
The Heston Model
and Its Extensions in

Matlab and C#



Founded in 1807, John Wiley & Sons is the oldest independent publishing company
in the United States. With offices in North America, Europe, Australia, and Asia,
Wiley is globally committed to developing and marketing print and electronic
products and services for our customers’ professional and personal knowledge and
understanding.

The Wiley Finance series contains books written specifically for finance and
investment professionals as well as sophisticated individual investors and their
financial advisors. Book topics range from portfolio management to e-commerce,
risk management, financial engineering, valuation, and financial instrument analysis,
as well as much more.

For a list of available titles, visit our website at www.WileyFinance.com



The Heston Model
and Its Extensions in

Matlab and C#

FABRICE DOUGLAS ROUAH



Cover illustration: Gilles Gheerbrant, ‘‘1 2 3 4 au hasard’’ (1976);
C Gilles Gheerbrant

Cover design: Gilles Gheerbrant

Copyright C 2013 by Fabrice Douglas Rouah. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600, or on the Web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited
to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version
you purchased, you may download this material at http://booksupport.wiley.com. For more information
about Wiley products, visit www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Rouah, Fabrice, 1964-
The Heston model and its extensions in Matlab and C# / Fabrice Douglas Rouah.

pages cm. – (Wiley finance series)
Includes bibliographical references and index.
ISBN 978-1-118-54825-7 (paper); ISBN 978-1-118-69518-0 (ebk); ISBN 978-1-118-69517-3 (ebk)
1. Options (Finance)–Mathematical models. 2. Options (Finance)–Prices. 3. Finance–Mathematical

models. 4. MATLAB. 5. C# (Computer program language) I. Title.
HG6024.A3R6777 2013
332.64′53028553–dc23

2013019475

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1



Contents

Foreword ix

Preface xi

Acknowledgments xiii

CHAPTER 1
The Heston Model for European Options 1

Model Dynamics 1
The European Call Price 4
The Heston PDE 5
Obtaining the Heston Characteristic Functions 10
Solving the Heston Riccati Equation 12
Dividend Yield and the Put Price 17
Consolidating the Integrals 18
Black-Scholes as a Special Case 19
Summary of the Call Price 22
Conclusion 23

CHAPTER 2
Integration Issues, Parameter Effects, and Variance Modeling 25

Remarks on the Characteristic Functions 25
Problems With the Integrand 29
The Little Heston Trap 31
Effect of the Heston Parameters 34
Variance Modeling in the Heston Model 43
Moment Explosions 56
Bounds on Implied Volatility Slope 57
Conclusion 61

CHAPTER 3
Derivations Using the Fourier Transform 63

The Fourier Transform 63
Recovery of Probabilities With Gil-Pelaez Fourier Inversion 65
Derivation of Gatheral (2006) 67
Attari (2004) Representation 69
Carr and Madan (1999) Representation 73
Bounds on the Carr-Madan Damping Factor and Optimal Value 76
The Carr-Madan Representation for Puts 82
The Representation for OTM Options 84
Conclusion 89

v



vi CONTENTS

CHAPTER 4
The Fundamental Transform for Pricing Options 91

The Payoff Transform 91
The Fundamental Transform and the Option Price 92
The Fundamental Transform for the Heston Model 95
Option Prices Using Parseval’s Identity 100
Volatility of Volatility Series Expansion 108
Conclusion 113

CHAPTER 5
Numerical Integration Schemes 115

The Integrand in Numerical Integration 116
Newton-Cotes Formulas 116
Gaussian Quadrature 121
Integration Limits and Kahl and Jäckel Transformation 130
Illustration of Numerical Integration 136
Fast Fourier Transform 137
Fractional Fast Fourier Transform 141
Conclusion 145

CHAPTER 6
Parameter Estimation 147

Estimation Using Loss Functions 147
Speeding up the Estimation 158
Differential Evolution 162
Maximum Likelihood Estimation 166
Risk-Neutral Density and Arbitrage-Free Volatility Surface 170
Conclusion 175

CHAPTER 7
Simulation in the Heston Model 177

General Setup 177
Euler Scheme 179
Milstein Scheme 181
Milstein Scheme for the Heston Model 183
Implicit Milstein Scheme 185
Transformed Volatility Scheme 188
Balanced, Pathwise, and IJK Schemes 191
Quadratic-Exponential Scheme 193
Alfonsi Scheme for the Variance 198
Moment Matching Scheme 201
Conclusion 202



Contents vii

CHAPTER 8
American Options 205

Least-Squares Monte Carlo 205
The Explicit Method 213
Beliaeva-Nawalkha Bivariate Tree 217
Medvedev-Scaillet Expansion 228
Chiarella and Ziogas American Call 253
Conclusion 261

CHAPTER 9
Time-Dependent Heston Models 263

Generalization of the Riccati Equation 263
Bivariate Characteristic Function 264
Linking the Bivariate CF and the General Riccati Equation 269
Mikhailov and Nögel Model 271
Elices Model 278
Benhamou-Miri-Gobet Model 285
Black-Scholes Derivatives 299
Conclusion 300

CHAPTER 10
Methods for Finite Differences 301

The PDE in Terms of an Operator 301
Building Grids 302
Finite Difference Approximation of Derivatives 303
The Weighted Method 306
Boundary Conditions for the PDE 315
Explicit Scheme 316
ADI Schemes 321
Conclusion 325

CHAPTER 11
The Heston Greeks 327

Analytic Expressions for European Greeks 327
Finite Differences for the Greeks 332
Numerical Implementation of the Greeks 333
Greeks Under the Attari and Carr-Madan Formulations 339
Greeks Under the Lewis Formulations 343
Greeks Using the FFT and FRFT 345
American Greeks Using Simulation 346
American Greeks Using the Explicit Method 349
American Greeks from Medvedev and Scaillet 352
Conclusion 354



viii CONTENTS

CHAPTER 12
The Double Heston Model 357

Multi-Dimensional Feynman-KAC Theorem 357
Double Heston Call Price 358
Double Heston Greeks 363
Parameter Estimation 368
Simulation in the Double Heston Model 373
American Options in the Double Heston Model 380
Conclusion 382

Bibliography 383

About the Website 391

Index 397



Foreword

Iam pleased to introduce The Heston Model and Its Extensions in Matlab and C#
by Fabrice Rouah. Although I was already familiar with his previous book entitled

Option Pricing Models and Volatility Using Excel/VBA, I was pleasantly surprised
to discover he had written a book devoted exclusively to the model that I developed
in 1993 and to the many enhancements that have been brought to the original model
in the twenty years since its introduction. Obviously, this focus makes the book
more specialized than his previous work. Indeed, it contains detailed analyses and
extensive computer implementations that will appeal to careful, interested readers.
This book should interest a broad audience of practitioners and academics, including
graduate students, quants on trading desks and in risk management, and researchers
in option pricing and financial engineering.

There are existing computer programs for calculating option prices, such as
those in Rouah’s prior book or those available on Bloomberg systems. But this
book offers more. In particular, it contains detailed theoretical analyses in addition
to practical Matlab and C# code for implementing not only the original model,
but also the many extensions that academics and practitioners have developed
specifically for the model. The book analyzes numerical integration, the calculation
of Greeks, American options, many simulation-based methods for pricing, finite
difference numerical schemes, and recent developments such as the introduction of
time-dependent parameters and the double version of the model. The breadth of
methods covered in this book provides comprehensive support for implementation
by practitioners and empirical researchers who need fast and reliable computations.

The methods covered in this book are not limited to the specific application
of option pricing. The techniques apply to many option and financial engineering
models. The book also illustrates how implementation of seemingly straightforward
mathematical models can raise many questions. For example, one colleague noted
that a common question on the Wilmott forums was how to calculate a complex
logarithm while still guaranteeing that the option model produces real values.
Obviously, an imaginary option value will cause problems in practice! This book
resolves many similar difficulties and will reward the dedicated reader with clear
answers and practical solutions. I hope you enjoy reading it as much as I did.

Professor Steven L. Heston
Robert H. Smith School of Business
University of Maryland
January 3, 2013

ix



Preface

In the twenty years since its introduction in 1993, the Heston model has become
one of the most important models, if not the single most important model, in

a then-revolutionary approach to pricing options known as stochastic volatility
modeling. To understand why this model has become so important, we must revisit
an event that shook financial markets around the world: the stock market crash of
October 1987 and its subsequent impact on mathematical models to price options.

The exacerbation of smiles and skews in the implied volatility surface that
resulted from the crash brought into question the ability of the Black-Scholes model
to provide adequate prices in a new regime of volatility skews, and served to
highlight the restrictive assumptions underlying the model. The most tenuous of
these assumptions is that of continuously compounded stock returns being normally
distributed with constant volatility. An abundance of empirical studies since the
1987 crash have shown that this assumption does not hold in equities markets. It
is now a stylized fact in these markets that returns distributions are not normal.
Returns exhibit skewness, and kurtosis—fat tails—that normality cannot account
for. Volatility is not constant in time, but tends to be inversely related to price, with
high stock prices usually showing lower volatility than low stock prices. A number
of researchers have sought to eliminate this assumption in their models, by allowing
volatility to be time-varying.

One popular approach for allowing time-varying volatility is to specify that
volatility be driven by its own stochastic process. The models that use this approach,
including the Heston (1993) model, are known as stochastic volatility models. The
models of Hull and White (1987), Scott (1987), Wiggins (1987), Chensey and
Scott (1989), and Stein and Stein (1991) are among the most significant stochastic
volatility models that pre-date Steve Heston’s model. The Heston model was not the
first stochastic volatility model to be introduced to the problem of pricing options,
but it has emerged as the most important and now serves as a benchmark against
which many other stochastic volatility models are compared.

Allowing for non-normality can be done by introducing skewness and kurtosis
in the option price directly, as done, for example, by Jarrow and Rudd (1982),
Corrado and Su (1997), and Backus, Foresi, and Wu (2004). In these models,
skewness and kurtosis are specified in Edgeworth expansions or Gram-Charlier
expansions. In stochastic volatility models, skewness can be induced by allowing
correlation between the processes driving the stock price and the process driving its
volatility. Alternatively, skewness can arise by introducing jumps into the stochastic
process driving the underlying asset price.

The parameters of the Heston model are able to induce skewness and kurtosis,
and produce a smile or skew in implied volatilities extracted from option prices
generated by the model. The model easily allows for the inverse relationship between
price level and volatility in a manner that is intuitive and easy to understand.
Moreover, the call price in the Heston model is available in closed form, up to an

xi



xii PREFACE

integral that must be evaluated numerically. For these reasons, the Heston model
has become the most popular stochastic volatility model for pricing equity options.

Another reason the Heston model is so important is that it is the first to exploit
characteristic functions in option pricing, by recognizing that the terminal price
density need not be known, only its characteristic function. This crucial line of
reasoning was the genesis for a new approach for pricing options, known as pricing
by characteristic functions. See Zhu (2010) for a discussion.

In this book, we present a treatment of the classical Heston model, but also of the
many extensions that researchers from the academic and practitioner communities
have contributed to this model since its inception. In Chapter 1, we derive the charac-
teristic function and call price of Heston’s (1993) original derivation. Chapter 2 deals
with some of the issues around the model such as integrand discontinuities, and also
shows how to model implied and local volatility in the model. Chapter 3 presents
several Fourier transform methods for the model, and Chapter 4 deals exclusively
with Alan Lewis’ (2000, 2001) approach to stochastic volatility modeling, as it
applies to the Heston model. Chapter 5 presents a variety of numerical integration
schemes and explains how integration can be speeded up. Chapter 6 deals with
parameter estimation, and Chapter 7 presents classical simulation schemes applied
to the model and several simulation schemes designed specifically for the model.
Chapter 8 deals with pricing American options in the Heston model. Chapter 9
presents models in which the parameters of the original Heston model are allowed
to be piecewise constant. Chapter 10 presents methods for obtaining the call price
that rely on solving the Heston partial differential equation with finite differences.
Chapter 11 presents the Greeks in the Heston model. Finally, Chapter 12 presents
the double Heston model, which introduces an additional stochastic process for
variance and thus allows the model to provide a better fit to the volatility surface.

All of the models presented in this book have been coded in Matlab and C#.



Acknowledgments

Iwould like to thank Steve Heston not only for having bestowed his model to
the financial engineering community, but also for contributing the Foreword to

this book and to Leif B.G. Andersen, Marco Avellaneda, Peter Christoffersen, Jim
Gatheral, Espen Gaarder Haug, Andrew Lesniewski, and Alan Lewis for their
generous endorsement. And to my team at Wiley—Bill Falloon, Meg Freeborn,
Steven Kyritz, and Tiffany Charbonier—thank you. I am also grateful to Gilles
Gheerbrant for his strikingly beautiful cover design.

Special thanks also to a group who offered moral support, advice, and technical
reviews of the material in this book: Amir Atiya, Sébastien Bossu, Carl Chiarella,
Elton Daal, Redouane El-Kamhi, Judith Farer, Jacqueline Gheerbrant, Emmanuel
Gobet, Greg N. Gregoriou, Antoine Jacquier, Dominique Legros, Pierre Leignadier,
Alexey Medvedev, Sanjay K. Nawalkha, Razvan Pascalau, Jean Rouah, Olivier
Scaillet, Martin Schmelzle, and Giovanna Sestito. Lastly, a special mention to Kevin
Samborn at Sapient Global Markets for his help and support.

xiii



The Heston Model
and Its Extensions in

Matlab and C#



CHAPTER 1
The Heston Model

for European Options

Abstract

In this chapter, we present a complete derivation of the European call price under the
Heston model. We first present the model and obtain the various partial differential
equations (PDEs) that arise in the derivation. We show that the call price in the
Heston model can be expressed as the sum of two terms that each contains an in-the-
money probability, but obtained under a separate measure, a result demonstrated
by Bakshi and Madan (2000). We show how to obtain the characteristic function
for the Heston model, and how to solve the Riccati equation from which the
characteristic function is derived. We then show how to incorporate a continuous
dividend yield and how to compute the price of a European put, and demonstrate
that the numerical integration can be speeded up by consolidating the two numerical
integrals into a single integral. Finally, we derive the Black-Scholes model as a special
case of the Heston model.

MODEL DYNAMICS

The Heston model assumes that the underlying stock price, St, follows a Black-
Scholes–type stochastic process, but with a stochastic variance vt that follows a
Cox, Ingersoll, and Ross (1985) process. Hence, the Heston model is represented by
the bivariate system of stochastic differential equations (SDEs)

dSt = μStdt + √
vtStdW1,t

dvt = κ(θ − vt)dt + σ
√

vtdW2,t

(1.1)

where EP[dW1,tdW2,t] = ρdt.
We will sometimes drop the time index and write S = St, v = vt, W1 = W1,t and

W2 = W2,t for notational convenience. The parameters of the model are

μ the drift of the process for the stock;
κ > 0 the mean reversion speed for the variance;
θ > 0 the mean reversion level for the variance;
σ > 0 the volatility of the variance;
v0 > 0 the initial (time zero) level of the variance;

1The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



2 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

ρ ∈ [−1, 1] the correlation between the two Brownian motions W1 and W2; and
λ the volatility risk parameter. We define this parameter in the next

section and explain why we set this parameter to zero.

We will see in Chapter 2 that these parameters affect the distribution of the
terminal stock price in a manner that is intuitive. Some authors refer to v0 as an
unobserved initial state variable, rather than a parameter. Because volatility cannot
be observed, only estimated, and because v0 represents this state variable at time
zero, this characterization is sensible. For the purposes of estimation, however, many
authors treat v0 as a parameter like any other. Parameter estimation is covered in
Chapter 6.

It is important to note that the volatility
√

vt is not modeled directly in the
Heston model, but rather through the variance vt. The process for the variance arises
from the Ornstein-Uhlenbeck process for the volatility ht = √

vt given by

dht = −βhtdt + δdW2,t. (1.2)

Applying Itō’s lemma, vt = h2
t follows the process

dvt = (δ2 − 2βvt)dt + 2δ
√

vtdW2,t. (1.3)

Defining κ = 2β, θ = δ2/(2β), and σ = 2δ expresses dvt from Equation (1.1)
as (1.3).

The stock price and variance follow the processes in Equation (1.1) under
the historical measure P, also called the physical measure. For pricing purposes,
however, we need the processes for (St, vt) under the risk-neutral measure Q. In the
Heston model, this is done by modifying each SDE in Equation (1.1) separately by
an application of Girsanov’s theorem. The risk-neutral process for the stock price is

dSt = rStdt + √
vtStdW̃1,t (1.4)

where

W̃1,t =
(

W1,t + μ − r√
vt

t
)

.

It is sometimes convenient to express the price process in terms of the log price
instead of the price itself. By an application of Itō’s lemma, the log price process is

d ln St =
(

μ − 1
2

)
dt + √

vtdW1,t.

The risk-neutral process for the log price is

d ln St =
(

r − 1
2

)
dt + √

vtdW̃1,t. (1.5)

If the stock pays a continuous dividend yield, q, then in Equations (1.4) and
(1.5) we replace r by r − q.



The Heston Model for European Options 3

The risk-neutral process for the variance is obtained by introducing a function
λ(St, vt, t) into the drift of dvt in Equation (1.1), as follows

dvt = [κ(θ − vt) − λ(St, vt, t)]dt + σ
√

vtdW̃2,t (1.6)

where

W̃2,t =
(

W2,t + λ
(
St, vt, t

)
σ
√

vt

t

)
. (1.7)

The function λ(S, v, t) is called the volatility risk premium. As explained in
Heston (1993), Breeden’s (1979) consumption model yields a premium proportional
to the variance, so that λ(S, v, t) = λvt, where λ is a constant. Substituting for λvt in
Equation (1.6), the risk-neutral version of the variance process is

dvt = κ∗(θ ∗ − vt)dt + σ
√

vtdW̃2,t (1.8)

where κ∗ = κ + λ and θ ∗ = κθ/(κ + λ) are the risk-neutral parameters of the variance
process.

To summarize, the risk-neutral process is

dSt = rStdt + √
vtStdW̃1,t

dvt = κ∗(θ ∗ − vt)dt + σ
√

vtdW̃2,t

(1.9)

where EQ[dW̃1,tdW̃2,t] = ρdt and with Q the risk-neutral measure.
Note that, when λ = 0, we have κ∗ = κ and θ ∗ = θ so that these parameters under

the physical and risk-neutral measures are the same. Throughout this book, we set
λ = 0, but this is not always needed. Indeed, λ is embedded in the risk-neutral param-
eters κ∗ and θ ∗. Hence, when we estimate the risk-neutral parameters to price options
we do not need to estimate λ. Estimation of λ is the subject of its own research, such
as that by Bollerslev et al. (2011). For notational simplicity, throughout this book
we will drop the asterisk on the parameters and the tilde on the Brownian motion
when it is obvious that we are dealing with the risk-neutral measure.

Properties of the Variance Process
The properties of vt are described by Cox, Ingersoll, and Ross (1985) and Brigo
and Mercurio (2006), among others. It is well-known that conditional on a realized
value of vs, the random variable 2ctvt (for t > s) follows a non-central chi-square
distribution with d = 4κθ/σ 2 degrees of freedom and non-centrality parameter
2ctvse

−κ(t−s), where

ct = 2κ

σ 2(1 − e−κ(t−s))
(1.10)

and with t > s. The mean and variance of vt, conditional on the value vs are,
respectively

m = E[vt|vs] = θ + (vs − θ )e−κ(t−s),

S2 = Var[vt|vs] = vsσ
2e−κ(t−s)

κ
(1 − e−κ(t−s)) + θσ 2

2κ
(1 − e−κ(t−s))2.

(1.11)



4 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The effect of the mean reversion speed κ on the moments is intuitive and
explained in Cox, Ingersoll, and Ross (1985). When κ → ∞ the mean m approaches
the mean reversion rate θ and the variance S2 approaches zero. As κ → 0 the mean
approaches the current level of variance, vs, and the variance approaches σ 2vt(t − s).

If the condition 2κθ > σ 2 holds, then the drift is sufficiently large for the variance
process to be guaranteed positive and not reach zero. This condition is known as the
Feller condition.

THE EUROPEAN CALL PRICE

In this section, we show that the call price in the Heston model can be expressed in a
manner which resembles the call price in the Black-Scholes model, which we present
in Equation (1.76). Authors sometimes refer to this characterization of the call price
as ‘‘Black-Scholes–like’’ or ‘‘à la Black-Scholes.’’ The time-t price of a European call
on a non-dividend paying stock with spot price St, when the strike is K and the time
to maturity is τ = T − t, is the discounted expected value of the payoff under the
risk-neutral measure Q

C(K) = e−rτ EQ[(ST − K)+]

= e−rτ EQ[(ST − K)1ST>K]

= e−rτ EQ[ST1ST>K] − Ke−rτ EQ[1ST>K]

= StP1 − Ke−rτ P2

(1.12)

where 1 is the indicator function. The last line of (1.12) is the ‘‘Black-Scholes–like’’
call price formula, with P1 replacing 
(d1), and P2 replacing 
(d2) in the Black-
Scholes call price (1.76). In this section, we explain how the last line of (1.12) can be
derived from the third line. The quantities P1 and P2 each represent the probability
of the call expiring in-the-money, conditional on the value St = ext of the stock and
on the value vt of the volatility at time t. Hence

Pj = Pr(ln ST > ln K) (1.13)

for j = 1, 2. These probabilities are obtained under different probability measures. In
Equation (1.12), the expected value EQ[1ST>K] is the probability of the call expiring
in-the-money under the measure Q that makes W1 and W2 in the risk-neutral version
of Equation (1.1) Brownian motion. We can therefore write

EQ[1ST>K] = Q(ST > K) = Q(ln ST > ln K) = P2.

Evaluating e−rτ EQ[ST1ST>K] in (1.12) requires changing the original measure Q

to another measure QS. Consider the Radon-Nikodym derivative

dQ

dQS
= BT/Bt

ST/St

= EQ[exT ]
exT

(1.14)

where

Bt = exp
(∫ t

0
rdu

)
= ert.



The Heston Model for European Options 5

In (1.14), we have written Ste
r(T−t) = EQ[exT ], since under Q assets grow at the

risk-free rate, r. The first expectation in the third line of (1.12) can therefore be
written as

e−r(T−t)EQ[ST1ST>K] = StE
Q

[
ST/St

BT/Bt

1ST>K

]
= StE

QS

[
ST/St

BT/Bt

1ST>K

dQ

dQS

]
= StE

QS
[1ST>K] = StQ

S(ST > K) = StP1.

(1.15)

This implies that the European call price of Equation (1.12) can be written in
terms of both measures as

C(K) = StQ
S(ST > K) − Ke−rτQ(ST > K). (1.16)

The measure Q uses the bond Bt as the numeraire, while the measure QS

uses the stock price St. Bakshi and Madan (2000) present a derivation of the call
price expressed as (1.16), but under a general setup. As shown in their paper,
the change of measure that leads to (1.16) is valid for a wide range of models,
including the Black-Scholes and Heston models. We will see later in this chapter
that when ST follows the lognormal distribution specified in the Black-Scholes
model, then QS(ST > K) = 
(d1) and Q(ST > K) = 
(d2). Hence, the characteristic
function approach to pricing options, pioneered by Heston (1993), applies to the
Black-Scholes model also.

THE HESTON PDE

In this section, we explain how to derive the PDE for the Heston model. This
derivation is a special case of a PDE for general stochastic volatility models,
described in books by Gatheral (2006), Lewis (2000), Musiela and Rutkowski
(2011), Joshi (2008), and others. The argument is similar to the hedging argument
that uses a single derivative to derive the Black-Scholes PDE. In the Black-Scholes
model, a portfolio is formed with the underlying stock, plus a single derivative which
is used to hedge the stock and render the portfolio riskless. In the Heston model,
however, an additional derivative is required in the portfolio, to hedge the volatility.
Hence, we form a portfolio consisting of one option V = V(S, v, t), � units of the
stock, and ϕ units of another option U(S, v, t) for the volatility hedge. The portfolio
has value

 = V + �S + ϕU

where the t subscripts are omitted for convenience. Assuming the portfolio is
self-financing, the change in portfolio value is

d = dV + �dS + ϕdU. (1.17)

The strategy is similar to that for the Black-Scholes case. We apply Itō’s lemma
to obtain the processes for U and V, which allows us to find the process for . We
then find the values of � and ϕ that makes the portfolio riskless, and we use the
result to derive the Heston PDE.



6 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Setting Up the Hedging Portfolio

To form the hedging portfolio, first apply Itō’s lemma to the value of the first
derivative, V(S, v, t). We must differentiate V with respect to the variables t, S, and
v, and form a second-order Taylor series expansion. The result is that dV follows
the process

dV = ∂V
∂t

dt + ∂V
∂S

dS + ∂V
∂v

dv + 1
2

vS2 ∂2V
∂S2

dt

+ 1
2

vσ 2 ∂2V
∂v2

dt + σρvS
∂2V
∂S∂v

dt.

(1.18)

We have used the fact that (dS)2 = vS2(dW1)2 = vS2dt, that (dv)2 = σ 2vdt, and
that dSdv = σvSdW1dW2 = σρvSdt. We have also used (dt)2 = 0 and dW1dt =
dW2dt = 0. Applying Itō’s lemma to the second derivative, U(S, v, t), produces an
expression identical to (1.18), but in terms of U. Substituting these two expressions
into (1.17), the change in portfolio value can be written

d = dV + �dS + ϕdU

=
[
∂V
∂t

+ 1
2

vS2 ∂2V
∂S2

+ ρσvS
∂2V
∂v∂S

+ 1
2

σ 2v
∂2V
∂v2

]
dt

+ ϕ

[
∂U
∂t

+ 1
2

vS2 ∂2U
∂S2

+ ρσvS
∂2U
∂v∂S

+ 1
2

σ 2v
∂2U
∂v2

]
dt

+
[
∂V
∂S

+ ϕ
∂U
∂S

+ �

]
dS +

[
∂V
∂v

+ ϕ
∂U
∂v

]
dv.

(1.19)

In order for the portfolio to be hedged against movements in both the stock and
volatility, the last two terms in Equation (1.19) must be zero. This implies that the
hedge parameters must be

ϕ = −∂V
∂v

/
∂U
∂v

, � = −ϕ
∂U
∂S

− ∂V
∂S

. (1.20)

Substitute these values of ϕ and � into (1.19) to produce

d =
[
∂V
∂t

+ 1
2

vS2 ∂2V
∂S2

+ ρσvS
∂2V
∂S∂v

+ 1
2

σ 2v
∂2V
∂v2

]
dt

+ ϕ

[
∂U
∂t

+ 1
2

vS2 ∂2U
∂S2

+ ρσvS
∂2U
∂S∂v

+ 1
2

σ 2v
∂2U
∂v2

]
dt.

(1.21)

The condition that the portfolio earn the risk-free rate, r, implies that the change
in portfolio value is d = rdt. Equation (1.17) thus becomes

d = r(V + �S + ϕU)dt. (1.22)

Now equate Equation (1.22) with (1.21), substitute for ϕ and �, drop the dt
term and re-arrange. This yields



The Heston Model for European Options 7

[
∂V
∂t

+ 1
2

vS2 ∂2V
∂S2

+ ρσvS
∂2V
∂S∂v

+ 1
2

σ 2v
∂2V
∂v2

]
− rV + rS

∂V
∂S

∂V
∂v

=

[
∂U
∂t

+ 1
2

vS2 ∂2U
∂S2

+ ρσvS
∂2U
∂S∂v

+ 1
2

σ 2v
∂2U
∂v2

]
− rU + rS

∂U
∂S

∂U
∂v

(1.23)

which we exploit in the next section.

The PDE for the Option Price
The left-hand side of Equation (1.23) is a function of V only, and the right-hand
side is a function of U only. This implies that both sides can be written as a function
f (S, v, t). Following Heston (1993), specify this function as

f (S, v, t) = −κ(θ − v) + λ(S, v, t)

where λ(S, v, t) is the price of volatility risk. An application of Breeden’s (1979)
consumption model yields a price of volatility risk that is a linear function of
volatility, so that λ(S, v, t) = λv, where λ is a constant. Substitute for f (S, v, t) in the
left-hand side of Equation (1.23)

− κ (θ − v) + λ(S, v, t)

=

[
∂U
∂t

+ 1
2

vS2 ∂2U
∂S2

+ ρσvS
∂2U
∂S∂v

+ 1
2

σ 2v
∂2U
∂v2

]
− rU + rS

∂U
∂S

∂U
∂v

Rearrange to produce the Heston PDE expressed in terms of the price S

∂U
∂t

+ 1
2

vS2 ∂2U
∂S2

+ ρσvS
∂2U
∂v∂S

+ 1
2

σ 2v
∂2U
∂v2

− rU + rS
∂U
∂S

+ [κ(θ − v) − λ(S, v, t)]
∂U
∂v

= 0.

(1.24)

This is Equation (6) of Heston (1993).
The following boundary conditions on the PDE in Equation (1.24) hold for a

European call option with maturity T and strike K. At maturity, the call is worth its
intrinsic value

U(S, v, T) = max(0, S − K). (1.25)

When the stock price is zero, the call is worthless. As the stock price increases,
delta approaches one, and when the volatility increases, the call option becomes
equal to the stock price. This implies the following three boundary conditions

U(0, v, t) = 0,
∂U
∂S

(∞, v, t) = 1, U(S, ∞, t) = S. (1.26)



8 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Finally, note that the PDE (1.24) can be written

∂U
∂t

+ AU − rU = 0 (1.27)

where

A = rS
∂

∂S
+ 1

2
vS2 ∂2

∂S2

+ [κ(θ − v) − λ(S, v, t)]
∂

∂v
+ 1

2
σ 2v

∂2

∂v2
+ ρσvS

∂2

∂S∂v

(1.28)

is the generator of the Heston model. As explained by Lewis (2000), the first line in
Equation (1.28) is the generator of the Black-Scholes model, with v = √

σBS, where
σBS is the Black-Scholes volatility. The second line augments the PDE for stochastic
volatility.

We can define the log price x = ln S and express the PDE in terms of (x, v, t)
instead of (S, v, t). This leads to a simpler form of the PDE in which the spot price
S does not appear. This simplification requires the following derivatives. By the
chain rule

∂U
∂S

= ∂U
∂x

1
S

,
∂2U
∂v∂S

= ∂

∂v

(
1
S

∂U
∂x

)
= 1

S
∂2U
∂v∂x

.

Using the product rule,

∂2U
∂S2

= ∂

∂S

(
1
S

∂U
∂x

)
= − 1

S2

∂U
∂x

+ 1
S

∂2U
∂S∂x

= − 1
S2

∂U
∂x

+ 1
S2

∂2U
∂x2

.

Substitute these expressions into the Heston PDE in (1.24). All the S terms
cancel, and we obtain the Heston PDE in terms of the log price x = ln S

∂U
∂t

+ 1
2

v
∂2U
∂x2

+
(

r − 1
2

v
)

∂U
∂x

+ ρσv
∂2U
∂v∂x

+1
2

σ 2v
∂2U
∂v2

− rU + [κ(θ − v) − λv]
∂U
∂v

= 0 (1.29)

where we have substituted λ(S, v, t) = λv. The modern approach to obtaining the
PDE in (1.29) is by an application of the Feynman-Kac theorem, which we will
encounter in Chapter 12 in the context of the double Heston model of Christoffersen
et al. (2009).

The PDE for P1 and P2

Recall Equation (1.16) for the European call price, written here using x = xt = ln St

C(K) = exP1 − Ke−rτ P2. (1.30)

Equation (1.30) expresses C(K) in terms of the in-the-money probabilities
P1 = QS(ST > K) and P2 = Q(ST > K). Since the European call satisfies the PDE
(1.29), we can find the required derivatives of Equation (1.30), substitute them into



The Heston Model for European Options 9

the PDE, and express the PDE in terms of P1 and P2. The derivative of C(K) with
respect to t is

∂C
∂t

= ex ∂P1

∂t
− Ke−rτ

[
rP2 + ∂P2

∂t

]
. (1.31)

With respect to x

∂C
∂x

= ex

[
P1 + ∂P1

∂x

]
− Ke−rτ ∂P2

∂x
. (1.32)

With respect to x2

∂2C
∂x2

= exP1 + 2ex ∂P1

∂x
+ ex ∂2P1

∂x2
− Ke−rτ ∂2P2

∂x2

= ex

[
P1 + 2

∂P1

∂x
+ ∂2P1

∂x2

]
− Ke−rτ ∂2P2

∂x2
.

(1.33)

With respect to v, and v2

∂C
∂v

= ex ∂P1

∂v
− Ke−rτ ∂P2

∂v
,

∂2C
∂v2

= ex ∂2P1

∂v2
− Ke−rτ ∂2P2

∂v2
. (1.34)

With respect to v and x

∂2C
∂x∂v

= ex

[
∂P1

∂v
+ ∂2P1

∂x∂v

]
− Ke−rτ ∂2P2

∂x∂v
. (1.35)

As mentioned earlier, since the European call C(K) is a financial derivative, it
also satisfies the Heston PDE in (1.29), which we write here in terms of C(K)

∂C
∂t

+ 1
2

v
∂2C
∂x2

+
(

r − 1
2

v
)

∂C
∂x

+ ρσv
∂2C
∂v∂x

+ 1
2

σ 2v
∂2C
∂v2

− rC + [κ(θ − v) − λv]
∂C
∂v

= 0.

(1.36)

To obtain the Heston PDE for P1 and P2, Heston (1993) argues that the PDE in
(1.36) holds for any contractual features of C(K), in particular, for any strike price
K ≥ 0, for any value of S ≥ 0, and for any value r ≥ 0 of the risk-free rate. Setting
K = 0 and S = 1 in the call price in Equation (1.12) produces an option whose
price is simply P1. This option will also follow the PDE in (1.36). Similarly, setting
S = 0, K = 1, and r = 0 in (1.12) produces an option whose price is −P2. Since −P2

follows the PDE, so does P2.
In Equations (1.31) through (1.35), regroup terms common to P1, cancel ex, and

substitute the terms into the PDE in (1.36) to obtain

∂P1

∂t
+ 1

2
v
[
P1 +2

∂P1

∂x
+ ∂2P1

∂x2

]
+

(
r − 1

2
v
) [

P1 + ∂P1

∂x

]
+ρσv

[
∂P1

∂v
+ ∂2P1

∂x∂v

]
+ 1

2
σ 2v

∂2P1

∂v2
− rP1 + [κ(θ − v) − λv]

∂P1

∂v
= 0. (1.37)



10 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Simplifying, (1.37) becomes

∂P1

∂t
+

(
r + 1

2
v
)

∂P1

∂x
+ 1

2
v
∂2P1

∂x2
+ ρσv

∂2P1

∂x∂v

+ [ρσv + κ(θ − v) − λv]
∂P1

∂v
+ 1

2
σ 2v

∂2P1

∂v2
= 0.

(1.38)

Similarly, in Equations (1.31) through (1.35) regroup terms common to P2,
cancel −Ke−rτ, and substitute the terms into the PDE in Equation (1.36) to obtain

∂P2

∂t
+ 1

2
v
∂2P2

∂x2
+

(
r − 1

2
v
)

∂P2

∂x
+ ρσv

∂2P2

∂v∂x

+ 1
2

σ 2v
∂2P2

∂v2
+ [κ(θ − v) − λv]

∂P2

∂v
= 0.

(1.39)

For notational convenience, combine Equations (1.38) and (1.39) into a single
expression

∂Pj

∂t
+ ρσv

∂2Pj

∂v∂x
+ 1

2
v
∂2Pj

∂x2
+ 1

2
σ 2v

∂2Pj

∂v2

+ (r + ujv)
∂Pj

∂x
+ (a − bjv)

∂Pj

∂v
= 0

(1.40)

for j = 1, 2 and where u1 = 1
2 , u2 = − 1

2 , a = κθ , b1 = κ + λ − ρσ , and b2 = κ + λ.
This is Equation (12) of Heston (1993).

OBTAINING THE HESTON CHARACTERISTIC FUNCTIONS

When the characteristic functions fj(φ; x, v) are known, each in-the-money proba-
bility Pj can be recovered from the characteristic function via the Gil-Pelaez (1951)
inversion theorem, as

Pj = Pr(ln ST > ln K) = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]
dφ. (1.41)

Inversion theorems can be found in many textbooks, such as that by Stuart
(2010). The inversion theorem in (1.41) will be demonstrated in Chapter 3. A
discussion of how the theorem relates to option pricing in stochastic volatility
models appears in Jondeau et al. (2007).

At maturity, the probabilities are subject to the terminal condition

Pj = 1xT>ln K (1.42)

where 1 is the indicator function. Equation (1.42) simply states that, when ST > K
at expiry, the probability of the call being in-the-money is unity. Heston (1993)
postulates that the characteristic functions for the logarithm of the terminal stock
price, xT = ln ST, are of the log linear form

fj(φ; xt, vt) = exp(Cj(τ , φ) + Dj(τ , φ)vt + iφxt) (1.43)



The Heston Model for European Options 11

where i = √−1 is the imaginary, unit, Cj and Dj are coefficients and τ = T − t is the
time to maturity.

The characteristic functions fj will follow the PDE in Equation (1.40). This is
a consequence of the Feynman-Kac theorem, which stipulates that, if a function
f (xt, t) of the Heston bivariate system of SDEs xt = (xt, vt) = (ln St, vt) satisfies the
PDE ∂f/∂t − rf + Af = 0, where A is the Heston generator from (1.28), then the
solution to f (xt, t) is the conditional expectation

f (xt, t) = E[f (xT, T)|Ft].

Using f (xt, t) = exp(iφ ln St) produces the solution

f (xt, t) = E[eiφ ln ST |xt, vt]

which is the characteristic function for xT = ln ST. Hence, the PDE for the charac-
teristic function is, from Equation (1.40)

− ∂fj

∂τ
+ ρσv

∂2fj

∂v∂x
+ 1

2
v
∂2fj

∂x2
+ 1

2
σ 2v

∂2fj

∂v2

+ (r + ujv)
∂fj

∂x
+ (a − bjv)

∂fj

∂v
= 0.

(1.44)

Note the transformation from t to τ , which explains the negative sign in front of
the first term in the PDE (1.44). The following derivatives are required to evaluate
(1.44)

∂fj

∂τ
=

(
∂Cj

∂τ
+ ∂Dj

∂τ
v
)

fj,
∂fj

∂x
= iφfj,

∂fj

∂v
= Djfj,

∂2fj

∂x2
= −φ2fj,

∂2fj

∂v2
= D2

j fj,
∂2fj

∂v∂x
= iφDjfj.

Substitute these derivatives into (1.44) and drop the fj terms to obtain

−
(

∂Cj

∂τ
+ v

∂Dj

∂τ

)
+ ρσviφDj −

1
2

vφ2 + 1
2

vσ 2D2
j

+ (r + ujv)iφ + (a − bjv)Dj = 0,

(1.45)

or equivalently

v
(
−∂Dj

∂τ
+ρσ iφDj −

1
2

φ2 + 1
2

σ 2D2
j +ujiφ − bjDj

)
− ∂Cj

∂τ
+riφ+aDj = 0. (1.46)

This produces two differential equations

∂Dj

∂τ
= ρσ iφDj −

1
2

φ2 + 1
2

σ 2D2
j + ujiφ − bjDj

∂Cj

∂τ
= riφ + aDj.

(1.47)



12 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

These are Equations (A7) in Heston (1993). The first equation in (1.47) is a
Riccati equation in Dj, while the second is an ordinary derivative for Cj that can
solved using straightforward integration once Dj is obtained. Solving these equations
requires two initial conditions. Recall from (1.43) that the characteristic function is

fj(φ; xt, vt) = E[eiφxT ] = exp(Cj(τ , φ) + Dj(τ , φ)vt + iφxt). (1.48)

At maturity (τ = 0), the value of xT = ln ST is known, so the expectation in
(1.48) will disappear, and consequently the right-hand side will reduce to simply
exp(iφxT). This implies that the initial conditions at maturity are Dj(0, φ) = 0 and
Cj(0, φ) = 0.

Finally, when we compute the characteristic function, we use xt as the log spot
price of the underlying asset, and vt as its unobserved initial variance. This last
quantity is the parameter v0 described earlier in this chapter, and must be estimated.
We sometimes write (x0, v0) for (xt, vt), or simply (x, v).

SOLVING THE HESTON RICCATI EQUATION

In this section, we explain how the expressions in Equation (1.47) can be solved
to yield the call price. First, we introduce the Riccati equation and explain how its
solution is obtained. The solution can be found in many textbooks on differential
equations, such as that by Zwillinger (1997).

The Riccati Equation in a General Setting
The Riccati equation for y(t) with coefficients P(t), Q(t), and R(t) is defined as

dy(t)
dt

= P(t) + Q(t)y(t) + R(t)y(t)2. (1.49)

The equation can be solved by considering the following second-order ordinary
differential equation (ODE) for w(t)

w′′ −
[

P′

P
+ Q

]
w′ + PRw = 0 (1.50)

which can be written w′′ + bw′ + cw = 0. The solution to Equation (1.49) is then

y(t) = −w′(t)
w(t)

1
R(t)

.

The ODE in (1.50) can be solved via the auxiliary equation r2 + br + c = 0,
which has two solutions α and β given by

α = −b + √
b2 − 4c

2
, β = −b − √

b2 − 4c
2

.

The solution to the second-order ODE in (1.50) is

w(t) = Meαt + Neβt



The Heston Model for European Options 13

where M and N are constants. The solution to the Riccati equation is therefore

y(t) = −Mαeαt + Nβeβt

Meαt + Neβt

1
R(t)

.

Solution of the Heston Riccati Equation

From Equation (1.47), the Heston Riccati equation can be written

∂Dj

∂τ
= Pj − QjDj + RD2

j (1.51)

where

Pj = ujiφ − 1
2

φ2, Qj = bj − ρσ iφ, R = 1
2

σ 2. (1.52)

The corresponding second-order ODE is

w′′ + Qjw
′ + PjRw = 0 (1.53)

so that Dj = − 1
R

w′
w . The auxiliary equation is r2 + Qjr + PjR = 0, which has roots

αj =
−Qj +

√
Q2

j − 4PjR

2
= −Qj + dj

2

βj =
−Qj −

√
Q2

j − 4PjR

2
= −Qj − dj

2

where

dj = αj − βj =
√

Q2
j − 4PjR

=
√

(ρσ iφ − bj)2 − σ 2(2ujiφ − φ2).
(1.54)

For notational simplicity, we sometimes omit the ‘‘j’’ subscript on some of the
variables. The solution to the Heston Riccati equation is therefore

Dj = − 1
R

w′

w
= − 1

R

(
Mαeατ + Nβeβτ

Meατ + Neβτ

)
= − 1

R

(
Kαeατ + βeβτ

Keατ + eβτ

)
(1.55)

where K = M/N. The initial condition Dj(0, φ) = 0 implies that, when τ = 0 is
substituted in (1.55), the numerator becomes Kα + β = 0, from which K = −β/α.
The solution for Dj becomes

Dj = −β

R

(
−eατ + eβτ

−gjeατ + eβτ

)
= −β

R

(
1 − edjτ

1 − gje
djτ

)

= Qj + dj

2R

(
1 − edjτ

1 − gje
djτ

) (1.56)



14 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where

gj = −K = β

α
= bj − ρσ iφ + dj

bj − ρσ iφ − dj

= Qj − dj

Qj + dj

. (1.57)

The solution for Dj can, therefore, be written

Dj(τ , φ) = bj − ρσ iφ + dj

σ 2

(
1 − edjτ

1 − gje
djτ

)
. (1.58)

The solution for Cj is found by integrating the second equation in (1.47)

Cj =
∫ τ

0
riφdy + a

(
Qj + dj

σ 2

) ∫ τ

0

(
1 − edjy

1 − gje
djy

)
dy + K1 (1.59)

where K1 is a constant. The first integral is riφτ and the second integral can
be found by substitution, using x = exp(djy), from which dx = dj exp(djy)dy and
dy = dx/(xdj). Equation (1.59) becomes

Cj = riφτ + a
dj

(
Qj + dj

σ 2

)∫ exp(djτ )

1

(
1 − x

1 − gjx

)
1
x

dx + K1. (1.60)

The integral in (1.60) can be evaluated by partial fractions∫ exp(djτ )

1

1 − x
x(1 − gjx)

dx =
∫ exp(djτ )

1

[
1
x

− 1 − gj

1 − gjx

]
dx

=
[

ln x + 1 − gj

gj

ln
(
1 − gjx

)]x=exp(djτ )

x=1

=
[

djτ + 1 − gj

gj

ln

(
1 − gje

djτ

1 − gj

)]
.

(1.61)

Substituting the integral back into (1.60), and substituting for dj, Qj, and gj,
produces the solution for Cj

Cj(τ , φ) = riφτ + a
σ 2

[(
bj − ρσ iφ + dj

)
τ − 2 ln

(
1 − gje

djτ

1 − gj

)]
(1.62)

where a = κθ . Note that we have used the initial condition Cj(0, φ) = 0, which
results in K1 = 0. This completes the original derivation of the Heston model.

We use two functions to implement the model in Matlab, HestonProb.m and
HestonPrice.m. The first function calculates the characteristic functions and returns
the real part of the integrand. The function allows for the Albrecher et al. (2007)
‘‘Little Trap’’ formulation for the characteristic function, which is introduced in
Chapter 2. The functions allow to price calls or puts, and allow for a dividend yield,
as explained in the following section. To conserve space parts of the functions have
been omitted.



The Heston Model for European Options 15

function y = HestonProb(phi,...,Trap);
x = log(S);
a = kappa*theta;
d = sqrt((rho*sigma*i*phi - b)^2 - sigma^2*(2*u*i*phi - phi^2));
g = (b - rho*sigma*i*phi + d) / (b - rho*sigma*i*phi - d);
if Trap==1

c = 1/g;
D = (b - rho*sigma*i*phi - d)/sigma^2*((1-exp(-d*tau)) ...;
G = (1 - c*exp(-d*tau))/(1-c);
C = (r-q)*i*phi*tau + a/sigma^2*((b-rho*sigma*i*phi-d)...;

elseif Trap==0
G = (1 - g*exp(d*tau))/(1-g);
C = (r-q)*i*phi*tau + a/sigma^2*((b - rho*sigma*i*phi + d) ...;
D = (b - rho*sigma*i*phi + d)/sigma^2*((1-exp(d*tau)) ...;

end
f = exp(C + D*v0 + i*phi*x);
y = real(exp(-i*phi*log(K))*f/i/phi);

The second function calculates the price of a European call C(K), or European
put P(K), by put-call parity in Equation (1.67). The function calls the HestonProb.m
function at every point of the integration grid and uses the trapezoidal rule for
integration when all the integration points have been calculated, using the built-in
Matlab function trapz.m. Chapter 5 presents alternate numerical integration schemes
that do not rely on built-in Matlab functions.

function y = HestonPrice(PutCall,...,trap,Lphi,Uphi,dphi)
phi = [Lphi:dphi:Uphi];
N = length(PHI);
for k=1:N;

int1(k) = HestonProb(phi(k),...,1);
int2(k) = HestonProb(phi(k),...,2,);

end
I1 = trapz(int1)*dphi;
I2 = trapz(int2)*dphi;
P1 = 1/2 + 1/pi*I1;
P2 = 1/2 + 1/pi*I2;
HestonC = S*exp(-q*T)*P1 - K*exp(-r*T)*P2;
HestonP = HestonC - S*exp(-q*T) + K*exp(-r*T);

Pricing European calls and puts is straightforward. For example, the price a
6-month European put with strike K = 100 on a dividend-paying stock with spot
price S = 100 and yield q = 0.02, when the risk-free rate is r = 0.03 and using the
parameters κ = 5, σ = 0.5, ρ = −0.8, θ = v0 = 0.05, and λ = 0, along with the
integration grid φ ∈ [0.00001, 50] in increments of 0.001 is 5.7590. The price of
the call with identical features is 6.2528. If there is no dividend yield so that q = 0,
then as expected, the put price decreases, to 5.3790, and the call price increases, to
6.8678.



16 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Some applications require Matlab code for the Heston characteristic function.
The HestonProb.m function can be modified to return the characteristic function
itself, instead of the integrand. In certain instances, the integrand for Pj

Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]
(1.63)

is well-behaved in that it poses no difficulties in numerical integration. This corre-
sponds to an integrand that does not oscillate much, that dampens quickly so that
a large upper limit in the numerical integration is not required, and that does not
contain portions that are excessively steep. In other instances, the integrand is not
well-behaved, and numerical integration loses precision. To illustrate, we plot the
second integrand (j = 2) in Equation (1.63), using the settings S = 7, K = 10, and
r = q = 0, with parameter values κ = 10, θ = v0 = 0.07, σ = 0.3, and ρ = −0.9.
The plot uses the domain −50 < φ < 50 over maturities running from 1 week to 3
months. This plot appears in Figure 1.1. The integrand has a discontinuity at φ = 0,
but this does not show up in the figure.

The plot indicates an integrand that has a fair amount of oscillation, especially
at short maturities, and that is steep near the origin. In Chapter 2, we investigate
other problems that can arise with the Heston integrand.

0

0.21

0.16

0.11

0.06

Maturity Integrand
0.01 –50

–25
0

25
50

0.1

0.2

0.3

0.4

FIGURE 1.1 Heston Integrand and Maturity



The Heston Model for European Options 17

DIVIDEND YIELD AND THE PUT PRICE

It is straightforward to include dividends into the model if it can be assumed that
the dividend payment is a continuous yield, q. In that case, r is replaced by r − q in
Equation (1.4) for the stock price process

dSt = (r − q)Stdt + √
vtStdW̃1,t. (1.64)

The solution for Cj in Equation (1.62) becomes

Cj = (r − q)iφτ + κθ

σ 2

[(
bj − ρσ iφ + dj

)
τ − 2 ln

(
1 − gje

djτ

1 − gj

)]
. (1.65)

To obtain the price P(K) of a European put, first obtain the price C(K) of a
European call, using a slight modification of Equation (1.12) to include the term
e−qτ for the dividend yield, as explained by Whaley (2006)

C(K) = Ste
−qτ P1 − Ke−rτ P2. (1.66)

The put price is found by put-call parity

P(K) = C(K) + Ke−rτ − Ste
−qτ . (1.67)

Alternatively, as in Zhu (2010) the put price can be obtained explicitly as

P(K) = Ke−rτ Pc
2 − Ste

−qτ Pc
1. (1.68)

The put expires in-the-money if xT < ln K. The in-the-money probabilities in
(1.68) are, therefore, the complement of those in (1.41)

Pc
j = Pr(ln ST < ln K) = 1

2
− 1

π

∫ ∞

0
Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]
dφ. (1.69)

It is straightforward to show the equivalence of Equations (1.67) and (1.68).
Finally, by an application of the Feynman-Kac theorem, which will be introduced in
Chapter 12, the PDE for x = ln S is

∂U
∂t

+ 1
2

v
∂2U
∂x2

+
(

r − q − 1
2

v
)

∂U
∂x

+ ρσv
∂2U
∂v∂x

+ 1
2

σ 2v
∂2U
∂v2

− rU + [κ(θ − v) − λv]
∂U
∂v

= 0.

(1.70)

Equation (1.70) is simply (1.29), but with (r − v/2) in the third term replaced
by (r − q − v/2).



18 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

CONSOLIDATING THE INTEGRALS

It is possible to regroup the integrals for the probabilities P1 and P2 into a single
integral, which will speed up the numerical integration required in the call price
calculation. Substituting the expressions for Pj from Equation (1.41) into the call
price in (1.66) and re-arranging produces

C(K) = 1
2

Ste
−qτ − 1

2
Ke−rτ

+ 1
π

∫ ∞

0
Re

[
e−iφ ln K

iφ

(
Ste

−qτ f1 (φ; x, v) − Ke−rτ f2(φ; x, v)
)]

dφ.

