debug or Release configuration,
you can change the provisioning
profile and certificate by selecting a
different one next to the Any iOS SDK entry (figure A.5).

 Now you’re all set to run and test your applications on your device. To dig deeper
into the complex topic of certificates and device provisioning, check out the elaborate
tutorials and videos on Apple’s Provisioning Portal website.

Figure A.5 Code Signing settings in Xcode
Download from Wow! eBook <www.wowebook.com>

appendix B
The basics of C

Throughout this book we’ve assumed you understand the basic syntax of Objective-
C. Even if the iPhone is your first exposure to Objective-C, you may have preexist-
ing knowledge of another language that shares a similar lineage with the C lan-
guage. As an example, the basic control structures in C, C++, Java, and C# are all
essentially the same.

 A lot of beginner Objective-C developers don’t fully appreciate the C linage of
Objective-C, but Objective-C is essentially a layer over top of C. Every valid C pro-
gram is also, by definition, a valid Objective-C program, albeit one that doesn’t take
advantage of Objective-C’s object-oriented features.

 The impact of this lineage is that most of the syntax in Objective-C for making
decisions and controlling the flow of execution throughout an application is virtu-
ally identical to that of the C programming language. If you want to become a truly
great Objective-C programmer, you must first become an ace at using C.

 If you are new to programming or haven’t written code in a C-inspired lan-
guage before, this appendix is for you: it covers the basic control structures and
details of programming in a C-style language. Let’s begin our discussion by look-
ing at how variables, messages, and classes should be named to avoid potential
errors during compilation.

B.1 Variable naming conventions
All variables, methods, and classes in an application must be provided with a name
to identify them, but what makes a valid variable name?

 A variable name is one type of identifier. An identifier is simply a name that
uniquely identifies an element such as a variable, custom data type, or function in
the source code that makes up an application. In C, identifiers can consist of any
sequence of letters, digits, or underscores. They can’t start with a digit, however,
and those that start with an underscore are reserved for internal use by the
293

Download from Wow! eBook <www.wowebook.com>

294 APPENDIX B The basics of C
compiler or support libraries. Identifiers can be of any length but are case sensitive,
so fooBar, FOOBAR, and FooBar are all valid identifiers that refer to different items in
an application.

 Following are some examples of valid variable identifiers:

■ MyVariable

■ variable123

■ Another_Variable

And here are some examples of invalid variable identifiers:

■ $Amount

■ cost(in_cents)

■ monthly rental
■ 10timesCost

■ int

The last invalid variable identifier, int, deserves additional comment. At first glance,
it may appear to pass all the rules for valid identifiers. The keyword int, however,
already has a special meaning in C source code. It identifies the integer primitive data
type. Keywords that already have a special meaning in a C application are called
reserved words. A reserved word is an identifier that has a special meaning to the C com-
piler and therefore can’t be used as an identifier in your source code. Other examples
of reserved words include if, return, and else, among others.

B.1.1 Hungarian notation

Although you’re free to name your variables using any identifier that conforms to the
rules previously specified, over the years a number of traditions and conflicting styles
have developed regarding the best way to name identifiers. Many developers already
familiar with C-based applications are aware of a convention called Hungarian notation.

 Hungarian notation is the concept of encoding into your variable names a descrip-
tion of the data type associated with the variable. This is done via a prefix that repre-
sents the data type; for example, iCount indicates an integer count, and chGender
indicates a variable capable of storing a character. Table B.1 lists some of the most
common prefixes you may encounter.

Table B.1 Common Hungarian notation prefixes for variable names in C source code

Example variable identifiers Description

chFoo Character (char)

iFoo, nBar, cApples Integer, number or count (int)

bFlag, fBusy Boolean or flag (BOOL)

pszName Pointer to null terminated string (char *)
Download from Wow! eBook <www.wowebook.com>

295Variable naming conventions
As IDEs have become more powerful with features such as Code Sense (Apple’s equiva-
lent to IntelliSense), the use of Hungarian notation has quickly lost favor among devel-
opers. It’s now quick enough to determine the data type associated with a variable
without encoding it into the name. Most usage of Hungarian notation is now confined
to C-based source code; it’s uncommon to see this convention used in applications that
embrace Objective-C. This is not to say that other naming conventions have also faded;
for example, camel case is still popular among Objective-C developers.

B.1.2 Camel case
It’s helpful to make identifiers as descriptive and self-documenting as possible. As an
example, a variable named CountOfPeople is more meaningful than a variable simply
named n.

 Because identifiers can’t contain spaces, one common technique for achieving this
goal is to capitalize the first letter of each word, as seen in the variable name CountOf-
People. This technique is named camel case for the “humps” the uppercase letters
spread throughout the identifier. Another alternative to camel case is the use of
underscores to separate words: Count_Of_People.

B.1.3 Namespaces
When your applications start getting more complex or you start to use code developed
by a third party, one problem you may come across is a clash between identifiers. This
occurs when two separate parts of the application attempt to use the same identifier to
represent different things. For example, your application may name a variable Counter,
and a third-party library might name a class Counter. If you were to refer to Counter
in your source code, the compiler would be unable to determine which item you were
referring to.

 Some programming languages resolve this problem via a mechanism called
namespaces. A namespace allows you to group related identifiers into separate group-
ings or containers. For example, all the code written by Apple could be placed inside
one namespace, and all the code written by you could be placed inside another. Each
time you reference a variable or function, you must provide not only the name of the
identifier but also its containing namespace (although this may be implied rather
than explicit). In this manner, if two regions of code attempt to reference something
called Counter, the compiler can differentiate between the two interpretations and
understand your intent.

 The C programming language doesn’t provide a concept equivalent to that of
namespaces, but it’s possible to simulate enough of their behavior to avoid collisions
by using commonly agreed-upon prefixes for your identifiers.

 A good example of this technique is the venerable NSLog function. This function
can be thought of as having the name log in a namespace called NS. NS is the
namespace prefix Apple uses for the Foundation Kit library; as such, it would be unwise
to start the name of any of your variables or functions with the NS prefix because it
would increase the likelihood of its clashing with a preexisting Apple function.
Download from Wow! eBook <www.wowebook.com>

296 APPENDIX B The basics of C
 You may like to get into the habit of prefixing your own publicly visible identifi-
ers with a prefix of your own choosing, perhaps based on the initials of your name
or company.

 With the proper naming of variables and other elements out of the way and no
longer producing compile-time errors, let’s explore how to use one or more variables
to calculate new values or to answer questions.

B.2 Expressions
It’s uncommon for an application to be developed without requiring at least one mathe-
matical calculation, so C provides a rich set of operators for mathematical expressions.

B.2.1 Arithmetic operators

The most obvious operators are the arithmetic ones that perform the basic mathemat-
ical operations we’re all familiar with. These operators are listed in table B.2.

These arithmetic operators all have their expected behavior. For example, the expres-
sion 4 + 3 results in the value 7 being calculated. The modulus operator returns the
remainder of an integer division operation, so 9 % 2 equals 1 because 2 goes into 9
four times with 1 left over.

B.2.2 Comparison operators

Once you’ve calculated one value, you may want to compare it against another. Rela-
tional operators allow this comparison, which results in a Boolean value being calcu-
lated that indicates the truth of the statement. Table B.3 outlines the available
relational operators.

 As an example, the expression x >= 5 * 10 determines if the value of variable x is
greater than or equal to 50 (the value of the expression on the right side of the >=
operator).

 Sometimes comparing a single value isn’t enough. For example, you may want to
check if a person’s age is greater than 25 years and weight is less than 180 pounds. In
such scenarios, you must use compound conditional statements.

Table B.2 Arithmetic operators available in C

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (remainder)
Download from Wow! eBook <www.wowebook.com>

297Expressions
A compound conditional statement is two Boolean expressions joined by a logical
operator. Common logical operators are shown in table B.4.

As an example, the previously discussed condition could be expressed as age > 25 &&
weight < 180. The ! is a special logical operator in that it requires only one Boolean
value and it reverses it (true becomes false, false becomes true).

 Although it makes little difference to the expression just shown, it’s important to
note that C implements short-circuit Boolean evaluation: an expression will stop
being evaluated as soon as the end result can be determined without any level of
doubt. The following logical expression involving the && operator demonstrates how
this feature can make the difference between your application running correctly or
randomly crashing:

struct box *p = get_some_pointer_value();

BOOL result = (p != NULL) && (p->width == 20);

The expression on the second line evaluates to true if p is a non-NULL pointer and the
width of the box it points to has a width of 20.

 Without short-circuit Boolean evaluation, the expression would crash whenever p
was NULL. This would occur because after evaluating the left side of the && operator (p
!= NULL), execution would then evaluate the right side (p->width == 20) and crash
while attempting to dereference the NULL pointer. The right side is evaluated even
though the final result of the statement is known to be false because false && x for
any value of x will always be false.

Table B.3 Relational operators available in C

Operator Description

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Table B.4 Logical operators available in C

Operator Description

&& And

|| Or

! Not
Download from Wow! eBook <www.wowebook.com>

298 APPENDIX B The basics of C
 With C implementing short-circuit Boolean evaluation, when p is NULL, the right side
of the expression isn’t evaluated, safely avoiding the potential NULL reference exception.

B.2.3 Bitwise operators

A confusing thing when you first look at the operators available in C is the apparent
doubling up of the logical operators. For example, or (|, ||), and (&, &&), and not (~,
!) all appear to have two versions. There’s method to this madness: the singular
forms, called bitwise operators, have a slightly different function than the equivalent log-
ical operators. The bitwise operators are listed in table B.5.

The byte is the smallest-sized variable that a C program can operate on. There’s no bit
type capable of storing a single on or off state. Bitwise operators, however, allow you to
test, toggle, or shift the individual bits that make up an integer value. As an example
of the difference between logical and bitwise operators, compare the output of the fol-
lowing code snippet:

int x = 8 && 1;
int y = 8 & 1;

NSLog(@"x = %d, y = %d", x, y);

The output will indicate that x has the value 1 and y has the value 0. Clearly, the logi-
cal and bitwise and operators have performed different operations. The first expres-
sion uses the logical and operator (&&) and evaluates to true because both 8 and 1 are
nonzero and hence treated as representing true.

 The second assignment uses the bitwise and operator (&) and performs the and
operation on each bit in the two integer variables separately. Converting the values 8
and 1 into binary, you obtain 00001000 and 00000001. ANDing bit 0 from the first value
with bit 0 from the second value to produce bit 0 of the result, and so on, for all bits in
each value will produce the result 00000000. This occurs because there’s no bit posi-
tion in which both values have a 1.

Table B.5 Bitwise operators available in C

Operator Description

& And

| Or

^ Xor (exclusive or)

~ One’s complement (0s become 1s, 1s become 0s)

<< Left shift

>> Right shift
Download from Wow! eBook <www.wowebook.com>

299Expressions
B.2.4 Assignment operators

So far, we’ve used the assignment operator (=) to store the value of an expression in a
variable. But this isn’t the only form of assignment operator available to Objective-C
developers. The following code snippet also introduces the += assignment operator:

int x = 5, y = 5;

x = x + 4;
y += 4;

NSLog(@"x = %d, y = %d", x, y);

This code snippet initializes two variables, x and y, to the value 5. Variable x is then
assigned the value of the expression x + 4, which increases its existing value by 4. Vari-
able y, on the other hand, also has its value incremented by 4, but this time via the
more compact syntax afforded by the += operator.

 The += operator in effect says to “increment the variable on the left side by the
value of the expression on the right side.” Similar shorthand syntax can be used for
most of the arithmetic and bitwise operators, such as +, -, *, /, %, &, |, ^, >>, and <<, to
perform a mathematical operation and assignment in one step.

 Another often overlooked feature of the assignment operator (=) is that it can be
nested in a larger expression. The value of the assignment operator is the value it will
assign to the variable on its left side. This can lead to statements such as the following:

int x, y;

x = (y = 5 + 2) + 4;

NSLog(@"X is %d, Y is %d", x, y);

The expression (y = 5 + 2) + 4 can be thought of as consisting of two individual steps.
Working from the inside outward, the first step adds 5 and 2 together and assigns the
value 7 to variable y. Then 4 is added to the result of the inner subexpression, result-
ing in the value 11 being assigned to variable x.

 Although it’s uncommon to see the assignment operator used in the manner just
demonstrated, the benefit of this aspect of the assignment operator becomes clearer
once we cover conditional looping constructs later in this appendix.

 Now that we’ve covered how assignment operators can be used in larger expres-
sions, let’s look at C’s pre- and post-increment and pre- and post-decrement operators.
These operators can be considered as a shorthand way to increment or decrement a
variable by 1; they’re represented by two ++ or -- symbols, as demonstrated here:

int x, y, z;

x = 5;
y = ++x + 10;
z = x++ + 10;

NSLog(@"X is %d, Y is %d, Z is %d", x, y, z);

This code results in the variable x having the value 7 and y and z both having the
value 16. The ++x and x++ operators each contributed an increase of 1 to the value of
Download from Wow! eBook <www.wowebook.com>

300 APPENDIX B The basics of C
x but each clearly had a different impact on the larger expression they’re contained in
because both y and z evaluate to the value 16 even though the value of x changes
value after each statement is executed.

 The expression y = ++x + 10 can be rewritten as y = (x = x + 1) + 10, which is similar
in nature to the expressions discussed in the previous section. Variable x (which starts
off as the value 5) is assigned a new value of x + 1, resulting in x equaling 6. This
updated value is then added to 10 to produce the result of 16, which is then stored in
variable y.

 The next expression, y = x++ + 10, performs the same set of operations but in a dif-
ferent order. In this case, the current value of x (which at the start of executing this
line is 6) has 10 added to it. This results in variable z being assigned the value 16, and
it’s only after this assignment that variable x is increased by 1.

 The pre-increment operator (++x) increases the value of the variable and then
uses the result in the larger expression, while the post-increment operator (x++)
uses the current value of the variable in the larger expression and then increments
the variable after the fact. Similar --x and x-- operators perform pre- and post-
decrement operations.

B.2.5 Operator precedence

Some expressions are ambiguous and can be interpreted in multiple ways. For exam-
ple, should the following statement result in variable x having the value 20 or 14?

int x = 2 + 3 * 4;

int y = (2 + 3) * 4;
int z = 2 + (3 * 4);

C implements a set of precedence rules that specify the order in which expressions
should be calculated (multiplication and division before addition and subtraction, for
example). These rules mean that variable x will have the value 14.

 If you need to override the precedence rules, you can use parentheses to explic-
itly control the order in which operations are calculated, as demonstrated by vari-
ables y and z.

 This concludes our look at expressions and how to specify them in a C-based
application. One type of expression that deserves greater attention is the condi-
tional expression. Expressions of this form enable you to check the state of the data
stored in an application and come up with a single Boolean (true or false) value
that represents the truth of a potentially complex situation. What we haven’t cov-
ered is how to use such a value to change the behavior and flow of execution in an
application. C provides the answer in a set of statements collectively called the condi-
tional statements.

B.3 Conditional statements
Applications that execute a fixed sequence of commands are not the most exciting or
practical. Invariably, an application of any complexity must make conditional decisions
Download from Wow! eBook <www.wowebook.com>

301Conditional statements
based on the value of variables or actions of the user and change their behavior or
flow of execution to suit.

 Making conditional decisions is a fundamental part of any programming language,
and C is no different.

B.3.1 The if-else statement

The if-else statement is the simplest of the conditional statements. It evaluates a sin-
gle Boolean expression and executes one set of statements if it evaluates to true and
another set of statements if it evaluates to false. The general form is as follows:

if (condition) {
 statement block 1
} else {
 statement block 2
}

The condition can be any Boolean expression. If the expression evaluates to true
(any value other than zero), statement block 1 is executed; otherwise, statement block
2 is executed. No matter which path is selected, execution then proceeds to the first
statement immediately after the if statement.

