
ptg6935296

Joshua Nozzi

Mastering
Xcode 4

Develop and Design

Spine width: 0.664”



ptg6935296

Joshua Nozzi

Mastering

Xcode 4
Develop and Design



ptg6935296

Mastering Xcode 4: Develop and Design
Joshua Nozzi

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com 
To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education
Copyright © 2012 by Joshua Nozzi

Editor: Cliff Colby
Production editor: Myrna Vladic
Development editor: Kim Wimpsett and Robyn G. Thomas
Copyeditor: Scout Festa
Technical Editor: Duncan Campbell
Cover design: Aren Howell Straiger
Interior design: Mimi Heft
Compositor: David Van Ness
Indexer: Ann Rogers

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has 
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any 
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the 
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Xcode is a trademark of Apple Inc., registered in the United States and other countries. Many of the designa-
tions used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where 
those designations appear in this book, and Peachpit Press was aware of a trademark claim, the designa-
tions appear as requested by the owner of the trademark. All other product names and services identified 
throughout this book are used in editorial fashion only and for the benefit of such companies with no 
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey 
endorsement or other affiliation with this book.

ISBN 13: 978-0-321-76752-3
ISBN 10: 0-321-76752-7

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com


ptg6935296

Thanks to all my peers, friends, and family for their enthusiastic support,  

to a great team of professionals for helping me reach this goal,  

and to Matt for putting up with yet another of  

my time-consuming projects.



ptg6935296

iv MASTERING XCODE 4

Acknowledgments

I wish to thank the following people whose work I used while writing this book.

CyRIl GODEfROy

Cyril’s masterfully broken code examples demonstrated some nice highlights of 
the Clang Static Analyzer. You can find them at http://xcodebook.com/cgodefroy.

COlIN WhEElER

Colin’s Xcode shortcut cheat sheet saved me loads of tedium when creating 
Appendix B. You can find the original, downloadable version that Colin maintains 
at http://xcodebook.com/cwheeler.

http://xcodebook.com/cgodefroy
http://xcodebook.com/cwheeler


ptg6935296

Contents v

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x

Welcome to Xcode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xii

PART I The Basics: GeTTiNG sTaRTeD wiTh XcoDe 4

chapter 1 DiscoveRiNG XcoDe TooLs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2
Downloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Installing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Exploring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

chapter 2 sTaRTiNG a PRoJecT   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  8
Welcome to Xcode!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Creating a New Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Project Modernization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Building and Running an Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

chapter 3 NaviGaTiNG a PRoJecT   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  18
The Workspace Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

The Navigator Area  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

The Jump Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

The Editor Area  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

The Utility Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

The Debug Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

The Activity Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

The Tabs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

The Organizer Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

chapter 4 GeTTiNG heLP   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  36
The Help Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

The Organizer’s Documentation Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

The Source Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

Community Help and Feedback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

contents



ptg6935296

vi MASTERING XCODE 4

PART II woRkiNG wiTh cocoa aPPLicaTioNs

chapter 5 cReaTiNG UseR iNTeRfaces   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  46
Understanding Nibs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

Getting Familiar with Interface Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

Adding User Interface Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55

Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

chapter 6 aDDiNG fiLes To a PRoJecT   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  70
Adding Existing Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

Creating New Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74

Using the File Template Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

Removing Files from the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

chapter 7 wRiTiNG coDe wiTh The soURce eDiToR   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  78
Exploring the Source Editor Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

Navigating Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

Using Code Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

Exploring the Code Snippet Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

The Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

chapter 8 seaRchiNG aND RePLaciNG   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  88
Using the Search Navigator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

Searching within Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

chapter 9 Basic DeBUGGiNG aND aNaLysis   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  98
Compile-Time Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

Runtime Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

chapter 10 UsiNG The DaTa MoDeL eDiToR   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  110
Introducing Core Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

Using the Data Model Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115



ptg6935296

Contents vii

Creating a Basic Data Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117

Creating a UI for the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118

Using the Assistant  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

chapter 11 cUsToMiziNG The aPPLicaTioN icoN   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  126
Picking the Ideal Artwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

Creating Icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129

Setting the Application Icon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Setting Document Icons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

chapter 12 DePLoyiNG aN aPPLicaTioN   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  134
Archiving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

Alternatives to Archiving  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

PART III GoiNG BeyoND The Basics

chapter 13 aDvaNceD eDiTiNG   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  144
Renaming Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146

Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147

Organizing with Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150

Changing Editor Key Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

Jump to Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

My Company Name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

chapter 14 The BUiLD sysTeM   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  154
An Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156

Working with Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159

Working with Schemes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178

Entitlements (Sandboxing)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193



ptg6935296

viii MASTERING XCODE 4

chapter 15 LiBRaRies, fRaMewoRks, aND LoaDaBLe BUNDLes   .  .  .  .  .  .  194
What are Libraries, Frameworks, and Bundles? . . . . . . . . . . . . . . . . . . . .  196

Using Existing Libraries and Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . .  199

Creating a Framework  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

chapter 16 woRksPaces   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  216
What Is a Workspace?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218

When to Use a Workspace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Creating a Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

Another Kind of Workspace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231

chapter 17 DeBUGGiNG aND aNaLysis iN DePTh   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  232
Using the Clang Static Analyzer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234

Exploring Analyzer Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236

Threads and Stacks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242

Inspecting Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Conferring with the Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Viewing Generated Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258

Debugging Apps for iOS Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

chapter 18 UNiT TesTiNG   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  270
What is Unit Testing?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272

Unit Testing in Xcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276

Writing a Unit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284

Adding Unit Tests to Existing Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297

chapter 19 UsiNG scRiPTiNG aND PRePRocessiNG   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 298
Extending Your Workflow with Custom Scripts . . . . . . . . . . . . . . . . . . . . 300

Using the Preprocessor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322



ptg6935296

Contents iX

chapter 20 UsiNG iNsTRUMeNTs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  324
An Overview of DTrace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  326

A Tour of Instruments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  327

Using Instruments for Common Tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348

chapter 21 soURce coDe MaNaGeMeNT   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  350
Xcode Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  352

Using an SCM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  356

Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  373

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  374

 aPPeNDiXes

appendix a MaNaGiNG yoUR ios Devices  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . a-1

appendix B GesTURes aND keyBoaRD shoRTcUTs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-17

appendix c DocUMeNTaTioN UPDaTes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .c-32

appendix d oTheR ResoURces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . D-36



ptg6935296

X MASTERING XCODE 4

IntroductIon

This book is an intermediate-level introduction to Xcode 4, Apple’s integrated 
development environment. It assumes you have some development experience 
and are familiar with the Cocoa API. It won’t teach you how to write code or much 
at all about Cocoa. There are other books for that. This one is strictly focused on 
how to use Xcode itself, whatever your development endeavors.

Of course, since Xcode is most often used with the Cocoa API and Objective-C, 
there are basic introductions to Cocoa concepts and a few trivial code samples 
sprinkled here and there to illustrate various points. In these cases, I point to the 
documentation that Apple provides (to save you some trouble looking it up), but 
I only had a limited number of pages in which to show you Xcode stuff, so please 
keep this in mind when writing your scathing Amazon reviews.

Also, I’ve formed the opinion that Apple is crafty when it comes to software 
releases. Not only are they ultra-secretive, but they appear to know my precise 
schedule and plans (I blame iCloud). They seem to use this knowledge to wait until 
I’m almost finished and then change a bunch of stuff in a single release, neces-
sitating the tracking down and editing of many fine details. I imagine an Apple 
overseer watching me through my Mac’s camera, stroking a wrinkly, hairless cat 
and waiting until I’m almost finished. He then orders his henchmen to release the 
next set of random changes and leans toward the screen expectantly, muttering 
“Yeeesssss . . .” as I shake my fist at the sky and shout his name in dramatic fashion. 
The cat, of course, is hairless to avoid messing up his black turtleneck.

Whatever the case, I may say things that no longer apply to some future ver-
sion or mention menus that no longer exist as such. Sorry. Blame Apple. Then buy 
my next edition.



ptg6935296

IntroduCtIon Xi

WhAT yOu WIll lEARN

This book is divided into three major parts and includes four appendixes on the 
book’s companion Web site.

Part I: The Basics: Getting Started with Xcode 4
In very short order, you’ll install Xcode and get down to business building a useless 
application. Nobody but perhaps your mother would buy it, but it very neatly dem-
onstrates the Xcode 4 project workflow and how to find your way around a project.

Part II: Working with Cocoa Applications
Next, you’ll learn how to build and edit user interfaces, add resources, and customize 
the application. You’ll explore all major aspects of the Xcode user interface and its 
primary editors. You’ll learn to refactor code, to use the debugger and the Core Data 
modeler, and to archive builds for deployment (independently or via the App Store).

Part III: Going Beyond the Basics
Then you’ll dive a little deeper and explore Xcode’s build system (including the new 
schemes system). You’ll learn how to create and use libraries and frameworks and 
how to combine multiple projects into a single workspace. You’ll create and run 
unit tests and use custom scripts with the build process.

Finally, you’ll take a solid tour of Instruments (Apple’s profiling tool) and expe-
rience its uncanny ability to point out your mistakes and make you feel stupid. 
Thoroughly abashed, you’ll wrap up with an overview of Xcode’s integrated source 
code management support.

Appendixes
You’ll find four appendixes on the book’s companion Web site (http://xcodebook.com/ 
extracontent). Appendix A helps you manage your iOS devices. Appendix B includes 
tables of gestures and keyboard shortcuts for frequently used tasks. Appendix C 
shows you how to manage Xcode documentation updates. Appendix D provides 
you with Apple and third-party resources for additional information.

http://xcodebook.com/extracontent
http://xcodebook.com/extracontent


ptg6935296

Xii   

INTERfACE BuIlDER

Build and edit rich user interfaces with Interface Builder. 
Drag and drop outlets and actions directly into your 
code using the Assistant editor.

ClANG STATIC ANAlyzER

Find subtle errors in your programs with the Clang 
Static Analyzer. Follow the blue arrows through your 
code as the problem is broken down step by step.

welcome TO Xcode

Upstart newbies. Always strolling in and making short work of stuff that used to 

take you hours. In your day, you typed all your build commands and liked it. Uphill. 

Both ways. In the snow. Then again, why let those newbies outpace you? Xcode 

puts the same powerful tools you know (and some new ones you may not) in your 

hands. Despite its shiny, easy-to-use interface, a lot of power lurks just under the 



ptg6935296

Xiii

surface. Xcode 4 lets you write and manage your code, design and build user inter-

faces, analyze and debug your apps, and more. So what if it takes you less time?

INSTRuMENTS

Trace and profile your code with Instruments. Follow 
your application’s activity through time to find and 
analyze performance problems and more.

SOuRCE CODE MANAGEMENT

Manage your source code with the integrated source 
code management features. Branch, merge, pull, push, 
and resolve conflicts all from within Xcode.



ptg6935296

This page intentionally left blank 



ptg6935296

1

Part I

The Basics: 
gettIng stArted  
wiTh Xcode 4



ptg6935296

1

Discovering 
Xcode tools



ptg6935296

3

Xcode 4 is the flagship application of Xcode 

Tools, Apple’s suite of developer tools. It is 

aimed squarely at developing, testing, and 

packaging Mac OS and iOS applications, utilities, and plug-ins 

written with the Cocoa frameworks in Objective-C, though it’s 

perfectly suited for C/C++ development.

In this chapter, you’ll learn how to download and install Xcode 

Tools. You’ll also take a brief tour of some of the powerful tools 

that accompany Xcode.



ptg6935296

4 ChAPTER 1 dIsCoverIng XCode tools

downloAdIng

The latest stable release of Xcode 4 is obtained through the Mac App Store. To 
download the installer, launch the App Store application from your Applications 
folder and search the store for Xcode. Click Install and log in if requested.

As with any application purchased through the App Store, the installer (called 
“Install Xcode”) will appear on your dock with a progress bar tattooed on its icon. 
Go get some coffee because the installer is several gigabytes in size.

InstAllIng

Once the download is complete, just launch the installer by clicking it in the Dock. 
If the Dock shortcut has gone away, you can find the installer in your Applications 
folder (again, it’s called “Install Xcode”). Just follow the on-screen instructions. 
The installer is very basic as the options you might know of from previous versions 
have gone away. Xcode 4 overwrites any existing versions in your system’s /Developer
folder. This is the default (and now, unchangeable) install location for the Xcode 
Tools suite. Once the installation is complete, you’ll have a very powerful software 
development suite at your fingertips. Just look in the /Developer/Applications
folder of your system disk. Xcode and its friends live there.

Note: The file you downloaded contains the tools and relevant SDKs. It 
does not contain the documentation for those SDKs, however. When you 
launch Xcode, it will check for the latest version of this documentation and 

download it in the background. These files are large as well. The proces-
sor, disk, and network activity this causes can be alarming, given that 

Xcode seems to be peacefully awaiting orders. you can turn off this 
automatic updating in the Documentation panel of Xcode’s preferences.



ptg6935296

eXplorIng 5

Now that you’ve installed Xcode Tools, you can find it on your system disk under the 
/Developer folder unless you’ve chosen to install elsewhere. You’ll find Xcode and 
a number of other applications in the /Developer/Applications folder. Although 
this book concentrates on the Xcode 4 application, there are other important tools 
with which you should become familiar.

Let’s explore some of the tools included in the suite.

ThE BIG TOOlS

There are three important applications in which you’ll spend most of your time.

XCode
The Xcode integrated development environment (IDE) is the star of the 
suite. With Xcode, you create and manage projects, write and debug 
your code, design your UI, build your data models, write and run unit 

tests, and build and package your apps and plug-ins. You’ll spend most of your 
development time in Xcode. Some of these tools can be launched automatically 
from within Xcode (Instruments and the iOS Simulator, for example). This will be 
covered in later chapters.

Instruments
Instruments is Apple’s profiling and analysis tool. We’ll briefly visit 
Instruments in Part III, but this application could easily justify a book 
of its own. It could be loosely described as a luxury wrapper around 

DTrace (a performance measuring tool), but that would be understating its power. 
We’ll explore its most common uses for application development, which are profil-
ing and memory management debugging.

Ios sImulator
Not all iOS developers can afford every iOS device on the market. Debug-
ging an application directly on the device has some limitations as well. 
The iOS Simulator (previously named iPhone Simulator) provides a 

solution to both of these problems. We’ll explore the iOS Simulator in Chapter 17.

eXplorIng



ptg6935296

6 ChAPTER 1 dIsCoverIng XCode tools

OThER hElPful TOOlS

The following are some additional tools you are likely to use in a typical Mac or 
iOS project. These tools are also installed with the Xcode Tools suite.

Help IndeXer
Mac OS users expect applications to come with the customary built-in 
manual, called a Help Book. This is a simple collection of HTML docu-
ments accompanied by a special—and required—index file for the OS X 

Help Viewer. The Help Indexer application processes your Help Book files and 
builds this index for you.

ICon Composer
Mac OS and iOS applications use the .icns format. The Icon Composer 
application allows you to drop your appropriately sized artwork into 
the image wells and test your icon against various backdrops.

paCkagemaker
PackageMaker is used to build Mac OS Installer packages. The Installer 
packages let you tell OS X where to install your application and other 
resources, as well as run various pre- and post-flight scripts (scripts 

that are run before and after the main installation) with administrative privileges 
if desired.

Quartz Composer
Quartz Composer lets you create stunning visualizations for screen 
savers, interactive menu screens à la Front Row and Cover Flow, and 
more. The compositions can be self-contained or accept input from 

your application to affect various properties. Even non-developers can enjoy Quartz 
Composer, because it does not require writing a single line of code.



ptg6935296

WrappIng up 7

Plenty of other helpful utilities (both GUI and command-line) exist in addition to 
those covered here. Consult the Xcode user guide (found under Xcode’s Help menu) 
for details.

Note: In the Cocoa developer community, you’ll hear 
people refer to Interface Builder as a separate appli-
cation. Prior to Xcode 4, Interface Builder was indeed 
a separate application. It is now integrated into Xcode.

WRAPPING up



ptg6935296

2

stArtIng a ProjecT



ptg6935296

9

Xcode comes with a number of template 

projects to make it easier for developers to 

get started. Beyond templates for Mac OS and 

iOS applications, there are templates for command-line tools, 

AppleScript applications, frameworks, bundles, plug-ins, Spotlight 

plug-ins, IOKit drivers, and more.

In this chapter, you’ll create a basic Cocoa application, which you’ll 

use throughout this book to explore Xcode.



ptg6935296

10 ChAPTER 2 startIng a projeCt

welcome TO Xcode!

You can find Xcode in the /Developer/Applications folder (assuming you chose this 
default location when you installed Xcode Tools). When you launch the application, 
you’ll be presented with the Welcome to Xcode window, as shown in Figure 2.1.

You can use this welcome window to start a new project, check out an exist-
ing project from a source code repository (such as Subversion or Git), open the 
documentation viewer, or visit Apple’s developer site. You can also ask Xcode not 
to show you this window on startup again.

fiGURe 2 .1 The Welcome to 
Xcode window



ptg6935296

CreatIng a neW projeCt 11

To create a new project, click the “Create a new Xcode project” option on the wel-
come screen. You can also choose File > New > New Project from the main menu at 
the top of the screen. You’ll be presented with a sheet from which you can choose 
a project template, as shown in Figure 2.2.

EXPlORING ThE TEMPlATES

Let’s take a moment to look through the available project templates Xcode offers. 
The left panel separates the template categories by their types (such as Mac OS, 
iOS projects, and any third-party template types you may have installed). Beyond 
the obvious platform categorization, the templates are further subdivided by the 
type of product (application, plug-in, framework, and so on) you’ll be building.

In most cases, selecting an individual template yields an Options bar, allowing 
you to choose common subtypes (such as document-based versus non-document-
based, static library versus dynamic, and so on) and optional subcomponents (such 
as Spotlight importers or Cocoa views for plug-ins).

Most projects will be Mac OS or iOS applications.

fiGURe 2 .2 The New Project 
template sheet

creAtIng a new project



ptg6935296

12 ChAPTER 2 startIng a projeCt

CREATING A TEST PROjECT

Let’s create a test project with which to explore. To do this, choose the Application 
category under the Mac OS X type and then click the Cocoa Application template. 
Click Next to continue. Xcode will respond by asking you for some additional 
information to customize your project, as shown in Figure 2.3.

The Product Name field is where you would put your application’s name in 
most cases. Let’s call our product TestApp in the interest of clarity. This not only 
determines the name of your project file and its enclosing folder but the name of 
your built product (your application, plug-in, library, and so on).

The Company Identifier field is just as important as your product name. This 
identifier is used to create your bundle identifier. The bundle identifier, in turn, can 
be used as a unique identifier for your application’s preferences file, its document 
files, its associated Spotlight importer, and many other things. Apple encourages 
developers to use a reverse-ordered ICANN domain name. Assuming your domain 
is yourcompany.com, your company identifier would be com.yourcompany. Xcode 
fills in your app’s name (substituting illegal characters as needed) to form your 
project’s bundle identifier (displayed below the Company Identifier field).

fiGURe 2 .3 The New Project 
options sheet



ptg6935296

CreatIng a neW projeCt 13

Although only the Product Name field is required, you should always provide a 
suitable company identifier. The identifier doesn’t necessarily have to correspond 
to an existing domain, but it should be unique.

The App Store Category pop-up lets you select a general category under which 
your application would fall if you choose to deploy to the Mac App Store. Since 
you won’t be submitting TestApp to the App Store, you can leave that set to None, 
its default.

The next three options (Create Document-Based Application, Document Class, 
and Document Extension) let you use a document-based application template. 
A plain Cocoa application (Create Document-Based Application deselected) is 
intended for applications that do not work with individual files as documents; a 
document-based Cocoa application uses the Cocoa document architecture to open 
and manipulate document files. For simplicity, TestApp will not be document-based, 
so leave that option deselected.

The Use Core Data option adds support for Cocoa’s object graph management 
and persistence framework, called Core Data. Select this option so you can explore 
the Data Model Editor in Chapter 10.

The Include Unit Tests option will add support for unit tests to your project. 
Select this option to include unit tests, which you’ll explore in Chapter 18.

The Include Spotlight Importer option adds a Spotlight importer plug-in as 
a dependent build target to your project’s application target. When you add the 
necessary code, Spotlight—the Mac OS X search facility—will use the importer to 
add the data you provide to its search index automatically. Leave this deselected, 
and leave Spotlight importer plug-in programming for another book.

Different project and option choices can cause different fields to appear when 
creating a new project. Consult the Xcode documentation (covered in Chapter 4) 
for further details about these options.



ptg6935296

14 ChAPTER 2 startIng a projeCt

Once you’ve filled in the requested information, click Next to continue. Xcode 
will present a Save As dialog box. Select the option to create a local Git repository 
for this project. You’ll explore Xcode’s Git (and Subversion) support in Chapter 21. 
Choose a convenient location (such as your desktop), and click Save.

You should now have a basic Xcode project ready to go, as shown in Figure 2.4.

fiGURe 2 .4 A newly created 
Cocoa application project 
window



ptg6935296

projeCt modernIzatIon 15

For those who weren’t born (as Mac or iOS developers) yesterday, Xcode intro-
duces the concept of “project modernization.” As much fun as it is to create 
brand new projects full of new possibilities, many of us have existing projects that 
were created in earlier versions of Xcode.

These preexisting projects often contain settings that are not compatible with 
modern versions of Xcode. Fortunately, Xcode not only finds these problems but 
offers to fix them as well. It even lets you pick the fixes to apply, since its idea of 

“fixing” may not necessarily agree with yours.

MODERNIzING A PROjECT

When opening projects that were created with previous versions of Xcode, you 
might notice some warnings appear in the Issue navigator (Figure 2.5), informing 
you of issues that need cleaning up.

fiGURe 2 .5 Warnings of  
outdated project settings

Notes: Project modernization was introduced 
in Xcode version 4.1 and is not available in 4.0.

The Issue navigator is explored in Chapter 3.

PROjECT modernIzAtIon



ptg6935296

16 ChAPTER 2 startIng a projeCt

Selecting the issue (or choosing Editor > Check for Outdated Settings from 
the main menu) will display a Build Settings sheet (Figure 2.6) summarizing the 
changes that Xcode thinks you should make. Deselect the check box to the left of 
any settings you think Xcode ought to ignore.

To perform the selected changes, click Perform Changes. To cancel without 
performing any changes, click Cancel. To ignore the selected issues, select Don’t 
Perform Changes. The separate Perform Changes and Don’t Perform Changes 
buttons let you accept some updates and then come back and instruct Xcode to 
ignore others.

Remember that you can always check for outdated settings at any time by 
choosing Editor > Check for Outdated Settings from the main menu.

fiGURe 2 .6 The Build Settings 
sheet prompting changes



ptg6935296

WrappIng up 17

At this point you have a fully functional—if uninteresting—Cocoa applica-
tion project that is ready to be built and run. To see your application, click 

the Run button in the project window toolbar (or choose Product > Run “TestApp” 
from the main menu). Xcode will build the project from scratch (because this is 
the first time it’s been built) and then launch it. After a short time, you’ll see your 
application’s empty window (Figure 2.7). It’s not particularly exciting at the moment, 
but it is a functioning application at this point, even without customization.

The Run button doesn’t just trigger a build and run. You can click and hold the 
button to reveal a menu of other actions similar to those found under the Product 
menu. These actions include Test, Profile, and Analyze. Each of these will build the 
project automatically if it needs building before performing the requested action. 
These other actions are covered in later chapters.

WRAPPING up

TestApp isn’t very interesting in its current state, but it is a fully functional applica-
tion with a main menu, a window, and even an About panel. You now know how 
to create, build, and run a basic template application. In the next chapter, you’ll 
explore Xcode’s user interface using the project you just created.

fiGURe 2 .7 The new Cocoa 
application

BuIldIng AND runnIng
AN ApplIcAtIon



ptg6935296

3

nAvIgAtIng 
a ProjecT



ptg6935296

19

In the previous chapter, you created a Cocoa 

application project called TestApp. In this 

chapter, you’ll explore the anatomy of this 

project and familiarize yourself with Xcode’s user interface.

Earlier versions of Xcode allowed users to select a multiple-window 

interface, but the default was single-window (where most views 

related to the open project were contained within the same window). 

Single-window mode wasn’t quite single-window mode, however; 

a number of auxiliary windows could appear. In Xcode 4, Apple 

has taken the all-in-one-window design approach much further.

If it’s not open already, open the TestApp project you created in 

Chapter 2.



ptg6935296

20 ChAPTER 3 navIgatIng a projeCt

ThE workspAce WINDOW

An Xcode project consists of a collection of source files (such as Objective-C files, 
Interface Builder nibs, and Core Data managed object models), resources (such 
as images and rich text files), and the Xcode project file, in which the various 
settings and build rules are maintained. It is helpful to think of an Xcode project 
as a collection of sources and resources with a project file to bind them together. 
Xcode 4 goes a step further and allows you to combine multiple related projects 
into a single workspace (see Chapter 16). The main window for a given project or 
workspace is called the workspace window (Figure 3.1).

The workspace window is divided into multiple areas, which you’ll examine in 
detail in this chapter. Almost everything related to your workspace is contained 
within these areas, whose responsibilities include organization, navigation, editing, 
inspection, and debugging.

selector bar
Inspector 

Inspector pane

Editor area

Debug area

Utility  
area

Navigator 
area

Navigation bars

Library 
selector bar

Debugger Bar Libraries 
pane

Filter bar

Navigator 
selector bar

Focused code
Code focus ribbon

Toolbar

fiGURe 3 .1 The workspace 
window



ptg6935296

tHe navIgator area 21

The Navigator area consists of a complex set of panes. Found along the left edge 
of the workspace window, it is the primary interface for organizing and exploring 
the files, symbols, build issues, run logs, breakpoints, threads and stacks, and 
search results for the project.

The button bar along the top edge of the Navigator area switches between the 
various navigation panes. You can toggle the Navigator area on and off using the 
View button bar in the toolbar near the right side of the workspace window.

PROjECT NAvIGATOR

You can use the Project navigator (Figure 3.2) to find your way around the 
source and resource files of your project (or projects in the case of a multi-

project workspace). Clicking any of the resources (except groups, which are merely 
logical containers within the project) causes Xcode to navigate to that resource, 
opening it in an appropriate editor in the Editor area immediately to the right of 
the Navigator area. You’ll explore various editors in Part II.

In addition, this area allows you to organize your project using groups (repre-
sented by yellow folders). You can create nested groups and move resources around 
just as you would with a file system. Groups can also represent real subfolders in 
your project folder. To create a group, choose File > New > New Group from the 
main menu.

The Project navigator works much the same way as the Mac OS X Finder in List 
view mode. You can add to, delete from, and reorganize resources in your project. 
In Chapter 6, you’ll explore adding files and resources to, and removing them from, 
a project. Later, in Chapter 21, you’ll explore Xcode’s source code management 
capabilities.

fiGURe 3 .2 The Project 
navigator

ThE nAvIgAtor AREA



ptg6935296

22 ChAPTER 3 navIgatIng a projeCt

SyMBOl NAvIGATOR

The Symbol navigator (Figure 3.3) gives you a somewhat different look at 
your project. Depending upon the filters you select in the filter bar (just 

above the list of symbols), you can jump to symbols defined within your project 
or within the Cocoa frameworks.

For example, rather than selecting a file from the Project navigator and then 
looking for your method or instance variable in the editor, you can type the symbol 
name in the search bar at the bottom of the Symbol navigator and then click the 
symbol in the list to jump directly to that symbol in your source.

The bar along the bottom edge of the Symbol navigator offers several list-filtering 
options. The first filter button (starting from the left) lets you choose whether 
the list shows all symbol types (whether symbols exist for those types or not) as 
opposed to only showing types for which symbols exist. The second button specifies 
whether all symbols are shown or only those belonging to the workspace. The third 
button specifies whether members of a given symbol are shown (for example, the 
methods of a class). The search field further filters the list by a given search term.

fiGURe 3 .3 The Symbol 
navigator



ptg6935296

tHe navIgator area 23

SEARCh NAvIGATOR

The Search navigator (Figure 3.4) allows you to search your entire project. 
The search field at the top of the pane searches the project, while the one 

at the bottom further filters the search results themselves. The results are arranged 
first by filename and then by matches within the file. Clicking a result opens the 
file and selects the match in the editor. Searching and replacing will be covered in 
more detail in Chapter 8.

ISSuE NAvIGATOR

Upon building your project, the Issue navigator (Figure 3.5) lists any issues 
it finds. In Xcode, an issue can be an error or a warning. Like the Search 

navigator, the Issue navigator can organize the issues by the file in which the issues 
appear. Additionally, Xcode can show you issues organized by type. Clicking to 
select an issue will cause Xcode to navigate to the issue in the Editor area. Figure 3.5 
shows Xcode reporting that the TestAppAppDelegate.m file has, like most people, 
some issues.

At the top of the Issue navigator are buttons that let you choose to show issues 
by the file in which they exist or by their type. The controls at the bottom of the 
navigator let you filter the list. The first button (starting from the left) lets you 
choose to show issues only from the last build. The second button lets you choose 
to show only errors (as opposed to warnings or static analyzer results). The search 
field lets you filter the list by a given search term.

fiGURe 3 .5 The Issue 
navigator

fiGURe 3 .4 The Search 
navigator

Note: you can also jump from issue to issue using the arrows just 
above the scroll bar in the upper-right corner of the Editor area.



ptg6935296

24 ChAPTER 3 navIgatIng a projeCt

DEBuG NAvIGATOR

While execution is paused in an active debugging session (because of 
encountering a breakpoint or a crashed thread), the Debug navigator 

(Figure 3.6) allows you to navigate the threads and stacks of your application. You 
can organize the information by thread or by queue using the selector bar at the 
top of the navigator.

The controls along the bottom of the navigator control how much information 
the navigator displays. The button, when activated, causes the navigator to show 
only crashed threads or threads for which there are debugging symbols available 
(typically your own code). The slider controls the amount of stack information 
that is displayed. Sliding all the way to the right shows the full stack, while sliding 
to the left shows only the top frame.

The icons to the left of each stack frame indicate to whose code the frame 
belongs. For example, frames with a blue-and-white icon depicting a person’s head 
belong to your code, whereas purple-and-white icons depicting a mug belong to 
the Cocoa frameworks.

BREAKPOINT NAvIGATOR

All the breakpoints associated with your project are collected in the Break-
point navigator (Figure 3.7). When you set breakpoints in the Source Editor 

(see Chapter 9), they appear in the Breakpoint navigator list, grouped by file.
Clicking a breakpoint’s name navigates to its location in the editor. Clicking 

the blue breakpoint marker toggles the breakpoint on and off. Right-clicking a 
breakpoint and selecting Edit Breakpoint from the context menu pops up a detailed 
view that lets you set additional breakpoint properties (also covered in Chapter 9).

The controls along the bottom of the navigator allow you to add and remove 
breakpoints, as well as further filter the list. The Add (+) button pops up a menu 
when clicked, offering to add one of two non-workspace-specific breakpoints (to 
break on exceptions or at a named symbol you supply manually). The Remove 
(-) button removes any selected breakpoints. The next button to the right of the 
Remove button can filter the list to show only enabled breakpoints, while the 
search field can filter the breakpoints by a given search term.

fiGURe 3 .6 The Debug 
navigator

fiGURe 3 .7 The Breakpoint 
navigator



ptg6935296

tHe navIgator area 25

lOG NAvIGATOR

The Log navigator (Figure 3.8) collects all the various logs (including build, 
analyze, test, and debug). Clicking a log in the navigator displays it in the 

Editor area.
When selecting a debug log (also known as a run log), the contents of the Debug 

area’s console are displayed as plain text for you to browse. When selecting a build 
log, the Editor area displays a set of controls along the top edge, which let you 
filter the types of messages you want to see (including all messages, issues only, 
or errors only). Double-clicking a message navigates to the issue or file. Clicking 
the list icon at the right edge of a message will expand it to display its associated 
command and output.

The controls along the bottom of the navigator let you filter the list. The button 
lets you choose to show only the most recent logs of a given type. The search field 
lets you filter the list with a given search term.

fiGURe 3 .8 The Log navigator



ptg6935296

26 ChAPTER 3 navIgatIng a projeCt

The Jump Bar, found above the Editor area, shows you where you are in the orga-
nizational structure in your project (Figure 3.9). It additionally serves as a more 
compact version of the Project navigator. It is accessible even when the Navigator 
area is hidden and can be used to navigate your project by clicking any one of the 
segments and choosing a different path from the pop-up menu.

The Jump Bar goes beyond the group and file level. It allows you to drill further 
down into the contents of the file. In the case of a source file, you can further select 
methods to jump around the file’s contents by clicking any segment after the file’s 
segment (Figure 3.10). With Interface Builder files, you can navigate the window 
and view hierarchy of your user interface.

The Jump Bar also appears in Assistant windows (covered later in this chapter) 
and can be used to select various behaviors in addition to individual files.

fiGURe 3 .9 The Jump Bar, 
TestAppAppDelegate.m  
selected

fiGURe 3 .10 The Jump Bar  
pop-up menu showing members  
of TestAppAppDelegate.m

ThE jump BAR



ptg6935296

tHe edItor area 27

The Editor area (Figure 3.11) dynamically switches between editors appropriate 
to the currently selected file (either through the Project navigator or through the 
Jump Bar). This means that, for source code files, you’ll see the Source Editor; for 
Interface Builder files you’ll see the Interface Editor, and so on. Among the other 
available editor types are the Data Model Editor, the Project Editor, the Version 
Editor, the Rich Text Editor, and more.

Although it is called the “Editor” area, this is something of a misnomer where 
some items are concerned. Some items are not editable, which means the Editor 
area serves more as a “Viewer” area. For example, the area might display an image 
resource (such as the application icon) when selected; however, there is currently 
no image-editing facility in Xcode 4, so you can only view the image.

The other major editors are covered in their related chapters throughout the book.

fiGURe 3 .11 The Editor area 
showing the Source Editor

ThE edItor AREA



ptg6935296

28 ChAPTER 3 navIgatIng a projeCt

ThE ASSISTANT

The Editor area conceals a deceptively powerful feature called the Assistant 
(Figure 3.12). The Assistant acts as a “split pane” editor with some added 

intelligence, depending on the behavioral mode you use. You can toggle the Assis-
tant using the middle button of the Editor button bar that sits toward the right side 
of the toolbar area.

The Assistant is a very flexible contextual tool that helps you perform common 
tasks ancillary to the current editing context. For example, in the Data Model Edi-
tor, if you select a Core Data entity with a corresponding managed object subclass, 
the Assistant can display that subclass for reference or editing. If you select a xib 
to edit in Interface Builder, the Assistant can show the source file corresponding 
to the xib’s File’s Owner class (see Chapter 5) or can show the class of the object 
selected in the Dock to facilitate establishing action and outlet connections.

fiGURe 3 .12 The Assistant



ptg6935296

tHe edItor area 29

openIng FIles In tHe assIstant
When you turn on the Assistant using the toolbar, it displays the selected source 
file’s counterpart in a single pane in Manual behavior mode (where you choose 
what is displayed in the Assistant pane yourself using its Jump Bar). You can use the 
Assistant’s Jump Bar to view or edit any file in your workspace. There will always 
be at least one Assistant pane visible while the Assistant is active.

addIng and removIng assIstant panes
You can add or remove additional Assistant windows using 
the Add (+) and Remove (x) buttons in the upper-right corner 

of the existing Assistant pane (at the right edge of the panel’s Jump Bar).
To add a new pane, click the Add button on any existing pane. The new pane 

will have its own Jump Bar and will be added after the pane whose Add button you 
clicked. That is, if you clicked the Add button of the last pane, the new pane will 
appear after the last one; if you clicked Add for the first of several panes, the new 
pane will appear after the first one. To remove a pane, click the Remove button 
on the desired pane.

You can also open assistant panes using keyboard shortcuts. By default, hold-
ing down the Option key and clicking an item in the Project navigator will open 
the item in the Assistant when only one pane is present. If more than one pane is 
present or you perform an Option-Shift-click, Xcode asks you where you’d like to 
view the file with an intuitive destination chooser (Figure 3.13).

fiGURe 3 .13 The destination 
chooser



ptg6935296

30 ChAPTER 3 navIgatIng a projeCt

CHangIng layout BeHavIor
In the previous section, the phrase “after the pane whose Add button you clicked” 
is intentionally vague. This is because you can customize the Assistant’s layout 
behavior. To do so, choose View > Assistant Layout to see and select available 
layout modes (Figure 3.14).

assIstant BeHavIor modes
You can change the Assistant’s behavior by clicking the segment of the Jump Bar 
immediately to the right of the navigation buttons. A menu appears (Figure 3.15) 
listing the available behaviors.

When in Manual mode, the Assistant behaves like a glorified—if neatly 
arranged—split pane editor. Its real power is in its automatic behavioral modes. 
When you choose any behavior other than Manual, the Assistant becomes contex-
tually aware. Depending on the chosen behavior, the Assistant shows files related 
to the file (or a subselection within it) currently displayed in the main editor (the 
selection in the Project navigator).

The power of this feature becomes evident when you’re faced with a scenario 
where it’s necessary to edit a class’s implementation, header, and associated pro-
tocol, or when you select an object in Interface Builder’s Dock and need to add a 
new outlet or action while connecting it to the interface at the same time.

When there is more than one related file that the Assistant can display, addi-
tional controls appear to the left of the Add and Remove buttons. The controls 
include standard back and forward navigation buttons with the count of available 
associated files between them. These controls are not visible if there are fewer than 
two available associated files. The count is shown in the Jump Bar when selecting 
the behavior mode.

The term selection in this context means “the project member that is currently 
selected in the Project Navigator, shown in the main editor.”

The available modes are explored in their related chapters.

fiGURe 3 .15 The Assistant’s 
behavior modes in the 
Jump Bar

fiGURe 3 .14 The Assistant



ptg6935296

tHe utIlIty area 31

The Utility area (Figure 3.16) provides supplementary information and controls 
for the current editor. Essentially anything you would expect to be in a floating 
palette for the editor can be found in the Utility area. To toggle the Utility area, 
click the right button in the View button bar in the toolbar.

Like the Editor area and its Assistant, the Utility area is highly contextual. Addi-
tional buttons representing various inspectors appear along the top, depending on 
what you’re editing. For example, while editing a xib, buttons will appear for the 
Attributes inspector, Size inspector, Connection inspector, and more. With a data 
model selected, the Data Model inspector button appears. In most situations, two 
inspectors remain omnipresent: the File inspector and the Quick Help inspector.

The bottom panel contains the File Template library, the Code Snippet library 
(Chapter 7), the Object library (Chapter 5), and the Media library, which contains 
available template media (such as standard OS icons) as well as any media included 
in your workspace.

fiGURe 3 .16 The Utility area

ThE utIlIty AREA



ptg6935296

32 ChAPTER 3 navIgatIng a projeCt

The Debug area (Figure 3.17) appears by default when you run your application. 
You can also toggle it using the middle button of the View button bar in the toolbar.

The Debug area is the primary interface for the debugger. It includes a control 
bar, a console, and a view for inspecting in-scope variables when paused. The 
Debug area and its controls are covered in more detail in Chapter 9.

CuSTOMIzING DEBuGGER BEhAvIOR

You can customize the Debug area’s behavior in Xcode’s preferences, on the Behaviors 
tab. There you can choose what actions the debugger takes when certain events 
occur (including run, pause, unexpected quits, successful quits, and so on).

For example, you could choose to show the Debug navigator when debugging 
starts or pauses. You could also choose to show the Project navigator and close the 
Debug area when the application quits normally. If the application quits unexpect-
edly, you could choose to show the Log navigator, navigate to the most recent run 
log, and play an alert sound to draw attention to the problem. Custom behaviors 
are covered in more detail in Chapter 16.

fiGURe 3 .17 The Debug area

ThE deBug AREA



ptg6935296

tHe aCtIvIty vIeWer 33

The Activity Viewer (Figure 3.18) isn’t overly complicated and offers little interaction, 
but its prominent (and immutable) placement in the center of the toolbar makes it 
worth mentioning. It provides you with visual feedback of all the activities Xcode 
is performing on the workspace.

When more than one activity is underway, the Activity Viewer alternates 
between them like an ad banner and displays the number of concurrent tasks on 
its left side. You can click the number to display a pop-up, which lists all the cur-
rent activities and their progress individually.

In previous versions of Xcode, the right side of each window’s bottom edge 
had its own status field showing the same information (mostly related to build 
and debug status). Xcode 4’s all-in-one approach makes it easier to have a single 
place to see the current status of any actions Xcode is performing.

If there are any issues (errors, warnings, and so on), the number of issues will 
be displayed in the Activity Viewer as well. Clicking the issue counter will switch 
to the Issue navigator so you can find and review the issues.

fiGURe 3 .18 The Activity 
Viewer

ThE ActIvIty vIEWER



ptg6935296

34 ChAPTER 3 navIgatIng a projeCt

Another new feature in Xcode 4 is the introduction of tabs. Similar to the Safari 
browser, you can create tabs within the same workspace window for various project 
members in the workspace. For example, Figure 3.19 shows a source file open in 
one tab and a user interface file open (in the Interface Editor) in another.

To create a new tab, choose File > New > New Tab from the main menu. Click 
any tab to switch to it and navigate to the project member you’d like the tab to 
represent. You can reorder tabs by dragging and dropping. To rename a tab, double-
click the title, type a new name, and then press Return. To close a tab, click the X 
icon that appears when you mouse over the tab or choose File > Close Tab from 
the main menu.

fiGURe 3 .19 Two tabs showing 
TestAppAppDelegate.m and 
MainMenu.xib

tip: Keyboard shortcuts are handy ways to speed up tab use. 
Pressing Command+T creates a new tab, while Command+W 

closes the currently selected tab. Press Command+} and Command+{  
to switch between the next and previous tabs.

ThE tABs



ptg6935296

WrappIng up 35

The Organizer window (Figure 3.20) stands apart from workspace windows as 
a collection point for project and device management, including repositories, 
archives, snapshots, and more. The various aspects of the Organizer will be explored 
throughout the book. To open the Organizer, choose Window > Organizer from 
the main menu.

WRAPPING up

This chapter gave you a taste of the most obvious user interface elements in the 
workspace window. You’ll explore more of the user interface in later chapters, but 
there’s far more to Xcode than can fit in a book this size. In the next chapter, you’ll 
learn how to use Xcode’s built-in documentation browser and help facilities to get 
help with your coding and with using Xcode itself.

fiGURe 3 .20 The Organizer 
window

ThE orgAnIzer WINDOW



ptg6935296

4

geTTing Help



ptg6935296

37

You can get help in Xcode 4 for the IDE as 

well as the Cocoa frameworks in a number 

of ways. In this chapter, you’ll learn how to 

find the answers you need.



ptg6935296

38 ChAPTER 4 gettIng Help

ThE Help MENu

You’ll start with the most obvious place first. If you’re familiar with Mac OS X, you 
should be familiar with the Help menu. Starting with Mac OS X 10.5, the Help menu 
(Figure 4.1) features a standard Search field, which shows you not only help topics 
but main menu items that match your search term.

Beneath the Search field are menu choices to open some of the more important 
help libraries with which you should familiarize yourself. A link to Xcode’s release 
notes is also listed there. Most of these will open the Organizer window, which 
you saw in Chapter 3.

XCODE hElP

The Xcode User Guide menu item opens a splash page containing video and links 
about how to find help in Xcode.

XCODE uSER GuIDE

The Xcode Help menu item opens the user manual for Xcode. Inside you’ll find 
in-depth explanations and how-to instructions for all Xcode features.

DOCuMENTATION AND API REfERENCE

The Documentation and API Reference menu item simply opens the Organizer 
window in Documentation mode so you can browse or search the installed docu-
mentation libraries. It will remain on the currently selected page without navigating 
away and simply show the window.

ThE REST

The remaining menu items trigger quick help for the currently selected code in 
the active workspace window, and open the Organizer window in Documentation 
mode with the text input cursor in the search bar, respectively.

fiGURe 4 .1 The Xcode Help 
menu



ptg6935296

tHe organIzer’s doCumentatIon taB 39

The Documentation section of the Organizer is Xcode’s main viewer for all SDK 
and developer tools documentation. Open the Organizer by choosing Window > 
Organizer from the main menu, and then choose the Documentation tab in the 
toolbar (Figure 4.2).

The Organizer responds by showing you a pane on the left (similar to Xcode’s 
Navigator area) and a main viewing area. Along the top of the main viewing area, 
you’ll see a Jump Bar similar to the one you explored in Chapter 3. This Jump Bar, 
however, allows you to navigate the documentation as opposed to your project. 
The Organizer’s navigation area has three modes: Explore, Search, and Bookmarks. 
The button bar at the top of the pane switches between the modes.

fiGURe 4 .2 The Organizer’s 
Documentation tab

ThE ORGANIzER’S
documentAtIon TAB



ptg6935296

40 ChAPTER 4 gettIng Help

EXPlORE

In Explore mode, an outline of each of the documentation sets and their 
sections displays. You can drill down by topic through the guides and API 

reference documents.

SEARCh

In Search mode, a search field appears, allowing you to search all installed 
documentation sets. Clicking the magnifying glass icon, then choosing 

Show Find Options from the context menu reveals a set of filtering options 
(Figure 4.3) that let you ignore unwanted libraries and more. The results are grouped 
by type (such as Reference, System Guides, Sample Code, and so on).

BOOKMARKS

In Bookmarks mode, you can jump directly to documentation pages you’ve 
bookmarked. You can set bookmarks by choosing Editor > Bookmarks 

from the main menu or by right-clicking anywhere in the page and choosing Add 
Bookmark for Current Page from the context menu. To delete a bookmark, select 
it and press the Delete key.

fiGURe 4 .3 The Organizer’s 
search options panel



ptg6935296

tHe sourCe edItor 41

Although you’ll explore the depths of the Source Editor in Part II, there are a couple 
of useful ways to find contextual help from within your code.

QuICK hElP IN ThE uTIlITy AREA

As you saw in Chapter 3, Xcode’s Utility area gives you access to various 
properties, code snippets, user interface elements for Interface Builder, 

and Quick Help. The Quick Help utility continuously updates its content depending 
on what you’ve selected in the Source Editor.

To get a feel for this utility, make sure your TestApp project is open and then 
select the TestAppAppDelegate.m source file from the Classes group in the Project 
navigator. Open the Utility area, and select the Quick Help utility. In the Source 
Editor, click window in the @synthesize window; statement. Quick Help responds 
by showing you the name of the symbol (window) and the header file in which it is 
declared (the TestApp project’s TestAppAppDelegate.h file).

For a more interesting example, scroll down a bit until you find the – (NSString *)
applicationSupportDirectory method, and click the NSString symbol. Quick 
Help responds by showing a much more detailed description of the NSString class 
(Figure 4.4), which is part of the Cocoa frameworks and is documented by the 
built-in document libraries. Any text highlighted in blue is a hyperlink to the cor-
responding documentation. Clicking a Quick Help hyperlink opens the linked 
information in the Documentation section of the Organizer.

SEARCh DOCuMENTATION fOR SElECTED TEXT

Another handy way to find the documentation for symbols such as NSString is to 
select the symbol in the Source Editor and then choose Help > Search Documenta-
tion for Selected Text from the main menu. As with hyperlinks in the Quick Help 
pane, choosing this option will open any corresponding documentation it finds 
in the Documentation section of the Organizer.

fiGURe 4 .4 The Quick Help 
utility

tip: It’s not necessary to open the utility pane 
to see Quick help content. The same informa-
tion will appear in a pop-up bubble by holding down the 
Option key and clicking the symbol you want to locate.

ThE source EDITOR



ptg6935296

42 ChAPTER 4 gettIng Help

There are a number of community Web sites for finding more help than is available 
in the documentation, including Apple’s own developer forums. See Appendix D 
for more information.

APPlE’S DEvElOPER fORuMS

Apple’s developer forums are accessible to ADC members (http://devforums.apple.
com). There you can receive help and advice from the Cocoa developer commu-
nity as well as the occasional Apple engineer. Because this is a public forum, it’s 
important to keep in mind that most people there are developers like you and 
are volunteering their time. Take extra care to search for similar questions before 
posting, ask detailed and clearly written questions, and be civil. As with any com-
munity, anything less than civility and courtesy will make the community less 
likely to help you in the future.

DOCuMENTATION ERRORS

If there is anything about Apple’s documentation that is unclear, incorrect, or 
lacking in any way in Xcode, you are encouraged to submit feedback to Apple. At 
the bottom of every page of the documentation are hyperlinks that allow you to 
submit feedback—good, sort-of-good, and bad—to the Apple documentation team. 
Constructive, detailed feedback helps Apple provide better documentation, and 
improvements are released often.

COMMuNITy Help 
AND FeedBAck

http://devforums.apple.com
http://devforums.apple.com


ptg6935296

WrappIng up 43

Xcode offers many ways to find help. Most of those ways point to the same docu-
mentation set, but even the documentation pages help you submit suggestions for 
improvement. In addition, you will find a number of community Web sites (one of 
which is Apple-hosted) and blogs a quick Google search away. Even if the built-in 
documentation doesn’t help, the chances are quite good you’ll find your answer 
on the World Wide Web.

You should now have your bearings in the Xcode IDE. In Part II, you’ll use 
Xcode to expand on the TestApp project by adding some user interface elements, 
writing some code, defining a data model, and more. From there, you’ll delve into 
the debugger and building the application for deployment.

WRAPPING up



ptg6935296

This page intentionally left blank 



ptg6935296

45

Part II

working  
wiTh cocoA 
ApplIcAtIons



ptg6935296

5

creaTing  
user InterFAces



ptg6935296

47

In previous versions of Xcode Tools, Inter-

face Builder was a separate application. In 

this chapter, you’ll learn how to use Xcode 4’s 

newly integrated user interface tools.

The contents of this chapter require some familiarity with Cocoa 

development, which is beyond the scope of this book. Basic back-

ground is given where necessary; however, you are encouraged 

to read the Cocoa Fundamentals Guide provided by Apple to 

understand the design concepts behind user interfaces in Cocoa 

applications.



ptg6935296

48 ChAPTER 5 CreatIng user InterFaCes 

uNDERSTANDING nIBs

Cocoa applications load their graphic user interfaces from Interface Builder files 
(called nibs, or xibs if using XML format, which is the new default). The files are 
essentially “freeze-dried” object graphs representing the user interface you’ve 
constructed and the connections between the UI elements and one or more con-
troller objects. Several key concepts are important to grasp when designing and 
working with a Mac OS or iOS application.

fIlE’S OWNER AND CONTROllER OBjECTS

A nib and its content always have an owner. Whether it’s an instance of 
NSWindowController, NSViewController, NSDocument, or any other object, the 
owner serves as the top-level object that serves as the primary point to which to 
wire the user interface elements found in the nib.

Generally speaking, File’s Owner is intended to be a controller object (or, in 
the case of NSDocument, a model-controller). There can be and often are multiple 
controller objects within a single nib, any of which can provide outlets or actions.

ACTIONS AND OuTlETS

Two types of connections exist between your code and a nib’s contents: actions 
and outlets. Both types of connection are established by drag and drop.

An action is a method that is called by a control. That is, depending on the type 
of control, some form of user input has triggered the control to perform its function. 
In the case of a button, a mouse click would trigger the button’s action. Any given 
control’s action requires two elements: the action itself and a target. Actions are 
defined in source code as follows:

- (IBAction)performSomeAction:(id)sender;

- (IBAction)performSomeOtherAction:(id)sender;

An outlet is an instance variable of an object (typically a controller or view object) 
that serves as a pointer to an element in a nib. Outlets are used to communicate 

Note: The file extension .nib stands for NextStep Interface Builder, 
which is a holdover from the original creators of these tools—Next, Inc. 

The newer file extension .xib stands for XMl Interface Builder.



ptg6935296

understandIng nIBs 49

with these objects. An example would be an outlet named tableView that points 
to an NSTableView instance that exists within a nib. The outlet could be used to 
ask the table view to refresh after some change to its underlying contents. Outlets 
are defined in source code as instance variables of a controller as follows:

IBOutlet NSTextField * titleField;

IBOutlet NSTableView * userListTable;

COMPARTMENTAlIzATION

It’s common for an application to have multiple xib files that contain portions of the 
UI. In all but the simplest applications, there are usually some parts of the applica-
tion that the user won’t access in every session, so it’s not necessary to load every 
part of the UI every time the application is executed. Loading only those portions 
of the UI that are needed can make the application more responsive and can give 
it a smaller memory footprint.

An example of this would be the preferences window of a Mac OS application 
or the user account view of an iOS application. These are user interface elements 
that should be kept in their own separate nibs and their associated controllers 
only created as needed.

The first advantage of this approach is performance. Your application will save 
memory by loading only the parts of the interface the user needs when they need it, 
which is a necessity on an iOS device. Since your application is creating controllers 
and their associated UI on demand, it takes less time to launch the application and 
reach a ready state for the user.

The second advantage is maintainability for the developer. By separating the 
user interface into distinct areas of responsibility (the preferences, the user login 
window, the export sheet, the map view), your application’s architecture is clearer 
and more easily managed and navigable.