(1.71)

The advantage of this consolidation is that only a single numerical integration is
required instead of two, so the computation time will be reduced by almost one-half.
The put price can be obtained by using put-call parity, with the call price calculated
using (1.71).

The integrand of the consolidated form is in the function HestonProbConsol.m.

function y = HestonProbConsol(phi,...,Pnum,Trap);
% First characteristic function f1
u1 = 0.5;
b1 = kappa + lambda - rho*sigma;
d1 = sqrt((rho*sigma*i*phi - b1)^2 - sigma^2*(2*u1*i*phi - phi^2));
g1 = (b1 - rho*sigma*i*phi + d1)/(b1-rho*sigma*i*phi-d1);
G1 = (1 - g1*exp(d1*tau))/(1-g1);
C1 = (r-q)*i*phi*tau + a/sigma^2 * ...;
D1 = (b1 - rho*sigma*i*phi + d1)/sigma^2 * ...;
f1 = exp(C1 + D1*v0 + i*phi*x);
% Second characteristic function f1
f2 = exp(C2 + D2*v0 + i*phi*x);
% Return the real part of the integrand
y = real(exp(-i*phi*log(K))/i/phi*(S*exp(-q*tau)*f1 - K*exp(-r*tau)*f2));

This function is then fed into the HestonPriceConsol.m function, which calcu-
lates the call price in accordance with Equation (1.71).

function y = HestonPriceConsol(PutCall,...,trap,Lphi,Uphi,dphi)
% Build the integration grid
phi = [Lphi:dphi:Uphi];
N = length(phi);
for k=1:N;

inte(k) = HestonProbConsol(phi(k),...,1,trap);
end
I = trapz(inte)*dphi;
% The call price
HestonC = (1/2)*S*exp(-q*T) - (1/2)*K*exp(-r*T) + I/pi;
% The put price by put-call parity
HestonP = HestonC - S*exp(-q*T) + K*exp(-r*T);



The Heston Model for European Options 19

The consolidated form produces exactly the same prices for the call and the put,
but requires roughly one-half of the computation time only.

BLACK-SCHOLES AS A SPECIAL CASE

With a little manipulation, it is straightforward to show that the Black-Scholes model
is nested inside the Heston model. The Black-Scholes model assumes the following
dynamics for the underlying price St under the risk-neutral measure Q

dSt = rSt + σBSStdW̃t. (1.72)

It is shown in many textbooks, such as that by Hull (2011) or Chriss (1996)
that (1.72) can be solved for the spot price St. This is done in two steps. First, apply
Itō’s lemma to obtain the process for d ln St, which produces a stochastic process
that is no longer an SDE since its drift and volatility no longer depend on St. Second,
integrate the stochastic process to produce

St = S0 exp([r − σ 2
BS/2]t + σBSW̃t). (1.73)

This implies that, at time t, the natural logarithm of the stock price at expiry
ln ST is distributed as a normal random variable with mean ln St + (

r − 1
2σ 2

BS

)
τ and

variance σ 2
BSτ , where τ = T − t is the time to expiry. Consequently, the characteristic

function of ln ST in the Black-Scholes model is

E[eiφ ln ST ] = exp
(

iφ
[
ln St +

(
r − 1

2
σ 2

BS

)
τ

]
− 1

2
φ2σ 2

BSτ

)
. (1.74)

The Black-Scholes PDE is

∂U
∂t

+ 1
2

σ 2
BSS

2 ∂2U
∂S2

+ rS
∂U
∂S

− rU = 0. (1.75)

The Black-Scholes call price is given by

CBS(K) = St
(d1) − Ke−rτ
(d2) (1.76)

with

d1 = ln(St/K) + (r + σ 2
BS/2)τ

σBS

√
τ

,

d2 = ln(St/K) + (r − σ 2
BS/2)τ

σBS

√
τ

= d1 − σBS

√
τ

(1.77)

where 
(x) is the standard normal cumulative distribution function. The volatility
σBS is assumed to be constant.

If we set σ = 0, the volatility of variance parameter in the Heston model,
then the Brownian component of the variance process in Equation (1.1) drops out.
Consequently, from (1.11) we obtain Var[vt|v0] = 0. This will produce volatility
that is time-varying, but deterministic. If we further set θ = v0, then from (1.11)



20 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

we get E[vt|v0] = v0, which is time independent. This will produce volatility that is
constant. Hence, setting σ = 0 and θ = v0 in the Heston model leads us to expect
the same price as that produced by the Black Scholes model, with σBS = √

v0 as
the Black Scholes implied volatility. Indeed, substituting σ = 0 and θ = v0 into the
Heston PDE (1.24) along with λ = 0 produces the Black-Scholes PDE in (1.75) with
σBS = √

v0. Consequently, the Heston price under these parameter values will be the
Black-Scholes price.

To implement the Black-Scholes model as a special case of the Heston model,
we cannot simply substitute σ = 0 into the pricing functions, because that will lead
to division by zero in the expressions for Cj(τ , φ) in Equation (1.62) and Dj(τ , φ) in
(1.58). Instead, we must start with the set of equations in (1.47). With σ = 0, the
Riccati equation in (1.51) reduces to the ordinary first-order differential equation

∂Dj

∂τ
= Pj − QjDj,

where Pj = ujiφ − 1
2φ2 and Qj = bj. The solution of this ODE is

Dj(τ , φ) =
(
ujiφ − 1

2φ2
)

(1 − e−bjτ )

bj

. (1.78)

As for the general case σ > 0, substitute (1.78) into the expression for Cj in the
second equation of (1.47) and integrate to obtain

Cj(τ , φ) = riφτ + a
∫ τ

0

(
ujiφ − 1

2φ2
)

(1 − e−bjy)

bj

dy + K1

= riφτ + a
(
ujiφ − 1

2φ2
)

bj

[
τ −

(
1 − e−bjτ

)
bj

] (1.79)

where the initial condition Cj(0, φ) = 0 has been applied, which produces K1 = 0
for the integration constant. Now substitute Cj and Dj from Equations (1.79) and
(1.78) into the characteristic function in (1.43), and proceed exactly as in the case
σ > 0. Note that the correlation coefficient, ρ, no longer appears in the expressions
for Cj and Dj, which is sensible since it is no longer relevant.

Now consider the case j = 2. Substitute for u2 = − 1
2 and b2 = κ (with λ = 0)

in Equations (1.78) and (1.79), set θ = v0, and substitute the resulting expressions
for D2(τ , φ) and C2(τ , φ) into the characteristic function in (1.48). The second
characteristic function is reduced to

f2(φ) = exp
(

iφ
[
x0 +

(
r − 1

2
v0

)
τ

]
− 1

2
φ2v0τ

)
(1.80)

where x0 = ln S0 is the log spot stock price and v0 is the spot variance (at t = 0).
Equation (1.80) is recognized to be (1.74), the characteristic function of xT = ln ST

under the Black-Scholes model, with the Black-Scholes volatility as σBS = √
v0, as

required by (1.77).
The Black-Scholes call price can also be derived using the characteristic function

approach to pricing options detailed by Bakshi and Madan (2000), in accordance



The Heston Model for European Options 21

with Equation (1.16). If a random variable Y is distributed lognormal with mean μ

and variance σ 2, its cumulative density function is

FY(y) = Pr(Y < y) = 


(
ln y − μ

σ

)
. (1.81)

The expectation of Y, conditional on Y > y is

LY(y) = E(Y|Y > y) = exp
(

μ + σ 2

2

)



(− ln y + μ + σ 2

σ

)
. (1.82)

See, for example, Hogg and Klugman (1984) for a derivation of these formulas,
which are straightforward. Under the risk-neutral measure Q, ST is distributed as
lognormal with mean ln St + (

r − 1
2σ 2

BS

)
τ and variance σ 2

BSτ , as described earlier in
this section. Substituting this mean and variance into (1.81) produces

Q(ST > K) = 


(
μ − ln K

σ

)
= 


(
ln

(
St/K

) + (
r − 1

2σ 2
BS

)
τ

σBS

√
τ

)
= 
(d2) (1.83)

where 1 − 
(x) = 
(−x) has been exploited. To obtain the other probability, apply
the Radon-Nikodym derivative (1.14)

QS(ST > K) =
∫ ∞

K
dQS =

∫ ∞

K

dQS

dQ
dQ = e−r(T−t)

St

∫ ∞

K
STqT(x)dx

= e−rτ

St

EQ[ST|ST > K]

(1.84)

where qT(x) is the probability density function for ST. Substitute the mean and
variance of ST into Equation (1.82), and substitute the resulting expression in the
last line of (1.84) to obtain

QS(ST > K) = 


(
ln

(
St/K

) + (
r + 1

2σ 2
BS

)
τ

σBS

√
τ

)
= 
(d1). (1.85)

The Black-Scholes call price can therefore be written as the form in
Equation (1.16)

C(K) = StQ
S(ST > K) − Ke−rτQ(ST > K).

To obtain the result with a continuous dividend yield, replace r by r − q in all
the required expressions and the result follows.

The fact that f2(φ) in Equation (1.80) is the Black-Scholes characteristic function,
and not f1(φ), is the desired result. Indeed, we will see in Chapter 2 that f2(φ) is the
‘‘true’’ characteristic function in the Heston model, because it is the one obtained
under the risk-neutral measure Q. As shown by Bakshi and Madan (2000) and
others, f1(φ) can be expressed in terms of f2(φ), so a separate expression for f1(φ) is
not required.

The function HestonProbZeroSigma.m is used to implement the Black-Scholes
model as a special case of the Heston model (when σ = 0). To conserve space, only
the crucial portions of the function are presented.



22 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

function y = HestonProbZeroSigma(phi,...,Pnum)
D = (u*i*phi - phi^2/2)*(1-exp(-b*tau))/b;
C = (r-q)*i*phi*tau + a*(u*i*phi-0.5*phi^2)/b * ...;
f = exp(C + D*theta + i*phi*x);
y = real(exp(-i*phi*log(K))*f/i/phi);

The function HestonPriceZeroSigma.m is used to obtain the price when σ = 0.
The following Matlab code illustrates this point, using the same settings as stated
earlier. Again, only the relevant parts of the code are presented.

d1 = (log(S/K) + (r-q+theta/2)*T)/sqrt(theta*T);
d2 = d1 - sqrt(theta*T);
BSCall = S*exp(-q*T)*normcdf(d1) - K*exp(-r*T)*normcdf(d2);
BSPut = K*exp(-r*T)*normcdf(-d2) - S*exp(-q*T)*normcdf(-d1);
HCall = HestonPriceZeroSigma('C',...);
HPut = HestonPriceZeroSigma('P',...);

With the settings τ = 0.5, S = K = 100, q = 0.02, r = 0.03, κ = 5, v0 = θ =
0.05, and λ = 0, the Heston model and Black-Scholes model with σBS = √

v0 each
return 6.4730 for the price of the call and 5.9792 for the price of the put.

SUMMARY OF THE CALL PRICE

From Equation (1.66), the call price is of the form

C(K) = Ste
−qτ P1 − Ke−rτ P2 (1.86)

with in-the-money probabilities P1 and P2 from Equation (1.41)

Pj = Pr(ln ST > ln K) = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]
dφ. (1.87)

These probabilities are derived from the characteristic functions f1 and f2 for the
logarithm of the terminal stock price, xT = ln ST

fj(φ; xt, vt) = exp(Cj(τ , φ) + Dj(τ , φ)vt + iφxt) (1.88)

where xt = ln St is the log spot price of the underlying asset, and vt is its unobserved
initial variance, which is estimated as the parameter v0.

To obtain the price of a European call, we use the expressions for Cj and Dj

in Equations (1.65) and (1.58) to obtain the two characteristic functions. To obtain
the price of a European put, we use put-call parity in (1.67).



The Heston Model for European Options 23

CONCLUSION

In this chapter, we have presented the original derivation of the Heston (1993)
model, including the PDEs from the model, the characteristic functions, and the
European call and put prices. We have also shown how the Black-Scholes model
arises as a special case of the Heston model.

The Heston model has become the most popular stochastic volatility model
for pricing equity options. This is in part due to the fact that the call price in the
model is available in closed form. Some authors refer to the call price as being
in ‘‘semi-closed’’ form because of the numerical integration required to obtain P1

and P2. But the Black-Scholes model also requires numerical integration, to obtain

(d1) and 
(d2). In this sense, the Heston model produces call prices that are no
less closed than those produced by the Black-Scholes model. The difference is that
programming languages often have built-in routines for calculating the standard
normal cumulative distribution function, 
(·) (usually by employing a polynomial
approximation), whereas the Heston probabilities are not built-in and must be
obtained using numerical integration. In the next chapter, we investigate some of
the problems that can arise in numerical integration when the integrand

Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]

is not well-behaved. We encountered an example of such an integrand in Figure 1.1.



CHAPTER 2
Integration Issues, Parameter
Effects, and Variance Modeling

Abstract

In this chapter, we investigate several issues around the Heston model. First,
following Bakshi and Madan (2000), we show that the Heston call price can be
expressed in terms of a single characteristic function. It is well-known that the
integrand for the call price can sometimes show high oscillation, can dampen very
slowly along the integration axis, and can show discontinuities. All of these problems
can introduce inaccuracies in numerical integration. The ‘‘Little Trap’’ formulation
of Albrecher et al. (2007) provides an easy fix to many of these problems. Next, we
examine the effects of the Heston parameters on implied volatilities extracted from
option prices generated with the Heston model. Borrowing from Gatheral (2006),
we examine how the fair strike of a variance swap can be derived under the model
and present approximations to local volatility and implied volatility from the model.
Finally, we examine moment explosions derived by Andersen and Piterbarg (2007)
and bounds on implied volatility of Lee (2004b).

REMARKS ON THE CHARACTERISTIC FUNCTIONS

In Chapter 1, it was shown that the in-the-money probabilities P1 and P2 are
obtained by the inverse Fourier transform of the characteristic functions f1 and f2

Pj = Pr(ln ST > ln K) = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]
dφ. (2.1)

This form of inversion is due to Gil-Pelaez (1951) and will be derived in
Chapter 3. It makes sense that two characteristic functions f1 and f2 be associated
with the Heston model, because P1 and P2 are obtained under different measures.
On the other hand, it also seems that only a single characteristic function ought to
exist, because there is only one underlying stock price in the model. Indeed, some
authors write the probabilities P1 and P2 in terms of a single characteristic function
f (φ) = f (φ; x, v), as

P1 = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iφ ln Kf (φ − i)

iφf (−i)

]
dφ (2.2)

25The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



26 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

and

P2 = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iφ ln Kf (φ)

iφ

]
dφ (2.3)

which suggests that f2(φ) = f (φ) and f1(φ) = f (φ − i)/f (−i). In this section, it is
shown that the expressions for Pj in Equations (2.2) and (2.3) are identical to (2.1).
This is explained in Bakshi and Madan (2000), and a simplified version of their
result follows.

First, note that P2 in Equation (2.3) is identical to (2.1) with j = 2, but P1 is
not identical to (2.1) with j = 1. The ‘‘true’’ characteristic function is actually f2,
since it is associated with the probability measure Q that makes W1,t and W2,t in the
risk-neutral stochastic differential equations (SDEs) for St and vt Brownian motion
and for which the bond serves as numeraire. Hence, in the call price

C(K) = StP1 − e−rτ KP2

we can use q(x), the probability density function for ln ST, to write

P2 = Q(xT > ln K) =
∫ ∞

ln K
q(x)dx

where xT = ln ST.
To evaluate P2, express the cumulative distribution function Q(xT < x) in terms

of the characteristic function f (φ) as

Q(xT < x) = 1
2

− 1
2π

∫ ∞

−∞

e−iφxf (φ)
iφ

dφ. (2.4)

The density q(x) is obtained by differentiation with respect to x

q(x) = 1
2π

∫ ∞

−∞
e−iφxf (φ)dφ.

It is well-known that the real part of the characteristic function f (φ) is even, and
the imaginary part is odd. This important fact implies that, when integrated over the
entire real line, the imaginary part of e−iφxf (φ) will cancel out, which must happen
anyway since q(x) is real. Hence, we can simply integrate over the real part, and
since the real part is even, the integral over (0, ∞) will be equal to twice the integral
over (−∞, 0). This implies that the density can be written

q(x) = 1
2π

∫ ∞

−∞
Re

[
e−iφxf (φ)

]
dφ = 1

π

∫ ∞

0
Re

[
e−iφxf (φ)

]
dφ (2.5)

and that Q(xT < x) can be written from Equation (2.4) as

Q(xT < x) = 1
2

− 1
π

∫ ∞

0
Re

[
e−iφxf (φ)

iφ

]
dφ. (2.6)



Integration Issues, Parameter Effects, and Variance Modeling 27

The in-the-money probability P2 is the complement of (2.6), evaluated at ln K

P2 = Q(xT > ln K) = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iφ ln Kf (φ)

iφ

]
dφ (2.7)

which is identical to Equation (2.3). To obtain P1, invoke a change of numeraire.
Recall the Radon-Nikodym derivative from Chapter 1

dQS

dQ
= ST/St

BT/Bt

= exT

EQ[exT ]
. (2.8)

We can write Ste
r(T−t) = EQ[ST], since under the risk-neutral measure Q, the

stock price grows at the risk-free rate, r. Equation (2.8) suggests that a new density
function qS(x) should be defined from q(x) via the Radon-Nikodym derivative as

qS(x)dx = ex

EQ[exT ]
q(x)dx.

The characteristic function for qS(x) is, therefore

EQS
[eiφxT ] =

∫ ∞

−∞
eiφxqS(x)dx = 1

EQ[exT ]

∫ ∞

−∞
eiφxexq(x)dx. (2.9)

Note that EQ[exT ] is a constant and can be taken out of the integral. Note also
that, since the characteristic function for xT is f (φ) = EQ[eiφxT ], then

EQ[exT ] = f (−i) = Ste
r(T−t).

Finally, the integral in the right-hand side of Equation (2.9) can be written∫ ∞

−∞
ei(φ−i)xq(x)dx = EQ[ei(φ−i)xT ].

This last expression is the characteristic function for xT, evaluated at φ − i.
Hence, the characteristic function for the density qS(x) can be expressed in terms of
the characteristic function for q(x) evaluated at the points −i and φ − i as

EQS
[eiφxT ] = f (φ − i)

f (−i)
= f (φ − i)

Ster(T−t)
. (2.10)

When the stock pays a continuous dividend yield q, the denominator of (2.10)
becomes e(r−q)(T−t)St. It was shown in Chapter 1 that

e−rτ EQ[ST1ST>K] = StQ
S(ST > K).

To show that QS(xT > ln K) can be expressed in the form of Equation (2.2),
apply the inversion theorem to the characteristic function in (2.10)

P1 = QS(xT > ln K) = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iφ ln Kf (φ − i)

iφf (−i)

]
dφ (2.11)



28 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

which is Equation (2.2). What remains to be demonstrated is that qS(x) can serve as
a density function, which requires that qS(x) ≥ 0 and that qS(x) integrate to unity.
To show the first requirement, note from Equation (2.8) that

qS(x) = ST/St

BT/St

q(x) > 0.

Now consider the integral of qS(x) over (0, ∞)

∫ ∞

0
qS(x)dx =

∫ ∞

0
exq(x)dx

EQ[exT ]
= EQ[exT ]

EQ[exT ]
= 1.

The result is that the call price can be written as

C(K) = StP1 − e−r(T−t)KP2

with P1 in Equation (2.11) and P2 in Equation (2.7) each obtained from the
characteristic function for xT = ln ST. This is a general setup that is valid for many
models, not only the Heston model, as shown in Bakshi and Madan (2000). It is
commonly referred to as the characteristic function approach for option pricing.

To illustrate, it was shown in Chapter 1 that, in the Black-Scholes model, xT is
normally distributed with mean ln(St) + (r − σ 2

BS/2)τ and variance σ 2
BSτ , so that the

characteristic function for xT is

f (φ) = exp
(

iφ
[
ln St +

(
r − 1

2
σ 2

BS

)
τ

]
− 1

2
φ2σ 2

BSτ

)
.

Substituting f (φ) into the expressions for P1 and P2 and evaluating the integrals
numerically will produce the same call price as the closed form solution for the
Black-Scholes call price, up to approximation error.

The relationship among the characteristic functions can be easily illustrated in
the Heston model by showing that

f1(φ) = f2(φ − i)
f2(−i)

. (2.12)

Because of the log-linear form of the characteristic function, this is equivalent
to showing that

C1(τ , φ) = C2(τ , φ − i) − C2(τ , −i)

D1(τ , φ) = D2(τ , φ − i) − D2(τ , −i).

With these identities, it is straightforward to show that (2.12) holds, and conse-
quently, that the probabilities P1 and P2 can be written in terms of Equation (2.1)
or equivalently in terms of (2.2) and (2.3). This can be illustrated with the following
code, which calculates the integrands using either formulation of the characteristic
functions described in this section.



Integration Issues, Parameter Effects, and Variance Modeling 29

for k=1:length(x);
phi = x(k);
weight = w(k);
f2(k) = HestonCF(phi,...,2,trap);
if CF==1

f1(k) = HestonCF(phi,...,1,trap);
elseif CF==2

f1(k) = HestonCF(phi-i,...,2,trap)/(S*exp((r-q)*T));
end
int2(k) = weight * real(exp(-i*phi*log(K))*f2(k)/i/phi);
int1(k) = weight * real(exp(-i*phi*log(K))*f1(k)/i/phi);

end

It is easy to verify that both methods produce the same option price.

PROBLEMS WITH THE INTEGRAND

Recall from Chapter 1 that the integrand from which the probabilities Pj are
obtained is

Fj(φ) = Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]
(2.13)

for φ > 0. In some instances, the integrand is well-behaved and the integration poses
no numerical problems. In other cases, however, the integrand is not well-behaved
so numerical integration can be problematic.

The first problem is that the integrand is not defined at the point φ = 0, even
though the integration range is [0, ∞). This implies that the integration must begin
at a very small point close to zero. In order to avoid inaccuracies due to the removal
of the origin, the integrand must not be too steep there.

The second problem is that the integrand may contain discontinuities. To illus-
trate, Figure 2.1 plots two integrands for f1 in the range φ ∈ (0, 10]. The first
integrand has a maturity of τ = 3 years and σ = 0.75, and the second has τ = 1 year
and σ = 0.09. Both integrands use κ = 10, θ = v0 = 0.05, ρ = −0.9, r = 0, along
with spot S0 = 100 and strike K = 100.

The first integrand (red line) is smooth and shows no particular numerical
instability. The second integrand (black line), on the other hand, has discontinuities
near the points φ = 1.7 and φ = 5, and it is steep near 1.7. In later sections, we
present a simple modification of the integrand by Albrecher et al. (2007) which is
effective at eliminating these discontinuities.

Finally, the third problem that can arise is that of an integrand that oscil-
lates wildly. In Figure 2.2, the first integrand has a maturity of τ = 1/52 years
and uses σ = 0.175, θ = v0 = 0.01, and a spot S0 = 7. The second has τ = 1 year
and uses σ = 0.09, θ = v0 = 0.07, and a spot S0 = 10. Both use ρ = −0.9, κ = 10,
r = 0, and a strike of K = 10. The plots are over the integration range φ ∈ (0, 100].

The first integrand (black line) shows high oscillation, which is still not damped
at φ = 100. This implies that the numerical integral needs to extend much further



30 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

–0.4
0 2 4 6

Integration range
8 10

–0.3

–0.2

–0.1

0

In
te

gr
an

d

0.1

0.2

0.3

0.4
Maturity 3 years, sigma = 0.75
Maturity 1 year, sigma = 0.09

FIGURE 2.1 Discontinuities in the Heston Integrand

–0.1
0 20 40 60 80 100

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.1

Integration range

First Integrand
Second Integrand

In
te

gr
an

d

FIGURE 2.2 Oscillations in the Heston Integrand



Integration Issues, Parameter Effects, and Variance Modeling 31

beyond φ = 100 to converge. Moreover, the integrand is very steep near the origin,
which requires a very fine grid for the numerical integral. The second integrand (red
line) is well-behaved and would pose no numerical difficulties. Indeed, it does not
oscillate, is not steep anywhere, and rapidly dampens to zero, starting at around
φ = 10. High oscillation of the integrand is usually associated with short-maturity
options.

THE LITTLE HESTON TRAP

Albrecher et al. (2007) explain that the academic literature on the Heston model
embodies two different formulations of the Heston characteristic function. The first
is the original formulation of Heston (1993), while the second has a slightly different
form. Albrecher et al. (2007) show that these two formulations are equivalent, but
that the second leads to a characteristic function that is much better behaved and,
therefore, better suited for numerical integration.

The original formulation of the Heston characteristic function was derived in
Chapter 1. To derive the second formulation, first note that the solution to Dj in
Chapter 1 can be multiplied by exp(−djτ ) in the numerator and denominator, which
leads to the equivalent form

Dj = bj − ρσ iφ + dj

gjσ
2

(
1 − e−djτ

1 − e−djτ /gj

)
= bj − ρσ iφ − dj

σ 2

(
1 − e−djτ

1 − cje
−djτ

)
(2.14)

where

cj = 1
gj

= bj − ρσ iφ − dj

bj − ρσ iφ + dj

. (2.15)

The logarithm in the solution to Cj can be written

djτ − 2 ln

[
1 − gje

djτ

1 − gj

]
= djτ − 2 ln

[
edjτ

(
e−djτ − gj

1 − gj

)]

= djτ − 2djτ − 2 ln

[
e−djτ − gj

1 − gj

]

= −djτ − 2 ln

[
1 − cje

−djτ

1 − cj

]
.

(2.16)

This implies that Cj can be written in the equivalent form

Cj = riφτ + κθ

σ 2

[(
bj − ρσ iφ − dj

)
τ − 2 ln

(
1 − cje

−djτ

1 − cj

)]
. (2.17)



32 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Implementing this formulation is very simple and involves only replacing Cj and
Dj with the slightly different forms in Equations (2.17) and (2.14). The function
HestonIntegrand.m, which follows, computes the characteristic function using the
original Heston (1993) formulation, and the Albrecher et al. (2007) ‘‘Little Trap’’
formulation. To conserve space, parts of the function are omitted.

function y = HestonIntegrand(phi,...,Trap)
d = sqrt((rho*sigma*i*phi - b)^2 - ...;
g = (b - rho*sigma*i*phi + d) / ....;
if Trap==1

% "Little Heston Trap" formulation
c = 1/g;
D = (b - rho*sigma*i*phi - d)/sigma^2 * ...;
G = (1 - c*exp(-d*tau))/(1-c);
C = r*i*phi*tau + a/sigma^2*((b-rho*sigma*i*phi-d) * ...;

elseif Trap==0
% Original Heston formulation.
G = (1 - g*exp(d*tau))/(1-g);
C = r*i*phi*tau + a/sigma^2 * ...;
D = (b - rho*sigma*i*phi + d)/sigma^2 * ...;

end
% The characteristic function.
f = exp(C + D*v0 + i*phi*x);
% Return the real part of the integrand.
y = real(exp(-i*phi*log(K))*f/i/phi);

The implementation in C# is done using the HestonProb() function and is very
similar. The C# code is therefore not presented here.

Albrecher et al. (2007) explain that, although Heston’s original formulation and
their formulation are identical, their formulation causes fewer numerical problems
in the implementation of the model. This is illustrated by plotting the integrand

Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]

for the characteristic function f1. The same parameter values as Albrecher et al.
(2007) were used, namely κ = 1.5768, σ = 0.5751, ρ = −0.5711, θ = 0.0398, and
v0 = 0.0175. In addition, we use S = K = 100 and a maturity of τ = 5 years.
Figure 2.3 reproduces the figure for f1 in their article. The integrand uses the
integration range φ = (0, 10].

The original Heston (1993) formulation (black line) shows a discontinuity at
φ ≈ 3.5, which is corrected with the Albrecher et al. (2007) formulation in the red
line. The following code uses the HestonIntegrand.m function to generate Figure 2.3
and can also be used to generate the figure for f2 in Albrecher et al. (2007).



Integration Issues, Parameter Effects, and Variance Modeling 33

–0.1
0 2 4 6 8 10

–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Integration Range

Albrecher Formulation for P1
Heston Formulation for P1

In
te

gr
an

d

FIGURE 2.3 Integrand for P1, Original and Little Trap Formulations

phi = 0.0001:.01:10;
Pnum = 1;
% Illustration of the integrand for P1
for x=1:N

HestonP1(x) = HestonIntegrand(phi(x),...,Pnum,0);
AlbrecherP1(x) = HestonIntegrand(phi(x),...,Pnum,1);

end;
Pnum = 2;
% Illustration of the integrand for P2
for x=1:N

HestonP2(x) = HestonIntegrand(phi(x),...,Pnum,0);
AlbrecherP2(x) = HestonIntegrand(phi(x),...,Pnum,1);

end;

Finally, the rotation algorithm of Kahl and Jäckel (2005) can be used to
overcome the discontinuities brought on by the original Heston formulation. We do
not cover the rotation algorithm in this book, but we refer interested readers to Kahl
and Jäckel (2005), and also to the book by Zhu (2010) for alternate algorithms.
Note, however, that since the ‘‘Little Trap’’ formulation always works, these and
other algorithms are somewhat obsolete.



34 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

EFFECT OF THE HESTON PARAMETERS

Heston Terminal Spot Price

Under the Heston model, the distribution of the log stock price at maturity, ln ST, is
able to exhibit skewness and excess kurtosis, depending on the parameter settings.
In the following section, the effect of the correlation ρ and the volatility of variance
σ on the distribution of ln ST are investigated.

Effect of Correlation and Volatility of Variance

The correlation parameter ρ controls the skewness of the density of ln ST and
of the continuously compounded return ln(ST/S0) over [0, T]. When ρ > 0, the
probability densities will be positively skewed, and when ρ < 0, the densities will
be negatively skewed. The figures in this section use the parameter settings from
Table 1 of Heston (1993) to demonstrate this. The parameter settings are v0 = 0.01,
κ = 2, θ = 0.01, λ = 0, and σ = 0.1. The density of ln ST can be recovered by
inverting its characteristic function f2(φ), as in Equation (2.5), and applying a
numerical integration scheme. The densities in Figure 2.4 use ρ = −0.8, ρ = 0, and
ρ = 0.8. The figure is similar to Figure 1 of Heston (1993) and clearly indicates the
relationship between correlation and skewness.

As explained by Heston (1993), positive correlation implies a rise in variance
when the stock price rises. This has the effect of fattening the right tail of the

0
4.3 4.4 4.5 4.6

Terminal Log Stock Price

Rho = –0.8

Rho = +0.8
Rho = 0.0

4.7 4.8 4.9

1

2

3

4

5

6

FIGURE 2.4 Effect of Correlation on Density



Integration Issues, Parameter Effects, and Variance Modeling 35

distribution, and thinning the left tail. When the correlation is negative, the opposite
happens. It will be shown in the next section that a negative correlation results
in deep in-of-the-money calls being priced higher in the Heston model than in the
Black-Scholes model.

The volatility of variance parameter σ controls the kurtosis. When σ is high, the
variance process is highly dispersed, so we expect the distribution of returns to have
higher kurtosis and fatter tails than when σ is small. This is illustrated in Figure 2.5
for σ ≈ 0, σ = 0.2, and σ = 0.4. The figure is similar to Figure 3 of Heston (1993).

Comparison With Black-Scholes Prices

The results illustrated in Figures 2.4 and 2.5 suggest that, because of the skew in
returns produced by the Heston model, option prices generated by the Heston model
should differ from those generated by the Black-Scholes model in a way that is
sensible. In this section, we investigate the effect of the correlation parameter ρ and
the volatility of variance parameter σ on call prices in this regard.

When ρ > 0, the skew in the distribution of ln ST is positive, so more weight is
assigned to the right tail of the distribution. Out-of-the-money (OTM) calls have a
strike price that lies in the right tail. This implies that, when ρ > 0, deep OTM calls
produced by the Heston model should be more expensive than those produced by
the Black-Scholes model. In-the-money (ITM) calls have a strike price that lies in the
left tail. Since less weight is assigned to the left tail, deep ITM calls from the Heston
model should be less expensive than those produced by Black-Scholes. Similarly,

0

1

2

3

4

5

6

7

8

9

4.3 4.4 4.5 4.6
Terminal Log Stock Price

Sigma = 0.0
Sigma = 0.2
Sigma = 0.4

4.7 4.8 4.9

FIGURE 2.5 Effect of Volatility of Variance on Density



36 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 2.1 Price Comparisons Under Different
Correlations

ρ > 0 ρ < 0

OTM Calls Heston > BS Heston < BS
ITM Calls Heston < BS Heston > BS

when ρ < 0, the distribution of ln ST is negatively skewed and the opposite happens:
more weight is assigned to the left tail, and less in the right tail. This implies that deep
ITM calls from the Heston model should be more expensive than those produced by
the Black-Scholes model, and deep OTM calls should be less expensive. Table 2.1
summarizes these observations.

Figure 2.6 reproduces Figure 2 from Heston (1993). It plots the difference
between call prices from both models (Heston price minus Black-Scholes price), as
the spot price varies from $70 to $140. We use the same parameter settings as the
example earlier in this section, corresponding to those in Table 1 of Heston (1993).
In order for the Heston and Black-Scholes price comparisons to be valid, however,
the Black-Scholes volatilities must be matched to the Heston prices. This can be
done by defining the Black-Scholes volatility σBS in terms of the standard deviation
of the distribution of the returns ln(ST/S0). The moments of the returns can be

70

–0.1

–0.05

0

0.05

0.1

Rho = +0.5
Rho = –0.5

0.15

80 90 100
Spot Price

H
es

to
n 

m
in

us
 B

la
ck

-S
ch

ol
es

110 120 130 140

FIGURE 2.6 Effect of Correlation on Heston Prices Relative to Black-Scholes



Integration Issues, Parameter Effects, and Variance Modeling 37

obtained from the moments of xT = ln ST, which are available by differentiation of
the characteristic function f2(φ)

E[xn
T] = i−n

[
dn

dφn
f2 (φ)

]
φ=0

. (2.18)

The Matlab file MomentMatching.m approximates (2.18) using finite differ-
ences.

rho = [-0.5 0.0 0.5];
dphi = 1e-4;
for k=1:3

param.rho = rho(k);
dfp = HestonCF(+dphi,param,tau,S,r,q,trap);
dfm = HestonCF(-dphi,param,tau,S,r,q,trap);
df = (dfp - dfm)/2/dphi;
EX = df/i;
dfpp = HestonCF(+2*dphi,param,tau,S,r,q,trap);
dfmm = HestonCF(-2*dphi,param,tau,S,r,q,trap);
dff1 = (dfpp - dfp)/dphi;
dff2 = (dfm - dfmm)/dphi;
ddf = (dff1 - dff2)/3/dphi;
EX2 = ddf/i^2;
var = EX2 - EX^2;
BSvol(k) = sqrt(var);

end;

The results of the approximation suggest that, when ρ = −0.5, we use σBS =√
2 × 0.0710 to generate the Black-Scholes prices, and when ρ = +0.5, we use

σBS = √
2 × 0.0704.

The left portion of Figure 2.6 corresponds to low stock prices and OTM calls,
and the right portion to high stock prices and ITM calls. Clearly, when correlation
is positive, Heston OTM calls are more expensive than Black-Scholes OTM calls,
due to the thickness in the right tail of the distribution of ln ST generated by the
Heston model. When correlation is negative, the difference is positive in the ITM
call region. Heston ITM calls are more expensive than Black-Scholes ITM calls, due
to the thickness in the left tail of the distribution of ln ST generated by the Heston
model. Similar arguments can be made for negative differences.

The effect of increasing σ is to increase kurtosis. This makes sense, since a high
volatility of variance will increase the range of terminal stock price values. This is
illustrated in Figure 2.7, which compares the difference between the Heston and
Black-Scholes call prices with ρ = 0, and when σ = 0.1 and σ = 0.2. It indicates that
Heston prices are higher than Black-Scholes prices in ITM and OTM regions but
lower in the at-the-money region. These two observations are consistent with thicker
tails of the distribution of ln ST generated by the Heston model. Not surprisingly,
the difference is more pronounced when σ is higher. Figure 2.7 is similar to Figure 4
of Heston (1993).



38 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

–0.12

–0.1

–0.08

–0.06

–0.04

–0.02

0

Sigma = 0.1
Sigma = 0.2

0.02

0.04

0.06

70 80 90 100
Spot Price

110 120 130 140

H
es

to
n 

m
in

us
 B

la
ck

-S
ch

ol
es

FIGURE 2.7 Effect of Volatility of Variance on Heston Prices Relative to Black-Scholes

Heston Implied Volatility

Another feature of the Heston model is that implied volatilities extracted from
option prices generated by the model will show a smile or skew. The shape of
the skew is driven by the values of the parameters. The correlation parameter ρ

determines the direction of skew, with ρ > 0 corresponding to a positive slope,
and ρ < 0 corresponding to a negative slope. This is illustrated in the first panel
of Figure 2.8 by generating implied volatilities using S = 100, r = 0.05, τ = 0.25,
κ = 2, θ = 0.01, λ = 0, and v0 = 0.01 over the strike range 95 to 105.

Equity options usually show a negative slope in their implied volatilities. Not
surprisingly, when options data are used to estimate the parameters of the Heston
model, the correlation will in most cases turn out to be negative.

Increasing values of the volatility of variance σ increases the curvature of the
smile. This is illustrated in the second panel of Figure 2.8, which uses the same
settings but with ρ = 0. Finally, the parameters κ, θ and v0 control the level of the
smile, as illustrated in the remaining panels of Figure 2.8. The mean reversion speed
κ also controls the curvature, to a certain extent, with higher values of κ flattening
the implied volatility.

To generate the implied volatilities, we first create Heston prices using the Matlab
function HestonPriceGaussLaguerre.m over a range of strikes K. This function
uses the Gauss-Laguerre quadrature for numerical integration, which we cover
in Chapter 5.



Integration Issues, Parameter Effects, and Variance Modeling 39

0.195

0.096

0.098

0.1

0.102

0.104

0.106

0.08

0.1

0.12

0.14

0.16

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.19

0.195

0.2

0.205

0.21

95 100 105 110 95 100 105 110

95 100 105 110

95 100 105 110

95 100 105 110

0.2

0.205

0.21

0.215
Rho –0.3
Rho 0.0
Rho 0.3

Sigma 0.35
Sigma 0.55
Sigma 0.80

kappa 5.0
kappa 2.0
kappa 1.0

theta 0.020
theta 0.015
theta 0.010

v(0) 0.020
v(0) 0.015
v(0) 0.010

FIGURE 2.8 Effect of Heston Parameters on Implied Volatility

sigma = [0.35 0.55 0.80];
for j=1:length(sigma);

for i=1:length(K);
HCallS(i,j) = HestonPriceGaussLaguerre

(K(i),sigma(j),...);
IVS(i,j) = BisecBSIV(HCallS(i,j),...);

end
end



40 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The earlier code invokes the Matlab function BisecBSIV.m that uses the bisection
algorithm to find the implied volatilities once the prices are generated. The first part
of the function defines a function handle for calculating the price of calls under the
Black-Scholes model. The main part of the function calculates the Black-Scholes call
price at the midpoint of the two endpoints, and compares the difference between this
call price and the market price. If the difference is greater than the user-specified toler-
ance, the function updates one of the endpoints with the midpoint and passes through
the iteration again. To conserve space, parts of the function have been omitted.

function y = BisecBSIVMktPrice,Tol,MaxIter,...)
% Black Scholes call
BSC = @(s,K,rf,q,v,T) (s.*normcdf((log(s./K) + ...;
lowCdif = MktPrice - BSC(S,K,rf,q,a,T);
highCdif = MktPrice - BSC(S,K,rf,q,b,T);
if lowCdif*highCdif > 0 y = -1;
else

for x=1:MaxIter
midP = (a+b)/2;
midCdif = MktPrice - BSC(S,K,rf,q,midP,T);
if abs(midCdif)<Tol

break
else

if midCdif>0 a = midP;
else b = midP;
end

end
end
y = midP;

end

The bisection algorithm in C# is very similar and is coded in the function BisecB-
SIV(). The difference is that we must create a separate C# function, NormCDF(), to
calculate the standard normal distribution function.

static double BisecBSIV(string PutCall,...){
double lowCdif = MktPrice - BlackScholes(a,...);
double highCdif = MktPrice - BlackScholes(b,...);
double BSIV = 0.0;
double midP;
if (lowCdif*highCdif > 0.0)

BSIV = -1.0;
else {

for (int x=0; x>=MaxIter; x++) {
midP = (a+b)/2.0;
double midCdif = MktPrice - BlackScholes(midP,...);
if (Math.Abs(midCdif) < Tol){

break; }
else {

if (midCdif > 0.0) a = midP;
else b = midP; }

BSIV = midP; } }
return BSIV; }



Integration Issues, Parameter Effects, and Variance Modeling 41

We use the approximation to the standard normal distribution function 
(x)
due to Bagby (1995). The approximation to the integral

P(x) = 1√
2π

∫ x

0
e−t2/2dt

for x > 0, is based on

Q(x) = 1
2

{
1 − 1

30

[
7e−x2/2 + 16e−x2(2−√

2) +
(

7 + πx2

4

)
e−x2

]}1/2

.

Hence, Bagby’s (1995) approximation is


(x) ≈
⎧⎨⎩0.5 + Q (x) for x > 0

0.5 − Q(x) for x < 0.

static double NormCDF(double x) {
double x1 = 7.0*Math.Exp(-0.5*x*x);
double x2 = 16.0*Math.Exp(-x*x*(2.0 - Math.Sqrt(2.0)));
double x3 = (7.0 + 0.25*Math.PI*x*x)*Math.Exp(-x*x);
double Q = 0.5*Math.Sqrt(1.0 - (x1 + x2 + x3)/30.0);
if(x > 0)

return 0.5 + Q;
else

return 0.5 - Q; }

This function is fed into the C# function BlackScholes(), which calculates the
Black-Scholes price of a European vanilla option. The price is used in the BisecBSIV()
function.

static double BlackScholes(double S,double K,...) {
double d1 = (Math.Log(S/K) + (rf-q+v*v/2.0)*T) / v / Math.Sqrt(T);
double d2 = d1 - v*Math.Sqrt(T);
double BSCall = S*Math.Exp(-q*T)*NormCDF(d1) -

K*Math.Exp(-rf*T)*NormCDF(d2);
double Price = 0.0;
if(PutCall == "C")

Price = BSCall;
else if(PutCall == "P")

Price = BSCall - S*Math.Exp(-q*T) + K*Math.Exp(-rf*T);
return Price; }

All the figures in this section can be generated using the earlier snippets of
Matlab code. Figure 2.9, for example, presents a surface of implied volatilities and
local volatilities extracted from Heston call prices. It is generated using the following
Matlab code.



42 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

0

97.5
100

102.5
105 1

0.8
0.6

0.4
0.2

Strike Price
Maturity

0.05

0.1

0.15

0.2

0.25

0.3

FIGURE 2.9 Heston Implied Volatility and Local Volatility Surfaces

for t=1:NT;
for k=1:NK;

% Heston prices
Price = HestonCallGaussLaguerre(K(k),T(t),...);
% Implied volatility
IV(k,t) = BisecBSIV(K(k),T(t),...);
% Local variance
CT = HestonCallGaussLaguerre(K(k),T(t)+dt,...);
CT_ = HestonCallGaussLaguerre(K(k),T(t)-dt,...);
dCdT = (CT - CT_) / (2*dt);
CK = HestonCallGaussLaguerre(S,K(k)+dK,T(t),...);
CK0 = HestonCallGaussLaguerre(S,K(k) ,T(t),...);
CK_ = HestonCallGaussLaguerre(S,K(k)-dK,T(t),...);
dC2dK2 = (CK - 2*CK0 + CK_) / (dK)^2;
LocalVar = 2*dCdT / (K(k)^2*dC2dK2);
% Local volatility
LV(k,t) = sqrt(LocalVar);

end
end
% Transparent mesh for implied volatility
mesh(IV)
% Surface plot for local volatility
hold on
surf(LV)



Integration Issues, Parameter Effects, and Variance Modeling 43

In Figure 2.9, implied volatility is represented by the transparent mesh, and local
volatility is represented by the solid surface underneath the mesh. The figure reflects
the observation of Derman et al. (1995) that local volatility tends to show more
variability than implied volatility. Local volatility is covered in the next section.

VARIANCE MODELING IN THE HESTON MODEL

Variance Swap

Recall from Chapter 1 that the volatility of the Heston model is driven by the CIR
process

dvt = κ(θ − vt)dt + σ
√

vtdW2,t

and consequently, that the expected value of vt conditional on vs (s < t) is

E[vt|vs] = vse
−κ(t−s) + θ (1 − e−κ(t−s)) = (vs − θ )e−κ(t−s) + θ. (2.19)

In the following section, we make use of E[vt|vs] but with s = 0. It is useful to
denote this quantity as v̂t

v̂t = E[vt|v0] = (v0 − θ )e−κt + θ. (2.20)

It is also useful to define the total (integrated) variance ŵt as

ŵt =
∫ t

0
v̂sds = (v0 − θ )

(
1 − e−κt

κ

)
+ θ t. (2.21)

As explained by Gatheral (2006), a variance swap requires an estimate of the
future variance over the (0, T) time period. This can be obtained as the conditional
expectation of the integrated variance. A fair estimate of the total variance is
therefore

E
[∫ T

0
vtdt|v0

]
=

∫ T

0
E
[
vt|v0

]
dt =

∫ T

0

[
θ + (

v0 − θ
)

e−κt
]

dt

= (v0 − θ )
(

1 − e−κT

κ

)
+ θT

(2.22)

which is simply ŵT. Since this represents the total variance over (0, T), it must be
scaled by T in order to represent a fair estimate of annual variance (assuming that T
is expressed in years.) Hence, the strike variance K2

var for a variance swap is obtained
by dividing this last expression by T

K2
var = ŵT

T
= (v0 − θ )

(
1 − e−κT

κT

)
+ θ. (2.23)

This is the expression on page 138 of Gatheral (2006).



44 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

We can use a strip of market prices for options with identical maturities to esti-
mate the Heston parameters and obtain the fair strike variance from Equation (2.23).
If the replication algorithm described in Demeterfi et al. (1999) and others is applied
to the same set of options, we should obtain a fair strike that is identical, in principle
at least. The level of agreement between both strikes will depend on how well the
Heston model fits the options, and on the interpolation and extrapolation methods
used in the replication algorithm.1

The Matlab file VarianceSwap.m implements the replication algorithm of Deme-
terfi et al. (1999). The function requires vectors of OTM calls and puts and their
implied volatilities.

function y = VarianceSwap(KCI,CallVI,KPI,PutVI,S,T,rf,q)
Sb = S; % Take ATM as the boundary point
f = @(S, Sb, T) 2/T*((S - Sb) / Sb - log(S/Sb));
% Calls
for i=1:n-1

Temp(i) = (f(KCI(i+1),Sb,T) - f(KCI(i),Sb,T)) ...;
if i==1

CallWeight(1) = Temp(1);
end
CallValue(i) = BSC(S,KCI(i),rf,0,CallVI(i),T);
if i>1

CallWeight(i) = Temp(i) - Temp(i-1);
end;
CallContrib(i) = CallValue(i)*CallWeight(i);

end
Pi1 = sum(CallContrib);
% Puts
n = length(PutVI);
KPI = fliplr(KPI);
PutVI = fliplr(PutVI);
for i=1:n-1

Temp2(i) = (f(KPI(i+1),Sb,T) - f(KPI(i),Sb,T)) ...;
if i==1

PutWeight(1) = Temp2(1);
end;
PutValue(i) = BSP(S,KPI(i),rf,0,PutVI(i),T);
if i>1

PutWeight(i) = Temp2(i) - Temp2(i-1);
end
PutContrib(i) = PutValue(i) * PutWeight(i);

end
Pi2 = sum(PutContrib);
Pi_CP = Pi1 + Pi2;
Kvar = 2/T*(rf*T - (S/Sb*exp(rf*T) - 1) + ....;
y = Kvar;

The replication algorithm of Demeterfi et al. (1999) is coded in the C# function
VarianceSwap(). The code is very similar and is, therefore, not presented here. The

1We thank Jim Gatheral for pointing this out.



Integration Issues, Parameter Effects, and Variance Modeling 45

VarianceSwap() function does need, however, a C# function for linear interpolation.
This is achieved with the interp1() function.

static double interp1(double[] X,double[] Y,double xi) {
int x1 = 0;
int x2 = 0;
double yi = 0.0;
// Look for xi on the end points
if(xi == X[0]) yi = Y[0];
else if(xi == X[N-1]) yi = Y[N-1];
else

for(int i=1;i<=N-1;i++)
if((X[i-1] <= xi) & (xi < X[i])) {

x1 = i-1;
x2 = i;
double p = (xi - Convert.ToDouble(X[x1])) ...;
yi = (1-p)*Y[x1] + p*Y[x2]; }

return yi; }

To illustrate, we use a strip of options from the Dow Jones Industrial Average
ETF (ticker DIA) with 15 days to maturity, and obtain the parameter estimates
κ = 3.000, θ = 0.063, σ = 0.502, v0 = 0.104, and ρ = −0.901. Parameter estima-
tion will be covered in Chapter 6. Using Equation (2.23), we obtain K2

var = 0.101;
using the replication algorithm on the market option quotes, we obtain K2

var = 0.085.

Dupire Local Volatility

Dupire’s (1994) formula for local volatility is

σL(K, T) =

√√√√√√√
∂C
∂T

1
2

K2 ∂2C
∂K2

(2.24)

where C = C(K) is the time- t call price with strike K and maturity T when the spot
price is St.

Equation (2.24) stipulates that, given a set of option prices, the local volatility
for a strike K and maturity T is obtained with first- and second-order derivatives
of the call price. These derivatives can be obtained by finite differences, which we
present in the next section. Finite differences, however, can be both computationally
extensive and numerically unstable. In the Heston model, the derivatives required
to evaluate (2.24) can be obtained analytically by straightforward differentiation.2

Recall that the Heston call price is

C(K) = StP1 − Ke−rTP2.

2See Chapter 11, ‘‘The Heston Greeks,’’ for more on these derivatives.



46 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The derivative with respect to T is obtained using the product rule

∂C
∂T

= St

∂P1

∂T
− Ke−rT

(
−rP2 + ∂P2

∂T

)
(2.25)

where

∂Pj

∂T
= 1

π

∫ ∞

0
Re

[
K−iφ∂fj/∂T

iφ

]
dφ. (2.26)

Differentiating the characteristic function fj = fj(φ) produces

∂fj

∂T
= exp(Cj + Djv0 + iφx)

(
∂Cj

∂T
+ ∂Dj

∂T
v0

)
(2.27)

where Cj = Cj (T, φ) and Dj = Dj (T, φ). Differentiating Cj produces

∂Cj

∂T
= riφ + κθ

σ 2

[(
bj − ρσ iφ + dj

) + 2

(
gjdje

djT

1 − gje
djT

)]
(2.28)

while differentiating Dj produces

∂Dj

∂T
=

(
bj − ρσ iφ + dj

σ 2

)[
dje

djT
(
gje

djT − 1
) + (1 − edjT)gjdje

djT

(1 − gje
djT)2

]
. (2.29)

Hence, ∂C/∂T is found by substituting Equations (2.27), (2.28), and (2.29) into
(2.26) and substituting the result into (2.25). Note that ∂C/∂T obtained in this way
requires only one numerical integration for each Pj, while ∂C/∂T obtained by finite
differences requires two numerical integrals for each Pj.