 The following if statement checks to see if the value of variable x holds a value
greater than 10 and prints a different result depending on the result of this comparison.

int x = 45;

if (x > 10) {
 NSLog(@"x is greater than 10");
} else {
 NSLog(@"x is less than or equal to 10.");
}

The else keyword and associated statement block are optional and don’t need to be
included if you have no statements you wish to execute whenever the specified condi-
tion evaluates to false. The following if statement prints a message only if variable x
is greater than 10.

int x = 45;
if (x > 10) {
 NSLog(@"x is greater than 10");
}

In this case where only one statement is required to be executed in a statement
block, it’s not necessary to wrap the statement in curly braces. The semicolon at the
end of the statement is still required, though, because C uses the semicolon to termi-
nate the current statement rather than a separator between multiple statements, as
in some other languages. The following if statement is identical in function to the
previous one:

int x = 45;
if (x > 10)
 NSLog(@"x is greater than 10");
Download from Wow! eBook <www.wowebook.com>

302 APPENDIX B The basics of C
Omitting the curly braces is subject to a stylistic debate: many developers advocate
always using curly braces around the statements conditionally executed by an if state-
ment as a way to add clarity and avoid easy-to-make yet often hard-to-spot mistakes,
such as adding a second statement immediately under the current call to NSLog and
expecting it to be covered by the if statement.

 Many conditions don’t fall into a simple true/false type of comparison. For exam-
ple, your application may ask for the user’s age and want to perform different tasks if
the user is deemed to be a child, teenager, adult, or senior citizen. By stringing
together multiple if-else statements, it’s possible to check for a range of related con-
ditions. As an example of this approach, the following listing demonstrates using mul-
tiple if-else statements to compare the current heading of a digital compass.

enum direction currentHeading = North;

if (currentHeading == North)
 NSLog(@"We are heading north");
else if (currentHeading == South)
 NSLog(@"We are heading south");
else if (currentHeading == East)
 NSLog(@"We are heading east");
else if (currentHeading == West)
 NSLog(@"We are heading west");
else
 NSLog(@"We are heading in an unknown direction");

Although it may look like we have a slightly different statement structure, there’s
nothing new in this code sample. We have a series of if statements where the else
clause consists of another if-else statement specified without curly braces.

B.3.2 The conditional operator
The conditional operator, represented by a question mark (?), can be considered a
shorthand syntax for a common form of if-else statement. Consider an if-else state-
ment used to conditionally assign a variable a new value based on a specific condition:

int x;
if (y > 50)
 x = 10;
else
 x = 92;

At the end of execution, this statement variable x will store the value 10 if the expres-
sion y > 50 evaluates to true or the value 92 if it evaluates to false. Because this type
of conditional assignment is common in many applications, C provides an alternative
syntax designed to make such cases more concise. As an example, the following state-
ment is equivalent in behavior to the previous one, yet requires only a single line of
source code:

int x = (y > 50) ? 10 : 92;

Listing B.1 Chaining multiple if-else statements together
Download from Wow! eBook <www.wowebook.com>

303Conditional statements
The general format of the conditional operator statement is as follows:

condition_expression ? expression1 : expression2

When a conditional operator is detected, the condition expression is evaluated. If the
result of this expression evaluates to true, expression1 is then evaluated and becomes
the result of the conditional operator. If the condition expression evaluates to false,
expression2 is evaluated and becomes the result of the conditional operator.

B.3.3 The switch statement
Chaining if-else statements together, as shown in listing B.1, is such a common prac-
tice that C provides a special statement, the switch statement, to simplify their specifi-
cation and construction. The switch statement is especially handy when you’re using
enumerated data types and want to perform a different action for each possible value.
Its general form is shown in the following listing.

switch (expression)
{
 case value1:
 statements;
 break;

 case value2:
 statements;
 break;

 default:
 statements;
 break;
}

The integer expression in parentheses is evaluated, and the resulting value is com-
pared sequentially against the constant values provided by one or more case blocks.
Once a match is found, the statements that follow are executed until the break key-
word is found. This keyword signals the end of a particular case, and execution pro-
ceeds immediately to the first statement after the end of the entire switch statement.

 If no case matches the current value of the expression, execution can proceed to a
special catch-all case identified by the keyword default. The use of a default clause
is optional.

 As an example, listing B.1 could be rewritten to make use of a switch statement as
shown in the following listing.

enum direction currentHeading = North;

switch (currentHeading) {
 case North:
 NSLog(@"We are heading north");
 break;

Listing B.2 General syntax of a switch statement

Listing B.3 Using the switch statement
Download from Wow! eBook <www.wowebook.com>

304 APPENDIX B The basics of C
 case South:
 NSLog(@"We are heading south");
 break;

 case East:
 NSLog(@"We are heading east");
 break;

 case West:
 NSLog(@"We are heading west");
 break;

 default:
 NSLog(@"We are heading in an unknown direction");
}

Comparing listing B.1 to listing B.3, you can see that the different syntax and the
amount of whitespace makes a clear impact on the readability and maintainability
of such a statement. One thing worth noticing with switch statements is that
they’re an exception to the general rule that multiple statements must be enclosed
in a set of curly braces. In each case block, it’s possible to simply list multiple state-
ments one after another, and they’ll all be executed in sequence if their case value
is a match.

 In listing B.3 the end of each case block is punctuated by the break keyword,
which signals the end of a particular case block and causes execution to jump to the
end of the entire switch statement. The break keyword is optional; if it isn’t present,
execution follows down into the next statement even if that statement is part of
another case block. This feature is commonly used if you want to handle multiple
potential values in the same or a similar manner. As a somewhat contrived example,
take a look at the following listing.

enum { Horse, Pony, Cat, Kitten } pet = Kitten;

switch (pet)
{
 case Kitten:
 NSLog(@"This is a young cat so turn on the fire");
 // Falls through
 case Cat:
 NSLog(@"Cats can sleep inthe living room");
 break;

 case Horse:
 case Pony:
 NSLog(@"These pets don't belong inside the house!");
 break;
}

The code is straightforward in the case of the pet variable storing the value Cat or
Pony. For both values, the switch statement executes the matching calls to NSLog and
then jumps to the end of the switch statement via the break keyword.

Listing B.4 switch statement with case statements falling into each other
Download from Wow! eBook <www.wowebook.com>

305Looping statements
 Not as straightforward is the Kitten case, which doesn’t end in a break statement.
If the switch statement is executed while the pet variable stores the value Kitten, the
first call to NSLog is executed, and execution proceeds to the next statement. Because
the Kitten case has no additional statements, execution “falls through” into the Cat
case block, and the second call to NSLog is executed.

 It’s not necessary for a case block to have any statements, as in Horse case: notice it
immediately falls through into the case for Pony. This feature is handy when multiple
values should be treated identically.

 With your newfound knowledge of conditional statements, you can alter the
sequence of operations your applications perform. And the C developer’s toolbox has
even more tricks. As in real life, the path an iPhone application executes is not
straight; it can contain many twists and turns. You may want to repeat a set of state-
ments or continue doing something until a certain condition becomes true, such as a
user pressing a button or an array running out of data. Looping statements with key-
words such as for and while are a natural progression from conditional statements
and enable an application to repeat a set of statements.

B.4 Looping statements
In your application logic you may come across the need to repeat a particular state-
ment a fixed number of times. In chapter 1 you printed "Hello, World!" to the
debug console with the following statement:

NSLog(@"Hello, World!");

If you wanted to say "Hello, World!" three times in a row, you might be tempted to
add two calls to NSLog:

NSLog(@"Hello, World!");
NSLog(@"Hello, World!");
NSLog(@"Hello, World!");

Using an if statement, it’s possible to extend this approach to make the number of
times you print "Hello, World!" conditional on the value stored in a variable. For
example, the code in the following listing uses the value of variable n to determine
how many times to print "Hello, World!" to the console (between 0 and 3 times).

int n = 2;

if (n > 0)
 NSLog(@"Hello, World!");
if (n > 1)
 NSLog(@"Hello, World!");
if (n > 2)
 NSLog(@"Hello, World!");

While this technique is perfectly acceptable, it may not be the best or most scalable
approach. As an example, try to extend this technique to print "Hello, World!"

Listing B.5 Controlling how many times a message is logged based on program state
Download from Wow! eBook <www.wowebook.com>

306 APPENDIX B The basics of C
anywhere between 0 and 1000 times. You’ll quickly find that you must write a large
amount of duplicative code, and the code is fairly hard to maintain, presenting a lot of
opportunity to introduce errors. It’s also hard to make changes, such as changing the
code to print "Hello, Objective-C!" rather than "Hello, World!".

 Luckily, C provides a better alternative to such scenarios with a set of statements
that allow you to programmatically loop a specified number of times or while a certain
condition continues to hold true.

 The first such statement we investigate is the while loop.

B.4.1 The while statement

The while statement allows you to execute a set of statements as long as a specific con-
dition continues to hold true. The general form of a while statement is as follows:

while (condition) {
 statement block
}

When this statement is executed, the condition is evaluated. If the expression eval-
uates to false, execution skips the statements in the block and proceeds to the
first statement after the while loop. If the condition evaluates to true, the state-
ments in the block are executed before execution returns to the top of the loop,
and the condition is reevaluated to determine if another pass through the loop
should be made.

 As an example, the while loop in the following listing causes "Hello, World!" to
be printed 15 times.

int x = 0;

while (x < 15)
{
 NSLog(@"Hello, World!");
 x = x + 1;
}

Execution through this loop is controlled by variable x, which is initialized to the
value 0. The while loop condition is evaluated to determine if x is less than 15, which
at this point it is, so the condition initially evaluates to true, and the statements in the
while loop are executed.

 Each time through the loop, a call to NSLog is made to emit another copy of the
string "Hello, World!", and the value of x is incremented by 1. Execution then
returns to the top of the while loop, and the loop condition is reevaluated to deter-
mine if another loop through the statement block is required.

 After the 15th time through the while loop, the condition x < 15 no longer holds
true, so the looping stops and execution proceeds to the first statement after the
while loop.

Listing B.6 A flexible way to log an arbitrary number of messages
Download from Wow! eBook <www.wowebook.com>

307Looping statements
 One important thing to notice with while loops is that because the condition is
evaluated at the beginning of the loop, it’s possible for the statements in the braces to
never be executed. This occurs if the looping condition evaluates to false on the ini-
tial check.

 Using a while loop, it’s now relatively easy to change the number of times the
"Hello, World!" string is printed without resorting to copy-and-paste coding. You can
modify the value of variable x to control the number of times through the loop.

 You don’t have to restrict your while loops to a fixed number of loops. It’s possible
to use any condition you like to control execution of the while loop. The following
listing demonstrates a more complex looping condition that loops until a sum of
numbers reaches a specific target.

int numbers[11] = {1, 10, 0, 2, 9, 3, 8, 4, 7, 5, 6};
int n = 0, sum = 0;

while (sum < 15)
{
 sum = sum + numbers[n];
 n = n + 1;
}

NSLog(@"It takes the first %d numbers to get the sum %d", n, sum);

This while loop is designed to add numbers from the numbers array in the first line
until the sum exceeds the value of 15, as specified by the while loop condition. It
then prints to the debug console the actual sum and how many numbers were
required to reach it.

B.4.2 The do-while statement

A slight variation of the while loop is the do-while loop, which moves the loop condi-
tion to the end of the loop instead of the beginning. The general form of this state-
ment is as follows:

do
{
 Statement block
} while (condition);

The do loop holds the distinction of being the only loop construct in C that will per-
form at least one iteration through the statements in the loop no matter what the
value of the condition is. This is because the condition is tested at the end of the loop.
One full execution through the loop must be performed in order to reach the condi-
tion at the end. The following listing demonstrates converting listing B.6 into a do-
while loop.

Listing B.7 A while loop doesn’t need to loop a fixed number of times
Download from Wow! eBook <www.wowebook.com>

308 APPENDIX B The basics of C
int x = 0;

do {
 NSLog(@"Hello, World!");
 x = n x 1;
} while (x < 15);

Notice that listings B.8 and B.6 are similar in style and behavior. In this example, the
only difference is in the behavior that occurs when the value of variable x is modified
so that it initially has a value of 15 or higher. If x is initially set to the value 16, for
example, the do-while loop version emits one "Hello, World!", whereas the while
loop version does not.

B.4.3 The for statement

Although while and do loops are flexible, they aren’t the most concise of statements
to understand at a glance. To determine how many times a given while loop may loop
or under what conditions it will exit, you must look for logic potentially spread across
a wide number of individual statements on a number of lines of source code.

 A for loop is designed to make the common scenario of looping a specific num-
ber of times easier, yet still provide a flexible construct capable of more complex
looping conditions.

 Looking at the various code listings containing while and do loops, notice that
they generally have three things in common:

■ A statement that initializes a variable to an initial value
■ A condition that checks the variable to determine if the loop should continue

looping
■ A statement to update the value of the variable each time through the loop

A for loop can specify all three components in a single, concise statement. The gen-
eral form of a for loop is as follows:

for (initialization_expr; loop_condition; increment_expr)
{
 statement block;
}

The three expressions enclosed in parentheses specify the three components previously
outlined and determine how many times the statements in the for loop will be executed.
The flexibility of three individual expressions allows for a number of variations, but the
most common arrangement is to configure a for loop to loop a fixed number of times.

 In this scenario, the initialization expression is executed once to set the initial
value of a loop counter. The second component specifies the condition that must con-
tinue to hold true in order for the loop to continue executing, and the last compo-
nent is an expression that’s evaluated at the end of each cycle through the loop to
update the value of the loop counter.

Listing B.8 Using a do-while loop to log an arbitrary number of messages
Download from Wow! eBook <www.wowebook.com>

309Looping statements
 As in a do loop, the condition expression is evaluated before the first execution of
the loop. This means the contents of a for statement aren’t executed at all if the con-
dition initially evaluates to false.

 The following is an example of how a for loop could be used to print "Hello,
World!" 10 times.

int t;
for (t = 0; t < 10; t = t + 1) {
 NSLog(@"Hello, World!");
}

You can see the initialization expression setting the loop counter (t) to 0, the condi-
tion expression checking if the loop should continue to loop (until t is greater than
or equal to 10), and the increment expression increasing the value of the loop coun-
ter by 1 for each time around the loop.

 As mentioned previously, the three expressions of a for statement provide great
flexibility. It’s not necessary for all three expressions to be related to one another, and
this enables some interesting looping conditions to be configured. For example, you
can rewrite the code in listing B.7, which summed numbers until the sum became
larger than 15, to use a for loop:

int numbers[11] = {1, 10, 0, 2, 9, 3, 8, 4, 7, 5, 6};
int n, sum = 0;

for (n = 0; sum < 15; sum += numbers[n++])
 ;

NSLog(@"It takes the first %d numbers to get the sum %d", n, sum);

Notice how the initialization, condition, and increment expressions don’t all refer to
the same variable. The initialization statement sets the loop counter n to 0, yet the
condition that determines if the loop should continue executing checks if sum is less
than 15. Finally, each time through the loop, the increment expression adds the cur-
rent number to the sum and, as a side effect, also increments the loop counter n to
index the next number.

 All of the required behavior is specified in the three expressions that make up the for
loop, so no statements need to be executed each time through the for loop; the sole
semicolon represents an empty, or “do nothing,” statement.