Note: The details of the target/action mechanism and its various 
forms are beyond the scope of this book. Consult the Cocoa fun-
damentals Guide in Apple’s Cocoa documentation (found in Xcode’s 
documentation browser or on the ADC Web site) for more information.



ptg6935296

50 ChAPTER 5 CreatIng user InterFaCes 

The Interface Builder tools in Xcode 4 consist of the Editor, the Utility area (which 
includes a library of user interface elements and inspectors with which to config-
ure them), and the Assistant for defining actions and outlets. Figure 5.1 shows a 
project nib ready to edit in the Interface Builder Editor. The Assistant, whose role 
in the Interface Builder Editor we’ll explore later in this chapter, is also shown in 
Figure 5.1.

fiGURe 5 .1 Interface Builder 
showing a nib

GETTING fAMIlIAR  
WITh InterFAce BuIlder



ptg6935296

gettIng FamIlIar WItH InterFaCe BuIlder  51

ThE EDITOR AREA

The Editor area (Figure 5.2) is where you construct the interface. This involves 
dragging interface elements from the Utility area’s object library into the canvas 
(the grid area) of the Editor and sizing and positioning them as needed. You can 
also create interface elements and controller objects by dragging them into the 
Dock, immediately to the left of the canvas.

The dock bar along the left side of the Editor (to the left of the grid) in 
Figure 5.2 is expanded to show more detail about the objects contained in 

the xib. Use the button at the bottom of the dock to expand or collapse the dock.
Only user interface elements (such as buttons and windows) can be dragged 

into the canvas. Instances of controllers aren’t part of the user interface but are 
created or represented in the nib to serve as a connection point between the UI 
and your code; therefore, they exist only in the Dock.

You can make connections to outlets by holding down the Control key and 
dragging from the controller in which the outlet is defined to the desired interface 
element. The controller could be File’s Owner (the controller to which the contents 
of the nib belong) or some other controller object that you’ve instantiated in your nib.

fiGURe 5 .2 The Interface 
Builder Editor area



ptg6935296

52 ChAPTER 5 CreatIng user InterFaCes 

You can make connections to actions by holding down the Control key and 
dragging from the interface element to the controller that defines the desired 
action. For example, a button could be connected to a Create User action. More 
than one user interface element (such as a menu item) can be connected to a given 
action. The sender of the action is always passed along to the action, allowing you 
to respond differently depending on the sender or to query the sender for its state, 
such as whether a check box is selected or deselected.

Right-clicking an object in the Editor displays a semitransparent window that 
contains a list of the object’s outlets, the outlets of other objects that reference it, 
and actions the object can receive (Figure 5.3). Connections can be formed from 
this window by dragging a connection from the circle that is to the right of a given 
outlet or action to the target. To disconnect an outlet or action, click the X in the 
middle of the connection.

The Jump Bar follows the same hierarchy as the windows and views in the nib 
and represents the currently selected object. For example, the selected object could 
be a button within a tab view within a window within the nib.

fiGURe 5 .3 The connections 
window



ptg6935296

gettIng FamIlIar WItH InterFaCe BuIlder  53

ThE uTIlITy AREA

When a nib is selected in the navigator, the Utility area (Figure 5.4) adds additional 
inspectors to the File and Quick Help panes, such as the control’s style, auto-sizing 
settings, and animation settings. Select any element or controller object in the 
canvas or the Dock to view or adjust its properties using the inspectors.

Connections can also be formed with the Utility area, using the Connections 
inspector (Figure 5.5). This inspector is similar to the window that appears when 
right-clicking an object in the Editor, and it behaves in the same way.

Below the inspectors is the Libraries pane mentioned in Chapter 3. The Object 
library (Figure 5.6) contains a list of standard Cocoa objects as well as objects 
belonging to other frameworks and code libraries (such as QTKit or WebKit).

The pop-up at the top filters the list by library while the search field at the bot-
tom filters by search term. Hovering the mouse pointer over an object provides 
a description of the object if one exists. Drag an object from the library to the 
canvas or the Dock to add it to the nib (or to a specific view or window). You can 
also double-click an object to add it.

fiGURe 5 .4 The Utility area 
showing available Interface 
Builder inspectors

fiGURe 5 .5 The Connections 
inspector

fiGURe 5 .6 The Interface 
Builder Object library



ptg6935296

54 ChAPTER 5 CreatIng user InterFaCes 

ThE ASSISTANT

As you learned in Chapter 3, the Assistant acts as a secondary editor that can display 
“counterparts” to the selected project member. In the case of a nib, the counterpart 
is the interface (usually in a separate header file) of the class represented by the 
File’s Owner placeholder or that of a selected controller object.

Using the Assistant with Interface Builder goes a step beyond simply allowing 
you to add outlets and actions by typing them yourself. You can add actions and 
outlets by dragging a connection from a control directly into class interface source 
code in the Assistant area. Xcode responds by inserting the appropriate source 
code for the action or outlet.

avaIlaBle assIstant BeHavIors
Automatic behavior shows the files Xcode considers to be the best choice for the 
selected item or view in the xib.

Top Level Objects behavior shows the objects at the “top” of the xib’s object 
hierarchy. This can include the windows and views as well as any instantiated 
objects (such as custom classes and ready-made object controllers).

Sent Actions behavior shows any files containing actions called by the selected item.
Outlets and Referencing Outlets behaviors show any files containing outlets for 

the selected item or referenced by its outlets.
Class behavior shows any file containing the class of the selected item.



ptg6935296

addIng user InterFaCe elements 55

Now that you’re familiar with Interface Builder, you’re ready to add some actions 
and outlets to TestApp. You’ll start by adding a button that displays the traditional 

“Hello World” in a dialog box. You’ll then add a text field with corresponding outlet 
in which to display the greeting.

To prepare, locate and select the MainMenu.nib file in the Project navigator. 
Click the window icon in the Dock to open the application’s main window in the 
canvas. Click the Assistant button so the Assistant area is visible, and make sure 
the Assistant is showing the TestAppAppDelegate.h file (the interface for the class 
represented by the File’s Owner placeholder of this nib). The project window should 
look similar to Figure 5.1.

ADDING AN ACTION BuTTON

To add the Hello World action, you’ll need a button. Find the Push Button control 
in the Object library, and drag it into the window. Double-click the button, set 
its title to Say Hello, and then press Return. Control-drag a connection from the 
button to the source code in the Assistant. For best results, place the action after 
the – (IBAction)saveAction:sender; line and before the @end directive, as in 
Figure 5.7.

A pop-up will appear (Figure 5.8). Make sure the Action connection type is 
selected, and then type sayHello in the Name field. The method name is actually 
sayHello: (with a colon), but Xcode will add this for you automatically. Press Return 
or click Connect to add the action.

fiGURe 5 .7 Dragging a con-
nection into the Assistant

fiGURe 5 .8 The connection 
creator pop-up window

ADDING user InterFAce 
elements



ptg6935296

56 ChAPTER 5 CreatIng user InterFaCes 

You’ll need to add some code to make the action do something interesting. 
Navigate to the TestAppAppDelegate.m file (the implementation file for the 
TestAppAppDelegate class), and scroll down to find the -sayHello: method. Edit 
it to look like the following:

- (IBAction)sayHello:(id)sender {

  [[NSAlert alertWithMessageText:@”Important Message”

                   defaultButton:@”Hello Yourself”

                 alternateButton:nil

                     otherButton:nil

       informativeTextWithFormat:@”Hello World”] runModal];

}

Click the Run button to build and run the application. Give your Say Hello 
button a test click to make sure it’s working. You should see something similar to 
Figure 5.9. When you’re satisfied, quit the application and navigate back to the 
MainMenu.nib file.

fiGURe 5 .9 TestApp displaying 
its Hello World dialog box



ptg6935296

addIng user InterFaCe elements 57

ADDING A TEXT fIElD

Perhaps you believe modal dialog boxes are overused, so you’ll want to put that 
text into a text field in the application’s window. Find the Text Field control in the 
Object library, and drag it into your window. To communicate with the text field 
and set its string value to Hello World, you’ll need to create an outlet for it.

To add the outlet, drag a connection from the text field to the source code in 
the Assistant. This time, place the connection within the curly braces (because 
outlets are instance variables of a class). Choose the Outlet connection type, name 
it textField, and then press Return to finish adding the outlet.

Now that your code has a reference to the text field, you can change the action 
to display the message there rather than in a modal dialog box. Navigate back to 
the –sayHello: action in the TestAppAppDelegate.m file, and change it to look 
like the following:

- (IBAction)sayHello:(id)sender {

  [textField setStringValue:@”Hello World”];

}

Build and run the application, and verify everything is working. Your applica-
tion should look something like Figure 5.10.

fiGURe 5 .10 TestApp showing 
its Hello World message in a 
text field



ptg6935296

58 ChAPTER 5 CreatIng user InterFaCes 

You’ve learned the basics of creating and wiring up a simple user interface. There’s 
one small problem, however. Run TestApp again if it isn’t running already, and try 
resizing the window. The controls stubbornly stay where they are, refusing to do 
something smart (Figure 5.11).

There are, as of the release of Mac OS X 10.7 Lion, two mechanisms through 
which you can define the sizing and positioning behavior of views: the original 

“springs and struts” and the new Autolayout feature.

fiGURe 5 .11 Improperly  
behaving layout

Note: Each of the two layout mechanisms has a well-defined API that 
allows you to use code to control layout behavior. Because this book focuses 

on Xcode and not Cocoa development, the coding topic will not be covered.

lAyout



ptg6935296

layout 59

uSING SPRINGS AND STRuTS

The “springs and struts” concept has been around since the earliest days of Cocoa. 
It’s not without its frustrations, but for iOS and pre-Mac OS X 10.7 applications, 
it still reigns.

The concept is simple: Views (custom views, tables, buttons, and so on) are 
contained within a “superview” and may be resized or moved around if the super-
view is resized. Springs dictate whether the view will be stretched or compressed 
vertically and horizontally relative to the superview. Struts dictate whether the 
left, right, top, and bottom edges of the view maintain a certain distance from the 
bounds of the superview or are free to float around.

Figure 5.12 shows the Autosizing control, found in the Utility area under the 
Size Inspector panel. The Say Hello button is selected in this case. The springs are 
shown in the inner box (the vertical and horizontal red lines with arrows on their 
ends); the struts are the outer red lines. The selected (active) springs and struts are 
a solid, brighter red; the inactive ones are lightly shaded. Clicking any spring or 
strut will toggle it active or inactive. The Example control, on the right, animates 
and shows how the view (the red rectangle) would behave relative to its superview 
(the enclosing white rectangle).

WHat’s Wrong?
Note the settings for the Say Hello button. Only the top and left struts are active, 
indicating that the button will maintain the same distance on its top and left edges 
from the bounds of its superview (the window’s content view) and will not resize 
vertically or horizontally. This is exactly the case in Figure 5.11; the button (and 
the text field below it) will remain stubbornly stationary even when the window 
is too small to show it.

fiGURe 5 .12 The Autosizing 
control



ptg6935296

60 ChAPTER 5 CreatIng user InterFaCes 

posItIonIng
In this case, the fix may seem simple. For both the button and the text field, none
of the springs or struts should be active. This means they won’t resize, and they’ll 
float freely within the superview as it’s resized (in response to the window being 
resized). Because both controls are more or less in the middle of the window, they 
will (more or less) stay that way as the window is resized.

Figure 5.13 shows the Autosizing control with all springs and struts deactivated. 
Note that the Example view shows the view (the red rectangle) remaining centered 
in the superview (the white rectangle). Do this for both the button and the text field. 
Select each view, one at a time, and click the top and left struts in the Autosizing 
control to turn them off.

Figure 5.14 shows that a problem remains. Although the button and the text 
field are “more or less” centered, they’re moving relative to one another as well, 
which causes them to overlap (and when the window is made larger, they move 
farther apart). A common trick for controls you want to group together is to enclose 
them in a box (which has a nice bounding line to group its contents visually) or a 
plain custom view (which is invisible).

To employ this trick, drag a selection around the button and text view to select 
both at the same time (Figure 5.15). Choose Editor > Embed > Custom View from 
the main menu. The controls are now subviews of a new custom view, which is, in 
turn, a subview of the window’s content view. The custom view is selected. Now 
deselect, as in Figure 5.13, all springs and struts in the Autosizing control so the 
custom view floats freely. Since the custom view won’t be resized, its subviews 
(the button and the text field) won’t move at all.

Run TestApp and play with the window size once again. Figure 5.16 shows 
that the controls now maintain the same distance from one another and remain 
properly centered.



ptg6935296

layout 61

fiGURe 5 .13 Springs and struts deactivated in the Autosizing 
control

fiGURe 5 .15 Selecting multiple 
controls

fiGURe 5 .14 Overlapping 
controls

fiGURe 5 .16 Centered controls



ptg6935296

62 ChAPTER 5 CreatIng user InterFaCes 

sIzIng
For the sake of brevity, we’ll skip an exhaustive exploration of each possible com-
bination of the settings. However, you’ll need the basics of the spring behavior. 
Say your goal is to make the button and the text field grow and shrink horizontally 
as the window is resized, but you still want to maintain the grouping of the two.

Because there is now a hierarchy several levels deep (the window’s content 
view contains the custom view, which contains the button and the text field), you 
must consider the sizing behavior of more than just the text field. For example, if 
you only set the text field to size horizontally in response to its superview being 
resized, nothing will happen. This is because the custom view is not set to autosize 
horizontally.

You’ll have to enable the horizontal spring for both the text field and the custom 
view. Figure 5.17 shows the Autosizing control with only the horizontal spring 
enabled. Do this for both the text field and the custom view. Interface Builder 
respects the autosizing behavior even when resizing views in the editor. Select the 
custom view, if it’s not already selected, and make it wider using the resize grips 
on its sides. Notice how the text field has also grown wider, while the button has 
stayed the same width and has remained centered within the view. Recenter it in 
the window so it looks nice.

fiGURe 5 .17 Autosizing control 
set to size horizontally



ptg6935296

layout 63

ConstraInts
Run TestApp once again and play with the window size. Notice how the text field 
now grows and shrinks. And notice that if the window gets too small, the button 
is cut off and the field gets a little too narrow (Figure 5.18). This is a limitation of 
the springs and struts model: The only way to apply any kind of constraints is by 
setting a minimum size so things don’t get smooshed together or cut off.

The simplest fix is to set a minimum window size. Select the window, and in 
the Constraints section of the Size inspector, select the Minimum Size check box 
and set a reasonable minimum size (such as 200 by 150), as shown in Figure 5.19.

Now when you run TestApp and play with the sizing, the controls should more 
or less behave themselves. You may need to play with the minimum window size 
or the sizes of the text field and enclosing custom view to get it right.

uSING AuTOlAyOuT IN lION

As mentioned, Lion (Mac OS X 10.7) introduces a new layout mechanism called 
Autolayout. Although it certainly has vast improvements over springs and struts 
(and a nifty layout language all its own for use in code), its use is not compulsory 
on Lion or above. That is, the springs and struts mechanism will still work as it 
always has. In fact, you must turn on Autolayout for each Interface Builder docu-
ment in which you intend to use it, otherwise springs and struts still rule. Corre-
spondingly, Autolayout can only be used with applications that target OS X 10.7 
and above.

fiGURe 5 .18 Cut-off controls in 
a small window

fiGURe 5 .19 Setting window 
size constraints

Note: you’ll need to be running Xcode version 4.1  
or later to use the Autolayout features of the editor.



ptg6935296

64 ChAPTER 5 CreatIng user InterFaCes 

aCtIvatIng autolayout
To activate Autolayout for MainMenu.xib, navigate to it and make sure the Utility 
area is visible with the File Inspector panel selected. Under the Interface Builder 
Document section (Figure 5.20), select the Use Autolayout check box.

You may be prompted to upgrade your project’s minimum deployment version 
to Mac OS X 10.7 if it’s set to a lower version, as in Figure 5.21. Click the Continue 
and Upgrade button to accept the upgrade.

ConstraInts
You’ll notice something different immediately. Figure 5.22 shows the new  Constraints 
entries in Interface Builder’s Objects dock. Constraints are real objects, just like 
buttons and windows. They define the sizing and positioning behavior of the 
controls they constrain. Because they’re real objects, you can select, configure, or 
remove them in Interface Builder the same as you would a button or a window.

Figure 5.23 shows a vertical space constraint selected. This constraint manages 
the vertical space between the Say Hello button and the custom view’s top border. 
With Autolayout, dragging controls into a window or view and snapping them to 
the guides will automatically create the constraint that the system determined 
appropriate to maintain the best positioning.

Note: Accepting the Autolayout upgrade and setting the minimum 
deployment version to 10.7 means your application will not run on versions 

of Mac OS X prior to 10.7. As mentioned, 10.7 is required for Autolayout.

fiGURe 5 .20 The Interface 
Builder document’s file 
settings

fiGURe 5 .21 The Mac OS X 10.7 
upgrade prompt



ptg6935296

layout 65

fiGURe 5 .22 (top) Constraint 
objects added to the document

fiGURe 5 .23 (left) A vertical 
space constraint selected



ptg6935296

66 ChAPTER 5 CreatIng user InterFaCes 

You can add constraints manually by choosing Editor > Pin from the main 
menu and selecting the desired type of constraint. We won’t explore each of these 
exhaustively here, but it’s important to note the variety of constraint types available: 
width, height, horizontal and vertical spacing, leading white space to superview, 
top and bottom space to superview, equal widths and heights, and more.

Constraints have properties that you can adjust in the Attributes Inspector 
pane of the Utility area. For example, if you select the text field’s Width constraint, 
you’ll see the Width Constraint settings in the Attributes inspector (Figure 5.24).

One behavior that didn’t make it past the upgrade to Mac OS X 10.7 (in this 
version, anyway) is the automatic width sizing of the custom view containing the 
button and field. Run TestApp to see for yourself.

fiGURe 5 .24 Constraint  
settings in the Utility area

tip: for details about the Autolayout system, including the 
types of constraints and which ones are best for a given scenario, 

see the Cocoa Autolayout Guide at http://xcodebook.com/autolayoutguide.

http://xcodebook.com/autolayoutguide


ptg6935296

layout 67

To fix this (and explore adding constraints), select the custom view and choose 
Editor > Pin > Leading Space to Superview from the main menu. Select the custom 
view again and choose Editor > Pin > Trailing Space to Superview. Your window 
should look something like Figure 5.25.

If you run TestApp now, you’ll see that this didn’t quite fix things. Although the 
button stays the same distance from the field below it, and the custom view seems 
to be resizing (as evidenced by the text field’s left edge following along), nothing 
else seems to be behaving itself.

The fix for the text field is easy enough. By snapping the left and right edges to 
the blue guides inside the custom view (Figure 5.26), the appropriate constraints 
are created for you automatically.

Figure 5.27 shows the constraints that were added as a result of your snapping 
the text field’s edges to the left and right guides. The constraints indicate that you 
want to maintain the space between the field’s sides and the sides of the superview’s 
bounds. Running TestApp once more shows that the Autolayout constraints now 
work as the original springs and struts did.

fiGURe 5 .25 The custom 
view’s leading and trailing 
space constraints

fiGURe 5 .26 Creating con-
straints by snapping to guides

fiGURe 5 .27 Newly added 
constraints



ptg6935296

68 ChAPTER 5 CreatIng user InterFaCes 

neW FunCtIonalIty
In the springs and struts demo, you needed the custom view so that the button and 
field would maintain the same vertical distance from each other as the window 
was resized (to prevent them from overlapping or growing apart).

Here’s where Autolayout with constraints really shines. To get this working 
the way it should have for years, you’ll remove that custom view and do it right. A 
simple trick to remove the view without moving the button and field is to select 
the custom view, then choose Editor > Unembed from the main menu. The custom 
view is removed and its subviews are left exactly as they are.

To fix the Autolayout constraints, just select the button and the field and drag 
them to the middle until they snap (as a group) to the blue vertical and horizontal 
centerlines that appear. You should see something similar to Figure 5.28. Run 
TestApp, and you’ll see an improvement. Although the text field doesn’t yet size 
horizontally as before, the button and the field maintain their positions relative 
to one another without the help of an otherwise pointless custom view. This is 
because of the vertical space constraint between the field and the button.

fiGURe 5 .28 Simpler  
constraints for maintaining 
vertical spacing



ptg6935296

WrappIng up 69

To finish the job, you can once again add the leading and trailing spacing to the 
text field. Select the text field, and choose Editor > Pin > Leading Space to Superview 
from the main menu; select the text field again, and choose Editor > Pin > Trailing 
Space to Superview. Select the text field once again, and your constraints should 
look something like Figure 5.29.

Now TestApp should behave as expected when you run it. This should give you 
a pretty good idea of how the new Autolayout system works, as well as some of its 
advantages over the springs and struts system.

WRAPPING up

Unless you write server applications and command-line tools, you will need to 
build at least a basic user interface. Now that you’re familiar with Interface Builder 
and the basics of actions and outlets, you have enough knowledge to get started 
with some test applications of your own for learning purposes. More complicated 
applications often require more than a single controller and likely more than a 
single nib. In the next chapter, you’ll learn how to add additional source code and 
resources (including additional nib files) to your project.

fiGURe 5 .29 The final 
constraints for a horizontally 
growing text field



ptg6935296

6

aDDing FIles 
To a project



ptg6935296

71

All but the simplest applications will likely 

need additional source code files, multiple 

nibs, artwork, HTML-based help files, and 

frameworks or libraries. There are two basic categories of files you 

might add to a project: source code and resources. In this chapter, 

you will learn how to add new or existing source and resource files 

to your project as well as how to remove them.



ptg6935296

72 ChAPTER 6 addIng FIles to a projeCt

ADDING eXIstIng FIles

There are two ways to add existing files to an Xcode project: You can use the Add 
Files sheet, or you can use drag and drop.

uSING ThE ADD fIlES ShEET

You can choose files to add to your project by using the Add Files sheet, which you 
can access by choosing File > Add Files To “TestApp” from the main menu.

The sheet (Figure 6.1) is a standard Open File sheet with additional options 
at the bottom. These options tell Xcode what do with the files when you click the 
Add button.

destInatIon
The Destination check box instructs Xcode to copy the selected files into the physi-
cal disk folder represented by the group that is currently selected in the Project 
navigator. Leaving this option deselected will cause Xcode to add a reference to 
the file without actually copying the file into the project.

fiGURe 6 .1 The Add Files sheet

Note: In most cases, it’s best to allow files to be copied into the project 
folder. This ensures all the parts of your project are kept together. how-

ever, referencing files outside the project folder has its advantages. 
One reason would be when using resources stored on a shared net-

work volume for team development.



ptg6935296

addIng eXIstIng FIles 73

Folders
The Folders option lets you choose what Xcode will do when adding file system 
folders to the project. The first option creates groups of the same name as the 
folder and then adds the folder’s contents under that group. The second option 
creates folder references. These are similar to groups but represent the physical 
folder itself, preserving its file system hierarchy.

add to targets
The Add to Targets option instructs Xcode to add the files to the appropriate build 
phases for the selected targets within your project, depending on the file type. Xcode 
automatically adds source files to the Compile Sources build phase of the selected 
targets. Most other file types are added to the Copy Bundle Resources build phase. 
Targets and build phases are discussed in more detail in Part III.

uSING DRAG AND DROP

In addition to using the Add Files sheet, you can add files to your project by drop-
ping them into the Project navigator. A sheet (Figure 6.2) will appear, offering the 
same options shown in the Add Files sheet. Choose your options, and click Finish 
to add the files to the project.

fiGURe 6 .2 The Add Files drag 
and drop options sheet

Note: It is common to add additional libraries and frameworks to a 
project. Adding libraries and frameworks, as well as packaging frameworks 
for distribution with the application, is discussed in depth in Part III.



ptg6935296

74 ChAPTER 6 addIng FIles to a projeCt

Xcode includes templates and options for creating a variety of common file types 
and adding them to your project. To begin adding a new file, choose File > New 
File from the main menu. A sheet similar to Figure 6.3 will appear.

The sheet contains a sidebar on the left that categorizes the available tem-
plates first by SDK and then by file type. The top area to the right of the sidebar 
contains the specific templates that are available for the selected category. Select 
your desired template there. The area immediately below the templates shows a 
description of the selected template.

fiGURe 6 .3 The New File sheet

CREATING new FIles



ptg6935296

CreatIng neW FIles 75

Some templates have additional options that allow you to specify things such 
as a superclass. Such options are displayed on the next sheet when you click the 
Next button. Keep clicking Next and you’ll eventually be prompted to save the file 
with a standard Save As sheet with a few additional options (Figure 6.4): the group 
in which to place the new file and the targets in which to include it. Click Save to 
complete the file creation.

fiGURe 6 .4 The Save As sheet



ptg6935296

76 ChAPTER 6 addIng FIles to a projeCt

You can also use the Utility area’s File Template library (Figure 6.5) to add files to 
your project. Just drag the desired template straight into the Project navigator and 
drop it in the desired folder. A Save As sheet similar to Figure 6.4 will appear with 
which you can name the file and specify its group and targets.

fiGURe 6 .5 The File Template 
library

uSING ThE FIle 
templAte lIBRARy



ptg6935296

WrappIng up 77

To remove a file from a project, select it in the Project navigator and press Delete. 
Xcode will prompt you to make a decision (Figure 6.6) to remove only the reference 
to the file within the project or to remove the reference and delete the file from 
disk. The operation cannot be undone, so you’ll need to restore the file if you’ve 
deleted it and then add it to the project as shown earlier in this chapter.

WRAPPING up

A typical project will require adding many new source and resource files. You should 
also expect to remove files while maintaining and improving the application. You’ve 
seen how straightforward both of these actions are. In the next chapter, you’ll learn 
how to use the Source Editor effectively to write and edit source code.

fiGURe 6 .6 Deleting a file

REMOvING FIles fROM
ThE project



ptg6935296

7

wrItIng code 
wiTh The  
source edItor



ptg6935296

79

Xcode’s Source Editor is loaded with features 

that help you write, navigate, and research 

code. You’ve already used the Source  Editor 

when working directly in the code. In this chapter, you’ll be   

introduced to more of its features.



ptg6935296

80 ChAPTER 7 WrItIng Code WItH tHe sourCe edItor 

EXPlORING ThE  
source edItor INTERfACE

The Source Editor (Figure 7.1) appears when you select source code files, when you 
view issues within source code files, or when you stop at a breakpoint in your own 
source in the debugger. This is the editor in which you will spend most of your time.

Note the gutter that runs along the left edge of the Source Editor. The gutter 
can display breakpoints, line numbers, and the code-folding and focus ribbon. 
Breakpoints are discussed in more depth in Chapter 9. You can toggle line numbers 
and the code-folding ribbon via Xcode’s preferences.

When editing source code, the Assistant window—which you saw in  Chapter 3—
can be used to open one or more files (or even separate parts of the same file) 
alongside the file displayed in the main editor. The Assistant in this case serves as 
a split-pane editor. You can use the various automatic modes (selected in the 
Assistant pane’s Jump Bar), such as Counterparts, Includes, Categories, and so on, 
which will cause the Assistant to display context-sensitive files depending on the 
main selection in the Project navigator. You can add as many panes as you like, and 
they’ll be arranged according to the settings you saw in Chapter 3.

fiGURe 7 .1 The Source Editor

Note: The Source Editor also has a version Editor 
mode, the button to the right of the Assistant button. 

This feature is covered in Chapter 21.



ptg6935296

navIgatIng sourCe Code 81

The Source Editor provides several ways to navigate your code. These include 
moving to symbols, showing only the code you want to work with, and splitting 
the editor to view multiple parts of the file at once.

ThE juMP BAR

One of the most common ways to move between symbols in your source is to use 
the Jump Bar discussed in Chapter 3 (Figure 7.2). When a source file with defined 
symbols is open, the last segment of the Jump Bar shows another level beneath the 
file itself—a list of the symbols within the source. The segment shows the symbol 
in which the insertion point of the editor resides. Choosing a different symbol takes 
you to its location in the source.

juMP TO DEfINITION

Another common navigation action is to jump to the definition of a symbol. The 
Source Editor makes this simple by turning symbols into hyperlinks while holding 
down the Command key (Figure 7.3). Clicking a symbol while holding the Com-
mand key jumps to its definition (which is not necessarily within the currently 
selected file). Recall the similar action for obtaining inline help—Option-clicking 
a symbol brings up the inline Quick Help pop-up.

fiGURe 7 .2 The Jump Bar 
showing the symbols belong-
ing to the selected file

fiGURe 7 .3 Symbols made 
hyperlinks by holding down 
the Command key

NAvIGATING source code



ptg6935296

82 ChAPTER 7 WrItIng Code WItH tHe sourCe edItor 

CODE fOCuSING AND fOlDING

The code-folding ribbon is enabled by default. It is the narrow strip in the gutter 
directly to the left of the text area of the Source Editor. The ribbon lets you con-
centrate on a particular scope within your code (anything within a matching pair 
of brackets) through folding or focusing. Nested scopes are depicted by darker 
shading within the ribbon (Figure 7.4). The boundaries of each scope are marked 
with arrows when you hover your mouse over them.

FoCusIng on Code
Focusing refers to darkening out all but the desired scope. Focusing does not obscure 
text; it only shades out anything outside the focused scope. Figure 7.5 shows the 
focused body of a simple if statement in the -applicationDidFinishLaunching:
method.

To focus on a scope, hover the mouse over the desired scope in the ribbon. 
Xcode will leave only the code within that scope unshaded.

fiGURe 7 .4 The code-folding 
ribbon showing nested scopes

fiGURe 7 .5 Focused code, 
using the code-folding ribbon



ptg6935296

navIgatIng sourCe Code 83

FoldIng Code
Folding refers to collapsing and hiding the text within the desired scope. This does 
not change the text within the file but rather obscures it, making the file effectively 
shorter and easier to navigate. Figure 7.6 depicts the TestAppAppDelegate.m file 
with the -applicationDidFinishLaunching: method folded; the “folded” code is 
depicted as a yellow marker containing an ellipsis.

To fold code, click the desired scope in the folding ribbon. In cases where 
there are nested scopes, it’s easiest to click one of the arrows at either end of the 
desired scope.

fiGURe 7 .6 Folded code, using 
the code-folding feature



ptg6935296

84 ChAPTER 7 WrItIng Code WItH tHe sourCe edItor 

Xcode’s Source Editor provides code completion of symbols as you type. When you 
begin to type a symbol that Xcode recognizes from your project or linked libraries 
and frameworks, an inline suggestion as well as a list of other possible suggestions 
appears (Figure 7.7).

You can choose to accept the inline suggestion by pressing Tab. To select an 
alternative suggestion, use the arrow keys to choose and then press Return to use 
the selection. When there is more than one suggestion for a given prefix (such as 
NSSet or NSSetFocusRingStyle()), the common prefix will be underlined and 
pressing Tab will complete only up to the underlined portion. Subsequent Tabs 
will complete to the next whole or part of the inline suggestion.

Code completion can be canceled by pressing Escape or Control+spacebar. 
Completion can also be requested by placing the text insertion point at the end of 
an incomplete symbol and pressing Control+spacebar.

Although Xcode will automatically suggest code completion while you type by 
default, you can turn this feature off in the Text Editing panel of Xcode’s preferences. 
To do this, toggle the check box named “Suggest completions while typing.” When this 
feature is disabled, you may still request suggestions by pressing Control+spacebar 
while the text insertion point is at the end of an incomplete symbol.

Code completion uses the same information in the Symbol navigator, which 
you saw in Chapter 3. This information is derived from all available sources and 
libraries within the workspace, which means separate projects within the same 
workspace can share it among themselves. This feature is discussed in Chapter 16.

fiGURe 7 .7 Code completion 
suggestions

uSING code completIon



ptg6935296

eXplorIng tHe Code snIppet lIBrary 85

The Code Snippet library (Figure 7.8) is a place to keep common chunks of code such 
as a class declaration, a try/catch block, or a -dealloc method. The library comes 
with a number of ready-to-use snippets and allows you to add your own as well.

The Code Snippet library is located at the bottom of the Utility area. You 
can filter the snippets using the pop-up button at the top; you can choose 

to show all snippets, Mac OS, iOS, or your own custom snippets. You can also filter 
by keyword using the search bar at the bottom of the library panel.

EXAMINING AND uSING SNIPPETS

To examine the contents of a snippet, click to select it in the library. A pop-up 
(Figure 7.9) window will appear containing a description and the code snippet.

Using a snippet is as easy as dragging it into your source code. When you drop 
the snippet into your source, the full code will be present as if you had pasted it 
from the pasteboard.

fiGURe 7 .8 (left) The Code 
Snippet library

fiGURe 7 .9 (right) The snippet 
details pop-up

EXPlORING ThE code 
snIppet lIBRARy



ptg6935296

86 ChAPTER 7 WrItIng Code WItH tHe sourCe edItor 

CREATING AND EDITING SNIPPETS

To create a snippet, drag the desired “template” code into the snippet library. The 
snippet will be added to the list of available snippets. To edit the snippet, select 
it in the library. When the pop-up window appears, click the Edit button in the 
lower-left corner. The pop-up will reveal editing controls (Figure 7.10).

You can set the title and description that appear in the library list, and the 
platform and language the snippet targets. You can also set a completion shortcut 
to use when editing code. Finally, you can edit the snippet itself. When you’re 
finished editing, click Edit or Done.

An example of a useful snippet is a ready-to-go set of the three primary 
NSTableViewDataSource protocol methods. When using this protocol to populate 
an NSTableView programmatically, the quickest way to get up and running used 
to be to copy the method signatures from the documentation and then insert the 
brackets, the if conditionals for determining the table being operated on, and so 
on. Now you need to define this only once, format it as you want, and then save it 
as a snippet for reuse in any future projects and workspaces.

You can also insert placeholder tokens that are parts of the snippet (such as 
arguments) that must be filled in to complete the code. For example, to add a 
placeholder for an NSNumber argument, you would type <#NSNumber#> where the 
argument belongs. When the snippet is used, the text that appears between the 
hash marks is what will appear in the snippet. The token’s text should serve as a 
helpful prompt regarding what should be filled in when using the snippet. 

fiGURe 7 .10 The snippet 
details pop-up in edit mode



ptg6935296

WrappIng up 87

When editing source files, the Assistant can act as a smarter split-screen editor, 
showing (and allowing you to edit) different parts of the current file or any other 
file of your choosing. As mentioned in Chapter 3, the Assistant can become con-
textually aware, depending on the behavioral mode you select.

In any context, you can manually choose a file to display in the Assistant and 
of course create as many assistants (each with any behavioral mode you like) as 
you need.

AvAIlABlE ASSISTANT BEhAvIORS

Counterparts behavior shows files that are considered to be counterparts of the 
selected item. A counterpart might be the header file for a selected implementa-
tion file, or vice versa.

Superclasses and Subclasses behaviors show any known superclasses or sub-
classes of the selection, respectively.

Siblings behavior shows any files within the same Project navigator group as 
the selection.

Categories and Protocols behaviors show available Objective-C categories or 
protocols for the selected file, respectively.

Includes and Included By behaviors show all files that include the selection or 
those included by the selection, respectively.

WRAPPING up

You’re now familiar with the basics of Xcode’s Source Editor. Additional features, 
including the Refactor tool, Fix-it, and the ability to rename symbols, will be covered 
in depth in Part III. In the next chapter, you’ll learn how to perform a project-wide 
search and replace.

ThE AssIstAnt



ptg6935296

8

seArcHIng  
anD replAcIng



ptg6935296

89

Xcode provides many ways to search and 

filter project members, source code, and 

documentation. You briefly scratched the 

surface of searching your source code with the Search navigator 

in Chapter 3. In this chapter, you’ll learn how to search and filter 

project members and how to perform replacements to all or spe-

cific parts of your project source.



ptg6935296

90 ChAPTER 8 searCHIng and replaCIng 

uSING ThE seArcH nAvIgAtor

As mentioned in Chapter 3, initiating a basic search is simple. Type a term into 
the familiar search box at the top of the Search navigator and press Return. The 
results are displayed in the navigator outline (Figure 8.1), organized by source file. 
Selecting a file or a matching line within a file will cause Xcode to navigate to it 
in the appropriate editor. The search results themselves can be further refined by 
typing an additional term in the search field at the bottom of the Search navigator. 
You can start a project-wide search by choosing Edit > Find > Find in Workspace 
from the main menu.

The basic scope of the search can be selected as you are typing the search term, 
before you press Return. A context menu will appear as you type (Figure 8.2), 
allowing you to limit the scope to your project or to your project and all frameworks, 
as well as choosing a “begins with” or “contains” type of search. You can select one 
of these options rather than pressing Return; Return always chooses the first option, 
which is defined by your chosen find options.

fiGURe 8 .1 The Search 
navigator showing matches

fiGURe 8 .2 The search options 
context menu

tip: you can jump immediately to the Search navigator by 
pressing Command+Shift+f (for find). The search field is focused 

so you can immediately begin typing your search term.



ptg6935296

usIng tHe searCH navIgator 91

uSING ThE fIND OPTIONS

A number of options are available to specify your search. Click the magnifying glass 
icon at the left edge of the top search field to reveal a context menu. Choose Show 
Find Options, and the Find Options panel will emerge (Figure 8.3).

usIng tHe style optIon
This option allows you to specify a textual search or a regular expression search. 
A textual search matches the literal text term you type. A regular expression (or 
regex) search will search for patterns using the regular expression syntax.

Although you can perform reasonably complex changes with carefully chosen 
search-and-replace strings, regular expressions are a far more powerful pattern-
matching tool. Support for regex is built directly into many modern APIs and text 
editors. Although the subject is beyond the scope of this book, there exists an 
abundance of books and online tutorials.

usIng tHe “HIts must” optIon
This option allows you to specify the location of the search term within the searched 
items. That is, you can choose to view any results containing the term, only those 
that begin or end with the term, or only those that exactly match the entire term.

fiGURe 8 .3 The Find Options 
panel



ptg6935296

92 ChAPTER 8 searCHIng and replaCIng 

usIng tHe matCH Case optIon
This option lets you choose whether the search is case sensitive. For example, with 
Ignore Case selected, the term hello would produce three results across two files in 
your TestApp project: the -sayHello: method in your header and implementation 
files, and the @”Hello World” string in the body of the -sayHello: method. If you 
choose Match Case, there would be no results since all the instances of the word 
hello are capitalized.

usIng tHe “FInd In” optIon
This option lets you narrow the scope to specific projects in a multiproject workspace 
or any custom scope you define. Workspaces are covered in detail in Chapter 16. 
Custom scopes are covered in the next section. You can also choose to include any 
frameworks your project links by selecting the “And linked frameworks” check box.

CuSTOM fIND SCOPES

This powerful feature lets you define search scopes with user-defined rules that 
can match locations, names, paths, extensions, or file types. To define a custom 
scope, choose Custom from the Find In pop-up button menu. A sheet will appear 
listing custom scopes (empty by default) and their associated rules (Figure 8.4).

fiGURe 8 .4 The Find Scopes 
sheet



ptg6935296

usIng tHe searCH navIgator 93

A good use case for a custom scope would be to narrow it to only HTML files 
within the workspace. This can be useful if you include an HTML-based Mac Help 
Book with your application and need to find all references to a feature you intend 
to rename or expand upon.

CreatIng a Custom FInd sCope
To create a custom find scope, make sure the Find Scopes sheet is open and then 
click the plus (+) button at the lower-left edge of the sheet. A new scope will be 
created with a basic rule (Location is within workspace). Double-click the My Scope 
entry in the scopes list, rename it to something useful, such as HTML Source, and 
press Return.

Since the default rule narrows the scope to matches anywhere within the 
current workspace, you need only one additional rule to narrow it to HTML files. 
To add this rule, click the plus (+) button to the right of the first rule (Location is 
within workspace). A new default rule will appear (Name is equal to). Click the 
Name pop-up and select Type. Click the any pop-up and select “html.” Your Find 
Scopes sheet should now look like Figure 8.5.

fiGURe 8 .5 A new custom 
find scope

Note: Help Book is Apple’s term for the application’s documentation. 
Application help Books are accessed through the application’s help menu.



ptg6935296

94 ChAPTER 8 searCHIng and replaCIng 

Click the Done button to close the sheet. The new scope is now selected in the 
Find In pop-up and will remain as one of the available search scopes. You can edit 
or delete it or add new scopes at any time by choosing the Custom option from 
the Find In pop-up.

With Ignore Scope selected in the “Hits must” pop-up and the new HTML 
Source scope selected in the Find In pop-up, type hello into the search field again 
and press Return. Note there are no matches because the only files in your project 
that currently contain the term are not HTML files.

REPlACING TEXT

To the left of the top search field is a pop-up button with Find selected. Click the 
pop-up and choose Replace. More options are revealed below the search field 
(Figure 8.6). An additional field, in which you can specify the replacement term, 
accompanies three buttons (Preview, Replace, and Replace All). When the navigator 
area is not wide enough to contain all three buttons, the Preview button is repre-
sented by an icon representing a loupe.

fiGURe 8 .6 The replace 
options

Note: The additional find options revealed when choosing 
Show find Options from the search field’s magnifying glass 

menu are also available when performing a find and Replace.



ptg6935296

usIng tHe searCH navIgator 95

You can replace specific instances by selecting them (hold down the Command 
key and click individual results) and clicking the Replace button. This will replace 
only those instances with the replacement term. To replace all instances, click 
Replace All. Xcode will replace the desired instances, and the changes will be saved 
automatically when you build or close your project.

prevIeWIng replaCements
Xcode has a visual replacement preview interface for previewing replacements. 
When you click the Preview button, a sheet similar to Figure 8.7 appears. The 
preview sheet lets you “cherry-pick” the replacements you want and view the 
effect each change will have before you apply it.

To test this, assume you want to change only the -sayHello: action in your 
project to -sayGreeting:. You don’t want to change the actual message that is 
presented to the user, only the method name.

Perform a case-sensitive search for Hello. Once you have results, make sure 
Replace is selected in the pop-up so that the replace options are revealed. Enter 
the term Greeting in the replace field.

Click the Preview button to reveal the replacement preview sheet. As in Figure 8.7, 
select the -sayHello: method declaration in the header file and the implementation 
in the implementation file. Leave the line with the @”Hello World” string dese-
lected. You can do this by placing a check mark next to the desired matches in the 
left-hand outline view or by flipping the switches to the right in the preview panel.

fiGURe 8 .7 The Replace 
preview sheet



ptg6935296

96 ChAPTER 8 searCHIng and replaCIng 

Click the Replace button in the lower-right corner of the sheet to see your 
changes applied. You may be prompted to take a snapshot of the project so you 
can revert the changes.

Once the changes are applied, you’ll notice that only the @”Hello World” string 
was unchanged, as expected. If you build and run your application, you’ll also notice 
complaints being logged to the console and that the Say Hello button no longer 
works. You’ll need to reconnect the button to the newly named -sayGreeting:
method as you learned in Chapter 5.

Blindly replacing symbols (as opposed to literal strings) is seldom a victimless 
crime. It can break outlet and action connections in Interface Builder files, unin-
tentionally replace substrings within other strings to ill effect, and more. A much 
better way to rename a symbol throughout a project is to use the Refactor tool. This 
tool can rename a symbol and replace any references to it, as well as even rename 
classes and associated files without breaking their connections or references. The 
Refactor tool is covered in Chapter 13.

Note: Snapshots are covered in Chapter 21.



ptg6935296

WrappIng up 97

You can also perform a search or a search and replace within the currently selected 
source file in the Source Editor. The simpler UI works much the same way as the 
Search navigator, including additional options (by clicking the search field’s mag-
nifying glass icon) and a replace field (Figure 8.8).

To find a word or phrase, select Edit > Find > Find from the main menu. Enter 
a search term and press Return. You can navigate the matches within the file using 
the back and forward buttons to the left of the search field.

Although there is no preview as with a project-wide search and replace, you 
can choose Replace All to replace all matches, Replace to replace the current selec-
tion, or Replace & Find to replace the current selection and select the next match.

Click Done to close the Find panel.

WRAPPING up

You’ve seen how you can search and replace within your project or the currently 
selected file. The comprehensive set of options—including user-customizable, 
rules-based scopes—is flexible enough to help you find exactly what you’re look-
ing for. The replace preview system lets you cherry-pick exactly what you want to 
replace. All this code editing and text replacing is bound to introduce bugs. In the 
next chapter, you’ll learn the basics of debugging an application using Xcode’s 
built-in debugger.

fiGURe 8 .8 The Source  
Editor’s Find panel

tip: you can initiate a search within the Source Editor by press-
ing Command+f. This is similar to the Command+Shift+f shortcut 
that opens the Search navigator. you can navigate the matches by pressing 
Command+G to go to the next match and Command+Shift+G to go to the 
previous one.

seArcHIng WIThIN FIles



ptg6935296

9

Basic deBuggIng  
anD AnAlysIs



ptg6935296

99

Xcode provides a comprehensive set of well-

integrated tools to approach the tasks of 

debugging and analyzing your applications. 

In this chapter, you’ll learn how to use Xcode’s built-in debugger. 

In Chapter 17, you’ll learn more advanced debugging techniques.



ptg6935296

100 ChAPTER 9 BasIC deBuggIng and analysIs 

compIle-tIme DEBuGGING

In Xcode, errors, warnings, and analyzer results are collectively called issues. Xcode 
is constantly compiling and checking your code for issues. Errors are red, warnings 
are yellow, and static analyzer issues are blue. Like any modern integrated develop-
ment environment, Xcode flags issues by highlighting them directly in the source 
code (Figure 9.1) with a corresponding icon in the gutter along the left edge of the 
Source Editor. In addition to the immediate issues in the selected source file, all 
issues Xcode finds in your entire workspace are displayed in the Issue navigator 
(as described in Chapter 3).

uSING ThE STATIC ANAlyzER

Xcode integrates the Clang Static Analyzer, which goes a step beyond basic compiler 
errors and warnings. It knows enough about C, Objective-C, and Cocoa patterns to 
find memory management problems, unused variables, and more. Its integration 
with Xcode means it can show an impressive amount of detail, including the path 
of execution leading to the problem and the conditions that caused it along the way.

Figure 9.2 shows an analyzer issue. In this case, an instance of NSArray has 
been created on one line and leaked on the next. On each line, the instructions 
that led to the problem are highlighted and explained.

fiGURe 9 .2 An analyzer issue highlighted in the Source Editor

fiGURe 9 .1 A compiler issue highlighted in the Source Editor

Notes: you can learn more about the Clang Static Analyzer at  
http://clang-analyzer.llvm.org.

More complicated analyzer scenarios are explored in Chapter 17.

http://clang-analyzer.llvm.org


ptg6935296

CompIle-tIme deBuggIng 101

fIXING ERRORS WITh fIX-IT

You can fix common errors with Xcode’s Fix-it feature. When you click an issue in 
the Source Editor, Xcode will display a pop-up window with suggestions for pos-
sible fixes if it has any to offer (Figure 9.3). To apply a suggested fix, click the sug-
gestion in the Fix-it pop-up. The code will be changed according to the chosen fix.

uSING ThE lOG NAvIGATOR

The full results of each build are stored in the Log navigator, which you explored 
in Chapter 3. You can filter and explore the results. Double-clicking an issue will 
navigate to the corresponding file. Figure 9.4 shows a build error that resulted 
when class Bob was referenced but not declared. It’s a good idea to expand issues 
by clicking the disclosure triangle to the left of the issue. This reveals crucial details 
about the issue that can help you figure out how to fix it.

fiGURe 9 .3 The Fix-it window 
suggesting a fix

fiGURe 9 .4 The undeclared 
Bob build error in the Log 
navigator



ptg6935296

102 ChAPTER 9 BasIC deBuggIng and analysIs 

For runtime debugging, Xcode integrates with GDB and the new LLDB debugger. 
Xcode provides a UI for managing breakpoints, controlling program execution, 
exploring the threads and stacks of the running application, accessing the debug-
ger console, and more.

By default, all newly created Xcode projects are run in the debugger. The appli-
cation will pause at the point of failure if it crashes or at any breakpoints you set 
if they’re encountered. The Debug area (Figure 9.5) appears when running an 
application with a debugger attached. The current instruction is highlighted with 
a green arrow in the Source Editor gutter.

fiGURe 9 .5 TestApp paused in 
the debugger

Note: Whether or not a debugger is attached to the 
running application is controlled by the active scheme. 

Schemes are covered in Chapter 14.

runtIme DEBuGGING



ptg6935296

runtIme deBuggIng 103

uSING ThE DEBuGGER BAR

The basic program execution controls—including Step Into, Step Over, Continue, 
and others—and the Threads and Stacks navigator are located in the Debugger 
Bar (Figure 9.6) at the top of the Debug area. You can pause a program (or trigger 
other actions in Xcode) by setting breakpoints. You can navigate threads and stacks 
using the navigation pop-up.

usIng tHe BasIC Controls
The Pause/Continue button pauses and resumes program execution. The 
keyboard shortcut for this action is Control+Command+Y.

The Step Over button executes the currently highlighted instruction while 
execution is paused. If the instruction is a routine, the routine is executed 

and the debugger stops at the next instruction in the current file. The keyboard 
shortcut is F6.

The Step Into button executes the currently highlighted instruction while 
execution is paused. If the instruction is a routine, the debugger moves on 

to the first line of that routine and pauses. The keyboard shortcut is F5.

The Step Out button finishes the current routine and jumps back to the call-
ing routine or next instruction after the routine was called. The keyboard 

shortcut is F8.

You can find additional debugger actions under the Product > Debug submenu of 
the main menu.

fiGURe 9 .6 The Debugger Bar

tip: holding Option or Option+Shift while clicking the step 
buttons will vary the functionality of the buttons. you can step 
through assembly instructions or through only the instructions  
in the current thread. See the Xcode documentation for details.



ptg6935296

104 ChAPTER 9 BasIC deBuggIng and analysIs 

navIgatIng tHreads and staCks
The Threads and Stacks navigator, which occupies the rest of the Debugger Bar, is 
used to switch between threads and navigate the call stack. It works in the same way 
as the Jump Bar. Figure 9.7 shows the current call stack while TestApp is paused at 
a breakpoint in the -applicationDidFinishLaunching: method.

WORKING IN ThE CONSOlE

The console (Figure 9.8) displays the console output of your application and, while 
debugging, serves as a command-line interface to the debugger (whether you’re 
using GDB or LLDB).

The output can be filtered to show only debugger or target output using the 
pop-up menu in the upper-left corner of the console area. The debugger prompt is 
available only when the application is paused in debug mode. When the prompt 
is available, you can click to the right of the text prompt and input debugger com-
mands, such as the GDB command po (print object).

The panel to the left of the console area, the Variables pane (Figure 9.9), shows 
the current variables and registers when debugger is paused. The pop-up button 
in the upper-left corner of the pane can be used to choose all variables, those that 
were recently accessed, or variables local to the current scope only.



ptg6935296

runtIme deBuggIng 105

fiGURe 9 .7 Viewing the call 
stack in the Threads and Stacks 
navigator

fiGURe 9 .8 The debugger 
console

fiGURe 9 .9 The Variables pane



ptg6935296

106 ChAPTER 9 BasIC deBuggIng and analysIs 

uSING BREAKPOINTS

Breakpoints are used to pause the application (or perform other actions) in the 
debugger when a particular instruction (point in code) is reached. There are several 
ways to manage breakpoints in Xcode 4.

enaBlIng BreakpoInts
For Xcode to stop at breakpoints in the debugger, breakpoints must be active. 
You can use the Breakpoints button at the top of the project window to activate 

or deactivate all breakpoints. If this button is not selected, the debugger will stop 
only when a program signal (such as a memory-management-related crash) is 
encountered. Alternatively, you can use Command+Y to toggle breakpoints.

managIng BreakpoInts In tHe sourCe edItor
You can set breakpoints in the Source Editor by clicking the gutter on the left 
edge of the editor beside an instruction. A blue marker appears, showing that a 
breakpoint is set at that location (Figure 9.10).

You can toggle individual breakpoints in the editor by clicking them once. The 
breakpoint will turn lighter, appearing translucent when inactive. To remove a 
breakpoint entirely, you can drag it from the gutter and release it. It will disappear 
in a puff of animated smoke to indicate it has been deleted.

You can also set breakpoints in the editor with a keyboard shortcut. Command+\ 
(Command and the backslash character) will set a breakpoint at the current line in 
the code. If a breakpoint already exists, the shortcut will remove it.

fiGURe 9 .10 A breakpoint set in 
the greeting action of TestApp

Note: In previous versions of Xcode, Command+y would launch the 
targeted application in the debugger, whereas Command+R would run 

it without the debugger attached. Starting in Xcode 4, pressing 
Command+y toggles activation of all breakpoints, and the running 

application is effectively always in debug mode.



ptg6935296

runtIme deBuggIng 107

usIng tHe BreakpoInt navIgator
As you learned in Chapter 3, you can use the Breakpoint navigator to manage indi-
vidual breakpoints, navigate your project by set breakpoints, or view only active 
breakpoints. There are a few more important features to note:

J Right-clicking a breakpoint in the navigator and choosing Edit Breakpoint 
from the context menu reveals a pop-up window that presents a number 
of options (Figure 9.11). You can set a condition under which the reached 
breakpoint will break (such as x == 21); ignore the breakpoint a number of 
times before breaking; add one or more actions (such as playing a sound, 
logging something to the console, executing a shell command) when the 
breakpoint is reached; and automatically continue after performing actions.