The second-order derivative ∂2C/∂K2 is

∂2C
∂K2

= St

∂2P1

∂K2
− e−rT

(
2

∂P2

∂K
+ K

∂2P2

∂K2

)
. (2.30)

The required derivatives are

∂Pj

∂K
= − 1

π

∫ ∞

0
Re

[
K−iφ−1fj (φ)

]
dφ (2.31)

and

∂2Pj

∂K2
= 1

π

∫ ∞

0
Re

[
(iφ + 1) K−iφ−2fj(φ)

]
dφ. (2.32)

The bracketed expression on the right-hand side of (2.30) is therefore

2
∂P2

∂K
+ K

∂2P2

∂K2
= 1

π

∫ ∞

0
Re

[
(iφ − 1) K−iφ−1f2(φ)

]
dφ. (2.33)



Integration Issues, Parameter Effects, and Variance Modeling 47

Note that ∂2C/∂K2 obtained in this way does not save computation time
compared to finite differences, since two sets of numerical integrals are required
under both methods.

If the ‘‘Little Trap’’ formulation of Albrecher et al. (2007) for Cj and Dj in
Equations (2.17) and (2.14) is used, then

∂Cj

∂T
= riφ + κθ

σ 2

[(
bj − ρσ iφ − dj

) − 2

(
cjdje

−djT

1 − cje
−djT

)]
(2.34)

and

∂Dj

∂T
=

(
bj − ρσ iφ − dj

σ 2

)[
dje

−djT
(
1 − cje

−djT
) − (1 − e−djT)cjdje

−djT

(1 − cje
djT)2

]
. (2.35)

The other derivatives are the same, except that Cj and Dj in those derivatives
take the ‘‘Little Trap’’ formulation.

The Matlab function dPjdT.m implements the integrand that is used to obtain the
derivatives ∂Pj/∂T in Equation (2.26) using ∂fj/∂T from Equation (2.27). It allows
for the original Heston (1993) formulation for Cj and Dj and their derivatives, or
for the ‘‘Little Trap’’ formulation in (2.17), (2.14), (2.34), and (2.35). To conserve
space, parts of the function are omitted.

function y = dPjdT(Pnum,phi,...);
if Trap==1

% Little Trap formulation
c = 1/g;
edT = exp(-d*T);
dDdT = (b - rho*sigma*i*phi - d)/sigma^2 * ...;
dCdT = rf*i*phi + kappa*theta/sigma^2 *...;
G = (1 - c*edT)/(1-c);
D = (b - rho*sigma*i*phi - d)/sigma^2 * ...;
C = rf*i*phi*T + kappa*theta/sigma^2 * ...;

else
% Original Heston formulation.
edT = exp(d*T);
dDdT = (b - rho*sigma*i*phi + d)/sigma^2 * ...;
dCdT = rf*i*phi + kappa*theta/sigma^2 *...;
G = (1 - g*edT)/(1-g);
C = rf*i*phi*T + kappa*theta/sigma^2 * ...;
D = (b - rho*sigma*i*phi + d)/sigma^2 * ....;

end
dfdT = exp(C + D*v0 + i*phi*x)*(dCdT + dDdT*v0);
y = real(K^(-i*phi)*dfdT/i/phi);

The function is then passed to the Matlab function dCdT.m for implementing
the derivatives ∂C/∂T in Equation (2.25), using, in this case, Gauss-Laguerre weights
and abscissas stored in the vectors x and w, respectively.



48 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

function y = dCdT(...);
for k=1:length(x)

int1(k) = w(k)*dPjdT(1,x(k),...);
int2(k) = w(k)*dPjdT(2,x(k),...);
int3(k) = w(k)*HestonProb(x(k),...,2);

end
dP1dT = (1/pi)*sum(int1);
dP2dT = (1/pi)*sum(int2);
P2 = (1/2) + (1/pi)*sum(int3);
y = S*dP1dT - K*exp(-rf*T)*(-rf*P2 + dP2dT);

The Matlab function d2P1dK2.m implements the integrand that is used to
obtain the derivative ∂2P1/∂K2 (for P1 only) in Equation (2.32).

function y = d2P1dK2(phi,...);
d = sqrt((rho*sigma*i*phi - b)^2 - ...;
g = (b - rho*sigma*i*phi + d) / ...;
% Original Heston formulation.
G = (1 - g*exp(d*T))/(1-g);
C = rf*i*phi*T + kappa*sigma/sigma^2 * ...;
D = (b - rho*sigma*i*phi + d)/sigma^2 * ...;
% The cf and real part of the integrand
f1 = exp(C + D*v0 + i*phi*x);
y = real((i*phi+1) * K^(-i*phi-2) * f1);

The last function needed is that for 2∂P2/∂K + K∂2P2/∂K2 in Equation (2.33).
This is the dP2dK2_2.m Matlab function.

function y = dP2dK2_2(phi,...);
% Original Heston formulation.
G = (1 - g*exp(d*T))/(1-g);
C = rf*i*phi*T + kappa*sigma/sigma^2 * ...;
D = (b - rho*sigma*i*phi + d)/sigma^2 * ...;
% The cf and real part of the integrand
f2 = exp(C + D*v0 + i*phi*x);
y = real((i*phi-1) * K^(-i*phi-1) * f2);

Finally, the function HestonLVAnalytic.m regroups these functions and obtains
the analytic expression for local volatility σL(K, T) in the Heston model, using
Equation (2.24).

function y = HestonLVAnalytic(...);
for k=1:length(x)

int1(k) = w(k)*dPjdT(1,x(k),...);
int2(k) = w(k)*dPjdT(2,x(k),...);
int3(k) = w(k)*HestonProb(x(k),...,2);



Integration Issues, Parameter Effects, and Variance Modeling 49

int4(k) = w(k)*d2P1dK2(x(k),...);
int5(k) = w(k)*dP2dK2_2(x(k),...);

end
dP1dT = (1/pi)*sum(int1);
dP2dT = (1/pi)*sum(int2);
P2 = (1/2) + (1/pi)*sum(int3);
% dC/dT : derivative with respect to T
dCdT = S*dP1dT - K*exp(-rf*T)*(-rf*P2 + dP2dT);
dP1dK2 = (1/pi)*sum(int4);
TwodP2dK2 = (1/pi)*sum(int5);
% d2C/dK2 : 2nd derivative with respect to K^2
d2CdK2 = S*dP1dK2 - exp(-rf*T)*TwodP2dK2;
% Local Variance and Local Volatility
LocalVar = 2*dCdT / (K^2*d2CdK2);
y = sqrt(LocalVar);

The C# functions for obtaining the derivatives and the analytic local volatility
σL(K, T) in Equation (2.24) are very similar to the Matlab functions and are not
presented here.

Instead of expressing the derivatives of Equation (2.24) analytically, we can use
approximate these derivatives using finite differences. This is the approach used to
obtain local volatility in the next section.

Local Volatility With Finite Differences

The analytic expressions for the derivatives required of the Dupire (1994) local
volatility formula require extensive coding, as illustrated in the previous section.
From a coding point of view, it is simpler to approximate the derivatives using finite
differences. Write C(K) = C(K, T) to emphasize the dependence of the European call
price on the maturity T. We use a small time increment dt and approximate the time
derivative as the central difference

∂C
∂T

≈ C(K, T + dt) − C(K, T − dt)
2dt

. (2.36)

Similarly, we can use a small strike increment dK and approximate the second-
order strike derivative as the central difference

∂2C
∂K2

≈ C(K − dK, T) − 2C(K, T) + C(K + dK, T)
(dK)2

. (2.37)

The function HestonLVFD.m obtains local volatility σL(K, T) in the Heston
model using the central difference approximation to the derivatives.

function y = HestonLVFD(...,dt,dK);
% dC/dT by central finite difference
CT_1 = HestonCallGaussLaguerre(S,K,T-dt,...,x,w);
CT1 = HestonCallGaussLaguerre(S,K,T+dt,...,x,w);
dCdT = (CT1 - CT_1) / (2*dt);



50 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

% dC2/dK2 by central finite differences
CK_1 = HestonCallGaussLaguerre(S,K-dK,...,x,w);
CK0 = HestonCallGaussLaguerre(S,K ,...,x,w);
CK1 = HestonCallGaussLaguerre(S,K+dK,...,x,w);
dC2dK2 = (CK_1 - 2*CK0 + CK1) / (dK)^2;
% Local variance and local volatility
LocalVar = 2*dCdT / (K^2*dC2dK2);
y = sqrt(LocalVar);

The C# code for approximating the first- and second-order derivatives required
in σL(K, T) is very similar and is not presented here.

The code for σL(K, T) in this section is indeed much simpler and more compact
than the code in the previous section that uses analytic derivatives. The disadvantage
is that, since finite differences require multiple calculations of the call price, the code
that uses finite differences will run slower. Moreover, finite differences can cause
numerical instability in the second-order derivative. Finally, finite differences are
only approximations to the derivatives, whereas the analytic expressions are exact.

Approximate Local Volatility

In his excellent book, The Volatility Surface: A Practitioner’s Guide, Gatheral (2006)
derives an approximation to local volatility in the Heston model that is valid when
ρ ≈ ±1. In this section, we present his results and fill in the details of his derivation.
Recall that in the bivariate system of SDEs that characterize the Heston model, W1,t

and W2,t are dependent Brownian motions with correlation ρ. It is well-known that
W1,t and W2,t can be replaced by a Cholesky decomposition of two independent
Brownian motions Zt and Bt, by defining W1,t = Bt and W2,t = ρBt + √

1 − ρ2Zt.
Gatheral (2006) derives approximate local volatility in terms of log-moneyness

xt = ln(St/K), and using a zero drift, so that μ = 0. The process for xt can be
obtained using Itō’s lemma. Together with the Cholesky decomposition, we can
write the Heston SDEs as

dxt = −vt

2
dt + √

vtdBt

dvt = κ(θ − vt)dt + σ
√

vt(ρdBt +
√

1 − ρ2dZt)
(2.38)

where E[dBtdZt] = 0. In the process for vt in (2.38), replace the term involving√
vtdBt with that appearing in the process for xt, and assume that ρ ≈ ±1 so that

the term involving 1 − ρ2 vanishes. This produces

dvt = κ(θ − vt)dt + ρσ

(
dxt + 1

2
vtdt

)
. (2.39)

Gatheral defines ut = E[vt|xT] to denote the expected value of the time-t
instantaneous variance conditional on the value of log-moneyness at time T.



Integration Issues, Parameter Effects, and Variance Modeling 51

Moreover, he assumes that the following ansatz, loosely defined as an educated
guess, holds

E[xt|xT] = xT

ŵT

ŵt.

Taking the conditional expectation of (2.39) and applying the ansatz produces

dut = κ(θ − ut)dt + ρσ

(
xT

ŵT

v̂tdt + 1
2

utdt
)

since according to the ansatz, E[dxt|xT] = (xT/ŵT)dŵt, and from Equation (2.21),
dŵt = v̂tdt. Rearranging terms produces

dut = κ ′(θ ′ − ut)dt + ρσ
xT

ŵT

v̂tdt (2.40)

where κ ′ = κ − ρσ/2 and θ ′ = θκ/κ ′. We can write (2.40) as

dut

dt
+ κ ′ut = ρσ

xT

ŵT

v̂t + κ ′θ ′.

We recognize this as a first-order differential equation of the form dut/dt +
Ptut = Qt, whose solution uT at time T is given by

uT exp
(∫ T

0
Ptdt

)
=

∫ T

0
Qt exp

(∫ t

0
Psds

)
dt + C1

where C1 is a constant.
Substituting for Pt = κ ′ and Qt = ρσvtxT/ŵT + κ ′θ ′, multiplying both sides by

e−κ ′T and performing the integration produces

uT = ρσ
xT

ŵT

∫ T

0
v̂te

−κ ′(T−t)dt + θ ′(1 − e−κ ′T) + C1e−κ ′T. (2.41)

The initial condition is that u0 = E[v0|xT] = v0, the initial variance. Setting
T = 0 in Equation (2.41) implies that u0 = C1 = v0. The approximation to local
variance when ρ ≈ ±1, uT is, therefore

uT = v̂′
T + ρσ

xT

ŵT

∫ T

0
v̂te

−κ ′(T−t)dt (2.42)

where

v̂′
T = (v0 − θ ′)e−κ ′T + θ ′ (2.43)

analogous to (2.20). Equation (2.42) is Equation (3.15) of Gatheral (2006), and can
be further integrated to produce

uT = v̂′
T + ρσ

xT

ŵT

eκ ′T
[

v0 − θ

κ ′ − κ

(
e(κ ′−κ)T − 1

)
+ θ

κ ′ (e
κ ′T − 1)

]
. (2.44)



52 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The Matlab function HestonLVApprox.m implements Gatheral’s (2006)
approximation to local volatility σL(K, T) in the Heston model, in accordance with
(2.44).

function y = HestonLVApprox(...);
% Modified parameters kappa' and theta'
kappa_ = kappa - rho*sigma/2;
theta_ = theta*kappa/kappa_;
% wT and vT'
xT = log(K/S);
wT = (v0-theta)*(1-exp(-kappa*T))/kappa + theta*T;
vT = (v0-theta_)*exp(-kappa_*T) + theta_;
% Integral
F1 = (v0-theta)/(kappa_-kappa);
E1 = exp((kappa_-kappa)*T) - 1;
F2 = theta/kappa_;
E2 = exp(kappa_*T) - 1;
Integral = exp(-kappa_*T)*(F1*E1 + F2*E2);
% Local Variance and Local Volatility
uT = vT + rho*sigma*xT/wT*Integral;
y = sqrt(uT);

The C# code is very similar and is therefore not presented here.

Numerical Illustration of Local Volatility

We illustrate local volatility in the Heston model using a set of put options with 222
days to expiry, when the spot price is St = 30.67. The Heston parameters associated
with this set of options were estimated as θ = 0.007, κ = 6.45 × 10−6, σ = 0.639,
v0 = 0.579, and ρ = −0.805. We obtain exact local volatility σL(K, T) in (2.24)
using analytic derivatives and finite difference approximations and we also obtain
Gatheral’s (2006) approximate local volatility in (2.44), for T = 222/365 and for
strikes running from K = 15 to K = 65. We have also added the implied volatility
from Heston put prices generated with the parameter estimates. The results are
illustrated in Figure 2.10.

Figure 2.10 illustrates the observation of Gatheral (2006) that the approximate
form of local volatility (solid red line) tends to be less curved than the exact form.
The figure also shows that the exact form using the analytic formulation (solid black
line) and finite difference approximation (black circles) produce local volatilities
that are nearly identical. Finally, the slope of local volatility is roughly 1.9 times
that of implied volatility, on average, which is consistent with the rule of thumb
of Derman et al. (1995) that local volatility is roughly twice as steep as implied
volatility. Figure 2.10 is generated using the following code, which makes use of the
functions described earlier in this section.



Integration Issues, Parameter Effects, and Variance Modeling 53

0.4

15 20 25 30 35 40
Strike

Lo
ca

l a
nd

 Im
pl

ie
d 

V
ol

at
ili

ty

45 50 55 60 65

0.5

0.6

0.7

0.8

0.9

1.0
Local Vol Approximate
Local Vol Analytic
Local Vol Finite Difference
Implied Volatility

FIGURE 2.10 Heston Local Volatility and Implied Volatility

% Local volatilities
for k=1:length(K)

LVFD(k) = HestonLVFD(K(k),...,dt,dK);
LVAN(k) = HestonLVAnalytic(K(k),...);
LVAP(k) = HestonLVApprox(K(k),...);

end
% Implied volatilities
PutCall = 'P';
a = 0.001; b = 10; Tol = 1e-10; MaxIter = 1000;
for k=1:length(K)

CallPrice = HestonCallGaussLaguerre(K(k),...);
ModelPrice(k) = CallPrice - S0 + exp(-rf*T)*K(k);
IVm(k) = BisecBSIV(K(k),ModelPrice(k),...);

end
plot(K,LVAP,K,LVAN,K,LVFD,K,IVm)

We can also apply our three estimates of local volatility–analytic and finite
differences in Equation (2.24), and approximate in (2.44)–to SPX options data.
This appears in Figure 2.11.



54 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

0.25
1,100 1,150 1,200

LV F.D.
LV Analytic
LV Approx
Market IV

LV F.D.
LV Analytic
LV Approx
Market IV

LV F.D.
LV Analytic
LV Approx
Market IV

LV F.D.
LV Analytic
LV Approx
Market IV

Maturity 7 days

1,250

0.3

0.35

0.4

0.45

0.25
1,100 1,150 1,200

Maturity 15 days

1,250

0.3

0.35

0.4

0.45

0.25
1,100 1,150 1,200

Maturity 43 days

1,250

0.3

0.35

0.4

0.45

0.25
1,100 1,150 1,200

Maturity 71 days

1,250

0.3

0.35

0.4

0.45

FIGURE 2.11 Market Implied Volatility and Heston Volatility, S&P 500 Index

As expected, and consistent with Figure 2.10, local volatility is generally steeper
and more erratic than implied volatility. The approximation to local volatility
preserves the steeper slope, but does not preserve the erratic behavior. The analytic
and finite difference local volatilities are very close, except for the maturity of 71
days, where the finite difference approximation breaks down slightly.

Implied Volatility

We noted earlier in this chapter that option prices obtained with the Heston model
have an implied volatility smile that is built in, in the sense that implied volatilities
extracted from those prices will exhibit an implied volatility smile. Moreover, the
parameters ρ and σ have an effect on the skew and steepness of the smile.

In practice, implied volatilities extracted from Heston model prices will some-
times show a poor fit to market implied volatilities for short maturities. For longer
maturities, however, the fit is better. We illustrate this by using put options on the
Dow Jones Industrial Average ETF (ticker DIA) with four maturities (37, 72, 135,
and 226 days). The closing price for DIA was $129.14. We obtained the parame-
ter estimates κ = 8.8799, θ = 0.0674, σ = 3.6706, v0 = 0.0435, and ρ = −0.4171.
Parameter estimation methods for the Heston model are dealt with in Chapter 6. For



Integration Issues, Parameter Effects, and Variance Modeling 55

simplicity, we set r = q = 0. Figure 2.12 presents market implied volatilities from
the DIA, and implied volatilities obtained using the bisection algorithm on Heston
prices generated with the earlier parameter estimates.

Figure 2.12 clearly indicates that, at the short maturity, the Heston implied
volatilities to the market implied volatilities is poor. For longer maturities, however,
the Heston model provides a very good fit.

The bisection algorithm is used to obtain market and Heston implied volatilities.
The Matlab function BisecBSIV.m and the C# function BisecBSIV() for this algorithm
were presented earlier in this chapter. The algorithm finds the implied volatility by
finding the zero of the difference between the market price and the Black-Scholes
price. The advantage of using this algorithm is that a solution will always be found,
provided that the function is continuous, and that the two initial endpoints of the
interval are selected so that one value produces a negative difference, and the other
produces a positive difference, indicating the presence of a root within the interval.
Since option prices are monotone increasing in volatility, we can always use a very
small value for the first initial endpoint (say 0.1 percent), and a very large value for
the second endpoint (say 500 percent).

We have used the following Matlab code to generate Figure 2.12. We hard-code
the parameter values, which we obtained from Matlab code in Chapter 6.

125

0.16

0.18

0.2

0.22

130

Strike

Maturity 37 days

Market IV
Heston IV

Im
pl

ie
d 

V
ol

135 125

0.16

0.18

0.2

0.22

130

Strike

Maturity 72 days

Market IV
Heston IV

Im
pl

ie
d 

V
ol

135

125

0.16

0.18

0.2

0.22

130
Strike

Maturity 135 days

Market IV
Heston IV

Im
pl

ie
d 

V
ol

135 125

0.16

0.18

0.2

0.22

130
Strike

Maturity 226 days

Market IV
Heston IV

Im
pl

ie
d 

V
ol

135

FIGURE 2.12 Market and Heston Implied Volatilities from Puts on DIA



56 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

param = [8.8799, 0.0674, 3.6706, 0.0435, -0.4171];
for k=1:NK

for t=1:NT
CallPrice = HestonCallGaussLaguerre(K(k),T(t),...);
ModelPrice(k,t) = CallPrice - S0 + exp(-rf*T(t))*K(k);

end
end
for k=1:NK

for t=1:NT
IVm(k,t) = BisecBSIV(K(k),T(t),ModelPrice(k,t),...);

end
end
for t=1:NT

subplot(2,2,t);
plot(K,IV(:,t),K,IVm(:,t))

end

MOMENT EXPLOSIONS

Andersen and Piterbarg (2007) derive conditions under which the moments of the
terminal stock price, E[Sω

T], explode (become infinite) within a finite amount of time.
The results of their paper can be used to find values of ω > 1 for which E[Sω

T]
remains finite for all T > 0, using their analytic expressions for the time to moment
explosion T∗ = sup{t : E[Sω

t ] < ∞}. The moment will be finite for T < T∗ but will
explode to infinity for T > T∗. Define the quantities

k = λ2
L

2
ω(ω − 1), b = 2k

σ 2
, a = 2

σ 2
(ρσλLω − κ), D = a2 − 4b. (2.45)

The value of T∗ arises from one of three possible cases:

Case 1. D ≥ 0 and a < 0

T∗ = ∞.

Case 2. D ≥ 0 and a > 0

T∗ = 1
γ σ 2

ln
(

a/2 + γ

a/2 − γ

)
, where γ =

√
D

2
.

Case 3. D < 0

T∗ = 2
βσ 2

(π1a<0 + arctan(2β/a)), where β =
√−D

2
.

In these equations, we can set λL = 1 (see, for example, Forde and Jacquier,
2009). Case 1 is the most desirable, since it implies that the time to moment explosion
will never be reached.

The Matlab function MomentExplode.m finds the time to moment explosion.



Integration Issues, Parameter Effects, and Variance Modeling 57

function y = MomentExplode(w,lambda,sigma,kappa,rho)
if D>=0 & a>0

T = inf;
elseif D>=0 & a>0

g = sqrt(D)/2;
T = log((a/2+g)/(a/2-g))/g/sigma^2;

elseif D<0
beta = sqrt(-D)/2;
if a<0 PI = pi;
else PI = 0;
end
T = 2*(PI + atan(2*beta/a))/beta/sigma^2;

end
y = T;

The C# code is very similar to the Matlab code and, therefore, not presented
here. To illustrate, suppose that κ = 0.1 and σ = 0.3. If ρ = −0.7, the second
moment (ω = 2) will explode after T∗ = 5.14 years; if ρ = 0.7, the second moment
will never explode.

BOUNDS ON IMPLIED VOLATILITY SLOPE

One problem that arises in modeling the implied volatility surface is that extrapola-
tion of the surface beyond observable strikes is often arbitrary. Lee (2004b) provides
guidance on this issue, by deriving the slopes of the implied volatility at extreme
strikes. These slopes were subsequently refined by Benaim and Friz (2008).

Define the log-moneyness to be k = ln(K/F) where F = E[ST] is the forward
price, and let σ (k, T) denote implied volatility at log-moneyness k and at maturity
T. The extreme strike tail of the implied variance can be written as a linear function
of |k| for some value of the slope coefficient

σ 2(k, T) = Coefficient × |k|
T

. (2.46)

The first moment formula is for implied variance for extreme strikes on the
right-hand side of the tail, as k → ∞. In this case, the tail slope is bounded above
by 2, so that σ 2(k, T) < 2|k|/T. The actual value of the slope coefficient is found in
the limit as

βR = lim sup
k→∞

σ 2(k, T)
|k|/T

, (2.47)

with 0 ≤ βR ≤ 2. Hence, as k → ∞, we have that σ 2(k, T) → βR|k|/T. The result of
Lee (2004b) is that βR can be obtained as

βR = 2 − 4
(√

p̃2 + p̃ − p̃
)

(2.48)



58 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where p̃ − 1 is the largest finite moment of ST, namely

p̃ = sup
{
p : E

[
S1+p

T

]
< ∞

}
. (2.49)

The second moment formula is for implied variance for extreme strikes on the
left-hand side of the tail, as k → −∞. The limiting value of the slope coefficient in
this case is

βL = lim sup
k→−∞

σ 2(k, T)
|k|/T

, (2.50)

with 0 ≤ βL ≤ 2 given by

βL = 2 − 4(
√

q̃2 + q̃ − q̃) (2.51)

and with

q̃ = sup
{
q : E

[
S−q

T

]
< ∞}

. (2.52)

Hence, βR and βL represent the slopes that must be respected when we extrapolate
the implied variance at large and small strikes, respectively.

The first step to finding these coefficients is to find the bounds on finite
moments, p̃ and q̃. We can find these using the moment explosion formula of
Andersen and Piterbarg (2007). We move away from ω > 1 in increments and
calculate T∗ at each step, and stop when we encounter T∗ < ∞. Alternatively, we
can use the characteristic function f2(φ) = E[Siφ

T ] by noting that the moments are
E[Sω

T] = f2(−iω). Again, we move away from ω > 1 in increments and calculate
f2(−iω) until we encounter a complex value.

Both of these approaches to finding the bounds on finite moments are imple-
mented in the Matlab function FindLeeBounds.m. The first part of the function uses
the result of Andersen and Piterbarg (2007) to find the bounds on finite moments.
To find the moment ω > 1 at which T∗ < ∞, we start with a wide grid 1 < ω < 10
and loop through the values to identify where T∗ < ∞. We then reduce the size of
the grid for ω and repeat. After several iterations we have a fairly accurate estimate
of the upper moment at which T∗ starts to become finite. To find the lower moment,
we use −10 < ω < 0 and apply the same methodology.

function [bR bL LowerAP UpAP LoCF UpCF] = FindLeeBounds(...)
lambda = 1;
% Upper and lower moment bounds using Andersen and Piterbarg
W = [1:HiLimit];
for k=1:15

j = 1;
T = Inf;
while(T == inf)

j = j+1;
T = MomentExplode(W(j),lambda,sigma,kappa,rho);

end
e = 1/10^k;
W = [W(j-1):e:W(j+1)];
clear T



Integration Issues, Parameter Effects, and Variance Modeling 59

end
UpperAP = W(j);
% Lower moment bound
W = [LoLimit:0];
for k=1:15

j = 1;
T(j) = 0;
while(T(j) < inf)

j = j+1;
T(j) = MomentExplode(W(j),lambda,sigma,kappa,rho);

end
e = 1/10^k;
W = [W(j-1):e:W(j+1)];
clear T

end
LowerAP = W(j);

To find the moment bounds using the characteristic function, we loop through
values of ω until a complex value of the characteristic function is returned. This is
accomplished with the middle part of the FindLeeBounds.m function.

% Upper Moment. Loop through until imag(CF) is encountered
CF = 0;
e = 1e-5;
W = 0.9*UpperAP;
while isreal(CF)

phi = -i*W;
CF = HestonCF(phi,kappa,theta,0,rho,sigma,tau,S,r,q,v0,trap);
W = W+e;

end
UpperCF = W;
% Lower Moment. Loop through until imag(CF) is encountered
CF = 0;
e = -1e-5;
W = 0.9*LowerAP;
while isreal(CF)

phi = -i*W;
CF = HestonCF(phi,kappa,theta,0,rho,sigma,tau,S,r,q,v0,trap);
W = W+e;

end
LowerCF = W;

Finally, the last part of the function returns the Lee (2004b) bounds on the
volatility slope.

p = UpperAP - 1;
q = -LowerAP;
bR = 2 - 4*(sqrt(p^2 + p) - p);
bL = 2 - 4*(sqrt(q^2 + q) - q);



60 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The C# code is similar and not presented. To illustrate, we use the parameter
estimates from put options on the Dow Jones Industrial Average (DJIA) with
maturity 37 days. The spot price is $129.14. The parameter estimates are κ = 4.52,
σ = 2.11, ρ = −0.27. The upper moment bound is 3.6842, so p̃ = 2.6842. The
lower moment bound is −1.3376, so q̃ = 1.3376. We substitute the values of p̃
and q̃ into Equations (2.48) and (2.51) to obtain the limiting slope coefficients
βL = 0.2773 and βR = 0.1580.

We can use these limiting slope coefficients to find the slope of the implied
volatility at extreme strikes for the set of 37-day maturity puts on the DJIA that
were used to generate them. This is illustrated in Figure 2.13.

The range of observed strikes is [124, 136] in increments of $1, and the spot is
St = 129.14, so the range of observed log-moneyness is [−0.0406, 0.0518]. We fit
Heston prices to the expanded range of strikes [120, 140], corresponding to the
range of log-moneyness [−0.0734, 0.0807], and extract implied volatilities from
those prices. Finally, we expand the log-moneyness range to [−0.1534, 0.1407] and
use βL and βR to obtain the slopes at the extreme values of log-moneyness. Note
that the slopes of the implied volatility at the extreme strikes in Figure 2.13 are not
βL and βR, since these are the slopes for variance.

–0.2
0.16

0.18

0.2

0.22

0.24

0.26

0.28
Market IV
Heston IV
Extrapolated TailExtrapolated Tail
Extrapolated Tail

–0.15 –0.1 –0.05 0
Log Moneyness

Im
pl

ie
d 

V
ol

at
ili

ty

0.05 0.1 0.15 0.2

FIGURE 2.13 Implied Volatility at Extreme Strikes, DJIA Puts



Integration Issues, Parameter Effects, and Variance Modeling 61

CONCLUSION

In this chapter, we showed that the Heston call price can be expressed in terms of
a single characteristic function and that the Heston model fits into the framework
described by Bakshi and Madan (2000). Next, we presented the ‘‘Little Trap’’
formulation of Albrecher et al. (2007) that can remedy many of the problems
with the numerical integration that arise when the integrand is discontinuous. We
then examined the effect of the Heston parameters on the implied volatilities, and
showed that varying these parameters can induce substantial changes in the pattern
of implied volatility smiles and skews. We also presented Gatheral’s (2006) fair
strike of a variance swap under the Heston model, his approximation to local and
implied volatility in the model, and formulas for analytical local volatility and finite
difference approximations to local volatility. Finally, we showed how the moment
explosion times of Andersen and Piterbarg (2007) can be used to find the bounds on
implied volatility due to Lee (2004b) and illustrated the value of these bounds on
extreme strikes in an implied volatility smile.

The formulas for the Heston call price have so far involved inversion of the
characteristic function to obtain the probabilities P1 and P2. In the next chapter, we
present a popular method to obtain the call price due to Carr and Madan (1999)
that uses the Fourier transform of the call price itself. We also present an alternate
derivation of the Heston call price due to Gatheral (2006) that makes use of Fourier
transforms of P1 and P2. Finally, we present a call price formula due to Attari (2004)
that makes use of a single integral that decays very quickly and, therefore, requires
a short integration domain.



CHAPTER 3
Derivations Using

the Fourier Transform

Abstract

The Heston model laid the foundation for the popularity of Fourier transforms in
mathematical finance. Fourier transforms have now earned their place as crucial tools
in pricing models for equity derivatives. This owes to the fact that, in most cases,
the terminal price density has no analytic structure. The characteristic function, on
the other hand, is often readily available for many models, including the Heston
model. The Heston model is a perfect illustration of why Fourier transforms are
useful. Indeed, if the characteristic function is available for the price process, then
the Fourier transform can be used to extract the probabilities from the characteristic
function and obtain the call price using the Black-Scholes–style representation
described in Chapter 2.

The application of Fourier transforms to option pricing is not limited to obtaining
probabilities, as is done in Heston’s (1993) original derivation. As explained by Wu
(2008), the literature approaches Fourier transforms in option pricing in two broad
ways. The first approach considers option prices to be analogous to cumulative
distribution functions. This is the approach adopted by Heston (1993), Carr and
Madan (1999), Bakshi and Madan (2000), and others. The second approach
considers option prices to be analogous to probability density functions. This is the
approach of Lewis (2000, 2001) that we cover in Chapter 4.

In this chapter, we show how to derive the Heston call price using the Fourier
transform. We follow the derivations described by Gatheral (2006) and Attari
(2004). Next, we present the Carr and Madan (1999) representation of the Heston
call price, a method in which the Fourier transform plays a key role. We also discuss
the optimal choice of the damping factor that is required of their method.

THE FOURIER TRANSFORM

There are several definition of the Fourier transform f̂ of a function f . The one
usually encountered in the mathematical finance literature and used by Carr and
Madan (1999), Duffie, Pan, and Singleton (2000), and Zhu (2010), among others, is

f̂ (u) =
∫ ∞

−∞
eiuxf (x) dx (3.1)

63The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



64 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where i = √−1 is the imaginary unit. See, for example, Shephard (1991). The
original function f can be recovered from f̂ via the inverse Fourier transform

f (x) = 1
2π

∫ ∞

−∞
e−iuxf̂ (u) du. (3.2)

Differentiation in the Fourier transform is an easy operation, because it is
converted into multiplication. The Fourier transform of the derivative of f is

f̂ ′(u) =
∫ ∞

−∞
eiuxf ′(x) dx. (3.3)

Perform integration by parts to obtain

f̂ ′(u) = eiuxf (x)
∣∣x=∞
x=−∞ − iu

∫ ∞

−∞
eiuxf (x) dx = −iuf̂ (u). (3.4)

Applying integration by parts once more shows that f̂ ′′(u) = (−iu)2 f̂ (u), while a
repeated application shows that the Fourier transform of the derivative of order n is
(−iu)n f̂ (u).

The derivative of the Fourier transform is obtained by differentiating inside the
integral of Equation (3.1)

df̂ (u)
du

=
∫ ∞

−∞

d
du

(eiuxf (x))dx =
∫ ∞

−∞
ixeiuxf (x)dx = iĝ(u) (3.5)

where g(x) = xf (x).
The representation in (3.1) is convenient when f (x) represents the density of a

random variable X. In that case, the Fourier transform is the characteristic function
for X

f̂ (u) = E[eiux].

Using Euler’s identity, eix = cos x + i sin x, the characteristic function ϕ(u) can
be written

ϕ(u) = E[eiux] = E[cos ux] + iE[sin ux]. (3.6)

The following property of the characteristic function is useful. Since cos(x) is an
even function, while sin(x) is odd, we can write

ϕ(−u) = E[cos(−ux)] + iE[sin(−ux)]

= E[cos ux] − iE[sin ux] = ϕ(u)
(3.7)

where z denotes the complex conjugate of z.



Derivations Using the Fourier Transform 65

RECOVERY OF PROBABILITIES WITH GIL-PELAEZ FOURIER
INVERSION

Recall from Chapters 1 and 2 that the in-the-money probabilities are

Pr(ln ST > k) = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iukϕ (u)

iu

]
du (3.8)

where k = ln K.
We have suppressed the j index, and we have denoted ϕ(u) to be the characteristic

function for ln ST evaluated at u. The probabilities expressed in the form of Equation
(3.8) were derived by Gil-Pelaez (1951) using the inversion theorem for Fourier
transforms. The sign function sgn α plays in an important role in this derivation. It
is defined as

sgn α =
{

α/|α| α �= 0
0 α = 0

(3.9)

so that sgn α = 1 for α > 0, sgn α = −1 for α < 0, and sgn α = 0 for α = 0. The
sign function has the integral representation

sgn α = 1
π

∫ ∞

−∞

sin αx
x

dx. (3.10)

See, for example, Stuart (2010) for a derivation or Chacon (1991) for an
introduction. Denote f (x) to be the density of ln ST, and F(x) to be its distribution.
Using the definition of the sign function in (3.9), we can write for a fixed y∫ ∞

−∞
sgn(x − y)f (x)dx =

∫ ∞

y
sgn(x − y)f (x)dx −

∫ y

−∞
sgn(y − x)f (x)dx

= [1 − F(y)] − F(y) = 1 − 2F(y). (3.11)

To evaluate (3.11), we have broken up the integration range at y and we have
exploited the sign of x − y over each region.

To begin the derivation of Equation (3.8), note that f (x) can be recovered from
ϕ(u) by inversion, as in (3.2)

f (x) = 1
2π

∫ ∞

−∞
e−iuxϕ(u) du. (3.12)

We can express Pr(ln ST > k) using the density, and then substitute Equation
(3.12) to obtain

Pr(ln ST > k) =
∫ ∞

k
f (x)dx = 1

2π

∫ ∞

k

(∫ ∞

−∞
e−iuxϕ(u) du

)
dx

= 1
2π

∫ ∞

−∞
ϕ(u)

(∫ ∞

k
e−iuxdx

)
du.

(3.13)



66 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The last equality is obtained by reversing the order of integration. Now evaluate
the inner integral in the second line of (3.13), which results in

Pr(ln ST > k) = 1
2π

∫ ∞

−∞
ϕ(u)

e−iuk

iu
du − 1

2π
lim

R→∞

∫ ∞

−∞
ϕ(u)

e−iuR

iu
du. (3.14)

In the second integrand of (3.14), express ϕ(u) as a Fourier transform and apply
the results developed earlier in this section. This produces

1
2π

lim
R→∞

∫ ∞

−∞

(∫ ∞

−∞
eiuxf (x) dx

)
e−iuR

iu
du

= 1
2π

lim
R→∞

∫ ∞

−∞
f (x)

(∫ ∞

−∞

eiu(x−R)

iu
du

)
dx

= 1
2π

lim
R→∞

∫ ∞

−∞
πsgn(x − R)f (x) dx

= 1
2

lim
R→∞

(1 − 2F(R)) = −1
2

. (3.15)

To obtain the second line in Equation (3.15), we have applied (3.11), and we
have used the fact the inner integrand can be written using Euler’s identity in (3.6)

eiu(x−R)

iu
= 1

i
cos(u(x − R))

u
+ sin(u(x − R))

u
. (3.16)

The first term is an odd function in u, so it will disappear when inte-
grated over (−∞, ∞), while the second term will integrate to πsgn(x − R).
Substituting the result of (3.15) into Equation (3.14) produces

Pr(ln ST > k) = 1
2

+ 1
2π

∫ ∞

−∞
ϕ(u)

e−iuk

iu
du. (3.17)

By applying Euler’s identity to both ϕ(u) and e−iu ln K, we can see that the
integrand in (3.17) is odd in its imaginary part and even in its real part. Hence, we
can use the real part only, restrict the integration range to (0, ∞) and multiply the
result by 2, and we obtain the desired expression for the probability in Equation
(3.8). Alternatively, we can argue that, since Pr(ln ST > k) is real, we need only
consider the real portion of the integrand in (3.17) and arrive at the same result.

Finally, we can use Euler’s identity to express the real part of the integrand in
(3.17) explicitly, which produces an alternate form for the probability

Pr(ln ST > ln K) = 1
2

+ 1
π

∫ ∞

0

[
Im [ϕ (u)] cos(uk) − Re[ϕ(u)] cos(uk)

u

]
du (3.18)

where Im[ϕ(u)] and Re[ϕ(u)] denote the imaginary and real parts of ϕ(u), respectively.
To obtain Equation (3.18) we have exploited the fact that 1/i = −i. This expression
is used in the Attari (2004) formulation of the call price, which we cover later in this
chapter.



Derivations Using the Fourier Transform 67

DERIVATION OF GATHERAL (2006)

Gatheral (2006) derives the Albrecher et al. (2007) formulation of the Heston (1993)
characteristic function by working with the log-moneyness of the forward price,
xt = ln(Ft,T/K), where K is the strike price of the option and where Ft,T = Ste

μ(T−t)

is the forward price of the stock. His derivation is slightly different than that of
Heston (1993) since Gatheral works with the Fourier transforms of the in-the-money
probabilities P1 and P2 directly.

Consider again the SDE for the variance vt, defined in Chapter 1

dvt = κ(θ − vt)dt + σ
√

vtdW2,t.

Applying Itō’s lemma shows that xt follows the stochastic process

dxt = −1
2

vtdt + √
vtdW2,t.

Gatheral (2006) assumes the market price of volatility risk to be zero, so that
λ(S, v, t) = 0. With xt defined as xt = ln(Ft,T/K) instead of xt = ln St, the terminal
condition for the in-the-money probabilities defined in Chapter 1 becomes

Pj(x, v, 0) = 1x>0 (3.19)

for j = 1, 2. With these modifications, the partial differential equation (PDE) for Pj

becomes

−∂Pj

∂τ
+ ρσv

∂2Pj

∂x∂v
+ 1

2
v
∂2Pj

∂x2
+ 1

2
vσ 2

∂2Pj

∂v2
+

ujv
∂Pj

∂x
+ (a − bjv)

∂Pj

∂v
= 0

(3.20)

where u1 = 1
2 , u2 = − 1

2 and a = κθ . The parameters u1, u2 and a remain the same
as in Chapter 1, but b1 = κ − ρσ , and b2 = κ are redefined since it is assumed that
λ = 0. The transformation of the PDE from t to the time to maturity τ = T − t
explains the minus sign in front of the maturity derivative in Equation (3.20).

In this section, it is more convenient to denote the integration variable by k
rather than by u. The form of the Fourier transform used by Gatheral (2006) is
slightly different than that in Equation (3.1). It replaces eiux with e−ikx in (3.1), and
replaces e−iux with eikx in the inverse Fourier transform (3.2). The derivative in (3.4)
is thus f̂ ′(k) = ikf̂ (k).

Consider the Fourier transform P̂j of the probabilities Pj = Pj(x, v, τ )

P̂j(k, v, τ ) =
∫ ∞

−∞
e−ikxPj(x, v, τ ) dx.

Using the terminal condition (3.19) we have

P̂j(k, v, 0) =
∫ ∞

−∞
e−ikx1x>0 dx = − 1

ik
e−ikx

∣∣∣∣x=∞

x=0

= 1
ik

.



68 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Remembering that differentiation of the Fourier transform P̂j with respect to x
corresponds to multiplication by ik, the PDE in Equation (3.20) for P̂j is

−∂P̂j

∂τ
+ ρσvik

∂P̂j

∂v
− 1

2
vk2P̂j +

1
2

vσ 2
∂2P̂j

∂v2
+ ujvikP̂j + (a − bjv)

∂P̂j

∂v
= 0. (3.21)

Rearranging, we obtain

v

{
αjP̂j − βj

∂P̂j

∂v
+ γ

∂2P̂j

∂v2

}
+ a

∂P̂j

∂v
− ∂P̂j

∂τ
= 0 (3.22)

where

αj = ujik − k2

2
, βj = bj − ρσ ik, γ = σ 2

2
.

Note that these coefficients are identical to the coefficients P, Q, and R for the
Riccati equation in Chapter 1, except that k replaces φ. The ansatz is that the P̂j are
of the form

P̂j(k, v, τ ) = exp[Cj(k, τ )θ + Dj(k, τ )v]P̂j(k, v, 0)

= 1
ik

[Cj(k, τ )θ + Dj(k, τ )v].
(3.23)

Take the following derivatives of (3.23)

∂P̂j

∂τ
=

[
∂Cj

∂τ
θ + ∂Dj

∂τ
v
]

P̂j,
∂P̂j

∂v
= DjP̂j,

∂2P̂j

∂v2
= D2

j P̂j.

Substituting these derivatives back into the PDE in (3.22) and dropping the P̂j

terms produces

v{αj − βjDj + γ D2
j } + aDj −

[
∂Cj

∂τ
θ + ∂Dj

∂τ
v
]

= 0. (3.24)

This implies that the following two equations must be satisfied, which appear
as Equation (2.11) in Gatheral (2006)

∂Cj

∂τ
= κDj

∂Dj

∂τ
= αj − βjDj + γ D2

j .

(3.25)

The first equation holds since a = κθ so that θ cancels out. The second equation
is identical to the Riccati equation in Chapter 1. The two roots r j

− and r j
+ of this

quadratic equation are

r j
± =

βj ±
√

β2
j − 4αjγ

2αj

= bj − ρσ ik ± dj

σ 2



Derivations Using the Fourier Transform 69

where

dj =
√

(ρσ ik − bj)2 − σ 2(2ujik − k2).

This expression for dj is identical to that obtained in Chapter 1, with φ replaced
by k. The solution for Dj is obtained using the solution of the Riccati equation in
Chapter 1, as

Dj = r j
−

(
1 − e−djτ

1 − cje
−djτ

)
(3.26)

where cj = r j
−/r j

+ is identical to that in the ‘‘Little Trap’’ formulation of Albrecher
et al. (2007), which we encountered in Chapter 2, but with φ replaced by k. The
solution for Cj is, remembering that r = 0 in this derivation

Cj = κ

σ 2

[(
bj − ρσ iφ − dj

)
τ − 2 ln

(
1 − cje

−djτ

1 − cj

)]

= κ

[
r j
−τ − 2

σ 2
ln

(
1 − cje

−djτ

1 − cj

)] (3.27)

since θ cancels out. The expressions for Dj and Cj in (3.26) and (3.27) are Equation
(2.12) in Gatheral (2006). The resulting characteristic function for the Heston model
in Equation (2.15) of Gatheral (2006) is identical to the ‘‘Little Trap’’ formulation
of Albrecher et al. (2007), but with r = 0.

ATTARI (2004) REPRESENTATION

Attari (2004) presents an alternate formula for the Heston call price. The formula
is similar to that proposed earlier by Lewis (2001), which we present in the next
chapter. What follows is a simplified version of Attari’s derivation.

Attari (2004) writes the terminal stock price as ST = Ste
rτ+x(t,T), where x = x(t, T)

now denotes the stochastic component of the stock price process. The call price is,
as in Chapter 1

C(K) = e−rτ EQ[ST|ST > K] − Ke−rτ EQ[1ST>K]

= StE
Q[ex|x > �] − Ke−rτ EQ[1x>�]

= St�1 − Ke−rτ�2

(3.28)

where � = ln(Ke−rτ /St). The two expectations are taken under the risk-neutral density
for x, q(x). The probabilities are, therefore,

�1 = EQ[ex|x > �] =
∫ ∞

�

exq(x) dx =
∫ ∞

�

p(x) dx

�2 = EQ[1x>�] =
∫ ∞

�

q(x) dx.

(3.29)



70 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Since exq(x) > 0 and 0 ≤ �1 ≤ 1, then exq(x) = p(x) can be treated as a density
function. The characteristic function for q(x) is denoted ϕ2(u), and that for p(x) is
denoted ϕ1(u). Using the definition of the characteristic function and performing the
required integrations, we have ϕ1(u) = ϕ2(u − i). Indeed,

ϕ1(u) =
∫ ∞

−∞
eiuxp(x) dx =

∫ ∞

−∞
eiuxexq(x) dx =

∫ ∞

−∞
ei(u−i)xq(x) dx = ϕ2(u − i). (3.30)

Now, write �1 using the representation in Equation (3.13)

�1 = 1
2π

∫ ∞

−∞
ϕ1(v)

(∫ ∞

�

e−ivx dx
)

dv = 1
2π

∫ ∞

−∞
ϕ2(v − i)

(∫ ∞

�

e−ivx dx
)

dv. (3.31)

Perform the change of variable u = v − i so that (3.31) becomes

�1 = 1
2π

∫ ∞

−∞
ϕ2(u)

(∫ ∞

�

e−i(u+i)x dx
)

du (3.32)

which is Equation (8) of Attari (2004). Now evaluate the inner integral in Equation
(3.32), as was done in (3.14). This produces

�1 = 1
2π

∫ ∞

−∞
ϕ2(u)

e−i(u+i)�

i(u + i)
du − 1

2π
lim

R→∞

∫ ∞

−∞
ϕ2(u)

e−i(u+i)R

i(u + i)
du

= I1 − I2.

(3.33)

The second integral is a complex integral with a pole at u = −i. The residue
there is, therefore, ϕ2(−i)/i. Applying the Residue Theorem, we obtain1

I2 = lim
R→∞

1
2π

[
−2π i × ϕ2 (−i)

i

]
= −ϕ2(−i) = −ϕ1(0) = −1. (3.34)

Substituting the resulting Equation (3.34) into (3.33) produces

�1 = e�

2π

∫ ∞

−∞
ϕ2(u)

e−iu�

i(u + i)
du + 1 (3.35)

which is Equation (12) of Attari (2004). For �2, we use the Gil-Pelaez (1951) form
in (3.17)

�2 = 1
2

+ 1
2π

∫ ∞

−∞
ϕ2(u)

e−iu�

iu
du. (3.36)

1The Residue Theorem will be introduced in Chapter 4.



Derivations Using the Fourier Transform 71

Substitute for �1 and �2 into the last line of Equation (3.28) for the call price

C(K) = St

[
1 + e�

2π

∫ ∞

−∞
ϕ2 (u)

e−iu�

i(u + i)
du

]
− Ke−rτ

[
1
2

+ 1
2π

∫ ∞

−∞
ϕ2 (u)

e−iu�

iu
du

]
= St − 1

2
Ke−rτ − Ke−rτ

π

∫ ∞

0
Re

[
ϕ2 (u) e−iu�

(
1
iu

− 1
i (u + i)

)]
du. (3.37)

We have substituted for � = Ke−rτ/St and have used the fact that we only need
to consider the real part of the integrals. In the bracketed term of the last integral
in (3.37), multiply the second fraction by u − i in the numerator and denominator.
The integrand becomes

Re
[
ϕ2 (u) e−iu�

(
1 − i/u
u2 + 1

)]
. (3.38)

Now expand ϕ2(u) = R2(u) + iI2(u) where R2(u) and I2(u) are the real and imag-
inary parts of ϕ2(u), respectively, and expand e−iu� = cos(u�) − i sin(u�). Substitute
into the integrand (3.38) and regroup the real terms. The integrand becomes

A(u) =

(
R2 (u) + I2(u)

u

)
cos(u�) +

(
I2 (u) − R2(u)

u

)
sin(u�)

1 + u2
. (3.39)

Attari’s (2004) formula for the call price is, therefore,

C(K) = St − 1
2

Ke−rτ − Ke−rτ

π

∫ ∞

0
A(u)du. (3.40)

Recall that in Attari (2004), the logarithm of the terminal stock price is
ln ST = ln St + rτ + x(t, T) and the characteristic function ϕ2(u) is for x = x(t, T) and
not for ln ST. Consequently, to express the integrand in Equation (3.39) in terms of
the Heston (1993) characteristic function for ln ST, we use the fact that

EQ[eiux(t,T)] = EQ[eiu ln ST ] exp[−iu(ln St + rτ )].

Hence, in (3.39) we set

ϕ2(u) = f2(u) × exp[−iu(ln St + rτ )]

= exp(C2(τ , u) + D2(τ , u)v0 − iurτ )

where f2(u) is the Heston (1993) characteristic function defined in Chapter 1, with
j = 2. Note that the Attari (2004) characteristic function ϕ2(u) is identical to f2(u),
except that the term iu ln St in f2(u) is replaced with −iurτ . This means that ϕ2(u)
is independent of the spot price St. The main advantage of Attari’s representation
is that a single numerical integration only is required to produce the call price.
Moreover, the u2 term in the denominator of A(u) causes the integrand to dampen
quickly, so that truncation of the upper limit in the integral for the purposes of
numerical integration causes less loss of precision. This is illustrated in Figure 3.1



72 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

0
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 10 15 20

Attari Integrand
Heston Integrand

FIGURE 3.1 Attari (2004) and Heston (1993) Integrands

using S = 30, K = 20, r = 0.01, q = 0, a maturity of 1 month, along with the
parameter values κ = 1.4, θ = v0 = 0.05, σ = 0.3, and ρ = −0.8. The figure shows
that the Attari integrand decays must faster than the Heston integrand, but that it is
much steeper at the origin. Consequently, there exists the potential for problems in
numerical integration in that region.