B.4.4 Controlling loops

The flow of execution through all the loop constructs demonstrated so far is con-
trolled by the loop condition that occurs at the beginning or end of each iteration
through the loop. Sometimes, jumping out of a loop early or immediately reevaluat-
ing the loop condition is advantageous. C provides two statements, break and continue,
to achieve these goals.
Download from Wow! eBook <www.wowebook.com>

310 APPENDIX B The basics of C
BREAK

The break statement can be used to exit a loop immediately, jumping over any addi-
tional statements in the loop body and not reevaluating the loop condition. Execution
jumps to the first statement after the while or for loop. As an example, the following
listing is a modification of listing B.7; it contains an if statement that causes the while
loop to break out early if a 0 is found in the array of numbers.

int numbers[11] = {1, 10, 0, 2, 9, 3, 8, 4, 7, 5, 6};
int n = 0, sum = 0;

while (sum < 15)
{
 if (numbers[n] == 0)
 break;

 sum = sum + numbers[n];
 n = n + 1;
}

NSLog(@"It takes the first %d numbers to get the sum %d", n, sum);

The break statement immediately exits the while loop whenever the value 0 is
detected. Execution proceeds directly to the call to NSLog, skipping the additional
statements in the while loop.

 This example is a little contrived: you could have also rewritten the while loop
without the break statement by using a more complex looping condition, as demon-
strated by the following listing.

int numbers[11] = {1, 10, 0, 2, 9, 3, 8, 4, 7, 5, 6};
int n = 0, sum = 0;

while (sum < 15 && numbers[n] != 0)
{
 sum = sum + numbers[n];
 n = n + 1;
}

NSLog(@"It takes the first %d numbers to get the sum %d", n, sum);

In this version, the if and break statements are replaced with a compound loop con-
dition that continues looping only if the expressions on both sides of the && operator
hold true. Comparing this logic to that of listing B.9, you’ll see they’re identical in
behavior: as soon as the sum becomes greater than or equal to 15 or a 0 is detected,
the loop stops.

 The break statement is helpful in more complex code when you want to perform
additional processing before exiting the loop early or when it’s possible to determine
you need to exit the loop only after performing complex calculations that don’t fit
suitably into a single expression.

Listing B.9 Breaking out of a while loop early

Listing B.10 Reworking the loop condition to remove the break statement
Download from Wow! eBook <www.wowebook.com>

311Summary
CONTINUE

The continue statement can be used as a shortcut to cause the current iteration of the
loop to be prematurely ended, in effect causing the loop condition to immediately be
reevaluated. For example, the following listing demonstrates a loop that skips over any
numbers greater than 5.

int numbers[11] = {1, 10, 0, 2, 9, 3, 8, 4, 7, 5, 6};
int n = 0, sum = 0;

do{
 if (numbers[n] > 6)
 continue;

 sum = sum + numbers[n];
} while (n++ < 11 && sum < 15);

NSLog(@"It takes the first %d numbers to get the sum %d", n, sum);

The loop condition causes the loop to repeat while n is less than 11 (indicating the last
number in the numbers array hasn’t been passed) and the sum is currently smaller
than 15.

 Each iteration through the loop adds the next number to the running sum. But
the number is first checked if it’s greater than 6, and if so, the continue statement
skips the addition and immediately processes the next number in the numbers array.

 Notice the increment of the loop counter variable, n, was moved out of the loop
and into the loop condition expression. If it hadn’t been moved but instead was incre-
mented similarly to previous code samples, it would’ve become stuck after the first
number greater than 6 was found. In this situation, the number would’ve caused the
continue statement to be executed, skipping the rest of the statements in the loop,
but nothing would’ve incremented the value of n to cause the next iteration through
the loop to look at the next number in the array.

 It’s important to also note that the break and continue statements can exit only
out of the immediate while, do, or for loop in which they’re contained. It’s not possi-
ble to break out of multiple loops if more than one loop is nested inside of another.

B.5 Summary
Because Objective-C is a strict superset of C, it’s important to have a strong under-
standing of the principles behind C before branching out to learn about the additions
Objective-C brings to the table. This appendix offers you a firm foundation on which
to start your Objective-C learning. It’s in no way a complete coverage of C-based pro-
gramming, though, and many details have been left out.

 It’s clear that Objective-C owes a great debt to the C programming language. With
C-based knowledge, you can perform calculations, make decisions, and alter the flow
of execution throughout your applications. Objective-C expands upon the C founda-
tions with its own flavor of object-oriented extensions.

Listing B.11 Stopping the current execution of a loop early with continue
Download from Wow! eBook <www.wowebook.com>

appendix C
Alternatives to Objective-C

Steve Jobs, one of the original founders of Apple Inc., has overseen a number of
innovations and exciting products in the computer industry since Apple was
founded in 1976.

 Two of the most recent of these are undoubtedly the iPhone and iPad. There’s
no denying that the iPhone has made an impact on the smartphone marketplace.
Software developers, device manufacturers, and telecommunication carriers can
attribute to the iPhone’s presence at least some kind of impact on or change in
their industries, whether it’s an increased interest in innovative and visually appeal-
ing UIs or the increased use of cellular data services and downloadable content.

 If the iPhone is your first foray into a platform developed by Apple, the required
development tools and languages are likely to feel foreign and perhaps even eso-
teric or antiquated compared to your current platform because of their rather dif-
ferent origins.

 Much as the iPhone hardware can trace its roots to a long line of prior iPod
devices, Objective-C and Cocoa Touch can follow their long lineage and history
back more than 25 years. The iPhone is as much a culmination and refinement of
existing technologies as it is a breakthrough design.

 In this appendix we discuss some of the alternatives to developing iOS applica-
tions in Objective-C, but first, it’s important to understand the origins of Objective-C.

C.1 A short history of Objective-C
The late 1970s and early 1980s saw a lot of experimentation in improving software
developers’ productivity and the reliability of the systems they were producing. One
train of thought was that gains could be found with a shift from procedural-based pro-
gramming languages to languages incorporating object-oriented design principles.

 Smalltalk, a language developed at Xerox PARC in the 1970s, was the first to
introduce the term object-oriented programming to the general developer community.
312

Download from Wow! eBook <www.wowebook.com>

313A short history of Objective-C
The language was first widely distributed as Smalltalk-80 in 1980, and ever since,
Smalltalk has left its mark on a number of more recent programming languages.

C.1.1 The origins of Objective-C

In the early 1980s, Dr. Brad Cox and his company, Stepstone Corporation, experi-
mented with adding Smalltalk-80-style object-oriented features to the preexisting and
popular C programming language. They soon had a working prototype, which they
called Object-Oriented Programming in C (OOPC).

 This language continued to evolve, and in 1986, Brad Cox published Object-Oriented
Programming: An Evolutionary Approach, a book that outlines the original description of
what had by then become Objective-C. This was a clean layer of object-oriented fea-
tures on top of the C programming language. Early implementations consisted of a
preprocessor that turned Objective-C code into C source code, which was then pro-
cessed by a standard C compiler. Being a true superset of C, Objective-C had the
advantage of being familiar to existing C developers, making it possible to compile
any valid C program with an Objective-C compiler. This enabled a high level of code
reuse with existing C-based libraries.

C.1.2 Popularization via NeXT Inc.

In 1988, NeXT Inc. (founded by Steve Jobs when he left Apple in 1985) licensed
Objective-C from Stepstone Corporation and developed its own compiler and run-
time library for the language. The compiler and runtime library were used as the
foundations of the development environment for the NeXTStep operating system,
which powered its new, innovative, and some would say well-ahead-of-its-time, high-
end workstations, such as the NeXT Computer and NeXTCube.

 The NeXTStep operating system has a revered position in computer history. It gar-
nered widespread respect as an innovative platform, although it was also criticized for
its expensive price point compared to commodity IBM PCs of the day. But many inno-
vations in a number of fields are attributed to users of NeXTStep-based computers.
For example, Sir Tim Berners-Lee developed the first web browser on a NeXT com-
puter and had the following to say about the development experience:

I wrote the program using a NeXT computer. This had the advantage that there were some
great tools available—it was a great computing environment in general. In fact, I could do
in a couple of months what would take more like a year on other platforms, because on the
NeXT, a lot of it was done for me already.

“The WorldWideWeb Browser,”
(www.w3.org/People/Berners-Lee/WorldWideWeb)

Even the now classic DOOM and Quake games from id Software have elements of their
development history intertwined with Objective-C and NeXTStep hardware. John
Romero reflected recently on why he’s still passionate about NeXT computers these
many years later:
Download from Wow! eBook <www.wowebook.com>

www.w3.org/People/Berners-Lee/WorldWideWeb

314 APPENDIX C Alternatives to Objective-C
Because we at id Software developed the groundbreaking titles DOOM and Quake on
the NeXTSTEP 3.3 OS running on a variety of hardware for about 4 years. I still remember the
wonderful time I had coding DoomEd and QuakeEd in Objective-C; there was nothing like
it before and there still is no environment quite like it even today.

“Apple-NeXT Merger Birthday,” 2006 (http://rome.ro/labels/
apple%20next%20doom%20quake.html)

C.1.3 Adoption and evolution by Apple Inc.

In 1996 NeXT Inc. was acquired by Apple Inc., and Steve Jobs returned to the helm of
Apple. A lot of the NeXTStep technologies that Tim Berners-Lee and John Romero
were so enamored of eventually found their way into Mac OS X, first released to the
public in 2001.

 As well as inheriting the Objective-C-based programming model for application
development, Mac OS X incorporated numerous NeXTStep GUI concepts. Looking at
the OPENSTEP screenshot in figure C.1, for example, you’ll see that a number of
iconic Mac OS X features, such as the dock, had their origins in NeXTStep.

Figure C.1 Screenshot of the OPENSTEP 4.2 Desktop, showing many Mac OS X–like features
Download from Wow! eBook <www.wowebook.com>

http://rome.ro/labels/apple%20next%20doom%20quake.html
http://rome.ro/labels/apple%20next%20doom%20quake.html

315The iPhone SDK: Safari
C.2 Alternatives to Objective-C and Cocoa
Out of the box, Xcode and the iPhone software development kit (SDK) support
development of applications in C, C++, and their Objective-C-based variants, but this
doesn’t mean they’re the only options open to developers. A number of third parties
offer alternative development tools to suit the needs and backgrounds of almost
any developer.

 Of these alternatives, a lot of attention has been concentrated on those that enable
applications to be developed in scripting languages such as Lua or Ruby or that use
technologies such as HTML, Cascading Style Sheets (CSS), and JavaScript, which are
more familiar to client-side web developers. It’s commonly perceived that these types
of tools can offer a quicker and perhaps more productive work environment, much in
the way that Objective-C and other Smalltalk-inspired languages were considered an
improvement over C and C++.

C.2.1 Close to home: Objective-C++ and plain old C or C++

If you’ve developed for another mobile platform, you likely have some background in
C or C++. A lot of third-party support libraries for a magnitude of purposes, such as
speech synthesis, physics engines, communication, and image analysis, to name a few,
are also developed in these languages.

 Xcode can compile C (.c) or C++ (.cpp) source code in an iPhone project just as
easily as it can compile Objective-C (.m) files. Simply add the files to your project and
allow Xcode to build your project as normal. A number of the key frameworks in iOS,
such as Core Graphics, are C-based APIs, so you’re already familiar with integrating
code developed in C or C++ with an Objective-C project.

 Unlike Mac OS X, though, iOS doesn’t provide a C-based API for creating GUIs
(there’s no equivalent of Carbon). This means that unless you’re interested in devel-
oping a completely custom UI with OpenGL (another C-based API), your use of C or
C++ source code will probably be restricted to behind-the-scenes logic, which will then
be interfaced to a UI written in Objective-C. This isn’t a bad approach if you want to
share a core set of logic across a number of platforms that support development in C
or C++, such as iOS, Android, Symbian, and Windows Mobile. You can develop your
core logic with C or C++ and then wrap a platform-specific UI layer around it for each
platform you want to support.

 Objective-C++ is interesting because it’s, quite literally, the object-oriented features
of Objective-C applied on top of the C++, not C, programming language. This combi-
nation leads to some interesting side effects. As an example, it isn’t possible to derive a
C++ class from an Objective-C class, because no attempt was made to unify their dis-
tinct type systems.

C.3 The iPhone SDK: Safari
When the original iPhone was released, the only way to extend the platform was by
deploying web-based applications. As an Apple press release of the time noted:
Download from Wow! eBook <www.wowebook.com>

316 APPENDIX C Alternatives to Objective-C
Developers can create Web 2.0 applications which look and behave just like the applications
built into iPhone, and which can seamlessly access iPhone’s services, including making a
phone call, sending an email and displaying a location in Google Maps.

“iPhone to Support Third-Party Web 2.0 Applications,”
(www.apple.com/pr/library/2007/06/11iphone.html)

From this comment, it’s hard to imagine why you’d learn Objective-C—a technology
that finds little use outside of Apple-based platforms. It appears that reusable skills
such as HTML, CSS, and JavaScript are a better approach. An iPhone web application
can be as simple as a website rendered by the iPhone’s Safari web browser. By altering
layout, CSS styling, and so on, a web application can achieve fairly good parity with the
look and feel of native applications, as shown in figure C.2.

 One advantage of web-based applications is their ability to automatically and instan-
taneously update to a newer version. When you update the source code hosted on your
web server, all users are immediately upgraded; in fact, the user has no option to decide
if or when they upgrade. On the negative side, however, the iTunes App Store provides a
simple, economic model to allow you to monetize and charge for your applications.
Finding a way to monetize web applications, which can’t be hosted in the iTunes App
Store, is left as an exercise for the developer.

C.3.1 HTML5, CSS3, and other modern standards

Web-based applications require a connection to the internet so their source code can be
downloaded from the web server. This appears to rule out their use in scenarios such as
airplane flights or subway travel, where radio transmitting devices are either prohibited or

Figure C.2 Spot the
difference: the Facebook web
application on the left and
the Facebook native
application. The web
application lacks certain
features, such as access to
the camera and photo library.
Download from Wow! eBook <www.wowebook.com>

www.apple.com/pr/library/2007/06/11iphone.html

317The iPhone SDK: Safari

have potentially patchy (or no) coverage. Mobile Safari offers support for an HTML5 fea-
ture called the Offline Application Cache that offers a solution to this limitation. It allows
a manifest file to be written that outlines the files (HTML, JavaScript, CSS, and image files)
a web application requires. Safari downloads all files listed in the manifest and ensures
they’re available while offline. Provided your web application doesn’t depend on server-
side functionality, your application will happily run while the device is offline.

 The Offline Application Cache is only
one of many advanced technologies
implemented by Safari. Other examples
include extensions to CSS to support
rounded edges, shadows, transforms, ani-
mations, and transitions; rich canvas and
SVG support for vector-based client-side
drawing; and even APIs to store data on
the client side.

 Mobile Safari is a world-class mobile
browser designed to enable the develop-
ment of serious web-based applications.
As evidence of some of the powerful UI
elements that can be crafted with pure
HTML, CSS, and JavaScript, take a look at the various demos available on Matteo
Spinelli’s blog at http:// c u b i q . o r g .As seen in figure C.3, many of the UI elements
seen in Apple and third-party iOS applications can be replicated easily in a web-
based environment.

 An intrinsic advantage of developing using standardized web-based technologies is
their inherent ability to support more than one platform. With tweaks to your HTML
and CSS, it’s often possible to develop a web application that provides fairly good
native look and feel across a wide range of mobile platforms, such as Microsoft’s Win-
dows Mobile (now called Windows Phone), Research In Motion’s Blackberry, Palm’s
WebOS, and Nokia’s various platforms. With Mobile Safari leading the charge, most if
not all of these alternative platforms have equally rich web browser support. This isn’t
to say you’re left with a mediocre application that can’t access device-specific function-
ality. An iPhone web application has access to a number of iPhone-specific device
capabilities and features.

C.3.2 iPhone OS integration
iPhone integration for web applications covers not only access to hardware features
such as the GPS, accelerometer, and compass, but also aspects that help make web
applications feel more like a natural part of the operating system. For example, by
adding the following line of HTML to your main page, you can enable a static image to
be displayed as a splash screen while your web application HTML and JavaScript
source code is downloaded, parsed, and rendered behind the splash screen: <link
rel="apple-touch-startup-image" href="img/splash.png" />.