J You can also set exception or symbolic breakpoints using the + button at 
the bottom of the Breakpoint navigator. When you add either type of 
breakpoint, a pop-up similar to the breakpoint options pop-up will appear 
(Figure 9.12), allowing you to further specify their individual options.

fiGURe 9 .11 The breakpoint 
options pop-up

fiGURe 9 .12 The options  
pop-up for an exception 
breakpoint

Note: Refer to Xcode’s documentation for a full explanation of the  
various options for user, exception, and symbolic breakpoints.



ptg6935296

108 ChAPTER 9 BasIC deBuggIng and analysIs 

INTERACTING WITh ThE SOuRCE EDITOR

While the application is paused, you can interact with the debugger directly in the 
Source Editor in several helpful ways.

InspeCtIng varIaBles In tHe sourCe edItor
The Variables panel isn’t the only way to examine the state or content of variables 
in the debugger. While the application is paused, you can hover the mouse pointer 
over a variable to examine it as long as it is within the current scope. A yellow box 
will appear, showing the details of the inspected variable (Figure 9.13).

usIng ContInue-to-Here
Sometimes it may be advantageous to continue to a point in your code farther 
down from where you’re currently paused or to continue through a loop back to 
the top. You can continue execution to the desired point using the continue-to-
here command.

To continue execution to a chosen instruction, hover your mouse pointer over 
the gutter next to the instruction. A green button will appear (Figure 9.14). Click 
the button to execute up until that instruction.

fiGURe 9 .13 Examining a 
variable in the Source Editor

fiGURe 9 .14 The continue- 
to-here button

Note: you’ve seen that pointers to Objective-C objects can be examined 
in the Source Editor, in the variables panel, and when using the print 

object command in the console. The information that is displayed is the 
result of calling the -description method, inherited from the NSObject class.



ptg6935296

WrappIng up 109

movIng tHe eXeCutIon poInter
You can drag the execution pointer and place it anywhere within the local scope. 
You can use this to skip parts of code or to jump backward to repeat instructions. 
To move the execution pointer, grab the green arrow along the left edge of the 
Source Editor and drag it to the desired instruction.

Moving the execution pointer backward to repeat instructions will not undo 
the instructions that were just executed. It will execute them again when you 
continue or step through your code. If you are new to debugging, missing this 
distinction can be confusing.

uSING ThE DEBuG NAvIGATOR

As you learned in Chapter 3, the Debug navigator shows the threads and stacks when 
execution is paused in the debugger. This view represents the same information 
found in the Threads and Stacks navigator in the Debugger Bar. You can organize 
the navigator by thread or by Grand Central Dispatch queue.

You can further refine the navigator using the controls at the bottom. The but-
ton at the left side of the slider ( ∑ ), when enabled, filters the threads and stacks 
to show only the threads that have your code in them or for which debugging 
symbols exist. The slider controls how much stack detail to show—the left side 
shows only the top frame of each stack while the right shows all stack frames.

WRAPPING up

You should now have a firm grasp of the basic debugging facilities that Xcode 4 
offers. You’ll find more debugging techniques in Chapter 17. In the next chapter, 
you’ll explore Xcode’s graphical data modeler and use it to add some data manage-
ment and storage capabilities to TestApp.

Note: for more information about Grand Central Dispatch, 
refer to the Apple developer documentation.



ptg6935296

10

Using The dAtA
model eDiTor



ptg6935296

111

Xcode comes with an integrated data model 

editor tool. In this chapter, you’ll learn how 

to use the data modeler to give your applica-

tion the ability to create, manage, manipulate, save, and load 

its data without writing a single line of code.



ptg6935296

112 ChAPTER 10 usIng tHe data model edItor

INTRODuCING core dAtA

A data model gives your application a well-defined structure for managing and 
persisting its data. The model corresponds with the Model layer of the Model-
View-Controller design pattern. There are a number of ways to manage your 
application’s model layer but Apple has created a solution that works well in many 
situations: Core Data. This facility is well integrated with Xcode.

Apple is very careful to specify Core Data as an “object graph management and 
persistence framework.” Although the framework shares much in common with a 
relational database, it is important to note that it is not intended to act as one. Core 
Data is primarily focused on the needs of desktop applications (though it can be 
used in server applications as well, provided care is taken to manage it properly).

The framework provides standard persistent store types (binary, SQLite, and 
XML) and can be extended with custom store types. The minimum requirement the 
developer must supply is a managed object model, which describes the application’s 
entities (such as Person, Group, Account, or BlogPost) and their relationships to 
one another, if any. With this model and UI to manipulate it, Core Data is smart 
enough to handle managing, saving, and loading your application’s data without 
writing a single line of code. In practice, however, a moderately complex applica-
tion will need further customization.

There are a few key concepts you’ll need to understand to use this API and its 
related Xcode features.

Note: Core Data relies on several underlying Cocoa technologies.  
This is considered an advanced topic. This book will introduce the  

basic concepts but will focus on Xcode’s Core Data features only. for  
more information, refer to Apple’s developer documentation.



ptg6935296

IntroduCIng Core data 113

MANAGED OBjECT MODElS

A managed object model (MOM) is Core Data’s facility for describing the applica-
tion’s data model. It can be described in code but is most often built with the Data 
Model Editor. When you create a project from a template that uses Core Data, all 
the necessary code is included as well as an empty MOM file that shares the appli-
cation’s name. For TestApp, the file is TestAppDataModel.xcdatamodel.

PERSISTENT STORES

A persistent store is the on-disk representation of the data created with your man-
aged object model. Core Data supports three store types by default: XML, SQLite, 
and binary. Each store type has its advantages and disadvantages (see the Core 
Data documentation for details). Additionally, Core Data supports developer-
implemented custom store types. The managed object model “does not care” about 
how (or even if) the data is persisted in a store.

Developers new to Core Data sometimes confuse the model with a data store 
created using the model. Some even look for a way to browse (in Xcode) the data 
they put into a store with their application. It’s important to understand that the 
data created in your application is not stored in the managed object model but 
rather in a store.

Note: Throughout the rest of this chapter, the term model  
can be assumed to refer to a Core Data managed object model.



ptg6935296

114 ChAPTER 10 usIng tHe data model edItor

ENTITIES

Entities represent your model objects. Entity in this context means the same as it 
does in relational databases. It is a description of a type of object and its properties. 
In Core Data terminology, a managed object is an instance of an entity.

When an entity is selected in the editor, containers appear that allow you to 
add attributes, relationships, and fetch properties.

An attribute requires, at minimum, a name (such as lastName or age) and 
a type (such as a string or a number). A relationship requires a name (such as 
parentFolder) and a destination entity (such as Folder) and can be a one-to-one 
or one-to-many relationship.

MANAGED OBjECT CONTEXTS

A managed object context can be thought of as a “scratch pad,” a context in which 
managed objects are created or pulled from a persistent store, potentially modified, 
and potentially saved back to the store. To work with Core Data, you must have 
at least one context.

You may have multiple contexts to keep sets of changes separate. For example, 
a desktop application might create a separate context for an “import” task that 
runs in the background while the user continues using the existing data. A server 
application might have one context for each session (connected user) to isolate 
their activities until they’re ready to “commit” any additions, changes, or deletions 
they may have made.

Separate contexts are merged using one of several available merge policies 
that dictate how conflicting changes are to be handled. The merged contexts can 
then be persisted to the store. In the case of this import example, the contexts can 
be merged (and persisted) when the import completes successfully, revealing the 
newly imported data to the user in the main user interface.



ptg6935296

usIng tHe data model edItor 115

When you select an .xcdatamodeler file in the Project navigator, the file is opened 
with the Data Model Editor (Figure 10.1). The editor is separated into two main 
areas: the outline and the main editor area. The Jump Bar reflects the model’s 
hierarchy, and the Utility area, when visible, shows the details of the selected items 
in the Data Model inspector.

The outline represents the entities, fetch requests, and configurations of the 
MOM. New entities, fetch requests, and configurations can be added by clicking 
and holding the blue Add Entity ( + ) button in the bottom toolbar or by using the 
Editor > Add… items in the main menu. These items can be deleted by selecting 
them and pressing Delete.

fiGURe 10 .1 A simple MOM in 
the Data Model Editor

uSING ThE dAtA model EDITOR



ptg6935296

116 ChAPTER 10 usIng tHe data model edItor

The main editor has two primary styles: table and graph. Table mode 
is what you saw in Figure 10.1. Graph mode is shown in Figure 10.2 

and represents the relationships and inheritance of the model. When using the 
graph editor style, you will need to use the Utility area to edit entities and their 
attributes and relationships.

fiGURe 10 .2 A MOM in the 
model graph mode



ptg6935296

CreatIng a BasIC data model 117

Now that you’ve toured the Data Model Editor, you’re ready to expand TestApp’s 
capabilities by adding a simple data model. For this example, assume the goal is 
to add the ability to create, edit, save, and restore simple to-do items. A to-do item 
will have a content string and a due date.

To create the to-do entity, navigate to the TestAppDataModel.xcdatamodel
file. Click the Add Entity button. An entity will be added with a default 

name of Entity, ready to be renamed. Type ToDoItem, and press Return to rename 
the entity.

Add the due date attribute by clicking the Add ( + ) button in the Attributes 
table in the editor. Change the attribute name to dueDate and set its type to Date. 
Do the same for the content attribute, setting its name to content and its type to 
String. The MOM should now look like Figure 10.3.

That is all that is required to give TestApp the ability to maintain and persist a 
list of to-do items. To let the user manipulate a list (including adding, editing, and 
deleting), you’ll need to add a user interface (UI).

fiGURe 10 .3 TestApp’s 
managed object model

creAtIng A BASIC dAtA model



ptg6935296

118 ChAPTER 10 usIng tHe data model edItor

To manage TestApp’s to-do items, you’ll need a table view and a few buttons to 
add and remove items. Cocoa’s NSArrayController object can fulfill all of the 
controller layer needs with no code via the Cocoa Bindings mechanism. To create 
the interface, select the MainMenu.xib file in the Project navigator. The file will 
open in Interface Builder.

lAyING OuT ThE INTERfACE

First, make room for more user interface elements. You can do this by moving the 
Say Hello button and its text field to the top of the window (Figure 10.4). You could 
also make more room by making the window larger.

Drag two NSButtons into the window (Figure 10.5). Position the buttons, then 
double-click each and set their titles to Add and Remove. You should end up with 
something like Figure 10.6. These buttons will let the user add and remove instances 
of the ToDoItem entity.

To display the to-do items to the user and provide a means by which to manipu-
late them, a simple table view will work just fine. Find the NSTableView control 
and drag one into the window, positioning it as in Figure 10.7. Double-click the 
headers of each of the two columns and set them to Due and Description. You’ll 
bind these columns to the dueDate and content attributes of the ToDoItem instance 
the table will display.

fiGURe 10 .4 Making room in 
the TestApp interface

CREATING A uI fOR ThE model



ptg6935296

CreatIng a uI For tHe model 119

fiGURe 10 .5 Adding buttons 
to the interface

fiGURe 10 .6 The Add and 
Remove buttons

fiGURe 10 .7 Placing the table 
view control into the interface



ptg6935296

120 ChAPTER 10 usIng tHe data model edItor

The Due column will need some extra formatting to display dates properly.   
A cell formatter can be used to do this automatically for all cells in the column. 
Drag an NSDateFormatter into the Due column just beneath the column header, 
atop the words Text Cell (Figure 10.8). This will create and attach a date formatter 
to the prototype cell the column uses to represent each row’s content.

The date formatter’s settings should be visible in the Attributes inspector. 
Choose Short Style from the Date Style pop-up. Your user interface should now 
resemble Figure 10.9.

fiGURe 10 .8 Adding a date 
formatter

fiGURe 10 .9 The new user 
interface

tip: Prior to Xcode 4, formatters attached to a column’s cell 
were indicated in the editor with a small “medallion” beneath the 

cell. Clicking this would let you edit the formatter’s settings. Presently, the 
only way to get to this setting is to expand the Interface Builder dock or 
use the jump Bar to drill down through the window and view hierarchy to 
the table column’s text cell. The formatter is found under the cell to which 
it is attached, and selecting it reveals its settings.



ptg6935296

CreatIng a uI For tHe model 121

CREATING ThE CONTROllER

Core Data works well with another Cocoa mechanism called Cocoa Bindings. The 
Cocoa Bindings controller layer provides several easy-to-use controllers (such as 
NSArrayController) that simplify displaying and managing Core Data information. 
Locate and drag an NSArrayController into the Interface Builder dock (Figure 10.10). 
Select the array controller in the dock, then select the Attributes inspector in the 
Utility panel. (Note: Controllers are dragged into the Interface Builder dock because 
they’re not visual user interface elements.)

Select the Auto Rearrange Content check box so that newly created to-do items 
are properly sorted. Change the Mode pop-up to Entity Name. Change the Entity 
Name field to ToDoItem to tell the array controller it is managing the ToDoItem
entity from the MOM. Select the Prepares Content check box to avoid having to 
manually fetch its contents. The Attributes inspector should look like Figure 10.11.

Next you’ll need to bind the array controller to its contents, which come from 
the Core Data persistent store. Select the Bindings inspector and expand the Man-
aged Object Context binding. Select the Bind To check box and select Test App 
App Delegate from the pop-up menu next to it. Set the Model Key Path field to 
managedObjectContext. The Bindings inspector should look like Figure 10.12. 
This will cause the array controller to use the managed object context (MOC) from 
the TestAppAppDelegate class (via its -managedObjectContext method).

fiGURe 10 .10 Adding an  
array controller

fiGURe 10 .11 The array  
controller attribute settings

fiGURe 10 .12 The array  
controller bindings settings



ptg6935296

122 ChAPTER 10 usIng tHe data model edItor

WIRING uP ThE uI

To finish the interface, you’ll need to wire the controls to the array controller so 
the to-do items are shown and editable in the table and the Add and Remove 
buttons work.

First, connect the Add and Remove buttons’ actions to the array controller’s 
-add: and -remove: actions, respectively. As you learned in Chapter 5, you can do 

this by Control-dragging a connection from the buttons to the array controller in 
the Placeholders and Objects panel and choosing the appropriate action.

Lastly, you’ll need to bind the table columns to the content of the array control-
ler. This will let each column represent the corresponding attribute (the due date 
and content string) of each instance of ToDoItem the table represents (one item per 
row). Select the Bindings inspector in the Utility area if it’s not already selected. 
Select the Due column (it will take several clicks on the column to descend through 
the window and view hierarchy). Expand the Value binding and select the Bind To 
check box. Select Array Controller in the pop-up. Set the Model Key Path field to 
dueDate (Figure 10.13). Do the same for the Description column, using content
for the Model Key Path field.

fiGURe 10 .13 The Due  
column’s bindings settings



ptg6935296

CreatIng a uI For tHe model 123

TAKING ThE uI fOR A TEST-DRIvE

TestApp is ready for a test-drive. Build and run the application. Click the Add 
button to add a to-do item. Set a date (using the M/D/YY format you chose in the 
formatter’s attributes) and a description. Quit the application and relaunch. You’ll 
notice that the changes were automatically persisted. Now try sorting the table 
by clicking either of the column headers, and then try removing an item. Figure 
10.14 shows TestApp in action.

It’s just as easy to add another attribute to the ToDoItem entity. To-dos need a 
completion check box. To do this, you could add a completed Boolean attribute to 
the ToDoItem entity and add another table column with a check box cell.

fiGURe 10 .14 TestApp with its 
new to-do feature



ptg6935296

124 ChAPTER 10 usIng tHe data model edItor

CREATING CuSTOM ClASSES

It’s often necessary to create a custom NSManagedObject subclass to customize 
an entity instance’s behavior. The class behind an entity must be specified in the 
managed object model.

To create a subclass for an entity, select the entity in the editor and choose File > 
New > New File from the main menu. In the sheet that appears, choose the Core 
Data category and select the NSManagedObject Subclass option. Click Next. You’ll 
be prompted to choose the folder and group (but not the filename) under which 
to store the new class. Click Create to complete the action. The new file will be 
created and added to your project, and the selected entity’s class will be reflected 
in the Utility area of the Data Model inspector.

To point an entity at an existing NSManagedObject subclass in your project, select 
the entity in the editor and open the Utility area. Select the Data Model inspector, 
and change the Class field to reflect the name of the desired class.

CREATING ACCESSORS QuICKly

When using custom NSManagedObject subclasses, you can generate accessor source 
code automatically for the attributes of your entities. To do so, select the entity and 
then select one or more attributes. Choose Edit > Copy from the main menu. You 
can either select the custom NSManagedObject subclass in the Project navigator or 
use the Assistant (discussed in the next section) so that the implementation for the 
subclass is visible. Place the cursor at the point in the source file where you want 
the accessors to be inserted, and then choose Edit > Paste Attribute Implementa-
tion. Xcode will generate and insert valid accessor code in the desired location. You 
can repeat the process for the header file (the menu item will be Paste Attribute 
Interface in this case).



ptg6935296

WrappIng up 125

When editing a data model, additional Assistant behaviors are revealed. In this 
case, the Assistant shows only source code files that are associated with (or hold 
references to) custom NSManagedObject subclasses defined in your workspace and 
used in your managed object model.

Automatic behavior shows the files that Xcode considers to be the best choice 
for the data model or the selected entity.

Runtime Classes behavior shows all custom NSManagedObject subclasses defined 
in your workspace that are used by your managed object model.

References behavior shows any files containing references to any NSManagedObject
subclasses defined in your workspace that are used by your managed object model.

WRAPPING up

Core Data and Cocoa Bindings are a complex set of Cocoa topics. You’ve only 
scratched the surface of creating a very simple data model and accompanying UI 
with Xcode. In the next chapter, you’ll learn how to give TestApp a custom icon.

uSING ThE AssIstAnt



ptg6935296

11

customIzIng The
ApplIcAtIon Icon



ptg6935296

127

Both Mac OS and iOS use the same icon file 

format (.icns). Icon files are used primarily 

for application and document icons but can be 

used as standard images in your application like any other image 

format. In this chapter, you’ll learn how to use the Xcode Tools 

utility application Icon Composer to turn your artwork into icon 

files, as well as how to use these icons in your application.



ptg6935296

128 ChAPTER 11 CustomIzIng tHe applICatIon ICon

PICKING ThE IdeAl Artwork

The ideal artwork for a Mac OS or iOS icon is a PNG (.png) or TIFF (.tif) image. 
The image should use transparency to let the background show through “empty” 
areas of your design. You should also have a version of the artwork in 512×512, 
256×256, 128×128, 64×64, 32×32, and 16×16 sizes, each with an appropriate amount 
of detail for its given size. Though it takes more effort, this multisize approach 
helps the operating system maintain a crisp image no matter the size of the icon 
when displayed.

For the examples in this chapter, I’ve created a simple piece of artwork that 
communicates the “test” nature of TestApp.



ptg6935296

CreatIng ICons 129

The Icon Composer application (found in the same folder as Xcode, under 
the Utilities subfolder) takes your artwork and generates an .icns file. 

Launch this application, and you’ll be presented with an empty document with 
a series of wells (one for each of the sizes listed in the previous section).

CREATING ThE ICON DOCuMENT

Drag your artwork into each of these wells. This would be the point where you drag 
the appropriately sized artwork into the matching well if your graphic designer 
has created icons with varying detail for each size. Otherwise, just drag the largest 
copy of the artwork you have into each well (Figure 11.1).

fiGURe 11 .1 A filled-in Icon 
Composer document

CREATING Icons



ptg6935296

130 ChAPTER 11 CustomIzIng tHe applICatIon ICon

TESTING AND vERIfyING ThE ICON

Icon Composer provides a way to examine your icon at various sizes against various 
backgrounds. This allows you to make sure the drop shadow and alpha transpar-
ency look correct, and it shows how fine details appear when the icon is sized too 
small for such detail to survive (Figure 11.2).

To use this feature, click the Preview button along the bottom edge of the icon 
document. You can then manipulate the pop-up to choose a background, and the 
slider to vary the size of the document.

SAvING ThE ICON

When you’re satisfied, save your document icon somewhere sensible. Give it a 
name such as TestAppIcon.icns. You can now use it to set your application’s 
icon using Xcode.

fiGURe 11 .2 The new icon 
downsized against a desktop 
background image



ptg6935296

settIng tHe applICatIon ICon 131

Switch to the TestApp project in Xcode, and select the main TestApp project item 
at the top of the Project navigator. Under the Targets list, you should see the  TestApp 
target. Select the TestApp target, and your project window should look like 
Figure 11.3. The App Icon image well claims “No image specified.”

fiGURe 11 .3 The TestApp 
target editor with no  
application icon

Note: you will further explore  
configuring a target in Chapter 14.

SETTING ThE ApplIcAtIon ICON



ptg6935296

132 ChAPTER 11 CustomIzIng tHe applICatIon ICon

To set the application icon, drag the icon file from wherever you saved it and 
drop it onto the App Icon image well. Because the icon file will become part of the 
project, you will be prompted to add it with the Add Files sheet you encountered 
in Chapter 6. Leave the Add Files sheet’s default options and click Finish. The icon 
will appear in the image well and the file is added to the Project navigator. Since 
Xcode puts it at the root level of the project, now is a good time to file it properly 
by dragging it into the Resources folder of the Project navigator.

You can now run the program. Note that the new icon appears in the Dock. You 
can also choose About > About TestApp from the main menu to see the About 
panel. It should look like Figure 11.4.

fiGURe 11 .4 TestApp’s About 
panel showing the new icon



ptg6935296

WrappIng up 133

When working with document-based Cocoa applications, you’ll need to add 
document types (covered in Chapter 14) that the application recognizes. Setting a 
document type’s icon is just as easy as setting its application icon.

After selecting the target as you did in the previous section, click the Info tab 
at the top of the editor. Expand the desired document type (or add one; again, see 
Chapter 14) and note the image well similar to the App Icon well (Figure 11.5). Drag 
the desired .icns file into the well, and let Xcode add the file to the project. Docu-
ments of this type will use this icon when created or edited with your application.

WRAPPING up

In this brief chapter, you learned the simple process behind creating and using 
icons. This is often one of the final touches before deploying an application. In 
the next chapter, you’ll learn how to configure Xcode to build a deployment-ready 
application.

fiGURe 11 .5 A custom  
document type

SETTING document ICONS



ptg6935296

12

deployIng  
an ApplIcAtIon



ptg6935296

135

To deploy an application, you must build it 

in Release mode. Whether you’re turning 

the application over to an employer, selling 

it on your own Web site, submitting it to Apple’s App Store, or 

just sharing it with a friend, your application must be built for 

release. In Xcode 4, this is accomplished most directly with the 

Archive action.



ptg6935296

136 ChAPTER 12 deployIng an applICatIon 

ArcHIvIng

In previous versions of Xcode, you would switch between Debug and Release modes 
and then build the application for that mode. Xcode 4 introduces the Archive 
action, which automatically builds in Release mode and packages the build target 
along with its dSYM files (containing separate debugging information for analyzing 
release-built applications) into an archive file.

CREATING ThE ARChIvE

Open the TestApp project if it’s not already open. To perform the Archive action, 
choose Product > Archive from the main menu. Xcode will build in Release mode 
and then archive any built products that are part of your project or workspace in 
addition to their corresponding dSYM files.

fiGURe 12 .1 The Locations 
preferences panel



ptg6935296

arCHIvIng 137

fINDING ThE ARChIvE

The archives of any given project are stored in the default Archives folder Xcode 
creates. The default folder is ~/Library/Developer/Xcode/Archives. You can 
change this and other locations in the Locations panel of Xcode’s preferences 
(Figure 12.1). Archives are stored at the path labeled Archives Location. You can 
click the arrow button to the right of the path to open the folder in the Finder. 
Archives are organized by date (under folders named in YYYY-MM-DD format) and 
then by project name.

The Archives tab of the Organizer (Figure 12.2) serves as a collection point 
and browser for the archives you create. Using the Organizer, you can 

annotate the archives as well as share them with others or submit them to the App 
Store. To open the Organizer, click the Organizer button in the toolbar or choose 
Window > Organizer from the main menu. When the Organizer window appears, 
select the Archives tab.

fiGURe 12 .2 The TestApp 
archive in the Organizer



ptg6935296

138 ChAPTER 12 deployIng an applICatIon 

EXAMINING ThE ARChIvE

Currently the only available archive format is the Xcode Archive (.xcarchive) 
format. An Xcode archive file is a package (a folder that appears to be a single 

file). This means you can view its contents in the Finder as well. To do this, right-
click (or Control-click) the archive file and choose Show Package Contents from 
the context menu.

Inside you’ll see the dSYM folder, the Products folder (where the built appli-
cation resides), and an Info.plist file. The  .plist (property list) file, which can 
be opened in Xcode’s Property List Editor (Figure 12.3), contains a description of 
the package’s contents.

To find the application (TestApp.app), navigate through the Products folder. 
The products are placed in a folder structure mirroring that of the Installation 
Directory build setting for the target (see Chapter 14). When you get to the end of 
the trail of folders, you should see the TestApp application bundle, along with the 
icon you added to it in Chapter 11 (Figure 12.4).

fiGURe 12 .3 The Info.plist
file in the Property List Editor

fiGURe 12 .4 The TestApp.app
bundle in the Xcode archive file



ptg6935296

arCHIvIng 139

TESTING ThE APPlICATION

A lot can be said on the subject of thoroughly testing an application before deploy-
ment, but that is beyond the scope of this book (except unit tests, which are 
covered in Chapter 18). For now, you can verify that the application launches and 
performs the functionality you added in previous chapters. When you’re satisfied 
that TestApp says hello when asked and properly manages, saves, and loads a list 
of task items, quit the application.

ShARING ThE APPlICATION

Use the Share button in the Organizer’s Archive tab to let Xcode help you share 
the application with others by saving it to a readily accessible location. Alternatively, 
you can navigate to the application itself and create a zip file with it. To do this, 
right-click (or Control-click) the application and choose Compress “TestApp” from 
the context menu. A zip file will be created, which you can easily transmit.

SuBMITTING TO ThE APP STORE

To submit to the App Store, you must first have signed up for one of Apple’s devel-
oper programs and have provided Apple with the required information for eligibility 
to sell products in the store. Contact the Apple Developer Relations department if 
you’re unsure about your status.

Before submitting, you’ll need to validate the app. Validation is a series of tests 
Xcode 4 runs as a simple way of helping make sure your application isn’t doing 
something or using code and resources Apple does not approve of. It’s wise to 
perform this step prior to submission. To validate the app, click the Validate button 
in the Organizer’s Archive tab and follow any instructions it gives.

Once you’re satisfied, click the Submit button to submit the application to the 
App Store for review and (ideally) eventual acceptance.

tip: zipping any package or bundle, including .xcarchive
and .app files, is a good idea since most e-mail systems and 
many file systems can mangle them.



ptg6935296

140 ChAPTER 12 deployIng an applICatIon 

Although the Archive action makes App Store submission easier, it makes getting 
at your built application to package it for other purposes slightly less convenient. 
Independent Mac developers, for example, have their own staged archive folders 
into which they dump the latest release build. This folder may include a “quick 
start guide” in PDF format, a .webloc (web location file) shortcut to their site, and 
other marketing goodies. This folder is archived as a zip file or disk image to form 
a user-friendly downloadable.

Xcode 4’s Archive action does not currently provide enough options to support 
this level of customization. Until the Archive action is built up with more options, 
the best workaround for independent developers is to create your own scheme to 
perform all of this staging with your own custom packaging and accoutrements. 
Alternatively, you can add minimal convenience in the form of a script at the end 
of the Archive action, which opens the built product’s enclosing folder within the 
archive in a Finder window.

All is not lost, however. An important set of environment variables was added 
to Xcode’s build system that can be used within build scripts to manipulate aspects 
of the build environment. These are ARCHIVE_PATH, ARCHIVE_PRODUCTS_PATH, and 
ARCHIVE_DSYMS_PATH. Arguably ARCHIVE_PRODUCTS_PATH is the most important, 
since it makes it relatively easy to extend the Archive action to build your own 
custom archives alongside those that Xcode curates.

See Chapter 14 for an overview of the new Schemes system. For more ideas 
regarding how to customize the build process to perform extra tasks, see Chapter 19.

AlternAtIves TO ARChIvING



ptg6935296

WrappIng up 141

In this brief chapter, you learned how to create a release build of your application 
and archive it for sharing or App Store submission. You also learned there are 
alternatives for further customization and that Xcode’s Archive action certainly 
leaves plenty of room for improvement. You’ll revisit the topic of alternatives in 
Chapter 14. In the next chapter, you’ll discover some more features available to 
you in the Source Editor.

WRAPPING up



ptg6935296

This page intentionally left blank 



ptg6935296

143

Part III

goIng Beyond 
The BAsIcs



ptg6935296

13

aDvanceD edItIng



ptg6935296

145

In Chapter 7, you explored the Source Edi-

tor and some of its features. In this chapter, 

you’ll explore a few more powerful features 

and familiarize yourself with some additional 

tips and tricks to make better use of the editor.



ptg6935296

146 ChAPTER 13 advanCed edItIng

RENAMING symBols

The Edit All in Scope command is a simple and often overlooked editor feature. 
As its name suggests, you can edit a symbol name and automatically change each 
instance of it within the current scope at the same time.

Consider a local variable named bob. You’ve decided a variable should sound 
more formal, so you want to change bob to robert. Assuming bob is reused through-
out the current scope of a long method, it would be tedious and error-prone to 
find and rename each instance, even though they’re temporarily underlined when 
one instance is selected. To formalize bob, you can click the symbol, placing the 
insertion point somewhere inside its text. All instances of bob within the current 
scope then appear with a dotted underline (Figure 13.1).

If you hover your mouse pointer over any highlighted bob, you’ll notice a 
button appears immediately to its right. Click this button to open a context 

menu, and select Edit All in Scope. Xcode responds by highlighting each bob in the 
current scope, ready to edit them all. Begin typing to replace the text, or move the 
cursor around within the highlighted text to modify it. In this example, every 
instance of bob has been renamed to robert (Figure 13.2).

Click to place the text insertion point somewhere outside the symbol to end 
editing. Note that only the symbol name changed. It remains a pointer to the 
string literal @”Bob”. You could further edit the symbol to give robert a sex change. 
Repeat the procedure, but instead of replacing the text, place the cursor after the t
in robert and then add an a. The symbol should now be roberta, who is suddenly 
in need of a new wardrobe or at least a new string literal.

It’s important to note that this operation works only within the current scope. 
You cannot use this feature to rename an instance variable or a method.

fiGURe 13 .1 All instances of 
the symbol bob underlined

fiGURe 13 .2 In the current 
scope, bob is now robert.



ptg6935296

reFaCtorIng 147

The programming term refactor is perhaps overused but in general means to 
“repurpose” or “reengineer” code or even architecture. Xcode’s Refactor function 
allows you to modify code in an intelligent way.

In the previous section, you learned how to rename symbols within a given scope. 
The Edit All in Scope function is a more surgical approach than a blind search and 
replace, since replacing all instances of the common iterator i, for example, would 
likely make a mess of anything containing the letter i. Still, renaming symbols is 
limited to the current scope, so you cannot rename an instance variable.

The Refactor function goes a step beyond Edit All in Scope, using its knowledge 
of your code base to make more intelligent decisions about your code, simplifying 
common but error-prone refactoring tasks.

REfACTORING OPTIONS

You can find the various types of refactoring Xcode can automate for you in the 
Edit > Refactor menu.

rename
Rename works in much the same way as Rename Symbols, with one exception: It 
is not limited to scope. This distinction means you can rename an instance vari-
able. In the case of an Interface Builder outlet, Rename will update the outlet in 
your xib as well (a huge time-saver). In the case of a class, filenames themselves 
can also be automatically changed to match.

eXtraCt
Extract takes a selected block of code and creates a method or function (depending 
on your choice) with it. If the code block depends on local variables, they will be 
converted to arguments of the method or function.

Create superClass
Create Superclass does just as the name suggests—it creates a superclass from the 
selected class. You can choose to place the declaration and implementation in the 
selected class’s files or in their own new files.

reFActorIng



ptg6935296

148 ChAPTER 13 advanCed edItIng

move up/move doWn
Move Up takes the declaration and implementation of the selected item and moves 
them to a superclass. Move Down moves the selection to one or more subclasses 
of the current class.

enCapsulate
Encapsulate creates accessor methods (getters and setters) for a selected instance 
variable and changes all direct references to them so the accessors are used instead.

modernIze loop
Modernize Loop converts while or C-style for loops to Objective-C 2.0 for loops.

Convert to oBjeCtIve-C 2.0
Convert to Objective-C 2.0 modifies the code in the selected source files to take 
advantage of Objective-C 2.0 features. This includes modernizing loops and con-
verting accessor methods to properties and synthesized accessors.

uSING REfACTOR

To familiarize yourself with the Refactor feature, you can rename the NSTextField
outlet you created in Chapter 5 from textField to a more descriptive helloTextField. 
To begin, open the TestApp project and navigate to the TestAppAppDelegate.m file. 
Double-click the textField symbol on line 13, and select Edit > Refactor > Rename 
from the main menu. A sheet will appear similar to Figure 13.3.

fiGURe 13 .3 The Rename sheet



ptg6935296

reFaCtorIng 149

Change the name to helloTextField, and click Preview. Xcode will present a 
preview sheet similar to Figure 13.4 and analyze your project to locate all references 
to the symbol. You can use the Rename preview sheet to verify and cherry-pick 
individual replacements.

You can use the list on the left side of the window to jump directly to each 
instance that will be renamed. Each item has a check box that lets you choose 
whether that file will be included in the renaming changes. In this case, there are 
three files that will be modified: TestAppAppDelegate.h, TestAppAppDelegate.m, 
and the English version of MainMenu.xib. The right pane shows two versions 
(“before” and “after”) of the selected file. If you select TestAppAppDelegate.m in 
the list, you’ll notice two red tick marks in the track of the scroll bar. These indicate 
the places within the file where the symbol is referenced or defined (where changes 
will be made). Click Save to make the changes.

If you examine all three files (right-click the text field in the xib to examine its 
referencing outlets), you’ll notice the change has been applied. You should now be 
able to build and run the application to test it. Click the Say Hello button to make 
sure the greeting still appears in the renamed field.

The process is similar for each of the available Refactor actions. Though the 
preview sheet works the same, the initial sheet (shown in Figure 13.3) will contain 
the various options available for each action.

fiGURe 13 .4 The Rename 
preview sheet

tip: Not all refactoring actions can be carried out without your inter-
vention. The Issues button above the change list can be used to explore 
any problems that Refactor anticipates with performing the proposed action.



ptg6935296

150 ChAPTER 13 advanCed edItIng

Xcode includes CPP, the C preprocessor, through which your code is run just prior 
to compilation. The preprocessor transforms your code wherever macros are 
encountered. For example, when it encounters an #import directive, the preproces-
sor replaces it with the referenced file (nearly always a header file) so its contents 
are available to the compiler.

A less obvious use of preprocessor macros is for organization within a graphical 
editor. Using the #pragma mark directive, you can define areas within your source 
file. When you have this file open in the Source Editor, the last segment of the Jump 
Bar (which, as you’ll recall, lists class members for easy navigation) will reflect your 
marks by grouping them in its pop-up menu. For example, Figure 13.5 shows one 
possible organization of the TestAppAppDelegate.m file.

To use the directive, just place it (along with a name for the section) on a blank 
line by itself as follows:

#pragma mark Constructors / Destructors

You can go a step further and place a separating line in the menu by using a 
dash as the mark as follows:

#pragma mark –

There is no defined standard dictating how you should use this directive, nor 
does it have any effect on your compiled code (it is not part of the compiled code). 
Although it’s easy to get carried away and pepper your code with marks, most take 
a minimalist approach and group methods by their primary function.

As an example, you might create a section for UI actions in a controller class, 
another section for model manipulation methods, another for initialization and 
deallocation, and another still for accessors. Figure 13.5 roughly follows this general 
approach. Your style may vary.

fiGURe 13 .5 The Jump Bar 
pop-up organized using 
#pragma mark

orgAnIzIng WITh mAcros



ptg6935296

CHangIng edItor key BIndIngs 151

Although the focus of the Key Bindings preferences panel (Figure 13.6) is not limited 
to the Source Editor, it’s worth pointing out that you can customize even the most 
basic Mac OS text editing and navigating keyboard shortcuts in Xcode 4. Develop-
ers familiar with the shortcuts of other environments will find this invaluable.

To open the Key Bindings preferences panel, choose Xcode > Preferences from 
the main menu and then select Key Bindings from the toolbar. The left side of the 
panel provides controls for managing command sets you create or customize. The 
right side lets you locate and customize shortcuts.

The shortcuts are grouped by function in the list. You can filter the list using 
the search bar at the top. To the left of the search bar, you can choose to show only 
menu- or text-editing shortcuts.

fiGURe 13 .6 The Key Bindings 
preferences panel

Note: The shortcuts for most any item in Xcode’s menu can be cus-
tomized (or added if none yet exist). The list of customizable shortcuts 
is quite extensive and worth a few minutes of your time to browse.

ChANGING EDITOR
key BIndIngs



ptg6935296

152 ChAPTER 13 advanCed edItIng

MANAGING COMMAND SETS

You can think of command sets as “keyboard shortcut profiles.” For example, if you 
were nostalgic (or stubborn), you could create a command set whose text shortcuts 
match those of Vim or CodeWarrior.

Use the + and - buttons at the bottom of the list to create or remove command 
sets. Although not really obvious, the currently selected command set is the one 
currently in effect and is persistent. To switch to a different command set, just select it.

CuSTOMIzING ShORTCuTS

To customize a shortcut, double-click the field in the Key column next to the 
shortcut. The field will become highlighted, and + and - buttons will appear near 
its right side. The - button removes a shortcut, and the + button lets you add 
shortcuts (so multiple shortcuts can fire the same action). To set a shortcut, press 
the key combination you’d like and then click outside the field to end editing (or 
press the + button to add another).

jump to DEfINITION

The Source Editor hides a simple navigational shortcut you won’t be able to live 
without once you know it’s there. Although not strictly an editing feature, the need 
to navigate to the definition of a symbol (possibly one of many) while writing your 
code is common. Xcode makes this simple. Hold down the Command key and hover 
the mouse pointer over any symbol to turn the symbol into a hyperlink. Click the 
link (while still holding down Command) to navigate to the symbol’s definition (or 
implementation). When multiple definitions exist for the clicked symbol, a pop-up 
similar to Figure 13.7 appears, listing all known definitions of the symbol (and the 
file and line number where each appears). Select any definition to navigate to it.

fiGURe 13 .7 Various defini-
tions of a symbol in the Jump 
to Definition pop-up



ptg6935296

WrappIng up 153

Very few developers are likely to work for a company called “My Company Name,” 
yet Xcode insists on inserting this in the copyright block at the top of any source 
files it creates. If you’re not currently employed by My Company Name, it’s wise to 
change the Organization field associated with the project so the copyright of newly 
created files reflects your actual organization (or even just your name).

To do this, select the project itself (the top-level object) in the Project navigator; 
then open the Utility area and select the File Inspector pane. Under the Project 
Document section, type the name of the desired copyright holder in the Organiza-
tion field. Any source files Xcode creates from that point forward will insert that 
name instead of the standard __My Company Name__ placeholder.

WRAPPING up

This gentle introduction to the more advanced (or simply less common) aspects 
of Xcode 4 has given you a handful of powerful Source Editor features. These fea-
tures offer elegant solutions to tedious and error-prone editing tasks developers 
encounter often when writing or maintaining code.

In the next chapter, you’ll learn about Xcode 4’s new Schemes system and how 
to customize the build and archive process, set up target dependencies, and more.

My compAny NAME



ptg6935296

14

The BuIld system



ptg6935296

155

Xcode 4 offers an overhauled user interface for 

its build system that de-emphasizes switch-

ing between separate build configurations for 

Debug and Release and focuses more on what developers spend 

most of their time doing within the IDE: coding and debugging.

Developers are meant to handle release builds with the Archive 

action. The Archive action in version 4.0 is heavily biased toward 

the preparation of a release build for sale in Apple’s App Store. 

Fortunately, the new build system UI is flexible enough to offer 

the full functionality with which veterans are familiar. There is 

nothing preventing you from creating a build scheme that gener-

ates a release build and bypasses the Archive action entirely.



ptg6935296

156 ChAPTER 14 tHe BuIld system

AN overvIew

Let’s take a brief tour of the terminology before exploring each term in depth. The 
end result of a build is some sort of product—an application, a plug-in, a command-
line program, a framework, or a library.

TARGETS

A target describes a product (an application, a plug-in, a library, a unit testing 
bundle, or an aggregate of other targets) to be built and the instructions for build-
ing it. The instructions specify source code and resource files within the project, 
build settings, phases, and rules. A project might contain more than one target. For 
example, a project might contain targets for a desktop application, a companion 
command-line program, and a library of shared code used by both. A target can 
also specify another target and a script to run, giving you the ability to create a 

“deployment package” target.

SChEMES

A scheme describes one or more targets to build, a configuration to use when 
building them, custom build scripts to execute before and after a given action, and 
tests to execute against the target (see Chapter 18). A project will have at least one 
scheme but can contain as many as you need. A scheme can be shared with others 
who use the project or workspace and can be exported for use in other, unrelated 
projects to save the trouble of re-establishing settings used commonly in your 
organization. Xcode will also create new schemes as you add targets (a feature 
that can be disabled in the Manage Schemes sheet). Schemes (and a corresponding 
run destination) are selected when building and running applications in order to 
specify which target and dependencies to build with what configuration, and in 
what environment to run the built product.



ptg6935296

an overvIeW 157

BuIlD SETTINGS

Build settings include the target architecture and SDK, the location of intermedi-
ate build files, compiler selection (LLVM versus GCC, for example), linker settings, 
search paths, and more. The settings can be project-wide or target-specific, and 
a separate value can be defined for a given configuration (Debug versus Release, 
for example).

CONfIGuRATIONS

A configuration describes a collection of build settings for the build environment. 
By default, an Xcode project has two configurations: Debug and Release. The 
configuration Xcode uses when performing a given action (such as Run, Analyze, 
or Archive) is dictated by the settings in the active scheme. For example, the Run 
action of the default scheme of a Cocoa application project would use the Debug 
configuration, while the Archive action would use the Release configuration. Com-
mon configurations can be exported and imported to enable sharing and reuse 
between an organization’s projects.

RuN DESTINATIONS

A run destination describes the environment in which to run an executable prod-
uct (that is, a target that specifies an application or command-line program). The 
environment can be your Mac (in 32-bit or 64-bit mode), the iOS Simulator, or an 
actual iOS device. The available run destinations shown in the Scheme controls 
are determined automatically by the build settings specified for the associated 
target—specifically, the combination of settings specified in the Supported Plat-
forms, Architectures, and Base SDK build settings.



ptg6935296

158 ChAPTER 14 tHe BuIld system

BuIlD PhASES

A build phase is a stage in the build process of the current target (build dependencies, 
compile, link, copy resources, run a postprocessing script, and so on). In addition 
to the standard compile, link, and dependencies phases, you can add phases to 
a target, such as Copy Files or Run Script. This can be a simple way of adding the 
additional step to the target’s build process, such as copying an embedded frame-
work into an application bundle. It can also provide a hook for more-complex 
manipulations during the build process using shell scripts. See Chapter 19 for more 
details regarding customizing the build process.

BuIlD RulES

A build rule defines associations between a type of file (such as a C or Objective-C 
source file) and the program used to compile or process it. The default build rules 
for common file types are target-independent, but you can define target-specific 
rules as well. You might define a custom build rule for a new file type Xcode does 
not know how to handle or to specify an alternative tool to use (or the same tool 
with different arguments) when handling that file type.



ptg6935296

WorkIng WItH targets 159

Since a target represents a built product (or an aggregate of other targets), it’s an 
“end result” of your coding efforts. Xcode 4 provides template targets for the most 
common types of target, such as Mac or iOS applications, command line programs, 
frameworks, and so on (Figure 14.1).

Numerous other target templates exist for less common tasks as well. These 
include system plug-ins for Spotlight importers, screen savers, device drivers, and 
others (Figure 14.2). Templates exist for specific applications bundled with the Mac 
OS as well, including Address Book, Automator, and WebKit.

fiGURe 14 .1 The target 
template chooser

fiGURe 14 .2 Other target 
types

WORKING WITh tArgets



ptg6935296

160 ChAPTER 14 tHe BuIld system

fINDING yOuR PROjECT’S TARGETS

When you create a new Xcode project, an initial target is created and configured for 
you, sharing the name you specified for your project. You can find every project’s 
targets by selecting the project itself in the Project navigator (Figure 14.3). You’ll 
recall the target view in Figure 14.3 (the result of selecting the TestApp target in 
the Targets list) from Chapter 11.

Note the other target in the list: TestAppTests. This particular target produces 
a .octest bundle, which Xcode uses to run unit tests (see Chapter 18). Note the 
different icon—a building block signifying a plug-in bundle.

PROjECT-WIDE SETTINGS

Selecting the TestApp project under the Project group reveals project-wide settings. 
These settings serve as the “global” settings used by the targets defined within it.

The Info tab reveals three main groups: Deployment Target, Configurations, 
and Localizations.

The Deployment Target group currently holds only one setting (depending on 
the platform—Mac OS or iOS): the minimum OS version for which your project’s 
targets are built.

The Configurations group lets you define the configurations available to 
your targets. As mentioned at the beginning of the chapter, Xcode creates Debug 

fiGURe 14 .3 Selecting a 
project’s target



ptg6935296

WorkIng WItH targets 161

and Release configurations (and appropriate build settings for each) by default. 
Here you can add, rename, or remove configurations as desired. At the bottom of 
this group is an option to specify which configuration command-line builds use 
when builds are initiated using Xcode’s command-line interface (which is beyond 
the scope of this book).

The Localizations group lets you specify to which languages your Cocoa applica-
tions are localized, which helps you automatically manage the individual copies of 
user interface and other resource files that are specific to a language. Localization 
is also beyond the scope of this book.

EXPlORING A TARGET

Application targets (a standard Mac or iOS Cocoa application bundle) have the 
most settings, so the TestApp target is a good one to explore. Make sure you’ve 
selected it, as in Figure 14.3. You’ll explore each tab along the top of the editor, 
starting with the Summary tab.

The sUmmary TaB
The Summary tab displays the basic information—mostly reflecting the options you 
chose when you created the project—in the top panel, titled Mac OS X Application 
Target. The Application Category pop-up menu is used to categorize the applica-
tion if you plan to sell it in Apple’s App Store. The Identifier field is the canonical 
name you chose (which should correspond to your organization’s domain name in 
most cases). The Version number is the string that the Finder and the application’s 
About panel display for the application. The deployment target specifies the ver-
sion of Mac OS for which your application is built. The image well, as you learned 
in Chapter 11, holds the application’s icon (and sets its corresponding configuration 
entry when a new .icns image is dragged into it).

The next section, Linked Frameworks and Libraries, displays (and lets you edit) 
the frameworks and libraries to which your application is linked. This affects the 
Link Binary With Libraries build phase in the Build Phases tab. The Add (+) and 
Remove (–) buttons let you edit this information directly. Clicking the Add button 
reveals a searchable list of libraries and frameworks available on your computer 
from which you can choose (Figure 14.4). You can also choose Add Other from 
this sheet to locate a library or framework not present in the default locations that 
Xcode knows to search.

fiGURe 14 .4 Choosing frame-
works and libraries against 
which to link a target



ptg6935296

162 ChAPTER 14 tHe BuIld system

For iOS targets, there are some differences in the Summary tab. In Figure 14.5, 
you’ll notice a Devices pop-up under the iOS Application Target group. This lets 
you select whether your project produces an application for iPhone, iPad, or both 
(a “Universal” application). Under the Deployment Info group, you’ll see options 
(enabled by pressing them) to specify which orientations your application sup-
ports—that is, which directions will your applications follow when the user rotates 
the device. The App Icons wells work the same way as the App Icon well in a Mac 
OS target, except the second well (marked Retina Display) holds a high-resolution 
version of the icon, appropriate for the high-resolution Retina display in newer 
devices. The Launch Images wells are used to specify the images used at launch 
time (one for normal resolution and one for high-resolution Retina displays).

There is one more section, named “Entitlements.” Entitlements are explored 
in more detail later in this chapter.

The info TaB
The Info tab (Figure 14.6) lets you edit the information contained in the app 
bundle’s Info.plist file—the file Cocoa bundles use to describe themselves to 
the operating system. This file contains some of the information you can manage 
on the Summary tab, but it’s got a great deal more responsibility.

The editor is much like the one used to edit .plist (property list) files. You 
can see this for yourself by navigating to the TestApp-Info.plist file under the 
Supporting Files group. You’ll see something similar to Figure 14.7—a simple prop-
erty list editor. Navigate back to the target’s Info tab, and you’ll see the difference: 
This particular editor is custom tailored to work with Cocoa bundle property lists 
and automatically loads the contents (the same as in TestApp-Info.plist) and 
organizes the interesting parts into sections.



ptg6935296

WorkIng WItH targets 163

fiGURe 14 .7 The property  
list editor

fiGURe 14 .6 The Info tab

fiGURe 14 .5 The Summary tab 
(for iOS targets)



ptg6935296

164 ChAPTER 14 tHe BuIld system

The Custom Mac OS X Application Target Properties section lists all the basic 
parts of the property list that define your unique application (including version 
number, the principal class used to load the application, the main nib or xib file 
to use, and so on). Selecting an individual row reveals more aspects of the editor 
(Figure 14.8). Each row’s type (the key used to specify its corresponding value) can 
be edited by clicking the arrows to reveal a list of other available keys (Figure 14.9). 
Double-clicking a key or value lets you edit each directly. See the “Bundle  Structures” 
section of the Bundle Programming Guide in Apple’s documentation for more 
information about the keys used and their meaning.

The Document Types section holds any document types defined for your appli-
cation. Since TestApp is not a document-based application, this section is empty 
by default. That’s not to say a non-document-based application can’t be given 
document types that it can recognize and provide viewing or editing capabilities 
for, however. Figure 14.10 shows an example of what some custom document 
types might look like.

The Exported UTIs and Imported UTIs sections (also empty) let you define 
any UTIs (Uniform Type Identifiers) your application imports or exports. Defining 
UTIs here is a way of letting your application “claim” (and provide icons or system 
services for) a particular data type as well as define new data types and lineage 
that your application provides. See the Uniform Type Identifiers guide in Apple’s 
documentation for more information.

fiGURe 14 .8 More (to the row) than meets the eye

fiGURe 14 .9 Choosing keys

fiGURe 14 .10 Some example 
document types



ptg6935296

WorkIng WItH targets 165

The URL Types section allows you to define URL schemes your application 
understands. An example might be a URL that takes the form of testapptask://taskid
and causes your application to be launched and display the task with the specified 
taskid. See the Launch Services Programming Guide in Apple’s documentation 
for more information.

The Services section lets you define system services (such as Insert Employee 
ID Here), which can be accessed from other applications. See the Services Imple-
mentation Guide in Apple’s documentation for more information.

The BUilD seTTings TaB
The Build Settings tab (Figure 14.11) contains all the build settings for the selected 
target, grouped by category. The simplest view, as shown in Figure 14.11, can be 
seen by setting the filter bar (just beneath the tab bar) to show Basic and Combined. 
This instructs the editor to show you only the most commonly used settings and 
only the values for the selected target.

For each setting, you can edit the matching value under the column named 
after your target. Some values are simple strings while others are presented in a 
pop-up menu. In cases where you can make more than one selection (such as the 
Architectures setting), you can select Other from the menu and you’ll be presented 
with a pop-up window (Figure 14.12) that allows you to add multiple selections. 
In the figure, an environment variable is used that, to Xcode, means the standard 
32/64-bit universal binary.

fiGURe 14 .11 The Build 
Settings tab

fiGURe 14 .12 A multiple- 
selection pop-up window



ptg6935296

166 ChAPTER 14 tHe BuIld system

You can also have per-configuration settings. That is, separate settings for Debug 
versus Release configurations (or any others you define). In Figure 14.13, you see 
that the Strip Debug Symbols During Copy setting has an open disclosure triangle 
next to it and has separate settings for the two configurations—Debug and Release. 
It would be pointless to remove debugging information from a debug build, so the 
build system will strip debug symbols only from a release build, leaving them intact 
for debug builds. This is an excellent example of why different configurations (or 
at least separate settings for debug and release) are necessary. The information is 
removed from a release version to reduce the size of the executable and to improve 
performance.

fiGURe 14 .13  
A per-configuration setting

Note: The disclosure control appears only for settings 
that already have per-configuration values defined.



ptg6935296

WorkIng WItH targets 167

For projects with multiple targets (or workspaces with multiple projects), you 
may need finer control than you get by choosing Combined versus Levels in the 
filter bar. Choosing Levels reveals multiple columns after the Setting column, 
showing what the settings are for each “level” (Figure 14.14). From right to left, 
the columns represent global defaults down to project- and target-specific settings.

Starting from the right and working to the left, you see the default settings 
for the platform (Mac OS Default). These settings cannot be edited because they 
are the same for every Mac OS target. All levels below this one inherit its settings. 
Project- and workspace-level settings come next, then target-level settings. The 
Resolved column shows the final state of all inherited settings for the selected target.

The simplest example of the usefulness of multi-level inherited settings is 
the Product Name setting (exposed by the Packaging disclosure triangle). Each 
target produces an application bundle or executable, which must have a name. 
No two targets are likely to share the same name, so each target would have its 
own non-inherited name. Of course the product name isn’t specified at the OS or 

fiGURe 14 .14 Build settings 
arranged by level



ptg6935296

168 ChAPTER 14 tHe BuIld system

project levels. An example of this can be seen with the Wrapper Extension setting 
(also in the Packaging settings). An application bundle always gets an extension 
of .app. Other bundle types would have different extensions. Take a look at the 
same setting for the TestAppTests target. The Mac OS Default setting is .bundle; 
at the target level it’s .octest.