The Matlab function AttariProb.m implements the integrand in Equation (3.39).
It is based on the same function used to implement the Heston characteristic function
f2(φ) and is, therefore, not presented in its entirety.

function y = AttariProb(phi,...,Trap);
f = exp(C + D*v - i*phi*r*tau);
L = log(exp(-r*tau)*K/S);
y = ((real(f) + imag(f)/phi)*cos(L*phi)

+ (imag(f) - real(f)/phi)*sin(L*phi)) / (1+phi^2);

The function AttariPriceGaussLaguerre.m returns the call price in Equation
(3.40) or the put price by put-call parity.

function y = AttariPriceGaussLaguerre(...)
for k=1:length(x);

int1(k) = w(k) * AttariProb(x(k),...);
end
HestonC = S*exp(-q*T) - K*exp(-r*T)*(1/2 + sum(int1)/pi);



Derivations Using the Fourier Transform 73

The C# code for the Attari (2004) model is very similar and not presented here.
To illustrate pricing with the Attari (2004) method, we use the same settings

as those in Figure 3.1, along with 32-point Gauss-Laguerre integration. The Heston
price is 10.0152 and the Attari price is 10.0167, which is very close.

CARR AND MADAN (1999) REPRESENTATION

Carr and Madan (1999) present a derivation of the call price based on the Fourier
transform. It offers advantages in terms of reduced computation time and an
integrand that decays faster than the integrand of the original Heston (1993)
formulation. Their method requires a modification of the call price that incorporates
a damping factor. The Fourier transform of the modified call price is obtained, and
inverted. The call price can be then be recovered by removing the damping factor
from the modified call price.

Define k = ln K and x = xT = ln ST, and let q(x) denote the density function for
ST. We saw in Chapter 1 that the call price can be written

C(k) = e−rτ EQ[(ST − K)+]

= e−rτ

∫ ∞

k
(ex − ek)q(x) dx

= extQS(ST > ek) − Ke−rτQ(ST > ek).

(3.41)

In (3.41), QS(ST > ek) and Q(ST > ek) are found by inverting a characteristic function.
This inversion obviously requires that the characteristic function be integrable. Since

lim
k→−∞

C
(
k
) = lim

k→−∞
e−rτ

∫ ∞

k
(ex − ek)q(x)dx

= e−rτ EQ[ex] − 0

= St

which is not zero, C(k) is not integrable L1, and its Fourier transform will not exist.
Carr and Madan (1999) rectify this by defining the modified call price c(k) as

c(k) = eαkC(k)

which includes the damping factor eαk on C(k). Since

lim
k→−∞

c(k) = lim
k→−∞

e−rτ

∫ ∞

k
(eαk+x − e(α+1)k)q(x)dx

= lim
k→−∞

e−rτ

∫ ∞

k
eαk+xq(x)dx − lim

k→−∞
e−rτ+(α+1)k

∫ ∞

k
q(x)dx

= e−rτ [0] − 0

which is zero, c(k) is integrable L1 and the Fourier transform for c(k) can be found.
The idea of Carr and Madan (1999) is to first find the Fourier transform ĉ(v) of c(k),



74 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

invert the Fourier transform to yield c(k) and remove the damping factor to recover
C(k). The Fourier transform of c(k) is, using Equation (3.41)

ĉ(v) =
∫ ∞

−∞
eivkc(k) dk =

∫ ∞

−∞
eivkeαkC(k) dk

= e−rτ

∫ ∞

−∞
e(α+iv)k

[∫ ∞

k

(
ex − ek

)
q(x) dx

]
dk.

(3.42)

The area of integration −∞ < k < ∞ and k < x < ∞ is equivalent to −∞ <

x < ∞ and −∞ < k < x, so (3.42) can be written as

ĉ(v) = e−rτ

∫ ∞

−∞
q(x)

[∫ x

−∞

(
e(α+iv)k+x − e(α+iv+1)k

)
dk

]
dx

= e−rτ

∫ ∞

−∞
q(x)

[
e(α+iv)k+x

α + iv
− e(α+iv+1)k

α + iv + 1

∣∣∣∣k=x

k=−∞

]
dx

= e−rτ

∫ ∞

−∞
q(x)

[
e(α+iv+1)x

α2 + α − v2 + iv(2α + 1)

]
dx

= e−rτ ϕ(v − (α + 1)i)
α2 + α − v2 + iv(2α + 1)

. (3.43)

The last equality holds because

ϕ(u) = EQ[eiux] =
∫ ∞

−∞
eiuxq(x) dx

is the characteristic function of x = ln ST, which we have denoted f2(φ) in previous
chapters. The call price is found through the inverse Fourier transform of the
modified call price

C(k) = e−αkc(k) = e−αk

2π

∫ ∞

−∞
e−ivkĉ(v) dv

= e−αk

π

∫ ∞

0
Re[e−ivkĉ(v)] dv.

(3.44)

The last equality holds, because while the integrand e−ivkĉ(v) is a complex
number, the call price C(k) in Equation (3.44) is a real number. This implies that we
can ignore the imaginary part of the integrand, and work only with the real part,
which is even-valued. Lord and Kahl (2007) point out at least three advantages to
the representation of the call price in (3.44). First, only a single numerical integration
scheme is required, instead of two. Second, the denominator in the integrand in
(3.43) is a quadratic function of the integration variable, v, and thus decays faster
than the integrands in the original Heston formulation, in which the denominators
are linear functions of the integration variable. This implies that truncation of the
integration domain from (0, ∞) to some finite range (0, M), where M < ∞, is less
problematic in (3.44). Finally, there is computational accuracy to be gained from



Derivations Using the Fourier Transform 75

the representation, provided that the damping factor α is appropriately chosen. We
address this issue in a later section of this chapter.

The function CarrMadanIntegrand.m returns the Carr and Madan (1999)
integrand in Equation (3.43). It calls the function HestonCF.m, which returns the
Heston characteristic function.

function y = CarrMadanIntegrand(u,...);
I = exp(-i*u*log(K))*exp(-r*tau)*HestonCF(u-(alpha+1)*i,...) /...;
y = real(I);

The function HestonCallGaussLaguerre.m implements the call price using
either the original Heston form, or the Carr-Madan form in (3.44).

function y = HestonCallGaussLaguerre(Integrand,...)
if strcmp(Integrand,'Heston') % Heston formulation

for k=1:length(x);
int1(k) = w(k)*HestonIntegrand(x(k),...,1);
int2(k) = w(k)*HestonIntegrand(x(k),...,2);

end
% The in-the-money probabilities P1 and P2
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);
% The Call price
y = S*exp(-q*T)*P1 - K*exp(-r*T)*P2;

elseif strcmp(Integrand,'CarrMadan') % Carr-Madan form
for k=1:length(x);

int1(k) = w(k)*CarrMadanIntegrand(x(k),...);
end
% The Call Price
y = exp(-alpha*log(K))*sum(int1)/pi;

end

To illustrate, in the following Matlab example we use S = K = 100, r = 0.10,
q = 0.07 and a maturity of 6 months, with κ = 2, θ = v0 = 0.06, σ = 0.1, ρ = −0.7,
and the damping factor α = 1.75.

% The call price using the Heston integrand
CallHeston = HestonCallGaussLaguerre('Heston',...);
% The call price using the Carr-Madan integrand
S = S*exp(-q*T);
CallCarrMadan = HestonCallGaussLaguerre('CarrMadan',...);

Matlab returns the call prices as 7.3461 for both the Heston and Carr-Madan
representations.

Note that to implement the Carr-Madan price on the stock paying continuous
dividend yield, q, we have replaced the spot price S by Se−qτ before passing the



76 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

price to the function. See Whaley (2006) for an explanation. Finally, the C# code to
implement the Carr and Madan (2009) method is similar to the Matlab code and is
not presented here.

BOUNDS ON THE CARR-MADAN DAMPING FACTOR
AND OPTIMAL VALUE

Carr and Madan (1999) demonstrate that a sufficient condition for c(k) to be
integrable is that ĉ(0) in Equation (3.43) be finite. By setting v = 0 in (3.43), we can
see that this is guaranteed when the characteristic function evaluated at −(α + 1)i is
finite, namely when ϕ(−(α + 1)i) < ∞. Since ϕ(v) = E[eiv ln ST ] = E[Siv

T ], the condition
that ϕ(−(α + 1)i) < ∞ is equivalent to the existence of the (α + 1)-st moment of ST,
namely E[Sα+1

T ] < ∞. For some models, it is possible to find αmax, the maximum value
for α, by setting the condition E[Sα+1

T ] in the characteristic function and solving for α

analytically. Carr and Madan (1999) suggest using α = αmax/4 and illustrate this for
the Variance Gamma model, for which they chose α = 1.5 (see also Carr, Madan,
and Chang, 1998). Other studies, such as those by Raible (2000), Schoutens et al.
(2004), and Borak et al. (2011) have used ad-hoc choices ranging from α = 0.75 to
α = 25.

While ad-hoc values of the damping factor α can serve as a general guide, it is
more useful to have a range of admissible values for α. To this end, Lee (2004a)
shows how minimum and maximum values for α can be obtained. Denote by
AX = (a−, a+) the interval of allowable values for α + 1, where a− < 0 and a+ > 1,
so that α can be selected from anywhere in the interval (a− − 1, a+ − 1) = (αmin, αmax).
The values of a− and a+ can be found by solving the following equality for a

g(−ia)ed(−ia)τ = 1 (3.45)

where g(φ) and d(φ) are g2 and d2 of the Heston characteristic function (j = 2), with
λ = 0, that is

g(φ) = κ − ρσφi + d(φ)
κ − ρσφi − d(φ)

, d(φ) =
√

(κ − ρσφi)2 + σ 2(φi + φ2).

Solving Equation (3.45) for a requires a non-linear search algorithm and will
generate multiple solutions, but we need only two solutions, a− < 0 and a+ > 1.
When κ − ρσ > 0, we can define a− to be the largest solution in (−∞, y−) and a+ to
be the smallest solution in (y+, ∞), where

y± = σ − 2κρ ± √
σ 2 − 4κρσ + 4κ2

2σ (1 − ρ2)
. (3.46)

This simply means that, given multiple negative solutions to (3.45), we select
a− < 0 to be the one closest to y−, and given multiple solutions greater than unity,
we select a+ > 1 to be the one closest to y+. The interval of allowable values for α is
then α ∈ (a− − 1, a+ − 1). The roots y± arise as the roots of d(−iφ)2

d(−iφ)2 = (κ − ρσφ)2 + σ 2(φ − φ2)

= φ2(ρ2σ 2 − σ 2) + φ(σ 2 − 2κρσ ) + κ2



Derivations Using the Fourier Transform 77

which is a second-order polynomial in φ. For example, using the settings in Lord
and Kahl (2007), namely S = 1, r = 0, K = 1.2, ρ = −0.7, v0 = θ = 0.1, κ = σ = 1,
and τ = 1 produces (y−, y+) = (−0.3852, 5.0910). By repeated application of a non-
linear search algorithm, and visual inspection, we find the function in (3.45) to have
the negative solutions −0.3852, –2.3068, –9.4823, etc., and the positive solutions
5.0910, 10.0600, 18.2763, etc. Hence, we select AX = (−2.3068, 10.0600), since
the lower limit of AX should be less than y− = −0.3852, while the upper limit of
AX should be greater than y+ = 5.0910. The range of admissible values for α is,
therefore, (αmin, αmax) = (−3.3068, 9.0600).

Optimal Damping Factor

While (αmin, αmax) forms a region of admissible values for the damping factor α, it
does not indicate which value of α in the region is optimal, in the sense that an
optimal value produces an integrand in Equation (3.44) that oscillates as little as
possible. Recall that the Carr and Madan (1999) representation of the call price is

C(k) = e−αk

π

∫ ∞

0
ψ(v, α)dv

where the integrand is

ψ(v, α) = Re[e−ivkĉ(v)]

= Re
[

e−ivke−rτ ϕ (v − (α + 1) i)
α2 + α − v2 + iv(2α + 1)

]
. (3.47)

Lord and Kahl (2007) argue that the optimal α∗ is that which reduces the total
variation of the integrand ψ(v, α) over the integration domain [0, ∞). Under the
assumption that ψ(v, α) is monotone in v on [0, ∞), they show that the optimal α is
given by

α∗ = arg min
αmin ≤ α ≤ αmax

[
−αk + 1

2
ln

(
ψ(v, α)2)] (3.48)

which they define as the function �(α, k). Using the settings from the example
in the previous section and running the optimization in Equation (3.48) produces
α∗ = 6.6233. Note that this optimal value is within the range of admissible values
(αmin, αmax) = (−3.3068, 9.0600) obtained in the previous section.

Numerical Implementation and Illustration

We continue to illustrate the bounds on α and the optimal α∗ using the settings
for the previous example, namely S = 1, r = 0, K = 1.2, ρ = −0.7, v0 = θ = 0.1,
κ = σ = 1, and τ = 1.



78 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The Matlab function RogerLeeGExpD.m defines an objective function as the
squared difference from both sides of Equation (3.45).

function y = RogerLeeGExpD(phi,kappa,rho,sigma,tau);
A = (rho*sigma*phi*i - kappa);
B = sigma^2*(phi*i + phi^2);
d = sqrt(A^2 + B);
g = (kappa - rho*sigma*phi*i + d) / ...;
E = real(g*exp(d*tau));
y = (E - 1)^2;

The fminsearch.m function in Matlab is used to find y− = −2.3069 and y+ =
10.0600.

% Find y-
[yneg feval] = fminsearch(@(a) RogerLeeGExpD(-i*a,...), start);
% Find y+
[ypos feval] = fminsearch(@(a) RogerLeeGExpD(-i*a,...), start);
% The range for Ax
Ax = [yneg ypos];
AlphaMax = ypos - 1;
AlphaMin = yneg - 1;

The average of the returned values αmin = −3.3069 and αmax = 9.0600 can be
used as starting values to find α∗, the optimal damping factor.

start = (AlphaMin + AlphaMax)/2;
[aOpt eval] = fminsearch(@(alpha)LordKahlFindAlpha(alpha,...),...);

The above snippet of code uses the function LordKahlFindAlpha.m, which
defines the objective function in the minimization in Equation (3.48).

function y = LordKahlFindAlpha(alpha,...)
PSI = HestonPsi(0,alpha,...);
y = -alpha*log(K) + (1/2)*log(PSI^2);

The optimal alpha is α∗ = 6.6233. In Figure 3.2, we plot the optimal alpha
function �(α, k) and its derivative, and identify visually the local minima of �(α, k).

Figure 3.2 is generated using the following code. The first part defines the
admissible range for α and generates the �(α, k) function and its derivative using
central differences.



Derivations Using the Fourier Transform 79

–8
–2 0 2 4 6

The optimal alpha function
The derivative of the function
Optimal alpha

8

–6

–4

–2

0

2

4

FIGURE 3.2 Lord and Kahl Optimal Alpha

A = [AlphaMin:dA:AlphaMax];
N = length(A);
% The function for optimal alpha and its derivative
for x=1:N

f(x) = LordKahlFindAlpha(A(x),...);
end
dA = 0.001;
for x=2:N-1

der(x) = (f(x+1) - f(x-1))/(2*dA);
end
der = der(2:N-1);

The second part finds the local minima for �(α, k) by finding points along the
α-axis where the derivative switches sign.

% Find the points where the derivative switches sign.
optim = zeros(N-3,1);
for x=2:N-2

if sign(der(x)) ∼= sign(der(x-1)) & abs(der(x)) < .1;
optim(x) = 1;

end
end
% Identify the local minima along the x-axis
Op = find(optim==1);
Opy = zeros(1,length(Op));
Opx = (A(Op) + A(Op+1))/2;
AlphaOptimalSet = Opx;



80 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Finally, the last portion plots �(α, k), its derivative, and the optimal points
indicated with circles in Figure 3.2.

z = zeros(length(A),1);
plot(A, f,'k-',A(1:N-2),der,'r-',Opx,Opy,'bo',A,z,'k')
axis([A(1) A(end) -8 5])

The function �(α, k) illustrated in Figure 3.2 has three local minima, at values
of α = −2.5194, α = −0.4778, and α = 6.6233 indicated by the circles. Lord and
Kahl (2007) explain that since �(α, k) explodes to infinity when α = −1 or 0, which
is reflected in Figure 3.2, �(α, k) will have local minima in the intervals (αmin, 0),
(−1, 0), and (0, αmax). Since our range of admissible values is α ∈ (−3.3068, 9.0600),
we select α∗ = 6.6233. To ascertain whether this choice of α∗ actually leads to a
well-behaved integrand, in Figure 3.3 we plot the integrand in Equation (3.44) for
three values of the damping factor, α = 1.6582, α = 7.8417, and the optimal value
α∗ = 6.6233.

The graph indicates that the integrand with the optimal value of α∗ = 6.6233
behaves better than the other integrands, which have non-optimal values of α, in
the sense that the integrand with optimal alpha oscillates less, is flatter at the origin,
and converges to zero at least as quickly as the others.

0
–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Alpha < optimal = 1.6582
Optimal alpha  = 6.6233
Alpha > optimal = 7.8417

5 10 15

FIGURE 3.3 Carr-Madan Integrands



Derivations Using the Fourier Transform 81

Lee (2004b) also suggests selecting the damping factor with a minimization
procedure. In his approach, α is chosen by simultaneously minimizing two errors
that occur when the integral in Equation (3.44) is evaluated numerically: truncation
error, which arises since the upper limit of the numeric integral is finite, and sampling
error, which arises because the integrand is evaluated only the grid points of any
numerical integration scheme. Readers are referred to his paper for details.

Finally, the C# code to find AX = (a−, a+) and α∗ is similar to the Matlab
code. We need to invoke the Nelder-Mead algorithm twice, once with an objective
function based on Equation (3.45) to find a− and a+, and again with the objective
function in (3.48) to find α∗. Hence, in C#, we need the following code to select the
objective function that we subsequently pass to the NelderMead() function, which
is presented in Chapter 6.

// Objective function is Roger Lee's G*exp(d*Tau) function
// or Lord and Kahl's optimal alpha function
static double f(double[] x,double[] param) {

if(GlobalVars.ObjFunChoice == "RogerLee") {
return RogerLeeGExpD(x[0],kappa,rho,sigma,tau);}

else if(GlobalVars.ObjFunChoice == "LordKahl") {
return LordKahlFindAlpha(x[0],...);}

}

We select Lee’s (2004a) function as the objective function and find AX = (a−, a+)
with the following code.

// Select the Roger Lee function as the obj fun
GlobalVars.ObjFunChoice = "RogerLee";
// Calculate lower limit of the the range Ax
double[] AxLo = NelderMead(f,s1,...);
// Calculate upper limit of the the range Ax
double[] AxHi = NelderMead(f,s2,...);

Next, we select Lord and Kahl’s (2007) function as the objective function and
find α∗ with the following code.

// Select the KahlLord function as the obj fun
GlobalVars.ObjFunChoice = "LordKahl";
// Lord and Kahl optimal alpha
double[] AlphaOptimal = NelderMead(f,s3,...);

With the settings used at the beginning of this section, the C# returns the same
optimal value of α∗ = 6.6233.



82 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

THE CARR-MADAN REPRESENTATION FOR PUTS

We can always use put-call parity to find the value of the put, or we can apply a
damping factor to the put price and find a representation for the put itself. The put
price P(k) is

P(k) = e−rτ EQ[(K − ST)+]

= e−rτ

∫ k

−∞
(ek − ex)q(x) dx

(3.49)

which again does not have a Fourier transform since it is not L1. Indeed,

lim
k→+∞

P(k) = lim
k→+∞

e−rτ

∫ k

−∞
(ek − ex)q(x) dx = ∞.

Note that, since the upper limit is +∞, we will need a damping factor with a
negative exponent. Schmelzle (2010) uses the modified put price defined by

p(k) = e−αkP(k)

which is L1 because

lim
k→+∞

p(k) = lim
k→+∞

e−rτ

∫ k

−∞

(
e(−α+1)k − e−αk+x

)
q(x) dx = 0 − 0.

The Fourier transform of the modified put price is

p̂(v) =
∫ ∞

−∞
eivkp(k) dk =

∫ ∞

−∞
eivke−αkP(k) dk

= e−rτ

∫ ∞

−∞
e(−α+iv)k

[∫ k

−∞

(
ek − ex

)
q(x) dx

]
dk.

The area of integration −∞ < k < ∞ and −∞ < x < k is equivalent to −∞ <

x < ∞ and x < k < ∞, so we can write

p̂(v) = e−rτ

∫ ∞

−∞
q(x)

[∫ ∞

x

(
e(−α+iv+1)k − e(−α+iv)k+x

)
dk

]
dx

= e−rτ

∫ ∞

−∞
q(x)

[
e(−α+iv+1)x

α2 − α − v2 + iv(1 − 2α)

]
dx

= e−rτ ϕ(v + (α − 1)i)
α2 − α − v2 + iv(1 − 2α)

provided that the damping factor is such that −α + 1 < 0, or α > 1, in order for
the upper limit of the inner integral to vanish. The put price is, therefore, obtained



Derivations Using the Fourier Transform 83

by the inverse Fourier transform, analogous to what was done for the call in
Equation (3.44)

P(k) = eαkp(k) = eαk

2π

∫ ∞

−∞
e−ivkp̂(v) dv = e−αk

π

∫ ∞

0
Re[e−ivkp̂(v)] dv. (3.50)

To implement the Carr-Madan representation for puts in Matlab, we modify
the CarrMadanIntegrand.m function presented earlier in this chapter to include a
subroutine for puts. This function can handle calls also.

function y = CarrMadanIntegrand(u,...,PutCall);
if strcmp(PutCall,'C')

I = exp(-i*u*log(K))*HestonCF(u-(alpha+1)*i,...) / ...;
else

I = exp(-i*u*log(K))*HestonCF(u-(-alpha+1)*i,...) / ...;
end
y = exp(-r*tau)*real(I);

We also use a more general function for the Heston price, which can return the
price of either a call or a put, using the Heston or Carr-Madan representation. In
this function, we use Gauss-Laguerre integration, which is covered in Chapter 5.
The function uses put-call parity to return the put price under the Heston repre-
sentation, but uses Equation (3.50) to return the put price under the Carr-Madan
representation.

function y = HestonPriceGaussLaguerre(Integrand,...)
if strcmp(Integrand,'Heston')

for k=1:length(x);
int1(k) = w(k)*HestonIntegrand(x(k),1,...);
int2(k) = w(k)*HestonIntegrand(x(k),2,...);

end
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);
Call = S*exp(-q*T)*P1 - K*exp(-r*T)*P2;
if strcmp(PutCall,'C')

y = Call;
else

y = Call - S*exp(-q*T) + K*exp(-r*T);
end

elseif strcmp(Integrand,'CarrMadan')
for k=1:length(x);

int1(k) =
w(k)*CarrMadanIntegrand(x(k),...,PutCall);

end
if strcmp(PutCall,'C')

y = exp(-alpha*log(K))*sum(int1)/pi;
else

y = exp( alpha*log(K))*sum(int1)/pi;
end

end



84 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Using the same settings as the example presented earlier in this chapter, we
obtain the put price as 5.9085 with the Heston form, and 5.9083 with the Carr-
Madan form. The C# code to implement the Carr and Madan (2009) put price is
similar to the Matlab code and is not presented.

THE REPRESENTATION FOR OTM OPTIONS

Carr and Madan (1999) emphasize the fact that, for very short maturities, the call
value approaches its intrinsic value (ST − K)+, and this causes the integrand in the
Fourier inversion in Equation (3.44) to be highly oscillatory and, therefore, difficult
to integrate. This was illustrated with figures in Chapters 1 and 2. Carr and Madan
(1999) define z(k) to be the time-t price of out-of-the-money (OTM) calls and puts
with strike K = ek. For convenience, they assume that St = 1, but their argument can
be easily generalized to other values of St, as shown in the following section. The
regions K < St and K > St correspond to OTM puts and calls, respectively. Hence,
the price is

z(k) =
{

OTM Put Price when k < 0
OTM Call Price when k > 0

= e−rτ

∫ ∞

−∞

[(
ek − ex

)+ + (ex − ek)+
]

q(x) dx

= e−rτ

∫ k

−∞
(ek − ex)1k<0 q(x) dx + e−rτ

∫ ∞

k
(ex − ek)1k>0 q(x) dx

(3.51)

with Fourier transform

ẑ(v) = e−rτ

∫ ∞

−∞
eivkz(k) dk

= e−rτ

∫ ∞

−∞
eivk

∫ k

−∞
(ek − ex)1k<0 q(x) dxdk

+ e−rτ

∫ ∞

−∞
eivk

∫ ∞

k
(ex − ek)1k>0 q(x) dxdk

= e−rτ

∫ 0

−∞
eivk

∫ k

−∞
(ek − ex)q(x)dxdk + e−rτ

∫ ∞

0
eivk

∫ ∞

k
(ex − ek)q(x)dxdk. (3.52)

Now, reserve the order of integration in (3.52) to obtain

ẑ(v) = e−rτ

∫ 0

−∞
q(x)

∫ 0

x

(
e(iv+1)k − eivk+x

)
dkdx

+ e−rτ

∫ ∞

0
q(x)

∫ x

0

(
eivk+x − e(iv+1)k

)
dkdx.

(3.53)

It is evident that the two inner integrals in (3.53), for which k is the integration
variable, are identical except for opposite signs. Indeed, we can reverse the limits of



Derivations Using the Fourier Transform 85

integration in the second inner integral and change its sign, which will produce the
first inner integral. We can, therefore, regroup the two outer integrals to arrive at

ẑ(v) = e−rτ

∫ ∞

−∞

(∫ 0

x

(
e(iv+1)k − eivk+x

)
dk

)
q(x) dx. (3.54)

The inner integral in (3.54) evaluates to

ex(iv+1)

iv(iv + 1)
− ex

iv
+ 1

iv + 1
.

The Fourier transform in (3.54) can, therefore, be expressed in terms of expec-
tations under the risk-neutral density q(x) as

ẑ(v) = e−rτ

(
EQ

[
ex(iv+1)

]
iv(iv + 1)

− EQ[ex]
iv

+ 1
iv + 1

)
.

Since the characteristic function is ϕ(v) = EQ[eivx], we have that EQ[ex(iv+1)] =
ϕ(v − i). Moreover, since q(x) is the risk-neutral density for x = ln ST, we have that
EQ[ex] = Ste

rτ = erτ , since we have assumed that St = 1. This implies that the Fourier
transform of z(k) can be written

ẑ(v) = e−rτ

(
1

iv + 1
− erτ

iv
+ ϕ (v − i)

v2 − iv

)
. (3.55)

Finally, the price z(k) of an OTM option with strike K = ek is obtained with the
inverse Fourier transform, in a manner analogous to what was done for the call in
Equation (3.44) and for the put in Equation (3.50)

z(k) = 1
2π

∫ ∞

−∞
e−ivkẑ(v)dv = 1

π

∫ ∞

0
Re[e−ivkẑ(v)] dv. (3.56)

Carr and Madan (1999) point out that the integrand ẑ(v) can become highly
oscillatory for short maturities and for k ≈ 0. Instead of basing their derivation on
z(k), Carr and Madan suggest basing it on y(k) = z(k) sinh(αk), which makes use of
the dampening factor α, through the hyperbolic sin function sinh(x) = 1

2 (ex − e−x).
The Fourier transform of y(k) is

ŷ(v) =
∫ ∞

−∞
eivky(k) dk =

∫ ∞

−∞
eivk

(
eαk − e−αk

2

)
z(k) dk

= 1
2

∫ ∞

−∞
e(iv+α)kz(k) dk−1

2

∫ ∞

−∞
e(iv−α)kz(k) dk.

Recall that

ẑ(v) =
∫ ∞

−∞
eivkz(k)dk.



86 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

We can, therefore, express ŷ(v) in terms of ẑ(v), as

ŷ(v) = ẑ(v − iα) − ẑ(v + iα)
2

. (3.57)

The OTM option price is then obtained by Fourier inversion, analogous to
Equation (3.56)

z(k) = 1
sinh(αk)

y(k) = 1
2π sin(αk)

∫ ∞

−∞
e−ivk ŷ(v)dv

= 1
2π sin(αk)

∫ ∞

0
Re[e−ivkŷ(v)] dv.

(3.58)

The damped and regular integrands ŷ(v) and ẑ(v) are each illustrated in
Figure 3.4, which reproduces the figure in Carr and Madan (1999). We use the
settings St = 1, K = 0.96, maturities running from 1 to 4 weeks, r = 0.03, κ = 2,
θ = 0.25, σ = 0.3, v0 = 0.05 and ρ = −0.8, and α = 1.1. The integrand for ẑ(v)
uses Equation (3.60), while the damped integrand for ŷ(v) uses (3.57) but with ẑ(v)
from (3.60).

–0.5
4

3
2

Maturity (weeks) Integration Domain

170 85 0 –85 –170
1

0

0.5

1

1.5

2

2.5

x 10–3

FIGURE 3.4 Carr-Madan Integrands for OTM Options



Derivations Using the Fourier Transform 87

The damped integrand is represented by the flat green surface in Figure 3.4, and
the un-damped integrand by the colored surface. Clearly, adding a damping factor
leads to an integrand that is much less oscillatory and on which it is much easier to
apply a numerical integration scheme.

The prices of OTM options in Equations (3.56) and (3.58) are designed for
St = 1 only. It is desirable to obtain these formulas for any value of St > 0. This is
the subject of the following section.

Generalization of the OTM Representation

It is straightforward to generalize the OTM representation for any value of St > 0
because that only involves changing the limits in the required integrals. For St > 0,
the indicator function in Equation (3.51) is based on the OTM cutoff xt = ln St so
that z(k) is

z(k) = e−rτ

∫ k

−∞
(ek − ex)1k<xt

q(x) dx + e−rτ

∫ ∞

k
(ex − ek)1k>xt

q(x) dx.

Using (3.52), the Fourier transform of z(k) takes the form

ẑ(v) = e−rτ

∫ x0

−∞
eivk

∫ k

−∞
(ek − ex)q(x)dxdk + e−rτ

∫ ∞

x0

eivk

∫ ∞

k
(ex − ek)q(x)dxdk.

We proceed exactly in the same fashion: by reversing the order of integration,
by noting that the inner integrals are identical, and by regrouping the two outer
integrals. The result is a generalization of Equation (3.54)

ẑ(v) = e−rτ

∫ ∞

−∞

(∫ xt

x

(
e(iv+1)k − eivk+x

)
dk

)
q(x) dx. (3.59)

The only thing changed is the upper limit in the inner integral, which becomes
k = xt instead of k = 0. The inner integral is now

ex(iv+1)

iv(iv + 1)
− eivxt+x

iv
+ e(iv+1)xt

iv + 1
.

Again, we express ẑ(v) in terms of expectations and the characteristic function

ẑ(v) = e−rτ

(
Siv+1

t

iv + 1
− erτ Siv+1

t

iv
− ϕ (v − i)

v2 − iv

)
. (3.60)

To obtain the OTM option price for general St, we substitute the Fourier
transform (3.60) into Equation (3.56) and apply a numerical integration technique.
For the damped version, we substitute (3.60) into Equations (3.57) and (3.58).



88 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The following Matlab functions implement, respectively, the OTM Carr-Madan
integrand in the OTM price of Equation (3.56), and its damped version in (3.58).
These functions are for general values of St, so they use (3.60) for ẑ(v).

function z = CarrMadanIntegrandOTM(u,...)
% Calculate the integrand
phi = HestonCF(u-i,kappa,theta,lambda,rho,sigma,tau,K,S,r,v0,Trap);
I = exp(-i*u*log(K)) * exp(-r*tau) ...

* (S^(i*u+1)/(1+i*u) - exp(r*tau)*S^(i*u+1)/(i*u)
- phi/(u^2-i*u));

% Return the real part
z = real(I);

function y = CarrMadanDampedIntegrandOTM(v, alpha,...)
% Calculate z(v-ia)
u = v - i*alpha;
phi = HestonCF(u-i,...);
z1 = exp(-r*tau)*(S^(i*u+1)/(1+i*u) - ...);
% Calculate z(v+ia)
clear u phi
u = v + i*alpha;
phi = HestonCF(u-i,...);
z2 = exp(-r*tau)*(S^(i*u+1)/(1+i*u) - ...);
% Calculate the Fourier transform of y
y = exp(-i*u*log(K)) * (z1 - z2)/2;
% Return the real part only
y = real(y);

These functions are passed to the pricing function HestonPriceLaguerre.m,
which in this version accepts the OTM integrand. Only the relevant portion of the
function is presented here.

function y = HestonPriceGaussLaguerre(Integrand,...)
elseif strcmp(Integrand,'CarrMadan') % Carr-Madan

for k=1:length(x);
int1(k) = w(k)*CarrMadanIntegrandOTM(x(k),...);

end
% The Option Price
y = sum(int1)/pi;

elseif strcmp(Integrand,'CarrMadanDamped')
% Carr-Madan damped
for k=1:length(x);

int1(k) = w(k)*CarrMadanDampedIntegrandOTM(x(k),...);
end
% The Option Price
y = 1/sinh(alpha*log(K)) * sum(int1)/pi;

end



Derivations Using the Fourier Transform 89

TABLE 3.1 OTM Pricing Using the Heston and Carr-Madan Method

OTM Put OTM Call

St = 1 K = 0.95 K = 1.05
Heston 0.1170 0.1485
Carr-Madan 0.1175 0.1473
Carr-Madan Damped 0.1108 0.1575

St = 25 K = 20 K = 30
Carr-Madan 1.4944 2.3819
Carr-Madan 1.4888 2.4166

The C# code for pricing OTM calls and puts using the damped and undamped
Carr and Madan (1999) integrands is very similar to the Matlab code and is not
presented here.

We illustrate the pricing of OTM options using a spot price of St = 1 and
maturity τ = 1 year, and using r = 0.03, κ = 2, θ = 0.25, σ = 0.3, v0 = 0.05,
ρ = −0.8, and α = 1.1. The strike prices are K = 0.95 for the puts and K = 1.05
for the calls. To illustrate the pricing of OTM using a general value for the spot
price St, we use the same parameter and option settings except that we set St = 25
and change the strike prices to K = 20 and K = 30. This is accomplished with the
following code. The results are in Table 3.1. All integration is done using 32-point
Gauss-Laguerre integration.

S = 25;
% Price an OTM put
Kp = 20;
PutCall = 'P';
HestonOTMPut = HestonPriceGaussLaguerre('Heston',Kp,...);
CarrMadanOTMPut = HestonPriceGaussLaguerre('CarrMadan',Kp,...);
% Price an OTM Call
Kc = 30;
PutCall = 'C';
HestonOTMCall = HestonPriceGaussLaguerre('Heston',Kc,...);
CarrMadanOTMCall = HestonPriceGaussLaguerre('CarrMadan',Kc,...);

CONCLUSION

In this chapter, we have presented the expressions for the in-the-money probabilities
that are most often associated with the Heston model. These expressions are based
on the form of inversion due to Gil-Pelaez (1951). We have illustrated the derivation
of the Heston model by Gatheral (2006), which uses Fourier transforms of the
probabilities, and have we presented the Attari (2004) version of the Heston call
price, which is based on a modification of the Gil-Pelaez-style probabilities. Finally,
we have presented the Carr-Madan (1999) representation, which relies on the Fourier



90 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

transform of the entire call price, along with optimal choices for, and bounds on, the
damping factor and optimal choices of the damping factor. In Chapter 5, we present
the fast Fourier transform (FFT) of Carr and Madan (1999), and the fractional FFT
of Chourdakis (2005), both of which allow for a very fast calculation of a large set
of option prices.

Fourier methods have been applied to option pricing by other authors. Among
these, for example, are the cosine method of Fang and Oosterlee (2008), the
convolution method of Lord et al. (2008), and the methods of Lewis (2000, 2001).
The Lewis methods are the subject of the next chapter.



CHAPTER 4
The Fundamental Transform for

Pricing Options

Abstract

In his excellent book, Option Valuation Under Stochastic Volatility: With Math-
ematica Code, Alan Lewis (2000) offers a powerful valuation approach that is
applicable to a wide range of European options. His method requires that the
fundamental transform, a generalization of the characteristic function that allows
complex arguments, be available. It also requires the Fourier transform of the option
payoff. Since payoff transforms are available for a wide set of options, however,
Lewis’ approach is readily applicable to path independent European options of var-
ious sorts. The advantage of this approach over other approaches that use Fourier
transforms is that, once the fundamental transform of a given model is obtained, it
can be used repeatedly to price European options for which the payoff transform is
known. This greatly simplifies pricing, since payoff transforms are much easier to
obtain than the Fourier transform of the option price itself.

In this chapter, we explain Lewis’ fundamental transform approach for option
valuation, and we also present his subsequent paper (Lewis, 2001) that uses Parseval’s
identity to obtain option prices. In that paper, simple variations in the contours
of integrations give rise to different forms of the call price encountered in the
literature. Finally, we present Lewis’ (2000) volatility of volatility series expansion,
an approximation that allows the Heston price of European options to be calculated
very quickly and without the need for numerical integration.

THE PAYOFF TRANSFORM

In the following sections, we present the fundamental transform approach of Lewis
(2000) for pricing options. In his approach, the Fourier transform of the option value
is not required, only the Fourier transform of the option payoff. This simplification
allows for the pricing of a variety of options under a general setting. The approach,
however, does require the fundamental transform. The Lewis (2000) recipe for
pricing options thus requires two transforms

1. The payoff transform for a given option, which is model independent and does
not depend on the fundamental transform.

2. The fundamental transform for a given model, which is model dependent and
analogous to the characteristic function.

91The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



92 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The first element required for Lewis’ (2000) fundamental transform approach to
option valuation is the generalized Fourier transform f̂ (k, t) of the derivative value
f (x, t) at time t

f̂ (k, t) =
∫ ∞

−∞
eikxf (x, t) dx (4.1)

where x = ln St since we are at time t. Equation (4.1) is identical to the Fourier
transform, except that the argument k is allowed to be complex, so that k = kr + iki

where kr and ki are real numbers. The simplest solution for f̂ (k, t) is for European
options at expiry time T, for which the payoff f (x, T) is known explicitly. The
generalized Fourier transform at expiry, f̂ (x, T), is called the payoff transform.

For example, the payoff of a European call option is f (x, T) = (ST − K)+ so its
payoff transform is

f̂ (k, T) =
∫ ∞

−∞
eikx(ex − K)+dx =

(
e(ik+1)x

ik + 1
− Keikx

ik

]x=∞

x=ln K

= − Kik+1

k2 − ik
(4.2)

where the last equality holds provided that ki > 1. In Equation (4.2), we now denote
x = ln ST, since we are at maturity. The condition ki > 1 is required because in order
for the integrand in Equation (4.2) to not explode at the upper limit x = ∞, we
must have eikx decaying faster than ex grows as x → ∞. To see why the condition
works, we can write the term e(ik+1)x in (4.2) as exp[(ikr − ki + 1)x]. This term does
not explode at x = ∞ when ki > 1 so the upper limit of integration in (4.2) is
well-defined. It is straightforward to show that f̂ (k, T) for the put option is identical
to that for the call, except that the admissible region is ki < 0. Payoff transforms for
other options are in Table 2.2.1 of Lewis (2000).

To illustrate, in Figure 4.1, we reproduce Figure 4 of Schmelzle (2010) and
plot the real portion payoff for the put, over the integration range −1 < ki < 0 and
−4 < kr < 0.

Since f̂ (k, t) in Equation (4.1) is the generalized Fourier transform, its inverse
transform is

f (x, t) = 1
2π

∫ iki+∞

iki−∞
e−ikxf̂ (k, t) dk. (4.3)

The generalized Fourier transform is slightly different from the regular Fourier
transform, which assumes that k is real only. The generalized Fourier transform
is obtained by integrating Equation (4.3) along the strip of regularity. For most
derivative payoffs, this strip of regularity is defined as α < ki < β, as in Table 2.2.1
of Lewis (2000). For the payoff of the European call, the strip is ki > 1, and for the
put it is ki < 0.

THE FUNDAMENTAL TRANSFORM AND THE OPTION PRICE

The second element required for Lewis’ (2000) approach is the fundamental
transform itself. In this section, we illustrate how Lewis derives the fundamen-
tal transform, and we present his recipe for obtaining option prices under his



The Fundamental Transform for Pricing Options 93

–400

–0.9
–0.4

–0.9
–0.4

–0.9 –1 –2 –3 –4

0

Imag(k) Real(k)

–200

0

200

400

600

800

FIGURE 4.1 Real Part of the Put Payoff Transform

method. Lewis (2000) derives the fundamental transform for a general class of
stochastic volatility models, but we restrict his derivation to the Heston model.

The Heston partial differential equation (PDE) for the value of the derivative,
U = U(x, t), was derived in Chapter 1, reproduced here with a continuous dividend
yield, q, and re-arranged as

−∂U
∂t

= −rU +
(

r − q − 1
2

v
)

∂U
∂x

+ 1
2

v
∂2U
∂x2

+ [κ(θ − v) − λv]
∂U
∂v

+ 1
2

σ 2v
∂2U
∂v2

+ ρσv
∂2U
∂v∂x

.

(4.4)

To express this PDE in terms of the Fourier transform Û, differentiate (4.1) with
respect to t and apply (4.4). This produces

−∂Û
∂t

=
∫ ∞

−∞
eikx

{
−∂U

∂t

}
dx =

∫ ∞

−∞
eikx

{
−rU +

(
r − q − 1

2
v
)

∂U
∂x

+ 1
2

v
∂2U
∂x2

+ [κ (θ − v) − λv]
∂U
∂v

+ 1
2

σ 2v
∂2U
∂v2

+ ρσv
∂2U
∂v∂x

}
dx. (4.5)



94 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

To evaluate (4.5), perform integration by parts and ignore the boundary terms.
For example

∫ ∞

−∞
eikx ∂U

∂x
dx = eikxU(x, t)|x=∞

x=−∞ − ik
∫ ∞

−∞
eikxU(x, t)dx = −ikÛ(x, t) (4.6)

where the boundary term eikxU(x, t)|x=∞
x=−∞ has been set to zero. Lewis (2000) explains

why this can be done. The other terms in Equation (4.5) are evaluated in a similar
fashion. We end up with∫ ∞

−∞
eikx ∂2U

∂x2
dx = −k2Û(x, t),

∫ ∞

−∞
eikx ∂2U

∂x∂v
dx = −ik

∂Û
∂v

and obviously ∫ ∞

−∞
eikx ∂U

∂v
dx = ∂Û

∂v
,

∫ ∞

−∞
eikx ∂2U

∂v2
dx = ∂2Û

∂v2
.

Substituting these derivatives into (4.5) produces the PDE for Û

−∂Û
∂t

= [−r − ik(r − q)]Û − 1
2

v(k2 − ik)Û

+ [κ(θ − v) − λv − ikρσv]
∂Û
∂v

+ 1
2

σ 2v
∂2Û
∂v2

.

(4.7)

In Equation (2.2.6) of Lewis (2000), the transform in (4.1) is written in the form

Û(k, t) = exp([−r − ik(r − q)]τ ) × Ĥ(k, v, τ ) (4.8)

where τ = T − t is the time to maturity. The function Ĥ is obtained as the solution
of a PDE that is constructed by differentiating Equation (4.8). We thus need the
following derivatives

−∂Û
∂t

= ∂Û
∂τ

= [−r − ik(r − q)]e[−r−ik(r−q)]τ Ĥ(k, v, τ ) + e[−r−ik(r−q)]τ ∂Ĥ
∂τ

and

∂Û
∂v

= e[−r−ik(r−q)]τ ∂Ĥ
∂v

,
∂2Û
∂v2

= e[−r−ik(r−q)]τ ∂2Ĥ
∂v2

.

Substituting these derivatives of Û expressed in terms of Ĥ into Equation (4.7)
and canceling terms produces the PDE for Ĥ

∂Ĥ
∂τ

= 1
2

σ 2v
∂2Ĥ
∂v2

+ [κ(θ − v) − λv − ikρσv]
∂Ĥ
∂v

− vc(k)Ĥ(k, v, τ ) (4.9)



The Fundamental Transform for Pricing Options 95

where c(k) = 1
2 (k2 − ik). Equation (4.9) is Equation (2.2.7) of Lewis (2000), but

for the Heston model. Lewis explains that only the special case of a payoff of 1,
namely Ĥ(k, v, 0) = 1, need be considered. All other payoffs can be handled by
multiplying Ĥ(k, v, 0) by the appropriate payoff transform. A solution Ĥ(k, v, τ ) to
the PDE in Equation (4.9) that satisfies the initial condition Ĥ(k, v, 0) = 1 is called a
fundamental transform. The fundamental transform is called regular if it is regular
in k within the strip α < ki < β, where ki = Im[k], the imaginary part of k.

Once the fundamental transform has been found by solving Equation (4.9),
Lewis’ (2000) recipe to calculate option prices is straightforward. All that is required
is that the payoff transform be known, such as that for the European call in (4.2),
for example. The recipe is as follows.

n Multiply the fundamental transform Ĥ(k, v, τ ) by the payoff transform f̂ (k, T).
The payoff transform depends on the option under consideration, but the
fundamental transform does not.

n Multiply the result by the term exp([−r − ik(r − q)]τ ).
n Pass the resulting expression through the inversion formula in Equation (4.3)

and evaluate the integral, taking care to respect the strip of regularity.

Recall that, in the Carr and Madan (1999) approach, which was covered in
Chapter 3, the Fourier transform of the derivative price is required. The consequence
is that a separate Fourier transform is required for each type of option for which
we need a price. To further aggravate matters, Fourier transforms of prices can be
complicated. The advantage of the Lewis (2000) recipe is that once the fundamental
transform is obtained, only the transform of the derivative payoffs are required. Since
the fundamental transform is model dependent, but not payoff dependent, the same
fundamental transform can be applied to value many different European options; all
that is required is that their payoff transforms be available analytically. Moreover,
since payoffs are specified in options contracts and therefore known explicitly, their
Fourier transforms are much easier to obtain than the Fourier transforms of the
option prices themselves.

In the next sections, we illustrate the Lewis recipe for a European call. First, we
present the fundamental transform for the Heston model.

THE FUNDAMENTAL TRANSFORM FOR THE HESTON MODEL

From Equation (4.9), the PDE for Ĥ(k, v, τ ) using λ = 0 is

∂Ĥ
∂τ

= 1
2

σ 2v
∂2Ĥ
∂v2

+ [κ(θ − v) − ikρσv]
∂Ĥ
∂v

− c(k)vĤ(k, v, τ ). (4.10)

This PDE must be converted into a form similar to the Riccati equation for which
the solution is known. Following Chapter 11 of Lewis (2000), define t = σ 2τ/2 so
that

∂Ĥ
∂τ

= 2
σ 2

∂Ĥ
∂t



96 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Equation (4.10) becomes

∂Ĥ
∂t

= v
∂2Ĥ
∂v2

+ 2
σ 2

[κ(θ − v) − ikρσv]
∂Ĥ
∂v

− 2c(k)
σ 2

vĤ(k, v, τ )

= v
∂2Ĥ
∂v2

+ κ̃(θ̃ − v)
∂Ĥ
∂v

− c̃(k)vĤ(k, v, τ ) (4.11)

where

κ̃ = 2(κ + ikρσ )
σ 2

, θ̃ = κθ

κ + ikρσ

and where c̃(k) = 2c(k)/σ 2 = (k2 − ik)/σ 2. The second equation in (4.11) is a
parabolic equation in v, and has a solution of the form

f (v, t) = exp(C(t) + D(t)v)

with initial condition C(0) = D(0) = 0. Take the derivatives of f (v, t), substitute into
(4.11), and cancel f on both sides. This produces

∂C
∂t

+ ∂D
∂t

v = vD2 + κ̃(θ̃ − v)D − c̃v.

Now equate terms in v, which produces the set of equations

∂D
∂t

= D2 − κ̃D − c̃,
∂C
∂t

= κ̃ θ̃D. (4.12)

Solving these equations is done in exactly the same manner as was done in the
original Heston (1993) derivation covered in Chapter 1. The first equation in (4.12)
is the Riccati equation from Chapter 1 with P(t) = −c̃, Q(t) = −κ̃, and R(t) = 1. To
solve it, we apply exactly the same procedure. We set up the second-order ODE

w′′ + κ̃w′ − c̃w = 0

and define

α = −κ̃ + d
2

, β = −κ̃ − d
2

where d = √
κ̃ + 4c̃. The solution to the Riccati equation in (4.12) is, therefore,

D = − 1
R

(
Kαeαt + βeβt

Keαt + eβt

)
.

The initial condition D(0) = 0 implies that, by setting t = 0 in the numerator,
we obtain K = −β/α = (κ̃ + d)/(−κ̃ + d). This produces

D(t) = κ̃ + d
2

(
1 − edt

1 − gedt

)
(4.13)



The Fundamental Transform for Pricing Options 97

where g = −K = (κ̃ + d)/(κ̃ − d) and α − β = d. The solution for C(t) is found by
integration. The integral of D(t) is∫ t

0
D(y)dy = κ̃ + d

2

∫ t

0

(
1 − edy

1 − gedy

)
dy + K1

= κ̃ + d
2d

[
dt + 1 − g

g
ln

(
1 − gedy

1 − g

)]
+ K1

=
[
κ̃ + d

2
t − ln

(
1 − gedt

1 − g

)]
+ K1

where K1 is an integration constant. Hence,

C(t) = κ̃ θ̃

[
κ̃ + d

2
t − ln

(
1 − gedt

1 − g

)]
(4.14)

where we have applied the initial condition C(0) so that K1 = 0. The fundamental
transform of the Heston model is, therefore,

Ĥ(k, v, τ ) = exp(C(t) + D(t)v) (4.15)

where D(t) is given by Equation (4.13), and C(t) by (4.14). The initial condition at
t = 0 implies that we set v = v0, the parameter for the initial variance, in (4.15).

The fundamental transform in (4.15) is identical to the characteristic function
derived in Chapter 1, with the notation C(t) and D(t) denoting C(τ , φ) and D(τ , φ).
Lewis (2000, Section 2.4) describes the conditions under which Ĥ(k, v, τ ) is an
analytic characteristic function.

The Call Price Using the Fundamental Transform

Recall that the Lewis recipe requires the payoff transform for the option being
priced. To apply the Lewis recipe to the European call price, we use the payoff
transform obtained in Equation (4.2). The integral to solve is, therefore,

C1(K) = 1
2π

∫ iki+∞

iki−∞
e−ikx × e[−r−ik(r−q)]τ × Ĥ(k, v, τ ) ×

( −Kik+1

k2 − ik

)
dk (4.16)

where x = ln St. Defining X = ln(St/K) + (r − q)τ , the call price can be written in
the form of Equation (2.2.8) in Lewis (2000), namely

C1(K) = −Ke−rτ

2π

∫ iki+∞

iki−∞
e−ikX 1

k2 − ik
Ĥ(k, v, τ ) dk (4.17)

where the integral is defined for 1 < ki < β. Indeed, the strip of regularity for
Ĥ(k, v, τ ) is α < ki < β, and the strip of regularity for the payoff transform is ki > 1.
Hence, C1(K) is defined on the intersection of these two strips, namely 1 < ki < β.



98 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Equations (4.17) and (4.19) for the call price each depend on the analytical form
of the fundamental transform Ĥ(k, v, τ ) and are, therefore, valid for a wide set of
models, including the Heston model. Lewis (2000) derives analytical expressions for
Ĥ(k, v, τ ) for several models, including the Heston model, which we covered in the
previous section.

Lewis (2000) also finds an alternative solution to the call price in (4.17), based
on put-call parity and a covered call, which has the payoff min(ST, K). This solution
is valid under the simpler restriction that 0 < ki < 1. The payoff of the covered call is

min(ST, K) = K − (K − ST)+.