Figure C.3 Examples from http://cubiq.org, the
blog of Matteo Spinelli, demonstrating the use of
CSS3 transitions, animations, transformations,
JavaScript, and HTML to build web-based UIs that
approach the behavior and look and feel of native
iPhone applications
Download from Wow! eBook <www.wowebook.com>

http://cubiq.org
http://cubiq.org

318 APPENDIX C Alternatives to Objective-C
 Similar tags can be used to enable your application to display full screen without
any window chrome from the Safari web browser and to alter other aspects of your
web page’s presentation, such as its ability to zoom in on the content, something com-
monly needed for web pages originally designed for desktop-sized screens but typically
unexpected and unnecessary for content specifically designed for mobile devices.

 Another tag worth mentioning with respect to iOS integration of web applications
is <link rel="apple-touch-icon" href="img/icon.png"/>. This tag is an important
one to set on mobile web applications. The image referenced by this tag will appear
on the device’s home screen if the user navigates to the web application by typing in
its URL and then using the Add To Home Screen option. Tapping the icon will launch
the web application without the user needing to type in a URL, just like a native appli-
cation. This feature combined with others, such as the Offline Application Cache,
enables web applications to essentially look and feel like a native application—no
browser, window chrome, bookmarks, or URLs in sight.

 On the device hardware access side of things, extensions to HTML, CSS, and
JavaScript allow access to multitouch, accelerometer, and location functionality, which
have become common to most iPhone applications. Listing C.1 demonstrates a simple
web application that uses the W3C Geolocation API (www.w3.org/TR/geolocation-
API/) to display where the device viewing the web page is currently located. This
would be ideal as a starting point for a web application that provides location-specific
search results.

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Example of Geoposition API</title>
 </head>
 <body>
 <script language="javascript" type="text/javascript">
 function locationFound(position) {
 alert('You are currently located at '
 + position.coords.latitude + ", " + position.coords.longitude);
 }

 function errorOccurred(error) {
 alert('An error occurred trying to determine your location. '
 + error.message);
 }

 if (navigator.geolocation)
 navigator.geolocation.getCurrentPosition(locationFound, errorOccurred);
 else
 alert('Your device does not support the geolocation API');
 </script>
 </body>
</html>

Listing C.1 Web application using the W3C Geolocation API
Download from Wow! eBook <www.wowebook.com>

www.w3.org/TR/geolocation-API/
www.w3.org/TR/geolocation-API/

319The iPhone SDK: Safari
It’s important to note that web applications currently—and probably always will have—
less access to hardware features and operating system services than do Objective-C
applications. Examples of features currently accessible only from Objective-C include
the user’s address book, camera photo library, and iPod music. Constant improve-
ments are being made in this regard; for example, iPhone OS 3.0 introduced the capa-
bility for web applications to access GPS location information, and iOS 4.2 added
access to accelerometer data. But the web application platform will always present the
developer with a subset of the features accessible to native developers, if only because
Apple engineers must expend additional effort to produce JavaScript-accessible wrap-
pers for any feature they want to expose to web applications, and additional security
and privacy concerns arise with features that can be accessed by any website.

C.3.3 PhoneGap and other extensible cross-platform solutions

Developers need not abandon HTML, CSS, and JavaScript as their development plat-
forms if they find the built-in services of the Safari web browser and web-based appli-
cations inadequate for their application needs.

 A number of solutions exist to enable applications written in web-based technolo-
gies to run outside of the traditional Safari browser–based environment and, in the
process, to gain greater access to system hardware. One example of this approach is a
development tool called PhoneGap (www.phonegap.com). PhoneGap is an open
source product that enables you to build applications in HTML and JavaScript. Unlike
a web application running in Safari, however, your JavaScript source code also has
access to the PhoneGap SDK APIs, which provide access to additional features of the
mobile platform, such as Geolocation, Vibration, Accelerometer, Contacts, and Sound.

 This accessibility is achievable because a PhoneGap application is a native iOS
application, built using Objective-C and Xcode, just as we’ve discussed throughout
this book. Most of the application is a predeveloped Objective-C component (which
for the most part is hidden and automatically inserted by the project template) that
sets up a UIWebView control to display the HTML and JavaScript content embedded in
you Xcode project. The magic occurs because the Objective-C component exposes
additional services that your JavaScript can hook into. All your web application must
do is include a <script/> element that imports the main PhoneGap JavaScript file.

 Appearing as a standard Objective-C-based iOS application, at least from the out-
side, means PhoneGap applications can be distributed via the iTunes App Store,
which provides an easy monetization and consumer discovery/marketing approach.

 Because the core of your PhoneGap application is written in HTML, CSS, and
JavaScript, it’s fairly portable across most mobile platforms, so it shouldn’t surprise
you that the native part of PhoneGap is available for a number of platforms, includ-
ing Android, Windows Mobile, iPhone, and Blackberry. By combining your platform-
agnostic JavaScript with a device-specific shell that deals with setting up a web
browser control, then wrapping the device’s features into a consistent PhoneGap
JavaScript-based API, you can have your cake and eat it too—developing iPhone
Download from Wow! eBook <www.wowebook.com>

www.phonegap.com

320 APPENDIX C Alternatives to Objective-C
applications in HTML, CSS, and JavaScript without having to give up too much cross-
platform portability.

 A similar solution is Titanium Mobile (www.appcelerator.com/products/titanium-
mobile-application-development/). A unique feature of Titanium is that it provides
access to the entire iPhone or Android UI feature set: table views, scroll views, native
buttons, switches, tabs, and popovers can all be accessed from the JavaScript in a Tita-
nium Mobile–based application.

 With both solutions, because source code is available, if you find a device feature
not exposed to JavaScript, and you’re comfortable with writing a little Objective-C or
C, you can easily provide a JavaScript callable wrapper for the feature in question and
produce your own application-specific variant of the solution.

 Ultimately, the decision of web versus native iPhone development may come down
to your own personal experience and comfort levels. If you’re a web developer, learn-
ing how to optimize your existing web pages for viewing on the iPhone may be the
quickest route forward. If you’re a long-time C, C++, C#, or even J2ME developer, tak-
ing the time to learn Objective-C and Cocoa to build native applications may be more
rewarding and open the possibility of code reuse from previous projects.

C.4 Scripting languages: Lua and Ruby
If an Objective-C-based application can be developed to host content written in
HTML, CSS, and JavaScript, you may wonder if it’s possible to develop similar shells to
enable development of applications in other popular scripting languages such as
Python, Ruby, or Lua. The resounding answer is, yes—although the path to App Store
acceptance hasn’t always been clear or straightforward in such cases.

 One such product is the Corona SDK product from Ansca Mobile (www.anscamoble.
com). Corona enables a developer to write an application in the Lua scripting lan-
guage and place it in a predeveloped native application that performs a task similar to
what PhoneGap did for JavaScript.

 Although PhoneGap is more focused on enabling web-based content, the focus of
Corona is arguably in gaming, as OpenGL-ES and similar game technologies are used
heavily in the APIs the Corona SDK exposes to your Lua script.

 The Corona website offers the contents of listing C.2 as an example of the
Objective-C source code required to draw an image onto the screen using OpenGL-ES.
Although the source code is arguably worse than it needs to be, it’s hard to deny the
potential productivity gains once you compare it to the one line of Lua source code
required in a Corona application to perform the same task: display.newImage
("myImage.jpg", 0, 0).

NSString *path = [[NSBundle mainBundle] pathForResource:@"myImage"
 ofType:@"jpg"];
NSData *texData= [[NSData alloc] initWithContentsOfFile:path];
UIImage *image = [[UIImage alloc] initWithData:texData];

Listing C.2 Drawing an image onscreen with OpenGL and Objective-C
Download from Wow! eBook <www.wowebook.com>

www.appcelerator.com/products/titanium-mobile-application-development/
www.appcelerator.com/products/titanium-mobile-application-development/
www.anscamoble.com
www.anscamoble.com

321Scripting languages: Lua and Ruby
if (image == nil)
 NSLog(@"Do real error checking here");

GLuint width = CGImageGetWidth(image.CGImage);
GLuint height = CGImageGetHeight(image.CGImage);
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
void *imageData = malloc(height * width * 4);
CGContextRef context = CGBitmapContextCreate(imageData, width, height,
 8, 4 * width, colorSpace,
 kCGImageAlphaPremultpliedLast | kCGBitmapByteOrder32Big);
CGColorSpaceRelease(colorSpace);
CGRect imageRect= CGRectMake(0, 0, width, height);
CGContextClearRect(context, imageRect);
CGContextTranslateCTM(context, 0, height - height);
CGContextDrawImage(context, imageRect, image.CGImage);

glTexImage2D(GL_TEXTURE_2D 0, GL_RGBA, width, height, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, imageData);

CGContextRelease(context);

free(imageData);
[image release];
[texData release];

Technologies such as the Corona SDK are opening iPhone application development
to a wider range of people; development isn’t necessarily restricted to those with a
strong programming background. A key premise to this type of technology is that the
higher-level scripting languages make development more accessible and forgiving
than in languages in which hard-to-detect-and-diagnose errors can occur (such as
Objective-C, which allows you to get closer to the hardware). In this case, the trade-off
of not having immediate access to all hardware of the operating system features can
be deemed to be acceptable. If Lua isn’t your cup of tea, chances are, with a little
research online, you’ll be able to find an equivalent solution for your language of
choice. For example, Ruby developers can use an open source framework called
Rhodes (http://rhomobile.com/products/rhodes/) to develop native applications
that work across a number of mobile platforms (iPhone, Windows Mobile, RIM,
Symbian, Android, MeeGo, and Windows Phone 7) while working with device capabil-
ities such as GPS, PIM information, camera, mapping, signature capture, and Bluetooth.

 The trade-off in using a platform such as Corona is that you may be restricted to a
particular subset of device features supported by the product. Using a similar argument
to that used for web applications, scripting languages will potentially always lag behind,
if only because they require a wrapper to be developed with every API the developer
wants to be accessible from the scripting language. This is especially true when you
consider that many of these platforms also attempt to be cross-platform solutions so, in
some cases, they purposely don’t expose a feature of a specific platform if that feature
would be hard or impossible to provide on another supported device type. You, in
effect, obtain a lowest-common-denominator development platform.

 Scripting languages also have to be careful not to run afoul of the iPhone OS SDK
license agreement terms, which every developer must accept in order to develop and
Download from Wow! eBook <www.wowebook.com>

http://rhomobile.com/products/rhodes/

322 APPENDIX C Alternatives to Objective-C
submit applications to the iTunes App Store. In particular, clause 3.3.2 has been raised
as a potential concern:

3.3.2 — An Application may not itself install or launch other executable code by any
means, including without limitation through the use of a plug-in architecture, calling
other frameworks, other APIs or otherwise. No interpreted code may be downloaded or used
in an Application except for code that is interpreted and run by Apple’s Documented APIs
and built-in interpreter(s).

The iPhone OS SDK doesn’t ship with a Lua or Ruby interpreter, so this clause would
appear to rule out development of an application using Corona or Rhodes because it
wouldn’t be possible for these products to execute your code via an Apple Docu-
mented API or built-in interpreter.

 Apple appears to have a rather loose interpretation of clause 3.3.2, however, as evi-
denced by the wide number of applications approved in the App Store that are
scripted with Lua and other languages. The general gist is that scripting is okay as
long as the functionality isn’t exposed to the user, and the behavior of your applica-
tion can’t change without going through the standard App Store application process.
We come back to this topic later in this appendix.

C.5 The 10,000-pound gorilla in the room: Adobe Flash
Once you get your head around a solution such as Corona, you may wonder if a simi-
lar approach could be used to enable Adobe Flash content to be wrapped up and
played as a standalone application on an iOS-powered device. The answer is a
resounding yes, but the road has been particularly rocky for Adobe to get to this stage.

 Recently rereleased, the Packager for iPhone (available as part of the Adobe Flash
Professional CS5 product) enables Flash developers to convert an ActionScript 3–
based project into a native iOS application that’s suitable for deployment to an iOS
device as well as for submission to the iTunes App Store.

 The Packager for iPhone works by compiling the Flash content into Advanced
RISC Machine (ARM) code, which is then bundled with a Flash runtime. Xcode isn’t
required; in fact, the tool even works on a Windows-based machine. This approach
of cross-compilation potentially hit a significant roadblock when Apple updated and
greatly expanded section 3.3.1 of the iPhone OS 4.0 SDK license agreement to read
as follows:

3.3.1 — Applications may only use Documented APIs in the manner prescribed by Apple
and must not use or call any private APIs. Applications must be originally written in
Objective-C, C, C++, or JavaScript as executed by the iPhone OS WebKit engine, and only
code written in C, C++, and Objective-C may compile and directly link against the
Documented APIs (e.g., Applications that link to Documented APIs through an intermediary
translation or compatibility layer or tool are prohibited).

This clause was widely interpreted as a shot across the bow of Adobe, because Apple
had expressed its dislike of Adobe Flash and its disinterest in having Flash as part of
Download from Wow! eBook <www.wowebook.com>

323Mono (.NET)
the iOS platform. For a while, this caused Adobe to discontinue the Packager for
iPhone component of CS5, and the future remained uncertain for a number of alter-
native development tools (such as Corona and Rhode). All of these tools were argu-
ably creating applications that “link to Documented APIs through an intermediary
translation or compatibility layer or tool” and, for the most part, weren’t written in C,
C++, or Objective-C.

 The whole war of words between Adobe and Apple can perhaps be best summed
up with the following excerpt from an Apple press release dated September 9, 2010
(www.apple.com/pr/library/2010/09/09statement.html), in which Apple sought to
clarify the terms of the license agreement and its intent behind the changes:

We are continually trying to make the App Store even better. We have listened to our
developers and taken much of their feedback to heart. Based on their input, today we are
making some important changes to our iOS Developer Program license in sections 3.3.1,
3.3.2 and 3.3.9 to relax some restrictions we put in place earlier this year.

In particular, we are relaxing all restrictions on the development tools used to create iOS
apps, as long as the resulting apps do not download any code. This should give developers
the flexibility they want, while preserving the security we need.

One interesting side note about the Packager for iPhone is that it’s designed to work
on a Windows-based PC, meaning users don’t need to purchase a Mac to develop
iPhone applications. The Flash toolchain can produce iPhone applications ready for
deployment to a device or submission to the iTunes App Store. Developers still are
required to purchase a yearly subscription to the iPhone Developer program in order
to obtain the code-signing certificates required.

C.6 Mono (.NET)
Developers familiar with the Microsoft .NET development platform may have heard of
the Mono open source project, produced by Xamarin (previously Novell). The Mono
project aims to deliver a compatible .NET CLR runtime environment and develop-
ment tools for environments not supported by Microsoft’s own implementation (pri-
marily various Linux- and UNIX-based systems, such as Mac OS X).

 By reutilizing a number of key Mono technologies, Xamarin has created a .NET
runtime environment that can run .NET applications on iOS-powered devices. This
means that a developer can use Visual Studio (or Xamarin’s MonoDevelop IDE) to
develop C# applications that can be deployed to iPhones. You still enjoy most of the
comforts of .NET, such as a garbage collector and an extensive set of base class libraries.

 MonoTouch works in a fashion similar to Adobe’s Flash solution. Because iOS
doesn’t support runtime environments that require just-in-time (JIT) compilation,
MonoTouch contains a compiler that’s capable of ahead-of-time (AOT) compilation.
This turns Common Intermediate Language (CIL)-based assemblies into native ARM
code at compile time rather than performing this process each time the application
starts. One limitation is that a few base class library APIs, such as System.Reflection.Emit
Download from Wow! eBook <www.wowebook.com>

www.apple.com/pr/library/2010/09/09statement.html

324 APPENDIX C Alternatives to Objective-C
and Assembly.LoadFrom, which dynamically generate or load code from external
sources, aren’t supported in MonoTouch.