When viewing settings arranged by level, settings defined for a given level are 
outlined in green (also seen in Figure 14.14). You can see this in the Product Name 
setting. If a value is overridden further down the hierarchy (working toward the 
left), that value is also outlined in green. This helps you determine the level at which 
a setting is customized and, when considered with the Resolved column, lets you 
easily determine the precise setting for your individual targets.

You can also add user-defined build settings by using the Add Build Setting but-
ton at the bottom of the editor. This lets you further customize the build process 
by passing custom settings not shown in the editor. User-defined settings appear 
at the bottom of the list in a group called User-Defined. For example, you might 
want to include a “This app is BETA!” user interface element for beta builds. You 
might add a “Show Beta UI” setting with a value of Yes if building a beta release 
(using a “Beta Release” configuration you can add to the project’s Configurations), 
or with a value of No otherwise. You can use the preprocessor to check the value of 
this setting at compile time and include or exclude your custom “add the beta UI 
element” code. See Chapter 19 for more information on using similar approaches.

There are many settings in this tab that affect the build environment, the built 
product, and even what kinds of errors and warnings the build system should 
respect or ignore. The depth and breadth of these settings is beyond the scope of 
this book, but it’s worth noting that the Quick Help pane of the Utility area will give 
you detailed information on each. Just select the setting in the editor and the Quick 
Help pane will provide an overview of the setting, its options, and its implications.



ptg6935296

WorkIng WItH targets 169

The BUilD Phases TaB
The Build Phases tab (Figure 14.15) lets you manage, add, and remove build phases 
for your target. The available phases depend on the type of target you are building. 
For example, only bundles can have bundle resources (such as images, sounds, Help 
Book files, and so on), so the build phase would not be used for a command-line tool.

You can add phases using the Add Build Phase button at the bottom of the  editor. 
Those that are removable can be removed by clicking the remove (x) button in the 
upper-right corner of the phase’s table.

The first build phase—Target Dependencies—is the one phase that cannot 
be removed. This special phase lets Xcode know of other dependencies (such as 
a framework or plug-in for an application) that must be built before the currently 
selected target can be built. This build phase defines implicit dependencies as 
opposed to allowing Xcode to determine target dependencies automatically as 
configured in the active scheme. You can add and remove targets (any target 
except the selected one, for obvious reasons) for this phase using the Add (+) and 
Remove (–) buttons at the bottom of the phase’s table.

fiGURe 14 .15 The Build  
Phases tab



ptg6935296

170 ChAPTER 14 tHe BuIld system

The Compile Sources phase compiles any source files belonging to your target 
using the appropriate compiler for the file type as defined in the Build Rules. You 
can set compiler flags (such as optimization settings like -funroll-loops or -O3) 
for each individual file by double-clicking in this phase’s Compiler Flags column, 
typing the flags, and then pressing Return. You can add source files to and remove 
source files from this phase using the Add (+) and Remove (–) buttons at the  bottom 
of the phase’s table. This phase seems like it should not be optional, however if 
you recall that there can be aggregate targets and other types, you can see why this 
phase is not always necessary.

The Link Binary With Libraries phase lets you control which libraries your 
product is linked against using the linker. While it’s true you don’t have to use a 
library or framework in your source code to make use of it in your application 
(because it might be used from an instantiated object in your xib), you’ll always 
have to link against it if you use it at all. By default, all Cocoa applications are linked 
against the Cocoa framework, which explains the framework’s presence in the 
TestApp target. When using additional libraries and frameworks, it’s easiest to add 
them here. You can add and remove linked libraries and frameworks for your 
product using the Add (+) and Remove (–) buttons at the bottom of the phase’s 
table. Pressing the Add button reveals the same Frameworks and Libraries sheet 
you saw in Figure 14.4, from which you can select the library or framework to which 
to link.

The Copy Bundle Resources phase copies any resources included with your 
bundle into a ../Contents/Resources folder relative to your bundle’s file path (the 
standard location for resources in any type of Cocoa bundle). Resources include 
application and button icons, video and sound clips, template files, and so on. Notice 
the TestAppIcon.icns file you added to the project in Chapter 11 is included in 
this phase, ensuring it will be available as a resource to the application at runtime 
and to the Finder when displaying the application in the file system.

Note: linking is accomplished using a “linker,” which can be the  
ld command, evoked by the GCC (GNu Compiler Collection) compiler,  

or llvm-ld, evoked by the llvM (low level virtual Machine) compiler.



ptg6935296

WorkIng WItH targets 171

There are three other types of build phases that you can add to your target 
using the Add Build Phase button at the bottom of the editor. These phases don’t 
show up by default for a standard Cocoa application target.

The Copy Files phase (Figure 14.16) lets you identify a path into which to 
copy the files you specify. You can choose a predefined destination path from the 
Destination pop-up or specify a custom path. Most often, a Copy Files phase would 
specify a location within a bundle (the bundle built by the target), but this phase 
can be used to copy files or even built products to a variety of locations. Predefined 
paths include a bundle’s Resources or Frameworks folders, the Shared Frameworks 
system path, and more. It’s not uncommon to have multiple Copy Files build phases 
in a target. For example, you may specify a framework you either built yourself 
or are including from a third-party source, and choose to copy it into the applica-
tion bundle’s Frameworks path so the framework is available to the application 
at runtime (see Chapter 15). You might also add a Copy PlugIns build phase, with 
which you can copy a set of built plug-ins included with your main application 
into the application bundle’s PlugIns folder. The Subpath field lets you append a 
subpath to whichever path you’ve selected in the Destination pop-up. The “Copy 
only when installing” check box instructs Xcode to copy the files only when your 
current scheme’s build settings include the install flag. The Add and Remove  buttons 
work the same way as in the other phases, allowing you to specify the files that are 
copied to the selected location.

fiGURe 14 .16 The Copy Files 
build phase



ptg6935296

172 ChAPTER 14 tHe BuIld system

The Run Script phase (Figure 14.17) lets you run any script (by typing in the 
script editor field or dropping a script file into it). Again, you might have multiple 
Run Script phases in a given target. The Shell field lets you choose the shell you 
wish to use (it defaults to sh). Using the check boxes beneath the script field, you 
can choose whether to show the script’s environment variables in the build log 
and whether to run the script only when installing. You can specify input files 
from which your script can pull information, as well as output files into which the 
script’s results can be placed.

The Copy Headers phase (Figure 14.18) lets you specify header files and their 
visibility for products such as frameworks, plug-ins, or drivers. The scopes (Public, 
Private, and Project) determine the visibility of the header in the built product. 
A public header is included in the product as readable source code; a private header 
is included in the product but is marked as private so clients know not to use its 
symbols directly; a project header is not included in the product and is meant to be 
used only by the project when building the target. The Add and Remove buttons 
work the same way as in the other phases, but in this case, when you add, you’ll 
see a sheet similar to Figure 14.4, but which lets you select only header files. Once 
added, a header will first appear in the Project scope. You can then drag it into 
Private or Public scope as desired.

fiGURe 14 .17 The Run Script 
build phase

fiGURe 14 .18 The Copy 
Headers build phase



ptg6935296

WorkIng WItH targets 173

The BUilD rUles TaB
Xcode maintains a default list of predefined (system) rules that determine which 
file types are processed by which script or program during the build process. This 
is found under the Build Rules tab (Figure 14.19). For example, C source files are 
compiled using GCC System Version (which is LLVM GCC 4.2 in Xcode 4.0). The Build 
Rules tab lets you customize these rules or define new ones for the selected target.

With the filter bar set to All, you see all the default system build rules and any 
target-defined rules. Set the Build Rules tab’s filter bar to Target to see the rules 
overridden or defined only for the target (that is, to filter out the default system rules).

To customize a system build rule for a given file type, locate it in the list and 
click its Copy to Target button. The new custom rule will be added to your target, 
ready for you to specify the script or predefined program to use to process the file 
type. You can also add a rule to your target for a file type not covered by the system 
rules by clicking the Add Build Rule button at the bottom of the editor.

fiGURe 14 .19 The Build  
Rules tab



ptg6935296

174 ChAPTER 14 tHe BuIld system

As an example, pretend you want to let Xcode compile some Pascal files (with   
a .pp extension) and that you have Free Pascal (www.freepascal.org) installed. 
Figure 14.20 shows a possible rule for this scenario. You could add a build rule 
(using the Add Build Rule button) and choose “Source files with names matching” 
from the Process pop-up and specify .pp as the text to match. The Using pop-up 
could be set to Custom Script, and the script body itself could merely call fpc (the 
Free Pascal compiler program) with your .pp source file as its argument. Now, for 
this target, Xcode can recognize and properly compile Pascal source files. While the 
Pascal rule should not affect your TestApp project (because there are no Pascal files 
in it), it’s unwise to leave meaningless things in your project. You should remove 
any added or customized rules from your TestApp target to avoid any unexpected 
behavior as you follow along for the remainder of the book.

It’s easy to see how much power this simple feature, hidden away as it is, can 
give you. With this feature, you can teach Xcode how to handle other types of files 
automatically during the build process.

fiGURe 14 .20 A custom build 
rule showing its .pp

www.freepascal.org


ptg6935296

WorkIng WItH targets 175

ADDING NEW TARGETS

There are several reasons why you might want to add multiple targets to a project. 
Your application might need a Spotlight plug-in (kept in its bundle’s Resources 
subfolder so OS X can find it easily). A Spotlight importer plug-in can be kept in a 
separate project, but it makes more sense to keep it within the same project as its 
parent application. Therefore, your project might have a separate target to build 
that plug-in (which would be a dependency of the application’s target and would 
be included in a Copy Files build phase that copies the built plug-in into the app 
bundle’s Resources folder when it is built). The same applies to other plug-ins, 
libraries, bundles, and so on.

Another example might be two separate builds of the same application: a free 
version and a paid “Pro” version. Both applications might share 95 percent of the 
source code and resources but differ only in that the Pro version has the ability 
to access certain features, or in that the free version expires 30 days after its first 
launch. Or, because of Apple’s App Store policies, you might choose to link against, 
include, and use your own registration system in one build of your app, while using 
the App Store receipt validation process in an App-Store-only build.

You might also add a unit test target, which executes unit tests against your 
code. Unit tests are covered in Chapter 18.

fiGURe 14 .21 The target 
template sheet



ptg6935296

176 ChAPTER 14 tHe BuIld system

To add a new target, use the Add Target button at the bottom of the editor while 
a target or project is selected. A sheet appears (Figure 14.21), similar to the one 
that appears when creating a new project. In the figure, a Spotlight importer target 
(for teaching the OS X Spotlight searching facility how to index your application’s 
information) is selected.

If you were to click Next and continue defining the target to add to your TestApp 
project, you’d be prompted with much the same line of questioning as when you 
created the TestApp project (which was necessary to create the TestApp application 
bundle target). In the case of a Spotlight importer target, you only need to give it 
a sensible name (such as TestAppImporter) and a company identifier (preferably 
the same as that of your application). Xcode will add the target to the project’s 
targets list (complete with build settings appropriate to the target type), create a 
separate build scheme for the target, and add the necessary source and resources 
to the project, as seen in Figure 14.22.

fiGURe 14 .22 The new target’s 
resources

Note: The New Target sheet is similar to the New Project 
sheet primarily because Xcode needs to know what kind of 

target (or targets) to add to your newly created project.



ptg6935296

WorkIng WItH targets 177

Since the importer should be a part of the app, you would need to take a few 
extra steps for it to become part of TestApp. First, select the app’s target, select the 
Build Phases tab, and drag the importer target into the Target Dependencies build 
phase (Figure 14.23) to instruct Xcode to build it first so it’s available when building 
the application target. Then, add the importer target to the app target’s Copy Bundle 
Resources build phase. The next time you build TestApp, the importer will be built 
first, then copied into the app bundle’s Resources folder when TestApp itself is built.

The importer would not function as it currently exists. To make it work, you 
would need to customize the code in the MySpotlightImporter.m source file to teach 
it to interpret the application’s data. You would also need to teach Spotlight, by other 
means, how to gather interesting information from the data model you created in 
Chapter 10. The importer is otherwise harmless if left in the TestApp project, so you 
could leave it, customize it to get it working if you’re feeling adventurous, or remove 
the target and its source and resources from the project to keep things tidy.

fiGURe 14 .23 Establishing  
a target dependency

tip: In Xcode 4.0, you cannot drag the importer target directly 
into the resources for some reason. you’ll need to click the Add (+) 
button and choose the product from the Products folder in the sheet.

Note: The code and knowledge necessary to customize the  
importer is beyond the scope of this book. Search the documentation  
for the Spotlight Importer Programming Guide for more information.



ptg6935296

178 ChAPTER 14 tHe BuIld system

You learned that schemes tie together one or more targets with a build configuration 
and destinations. There is no hard set of rules that determines how many schemes 
a target has or how many targets a scheme has. Schemes are meant to be a simple 
way to switch between conceptual sets of these items—sets that make sense to 
your project and workflow.

There are many ways you might use the system, but the simplest example is 
creating separate schemes for an Apple App Store build of your application and a 
build that uses your own customer relations and registration management system. 
You might have a separate scheme to run, analyze, test, and deploy a server-side 
registration key generator—a command-line program that is called from your 
Web store’s server upon successful payment. Any way you look at it, schemes are 
meant to give you an extra layer of flexibility as well as a collection point for these 
conceptual products and code/build/run/test/distribute scenarios.

fINDING yOuR PROjECT’S SChEMES

Unlike many of the target-related settings, schemes 
are right in front of you at all times. The Scheme 

selector control, in addition to letting you select schemes and destinations, allows 
you to manage, edit, and create schemes. This control, which behaves similarly to 
the Jump Bar, is used to select the scheme and destination but is also used to edit 
the currently selected scheme or manage the list of schemes.  The first (leftmost) 
segment lets you select the scheme or lets you create, edit, and manage schemes. 
The second (rightmost) segment selects the destination (Mac, device, simulator, 
and so on) available for the selected scheme.

WORKING WITh scHemes



ptg6935296

WorkIng WItH sCHemes 179

MANAGING SChEMES

Figure 14.24 shows the TestApp project’s schemes, which Xcode automatically 
created for each target (except unit test targets—see Chapter 18). Recall the Spotlight 
importer example from earlier in this chapter and note its presence in the schemes 
list. Because the app and plug-in targets are for Mac OS X only and support both 
32- and 64-bit architectures, each scheme has a 32- and 64-bit Mac destination.

Choose Manage Schemes from the Scheme control to display the sheet shown 
in Figure 14.25. The sheet lets you create, duplicate, delete, reorder, rename, and 
generally wrangle schemes within the current workspace.

fiGURe 14 .24 The Scheme 
pop-up’s menu

fiGURe 14 .25 The scheme 
manager sheet



ptg6935296

180 ChAPTER 14 tHe BuIld system

creaTing schemes
You can create a scheme by clicking the Add (+) button at the bottom of the schemes 
table and choosing New Scheme from the menu. A sheet (Figure 14.26) will appear 
asking for a target and a name. As you recall, schemes are linked to targets, so a 
new scheme must be given a target when created. Once you give the scheme a 
target and a name, click OK and you’re finished.

DUPlicaTing schemes
To duplicate a scheme, select it in the list, click the Add button, and then choose 
Duplicate from the menu. The duplicate scheme will be created and the editing 
sheet (discussed in the “Editing Schemes” section) will appear.

reorDering schemes
You can reorder schemes by dragging them into the desired order in the list. This 
affects the order in which they appear in the Scheme control.

removing schemes
To remove a scheme, just select it and click the Remove (–) button. You’ll be 
prompted before the scheme is removed because this cannot be undone. If you’re 
certain you want to remove the scheme, click Delete to confirm and the scheme 
will be removed.

imPorTing anD eXPorTing schemes
You can also import and export schemes to share across unrelated projects 
by using the Action button to the right of the Remove button. You’ll be 

prompted with a standard save panel for export and a standard open panel for 
import.

fiGURe 14 .26 The New 
Scheme sheet



ptg6935296

WorkIng WItH sCHemes 181

aUTo-creaTing schemes
As mentioned previously, Xcode can create schemes automatically as targets are 
created or duplicated within the project. This feature is active by default so that 
appropriate schemes will be created for targets in projects created by previous 
versions of Xcode and opened in Xcode 4.

To prevent Xcode from automatically creating schemes, deselect the Autocreate 
Schemes check box. If you want to have Xcode generate schemes automatically 
only when you want it to, open the Manage Schemes sheet and click the Autocreate 
Schemes Now button. Otherwise, you can leave this feature disabled and manage 
schemes manually.

Xcode version 4.0 does not remove schemes for deleted targets regardless of 
the auto-create setting; you must remove schemes manually.

EDITING SChEMES

To edit a scheme, you can double-click it in the table in the Manage Schemes sheet 
or select it in the Schemes control (remember to click the scheme name on the left 
part of the control; the right side chooses the destination) and then choose Edit 
Scheme from the menu. The Scheme Editor sheet (Figure 14.27) will appear. This 
is the same edit sheet that appears when duplicating an existing scheme. In the 
figure, the main TestApp target is shown.

fiGURe 14 .27 The Scheme 
Editor sheet

Note: At the time this book was written, Apple’s documentation of some 
of the settings available in the Scheme Editor was terse or nonexistent. 
In some cases, this book provides a best guess at an explanation 
and may be incomplete. Please consult Apple’s documentation if 
some settings don’t appear to work quite as they’ve been explained.



ptg6935296

182 ChAPTER 14 tHe BuIld system

The scheme conTrols
The main scheme controls (Figure 14.28) are shown across the top of the editor 
sheet. These controls match the functionality of the Scheme pop-up as well as of 
the Breakpoints button next to it. The behavior of these controls can be confusing.

The Scheme pop-up in the editor changes the scheme currently being edited as 
well as the active scheme in the Scheme pop-up. Its purpose is primarily to allow 
you to move between schemes without closing the editor sheet. Be aware that it 
also affects the active scheme even after you close the editor.

The Destination pop-up is somewhat more confusing. It directly sets the active 
destination in the main Scheme control but does not appear to do anything more. 
Its presence implies you might have separate destination-dependent settings within 
the scheme, but this is not the case in version 4.0.

The buttons along the bottom of the editor sheet let you duplicate the current 
scheme, go back to the scheme manager sheet, or dismiss the editor sheet (using 
the OK button, which should probably be a Done button).

In the middle of the sheet are two panels, used to edit the settings of each 
action for the scheme. The left panel shows a list of actions corresponding to those 
found under the Product menu in the main menu. Selecting each action reveals 
that action’s scheme settings in the right panel.

fiGURe 14 .28 The main 
Scheme Editor controls



ptg6935296

WorkIng WItH sCHemes 183

The BUilD acTion
The Build action serves as the basis for the rest of the actions. As it’s necessary to 
build a product before it can be run, tested, or profiled, the Build action is always 
performed before performing any of the other actions that need a built product. 
To edit this action, select it from the list on the left of the Scheme Editor sheet. 
Figure 14.29 shows the settings for the Build action.

Two build options are visible at the top of the editor. The Parallelize Build option 
allows Xcode to build multiple independent targets—targets that do not depend 
on other targets—to be built in parallel, taking advantage of your modern multi-
core Mac. The Find Implicit Dependencies option allows Xcode to try identifying 
dependencies automatically. That is, if one target’s product is linked against or 
copied into the resources of another, Xcode can probably figure this dependency 
out automatically. This lets Xcode build the targets in the necessary order without 
your having to define the dependencies yourself. You’ll explore this in more detail 
in Chapters 15 and 16.

The complicated-looking table beneath the build options lists all the targets 
that are to be built for the current scheme. Obviously there would need to be at 
least one target listed here for the Build action to be helpful. Note the columns 
with check boxes that correspond to each of the remaining actions. These check 
boxes control whether the target is built automatically (if necessary) before each 
action is run. In the figure, two targets are listed—the TestApp application itself 
and the tests bundle (see Chapter 18 for more on unit tests). Notice that the 
check box for the Test action is selected and disabled so you cannot deselect it. 

fiGURe 14 .29 The Build 
action’s options



ptg6935296

184 ChAPTER 14 tHe BuIld system

Likewise, TestApp’s Test, Run, and Profile actions are selected and disabled. This 
indicates that a built product is required for these actions.

You can use this table to define dependencies directly (especially useful in 
complex situations where Xcode is unable to determine the dependencies itself). 
Use the Add (+) button at the bottom to choose another target within the work-
space (including multi-project workspaces). You can drag the dependencies into 
the required order if necessary (just remember to deselect the Parallelize Build 
option if order truly is important).

There’s one other item of interest hiding in the Build action’s settings. Notice 
the disclosure triangle beside the TestApp target. If you expand it, you’ll see the 
TestAppImporter target you created earlier in the chapter. Because you placed the 
Spotlight importer product into the TestApp target’s Target Dependencies build 
phase, it’s been automatically included in the list (and has the same per-action 
settings as TestApp).

The rUn acTion
The Run action specifies the executable to run, the debugger to use, arguments to 
pass, and some environmental settings when you ask Xcode to run with the active 
scheme. Figure 14.30 shows the Run action’s multi-tab editor.

The Info tab (Figure 14.30) holds the basic settings for the Run action. The Build 
Configuration pop-up lets you select the configuration (such as Debug or Release) 
to use when running. The default is the Debug configuration so the debugger can 
be used. The Executable pop-up, predictably, lets you choose the executable to run. 

fiGURe 14 .30 The Run action’s 
Info tab



ptg6935296

WorkIng WItH sCHemes 185

In this case, it’s the only executable available in the project: TestApp.app. Targets 
without executables (such as our Spotlight importer) will have their Executable 
set to None, since they can’t be “run” on their own. The Debugger pop-up lets you 
choose among installed debuggers. In Xcode 4.0, GDB is the default, while LLDB 
is available. The Launch options instruct Xcode either to launch the executable 
automatically when the Run action is evoked (the default and most common 
behavior) or to wait for you to launch it yourself before running, attaching the 
debugger, and so on.

The Arguments tab (Figure 14.31) lets you control the launch arguments, envi-
ronment variables, and debug symbol loading during runtime. The Base Expan-
sions On pop-up specifies which executable’s specific environment variables (as 
seen in the run logs) are to be used when expanding those Xcode supplies (such 
as BUILT_PRODUCTS_DIR). The Arguments Passed On Launch list lets you use the 
Add (+) button to add specific arguments to be passed when the application launches. 
This makes the most sense when running command-line programs. You use the 
Add button in the Environment Variables list to add or override the environment 
variables present (such as USER) in the application’s environment. The Module 
Names To Load Debug Symbols For list lets you instruct Xcode to load debugging 
symbols for libraries to which your application links. If you have debug symbols 
available for a given library, you can make their debugging information available 
to Xcode for use in debugging sessions by specifying the module name.

The Options tab (Figure 14.32) is for the more general runtime options. The 
Persistent State option disables the restoration of an application’s persistent state 
(API added to Mac OS X 10.7). The Document Versions option turns on additional 

fiGURe 14 .31 The Run action’s 
Arguments tab

fiGURe 14 .32 The Run action’s 
Options tab



ptg6935296

186 ChAPTER 14 tHe BuIld system

debugging support for browsing versions in the new 10.7 document versions API. 
The Working Directory option lets you specify a custom working directory for the 
executable at runtime.

The Diagnostics tab (Figure 14.33) specifies a number of options for memory 
management debugging, logging details, and debugger behavior during runtime. 
The specifics of each of these options are beyond the scope of this book. Please 
see Apple’s documentation for details.

The TesT acTion
The Test action specifies the unit test bundle to use for the scheme. Figure 14.34
shows the Info tab of the Test action editor. When you created the TestApp project, 
you chose to include unit tests. This caused Xcode to create a unit test bundle for the 
TestApp product and add it to the tests to be run in this action. The  TestAppTests 
bundle appears in the Tests list as a result (and it will not be skipped in this scheme 
because the Test check box is selected). The Build Configuration pop-up menu 
defaults to the Debug configuration (since Release would make it difficult to debug 
if the test fails). The Debugger pop-up works the same way as in the Run action—it 
specifies the debugger to use when running unit tests.

The Arguments tab (Figure 14.35) allows you to specify options similar to 
those of the Run action (without the ability to load extra debug symbols). The 
only difference is the check box at the top (“Use the Run action’s options”). This 
check box is selected by default and, when active, disables the Test action’s own 
arguments controls, using those defined in the Run action instead. Deselect this 
to specify a separate set of arguments and environment variables for testing. For 
more information on unit testing, see Chapter 18.



ptg6935296

WorkIng WItH sCHemes 187

fiGURe 14 .34 The Test action’s 
Info tab

fiGURe 14 .35 The Test action’s 
Arguments tab

fiGURe 14 .33 The Run action’s 
Diagnostics tab



ptg6935296

188 ChAPTER 14 tHe BuIld system

The Profile acTion
The Profile action is Xcode’s gateway to launching Instruments, Apple’s code-profiling 
tool (covered in Chapter 20). Figure 14.36 shows the Info tab of the Profile action 
editor. The Build Configuration, Executable, Working Directory, and UI Resolu-
tion settings all work the same as in previously discussed actions. The key setting 
here is the Instrument pop-up. The Ask on Launch setting will open Instruments’ 
Trace Template sheet (Figure 14.37), prompting you to choose a trace instrument 
to use when profiling your executable. All other settings in the pop-up launch the 
executable within Instruments with the chosen trace instrument selected.

The Arguments and Options tabs work in the same way as those of the Test 
action. That is, you can specify arguments and environment variables or use the 
Run action’s settings.

fiGURe 14 .36 The Profile 
action’s Info tab

fiGURe 14 .37 Instruments 
templates

Note: If you’ve selected Ask on launch and Instruments is already running 
(that is, you’ve already selected a trace instrument the first time), subse-

quent calls to the Profile action will immediately run your executable 
using the previously chosen instrument without asking again. Close the 

Instruments window to be prompted again next time.



ptg6935296

WorkIng WItH sCHemes 189

The analyze acTion
The Analyze action runs the static analyzer (introduced in Chapter 9 and covered 
in more depth in Chapter 17) against the targets specified in the Build action.

The editor has only one option: the Build Configuration pop-up. As with 
other actions, use this to specify the configuration (usually the default Debug or 
a debugger-friendly configuration) to use when analyzing the built target(s).

The archive acTion
The Archive action, covered in Chapter 12, is responsible for creating an archive of 
all built targets and their dSYM debugging information. The archives are suitable 
for submission to Apple’s (Mac and iOS) App Stores.

The editor (Figure 14.38) has only three options. The first, Build Configuration, 
works as expected. A Release build makes the most sense and is the default, but 
you’re free to create your own release-friendly configurations for use here. The 
Archive Name field lets you specify a name to use for the created archives. The 
Options section (with only one option) lets you specify via the check box that 
you’d like Xcode to reveal the archive in the Archives tab of the Organizer (also 
mentioned in Chapter 12) when the action is complete.

fiGURe 14 .38 Archive  
action options



ptg6935296

190 ChAPTER 14 tHe BuIld system

Pre-acTions anD PosT-acTions scriPTs
You may have noticed the disclosure triangle next to each action in the Scheme 
Editor’s actions list. When expanded, you’ll see three entries (Figure 14.39). When 
you select the action, you’re viewing the options for the action itself (the middle 
item in the expanded action’s children), but what about the Pre- and Post-actions 
items? Pre-actions are things that can be done prior to the start of an action. Post-
actions are done after. If you select one of them, you’ll see an empty editor.

In Xcode 4.0, there are two different pre/post action types you can perform: 
execute script or send e-mail. Using the Add (+) button, you can add one or more 
of either type of action. Figure 14.40 shows a simple set of actions that notifies 
the pathetic humans (and their pointy-haired masters) of the completion of an 
Archive action.

These extra hooks into Xcode’s main actions open up the possibilities for process 
customization considerably. See Chapter 19 for more ideas regarding interesting 
ways of taking advantage of Xcode’s various scripting hooks.

fiGURe 14 .39 Extra action 
options

fiGURe 14 .40 Some example 
post-actions



ptg6935296

entItlements (sandBoXIng) 191

Application sandboxing is a security concept introduced in Mac OS X 10.7. Opting 
into this system makes your application more secure by limiting its access to vari-
ous system resources unless specifically requested in the application’s entitlements.

Because of the flexibility and openness of an Objective-C application, foreign 
code can be “injected” into the application or the application’s binary can be 
modified. This code would run with the same privileges your application enjoys. 
By voluntarily limiting your application’s system access to only those resources it 
actually needs, you are reducing the chances for malicious code to achieve whatever 
goal it has in its evil little bytes. Much could be said on the topic, and likely will 
be by plenty of other books, but as always, this book’s focus is on the IDE, not the 
technologies it helps you control.

Xcode makes managing your application’s entitlements easy. To find their 
settings, navigate to the desired build target and click the Summary tab. The 
Entitlements section (Figure 14.41 contains a list of toggles and choices.

fiGURe 14 .41 The Entitlements 
controls

Note: Application sandboxing relies on code signing.  
for more information, see the Code Signing and Application 
Sandboxing Guide at http://xcodebook.com/codesigning.

entItlements (SANDBOXING)

http://xcodebook.com/codesigning


ptg6935296

192 ChAPTER 14 tHe BuIld system

ACTIvATING ENTITlEMENTS AND SANDBOXING

You can turn on entitlements for your app by selecting the Enable Entitlements 
check box at the top of the list. You then choose an entitlements file from the 
Entitlements File pop-up. Xcode helpfully creates one matching the name of your 
target and adds it to your project (Figure 14.42. The file is a simple preference list. 
You can edit it by selecting it using the same preference list editor you’ve used 
elsewhere, but it is easier to use the Entitlements section you’re exploring now.

To sandbox your application, select the App Sandbox check box. Now you must 
grant your application access to the functionality it needs.

SETTING SPECIfIC ENTITlEMENTS

The remaining settings in the Entitlements section grant specific entitlements to 
your application.

file sysTem
Use the File System pop-up to allow your application to read and write, to read-only, 
or to have no access to the file system. Select the Allow Downloads Folder Access 
check box to grant access to the Downloads folder regardless of the general file 
system access setting. File system access is disallowed by default.

neTwork
Use the Network check boxes to allow incoming or outgoing connections. Network 
communication is disallowed by default.

harDware
Use the Hardware controls to allow access to cameras, microphones, USB devices, 
and printers attached to or accessible by the system. None of these are allowed 
by default.

fiGURe 14 .42 The Entitle-
ments file



ptg6935296

WrappIng up 193

aPPs
Use the Apps controls to allow access to the user’s address book and calendar data 
as well as to location services. None of these are allowed by default.

meDia folDers
Use the Music, Movies, and Pictures folders to access pop-ups that grant read-only 
or read and write access to each of these folders. Access is disallowed for each by 
default.

WRAPPING up

This chapter covers a lot of material, but Xcode’s new build system is easily the 
most important and arguably the most difficult concept to understand. An IDE 
is an environment that helps the developer manage the most basic actions per-
formed during the course of development: building, running, debugging, testing, 
and deploying a product. The Xcode 4.0 approach differs significantly from that 
of previous versions and, as Xcode veterans will attest, has quite a learning (or 
un-learning) curve.

In the next chapter, you’ll expand on this knowledge by exploring the concept 
of plug-ins and frameworks a bit further. Then, in Chapter 16, you’ll learn to work 
with Xcode’s workspaces concept and the true power of automatic dependency 
detection by combining a framework project with the TestApp project.



ptg6935296

15

lIBrArIes, 
FrAmeworks, anD
loAdABle Bundles



ptg6935296

195

In previous chapters, you saw the templates 

Xcode provides for a variety of projects. You 

also learned that the project templates dictate 

the types of targets that will be set up for you. There’s a rich world 

full of products beyond applications. Not only can you write them 

yourself, but you can also use the work of others in the form of 

third-party plug-ins, libraries, and frameworks. In this chapter, 

you’ll explore the distinctions between these things as well as 

how to use them or build your own.



ptg6935296

196 ChAPTER 15 lIBrarIes, FrameWorks, and loadaBle Bundles

WhAT ARE lIBrArIes, 
FrAmeworks, AND Bundles?

Libraries, frameworks, and bundles are similar in that you can think of them as pre-
packaged code meant to be used from within another library or application. They’re 
all meant to improve or expand the functionality of an executable (including those 
that are part of the operating system) by making their code available to it. Plug-ins, 
which we’ve discussed in previous chapters, are in fact a specific type of bundle.

Purists may take exception to the oversimplified descriptions that follow, but 
because this is a book about Xcode, we’ll keep things simple and leave the details 
(or extreme accuracy) for programming books.

lIBRARIES

The term library has the same meaning on every platform. A library is the most 
basic form of prepackaged, shared code meant to be reused in multiple applica-
tions. Mac OS and iOS come with a number of standard C libraries and libraries 
specific to the operating system. In the Mac and iOS world, static libraries have 
the .a extension (a static object code library archive), while dynamically loaded 
libraries have a .dylib extension.

statIC lIBrarIes
Static libraries are linked into the executable by the linker at build time. That is, the 
code in the library is un-archived and copied into the executable along with your 
program’s compiled object (.o) files. Static libraries result in a larger executable 
because the library’s code isn’t shared but merely “available to copy.” An example 
of a common static library is libc.a, the standard C library.

dynamIC lIBrarIes
Dynamic libraries can be loaded at launch time or when needed at runtime. The code 
from the library is shared and is not part of the executable. This gives the potential 
for faster launch times, smaller executables, and less wasted space (as a result of 
many executables carrying the same code linked from a static library). An example 
of a popular dynamic library Cocoa developers use every day (perhaps without 
realizing it) is libobjc.a.dylib, which contains the Objective-C runtime library.



ptg6935296

WHat are lIBrarIes, FrameWorks, and Bundles? 197

fRAMEWORKS

A framework is a bundle of files and folders that can contain dynamic shared 
libraries, Interface Builder files, localized (translated) strings, headers, and media 
resources. It could contain nothing but a dynamic library or nothing but resources. 
If you’ve used Cocoa, you’ve used a collection of frameworks already.

You’ve likely heard Cocoa being called “the Cocoa frameworks.” That’s because 
Cocoa.framework actually is an “umbrella framework” that encompasses a number 
of sub-frameworks. One such sub-framework is Foundation.framework, which gives 
you basic strings, container classes, and so on. On a Mac, things like windows, but-
tons, and drawing routines come from AppKit.framework, a Cocoa sub-framework. 
The same goes for AppKit’s iOS cousin, UIKit.framework.

Unless your Cocoa application is fairly simple, it’s likely you’ll be using other 
frameworks, provided by the system or by third parties, that can be linked against 
to provide functionality not found in the core Cocoa frameworks themselves. At the 
very least, you may end up using a Cocoa framework that’s not normally automati-
cally linked. In fact, when you created the TestApp project and specified it should 
use Core Data, Xcode automatically included CoreData.framework and added it 
to the Link Binary With Libraries build phase of the TestApp target.



ptg6935296

198 ChAPTER 15 lIBrarIes, FrameWorks, and loadaBle Bundles

lOADABlE BuNDlES

A bundle is a directory structure that appears to the end user as a single file. Applica-
tions, frameworks, plug-ins, and kernel extensions are all specific kinds of bundles.

A loadable bundle contains code and resources that can be loaded and unloaded 
at runtime. This enables developers to divide up their applications into modules 
and even provide extensibility in the form of plug-ins. For example, the Spotlight 
search system comes with a core set of plug-ins that teach it how to index various 
types of files. Third-party developers can create Spotlight importer plug-ins to 
allow Spotlight to index even more file types (usually files created by their own 
applications). Screen savers are another example. Each screen saver is a plug-in (a 
bundle) that teaches the screen saver application how to display yet another form 
of eye candy, while the screen saver application itself only takes care of loading 
the effects or stopping when the user moves the mouse (and possibly provides a 
password to unlock the screen).

Xcode comes with a dazzling array of bundle types. As you saw in the previ-
ous chapter, there are templates to create plug-ins for Spotlight, Address Book, 
QuickLook, System Preferences, Automator, Dashboard, and even the kernel. 
Alternatively, you can just choose the generic Bundle template (found under the 
Framework & Library template group) and optionally tack on your own extension 
(such as .testappplugin) to stand out from the crowd.

Loadable bundles are like libraries or frameworks that your users can install 
and remove by drag and drop. Although things like Spotlight plug-ins often come 
embedded within an application bundle (which Spotlight automatically finds), their 
power as standalone plug-ins that a user can add or remove themselves is often 
overlooked. It’s important to be aware that loadable bundles can just as often be a 
product in themselves as a component embedded in another product.



ptg6935296

usIng eXIstIng lIBrarIes and FrameWorks 199

Using an existing library or framework is simple in Xcode, especially if it’s included 
as part of the operating system. At a minimum, you need to link your target against 
the library or framework. You learned how to do this in Chapter 14. To use a frame-
work in code, you may need to include one or more of its shared headers.

If you’re using a framework that isn’t part of the operating system, you’ll have 
to distribute it with your product. This means you would have to add a Copy Files 
build phase to the product, specifying the framework to copy into the bundle’s 
Frameworks folder.

SySTEM fRAMEWORK EXAMPlE

Let’s use WebKit.framework as a simple example of how to use a system framework 
to add Web browsing capabilities to a product. You’ll add a simple window contain-
ing a Web view that automatically loads Google’s home page.

lInkIng agaInst tHe FrameWork
To link against WebKit, select the project in the Project navigator. Select the TestApp 
target, then click the Build Phases tab. Expand the Link Binary With Libraries phase 
and click the Add (+) button. A sheet (Figure 15.1) will appear, prompting you to 
choose from the list of available system or workspace libraries and frameworks 
or to add another from an alternative location. Type web to filter the list, select 
WebKit.framework, and click Add. In addition to Cocoa.framework, TestApp will 
now be linked against WebKit to gain all its super Web powers (Figure 15.2).

fiGURe 15 .1 The Framework and 
Library sheet

fiGURe 15 .2 The WebKit framework 
in the linking build phase

uSING eXIstIng lIBrArIes 
AND FrAmeworks



ptg6935296

200 ChAPTER 15 lIBrarIes, FrameWorks, and loadaBle Bundles

WIrIng up tHe uI
To display this great power (and with it, its great responsibility), you need to add 
some UI. Navigate to MainMenu.xib, which holds TestApp’s user interface. Add 
another window to the interface by dragging it from the Object library, as you 
learned to do in Chapter 5. I suggest a textured window for Safari-like fun. Filter 
the Object library for the word “web,” drag a Web view to your new window, and 
position it to taste. You should have something similar to Figure 15.3.

fiGURe 15 .3 A simple  
Web view



ptg6935296

usIng eXIstIng lIBrarIes and FrameWorks 201

A Web view isn’t very useful without a Web site to visit. To save time, assume 
your only user is your grandmother, who of course ignores the address bar com-
pletely and Googles every Web address. You need an IBOutlet that you can use to 
communicate with the Web view, so that you can tell it to load Google.com. Use the 
Assistant to drag a connection from the Web view to the TestAppAppDelegate.h
file, as you learned in Chapter 5. Name it webView. When you’re finished, you 
should have things configured as you see in Figure 15.4.

fiGURe 15 .4 The finished 
workspace changes



ptg6935296

202 ChAPTER 15 lIBrarIes, FrameWorks, and loadaBle Bundles

usIng tHe FrameWork In Code
Now you just need to add some code to load Google.com into the Web view when 
the application launches. Before you can use symbols from WebKit, you have to 
include its main header. Since you reference a WebView as an outlet in the app del-
egate’s header, it’s easiest to import the WebKit header there. Since the Assistant 
window is already open to it, find the #import statement near the top of the source 
file and add the following code on a new line after it:

#import <WebKit/WebKit.h>

Navigate to the implementation file (TestAppAppController.m) and find  
the -applicationDidFinishLaunching: method. Add the following code into the 
body of the method:

NSURL * googleURL = [NSURL URLWithString:@”http://google.com”];

NSURLRequest * request = [NSURLRequest requestWithURL:googleURL];

[[webView mainFrame] loadRequest:request];

tip: The WebKit.h header is an “umbrella” header that includes 
any other headers in the WebKit framework. Referencing this 

header includes all headers from WebKit.



ptg6935296

usIng eXIstIng lIBrarIes and FrameWorks 203

That’s it. Run the application. You might have to fish around for the second 
window (look behind the one you’re familiar with), but it should be waiting there 
with Google loaded and ready for a search (Figure 15.5). Go ahead and try it out.

negatIve reInForCement
Now break it. To prove that the power to use a Web view comes from linking against 
WebKit.framework, unlink it. Navigate back to the TestApp target in the project, 
and then remove WebKit.framework from the Link build phase. Try running the 
app. I dare you. The app should terminate on launch on signal SIGABRT and spew a 
bunch of messages and a stack trace into the debugger console. The most interesting 
console message is the second one, that mentions “cannot decode object of class   
(WebView),” which is a good indicator you’re referencing symbols from a library 
that hasn’t been loaded (usually because you haven’t linked against it). To fix it 
again, just add WebKit.framework back into your Link build phase.

fiGURe 15 .5 A working  
WebView showing Google.com



ptg6935296

204 ChAPTER 15 lIBrarIes, FrameWorks, and loadaBle Bundles

ThIRD-PARTy fRAMEWORK EXAMPlE

Third-party frameworks require a little more work to use. Since they aren’t a part 
of the operating system, they must be distributed with the application. The most 
common way to do this is to embed the framework inside the application bundle 
so that it goes along for the ride when the user installs your application.

addIng a FrameWork to tHe projeCt
Most third-party frameworks are open source and many must be built before they 
can be used in your project. For this example, you can download a simple (and 
almost entirely useless) framework called Foo.framework from this book’s Web 
site. The direct download URL is http://files.xcodebook.com/fooframework/
FooFramework.zip. Download the file and unzip its contents. You should see a 
folder titled Foo.framework.

fiGURe 15 .6 Adding the 
framework to the project by 
dragging and dropping

fiGURe 15 .7 Copying items 
into the project folder via the 
Add Files sheet

Note: you can skip copying the framework into the project folder, but you’ll have to keep 
track of where all the pieces necessary to build your project are located. One way to do 

so is to create a conveniently located folder called Third-Party Frameworks or something 
similar so you always know where it is, no matter the project.

http://files.xcodebook.com/fooframework/FooFramework.zip
http://files.xcodebook.com/fooframework/FooFramework.zip


ptg6935296

usIng eXIstIng lIBrarIes and FrameWorks 205

To add the framework to the project, drag Foo.framework into the Project 
navigator and drop it inside the Frameworks group (Figure 15.6) for neatness 
(although it doesn’t actually matter where you drag it—you can organize your 
project however it best suits you). The Add Files sheet you encountered in 
Chapter 6 will appear (Figure 15.7). Make sure to select the “Copy items into 
destination group’s folder (if needed)” check box and click Finish. The frame-
work will be copied into the project folder and appear in the Project navigator.

lInkIng agaInst tHe FrameWork
Unlike in the last example, Xcode has automatically added the framework to the 
Link build phase of the TestApp target. This was done for you because, as you saw 
in Figure 15.7, you accepted the default settings for the Add to Targets table (that 
is, you asked Xcode to add the framework to the TestApp target only). Xcode is 
smart enough to know that a library should be added to the Link build phase of 
the selected targets. You can verify this for yourself by examining the target’s Link 
phase (Figure 15.8).

fiGURe 15 .8 The Foo  
framework in the target’s  
Link build phase



ptg6935296

206 ChAPTER 15 lIBrarIes, FrameWorks, and loadaBle Bundles

emBeddIng tHe FrameWork
To embed the framework within the application, navigate to the Build Phases tab 
of the TestApp target. Add a Copy Files build phase by clicking the Add Build Phase 
button at the bottom of the window and selecting Add Copy Files. Double-click 
the title of the new build phase and change it to Copy Frameworks for clarity. 
Expand the build phase and set the Destination pop-up to Frameworks. Now drag 
Foo.framework from the Project navigator into the Copy Frameworks phase. Your 
new build phase should look like Figure 15.9.

fiGURe 15 .9 Adding the Foo 
framework to a Copy Files 
build phase with Frameworks 
as its destination

Note: you can opt to install a framework in a shared location, 
but the ins and outs of framework distribution are beyond 

the scope of this book. See the framework Programming Guide 
in Apple’s documentation for more details.



ptg6935296

usIng eXIstIng lIBrarIes and FrameWorks 207

usIng tHe FrameWork In Code
Foo.framework doesn’t have any UI components, but it provides two classes: 
MyFoo and MyBar. You can verify this by creating an instance of two classes 
provided by the framework and logging their descriptions to the console. You’ll 
do this at application launch, as in the previous example, so navigate to the  
-applicationDidFinishLaunching: method of the TestAppAppDelegate.m  source 
file and add the following to its body:

MyFoo * foo = [[[MyFoo alloc] init] autorelease];

MyBar * bar = [[[MyBar alloc] init] autorelease];

NSLog(@”Foo says: %@”, foo);

NSLog(@”Bar says: %@”, bar);

Remember to add the following to import the framework’s header so Xcode is 
aware of the new symbols the framework provides:

#import <Foo/Foo.h>

Run TestApp and watch the debugger console’s output. You should see some-
thing like the following:

2011-03-05 15:50:57.623 TestApp[40877:903] Foo says: <MyFoo:  
p0x1006f0b10> - Foo!

2011-03-05 15:50:57.623 TestApp[40877:903] Bar says: <MyBar:  
p0x1006f1670> - Bar!

To summarize, the extra steps to use a third-party framework are: adding it 
to your project, optionally copying it into the project folder when adding it, and 
embedding it into your application bundle so it’s distributed with the application.

tip: If you’re unsure which header to include, you can either use AutoComplete or 
expand the framework itself in the Project navigator list, open its headers subfolder, 
and take a look around. Also, most frameworks have an umbrella header named for the 
framework itself, such as “Foo.h” for Foo.framework or “WebKit.h” for WebKit.framework.



ptg6935296

208 ChAPTER 15 lIBrarIes, FrameWorks, and loadaBle Bundles

In addition to using system and third-party frameworks, it can be useful to create 
your own. One simple benefit is that you can place code that is shared between a 
Mac OS version and an iOS version of your application in a single, common loca-
tion. Both can link against the same framework and benefit from improvements 
and bug fixes from the same source.

To familiarize you with this process, you’ll create a simple framework in a 
separate project and learn how to build it for release so it’s ready to use in other 
projects. In Chapter 16, you’ll learn how to combine projects into a single work-
space, allowing Xcode to recognize it as a dependency and build and include it in 
TestApp automatically.

CREATE ThE PROjECT

To create a new project, choose File > New > New Project from the main menu. 
Choose the Framework & Library group under the Mac OS X section. Select Cocoa 
Framework from the list and click Next.

The project options sheet (Figure 15.10) will appear. In the Product Name field, 
enter TestAppSharedFramework so you can distinguish it from the TestApp proj-
ect. It’s also a good idea to make sure the Company Identifier value is the same as 
the one you gave for the TestApp project. You can deselect the Include Unit Tests 
check box for simplicity. Click Next.

Select the “Create local git repository for this project” check box and select the 
same folder that contains the TestApp project folder (the TestApp folder’s parent). 
Make certain you don’t save it in the TestApp project folder, but one level above. 
Click Create to create the project. You should have a shiny new project window, as 
seen in Figure 15.11. Now you’re ready to add some code.

creaTing a FrAmework



ptg6935296

CreatIng a FrameWork 209

fiGURe 15 .10 Creating a new 
framework project

fiGURe 15 .11 The new frame-
work project workspace



ptg6935296

210 ChAPTER 15 lIBrarIes, FrameWorks, and loadaBle Bundles

ADD SOME CODE

As you read in earlier chapters, TestApp isn’t particularly useful for anything beyond 
exploring Xcode. Its shared framework won’t help it sell on the App Store either, 
but it will be a handy demonstration in Chapter 16.

To start with, a framework should have a simple umbrella header—that is, 
a header that includes all other headers needed to use the framework and that 
allows a one-stop import into other classes. To add this umbrella header, select 
the TestAppSharedFramework group in the Project navigator and then choose 
File > New > New File from the main menu. From the Add File sheet, choose the 
C & C++ category under the Mac OS X header in the list, choose the Header File 
template (as in Figure 15.12), and click Next. When prompted to save, leave the 
folder location, Group, and Add to Targets settings as they are, name the header 
TestAppSharedFramework (to match its parent framework’s name), and click 
Save. You’ll have an empty header file ready for later use.

fiGURe 15 .12 Creating a new 
header file



ptg6935296

CreatIng a FrameWork 211

Next, you’ll add a simple class whose only mission in life is to answer   
its –description method with a simple “Hello World!” Repeat the New File process, 
selecting the Objective-C Class template from the Cocoa category. When you click 
Next, supply the class name NSObject for the “Subclass of” field. Click Next again 
to be prompted to save. Change the filename in the Save As field to TestFoo, and 
click Save. Make sure the TestFoo.m source file is selected in the Project navigator 
so that its source is visible in the editor. Just above the @end directive at the end of 
the file, add the following method:

- (NSString *)description

{

  return @”Hello World!”;

}

This gives the TestFoo class the ability to say hello when asked for its descrip-
tion. You’ll use that later. For now, you need to add its header file, TestFoo.h, to the 
framework’s umbrella header for later import. Navigate to TestAppSharedFramework.h
in the Project navigator and add the following on a new line at the end of the file:

#import “TestFoo.h”

Any other classes you add to your framework can be similiarly included in 
this umbrella header. This way, when your framework is used, there is only one 
header to import, which brings the headers of any other classes along for the ride.

Try a build (Command+B) and verify there are no build issues. The framework 
should build cleanly.



ptg6935296

212 ChAPTER 15 lIBrarIes, FrameWorks, and loadaBle Bundles

CONfIGuRE ThE hEADERS

In order to use a framework’s headers, they must be configured in the Copy 
Headers build phase. To do so, navigate to the project itself and then select the 
TestAppSharedFramework target in the list. Next, select the Build Phases tab and 
expand the Copy Headers phase (Figure 15.13).

fiGURe 15 .13 The Copy 
Headers build phase



ptg6935296

CreatIng a FrameWork 213

Note that the headers automatically appear in the Project group. In order to 
use the framework’s code, the headers must be made public. To do so, drag both 
the TestAppSharedFramework.h and TestFoo.h headers into the Public group, as 
shown in Figure 15.14.

fiGURe 15 .14 The framework’s 
headers made public in the 
Copy Headers phase



ptg6935296

214 ChAPTER 15 lIBrarIes, FrameWorks, and loadaBle Bundles

To have a look at the innards of your newly minted framework, build one more 
time (Command+B) and then expand the Products group in the Project navigator. 
Right-click (or Control-click) the TestAppSharedFramework.framework product 
and choose Show in Finder from the pop-up menu. Figure 15.15 shows the fully 
expanded folder structure with the code library and its public headers.

fiGURe 15 .15 The built frame-
work’s file structure

tip: If you wanted to use this framework right now, you’d 
have to archive it or manually create a release build scheme 

and build it with that scheme. See Chapter 19 for alternative deploy-
ment build approaches.



ptg6935296

WrappIng up 215

That’s all there is to it. You have a fully functional framework with some custom 
code that could be shared between multiple projects. You’ll use this framework in 
TestApp in Chapter 16.

WRAPPING up

You’ve seen how to create plug-ins and frameworks and learned how to use them 
in other projects. In the next chapter, you’ll see how you can combine multiple 
projects into a single workspace and even create dependencies between them so 
you can build your new TestAppSharedFramework framework and include it in 
TestApp on each build.

tip: It’s very common (and considered good 
practice) for developers to create test application 
targets alongside the framework. This application is 
used to test your framework as it’s being developed.



ptg6935296

16

workspAces



ptg6935296

217

Up to this point, the TestApp project has been 

just that—an Xcode project. The collection of 

files and folders are bound by an .xcodeproj 

file that contains all the project-wide settings (such as a description 

of your schemes and targets). Throughout the book, however, the 

word “workspace” has been used as a more general description of 

the project and the window that contains it all. A true workspace 

encompasses multiple projects.



ptg6935296

218 ChAPTER 16 WorkspaCes

WhAT IS A workspAce?

Xcode 4 introduces the idea of a workspace as a kind of project binder—a container 
for multiple projects. A project groups together its related files and settings; a 
workspace binds multiple related projects. A workspace merely contains pointers 
to Xcode projects. Projects remain distinct in that you can remove them from a 
workspace without affecting the project’s content or settings. In other words, the 
project can still be opened and edited outside its workspace. Workspaces give 
you several advantages over projects that reference files and built products from 
other projects.

Projects contained within the same workspace share a common build loca-
tion. This makes it possible for one project to use another’s built products. This 
one feature makes a world of difference for managing complex applications and 
application suites. It makes it far easier, for example, to include the built product 
of a common framework project into one or more of your application projects.

The automatic dependency detection you learned about in Chapter 14 extends 
to the workspace level as well. This means that including a product’s framework 
in the target of an application project within the same workspace usually requires 
no additional work for Xcode to recognize the dependency. As with dependent 
targets within the same project, Xcode will see this dependency and build the 
framework before building the application. In other words, you don’t have to copy 
shared libraries into each project folder in which you intend to use the library.