Taking expectations on both sides and discounting, the time t price of the
covered call is

e−rτ E[min(ST, K)] = Ke−rτ − P(K)

where P(K) is the time t value of a European put struck at K. Put-call parity

C(K) = Ste
−qτ − [Ke−rτ − P(K)] (4.18)

implies that the call price can be expressed in terms of the spot price and the covered
call. Hence, to find the second solution, we need to apply Alan Lewis’ recipe to the
covered call, which has the payoff transform

f̂ (k, T) =
∫ ∞

−∞
eikx[K − (K − ex)+]dx = K

∫ ∞

ln K
eikxdx +

∫ ln K

−∞
e(ik+1)xdx

= K
(

eikx

ik

]x=∞

x=ln K

+
(

e(ik+1)x

ik + 1

]x=ln K

x=−∞
= −Kik+1

ik
+ Kik+1

ik + 1
= Kik+1

k2 − ik

where the strip is 0 < ki < 1 because the first integral requires ki > 0, while the
second requires ki < 1. Hence, the payoff transform for the covered call is identical
to that for the call, except for the absence of a minus sign, and the restriction
0 < ki < 1, which is easier to deal with than the restriction ki > 1 for the call.
Applying the Lewis (2000) recipe to the covered call and using put-call parity in
Equation (4.18), the second solution is, therefore,

C2(K) = Ste
−qτ − Ke−rτ

2π

∫ iki+∞

iki−∞
e−ikX 1

k2 − ik
Ĥ(k, v, τ ) dk (4.19)

where max(0, α) < ki < min(1, β). The value C2(K) is identical to C1(K) in (4.17)
except for the presence of the term Ste

−qτ and a different strip. Indeed, the strip for
the transform f̂ (k, T) of the covered call is 0 < ki < 1 and the strip for Ĥ(k, v, τ )
is α < ki < β. Hence, C2(K) is defined on the intersection of these two strips,



The Fundamental Transform for Pricing Options 99

max(0, α) < ki < min(1, β). Equation (4.19) for the call price is easier to deal with
than (4.17), because in (4.19), we can simply select ki = 1/2. Equation (4.19) is
Equation (2.2.10) in Lewis (2000).

The integral for the call price C1(K) in (4.17) or for C2(K) in (4.19) can be
simplified by noting that the integrand is also even in its real part, and odd in its
imaginary part. Hence, the expressions for the call price can be written

C1(K) = −Ke−rτ

π

∫ ∞

0
Re

[
e−ikX 1

k2 − ik
Ĥ

(
k, v, τ

)]
dk (4.20)

where 1 < ki < β, and

C2(K) = Ste
−qτ − Ke−rτ

π

∫ ∞

0
Re

[
e−ikX 1

k2 − ik
Ĥ

(
k, v, τ

)]
dk (4.21)

where max(0, α) < ki < min(1, β) and where X = ln(St/K) + (r − q)τ . The solutions
in Equations (4.20) and (4.21) are identical, except that the expression for C2(K)
includes the term Ste

−qτ while that for C1(K) does not. Hence, it seems unintuitive that
both would produce the same call value. Remember, however, that the integration
strips are different. Indeed, in C2(K), we can take ki = 1/2, but in C1(K) we must
take ki > 1. This difference means that the integrals will have different values; the
net effect is that C1(K) = C2(K).

When a numerical integration scheme is applied to the integrals in Equations
(4.20) and (4.21), their upper limits are often truncated and replaced by a large
number. Lewis uses the range (0, kmax) where kmax = max(1000, 10/

√
v0τ ). We return

to this issue in Chapter 5.
The Matlab function LewisIntegrand.m implements the fundamental transform

Ĥ(k, v, τ ) from Equation (4.15).

function y = LewisIntegrand(k,X,...)
kappa = 2*(kappa + i*k*rho*sigma)/sigma^2;
theta = kappa*theta/(kappa + i*k*rho*sigma);
t = tau*sigma^2/2;
c = (k^2-i*k)/sigma^2;
d = sqrt(kappa^2 + 4*c);
alpha = (-kappa + d)/2;
beta = (-kappa - d)/2;
g = beta/alpha;
B = (kappa+d)*(1-exp(d*t)) / (1 - g*exp(d*t))/2;
A = kappa*theta*((kappa+d)*t/2 - log((1-g*exp(d*t))/(1-g)) );
H = exp(A + B*v0);
y = real(exp(-X*i*k)/(k^2 - i*k)*H);

This function is then used passed to the function HestonLewisCallPrice.m, which
calculates either C1(K) from Equation (4.20), or C2(K) from (4.21). The function
can use either the trapezoidal integration rule, or Gauss Laguerre integration.



100 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 4.1 Comparison of Call Prices

Call Price Formula Integration Rule Call Price

Original Heston Formulation Gauss-Laguerre 4.939490
C1(K) in (4.20) Trapezoidal 4.932314
C1(K) in (4.20) Gauss-Laguerre 4.934282
C2(K) in (4.21) Trapezoidal 4.932314
C2(K) in (4.21) Gauss-Laguerre 4.928201

function y = HestonLewisCallPrice(...)
kmax = floor(max(1000,10/sqrt(v0*tau)));
X = log(S/K) + (r-q)*tau;
if IntRule==1 % Trapezoidal Rule

h = (b-a)/(N-1);
phi = [a:h:b];
wt = h.*[1/2 ones(1,N-2) 1/2];
for k = 1:N;

u = phi(k) + i*ki;
int(k) = wt(k)*LewisIntegrand(u,...);

end
Integral = sum(int);

else % 32-point Gauss Laguerre
for k = 1:length(x);

u = x(k) + i*ki;
int(k) = w(k)*LewisIntegrand(u,...);

end
Integral = sum(int);

end
if form==2

y = S*exp(-q*tau) - (1/pi)*K*exp(-r*tau)*Integral;
else

y = - (1/pi)*K*exp(-r*tau)*Integral;
end

The C# code to implement C1(K) and C2(K) is similar to the Matlab code and
not presented.

We illustrate with call prices obtained using Lewis’ (2000) recipe, using St = K =
100, r = 0.05, q = 0.01 and a maturity of 3 months, along with parameter values
κ = 2, θ = v0 = 0.05, σ = 0.1, and ρ = −0.9. For the trapezoidal rule, we choose
an upper limit of integration of 100 and 10,000 integration points. Gauss-Laguerre
integration uses 32 points. The results are in Table 4.1 and indicate high agreement
between the call prices C1(K) and C2(K) in Equations (4.20) and (4.21), respectively,
and those of the original Heston (1993) formulation, regardless of the integration
rule chosen.

OPTION PRICES USING PARSEVAL’S IDENTITY

In the follow-up paper to his book, Lewis (2001) makes use of Parseval’s identity
to obtain option prices that are valid under any Lévy price process for which the



The Fundamental Transform for Pricing Options 101

characteristic function is known, including the Heston model. In this section, we
describe and implement his approach. First, we present Parseval’s identity for Fourier
transforms.

Parseval’s Identity

This is a key identity for the application of Fourier transforms to option pricing. It
is described in textbooks such as that by Rudin (1986). Define the scalar product of
two functions f and g integrable on (−∞, ∞) as

〈f , g〉 =
∫ ∞

−∞
f (x)g(x) dx

where g(x) is the complex conjugate of g(x). Parseval’s identity states that the
scalar product is preserved under Fourier transforms, so that 〈f , g〉 = 1

2π
〈f̂ , ĝ〉. Hence

Parseval’s identity is ∫ ∞

−∞
f (x)g(x) dx = 1

2π

∫ ∞

−∞
f̂ (k)ĝ(k) dk.

If we consider 〈f , g〉 instead, then we have∫ ∞

−∞
f (x)g(x) dx = 1

2π

∫ ∞

−∞
f̂ (k)ĝ(−k) dk. (4.22)

The fact that ĝ(−k) rather than ĝ(k) appears in the integral on the right-hand
side of (4.22) is a consequence of the convolution theorem for Fourier transforms.
See, for example, Section 7.2.5 of Beerends et al. (2003).

If we need the generalized Fourier transform, which allows complex values for
k so that k = kr + iki, Parseval’s identity in Equation (4.22) becomes∫ ∞

−∞
f (x)g(x) dx = 1

2π

∫ iki+∞

iki−∞
f̂ (k)ĝ(−k) dk. (4.23)

The Option Price Using Parseval’s Identity

Writing xt = ln St, the time-t value f (xt, t) of a derivative with payoff w(xT) can be
written

f (xt, t) = e−rτ EQ[w(xT)] = e−rτ

∫ ∞

−∞
w(x)q(x) dx = e−rτ

2π

∫ ∞

−∞
ŵ(k)q̂(−k) dk,

where the last equality follows from Equation (4.22). Since q̂(k) is the Fourier
transform of the density for ln ST, it is also the characteristic function, ϕ(k). Hence,
the derivative value can be expressed in terms of the characteristic function and the
Fourier transform of the payoff. When k is a complex number the option value is,
using Parseval’s identity in Equation (4.23)

f (xt, t) = e−rτ

2π

∫ iki+∞

iki−∞
ŵ(k)q̂(−k) dk = e−rτ

2π

∫ iki+∞

iki−∞
ŵ(k)ϕ(−k) dk. (4.24)



102 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Parseval’s Identity for the Heston Model

Lewis (2001) derives an option pricing formula under a general setup for the stock
price. Suppose that the stock price ST at time T evolves from S0 at time t = 0 as

ST = S0e(r−q)T+XT (4.25)

where T is the exercise time of the option, r is the risk-free rate, q is the dividend
yield, and XT is a Lévy process for which E[eXT ] = 1. Under certain regularity
conditions, the option price U(S0) at time t = 0 is

U(S0) = e−rT

2π

∫ iki+∞

iki−∞
e−ikYϕ(−k)ŵ(k) dk (4.26)

where Y = ln S0 + (r − q)T, where ŵ(k) is the Fourier transform of the payoff w(xT),
and where ϕ(k) is the characteristic function of the Lévy process XT evaluated at the
complex number k = kr + iki. Lewis (2001) assumes that ϕ(k) is regular in the strip
SX = {k : a < ki < b} such that a < −1 and b > 0. To show how Equation (4.26) is
derived, use the inverse transform of the payoff in (4.3), writing w(x) for f (x, t) and
ŵ(k) for f̂ (k, t)

w(x) = 1
2π

∫ iki+∞

iki−∞
e−ikxŵ(k) dk = 1

2π

∫ iki+∞

iki−∞
S−ik

T ŵ(k) dk (4.27)

since x = ln ST. The no-arbitrage price of the option is

U(S0) = e−rTEQ[w(x)]

= e−rT

2π
EQ

[∫ iki+∞

iki−∞

(
S0e(r−q)T+XT

)−ik
ŵ(k) dk

]

= e−rT

2π

∫ iki+∞

iki−∞
e−ikYEQ[e−ikXT ]ŵ(k) dk

= e−rT

2π

∫ iki+∞

iki−∞
e−ikYϕ(−k)ŵ(k) dk

(4.28)

since ϕ(−k) = EQ[e−ikXT ] is the characteristic function for XT, evaluated at −k. Note
that, in the last line of (4.28), the term e−ikYϕ(−k) can be written

e−ikYϕ(−k) = EQ[e−ik(Y+XT )] = EQ[e−ik ln ST ] = f2(−k) (4.29)

which is the Heston (1993) characteristic function for ln ST, evaluated at −k.
The valuation formula (4.28) is Equation (3.5) in Lewis (2001) and the main

result of that paper. Lewis (2000) explains that (4.28) is applicable to a wide range
of models, including the Variance Gamma model, the Heston model, and many
others. All that is needed is the characteristic function and its strip of regularity.

The transform ŵ(k) is defined in the region Sw so that for the call option we have
SCall

w = {k : ki > 1} and for the put option we have SPut
w = {k : ki < 0}, as explained



The Fundamental Transform for Pricing Options 103

FIGURE 4.2 Integration Strip for the Call Option

earlier in this chapter. Moreover, the characteristic function ϕ(k) is regular in the
strip SX. This implies that ϕ(−k) is defined in the strip S∗

X, which reflects SX across
the real axis and flips it across the imaginary axis. The conclusion is that the
integral in Equation (4.28) is defined in the intersection of these two regions, namely
SU = Sw ∩ S∗

X. For the call option, we have SCall
U = {k : 1 < ki < β} as illustrated in

Figure 4.2.
By a similar argument, for the put option, we have SPut

U = {k : α < ki < 0}.
Lewis (2001) provides an alternate derivation using the complex form of

Parseval’s identity in (4.23). Define sT = ln ST and s0 = ln S0, and the cumulative
distribution functions Q(x|s0) = Pr(sT < x|x0) and P(x) = Pr(XT < x). Using Y =
s0 + (r − q)T, it is straightforward to show that

Pr(sT < x|s0) = Pr(XT < x − Y)

so that by differentiation, we have q(sT|s0) = p(x − Y) where q and p are the densities
corresponding to Q and P. Using the definition of the Fourier transform, making a
change of variable to evaluate the integral, and recalling that sT = Y + XT, we have

q̂(k|s0) =
∫ iki+∞

iki−∞
eiksT q(sT|s0)dsT =

∫ iki+∞

iki−∞
eik(Y+XT )p(XT|s0)dXT = eikY p̂(k).

Furthermore, we can write q̂(k|s0) = eikYϕ(k), since p̂(k) is the characteristic
function for XT, which we denoted ϕ(k). Note that q̂(k|s0) is the characteristic



104 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

function for sT = ln ST. By an application of Parseval’s identity in Equation (4.22),
we have

U(S0) = e−rTEQ[w(x)] = e−rT

∫ ∞

−∞
q(x|s0)w(x) dx

= e−rT

2π

∫ iki+∞

iki−∞
q̂(−k|s0)ŵ(k) dk

= e−rT

2π

∫ iki+∞

iki−∞
e−ikYϕ(−k)ŵ(k) dk.

(4.30)

Substituting for payoff transforms ŵ(x) produces valuation formulas corre-
sponding to those payoffs. The call option has payoff transform ŵ(x) given in
Equation (4.2). Hence, the call price C(S0) is found by substituting for ŵ(x)
into (4.30)

C(S0) = −e−rT

2π

∫ iki+∞

iki−∞
e−ikYϕ(−k)

Kik+1

k2 − ik
dk

= −Ke−rT

2π

∫ iki+∞

iki−∞
e−ikWϕ(−k)

1
k2 − ik

dk

(4.31)

for 1 < ki < β and where W = ln(S0/K) + (r − q)T, which we denoted by X earlier
in this chapter. The second line of (4.31) is Equation (3.9) of Lewis (2001). Recall
that the condition ki > 1 must hold in order for the call option payoff transform to
be defined (where ki = Im[k]). Note the identical forms of the call price in Equation
(4.31) and the call price C1(K) in (4.17), which shows that

Ĥ(k, v, τ ) = ϕ(−k).

Contour Variations and the Call Price

The residue of a complex-valued function f (k) at a simple pole c is defined as

Res(c) = lim
k→c

f (k)(k − c).

The residue theorem stipulates that a complex integral evaluated along a contour
is equal to 2π i times the sum of the residues at all poles contained within the contour.
This greatly simplifies the evaluation of a complex integral, since we only need to
know the value of the residues at the poles. The integral in Equation (4.31) is not
defined at the poles k = 0 and k = i, since both of these values produce zero in the
denominator. The residue at k = 0 for the integrand in (4.31) is

Res(0) = lim
k→0

[
−Ke−rT−ikWϕ

(−k
)

2πk(k − i)
k

]
= −Ke−rTi

2π

since ϕ(0) = 1 and 1/i = −i. Similarly, the residue at k = i is

Res(i) = lim
k→i

[
−Ke−rT−ikWϕ

(−k
)

2π (k2 − ik)
(k − i)

]
= S0e−qTi

2π



The Fundamental Transform for Pricing Options 105

β

ki = Im[k]

kr = Re[k]

y2

y3

A

B
+1

C

FIGURE 4.3 Contours of Integration

since ϕ(−i) = E[eXT ], and E[eXT ] = 1 is a requirement on the Lévy process XT made
in (4.25).

To integrate Equation (4.31), we can select a contour comprised of a horizontal
line just above ki = 1 but below β, and a semi-circle above. Since there are no
poles in this region, we do not apply the residue theorem and the call price C(S0) is
obtained by direct integration of (4.31). This is illustrated by the blue semi-circle A
in Figure 4.3. The poles are indicated by solid dots. The pole k = 0 lies at the origin,
and the pole k = i lies at the point (kr, ki) = (0, 1).

Lewis (2001) shows how variations on the call price arise by modifying the
contour. If we move the integration contour in Equation (4.31) down to another
value v2 ∈ (0, 1), say, instead of at β > 1, then we include the pole at ki = 1 in
the integration contour, as illustrated by the red semi-circle B in Figure 4.3. By
the residue theorem, C(S0) will be equal to the integral evaluated along this new
integration contour, minus 2π i times the residue at i, which has been excluded.
Hence, Equation (4.31) becomes

C(S0) = −Ke−rT

2π

∫ iv2+∞

iv2−∞
e−ikWϕ(−k)

1
k2 − ik

dk − 2π i
(

S0e−qTi
2π

)
= S0e−qT − Ke−rT

2π

∫ iv2+∞

iv2−∞
e−ikWϕ(−k)

1
k2 − ik

dk

(4.32)

for v2 ∈ (0, 1). The second line of (4.32) is Equation (3.10) of Lewis (2001).



106 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Finally, Lewis (2001) shows that, if the integration contour is moved to v3 ∈
(α, 0), with α < 0, then both poles are included, as shown by the black semi-circle C
in Figure 4.3. Applying the residue theorem again, C(S0) will be equal to the integral
along this new contour, minus 2π i times the sum of both residues. Recall that the
payoff transform for the put is

ŵ(k) = Kik+1

k2 − ik

which is identical to that for the call, except that the admissible region is ki < 0.
Hence, when we take the contour at v3 in Equation (4.31), we end up with P(S0),
the value of the put. By the residue theorem, the call option is the integral in (4.31)
along the new contour, minus 2π i times the sum of the two residues

C(S0) = P(S0) − 2π i
(

S0e−qTi
2π

− Ke−rTi
2π

)
= P(S0) + S0e−qT − Ke−rT

which is the price of the call by put-call parity.
If we choose v2 = 1

2 in Equation (4.32), then we are integrating along the
line ki = 1

2 in between the two poles in Figure 4.3. Writing k = u + 1
2 i so that

k2 − ik = u2 + 1
4 , we can express (4.32) as

C(S0) = S0e−qT − Ke−rT

2π

∫ i/2+∞

i/2−∞
e

−i
(

u+ 1
2 i

)
W

ϕ
(−u − 1

2 i
) 1

u2 + 1
4

du

= S0e−qT −
√

KS0e−(r+q)T/2

2π

∫ i/2+∞

i/2−∞
e−iuWϕ

(−u − 1
2 i

) 1
u2 + 1

4

du

= S0e−qT −
√

KS0e−(r+q)T/2

π

∫ ∞

0
Re

[
eiuWϕ

(
u − 1

2 i
) 1

u2 + 1
4

]
du. (4.33)

The first line uses u + 1
2 i substituted for k, and uses W = ln(S0/K) + (r − q)T,

while the last line uses the fact that

Re
[
e−iuWϕ

(−u − 1
2 i

)] = Re
[
eiuWϕ

(
u − 1

2 i
)]

.

This last expression is easily demonstrated, by expressing eiuW and ϕ(u) as com-
plex numbers, and using the property of the complex conjugate of the characteristic
function, namely that ϕ(−u) = ϕ(u). The last line of (4.33) is Equation (3.11) of
Lewis (2001). See Itkin (2010) for a similar derivation, under the Variance Gamma
model. An expression similar to (4.33) was derived by Lipton (2002) for foreign
exchange options.

Recall from Equation (4.25) that ln ST = ln S0 + (r − q)T + XT = Y + XT. To
implement the call price in (4.33), it is useful to write ϕ(u), the characteristic
function for XT, as we did in (4.29), namely

ϕ(u) = E[eiuXT ] = E[eiu ln ST ]e−iuY = f2(u)e−iuY (4.34)

where f2(u) is the Heston characteristic function evaluated at u.



The Fundamental Transform for Pricing Options 107

The following Matlab code implements the call price in Equation (4.33). The
Matlab function LewisIntegrand311.m calculates ϕ(u) using f2(u), in accordance
with (4.34). Only the last part of this function is presented later. Since we are
passing u − i/2 to this function, in the last part, we need to remove i/2 from u in
order to calculate eiuW and u2 properly in the last line of the function.

function y = LewisIntegrand311(u,...)
% The Heston characteristic function for ln S(T)
CFlnST = exp(C + D*v0 + i*u*x);
% The cf for XT
Y = log(S) + (r-q)*tau;
CFXT = exp(-i*u*Y)*CFlnST;
% The integrand
u = u + i/2;
W = Y - log(K);
y = exp(i*u*W)*CFXT/(u^2 + 1/4);

The function LewisPrice311.m calculates the call price using the integration
weights w and the abscissas x passed to the function. It is similar to the function
HestonLewisCallPrice.m defined earlier in this chapter, except that it passes the
integration points uj = xj − i/2 to the integrand.

function y = LewisPrice311(...)
lambda = 0;
Y = log(S) + (r-q)*T;
W = Y - log(K);
% Compute the integral.
for j=1:length(x);

u = x(j) - (1/2)*i;
int(j) = w(j)*LewisIntegrand311(u,...);

end
Integral = sum(int);
% Equation (3.11) in Lewis (2011)
y = S*exp(-q*T) - (1/pi)*sqrt(K*S)*exp(-(r+q)*T/2)*Integral;

The C# code to implement the call price in Equation (4.33) is similar and not
presented here.

To illustrate, we use the same settings as those used to generate Table 4.1 to
generate call prices using (4.33) for strikes ranging from K = 95 to K = 105. We
use 32-point Gauss Laguerre integration to obtain the call prices using the original
Heston (1993) formulation and Equation (3.11) of Lewis (2001). The results in
Table 4.2 indicate high agreement between both sets of prices.



108 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 4.2 Comparison of Call Prices

Strike Equation (4.33) Original Heston Percent Error

95 7.9798 7.9835 0.047
96 7.3047 7.3085 0.052
97 6.6618 6.6656 0.057
98 6.0520 6.0559 0.064
99 5.4763 5.4802 0.072

100 4.9350 4.9391 0.081
101 4.4286 4.4327 0.092
102 3.9571 3.9613 0.105
103 3.5201 3.5244 0.120
104 3.1173 3.1216 0.138
105 2.7477 2.7521 0.158

VOLATILITY OF VOLATILITY SERIES EXPANSION

Lewis (2000) derives a volatility of volatility series expansion for the call price and
for the implied volatility that are valid under a general class of stochastic volatility
models. In this section, we present this expansion for the Heston model only.
Obtaining the Heston call price with this method is very fast, because numerical
integration is not required. The name is derived from the fact that both series
expansions are in terms of powers of the volatility of variance parameter, σ . The
first series is based on an expansion about the Black-Scholes price evaluated at the
average variance v

CBS(S0, v, T) = S0e−qT�(d1) − Ke−rT�(d2) (4.35)

where

d1 =
log(S0/K) +

(
r − q + v

2

)
T

√
vT

and with d2 = d1 − √
vT. The quantity v denotes the average expected variance over

(0, T) of the CIR process that we first encountered in Chapter 2

v = E
[

1
T

∫ T

0
vtdt

∣∣∣∣ v0

]
= 1

T

∫ T

0
E[vt|v0]dt

= 1
T

∫ T

0
[θ + (v0 − θ )e−κt]dt = (v0 − θ )

(
1 − e−κT

κT

)
+ θ.

(4.36)

The average expected variance v is also the fair strike of a variance swap in the
Heston model, as demonstrated by Gatheral (2006), which we denoted K2

var = ŵT/T
in Chapter 2. The first series expansion uses the derivative of the Black-Scholes call
price with respect to the variance v, again evaluated at v

Cv(S0, v, T) = ∂CBS

∂v

∣∣∣∣
v=v

=
√

T
8πv

S0e−qT exp
(− 1

2 d2
1

)
. (4.37)



The Fundamental Transform for Pricing Options 109

Both expansions make use of the integrals J1, J3, and J4, which in the Heston
model take the following form, using ϕ = 1

2 in Equations (3.3.7), (3.3.8), and (3.3.9)
on page 86 of Lewis (2000).

J1(v, T) = ρ

κ

∫ T

0
(1 − e−κ(T−s))(θ + e−κs(v − θ ))ds

= ρ

κ

[
θT + (

1 − e−κT
) (

v
κ

− 2θ

κ

)
− e−κT(v − θ )T

]
. (4.38)

J3(v, T) = 1
2κ2

∫ T

0

(
1 − e−κ(T−s)

)2
(θ + e−κs(v − θ ))ds

= θ

2κ2

[
T + 1

2κ

(
1 − e−2κT

) − 2
κ

(
1 − e−κT

)]
+ (v − θ )

2κ2

[
1
κ

(
1 − e−2κT

) − 2Te−κT

]
. (4.39)

J4(v, T) = ρ2

κ2

∫ T

0
(θ + e−κ(T−s)(v − θ ))

(
1
κ

(
1 − e−κs

) − se−κs

)
ds

= ρ2θ

κ3

[
T

(
1 + e−κT

) − 2
κ

(
1 − e−κT

)]
− ρ2

2κ2
T2e−κT(v − θ ) + ρ2(v − θ )

κ3

[
1
κ

(
1 − e−κT

) − Te−κT

]
. (4.40)

Finally, the following ratios of Black-Scholes derivatives are needed

R1,2 =
[

1
2

− W
]

, R1,2 =
[
W2 − W − 4 − Z

Z

]
,

R2,0 = T
[

W2

2
− 1

2Z
− 1

8

]
,

R2,2 = T
[

W4

2
− W3

2
− 3X2

Z3
+ X (12 + Z)

8Z3
+ 48 − Z2

32Z2

]
.

(4.41)

In these ratios, Lewis (2000) defines W = X/Z, X = log(S0/K) + (r − q)T as in
the previous sections of this chapter, and Z = vT. The first series expansion produces
Heston call prices directly, while the second series produces an implied variance that
is then fed into the Black-Scholes model to produce the Heston call price. The first
expansion (Series I) produces the call price CI(S0, v0, T) directly

CI(S0, v0, T) ≈ CBS(S0, v, T) + σ
J1

T
R1,1Cv(S0, v, T)+

σ 2Cv(S0, v, T)

[
J2

T
+ J3R2,0

T2
+ J4R1,2

T
+

(
J1

)2
R2,2

2T2

]
.

(4.42)



110 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The second expansion (Series II) produces the implied variance

vimp ≈ v + σ
J1

T
R1,1+

σ 2

[
J2

T
+ J3R2,0

T2
+ J4R1,2

T
+

(
J1

)2

2T2

(
R2,2 − (

R1,1
)2

R2,0
)] (4.43)

which is then fed into the Black-Scholes call formula in (4.35) to produce
CII(S0, v0, T), the Heston call price under Series II. In other words, we use (4.35) to
obtain the call price, but we replace v with vimp from (4.43)

CII(S0, v0, T) = CBS(S0, vimp, T). (4.44)

Finally, in the expressions for the call price in Equations (4.42) and (4.44) the
integrals J1, J3, and J4 are all evaluated at the initial variance v0, so that v is replaced
by Heston parameter v0 everywhere in (4.38), (4.39), and (4.40).

The deterministic variance in Equation (4.36) and Black-Scholes price in (4.35)
are easy to implement in Matlab, using user-defined functions. This is illustrated
with the following code snippet.

v = theta + (v0-theta)*(1-exp(-kappa*T))/(kappa*T);
BSC = @(S,K,rf,q,v,T) (S*exp(-q*T)*normcdf((log(S/K) + ...);
BSPrice = BSC(S,K,rf,q,v,T);

The functions J1(v, T) through J4(v, T) in Equations (4.38) through (4.40) are
implemented in a single Matlab function J.m.

function y = J(rho,theta,k,T,v0,Number)
if Number==1

y = (theta*T + (1-exp(-k*T))*(v0/k - 2*theta/k) - ....;
y = y*rho/k;

elseif Number==3
y = theta*T + theta/2/k*(1-exp(-2*k*T)) - ...;
y = y/2/k^2;

elseif Number==4
y = theta/k*(T*(1+exp(-k*T)) - 2/k*(1-exp(-k*T))) + ...;
y = y*rho^2/k;

end

The functions Rp,q in Equation (4.41) are also implemented in a single function,
R.m.



The Fundamental Transform for Pricing Options 111

function y = R(p,q,X,Z,T)
if p==2 & q==0

y = T*(0.5*(X/Z)^2 - 0.5/Z - 1/8);
elseif p==1 & q==1

y = -X/Z + 0.5;
elseif p==1 & q==2

y = (X/Z)^2 - X/Z - 0.25/Z*(4-Z);
elseif p==2 & q==2

y = T*(0.5*(X/Z)^4 - 0.5*(X/Z)^3 - 3*(X^2/Z^3) + ...;
end

The function SeriesICall.m returns the Series I call price in Equation (4.42).
It uses functions for the Black-Scholes price in (4.35) and its variance derivative
in (4.37).

function y = SeriesICall(...);
BSC = @(S,K,rf,q,v,T) (S*exp(-q*T)*normcdf(...)...);
BSV = @(S,K,rf,q,v,T) (sqrt(T/8/pi/v)*S*exp(-q*T)*exp(-0.5*(...);
J1 = J(rho,theta,kappa,T,v0,1);
J3 = J(rho,theta,kappa,T,v0,3);
J4 = J(rho,theta,kappa,T,v0,4);
v = theta + (v0-theta)*(1-exp(-kappa*T))/(kappa*T);
X = log(S*exp((rf-q)*T)/K);
Z = v*T;
R20 = R(2,0,X,Z,T);
R11 = R(1,1,X,Z,T);
R12 = R(1,2,X,Z,T);
R22 = R(2,2,X,Z,T);
C = BSC(S,K,rf,q,v,T);
cv = BSV(S,K,rf,q,v,T);
y = c + sigma/T*J1*R11*cv + sigma^2*(J3*R20/T^2 + ...;

The function SeriesIICall.m returns the implied volatility in Equation (4.43) and
the Series II call price in (4.44).

function [ivx y] = SeriesIICall(...);
BSC = @(S,K,rf,q,v,T) (S*exp(-q*T)*normcdf(...)...);
J1 = J(rho,theta,kappa,T,v0,1);
J3 = J(rho,theta,kappa,T,v0,3);
J4 = J(rho,theta,kappa,T,v0,4);
v = theta + (v0-theta)*(1-exp(-kappa*T))/(kappa*T);
X = log(S*exp((rf-q)*T)/K);
Z = v*T;
R20 = R(2,0,X,Z,T);
R11 = R(1,1,X,Z,T);



112 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

R12 = R(1,2,X,Z,T);
R22 = R(2,2,X,Z,T);
iv = v + sigma/T*J1*R11 + sigma^2*(J3*R20/T^2 + ...;
y = BSC(S,K,rf,q,iv,T);
ivx = sqrt(iv);

The C# code to generate the Series I call price in Equation (4.42), the implied
variance in (4.43) and the Series II call price in (4.44) is similar and not presented
here. The difference is that we need the C# function NormCDF() to calculate the
standard normal distribution function. Please refer to Chapter 2 for details of that
function.

To illustrate, we calculate the prices of out-of-the money calls with 3 months to
maturity, using S0 = 100, K = 105, r = 0.05, q = 0.01. For the Heston parameters,
we use κ = 10, θ = 0.07, v0 = 0.06, σ = 0.9, and ρ = 0.9. With these settings the
average expected variance v from Equation (4.36) is v = 0.06633, which when used
in (4.35), produces CBS(S0, v, T) = 3.48426 for the Black-Scholes price. The exact
Heston price using 10,000 points in the trapezoidal rule is C(K) = 3.65090. The
Series I and Series II prices in Equations (4.42) and (4.44) are CI(S0, v0, T) = 3.65218
and CII(S0, v0, T) = 3.66106, which are very close to the closed-form price. The Series
II implied variance in (4.43) is vimp = 0.26667. The time average of deterministic
variance is v = 0.25754.

0.135
75 80 85 90 95 100

Strike Price

Series I Implied Vol, 3 months mat.
Series II Implied Vol, 3 months mat.

Series I Implied Vol, 18 months mat.
Series II Implied Vol, 18 months mat.

Exact Price Implied Vol, 3 months mat.

Exact Price Implied Vol, 18 months mat.

Im
pl

ie
d 

V
ol

at
ili

ty

105 110 115 120 125

0.14

0.145

0.15

0.155

0.16

0.165

0.17

FIGURE 4.4 Reproduction of Figure 3.3.1. of Lewis (2000)



The Fundamental Transform for Pricing Options 113

With the parameter values used in Table 3.3.1 of Lewis (2000), namely ρ = −0.5,
v0 = 0.0225, κ = 4, θ = 0.09/4, σ = 0.1, as well as T = 0.25 and S = K = 100,
we obtain from (4.36) the average variance v = 0.0225. The Matlab program
Lewis_Table_Figure.m reproduces the entries in Table 3.3.1 on page 81 of Lewis
(2000), and Figure 3.3.1 on page 80. His figure is reproduced in Figure 4.4, along
with the additional maturity of 18 months.

As indicated in Lewis (2000), for the 3-month maturity, the Series II expansion
implied volatility (dashed line) is more accurate than the Series I expansion implied
volatility (dotted line), since it is closer to the implied volatility extracted from
the exact price (solid line). For the 18-month maturity, however, both series are
accurate.

CONCLUSION

In this chapter, we have presented several powerful and novel approaches developed
by Alan Lewis (2000, 2001) for pricing options under stochastic volatility. The
fundamental transform is extremely convenient, because once the fundamental
transform for a given stochastic volatility model is obtained, European option prices
under the model are readily obtained via their payoff transform. Moreover, in Lewis
(2000), the fundamental transform is available for a wide range of models, and
not restricted to the Heston model. We also examine the approach of Lewis (2001)
for pricing options using Parseval’s identity. Finally, we present the volatility of
volatility series expansion of Lewis (2001), which approximates the Heston (1993)
call price with a sum of analytic terms. The chief advantage of this expansion is
that numerical integration is not required, so option prices can be calculated very
quickly.

Most models encountered in this book, however, require numerical integration.
This poses challenges along several fronts, among which the integration domain
[0, ∞) that must often be reduced to a more manageable domain and possible
extreme oscillations in the integrand. A desirable numerical integration scheme is
one that both overcomes these difficulties and requires little computational time.
This is the subject of the next chapter.



CHAPTER 5
Numerical Integration Schemes

Abstract

The calculation of the call price in the Heston model often requires the evaluation
of an integral. This is true for most of the formulations of the call price we have
encountered, that by Heston (1993), Lewis (2000, 2001), Carr and Madan (1999),
or Attari (2004). Integration usually involves finding the anti-derivative of the
integrand, and applying the Fundamental Theorem of Calculus, according to which
the value of the integral can be expressed in terms of the anti-derivative evaluated
at the endpoints of the integration domain. Unfortunately, in the Heston model,
the anti-derivative of the integrals for the probabilities Pj cannot be found and the
integrals must be approximated numerically.

Quadratures approximate an integral on [a, b] as the sum of functional values
evaluated at discrete points along the integration domain, and multiplied by a weight∫ b

a
f (x)dx ≈

N∑
j=1

wjf (xj). (5.1)

The points (x1, . . . , xN) are called nodes, points, or abscissas, and the points
(w1, . . . , wN) are called weights or coefficients. In this chapter, we present two general
classes of quadratures, Newton-Cotes formulas and Gaussian quadrature. Newton-
Cotes formulas are easy to implement, but they assume equally spaced abscissas.
This means that many abscissas are required in order for the approximation in
Equation (5.1) to be accurate, especially if there are regions in the integration
range where the function is steep or highly oscillatory. The consequence is that the
computing time required to evaluate the sum in (5.1) can be dramatically increased.
Gaussian quadrature requires far fewer abscissas, sometimes as little as 10, but
they are more difficult to understand, and the abscissas and weights are not easy to
obtain. Once these are obtained, however, they can be stored and used when needed.
In this chapter, we present Newton-Cotes formulas and Gaussian quadrature, and
we also show how they can be used to approximate double integrals.

The probabilities Pj in the Heston (1993) model require the integration domain
(0, ∞) so that a = 0 and b = ∞ are required as the limits of the integral in (5.1).
When we use Newton-Cotes formulas, however, we must truncate the upper limit.
This chapter shows how this can be done sensibly using multi-domain integration
described by Zhu (2010). Alternatively, Kahl and Jäckel (2005) transform the
domain of integration to [0, 1], which eliminates the need for truncation altogether.
Finally, in the last two sections of this chapter, we present the fast Fourier transform

115The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



116 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

(FFT) pioneered by Carr and Madan (1999) and the fractional FFT of Chourdakis
(2005), a refinement to the FFT that is more flexible than its predecessor. These
methods are both very fast because they are able to produce a set of option prices
along a grid of strikes in a single calculation.

THE INTEGRAND IN NUMERICAL INTEGRATION

Authors often denote by x0 the first abscissa in the numerical approximation of
Equation (5.1). To make our notation consistent with that for Gaussian quadratures,
we sometimes denote the first abscissa x1. Furthermore, since array indexing in
Matlab starts with 1, it can be convenient for the abscissas to start at 1 also. The
literature on numerical integration method is rich and extensive, and there are many
excellent textbooks on the subject, such as those by Burden and Faires (2010) and
Cohen (2011).

In (5.1), the abscissas are denoted xj, but in the formulas for the integrals of
the Heston model, the integration variable is denoted φ, so the abscissas should be
denoted φj. The form of the integrand depends on which formula we are using to
obtain the Heston call price. If we are using the original Heston (1993) formulation,
the integrand in (5.1) for Pj is

f (φj) = Re

[
e−iφj ln Kfk

(
φj; x, v

)
iφj

]
for k = 1, 2. (5.2)

If we are using the fundamental transform of Lewis (2000) covered in Chapter 4,
the integrand is

f (φj) = Re

[
e−iφjX

1
φ2

j − iφj

Ĥ
(
φj, v, τ

)]
. (5.3)

Finally, if we are using the Carr and Madan (1999) formulation covered in
Chapter 3, the integrand in (5.1) becomes

f (φj) = Re[e−iφj ln Kψ(φj)] (5.4)

where

ψ(φj) = e−rTf2(φj − (α + 1)i; x, v)

α2 + α − φ2
j + i(2α + 1)φj

and where f2 is the characteristic function of the Heston model.

NEWTON-COTES FORMULAS

Newton-Cotes are the simplest integration rules, but also the ones that require the
most computing power. Closed Newton-Cotes formulas partition the domain of
integration [a, b] into equally spaced subintervals using the abscissas x1, x2, . . . , xN.



Numerical Integration Schemes 117

The definition of the abscissas depends on the formula being used. We consider four
types of Newton-Cotes formulas: the mid-point rule, the trapezoidal rule, Simpson’s
rule, and Simpson’s three-eighths rule. We consider the closed version of these rules
only, so-called because the endpoints a and b are used as abscissas.

In the Heston model, we usually require an integral evaluated over the integration
domain (0, ∞). This means that, when we apply Newton-Cotes formulas, we must
select the domain as [φmin, φmax], where φmin is a small number and φmax is a large
number. We saw in Chapter 1 that the Heston integrand can sometimes be highly
oscillatory. Hence, when we select φmax, we must ensure that it is large enough
so that the integrand is sufficiently damped to not cause a loss of accuracy in the
approximation in Equation (5.1). Since the Heston integrand is not defined at φ = 0,
instead we use φmin as the lower limit of the integration domain.

One exception to the requirement of the integration domain (0, ∞) is due to
Kahl and Jäckel (2005). They transform the domain (0, ∞) to the closed interval
[0, 1]. Hence, in their approach, we need not worry about choosing φmin or φmax.
We will see in this chapter that their transformation is particularly well-suited to
Gauss-Lobatto quadrature, rather than Newton-Cotes formulas.

Mid-point Rule

This is the simplest of the Newton-Cotes formulas we present. It approximates
the integral in Equation (5.1) as the sum of rectangles, each with equal width
xj+1 − xj, and with height given by the integrand f (x) evaluated at the mid-point of
the interval (xj, xj+1). Define the abscissas xj = a + (j − 1)h for j = 1, . . . , N, where
h = (b − a)/(N − 1) so that x1 = a and xN = b. Since there are N − 1 subintervals,
the approximation involves N − 1 terms

∫ b

a
f (x)dx ≈ h

N−1∑
j=1

f
(

xj + xj+1

2

)
.

The mid-point rule formula thus uses the weights wj = h for j = 1, . . . , N − 1,
and wN = 0. The following code implements the mid-point rule in Matlab. It is
taken from the Matlab function HestonPriceNewtonCotes.m.

h = (b-a)/(N-1);
phi = [a:h:b];
wt = h.*ones(1,N);
for k=1:N-1;

mid(k) = (phi(k) + phi(k+1))/2;
int1(k) = wt(k)*HestonProb(mid(k),...,1);
int2(k) = wt(k)*HestonProb(mid(k),...,2);

end
I1 = sum(int1);
I2 = sum(int2);
P1 = 1/2 + 1/pi*I1;
P2 = 1/2 + 1/pi*I2;



118 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Trapezoidal Rule

This rule is only slightly more complicated as it approximates the integral in Equation
(5.1) as the sum of trapezoids, each with equal width xj+1 − xj, but with height defined
by the value of f (x) at each of the endpoints. The trapezoids are constructed by
joining the line segments at f (xj) and f (xj+1). Define the abscissas as in the mid-point
rule in the previous section. The trapezoidal rule uses the weights w1 = wN = h/2
and wj = h for j = 2, . . . , N − 1. Hence, the approximation in (5.1) is∫ b

a
f (x)dx ≈ h

2
f (x1) + h

N−1∑
j=2

f (xj) + h
2

f (xN).

The Matlab code for implementing the trapezoidal rule is straightforward also.
It appears in the Matlab function HestonPriceNewtonCotes.m.

wt = h.*[1/2 ones(1,N-2) 1/2];
for k=1:N;

int1(k) = wt(k)*HestonProb(phi(k),...,1);
int2(k) = wt(k)*HestonProb(phi(k),...,2);

end

Trapezoidal Rule for Double Integrals

In Chapter 8, we will encounter the model of Chiarella and Ziogas (2006) for pricing
American call options in the Heston (1993) model. Their method requires a routine
for the numerical evaluation of a double integral. One of the simplest methods for
double integration is the composite trapezoidal rule described by Burden and Faires
(2010). Suppose we wish to evaluate a double integral on the domain [a, b] × [c, d].
The composite trapezoidal rule approximates the integral as

∫ b

a

(∫ d

c
f (x, y) dy

)
dx

≈ (b − a)(d − c)
16

×
[
f (a, c) + f (a, d) + f (b, c) + f (b, d) + 2

(
f
(

a + b
2

, c
)

+ f
(

a + b
2

, d
)

+ f
(

a,
c + d

2

)
+ f

(
b,

c + d
2

))
+ 4f

(
a + b

2
,

c + d
2

)]
.

(5.5)
The Matlab function DoubleTrapz.m implements the composite trapezoidal

rule, in accordance with Equation (5.5).

function y = DoubleTrapz(f,X,Y)
Nx = length(X);
Ny = length(Y);
for y=2:Ny



Numerical Integration Schemes 119

a = Y(y-1);
b = Y(y);
for x=2:Nx

c = X(x-1);
d = X(x);
term1 = f(a,c) + f(a,d) + f(b,c) + f(b,d);
term2 = f((a+b)/2,c) + f((a+b)/2,d) + ...;
term3 = f((a+b)/2,(c+d)/2);
Int(x,y) = (b-a)*(d-c)/16*(...);

end
end
y = sum(sum(Int));

To invoke the function, we create an integration grid for [a, b] × [c, d], create
a function for f (x, y), and then pass the function to the DoubleTrapz.m function in
the first argument. To illustrate, we run the following code to evaluate the standard
normal bivariate distribution.

f = @(x,y) (0.5/pi*exp(-(x^2+y^2)/2));
for j=1:NX;

X(j) = LoX + j*dx;
end
for j=1:NY;

Y(j) = LoY + j*dy;
end
TrapValue = DoubleTrapz(f,X,Y);

The DoubleTrapz.m function returns the value 0.18075 for the value of the
standard normal bivariate distribution function at the point (x, y) = (−0.515, 0.243),
which is very close to the value obtained using the Matlab function mvncdf.m. The
C# code for the composite trapezoidal rule is very similar and not presented here.

Simpson’s Rule

Simpson’s rule is more complicated than either the mid-point rule or the trapezoidal
rule, since it uses quadratic polynomials in the approximation in Equation (5.1),
rather than straight lines. As such, however, it is much more accurate. Simpson’s
rule uses the same abscissas as the mid-point and trapezoidal rules, but defines the
weights as w1 = wN = h/3, along with wj = 4h/3 when j is even, and wj = 2h/3
when j is odd. Hence, we can represent the approximation (5.1) as∫ b

a
f (x)dx ≈ h

3
f (x1) + 4h

3

N/2−1∑
j=1

f (x2j) + 2h
3

N/2∑
j=1

f (x2j−1) + h
3

f (xN).

Implementing Simpson’s rule in Matlab is no more complicated than imple-
menting the mid-point or trapezoidal rule. We need only be careful of the alternating



120 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

nature of the weights that depend on whether j is even or odd. The following code,
taken from the Matlab function HestonPriceNewtonCotes.m, is used to implement
this rule.

wt = (h/3).*[1 (3+(-1).^[2:N-1]) 1];
for k=1:N;

int1(k) = wt(k)*HestonProb(phi(k),...,1);
int2(k) = wt(k)*HestonProb(phi(k),...,2);

end

Simpson’s Three-Eighths Rule

Simpson’s three-eighths rule is a refinement to Simpson’s rule. It uses cubic polyno-
mials in the approximation in Equation (5.1), rather than quadratic polynomials. To
implement Simpson’s three-eighths rule, it is more convenient to start the abscissas
at x0 and define them as xj = a + ih for i = 0, . . . , N where N is a number divisible
by three and with h = (b − a)/N. The weights wj for Simpson’s three-eighths rule
depend on whether j is divisible by three

wj =

⎧⎪⎨⎪⎩
3h/8 if j = 0 or j = N
6h/8 if j = 3, 6, 9, . . .
9h/8 otherwise.

For example, with N = 12, the weights are

j 0 1 2 3 4 5 6 7 8 9 10 11 12

wj

3h
8

9h
8

9h
8

6h
8

9h
8

9h
8

6h
8

9h
8

9h
8

6h
8

9h
8

9h
8

3h
8

Simpson’s three-eighths rule is, therefore,

∫ b

a
f (x)dx ≈ 3h

8
f (x0) + 6h

8

N−3∑
j=3,6,9,...

f (xj) + 9h
8

N−1∑
j �=3,6,9,...

f (xj) + 3h
8

f (xN).

The following snippet of code implements Simpson’s three-eighths rule. It is
taken from the Matlab function HestonPriceNewtonCotes.m.

N = N-mod(N,3)+1;
h = (b-a)/(N-1);
wt = (3*h/8).*[[1 3 3] repmat([2 3 3],1,(N-1)/3-1) 1];
phi = [a:h:b];
for k=1:N

int1(k) = wt(k)*HestonProb(phi(k),...,1);
int2(k) = wt(k)*HestonProb(phi(k),...,2);

end



Numerical Integration Schemes 121

Because of the array indexing, which starts at one and not zero, to implement
this rule in Matlab we need to ensure that N − 1 is divisible by three. The first
part of the code ensures that this holds. We use the Matlab function repmat.m to
construct the weights, and proceed as in the previous rules.

GAUSSIAN QUADRATURE

In Newton-Cotes formulas, the abscissas are fixed and usually spaced equally.
Gaussian quadrature uses unequally spaced abscissas, and weights which can easily
be computed in Matlab. Gaussian quadrature is more accurate than Newton-Cotes
quadrature and requires far fewer abscissas. Moreover, since the abscissas are
specified for us in advance, we need not worry about selecting the upper and lower
limits φmin and φmax for the integration range (0, ∞).

Gaussian quadrature approximates the integral over the range [a, b] by the
weighted sum of the integrand evaluated at the abscissas, as in Equation (5.1),
reproduced here for convenience∫ b

a
f (x)dx ≈

N∑
k=1

wkf (xk).

Similar to Newton-Cotes formulas, Gaussian quadrature requires a set of
abscissas (x1, . . . , xN) along with a set of weights (w1, . . . , wN). The values of the
abscissas and weights depends on the choice of quadrature and on the choice of N.
For our purposes, the choice of method depends largely on the integration range
for which the quadrature is designed. Quadratures are described in many textbooks
on the subject, such as that by Cohen (2011), Stroud and Secrest (1966), or on
the Wolfram website (www.mathworld.wolfram.com). In the following sections,
we describe Gauss-Laguerre, Gauss-Legendre, and Gauss-Lobatto quadratures, and
present algorithms for finding the weights and abscissas of each method.

Gauss-Laguerre Quadrature

Gauss-Laguerre quadrature is especially relevant for the purposes of evaluating the
integral for the Heston model, because it is designed for integrals over the integration
domain (0, ∞). Suppose we wish to apply Gauss-Laguerre quadrature with N points.
The abscissas (x1, . . . , xN) are the roots of the Laguerre polynomial LN(x) of order
N defined as

LN(x) =
N∑

k=0

(−1)k

k!

(
N
k

)
xk (5.6)

where
(

N
k

)
is the binomial coefficient. There are N roots in all. The weights

(w1, . . . , wN) are obtained with the derivative of LN(x) evaluated at each of the N
abscissas

L′
N(xj) =

N∑
k=1

(−1)k

(k − 1)!

(
N
k

)
xk−1

j for j = 1, . . . , N. (5.7)



122 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

We then define each weight as

wj = (n!)2exj

xj[L
′
N(xj)]2

for j = 1, . . . , N.

Note that the Laguerre polynomial in Equation (5.6) has N + 1 terms, but its
derivative (5.7) has N terms, which is the correct number of terms required for the
approximation in (5.1).

It is straightforward to use Matlab to calculate the abscissas and weights for any
N. This is accomplished with the GenerateGaussLaguerre.m function, which returns
the abscissas and weights in the vectors x and w, respectively.

function [x w] = GenerateGaussLaguerre(n)
for k=0:n

L(k+1) = (-1)^k/factorial(k)*nchoosek(n,k);
end
L = fliplr(L);
x = flipud(roots(L));
w = zeros(n,1);
for j=1:n

for k=1:n
dL(k,j) = (-1)^k/factorial(k-1)*nchoosek(n,k)*...;

end
w(j) = 1/x(j)/sum(dL(:,j))^2;
w(j) = w(j)*exp(x(j));

end

To numerically evaluate the Heston integrals for P1 and P2 using Gauss-
Laguerre integration, we first generate abscissas and weights, evaluate the integrand
at each abscissa, apply the weight, and take the sum. This is implemented as
part of the Matlab function HestonPriceGaussLaguerre.m, which returns the call
price, or the put price by put-call parity. To conserve space, parts of the function
are omitted.

function y = HestonPriceGaussLaguerre(PutCall,...)
for k=1:length(x);

int1(k) = w(k)*HestonProb(x(k),...,1);
int2(k) = w(k)*HestonProb(x(k),...,2);

end
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);
HestonC = S*exp(-q*T)*P1 - K*exp(-r*T)*P2;



Numerical Integration Schemes 123

To illustrate, suppose that S = K = 100, T = 1.5, r = 0.05, q = 0.01, κ = 2,
σ = 0.3, θ = v0 = 0.05, and ρ = 0.45. The Matlab code

[x w] = GenerateGaussLaguerre(32);
HestonPriceGaussLaguerre('C',100,100,1.5,0.05,0.01,2,0.05,0.3,0,

0.05,0.45,1,x,w)

returns a call price of 13.2561.