 MonoTouch also doesn’t provide an implementation of any traditional .NET UI
frameworks, such as Silverlight, WPF, or Winforms. Instead, through an Objective-C-to-
.NET bridging technology, C# developers can interface to UIKit to generate UIs that
have a 100% native look and feel, because they use the same controls and classes an
Objective-C developer uses. This bridging technology also enables C# applications to
access all functionality exposed by the iPhone SDK, such as address book, GPS, and
accelerometer.

 A number of successful applications published via the iTunes App Store were devel-
oped in .NET-based languages and internally rely on MonoTouch-based technology. An
example is Raptor Copter developed by Flashbang Studios, shown in figure C.4.

 MonoTouch is a commercial product that can be purchased online at http://
ios.xamarin.com/. A free trial edition that’s restricted to deploying applications to the
iPhone and iPad Simulators is also available. Unlike the Adobe solution for Flash,
MonoTouch still requires Xcode behind the scenes and hence is a Mac-only solution.

Figure C.4 iTunes App Store showing Raptor Copter, one of the first iPhone games developed using MonoTouch-
based .NET technologies via the Unity3D engine
Download from Wow! eBook <www.wowebook.com>

http://ios.xamarin.com/
http://ios.xamarin.com/

325Summary
Xamarin announced a follow-on product from MonoTouch called Mono for Android,
which brings the ability to develop .NET applications to Android-powered devices.
The combination of Visual Studio, MonoTouch, and Mono for Android suddenly
became a potential cross-platform play for those developers interested in supporting
more than one platform. With Microsoft’s Windows Phone 7 platform being .NET-
based, using all three tools would enable the core of an application’s logic to be devel-
oped with standard .NET-based APIs. This core logic could then be shared across all
three platforms, and a thin device-specific UI layer could be crafted for each platform.
The result would be three applications that look and feel totally integrated into the
platforms they run on, yet without three times the development effort. As an added
bonus, all development would be in a single language rather than potentially spread
across three (Objective-C, Java, and C#).

C.7 Summary
With iOS becoming a more mature development platform, a wide range of develop-
ment tools are available to develop your next iTunes App Store masterpiece. There’s a
tool to suit the needs of virtually every developer.

 For someone starting with prior Mac OS X development experience, the Objective-
C, Cocoa Touch, and Xcode platform will be familiar territory. It provides full and
timely access to all iOS hardware and software features and is well supported by Apple.
This makes Objective-C a strong default position for developing iPhone applications.
Even if you select an alternative programming language to develop the core of your
application, chances are you’ll eventually need to reach out to Xcode and Objective-C
to configure or extend the capabilities of your chosen environment.

 With the mobile computing space heating up and a number of competing platforms
becoming available, the concept of cross-platform support and running your applica-
tion on one or more platforms becomes more important. Xcode and Objective-C fail in
this sense because they find little applicability outside of the iPhone or Mac OS X. One
alternative is to develop your core application logic in C or C++ and interface to
Objective-C only to provide a UIKit-based UI. But increasingly, mobile platforms of
importance are exposing a virtual machine–based development story that doesn’t sup-
port development in C or C++ (at least not with a traditional compiler). In this regard,
development on the .NET platform is worthy of further investigation. Products such
as Xamarin’s MonoTouch and Mono for Android provide .NET support for the iPhone
and Android platforms respectively and help provide a consistent development expe-
rience across multiple platforms.

 At the end of the day, your choice of development tools will come down to your
personal preferences and comfort levels as a developer. The ease of rapid prototyping
and protection from difficult-to-diagnose bugs offered by scripting languages such as
Lua and Ruby has to be traded off against the risk that your third-party development
tools may become unsupported or may not be updated to support new platform fea-
tures (such as the iPhone 4 high-resolution screen or the iPad’s larger size) at some
Download from Wow! eBook <www.wowebook.com>

326 APPENDIX C Alternatives to Objective-C
stage in the future. If you invest the farm in a technology, you must feel confident that
you can either spend the resources to redevelop your application a second time
around or that your development tools will survive long enough to outlast the usable
lifetime of your application.
Download from Wow! eBook <www.wowebook.com>

index
Symbols

^ operator 298
- operator 296
! operator 39, 297
!= operator 39, 220, 297
(++x) pre-increment operator 300
(=) assignment operator 299
(=) operator 299
(i) icon 285
(x++) post-increment operator 300
@avg operator 216
@catch blocks 211
@class 99
@count operator 216
@distinctUnionOfObjects operator 216–217
@encode statement 90
@finally block 211
@implementation directive 99, 106
@implementation section 102, 112–113, 117
@interface declaration 100
@interface directive 99, 117
@interface section 106, 109
@max operator 216
@min operator 216
@optional messages 171
@private attribute 101–102
@property attributes 111
@property declarations 14
@property directive 109, 112–113
@property statement 110, 114
@property syntax 109–112

method naming 111
setter method semantics 111
thread safety 111–112
writeability 111

@selector(...) directive 168
@sum operator 216
@synthesize 214
@synthesize directive 112–113
@throw directive 208, 210
@try block 211
* character 59–60
* operator 296
*.h file extension 12
*.m file extension 12
*.xib files 15
/ operator 296
& operator 59, 298
&& operator 39, 297
#import statements 122
#include statements 122
% character 40, 42
% operator 296
%@ placeholders 132
%d placeholders 132
+ button 21
+ operator 69, 296
+= assignment operator 299
< > operator 220
< operator 39, 221, 297
<< operator 298
<= operator 39, 221, 297
= operator 220
=< operator 221
== operator 39, 61, 69, 91, 220, 297
=> operator 221
-> operator 61, 107
> operator 39, 220, 297
>= operator 39, 221, 297
>> operator 298
| operator 298
327

Download from Wow! eBook <www.wowebook.com>

INDEX328
|| operator 39, 297
~ operator 298

A

abort() function 254
abstract factory design 134
action methods, <UItableViewDelegate> 155–157
ActionScript 3-based project 322
actionSheet 157
actionSheetCancel: method 158
Ad Hoc distribution 292
Add Devices button 291
addEntriesFromDictionary: message 85
addObject: message 81
addObserver: selector 198–199
address value 100
addresses, obtaining for variables 59–60
address-of (&) operator 59
addTask method 249, 251
addTasksObject: method 251
addWidget 104
Adobe Flash 322–323
Advanced RISC Machine code. See ARM
advert key 217
advert property 217–218
age variable 128
aggregating values 216–217
ahead-of-time compilation. See AOT
alertView:clickedButtonAtIndex: method 227
ALL operator 223
allKeys method 87–88
alloc class method 115–116, 119
alloc message 66, 184, 190
alloc method 127, 163, 165, 182, 192–193
allocation, combining with initialization 118
Allocations Trace Template 284
alloc-based object creation process 67
allocWithZone: message 190–192
allProperties object 220, 227
alternatives 315

Adobe Flash 322–323
C and C++ 315
iPhone SDK 315–320

HTML5, CSS3, and other standards 316–317
integration with 317–319
PhoneGap 319–320

Lua 320–322
Mono (.NET) 323
Objective-C++ 315
Ruby 320–322

anError pointer 208
animate method 147, 150
animationDidStopSelector 148
animationNotification method 146

animationNotification protocol 146, 148–149
animationStopped methods 148
animationWillStartSelector 148
ANY operator 223
AOT (ahead-of-time) compilation 323
APIs (application programming interfaces) 264–265
App Store application 322
App Store profile 292
appendString method 161
AppKit framework 5
Apple Core Data Programming Guide 253
Apple developer, process for becoming 288
Apple Inc., adoption of Objective-C by 314
Apple Operating System. See iOS
Apple Provisioning Portal website 292
Apple, block-based APIs in 264–265
Apple-based platforms 316
application data 228–256

changing data model 251–253
Core Data framework

history of 229–231
objects 231–232
resources 232–234

error handling and validation 253–256
performance 253
PocketTasks application 234–251

adding and deleting people 243–246
data model 235
defining relationships 236
managing tasks 246–250
master TableView class 240–243
model objects 249–251
Person entities in pure code 237–240
Xcode Core Data template 234–235

application programming interfaces. See APIs
Application section 9
application: didFinishLaunchingWithOptions

238–239, 242
applicationDidFinishLaunching method 133, 138,

150
applicationDidFinishLaunching: withOptions

method 133, 138
applicationDidReceiveMemoryWarning 193–194
applications 238–239, 242

demo, subclassing in 138–143
iOS. See iOS (Apple Operating System) applica-

tions
Rental Manager

developing 29–32
making data driven 91–94

running on iOS device 292
sample object 69–73
states of, inspecting with breakpoints 23–24
with bugs, creating 277

Applications subfolder 8
Download from Wow! eBook <www.wowebook.com>

INDEX 329
application-specific query 220
application-specific variant 320
Approve button 290
arguments 62
arithmetic operators 296
ARM (Advanced RISC Machine) code 322
array factory method 81
arrays 48–50, 61, 75–82

adding items to 80–82
constructing 75–76
elements of

accessing 76–77
searching for 77–78

initializing 49
iterating through 79–80

fast enumeration 80
NSEnumerator class 79–80

vs. simple types 50
arrayWithCapacity: factory method 81
arrayWithContentsOfURL: message 75, 83
arrayWithObject: factory method 75
ASCII character chart 37
aSimpleDynamicMethod selector 174
Assembly.LoadFrom 324
Assign attribute 111
assignment operators 299–300
asterisk, in variable name 208
asynchronous task performance 265–275

GCD fundamentals 266–267
image loading 273–275
image search 271–272
introduction to GCD 266
RealEstateViewer application 267–271

atIndex method 81
atIndexPath method 242, 249
attributes Core Data 233–234
Attributes Inspector option 15
Attributes Inspector pane 15
Author element 159
authors, parsing with NSXMLParser

delegate 159–162
autoboxing 88
Automatic Device Provisioning check box 291
autorelease messages 177, 180, 185–187, 192–193
autorelease object 190
autorelease pools 184–190

adding objects to 185
creating new 185–187
limitations of 187–190
releasing objects in 187

B

beginAnimations: context: method 147
BEGINSWITH operator 222

BETWEEN operator 221
bFlag variable identifiers 294
binding, dynamic 166
bitwise operators 298
block literal 259–260, 263–264
__block storage type 261–263, 274
blocks, syntax of 257–265

block-based APIs in iOS frameworks 264–265
blocks and memory management 262–264
closures 260–261

Book elements 159
BOOL data type 39–40
Boolean truths 39–40
boxing 88–91

nil vs. NULL value vs. NSNull class 90–91
NSNumber class 89
NSValue class 90

boxView 147–148
Brautaset, Stig 268
break keyword 304
break statement 309–311
breakpoints, inspecting application states with

23–24
buffer overrun 38
bugs, creating application with 277
Build option 21
Build Phases tab 21
Build Settings tab 292
building process 21
bundle identifier 9
buttonPressed 172

C

C and C++ 315
C libraries 5
C++ libraries 5
CABasicAnimation objects 14, 21
callers, protocol method 147–148
callHeads method 13–14, 16, 18
callTails method 13–14, 16, 18
CAMediaTimingFunction object 21
Camel case 295
cApples variable identifiers 294
caret

in block literal 259
in syntax of blocks 258

Cascading Style Sheets. See CSS
categories

considerations when using 138
extending classes without subclassing 136

C-based APIs 5, 315
C-based application 300
C-based libraries 313
cellForRowAtIndexPath: method 30–32, 53–54
Download from Wow! eBook <www.wowebook.com>

INDEX330
Certificate Revocation List 289
certificates 289–290
Certificates page 290
Certificates tab 289
char * data type 38–39
char data type 37–38
characterAtIndex: message 67
characters, extracting from strings 67–68
chFoo variable identifiers 294
chGender 294
CIL (Common Intermediate Language)-based

assemblies 323
cityMapping dictionary 93
cityMappings dictionary 197
CityMappings.plist file 91, 93
class clusters 57, 134
class methods, vs. instance methods 104–105
class_addMethod 173–174
classes 97–143

adding new methods to at runtime 173–174
categories

considerations when using 138
extending classes without subclassing 136

clusters 134–136
multiple public 135–136
reasons for using 134–135

custom, adding new class to project 98–99
declared properties 109–115

@property syntax 109–112
dot syntax 113–115
synthesizing property getter and setter

methods 112–113
declaring interface of 99–106

header file for CTRentalProperty class
105–106

ivars 100–101
method declarations 101–105

definitions of 57
in Rental Manager application 120–123
instance variables

accessing existing 129–131
adding new 127–129

making conform to protocol 148–150
objects 115–120

combining allocation and initialization 118
creating and initializing 115–116
destroying 119–120
init method 116–118

overriding methods 131–134
providing implementation for 106–109

accessing instance variables 106–107
method file for CTRentalProperty class

108–109
methods 106
sending messages to self 107–108

sending messages to 63
subclassing

in demo application 138–143
overview of 124–127

Classes folder 268
classnameWithxxxx naming convention 283
clickedButtonAtIndex: method 227
CLLocation.h header file 51
closures, blocks as 260–261
clusters 134–136

multiple public 135–136
reasons for using 134–135

cmd parameter 167, 173
Cocoa API (Application Programming

Interface) 204–206
Cocoa exceptions 210
Cocoa frameworks 4–5
Cocoa Touch support library 3–4
code

pure, Person entities in 237–239
silent flaws in 116

Code Editor window 286
code reuse 57
Code Sense 295
Code Signing section 292
code-signing certificates 323
Coin Toss game

compiling 21–22
developing with Xcode tool 7–15

creating projects with 9–12
description of 8
launching 8
writing source code 12–15

hooking up user interface 15–20
test run 21–27

controlling debugger 25–27
inspecting application state with

breakpoints 23–24
running CoinToss game in iPhone

simulator 24–25
selecting destination 22–23

coinLandedOnHeads variable 14, 27
CoinTossViewController class 12, 196

reviewing connections made to and from 20
visually forming connection between button

control and 17–19
CoinTossViewController header file 12, 16
CoinTossViewController.m file 13
CoinTossViewController.xib file 15
collating values 216–217
collection-based data structures 215
collections 74–94

arrays 75–82
adding items to 80–82
constructing 75–76
Download from Wow! eBook <www.wowebook.com>

INDEX 331
collections (continued)
elements of 76–78
iterating through 79–80

boxing 88–91
nil vs. NULL value vs. NSNull class 90–91
NSNumber class 89
NSValue class 90

dictionaries 82–88
accessing entries in 84–85
adding key/value pairs 85–86
constructing 82–84
enumerating all keys and values 86–88

filtering 220
making Rental Manager application data

driven 91–94
colon character 62–63
commitAnimations method 148
commitEditingStyle:forRowAtIndexPath

method 246
Common Intermediate Language assemblies. See

CIL
communicating, with objects 62–66
comparison operators 39, 296–298
compile-time errors 296
compile-time type 164
compiling, Coin Toss game 21–22
compliance, with KVC 213–217

accessing properties via 214
key paths 215
values 215–217

computing power, adjusting expectations for 5–7
hardware specifications 6
unreliable internet connections 7

conditional operator 302–303
conditional statements 300–305

conditional operator 302–303
if-else statement 301–302
switch statement 303–305

conditions, predicate
complex 221–222
expressing 220–221

configureCell: atIndexPath method 242, 249
Console section 278
constraints, for integral numbers in real world

33–34
CONTAINS operator 222
containsObject: message 78
context-sensitive editor pane 11
Continue button, Xcode debugger window 25, 27
continue statement 309, 311
controls, adding to view 15–16
copy attribute 111, 120
copy message 262
copyWithZone message 190
Core Data attributes 233–234