Note: Xcode may not be able to detect complex dependencies 
automatically. In this case, you’ll need to disable the  

find Implicit Dependencies setting of the affected scheme  
and add and sort the interdependent targets manually.



ptg6935296

WHat Is a WorkspaCe? 219

Another benefit of a workspace is shared indexing. A project index is used pri-
marily for features such as code completion (Code Sense). Xcode’s automatic code 
completion and refactoring facilities will take the symbols of all projects included 
in the workspace into account. This means code completion will automatically find 
your framework project’s symbols and make them available to you when editing 
source files in the application project that uses the framework.

Still another benefit of workspaces pertains to schemes. A standalone project 
might contain a primary scheme for building, testing, and profiling a primary 
product in addition to schemes for smaller, dependent targets (such as a Spotlight 
plug-in). In a workspace, you may only want to see the scheme for each project’s 
primary product. Using the Manage Schemes panel you explored in Chapter 14, 
you can specify whether the schemes for those smaller “sub-targets” are visible 
at the workspace level or only when the project is opened individually. This can 
help keep the list of schemes short and manageable, hiding unnecessary detail 
from the various projects within the workspace.



ptg6935296

220 ChAPTER 16 WorkspaCes

It’s hopefully obvious that a workspace is useless without two or more projects. 
Less obvious but just as important is that a workspace doesn’t help with multiple 
unrelated projects. A workspace is only helpful for two or more projects that must 
share each other’s code and resources. Let’s look at two real-world examples.

DISTINCT APPlICATIONS

Imagine Acme Corporation has a whole host of unrelated desktop (and even 
mobile) applications. Here, “unrelated” means a calculator application, a calendar 
application, and an address book application. Each of these applications has only 
one thing in common: They’re products of Acme Corporation.

Being the property of the same business entity, the applications presumably 
use the same software registration system, company logo, contact information, and 
so on. They may even be able to share user data among them. This means each 
application would use the same code, resources, or both.

A change to the Person and Event classes, for example, might need to be updated 
in both the address book and calendar applications. While these classes may or 
may not be wrapped in a library or framework, it makes little sense to maintain 
two copies of Person and Event (one in each project). Here, a separate project that 
at least contains the common model-layer classes (and corresponding unit tests) 
makes sense. A separate framework project makes even better sense.

Since the applications are otherwise unrelated, each application might have its 
own workspace that includes the application project and the shared framework 
project.

APPlICATION SuITES

Imagine Acme Corporation’s desktop calendar application has gone where no cal-
endar application has gone before. Against all odds, it has become a best seller, and 
users are clamoring for mobile versions for their various devices. Acme Corporation, 
in addition to its other products that share company-wide resources, now has a 
product that supports two platforms, shares company-wide resources, and has 
a device synchronization library to let users share calendar information between 
their devices and their desktop computers.

In this case it would make sense to have a workspace containing the two appli-
cation projects (Mac OS and iOS), their sync library project, and the company-wide 
resource project.

wHen to use A WORKSPACE



ptg6935296

CreatIng a WorkspaCe 221

Creating the workspace is easy. Choose File > New > New Workspace from the main 
menu. A new workspace window will appear with a Save As sheet prompting you 
for a location in which to save it (Figure 16.1). Note in Figure 16.1 the two project 
folders you created in previous chapters—TestApp and the shared framework you 
created in Chapter 15.

The common parent folder that contains these two project folders is a good 
place to keep the workspace file so that it’s easy to find. Enter TestApp Suite as the 
workspace name so it’s clear that this workspace contains subprojects belonging to 
the whole TestApp suite of applications (a Mac OS X app, an iOS app, and a shared 
framework between them, in the product plan of your imagination). Once you’ve 
chosen the name and location, click Save. The sheet will close and leave you with 
a disconcertingly empty workspace window.

fiGURe 16 .1 Saving  
a workspace

creAtIng A WORKSPACE



ptg6935296

222 ChAPTER 16 WorkspaCes

ADDING PROjECTS TO ThE WORKSPACE

Now it’s time to add the projects to the workspace. Using the Finder, navigate to the 
folder containing the workspace and projects. For each project (the application and 
the framework), find its .xcodeproj file (Figure 16.2) and drag it into the Project 
navigator list of the TestApp Suite workspace window (Figure 16.3).

After you add the first project, take care to drop subsequent projects either 
above or below existing projects, keeping the blue insertion bar as far left as pos-
sible. Dropping a project into another makes it a subproject, which is not the same 
thing. Figure 16.4 shows the TestApp project being inserted above the framework 
project and not inside it.

MANAGING INTER-PROjECT DEPENDENCIES

You can allow TestApp to use the shared framework you created in Chapter 15 
(building it first if necessary) by adding the framework to the TestApp target’s 
Link and Copy Frameworks build phases. To do so, navigate to the TestApp project, 
select the TestApp target, and then select the Build Phases tab. Expand the Link 
Binary With Libraries phase and click its Add (+) button. You’ll be prompted with 
the standard libraries and frameworks chooser (Figure 16.5).

fiGURe 16 .2 Locating 
individual project files  
with the Finder

Note: A subproject is treated as an implicit dependency of 
the project in which it is contained and doesn’t benefit from 

shared build locations without careful configuration.



ptg6935296

CreatIng a WorkspaCe 223

fiGURe 16 .3 Dragging projects 
into a workspace

fiGURe 16 .4 Carefully 
inserting additional projects 
into a workspace

fiGURe 16 .5 Choosing the 
framework product from  
the frameworks and libraries 
panel



ptg6935296

224 ChAPTER 16 WorkspaCes

Note the new “Workspace” group at the top of the list. Xcode knows that a 
framework target exists within one of the projects within the TestApp Suite work-
space. Select TestAppSharedFramework.framework and click Add. The framework 
is now part of TestApp (Figure 16.6).

To test it, clean the workspace by selecting Product > Clean from the main 
menu. Then make sure the TestApp scheme is selected in the Scheme pop-up and 
build the application.

Of course, as you learned in Chapter 15, TestAppSharedFramework isn’t a system-
provided framework, so you’ll need to distribute it within TestApp. Although TestApp 
would run in the development environment, it would crash due to a missing library 
were you to distribute it in its current state (recall this from Chapter 15 when you 
added a Copy Frameworks build phase for the foreign Foo.framework). You can 
simply drag TestAppSharedFramework.framework from the TestApp project into 
the TestApp target’s Copy Frameworks phase (Figure 16.7).

fiGURe 16 .6 Linking the  
TestApp product against  
the shared framework

fiGURe 16 .7 Adding the 
shared framework to  
the Copy Frameworks  
build phase



ptg6935296

CreatIng a WorkspaCe 225

As you may also recall from Chapter 15, in order to use the framework, you’ll 
need to include its header. To verify that everything is working, add the follow-
ing to the header include section near the top of the TestAppAppDelegate.m file:

#import <TestAppSharedFramework/TestAppSharedFramework.h>

At the end of the -applicationDidFinishLaunching: method—which should 
now be familiar to you—add the following:

TestFoo * testFoo = [[[TestFoo alloc] init] autorelease];

NSLog(@”TestFoo says: %@”, testFoo);

Figure 16.8 shows the complete -applicationDidFinishLaunching: method. 
Once you’ve finished, run TestApp and check the debugger console for a success-
ful message from the TestFoo class that comes from TestAppSharedFramework.

fiGURe 16 .8 The complete 
-applicationDidFinish 
Launching: method



ptg6935296

226 ChAPTER 16 WorkspaCes

MANAGING SChEMES IN WORKSPACES

You learned the ins and outs of managing schemes in Chapter 14. Here you’ll man-
age them from another perspective—schemes as they exist within a workspace.

You’ve no doubt noticed schemes from each project show up in the Schemes 
pop-up in your new TestApp Suite workspace. The schemes are inherited from 
the workspace projects in which they exist. Figure 16.9 shows the schemes from 
both the TestApp and TestAppSharedFramework projects.

Choose Manage Schemes from the Schemes pop-up to reveal the now-familiar 
scheme manager (Figure 16.10). There are two major questions to consider for each 
scheme in a workspace: Should it be shown, and in what container should it exist?

sHoWIng and HIdIng sCHemes
In Figure 16.10, note the Show column in the list of schemes. Though all schemes 
are visible in the scheme manager, deselecting the Show check box for a scheme 
removes it from the Schemes pop-up control.

In the TestApp Suite, you have only an application and its shared library. When 
looking at it from the workspace perspective, it may be necessary to show only the 
application and the framework schemes. Since the TestAppImporter target that 
you created earlier is a dependency of the TestApp target, you may not want to 
bother seeing it from the workspace perspective.

It’s important to note that the Show settings for each scheme persist whether 
you’ve opened a workspace containing it or the project itself. In other words, if you 
change this setting for a project’s scheme, the change appears in the workspace 
(and if you change it in the workspace, it appears in the project’s settings as well).

fiGURe 16 .9 The Schemes 
pop-up menu showing 
workspace-wide schemes



ptg6935296

CreatIng a WorkspaCe 227

CHangIng a sCHeme’s ContaIner
The Container field of the scheme manager indicates where the scheme is stored. 
This field lets you move schemes by changing their container to another project. 
When viewing the schemes at the workspace level, you can move schemes to be 
contained entirely in that workspace. This capability lets you create a shared 
scheme that builds an entire suite of products from disparate projects with a scheme 
that only appears when working with the entire workspace.

fiGURe 16 .10 The scheme 
manager

Note: Recall that the scheme manager’s Shared check boxes 
dictate whether a scheme shows for other users who open 
the project or workspace. In a team setting, there will likely 
be at least one shared scheme—the scheme to build them all.



ptg6935296

228 ChAPTER 16 WorkspaCes

The term workspace has been overloaded in the software industry. Its meaning in 
Xcode is no exception. It makes sense that Xcode calls its new feature “workspaces” 
(a good name for a feature that binds projects together), but in the broader sense, 
your workspace refers more to the layout and configuration of your project.

Your Xcode workspace includes, among other things, controls for whether or 
not certain auxiliary views are enabled. Xcode 4 helps you maintain control of your 
workspace by using behaviors. Under Xcode’s Preferences (Command-Comma), the 
Behaviors panel reveals a number of configurable options (Figure 16.11).

Although there are many options, the feature is simple. Each item in the list 
on the left can trigger any of the actions on the right. Behaviors affect all projects 
and workspaces (the bound-together-projects kind). With Lion’s auto-hiding scroll 
bars, it’s easy to miss, but both the left and right lists are scrollable. Figure 16.11 
shows the window large enough to see the contents of both lists without scrolling.

fiGURe 16 .11 The Behaviors 
panel

AnotHer KIND Of workspAce



ptg6935296

anotHer kInd oF WorkspaCe 229

uSES fOR BEhAvIORS

An example of a custom behavior would be to not show the debugger when the 
app runs (“Run starts”) unless the application generates output (“Run generates 
output”). Another might be to create a new tab and navigate to the current run log 
in that tab if the app crashes (“Run quits unexpectedly”). The options are simple 
and speak for themselves. They allow navigation, activation of the various editing 
modes and assistant panels, running scripts, and so on.

DEfINING BEhAvIORS

Xcode already has a number of common situations in the list on the left side of the 
Behaviors panel. To configure a behavior for a given situation, select the situation 
on the left and use the check boxes to enable each custom behavior. Those that 
are customizable have additional controls to the right of their check boxes. Situ-
ations that have defined behaviors have a check mark to the left of their names.

CREATING CuSTOM BEhAvIORS

In Xcode 4.1, Apple has introduced custom behaviors. Although these behaviors aren’t 
triggered automatically like the built-in ones, you can create them and trigger them 
via the Xcode application menu (Figure 16.12) or with a custom keyboard shortcut.

fiGURe 16 .12 The Behaviors 
menu



ptg6935296

230 ChAPTER 16 WorkspaCes

To create a new behavior, open the Behaviors panel and click the Add (+) but-
ton in the lower-left corner. You can name the new behavior whatever you wish. 
Figure 16.13 shows a custom behavior named “Alert Me!” whose only action is 

“Show bezel alert.”
Double-click the Command symbol (the same symbol you see on your Com-

mand key) to the right of the custom action name to assign a custom keyboard 
shortcut to it. Press the combination of keys, then use your mouse to select another 
entry and end editing the shortcut. Figure 6.14 shows the custom action with a 
new (and hard to press) shortcut.

When you press the keyboard shortcut (while Xcode is active), the bezel alert 
will appear for a moment (Figure 16.15). While unexciting (the bezel alert function 
only shows the name of custom alerts), it’s easy to see how a simple set of keyboard 
shortcuts could easily switch your Xcode workspace among a number of different 
configurations tailored to the task at hand.

fiGURe 16 .13 A custom 
behavior

fiGURe 16 .14 Defining a 
behavior’s keyboard shortcut

fiGURe 16 .15 A useless 
bezel alert invoked by a 
behavior shortcut



ptg6935296

WrappIng up 231

The idea of Xcode’s new workspaces feature can seem intimidating at first. You’ve 
seen that it’s really quite straightforward. A workspace provides a way of tying 
related projects together to take advantage of Xcode’s (usually) intelligent depen-
dency discovery. In the next chapter, you’ll explore some of Xcode’s more advanced 
debugging and analysis capabilities.

WRAPPING up



ptg6935296

17

deBuggIng AND 
AnAlysIs IN deptH



ptg6935296

233

You scratched the surface of Xcode’s debug-

ging and analysis capabilities in Chapter 9 

by looking at the most common features 

developers are likely to use. In this chapter, you’ll explore another 

powerful feature—the static analyzer—and then delve deeper 

into the Debug navigator. After that, you’ll take a close look at the 

debugger console and some of its useful command-line interface 

tricks. You’ll round out the tour by learning how to debug iOS 

applications on the device or by using the iOS Simulator.



ptg6935296

234 ChAPTER 17 deBuggIng and analysIs In deptH

uSING ThE clAng 
stAtIc AnAlyzer

LLVM (the modular compiler) provides static analysis functionality via Clang, its 
C language family front end. The Clang Static Analyzer performs semantic analysis 
and can find logic problems, memory management errors, dead stores (unused 
variables), and API usage problems. This functionality is built right into Xcode.

When you invoke Xcode’s Analyze action, the analyzer works to identify prob-
lems with your code. If an issue is found, it is flagged in the Source Editor and in 
the Issue navigator alongside errors and warnings (Figure 17.1). Clicking the issue 
in the editor or the Issue navigator reveals details about the issue in the editor, 
including helpful blue lines indicating the problematic code path with descriptions 
of your errant actions along the way (Figure 17.2).

fiGURe 17 .1 An issue high-
lighted by the static analyzer

fiGURe 17 .2 A static analyzer 
issue expanded into steps

tip: The Clang Static Analyzer can be run as a standalone tool, 
providing textual output of its analysis results. Its integration with 

Xcode is what provides the much nicer graphical interface.



ptg6935296

usIng tHe Clang statIC analyzer 235

For issues that are spread over longer bodies of code, following all the curved 
blue lines can be confusing. Xcode helps you with this in two ways. First, expand-
ing an analyzer issue in the Issue navigator reveals the individual points in the 
problematic code path. Second, and by far more helpful, an analyzer results bar 
(similar to a search bar) appears at the top of the editor (Figure 17.3). This bar lets 
you navigate the analyzer issue step by step so it’s easier to follow along with the 
analyzer’s complaints.

You can find some of the following issues with Instruments (see Chapter 20) 
and by using draconian warning levels, but the analyzer can find them while you’re 
coding and show you exactly where and how you went wrong. Apple’s own docu-
mentation suggests you get into the habit of analyzing early and often.

fiGURe 17 .3 The analyzer results bar atop the Source Editor

Note: Recall that errors, warnings,  
and analyzer results are called “issues.”



ptg6935296

236 ChAPTER 17 deBuggIng and analysIs In deptH

Following are a few examples of the types of issues the static analyzer can identify 
for you, with a walk-through of each result.

MEMORy lEAKS

A simple description of a memory leak in a Cocoa application is an object to which 
you’ve lost any references and which thus can no longer be told to release its 
memory and go away. In this sense, the object’s memory is “leaked” as it cannot 
be reclaimed for the remainder of the application’s lifetime. Further, the object 
keeps living, which, depending on what the object does, can cause unexpected 
and sometimes very bad behavior.

Figure 17.2 showed an analyzer result for a memory leak. In this case, an NSString
is leaked. From the top of the -init method, execution path is followed through the 
method. The issue is broken down into the two “steps” in the code that caused it.

In the first step, the instruction on line 16 returns an object with a +1 retain 
count (which, in a memory-managed environment, makes you responsible for 
properly releasing the object when necessary). In the second step, the method 
returns without releasing (or autoreleasing) the NSString instance beforehand. 
This means the NSString instance has been leaked at this point.

In the example, the fix is simple: Just uncomment line 19, where the string 
instance (assigned to message) is sent a -release (or you could send it an 
-autorelease).

Notes: The code examples used are “quick and dirty” demonstrations 
and should not be used as examples of good coding practices for a number 
of reasons.

The memory management descriptions given here are oversimplified, but 
the particulars are beyond the scope of this book. for the purposes of 

this chapter, memory management issues refer to Objective-C objects in 
a manually memory-managed (versus garbage-collected) environment.

EXPlORING AnAlyzer results



ptg6935296

eXplorIng analyzer results 237

MEMORy OvER-RElEASES

Again in simple terms, an over-release in a Cocoa application is when an object is 
sent a -release too many times, causing its memory to be deallocated too soon. 
Any subsequent attempt to communicate with it will cause your application to 
crash. In Figure 17.4, the analyzer finds a potential over-release scenario on line 27.

fiGURe 17 .4 A memory issue 
flagged by the static analyzer



ptg6935296

238 ChAPTER 17 deBuggIng and analysIs In deptH

When expanded (by clicking the blue issue bar in the editor), you see the 
description of the problem is considerably more complex (Figure 17.5). There are 
four steps to follow through the problem this time. Some sets of blue arrows are 
bold and some are light. Two of the steps are on line 27 (both can be seen by click-
ing the gray disclosure triangle on the right side of the step).

fiGURe 17 .5 The complexity of 
the memory issue revealed by 
the static analyzer



ptg6935296

eXplorIng analyzer results 239

To make sense of all this, it helps to use the arrow buttons in the analyzer result 
bar navigator to jump between steps. As you navigate the highlighted code paths, 
you’ll notice different sets of arrows are bold to emphasize that particular step along 
the path. In Figure 17.6, the second step is selected, so Xcode highlights the flow 
of execution from line 22 to 26 to 27, where the analyzer tells you that the object 
created on line 22 is released if the if condition on line 26 is met.

Taking the issue step by step, you see that the first step shown in Figure 17.5 
tells you an object is created and assigned to objectID with a retain count of +1, 
meaning you’re responsible for its release.

The second step in Figure 17.6 shows that the object is released on line 27. While 
there’s no guarantee that its retain count is now zero (flagging it for deallocation) 
because other objects might have since retained it, the third step (not shown) 
demonstrates the code path returning to the head of the loop it was in.

fiGURe 17 .6 The highlighted 
second step of the memory 
issue



ptg6935296

240 ChAPTER 17 deBuggIng and analysIs In deptH

The fourth and final step (Figure 17.7) reveals the end result: if ever the if
condition on line 20 evaluates to false, the object in question will be accessed 
after having been released.

This is a good demonstration of the power the static analyzer puts in your 
hands. It follows all the possible paths through your code, highlighting a problem 
if one series of logical branches is followed.

fiGURe 17 .7 The highlighted 
fourth step of the memory 
issue

Note: The static analyzer is smart enough to know when Objective-C 
garbage collection is unsupported, supported, or required in your code 

and adjusts accordingly for memory-management-related issues.



ptg6935296

eXplorIng analyzer results 241

lOGIC ERRORS

Logic errors can cause crashes or more subtle problems. In complex code, they 
can be easy to miss and difficult to debug, but the static analyzer picks them up 
and highlights them easily.

One type of logic error is using an uninitialized variable. A variable declared 
without an initial value can point to any old garbage lying around in RAM. Attempting 
to access that variable gives you undefined or garbage values. Figure 17.8 demon-
strates this problem in a basic scenario (the second step is highlighted in the figure).

On line 20, a BOOL variable named positiveFlag is declared with no initial value. 
Because the code inside the if/else if blocks (lines 22-27) may not be executed, 
the positiveFlag may never have a defined value assigned to it before the value 
is returned in line 29.

fiGURe 17 .8 A logic issue 
flagged by the static analyzer



ptg6935296

242 ChAPTER 17 deBuggIng and analysIs In deptH

Chapter 3 introduced the Debug navigator, and Chapter 9 took you in for a closer 
look at features a typical developer will use most often. Here you’ll see several other 
features that more-experienced developers will be looking for.

REvIEWING ThE DEBuG NAvIGATOR

The button bar at the bottom of the Debug navigator has two controls (Figure 17.9). 
When activated, the button on the left side of the bar filters out any threads that 
aren’t relevant to the current debugging session. That is, only crashed threads and 
threads with debugging symbols available (those for which you have source code 
or have saved debugging symbols) will be shown. When the button is inactive, all 
threads are shown.

The slider control affects how much of each thread’s stack you are shown. 
When the slider is all the way to the left (Figure 17.10), only the top frame of each 
thread’s stack is shown. When the slider is all the way to the right (Figure 17.11), all 
frames of each thread’s stack are shown. As you slide the control from right to left, 
Xcode begins to collapse the stack by filtering out frames that represent recursive 
function calls, internal Cocoa API calls, disassembled object code, and finally all 
code that doesn’t belong to your workspace. Figure 17.12 shows the slider three 
quarters of the way to the right with the collapsed portions of the stack represented 
by a dashed line.

You also learned in earlier chapters that you can navigate to a method by click-
ing a stack frame in the Debug navigator. If source or disassembled object code is 
available for the frame, it will be displayed in the Editor area.

tHreAds AND stAcks



ptg6935296

tHreads and staCks 243

fiGURe 17 .9 The Debug  
navigator’s bottom control bar

fiGURe 17 .10 A minimal 
stack

fiGURe 17 .11 A full stack

fiGURe 17 .12 A semi-filtered 
stack



ptg6935296

244 ChAPTER 17 deBuggIng and analysIs In deptH

WORKING WITh DISPATCh QuEuES

With Mac OS X 10.6, Apple introduced Grand Central Dispatch. This new facility 
makes it far easier for developers to take advantage of multiple cores. Rather than 
focusing on the deeper complexities of threads, thread pool management, and all 
that they entail, Grand Central Dispatch is intended to abstract these notions away 
into “units of work submitted to a queue.”

Queues act as a logical group of background tasks and are created at runtime. 
A queue can be paused and resumed, can process tasks serially or in parallel, and 
can even be given simple names to help the developer with debugging efforts. 
By default, your application’s main thread runs in a dispatch queue named 
com.apple.main-thread. You might create a queue to process pictures into thumb-
nails (one task per picture) in parallel and name it com.acme.testapp.thumbnailer.

In Xcode’s Debug navigator, you can choose to view the list of threads grouped 
by the Grand Central Dispatch queues to which each belongs. Figure 17.13 shows 
the Debug navigator as it appears with By Queue selected in the filter bar at the 
top of the view. Here, TestApp is paused in its -applicationDidFinishLaunching:
method, which is being run in the main thread, which in turn belongs to the 
com.apple.main-thread queue. Other queues may be visible, depending on your 
code and that of the various frameworks and libraries you use.

fiGURe 17 .13 The Debug  
navigator grouped by queue

tip: learn more about Grand Central Dispatch at http://developer.apple.com.

http://developer.apple.com


ptg6935296

tHreads and staCks 245

The most important reason for remembering this is that when you create your 
own queues with Grand Central Dispatch, you can give them a meaningful name 
so you can identify them clearly in the Debug navigator and (as you’ll discover in 
Chapter 20) when using Instruments to profile your code.

SuSPENDING ThREADS

Grand Central Dispatch notwithstanding, threads are still threads, and the typi-
cal Cocoa application has several of them hanging around whether you created 
them or not. If you have created some threads of your own directly, chances are 
you did it wrong the first (several) times. You realize this because things are freez-
ing, crashing, or just not acting right. It can be helpful in these cases to suspend a 
thread at runtime to keep it from interfering with other parts of your application 
or simply to examine it.

Why not just use breakpoints? Suspending a thread is different from using 
a breakpoint in two important ways. First, a breakpoint will pause execution 
regardless of the thread calling the instruction. That is, each time a breakpoint is 
encountered and execution is paused, the thread that hit the breakpoint could be 
any thread. Second, your goal may be to suspend only some background process 
your application is performing, not the entire application itself.

To suspend a thread is simple. Make sure you’ve paused the application in the 
debugger (either at a breakpoint or by using the Pause button in the Debugger Bar), 
then right-click (or Control-click) the thread in the Debug navigator and choose 
Suspend Thread from the menu. A red indicator will appear to the right of the 
suspended thread, showing that it is suspended. You could at this point resume 
the application (by hitting the Continue button in the Debugger bar) and the thread 
will remain paused—for good or ill—while your application goes about its busi-
ness. To resume the thread, you’ll need to be paused again, right-click (or Control-
click) the paused thread, and choose Resume Thread from the menu.

Note: Suspending a thread can cause unintended consequences 
that make your application act strangely at best or corrupt 
its data, freeze, or crash at worst. Pausing a thread that holds a 
lock, for example, could deadlock other threads. use with caution.



ptg6935296

246 ChAPTER 17 deBuggIng and analysIs In deptH

In addition to allowing you to set watches (instructing Xcode to notify you if a 
memory address has changed), Xcode 4 allows you to view the contents of loca-
tions in memory. Given a memory address (usually found by a specific variable that 
uses it), Xcode can let you examine the memory contents directly. These tools are 
useful when you want to know when a variable’s value changes and the precise 
nature of the changes to a location or region in memory.

WATChING ADDRESSES

The ability to set a watch on a variable’s memory address and be notified when its 
content changes is a common feature in most any IDE. In Xcode 4, this is done by 
pausing the debugger and showing the Debug area’s Variables view (Figure 17.14), 
then right-clicking the variable and choosing Watch Address of “variableName” 
from the menu.

Figure 17.15 shows how to set a watch for the bar variable you created in  TestApp 
in earlier chapters. Nothing special happens immediately after you set the watch. 
It’s only when the contents of the watched variable’s address changes that you are 
notified in the debugger console.

In Figure 17.16, you see that the instruction on line 47 was executed, assign-
ing a newly created object to the bar pointer. The memory for that address was 
updated to point to the address of the new object, so the contents of the memory 
address for the bar pointer is now the memory address of the newly created object 
assigned to it. This information is shown in the console.

Watching addresses is a quick and dirty way to see what’s going on with a par-
ticular variable in memory, but it’s like looking at memory through a keyhole. Xcode 
provides a much better way of viewing the contents of your application’s memory.

fiGURe 17 .14 The Variables 
view in the Debug area

INSPECTING memory



ptg6935296

InspeCtIng memory 247

fiGURe 17 .15 Setting a watch

fiGURe 17 .16 The bar pointer, 
updated



ptg6935296

248 ChAPTER 17 deBuggIng and analysIs In deptH

vIEWING MEMORy

The easier way to inspect the contents of your application’s memory requires pausing 
the application at least momentarily and locating the memory address you want to 
view by the variable that represents it. This works the same way as setting a watch. 
This time, however, when you right-click the variable, choose View Memory of 

“variableName” from the menu. A new group called Memory will appear in the 
Debug navigator with the address you chose to view under it (Figure 17.17). When 
a memory address is selected in the Debug navigator for viewing, the memory’s 
contents are displayed in the Editor area (Figure 17.18).

The view is manipulated via the controls at its bottom (Figure 17.19). The Address 
field shows the exact memory address the view will begin with. The Memory Page 
controls let you page forward and backward. The Number of Bytes control lets you 
adjust the memory page size you’re viewing. The Byte Grouping control lets you 
control how many bytes are grouped together as a single word.

The Lock button’s behavior isn’t as intuitive as the rest. Your first thought might 
be that it locks the memory contents, preventing it from being modified. This is 
not the case. Instead, it lets you lock the current view of the contents from being 
updated. Since the memory view is normally updated as the memory changes, 
locking the display prevents it from being updated until you unlock it again. The 
memory continues to be changed (or not) as it normally would be while execution 
continues, but what’s displayed will remain the same as it was when you locked it.

Since the memory addresses are valid only while the application is running, 
all viewed addresses are removed from the Debug navigator when the debugging 
session ends. If you’d like to remove an address during the session, simply select 
it and press the Delete key.



ptg6935296

InspeCtIng memory 249

fiGURe 17 .17 A memory view 
added to the Debug navigator

fiGURe 17 .18 The memory 
view

fiGURe 17 .19 The memory 
view controls



ptg6935296

250 ChAPTER 17 deBuggIng and analysIs In deptH

The debugger console is your command-line interface to the debugger. Whether 
you’re using GDB or LLDB, you can do more than read messages spat out by your 
applications. Both debuggers provide command-line interfaces to the same fea-
tures that Xcode gives you graphically. Nevertheless, a few quick commands to the 
debugger via the console (Figure 17.20) can be helpful. Especially so if you want 
a text dump of the results.

In order to issue commands to the debugger console, you must click inside the 
console window to place the cursor to the right of the debugger prompt ((gdb) or 
(lldb), depending on the debugger you’re using). The examples that follow will 
use GDB, as LLDB is still “under construction.”

Following are a few common tasks that can sometimes be done more easily 
with the console.

fiGURe 17 .20 The debugger 
console

Note: As of this writing, llDB is incomplete, and some commands that 
are available in GDB are not available or are incomplete in llDB.

conFerrIng WITh ThE console



ptg6935296

ConFerrIng WItH tHe Console 251

PRINTING OBjECTS AND vAluES

There are a few different ways to print objects and values from the console. The 
command you use depends on the kind of information you want to see.

prIntIng oBjeCts
“Print object” (po) is the single most commonly used debugger command for Cocoa 
developers. The command will ask Objective-C objects to print the result of their 
common -description method. Inherited from NSObject, the method returns a 
string that describes the object. This description is intended to be useful for debug-
ging. When the application is paused in the debugger, all the symbols in the current 
stack are available to you. This lets you issue a print object command to inspect 
objects (or other objects to which those objects hold references).

To print an object, you’ll need to pause the application in the debugger. 
Usually it’s most convenient to use a breakpoint. Once paused, find some-
thing interesting to print. Figure 17.21 shows TestApp paused once again in its 
-applicationDidFinishLaunching: method. This time, it’s paused below the line 

where you create an NSURL object and assign it to the googleURL variable, giving 
you a handy object to print. To print the object assigned to googleURL, type the 
following command into the console and press Return:

po googleURL

fiGURe 17 .21 TestApp paused 
in the debugger



ptg6935296

252 ChAPTER 17 deBuggIng and analysIs In deptH

The debugger will respond by logging the string returned when the NSURL object 
is asked for its -description. Figure 17.22 shows the results in the debugger console.

You can also print self when stopped within a method belonging to an 
instance of an Objective-C class. In the current scope of the example, self refers 
to an instance of the TestAppAppDelegate class. Figure 17.23 shows the result of 
printing self in this scope. In this case, the TestAppAppDelegate class doesn’t 
override -description, so the information displayed is the default description 
format inherited from NSObject. That is, the class name and address of the instance 
being printed are given.

Of course you can also print objects through the accessors of other objects. 
For example, NSURL has a string property called -scheme. To print the scheme of 
the NSURL instance assigned to googleURL, you can issue the following command:

po [googleURL scheme]

fiGURe 17 .22 Printing an 
object in the debugger console

fiGURe 17 .23 Printing self



ptg6935296

ConFerrIng WItH tHe Console 253

The debugger calls the URL object’s -scheme method, then calls the returned 
object’s -description and prints this:

http

The information you see in the examples isn’t particularly exciting, but it can be 
enough to differentiate two similar objects inside a printed NSArray or NSDictionary
object. While many objects in the Cocoa API come with reasonably useful descrip-
tions, it’s up to the developer to override -description in their own objects and 
provide meaningful descriptions for their own debugging.

prIntIng values
The po command works only on objects. What about values of primitives? What if 
you wanted to know the length of the string returned by the URL object’s scheme 
for some reason? You might expect the following command to work:

po [[googleURL scheme] length]

It won’t work because the -length method of NSString returns an NSUInteger—a 
primitive type, not an object. For primitive values, you use a different print command.

p (NSUInteger)[[googleURL scheme] length]

The debugger responds with this:

$1 = 4

There certainly are four characters in the string http. Let’s take a quick look at 
the structure of the command and its response.

The command p (short for print) expects the result of the statement you give 
it to evaluate ([[googleURL  scheme]  length]) to be cast to the expected type 
(NSUInteger) so it knows how to represent it. This type should be the return type 
of the method or function that ultimately returns the value (the outermost call 
in nested calls). In the case of NSString’s -length method, that’s an NSUInteger.



ptg6935296

254 ChAPTER 17 deBuggIng and analysIs In deptH

The response is actually more interesting than it looks. The debugger not only 
prints the result but kindly assigns it to a local variable for you to use in future 
evaluations. In this example, the number 4 (the length of the scheme string) was 
assigned to the variable $1. To use this is simple. Imagine you can’t work out in 
your head the math necessary to multiply the length by two. No problem! GDB 
can do it for you!

p (NSUInteger)($1 * 2)

GDB performs this complex computation and responds with:

$2 = 8

Notice how even that evaluation was assigned to a new variable, $2. There are 
many more tricks up print’s sleeves, which you can find at http://xcodebook.com 
/printf, but let’s move on.

vIEWING ThE BACKTRACE

The backtrace in the current (paused) point in the application is the same infor-
mation that is displayed under a paused thread in the Debug navigator: the stack. 
While Xcode’s user interface gives you nicely formatted information that can be 
used to navigate and control the debugging session, it’s not very handy for sharing 
information with others on a forum or mailing list, for example. It’s often helpful 
to be able to obtain a textual representation of the backtrace. Assuming TestApp 
is still paused in the same place as in the previous examples, issuing a backtrace 
command (bt for short) produces the following output:

#0   -[TestAppAppDelegate applicationDidFinishLaunching:]  
p (self=0x10015e520, _cmd=0x7fff84ad29c5, aNotification= 
p 0x114029af0) at /Users/jnozzi/Path/To/TestApp Suite/TestApp/ 
p TestApp/TestAppAppDelegate.m:42

#1  0x00007fff83b568ea in _nsnote_callback ()

#2  0x00007fff835f1000 in __CFXNotificationPost ()

#3  0x00007fff835dd578 in _CFXNotificationPostNotification ()

http://xcodebook.com/printf
http://xcodebook.com/printf


ptg6935296

ConFerrIng WItH tHe Console 255

#4   0x00007fff83b4d84e in -[NSNotificationCenter  
p postNotificationName:object:userInfo:] ()

#5   0x00007fff83e3e3d6 in -[NSApplication  
p _postDidFinishNotification] ()

#6   0x00007fff83e3e30b in -[NSApplication  
p _sendFinishLaunchingNotification] ()

#7   0x00007fff83f09305 in -[NSApplication(NSAppleEventHandling)  
p _handleAEOpen:] ()

#8   0x00007fff83f08f81 in -[NSApplication(NSAppleEventHandling)  
p _handleCoreEvent:withReplyEvent:] ()

#9   0x00007fff83b84e42 in -[NSAppleEventManager  
p dispatchRawAppleEvent:withRawReply:handlerRefCon:] ()

#10 0x00007fff83b84c72 in _NSAppleEventManagerGenericHandler ()

#11 0x00007fff88b50323 in aeDispatchAppleEvent ()

#12 0x00007fff88b5021c in dispatchEventAndSendReply ()

#13 0x00007fff88b50123 in aeProcessAppleEvent ()

#14 0x00007fff84e2c619 in AEProcessAppleEvent ()

#15 0x00007fff83e0e04b in _DPSNextEvent ()

#16  0x00007fff83e0d7a9 in -[NSApplication nextEventMatchingMask: 
p untilDate:inMode:dequeue:] ()

#17 0x00007fff83dd348b in -[NSApplication run] ()

#18 0x00007fff83dcc1a8 in NSApplicationMain ()

#19  0x00000001000010c2 in main (argc=1, argv=0x7fff5fbff670) at  
p /Users/jnozzi/Path/To/TestApp Suite/TestApp/TestApp/main.m:12

If you expand the frames under Thread 1 in the Debug navigator and then slide 
the detail slider all the way to the right (to reveal all stack frames), you’ll see that 
the information truly is the same. It’s nowhere near as pretty as what you see in 
Xcode’s UI, but it’s helpful when sharing your misery with other developers in 
hopes that they can help you.



ptg6935296

256 ChAPTER 17 deBuggIng and analysIs In deptH

CONTROllING PROGRAM EXECuTION

You can control program execution from within the console just as you can by 
using the Debugger Bar or the menu system. This can be handy if you’re working 
heavily with the console. Here are a few basic commands:

COMMAND DESCRIPTION

c continue

next step program

s step into

fin finish current method

There are many more execution control commands but these are the basics 
you’re likely to need most. The debugger itself can offer help.

CODE COMPlETION

Recall from Chapter 7 that the Source Editor offers code completion, the ability 
for the editor to predictively suggest completions for the symbols you type. The 
debugger console offers limited support for this as well.



ptg6935296

ConFerrIng WItH tHe Console 257

GETTING DEBuGGER hElP

There are an impressive number of commands available in GDB (and the list is 
growing for LLDB as well, as its development progresses). Getting help with these 
commands is easy. Type help in the debugger and press Return for a list of catego-
ries of commands. Type help categoryname to list commands that fall under the 
named category. Type help commandname for help on the given command. To use 
one of the previous examples, type the following into the console:

help print

Here are the first few lines of the debugger’s response:

Print value of expression EXP.

Variables accessible are those of the lexical environment of the  
p selected stack frame, plus all those whose scope is global or an  
p entire file.

...

Remember to use the help command to find your way around the debugger’s 
toolkit.



ptg6935296

258 ChAPTER 17 deBuggIng and analysIs In deptH

The build process entails a number of steps. Along the way, your code is run through 
the preprocessor (covered in Chapter 19), where macros are expanded, includes are 
included, and so on. Further down the line, the assembly code is generated by the 
compiler. Xcode provides several ways to view this generated output.

GENERATING ThE OuTPuT MANuAlly

You can generate and view this output at any time by choosing Product > Generate 
Output from the main menu. From there you can choose Generate Preprocessed 
File or Generate Assembly File. Xcode will produce the requested output and 
display it. Figure 17.24 shows the preprocessed result of TestAppAppDelegate.m.

In Figure 17.24, content from all the included headers is shown. The toolbar at 
the bottom of the editor has two controls. The Refresh button forces the content 
to generate again. The pop-up lets you choose the build action for which to gen-
erate the output. This is helpful because of the differences between the various 
build actions (Running, Profiling, Archiving, and so on). Figure 17.25 shows the 
assembly code for the same file.

uSING ThE ASSISTANT

The Assistant editor can keep this output visible as well. Use the Generated Output 
mode, and select either Preprocessed content or Assembly content. When the 
debugger is paused you can see the disassembly as well by using the Assistant’s 
Disassembly mode (Figure 17.26).

fiGURe 17 .24  
Preprocessor output from 
TestAppAppDelegate.m

vIEWING generAted output



ptg6935296

vIeWIng generated output 259

fiGURe 17 .25 Assembly output 
from TestAppAppDelegate.m

fiGURe 17 .26 Disassembly of 
TestAppAppDelegate.m



ptg6935296

260 ChAPTER 17 deBuggIng and analysIs In deptH

Much of your Xcode exploration to this point has been done with a Mac OS X appli-
cation because it’s simpler to demonstrate. If you happen to be an iOS developer 
(or plan to become one), however, this won’t work because of hardware differences. 
Your debugging, therefore, will have to be done using the iOS Simulator or a con-
nected and provisioned iOS device.

For this demonstration, you’ll need to create an iOS project. Name it TestApp 
Touch. Refer to Chapter 2 to review how to create a new project. In the New Project 
template chooser (Figure 17.27), select the Application list under the iOS group, 
choose Tab Bar Application, and click Next. In the next sheet (Figure 17.28), specify 
the name and company identifier, leave the Device Family pop-up set to iPhone, 
do not include unit tests, and click Next. When prompted, save the project in the 
same folder in which your TestApp Suite workspace lives.

fiGURe 17 .27 The New Project 
template sheet

Note: you must be subscribed to Apple’s iOS Developer Program 
to test and debug applications on an iOS device. See Appendix A for 

details regarding provisioning your iOS device for development use.

DEBuGGING Apps
fOR ios devIces



ptg6935296

deBuggIng apps For ios devICes 261

When finished, you should have a new project just like Figure 17.29. At this 
point it’s a good idea to close the project to avoid confusion, navigate to it in Finder, 
and drag it into your TestApp Suite workspace as you learned to do in Chapter 16.

fiGURe 17 .28 The iPhone 
project settings

fiGURe 17 .29 The new iPhone 
project



ptg6935296

262 ChAPTER 17 deBuggIng and analysIs In deptH

If you take a look at the Schemes pop-up, you’ll see at least two new run des-
tinations (for the iPhone and iPad Simulators) for TestApp Touch (Figure 17.30). 
One simulates the iPhone and the other simulates the iPad. If you’ve already con-
nected and provisioned any iOS devices (see Appendix A), those will show up as 
individual run destinations as well.

QuITTING APPlICATIONS

It may seem odd that there needs to be a section about quitting applications. The 
reason is that many new iOS developers become confused when they press the Home 
button on the device or Simulator but the application continues running in Xcode. 
This is because of how iOS handles applications when the Home button is pressed.

Applications in the most recent versions of iOS can be paused in the back-
ground (unless they opt out of this functionality). This means the application is 
still technically running, it’s just suspended. Unless your application opts out of 
being “backgrounded,” it won’t quit (and won’t end the Xcode debugging session) 
when you press the Home button.

There are two ways to quit an iOS application completely when you’re debug-
ging it: Press Command+Q in the Simulator to quit the entire iOS Simulator, or 
click the Stop button in Xcode’s toolbar.

fiGURe 17 .30 The Schemes 
pop-up with some new run 
destinations



ptg6935296

deBuggIng apps For ios devICes 263

uSING ThE iOS SIMulATOR

You’re ready to run the iOS app in the iOS Simulator. You’ll need to make sure you’ve 
selected the TestApp Touch scheme with the iPhone Simulator run destination 
from the Schemes pop-up as shown in Figure 17.30. Now just run the application 
as you normally would—press the Run button or Command+R.

The Simulator application will launch and display a mock-up of an 
iPhone in which your application will then launch (Figure 17.31). Even 
with its two panels controlled by a tab bar at the bottom, the applica-

tion isn’t particularly interesting, but it is functional.
The Simulator is intended to be your primary testing and debugging environment, 

but testing on the device before deployment is not only highly recommended, it 
very well should be a law. Nevertheless, the Simulator needs to be able to simulate 
all the hardware, events, orientations, low memory warnings, and so on just as if 
the application were running on the device. Following are the main features you’ll 
need to understand.

multI-touCH events
One of the first questions the new developer will ask about the Simulator is how 
to generate multi-touch events. While all one-finger gestures are handled by click-
ing or dragging normally with your mouse pointer, two-finger events (such as 
spreading or pinching your fingers to zoom in or out) pose a challenge.

The iOS Simulator solves this problem nicely with the Option and Shift keys. 
Hold down the Option key while hovering your pointer over the simulated screen 
to reveal two dots (representing two fingers), as in Figure 17.32. Move the mouse 
around while holding the Option key to change the width between the “fingers” 
before clicking. Click and drag your mouse to begin the gesture; release to complete 
the gesture. If you need to move the two-finger gesture elsewhere (a zoomable 
view above an onscreen keyboard, for example), hold down the Option key as 
before but hold the Shift key as well to move both “fingers” together to a different 
part of the screen, releasing only the Shift key when you’ve finished moving the 
gesture location.

fiGURe 17 .31 TestApp Touch  
in the iOS Simulator

fiGURe 17 .32 Two-finger  
gestures in the Simulator



ptg6935296

264 ChAPTER 17 deBuggIng and analysIs In deptH

devICes and versIons
Xcode Tools comes with One iOS Simulator to Rule Them All. That is, the Simulator 
can be configured to simulate an iPhone, an iPhone at Retina display resolution, or an 
iPad. You can select the desired device from the main menu under Hardware > Device. 
You can select past iOS versions from the main menu under Hardware > Version.

rotatIon
Because iOS devices are aware of their physical screen orientation, you need to be 
able to simulate the user rotating the device in order to test how your application 
responds to orientation changes (if your application supports that). Hopefully 
your application is more supportive than some parts of society are when people
undergo orientation changes.

To change the device’s orientation, hold the Command key and press either 
the left or right arrow key. The simulated device will rotate in the direction you 
chose. If your application supports the various orientations, it should reshape 
its user interface automatically to fit the new orientation. If it doesn’t, you’ll see 
something like Figure 17.33.

fiGURe 17 .33 Simulating 
device orientation changes 
(This app does not yet support 
orientation changes.)



ptg6935296

deBuggIng apps For ios devICes 265

To support all orientations with this simple template application, you need to 
do two things. First, navigate to the project and select the TestApp Touch target 
from the Targets list. Under the Summary tab, make sure all buttons are selected 
under Supported Device Orientations (Figure 17.34). By default, only “Upside 
Down” is not selected as supported. Then, you’ll need to let the application’s view 
controllers (FirstViewController.m and SecondViewController.m) know that 
they’re allowed to auto-rotate to match any orientation. For each view controller 
file, find the -shouldAutorotateToInterfaceOrientation: methods and modify 
them to always return YES. Both files’ methods should look like the following code.

- (BOOL)shouldAutorotateToInterfaceOrientation: 
p (UIInterfaceOrientation)interfaceOrientation

{

  return YES;

}

fiGURe 17 .34 Setting the sup-
ported device orientations



ptg6935296

266 ChAPTER 17 deBuggIng and analysIs In deptH

Press the Stop button on Xcode’s toolbar if the application is still running, then 
run it again. Test the different orientations using Command and a right or left 
arrow key. The user interface should now rotate so that it is always upright no 
matter the orientation the Simulator shows (Figure 17.35).

sImulatIng Common devICe events
There are several device events you’ll likely need to test.

Low Memory Warnings. First, an iOS application needs to handle low memory 
conditions properly. That is, unneeded resources should be released immediately 
when iOS tells your application the device is running low on memory. Failure to 
handle this event properly (or at all) will result in your application being terminated. 
Because you’re a good developer, you want to ensure that your application handles 
this event properly. You’ve implemented the correct method and called some 
application-specific memory cleanup code. Now you just need to test it to make 
sure it works. You can do so by choosing Hardware > Simulate Memory Warning 
from the main menu. You can even set a breakpoint on that method to make sure 
it’s called and to follow it through its instructions.

fiGURe 17 .35 TestApp Touch’s 
UI rotating to match the 
device orientation

Note: The labels in the template view get “crushed” and do not display 
correctly in figure 17.35. More work is needed to make certain all uI 

elements resize and move properly, but that topic is beyond the scope 
of this book. See the Cocoa documentation for details.



ptg6935296

deBuggIng apps For ios devICes 267

Shake. If you’ve used an iOS device, you know that many apps support “shake 
to undo,” which will trigger the application’s undo when the device is physically 
shaken. To trigger this event in the Simulator, choose Hardware > Shake Gesture 
from the main menu.

In-Call Status Bar. For iPhones, the UI must “squish down” to make room for 
the in-call status bar, which indicates that the phone is in a call while you’re using 
other applications. Because this affects your application’s user interface layout, it’s 
necessary to toggle the call bar to make sure your UI auto-sizes properly. You can 
do this by choosing Hardware > Toggle In-Call Status Bar from the main menu.

sImulatIng tv out
Another popular iOS feature is the ability to connect external displays by using 
dock connector adapters. This lets you, for example, hook your iPad up to a projec-
tor and use Keynote for iPad to give a presentation, or to a television for a photo 
slideshow. Your app must provide this “TV Out” content, but you can test it in the 
Simulator without plugging anything in. To activate TV Out (which simulates an 
external display device being hooked up to the iOS device), select a resolution from 
the Hardware > TV Out menu under the main menu. To turn TV Out off, select 
Disabled from the same menu. Figure 17.36 shows the simulated iPhoto app in a 
slideshow, with a “starry sky” slide displayed in the TV Out viewer.

fiGURe 17 .36 Simulating 
TV Out



ptg6935296

268 ChAPTER 17 deBuggIng and analysIs In deptH

usIng tHe deBugger
There’s nothing special required to use all of Xcode’s debugging facilities with the 
iOS Simulator. Breakpoints, the Debug navigator, and the Debug area all work in 
exactly the same way.

DEBuGGING ON iOS DEvICES

You just read that the debugger works as expected with the iOS Simulator. The 
same is true when debugging your applications on an iOS device as well. There 
are only a few differences.

devICes must Be provIsIoned
Your device must be provisioned for development. Please see Appendix A for more 
information regarding provisioning and managing your iOS devices.

devICes must Be unloCked
Your device must be unlocked. That is, if your device is passcode-protected and 
requires entering the passcode to unlock it for use, you’ll need to first unlock it 
before Xcode can use it for development. It must also remain unlocked for the 
duration of your debugging session.

devICes must remaIn ConneCted
You’ll need to leave the device connected. If you unplug the device during a debug-
ging session, you won’t be able to reconnect during that session. You’ll have to stop 
the session in Xcode, make sure the device is plugged in again and that it is selected 
as a run destination in the Schemes pop-up (since it disappears when your device 
disappears), and then begin a new session.



ptg6935296

WrappIng up 269

You’ve learned a few more debugging tricks as well as how to debug your iOS appli-
cations on a device or using the Simulator. Xcode has plenty more debug-related 
features stuffed into various dark corners. Hopefully this chapter has illuminated 
the main aspects that most developers are looking for. In the next chapter, you’ll 
learn how to use Xcode’s unit testing facilities to catch as many bugs as you can 
before you need to debug them.

WRAPPING up



ptg6935296

18

unIt TesTing



ptg6935296

271

Xcode has supported unit testing since ver-

sion 2, but the developer community has 

often bemoaned the limits of that support. In 

Xcode 4, testing has become a first-class citizen, satisfying many 

of the previous complaints. In Chapter 14, you learned about the 

various Build actions, of which Test is one. When you call for a 

test (assuming you’ve set up unit testing), a testing-specific target 

is built and run, which in turn runs a series of tests against your 

code. In this chapter, you’ll explore Xcode’s unit testing features 

in greater detail.



ptg6935296

272 ChAPTER 18 unIt testIng

WhAT IS unIt testIng?

Most sources define unit testing as a method of testing the functionality of indi-
vidual units of code to make certain they work under any possible condition. Many 
developers define it as a royal pain in the butt (to put it mildly).

A unit is a single part of your code. Many describe a unit as a single function 
or method. As there tends to be a one-to-one relationship between a class in your 
code base and a matching class with which to test the first, some argue that the 
class is the unit. Either definition is saying more or less the same thing: A unit is a 
logical, testable piece of your code.

For example, if you have a MyCalculator class with methods that perform 
various calculations (such as additions, subtractions, factorials, or square roots), 
you might have a matching MyCalculatorTests class that tests each of those func-
tions. Each test is typically its own method with a descriptive signature such as 
-testSquareRootOfNumber:, which does exactly as its name suggests.

Of course methods can pass objects back and forth, so you may have test cases 
that involve making sure that a valid object is returned from a method with vari-
ous types of input under certain conditions, including verifying that no object is 
returned with certain input or conditions. For example, you may need to test a 
method that returns an object representing a network connection. The method 
may not be able to fulfill the request, either because you failed to provide it some 
valid input (such as a valid host name) or because of networking errors (such as 
an unplugged network cable or deactivated Wi-Fi connection).

The tests should be designed to cover all the imaginable ways the code could 
fail, to make sure that it doesn’t. No matter what changes you make to the code, 
the existing tests should still pass, and new tests (to cover new functionality or 
new scenarios) should pass, too.



ptg6935296

WHat Is unIt testIng? 273

ThE BENEfITS

Unit testing gives developers several clear advantages. The following are usually 
found at the top of the list.

desIgn
When software design is test-driven, the tests themselves are designed first and 
provide the goals for the software to meet. That is, if you design the tests to specify 
how the software should behave and then write the software with the intention 
of passing the tests, the developer knows that the design goals are met only when 
the code passes all the defined tests.

CHange management
Part of maintaining an application’s code base involves refactoring the existing code. 
With proper unit tests, a developer can make these changes confidently, re-running 
the tests after each change to verify that the code still meets the requirements the 
tests have set. The developer will know immediately whether their “new way of 
doing things” broke things when the test fails. Even better, well-designed unit tests 
tell the developer exactly where and why the new code failed.

sImplIFIed IntegratIon testIng
Integration testing is the testing of the various software components when brought 
together as a whole. For example, integration testing is done on the entire applica-
tion to make sure all its parts work together properly. For this reason, integration 
testing is often done manually by people using the software. Unit tests ensure the 
individual components work properly, catching errors before they manifest as poten-
tially confusing behavior to the user, leaving only integration-related problems for 
the tester to deal with. This clear delineation between “problem with component” 
versus “problem between components” simplifies the debugging process.



ptg6935296

274 ChAPTER 18 unIt testIng

ThE lIMITATIONS

As mentioned, the biggest limitation with unit testing is that of scope. That is, unit 
testing only tests units. It does not cover problems that arise from integrating 
units. Other forms of testing (such as integration testing) are needed in conjunc-
tion with unit testing.