Gauss-Legendre Quadrature

Gauss-Legendre quadrature is designed for integrals over the integration domain
[−1, +1], but this can be modified to accept any finite domain [a, b] through the
transformation ∫ b

a
f (x)dx = b − a

2

∫ 1

−1
f
(

b − a
2

x + a + b
2

)
dx. (5.8)

Since the endpoints a and b are not included in the abscissas, to implement
Gauss-Legendre quadrature for the Heston model, we can select a = 0. We must,
however, still set b = φmax, a large number. In Gauss-Legendre quadrature with N
points, the abscissas (x1, . . . , xN) are the roots of the Legendre polynomial PN(x)
defined as

PN(x) = 1

2N

�N/2�∑
k=0

(−1)k

(
N
k

) (
2N − 2k

N

)
xN−2k (5.9)

where � � is the floor function. The weights (w1, . . . , wN) are obtained with the
derivative of PN(x) evaluated at the abscissas. Similar to what is done for Gauss-
Laguerre quadrature, we evaluate the derivative at each of the N abscissas

P′
N(x) = 1

2N

�N/2�∑
k=0

(−1)k

(
N
k

) (
2N − 2k

N

)
(N − 2k)xN−2k−1. (5.10)

We then define each weight as

wj = 2
(1 − x2

j )[P′
N(xj)]2

for j = 1, . . . , N.

The binomial coefficients grow very quickly, so for numerical implementation,
it is best to replace Equations (5.9) and (5.10) with, respectively

PN(x) = 1

2N

�N/2�∑
k=0

(−1)k (2N − 2k)!
k!(N − k)!(N − 2k)!

xN−2k



124 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

and

P′
N(x) = 1

2N

�N/2�∑
k=0

(−1)k (2N − 2k)!
k!(N − k)!(N − 2k)!

(N − 2k)xN−2k−1.

The Legendre polynomials PN(x) are defined in such a way that some of the
coefficients are zero. Indeed, when N is even, PN(x) contains only even powers of
x, and when N is odd, PN(x) contains only odd powers. For N = 3 and N = 6, for
example, the Legendre polynomials are

P3(x) = 1
2

(5x3 − 3x)

= 1
2

(5x3 + 0x2 − 3x1 + 0x0),

P6(x) = 1
16

(231x6 − 315x4 + 105x2 − 5)

= 1
16

(231x6 + 0x5 − 315x4 + 0x3 + 105x2 + 0x1 − 5x0).

Hence, when we calculate Legendre polynomials in Matlab, we must ensure that
we include these zero values when we apply the roots.m Matlab function to find its
roots. This is illustrated in the Matlab function GenerateGaussLegendre.m, which
generates the abscissas and weights for a given number of points.

function [x w] = GenerateGaussLegendre(n)
m = floor(n/2);
for k=0:m

L(k+1) = (1/2^n)*(-1)^k*factorial(2*n-2*k) ...;
end
for k=1:n+1

if mod(k,2)==0
P(k)=0;

else
P(k) = L((k+1)/2);

end
end
x = sortrows(roots(P));
w = zeros(n,1);
for j=1:n

for k=0:m
dC(k+1,j) = (1/2^n)*(-1)^k*factorial(2*n-2*k) ...;

end
w(j) = 2/(1-x(j)^2)/sum(dC(:,j))^2;

end

To numerically evaluate the Heston integrals for P1 and P2 using Gauss-Legendre
integration, we proceed in the same way as we did earlier for Gauss-Laguerre



Numerical Integration Schemes 125

integration. We first generate abscissas and weights, evaluate the integrand at each
abscissa, apply the weight, and take the sum. We must ensure, however, that the
transformation in (5.8) is correctly applied. This is implemented as part of the Matlab
function HestonPriceGaussLegendre.m.

function y = HestonPriceGaussLegendre(...,x,w,a,b)
for k=1:length(x);

X = (a+b)/2 + (b-a)/2*x(k);
int1(k) = w(k)*HestonProb(X,...,1);
int2(k) = w(k)*HestonProb(X,...,2);

end
P1 = 1/2 + 1/pi*sum(int1)*(b-a)/2;
P2 = 1/2 + 1/pi*sum(int2)*(b-a)/2;
HestonC = S*exp(-q*T)*P1 - K*exp(-r*T)*P2;

The difference with Gauss-Laguerre integration is that we need to specify the
upper and lower limits a and b of the integrand. Since the endpoints are not part of
the abscissas, we can specify a = 0, and for b we can select a large number, such as
b = 100. For example, the Matlab code

[x w] = GenerateGaussLegendre(32);
HestonPriceGaussLegendre('C',100,100,1.5,0.05,0.01,2,0.05,0.3,0,

0.05,0.45,1,x,w,0,100)

produces a call price of 13.2561, which is identical to the call price obtained using
32-point Gauss-Laguerre integration in the previous section.

Gauss-Lobatto Quadrature

Gauss-Lobatto quadrature is also designed for integrals over the integration range
[−1, +1] and can be modified to accept any finite range [a, b] through the transfor-
mation in Equation (5.8). The quadrature can be easily constructed from Legendre
polynomials. The advantage of Gauss-Lobatto quadrature over the Gauss-Laguerre
and Gauss-Legendre quadrature is that the endpoints of the interval, a and b, are
included in the set of abscissas, so that x1 = a and xN = b. The remaining N − 2
abscissas (x2, . . . , xN−1) are the roots of P′

N−1(x), the derivative of the Legendre
polynomial in (5.10), but of order N − 1. The weights of the abscissas (x2, . . . , xN−1)
are given as in terms of the Legendre polynomials PN−1(x) in (5.9) as

wj = 2
N(N − 1)[PN−1(xj)]2

for j = 2, . . . , N − 1.

The weights at the endpoints are

w1 = 2
N(N − 1)

and wN = w1.



126 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The Matlab function GenerateGaussLobatto.m generates the abscissas and
weights for a given number of points.

function [x w] = GenerateGaussLobatto(N)
n = N-1;
m = floor(n/2);
for k=0:m

L(k+1) = (1/2^n)*(-1)^k*factorial(2*n-2*k) ...;
dL(k+1) = (1/2^n)*(-1)^k*factorial(2*n-2*k) ...;

end
for k=1:n+1

if mod(k,2)==0
P(k)=0;
dP(k) = dL(k/2);

else
P(k) = L((k+1)/2);
dP(k) = 0;

end
end
x = sortrows(roots(dP));
x = [-1 x’ 1]’;
w = zeros(n+1,1);
for j=2:n+1

for k=1:n+1
Poly(k) = P(k)*x(j)^(n+1-k);

end
w(j) = 2/N/(N-1)/sum(Poly)^2;

end
w(1) = 2/N/(N-1);
w(n+1) = w(1);

To implement Gauss-Lobatto quadrature for the Heston call or put price, we
can use the HestonPriceGaussLegendre.m function described earlier. We simply pass
the Gauss-Lobatto weights and abscissas to the function, instead of the Gauss-
Legendre weights and abscissas. Since the endpoints a and b form part of the
abscissas, however, we cannot specify a = 0 but must select a small number instead.
Continuing with the example, the code

[x w] = GenerateGaussLobatto(32);
HestonPriceGaussLegendre('C',100,100,1.5,0.05,0.01,2,0.05,0.3,0,

0.05,0.45,1,x,w,1e-5,100)

produces a call price of 13.2561, which is identical to the call price obtained in the
previous sections.

Gaussian Quadrature for Double Integrals

The generalization of Gaussian quadrature to double integrals is straightforward.
We illustrate using Gauss-Legendre quadrature, since it can be used for integrals
over a general domain of integration, using the transformation in Equation (5.8).



Numerical Integration Schemes 127

Burden and Faires (2010) show that Gauss-Legendre approximation to the double
integral over the domain [a, b] × [c, d] is

∫ b

a

(∫ d

c
f (x, y) dy

)
dx ≈

N2∑
j=1

N1∑
i=1

h1k1wi,1wj,2 · f (h1xi,1 + h2, k1xj,2 + k2). (5.11)

The approximation uses two sets of Gauss-Legendre abscissas and weights,
of sizes N1 and N2. In (5.11), wi,1 and wj,2 are the weights, xi,1 and xj,2 are the
abscissas, and h1 = (b − a)/2, h2 = (b + a)/2, k1 = (d − c)/2, and k2 = (d + c)/2.
The approximation in (5.11) is implemented with the DoubleGaussLegendre.m
function.

function y = DoubleGaussLegendre(f,a,b,c,d,x1,w1,x2,w2)
h1 = (b-a)/2; h2 = (b+a)/2;
k1 = (d-c)/2; k2 = (d+c)/2;
for i=1:N1;

for j=1:N2
Int(i,j) = h1*k1*w1(i)*w2(j) * f(h1*x1(i)+h2,k1*x2(j)+k2);

end
end
y = sum(sum(Int));

We use the following code to implement the same example of the standard
normal bivariate distribution used to illustrate the composite trapezoidal rule.

f = @(x,y) (0.5/pi*exp(-(x^2+y^2)/2));
[x1 w1] = GenerateGaussLegendre(12);
[x2 w2] = GenerateGaussLegendre(14);
a = -5;
b = -0.515;
c = -5;
d = 0.243;
GLeValue = DoubleGaussLegendre(f,a,b,c,d,x1,w1,x2,w2);

The code returns a value of 0.18075, which is very close to the true value.

Gaussian Quadrature in C#

The C# code to generate the abscissas and weights of the Gauss-Laguerre quadrature
is similar to the Matlab code presented in this chapter. We need, however, a C#
routine to find the roots of the Laguerre polynomial LN(x) defined in Equation (5.6).
One simple way to obtain the roots of LN(x) is to first obtain the Sturm sequence
of polynomials for LN(x), then find the regions in x over which the Sturm poly-
nomials change sign, aggregate the sign changes, and find the regions over which



128 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

the number of sign changes decreases. This will identify the regions in x over
which LN(x) changes sign, and consequently, where the roots are located. This
approach to finding roots of polynomials is described in textbooks such as that by
McNamee (2007).

To implement this method in C#, we first need the polyrem() function for
obtaining the remainder of polynomial division, adapted from the C++ code in
Press et al. (2007).

static double[] polyrem(double[] P,double[] Q){
int nP = P.Length - 1;
int nQ = Q.Length - 1;
while(nQ >= 0 && Q[nQ] == 0) nQ--;
double[] rem = new double[nP+1];
Array.Copy(P,rem,nP+1);
double[] quo = new double[P.Length];
for(int k=nP-nQ;k>=0;k--) {

quo[k] = rem[nQ+k]/Q[nQ];
for(int j=nQ+k-1;j>=k;j--)

rem[j] -= quo[k]*Q[j-k];
}
for(int j=nQ;j<=nP;j++)

rem[j] = 0.0;
return rem;}

The sturm() C# function generates the Sturm sequence of polynomials. It uses
the polydiff() function, which returns the first-order derivative of a polynomial. Since
the Sturm sequence is comprised of polynomials of different degrees, the sequence is
stored in a jagged array in C#.

static double[][] sturm(double[] p) {
int N = p.Length;
double[][] P = new double[N][];
P[0] = p;
P[1] = polydiff(p);
for(int j=2;j<=N-1;j++){

P[j] = polyrem(P[j-2],P[j-1]);
for(int k=0;k<P[j].Length;k++)

P[j][k] = -P[j][k];}
return P;}

Finally, the findroot() function returns a vector of roots of a polynomial. The
function uses the C# function findintervals(), which returns the intervals on which
the polynomial changes sign, in the form two vectors: one each for the left and right
endpoints of each interval. These endpoints are in the vectors StartInt[] and EndInt[],
respectively, which are returned as part of the C# structure SturmRoots. The left
and right endpoints produce values of the polynomial that are opposite in sign, so
the root is contained within the interval defined by the endpoints. These endpoints
are used as inputs to the Bisection() function, which uses the bisection algorithm to
find the root.



Numerical Integration Schemes 129

static double[] findroot(double[] C,...) {
// Find the Sturm sequence
double[][] Sturm = sturm(C);
int nS = C.Length;
// Find the signs of the Sturm sequences over intervals
SturmRoots sr = findintervals(a,b,nI,C,Sturm,nS);
// Number of roots and start/end of the intervals
int NRoots = sr.NRoots;
List<double> StartInt = sr.StartInt;
List<double> EndInt = sr.EndInt;
// Apply the bisection algorithm to find the roots
double[] root = new double[NRoots];
for(int i=0;i<=NRoots-1;i++) {

a = StartInt[i];
b = EndInt[i];
root[i] = Bisection(C,a,b,Tol,MaxIter);}

return root;}

To illustrate, suppose that N = 5 so that the Laguerre polynomial in
Equation (5.6) is

L5(x) = 1 − 5x + 5x2 − 5
3

x3 + 5
24

x4 − 1
120

x5. (5.12)

This polynomial is plotted in Figure 5.1. The figure indicates the location of
the five roots of L5(x) with circles. Table 5.1 lists the left and right endpoints

–10

0

0 2

Laguerre polynomial of degree 5
Polynomial roots

4 6 8 10 12 14

10

20

30

40

50

FIGURE 5.1 Laguerre Polynomial of Fifth Order



130 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 5.1 Roots and Weights of the Fifth Order Laguerre Polynomial

Number Left Endpoint Right Endpoint Root Weight

1 0.2500 0.3300 0.2636 0.6791
2 1.3699 1.4499 1.4134 1.6385
3 3.5297 3.0697 3.5964 2.7694
4 7.0494 7.1294 7.0858 4.3157
5 12.5690 12.6489 12.6408 7.2192

of the intervals containing the roots. These are produced by the findintervals()
function. It also lists the roots from the findroots() function, and the weights from
the GaussLaguerre() function.

We use the following code snippet to generate Gauss-Laguerre abscissas and
weights for N = 32 points.

int n = 32;
// Settings for bisection algorithm
double Tol = 1e-10;
int MaxIter = 5000;
// Starting and ending values for interval
double a = 0.0;
double b = 120.0;
int nI = 1500;
// Gauss Laguerre abscissas and weights
XW xw = GaussLaguerre(n,a,b,nI,Tol,MaxIter);

In the code, we select [a, b] = [0, 120] as the range that contains all the roots of
L32(x), and consequently, all the abscissas.

The code to generate weights and abscissas for Gauss-Legendre and Gauss-
Lobatto quadrature is very similar to the C# code in this chapter and is not presented
here. We note, however, that since the roots of PN(x) defined in Equation (5.9) are
all contained in [−1, 1], we select [a, b] = [−1, 1] as the range for both of these
quadratures.

INTEGRATION LIMITS AND KAHL AND JÄCKEL TRANSFORMATION

When we implement Gauss-Laguerre integration, the abscissas are provided to us, so
we need not worry about choosing the lower and upper limits of integration. When
we implement the Newton-Cotes formulas and Gauss-Legendre or Gauss-Lobattao
quadratures, however, we need to provide the limits. The lower limit required in
Equation (5.1) is a = 0, but if we use the original Heston formulation of the integrand
in (5.2) then we cannot use zero since the integrand is undefined there. We therefore
must use a small number φmin for a. The upper limit required in (5.1) is b = ∞, so
we must truncate the integration domain and choose a large number b = φmax for



Numerical Integration Schemes 131

the upper limit. How large a number depends on how fast the integrand, which
typically oscillates, decays to zero. In general, the oscillation and the speed of decay
both vary inversely with maturity, so that short maturities oscillate substantially and
require a large number for the upper limit. This is illustrated in Figure 5.2 for typical
values of Heston parameters and option settings.

In general, it is not wise to use ad-hoc choices for the upper integration limit, but
rather, use a choice that takes into consideration the speed of decay of the integrand,
as illustrated in Figure 5.2. For example, in his Mathematica code, Lewis (2000)
uses φmax = max[1000, 10/

√
v0τ ].

We can also use the multi-domain integration approach described by Zhu (2010)
to select the upper integration limit. In this method, the domain of integration
is separated into subdomains (a0, a1], (a1, a2], (a2, a3] and so on, where a0 = 0
and a0 < a1 < a2 < a3 < · · ·. The integral for the probability Pj is constructed by
aggregating the integrals over each subdomain, as

∑
k≥0

∫ ak+1

ak

Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]
dφ.

The summation stops when the subdomain integrals cease to contribute to the
sum. In other words, when we observe∣∣∣∣∣

∫ aM+1

aM

Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]
dφ

∣∣∣∣∣ < ε (5.13)

–0.1

0

–0.05

0 5 10 15 20 25 30

0.05

0.1

0.15

0.25

0.2

0.3

0.35

0.4
Maturity 1 month
Maturity 6 months
Maturity 12 months

FIGURE 5.2 Integrand Decay and Maturity



132 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

for some integer M, where ε is a tolerance level. The integration domain is thus
(0, aM] so that φmax = aM. Zhu (2010) explains that this method has the advantage
of assigning the upper limit optimally, with the ability to adapt to different strikes,
maturities, and parameter values. Moreover, the method will automatically assign a
wider domain to shorter maturity options, for which the integrand tends to oscillate,
and a narrower domain to longer maturity options, for which the integrand is better
behaved. The method is thus able to reduce computation time by avoiding domains
that are needlessly wide. It also increases accuracy by assigning a wide domain to
those integrals that require it.

Gauss-Legendre or Gauss-Lobatto quadrature is particularly well-suited for
this method, since both can accommodate integrals on any domain, by using the
transformation in Equation (5.8). Hence, to apply the multi-domain integration
method of Zhu (2010), we can generate abscissas and weights once, and use
these to obtain the integrals on the subdomains, applying the transformation
each time. We stop when the condition in (5.13) is satisfied. The Matlab function
HestonPriceGaussLegendreMD.m implements the multi-domain integration method.

function [Price D N] = HestonPriceGaussLegendreMD(...,xGLe,wGLe)
for j=2:length(A);

for k=1:length(xGLe);
% Lower and upper limits
a = A(j-1);
b = A(j);
X = (a+b)/2 + (b-a)/2*xGLe(k);
% The integrals
int1(j,k) = wGLe(k)*HestonProb(X,...,1)*(b-a)/2;
int2(j,k) = wGLe(k)*HestonProb(X,...,2)*(b-a)/2;
% Sum the integrals over each subdomain
sum1(j) = sum(int1(j,:));
sum2(j) = sum(int2(j,:));

end
% Stopping criterion
if abs(sum1(j))<tol && abs(sum2(j))<tol

break;
end

end
P1 = 1/2 + 1/pi*sum(sum1);
P2 = 1/2 + 1/pi*sum(sum2);
HestonC = S*exp(-q*T)*P1 - K*exp(-r*T)*P2;
% Integration domain and points
D = [A(1) A(j)];
N = length(A(1:j));

The function accepts as input a set of points defining the subdomains. It outputs
the call price, or the put price by put-call parity. It also outputs the resulting domain
of integration and the number of points used. The C# function to implement this
method is very similar to the Matlab code and is not presented here.

To illustrate the multi-domain integration of Zhu (2010), we use the set-
tings for the example that illustrates Gaussian quadrature throughout this chapter.



Numerical Integration Schemes 133

Recall that the maturity in this example is τ = 1.5. The following code implements
the multi-domain integration. We separate the integration domain (0, 150] into
10 subdomains.

[xGLe wGLe] = GenerateGaussLegendre(32);
% The domain of integration and the tolerance
lo = 1e-10; hi = 150;
N = 10;
dA = (hi - lo)/N;
A = [lo:dA:hi];
tol = 1e-6;
% Calculate the "true" option price using Newton-Cotes
N = 10000;
method = 3;
a = 1e-20;
b = 150;
PriceSimpson = HestonPriceNewtonCoates(...,method,a,b,N);
% Calculate the price using a multi-domain of integration
[PriceMD Domain Npoints] = HestonPriceGaussLegendreMD(...,xGLe,wGLe);

The price using multi-domain integration with a tolerance level of ε = 10−6 is
13.2563, which is very close to the price of 13.2561 using Simpson’s rule with
10,000 points and an integration range of (0, 150]. With this tolerance level, the
algorithm returns φmax = 21.45, so the integration range is substantially narrower
and the computation time is decreased. If we reduce the maturity to τ = 0.5, the price
drops to 7.1026, which again is very accurate. The algorithm returns φmax = 35.4,
however, so the domain of integration is substantially wider than that for τ = 1.5
and the computation time is increased.

Another approach to finding an adequate domain of integration is to transform
the domain φ ∈ [0, ∞) to a more manageable interval x ∈ [0, 1], as suggested by
Kahl and Jäckel (2005). In their method, the argument φ in the Heston integrand

Re

[
e−iφ ln Kfj (φ; x, v)

iφ

]

is replaced by − ln x/C∞, where C∞ = √
1 − ρ2(v0 + κθτ )/σ 2 and where τ is the

time to maturity, and the integrands are divided by xC∞. The call price becomes

C(K) = e−rτ

∫ 1

0
y(x)dx (5.14)

where

y(x) = 1
2

(F − K) + Ff1(− ln x/C∞) − Kf2(− ln x/C∞)
xπC∞

(5.15)

and where F = e(r−q)τ . In the form of (5.15) the integral y(x) is not defined at the
endpoints x = 0 and x = 1, which implies that the integration can only be done over



134 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

the range (0, 1). However, Kahl and Jäckel (2005) derive the limits of the integrand
analytically

lim
x→0

y(x) = 1
2

(F − K)

lim
x→1

y(x) = 1
2

(F − K) +
F lim

u→0
f1(u) − K lim

u→0
f2(u)

πC∞
.

The expressions for lim
u→0

fj(u) are given in their Equations (44) and (50). Hence,

lim
u→0

f1(u) = ln(F/K) + Im[C′(−i)] + Im[D′(−i)]v0 (5.16)

and

lim
u→0

f2(u) = ln(F/K) + Im[C′(0)] + Im[D′(0)]v0. (5.17)

In this last expression, we have

Im[C′(0)] = −e−κτ θκ + θκ(κτ − 1)
2κ2

, Im[D′(0)] = e−κτ/2 − 1
2κ

.

In Equation (5.16), when κ − ρσ �= 0, we have

Im[C′(−i)] = e(ρσ−κ)τ θκ + θκ((κ − ρσ )τ − 1)
2(κ − ρσ )2

Im[D′(−i)] = 1 − e−(κ−ρσ )τ

2(κ − ρσ )

but when κ − ρσ = 0, these simplify to

Im[C′(−i)] = κθτ 2

4
, Im[D′(−i)] = τ

2
.

Kahl and Jäckel (2005) recommend the use of Gauss-Lobatto quadrature for the
integral in Equation (5.14). This is sensible, because this quadrature includes in the
abscissas the endpoints of the integration domain [−1, +1]. When the transformation
in (5.8) is applied, the result is that the endpoints of the transformed domain [0, 1]
required of the Kahl and Jäckel method are included in the abscissas.

The Matlab function HestonPriceKahlJackel.m implements the call price in
(5.14) and returns the call price or the put price by put-call parity.

function y = HestonPriceKahlJackel(...)
for u = 1:length(X);

% Transformation of the abscissa
x = 0.5*X(u) + 0.5;
if x == 0;

% Integrand at left abscissa 0
y(u) = 0.5*(F-K);



Numerical Integration Schemes 135

elseif x == 1
% Integrand at right abscissa 1
f1 = log(F/K) + ImC1 + ImD1*v0;
f2 = log(F/K) + ImC2 + ImD2*v0;
y(u) = 0.5*(F-K) + (F*f1 - K*f1)/(pi*Cinf);

else
% Integrand at remaining abscissas
f1 = HestonProb(-log(x)/Cinf,...,1);
f2 = HestonProb(-log(x)/Cinf,...,2);
y(u) = 0.5*(F-K) + (F*f1 - K*f2)/(x*pi*Cinf);

end
% Multiply by the weights
z(u) = W(u)*y(u);

end
% The call price
KJCall = exp(-rf*T)*(1/2)*sum(z);

To illustrate, we use the following settings: S = 10, K = 7, r = 0.06, q = 0.04,
a maturity of 1 month, and the parameters κ = 1, θ = 0.06, σ = 0.5, v0 = 0.06,
and ρ = −0.8. Gauss-Laguerre and Gauss-Lobatto integration using the Heston
formulation and 32 abscissas produce a call price of 3.0006 and 3.0017, respectively.
The same Gauss-Lobatto weights used along with the Kahl and Jäckel (2005)
formulation produces a price of 2.9992.

Kahl and Jäckel’s integrand is plotted in Figure 5.3 along with the val-
ues of the integrand at the 32 Gauss-Lobatto abscissas. The integral is highly

–1

0

0 0.2

Kahl-Jackel Integrand
K-J Integrand at Gauss-Lobatto abscissas

0.4 0.6 0.8 1

1

2

3

4

7

5

6

FIGURE 5.3 Kahl and Jäckel (2005) Integrand



136 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

oscillatory, but since it dampens quickly, the oscillation causes a negligible loss of
precision only.

ILLUSTRATION OF NUMERICAL INTEGRATION

The Matlab function HestonPriceNewtonCotes.m contains all the code necessary to
implement the four Newton-Cotes formulas in this chapter, while the functions Hes-
tonPriceGaussLaguerre.m and HestonPriceGaussLegendre.m are used for Gaussian
quadrature. In the following example, we calculate the price of 1-month European
calls and puts when the spot is S = 100 and with r = 0.03 and q = 0.02. We use
common parameter settings. We use 100 abscissas for the Newton Cotes formulas,
but only 5 abscissas for the Gaussian quadrature. The prices for strikes ranging from
K = 98 to K = 102 are in Table 5.2 for the calls and in Table 5.3 for the puts, along
with the mean absolute error in the last column.

The results indicate that the four Newton-Cotes formulas produce prices that
are fairly accurate. The Gauss-Legendre and Gauss-Lobatto quadratures are also
very accurate, especially in light of the fact that they use five abscissas only. The
Gauss-Laguerre quadrature is the least accurate of all the methods.

TABLE 5.2 Comparison of Quadratures on Call Prices

Method K = 98 K = 99 K = 100 K = 101 K = 102 Error

True Price 2.70 1.97 1.37 0.86 0.43
100-pt. Mid-Point 2.71 2.04 1.41 0.84 0.39 0.0369
100-pt. Trapezoidal 2.71 2.04 1.41 0.84 0.39 0.0369
100-pt. Simpson’s 2.71 2.04 1.41 0.84 0.39 0.0375
100-pt. Simpson’s 3/8 2.71 2.04 1.41 0.84 0.39 0.0369
5-pt. Gauss Laguerre 1.80 1.16 0.61 0.16 −0.21 0.7634
5-pt. Gauss Legendre 2.71 2.04 1.41 0.83 0.38 0.0376
5-pt. Gauss Lobatto 2.71 2.04 1.41 0.84 0.39 0.0372

TABLE 5.3 Comparison of Quadratures on Put Prices

Method K = 98 K = 99 K = 100 K = 101 K = 102 Error

True Price 0.87 1.14 1.54 2.03 2.59
100-pt. Mid-Point 0.88 1.21 1.58 2.00 2.55 0.0369
100-pt. Trapezoidal 0.88 1.21 1.58 2.00 2.55 0.0369
100-pt. Simpson’s 0.88 1.21 1.58 2.00 2.55 0.0375
100-pt. Simpson’s 3/8 0.88 1.21 1.58 2.00 2.55 0.0369
5-pt. Gauss Laguerre −0.03 0.32 0.78 1.32 1.96 0.7634
5-pt. Gauss Legendre 0.88 1.21 1.58 2.00 2.54 0.0376
5-pt. Gauss Lobatto 0.88 1.21 1.58 2.00 2.55 0.0372



Numerical Integration Schemes 137

FAST FOURIER TRANSFORM

The fast Fourier transform (FFT) was applied by Carr and Madan (1999) to
speed up the computation of option prices. The discrete Fourier transform maps
a vector of points x = (x1, . . . , xN) to another vector of points x̂ = (x̂1, . . . , x̂N) via
the relation

x̂k =
N∑

j=1

e−i 2π
N (j−1)(k−1)xj for k = 1, . . . , N. (5.18)

Computing these sums independently of one another would require N2 steps. The
fast Fourier transform computes these sums simultaneously, which requires Nlog2N
steps. Recall from Chapter 3 that the Carr and Madan (1999) representation for the
call price for a value of the log strike k = ln K is

C(k) = e−αk

π

∫ ∞

0
Re[e−ivkψ(v)]dv (5.19)

where

ψ(v) = e−rτ f2(v − (α + 1)i)
α2 + α − v2 + iv(2α + 1)

and where f2 is the Heston characteristic function. The objective of the FFT is to
discretize the expression for the call price C(k) in Equation (5.19) and express it in
terms of (5.18).

Note that the inverse FFT of x̂ = (x̂1, . . . , x̂N) is the vector x = (x1, . . . , xN)
defined as

xk = 1
N

N∑
j=1

ei 2π
N (j−1)(k−1)x̂j for k = 1, . . . , N. (5.20)

The FFT and inverse FFT are intuitive discrete analogues of their continuous
counterparts. We can denote the FFT that maps x to x̂ as the function x̂ = D(x)
and the inverse FFT that maps x̂ back to x by x = D−1(x̂). We will use this
notation when we describe the fractional fast Fourier transform (FRFT) later in
this chapter.

Discretization of the Integration Range and of the Strike Range

Evaluation of the call price in Equation (5.19) requires the discretization of the
range of strikes and of the integration domain. We can approximate the call price
by the trapezoidal rule over the truncated integration domain [0, b] for v, using N
equidistant points

vj = (j − 1)η for j = 1, . . . , N (5.21)



138 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where η is the increment. The trapezoidal rule approximates the call price C(k) as

C(k) ≈ e−αk

π
Re

[
1
2

e−iv1kψ
(
v1

) + e−iv2kψ(v2) + · · ·

+ e−ivN−1kψ
(
vN−1

) + 1
2

e−ivNkψ(vN)
]

= ηe−αk

π

N∑
j=1

Re
[
e−ivjkψ

(
vj

)]
wj

(5.22)

where the weights are w1 = wN = 1
2 and wj = 1 for j = 2, . . . , N − 1. If Simpson’s

rule is used instead of the trapezoidal rule, we set w1 = wN = 1
3 and wj = 4

3 when j
is even, and wj = 2

3 when j is odd.
We are interested in strikes near the money, so we need to define the discretization

range of the log strikes so that it is centered about the log spot price log St. Carr
and Madan (1999) assume that the spot price is St = 1, but it is straightforward
to generalize the discretization for general values of St. The strike range is, thus,
discretized using the N equidistant points as

ku = −b + (u − 1)λ + ln St for u = 1, . . . , N (5.23)

where λ is the increment and b = Nλ/2. This produces log strikes over the range
[ln St − b, ln St + b − λ]. For a log strike value ku on the grid, we can write Equation
(5.22) for the price of the call as

C(ku) ≈ ηe−αku

π

N∑
j=1

Re
[
e−ivjkuψ

(
vj

)]
wj. (5.24)

Substitute for vj and ku

C(ku) ≈ ηe−αku

π

N∑
j=1

Re
[
e−i(j−1)η[−b+(u−1)λ+ln St]ψ(vj)

]
wj

= ηe−αku

π

N∑
j=1

Re
[
e−iλη(j−1)(u−1)ei(b−ln St)vjψ(vj)

]
wj.

(5.25)

In order to express Equation (5.25) in terms of the discrete FFT in (5.18), we
must have the following constraint on the increments η and λ

λη = 2π

N
.

This is an important limitation of the FFT, since it entails a trade-off between
the grid sizes. For a fixed N, choosing a fine grid for the integration range will
produce a coarse grid for the log strikes range, and vice-versa. The only way
to increase the granularity of both grids is to increase N, and consequently, the
computation time.



Numerical Integration Schemes 139

Summary of the FFT

Recall that the Carr and Madan (1999) price of the call at the log strike k = ln K is

C(k) = e−αk

π

∫ ∞

0
Re[e−ivkψ(v)]dv.

To implement the FFT on the call price, first create the integration grid {vj}N
j=1

and the log-strike grid {ku}N
u=1. Define the points xj for j = 1, . . . , N as

xj = ei(b−ln St)vjψ(vj)wj (5.26)

with b = Nλ/2. In (5.26), ψ(vj) is the function ψ evaluated at the grid point vj

ψ(vj) = e−rτ f2(vj − (α + 1)i)

α2 + α − v2
j + ivj(2α + 1)

where f2(vj − (α + 1)i) is the Heston characteristic function evaluated at vj − (α + 1)i.
Define x̂u = C(ku), the call price evaluated at the log-strike point ku. Each call price
x̂u can be obtained from the set {xj}N

j=1 via the fast Fourier transform as the sum

x̂u = ηe−αku

π

N∑
j=1

Re
[
e−i 2π

N (j−1)(u−1)xj

]
for u = 1, . . . , N. (5.27)

Call prices are obtained from (5.27) directly. Hence, C(ku) = x̂u is the price of
the call struck at exp(ku).

The fast Fourier transform for the Heston call price is implemented using the
Matlab function HestonCallFFT.m. The function calls the HestonCF.m function,
which constructs the Heston characteristic function f2(φ; x, v). The function imple-
ments the FFT in one of two ways: a fast version which makes use of vectorization
and a slow version which uses a loop. To conserve space, only the main part of the
function is presented.

function [CallFFT K lambdainc eta] = HestonCallFFT(...);
if fast==1

% Implement the FFT - fast algorithm
U = [0:N-1];
J = [0:N-1];
psi = HestonCF(v-(alpha+1).*i,...,Trap);
phi = exp(-r*tau).*psi ./ (alpha.^2 + alpha - v.^2 + ...;
x = exp(i.*(b-s0).*v).*phi.*w;
e = exp(-i*2*pi/N.*(U’*J))*x;
CallFFT = eta.*exp(-alpha.*k)./pi .* real(e);

elseif fast==0
% Implement the FFT - slow algorithm
for u=1:N

for j=1:N
psi(j) = HestonCF(v(j)-(alpha+1)*i,...,Trap);
phi(j) = exp(-r*tau)*psi(j)/(alpha^2 + alpha - ...;



140 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

x(j) = exp(i*(b-s0)*v(j))*phi(j)*w(j);
e(j) = exp(-i*2*pi/N*(j-1)*(u-1))*x(j);

end
CallFFT(u) = eta*exp(-alpha*k(u))/pi * real(sum(e));

end
end

The implementation of the FFT in C# is done without vectorization, using the
function HestonFFT(), which is very similar to the second portion of the Matlab
function HestonCallFFT.m.

static double[,] HestonFFT(HParam param,OpSet settings,...)
for(int u=0;u<=N-1;u++) {

for(int j=0;j<=N-1;j++) {
psi[j] = HestonCF(v[j]-(alpha+1.0)*i,param,settings);
phi[j] = Complex.Exp(-r*tau)*psi[j] ...;
x[j] = Complex.Exp(i*(b-s0)*v[j])*phi[j]*w[j];
e[j] = Complex.Exp(-i*2*pi/Convert.ToDouble(N)*j*u)*x[j];
sume[u] += e[j].Real;}

CallFFT[u] = eta*Math.Exp(-alpha*k[u])/pi * sume[u]; }

To illustrate, suppose that the spot price is St = 50 and that the Heston
parameters are κ = 0.2, v0 = θ = 0.05, σ = 0.3, and ρ = −0.7. Suppose that the
maturity is 6 months, that the risk-free rate is r = 0.03, and that the dividend yield is
q = 0.05. Using N = 210 = 1, 024 and a damping parameter of α = 1.5, we obtain
the call prices in Table 5.4 along with the approximation error relative to the exact
price, which is obtained using 32-point Gauss-Laguerre integration.

The FFT produces prices that are very accurate, regardless of whether Simpson’s
rule or the trapezoidal rule is used. Indeed, with N = 1, 024 points, the mean
absolute percent error is 0.0394 percent for both Simpson’s rule and the trapezoidal
rule. In this example, the integration increment is η = 0.0977 and the log-strike
increment is λ = 0.0628.

TABLE 5.4 Comparison of FFT Call Prices

Strike
Exact
Price

Trapezoidal
FFT Price

Simpson’s
FFT Price

Trapezoidal
Error

Simpson’s
Error

41.4102 8.6378 8.6381 8.6381 0.0010 0.0040
44.0956 6.4765 6.4761 6.4761 −0.0072 −0.0072
46.9551 4.4453 4.4454 4.4454 0.0014 0.0014
50.0000 2.6778 2.6782 2.6782 0.0118 0.0118
53.2424 1.3269 1.3267 1.3267 −0.0152 −0.0152
56.6950 0.5020 0.5018 0.5018 −0.0421 −0.0421
60.3716 0.1421 0.1424 0.1424 0.1938 0.1938



Numerical Integration Schemes 141

FRACTIONAL FAST FOURIER TRANSFORM

The fractional fast Fourier transform (FRFT) was applied to option pricing by
Chourdakis (2005). The FRFT is a refinement of the FFT that relaxes the restrictive
constraint λη = 2π/N on the grid size parameters, so that the term 1/N in the
exponent of the fast Fourier transform is replaced with a general term β. Hence,
Equation (5.27) becomes

x̂u = ηe−αku

π

N∑
j=1

Re
[
e−i2πβ(j−1)(u−1)xj

]
for u = 1, . . . , N. (5.28)

The relationship between the grid size parameters λ and η becomes λη = 2πβ.
We can, thus, choose the grid size parameters freely, and then set

β = λη

2π
.

The FFT arises as the special case β = 1/N. To implement the FRFT on a set of
points x1, . . . , xN, first define the vectors y and z, each of dimension 2N

y =
({

e−iπ(j−1)2βjxj

}N

j=1
, {0}N

j=1

)
z =

({
eiπ(j−1)2βj

}N

j=1
,

{
eiπ(N−j+1)2β

}N

j=1

)
.

Next, take the FFT of y and z to obtain the vectors ŷ = D(y) and ẑ = D(z), and
take their product element by element, which produces the vector ĥ of dimension
2N defined as

ĥ = ŷ � ẑ = {yjzj}2N
j=1.

Now take the inverse FFT of ĥ to produce the vector h = D−1(ĥ) of dimension
2N. Finally, multiply element by element the resulting vector with the vector e of
dimension 2N defined as

e =
({

e−iπ(j−1)2β
}N

j=1
, {0}N

j=1

)
.

Hence, we can write the fractional FFT in compact form as

x̂ = e � D−1(ĥ) = e � D−1(ŷ � ẑ)

= e � D−1(D(y) � D(z)).

The first N elements of x̂ are retained and the remaining N elements are
discarded, as these are zeros. Note that similar to the FFT, the FRFT takes the
N-vector x and maps it to the N-vector x̂. The FRFT, however, uses the intermediate
2N-vectors y and z, and requires that two FFTs be computed in the intermediate steps.
Nevertheless, the increase in computational time required by the two intermediate



142 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

FFTs is usually offset by the increase in accuracy due to being able to choose the
integration and strike grids independently and as arbitrarily small as we wish.

To implement the FRFT, we choose an arbitrary number of points, N, an
integration increment, η, and a log-strike increment, λ. We then set β = λη/(2π )
and proceed as described in this section. For the points xj that appear in the vector z
in Equation (5.29), we use xj = exp[i(b − ln St)vj]ψ(vj)wj, exactly the same points as
in (5.26) for the FFT. Finally, the integration grid {vj}N

j=1 and log-strike grid {ku}N
u=1

are built exactly as in (5.21) and (5.23), with b = Nλ/2, as before.
The Matlab function FRFT takes an input vector x and an increment parameter

β and returns the FRFT x̂ from (5.30), using the built-in Matlab functions fft.m for
the fast Fourier transform and ifft.m for the inverse fast Fourier transform.

function xhat = FRFT(x,beta);
N = length(x);
y = [exp(-i.*pi.*(0:N-1).^2.*beta).*x, zeros(1,N)];
z = [exp( i.*pi.*(0:N-1).^2.*beta) , ...];
Dy = fft(y);
Dz = fft(z);
h = Dy.*Dz;
ih = ifft(h);
e = [exp(-i.*pi.*(0:N-1).^2.*beta), zeros(1,N)];
xhat = e.*ih;
xhat = xhat(1:N);

This function is used in the HestonCallFRFT.m function, which implements the
FRFT.

function [CallFRFT K lambdainc eta] = HestonCallFRFT(...);
b = N*lambdainc/2;
v = eta.*[0:N-1]’;
k = -b + lambdainc.*[0:N-1]’ + s0;
K = exp(k);
CallFRFT = zeros(N,1);
beta = lambdainc*eta/2/pi;
psi = HestonCF(v-(alpha+1).*i,...,Trap);
psi = conj(psi);
phi = exp(-r*tau).*psi./conj(alpha.^2 + alpha - v.^2 + ...;
x = conj(exp(i.*(b-s0).*v)).*phi.*w;
y = real(FRFT(x’,beta));
CallFRFT = eta.*exp(-alpha.*k).*y’./pi;

The C# function to implement the FRFT is done using the FRFT() function,
which is very similar to the Matlab function FRFT.m. The difference is that
vectorization is not employed, and built-in functions for the FFT and the inverse
FFT must be coded separately, since these are not available as standard functions
in C#.



Numerical Integration Schemes 143

static Complex[] FRFT(Complex[] x,double beta) {
for(int j=0;j<=N-1;j++) {

double J = Convert.ToDouble(j);
y[j] = Complex.Exp(-i*pi*J*J*beta) * x[j];
z[j] = Complex.Exp(i*pi*J*J*beta); }

for(int j=N;j<=2*N-1;j++) {
y[j] = 0.0;
double M = Convert.ToDouble(2*N-j);
z[j] = Complex.Exp(i*pi*M*M*beta); }

Dy = FFT(y);
Dz = FFT(z);
for(int j=0;j<=2*N-1;j++)

h[j] = Dy[j]*Dz[j];
ih = IFFT(h);
for(int j=0;j<=N-1;j++) {

double J = Convert.ToDouble(j);
e[j] = Complex.Exp(-i*pi*J*J*beta); }

for(int j=0;j<=N-1;j++)
xhat[j] = e[j] * ih[j];

return xhat;}

The C# function FFT() implements the fast Fourier transform.

static Complex[] FFT(Complex[] x) {
int N = x.Length;
double pi = Math.PI;
for(int k=0;k<=N-1;k++) {

coeff = 0.0;
for(int j=0;j<=N-1;j++) {

double K = Convert.ToDouble(k);
double J = Convert.ToDouble(j);
double M = Convert.ToDouble(N);
coeff += Complex.Exp(-i*2*pi*J*K/M) * x[j]; }

xhat[k] = coeff;}
return xhat;}

The C# function IFFT() implements inverse FFT.

static Complex[] IFFT(Complex[] xhat) {
int N = xhat.Length;
double pi = Math.PI;
for(int k=0;k<=N-1;k++) {

coeff = 0.0;
for(int j=0;j<=N-1;j++) {

double K = Convert.ToDouble(k);
double J = Convert.ToDouble(j);
double M = Convert.ToDouble(N);
coeff += Complex.Exp(i*2*pi*J*K/M) * xhat[j]; }

x[k] = coeff / Convert.ToDouble(N); }
return x;}



144 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Finally, the C# function HestonFRFT() returns a vector of strikes and a vector
of call prices evaluated at each strike.

static double[,] HestonFRFT(HParam param,OpSet settings,...) {
double b = Convert.ToDouble(N)*lambdainc/2.0;
for(int j=0;j<=N-1;j++)

v[j] = eta * j;
for(int j=0;j<=N-1;j++) {

k[j] = -b + lambdainc*Convert.ToDouble(j) + s0;
K[j] = Math.Exp(k[j]); }

double beta = lambdainc*eta/2.0/pi;
for(int j=0;j<=N-1;j++) {

psi[j] = HestonCF(v[j]-(alpha+1.0)*i,param,settings);
phi[j] = Complex.Exp(-r*tau)*psi[j] ...;
x[j] = Complex.Exp(i*(b-s0)*v[j]) * phi[j] * w[j]; }

y = FRFT(x,beta);
for(int u=0;u<=N-1;u++) {

Call = eta*Complex.Exp(-alpha*k[u])*y[u]/pi;
CallFRFT[u] = Call.Real;}

for(int j=0;j<=N-1;j++) {
output[j,0] = K[j];
output[j,1] = CallFRFT[j]; }

return output; }

To illustrate, we use the same settings at those used to produce the FFT prices
in Table 5.3, but using λ = η = 0.01 for the grid increments and increasing the
integration points to N = 212. The results are presented in Table 5.5, along with the
errors relative to the exact prices, which are obtained using 32-point Gauss-Laguerre
integration.

The FRFT prices are less accurate than the FFT prices in Table 5.3, with
a mean absolute percent error of 2.55 percent for each rule. One advantage of
using the FRFT is that we are able to choose the log-strike grid size and obtain
call prices in increments of roughly $0.50 in Table 5.4. Compare that to the call

TABLE 5.5 Comparison of FRFT Call Prices

Strike
Exact
Price

Trapezoidal
FRFT Price

Simpson’s
FRFT Price

Trapezoidal
Error

Simpson’s
Error

48.5223 3.4792 3.4798 3.4798 0.0180 0.0181
49.0099 3.2025 3.2032 3.2032 0.0213 0.0213
49.5025 2.9352 2.9358 2.9358 0.0219 0.0219
50.0000 2.6778 2.6784 2.6784 0.0193 0.0193
50.5025 2.4311 2.4314 2.4314 0.0133 0.0133
51.0101 2.1956 2.1957 2.1957 0.0042 0.0042
51.5227 1.9719 1.9717 1.9717 −0.0069 −0.0069



Numerical Integration Schemes 145

TABLE 5.6 Comparison of FRFT Call Prices, Small Strike Grid

Strike
Exact
Price

Trapezoidal
FRFT Price

Simpson’s
FRFT Price

Trapezoidal
Error

Simpson’s
Error

49.9329 2.7118 2.7123 2.7123 0.0199 0.0199
49.9553 2.7004 2.7010 2.7010 0.0197 0.0197
49.9776 2.6891 2.6897 2.6897 0.0195 0.0195
50.0000 2.6778 2.6784 2.6784 0.0193 0.0193
50.0224 2.6666 2.6671 2.6671 0.0191 0.0191
50.0448 2.6553 2.6558 2.6558 0.0189 0.0189
50.0672 2.6441 2.6446 2.6446 0.0187 0.0187

prices in Table 5.3, which are in increments that are much coarser, roughly $3.00.
Moreover, the FRFT is much faster than the FFT for the same number of points,
N = 212.

Another advantage of the FRFT is that we can restrict the range of strikes on
which the algorithm is applied. Suppose we want the range of strikes to begin at K′.
From Equation (5.23), selecting the log-strike increment λ as

λ = 2
N

log(St/K′) (5.31)

will guarantee that the first log strike will be k1 = log K′ and that the last strike will
be approximately kN ≈ S2

t /K′. Hence, by selecting K′ close to St we can make λ as
small as we wish, and obtain a very narrow discretization range for the strike price.
We then select an arbitrary value for the integration grid size η. This is illustrated in
Table 5.6, where we have used K′ = 20 (recall that St = 50). The FRFT constructs
the strike grid in increments of approximately $0.02 in the near-the-money region.

We could also apply Equation (5.31) to construct a narrow strike range
for the FFT itself, but since we are constrained in the relationship between λ

and η, this would result in a large value for η, and consequently a very coarse
integration grid.

CONCLUSION

In this chapter, we have presented a variety of numerical integration methods, all
of which work reasonably well. Newton-Cotes formulas are easy to understand
and implement, but require more abscissas and, therefore, more computing time,
than Gaussian quadrature. Among these methods, Gauss-Laguerre quadrature is
well-suited to the Heston model. Gauss-Lobatto quadrature, however, works very
well for the Kahl and Jäckel (2005) transformation of the integration domain.
Implementing Gaussian quadrature in C# is more involved than in Matlab because
we must create C# functions to find polynomial roots. We also showed that it is
straightforward to adapt Newton-Cotes formulas and Gaussian quadrature for the
approximation of double integrals. Finally, we presented the fast Fourier transform



146 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

(FFT) and the fractional fast Fourier transform (FRFT). Both of these methods work
very well for the Heston model, and produce a large set of option prices very quickly.
In Chapter 11, we will show that the FFT and FRFT can be applied to calculate
Greeks also.

All of the methods to produce option prices in the Heston model that we have
encountered require a set of parameter values. Up to now, we have assumed these
values to be given. In reality, parameters must be estimated from market data. In the
next chapter, we explain how this is done.



CHAPTER 6
Parameter Estimation

Abstract

All of the pricing methodologies we have covered have assumed the Heston model
parameters to be given. In this chapter, we describe how to estimate these parameters.
We first present the most common estimation method, the loss function approach,
in which parameters are selected so that the quoted option prices are as close
as possible to the model option prices. Alternatively, quoted and model implied
volatilities can be used instead of prices. Next, we summarize the Nelder and Mead
(1965) minimization algorithm and we show how to code it in C#. Then we describe
the ‘‘Smart Parameter’’ method of Gauthier and Rivaille (2009) to select starting
values and the Strike-Vector Computation of Kilin (2007), which constructs the
loss function in a way that greatly speeds up the estimation. We then present the
Differential Evolution algorithm, which has been shown by Vollrath and Wendland
(2009) to be effective in the Heston model. Finally, we present a method due to
Atiya and Wall (2009) to obtain maximum likelihood estimates of the Heston model
parameters. Throughout this chapter, the Heston parameters are represented as the
vector � = (κ, θ , σ , v0, ρ), and their corresponding estimates, as �̂.

ESTIMATION USING LOSS FUNCTIONS

The most popular way to estimate the parameters of the Heston model is with loss
functions. This method uses the error between quoted market prices and model
prices, or between market and model implied volatilities. The parameter estimates
�̂ are those values which minimize the value of the loss function, so that the model
prices or implied volatilities are as close as possible to their market counterparts.
A constrained minimization algorithm must be used in this regard so that the
constraints on the parameters

κ > 0, θ > 0, σ > 0, v0 > 0, ρ ∈ [−1, +1] (6.1)

are respected. Since loss functions use market option prices (or implied volatility
derived from those prices) as inputs, they produce estimates of the risk-neutral
parameters of the Heston model.

Suppose we have a set of NT maturities τi (t = 1, . . . , NT) and a set of NK strikes
Kk (k = 1, . . . , NK). For each maturity-strike combination (τt, Kk), we have a market

147The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



148 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

price C(τt, Kk) = Ctk and a corresponding model price C(τt, Kk;�) = C�
tk generated

by the Heston model. Attached to each option is an optional weight wtk. There are
many possible ways to define a loss function, but they usually fall into one of two
categories: those based on prices, and those based on implied volatilities.

The first category of loss functions are those that minimize the error between
quoted and model prices. The error is usually defined as the squared difference
between the quoted and model prices, or the absolute value of the difference; relative
errors can also be used. For example, parameter estimates obtained using the mean
error sum of squares (MSE) loss function are obtained by minimizing

1
N

∑
t,k

wtk(Ctk − C�
tk)2 (6.2)

with respect to �, where N is the number of quotes. The relative mean error sum of
squares (RMSE) parameter estimates are obtained with the loss function

1
N

∑
t,k

wtk

(Ctk − C�
tk)2

Ctk

. (6.3)

Alternatively, we can define the error in terms of the absolute value, so that
|Ctk − C�

tk|, and set up a loss function as in Equations (6.2) and (6.3).
One well-known disadvantage of the MSE loss function is that short maturity,

deep out-of-the money options with very little value contribute little to the sum in
(6.2). Hence, the optimization will tend to fit long maturity, in-the-money options
well, at the detriment of the other options. One remedy is to use in-the-money options
only, so that, in (6.2), call options are used for strikes less than the spot price, and
put options are used for strikes greater than the spot price. The other remedy is to
use the RMSE loss function in (6.3). The problem with RMSE, however, is that the
opposite effect occurs. Indeed, because of the presence of Ctk in the denominator,
options with low market value will over-contribute to the sum in (6.3). The over-
and under-contribution, however, can be mitigated by assigning weights wtk to the
individual terms in the objective function, although the choice of the weights is
usually subjective.