Core Data entities 229–230, 232–234, 236
Core Data framework

error domains 204
history of 229–231
objects 231–232

managed 231–232
persistent store coordinator 231

resources 232–234
attributes 233–234
entities 232–233
relationships 234

Core Data relationships 234
Core Data stack 231–232, 237
Core Data templates, Xcode 234–235
Core Data-based projects 231
CoreData.framework 231–232
Corona SDK product 320–321
count message 75–76, 79
Counter class 295
CountOfPeople variable 295
createBlock function 261
CreateMessageForPerson method 184–185
createSampleData method 238–239
cross-platform play 325
CSS (Cascading Style Sheets) 315
CSS3 316–317
C-style array 75
CTFixedLease class 141–143
CTFixedTermLease 140
CTFontCreateWithName() method 176
CTLease class 139–140
CTPeriodicLease object 140–142
CTPeriodicLease subclass 140–141
CTPerson objects 215
CTRentalProperty class 164–166, 173–174,

217–219
header files for 105–106
method files for 108–109

curly braces, in block literal 259
custom subclasses 231

D

Data Model Inspector 235–236
Data Modeling tool 235
data models 235, 251–253
data source 145
data types 28–54

additional 34–35
basic 32–40

Boolean truths 39–40
integral numbers 32–35

char 37–38
custom 44–52

arrays 48–50
Download from Wow! eBook <www.wowebook.com>

INDEX332
data types (continued)
descriptive names for 50–52
enumerations 44–46
structures 46–48

displaying and converting values 40–44
NSLog function and format specifiers 40–42
type casts and type conversions 43–44

id 58–59
Rental Manager application 29–32

completing 52–54
developing 29–32

database table 234
data-driven applications, Rental Manager 91–94
DBController classes 230
Deactivate Breakpoints option 25
dealloc message 180, 284
dealloc methods 14, 93, 119–120, 234, 242
DEBUG preprocessor symbol 280
Debugger Console window 31
debuggers, controlling 25–27
debugging 276–287

controlling memory leaks with Instruments
application 281–283

creating application with bugs 277
detecting zombie objects 284–287
NSLog function 278–281

DebugSample application 278, 285
DebugSample_Prefix.pch file 279
declarations, method 101–105
declared properties 109–115

@property syntax 109–112
method naming 111
setter method semantics 111
thread safety 111–112
writeability 111

dot syntax 113–115
synthesizing property getter and setter

methods 112–113
Declared Properties feature 109
decreaseRentalByPercent: withMinimum

method 103–104
default priority queue 272
delegate parameter 146, 158
delegation 166
dequeueReusableCellWithIdentifier method

152–153
dereferencing operation 60
description method 132–134, 136
desktop-sized screens 318
destinations, selecting 22–23
details variable 71
deterministic behavior 180
Developer folder 8–9
Developer/Applications folder 8
developers, Apple 288

development tools 4–5
development, preparing iOS devices for 289–292
Devices section 291
Devices tab 291
devices, iOS

preparing for development 289, 292
running applications on 292

dictionaries 82–88
accessing entries in 84–85
adding key/value pairs 85–86
constructing 82–84
enumerating all keys and values 86–88

dictionaryWithContentsOfURL: message 83
dictionaryWithObjects: forKeys method 83
dictionaryWithObjectsAndKeys: message 83
dictionaryWithValuesForKeys: method 214
didFinishLaunchingWithOptions: method 238–

239, 242
didPresentActionSheet: method 157
didReceiveMemoryWarning message 193–196
didReceiveMemoryWarning method 194–197
didSelectRowAtIndexPath: method 249, 285–286
dispatch_async function 267, 272
dispatch_get_global_queue function 267
dispatch_queue_create function 267
distinctUnionOfObjects aggregate function 217
Distribution tab 292
do loop 308, 311
do while statement 280
Document Type Definition. See DTD
doesNotRecognizeSelector 169
DoomEd coding 314
dot syntax 113–115
double data type 35–36
do-while loop 307
Download button 292
DTD (Document Type Definition) 158
DTrace 8
dumpDataToConsole method 239, 242
dynamic binding 166
dynamic typing 163–176

dynamic binding 166
messaging 166–171

handling unknown selectors 169–170
methods, selectors, and

implementations 167–168
sending message to nil 170–171

runtime type information 171–174
adding new methods to class at runtime

173–174
determining if message will respond 171
practical uses of 174–176
sending messages generated at runtime

171–172
static typing vs. 164–165
Download from Wow! eBook <www.wowebook.com>

INDEX 333
E

e character 35
editButtonItem 246
Editor Style button 235
element variable 160
elements, of arrays

accessing 76–77
searching for 77–78

else keyword 301
emulator term 22
ENDSWITH operator 222
entities, Core Data 232–233
enum keyword 45–46
enumerateObjectsUsingBlock block-based API 264
enumerating

all keys and values in dictionaries 86–88
fast enumeration 80

enumerations 44–46
enumerators 79
error codes 204
error domains 204
error handling, of application data 253–256
error object 204
error variable 204
errors, handling 203–210

in Cocoa API 204–206
in RentalManagerAPI project 209–210
NSError objects 206–210
silent flaws in code 116

escape sequences 37–38
evaluateWithObject: message 220
exceptions 210–211

catching 211
throwing 210

explicit type conversion 43
exponential notation 35
expressions

operators in 296–300
arithmetic operators 296
assignment operators 299–300
bitwise operators 298
comparison operators 296–298
precedence of 300

predicate
parameterizing and templating 223–224
using key paths in 222

Extended Details pane (Cmd-E) 282

F

Facebook web application 316
factory methods 67
failure, of objects to initialize 116
FALSEPREDICATE operator 221

fancyAddress 170
fBusy variable identifiers 294
FIFO (first in, first out) 266
File menu 9, 29
files, for CTRentalProperty class

header files 105–106
method files 108–109

filteredProperties 227
filtering, with predicates 219–224

complex conditions 221–222
evaluating predicate 219–220
expressing predicate condition 220–221
filtering collection 220
predicate expressions 222–224

filterUsingPredicate: message 220
Finder window 8, 70
first in, first out. See FIFO
FirstViewController class 196
Flash toolchain 323
Flashbang Studios 324
float data type 35–36
floating-point numbers 35–36
foo property 111
FooBar identifiers 294
for loop 49, 77, 308, 311
for statement 309
forKeys, message 83, 85–86, 214, 218
format specifiers 40–42
forObject, message 86
forRowAtIndexPath, method 246
forUndefinedKey, message 217–218
forwardingTargetForSelector 169
forwardInvocation 169–170
Foundation framework

error codes 205
error domains 204

Foundation Kit framework 4
Foundation.framework 232
foundCharacters, method 161
Frameworks section, Xcode main window 12, 21

G

garbage collection 119
GCC (GNU compiler collection) 8
GCD (Grand Central Dispatch) 265–275

GCD fundamentals 266–267
image loading 273–275
image search 271–272
introduction to GCD 266
RealEstateViewer application 267–271

GDB (GNU debugger) 8
gender instance variables 130
generateMessage method 286
getKey method 213
Download from Wow! eBook <www.wowebook.com>

INDEX334
getRentalPrice 103
getter methods 112–113, 131
getValue message 90
global queue, running block on 266
GNU compiler collection. See GCC
GNU debugger. See GDB
Google, Image Search API 268
Grand Central Dispatch. See GCD
graphical plist file editor 91–92

H

handleComplaint method 108
hard-to-detect-and-diagnose errors 321
hardware, specifications for iOS applications 6
header (*.h) file 13
header files, for CTRentalProperty class 105–106
Heads button 17
heightForRowAtIndexPath: method 154
Hide button 25
HIG (Human Interface Guidelines) 17
history of Objective-C 312–314

adoption by Apple Inc. 314
origins 313
popularization via NeXT Inc. 313–314

house object 174
HTML5 316–317
Human Interface Guidelines. See HIG
Hungarian notation 294–295

I

IBAction keyword 20
IBOutlet keyword 20
iCount 294
id data type 58–59, 64, 165
IEEE 754 Standard format 36
if statements 27, 77, 117, 152, 286, 310
if-else statements 301–303
iFoo variable identifiers 294
ILP32 programming model 34
Image Search API, Google 268
images

asynchronous loading of 273–275
asynchronous searches for 271–272

ImageTableViewController class 267–268
ImageTableViewController.h header file 269
ImageTableViewController.m file 269
immutable array 80
immutable objects 68
implementations 167–168

accessing instance variables 106–107
method file for CTRentalProperty class 108–109
methods 106
sending messages to self 107–108

in keyword 80
Include Unit Tests check box 10
increaseRentalByPercent: withMaximum

method 106, 108, 110
indexes, in arrays 48
indexOfObject: message 78
indexPath.row property 54
inheritance 57–58
init methods 116–118, 127–128, 247
init-based object creation process 67
initialization, combining allocation with 118
initWithContentsOfFile: method 93
initWithPerson method 247
initWithString: message 66
initWithURL: method 116
initWithXYZ message 192
initWithXYZ: method 117
initWithZone 191
inManagedObjectContext: method 239
insertObject: atIndex method 81
instance methods 104–105, 131
instance variables. See ivars
Instruments application, controlling memory leaks

with 281–283
int data type 28, 32, 35
int keyword 294
integral numbers 32–35

additional data types 34–35
char data type 37–38
constraints in real world 33–34
floating-point numbers 35–36
strings 38–39

Interface Builder, Xcode 4 4
interfaces, of classes 99–106

header file for CTRentalProperty class
105–106

ivars 100–101
method declarations 101–105

internet, unreliable connections 7
intValue message 89
iOS (Apple Operating System) applications 3–27

adjusting computing power and resource
expectations 5–7
hardware specifications 6
unreliable internet connections 7

block-based APIs in 264–265
Coin Toss game

compiling 21–22
developing with Xcode tool 7–15
hooking up user interface 15–20
test run 21–27

development tools 4–5
SDK 288–292

installing 288–289
preparing device for development 289–292
Download from Wow! eBook <www.wowebook.com>

INDEX 335
iOS Developer account 9
iOS developer program 289
iOS Developer Program license 323
iOS project templates 10
iOS Provisioning Portal 291
iOS Simulator 22–23
iOS-based templates 10
iOS-powered device 322
iPad, hardware specifications 6
iPhone

capabilities 5
hardware specifications 6
screen 6

iPhone application, running CoinToss game
in 24–25

iPhone Developer program 323
iPhone Packer 322
iPhone Safari web browser 316
iPhone SDK 315–320

HTML5, CSS3, and other standards 316–317
integration with 317–319
PhoneGap 319–320

isDone attribute 235
isEqual: message 69
isKey instance variable 214
isKey method 213
isKey variable 213
isKindOfClass 171
isMultitaskingSupported property 175
iterating, through arrays 79–80

fast enumeration 80
NSEnumerator class 79–80

ivars (instance variables) 98, 100–101
accessing 106–107, 129–131
adding new 127–129

J

java.lang.Object 100
JavaScript source code 317
JavaScript-accessible wrappers 319
JIT (just-in-time) compilation 323
JSON format 268
JSON framework 268

K

kCAMediaTimingFunctionEaseInEaseOut
object 21

key Mono technologies 323
key paths, using in predicate expressions 215,

222
_key variable 213–214
key/value pairs, adding to dictionaries 85–86

keyEnumerator message 87
keys

enumerating, in dictionaries 86–88
in dictionaries 82
unknown 217–218

keys array 83, 85
Key-Value Coding Programming Guide 215
Key-Value Coding. See KVC
Kitten case 305
KVC (Key-Value Coding) 212–227

and NSPredicate class
filtering and matching with predicates

219–224
sample application 224–227

compliance with 213–217
accessing properties via KVC 214
key paths 215
values 215–217

handling special cases 217–219
nil values 218–219
unknown keys 217–218

L

label control 19
languages, procedural-based 56
lastObject message 77
length message 67, 171
length property 215
Let Me Specify Key Pair Information check

box 290
Libraries section 21
Library section 291
Library window 15
lightweight migrations 252
LIKE operator 222
Link Binary option 21
LLVM (Low-Level Virtual Machine) 8
localizedDescription method 205
localizedFailureReason method 205
localizedRecoveryOptions method 205
localizedRecoverySuggestion method 205
log 295
LogAlways 280–281
LogDebug macro 280
logical operators 39, 298
long qualifier 34
looping statements 305–311

controlling 309–311
break statement 310
continue statement 311

do-while statement 307–308
for statement 308–309
while statement 306–307

Low-Level Virtual Machine. See LLVM
Download from Wow! eBook <www.wowebook.com>

INDEX336
low-memory warnings, responding to 193–200
overriding didReceiveMemoryWarning

method 194–197
UIApplicationDelegate protocol 193–194
UIApplicationDidReceiveMemoryWarningNoti-

fication notification 197–200
LP64 programming model 34
Lua 320–322

M

Mac App Store 289
main queue 272–273
main thread 271, 273
mainBundle method 64
makeBlock method 263
malloc_destroy_zone method 192
managed objects

context 231
models 232

managedObjectContext method 235, 239
managedObjectModel method 235
master TableView class 240–243
MATCHES operator 222
matching, with predicates 219–224

complex conditions 221–222
evaluating predicate 219–220
expressing predicate condition 220–221
filtering collection 220
predicate expressions 222–224

memory 177–200
autorelease pools 184–190

adding objects to 185
creating new 185–187
limitations of 187–190
releasing objects in 187

controlling leaks with Instruments
application 281–283

object ownership 178–179, 192–193
reference counting 179–184

determining current retain count 182–184
releasing object 180–182

responding to low-memory warnings 193–200
overriding didReceiveMemoryWarning

method 194–197
UIApplicationDelegate protocol 193–194
UIApplicationDidReceiveMemoryWarning-

Notification notification 197–200
zones 190–192

memory fragmentation 190
memory leak 178
memory management, blocks and 262–264
memory maps 59
memory zones 190
message forwarding 166, 169

messages
nonexistent 64–65
sending

to classes 63
to nil 65–66
to objects 62–63
to self 107–108

messaging 166–171
determining if message will respond 171
handling unknown selectors 169–170
methods, selectors, and implementations

167–168
sending messages generated at runtime

171–172
to nil 170–171

method callers protocol 147–148
method declarations 101–105
method files, for CTRentalProperty class 108–109
method implementations 106
method naming category 110
method swizzling 174
method_exchangeImplementations 174
methods 167–168

<UITABLEVIEWDATASource> 153
<UITableViewDataSource> 151–153
<UItableViewDelegate> action 155–157
<UItableViewDelegate> setter 154–155
adding new to class at runtime 173–174
class, vs. instance methods 104–105
getter

manual approach to 130–131
synthesizing 112–113

naming 111
overriding 131–134
setter

manual approach to 130–131
semantics 111
synthesizing 112–113

Microsoft .NET development platform 323
Microsoft’s Windows Mobile 317
Minimal overhead 180
<MKMapViewDelegate> protocol 153
mobile devices, adapting Cocoa frameworks

for 4–5
model objects 249–251
models

data 235, 251–253
managed object 232

model-view-controller. See MVC
Mono (.NET) 323
MonoDroid 325
MonoTouch 324
msg object 182
multiple public clusters 135–136
mutable objects 68
Download from Wow! eBook <www.wowebook.com>

INDEX 337
mutableCopyWithZone 190
MVC (model-view-controller) 229
MyBlockTest class 263
myObject object 172
myProtocol project 146
myProtocolAppDelegate.m file 149
myView class 146–147, 150
myView delegate 150
myView object 150
myView.h file 146

N

name attribute 235
name object 198–199
name variable 128
namespaces 295–296
naming, for variables 293–296

Camel case 295
Hungarian notation 294–295
namespaces 295–296

native ARM code 323
Navigation-based Application template 10, 29–30
nBar variable identifiers 294
needsConfiguration 115
.NET applications 323, 325
.NET CLR runtime environment 323
.NET-based languages 324
new addTask method 251
New App ID button 291
New File dialog 91, 98
New File menu option 98
New Project dialog 9, 29
New Project option 9, 29
newMessage variable 286
NeXT Inc., popularization of Objective-C by