If that’s not enough to frighten you, consider what’s really needed to cover every 
possible aspect of a method. For each Boolean answer a method can give, you need 
at least two tests (one to test that the method answers true when it should, and 
one to test a proper no response). Properly designed test coverage usually requires 
several tests per method tested.

That’s not all. Not only must you design these tests but you must maintain them 
as the code changes, rewriting (or even simply renaming) them so they’re relevant 
as well as easily readable if they fail. For every new possibility that’s added to the 
unit, the test must cover it as fully as possible. Therefore, unit testing requires a 
great deal of engineering time and discipline to remain useful.



ptg6935296

WHat Is unIt testIng? 275

ThE CONTROvERSy

Developers tend to be an obsessive lot. We like the idea of unit testing. It’s neat, 
predictable, and verifiable. The trouble is, many of us admit we don’t unit test. 
The most often cited reason is the amount of work it takes to create and maintain 
the tests to maintain “full coverage” of all your code’s functions (and all the pos-
sible scenarios those functions may face). For independent software developers 
in particular, the engineering time proper unit testing takes may be unacceptable 
for a number of reasons.

Adding to the controversy is confusion over what exactly to test and how to test 
it. More specifically, those new to unit testing have trouble determining how to 
design the tests for their code. That particular subject is well beyond the scope of 
this book, so this chapter will focus on the tools Xcode provides, leaving the study 
of unit test design for a better-suited book. Whether or not unit testing is for you 
(and how best to approach it for your project) is up to you to explore.



ptg6935296

276 ChAPTER 18 unIt testIng

As you saw in Chapter 14, Xcode provides a specific Build action called Test (which 
you can initiate by pressing Command+U or by choosing Product > Test from the 
main menu). You can see the tests that are to be run for the active scheme in the 
scheme’s Test action (Figure 18.1). These tests are automatically detected based 
on their formatting, which you’ll learn later in this chapter.

Recall that you chose to include unit tests when you created the familiar TestApp 
project. Because of this, the TestAppTests target was created for you automatically 
and was added to the scheme. Contrast this with the TestAppSharedFramework 
scheme, where no unit tests were added (Figure 18.2).

fiGURe 18 .1 The default tests 
in the Scheme Editor

unIt testIng IN Xcode



ptg6935296

unIt testIng In XCode 277

In Figure 18.1, the TestAppTests target is expanded, showing another node 
called TestAppTests. This corresponds to the only file that belongs to the   
TestAppTests target: TestAppTests.m. The TestAppTests class defined in its .m
file defines the individual tests available (in the form of methods). Were there any 
test methods defined in that class, those method names would show up under the 
class name in the scheme’s Test action automatically. The Test column lets you 
toggle individual tests on or off.

In their current state, the template-supplied tests aren’t particularly helpful. 
When you test TestApp now, the last line of the results (found in the Log naviga-
tor) shows zero unexpected failures—a clean test. Obviously it’s only a clean test 
because nothing was really tested. You’ll explore the test result logs in more detail 
later in this chapter.

fiGURe 18 .2  
No tests defined for the 
TestAppSharedFramework 
scheme

Note: The TestAppTests.m file is located in the TestAppTests 
group in the Project navigator. This is automatically created for you 
when you include unit tests when creating a new project. 
The file itself is a generic place to run tests, but best practice 
is to create a matching test class for each class in your code base.



ptg6935296

278 ChAPTER 18 unIt testIng

POWERED By OCuNIT

It’s important to know that Xcode uses OCUnit, part of the SenTestingKit framework. 
OCUnit provides the test management and interface code, the Cocoa Unit Testing 
Bundle target template, and the Objective-C test case class template.

test targets and Classes
The target links against SenTestingKit.framework. In its Compile Sources build 
phase, it contains not only the .m files of its test classes but those of the classes 
they test (since they must be compiled and linked so the test classes can use them).

The test classes, as mentioned above, can be created using the Objective-C test 
case class template (accessed from the Add Files panel or by dragging the template 
file into the project from the File Template library, as in Figure 18.3).

Again, it’s important to note that the test case classes and the classes they test 
against must be added to the unit test target. The test case classes are subclasses 
of the SenTestCase class provided by SenTestingKit.framework. The test case 
class template provides basic stub methods for setup and tear-down of the testing 
environment. Beyond that, it’s up to you to add individual tests in the form of 
methods. Test case classes are created for each class in your code base.

fiGURe 18 .3 The File Template 
library

tip: you can learn more about OCunit by 
visting www.sente.ch/software/ocunit.

www.sente.ch/software/ocunit


ptg6935296

unIt testIng In XCode 279

assertIng yourselF
Tests ultimately pass or fail an assertion. Depending on what you’re testing, you 
will assert that a condition must be satisfied. For example, you may assert equality 
with an expected value, or that an exception must or must not be raised, or that a 
return value must or must not be nil. Following are some of the assertions provided 
by OCUnit with descriptions and basic example code for each.

STAssertEqualObjects() generates a failure if the two objects passed to it are 
not equal.

STAssertEqualObjects(objectA, objectB, @”One of these objects is not  
p like the other.”);

STAssertEquals() generates a failure if the two scalars, structs, or unions
passed to it are not equal.

STAssertEquals(myValue, kSomeConstant, @”myValue should be %f but  
p it’s %f. My world view is shattered.”, myValue, kSomeConstant);

STAssertEqualsWithAccuracy() generates a failure if two scalars are not equal 
to within some accuracy. In other words, if the accuracy is .1, the values 0.9 and 
1.0 would be considered equal. The primary use is for float or double scalars but 
works for others.

STAssertEqualsWithAccuracy(piCloseEnough, M_PI, 0.005,  
p @”piCloseEnough (%f) isn’t close enough to pi for our  
p tastes. Mmm. Tasty pi.”, piCloseEnough);

STFail() generates an unconditional failure. It’s useful for those edge cases 
the other assertions do not cover, as well as for cases where a certain block of 
code should never be reached (the line after a while loop that’s not intended to 
be broken, for example).

STFail(@”Error: Hamster should not float; Q has changed the  
p gravitational constant of the universe.”);

STAssertNil() generates a failure if the passed object is not nil.

STAssertNil(someNilObject, @”How exactly do you get something from  
p nothing?”);



ptg6935296

280 ChAPTER 18 unIt testIng

STAssertNotNil() generates a failure if the passed object is nil.

STAssertNotNil(aValidObject, @”I visited this method and all I got  
p was this lousy nil.”);

STAssertTrue() generates a failure if the passed Boolean (BOOL) expression 
evaluates to false.

STAssertTrue((M_PI == 3.0f), @”Professor Frink says pi is exactly  
p three!”);

STAssertFalse() generates a failure if the passed Boolean (BOOL) expression 
evaluates to true.

STAssertFalse((1 == 1), @”We don’t BELIEVE in equality ‘round THESE  
p parts, stranger!”);

STAssertNoThrow() generates a failure if the expression throws an Objective-C 
exception.

STAssertNoThrow([someCalculatorObject addOneToThree], “The answer  
p is 4, you dolt. What went wrong?”);

STAssertThrows() generates a failure if the expression does not throw an 
Objective-C exception.

STAssertThrows([someCalculatorObject divideByZero], @”Wait, what?  
p What result did YOU get?!”);

Each test should contain at least one assertion. Some argue that each test 
should include only one assertion so that the test’s name (the method signature) 
is precisely descriptive of what is being tested, making the precise failure easier 
to identify should it arise.



ptg6935296

unIt testIng In XCode 281

test results log
As mentioned previously, the test result output shows up in the Log navigator. 
Following is the output from the first run of the TestApp scheme’s Test action.

GNU gdb 6.3.50-20050815 (Apple version gdb-1518) (Sat Feb 12  
p 02:52:12 UTC 2011)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and  
p you are welcome to change it and/or distribute copies of it under   
p certain conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for  
p details.

This GDB was configured as “x86_64-apple-darwin”.tty /dev/ttys000 
p sharedlibrary apply-load-rules all

[Switching to process 12421 thread 0x0]

objc[12421]: GC: forcing GC OFF because OBJC_DISABLE_GC is set

Test Suite ‘All tests’ started at 2011-04-13 20:02:20 -0400

Test Suite ‘/Developer/Library/Frameworks/SenTestingKit. 
p framework(Tests)’ started at 2011-04-13 20:02:20 -0400

Test Suite ‘SenInterfaceTestCase’ started at 2011-04-13 20:02:20  
p -0400

Test Suite ‘SenInterfaceTestCase’ finished at 2011-04-13 20:02:20  
p -0400.

Executed 0 tests, with 0 failures (0 unexpected) in 0.000 (0.000)  
p seconds

Test Suite ‘/Developer/Library/Frameworks/SenTestingKit. 
p framework(Tests)’ finished at 2011-04-13 20:02:20 -0400.

Executed 0 tests, with 0 failures (0 unexpected) in 0.000 (0.001)  
p seconds



ptg6935296

282 ChAPTER 18 unIt testIng

Test Suite ‘/Users/jnozzi/Library/Developer/Xcode/DerivedData/ 
p TestApp_Suite-gjvjpbtynoofyphkphrqcobvoibi/Build/Products/Debug/ 
p TestAppTests.octest(Tests)’ started at 2011-04-13 20:02:20 -0400

Test Suite ‘TestAppTests’ started at 2011-04-13 20:02:20 -0400

Test Suite ‘TestAppTests’ finished at 2011-04-13 20:02:20 -0400.

Executed 0 tests, with 0 failures (0 unexpected) in 0.000 (0.000)  
p seconds

Test Suite ‘/Users/jnozzi/Library/Developer/Xcode/DerivedData/ 
p TestApp_Suite-gjvjpbtynoofyphkphrqcobvoibi/Build/Products/ 
p Debug/TestAppTests.octest(Tests)’ finished at 2011-04-13  
p 20:02:20 -0400.

Executed 0 tests, with 0 failures (0 unexpected) in 0.000 (0.001)  
p seconds

Test Suite ‘All tests’ finished at 2011-04-13 20:02:20 -0400.

Executed 0 tests, with 0 failures (0 unexpected) in 0.000 (0.002)  
p seconds

The first 17 lines can usually be ignored, as they relate to the success or failure 
of the testing environment itself. As you see on line 11 (the first line starting with 

“Test Suite. . .”), suites are started and finished and the number of failures is reported.



ptg6935296

unIt testIng In XCode 283

navIgaBle errors
Testing offers more than just logging. Upon encountering a failure, the point of 
failure is highlighted as an error in the Source Editor. Figure 18.4 shows a simple 
(if contrived) test that asserts that the BOOL value YES should be equal to NO—a 
guaranteed failure. Upon testing, this failure was flagged as an issue that can be 
navigated like any other.

Just as interesting, the Issue navigator (Figure 18.5) dutifully displays not only 
the test failure, but a description of the nature of the failure (based on the type of 
assertion you used) and the custom message if you provided one.

fiGURe 18 .4 A test error 
displayed in the editor

fiGURe 18 .5 A test error dis-
played in the Issue navigator



ptg6935296

284 ChAPTER 18 unIt testIng

To create an appropriately illustrative unit test for TestApp, you’ll need to create 
something easily tested, design the test based on what you know must work, and 
then write the test to those specifications. In the following sections, you’ll do just 
that using a very simple Person class.

CREATING SOMEThING TESTABlE

You’ll start by adding a Person class to TestApp. To do so, add a new Objective-C 
class to the project (to the TestApp target) by choosing File > New > New File from 
the main menu. Name the class Person and make it a subclass of NSObject. Make 
certain before saving that the new Person class is added to both the TestApp and 
TestAppTests targets (Figure 18.6) so it can be used by the test case you’ll write 
shortly. Click Save to add the file.

fiGURe 18 .6 Adding a Person
class

wrItIng A unIt test



ptg6935296

WrItIng a unIt test 285

Build a basic Objective-C class using the code below. Replace the entire contents 
of your Person.m file with the following code:

#import “Person.h”

@implementation Person

- (id)init

{

  self = [super init];

  if (self)

  {

    firstName = nil;

    lastName = nil;

  }

  return self;

}

- (void)dealloc

{

  [firstName release];

  firstName = nil;

  [lastName release];

  lastName = nil;

  [super dealloc];

}

@synthesize firstName;

@synthesize lastName;

@end



ptg6935296

286 ChAPTER 18 unIt testIng

Then, replace the contents of your Person.h file with the following code:

#import <Foundation/Foundation.h>

@interface Person : NSObject {

NSString * firstName;

NSString * lastName;

}

@property (nonatomic, retain) NSString * firstName;

@property (nonatomic, retain) NSString * lastName;

@end

This code describes a basic class representing a person with a first and last name. 
Assuming you’re familiar with Objective-C, you’ll realize the two name properties 
will be nil when the person is first created. Additionally, the synthesized accessors 
for those properties will allow the names to be set to nil or an NSString (which 
could be empty). These are scenarios you should avoid—a person should always 
have a first and last name, even if created without a first and last name. For that, 
you need to design a test.

DESIGNING ThE TEST

Your goal for the Person test coverage is simple: All Person instances must have 
a valid first and last name. That is, they cannot have nil or an empty NSString
set as their first or last name, nor can the Person instance be initialized in such   
a state. All tests must be contained within their own method and must begin   
with - (void)test...

For minimal coverage, you need four tests: testLastNameCannotBeNil, 
testLastNameCannotBeEmptyString, testFirstNameCannotBeNil, and 
testFirstNameCannotBeEmptyString.

You already know that all four tests will fail with the Person class in its cur-
rent state. There is no code to check for and enforce these requirements. Time to 
write the test.



ptg6935296

WrItIng a unIt test 287

WRITING ThE TEST

To write the test, you’ll need to add an Objective-C test case class to the project. You 
can do this by dragging an Objective-C test case class from the File Template library 
into the Project navigator (under the TestAppTests group), as seen in Figure 18.7.

Name the class PersonTest.m so it’s clear to which class this test belongs. Also 
add the test only to the TestAppTests target (since it does not need to be built for 
TestApp to run). Your settings should resemble Figure 18.8. Click Save.

Replace the contents of PersonTest.m with the following code:

#import “PersonTest.h”

#import “Person.h”

@implementation PersonTest

@synthesize personToTest;

- (void)setUp {

  [super setUp];

fiGURe 18 .7 Adding a test 
case class to the project

fiGURe 18 .8 Naming and 
configuring the test case class



ptg6935296

288 ChAPTER 18 unIt testIng

  // Create a person to test

    Person * newTestPerson = [[Person alloc] init];

    [self setPersonToTest:newTestPerson];

    [newTestPerson release];

}

- (void)tearDown {

  // Kill the test person

  [self setPersonToTest:nil];

    [super tearDown];

}

- (void)testLastNameCannnotBeNil

{

  self.personToTest.lastName = nil;

   STAssertNotNil(self.personToTest.lastName, @”Last name cannot  
p be nil!”);

}

- (void)testLastNameCannnotBeEmptyString

{

  self.personToTest.lastName = @””;

   STAssertTrue((self.personToTest.lastName.length > 0), @”Last  
p name cannot be empty string.”);

}

- (void)testFirstNameCannnotBeNil

{

  self.personToTest.firstName = nil;

   STAssertNotNil(self.personToTest.firstName, @”First name cannot  
p be nil!”);

}



ptg6935296

WrItIng a unIt test 289

- (void)testFirstNameCannnotBeEmptyString

{

  self.personToTest.firstName = @””;

   STAssertTrue((self.personToTest.firstName.length > 0), @”First  
p name cannot be empty string.”);

}

@end

Replace the contents of PersonTest.h with the following code:

#import <SenTestingKit/SenTestingKit.h>

@class Person;

@interface PersonTest : SenTestCase {

  Person * personToTest;

}

@property (nonatomic, retain) Person * personToTest;

- (void)testLastNameCannnotBeNil;

- (void)testLastNameCannnotBeEmptyString;

- (void)testFirstNameCannnotBeNil;

- (void)testFirstNameCannnotBeEmptyString;

@end



ptg6935296

290 ChAPTER 18 unIt testIng

If you look in the Scheme Editor for the TestApp scheme, under the Test action, 
you should now see your four new tests being picked up under the new PersonTest 
entry there (Figure 18.9).

fiGURe 18 .9 The Test action 
populated with the new tests



ptg6935296

WrItIng a unIt test 291

TESTING ThE TEST

It’s now time to make sure your test works properly. Make sure the TestApp scheme 
is active, and press Command+U or choose Product > Test from the main menu. 
When you do, you’ll get four expected failures. They’ll be highlighted in the editor 
as well as listed neatly in the Issue navigator (Figure 18.10).

fiGURe 18 .10 Expected failures 
in the Issue navigator

tip: you might try disabling one of the tests in the Scheme 
Editor’s Test action panel by deselecting the Test check box next 
to the desired test. Run the test again, and you’ll see that failure missing 
from the list because that test was not executed.



ptg6935296

292 ChAPTER 18 unIt testIng

PASSING ThE TEST

To pass the test, your Person class clearly needs to guard against nil or blank names. 
Not only does it need smarter setter accessors but some default values in the -init
method as well. Replace the entire contents of Person.m with the following code:

#import “Person.h”

@implementation Person

- (id)init

{

  self = [super init];

  if (self)

  {

    self.firstName = @”John”;

    self.lastName = @”Smith”;

  }

  return self;

}

- (void)dealloc

{

  [firstName release];

  firstName = nil;

  [lastName release];

  lastName = nil;

  [super dealloc];

}

- (NSString *)firstName

{

  return firstName;

}



ptg6935296

WrItIng a unIt test 293

- (void)setFirstName:(NSString *)newFirstName

{

  if (firstName != newFirstName &&

    newFirstName &&

    newFirstName.length > 0)

  {

    [firstName release];

    firstName = [newFirstName retain];

  }

}

- (NSString *)lastName

{

  return lastName;

}

- (void)setLastName:(NSString *)newLastName

{

  if (lastName != newLastName &&

    newLastName &&

    newLastName.length > 0)

  {

    [lastName release];

    lastName = [newLastName retain];

  }

}

@end



ptg6935296

294 ChAPTER 18 unIt testIng

The changes to Person.m ensure several things. First, that the -init method 
always makes sure there’s a default first and last name. Second, that the custom 
accessor methods (the setters in particular) make sure the newly passed name is 
neither nil nor an empty NSString.

Now you can check to make sure the code works as desired by repeating the 
tests. This time, all four tests should pass. Press Command+U to run the unit tests 
and notice happily that no errors come up in the Issue navigator. You can further 
verify the tests passed by finding the test results in the Log navigator.

You can see that the tests were run and were individually successful with the 
following lines in the log:

Test Case ‘-[PersonTest testFirstNameCannnotBeEmptyString]’ started.

Test Case ‘-[PersonTest testFirstNameCannnotBeEmptyString]’ passed  
p (0.000 seconds).

Test Case ‘-[PersonTest testFirstNameCannnotBeNil]’ started.

Test Case ‘-[PersonTest testFirstNameCannnotBeNil]’ passed (0.000  
p seconds).

Test Case ‘-[PersonTest testLastNameCannnotBeEmptyString]’ started.

Test Case ‘-[PersonTest testLastNameCannnotBeEmptyString]’ passed  
p (0.000 seconds).

Test Case ‘-[PersonTest testLastNameCannnotBeNil]’ started.

Test Case ‘-[PersonTest testLastNameCannnotBeNil]’ passed (0.000  
p seconds).

The summary of the PersonTest tests is as follows:

Executed 4 tests, with 0 failures (0 unexpected) in 0.000 (0.000)  
p seconds

Congratulations! You’ve just passed your first code-driven design-and-test cycle.



ptg6935296

addIng unIt tests to eXIstIng projeCts 295

Not every project you’ll be working with in Xcode 4 will come from Xcode 4. For 
older projects (or even new projects in which you forgot to include the default unit 
testing support), you may have to add this capability yourself.

The perfect candidate is the TestApp Touch project you created in Chapter 17 
because you did not request unit tests be created along with the project. To add a 
unit test target, select the TestApp Touch project in the Project navigator and then 
choose File > New > New Target from the main menu. Since it’s an iOS project, 
choose the Other subcategory under the iOS category. Select the Cocoa Touch 
Unit Testing Bundle option (Figure 18.11). Press Next.

On the next sheet, give the target a useful name, like TestAppTouchTests. Your 
settings should resmble Figure 18.12. Click Finish to add the new target.

fiGURe 18 .11 Choosing the 
testing bundle

fiGURe 18 .12 Configuring the 
testing bundle

ADDING unIt tests TO
eXIstIng projects



ptg6935296

296 ChAPTER 18 unIt testIng

The next step is to set up the TestApp Touch scheme to recognize the test bundle. 
Open the Scheme Editor for the TestApp Touch scheme and select the Test action. 
The list of tests should be empty, as in Figure 18.13.

Press the Add (+) button at the bottom of the list to reveal a sheet (Figure 18.14) 
from which you can select test bundles to add. Choose TestAppTouchTests and 
click Add.

fiGURe 18 .13 No test bundle 
yet in the Test action

fiGURe 18 .14 Adding the test 
bundle target



ptg6935296

WrappIng up 297

You should now see the TestAppTouchTests test target in the list, along with 
its default test class and example test (Figure 18.15). From there, you can continue 
adding test case classes and building your tests as you’ve just learned to do.

WRAPPING up

Whatever your feelings about unit testing, you cannot argue that Xcode 4 doesn’t 
make it easy to set up and use. Of course, designing tests properly, as well as taking 
the time to maintain them, relies on your own discipline. In the next chapter, you’ll 
learn to take advantage of Xcode 4’s various hooks and facilities for extending and 
customizing the build process.

fiGURe 18 .15 The newly added 
test target, ready for tests



ptg6935296

19

Using 
scrIptIng anD
preprocessIng



ptg6935296

299

This chapter is about using scripting as well 

as the preprocessor to customize the build 

process. One size most certainly does not fit 

all coding environments, and large groups as well as indepen-

dent developers can take advantage of Xcode’s scripting and 

pre processing capabilities to automate a variety of testing and 

deployment tasks.

This chapter will not serve as an exhaustive list of everything you 

can achieve—that would be an entire book unto itself. Instead, 

the goal is to introduce you to the scripting hooks and to some 

preprocessor tricks to spark your imagination so you will be better 

equipped to dream up your ideal automation pipeline.



ptg6935296

300 ChAPTER 19 usIng sCrIptIng and preproCessIng

eXtendIng yOuR workFlow 
WITh custom scrIpts

In Chapter 14, you explored Xcode’s redesigned build system. You learned that there 
are separate build actions that are run against the active scheme. You also learned 
that the action you perform will automatically build the specified targets in the 
way that makes the best sense for that action (a build for running yields a Debug 
build; a build for archiving yields a Release build). Two important features were 
mentioned briefly: the ability to run scripts before and after each type of action 
and the ability to run a script as part of a build phase.

SCRIPTING OPPORTuNITIES

Xcode offers several opportunities to hook in your custom scripts to extend func-
tionality. Xcode has always come with the Run Script build phase (see Chapter 14), 
but Xcode 4 adds pre- and post-action scripts, which are run before and after each 
major action (such as Build, Run, Archive, and so on).

pre- and post-aCtIon sCrIpts
In Chapter 14, you learned about the Run Script build phase, which, as its name 
suggests, runs the specified script when the target to which it belongs is built. 
The limitations of such a script are the same as its benefits: It runs only when its 
target is built. The ability to run a script just before (or after) a Run action, however, 
would let you reset the application’s test data before launch to always run against 
the same test data (or clean up a mess after the app finishes running). A bit of 
postprocessing for an archive created by the Archive action would be helpful for 
many developers as well. For each build action (Build, Run, Test, Profile, Analyze, 
and Archive), you can run a custom script before and after. These are called pre-
action and post-action scripts.

To manage pre- and post-action scripts, you edit the scheme into which you 
want to place them. From there, you select the action and expand it by clicking the 
disclosure button and selecting Pre-actions or Post-actions. Figure 19.1 shows the 
post-action editor for the Run action of the TestApp scheme.



ptg6935296

eXtendIng your WorkFloW WItH Custom sCrIpts 301

The nomenclature is a bit messy: A post-action script action for the Build action 
could be called a “post-Build-action action.” Whatever you choose to call them, 
actions (pre- or post-) are added and removed using the Add (+) and Remove (–) 
buttons. There are currently two types of actions: Run Script and Send Email. 
We’ll ignore the obvious mail-sending feature in favor of the considerably more 
powerful scripting capabilities.

The Run Script action has three controls. The Shell field lets you specify a 
path to a specific scripting shell. The default is /bin/sh. The pop-up menu lets 
you choose the source of the environment variables supplied to your scripting 
environment. For example, BUILT_PRODUCTS_DIR always points to the folder into 
which the target’s built products are placed. The pop-up lets you choose the target 
from which these variables are populated, or no target at all. The third control is 
a small script editor.

Figure 19.1 shows that the script does two things. It prints the environment 
variables to a file named EnvironmentVariables.txt on the current user’s desktop, 
then rather salaciously sums up a script output problem, which you’ll explore in 
a moment. If you have any shell scripting experience at all, you’re likely already 
imagining many ways to take advantage of these additional scripting hooks. Your 
delight will last to the beginning of the paragraph.

fiGURe 19 .1 The  
pre-/post-action editor



ptg6935296

302 ChAPTER 19 usIng sCrIptIng and preproCessIng

Unfortunately, this neat feature comes with a big disappointment. At the time of 
this writing, the standard output from these scripts seems to show up wherever it 
pleases, depending on the build action to which it belongs (and possibly the phase 
of the moon—further testing is necessary). A quick look at Figure 19.2 shows that 
a search of the build log—a good place for post-Build-action-script action standard 
output—produces no results.

Output from Build action scripts gets shunted to the system console log but 
seems to appear nowhere else, whereas Run action output shows up in the debug-
ger console as well as the system console. Test output shows up in the system 
console log but not in the test log in the Log navigator, nor in the debugger console. 
Profile and Archive output appears only in the system console log, while the Analyze 
pre- and post-actions are entirely unavailable (though they appear in the editor 
and Issue navigator UI). If you’re confused by this, you’re in good company.

fiGURe 19 .2 Disappointing log 
search results

Note: This feature is more than likely a still-undercooked part of 
Xcode 4 that will be improved. for now, if you need consistent standard 

output logging for these scripts, you’re out of luck. More than likely, 
an Xcode update just prior to publication will force this author to eat 

his words. his salt and pepper are standing by.



ptg6935296

eXtendIng your WorkFloW WItH Custom sCrIpts 303

run sCrIpt BuIld pHases
Despite the preceding doom and gloom, there is still the tried-and-true Run Script 
build phase, which you learned about in Chapter 14. Its output is easily located, 
and it offers an impressive array of environment variables. You can add as many 
as you like to the build phases of a given target. Figure 19.3 shows an empty Run 
Script build phase added to the TestApp target and expanded to show its settings. 
Run Script scripts are executed in the order in which they appear in the target’s 
build phases list.

The Shell field lets you specify the shell you want to use to execute the script. 
The default is /bin/sh. Alternatives are bash (the default shell for Mac OS X), perl, 
python, or any installed scripting environment.

fiGURe 19 .3 An empty Run 
Script build phase



ptg6935296

304 ChAPTER 19 usIng sCrIptIng and preproCessIng

The editor area directly beneath the Shell field will contain your script. You 
can type or paste a script directly into the field or drag a script file from your 
workspace. Since the field grows to match the size of your script, you’ll likely find 
it easier to take the drag-a-script-file-from-your-workspace approach. To do so, 
add a new shell script file to your workspace from the template (Figure 19.4). You 
can then drag the script into the script editor field. This way you can edit your 
script in the Source Editor, which causes the build phase to call your script when 
executed.

fiGURe 19 .4 The shell script 
file template

Note: When dropping a script from your workspace into the script editor, 
Xcode inserts the full path to your script file. This essentially creates a script 

whose only purpose is to call the script in your workspace. The inserted 
path is absolute, however, and will break if you move your project to 

another folder or disk. you may want to use a relative path instead.



ptg6935296

eXtendIng your WorkFloW WItH Custom sCrIpts 305

The “Show environment variables in build log” check box (Figure 19.3) is a handy 
option for debugging your script to make sure the variables you use have the values 
you expect. When this check box is selected, the environment variables available 
to the shell will be included in the build log. But you can safely turn off this option 
without affecting the script’s environment and cut down on the build log size.

When the “Run script only when installing” check box is selected, the script 
will be executed only when both the Installation Directory build setting is set to a 
valid path and the Deployment Location build setting is set to Yes for the current 
configuration (triggering an “install build”).

XCODE’S ENvIRONMENT vARIABlES

Xcode provides a number of environment variables that contain information useful 
to your scripting endeavors. For example, it may be important to know the path 
to a built product or to some resource that is external to the project but relative 
to the project’s folder. It might also be useful to know what build configuration is 
being used or what install directory is specified in the build settings.

This build environment information is invaluable when using scripts to extend 
the build process with your own postprocessing.

gettIng at tHe varIaBles tHe dIrty Way
You can employ a trick to get a quick list of the environment variables used in your 
project as well as their values at build time. The trick is particularly devious because 
it uses a build script itself. If you’re familiar with Unix, you might be aware of the 
printenv command, which prints the current environment variables and their values.

To use this trick, just add a Run Script build phase to the TestApp target. Recall 
that to do this, you must navigate to the TestApp project, select the TestApp target, 
and then click the Build Phases tab. Using the Add Build Phase button at the bot-
tom of the window, choose Add Run Script. Add the following to the script editor 
in the Run Script phase controls:

printenv > ~Desktop/XcodeBuildEnvironmentVariables.txt



ptg6935296

306 ChAPTER 19 usIng sCrIptIng and preproCessIng

Your Run Script phase should look like Figure 19.5. Build the appli-
cation (press Command+B to force a build). The text file you asked for 
(XcodeBuildEnvironmentVariables.txt) should appear on your desktop. Open 
it and take a look.

gettIng at tHe varIaBles tHe sane Way
Note also in Figure 19.5 the “Show environment variables in build log” check box. 
This is useful when debugging your scripts because the build system will dump 
what you just placed in a convenient text file straight into the build log.

fiGURe 19 .5 A script to print 
environment variables to a 
text file



ptg6935296

eXtendIng your WorkFloW WItH Custom sCrIpts 307

SIMPlE SCRIPTING EXAMPlE

A great many words could be spent detailing scripting examples both simple and 
elaborate. Since this book focuses on Xcode, only a basic practical example is 
needed to demonstrate some of the power of extending the build system with 
your custom processing.

In Chapter 12, you learned how to deploy an application using Xcode 4’s 
preferred method: the Archive action. This action builds a target for release and 
then creates an Xcode archive that is meant to be submitted to Apple’s App Store. 
As mentioned in Chapter 12, Apple seems to assume that by “deploy,” developers 
of course mean “sell on the App Store.” But many independent software vendors 
with Mac OS X products may not necessarily be ready to abandon their existing 
distribution channel in favor of Apple’s. Some extra effort is necessary, therefore, 
to customize the deployment process for these heretics.

tHe sCenarIo
Consider the following scenario. You want to distribute TestApp on your own Web 
site, flouting Apple’s benevolence. You’d like your users to download the application 
in the form of a simple zip file whose only contents is the application itself. The 
zip file (or some archive) is necessary because application bundles are essentially 
special folders, which would be cumbersome to download. Upon archiving, you 
want to produce this zip file and have it pop up in a Finder window so you can 
conveniently copy the file to a server. Of course this is a very basic solution, but 
this simple “gateway script” can lead you to more elaborate solutions (see the 

“Extending the Script” section) to suit your needs.
One way is to hook into the Archive process since it automatically builds for 

release and does indeed result in an archive intended for distribution. Xcode will 
still create its own archive (there’s currently no way to prevent it), but the custom 
script will create your archive as well.

Note: Of course you can hook your archive manipulation 
script into the Archive action’s post-action, but the example that 
follows will serve as a practical example of scripting in general.



ptg6935296

308 ChAPTER 19 usIng sCrIptIng and preproCessIng

CreatIng tHe sCrIpt
To get started, navigate to the TestApp project, select the TestApp target, and then 
click the Build Phases tab. Click the Add Build Phase button and choose Add Run 
Script from the menu. Double-click the Run Script title and name it Run Archive 
Script for clarity. Expand the new Run Archive Script phase and add the follow-
ing script:

# Move to the built products directory

cd $BUILT_PRODUCTS_DIR

# Clean up any previous archiving folder and create a new one

rm -Rf Archive

mkdir Archive

# Compress the target into a zip file in the Archive folder

zip -r Archive/$TARGETNAME.zip $FULL_PRODUCT_NAME

# Show the Archive folder in the Finder

open ./Archive

Figure 19.6 shows the completed script in the Run Archive Script build phase. 
If you’re familiar with shell scripting, the script should be easy enough to follow. 
It uses environment variables that Xcode provides for easy access to the built 
products directory, the target name, and the full product name.

Line 2 changes the working directory to the built products directory. Lines 5 and 6   
make sure there’s a clean Archive folder into which to place the completed archive 
(this avoids clutter when looking for the archive in the Finder window). Line 9 calls 
the zip command-line program to create a zip file named after the target (TestApp), 
using the full product name (TestApp.app) and placing the file into the Archive 
subfolder created on line 6. Finally, line 12 uses the open command-line program 
to open the Archive folder in a Finder window, neatly presenting your new archive.



ptg6935296

eXtendIng your WorkFloW WItH Custom sCrIpts 309

To test it, run the Archive action by choosing Product > Archive from the 
main menu. The Archive action runs as usual, but you should also see the Finder 
window appear.

fiGURe 19 .6 The completed 
custom archiving script

tip: you may prefer to prevent Xcode from open-
ing the Organizer (enabled by default). To do so, edit 
the scheme and select the Archive action. Deselect the 
Reveal Archive in Organizer option and click OK.



ptg6935296

310 ChAPTER 19 usIng sCrIptIng and preproCessIng

trIggerIng tHe sCrIpt on release BuIlds only
You’re not quite finished yet. Currently the script will run every time the target 
is built. Run the application (which builds for debugging). The archiving script 
also runs and pops up in a Finder window when the application is running. This 
is less than ideal. Since the stated goal was to run this script only when archiving 
(synonymous with “building for release”), a little more customization is necessary.

Why not use an Archive action post-action script? (See the “Pre- and Post-Action 
Scripts” section.) Xcode’s environment variables (such as BUILT_PRODUCTS_DIR, 
TARGETNAME, and FULL_PRODUCT_NAME) are unavailable in pre- and post-action scripts 
in the current version of Xcode 4. Until that changes, it’s easiest (in terms of there 
being far fewer and far-more-flexible lines of script) to use a Run Script build phase.

The on-archive-only problem is easy to solve using just one more environment 
variable: CONFIGURATION. You can use an if conditional to check if the script is run 
under the Release configuration. Replace the existing script with the following:

# Only under Release configuration ...

if [ $CONFIGURATION = Release ]; then

  # Move to the built products directory

  cd $BUILT_PRODUCTS_DIR

  # Clean up any previous archiving folder and create a new one

  rm -Rf Archive

  mkdir Archive

  # Compress the target into a zip file in the Archive folder

  zip -r Archive/$TARGETNAME.zip $FULL_PRODUCT_NAME

  # Show the Archive folder in the Finder

  open ./Archive

fi



ptg6935296

eXtendIng your WorkFloW WItH Custom sCrIpts 311

Figure 19.7 shows the new script. The if condition on line 2 evaluates the 
CONFIGURATION variable to check for the Release configuration. Line 17 ends the 
conditional block (fi is if spelled backward).

Test the script. Run the application normally—the script should not run. Now 
call the Archive action. This time the script runs and the Finder reveals your archive.

fiGURe 19 .7 The amended 
archiving script



ptg6935296

312 ChAPTER 19 usIng sCrIptIng and preproCessIng

eXtendIng tHe sCrIpt
As mentioned, this simple script shows how easy it is to customize the build process. 
When pre- and post-action scripts eventually provide environment variables—and 
they’re almost certain to in future releases—the scripts can be even more specific 
and less “conditional.”

The Web reveals a number of creative deployment scripts cobbled together 
and shared by Xcode users. Some involve uploading to a build server for testing 
in continuous integration environments. Some involve checking things into and 
out of repositories and even setting build numbers to revision numbers pulled 
from those repositories. Some scripts use release notes to generate update entries 
for “appcast” feeds, such as those used by Andy Matuschak’s venerable Sparkle 
automatic update framework. Others upload the archive (and associated appcast, 
release notes, and so on) to a staging area for testing prior to deployment on their 
public Web server.

With some scripting knowledge and a list of available command-line programs 
and Xcode environment variables, you can build quite a complex process. If you’re 
new to a Unix-based platform (of which Mac OS X is one), you owe it to yourself 
as a professional developer to explore the possibilities shell scripting offers and to 
leverage the rich tools the OS offers to automate your deployment tasks.



ptg6935296

usIng tHe preproCessor 313

In Chapter 13, you saw how you can use the C preprocessor (cpp) to create separa-
tors that show up in the Jump Bar and aid code navigation. If you’re unfamiliar 
with the preprocessor, it may surprise you to know that it’s far more powerful than 
that. It has a lot more to offer than the simple pragma mark directive.

MACROS

One of the simplest ways to use the preprocessor is to define macros. Since the 
preprocessor does as its name suggests—processes the text prior to compilation—
macros are automatically expanded for the compiler. This means you can use the 
#define command to create a kind of “lazy man’s constant” or to compress a set 
of nested method calls down to a simple stand-in symbol.

WHere to put tHem
It’s usually preferable to define macros in a header file so they can be imported 
elsewhere without needing to repeat them. Many developers use a global header 
file for this. The default .pch file found under your project’s Supporting Files group 
is included everywhere and is a great place to keep global macros.

deFInIng a maCro
A macro is defined using the #define directive and a macro name (such as 
PlaceholderString or TRUNCATED_PI), followed by the expanded text for the macro. 
For example, the following defines a macro:

#define TRUNCATED_PI 3.14

Any time the preprocessor encounters TRUNCATED_PI in source files, the value 
will be “expanded to” (or replaced by) 3.14.

In Cocoa applications, it’s commonplace to use uniform type identifiers (such 
as com.mycompany.TestApp.testappdocument) to identify data types such as docu-
ments, pasteboard drag types, and more. As with constants, the benefit of using a 
macro is to cut down on the number of opportunities you might mis-type a string 
constant (which the compiler cannot verify for you). Since a macro, like a symbol, 

tip: To learn more about what the C preprocessor 
can do for you, visit http://xcodebook.com/cpp.

uSING ThE preprocessor

http://xcodebook.com/cpp


ptg6935296

314 ChAPTER 19 usIng sCrIptIng and preproCessIng

must be typed properly (and participates in code completion), Xcode will help you 
spell it correctly and the compiler will flag it as an error if you miss. A simple string 
macro can be defined like this:

#define TestAppDocType @”com.mycompany.TestApp.testappdocument”

This will define the macro TestAppDocType, which will be expanded to   
@”com.mycompany.TestApp.testappdocument” anywhere it’s used.

Another handy use for macros is to shorten long, deeply nested method calls. 
Many non-document-based Cocoa applications “hang” top-level controllers from 
the application delegate to provide an easy means of reaching them from anywhere 
else in the application’s code. A call to such a controller might look like this:

[[[NSApp delegate] importantController] doSomethingImportant];

You can shorten the call by defining a macro for the controller:

#define ImportantController [[NSApp delegate] importantController]

The shortened call is now:

[ImportantController doSomethingImportant];

Macros can be used as functions as well. In fact, many common (but ver-
bose) evaluations have macros predefined in the Foundation.framework (under 
NSObjCRuntime.h). For example, finding the larger of two values can be evaluated 
as follows:

int largest = (a > b) ? a : b;

The MAX macro, however, simplifies this (for any type, not just int) as:

int largest = MAX(a, b);

tip: An easy way to find system-defined symbols and macros is to type 
them into the Source Editor and then Command-click them. The editor will 

navigate to the definition. Try it by typing MAX and Command-clicking the word.



ptg6935296

usIng tHe preproCessor 315

POISON

Although not quite as severe as it sounds, the GCC poison pragma directive can 
turn the use of any symbol or macro into a hard error. This is useful when trying 
to avoid using a particular function, variable, or predefined macro. For example, if 
you wanted to make sure all logging calls are made to Cocoa’s NSLog() rather than 
to printf(), you could “poison” printf(). This would cause the compiler to flag 
all existing calls and ensure any future slip-ups are avoided, should you forget and 
try to use printf() again later. To poison a symbol, use the following (substituting 
the desired symbol for printf in the example below):

#pragma GCC poison printf

Now printf() is considered poison. The antidote is to simply delete or com-
ment out the pragma directive you just set:

// #pragma GCC poison printf

CONDITIONAlS

The preprocessor has another handy trick up its sleeve. You can use conditionals 
to include (or exclude) blocks of text between #ifdef and #endif or to issue errors 
and warnings that are dependent on the environment. The supported conditionals 
are #if, #ifdef, #ifndef, #else, #elif, and #endif. The #ifdef and #ifndef (“if 
defined” and “if not defined,” respectively) conditionals are the most commonly used.

You might use conditionals to exclude blocks of code at build time depending 
on some set of criteria. For example, you might include a message dialog box that 
appears when an application is launched and that warns the user they’re running 
a beta version. A simple “beta” flag can be defined in the configuration used by a 

“beta build” scheme, while the normal scheme does not define it. Depending on 
which scheme is used, the beta warning code block may or may not be included 
at compile time.



ptg6935296

316 ChAPTER 19 usIng sCrIptIng and preproCessIng

You can write a conditional block of code as follows:

#ifdef SOMEMACRO

   NSLog(@”This code will only be included if SOMEMACRO is  
p defined... “);

#endif

The NSLog() statement will not be included in the compiled code unless 
SOMEMACRO is defined. The #ifdef directive doesn’t care what SOMEMACRO represents, 
only that it is defined. Recall that you can define SOMEMACRO like this:

#define SOMEMACRO 1

DEfINING MACROS IN ThE BuIlD ENvIRONMENT

Defining a macro and then checking if it’s defined is easy enough. Whether a macro 
is defined can also be based on the current build settings, as the BETABUILD flag is.

To try this scenario out for yourself, start by adding the following code to the 
end of the TestApp delegate class’s -applicationDidFinishLaunching: method:

#ifdef BETABUILD

  [[NSAlert alertWithMessageText:@”Beta Version”

    defaultButton:@”Ok”

    alternateButton:nil

    otherButton:nil

     informativeTextWithFormat:@”Warning: you are using a beta  
p version of this application. Bad stuff might happen.”]  
p runModal];

#endif



ptg6935296

usIng tHe preproCessor 317

Figure 19.8 shows the completed -applicationDidFinishLaunching: method. 
The NSAlert code block is wrapped in #ifdef and #endif preprocessor directives 
and will only be included if a macro called BETABUILD is defined.

Next, you’ll need to define the BETABUILD macro somewhere, and you’ll need 
to let the build environment take care of defining it. This is done by adding a 
separate build configuration for the beta build, defining the macro in the target’s 
build settings (specifically, the Preprocessor Macros setting), and then creating a 
separate scheme that uses the beta build configuration.

fiGURe 19 .8  
The completed -application 
DidFinishLaunching: method



ptg6935296

318 ChAPTER 19 usIng sCrIptIng and preproCessIng

To do this, you’ll start by creating a “beta” configuration. Navigate to the Tes-
tApp project, and select the TestApp target in the Targets list. Click the Info tab if 
it’s not already selected (Figure 19.9).

The beta configuration should be based on the Release configuration because 
you intend to present beta warnings in released copies of the application. In the 
Configurations section, select the Release configuration. Using the Add (+) button 
just beneath the list, choose Duplicate “Release” Configuration from the menu 
(Figure 19.10). Change the name from “Release copy” to Beta Release and press Return.

fiGURe 19 .9 The Info tab for 
the TestApp target

fiGURe 19 .10 Duplicating the 
Release configuration



ptg6935296

usIng tHe preproCessor 319

To use the separate configuration, you’ll need a separate scheme. Click the 
Schemes pop-up and choose Manage Schemes from the menu. In the scheme 
manager sheet (Figure 19.11), select the TestApp scheme and then click the Add (+) 
button and choose Duplicate from the menu. In the Scheme Editor sheet that 
appears, set the scheme’s name to TestApp (Beta) and then select the Archive 
action. Choose Beta Release from the Build Configuration pop-up (Figure 19.12) 
and click OK. There are now two schemes that build TestApp, but the beta scheme 
(when built for archiving) will use the Beta Release configuration you created.

fiGURe 19 .11 Managing the 
schemes

fiGURe 19 .12 Editing the Beta 
Release scheme’s Archive 
configuration



ptg6935296

320 ChAPTER 19 usIng sCrIptIng and preproCessIng

The final step is to define BETABUILD in the TestApp target’s build settings for 
the Beta Release configuration. Navigate to the TestApp project, then select the 
TestApp target and click the Build Settings tab. Search the settings for the Prepro-
cessor Macros setting. Expand the setting so you can see the three configurations 
(Debug, Release, and Beta Release), as seen in Figure 19.13.

Double-click the value column (for the TestApp values) in the Beta Release row 
and add the macro name BETABUILD. Figure 19.14 shows the properly configured 
setting.

fiGURe 19 .13 Adding a  
preprocessor macro

fiGURe 19 .14 The final  
BETABUILD macro settings



ptg6935296

usIng tHe preproCessor 321

Now you can test it.
Make sure the original TestApp scheme is selected. From the main menu, choose 

Product > Build For > Build For Archiving and wait for the build to finish. In the 
Project navigator, expand the TestApp project’s Products group. Right-click the 
TestApp.app product and choose Show in Finder from the menu. You should see 
your normal-release built TestApp application in its Release folder. Double-click 
it to launch it, and note the lack of a beta warning. Quit TestApp.

Now select the TestApp (Beta) scheme. From the main menu, choose Product > 
Build For > Build For Archiving and wait for the build to finish. Again, in the Project 
navigator right-click the TestApp.app product in the Products group and choose 
Show in Finder from the menu. You should see the beta-release built app in its 
Beta Release folder. Launch it and be warned—it’s a beta (Figure 19.15).

fiGURe 19 .15 The beta 
warning

tip: you might also use the Beta Release configuration 
to avoid stripping debug symbols. for this configuration, you 
might disable the Strip Debug Symbols During Copy setting, which 
will make it easier to debug the problems found by your beta testers.



ptg6935296

322 ChAPTER 19 usIng sCrIptIng and preproCessIng

lIMITATIONS

It’s important to understand the distinction between compile or build time and 
runtime. The C preprocessor processes source files prior to compilation. All effects 
on the source code happen when the code is built, not when it is run. You cannot, 
for example, use a preprocessor conditional to run one block of code if the applica-
tion is running on Mac OS X 10.6 and another block of code if running on 
Mac OS X 10.5.

WRAPPING up

You’ve seen how Xcode’s scripting hooks can be used to extend and automate 
various tasks. You’ve also explored the C preprocessor’s ability to provide macros 
with text replacement and conditionally include text in source. Armed with a basic 
knowledge of these two tools, Xcode can be extended and integrated into a much 
larger workflow, automating tasks and making them less prone to human error. 
In the next chapter, you’ll learn how to profile your code, and more, with Xcode’s 
companion application Instruments.

tip: This is a good time to recall two things you read about 
in Chapter 17: the Generate Preprocessed file command and 

the Assistant editor’s Generated Output behaviors.



ptg6935296

This page intentionally left blank 



ptg6935296

20

Using 
Instruments



ptg6935296

325

Instruments is Apple’s front end (and a few 

more things as well) to DTrace, a dynamic 

tracing system that records debugging and 

performance information about a running program. If you’ve 

never used it before, Instruments will revolutionize the way you 

profile and debug your applications. Once you’ve let it spoil you, 

you’ll wonder how you ever managed to make it out of the dark 

ages of leaks, zombies, and performance sinks.



ptg6935296

326 ChAPTER 20 usIng Instruments

AN OvERvIEW Of dtrAce

DTrace lets you trace your application as it runs. Tracing is logging information 
about a running computer program for debugging and performance analysis; it is 
used mainly by developers. Contrast this with “high-level logging,” which is used 
by end users and system administrators to log program errors, exceptions, failed 
scripts, and so on.

Apple added DTrace support and debuted Instruments in Mac OS X 10.5. Instru-
ments reduces the DTrace learning curve to manageable levels and makes a lot of 
traditionally difficult debugging tasks seem almost trivial by comparison.

In DTrace, a probe is a script to perform a specific task. In the glossy, graphic 
realm of Instruments, a probe (or collection of interrelated probes) is more gener-
ally referred to as an instrument. A probe is essentially a script that watches for 
specific events and records relevant information.

In the field of quantum mechanics, it’s been shown that the act of observing 
something changes its nature. This is true of profiling software as well. For example, 
adding a bunch of code to an application to track its performance will affect its 
performance. One of the most celebrated aspects of DTrace is its extremely minimal 
performance impact when a probe is enabled; and there is no impact for disabled 
probes. This means that for most developers, the act of tracing won’t have a notice-
able impact on the application’s performance profile. Because of this, DTrace can 
be used on production systems without slowing them down.

tip: you can run DTrace from the command line by using the dtrace
command. Type man dtrace in the Terminal and press Return to learn more.



ptg6935296

a tour oF Instruments 327

An entire book could (and should) be dedicated to DTrace and Instruments. The long 
list of available instruments continues to grow, and many require a solid grasp of 
one or more debugging and profiling techniques. This section will use as examples 
the three most common tasks for which the typical developer would use Instru-
ments. First, however, you’ll need to get familiar with Instruments’ user interface.

AN OvERvIEW Of ThE INSTRuMENTS uSER INTERfACE

When you first launch Instruments, you’re given an empty document and prompted 
to choose a template for the trace document that Instruments will create for you. 
A template is one or more instruments configured in a particular way. Figure 20.1
shows the template chooser sheet with a number of templates. This sheet, like 
Xcode’s template chooser sheet, is broken down into categories: iOS, iOS Simulator, 
Mac OS X, and User (templates you’ve created and supplied).

fiGURe 20 .1 The template 
chooser sheet

tip: The trace operations you perform are done inside an Instru-
ments trace document. A document contains the instruments and 
their configuration as well as every trace session recorded into it. It can  
be saved for later review, and future trace sessions can be appended to it.

A tour Of Instruments



ptg6935296

328 ChAPTER 20 usIng Instruments

Figure 20.2 shows a trace document with one 33-second trace session recorded 
in it. This document used the Time Profiler template found under the Mac OS X 
category of the template chooser. A great deal of information is shown here, with 
all of Instrument’s main views active.

fiGURe 20 .2 An Instruments 
trace document

tip: The trace document can be saved and re-opened later. you 
can also append a new session by using the Record button.



ptg6935296

a tour oF Instruments 329

Figure 20.3 shows the expanded Time Profiler (using the disclosure triangle to 
the left of its name). The most recent track is always placed on top. Subsequent ses-
sions will produce additional tracks for each instrument, and they can be reviewed 
and compared by expanding the disclosure triangle and clicking the track itself. 
The active track is shaded a darker blue (Figure 20.4).

There are many more view modes that won’t be covered in this chapter. Instead, 
let’s stick to the main views.

fiGURe 20 .3 The Time Profiler 
showing multiple tracks

fiGURe 20 .4 Choosing 
another track



ptg6935296

330 ChAPTER 20 usIng Instruments

tHe toolBar
There are some important clusters of controls on the toolbar you’ll need to under-
stand. Let’s explore each major grouping, starting on the left side of the toolbar.

The Record and Target controls work closely together. 
Use the Target control to attach Instruments to any 

running process. Depending on how you launched Instruments (see the “Launch-
ing Instruments” section, later in this chapter), a target (the application you’re 
tracing) may already be selected. Use the Record controls to control the trace. From 
left to right, there is a pause button to pause and resume tracing the running pro-
gram; the Record button to start and stop recording new tracks; and a restart button, 
which stops the current trace and starts a new one (producing a new track). If the 
program is not running when the Record button is pressed, it will be launched. If 
the program was launched by the trace session, pressing the Record button while 
recording will stop recording and terminate the program.

The Inspection Range controls specify the range of time in the track’s 
timeline you want to inspect. Specifically, you can filter out all trace 

information that is not within the specified range. The left button marks the begin-
ning of the time you want to inspect; the right button marks the end. Setting a 
beginning point with no end means start here and show me everything to the end; 
setting an end point with no beginning means show me everything from the begin-
ning up to this point. The middle button clears the selected range.



ptg6935296

a tour oF Instruments 331

Though not part of the toolbar, it’s important to understand how to specify 
a point in time. You do this by dragging the scrubber control to the desired 
location in the timeline. The scrubber control is located in the graduated bar 

just above the instrument tracks. The term scrubber comes from audio/video 
applications, where the time-pointer control is moved or scrubbed across a track 
to view and listen to the scrubbed region of time.