The second category of loss functions are those that minimize the error between
quoted and model implied volatilities. Again, the error is usually defined as the
squared difference, absolute difference, or relative difference, between quoted and
model implied volatilities. This category of loss function is sensible, since options
are often quoted in terms of implied volatility, and since the fit of model is often
assessed by comparing quoted and model implied volatilities. Hence, for example,
the implied volatility mean error sum of squares (IVMSE) parameter estimates are
based on the loss function

1
N

∑
t,k

wtk(IVtk − IV�
tk)2 (6.4)

where IVtk = IV(τt, Kk) and IV�
tk = IV(τt, Kk;�) are the quoted and model implied

volatilities, respectively. The relative and absolute versions can also be used.



Parameter Estimation 149

The main disadvantage of Equation (6.4) is that it is numerically intensive.
Indeed, at each iteration of the optimization, we must first obtain every Heston
price C�

tk, and then apply a root-finding algorithm such as the bisection algorithm to
extract the implied volatility IV�

tk from C�
tk so that the quantity (IVtk − IV�

tk)2 can be
constructed. One remedy is to use the approximated implied volatility from Lewis’
(2000) Series II expansion described in Chapter 4, and use that instead of IV�

tk. This
allows us to bypass the bisection algorithm entirely. Another remedy is to use the loss
function described in Christoffersen et al. (2009), which serves as an approximation
to the IVMSE in (6.4). It uses the reciprocal of the squared Black-Scholes vega as the
weight in (6.2). The parameter estimates from their method are, therefore, based on
the loss function

1
N

∑
t,k

(Ctk − C�
tk)2

BSVega2
tk

(6.5)

where BSVegatk is the Black-Scholes sensitivity of the option price with respect to
the market implied volatility IVtk, evaluated at the maturity τt and the strike Kk

BSVegatk = S exp(−qτt)n(dtk)
√

τt

with

dtk = log(S/Kk) + (r − q + IV2
tk/2)τt

IVtk
√

τt

and where n(x) = exp(−x2/2)/
√

2π is the standard normal density. The chief
advantage of loss functions based on the approximations of Lewis (2000) or
Christoffersen et al. (2009) is that a considerable amount of computation time is
saved, albeit at the expense of a loss in precision in the parameter estimates.

Estimation of the Heston model parameters by loss functions has been used by
Bakshi, Cao, and Chen (1997), Bams et al. (2009), Christoffersen and Jacobs (2004),
Mikhailov and Nögel, (2003), and many others. There is no consensus on which
loss function is the best one, but Christoffersen and Jacobs (2004) point out that
the same loss function should be used for parameter estimation and for evaluating
model fit.

The Matlab function HestonObjFun.m implements the loss functions covered
in this section. If we set Method=2, then we obtain the implied volatility directly
from the Lewis (2000) approximation, so we do not need to calculate the implied
volatility with the bisection algorithm. The function can be easily modified to add
more loss functions.

function y = HestonObjFun(ObjFun,...);
for k=1:NK

for t=1:NT
% Select the method for obtaining the price
if Method==1

CallPrice = HestonPriceGaussLaguerre
(K(k),T(t),...,);



150 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

elseif Method==2
[iv CallPrice] = SeriesIICall(K(k),T(t),...);

elseif Method==3
CallPrice = SeriesICall(K(k),T(t),...);

end
% Obtain the call price or put price
if PutCall(k,t)=='C'

ModelPrice(k,t) = CallPrice;
else

ModelPrice(k,t) = CallPrice - S*exp(-q*T(t)) + ...;
end
% Select the objective function
if ObjFun == 1

error(k,t) = (MktPrice(k,t) - ModelPrice(k,t))^2;
elseif ObjFun == 2

error(k,t) = (MktPrice(k,t) -
ModelPrice(k,t))^2 ...;

elseif ObjFun == 3
if Method==2

ModelIV = iv;
else

ModelIV = BisecBSIV(K(k),T(t),
ModelPrice(k,t)...);

end
error(k,t) = (ModelIV - MktIV(k,t))^2;

elseif ObjFun == 4
d = (log(S/K(k)) + (rf-q+MktIV(k,t)^2/2)*T(t)) ...;
Vega(k,t) = S*normpdf(d)*sqrt(T(t));
error(k,t) = (ModelPrice(k,t) -

MktPrice(k,t))^2 ...;
end

end
end
y = sum(sum(error)) / (NT*NK);

To obtain the parameter estimates, we pass the HestonObjFun.m function
to the Matlab function fmincon.m. This Matlab function allows for constrained
optimization so that the conditions in (6.1) are met.

e = 1e-5;
lb = [e e e e -.999]; % Lower bound on the estimates
ub = [100 10 10 10 .999]; % Upper bound on the estimates
[param feval] = fmincon(@(p) HestonObjFun(...),...,lb,ub)

The C# code to implement the loss functions is similar to the Matlab code and
is presented in the next section. One crucial difference is that the standard normal
density must be calculated when loss the function (6.5) is used. This is done with
the C# variable NormPDF in the following code snippet.



Parameter Estimation 151

case 4:
double d = (Math.Log(S/K[k]) +

(r-q+MktIV[k,t]*MktIV[k,t]/2.0)...;
double NormPDF = Math.Exp(-0.5*d*d)/Math.Sqrt(2.0*pi);
Vega = S*NormPDF*Math.Sqrt(T[t]);
Error += Math.Pow(ModelPrice[k,t] - MktPrice[k,t],2)

/Vega/Vega/Convert.ToDouble(NT*NK);
break;

Another difference is that the C# function NormCDF() presented in Chapter 2
must be used to calculate the standard normal distribution function when implied
volatilities are used in the objective function. Please refer to Chapter 2 for a
description of the NormCDF() function.

To illustrate, we estimate the Heston parameters using options collected on
April 13, 2012, on the S&P500 index for four maturities: 45, 98, 261, and 348 days,
and seven strikes, running from 120 to 150 in increments of 5. We use 32-point
Gauss-Laguerre integration to obtain the model price C�

tk (by setting Method=1
in the Matlab function HestonObjFunction.m), and we compare the parameter
estimates from the MSE loss function (6.2), the RMSE loss function (6.3), the
IVMSE loss function (6.4), and the Christoffersen, Heston, and Jacobs (CHJ) (2009)
loss function (6.5). We also report the IVMSE between the model and the quoted
implied volatilities. The results are in Table 6.1.

The parameter estimates vary, and MSE seems to provide the best fit to the
implied volatilities. As is usually the case, ρ is negative. The plots of quoted implied
volatilities and implied volatilities generated from Heston prices that use MSE
parameter estimates are presented in Figure 6.1. These indicate that the fit of implied
volatilities is slightly better for longer term options than for shorter term ones.

The parameter estimates in Table 6.1 were obtained using the risk-free rate and
dividend yield implied from the prices of the puts and the calls. See Shimko (1993)
for details.

Nelder-Mead Algorithm in C#

Parameter estimation in C# requires a routine to minimize the loss function we
select among those described in the previous section. We use the Nelder-Mead
algorithm, which is suitable for unconstrained minimization. The algorithm can be
adapted for constrained minimization, however, by including a penalty function for

TABLE 6.1 Results of Estimation With Various Objective Functions

Loss Function IVMSE κ̂ θ̂ σ̂ v̂0 ρ̂

MSE (6.2) 6.79 × 10−6 1.9214 0.0904 1.0193 0.0344 −0.7799
RMSE (6.3) 5.79 × 10−5 8.9931 0.0571 2.0000 0.0405 −0.7899
IVMSE (6.4) 9.33 × 10−4 9.0000 0.0420 0.3044 0.0405 −0.8038
CHJ (2009) (6.5) 5.06 × 10−5 8.9655 0.0602 1.7142 0.0250 −0.7913



152 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

0.1
120 130

Maturity 45 days

Market IV
Heston IV

140 150

0.2

0.3

0.4

0.25

120 130

Maturity 261 days

Market IV
Heston IV

140 150

0.2

0.3

0.35

0.25

120 130

Maturity 348 days

Market IV
Heston IV

140 150

0.2

0.3

0.35

0.1
120 130

Maturity 98 days

Market IV
Heston IV

140 150

0.2

0.3

0.4

FIGURE 6.1 S&P500 Market and Heston Implied Volatilities Estimated Using MSE

inadmissible parameter values. The Nelder-Mead algorithm is the method of choice
for the built-in Matlab function fminsearch.m.

The Nelder-Mead algorithm is designed to find the global minimum of an
objective function f (x) : Rn → R. The algorithm requires a set of n + 1 starting
values, each of which is a vector of dimension n. At each iteration, the algorithm
replaces the vector that produces the worst value of f (namely, the largest value) with
a vector that produces a smaller value of f . The Nelder-Mead algorithm is explained
in Nelder and Mead (1965) and in many other sources, such as Dréo, Nunes, and
Siarry (2009), for example. The algorithm consists of the following steps.

Step 0. Initialization. Define the n + 1 vertices x0, x1, . . . , xn in terms of ranked
values of the objective function

f (x0) ≤ f (x1) ≤ · · · ≤ f (xn−1) ≤ f (xn).

Hence, x0 is the best point, since it has the lowest value of the objective
function, and xn is the worst point. Calculate the mean x = (x0 + x1 + · · · +
xn−1)/n. Note that x excludes the worst point xn.

Step 1. Reflection Rule. Calculate the reflection point xr as

xr = x + ρ(x − xn).

If f (x1) ≤ f (xr) ≤ f (xn), then replace xn with the reflection point xr and
proceed to the next iteration in Step 0. Otherwise, continue to Step 2.



Parameter Estimation 153

Step 2. Expansion Rule. If f (xr) ≤ f (x0), calculate the expansion point

xe = x + χ (xr − x).

If f (xe) ≤ f (xr), then replace xn with the expansion point xe and proceed
to the next iteration in Step 0. If f (xe) > f (xr), then replace xn with the
reflection point xr and proceed to the next iteration.

If f (xr) > f (x0), then continue to Step 3.

Step 3. Outside Contraction Rule. Calculate the outside contraction point

xoc = x + γ (xr − x).

If f (xn−1) ≤ f (xr) < f (xn) and f (xoc) < f (xn), then replace xn with xoc and
proceed to the next iteration in Step 0. Otherwise, continue to Step 4.

Step 4. Inside Contraction Rule. Calculate the inside contraction point

xic = x + γ (xn − x).

If f (xn) ≤ f (xr) and f (xic) < f (xn+1), then replace xn with xic and proceed to
the next iteration in Step 0. Otherwise, continue to Step 5.

Step 5. Shrinkage. Replace xi with xi + σ (x0 − xi) for i = 1, . . . , n. Note that
the best point x0 does not undergo shrinkage.

Standard values for the coefficients in the steps described earlier are ρ = 1 for
reflection, χ = 2 for expansion, γ = 1/2 for contraction, and σ = 1/2 for shrinkage.

The Nelder-Mead algorithm stops when the number of iterations reaches a
specified value, or when the absolute difference between the best and worst function
values, |f (x0) − f (xn)|, reaches a specified tolerance level.

The algorithm is implemented in C# using the NelderMead() function. The
following snippet of code contains Steps 1 through 5 described earlier. The reflection,
expansion, and inside and outside contraction points are calculated earlier in the
function and are not presented here. The last part of the function returns the
parameter estimates, the value of the objective function, and the number of iterations
used in the minimization.

static double[] NelderMead(ObjFun f, NMSet nmsettings,
double[,] x) {

while((NumIters <= MaxIters) && (Math.Abs(f1-fn1)
>= Tolerance)) {

// Step 1. Reflection Rule
if((f1<=fr) && (fr<fn)) {

for(j=0;j<=N-1;j++)
for(i=0;i<=N-1;i++) x[i,j] = y[i,j];

for(i=0;i<=N-1;i++) x[i,N] = xr[i];
goto step0;}

// Step 2. Expansion Rule
if(fr<f1) {
for(j=0;j<=N-1;j++)



154 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

for(i=0;i<=N-1;i++) x[i,j] = y[i,j];
if(fe<fr)

for(i=0;i<=N-1;i++) x[i,N] = xe[i];
else

for(i=0;i<=N-1;i++) x[i,N] = xr[i];
goto step0; }
// Step 3. Outside contraction Rule
if((fn<=fr) && (fr<fn1) && (foc<=fr)) {

for(j=0;j<=N-1;j++)
for(i=0;i<=N-1;i++) x[i,j] = y[i,j];

for(i=0;i<=N-1;i++) x[i,N] = xoc[i];
goto step0; }

// Step 4. Inside contraction Rule
if((fr>=fn1) && (fic<fn1)){
for(j=0;j<=N-1;j++)

for(i=0;i<=N-1;i++) x[i,j] = y[i,j];
for(i=0;i<=N-1;i++) x[i,N] = xic[i];

goto step0; }
// Step 5. Shrink Step
for(i=0;i<=N-1;i++) x[i,0] = y[i,0];
for(i=0;i<=N-1;i++)

for(j=1;j<=N;j++) x[i,j] = 0.5*(y[i,j] + x[i,0]);
goto step0;
}

// Output component
double[] outvec = new Double[N+2];
for(i=0;i<=N-1;i++)

outvec[i] = x1[i];
outvec[N] = f1;
outvec[N+1] = NumIters;
return outvec; }

To use the Nelder-Mead algorithm for finding parameter estimates, we create the
objective function by defining the f() function in C#, which returns the loss function
of choice. As usual, parts of the function have been omitted. Since the Nelder-Mead
function is designed for unconstrained optimization, in the first part of the function
we include a penalty, so that a very large number (1 × 1050) is returned if an
inadmissible parameter value is encountered. Inadmissible values are those that fall
outside of specified lower and upper bounds on the parameters, as described in (6.1).

static double f(double[] param,OFSet ofset) {
// Penalty for inadmissible parameter values
if((param2.kappa<=kappaLB) || (param2.theta<=thetaLB) ...

Error = 1e50;
else {

for(int k=0;k<NK;k++) {
for(int t=0;t<NT;t++) {

ModelPrice[k,t] = HestonPriceGaussLaguerre(K[k],T[t],...);
switch(LossFunction) {
case 1:

// MSE Loss Function
Error += Math.Pow(ModelPrice[k,t] - MktPrice[k,t],2) ...;



Parameter Estimation 155

break;
case 2:

// RMSE Loss Function
Error += Math.Pow(ModelPrice[k,t] - MktPrice[k,t],2) ...;

break; } } }
return Error;}

The Heston parameter estimates are obtained using the following C# code. The
first portion creates the starting values, the vertices, using initial values and random
increments around these initial values. The last portion calls the NelderMead()
function.

double kappaS = 9.00;
double thetaS = 0.05;
double sigmaS = 0.30;
double v0S = 0.05;
double rhoS = -0.80;
int N = nmsettings.N;
double[,] s = new double[N,N+1];
for(int j=0;j<=N;j++) {

s[0,j] = kappaS + RandomNum(-0.01,0.01);
s[1,j] = thetaS + RandomNum(-0.01,0.01);
s[2,j] = sigmaS + RandomNum(-0.01,0.01);
s[3,j] = v0S + RandomNum(-0.01,0.01);
s[4,j] = rhoS + RandomNum(-0.01,0.01); }

// Obtain the parameter estimates
double[] B = NelderMead(f,nmsettings,s);

In the C# code for the Nelder-Mead algorithm, we have created a series of
structures that allow for inputs to be passed to the functions in a more compact
form. These structures contain settings for the Nelder-Mead algorithm, for the
objective function, for the Heston model parameters, and for the option price. The
C# code also makes use of several functions for adding and subtracting vectors and
for obtaining the average of vector elements. These structures and functions are not
presented here but are included with the C# code.

Starting Values

Recall that the constraints (6.1) on the Heston parameters are κ > 0, θ > 0, σ > 0,
v0 > 0, and |ρ| ≤ 1. As described earlier in this chapter, we use the Matlab function
fmincon.m to minimize the objective function under these constraints, which requires
upper and lower bounds on the parameters. This function uses a variety of methods
for constrained optimization, which are explained on the MathWorks website
(www.mathworks.com). We can also use the Matlab function fminsearch.m to
minimize the objective function, but this function uses the Nelder-Mead algorithm,
and as such is designed for unconstrained optimization only. One simple way to
incorporate a constraint is to impose a penalty, as we did for the C# code in the
previous section.



156 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 6.2 Parameter Estimates From the Literature

Source κ̂ θ̂ σ̂ v̂0 ρ̂ Data, Date

GS (2012)a 0.3369 0.0551 0.1927 0.0746 −1.000 S&P500, 09/2008
Forde et al. (2010) 1.7609 0.0494 0.4086 0.0464 −0.5195 Eurostoxx 50, 02/2006
Gatheral (2006) 1.3253 0.0354 0.3877 0.0174 −0.7165 S&P500, 09/2005
CHJ (2009)b 1.6048 0.0464 0.3796 n/a −0.7670 S&P500, 2004
SST (2004)c 0.6067 0.0707 0.2928 0.0654 −0.7571 Eurostoxx 50, 10/2003
BCC (1997)d 1.15 0.04 0.39 0.0348 −0.64 S&P500, 1988–1991

aGuillaume and Schoutens (2012)
bChristoffersen, Jacobs, and Heston (2009)
cSchoutens, Simons, and Tistaert (2004)
dBakshi, Cao, and Chen (1997)
n/a = not applicable

The functions fmincon.m and fminsearch.m each require a set of starting values
for the parameters. As with any optimization, it is important that these starting
values lie not too far away from the true values. We can look to estimates from
the empirical literature, such as those in Table 6.2, for clues on appropriate starting
values.

We must also apply good judgment when selecting starting values. For example,
volatility and price are usually negatively correlated, so we may specify for the
starting value for the correlation to lie in (−1, 0). Aı̈t-Sahalia and Kimmel (2007)
use 30-day at-the-money implied volatility as a proxy for instantaneous unobserved
volatility, so we can use that value as a starting estimate for v0.

To find starting values of ρ and σ , we can use the ‘‘Smart Parameter’’ method
of Gauthier and Rivaille (2009), which is described in the remainder of this section.
Their method is based on the approximation of the option price by expansion
developed by Benhamou et al. (2010). Gauthier and Rivaille (2009) express the
approximation in terms of the call price, but it can also be expressed in terms
of the put price, which is consistent with the original development of Benhamou
et al. (2010) that we will cover in Chapter 9. Gauthier and Rivaille rewrite the
approximated Heston put price as

Put = A + Bσ 2 + Cρσ + Dρ2σ 2 (6.6)

where

A = PBS(x, ŵτ ), B = (r0v0 + θr1)
∂2PBS

∂y2
, C = (v0p0 + θp1)

∂2PBS

∂x∂y
,

D =
[(

v0q0 + θq1

) ∂3PBS

∂x2∂y
+ 1

2
(r0p0 + θp1)

∂4PBS

∂x2∂y2

]
.

(6.7)

In Equation (6.7), the derivatives of the Black-Scholes put PBS(x, ŵτ ) are in terms
of the log-stock price x = ln St and the total integrated variance ŵτ we encountered
in Chapter 2

ŵτ = (v0 − θ )
(

1 − e−κτ

κ

)
+ θ.



Parameter Estimation 157

Formulas for these derivatives are presented in Chapter 9. The other quantities
we need for the coefficients in (6.7), namely m0, m1, p0, p1, q0, q1, r0 and r1 can be
found in Gauthier and Rivaille (2009) or in Benhamou et al. (2010).

The method of Gauthier and Rivaille is built on the idea that given two quoted
puts with the same maturity τ , namely P(K1) with strike K1 and P(K2) with strike
K2, we can form the system of two equations in two unknowns

P(K1) = A(K1) + B(K1)σ 2 + C(K1)ρσ + D(K1)ρ2σ 2

P(K2) = A(K2) + B(K2)σ 2 + C(K2)ρσ + D(K2)ρ2σ 2
(6.8)

and solve for (ρ, σ ). In order for this to work, we must fix values of κ, θ , and v0 in
the coefficients. We can solve for (ρ, σ ) by using the symbolic toolbox in Matlab. In
general, four solutions will be produced, but only one will be admissible, with both
|ρ| ≤ 1 and σ > 0.

Alternatively, we can find the values of (ρ, σ ) that minimize the objective
function

f (ρ, σ ) = (A(K1) + B(K1)σ 2 + C(K1)ρσ + D(K1)ρ2σ 2 − P(K1))2

+ (A(K2) + B(K2)σ 2 + C(K2)ρσ + D(K2)ρ2σ 2 − P(K2))2. (6.9)

Implementing this method in Matlab is straightforward. The Matlab file BlackSc-
holesDerivatives.m contains the required derivatives for the coefficients in Equation
(6.7). This function is passed to GauthierCoefficients.m function, which calculates
the coefficients in (6.7).

function [A B C D] = GauthierCoefficients(...);
% Generate the Black-Scholes derivatives
[P11P21P02P22] = BlackScholesDerivatives(...);
% Black Scholes Put Price
BSPut = K*exp(-rf*T)*normcdf(f) - S*exp(-q*T)*normcdf(g);
% Return the coefficients
A = BSPut;
B = (v0*r0 + theta*r1)*P02;
C = (v0*p0 + theta*p1)*P11;
D = (v0*q0 + theta*q1)*P21 + 0.5*(v0*p0 + theta*p1)^2*P22;

Finally, these coefficients are passed to the GetGauthierValues.m function,
which calculates sigma and rho in one of two ways: using closed-form values
obtained with Matlab’s symbolic calculator, or using the objective function in
Equation (6.9).

function [sigma rho] = GetGauthierValues(K1,K2,Put1,Put2,...,method)
% Find the Gauthier coefficients for each strike
[A1 B1 C1 D1] = GauthierCoefficients(K1,...);
[A2 B2 C2 D2] = GauthierCoefficients(K2,...);



158 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

if method==1
% Closed form expressions for sigma and rho
Rho(1) = -(-1/2*(-C1^2*D2*B2-B1*C2^2*D1 ...;
Rho(2) = (-1/2*(-C1^2*D2*B2-B1*C2^2*D1 ...;
Sigma(1) = 1/2*2^(1/2)*((-C1^2*D2*B2-B1 ...;
Sigma(2) = -1/2*2^(1/2)*((-C1^2*D2*B2-B1 ...;
% Find sigma, rho constrained optimization
for i=1:4

if abs(Rho(i))<1 && Sigma(i)>0;
rho = Rho(i);
sigma = Sigma(i);

end
end

elseif method==2
% Find sigma, rho constrained optimization
Coeff1 = [A1 B1 C1 D1];
Coeff2 = [A2 B2 C2 D2];
[SigmaRho] = fmincon(@(p) GauthierObjFun(p,...),start,...);
sigma = SigmaRho(1);
rho = SigmaRho(2);

end

The objective function in (6.9) is implemented using the GauthierObjFun.m
function.

function y = GauthierObjFun(param,Coeff1,Coeff2,Put1,Put2)
sigma = param(1);
rho = param(2);
y = (A1 + B1*sigma^2 + C1*rho*sigma + D1*rho^2*sigma^2

- Put1)^2 ...
+ (A2 + B2*sigma^2 + C2*rho*sigma + D2*rho^2*sigma^2

- Put2)^2;

The C# code to implement the ‘‘Smart Parameter’’ method of Gauthier and
Rivaille (2009) is very similar to the code snippets presented earlier, and is not
presented here. The difference is that, since we do not have a symbolic calculator
in C#, the code uses only the second method to find (ρ, σ ), via the objective
function (6.9).

SPEEDING UP THE ESTIMATION

One drawback of loss function estimation is that it can be very time consuming,
especially if many maturities and strikes are used. Kilin (2007) suggests a very simple
trick for speeding up the optimization routines required of loss function estimation.
Recall that the integrand for the in-the-money probabilities Pj (j = 1, 2) is

Re

[
e−iφ ln Kfj (φ)

iφ

]
. (6.10)



Parameter Estimation 159

Kilin (2007) notes that the characteristic function fj(φ) does not depend on the
strike K, but it does depend on the maturity τ . This implies that, in the optimization,
the values of f1(φ) and f2(φ) can be calculated once for each maturity, cached, and
used repeatedly for the different strikes. This is important because the term fj(φ) is by
far the one that requires the most computation time in the integrand, as it contains a
number of complex operations, including logarithms, exponents, and square roots.
Zhu (2010) refers to Kilin’s trick as Strike Vector Computation, and Schmelzle
(2010) calls it the caching technique. Kilin (2007) points out that, in order for this
to work, the outer loop of the optimization must be for the maturities and the inner
loop for the strikes. When coupled with a pricing formula that requires a single
integrand, such as those by Attari (2004) or Lewis (2001), or by consolidating the
Heston integrals into a single integral, as we did in Chapter 1, the caching technique
leads to an estimation time that is considerably reduced.

The Matlab file HestonObjFunSVC.m implements the method of Kilin (2007)
using Gauss-Laguerre integration. Parts of the function have been removed to
conserve space. The function allows for original Heston (1993) or Attari (2004)
formulation of the characteristic function. The outer loop is for maturities and the
inner loop is for strikes. At the beginning of each strike loop, we calculate the value
of the characteristic functions f1 and f2 at the Gauss-Laguerre abscissas φj. We then
retain these values, form the integrand at each of the strikes, and calculate the call
or put prices.

function y = HestonObjFunSVC(param,...,x,w,CF)
for t=1:NT

for j=1:length(x)
% Store the c.f. at each time step
phi = x(j);
if strcmp(CF,'Heston')

f2(j) = HestonCF(phi ,...);
f1(j) = HestonCF(phi-i,...) / (S*exp((rf-q)*T(t)));

elseif strcmp(CF,'Attari')
f(j) = AttariCF(phi,...);

end
end
for k=1:NK

L = log(exp(-rf*T(t))*K(k)/S);
for j=1:length(x);

phi = x(j);
if strcmp(CF,'Heston')

int1(j) = w(j) * real
(exp(-i*phi*log(K(k)))*f1(j)/i/phi);

int2(j) = w(j) * real
(exp(-i*phi*log(K(k)))*f2(j)/i/phi);

elseif strcmp(CF,'Attari')
int1(j) = w(j) * ((real(f(j)) + imag(f(j))/phi)

*cos(L*phi)...);
end

end
% The call price
if strcmp(CF,'Heston')

P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);



160 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

CallPrice = S*exp(-q*T(t))*P1 - ...;
elseif strcmp(CF,'Attari')

CallPrice = S*exp(-q*T(t)) - K(k)*exp(-rf*T(t))...;
end
if strcmp(PutCall(k,t),'C')

ModelPrice(k,t) = CallPrice;
else

ModelPrice(k,t) = CallPrice - S*exp(-q*T(t)) + ...;
end
% Select the objective function
if ObjFun == 1

% MSE
error(k,t) = (MktPrice(k,t) - ModelPrice(k,t))^2;

end
end

clear f1 f2
end
y = sum(sum(error)) / (NT*NK);

The C# code to generate the objective functions using Kilin’s (2007) Strike
Vector Computation is similar to the Matlab code shown above and is not presented
here.

We will see in Table 6.3 that the Strike Vector Computation substantially reduces
the computation time required for calibration, with little effect on the parameter
estimates.

One recent trend to improve the speed of estimation is to reduce the set of
parameters to estimate. We will see in Chapter 11, for example, that the sensitivity
of the Heston option price to changes in κ is low. Hence, we can fix κ at an
arbitrary, but reasonable, value. In their version of the Heston model with time-
dependent parameters, which we cover in Chapter 9, Benhamou et al. (2010) allow
the parameters to be piecewise constant, but restrict κ to a single value. Aı̈t-Sahalia
and Kimmel (2007) use short-term (30-day) at-the-money (ATM) implied volatility
to proxy instantaneous volatility. Janek et al. (2010) and Zhu (2010) calibrate v0

to the ATM implied volatility in the FX market, and suggest setting κ large enough
so that Feller’s condition 2κθ > σ 2 is satisfied. This leaves only the parameters set
(θ , σ , ρ) to estimate. Guillaume and Schoutens (2012) calibrate v0 and θ to the VIX,
and estimate (κ, σ , ρ) only.

Modifying the Matlab files for parameter estimation in which one or more of the
parameters is fixed is straightforward. In the first argument to the objective function,
we pass only those parameters to be optimized, and we pass the fixed parameters as
additional arguments to the function.

Finally, we can use the fast Fourier transform (FFT) or the fractional fast
Fourier transform (FRFT) to estimate the parameters. Both will reduce considerably
the computation time required. The Matlab file HestonObjFunFRFT.m constructs
the loss functions described in the first section of this chapter, but using the FRFT to
obtain model prices. The function calls the HestonCallFRFT.m function described
in Chapter 5 to calculate model prices, and then uses the built-in Matlab function
interp1.m to apply linear interpolation to obtain the call prices at the desired strikes.
The setting for this function can be changed to ‘‘spline’’ to implement cubic splines,



Parameter Estimation 161

but this increases the computation time and does not increase the accuracy by much,
in light of the fine granularity of the strike grid employed.

function y = HestonObjFunFRFT(param,S,K1,...,eta,alpha,rule)
lambdainc = 2/N*log(S/K1);
for t=1:NT

[CallFRFT KK lambdainc eta] = HestonCallFRFT(N,T(t),...);
CallPrice = LinearInterpolate(KK,CallFRFT,K);
for k=1:NK

if strcmp(PutCall(k,t),'C')
ModelPrice(k,t) = CallPrice(k);

else
ModelPrice(k,t) = CallPrice(k) - S*exp(-q*T(t)) + ...;

end
end
% Select the objective function
if ObjFun == 1

error(:,t) = (MktPrice(:,t) - ModelPrice(:,t)).^2;
end

end
y = sum(sum(error)) / (NT*NK);

In the earlier code, we use our own function for linear interpolation, LinearIn-
terpolate.m, which runs faster than the built-in Matlab function interp1.m.

function Yi = LinearInterpolate(X,Y,Xi)
N = length(X);
M = length(Xi);
for j=1:M

k = find(Xi(j)<=X);
k = k(1)-1;
Yi(j) = Y(k+1)*(Xi(j)-X(k))/(X(k+1)-X(k)) + ...;

end

We use the S&P500 data used to generate the parameter estimates in Table 6.1
to compare the speed of estimation using the MSE loss function. We implement
the estimation using 32-point Gauss-Laguerre integration and the ordinary objective
function HestonObjFun.m, using the Strike Vector Computation (SVC) with the
Heston (1993) characteristic function and the Attari (2004) characteristic function,
and using the FRFT. The results are in Table 6.3.

TABLE 6.3 Comparison of Estimation Methods

Estimation
Method IVMSE κ̂ θ̂ σ̂ v̂0 ρ̂

Estimation
Time (sec)

Ordinary 6.79 × 10−6 1.9214 0.0904 1.0193 0.0344 −0.7799 33.51
SVC-Heston 6.79 × 10−6 1.9643 0.0895 1.0268 0.0344 −0.7816 8.19
SVC-Attari 9.47 × 10−6 1.5359 0.0986 0.9436 0.0345 −0.7729 6.12
FRFT 9.57 × 10−6 1.6691 0.0932 0.9076 0.0339 −0.8013 2.35



162 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The ordinary objective function produces exactly the same parameter estimates
as in the first row of Table 6.1, as expected. The SVC objective function using
either the Heston or the Attari characteristic functions are comparable in terms of
computation time. Finally, the FRFT returns the parameter estimates very quickly,
requiring less than 10 percent of the time than the ordinary objective function. The
parameter estimates from the different estimation methods, as well as the values of
IVMSE, are very close.

The conclusion is evident: when possible, the SVC method or the FRFT should
be used to estimate the Heston parameters. Note however, that the FRFT settings
must be used with care. Setting the number of points too high in the FRFT function
will slow down the FRFT estimation, with little or no gain in precision.

DIFFERENTIAL EVOLUTION

The Differential Algorithm of Storn and Price (1997) has been applied to option
pricing by Nykvist (2009) and Gilli and Schumann (2011). Vollrath and Wendland
(2009) have applied the algorithm to the Heston model and have found the
algorithm effective in identifying the global minimum in the parameter space,
albeit at the expense of high computation time. The algorithm updates a randomly
chosen population of parameter values by creating a new candidate member from
each existing member in the population. Each existing member is compared to its
candidate, and the candidate replaces the member in the population if the candidate’s
objective function is smaller than the member’s. A new population is thus created,
and the process is repeated over successive iterations, or generations. In the final
generation, the member with the smallest value of the objective function is chosen
as the solution.

The DE algorithm can thus be implemented in the following steps.

Step 1. Initial selection of the population. Form a matrix of size 5 × NP of
randomly chosen parameter values, where NP is the number of population
members. The matrix must be constructed so that each row respects the
constraints on the parameters. Lower and upper bounds can be chosen so
that the random values for the parameters are reasonable, for example,
0 < κ < 20, 0 < θ , v0, σ < 2, and −1 < ρ < 0. In order for Step 2 to work,
we must have NP ≥ 4. This implies we have the population

P
(5×NP)

= (
x1 x2 · · · xNP

)
(6.11)

where each member of P is a vector of parameters, namely
xi = (κi, θi, σi, v0i, ρi)

T.

Step 2. Mutation of the population members. For each member xi of the
population (i = 1, . . . , NP), randomly select three other members xr1, xr2,
and xr3 distinct from each other and from xi as well. This implies that
we must select the indices r1, r2, and r3 so that i �= r1 �= r2 �= r3. For each
member, form a donor member defined by

yi = xr1 + F(xr2 − xr3) (6.12)



Parameter Estimation 163

where F ∈ [0, 2] is a constant mutation factor. The elements of the donor
member yi are used to construct a candidate member that may or may not
replace xi, based on the results of Steps 3 and 4.

Step 3. Recombination of the donor members. The candidate member ui is
constructed element-by-element from the elements yij of the donor and the
elements of the member xij (j = 1, . . . , 5) according to the following rule.
For each element j, we generate a uniform random number Uij and we form
the candidate element as

uij =
⎧⎨⎩yij if Uij ≤ CR or j = R

xij otherwise
(6.13)

where R is a randomly chosen integer from 1 to 5 and where CR is a
probability called the crossover ratio. The use of R guarantees that the
candidate is the not the same as the member, that is, it guarantees that
ui �= xi. This is because, even if all the Uij are very small so that the
condition Uij ≤ CR is not satisfied for any j = 1, . . . , 5, the condition j = R
will be met once and the corresponding element yij will become the element
uij of the candidate ui.

Step 4. Selection of the candidate. The member xi and its candidate ui are each
fed into the objective function f (x). If the candidate’s value is lower than
that of the member, the candidate replaces xi as the ith member of the
population P in (6.11). The rule is therefore

P =
{

(x1 · · · ui · · · xNP
) if f

(
ui

)
< f (xi)

(x1 · · · xi · · · xNP
) otherwise.

(6.14)

When all the members have received the treatment, the population is updated
and the next generation starts again at Step 2. The algorithm is thus run over all NG

generations. The parameter estimate is chosen as the member with the lowest value
of f (x) from the population of the final generation.

The Differential Evolution algorithm is implemented with the HestonDE.m
function. The first part of the function creates the population of members and
generates random uniform numbers outside the loop. In the mutation and recombi-
nation steps, the function verifies that the candidate (Pnew) falls within the range
of acceptable parameter values. If not, a new candidate is created. The population
is updated with the candidate, if applicable. At the last generation, the member
with the lowest value of the FRFT objective function is returned as the parameter
estimate. Note that, at the beginning of each population loop, the candidate Pnew is
set so that it automatically violates the range of acceptable parameter values, which
ensures that the whole loop is executed at least once.

function y = HestonDE(NG,NP,CR,F,Hi,Lo,S,...)
% Step1. Generate the population of random parameters
P = [kappaL + (kappaU-kappaL)*rand(1,NP); ...

thetaL + (thetaU-thetaL)*rand(1,NP); ...



164 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

sigmaL + (sigmaU-sigmaL)*rand(1,NP); ...
v0L + ( v0U- v0L)*rand(1,NP); ...
rhoL + ( rhoU- rhoL)*rand(1,NP)];

% Generate the random numbers outside the loop
U = rand(5,NP,NG);
for k=1:NG

for i=1:NP
% Select the i-th member of the population
P0 = P(:,i);
Pnew = -ones(1,5);
Condition = sum(Lo < Pnew & Pnew < Hi);
while Condition < 5

% Select random indices
I = randperm(NP);
I = I(find(I∼=i));
r = I(1:3);
% The three distinct members
Pr1 = P(:,r(1));
Pr2 = P(:,r(2));
Pr3 = P(:,r(3));
R = randperm(5);
Pnew = zeros(1,5);
% Steps 2 and 3. Mutation & recomb
for j=1:5

Ri = R(1);
u = U(j,i,k);
if u<=CR || j==Ri

Pnew(j) = Pr1(j) + F*(Pr2(j) - Pr3(j));
else

Pnew(j) = P0(j);
end

end
Condition = sum(Lo < Pnew & Pnew < Hi);

end
% Step 4. Selection
f0 = HestonObjFunFRFT(P0 ,...);
fnew = HestonObjFunFRFT(Pnew,...);
% Verify whether the candidate should replace
if fnew < f0

P(:,i) = Pnew;
end

end
end
for i=1:NP

f(i) = HestonObjFunFRFT(P(:,i),...);
end
% Find the member with the lowest obj fun
J = find(f==min(f));
y = P(:,J)’;

In the HestonObjFunFRFT.m function, we perform linear interpolation of the
call prices using the LinearInterpolate.m function described in the previous section.

The C# code for the Differential Evolution algorithm is very similar to the Matlab
code presented earlier, so we do not present it here. In the code, however, we need
the followings functions for calculating random numbers, for random permutations,



Parameter Estimation 165

and for removing indices from a vector. The C# functions RandomNum() and
RandomInt() generate random numbers and random integers, respectively.

private static readonly Random U = new Random();
private static readonly object sync = new object();
public static double RandomNum(double a,double b) {

int divisor = 1000000000;
lock(sync) { return a + (b-a)*U.Next(0,divisor)/

divisor; } }
// Random integer in (a,b)
private static readonly Random U1 = new Random();
private static readonly object sync1 = new object();
public static int RandomInt(int a,int b) {

lock(sync1) { return U1.Next(a,b); }}

The RandomPerm() function generates a random permutation of a vector of
integers.

public static int[] RandomPerm(int[] a) {
int N = a.Length;
int[][] F = new int[N][];
for(int i=0;i<=N-1;i++) F[i] = new int[2] { 0,0 };
for(int j=0;j<=N-1;j++) {

for(int i=0;i<=N-1;i++) {
F[j][0] = RandomInt(0,100);
F[j][1] = j; }

}
// Sort the F array w.r.t column 0
int column = 0;
Array.Sort(F,delegate(int[] w1,int[] w2)

{return (w1[column] as IComparable).
CompareTo(w2[column]);});

int[] b = new int[N];
for(int j=0;j<=N-1;j++) b[j] = F[j][1];

return b;}

Finally, the RemoveIndex() function creates a vector of integers with one of the
indices removed.

public static int[] RemoveIndex(int[] a,int position) {
int N = a.Length;
int[] b = new int[N-1];
if(position == 0) {

for(int i=1;i<=N-1;i++) b[i-1] = a[i];}
else if(position == N-1) {

for(int i=0;i<=N-2;i++) b[i] = a[i]; }
else {

for(int i=0;i<=position-1;i++) b[i] = a[i];
for(int i=position;i<=N-2;i++) b[i] = a[i+1]; }

return b;}



166 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 6.4 Comparison of Estimation Methods

Estimation
Method IVMSE κ̂ θ̂ σ̂ v̂0 ρ̂

Estimation
Time (sec)

FRFT 9.57 × 10−6 1.6691 0.0932 0.9076 0.0339 −0.8013 1.88
DE 5.95 × 10−6 1.6167 0.0969 0.9665 0.0345 −0.7734 120.36

The Differential Evolution algorithm is particularly useful when we have very
poor starting values. This is because, even with poor values, the algorithm will
converge to the global optimum, albeit at the requirement of many iterations. To
illustrate, we run the HestonDE.m function on the S&P500 data used to create
Table 6.1, and using the MSE loss function. Following Vollrath and Wendland
(2009), we set the number of population parameters equal to 15 times the number
of parameters so that NP = 75, we set the crossover ratio to CR = 0.5, the mutation
factor to F = 0.8, and the number of generations as NG = 200. We use starting
values equal to 1 for all parameters. We compare the DE parameter estimates to
those obtained using the FRFT. The results are in Table 6.4.

As expected, the DE method is much slower than estimation using the FRFT.
The DE parameter estimates, however, are more accurate since their IVMSE is
smaller. Moreover, they are consistent with the estimates in Table 6.1.

MAXIMUM LIKELIHOOD ESTIMATION

When there exists a set of liquid and reliable market quotes of option prices or
implied volatilities, then estimation through loss functions is feasible. If there are no
such quotes, however, then alternate methods must be used. Atiya and Wall (2009)
show how to obtain the maximum likelihood estimates of the physical parameters
of the Heston model using a time series of historical stock prices. Recall that, under
the risk-neutral measure, the log-stock price xt = ln St and variance vt follow the
bivariate stochastic differential equation

dxt =
(

r − q − 1
2

vt

)
dt + √

vtdW1,t

dvt = κ(θ − vt)dt + σ
√

vtdW2,t

(6.15)

with EQ[dW1,tdW2,t] = ρdt. Since the Brownian motions are correlated normal ran-
dom variables, the transition probability density for the joint log-stock price/variance
process from time t to t + 1 is bivariate normal

p(xt+1, vt+1|xt, vt) = 2(μt+1, �t+1)

where 2(μt+1, �t+1) is the bivariate normal density with mean vector

μt+1 =
(

xt + (
r − q − 1

2 vt

)
dt

vt + κ(θ − vt)dt

)



Parameter Estimation 167

and covariance matrix

�t+1 = vtdt
(

1 ρσ

ρσ σ 2

)
and where dt is the time increment between t and t + 1. Suppose we are given a time
series of log-stock prices x1, x2, . . . , xN observed at equal time increments dt. If the
observations are daily, for example, then dt = 1/252. Atiya and Wall (2009) apply
a filtering argument to show that the likelihood for the unobserved variances can
be approximated from the likelihood of stock prices. The likelihood at time t + 1,
given a value vt at time t, is

Lt+1(vt+1) ∝ dt(abt)
−1/4e−2

√
abt Lt

⎛⎝√
bt

a

⎞⎠ . (6.16)

The log-likelihood is therefore

�t+1(vt+1) ∝ ln dt − 1
4

ln(abt) − 2
√

abt + �t

⎛⎝√
bt

a

⎞⎠ . (6.17)

These expressions use the following quantities, defined as Equations (14) through
(16) in Atiya and Wall (2009)

a = (κ ′)2 + ρσκ ′dt + σ 2(dt)2/4
2σ 2(1 − ρ2)dt

bt = (vt+1 − αdt)2 − 2ρσ (vt+1 − αdt)(�xt+1 − μdt) + σ 2(�xt+1 − μdt)2

2σ 2(1 − ρ2)dt

dt = 1
D

exp

((
2κ ′ + ρσdt

)
(vt+1 − αdt) − (2ρσκ ′ + σ 2dt)(�xt+1 − μdt)

2σ 2(1 − ρ2)dt

)
(6.18)

with μ = r − q the drift, �xt+1 = xt+1 − xt the increment between log-stock prices,
κ ′ = 1 − κdt, α = κθ , and D = 2πσ

√
1 − ρ2dt.

The likelihood Equation (6.16) depends also on vt+1, through the terms bt and
dt. To evaluate vt+1 from vt, Atiya and Wall (2009) note that vt = √

bt/a. Inverting
this expression and applying the quadratic formula produces the solution

vt+1 =
√

B2 − C − B (6.19)

where

B = −αdt − ρσ (�xt+1 − μdt),

C = (αdt)2 + 2ρσαdt(�xt+1 − μdt) + σ 2(�xt+1 − μdt)2 − 2v2
t aσ 2(1 − ρ2)dt.

Hence, to evaluate the likelihood Equation (6.16) or the log-likelihood (6.17),
we start with initial values L0(v0) or �0(v0). To evaluate Lt+1(vt+1) or �t+1(vt+1) given
Lt(vt) or �t(vt), we first obtain vt+1 from (6.19). We then apply Equation (6.16) or



168 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

(6.17). We continue until time T, at which time we have LT(vT) or �T(vT), to which
we apply an optimization routine to find the maximum. The initial value suggested
by Atiya and Wall (2009) is L0(v0) = e−v0 , where v0 is the initial variance parameter
from the Heston model.

The likelihood function is implemented using the Matlab function Likeli-
hoodAW.m. The function returns the negative of the likelihood or log-likelihood,
since fmincon.m is designed for minimization.

function [y v] = LikelihoodAW(param,x,r,q,dt,method);
alpha = kappa*theta;
beta = kappa;
v(1) = v0;
if method==1

L(1) = exp(-v(1)); % Construct Likelihood
elseif method==2

L(1) = -v(1); % Construct log-likelihood
end
% Construction the likelihood for time t = 1 through t = T
for t=1:T-1

% Stock price increment
dx = x(t+1) - x(t);
% Equations (31), (32), and (30)
B = -alpha*dt - rho*sigma*(dx-mu*dt);
C = alpha^2*dt^2 + 2*rho*sigma*alpha*dt*(dx-mu*dt) + ...;
% Equation (30) to update the variance
if B^2 - C > 0;

v(t+1) = sqrt(B^2 - C) - B;
else

% If v(t+1) is imaginary use Equation (33)
bt = ((v(t)-alpha*dt)^2 - 2*rho*sigma* ...;
if bt/a > 0

v(t+1) = sqrt(bt/a);
else

% If v(t+1) is negative take previous value
v(t+1) = v(t);

end
end
% Equation (15) and (16)
bt = ((v(t+1)-alpha*dt)^2 - 2*rho*sigma* ...;
x1 = ((2*betap+rho*sigma*dt)*(v(t+1)-alpha*dt) ...;
x2 = -2*sqrt(a*bt);
% Combined exponent for Equation (34)
E = exp(x1 + x2) / D;
if method==1

% Equation (34) for the likelihood L(t+1)
L(t+1) = (a*bt)^(-1/4) * E * L(t);

elseif method==2
% Alternatively, use the log-likelihood
L(t+1) = -1/4*log(a*bt) + x1 + x2 -log(D) + L(t);

end
end
% Negative likelihood is the last term.
y = -real(L(T));



Parameter Estimation 169

The C# code to implement the Atiya and Wall (2009) likelihood function is very
similar and is not presented here.

To illustrate, we continue with the example involving the S&P500 Index. Recall
that the example involved SPY option quotes on April 13, 2012, with maturities
of 45, 98, 261, and 348 days and seven strikes, running from 120 to 150 in
increments of 5. The MSE loss function estimates are calculated first. To compare
the performance of Atiya and Wall’s (2009) method we obtain, for each maturity
separately, the parameter MLEs by minimizing the log-likelihood in Equation (6.17).
We obtain implied volatilities using the set of parameter estimates, and repeat for
the remaining maturities. This following code obtains both sets of estimates.

T = [45 98 261 348]./365;
% Obtain the estimates w option prices and loss functions
[true feval] = fmincon(@(p) HestonObjFun(p,...),start,...);
% Choose the number of days to use in the MLE.
% Run again with t>1
t = 1;
% Historical stock prices. Use D days before May 7, 2010.
D = T(t)*365;
S = xlsread('SPY Prices.xls', 'table',['G2:G' num2str(D+1)]);
% Put oldest prices first and calculate log prices
S = flipud(S);
x = log(S);
% Obtain the estimates using Atiya and Wall MLE
param = fmincon(@(p) LikelihoodAW(p,...),start,...);

We then obtain option prices and implied volatilities from each set of parameters,
along with the IVRMSE error for each maturity.

for t=1:NT
for k=1:NK

PriceAW(k,t) = HestonPriceGaussLaguerre(K(k),T(t)...);
IVAW(k,t) = BisecBSIV(K(k),T(t),PriceAW(k,t),...);
Error(k,t) = abs(IVAW(k,t) - MktIV(k,t))/

MktIV(k,t)*100;
IVRMSE(t) = sum(Error(:,t))/N(t);

end
IVRMSE = sum(IVRMSE)/NK;

The parameter estimates are presented in Table 6.5 and indicate variability in
the set of parameter estimates, depending on the length of the time series used to
obtain the MLEs.

Figure 6.2 plots the implied volatilities generated with the 98-day maturity
parameter estimates.

The plots of implied volatilities using MLEs from the other time series of
stock prices are not as attractive as they illustrate a much poorer fit to the market
implied volatilities. Finally, the results in Table 6.5 and Figure 6.2 are for illustrative



170 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 6.5 MLE and Loss Function Estimates

Days Method κ̂ θ̂ σ̂ v̂0 ρ̂ IVRMSE

45 Atiya-Wall 13.1798 0.0118 1.9961 0.0011 −0.9829 0.007
98 Atiya-Wall 10.6384 0.0222 1.0586 0.0325 −0.9057 0.002
261 Atiya-Wall 3.4827 0.0763 0.7690 0.0007 −0.9631 0.001
348 Atiya-Wall 15.5095 0.0207 0.9444 0.0260 0.0460 0.003
All Loss Function 1.7704 0.0927 0.9812 0.0344 −0.7791

0

0.1

120 130

Maturity 45 days

Market IV
AW-Heston IV

140 150

0.2

0.3

0.4

0.1
120 130

Market IV
AW-Heston IV

140 150

0.2

0.3

0.4

0.1
120 130

Market IV
AW-Heston IV

140 150

0.2

0.3

0.4

0

0.1

120 130

Market IV
AW-Heston IV

140 150

0.2

0.3

0.4

Maturity 261 days Maturity 348 days

Maturity 98 days

FIGURE 6.2 Implied Volatilities from MLE and Loss Function Estimates

purposes only. Indeed, if a set of market option prices is available, then parameter
estimation can be done using loss functions and the MLE method of Atiya and Wall
(2009) is not needed.

RISK-NEUTRAL DENSITY AND ARBITRAGE-FREE
VOLATILITY SURFACE

With estimated parameters, the question arises whether the volatility surface gen-
erated from the parameter values is able to produces price that are arbitrage-free.
An example of an implied volatility surface generated by the model appeared in
Figure 2.9. Arbitrage can be present along both dimensions of the volatility surface:



Parameter Estimation 171

strikes and maturities. The absence of arbitrage across strikes is reflected in prices of
butterfly spreads that are non-negative. A butterfly spread is a portfolio with three
positions: long one call at strike K − dK, long another call at strike K + dK, and
short two calls each struck at K. It is easy to show that as dK → 0 the value of
1/dK2 units of the portfolio converges to the discounted risk-neutral density (RND)
of Breeden and Litzenberger (1978)

e−rτ fST
(S) = ∂2C (K)

∂K2

∣∣∣∣
K=S

(6.20)

where C(K) is the price of a call struck at K generated from the implied volatility, and
fST

(S) is the RND. If we further let the time to maturity expire, τ → 0, the portfolio
value converges to the Dirac delta function, as expected, since that corresponds to
a degenerate density at maturity.1 One convenient way to check for the absence of
arbitrage across strikes is to obtain fST

(S) across a wide domain, and ensure that the
following properties hold:

Non-negativity property. The RND must be such that fST
(S) ≥ 0 for all S ≥ 0.