313–314
nextObject method 79
NeXTStep GUI concepts 314
NeXTStep operating system 313
NeXTStep technologies 314
.nib files 21
nil

sending messages to 65–66, 170–171
vs. NULL value vs. NSNull class 90–91

nil constant 62
nil receiver 170
nil values 218–219
nonatomic attribute 112
NONE operator 223
nonexistent messages, sending 64–65
non-NULL pointer 297
notFoundMarker argument 85
notFoundMarker message 84–85
notification handler, using block as 265

Novell’s MonoDevelop IDE 323
NS namespace 295
NS prefix 295
NSArray class 75, 80, 82, 165
NSArray’s filteredArrayUsingPredicate

message 220
NSAutoreleasepool 285
NSAutoreleasePool class 185–189
NSAutoreleasePool instances 186
NSCocoaErrorDomain error domain 204
NSCreateZone function 190–191
NSData object 204
NSDefaultMallocZone function 191
NSDictionary class 82, 84, 87, 91–92, 208
NSEnumerator class 79–80
NSError objects 203–210, 253

RentalManagerAPI project 206–208
userInfo dictionary 205–206

NSException class 210
NSFastEnumeration protocol 80
NSFetchedResultsController class 228, 241–242,

246, 253
NSFetchRequest class 240, 242, 253
NSInvalidArgumentException 223
NSInvocation class 169–170
NSLog function 40–42, 278–281
NSLog message 174
NSLog operation 131
NSLog situation 281
NSLog statement 182, 190
NSLog-style format string 67
NSMachErrorDomain error domain 204
NSManagedObject 232, 247, 249–251
NSManagedObjectContext 235, 243
NSManagedObjectModel 235
NSMutableArray class 76, 80–81, 135
NSMutableDictionary class 82–85, 218
NSMutableString element 159–161
NSMutableString object 180–181
NSNotFound value 78
NSNotification object 199
NSNotificationCenter 197–199
NSNull class, vs. nil vs. NULL value 90–91
[NSNull null] statement 91
NSNumber class 89, 135, 230
NSNumber wrapper 135
NSObject class 124, 131–132, 139–141
NSObject implements 148
NSObject method 141
NSObject object 58
NSObject version 133
NSObjects 232
NSOSStatusErrorDomain error domain 204
NSPersistentStoreCoordinator 235
NSPOSIXErrorDomain error domain 204
Download from Wow! eBook <www.wowebook.com>

INDEX338
NSPredicate class 213, 219–220, 222–223
filtering and matching with predicates

219–224
sample application 224–227

NSPredicate-based expressions 222–223
NSPredicate-based filtering 224
NSRecycleZone 192
NSSelectorFromString 168, 172
NSSet 219
NSSortDescriptors 239
NSSQLiteStoreType 232
NSString class 64–66, 136–138
NSString object 190, 214–215, 283
NSString stringWithFormat 223
NSStringFromSelector method 168
NSUnderlyingError key 205
NSValue class 90
<NSXMLParser> protocol 158
NSXMLParser class 158–162
NSXMLParser delegate methods 158–160, 162
NSZombie Detection 285
NSZombies feature 284–285
NULL character 38
NULL constant 62
NULL object 170
NULL reference exception 65, 181, 298
NULL value, vs. nil vs. NSNull class 90–91
numberOfCharacters 171
numberOfComplaints instance variable 108
numberOfItems variable 77
numberOfRowsInSection, method 30–31, 53–54,

277
numberOfSectionsInTableView 242
numbers array 311
numberWithInt 89
numberWithRentalPropertyDetail method 89

O

objc_msgSend 166–167
objc_object struct 58
objCType, message 90
Object Library option 15
object message 198–199
object ownership 178–179, 192–193
objectAtIndex message 77–79, 84
objectAtIndex method 123
objectEnumerator message 79–80, 87
objectForKey message 84–85, 87, 93
Objective-C classes 232, 234
Objective-C developers 276
Objective-C objects 214, 229, 233
Objective-C programming language 3–4
Objective-C statement 219
Objective-C syntax 62, 281

Objective-C++ 315
Objective-C-based APIs 5
Objective-C-based iOS application 319
object-orientated programming model 4
object-oriented programming. See OOP
objects 55–73, 115–120

combining allocation and initialization 118
communicating with 62–66
creating and initializing 115–116
definitions of 56
destroying 119–120
id data type 58–59
init method 116–118
OOP concepts 56–58

definitions 56–57
inheritance and polymorphism 57–58
vs. procedural-based languages 56

pointers 59–61
comparing values of 61
following 60–61
memory maps 59
obtaining address of variable 59–60

sample application 69, 73
sending messages to 62–63
strings 66–69

comparing 69
constructing 66–67
extracting characters from 67–68
modifying 68–69

objectsForKeys 84–85
objectsPassingTest block-based API 264
observer argument 198
Offline Application Cache 317
one-to-many relationship 234
one-to-one relationship 234
Online Certificate Status Protocol 289
OOP (object-oriented programming) 56–58

definitions
of classes 57
of objects 56

inheritance and polymorphism 57–58
vs. procedural-based languages 56

opacity property 14
OpenGL 315
OpenGL ES Application template 10
OPENSTEP 4.2 Desktop 314
operators, in expressions 296–300

arithmetic operators 296
assignment operators 299–300
bitwise operators 298
comparison operators 296–298
precedence of 300

optional methods,
<UITABLEVIEWDATASource> 153

order object 234
Download from Wow! eBook <www.wowebook.com>

INDEX 339
Organizer window 291
overriding methods 131–134
ownership, of objects 178–179, 192–193

P

parallel thread 271
parameterizing, predicate expressions

223–224
parentheses in syntax of blocks 258, 260
parse method 160
Parser subclass 159
Parser_ProjectAppDelegate.m 161
parsing author with NSXMLParser delegate

159–162
Pause button 25
people, adding and deleting 243–246
PeopleViewController class 240, 246
performance of application data 253
performSelector 171–172
periodicLease method 140
persistent store coordinators 231
persistentStoreCoordinator method 235, 252
Person class 125–126, 128, 130, 132, 250–251
Person entities, in pure code

creating 237–239
fetching 239–240

Person objects 230
person.firstName 249
Person.h file 130, 251
PersonDetailViewController 243, 254
pet variable 304
PhoneGap 319–320
plist (Property List) schema 76
PocketTasks 2.xcdatamodel file 252
PocketTasks application 234–251

adding and deleting people 243–246
data model 235
defining relationships 236
managing tasks 246–250
master TableView class 240–243
model objects 249–251
Person entities in pure code

creating 237–239
fetching 239–240

Xcode Core Data template 234–235
PocketTasks.xcdatamodel 234–235
PocketTasksAppDelegate.h file 237
PocketTasksAppDelegate.m 234, 242
pointers 59–61

comparing values of 61
following 60–61
memory maps 59
obtaining address of variable 59–60

polymorphism 57–58

post-decrement operations 300
precedence of operators 300
predicate conditions 213, 219
predicates, filtering and matching with 219–224

complex conditions 221–222
evaluating predicate 219–220
expressing predicate condition 220–221
filtering collection 220
predicate expressions 222–224

predicateWithFormat 223
primitive data types 32
procedural-based languages, OOP vs. 56
Product menu

Build option 21
Deactivate Breakpoints option 25
Run option 24

Project Navigator pane 11, 21
projects

adding new class to 98–99
creating with Xcode tool 9–12

properties
accessing via KVC 214
declared 109–115

@property syntax 109–112
dot syntax 113–115
synthesizing property getter and setter

methods 112–113
properties array 53–54, 75
Property List file 92
property.address 114
PropertyType enumeration 52, 105
propertyType property 222
propertyType value 100
protocol method callers 147–148
protocols 144–162

definition of 145–146
implementing 146–150

making class conform to protocol 148–150
protocol method callers 147–148

important 150–162
<UIActionSheetDelegate> protocol 157–158
<UITableViewDataSource> protocol

150–153
<UITableViewDelegate> protocol 153–157
NSXMLParser class 158–162

provisioning
manually 291–292
using Xcode 290–291

Provisioning Portal website 292
public clusters, multiple 135–136
publishAd:error: method 208–209
pure code, Person entities in

creating 237–239
fetching 239–240
Download from Wow! eBook <www.wowebook.com>

INDEX340
Q

QuakeEd coding 314
QuartzCore framework 21

R

raise method 210
rangeOfString method 72
Raptor Copter 324
readonly attribute 111
readonly property 111
readwrite attribute 111
RealEstateViewer application 267–271
RealEstateViewerAppDelegate.h header

file 268
RealEstateViewerAppDelegate.m file 268
Record Reference Counts check boxes 285
reference counting 179–184

determining current retain count 182–184
releasing object 180–182

relationships
Core Data 234
defining 236

Release configuration 292
release message 262
releasing objects 180–182, 187
removeAllObjects method 86
removeObjectAtIndex message 82
removeObjectForKey message 85
removeObjectsForKeys message 85
removeObserver 199
Rental Manager application

classes in 120–123
completing 52–54
developing 29–32
making data driven 91–94

RentalManagerAPI project 206–210
RentalManagerAPI.h header file 207
RentalManagerAPI.m file 207
RentalManagerAppDelegate class 193
rentalPerWeek 113
rentalPrice property 102–103, 107, 109, 218–219
rentalPrice value 100, 219
rentalPrice variable 114
RentalProperty data type 52
RentalProperty structure 97, 100, 120
rentalPropertyOfType 118
replaceObjectAtIndex 82
replaceOccurrencesOfString 137
required methods,

<UITableViewDataSource> 151–153
reserved words 294
resolveInstanceMethod 173–174
Resource section, New File dialog 92

resources
adjusting expectations for 5–7

hardware specifications 6
unreliable internet connections 7

of Core Data framework 232–234
attributes 233–234
entities 232–233
relationships 234

respondsToSelector method 148, 171, 175
result property 19
retain attribute 111, 120
retain count 179, 182–184
retain message 262, 283, 286
retainCount message 182–183
return statement 259, 286
reverseObjectEnumerator message 80
RootViewController class 92, 194–195, 277, 284
RootViewController.h file 52–53, 92
RootViewController.m file 30, 53, 71, 93
Ruby 320–322
Run button 292
run loop 186
Run option 24
runMemoryTest method 263
runtime type

information about 171–174
adding new methods to class at runtime

173–174
determining if message will respond 171
practical uses of 174–176
sending messages generated at runtime

171–172
making assumptions about 164–165

S

Safari browser-based environment 319
safety, of threads 111–112
saveAndDismiss method 243
scientific notation 35
<script/> element 319
SDK (software development kit) 229, 315
second tab 196
sectionNameKeyPath 242
security, of threads 111–112
SEL data type 168
selector argument 198–199
selector name 198–199
selectors 167–170
self parameter 107
[self setStatus:nil] 196
self.rentalPrice 218
semantics, of setter methods 111
serial dispatch queue, creating your own 267
setAddress 109, 166, 168
Download from Wow! eBook <www.wowebook.com>

INDEX 341
setFlag 164
setNilValueForKey 219
setObject 85–86
setRentalPrice method 103, 106, 109, 114
setSortDescriptors method 239
setter methods

<UItableViewDelegate> 154–155
semantics 111
synthesizing 112–113

Setter semantics category 110
setValue

forKey 86, 214, 218
forObject 86
forUndefinedKey 217–218

setValuesForKeysWithDictionary method 214
short qualifier 34
shortcuts

Alt-Cmd-4 15
Cmd-4 21
Cmd-B 21
Cmd-Option-P 27
Cmd-R 29, 31, 54
Cmd-Y 25
Control-Option-Cmd-3 15
Shift-Cmd-N 9
Shift-Cmd-Y 31

signed qualifier 32–33, 37
simple types, arrays vs. 50
simulateCoinToss method 14, 24, 26
simulator term 23
simulators, running CoinToss game in 24–25
Singleton design pattern 91
software development kit. See SDK
software runtime environment 5
someString object 171
source code

connecting controls to 17–20
writing with Xcode tool 12–15

special catch-all case 303
specialization 57
Split View-based Application template 10
SQL code 229
SQL SELECT statement 240
SQLite 229
square brackets 62
states, inspecting with breakpoints 23–24
static typing, vs. dynamic typing 164–165
status property 19
status variable 196
Step Into button 25
Step Out button 25
Step Over button 25–26
store coordinators, persistent 231
strcat function 38
strcpy function 38

stringByAppendingString message 69
stringByDestroyingVowels method 137–138
stringByReplacingOccurrencesOfString 63, 68
strings 38–39, 66–69

comparing 69
constructing 66–67
extracting characters from 67–68
modifying 68–69

stringWithFormat message 67, 285
stringWithFormat method 104, 118
stringWithObject 192
stringWithString 192
strlen function 38
struct box data type 50–51
struct keyword 47–48, 52
structures 46–48
Student classes 126, 128
subclassing

in demo application 138–143
overview 124–127

substringFromIndex method 72
substringToIndex method 72
substringWithRange message 67–68
Supporting Files group 70
switch statement 303–305
syntax 61
synthesizing getter methods 112–113
system requirements, for installing iOS SDK

288–289
System.Reflection.Emit 323

T

Tab Bar Application 292
Tab Bar Application template 10
tableView 123, 156–157, 242

cellForRowAtIndexPath 71, 93, 273, 277, 280,
282

commitEditingStyle 246
didSelectRowAtIndexPath 249, 285–286
numberOfRowsInSection 30–31, 53–54, 153

tableview 277
TableView class 240–243
Tails button 18
Target-Action design pattern 172
Task class 250
Task entity 235
tasks, managing 246–250
TasksViewController 246, 249
Teacher classes 126, 129
Teacher init method 129
Teacher object 126
templates, Xcode Core Data 234–235
templating, predicate expressions 223–224
Tenants property 215
Download from Wow! eBook <www.wowebook.com>

INDEX342
test runs, Coin Toss game 21–27
controlling debugger 25–27
inspecting application state with

breakpoints 23–24
running in iPhone simulator 24–25
selecting destination 22–23

third-party iOS applications 317
thisObject 166
threads, safety of 111–112
Titanium Mobile–based application 320
toolbar buttons 25
tools, development. See development tools
transform.rotation property 14
TRUEPREDICATE operator 221
type casts 43–44
type conversions 43–44
type definition 50
type information, runtime 171–174

adding new methods to class at runtime
173–174

determining if message will respond 171
practical uses of 174–176
sending messages generated at runtime

171–172
typedef keyword 50–52, 259

U

UI_USER_INTERFACE_IDIOM 175
<UIActionSheetDelegate> protocol 157–158
UIAlertView class 209, 254
UIApplicationDelegate class 193–194
UIApplicationDelegate protocol 149–150,

193–194
UIApplicationDidReceiveMemoryWarning-

Notification 193, 197–200
UIButton class 172, 197
UIDevice class 175
UIImageView class 155, 273
UIKit elements 147, 151
UIKit framework 4–5
UIKit.framework 232
UILabel controls 12–14, 16, 27, 196
UIPrintInteractionController class 175–176
UISlider class 172
UISlider control 223
UITableView class 151, 157, 197, 277, 281–282
UITableView control 30–32, 54
UITableViewCell class 151–153, 155–156, 283
UITableViewCellAccessoryCheckmark 156
UITableViewCellAccessoryDetailDisclosureButton

156
UITableViewCellAccessoryDisclosureIndicator

155
UITableViewCellAccessoryNone 155

UITableViewCellAccessoryType parameter 156
UITableViewCellAccessoryTypes 155
UITableViewCells 151, 153, 155
UITableViewCellStyleDefault 31, 151
UITableViewCellStyleSubtitle 54, 152
UITableViewCellStyleValue1 152
UITableViewCellStyleValue2 152
UITableViewController class 240, 246, 267
<UITableViewDataSource> protocol 150–153

<UITABLEVIEWDATASource> optional
methods 153

<UITableViewDataSource> required
method 151–153

UITableViewDataSource protocol 145, 150–151
UITableViewDataSource section 154
<UITableViewDelegate> protocol 153, 155–157