The status control in the center of the toolbar shows (in hours, 
minutes, and seconds) the length of the current trace session (by 

default) or the currently displayed trace session and number of sessions in the 
document (if there’s more than one recorded) and provides controls (the left and 
right arrows) to switch between sessions. Click the small icon to the right of the 
time display to toggle between running time (the session’s length) and inspection 
time (the current position of the scrubber control).

The View controls toggle the three primary views in a trace document’s 
interface. From left to right, the buttons toggle the Instruments, Detail, 

and Extended Detail views. You’ll explore them in a moment.

The Library control toggles the Library panel (Figure 20.5), which provides 
all available instruments. To add a new instrument to the trace, drag it from 

the Library panel and drop it into the Instruments list.

The Search control filters the displayed trace information by 
symbol or library (to choose the filter, click the magnifying 

glass icon in the control’s left edge and select from the menu). For example, typing 
“drawRect” into the field will show only the trace information about the -drawRect: 
method provided by NSView (and any other methods containing “drawRect” in 
their names), assuming it’s been called during the recorded trace session.

fiGURe 20 .5 The Library panel



ptg6935296

332 ChAPTER 20 usIng Instruments

tHe strategy Bar
The Strategy bar (Figure 20.6) is new in Instruments 4. It gives you three main 
tracing strategies to choose from. The buttons on the left edge of the bar toggle 
between the (from left to right) CPU, Instruments, and Threads strategies. (All the 
figures in this chapter thus far have shown the Instruments strategy—the default 
strategy in Instruments 4.) The pop-up menus let you filter by core, process, and 
thread. An additional pop-up appears in CPU and Threads strategies, letting you 
specify additional chart options.

The right-most button pops up a graphical legend (Figure 20.7) whose contents 
depend upon the chart mode (which colorizes the chart information). The legend 
shows each color used and what it represents in the chart.

Figure 20.8 shows the trace session from Figure 20.3 using the CPU strategy. 
The application’s activity is divided according to the CPU core on which that activity 
took place. If you have more than one instrument in the Instruments list, use the 
pop-up below the Instruments list to switch between them and see their collected 
trace information (Figure 20.9).

Figure 20.10 again shows the same trace session, this time using the Threads 
strategy. Here, the application’s activity is divided by thread (if you’re running Mac 
OS X 10.6 or later, you may see many threads here that you never knew were created).

fiGURe 20 .6 The Strategy bar

fiGURe 20 .7 The Status 
bar legend



ptg6935296

a tour oF Instruments 333

fiGURe 20 .8 The CPU strategy

fiGURe 20 .10 The Threads 
strategy

fiGURe 20 .9 The instrument 
chooser pop-up



ptg6935296

334 ChAPTER 20 usIng Instruments

tHe Instruments vIeW
The Instruments view (Figure 20.11) shows a list of all instruments (or cores or 
threads, depending on the selected strategy) in the top list. Each instrument can 
be selected by clicking it in the list. Once selected, pressing the Delete key will 
remove the instrument (and its data for all recorded sessions) from the trace docu-
ment. Click the info button (i ) to the right of each instrument to reveal a popover 
(Figure 20.12) that offers more trace recording data and track display options.

fiGURe 20 .11 The Instruments 
view

fiGURe 20 .12 The instrument 
info popover

Note: The control immediately below the list of instruments 
zooms in and out of the timeline. It is not actually part of the 

Instruments view and remains where it is when the view 
is toggled. Similarly, the instrument chooser pop-up seen in 

figure 20.9 belongs to the navigation bar of the Detail view.



ptg6935296

a tour oF Instruments 335

tHe detaIl vIeW
Whereas the Instruments view (and the tracks it records) control and display the 
basics of what is collected, the Detail view is where the actual trace information 
is shown and explored. As you toggle the Detail view, notice how the navigation 
bar at its top always remains visible. This lets you continue navigating the data (if 
only for the sake of the Extended Detail view) without the Detail view being shown.

The navigation bar (Figure 20.13) is composed of three separate areas. The 
left-most area is the instrument chooser pop-up control (which you saw in Figure 
20.9). This control lets you choose which instrument’s trace information is shown 
in the Detail and Extended Detail views and has the same effect as clicking an 
instrument in the list. To the right of the instrument chooser, the display mode 
lets you choose how the trace information is displayed. The list of available modes 
depends on the selected instrument, but most have the Call Tree and Console 
modes in common. Finally, the rest of the bar is dedicated to navigational context 
(much like the Jump Bar above Xcode’s editors), letting you navigate into and out 
of levels of detail in the current view.

Beneath the instrument chooser control are categorical lists of filters and 
display options specific to the active instrument (Figure 20.14). These controls 
are visible only when both the Detail and Instruments views are shown, and their 
content can vary widely from instrument to instrument. A common use case is to 
run a time profile of your application, choose the Call Tree display mode, and then 
(under the Call Tree group in the filter and options list) choose to hide missing and 
system symbols and show only Objective-C information. This gives you a view of 
only your own code, as opposed to including information about the myriad system 
libraries against which your code links.

fiGURe 20 .13 The Detail view 
navigation bar

fiGURe 20 .14 The active 
instrument’s options list



ptg6935296

336 ChAPTER 20 usIng Instruments

The main view (usually a table or outline) lists the individual data points 
that Instruments gathered about your application; the information it shows is 
specific to the selected instrument. Figure 20.15 shows the Objective-C–related 
call tree information collected by the Time Profiler. The top result reveals the 
method in which TestApp spent most of its time during the profiling session: the   
-drawRect:contentsOnly: method of the WebFrame class, which is part of the 
WebKit framework. This makes sense because I used TestApp’s Web window to 
navigate around a few Web pages for the duration of the trace. As a result, WebKit 
was busy drawing Web pages. You’ll explore the Time Profiler in more depth later 
in this chapter. Double-clicking entries in the list can often drill down into further 
detail. Again, this is instrument specific, so a general description is not possible here.

tHe eXtended detaIl vIeW
The Extended Detail view (Figure 20.16) shows extended information about the 
selected data in the Detail view. As with the rest of the detail-oriented views, its 
content is instrument specific. In the figure, the view is displaying extended detail 
about the selected Time Profiler symbol in Figure 20.15. In this case, it’s appropriate 
to show the heaviest stack trace (the stack trace responsible for the bulk of the 
calls to the selected symbol). This view represents the same information as found 
in the Debug navigator. The slider on the bottom works in the same way as the 
slider in the Debug navigator as well—it smartly filters out “uninteresting” chunks 
of the stack trace, depending on its position.

fiGURe 20 .15 The Detail view 
showing call tree information

fiGURe 20 .16 The Extended 
Detail view



ptg6935296

a tour oF Instruments 337

lAuNChING INSTRuMENTS

Now that you’re familiar with the main aspects of the Instruments interface, you’re 
ready to launch it for yourself. There are two ways to do this. You’ll learn the long 
way first to get a feel for how Instruments attaches to a process, and then you’ll 
learn the easy way.

tHe long Way
The long way involves launching Instruments yourself from the /Developer/
Applications folder. You’ll then choose a template for your document and click 
Choose. The document is configured and awaits your command. The next step is 
to choose the process to which you want Instruments to attach. Use the Target 
control and navigate its menu (Figure 20.17) to find and select the running process 
of your choice. The final step is to begin the trace by pressing the Record button.

The long way is the only way to attach to processes that are already running 
or that are running outside Xcode. The most interesting part of that sentence 
is the implication that you can in fact attach to other processes for a variety of 
diagnostic reasons. As a power user or system administrator, for example, you can 
even monitor a process’s file system access—handy for snooping on an installer’s 
payload as it’s delivered.

fiGURe 20 .17 The Target 
control’s menu



ptg6935296

338 ChAPTER 20 usIng Instruments

tHe easy Way
The easy way (for your Xcode projects) is to choose the Profile action from within 
Xcode. You’re already familiar with the Run, Test, and Archive actions. You can 
trigger the Profile action by choosing Product > Profile from the main menu; or by 
clicking and holding the Run button and then choosing Profile from its menu; or 
by pressing Command+I. Of course, you must have a project or workspace open 
and it must build successfully (just as when performing the Run action).

Assuming your project builds successfully, Instruments will launch and prompt 
you for a template for your new trace document, just as you saw in Figure 20.1. 
Once you choose your template, Instruments will launch your application, attach 
to it, and begin recording the trace. You’ll see this in action in the examples in the 
next section.



ptg6935296

usIng Instruments For Common tasks 339

Now that you know the Instruments basics, it’s time to apply them to common 
debugging and profiling tasks. You’ll start by using the Time Profiler to track down 
a contrived performance problem. You’ll then find a memory leak and track down 
and kill a zombie invasion.

TIME PROfIlING

You don’t get very far in a moderate-to-complex application without encountering 
performance problems. Such problems have traditionally been difficult to track 
down. More often than not, the cause is entirely different from what you suspected. 
Instruments’ Time Profiler template has an uncanny ability to show you inefficien-
cies in your code you may not even have suspected.

To begin, open TestApp’s TestAppAppDelegate.m file and change the  
-applicationDidFinishLaunching: method so that it includes this line:

[self doSomethingStupid];

After the closing curly brace of the -applicationDidFinishLaunching: method, 
add this new method:

- (void)doSomethingStupid

{

   NSMutableArray * array = [NSMutableArray  
p arrayWithCapacity:1000000];

  NSNumber * number;

  for (NSInteger i = 0; i < 10000; i++)

  {

    number = [NSNumber numberWithInteger:i];

    [array addObject:number];

  }

}

uSING Instruments
fOR common tAsks



ptg6935296

340 ChAPTER 20 usIng Instruments

To silence the warning that appears, declare -doSomethingStupid in the app 
delegate’s header (TestAppAppDelegate.h) by adding the following code before 
the @end directive:

- (void)doSomethingStupid;

Taken together, this code creates a mutable array with a capacity of 1,000,000 
objects and fills it with 10,000 instances of NSNumber. Not surprisingly, this will take 
a bit of time and cause the app’s UI to be unresponsive for a short time after launch. 
Once you have this code in place, press Command+I to invoke the Profile action.

Assuming there are no errors, Instruments will launch and prompt you for a 
template. Choose the Time Profiler template and click the Profile button. TestApp 
will launch, but it’ll take just a bit longer than usual. Once it launches and shows 
its windows, stop the trace by pressing the Record button. Make sure the Instru-
ments and Detail views are shown and that the Detail view mode is set to Call Tree. 
Then, under the Call Tree options on the left side of the Detail view, make sure that 
Invert Call Tree, Hide System Libraries, and Show Obj-C Only are the only options 
that are selected. This shows only TestApp’s symbols. You should see something 
similar to Figure 20.18.

In the figure, only four symbols (all from TestAppAppDelegate.m) are shown. 
Though your numbers may vary slightly (especially depending on how long after 
launch you waited to stop the trace), it should be painfully clear that TestApp spent 
most of its time doing something stupid.

fiGURe 20 .18 TestApp’s 
call tree



ptg6935296

usIng Instruments For Common tasks 341

Many developers’ knee-jerk reaction would be to blame the tight for loop. 
Of course it’s going to take a while to create ten thousand objects. Astute Cocoa /
Objective-C developers will know better with such a contrived example, but here’s 
where the Time Profiler really shines. Double-click the -[TestAppAppDelegate 
doSomethingStupid] symbol in the list, and the Detail view will prove its name 
(Figure 20.19).

In the figure, TestAppAppDelegate.m is displayed with some additional infor-
mation overlaid. Instruments has broken down the time spent in that symbol  
(the -doSomethingStupid method) to highlight the most time-consuming instruc-
tions within it.

To see the percentages (as in Figure 20.19), you may need to click the gear button 
in the upper-right corner and select View as Percentage from the menu. The overlay 
is color-coded to serve as a sort of heat map, where the color (ranging from “red 
hot” to “not-so-hot yellow” and beyond) represents how much time your computer 
spent executing the most time-consuming instructions.

This makes one thing very obvious: The culprit isn’t the for loop, though it cer-
tainly takes time. The red-hot instruction (89.5 percent of the method’s time in the 
example above) was the line where you allocated and initialized an NSMutableArray. 
If you don’t already know why this is, here’s where Instruments gets even better.

Click the Call Tree segment of the Detail view’s navigation bar to get back to 
the list of symbols. Deselect the Hide System Libraries check box to show all the 
system library calls in addition to those of TestApp. TestApp’s symbols should be 
gone, replaced by some system library symbols. Because the call tree is inverted, 
the deepest call in the stack is shown as top-level objects, and the top results are 
the calls that happened as a result of -doSomethingStupid.

fiGURe 20 .19 Source code 
overlaid with a heat map



ptg6935296

342 ChAPTER 20 usIng Instruments

Expand the items until you see something similar to Figure 20.20. You see  
that -doSomethingStupid goes on to call into Cocoa, and it’s spending lots of   
time just creating the array. While it doesn’t tell you why, it certainly draws 
your attention to it. The reason, for those still wondering, is that you’re abusing   
-[NSMutableArray  arrayWithCapacity:] by allocating a ton of memory you 
aren’t even using. Of course it’d take just as long to allocate all that space if you 
were using it, but the point is that the problem wasn’t where so many developers 
would’ve initially suspected (especially if that allocation were done in another 
part of the code).

Although this was a contrived example, it neatly demonstrates Instruments’ 
powerfully intuitive way of visualizing trace information—a way that takes only 
a few clicks to reveal the source of a performance problem. Now that you know 
what the problem is, it might be easiest to use a saner capacity (especially since 
you already know you need 10,000 objects). Contrast this approach with using   
 -[NSMutableArray array] to create the array by profiling both scenarios. You’ll 
see that the -arrayWithCapacity: approach is the better way to go, as long as 
you use it wisely.

fINDING lEAKS

Reference-counted memory management, as offered in Objective-C, is difficult. 
It’s easy to “let go” of an object before you’ve had a chance to tell it that it’s no 
longer needed. As you learned in Chapter 17, such an object—or, more specifically, 
its memory—is said to have been leaked. This is because as long as the applica-
tion is still running, you no longer have a reference to the object and can’t release 
it (hopefully causing it to be deallocated). That memory is now stuck until your 
program terminates. Worse, if your leak is triggered by something that happens 
often, your application will quickly eat up tons of memory. On iOS and (to a lesser 
extent) Lion, this will result in your application receiving a low memory warning 
and, eventually, being terminated by the OS.

fiGURe 20 .20 TestApp call 
tree with system libraries



ptg6935296

usIng Instruments For Common tasks 343

Leaks have traditionally been difficult to track down. Fortunately, Instruments 
makes it much simpler. To test this, let’s create and leak a single object in TestApp. You 
don’t need anything fancy—a simple NSObject instance will do. Add the following 
code to the -applicationDidFinishLaunching: method in TestAppAppDelegate.m, 
just after the call to -doSomethingStupid:

NSObject * leaked = [[NSObject alloc] init];

Now press Command+I to invoke the Profile action. When Instruments asks 
for a template, choose Leaks and click the Profile button. Since the Leaks instru-
ment only analyzes the data every 10 seconds or so (and needs a few seconds to 
get started), let the trace run for 15–20 seconds before stopping it. Click the Leaks 
instrument to select it (the Allocations instrument is at the top of the list and is 
along for the ride to help out). You should see something similar to Figure 20.21.

fiGURe 20 .21 The Leaks 
instrument



ptg6935296

344 ChAPTER 20 usIng Instruments

You’ll see that Leaks found exactly one leaked object. It’s an NSObject, just as 
expected. If you click the right-facing arrow to the right of its memory address 
(in the Address column), you’ll see the object’s history (Figure 20.22). It doesn’t 
have much of a history (a live object with a long life span might have pages worth 
of retains, releases, and autoreleases), but the history that’s there tells you every-
thing you need to know. The Responsible Caller column indicates it was leaked in   
-applicationDidFinishLaunching:, just where you expected it to be.

Double-click the history entry. Figure 20.23 shows exactly where in the code 
the object was leaked. By the time -applicationDidFinishLaunching: finishes, the 
reference to the object (named leaked) is no longer valid. You’ve lost any chance to 
tell that object that it’s no longer needed by sending it a -release or -autorelease.

Often, you’ll need the object’s complex history to follow the lifecycle of an 
object that’s been created, handed around, and then mishandled rather than being 
properly destroyed when it’s no longer needed. Double-clicking each point in the 
history can not only help you identify where the object’s destruction was fumbled, 
but it can also provide insight on where the fumble really started (which can be 
well upstream of the fumble itself).

fiGURe 20 .22 The leaked 
object’s history

fiGURe 20 .23 The leaked 
object highlighted in code



ptg6935296

usIng Instruments For Common tasks 345

KIllING zOMBIES (GO fOR ThE hEAD)

If leaks had an opposite, the dangling reference, or accidentally over-released object, 
would be it. A dangling reference is a pointer variable that wasn’t set to nil when 
its object went away (was deallocated) and that now points to an invalid memory 
address. It results in a crash with the telltale signal EXC_BAD_ACCESS, which is the 
operating system’s way of telling you you’re not supposed to be poking your nose 
around there anymore. These are officially many Cocoa developers’ least favorite 
memory management bugs.

A mechanism, NSZombie, has existed for a long time that helps developers track 
down these pesky bugs. When “zombies” are enabled, the runtime, rather than 
deallocating objects, will turn the objects into zombies and keep them around. If a 
zombie is messaged (indicating your code tried to reference an object it shouldn’t 
have), the system flags it as a messaged zombie. Zombies aren’t bad things that 
happen to an object; they do developers an invaluable service. Then the developer 
bashes in their heads with a shovel.

In the past, you’d have to pass an argument into your application manually on 
startup and then do a bunch of digging around to make sense of the results. You 
should now expect how much simpler Instruments makes it. To find out, replace 
the leaked object line from the previous example with these three lines (and make 
sure you get the spelling right—that’s brraaiinns):

NSObject * brraaiinns = [[NSObject alloc] init];

[brraaiinns release];

NSLog(@”%@”, brraaiinns);



ptg6935296

346 ChAPTER 20 usIng Instruments

Now profile the application (Command+I). Choose the Zombies template. 
Almost immediately, the application falls flat on its face with a crash. You’ll see 
two things. The topmost will be the unexpected-quit notification (Figure 20.24), 
which is safe to ignore (by pressing Ignore). More interestingly, in Figure 20.25
you’ll notice a handy popover notifying you that a zombie was messaged. Click 
the right-facing arrow beside the zombie’s memory address to see the memory 
address’s sordid history.

fiGURe 20 .24 An unexpected-
quit notification

fiGURe 20 .25 Instruments 
flagging a messaged zombie



ptg6935296

usIng Instruments For Common tasks 347

Figure 20.26 shows the complete lifecycle of the memory address in question. 
The telltale entry is the one that shows a –1 under the RefCt (reference count) 
column. A message was passed to that zombie. Double-click each entry to see 
the code (really any entry will do since the entire history happened within three 
consecutive lines of code).

The history shown in Figure 20.26, along with enabling us to navigate to the 
point in the code where the object was messaged when it should have died, is 
invaluable for discovering the flaw in logic that led to the memory management 
bug. Because it is displaying the history of a memory address rather than the his-
tory of the object itself, it’s important to keep in mind that you may see entries 
from the lifecycles of other objects that lived at that address as well. Look for the 
telltale –1 reference count to make sure you’ve got the right object.

MANy OThER INSTRuMENTS

There are a number of other excellent Instruments templates and nowhere near 
enough space in this book to detail them. There are templates for analyzing memory 
management, garbage collection, multicore processes, Grand Central Dispatch 
queues, file system access, and Lion’s Autolayout, and there’s even a UI recorder 
that can record and play back user interface events for repeated UI testing. See the 
Instruments documentation via its Help menu for more details.

fiGURe 20 .26 The zombie 
object’s lifecycle

tip: you might have noticed that the zombies template is actually 
just the same old Allocations instrument. The difference is in the extra 
options switched on in its info popover (click the i button to the right of 
the instrument in the Instruments list).



ptg6935296

348 ChAPTER 20 usIng Instruments

You’ve seen how Instruments provides a very simple GUI interface to a powerful 
tracing system. The impressive variety of debugging and testing tasks that it turns 
into trivial afterthoughts can be overwhelming. If after all this you’re not itching to 
attach Instruments to your own apps to see what kind of previously undiscovered 
performance and memory problems jump up and smack you in the face with stun-
ning Apple UI beauty, you are stubborn and probably want this whole GUI fad off 
your lawn. In the next and final chapter, you’ll explore Apple’s GUI treatment of 
source code management, which may make you just as cranky.

WRAPPING up



ptg6935296

This page intentionally left blank 



ptg6935296

21

soUrce coDe
mAnAgement



ptg6935296

351

Source code management, also known as 

revision control or version control, is a form 

of change control that is vital to any medium-

sized to large development project. In team environments, a full 

source code management system is often used for managing work 

that is done by multiple people on the same resources.

Xcode offers two primary ways to manage your source code: by 

using snapshots and through its integration with two full source 

code management (SCM) systems. You’ll explore both in this 

chapter.



ptg6935296

352 ChAPTER 21 sourCe Code management

XCODE snApsHots

The simplest way to place your code under version control is to use Xcode’s snap-
shots feature. A snapshot is merely an archived copy of your entire workspace. 
Xcode lets you restore a snapshot, which is the equivalent of extracting a copy of 
the workspace folder from the time of the snapshot.

It’s the most basic form of version control there is, and if you don’t use a full 
SCM system, you owe it to yourself to at least use snapshots. If you ever make 
complicated experimental changes that don’t work out, you’ll be thankful you 
took that snapshot before you started really messing things up. It’s so important, 
Xcode attempts to coerce you into enabling automatic snapshots the first time you 
use the Refactor features.

CONfIGuRING SNAPShOTS

Snapshots can be configured by choosing File > Workspace Settings (or Project 
Settings, if you’re working with individual projects) from the main menu. The 
Workspace settings sheet will appear. Click the Snapshots tab to reveal the  
Snapshots settings (Figure 21.1).

The check box controls whether snapshots are taken automatically before 
mass-editing operations (such as refactoring or workspace-wide find and replace). 
Since Xcode asks you if you want to enable automatic snapshots prior to your first 
use of a mass-editing feature, it’s unnecessary to enable this feature through this 
panel, but it can be useful if you want to disable it later in favor of a full SCM system.

fiGURe 21 .1 The project’s 
Snapshots settings



ptg6935296

XCode snapsHots 353

The Snapshots Location control lets you store snapshots for the current work-
space or project in an alternative location. The default is a location in your home 
folder, which lives alongside Xcode’s derived data and archive folders.

Snapshot settings belong to individual projects or workspaces. That is, any 
settings you change here affect only the current workspace or project.

TAKING A SNAPShOT

You can create a snapshot of your project at any time by choosing File > Create 
Snapshot from the main menu (or by pressing Command+Control+S). You’ll be 
prompted for a name and description (Figure 21.2).

Leaving all your snapshots named “New snapshot” and without a description 
would be useless to you later. A good name and description should be chosen so you 
can identify exactly at what point the snapshot was taken if you need to find it later.

Choose whatever naming and description system works best for you, but you 
should definitely have a system. Figure 21.3 shows a possible name and descrip-
tion. Click Create Snapshot to take the snapshot. A complete copy of your work-
space—exactly as it is now—will be archived and stored in the snapshots location 
that you specified.

fiGURe 21 .2 The Create 
Snapshot sheet

fiGURe 21 .3 A meaningful 
name and description



ptg6935296

354 ChAPTER 21 sourCe Code management

MANAGING SNAPShOTS

Snapshots are managed in the Organizer window. Choose Window > Organizer 
from the main menu and select the Projects tab. Select the project or workspace 
whose snapshots you want to manage. Figure 21.4 shows the TestApp Suite 
workspace snapshots.

In the figure, a filter bar is positioned directly above the list of snapshots. The 
search bar filters by keyword (in the title as well as the description). You can also 
choose to show all snapshots for the workspace or only those you took yourself 
(that is, you can exclude automatic snapshots).

The list shows the snapshots sorted by date. Selecting a snapshot enables the 
Export Snapshot and Delete Snapshot buttons along the bottom edge. The Export 
Snapshot button will place an extracted copy of the snapshot into the location of your 
choosing, while the Delete Snapshot button will remove the snapshot permanently.

fiGURe 21 .4 The TestApp 
project’s snapshots



ptg6935296

XCode snapsHots 355

RESTORING fROM A SNAPShOT

You can restore a snapshot by choosing File > Restore Snapshot from the main 
menu. Select the snapshot from the list (Figure 21.5) and click Restore.

A sheet will appear (Figure 21.6). Choose the specific files you want to restore 
from the list on the left. To restore the entire project, just leave all the files selected. 
Click Restore. The project will be restored to the state it was in when you took the 
snapshot (or only the selected files will be, if you’ve not included all the files in 
the restore). As a bonus, Xcode will automatically create a snapshot just before 
restoring a snapshot so you can undo your undo. This will happen only if you 
enabled the “Create snapshot of project before mass-editing operations” feature.

fiGURe 21 .5 The snapshot 
chooser sheet

fiGURe 21 .6 The snapshot 
review sheet



ptg6935296

356 ChAPTER 21 sourCe Code management

Xcode’s snapshots feature manages backup copies and can be used to store mul-
tiple versions of your project and its resources, but if you’re familiar with SCM 
systems—and this section of the chapter assumes that you are at least somewhat 
familiar—you can see how comparatively limited snapshots are.

Xcode currently supports and integrates with two well-known SCM systems: 
Git and Subversion (SVN). Whereas Subversion is primarily server-based (with 
the server usually but not always being a remote location), Git is what is known 
as a “distributed SCM” and does not require a server (remote or otherwise) to 
operate. There are many benefits to distributed SCMs, and this and other reasons 
make it likely that Git (or some other distributed SCM) will usurp Subversion in 
the coming years. Apple seems to agree. Xcode’s Git support is slightly more 
pervasive and noticeably more polished than its Subversion support. All that 
said, Xcode installs the necessary tools for both Git and Subversion support.   
Type man git or man svn in the terminal for details.

GIT AND SvN DIffERENCES

In most cases, the biggest differences are in the terminology. For example, where a 
Git user clones, a Subversion user checks out a working copy. Where a Git user pulls, 
a Subversion user updates (and possibly merges). Git users stage changes and commit
them, then possibly push them to the remote server (the origin); Subversion users 
simply commit (though don’t be fooled—there’s a lot to be said for Git’s model).

The biggest difference between the two systems is that, as hinted at in the previ-
ous paragraph, a Subversion user’s commit means the change becomes part of the 
repository (usually on a remote server from which it was checked out), whereas a Git 
user’s commit is a local operation. The Git user has a copy of the entire repository 
(and its full history) and can choose whether or not to push those changes to the 
origin (usually a central repository hosted on a server). Git commits can happen 
whether or not the remote server (the clone’s origin) is reachable.

This chapter will focus on Xcode’s Git support only partly because Apple seems 
to have chosen sides. Mainly, Git gets the spotlight because Xcode provides, where 
possible, a homogenized user interface that works nearly the same way whether 
you’re using Git or Subversion. The differences, where there are any, are mild. 
Unless specifically mentioned, the differences are mostly those of terminology.

Note: To learn more about Git, see http://xcodebook/gitimmersion; 
for SvN, see http://xcodebook.com/svnprimer.

uSING AN scm system

http://xcodebook/gitimmersion
http://xcodebook.com/svnprimer


ptg6935296

usIng an sCm system 357

MANAGING REPOSITORIES

More than likely, you have existing Xcode projects that are tied to existing reposi-
tories. You may already have a local clone (in Git) or checked-out working copy (in 
Subversion). The quickest way to make Xcode aware of an SCM-attached status 
is to open the project. Xcode will try to set up any connections to the repository’s 
origin or to the Subversion remote server. If authentication is required and Xcode 
does not have the credentials, it will prompt you for them upon opening the project.

You can manage repositories with the Organizer window. To view them, choose 
Window > Organizer from the main menu, then choose the Repositories tab. The 
Repositories tab of the Organizer (Figure 21.7) maintains a list, on the left side 
of the panel, of all repositories it’s encountered (and their associated clones and 
origins). The repository’s details as well as its history are displayed on the right 
when a repository is selected; when a working copy or clone is selected, the file 
and folder structure, the working copy’s history, and an SCM-specific toolbar are 
shown. You’ll explore this UI in detail throughout the rest of the chapter.

fiGURe 21 .7 The Repositories 
tab of the Organizer



ptg6935296

358 ChAPTER 21 sourCe Code management

If you’ve been following along with a TestApp project of your own, then Xcode 
has already been tracking the Git repositories for each of the projects you’ve created 
(TestApp, TestAppSharedFramework, and TestApp Touch). Because you chose to let 
Xcode create a Git repository for each project, you have three separate repositories. 
Some may choose to have one repository for a suite of related applications and 
libraries, but with Xcode’s new workspaces concept, the borders between these 
repositories are barely noticeable and don’t get in the way of typical day-to-day tasks.

CreatIng reposItorIes
As you learned in previous chapters, Xcode will let you create new Git repositories 
when you create new projects. When you’re prompted for a location into which to 
save a new project, the Save dialog contains a Source Control option at the bottom. 
Figure 21.8 shows the Source Control option to create a Git repository selected.

Unfortunately, this is the extent of Xcode’s repository-creating powers. That 
is, it’s limited to creating local Git repositories at the time a project is created. It 
cannot initialize a new repository for existing projects.

fiGURe 21 .8 Creating a Git 
repository when saving a new 
project



ptg6935296

usIng an sCm system 359

All is not lost. You can still take full advantage of Git by using the command 
line to turn an existing project into a Git repository. In the terminal, type the fol-
lowing (where your_project_folder is the full path to your project’s main folder):

cd your_project_folder

git init

That’s it. The folder is now the home of a Git repository, albeit one in which 
nothing is yet committed.

To create a locally hosted Subversion repository, you can’t use Xcode, but you 
can use the terminal:

svnadmin create your_project_folder

mkdir your_project_folder

You can then manually import an existing project into the new repository using 
the following code:

svn import path_to_existing_files file://full_path_to_project_ 
p folder/trunk/ -m “Initial import”

Not as elegant as Git, but it gets the job done.

addIng reposItorIes manually
You can add repositories and working copies with the Organizer. Whether you 
removed them yourself or Xcode could not for some reason add them automati-
cally when opening a project under version control, you can add and remove them 
manually. This is done with the Add (+) button at the bottom of the source list.

Keep in mind that the source list is an outline. The top-level nodes are individual 
repositories. Their children are all the known working copies or clones that belong 
to them, as well as convenient folders to access branches and tags.



ptg6935296

360 ChAPTER 21 sourCe Code management

To add a repository, click the Add (+) button and choose Add Repository from 
the menu. A sheet (Figure 21.9) will appear, asking you for a name, location, and 
type. The name is just a convenient identifier and can be anything you like (for 
example, My Company Repository or just Fred). The location, however, must be a 
valid URL to a repository.

The type will be automatically detected when using URLs with schemes like 
svn:// and git://, but those starting with ssh://, http://, or https:// will require you 
to choose the correct SCM system type in the Type field. The indicator light beneath 
the Location field will glow green when the supplied URL points to a valid 
repository.

fiGURe 21 .9 Adding a remote 
Git repository

tip: The Add a Repository sheet is probably more useful for 
Subversion repositories, since a cloned Git repository is a copy 

of the entire repository. for Git, it’s actually more user friendly to add 
a repository by opening the project in which it’s contained—Xcode will 
set up everything (including the origin, if one exists) for you.



ptg6935296

usIng an sCm system 361

To add a Git clone (or a Subversion working copy), you can either drag it into 
the source list in the Repositories tab of the Organizer or again use the Add (+) 
button, selecting Add Working Copy from the menu instead. This time you’ll be 
faced with a standard Open dialog that allows you to choose the folder containing 
the working copy or clone. Once you choose the folder, the working copy (and its 
associated repository entry) should be added to the Organizer.

ClonIng and CHeCkIng out
If you don’t already have a local clone, Xcode offers several ways to create one from 
within its UI. One way is to use the Organizer’s Add (+) button. Another way is to 
use the Welcome to Xcode window (Command+Shift+1) by selecting the Connect 
to a Repository option. Figure 21.10 shows a Git repository called GitTestApp that 
is hosted on a remote server via ssh. The indicator beneath the Location field shows 
that the host is reachable and the location is valid.

fiGURe 21 .10 Specifying a 
remote repository location

Note: for Subversion repositories, the branches and tags folders must exist 
at the root level of the repository you added in order for Xcode to recognize 
them automatically. There is currently no way to “map” the corresponding 
entries in the Organizer list to folders that are not in this expected location.



ptg6935296

362 ChAPTER 21 sourCe Code management

Click Next to reveal the sheet seen in Figure 21.11, which asks you to give 
the working copy or clone a recognizable name. Again, this can be anything you 
want. The Type field is usually already set to the correct SCM type (Subversion 
or Git), but if it’s incorrect or not specified, you’ll need to select it here. Click the 
Clone (or, for Subversion, Checkout) button to continue. You’ll be prompted for a 
location on your computer into which to save the clone or working copy. Choose 
a location and click Clone.

fiGURe 21 .11 Naming the 
clone



ptg6935296

usIng an sCm system 363

The clone or checkout will begin. You may be asked for authentication informa-
tion. Supply the necessary information and click OK to proceed. Depending on the 
size of your repository, the actual checkout or clone may take a while. When it’s 
finished, it will show up in the Organizer along with the rest of your repositories.

PERfORMING ROuTINE SCM TASKS

You’ve seen how to clone and generally manage your Git repositories. Now you’ll 
explore how to perform the more typical day-to-day SCM management tasks in 
Xcode and manage changes to your projects.

managIng Folders In suBversIon
Subversion works with files and folders; Git works with files or chunks (changed 
parts of files). For this reason, Subversion users need to make directory structure 
changes through Subversion, whereas Git users are able to freely move files and 
folders around.

In Xcode, you manage Subversion folders using the Repositories tab of the 
Organizer. You’ll need to first select the repository. To add a folder, use the list in 
the right-hand pane (the one showing your working copy’s directory structure) to 
select a folder in which you want to create the subfolder, then click the New Direc-
tory button. To delete a folder, click the Delete button in the Organizer. Rename 
folders by clicking them in the Organizer and editing them as you would any other 
filename. Each of these changes will require an immediate commit. Xcode will 
prompt you to enter a commit message.

Note: It’s common to set up an SSh key for “passwordless” authentication 
to an SCM server. If you have a key set up for the server already and Xcode 
prompts you for a username and password, it’s best to leave the user-
name field as it is and supply no password. for a Git-themed example 
of setting up an SSh key, see http://xcodebook.com/gitkey.

http://xcodebook.com/gitkey


ptg6935296

364 ChAPTER 21 sourCe Code management

CHeCkIng status
Throughout the book, you’ve been avoiding the elephant in the room (or rather the 
symbols in the Project navigator). Figure 21.12 shows the TestApp Suite workspace 
in the Project navigator. The expanded TestApp project shows project members’ 
pending SCM status as “badges” along the right edge of the list.

The meaning of each of the status badges is as follows:

M Locally modified
U Updated in repository
A Locally added
D Locally deleted
I Ignored
R Replaced in the repository
 - Mixed status (for groups and folders)
? Not under source control (hence, status unknown)

fiGURe 21 .12 SCM status in 
the Project navigator



ptg6935296

usIng an sCm system 365

The status messages can have different meanings, depending on the SCM sys-
tem you’re using. See the SCM system’s documentation for details. These generic 
symbols represent the least common denominator for the two SCM systems.

You can also filter the Project navigator list so that it shows only those project 
members that have a pending SCM status (Figure 21.13). Turn off the filter button 
to go back to showing all project members.

The status of individual files can be examined in slightly more detail by using 
the File inspector of the Utility area. The Source Control section (Figure 21.14) 
shows the version, status, and location of the source-controlled file.

fiGURe 21 .13 Project navigator 
filtered by SCM status

fiGURe 21 .14 Source control in 
the Utility area



ptg6935296

366 ChAPTER 21 sourCe Code management

CommIttIng and pusHIng
Comitting your changes to the repository is straightforward, and there are several 
ways to do it. You can commit all outstanding changes or only the selected files.

Xcode stages files newly added to the project for the next commit. That’s cur-
rently the limit of Xcode’s support for Git’s powerful staging feature, where all or 
part of a file’s changes are staged to be part of the next commit (which would leave 
you the option to commit only specific changes within a file). Instead, Xcode’s 
commit means stage and commit with Git repositories.

To commit all outstanding changes across all projects in the workspace (or merely 
all changes in the project if you have only one project open), choose File > Source 
Control > Commit from the main menu. A sheet similar to Figure 21.15 will appear. 
Like the Find and Replace preview sheet you learned about in Chapter 8, this sheet 
displays a list of files on the left and a preview area on the right. Select any file in 
the list to preview the differences between the repository and the working copy of 
the file. To choose a file to commit, select the check box to the left of the file’s name.

fiGURe 21 .15 The commit 
review sheet



ptg6935296

usIng an sCm system 367

Enter your commit message in the text editor at the bottom of the sheet, and 
click the Commit button to commit the changes. Assuming there were no errors, 
the SCM status flags will then disappear, showing that there are no files with 
outstanding SCM status.

If you need to commit only a handful of files, you can select them individually 
in the Project navigator, right-click one of the selected files, and choose Source 
Control > Commit Selected Files from the context menu. The same commit sheet 
you saw in Figure 21.15 will appear, and it works the same way. You can also commit 
from the Repositories tab of the Organizer by selecting a working copy or clone 
from the source list and pressing the Commit button on the bottom toolbar.

pusHIng CHanges
When using a Git repository cloned from a remote origin, you can also use the 
Source Control menu to push your local commits to the origin from within Xcode. 
Choose File > Source Control > Push from the main menu. A sheet will appear 
(Figure 21.16), asking you to choose the branch to which to push. Once you choose 
the branch, click Push. Xcode will then push the changes.

fiGURe 21 .16 The branch 
selection sheet

Note: When you use the main file menu to commit changes to projects 
across multiple repositories, Xcode treats this as if you’d performed individual 
commits for each working copy or clone using the same commit message.



ptg6935296

368 ChAPTER 21 sourCe Code management

pullIng (or updatIng) and mergIng CHanges
Pull changes into your clone by choosing File > Source Control > Pull from the 
main menu. A sheet similar to the branch selection sheet will appear, asking you 
to choose the remote from which to pull. Make your selection and click the Choose 
button. If there are any differences, a sheet (Figure 21.17) will appear, allowing you 
to review each difference. This allows you to cherry-pick the changes you want 
to pull into your clone.

Figure 21.17 shows two changes (there are in fact three pending, but only two 
are visible in the figure). The first, outlined in blue, is simply a text addition. The 
second, outlined in red, is a conflict. That is, both the local clone and the remote 
version have changes on the same line. Select a highlighted difference by clicking 
anywhere within the highlighted area, and use the buttons on the bottom of the 
sheet (Figure 21.18) to control the changes.

The buttons control whose changes you want to keep. Starting from left to 
right, the choices are:

Left then Right—Keep your changes and insert the remote changes below them.
Left—Keep your changes and discard the remote changes.
Right—Discard your changes and accept the remote changes.
Right then Left—Keep your changes and insert the remote changes above them.

fiGURe 21 .17 The pull review 
sheet

fiGURe 21 .18 The merge 
control buttons



ptg6935296

usIng an sCm system 369

You might get away with ignoring unconflicting changes pulled in from others, 
but Xcode will not allow you to continue until you resolve any conflicts. Resolving 
the conflict can be as simple as choosing a side or as complicated as pulling in both 
changes and fixing the mess (and then committing and pushing that resolution) 
yourself.

CreatIng and sWItCHIng BranCHes
Git branches can be created in the Repositories tab of the Organizer. Select the 
repository’s Branches folder in the repositories list, and click the Add Branch but-
ton on the bottom toolbar. A sheet will appear (Figure 21.19), prompting you for 
a name for the new branch and for the “starting point” (the branch from which to 
create the new branch).

You can also select the “Automatically switch to this branch” check box to have 
Xcode immediately switch (or check out for Subversion) branches after creating 
the new one. Subversion users will additionally be asked to type a commit mes-
sage. Click the Create button, and the new branch will be created and will show 
up in the Branches folder.

fiGURe 21 .19 The “Create a 
branch” sheet



ptg6935296

370 ChAPTER 21 sourCe Code management

Switching branches is similarly done in the Repositories tab of the  
Organizer. Select the clone itself in the repositories list, then click the 

Switch Branch button in the bottom toolbar. A sheet (Figure 21.20) will appear, 
letting you choose the branch you want to switch to. Click OK to switch to the 
selected branch.

ComparIng and BroWsIng HIstory
It’s often necessary to browse previous versions of files in your reposi-
tory or to compare versions. Xcode’s support for this is hidden in plain 

sight. You’re already familiar with the first two buttons in the editor mode button 
bar in the main toolbar. The first button is the plain editor mode. The second 
reveals the Assistant editor. The third and final button reveals the Version Editor 
(Figure 21.21).

fiGURe 21 .20 The switch 
branch sheet

fiGURe 21 .21 The Version 
Editor



ptg6935296

usIng an sCm system 371

At the bottom of the channel between the two source editors, you can click the 
clock icon to reveal a timeline. Scrubbing the mouse over the timeline reveals past 
versions (Figure 21.22), much like the user interface of the Mac’s Time Machine 
backup feature. Click a version to display it in the right-hand editor for comparison. 
Differences are highlighted, as in the pull review sheet (Figure 21.17), though you 
have to hide the timeline to see the familiar expanding or contracting highlight.

Just beneath each editor is a Jump Bar that allows you to select revisions directly 
from any branch in which the file exists (Figure 21.23). This lets you compare two 
non-current revisions.

There are two other handy view modes in the Version Editor: Blame and Log. 
Select a view mode by using the button bar in the lower-right corner of the  Version 
Editor (Figure 21.24).

fiGURe 21 .22 Scrubbing the 
revision timeline

fiGURe 21 .23 The revisions 
Jump Bar

fiGURe 21 .24 The view mode 
button bar



ptg6935296

372 ChAPTER 21 sourCe Code management

Blame mode (Figure 21.25) shows “who is to blame” for each revised section of 
the file. If the entire file is from the same revision, there will be only one person to 
blame. If, however, different sections have been revised (changed and committed) 
at different times, each section might have different people to blame at different 
times. Each revised section is labeled along the right with the name of the person 
who made the change, the date they did it, their commit message, and other details.

Log mode (Figure 21.26) is a flat history of revisions of the file. It’s mainly use-
ful for seeing the history of commits involving that file. For an unfiltered view of 
history, use the Repositories tab of the Organizer window.

fiGURe 21 .25 Blame mode

fiGURe 21 .26 Log mode



ptg6935296

WrappIng up 373

revertIng and dIsCardIng loCal CHanges
Perfect people don’t make mistakes and therefore likely don’t need a source code 
management system. Unfortunately, none of them are employed at software com-
panies, so the rest of us need a way of undoing our mistakes. There are two levels 
of severity: discarding your local changes (replacing them with the most recently 
committed version) and reverting to earlier committed versions.

To discard changes in a single file, navigate to it and choose File > Source 
Control > Discard Changes from the main menu. Confirm the decision by clicking 
Discard Changes when prompted. To discard changes for multiple files, select each 
one in the navigator and choose the same menu option. All changes in all selected 
files will be discarded.

WRAPPING up

You may have noticed that a few SCM topics are missing. That’s because, as of this 
writing, Xcode’s SCM support is still somewhat limited. In some cases, a feature 
may simply not have been added yet. In others, it may not be added because it’s 
too specific to the SCM system. Either way, for anything beyond the basics, you 
may still turn to your favorite GUI front end or to the command line.

If your SCM needs are basic to moderate, Xcode has you covered. At the very 
least, snapshots provide very basic version control so you don’t lose hours (or days) 
of work to a stupid but honest mistake. If you haven’t begun using version control 
yet, you should start now. Xcode makes it easy.

In the next chapter . . . oh wait. There is no next chapter. Xcode has many more 
hidden gems, but let’s leave the deep-diving and spelunking to heavier and much 
more pedantic books.



ptg6935296

374 IndeX

IndeX

A
.a extension for libraries, 196
accessors, creating, 124
action buttons, adding, 55–56
actions

adding and removing, 301
nibs, 48
post-Build-action actions, 301

Activity Viewer, 33
Add Files sheet, 72–73, 204
Add to Targets option, for adding 

files, 73
adding

actions, 301
breakpoints, 24
files to projects. See files, adding to 

projects
repositories manually, 359–361

addresses (memory), 246–247
analysis. See debugging and analysis
Analyze action, 189, 234
App Store, submitting applications 

to, 139
AppKit.framework, 197
Apple

Cocoa documentation, 49
developer forums, 42
documentation errors, 42
iOS Developer Program, 260

Application Help Books, 93
application icons, customizing, 

127–133
application icons, setting, 131–132
artwork, 128
document icons, setting, 133
icons, creating, 129–130

applications. See also iOS devices, 
debugging apps for

building and running, 17
document-based/plain 

applications, 13
naming, 12–13
when to use workspaces, 220

applications, deploying, 135–141
alternatives to archiving, 140
archiving, 136–139
Release mode and, 135–136

apps. See applications; iOS devices, 
debugging apps for

Apps controls (build systems), 193
ARCHIVE_DSYMS_PATH, 140
ARCHIVE_PATH, 140
ARCHIVE_PRODUCTS_PATH, 140
archiving, 136–140

alternative to, 140
applications, sharing, 139
applications, submitting to App 

Store, 139
applications, testing, 139
Archive action (schemes), 189
archives, creating, 136
archives, examining, 138
archives, finding, 137
scripting example for (amended), 

310–311
scripting example for (simple), 

307–309
Arguments tab

Profile action, 188
Run action, 185
Test action, 186, 187

array controllers
adding to UI for data model, 121
binding columns to, 122

artwork
Icon Composer and, 6, 129
ideal, selecting for icons, 128

assertions, testing and, 279–280
Assistant

data models and, 125
in Editor area, 28–29
Interface Builder, 50, 54
viewing generated output and, 

258–259
writing code and, 80, 87

Assistant windows, Jump Bar in, 26
auto-creating schemes, 180, 181

Autolayout, 63–69
activating, 64
basics, 63
constraints, 64–67, 68, 69
new functionality, 68–69

automated refactoring, 147–148
Automatic behavior (Assistant), 

54, 125
Autosizing control, 59, 60, 61, 62

B
backtrace, viewing, 254
badges (status), 364
bar pointer, memory addresses and, 

246, 247
bash shell, 303
behaviors

behavior modes (Assistant), 30, 
87, 125

Behaviors menu, 229
Behaviors panel, 228
when creating workspaces, 

228–230
beta versions, 315–321
beta warnings, 316, 319, 321
bezel alert, creating, 230
bindings, Cocoa Bindings controller 

layer, 121, 122
/bin/sh shell, 301, 303, 306
Blame mode (Version Editor), 372
bookmarks, documentation pages 

and, 40
branches (Git), creating and 

switching, 369–370
Breakpoint navigator

basics, 24
runtime debugging and, 107

breakpoints
runtime debugging and, 106–107
vs. threads, 245

bt command, 254–255
Build action (schemes), 183–184



ptg6935296

IndeX 375

build environments, defining macros 
in, 316–321

build errors example, 101
Build Phases tab, 169–172, 206
Build Rules tab, 173–174
Build Settings sheet, 16
Build Settings tab, 165–168
build systems, 155–193

build phases, 158, 169–172
build rules, 158
Build settings, 157
configurations, 157
entitlements, 191–193
overview, 156–158
run destinations, 157
schemes. See schemes
targets. See targets

build time vs. runtime, 322
building applications, 17
bundles. See also loadable bundles

bundle identifiers, 12
defined, 198
similarity with libraries and 

frameworks, 196
button bar

Debug navigator, 242, 243
Navigator area, 20, 21

buttons, adding to UI for data model, 
118–119

C
c command (console), 256
C preprocessor. See preprocessor
call tree (Instruments), 336, 341–342
case matching, searches and, 92, 95
Categories and Protocols behaviors 

(Assistant), 87
C/C++, Xcode 4 and, 3
change management, unit testing 

and, 273
checking out, 361–363
Clang Static Analyzer. See static 

analyzer

Class behavior (Assistant), 54
classes. See also subclasses

custom, for data model UI, 124
test classes, 278
as units, 272

cloning, 361–363
Cocoa Autolayout Guide, 66
Cocoa frameworks

application project windows, 14
Cocoa Bindings controller layer, 121
Core Data and, 112
document-based/plain 

applications, 13
Xcode 4 and, 3

Cocoa Fundamentals Guide, 49
Cocoa Touch Unit Testing Bundle 

option, 295–296
code. See also source code

adding (system framework 
example), 202–203

adding (third-party framework 
example), 207

adding when creating frameworks, 
210–211

code completion, 256
code profiling tool. See 

Instruments
code-folding ribbon, 82
units, defined, 272
writing with Source Editor.  

See Source Editor, writing 
code with

Code Signing and Application 
Sandboxing Guide, 191

Code Snippet library, 85–86
colors, of issues, 100
com.apple.main-thread dispatch 

queue, 244
command sets, managing, 152
Command+Q for quitting iOS 

applications, 262
commands

categories of (debugger help), 257

console execution control 
commands, 256

committing
changes to repositories (SCM), 

366–367
commits, Git vs. SVN, 356

community Web sites for help, 42
Company Identifier field, 12
company name, changing, 153
compartmentalization (nibs), 49
Compile Sources phase (targets), 170
compile time

compile-time debugging, 100–101
vs. runtime, 322

conditionals, preprocessor and, 
315–316

CONFIGURATION variable, 310–311
configurations

Build Configuration pop-up, 184
build systems, 157
Configurations group (targets), 160
per-configuration settings 

(targets), 166
configuring snapshots, 352–353
console. See debugger console
constraints

Autolayout, 64–67, 68, 69
layout, 63

containers for schemes, changing, 227
continue-to-here, debugging and, 108
controllers

controller objects (nibs), 48
creating for data model UI, 121

controls
Apps controls (build systems), 193
Debugger Bar, 103
hardware controls (build 

systems), 192
memory view, 248, 249
positioning, 60–61
schemes, 182
sizing, 63
wiring for data model UI, 122



ptg6935296

376 IndeX

Convert to Objective-C 2.0 
option, 148

Copy Bundle Resources phase, 
170, 177

Copy Files phase (targets), 171
Copy Frameworks build phase, 224
Copy Headers build phase, 212, 213
Copy Headers phase (targets), 172
Copy PlugIns build phase, 171
copyrights, company name and, 153
Core Data, 112–113
Counterparts behavior (Assistant), 87
CPP (C preprocessor). See 

preprocessor
“Create a branch” sheet, 369
Create Snapshot sheet, 353
Create Superclass option, refactoring 

and, 147–148
custom classes, creating for data 

model UI, 124
custom find scopes, 92–94
customizing

behaviors, 229–230
debug behavior, 32
shortcuts, 151–152

D
dangling references, tracking down, 

345–347
Data Model Editor, 111–125

Assistant and, 28, 125
basic data model, creating, 117
basic use of, 115–116
Core Data, 112–113
UI for data model, creating. See 

user interface for data model, 
creating

date
date formatter, adding to data 

model UI, 120
due date (data model UI), 117, 

118, 122
Debug area, 20, 32, 102

Debug configuration, 157
Debug navigator, 24, 109, 242–243
Debugger Bar, 103–104
debugger console, 250–257

backtrace, viewing, 254–255
basics, 104–105, 250
code completion, 256
help, 257
objects and values, printing, 

251–254
program execution, controlling, 

256
debugging and analysis, 99–109, 

233–269
for apps for iOS devices. See iOS 

devices, debugging apps for; 
iOS Simulator

Beta release scheme and, 321
compile-time debugging, 100–101
Debug navigator, 242–243
debugger console. See debugger 

console
generated output, viewing, 

258–259
logic errors (static analyzer), 241
memory and, 246–249
memory leaks (static analyzer), 236
memory over-releases (static 

analyzer), 237–240
runtime debugging. See runtime 

debugging
scripts, 305
threads and stacks, 242–245
using (static analyzer), 234–235

#define directive, 313
defining macros, 313–314
definitions, jumping to, 152
deleting

files, 77
folders, 363
snapshots, 354

dependencies
automatic detection, 218
defining, 185

Find Implicit Dependencies 
option, 183

inter-project dependencies, 
222–225

new targets, adding and, 176
subprojects and, 222
Target Dependencies build phase, 

169, 177
deploying applications. See 

applications, deploying
Deployment Target group 

(targets), 160
-description method, 108
design of software, unit testing 

and, 273
Detail view (Instruments), 335–336
developer forums (Apple), 42
developer tools documentation, 

viewing, 39
Diagnostics tab (Run action), 186
discarding local changes (SCM), 373
dispatch queues, 244–245
document icons, setting, 133
document types

custom, 133
setting icons, 133
targets, 164

documentation
Documentation and API Reference 

menu item, 38
Documentation mode for Help, 

39–40
reporting Apple documentation 

errors, 42
searching for text, 41

document-based applications, 13
downloading Xcode 4, 4
drag and drop

for adding files to projects, 72, 73
adding frameworks to projects 

with, 204
projects into workspaces and, 

222, 223
script files, 304



ptg6935296

IndeX 377

snippets, 85
dSYM files, archiving and, 136
DTrace, 5, 326
.dylib extension for libraries, 196
dynamic libraries, 196

E
Edit All in Scope command, 146, 149
editing

breakpoints, 24
snippets, 86

editing schemes, 181–190
Analyze action, 189
Archive action, 189
Build action, 183–184
Pre- and Post-actions scripts, 190
Profile action, 188
Run action, 184–186
scheme controls, 182
Test action, 186–187

Editor area
basics, 20, 27–29
Interface Builder, 51–52

editors
in Editor area, 27
split pane editors. See Assistant

embedding frameworks, 206
Encapsulate, refactoring and, 148
entities

adding, 117
Core Data and, 114
entity subclasses, creating, 124

entitlements (build systems), 191–193
environment variables, scripting and, 

301, 305–306
errors, navigable, 283
events

common device events (iOS 
Simulator), 266–267

multi-touch events (iOS 
Simulator), 263

execution pointer, debugging 
and, 109

Explore mode (Organizer), 40
exporting

schemes, 180
snapshots, 354

expressions, testing, 280
Extended Detail view 

(Instruments), 336
Extract option, refactoring and, 

147–148

f
File Template library, 76, 278, 287
files

Copy Files phase (targets), 171
entitlements, 192
File System pop-up (build 

systems), 192
files structure, built 

frameworks, 214
locating project files with 

Finder, 222
opening in Assistant, 29
owners (nibs), 48
searching within, 97
Xcode source files, 20

files, adding to projects, 71–76
creating new files, 74–75
existing files, 72–73
File Template library, 76
removing files, 77

File’s Owner, 28, 48
fin command (console), 256
Find panel (Source Editor), 97
Find Scopes sheet, 92
Finder

finding archives and, 137
locating project files with, 222
viewing packages in, 138

finding
archives, 137
Find In option (Search 

navigator), 92

Find options (Search 
navigator), 91–92

leaks with Instruments, 342–344
projects' targets, 160
system-defined symbols and 

macros, 314
Fix-it feature, 101
focusing on scopes, 82
folders

folder structure, built 
frameworks, 214

Folders option, for adding files, 73
managing in SVN, 363
media folders (build systems), 193

folding code, 83
Foo.framework, 204–207
Foundation.framework, 197
Framework Programming  

Guide, 206
frameworks

basics, 197, 199
Framework and Library sheet, 199
linking targets to, 161
similarity to libraries and 

bundles, 196
system framework example. See 

system framework example
third-party example, 204–207

frameworks, creating, 208–215
code, adding, 210–211
headers, configuring, 212–215
new framework projects, creating, 

208–209
Free Pascal, 174

G
garbage collection, static analyzer 

and, 240, 347
GCC poison pragma directive 

(poison), 315
GDB debugger, 250, 254, 257
generated output, viewing, 258–259



ptg6935296

378 IndeX

Git
branches, 369–370
pushing changes and, 367
repositories, adding, 360
repositories, creating, 358–359
vs. SVN, 356, 360, 361

Grand Central Dispatch, 109, 244–245
graph mode (Data Model Editor), 116

h
hardware controls (build systems), 192
headers

configuring, when creating 
frameworks, 212–215

frameworks, adding code to 
and, 202

selecting correct, 207
umbrella headers, 207, 210–211
WebKit.h header, 202

Hello World action, adding, 55–56
help, 37–43

community Web sites for, 42
debugger console, 257
Help menu, 38
Organizer Documentation tab, 

39–40
Source Editor, 41
user manual, 38
in Utility area, 41
Xcode help, 38

Help Book, 6, 93
Help Indexer, 6
hiding schemes, 226
Hits Must option (Search 

navigator), 91

I
(IBAction)performSomeAction: 

(id)sender;, 48
(IBAction)performSomeOther 

Action:(id)sender;, 48
.icns format, 6, 127

Icon Composer, 6, 129–130
icons. See also application icons, 

customizing
creating, 129–130
document icons, setting, 133
icon file formats, 127

images
of icons, 129–130
PNG and TIFF, 128

importing schemes, 180
In-Call Status Bar (iOS devices), 267
Include Unit Tests option, 13, 208
Includes and Included By behaviors 

(Assistant), 87
indexes, project, 219
Info tab

targets, 162–165
Test action editor, 186, 187
TestApp target, 318

Info.plist file, 162–163
Inspection Range controls 

(Instruments), 330
Installer packages, 6
installing

Installer packages and, 6
Xcode 4, 4

instances, entities and, 114
Instruments, 325–348

basics, 5
dangling references, 345–347
Detail view, 335–336
DTrace overview, 326
Extended Detail view, 336
finding leaks, 342–344
instruments, defined, 326
Instruments view, 334
launching, 337–338
other capabilities of, 347
Profile action and, 188
Strategy bar, 332–333
templates, 188
time profiling with, 339–342
toolbar, 330–332
user interface, 327–329

integration testing, 273, 274
Interface Builder, 50–54

Assistant, 54
Editor area, 51–52
Interface Builder Object library, 53
UI for data model, creating, 118
Utility area, 53
Xcode 4 and, 7

interfaces
single/multiple interface 

windows, 19
Source Editor, 80

iOS devices, debugging apps for, 
260–269

applications, quitting, 262
debugging, 268
iOS Developer Program, 260
iOS project, creating, 260–262
iOS Simulator. See iOS Simulator

iOS Simulator, 263–268
basics, 5, 263
debugger and, 268
devices and versions, 264
multi-touch events, 263
rotation, 264–266
simulating common device events, 

266–267
simulating TV Out, 267

iPads
hooking to projectors, 267
iOS Simulator and, 264
iPad Simulators run 

destinations, 262
iPhones. See also iOS devices, 

debugging apps for
In-Call Status Bar, 267
project settings, 261
run destinations, 262, 263

iPhoto app (simulated), 267
Issue navigator

basics, 23
failures in, 291
navigable errors and, 283
warnings, 15



ptg6935296

IndeX 379

issues
Activity Viewer and, 33
basics, 100
defined, 23, 100
logic issues, 241
static analyzer and, 234–235

j
Jump Bar

basics, 26
editing source code and, 81

Jump to Definition, 152

K
key bindings, changing, 151–152
keyboard shortcuts

Assistant panes, opening with, 29
behaviors shortcuts, 229, 230
breakpoints, setting with, 106
customizing, 151–152
tab use, speeding up with, 34

l
launching Instruments, 337–338
layout

Autolayout. See Autolayout
Autosizing control, 59
basics, 58
constraints, 63
data model UI, 118–120
layout behavior (Assistant), 

changing, 30
positioning, 60–61
sizing, 62
springs and struts, 59–63

leaks
finding with Instruments, 342–344
memory leaks, 236

levels settings (targets), 167–168
libobjc.a.dylib, 196

libraries
basics, 196
Code Snippet library, 85–86
defined, 196
File Template library, 76
Help, 38
ignoring unwanted, 40
Interface Builder Object library, 53
Link Binary With Libraries phase 

(targets), 170, 222
linking targets to, 161, 170
using, 199

Library control (Instruments), 331
Link Binary With Libraries phase, 

170, 222
linking

against frameworks, 199, 205, 224
targets, 170

Lion
Autolayout and, 58, 63
document versions API, 185–186
low memory and, 342
upgrading to, 64

lists, filtering, 22, 23, 24
LLDB debugger, 250
loadable bundles, 198
Localizations group (targets), 161
Lock button, current memory view 

and, 248
Log mode (Version Editor), 372
Log navigator

basics, 25
debugging and, 101
output from scripts showing 

in, 302
test results log, 281–282

logic errors, static analyzer and, 241
logs, output from scripts showing 

in, 302
low memory warnings

iOS devices, 266
leaks and, 342

M
Mac OS X 10.7 (Lion)

Autolayout, 63–64
document versions API, 185–186
low memory and, 342
upgrading to, 64

macros
defining, 150, 313–314
preprocessor and, 316–321
uses for, 313–314

Manage Schemes sheet, 181
managed object contexts, 114
managed object model (MOM)

Core Data and, 113
in Data Model Editor, 115
in model graph mode, 116

managing
folders in SVN, 363
schemes (build systems), 179–181
snapshots, 354
source code. See source code 

management
Manual mode (Assistant), 30
manually generated output, 

viewing, 258
Match Case option (Search 

navigator), 92
memory

debugging and, 246–249
examining contents, 246–249
finding leaks and, 342
low memory warnings, 266, 342
memory addresses, zombies and, 

345–347
memory leaks, static analyzer 

and, 236
memory over-releases, static 

analyzer and, 237–240
viewing, 248–249

merging changes (SCM), 368–369
methods

testing, 272, 274, 280
as units, 272

model layer, managing, 112



ptg6935296

380 IndeX

modernization of projects, 15–16
Modernize Loop option, refactoring 

and, 148
MOM (managed object model)

Core Data and, 113
in Data Model Editor, 115
in model graph mode, 116

mouse pointer, examining variables 
with, 108

Move Up/Move Down option, 
refactoring and, 148

multi-touch events (iOS 
Simulator), 263

N
names

company name, changing, 153
testing, 286, 292

naming. See also renaming
applications, 12–13
clones, 362

navigable errors, 283
navigating projects. See projects, 

navigating
Navigator area, 20, 21–25

Breakpoint navigator, 24
Debug navigator, 24
Issue navigator, 23
Log navigator, 25
Project navigator, 21
Search navigator, 23
Symbol navigator, 22

network communication (build 
systems), 192

New File sheet, 74
New Project options sheet, 12
New Project template sheet, 11, 260
New Scheme sheet, 180
New Target sheet, 175
next command (console), 256
.nib extension (NextStep Interface 

Builder), 48

nibs, 48–49
NSManagedObject subclass

creating custom, 124
generating accessor source 

code, 124
NSZombie, 345

O
objects

printing from console, 251–253
testing, 274, 279, 280
unit testing and, 272

OCUnit, 278–283
assertions, 279–280
navigable errors, 283
test results log, 281–282
test targets and classes, 278

Options bar (templates), 11
Options tab (Run action), 185–186
Organizer

preventing opening of, 309
Organizer Documentation tab for 

Help, 39–40
Organizer window

basics, 35
snapshots and, 354

orientation, changing (iOS devices), 
264–266

outdated projects, modernizing, 
15–16

outlets
nibs, 48–49
Outlets and Referencing Outlets 

behaviors (Assistant), 54
over-releases, memory, 237–240
owners (nibs), 48

P
p (NSUInteger)[[googleURL scheme]

length] command, 253
PackageMaker, 6
packages, defined, 138

panes, adding and removing 
(Assistant), 29

Parallelize Build option, 183, 184
Pause/Continue button (Debugger 

Bar), 103
.pch file, for macros, 313
persistent stores, 113
Person class, adding for unit testing, 

284–286
plug-ins, Copy PlugIns build 

phase, 171
PNG (.png) images, 128
po command, 251, 253
poison, 315
positioning (layout), 60–61
positiveFlag variable, 241
post-action scripts

custom, 300–302
schemes, 190

post-Build-action actions, 301
pragma mark directive, 150, 313
pre- and post-action editor,  

300–301
pre- and post-actions scripts

custom, 300–302
schemes, 190

preprocessor, 313–322
compile or build time vs. 

runtime, 322
conditionals, 315–316
macros, 150, 313–314, 316–321
poison, 315

previewing replacements, 95–96
printenv command, environment 

variables and, 305
printing objects and values,  

251–254
probes, defined, 326
Product Name field, 12–13
Profile action (schemes), 188
program execution, controlling, 256
Project navigator, 21, 363, 365
project options sheet, 208, 209



ptg6935296

IndeX 381

projects
adding frameworks to,  

204–207
adding to workspaces, 222
adding unit tests to, 295–297
inter-project dependencies, 

222–225
iOS project, creating, 260–262
linking against frameworks, 

199, 205
subprojects, defined, 222

projects, creating
building upon and running new 

projects, 17
modernization, 15–16
new framework project,  

208–210
templates, 11
test project, creating, 12–14
Welcome to Xcode window, 10

projects, navigating, 19–35
Activity Viewer, 33
Breakpoint navigator, 24
Debug area, 20, 32
Debug navigator, 24
Editor area, 20, 27–29
Issue navigator, 23
Jump Bar, 26
Log navigator, 25
Navigator area, 21–25
Organizer window, 35
Project navigator, 21
Search navigator, 23
Symbol navigator, 22
tabs, 34
Utility area, 20, 31
workspace window, 20

Protocols behavior (Assistant), 87
provisioning iOS devices, debugging 

and, 268
pulling changes (SCM), 368–369
pushing changes (SCM), 367

Q
Quartz Composer, 6
queues, dispatch, 244–245
quitting applications, 262

R
Record and Target controls 

(Instruments), 330
Refactor tool, renaming symbols 

and, 96
refactoring

basics, 147–149
unit testing and, 273

References behavior (Assistant), 125
Referencing Outlets behavior 

(Assistant), 54
regular expression (regex) 

searches, 91
release builds, triggering scripts on, 

310–311
Release configuration, 157
Release mode, 135–136
removing

actions, 301
Assistant panes, 29
breakpoints, 24, 106
files from projects, 77
schemes, 180

renaming
entities, 117
folders, 363
refactoring and, 147
renaming sheets, 148, 149
symbols, 96, 146
tabs, 34
unit tests, 274

reordering schemes, 180
Replace preview sheet, 95
replacing text (Search navigator), 

94–96
repositories, 357–363

basics, 357–358

cloning and checking out, 361–363
creating, 358–359
manually adding, 359–361

restoring from snapshots, 355
reverting to earlier versions 

(SCM), 373
revision control. See source code 

management
rotation (iOS Simulator), 264–266
rules (build systems), 157
Run action (schemes), 184–186, 187
Run Archive Script build phase, 308
Run button, 17
run destinations (build systems), 157
run logs, 25
Run Script build phases

custom scripts, 300, 303, 306, 312
targets, 172

Runtime Classes behavior 
(Assistant), 125

runtime debugging, 102–109
basics, 102
console, 104–105
Debug navigator, 109
Debugger Bar, 103–104
Source Editor and, 108–109
using breakpoints, 106–107

runtime vs. build time, 322

S
s command (console), 256
sandboxing, 191–193
Save As sheet, 75, 221
saving

icons, 130
workspaces, 221

scalars, testing, 279
Scheme Editor. See also editing 

schemes
Scheme Editor sheet, 181, 182, 319
tests in, 274, 291
unit testing and, 290



ptg6935296

382 IndeX

schemes. See also editing schemes
basics, 156
debugger attachment and, 102
managing when building 

macros, 319
in workspaces, 219, 226–227

schemes (build systems), 178–189
basics, 178
finding projects' schemes, 178
managing, 179–181
scheme manager sheet, 179
Scheme selector control, 178

SCM systems, 356–373
branches, creating and switching, 

369–370
committing, 366–367
comparing and browsing history, 

370–372
folders, managing in SVN, 363
local changes, reverting and 

discarding, 373
pulling and merging changes, 

368–369
pushing changes, 367
repositories, managing. See 

repositories
status, checking, 364–365

scopes
custom find scopes, 92–94
Edit All in Scope command, 

146, 149
Find Scopes sheet, 92
focusing on, 82

screen savers, loadable bundles 
and, 198

scripting
environment variables and, 

305–306
simple example, 307

scripts
creating, 308–309
debugging, 305
extending, 312

pre- and post-action scripts, 
300–302

Run Script build phase, 300, 
303–305

triggering on release builds only, 
310–311

scrubber control (Instruments), 331
scrubbing revision timeline, 371
SDKs (software development kits), 

Xcode 4 installation and, 4
search and replace (project members 

and source), 89–97
Search navigator. See Search 

navigator
searching within files, 97

Search control (Instruments), 331
Search navigator, 90–95

basics, 23, 90
custom find scopes, 92–94
Find Options panel, 91–92
jumping to, 90
replacing text, 94–96

searches
build log search results, 302
options in Organizer, 40
searching documentation for 

text, 41
standard Help searches, 38

selection, defined, 30
self, printing, 252
Sent Actions behavior (Assistant), 54
SenTestingKit.framework, 278
Shake event (iOS devices), 267
sharing applications, 139
Shell field (Run Script action), 

301, 303
shell script file template, 304
shortcuts. See keyboard shortcuts
-shouldAutorotateToInterface 

Orientation: method, 265
Show environment variables in build 

log check box, 303, 305, 306
Siblings behavior (Assistant), 87

sizing
of images, 128
layout and, 62–63

slider control (Debug navigator), 
242, 243

snapping to guides for fixing 
constraints, 67

snapshots feature, 352–355
snippets

creating and editing, 86
examining and using, 85

software development kits (SDKs), 
Xcode 4 installation and, 4

source code
generating accessor source 

code, 124
navigating, 81–83

source code management
Git vs. SVN, 356
SCM systems. See repositories; 

SCM systems
snapshots, 352–355

Source Editor
analyzer issue highlighted in, 100
compiler issue highlighted in, 100
finding symbols and macros 

with, 314
Help and, 41
interacting with debugger, 108–109
managing breakpoints in, 106
navigable errors and, 283
search and replace with, 97

Source Editor, writing code with, 
79–87

Assistant and, 87
code completion, 84
Code Snippet library, 85–86
interface, 80
source code, navigating, 81–83

split pane editor. See Assistant
Spotlight

Include Spotlight Importer 
option, 13

loadable bundles and, 198



ptg6935296

IndeX 383

springs and struts, 59–63
Autosizing control, 59
constraints, 63
positioning, 60–61
sizing, 62

SSH keys, setting up, 363
stacks. See threads and stacks
staging feature (Git), 366
STAssertEqualObjects() 

assertion, 279
static analyzer

Analyze action and, 189
analyzer results bar, 235
debugging and, 100
logic errors and, 241
memory leaks and, 236
memory over-releases and, 

237–240
using, 234–235

static libraries, 196
status

SCM, checking. See Subversion 
(SVN)

status control (Instruments), 331
Step Into button (Debugger Bar), 103
Step Out button (Debugger Bar), 103
Step Over button (Debugger Bar), 103
STFail() assertion, 279
Strategy bar (Instruments), 332–333
structs, testing, 279
struts. See also springs and struts

defined, 59
Style option (Search navigator), 91
styles, in Data Model Editor, 116
subclasses

creating for entities, 124
refactoring and, 148
Subclasses behavior (Assistant), 87

subprojects, defined, 222
Subversion (SVN)

folders, managing in, 363
vs. Git, 356, 360, 361
locally hosted repositories, 

creating, 359

Summary tab (targets), 161–162, 163
superclasses

refactoring and, 147–148
Superclasses and Subclasses 

behaviors (Assistant), 87
SVN. See Subversion (SVN)
switching branches (Git), 369–370
Symbol navigator, 22
symbols

code completion, 84
finding, 314
finding documentation for, 41
moving between, 81
renaming, 96, 146

system framework example
code, adding, 202–203
importance of  

WebKit.framework, 203
linking against frameworks, 199
UI, adding, 200–201

T
table mode (Data Model Editor)

basics, 115, 116
table view control, adding to UI, 

118–119
tabs

creating new, 34
as new Xcode feature, 34

Target Dependencies build phase, 
169, 177

targets, 159–177
adding new, 175–177
basics, 156, 159
Build Phases tab, 169–172
Build Rules tab, 173–174
Build Settings tab, 165–168
Info tab, 162–165
project-wide settings, 160–161
selecting projects' targets, 160
Summary tab, 161–162, 163
test targets, 215, 278

templates
basics, 9
creating new projects and, 11
defined (DTrace), 326
projects, creating new, 11
target template chooser, 159
target template sheet, 175

terminology, Git vs. SVN, 356
TestFoo class, 211
testing. See also OCUnit; unit testing

applications, 139
data model UI, 123
icons, 130
integration testing, 273, 274
Test action (schemes), 186–187
test case class, 287
TestAppTouchTests test target, 

295–297
testing bundle, 295, 296

text
replacing with Search navigator, 

94–96
searching, 91
searching documentation for, 41
text fields, adding, 57

third-party framework example, 
204–207

threads and stacks
Debug navigator and, 109
debugging and, 242–245
minimal, full, and semi-filtered 

stacks, 243
suspending threads, 245
threads vs. breakpoints, 245

Threads and Stacks navigator, 
104, 105

Threads strategy (Instruments), 
332–333

TIFF (.tif) images, 128
time profiling

with Instruments, 339–342
Time Profiler, 308–309

to-do items (basic data model), 
117–118, 121, 123



ptg6935296

384 IndeX

toolbar (Instruments), 330–332
tools. See Xcode Tools
Top Level Objects behavior 

(Assistant), 54
tracing. See also DTrace

defined, 326
TV Out, simulating (iOS 

Simulator), 267

u
UIKit.framework, 197
umbrella headers

basics, 207, 210–211
defined, 210

Uniform Type Identifiers (UTIs), 
defining, 164

unions, testing, 279
unit testing, 271–297

adding to projects, 295–297
basics, 271–272
benefits of, 273
controversy over, 275
Include Unit Tests option, 13, 208
vs. integration testing, 273, 274
limitations of, 274
OCUnit and. See OCUnit
Person class, adding, 284–286
Test action and, 187, 276
TestAppTests, 276–277
tests, designing, 286
tests, passing, 292–294
tests, testing 291
tests, writing, 287–290

units, defined, 272
unlocking, debugging iOS devices 

and, 268
updating changes (SCM), 368–369
URLs, defining (targets), 165
user interface for data model, 

creating, 118–125
accessors, creating, 124
controllers, creating, 121

custom classes, creating, 124
layout, 118–120
testing, 123
wiring controls, 122

user interface (Instruments),  
327–329

user interfaces (UIs), creating,  
47–69

elements, basics of adding, 55
Hello World action, adding,  

55–56
Interface Builder. See Interface 

Builder
layout. See Autolayout; layout
nibs, 48–49
system framework example, 

200–201
text fields, adding, 57

user manual (Help), 38
user-defined build settings, 168
Utility area

basics, 20, 31
Help in, 41
Interface Builder, 53

UTIs (Uniform Type Identifiers), 
defining, 164

v
validating apps, 139
values, printing from console, 251, 

253–254
variables

environment variables, scripting 
and, 301, 305–306

inspecting in Source Editor, 108
Variables pane, 105
Variables view (Debug area), 246
version control. See source code 

management
Version Editor, 370–371
Version Editor mode (Source 

Editor), 80

versions in repository, comparing and 
browsing history, 370–372

View controls (Instruments), 331

W
warnings

beta warnings, 316, 319, 321, 322
issues and, 101
low memory warnings, 266, 342
of outdated project settings, 16

watches, setting, 246–247
Web sites for downloading 

Foo.framework, 204
Web sites for further information

appendixes to book, xi
C preprocessor, 313
Clang Static Analyzer, iv, 100
Cocoa Autolayout Guide, 66
Cocoa Fundamentals Guide, 49
Code Signing and Application 

Sandboxing Guide, 191
Git, 356
Grand Central Dispatch, 244
Help, 42
OCUnit, 278
print, 254
SSH keys, setting up, 363
SVN, 356
Xcode shortcut cheat sheet, iv

WebKit.framework. See system 
framework example

Welcome to Xcode window, 10
windows. See also specific windows

single/multiple interface 
windows, 19

workspace window, 20
workspaces, 218–231

adding, 228–230
basics, 218–219
defined, 218, 228
true, 217
when to use, 220



ptg6935296

IndeX 385

workspaces, creating, 221–227
basics, 221
inter-project dependencies, 

222–225
projects, adding to 

workspaces, 222
schemes, in workspaces,  

226–227
writing

code. See Source Editor, writing 
code with

unit tests, 287–290

X
.xcarchive format, 138
Xcode Archive format, 138
Xcode 4

advantages of, xii
installing, 4
obtaining, 4
relationship to Xcode Tools, 3

Xcode integrated development 
environment (IDE), 5

Xcode Tools
basics, 3
relationship to Xcode 4, 3
tools, listed, 5–7

.xcodeproj files, 217

.xib (XML Interface Builder), 48
xibs, 48–49

z
zipping, packages or bundles and, 139
zombies, killing, 345–347



ptg6935296

Unlimited online access to all Peachpit, 
Adobe Press, Apple Training and New 
Riders videos and books, as well as content 
from other leading publishers including: 
O’Reilly Media, Focal Press, Sams, Que, 
Total Training, John Wiley & Sons, Course 
Technology PTR, Class on Demand, VTC 
and more.

No time commitment or contract 
required! Sign up for one month or  
a year. All for $19.99 a month

Sign up today
peachpit.com/creativeedge



ptg6935296

A-1

Appendixes



ptg6935296

Appendix A

MAnAging Your 
iOs devices



ptg6935296

A-3

If you’re developing for iOS, sooner or later 

you’ll want to test your apps on physical 

devices to make sure they work properly before 

submitting them to the App Store. To do this, you must provision 

your devices for use in development. Provisioning requires a cur-

rent iOS Developer account and enables you to install and debug 

your own applications as well as access the device’s console logs, 

screenshots, and more. In this appendix, you’ll learn how to link 

Xcode to your developer portal, provision your devices for devel-

opment, and generally manage the device.



ptg6935296

A-4 Appendix A Managing Your ioS DeviceS

The Organizer’s Devices section (Figure A.1) lets you manage the iOS devices 
you use for development as well as your provisioning profiles, software images, 
application data, console logs, and screenshots. In this section of the Organizer, 
you can automatically provision devices for development, letting you run and test 
applications on the device rather than only in the Simulator. To open the Organizer, 
choose Window > Organizer from the main menu, and then click the Devices tab 
in the Organizer toolbar.

Figure A.1 shows a single device—my iPhone—as well as the developer and 
provisioning profiles pulled from an active iOS Developer account. The green 
indicator next to “Josh’s Phone” shows that the device is provisioned and ready 
for use in development.

Figure A.1 The Organizer’s 
Devices tab

Using the OrgAnizer’s 
devices TAb



ptg6935296

ProviSioning a Device A-5

In order to run and test your applications on an actual iOS device (as opposed to 
the Simulator), you’ll need to provision your device for development. Provision-
ing involves obtaining the proper certificates from your Apple Developer account 
through their Provisioning Portal site and installing them onto your devices. This 
is necessary for a device to allow applications that didn’t come from the App Store 
to be installed on the device. If you have a current Apple iOS Developer Program 
membership, provisioning can be simple in Xcode 4.

Most developers will need only to open the Devices tab of the Organizer and 
plug in the device. When the device appears in the list, select it and then click the 
Use for Development button (Figure A.2).

Figure A.2 A device in the 
Devices tab of the Organizer

prOvisiOning A device



ptg6935296

A-6 Appendix A Managing Your ioS DeviceS

You may at this point be asked for your Apple iOS Developer Program credentials. 
(Figure A.3). Provide your information and click Log In. You may also be informed 
that no development certificate was found (Figure A.4) and asked if you would 
like to request one. Click Submit Request to submit the request automatically and 
obtain the needed certificates.

Once you’ve made it through the various hurdles, the device will be analyzed 
and provisioned automatically. The indicator dot to the right of the device in 
the list will turn green, informing you that your device is ready for development 
use. You should now be able to run your iOS applications on the device itself by 
choosing the device in the Schemes pop-up in the workspace window’s toolbar 
and pressing the Run button.

In addition to automatic provisioning, you can import and export developer 
and provisioning profiles by using the Import and Export buttons at the bottom 
of the window with either Developer Profile or Provisioning Profiles selected in 
the list. This is useful for manually provisioning or for moving your profile to a 
different computer. You will be required to set a password upon export and use the 
same password on import to protect the private key used to sign your applications 
cryptographically (referred to as code signing).

Figure A.3 Logging in to your 
Apple Developer account

Figure A.4 Prompting to 
request a certificate

Note: Apple has done an excellent job automating this cumbersome 
process in xcode 4. nevertheless, it does not always work correctly. 

read the guidelines supplied in the provisioning portal site found 
under your iOs developer account to help you figure out what went 

wrong and how to complete the process manually.



ptg6935296

inStalling ioS on a Device A-7

During development, it is sometimes necessary to install different versions of iOS 
on your device for compatibility testing. This includes beta versions of iOS itself, to 
which you have access via the iOS Developer Program. iOS versions are downloaded 
from the Apple Developer site (http://developer.apple.com).

To install a different version of iOS on a device, make sure the device is plugged 
in and selected in the list that appears in the Devices tab of the Organizer. You 
can then select a version from the Software Version pop-up just below the device 
information. If your version does not appear in the list, choose Other Version from 
the pop-up and locate the iOS package you downloaded. Click the Restore button 
and confirm the action in the confirmation sheet, then wait for the iOS version 
to be installed (restored). When the installation is complete, reactivate the device 
and restore its contents using iTunes (just as you’d do as an end user).

instAlling iOs On A device

http://developer.apple.com


ptg6935296

A-8 Appendix A Managing Your ioS DeviceS

The Devices section of the Organizer also lets you manage the screenshots you 
take with your device. Screenshots can be located by selecting the Screenshots 
entry under the desired device in the Organizer list (Figure A.5). Screenshots are 
useful for two reasons: as marketing material for the App Store or your own Web 
site, and as a “default launch image,” which users see as the application is launch-
ing on their device.

tAking screenshOts

You can take new screenshots by clicking the New Screenshot button in the lower-
right corner of the window. All screenshots are listed as time-stamped thumbnails. 
Selecting a thumbnail will display the full-size image to the right of the thumbnails 
list. This image may be scaled down to fit the window (this is especially useful if 
you have a small display and are viewing screenshots taken from a device with a 
much higher-resolution Retina display).

Figure A.5 The device 
screenshots list

MAnAging device 
screenshOTs



ptg6935296

Managing Device ScreenShotS A-9

cOmpAring screenshOts

You can compare screenshots by selecting two or more images and selecting the 
Compare check box at the bottom of the window (Figure A.6). Choosing Difference 
from the pop-up to the right of the check box shows only the differences between 
the selected screenshots. You can adjust the tolerance (how much of a difference 
is required for a pixel to be visible in Difference mode) by using the slider to the 
right of the pop-up. Figure A.6 shows the difference between two screenshots 
(dock badges and signal strength fluctuations).

Figure A.6 Comparing 
screenshots



ptg6935296

A-10 Appendix A Managing Your ioS DeviceS

Using A screenshOt As the defAUlt imAge

To use a screenshot as the default launch image for an iOS application, select it from 
the thumbnails list and click Save as Launch Image at the bottom of the window. 
You’ll be prompted to give the launch image a name and to select a workspace to 
which to add the image (Figure A.7).

Figure A.7 Naming the image 
and selecting a workspace



ptg6935296

Managing Device ScreenShotS A-11

If there is more than one target in the workspace, you’ll need to click Next to 
choose the target for which you want to set the default image (Figure A.8). Xcode 
will guess the target or targets to which you intend to add the image; you may 
need to change the selection using the check boxes. Make your selection, then 
click  Finish. The screenshot will be added as the default launch image for the 
selected target.

Figure A.8 Choosing a target 
for the default image

Note: A workspace containing an iOs application must  
be open in order to select it in the save as launch image sheet.



ptg6935296

A-12 Appendix A Managing Your ioS DeviceS

The Devices tab of the Organizer gives you a simple interface for adding and remov-
ing applications you’re developing as well as for downloading the applications’ 
data. To manage the applications, select the Applications entry under the desired 
device in the Organizer list (Figure A.9).

Figure A.9 The device 
applications list

mAnAging Apps And dATA



ptg6935296

Managing aPPS anD Data A-13

instAlling And remOving Apps

You can install applications by clicking the Add button and selecting the applica-
tion bundle to add. You’ll need to have a provisioning profile for the application 
(which is usually only an issue if a friend is letting you test one of their applications).

To uninstall, select the desired applications in the list and click the Delete but-
ton. The applications and their associated data will be removed from the device.

dOwnlOAding ApplicAtiOn dAtA

You can download an application’s data for safekeeping (or analysis) by locating 
it in the list and clicking the Download button to its right. Choose a location to 
which to save the data and a folder will be created at that location containing the 
application’s data and settings. Only applications for which you have a provisioning 
profile will allow you to download their data.



ptg6935296

A-14 Appendix A Managing Your ioS DeviceS

When running an application on the device without the benefit of an attached 
debugger, application crashes are a mystery. The logs of all connected devices can 
be accessed through the Device Logs section in the Devices tab of the Organizer. 
You can get the logs of individual devices by choosing the Device Logs entry under 
the desired device (Figure A.10).

Figure A.10 The device logs

reviewing LOgs



ptg6935296

reviewing logS A-15

A device’s console log is available under the Console entry under the desired 
device (Figure A.11). The console log can reveal useful information about an appli-
cation that was running on its own, outside of a debugging session.

Figure A.11 The device 
console log



ptg6935296

Appendix B

gesTUres  
and KeybOArd 
shOrTcUTs



ptg6935296

B-17

Xcode 4 comes with a number of standard 

keyboard shortcuts and multi-touch gestures. 

This appendix contains a list of both.



ptg6935296

B-18 Appendix B geStureS anD KeYboarD ShortcutS 

Xcode 4’s multi-touch gesture support is limited to standard two-finger scrolling 
and three-finger left or right swipes to navigate—similar to using the back and 
forward buttons in the Jump Bar.

keyBOArd shOrTcUTs

Following is a list of the default keyboard shortcuts in Xcode 4, grouped by category.

cAtegOry cOmmAnd shOrtcUt

Xcode App 
Shortcuts

Preferences Command+,

Hide Xcode Command+H

Hide others option+Command+H

Quit Xcode Command+Q

File new Tab Command+T

new Window Shift+Command+T

new File Command+n

new Project Shift+Command+n

new Workspace Control+Command+n

new Group option+Command+n

add Files option+Command+a

open Command+o

open Quickly Shift+Command+o

open This Quickly Control+Command+o

Close Window Command+W

Close all Windows option+Command+W

gesTUres



ptg6935296

KeYboarD ShortcutS B-19

cAtegOry cOmmAnd shOrtcUt

File (continued) Close Tab Shift+Command+W

Close other Tabs option+Shift+Command+W

Close document Control+Command+W

Save Command+S

Save all option+Command+S

Save Multiple option+Shift+Command+S

Save as Shift+Command+S

Commit option+Command+C

update option+Command+X

update all Control+option+Command+X

Create Snapshot Control+Command+S

Page Setup Shift+Command+P

Print Command+P

edit undo Command+Z

redo Shift+Command+Z

Cut Command+X

Copy Command+C

Paste Command+V

Paste Special option+Command+V

Paste and Match Style Shift+option+Command+V

duplicate Command+d

Select all Command+a

Find in Workspace . . . Shift+Command+F

Find and replace in Workspace . . . option+Shift+Command+F



ptg6935296

B-20 Appendix B geStureS anD KeYboarD ShortcutS 

cAtegOry cOmmAnd shOrtcUt

edit (continued) Find Command+F

Find and replace . . . option+Shift+Command+F

Find next Command+G

Find Previous Shift+Command+G

use Selection for Find Command+E

use Selection for replace Shift+Command+E

Filter in navigator option+Command+J

Filter in Library option+Command+L

Show Fonts Control+Shift+Command+T

Show Spelling & Grammar Command+:

View > Navigators Project Command+1

Symbol Command+2

Search Command+3

Issue Command+4

debug Command+5

Breakpoint Command+6

Log Command+7

Show/Hide navigator Command+0

View > editor Standard Command+return

assistant option+Command+return

Version Shift+option+Command+return

Show related Items Control+1

Show Previous History Control+2

Show Previous Files History Control+Command+2

Show next History Control+3



ptg6935296

KeYboarD ShortcutS B-21

cAtegOry cOmmAnd shOrtcUt

View > editor 
(continued)

Show next Files History Control+Command+3

Show Top Level Items Control+4

Show Group Files Control+5

Show document Items Control+6

Show Issues Control+7

remove assistant Editor Control+Shift+Command+W

reset Editor option+Shift+Command+Z

Show debug area Control+Command+Y

View > utilities utilities Show/Hide option+Command+0

File Inspector option+Command+1

Quick Help Inspector option+Command+2

Identity Inspector option+Command+3

attributes Inspector option+Command+4

Size Inspector option+Command+5

Connections Inspector option+Command+6

Bindings Inspector option+Command+7

View Effects Inspector option+Command+8

File Template Library Control+option+Command+1

Code Snippet Library Control+option+Command+2

object Library Control+option+Command+3

Media Library Control+option+Command+4

editor Menu for 
Data Model

add attribute Control+Command+a

Jump to next Counterpart Control+Command+r

editor Menu  
for Hex

overwrite Mode option+Shift+Command+o



ptg6935296

B-22 Appendix B geStureS anD KeYboarD ShortcutS 

cAtegOry cOmmAnd shOrtcUt

editor Menu for 
interface Builder

align Left Edges Command+[

align right Edges Command+]

Size to Fit Command+=

add Horizontal Guide Command+_

add Vertical Guide Command+|

editor Menu  
for PDF

next Page option+Command+down arrow

Previous Page option+Command+down arrow

editor Menu for 
Scripting Definition

Make Text Bigger Command++

Make Text Smaller Command+–

editor Menu for 
Source Code

Show Completions Control+Space

Edit all in Scope Control+Command+E

Fix all in Scope Control+Command+F

Show all Issues Control+Command+M

re-Indent Control+|

Shift right Command+]

Shift Left Command+[

Move Line up option+Command+[

Move Line down option+Command+]

Comment Selection Command+/

Fold option+Command+Left arrow

unfold option+Command+right arrow

Fold Methods & Functions option+Shift+Command+Left arrow

unfold Methods & Functions option+Shift+Command+right arrow

Fold Comment Blocks Control+Shift+Command+Left arrow

unfold Comment Blocks Control+Shift+Command+right arrow



ptg6935296

KeYboarD ShortcutS B-23

cAtegOry cOmmAnd shOrtcUt

Product Menu run Command+r

run . . . option+Command+r

Test Command+u

Test . . . option+Command+u

Profile Command+|

Profile . . . option+Command+|

analyze Shift+Command+B

analyze . . . option+Shift+Command+B

Build for running Shift+Command+r

Build for Testing Shift+Command+u

Build for Profiling Shift+Command+|

run without Building Control+Command+r

Test without Building Control+Command+u

Profile without Building  Control+Command+|

Build Command+B

Clean Shift+Command+K

Clean Build Folder . . . option+Shift+Command+K

Stop Command+.

Pause Control+Command+Y

Step Into F7

Step over F6

Step out F8

Step Into Thread Shift+Control+F7

Step Into Instruction Control+F7

Step over Thread Shift+Control+F6



ptg6935296

B-24 Appendix B geStureS anD KeYboarD ShortcutS 

cAtegOry cOmmAnd shOrtcUt

Product Menu 
(continued)

Step over Instruction Control+F6

add Breakpoint at Current Line Command+\

activate Breakpoints Command+Y

Clear Console Command+K

Edit Scheme Command+<

Window Menu Minimize Command+M

Select next Tab Command+}

Select Previous Tab Command+{

Welcome to Xcode Shift+Command+1

organizer Shift+Command+2

Help Menu documentation and aPI reference option+Command+?

Quick Help for Selected Item Control+Command+?

Search documentation for Selected Text Control+option+Command+/

Code Completion Select Previous Completion Control+>

Select next Completion Control+.

Show Completion List F5

option+Esc

Navigate reveal in Project navigator Shift+Command+J

open In . . . option+Command+,

option+Command+<

Move Focus to next area option+Command+.

Move Focus to Previous area option+Command+>

Move Focus to Editor . . . Command+J

Go Forward option+Command+right arrow

Go Forward (option) Control+option+Command+right arrow



ptg6935296

KeYboarD ShortcutS B-25

cAtegOry cOmmAnd shOrtcUt

Navigate 
(continued)

Go Forward (shift + option) Control+option+Shift+Command+right arrow

Jump to Selection Shift+Command+L

Jump to definition Control+Command+d

Jump to definition (option) Control+option+Command+d

Jump to definition (shift + option) Control+option+Shift+Command+d

Jump to next Issue Command+'

Fix next Issue Control+Command+'

Jump to Previous Issue Command+"

Fix Previous Issue Control+Command+"

Navigate for 
Source Code

Jump to next Counterpart Control+Command+up arrow

Jump to next Counterpart (option) Control+option+Command+up arrow

Jump to next Counterpart (shift + option) Control+option+Shift+Command+up arrow

Jump to Previous Counterpart Control+Command+down arrow

Jump to Previous Counterpart (option) Control+option+Command+down arrow

Jump to Previous Counterpart (shift + option) Control+option+Shift+Command+down arrow

Jump To . . . Command+L

Jump to next Placeholder Control+/

Jump to Previous Placeholder Control+?

Text Move to Beginning of document Command+up arrow

Move Left Left arrow

Move right Extending Selection Shift+right arrow

Move Backward Extending Selection Control+Shift+B

Move up Control+P

up arrow



ptg6935296

B-26 Appendix B geStureS anD KeYboarD ShortcutS 

cAtegOry cOmmAnd shOrtcUt

Text (continued) Move down down arrow

Control+n

Move to Beginning of Paragraph Extending 
Selection

Control+Shift+a

Move Subword Forward Extending Selection Control+Shift+right arrow

Move to Beginning of document Extending 
Selection

Shift+Home

Shift+Command+up arrow

Move down Extending Selection Control+Shift+n

Shift+down arrow

Move Word Backward Extending Selection Control+option+Shift+B

Move Word Forward Extending Selection Control+option+Shift+F

Move Subword Forward Control+right arrow

Move to Beginning of Paragraph Control+a

Move to End of document Extending Selection Shift+Command+down arrow

Shift+End arrow

Page up Extending Selection Shift+Page up

Move Subword Backward Control+Left arrow

Move Word right option+right arrow

Move right right arrow

Move to right End of Line Extending Selection Shift+Command+right arrow

Move Paragraph Backward Extending Selection option+Shift+up arrow

Move Word right Extending Selection option+Shift+right arrow

Move Left Extending Selection Shift+Left arrow

Move to Left End of Line Extending Selection Shift+Command+Left arrow

Move Word Backward Control+option+B



ptg6935296

KeYboarD ShortcutS B-27

cAtegOry cOmmAnd shOrtcUt

Text (continued) Move to right End of Line Command+right arrow

Move Backward Control+B

Move Forward Control+F

Move to Left End of Line Command+Left arrow

Page down option+Page down

Control+V

Page up option+Page up

Move up Extending Selection Shift+up arrow

Control+Shift+P

Move Forward Extending Selection Control+Shift+F

Move to End of document Command+down arrow

Page down Extending Selection Shift+Page down

Control+Shift+V

Move Word Left option+Left arrow

Move Word Forward Control+option+F

Move Word Left Extending Selection option+Shift+Left arrow

Move Subword Backward Extending Selection Control+Shift+Left arrow

Move Paragraph Forward Extending Selection option+Shift+down arrow

Move to End of Paragraph Control+E

Move to End of Paragraph Extending Selection Control+Shift+E

Move Paragraph Backward option+up arrow

Move Paragraph Forward option+down arrow

Select to Mark Control+X Control+M

delete to Mark Control+W

Set Mark Control+@



ptg6935296

B-28 Appendix B geStureS anD KeYboarD ShortcutS 

cAtegOry cOmmAnd shOrtcUt

Text (continued) Swap with Mark Control+X Control+X

Yank Control+Y

delete to End of Paragraph Control+K

delete Word Forward option+delete Forward

option+Function+delete

delete Subword Forward Control+delete Forward

Control+Function+delete

delete Forward Control+d

delete Forward

Function+delete

delete Clear

delete Subword Backward Control+delete

delete to Beginning of Line Command+delete

delete Backward Control+H

delete

delete Word Backward Control+option+delete

option+delete

Make Text Writing direction Left to right Control+option+Command+right arrow

Make Base Writing direction natural Control+Command+down arrow

Make Base Writing direction right to Left Control+Command+Left arrow

Make Text Writing direction natural Control+option+Command+down arrow

Make Base Writing direction Left to right Control+Command+right arrow

Make Text Writing direction right to Left Control+option+Command+Left arrow

Center Selection of Visible area Control+L



ptg6935296

KeYboarD ShortcutS B-29

cAtegOry cOmmAnd shOrtcUt

Text (continued) Scroll Page up Control+up arrow

Page up

Scroll to Beginning of document Home

Scroll Page down Page down

Control+down arrow

Scroll to End of document End

Transpose Control+T

Insert newline return

Enter

LineFeed

Insert newline and Leave Selection Before It Control+o

Insert double Quote without Extra action Control+"

Insert Slash Control+/

Insert Single Quote without Extra action Control+'

Insert Line Break Control+return

Control+Enter

Control+LineFeed

Select Previous Completion Control+>

Select next Completion Control+.



ptg6935296

B-30 Appendix B geStureS anD KeYboarD ShortcutS 

Keyboard shortcuts can be customized using Xcode’s Key Bindings preferences. To 
access these preferences, choose Xcode > Preferences from the main menu, then 
select the Key Bindings tab.

Figure B.1 shows the Key Bindings preferences. You can create your own com-
mand sets (a set of customized keyboard shortcuts) by using the Add (+) button 
at the bottom of the list to create a new set. You can then edit each shortcut by 
double-clicking its Key field and pressing the keyboard shortcut (the combination 
of keys) you wish to trigger the event. The list can be filtered using the search field 
or by selecting one of the categories (All, Menu, or Text) from the bar above the list.

Figure B.1 Key Bindings 
preferences

ediTing keyBOArd shOrTcUTs



ptg6935296

This page intentionally left blank 



ptg6935296

Appendix C

doCuMEnTaTIon 
UpdATes



ptg6935296

C-33

Xcode automatically downloads and installs 

documentation updates in the background. 

In addition, you can control the installed docu-

mentation sets and check for updates manually. This is controlled 

through the Documentation preferences panel.



ptg6935296

C-34 Appendix c DocuMentation uPDateS

setting dOcUMenTATiOn 
preferences

To open the Documentation preferences panel, choose Xcode > Preferences from the 
main menu, then select the Documentation tab. Figure C.1 shows the preferences.

Xcode downloads only what it considers “necessary” documentation sets at first. 
If you want missing libraries (the ones that are grayed out), you’ll need to press the 
GET button beside them. Xcode will download and install the documentation set 
and, from that point forward, will include those sets in its automatic update checks.

Additionally, you can add third-party documentation sets using the Add (+) 
button at the bottom of the list. The documentation must come from an http://
or feed:// URL.

Figure C.1 The Documenta-
tion preferences panel



ptg6935296

Setting DocuMentation PreferenceS C-35

You can view information about the selected document set by pressing the 
disclosure button to the left of the Add button, as in Figure C.2. Finally, you can 
disable automatic updating and force update checks by using the controls just 
beneath the toolbar. The check box toggles the automatic updates, and the button 
forces a check and install immediately.

Figure C.2 The documenta-
tion set information panel



ptg6935296

Appendix D

oTHEr resOUrces



ptg6935296

D-37

There are a number of helpful online resources 

for learning to use Xcode and for Cocoa devel-

opment in general. A few author favorites are 

listed here.



ptg6935296

D-38 Appendix d other reSourceS

This book’s companion site (http://xcodebook.com) contains Xcode 4 news, tips and 
tricks, downloadable sample projects reflecting each chapter’s tasks, and errata.

AppLe resOUrces

Developer Forums (http://devforums.apple.com)
Apple’s developer forums site has an Xcode-specific forum with a number of active 
members. A current Apple Developer account is required.

Xcode-Users Mailing List (http://lists.apple.com/mailman/listinfo/xcode-users)
The Xcode-Users mailing list doesn’t require an Apple Developer account to use 
and is an active list full of helpful people.

the bOOK siTe

http://xcodebook.com
http://devforums.apple.com
http://lists.apple.com/mailman/listinfo/xcode-users


ptg6935296

thirD-PartY reSourceS D-39

Stack Overflow (http://stackoverflow.com/questions/tagged/xcode) 
Stack Overflow is a great developer resource with questions tagged by topic. Ques-
tions and answers are voted up or down depending on their clarity and usefulness, 
encouraging thoughtful questions and answers by community members.

CocoaDev Wiki (http://cocoadev.com)
Although somewhat dated, this community-built wiki was pumped full of useful 
Cocoa developer information over the course of the last decade and still contains 
many valuable lessons for beginner, intermediate, and expert developers.

Cocoa Dev Central (http://cocoadevcentral.com)
This celebrated collection of informative how-to articles contains many Cocoa 
developer favorites. It’s worth browsing.

Third-pArTy resOUrces

http://stackoverflow.com/questions/tagged/xcode
http://cocoadev.com
http://cocoadevcentral.com


ptg6935296

You love our books and you 
love to share them with your colleagues and  
friends...why not earn some $$ doing it! 

If you have a website, blog or even a Facebook page, 
you can start earning money by putting a Peachpit 
link on your page. 

If a visitor clicks on that link and purchases something 
on peachpit.com, you earn commissions* on all sales!

Every sale you bring to our site will earn you a 
commission. All you have to do is post an ad and 
we’ll take care of the rest.

ApplY And get stArted!
It’s quick and easy to apply.  
To learn more go to: 
http://www.peachpit.com/affiliates/
*Valid for all books, eBooks and video sales at www.Peachpit.com

Join the  
PeachPit  
AffiliAte teAm!


	Contents
	Introduction
	Welcome to Xcode
	PART I: THE BASICS: GETTING STARTED WITH XCODE4
	CHAPTER 1 DISCOVERING XCODE TOOLS
	Downloading
	Installing
	Exploring
	Wrapping Up

	CHAPTER 2 STARTING A PROJECT
	Welcome to Xcode!
	Creating a New Project
	Project Modernization
	Building and Running an Application
	Wrapping Up

	CHAPTER 3 NAVIGATING A PROJECT
	The Workspace Window
	The Navigator Area
	The Jump Bar
	The Editor Area
	The Utility Area
	The Debug Area
	The Activity Viewer
	The Tabs
	The Organizer Window
	Wrapping Up

	CHAPTER 4 GETTING HELP
	The Help Menu
	The Organizer’s Documentation Tab
	The Source Editor
	Community Help and Feedback
	Wrapping Up


	PART II: WORKING WITH COCOA APPLICATIONS
	CHAPTER 5 CREATING USER INTERFACES
	Understanding Nibs
	Getting Familiar with Interface Builder
	Adding User Interface Elements
	Layout
	Wrapping Up

	CHAPTER 6 ADDING FILES TO A PROJECT
	Adding Existing Files
	Creating New Files
	Using the File Template Library
	Removing Files from the Project
	Wrapping Up

	CHAPTER 7 WRITING CODE WITH THE SOURCE EDITOR
	Exploring the Source Editor Interface
	Navigating Source Code
	Using Code Completion
	Exploring the Code Snippet Library
	The Assistant
	Wrapping Up

	CHAPTER 8 SEARCHING AND REPLACING
	Using the Search Navigator
	Searching within Files
	Wrapping Up

	CHAPTER 9 BASIC DEBUGGING AND ANALYSIS
	Compile-Time Debugging
	Runtime Debugging
	Wrapping Up

	CHAPTER 10 USING THE DATA MODEL EDITOR
	Introducing Core Data
	Using the Data Model Editor
	Creating a Basic Data Model
	Creating a UI for the Model
	Using the Assistant
	Wrapping Up

	CHAPTER 11 CUSTOMIZING THE APPLICATION ICON
	Picking the Ideal Artwork
	Creating Icons
	Setting the Application Icon
	Setting Document Icons
	Wrapping Up

	CHAPTER 12 DEPLOYING AN APPLICATION
	Archiving
	Alternatives to Archiving
	Wrapping Up


	PART III: GOING BEYOND THE BASICS
	CHAPTER 13 ADVANCED EDITING
	Renaming Symbols
	Refactoring
	Organizing with Macros
	Changing Editor Key Bindings
	Jump to Definition
	My Company Name
	Wrapping Up

	CHAPTER 14 THE BUILD SYSTEM
	An Overview
	Working with Targets
	Working with Schemes
	Entitlements (Sandboxing)
	Wrapping Up

	CHAPTER 15 LIBRARIES, FRAMEWORKS, AND LOADABLE BUNDLES
	What are Libraries, Frameworks, and Bundles?
	Using Existing Libraries and Frameworks
	Creating a Framework
	Wrapping Up

	CHAPTER 16 WORKSPACES
	What Is a Workspace?
	When to Use a Workspace
	Creating a Workspace
	Another Kind of Workspace
	Wrapping Up

	CHAPTER 17 DEBUGGING AND ANALYSIS IN DEPTH
	Using the Clang Static Analyzer
	Exploring Analyzer Results
	Threads and Stacks
	Inspecting Memory
	Conferring with the Console
	Viewing Generated Output
	Debugging Apps for iOS Devices
	Wrapping Up

	CHAPTER 18 UNIT TESTING
	What is Unit Testing?
	Unit Testing in Xcode
	Writing a Unit Test
	Adding Unit Tests to Existing Projects
	Wrapping Up

	CHAPTER 19 USING SCRIPTING AND PREPROCESSING
	Extending Your Workflow with Custom Scripts
	Using the Preprocessor
	Wrapping Up

	CHAPTER 20 USING INSTRUMENTS
	An Overview of DTrace
	A Tour of Instruments
	Using Instruments for Common Tasks
	Wrapping Up

	CHAPTER 21 SOURCE CODE MANAGEMENT
	Xcode Snapshots
	Using an SCM System
	Wrapping Up


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	APPENDIXES
	APPENDIX A: MANAGING YOUR iOS DEVICES
	APPENDIX B: GESTURES AND KEYBOARD SHORTCUTS
	APPENDIX C: DOCUMENTATION UPDATES
	APPENDIX D: OTHER RESOURCES