<UItableViewDelegate> action methods
155–157

<UItableViewDelegate> setter methods 154–155
UITableViewStyleGrouped 151
UITableViewStylePlain 151
UITextField IBOutlets 243
UIView objects 172
UIView subclass 145–149, 155
UIViewController class 186, 193–197, 243, 246
UIViews class 194
UIWebView control 319
underscore (_) prefix 214
Unity3D engine 324
unknown keys 217–218
unsigned qualifier 32, 34
Use for Development button 291
user interface, for Coin Toss game 15–20
userCalledHeads parameter 14, 26
userInfo dictionary 205–206, 208, 210
Utility Application template 10

V

validation, of application data 253–256
valueForKey method 213–214
valueForKeyPath message 215
valueForUndefinedKey message 217–218
values

aggregating and collating 216–217
displaying and converting 40–44

NSLog function and format specifiers 40–42
type casts and type conversions 43–44

enumerating, in dictionaries 86–88
key/value pairs, adding to dictionaries 85–86
nil 218–219
of pointers, comparing 61
returning multiple 215

values array 83, 85
valueWithBytes argument 90
Download from Wow! eBook <www.wowebook.com>

INDEX 343
vardic method 75
variables

instance
accessing 106–107
accessing existing 129–131
adding new 127–129

naming conditions for 293–296
Camel case 295
Hungarian notation 294–295
namespaces 295–296

obtaining address of 59–60
View menu 15
view, adding controls to 15–16
View-based Application template 9–10, 12
viewDidAppear message 197
viewDidLoad method 93, 173, 196–197, 249, 286
viewDidUnload method 195–197
Visual Studio 323
VowelDestroyer interface 137

W

W3C Geolocation API 318
warnings, low-memory 193–200
weak-linking support 176
web-based applications 315–316, 319
while loop 79, 306–308, 310–311
white rectangle 15
willPresentActionSheet method 157
willSelect 156
Window-based Application template 10
Windows-based PC 323
wireframe box 15
wireless connectivity 7
withMinimum method 104

withObject message 82
withString

method 63, 68
options 137

world-class mobile browser 317
writeability 111
Writeability category 110
WWDC intermediate certificate 290

X

Xcode 4 4
Xcode Core Data template 234–235
Xcode Data Modeling tool 235
Xcode debugger window 25, 27
Xcode Organizer 291
Xcode Organizer window 278
Xcode tool, developing Coin Toss game with 7–15

creating projects 9–12
description of Xcode tool 8
launching 8
writing source code 12–15

Xcode toolset
and iOS SDK

downloading 289
installing 289

provisioning using 290–291
Xcode window 235
.xib files 21

Z

zombie objects, detecting 284–287
zones, memory 190–192
Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Fairbairn Fahrenkrug Ruffenach

Objective-C Fundamentals guides you gradually from your
fi rst line of Objective-C code through the process of
building native apps for the iPhone. Starting with chapter

one, you’ll dive into iPhone development by building a simple
game that you can run immediately. You’ll use tools like Xcode
4 and the debugger that will help you become a more effi cient
programmer. By working through numerous easy-to-follow
examples, you’ll learn practical techniques and patterns you can
use to create solid and stable apps. And you’ll fi nd out how to
avoid the most common pitfalls.

What’s Inside
Objective-C from the ground up
Developing with Xcode 4
Examples work unmodifi ed on iPhone

No iOS or mobile experience is required to benefi t from this
book but familiarity with programming in general is helpful.

Christopher Fairbairn, Johannes Fahrenkrug, and Collin Ruffenach
are professional mobile app developers, each with over a decade
of experience using diff erent systems including iOS, Palm, Win-
dows Mobile, and Java.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/Objective-CFundamentals

$44.99 / Can $47.99 [INCLUDING eBOOK]

Objective-C Fundamentals

iPHONE/iPAD DEVELOPMENT

M A N N I N G

SEE INSERT

“A handy and complete
 reference.” —Glenn Stokol
 Oracle Corporation.

“Th e essential iOS program-
 ming how-to guide.”
 —Dave Bales, Whitescape

“A tour-de-force of
 Objective-C...I want
 to grok this stuff !”
 —Dave Mateer, Mateer IT

“A superb introduction to
 essential iPhone application
 development tools.”
 —Carl Douglas, NZX

“Become a hot commodity
 on the market... with
 this book.”
 —Ted Neward, Principal,
 Neward & Associates

	Front cover
	contents
	preface
	acknowledgments
	about this book
	The audience
	Roadmap
	Code conventions and downloads
	Software requirements

	author online
	about the cover illustration
	Part 1—Getting started with Objective-C
	Building your first iOS application
	1.1 Introducing the iOS development tools
	1.1.1 Adapting the Cocoa frameworks for mobile devices

	1.2 Adjusting your expectations
	1.2.1 A survey of hardware specifications, circa mid-2011
	1.2.2 Expecting an unreliable internet connection

	1.3 Using Xcode to develop a simple Coin Toss game
	1.3.1 Introducing Xcode—Apple’s IDE
	1.3.2 Launching Xcode easily
	1.3.3 Creating the project
	1.3.4 Writing the source code

	1.4 Hooking up the user interface
	1.4.1 Adding controls to a view
	1.4.2 Connecting controls to source code

	1.5 Compiling the Coin Toss game
	1.6 Taking Coin Toss for a test run
	1.6.1 Selecting a destination
	1.6.2 Using breakpoints to inspect the state of a running application
	1.6.3 Running the CoinToss game in the iPhone simulator
	1.6.4 Controlling the debugger

	1.7 Summary

	Data types, variables, and constants
	2.1 Introducing the Rental Manager application
	2.1.1 Laying the foundations

	2.2 The basic data types
	2.2.1 Counting on your fingers—integral numbers
	2.2.2 Filling in the gaps—floating-point numbers
	2.2.3 Characters and strings
	2.2.4 Boolean truths

	2.3 Displaying and converting values
	2.3.1 NSLog and Format Specifiers
	2.3.2 Type casts and type conversions

	2.4 Creating your own data types
	2.4.1 Enumerations
	2.4.2 Structures
	2.4.3 Arrays
	2.4.4 The importance of descriptive names

	2.5 Completing Rental Manager v1.0, App Store here we come!
	2.6 Summary

	An introduction to objects
	3.1 A whirlwind tour of object-oriented programming concepts
	3.1.1 What’s wrong with procedural-based languages such as C?
	3.1.2 What are objects?
	3.1.3 What are classes?
	3.1.4 Inheritance and polymorphism

	3.2 The missing data type: id
	3.3 Pointers and the difference between reference and value types
	3.3.1 Memory maps
	3.3.2 Obtaining the address of a variable
	3.3.3 Following a pointer
	3.3.4 Comparing the values of pointers

	3.4 Communicating with objects
	3.4.1 Sending a message to an object
	3.4.2 Sending a message to a class
	3.4.3 Sending nonexistent messages
	3.4.4 Sending messages to nil

	3.5 Strings
	3.5.1 Constructing strings
	3.5.2 Extracting characters from strings
	3.5.3 Modifying strings
	3.5.4 Comparing strings

	3.6 Sample application
	3.7 Summary

	Storing data in collections
	4.1 Arrays
	4.1.1 Constructing an array
	4.1.2 Accessing array elements
	4.1.3 Searching for array elements
	4.1.4 Iterating through arrays
	4.1.5 Adding items to an array

	4.2 Dictionaries
	4.2.1 Constructing a dictionary
	4.2.2 Accessing dictionary entries
	4.2.3 Adding key/value pairs
	4.2.4 Enumerating all keys and values

	4.3 Boxing
	4.3.1 The NSNumber class
	4.3.2 The NSValue class
	4.3.3 nil vs. NULL vs. NSNull

	4.4 Making the Rental Manager application data driven
	4.5 Summary

	Part 2—Building your own objects
	Creating classes
	5.1 Building custom classes
	5.1.1 Adding a new class to the project

	5.2 Declaring the interface of a class
	5.2.1 Instance variables (ivars)
	5.2.2 Method declarations
	5.2.3 Fleshing out the header file for the CTRentalProperty class

	5.3 Providing an implementation for a class
	5.3.1 Defining method implementations
	5.3.2 Accessing instance variables
	5.3.3 Sending messages to self
	5.3.4 Fleshing out the method file for the CTRentalProperty class

	5.4 Declared properties
	5.4.1 @property syntax
	5.4.2 Synthesizing property getters and setters
	5.4.3 Dot syntax

	5.5 Creating and destroying objects
	5.5.1 Creating and initializing objects
	5.5.2 init is pretty dumb
	5.5.3 Combining allocation and initialization
	5.5.4 Destroying objects

	5.6 Using the class in the Rental Manager application
	5.7 Summary

	Extending classes
	6.1 Subclassing
	6.1.1 What is subclassing?

	6.2 Adding new instance variables
	6.3 Accessing existing instance variables
	6.3.1 Manual getters and setters approach

	6.4 Overriding methods
	6.4.1 Overriding the description method

	6.5 Class clusters
	6.5.1 Why use class clusters
	6.5.2 Multiple public clusters

	6.6 Categories
	6.6.1 Extending classes without subclassing
	6.6.2 Using a category
	6.6.3 Considerations when using categories

	6.7 Subclassing in your demo application
	6.7.1 Creating and subclassing CTLease
	6.7.2 Creating CTPeriodicLease as a subclass of CTLease
	6.7.3 Creating CTFixedLease as a subclass of CTLease

	6.8 Summary

	Protocols
	7.1 Defining a protocol
	7.2 Implementing a protocol
	7.2.1 Creating the protocol method callers
	7.2.2 Making a class conform to a protocol

	7.3 Important protocols
	7.3.1 <UITableViewDataSource>
	7.3.2 <UITableViewDelegate>
	7.3.3 <UIActionSheetDelegate>
	7.3.4 NSXMLParser

	7.4 Summary

	Dynamic typing and runtime type information
	8.1 Static vs. dynamic typing
	8.1.1 Making assumptions about the runtime type

	8.2 Dynamic binding
	8.3 How messaging works
	8.3.1 Methods, selectors, and implementations
	8.3.2 Handling unknown selectors
	8.3.3 Sending a message to nil

	8.4 Runtime type information
	8.4.1 Determining if a message will respond to a message
	8.4.2 Sending a message generated at runtime
	8.4.3 Adding new methods to a class at runtime

	8.5 Practical uses of runtime type introspection
	8.6 Summary

	Memory management
	9.1 Object ownership
	9.2 Reference counting
	9.2.1 Releasing an object
	9.2.2 Retaining an object
	9.2.3 Determining the current retain count

	9.3 Autorelease pools
	9.3.1 What is an autorelease pool?
	9.3.2 Adding objects to the autorelease pool
	9.3.3 Creating a new autorelease pool
	9.3.4 Releasing objects in a pool
	9.3.5 Why not use an autorelease pool for everything?

	9.4 Memory zones
	9.5 Rules for object ownership
	9.6 Responding to low-memory warnings
	9.6.1 Implementing the UIApplicationDelegate protocol
	9.6.2 Overriding didReceiveMemoryWarning
	9.6.3 Observing the UIApplicationDidReceiveMemoryWarningNotification

	9.7 Summary

	Part 3—Making maximum use of framework functionality
	Error and exception handling
	10.1 NSError—handling errors the Cocoa way
	10.1.1 Getting NSError to talk
	10.1.2 Examining NSError’s userInfo Dictionary

	10.2 Creating NSError objects
	10.2.1 Introducing RentalManagerAPI
	10.2.2 Handling and displaying RentalManagerAPI errors

	10.3 Exceptions
	10.3.1 Throwing exceptions
	10.3.2 Catching exceptions

	10.4 Summary

	Key-Value Coding and NSPredicate
	11.1 Making your objects KVC-compliant
	11.1.1 Accessing properties via KVC
	11.1.2 Constructing key paths
	11.1.3 Returning multiple values
	11.1.4 Aggregating and collating values

	11.2 Handling special cases
	11.2.1 Handling unknown keys
	11.2.2 Handling nil values

	11.3 Filtering and matching with predicates
	11.3.1 Evaluating a predicate
	11.3.2 Filtering a collection
	11.3.3 Expressing your predicate condition
	11.3.4 More complex conditions
	11.3.5 Using key paths in predicate expressions
	11.3.6 Parameterizing and templating predicate expressions

	11.4 Sample application
	11.5 Summary

	Reading and writing application data
	12.1 Core Data history
	12.1.1 What does Core Data do?

	12.2 Core Data objects
	12.2.1 Managed object context
	12.2.2 Persistent store coordinator
	12.2.3 Managed object model
	12.2.4 Persistent object store

	12.3 Core Data resources
	12.3.1 Core Data entities
	12.3.2 Core Data attributes
	12.3.3 Core Data relationships

	12.4 Building the PocketTasks application
	12.4.1 Examining the Xcode Core Data template
	12.4.2 Building the data model
	12.4.3 Defining the relationships
	12.4.4 Creating Person entities in pure code
	12.4.5 Fetching Person entities in pure code
	12.4.6 Adding a master TableView
	12.4.7 Adding and deleting people
	12.4.8 Managing tasks
	12.4.9 Using model objects

	12.5 Beyond the basics
	12.5.1 Changing the data model
	12.5.2 Performance
	12.5.3 Error handling and validation

	12.6 Summary

	Blocks and Grand Central Dispatch
	13.1 The syntax of blocks
	13.1.1 Blocks are closures
	13.1.2 Blocks and memory management
	13.1.3 Block-based APIs in Apple’s iOS frameworks

	13.2 Performing work asynchronously
	13.2.1 Meet GCD
	13.2.2 GCD fundamentals
	13.2.3 Building RealEstateViewer
	13.2.4 Making the image search asynchronous
	13.2.5 Making the image loading asynchronous

	13.3 Summary

	Debugging techniques
	14.1 Building an application, complete with bugs
	14.2 Understanding NSLog
	14.3 Bringing memory leaks under control with Instruments
	14.4 Detecting zombies
	14.5 Summary

	appendix A: Installing the iOS SDK
	A.1 Installing the iOS SDK
	A.1.1 Becoming an Apple developer and downloading the SDK
	A.1.2 System requirements
	A.1.3 Downloading Xcode and the iOS SDK
	A.1.4 Installing Xcode and the iOS SDK

	A.2 Preparing your iOS device for development
	A.2.1 Creating a certificate
	A.2.2 Provisioning a device using Xcode
	A.2.3 Provisioning a device manually
	A.2.4 Running an application on a device

	appendix B: The basics of C
	B.1 Variable naming conventions
	B.1.1 Hungarian notation
	B.1.2 Camel case
	B.1.3 Namespaces

	B.2 Expressions
	B.2.1 Arithmetic operators
	B.2.2 Comparison operators
	B.2.3 Bitwise operators
	B.2.4 Assignment operators
	B.2.5 Operator precedence

	B.3 Conditional statements
	B.3.1 The if-else statement
	B.3.2 The conditional operator
	B.3.3 The switch statement

	B.4 Looping statements
	B.4.1 The while statement
	B.4.2 The do-while statement
	B.4.3 The for statement
	B.4.4 Controlling loops

	B.5 Summary

	appendix C: Alternatives to Objective-C
	C.1 A short history of Objective-C
	C.1.1 The origins of Objective-C
	C.1.2 Popularization via NeXT Inc.
	C.1.3 Adoption and evolution by Apple Inc.

	C.2 Alternatives to Objective-C and Cocoa
	C.2.1 Close to home: Objective-C++ and plain old C or C++

	C.3 The iPhone SDK: Safari
	C.3.1 HTML5, CSS3, and other modern standards
	C.3.2 iPhone OS integration
	C.3.3 PhoneGap and other extensible cross-platform solutions

	C.4 Scripting languages: Lua and Ruby
	C.5 The 10,000-pound gorilla in the room: Adobe Flash
	C.6 Mono (.NET)
	C.7 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back cover