Integrability property. The RND must integrate to unity∫ ∞

0
fST

(S)dS = 1.

Martingale property. The RND must be able to recover the market prices of
calls. ∫ ∞

0
max(S − K, 0)fST

(S)dS = erτ C(K, τ )

where C(K, τ ) is the market price of a call struck at K with maturity τ = T − t.
See Brunner and Hafner (2003) and Carr (2004). The first two properties ensure
that the RND is a density function. The third property is sometimes expressed with
K = 0, in which case the left-hand side becomes EQ[ST] = Ste

r(T−t) = Ft,T, where Ft,T

is the forward price. Hence, the third property is sometimes verified in terms of the
ability of the RND to recover forward prices rather than call prices, and as such, it
is sometimes called the forward property.

To verify whether a set of estimated parameters �̂ produces call prices that are
free of arbitrage across strikes for a given maturity, we use these estimates to generate
a set of Heston (1993) call prices at a finely spaced grid of strikes. We then use central
finite differences to approximate the second derivative in Equation (6.20), generate
the RND, and verify whether the earlier properties hold. Jondeau et al. (2006),
however, caution that the RND estimated with finite differences can be inaccurate
and unstable, since even small pricing errors are amplified when finite differences
are applied twice. To ensure that the prices are very accurate, it is preferable to
use an integration method that uses many abscissas, such as the Gauss-Legendre

1If instead we use 1/dK units of the portfolio, then convergence is to an Arrow-Debreu
security rather than to the Dirac delta function.



172 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

multi-domain integration rule, which was covered in Chapter 5. Finite difference
approximations to first- and second-order derivatives will be covered in Chapter 10.

The Matlab function ExtractRND.m applies central differences to find the RND.
It accepts as inputs a vector of finely spaced strikes and call prices, and returns the
same vector of strikes but with four endpoints removed and the value of the RND
at each strike.

function [RND, K2] = ExtractRND(K,CallPrice)
% Calculate the first derivatives of calls w.r.t. strike K.
for i=2:length(K)-1

dK = K(i+1) - K(i-1);
dC = CallPrice(i+1) - CallPrice(i-1);
dCdK(i-1) = dC/dK;

end
% Calculate the risk neutral density by central finite
% differences.
for i=2:length(dCdK)-1;

dK = K(i+1) - K(i-1);
dC2 = dCdK(i+1) - dCdK(i-1);
RND(i-1) = dC2/dK;

end
K2 = K(3:end-2);

We use the RMSE parameter estimates in the second row of Table 6.1 to
illustrate risk neutral density estimation in the Heston (1993) model. The following
code is used to generate the RNDs for the four maturities. The call prices are
obtained using multi-domain integration using a domain of A = (0, 500) divided
into 50 subdomains along with a strike increment of dK = 0.5. The strike range
increases with increasing maturity, to allow for more dispersion in the RND at
higher maturities. The code also uses the Matlab function trapz() to integrate each
RND, and calculates the number of negative values of each RND, thus providing a
check of the first two properties. The code makes use of Matlab cells, to allow for
varying strike ranges in each maturity.

T = [45 98 261 348]./365;
NT = length(T);
% RMSE parameters
kappa = 8.9931;
theta = 0.0571;
sigma = 2.0000;
v0 = 0.0405;
rho = -0.8038;
% Multi-domain integration rule settings
lo = 1e-10; hi = 500;
Ndomains = 50 ;
dA = (hi - lo)/Ndomains;
A = [lo:dA:hi];
tol = 1e-8;
dK = 0.5;



Parameter Estimation 173

% Strike increment and ranges
dK = 0.5;
K{1} = 90:dK:170;
K{2} = 80:dK:180;
K{3} = 40:dK:220;
K{4} = 20:dK:240;
% Extract the RND, integration domain, area, negative values
for t=1:NT;

NK = length(K{t});
for k=1:NK;

[C{t}(k) H(k) N{t}(k)] = HestonPriceGaussLegendreMD
(K{t}(k),T(t),...);

end
Domain{t} = max(H);
[RND{t} ST{t}] = ExtractRND(K{t},C{t});
Area(t) = trapz(RND{t})*dK;
Zero(t) = length(find(RND{t}<0));

end

The second part of the code uses the RND to recover the market prices of the
calls and verify the third property. This is done using the trapezoidal rule, with the
built-in Matlab function trapz.m.

MktStrike = [120,125,130,135,140,145,150];
NK = length(MktStrike);
for t=1:NT

for k=1:NK
Payoff = max(ST{t} - MktStrike(k), 0);
RNDCall(k,t) = trapz(Payoff.*RND{t}) * dK * exp(-rf*T(t));

end
end
error = sum(sum(MktPrice - RNDCall));

Table 6.6 contains the results of the RND estimates, including the area under
each RND, and the upper integration limit and number of integration points
calculated by the multi-domain integration method.

All RNDs integrate to unity approximately and have no negative values, which
suggest that the first two properties hold. The upper integration limit decreases with
increasing maturity, corroborating the observation in Chapter 5 that integrands with

TABLE 6.6 Results of the RND Estimation

Maturity Area Upper Limit # Points

45 0.9959 470 1,536
98 0.9915 290 960
261 0.9977 150 512
348 0.9996 120 416



174 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

0
60 80 100 120 140

Terminal Stock Price
160 180 200

348-day maturity
261-day maturity
98-day maturity
45-day maturity

0.01

0.02

0.03

0.04

R
N

D

0.05

0.06

0.07

0.08

FIGURE 6.3 RNDs for the S&P500 Data

longer maturities are better behaved. To verify the third property, we note that the
RND is also able to recover the market prices of the calls fairly well, but these are
not shown here to conserve space.

The RNDs of the four maturities are plotted in Figure 6.3. These RNDs behave
as expected. In particular, the RNDs for the longer maturities are more spread out
than those for the short maturities, reflecting increasing market uncertainty about
future prices with increasing maturity. Note also the negative skew in each density,
induced by the negative correlation used to generate them.

The parameter estimates used to generate Figure 6.3 were those of the RMSE loss
function from the second row of Table 6.1. The RNDs generated using the MSE and
IVMSE parameters from Table 6.1 will produce similar results. The Christoffersen
et al. (2009) parameters, however, will produce RNDs with a more pronounced
skew, owing to the extreme value of the correlation parameter, ρ = −0.9921.

The RND is a convenient tool for verifying the absence of arbitrage across
strikes, but since it is designed for a single maturity, it cannot verify the absence
of arbitrage across maturities. As explained by Carr and Madan (2005), ensuring
the absence of calendar arbitrage usually involves verifying that calendar spreads
have a non-negative price. Kahalé (2004) and Fengler (2009) show that a test
of calendar arbitrage can be formulated in terms of the total implied variance
v2(K, τi) = IV2(K, τi) × τi, where IV(K, τi) is the implied volatility corresponding
to strike K and maturity τi = Ti − t. The test stipulates that there is no calendar
arbitrage if v2(K, τi) is a strictly increasing function of τi.



Parameter Estimation 175

0
120 125 130 135

Strike

T
ot

al
 V

ar
ia

nc
e

140 145 150

0.01

0.02

0.03

0.04

0.05

0.06

FIGURE 6.4 Total Variance for the S&P500 Data

Continuing with the S&P500 example and the RMSE parameter estimates
from Table 6.1, Figure 6.4 plots the total variance for maturities ranging from
45 to 360 days, in 5-day increments. The lines change in color as the maturity
increases, from red at the shortest maturities, to yellow, green, and finally blue at the
long maturities. The figure clearly shows increasing monotonic total variance with
increasing maturity, indicating the absence of calendar arbitrage in the volatility
surface generated with the RMSE parameters.

CONCLUSION

In this chapter, we have presented methods to estimate the parameters of the Heston
model. Estimation by loss functions is the most popular method to estimate risk-
neutral parameters, but it requires a set of market quotes of implied volatilities or
prices. The maximum likelihood estimation proposed by Atiya and Wall (2009) is
relatively straightforward to implement, but is designed for the Heston model only.
This is contrary to other methods that are applicable to a wide range of stochastic
volatility models, such as that of Aı̈t-Sahalia and Kimmel (2007). The differential
evolution algorithm is able to produce precise estimates, but at the expense of
increased computation time. The risk-neutral density and the total variance can be
used to verify whether option prices generated from a set estimated parameters admit
arbitrage. Finally, the estimation examples in this chapter all use four maturities
only and show a good fit of the model to market data. We caution, however, that



176 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

the Heston (1993) model is usually unable to fit the implied volatility surface over a
large range of maturities.2

A number of researchers have developed alternate methods to estimate the
parameters of diffusions such as those specified by the Heston model. The literature
is rich and varied and includes methods for univariate processes, as in Aı̈t-Sahalia
(2002), as well as for multivariate processes, as in Singleton (2001). The methods
encompass estimation by maximum likelihood (Aı̈t-Sahalia and Kimmel, 2007),
estimation by the method of moments (Chernov and Ghysels, 2000), Bayesian
estimation (Jones, 2003), and particle filtering (Christoffersen et al., 2010, Johannes
et al., 2009). In some studies, returns data are employed exclusively, as in Pan
(2002), and sometimes a combination of returns data and option prices is employed,
as in Eraker (2004). In this chapter, however, we bypass these methods altogether
and focus mostly on estimation with loss functions.

All of the pricing methods covered in this book so far have used the closed-form
approach to obtain the value of the call in the Heston model. Another popular
method of option valuation is through simulation of the stock price and volatility
processes of the model. One advantage of this approach is that these simulated
quantities can be used in the algorithm of Longstaff and Schwartz (2001) to obtain
the prices of American options. In response, a number of researchers have adapted
existing simulation schemes to the Heston model, and have created new schemes
designed exclusively for the model. We deal with some of these schemes in the
next chapter.

2We thank Jim Gatheral for this observation.



CHAPTER 7
Simulation in the Heston Model

Abstract

All the methods we have encountered so far for pricing options under the Heston
model have been analytic, in the sense that the option price is expressed in closed-form
and involves one or more complex integrals that must be evaluated numerically.
This is one standard approach for many option pricing methodologies. Another
approach is to use simulation, which we describe in this chapter.

Monte Carlo simulation in the context of the Heston model refers to a set of
techniques to generate artificial time series of the stock price and variance over
time, from which option prices can be derived. There are several choices available
in this regard. The first choice is to apply a standard method such as the Euler,
Milstein, or implicit Milstein scheme, as described by Gatheral (2006) and Kahl
and Jäckel (2006), for example. The advantage of these schemes is that they are
easy to understand, and their convergence properties are well-known. The other
choice is to use a method that is better suited, or that is specifically designed for
the model. These methods include the IJK scheme of Kahl and Jäckel (2006), the
quadratic-exponential scheme of Andersen (2008), the transformed volatility scheme
of Zhu (2010), the scheme of Alfonsi (2010), or the moment-matching scheme of
Andersen and Brotherton-Ratcliffe (2005). These schemes are designed to have faster
convergence to the true option price, and in some cases, to also avoid the negative
variances that can sometimes be generated from standard methods. These and other
schemes are reviewed by Van Haastrecht and Pelsser (2010).

GENERAL SETUP

Recall that the stock price and its variance are driven by the following bivariate
system of stochastic differential equations (SDE)

dSt = (r − q)Stdt + √
vtStdW1,t

dvt = κ(θ − vt)dt + σ
√

vtdW2,t

(7.1)

where E[dW1,tdW2,t] = ρdt. The processes in Equation (7.1) are specified in con-
tinuous time. Simulation, however, is done at discrete time steps. Hence, the first
step in a simulation scheme is usually to approximate a continuous-time process

177The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



178 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

with a discrete time process, a task known as discretization. The stock price and its
volatility can each be written in the general form

dXt = μ(Xt, t)dt + σ (Xt, t)dWt (7.2)

where Wt is Brownian motion. We simulate Xt over the time interval [0, τ ], which
we assume to be divided into N points as 0 = t1 < t2 < · · · < tN = τ , where the
time increments are equally spaced with width dt. Equally spaced time increments
makes the notation convenient, because it allows us to write ti − ti−1 as simply dt
for all i = 2, . . . , N. All the results derived with equally spaced increments are easily
generalized to unequal spacing, however. Integrating dXt from t to t + dt produces

Xt+dt = Xt +
∫ t+dt

t
μ(Xu, u)du +

∫ t+dt

t
σ (Xu, u)dWu. (7.3)

Equation (7.3) is the starting point for discretization. The idea is that at time t
the value of Xt is known, and we wish to obtain the next value Xt+dt at time t + dt.

To obtain the price of a European option using simulation in the Heston model,
we first simulate the bivariate process (St, vt) and generate N paths from t = 0 to
t = τ . We then retain the last stock price from each stock price path and obtain the
payoff of the European option at expiry, take the average over all stock price paths
and discount back to time zero. Hence, for example, the call and put price C(K) and
P(K) are

C(K) = e−rτ 1
N

N∑
i=1

max(0, S(i)
T − K)

P(K) = e−rτ 1
N

N∑
i=1

max(0, K − S(i)
T )

(7.4)

where S(i)
T is the terminal stock price generated by the ith stock price path, i =

1, . . . , N. This requires that we have estimates of the parameters κ, θ , σ , v0, and ρ.
There are two issues that arise when simulating the bivariate process (St, vt). The

first is the slow speed of convergence. The second, more serious issue, is that since vt

follows a CIR process, many simulation schemes, including the Euler and Milstein
schemes, will generate negative values for vt, even if the Feller condition 2κθ > σ 2

is met. This is because the Feller condition is valid for continuous time processes,
but simulation is done in discrete time and serves only as an approximation to
continuous time processes.

The simplest way to deal with negative variances is to override them as they
arise. There are at least two ways to do this

n In the full truncation scheme, a negative value for vt is floored at zero. Hence,
vt is replaced by v+

t = max(0, vt) everywhere in the discretization.
n In the reflection scheme, a negative value for vt is reflected with −vt. Hence, vt

is replaced by |vt| everywhere in the discretization.

The disadvantage of the full truncation scheme is that it creates zero vari-
ances, which is unrealistic because stock prices never exhibit zero variance.



Simulation in the Heston Model 179

The disadvantage of the reflection scheme is that it reflects a large negative variance
to a large positive variance. Hence, it transforms realizations of low volatility into
high volatility.

Another way to deal with negative simulated values of vt is to devise simulation
schemes for vt that do not produce negative values in the first place. Much of the
research on simulating the CIR variance process in the Heston model is devoted to
this approach. Yet another way is to simulate ln vt or

√
vt, and then exponentiate or

square the result. For the stock price, we can simulate St itself, but we will see in
this chapter that a better approach is to simulate the log price xt = ln St instead, and
then exponentiate.

All of the simulation schemes for the Heston model contain the same basic steps.
First, two independent standard normal random variables are generated, and then
made dependent by applying Cholesky decomposition. These are multiplied by

√
dt

to make them proxy Brownian motion increments. Second, we obtain the updated
value vt+dt. Third, we obtain the updated value St+dt (or xt+dt).

Step 0. Initialize S0 to the spot price (or x0 to the log spot price), and initialize
v0 to the current variance parameter.

Step 1. Generate two independent random variables Z1 and Z2, and define
ZV = Z1 and ZS = ρZV + √

1 − ρ2Z2. Proxy the Brownian motion by
dW1,t =

√
dtZS and dW2,t =

√
dtZV .

Step 2. Obtain the updated value vt+dt.

Step 3. Given vt+dt, obtain the updated value St+dt (or xt+dt) and return to Step 1.

Note that ZV and ZS are constructed so that E[ZV] = E[ZS] = 0, and so that
E[ZVZS] = ρE[Z2

1] + √
1 − ρ2E[Z1Z2] = ρ, as required.

In this chapter, we describe some common discretization schemes for (St, vt).
We assume that the time grid is discretized using time increments that are equally
spaced with width dt.

EULER SCHEME

The simplest way to discretize the process in Equation (7.3) is to use Euler dis-
cretization. This is equivalent to approximating the integrals using the left-point
rule. The first integral is approximated as the product of the integrand at time t and
the integration domain dt∫ t+dt

t
μ(Xu, u)du ≈ μ(Xt, t)

∫ t+dt

t
du = μ(Xt, t)dt.

We use the left-point rule since at time t the value μ(Xt, t) is known. The
right-point rule would require that μ(Xt+dt, t + dt) be known at time t. The second
integral is approximated as∫ t+dt

t
σ (Xu, u)du ≈ σ (Xt, t)∫ t+dt

t
dWu = σ (Xt, t)(Wt+dt − Wt)

d= σ (Xt, t)
√

dtZ



180 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

since Wt+dt − Wt and
√

dtZ are identical in distribution, where Z is a standard
normal variable. Hence, Euler discretization of Equation (7.3) is

Xt+dt = Xt + μ(Xt, t)dt + σ (Xt, t)
√

dtZ. (7.5)

In the next subsections, we illustrate Euler discretization of the Heston model.

Euler Scheme for the Variance

The SDE for vt in Equation (7.1) written in the form of (7.3) is

vt+dt = vt +
∫ t+dt

t
κ(θ − vu)du +

∫ t+dt

t
σ
√

vudWu. (7.6)

In accordance with Equation (7.5), Euler discretization approximates the
integrals in (7.6) as∫ t+dt

t
κ(θ − vu)du ≈ κ(θ − vt)dt∫ t+dt

t
σ
√

vudW2,u ≈ σ
√

vt(Wt+dt − Wt)
d= σ

√
vt

√
dtZV .

(7.7)

This implies that Euler discretization for the variance is

vt+dt = vt + κ(θ − vt)dt + σ
√

vt

√
dtZV . (7.8)

It is well-known that the probability of generating a negative value for vt+dt is

Pr(vt+dt < 0) = �

(
− (

1 − κdt
)

vt − κθdt

σ
√

vt

√
dt

)

where �(x) denotes the standard normal cumulative distribution function, evaluated
at x. Hence, when we apply Euler discretization to the variance, we must also apply
the full truncation scheme or the reflection scheme to override any negative values
that are generated in the simulation.

Euler Scheme for the Stock Price

There are two common approaches to simulating the stock price. We can either
simulate St directly, or we can simulate ln St and then exponentiate. The SDE for St

in Equation (7.3) can be written in integral form as

St+dt = St + (r − q)
∫ t+dt

t
Sudu +

∫ t+dt

t

√
vuSudWu.



Simulation in the Heston Model 181

Applying Equation (7.5), Euler discretization approximates the integrals as∫ t+dt

t
Sudu ≈ Stdt∫ t+dt

t

√
vuSudW1,u ≈ √

vtSt(Wt+dt − Wt)
d= √

vtSt

√
dtZS.

So Euler discretization of the stock price is

St+dt = St + (r − q)Stdt + √
vtSt

√
dtZS. (7.9)

To simulate the log stock price, we apply Itō’s lemma to the first equation in
Equation (7.1). Hence, ln St follows the SDE

d ln St =
(

r − q − 1
2

vt

)
dt + √

vtdW1,t

or in integral form

ln St+dt = ln St +
∫ t+dt

t

(
r − q − 1

2
vu

)
du +

∫ t+dt

t

√
vudW1,u. (7.10)

Euler discretization of the process for ln St is, thus,

ln St+dt ≈ ln St +
(

r − q − 1
2

vt

)
dt + √

vt(W1,t+dt − W1,t)

= ln St +
(

r − q − 1
2

vt

)
dt + √

vt

√
dtZS.

(7.11)

Euler discretization of St is obtained by exponentiation of Equation (7.11)

St+dt = St exp
((

r − q − 1
2

vt

)
dt + √

vt

√
dtZS

)
. (7.12)

Again, to avoid negative variances we must apply the full truncation or reflection
scheme by replacing vt everywhere with v+

t or with |vt|.
To implement Euler simulation we start with initial values S0 (or x0 = ln S0) for

the stock price and v0 for the variance. Given the values (St, vt), we obtain vt+dt from
Equation (7.8), and we obtain St+dt from either (7.9) or (7.12).

MILSTEIN SCHEME

This scheme is described in Glasserman (2003) and in Kloeden and Platen (1992)
for general processes, and in Kahl and Jäckel (2006) for stochastic volatility models.
For the Heston model, the coefficients in Equation (7.2) depend on Xt only, and do



182 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

not depend on t directly. Hence, for simplicity, we can assume that the stock price
and variance are driven by the SDE

dXt = μ(Xt)dt + σ (Xt)dWt

= μtdt + σtdWt.

In integral form

Xt+dt = Xt +
∫ t+dt

t
μsds +

∫ t+dt

t
σsdWs. (7.13)

The idea behind the Milstein scheme is that the accuracy of the discretization
can be increased by expanding the coefficients μt = μ(Xt) and σt = σ (Xt) via Itō’s
lemma. This is sensible since the coefficients are also functions of Xt. Indeed, we
can apply Itō’s Lemma to the functions μt and σt as we would for any differentiable
function of Xt. By Itō’s lemma, then, the coefficients follow the SDEs

dμt =
(

μ′
tμt + 1

2
μ′′

t σ
2
t

)
dt + (μ′

tσt)dWt

dσt =
(

σ ′
t μt + 1

2
σ ′′

t σ 2
t

)
dt + (σ ′

t σt)dWt

where the prime refers to differentiation in X and where the derivatives in t are zero
because in the Heston model μt and σt have no direct dependence on t. The integral
form of the coefficients at time s (with t < s < t + dt) is

μs = μt +
∫ s

t

(
μ′

uμu + 1
2

μ′′
uσ

2
u

)
du +

∫ s

t
(μ′

uσu)dWu

σs = σt +
∫ s

t

(
σ ′

uμu + 1
2

σ ′′
u σ 2

u

)
du +

∫ s

t
(σ ′

uσu)dWu.

Substitute for μs and σs inside the integrals of Equation (7.13) to produce

Xt+dt = Xt +
∫ t+dt

t

(
μt +

∫ s

t

(
μ′

uμu + 1
2

μ′′
uσ

2
u

)
du +

∫ s

t
(μ′

uσu)dWu

)
ds

+
∫ t+dt

t

(
σt +

∫ s

t

(
σ ′

uμu + 1
2

σ ′′
u σ 2

u

)
du +

∫ s

t
(σ ′

uσu)dWu

)
dWs.

(7.14)

The differentials higher than order one are dsdu = O(dt2) and dsdWu = O(dt3/2),
and are ignored. The term involving dWudWs is retained since it is O(dt), of order
one. This implies that (7.14) simplifies to

Xt+dt = Xt + μt

∫ t+dt

t
ds + σt

∫ t+dt

t
dWs +

∫ t+dt

t

∫ s

t
(σ ′

uσu)dWudWs. (7.15)



Simulation in the Heston Model 183

Apply Euler discretization to the last term in (7.15) to obtain

∫ t+dt

t

∫ s

t
(σ ′

uσu)dWudWs ≈ σ ′
t σt

∫ t+dt

t

∫ s

t
dWudWs = σ ′

t σt

∫ t+dt

t
(Ws − Wt)dWs

= σ ′
t σt

(∫ t+dt

t
WsdWs − WtWt+dt + W2

t

)
.

(7.16)

To solve the remaining integral in (7.16), define dYt = WtdWt. Using Itō’s
lemma, it is easy to show that Yt has the solution Yt = 1

2 W2
t − 1

2 t. Indeed, we have
∂Y/∂t = − 1

2 , ∂Y/∂W = W and ∂2Y/∂W2 = 1, so that

dYt =
(

−1
2

+ 0 + 1
2

× 1 × 1
)

dt + (Wt × 1)dWt = WtdWt.

Applying this result, we can write

∫ t+dt

t
WsdWs = Yt+dt − Yt = 1

2
W2

t+dt − 1
2

W2
t − 1

2
dt. (7.17)

Substitute back into (7.16) to obtain

∫ t+dt

t

∫ s

t
(σ ′

uσu)dWudWs ≈ 1
2

σ ′
t σt[(Wt+dt − Wt)

2 − dt]

= 1
2

σ ′
t σt[(	Wt)

2 − dt]

(7.18)

where 	Wt = Wt+dt − Wt, which is equal in distribution to
√

dtZ with Z distributed
as standard normal. Combining Equations (7.15) and (7.18), the general form of
Milstein discretization is, therefore,

Xt+dt = Xt + μtdt + σt

√
dtZ + 1

2
σ ′

t σtdt(Z2 − 1). (7.19)

Hence, Milstein discretization of dXt in Equation (7.19) is identical to Euler
discretization in (7.5), except for the extra term 1

2σ ′
t σtdt(Z2 − 1) that appears in

(7.19). This extra term improves the accuracy of Milstein discretization over Euler
discretization.

MILSTEIN SCHEME FOR THE HESTON MODEL

Recall that the Heston model is specified by the bivariate process given in
Equation (7.1). In the processes for St and vt, the drift and volatility coefficients do
not depend on t directly. Thus Equation (7.19) can be applied to both processes,
and to the process for ln St also.



184 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Milstein Scheme for the Variance

The coefficients of the variance process are μ(vt) = κ(θ − vt) and σ (vt) = σ
√

vt so an
application of Equation (7.19) to vt produces

vt+dt = vt + κ(θ − vt)dt + σ
√

vt

√
dtZV + 1

4
σ 2dt(Z2

V − 1) (7.20)

which can be written

vt+dt =
(√

vt + 1
2

σ
√

dtZV

)2

+ κ(θ − vt)dt − 1
4

σ 2dt. (7.21)

This last equation is also Equation (2.18) of Gatheral (2006). Milstein discretiza-
tion of the variance process produces far fewer negative values for the variance than
Euler discretization. Nevertheless, the full truncation scheme or the reflection scheme
must be applied to (7.20) and (7.21) as well.

Milstein Scheme for the Stock Price

The coefficients of the stock price process are μ(St) = (r − q)St and σ (St) = √
vtSt, so

Equation (7.19) becomes

St+dt = St + (r − q)Stdt + √
vt

√
dtStZS + 1

2
vtStdt(Z2

S − 1). (7.22)

We can also discretize the log-stock process, which by Itō’s lemma follows the
process

d ln St =
(

r − q − 1
2

vt

)
dt + √

vtdW1,t.

The coefficients are μ(St) = (r − q − vt/2) and σ (St) = √
vt so that μ′

t = σ ′
t = 0.

Since vt is known at time t, we can treat it as a constant in the coefficients. An
application of Equation (7.19) produces

ln St+dt = ln St +
(

r − q − 1
2

vt

)
dt + √

vt

√
dtZS (7.23)

which is identical to Euler discretization in (7.11). Hence, Milstein discretization of
ln St in the Heston model does not produce a more accurate approximation than
Euler discretization. The stock price is obtained by exponentiation of (7.23). Again,
it is necessary to apply the full truncation or reflections schemes to (7.22) and (7.23).

To implement Milstein simulation, we start with initial values S0 (or x0 = ln S0)
for the stock price and v0 for the variance. Given the simulated values (St, vt), we
obtain vt+dt from Equation (7.20), and we obtain St+dt from either (7.22) or by
exponentiating (7.23), as in (7.12).

Simulation schemes can serve as a powerful illustrator of how the Heston (1993)
parameters affect the behavior of the stock price and the volatility. In Chapter 2, for
example, we saw that the parameter ρ drives the correlation between the processes



Simulation in the Heston Model 185

85
0 50 100 150 200

Variance Level
Stock Price

250

90

95

100

105

110

0.04

0.045

0.05

0.055

0.06

0.065

FIGURE 7.1 Stock Price and Variance under Negative Correlation

driving the stock price and the variance. The following figures each contain a single
daily simulated stock price path and variance path over 1 trading year (250 days),
starting with initial values (S0, v0) = (100, 0.05) and using typical values of the
parameters. Figure 7.1 uses ρ = −0.9 and clearly illustrates the negative relationship
between price and variance. Indeed, increases in variance are associated with a
decreasing stock price, while the opposite is true for decreases in variance.

Figure 7.2, on the other hand, uses ρ = +0.9 and shows the opposite effect,
increases in variance are associated with increasing prices, and vice-versa.

Simulation can also be used to illustrate the effect of the other Heston parameters
on the stock price and the variance.

IMPLICIT MILSTEIN SCHEME

Recall that, in Equation (7.19) for Milstein discretization of dXt, the coefficients
μt = μ(Xt) and σt = σ (Xt) are the drift and volatility of the process for Xt and
are functions of Xt itself. In the Milstein drift-implicit scheme, or simply implicit
scheme, the drift coefficient μt is specified to be a function of Xt+dt. Hence, under
this scheme, the drift coefficient is known only implicitly, and not explicitly, as is the
case when it depends on Xt. Under the Itō version of this scheme Equation (7.19)
becomes

Xt+dt = Xt + μt+dtdt + σt

√
dtZ + 1

2
σ ′

t σtdt(Z2 − 1) (7.24)



186 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

85
0 50 100 150 200

Variance Level
Stock Price

250

90

95

100

105

110

0.04

0.045

0.05

0.055

0.06

0.065

FIGURE 7.2 Stock Price and Variance under Positive Correlation

where μt+dt = μ(Xt+dt). See Kloeden and Platen (1992) for details. It is also pos-
sible to interpolate between explicit and implicit Milstein schemes by taking a
weighted average of μt and μt+dt. The weighted implicit-explicit Milstein scheme
is therefore

Xt+dt = Xt + [αμt + (1 − α)μt+dt]dt + σt

√
dtZ + 1

2
σ ′

t σtdt(Z2 − 1) (7.25)

where α ∈ (0, 1) is the weight. The explicit Milstein scheme corresponds to α = 1,
and the implicit Milstein scheme to α = 0.

To apply the implicit Milstein scheme to the Heston model, in Equation (7.20)
we replace the term κ(θ − vt)dt with κ(θ − vt+dt)dt. We then bring κvt+dtdt over to
the left-hand side of the resulting equation, and we divide by 1 + κdt to obtain

vt+dt = vt + κθdt + σ
√

vt

√
dtZV + 1

4σ 2dt(Z2
V − 1)

1 + κdt
. (7.26)

If we apply the same steps to the weighted scheme in Equation (7.25) we obtain

vt+dt = vt + κ(θ − αvt)dt + σ
√

vt

√
dtZV + 1

4σ 2dt(Z2
V − 1)

1 + (1 − α)κdt
. (7.27)

The Matlab function EulerMilsteinSim.m applies Euler (7.8), Milstein (7.20),
implicit Milstein (7.26), or weighted Milstein (7.27) discretization to the variance,



Simulation in the Heston Model 187

and simulates the log-stock price using (7.12). It allows negative variances to be
overridden with either the reflection or full truncation scheme. The function returns
the matrices S and V that contain the stock price and volatility paths, and the scalar
F for the number of negative variance overrides. To conserve space, parts of the
functions have been omitted.

function [S V F] = EulerMilsteinSim(scheme,...)
for i=1:N;

for t=2:T;
% Generate two dependent N(0,1) variables
Zv = randn(1);
Zs = rho*Zv + sqrt(1-rho^2)*randn(1);
if strcmp(scheme,'E')

% Euler discretization for the variance
V(t,i) = V(t-1,i) + kappa*(theta-V(t-1,i)) ...;

elseif strcmp(scheme,'M')
% Milstein discretization for the variance.
V(t,i) = V(t-1,i) + kappa*(theta-V(t-1,i)) ...;

elseif strcmp(scheme,'IM')
% Implicit Milstein for the variance.
V(t,i) = (V(t-1,i) + kappa*theta*dt + ...;

elseif strcmp(scheme,'WM')
% Weighted Explicit-Implicit Milstein Scheme
V(t,i) = (V(t-1,i) + kappa*(theta-alpha*V(t-1,i)) ...;

end
% Apply the full truncation or reflection scheme
if V(t,i) <= 0

F = F+1;
if strcmp(negvar,'R')

V(t,i) = abs(V(t,i));
elseif strcmp(negvar,'T')

V(t,i) = max(0, V(t,i));
end

end
% Discretize the log stock price
S(t,i) = S(t-1,i)*exp((r-q-V(t-1,i)/2)*dt + ...;

end
end

This function is fed into the EulerMilsteinPrice.m function that uses the simulated
price paths as input, and calculates the call or put price from the terminal prices, as
in Equation (7.4).

function [S V F SimPrice] = EulerMilsteinPrice(scheme,...);
% Obtain the simulated stock price and simulated variance
[S V F] = EulerMilsteinSim(scheme,...);
% Terminal stock prices
ST = S(end,:);



188 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

% Payoff vectors
if strcmp(PutCall,'C')

Payoff = max(ST - K,0);
elseif strcmp(PutCall,'P')

Payoff = max(K - ST,0);
end
SimPrice = exp(-r*Mat)*mean(Payoff);

The C# code to obtain option prices using the Euler, Milstein, implicit Milstein,
and weighted Milstein schemes is very similar to the Matlab code in the snippets
stated above. In C#, however, we need to create functions to generate random draws
from the standard normal density. We use the RandomNum() and RandomInt()
functions that were presented in the Differential Algorithm of Chapter 6 to generate
uniform random numbers and random integers, respectively. We use the Box-Muller
transformation to convert uniform random numbers into a random draw z from the
standard normal density. This involves using the RandomNum() function to generate
two random numbers u1 and u2 uniformly distributed on [0, 1], and then defining

z =
√

−2 ln u1 × sin(2πu2). (7.28)

public static double RandomNorm() {
double U1 = RandomNum(0.0,1.0);
double U2 = RandomNum(0.0,1.0);
return Math.Sqrt(-2.0*Math.Log(U1)) * Math.Sin(2.0*Math.PI*U2); }

To illustrate, the price of a 3-month European call struck at K = 90 on a
dividend-paying stock with spot price S = 100 and dividend yield q = 0.02 is
$11.2087 when r = 0.03, κ = 6.2, θ = 0.06, σ = 0.5, ρ = −0.7, and v0 = 0.03.
We use 5,000 stock price paths and 100 time steps for each path, and apply the
reflection scheme. The price of the call with the Euler scheme is $11.3855 (an error
of 1.6 percent) and requires seven negative variances to be overridden. The Milstein
scheme produces a price of $11.1413 (an error of −0.6 percent), the implicit Milstein
scheme a price of $11.0692 (an error of −1.2 percent), and the weighted implicit-
explicit Milstein scheme a price of 11.1566 (an error of −0.5 percent). None of the
three Milstein schemes generated negative variances.

TRANSFORMED VOLATILITY SCHEME

One simple way to avoid negative variances is to simulate the volatility rather than
the variance, and then square the result. By Itō’s lemma, the volatility ωt = √

vt

follows the process

dωt = κ

2

[(
θ − σ 2

4κ

)
1
ωt

− ωt

]
dt + 1

2
σdW1,t. (7.29)



Simulation in the Heston Model 189

Euler discretization of (7.29) is simply

ωt+dt = ωt + κ

2

[(
θ − σ 2

4κ

)
1
ωt

− ωt

]
dt + 1

2
σ
√

dtZV (7.30)

while Euler discretization of the log stock price produces

St+dt = St exp
((

r − q − 1
2

ω2
t

)
dt + ωt

√
dtZS

)
. (7.31)

Zhu (2010) points out that, while Euler discretization of the volatility ωt

avoids negative variances, the drawback is that the mean level θω =
(
θ − σ2

4κ

)
/ωt in

(7.29) is stochastic because of the term 1/ωt. This will cause the simulation to be
poorly behaved. The transformed volatility scheme proposed by Zhu (2010) applies
a robust approximation of θω to rectify this problem. His transformed volatility
process is

dωt = κ

2
[θ ∗

t − ωt]dt + σ

2
dW2,t (7.32)

which has the mean reversion speed κ/2 and volatility of variance σ/2, respectively.
The mean reversion level θ ∗

t is

θ ∗
t = β − ωt exp(−κdt/2)

1 − exp(−κdt/2)

where

β =
√

(E[vt+dt] − Var[ωt+dt])+ =
√(

θ + (
vt − θ

)
e−κdt − σ 2

4κ
(1 − e−κdt)

)+
.

Note that the β parameter is set to zero when E[vt+dt] < Var[ωt+dt], while the
mean reversion level θ ∗

t depends on the value of ωt. Euler discretization of dωt in
(7.32) produces

ωt+dt = ωt + κ

2
[θ ∗ − ωt]dt + σ

2

√
dtZV . (7.33)

The TransVolSim.m Matlab function simulates the stock price in Equation
(7.31), and the volatility in either (7.30) or (7.33). The functions use the parameters
κ, θ , σ , and ρ, as in the other simulations, but the parameter for the initial volatility
is

√
v0.

function [S v] = TransVolSim(scheme,...)
v(1,:) = v0; % Heston initial variance
w(1,:) = sqrt(v0); % Heston initial volatility
for i=1:N;

for t=2:T;
% Generate two dependent N(0,1) variables
Zv = randn(1);



190 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Zx = rho*Zv + sqrt(1-rho^2)*randn(1);
if strcmp(scheme,'Euler')

% Euler volatility scheme
w(t,i) = w(t-1,i) + 0.5*kappa

*((theta-sigma^2/4/kappa) ...;
elseif strcmp(scheme,'TV')

% Transformed Volatility scheme
m1 = theta + (v(t-1,i) - theta)*exp(-kappa*dt);
m2 = sigma^2/4/kappa*(1-exp(-kappa*dt));
beta = sqrt(max(0,m1-m2));
thetav = (beta - w(t-1,i)*exp(-kappa*dt/2)) ...;
w(t,i) = w(t-1,i) + 0.5*kappa*(thetav - w(t-1,i)) ...;

end
v(t,i) = w(t,i)^2;
% Discretize the log stock price
X(t,i) = X(t-1,i) + (r-q-w(t-1,i)^2/2)*dt + w(t-1,i) ...;
S(t,i) = exp(X(t,i));

end
end

The simulated stock price values are then passed to the TransVolPrice.m
function, which calculates the price of the European call or put. It is almost identical
to the pricing function for the Euler and Milstein schemes presented at the end of
the previous section.

function [S v SimPrice] = TransVolPrice(...)
[S v] = TransVolSim(scheme,params,S0,Mat,r,q,T,N);
ST = S(end,:);
if strcmp(PutCall,'C')

Payoff = max(ST - K,0);
elseif strcmp(PutCall,'P')

Payoff = max(K - ST,0);
end
SimPrice = exp(-r*Mat)*mean(Payoff);

In numerical experiments Zhu (2010) shows that the accuracy of his trans-
formed volatility scheme is very high and comparable to the Quadratic Exponential
scheme, which we cover later in this chapter. The C# code to implement the trans-
formed volatility scheme is very similar to the Matlab code and is not presented
here.

Continuing with the example at the end of the previous section, the closed-form
call price is 11.2087. Using 5,000 stock price paths and 100 time steps per path,
the price using Euler discretization of the volatility in Equation (7.30) is 11.1040.
The transformed volatility in (7.33), however, produces a price of 11.1524, which
is more accurate.



Simulation in the Heston Model 191

BALANCED, PATHWISE, AND IJK SCHEMES

In this section, we describe three schemes proposed by Kahl and Jäckel (2006). The
Balanced Implicit method of Milstein et al. (1998) introduces implicitness in the
diffusion term. The Pathwise Adapted Linearization Quadratic method retains terms
up to (dt)2 in a more general expansion for pathwise approximation. Finally, the IJK
scheme uses the implicit Milstein scheme for the variance, along with an alternative
discretization for the log stock price.

Balanced Implicit Scheme

This scheme is able to preserve positivity of the variance process. It is defined in
Platen and Heath (2009) and Kahl and Jäckel (2006) as

vt+dt = vt + μtdt + σt	Wt + (vt − vt+dt)C(vt)

where

C(vt) = c0(vt)dt + c1(vt)|	Wt|

with c0 and c1 suitably chosen positive real valued and bounded functions defined as
c0(vt) = κ and c1(vt) = σ/

√
vt. The Balanced Implicit scheme for the Heston model

is, therefore,

vt+dt = vt + κ(θ − vt)dt + σ
√

vt

√
dtZV + (vt − vt+dt)C(vt)

= vt(1 + C(vt)) + κ(θ − vt)dt + σ
√

vt

√
dtZV

1 + C(vt)

(7.34)

with

C(vt) = κdt + σ
√

dt|ZV|√
vt

.

Since the variance is always guaranteed to be positive, reflection and truncation
are not needed. Unfortunately, as shown by Kahl and Jäckel (2006), the convergence
of this scheme can be very poor. For details please refer to Equations (6.25) through
(6.28) in their paper.

Pathwise Adapted Linearization Quadratic

Another scheme for discretization of the variance is the Pathwise Adapted Lineariza-
tion Quadratic scheme presented in Kahl and Jäckel (2006). Its convergence is fast,
especially for small values of σ . The discretization scheme is given by

vt+dt = vt + (κ(θ̃ − vt) + σβn

√
vt)

(
1 + σβn − 2κ

√
vt

4
√

vt

dt
)

dt (7.35)

where θ̃ = θ − σ 2/(4κ) and where βn = ZV/
√

dt. This scheme must be implemented
with care, as it can lead to numerical instability for large values of σ .



192 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Kahl-Jäckel IJK Scheme

This was also proposed by Kahl and Jäckel (2006). It involves simulating vt with the
implicit Milstein scheme from Equation (7.26), and simulating ln St with their IJK
discretization given by

ln St+dt = ln St +
(

r − q − vt + vt+dt

4

)
dt + ρ

√
vtdtZV

+ 1
2

(
√

vt + √
vt+dt)(ZS − ρZV)

√
dt + ρσdt

2
(Z2

V − 1).

(7.36)

Since this scheme can also produce negative variances, in (7.36) the full trunca-
tion scheme or the reflection scheme should be used. See their paper for details of
the derivation.

The Matlab function KahlJackelSim.m implements the Balanced (7.34), Path-
wise (7.35), and IJK (7.36) schemes. Parts of the function have been omitted to
conserve space.

function [S V F] = KahlJackelSim(scheme,...)
for i=1:N;

for t=2:T;
if strcmp(scheme,'IJK')

% Implicit Milstein for the variance.
V(t,i) = (V(t-1,i) + kappa*theta*dt +...;
% IJK discretization log stock prices
S(t,i) = S(t-1,i)*exp((r-q-(V(t,i)+V(t-1,i))/4) ...;

elseif strcmp(scheme,'PW')
% Pathwise Adapted Linearization for variance.
theta2 = theta - sigma^2/4/kappa;
Bn = Zv/sqrt(dt);
V(t,i) = V(t-1,i) + (kappa*(theta2-V(t-1,i)) + ...;
% Euler/Milstein discretization log stock prices
S(t,i) = S(t-1,i)*exp((r-q-V(t-1,i)/2)*dt + ...;

elseif strcmp(scheme,'B')
% Balanced Implicit scheme for the variance
absdW = sqrt(dt)*abs(Zv);
C = kappa*dt + sigma/sqrt(V(t-1,i))* ...;
V(t,i) = (V(t-1,i)*(1+C) + kappa*(theta-V(t-1,i)) ...;
% Euler/Milstein discretization log stock prices
S(t,i) = S(t-1,i)*exp((r-q-V(t-1,i)/2)*dt + ...;

end
end

end

The KahlJackelPrice.m function calculates the price of a European call or put,
based on paths simulated using the KahlJackelSim.m function. The C# code to
implement these three methods is very similar to the Matlab code and is not
presented here.



Simulation in the Heston Model 193

We continue with the example in earlier sections that use 5,000 simulation
paths each with 100 time steps. Recall that the closed-form price is 11.2087.
The IJK scheme produces 11.2833 (an error of 0.7 percent), the Pathwise scheme
produces 11.2192 (error of 0.1 percent), and the Balanced scheme produces 11.2841
(error of 0.7 percent). These errors are small, and none of the schemes generated
negative variances.

QUADRATIC-EXPONENTIAL SCHEME

Recall from Chapter 1 that the value of vt+dt conditional on a realized value vt follows
the non-central chi-square distribution. Andersen (2008) suggests sampling from an
approximation to the distribution, depending on whether the non-centrality parame-
ter, 2ct+dtvte

−κdt, is large or small. Since the non-centrality parameter is proportional
to vt, large or small values of the parameter correspond to large or small values of
vt. The algorithm switches back and forth between two different approximations to
the non-central chi-square distribution; the choice of the approximation depends on
the magnitude of vt. The reasoning is as follows:

For moderate or high values of vt, a non-central chi-square random vari-
able can be approximated by a power function applied to a standard normal
variable ZV

vt+dt = a(b + ZV)2 (7.37)

where a and b are determined by moment-matching using the mean m and variance
s2 of the Cox, Ingersoll, and Ross (CIR) (1985) process presented in Chapter 1.

For small values of vt, the non-central chi-square density can be approximated
by a weighted average of a term involving the Dirac delta function δ and another
term involving e−βx

Pr(vt+dt ∈ [x, x + dx]) = (pδ(0) + (1 − p)βe−βx)dx (7.38)

where p and β are determined by moment-matching also. Note that 0 ≤ p ≤ 1.
Integrating (7.38) and inverting produces the inverse distribution function

�−1(u) =

⎧⎪⎨⎪⎩
0 for 0 ≤ u ≤ p

1
β

ln
1 − p
1 − u

for p ≤ u ≤ 1.
(7.39)

The sampling scheme for small values of vt is, therefore,

vt+dt = �−1(UV) (7.40)

where UV is a uniform random number.
The Quadratic Exponential (QE) sampling scheme is defined by Equations (7.37)

and (7.40). From these equations it is clear that the QE scheme guarantees that only
positive values of vt+dt will be generated. Duffy and Kienitz (2009) present a nice
explanation of the QE scheme.



194 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Moment-Matching

The parameters a, b, p, and β are obtained by matching the first two moments
of the non-central chi-square distribution to those of the approximate distribu-
tions. Recall from Chapter 1 that the mean and variance of the CIR process are,
respectively,

m = E[vt+dt|vt] = θ + (vt − θ )e−κdt

s2 = Var[vt+dt|vt] = vtσ
2e−κdt

κ
(1 − e−κdt) + θσ 2

2κ
(1 − e−κdt)2.

(7.41)

For moderate or high values of vt, since vt+dt = a(b + ZV)2 from (7.37), and since
Z2

V is distributed chi-squared with one degree of freedom, we have that E[vt+dt] =
a(1 + b2) and Var[vt+dt] = 2a2(1 + 2b2). Equating these to m and s2 respectively and
solving for a and b produces

b =
(

2
ψ

− 1 +
√

2
ψ

(
2
ψ

− 1
))1

2

, a = m
1 + b2

(7.42)

where ψ = s2/m2. Note that b is only defined when ψ ≤ 2.
For low values of vt, the mean and variance of vt+dt are found by

integrating Equation (7.38) directly, which produces E[vt+dt] = (1 − p)/β and
Var[vt+dt] = (1 − p2)/β2. Again, equating these to m and s2 and solving for p and β

produces

p = ψ − 1
ψ + 1

and β = 1 − p
m

. (7.43)

Note that the condition that p ≥ 0 requires that ψ ≥ 1. We thus have the
restriction that 1 ≤ ψ ≤ 2. The value of ψ stipulates which approximation to use.
Indeed, the first approximation requires ψ ≤ 2, while the second requires ψ ≥ 1.
This implies that a critical level ψc ∈ [1, 2] ought to be defined as a threshold to
switch between the two approximations. Andersen (2008) uses ψc = 1.5.

The scheme can be summarized as follows:

Given vt, obtain m and s2 from Equation (7.41) using estimates of θ and κ, and
define ψ = s2/m2.

Draw a uniform random number UV ∈ [0, 1].

If ψ ≤ ψc compute a and b from (7.42), and compute ZV = �−1(UV). Define
vt+dt = a(b + ZV)2 from (7.37).

If ψ > ψc compute β and p from (7.43). Define vt+dt = �−1(UV) from (7.39).

In the same paper, Andersen (2008) presents the Truncated Gaussian (TG)
scheme which uses the approximation vt+dt = (μ + σZV)+ for μ and σ constants.
The performance of the TG scheme is inferior to that of the QE scheme, however,
and Andersen recommends that the QE scheme be the default choice.



Simulation in the Heston Model 195

Process for the Log-Stock Price

Andersen (2008) proposes a discretization scheme for ln St that overcomes the
problem of ‘‘leaky’’ correlation brought on by Euler discretization. Recall from
Chapter 3 that we can use Cholesky decomposition to replace the correlated
Brownian motions W1,t and W2,t in the Heston bivariate system of SDEs with two
independent Brownian motions B1,t and B2,t by defining W1,t = ρB2,t + √

1 − ρ2B1,t

and W2,t = B2,t. The integral form of the process for vt is, therefore,

vt+dt = vt + κθdt − κ

∫ t+dt

t
vudu + σ

∫ t+dt

t

√
vudB2,u.

Rearranging terms produces

∫ t+dt

t

√
vudB2,u = 1

σ

(
vt+dt − vt − κθdt + κ

∫ t+dt

t
vudu

)
. (7.44)

Applying Cholesky decomposition to Equation (7.10), the integral form of the
SDE for ln St, produces

ln St+dt = ln St + (r − q)dt − 1
2

∫ t+dt

t
vudu

+
∫ t+dt

t

√
vu(ρdB2,u +

√
1 − ρ2dB1,u).

(7.45)

Now substitute Equation (7.44) into (7.45) to obtain

ln St+dt = ln St + (r − q)dt + ρ

σ
(vt+dt − vt − κθdt)

+
(

κρ

σ
− 1

2

) ∫ t+dt

t
vudu +

√
1 − ρ2

∫ t+dt

t

√
vudB1,u.

(7.46)

Andersen (2008) uses the approximations

∫ t+dt

t
vudu ≈ dt(γ1vt + γ2vt+dt)∫ t+dt

t

√
vudB1,u ≈ ZV

√
dt

√
γ1vt + γ2vt+dt

where ZV is standard normal. Substituting these approximations into (7.46)
produces

ln St+dt = ln St + (r − q)dt + K0 + K1vt + K2vt+dt +
√

K3vt + K4vt+dtZV (7.47)



196 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where

K0 = −κρθ

σ
dt, K1 =

(
κρ

σ
− 1

2

)
γ1dt − ρ

σ
, K2 =

(
κρ

σ
− 1

2

)
γ2dt + ρ

σ

K3 = (1 − ρ2)γ1dt, K4 = (1 − ρ2)γ2dt.

The constants γ1 and γ2 in these expressions are arbitrary. Setting γ1 = 1
and γ2 = 0 produces an Euler-type scheme, while γ1 = γ2 = 1

2 produces a central
discretization. With these values, the algorithm to generate a value of St+dt, given the
values St, vt, and vt+dt is evident.

Martingale Correction

Under the risk-neutral measure Q, the discounted asset price will be a martingale in
continuous time. On the other hand, the discretized stock price

St+dt = St exp
(
(r − q) dt + K0 + K1vt + K2vt+dt +

√
K3vt + K4vt+dtZV

)
(7.48)

will not be a martingale. The resulting bias is minor, since the drift away from
the martingale can be controlled by reducing the size of the time increment, dt.
Nonetheless, Andersen (2008) shows that the martingale property can be satisfied
simply by replacing K0 with K∗

0 given by

K∗
0 = − ln M −

(
K1 + 1

2
K3

)
vt. (7.49)

The martingale correction makes use of the term A = K2 + 1
2 K4, along with a

and b defined in Equation (7.42) and p and β defined in (7.43). When ψ ≤ ψc we can
implement the martingale correction provided that A < 1/(2a), and the expression
for M is

M =
exp

(
Ab2a

1 − 2Aa

)
√

1 − 2Aa
. (7.50)

When ψ > ψc, we can implement the martingale correction provided that A < β,
and the expression for M is

M = p + β(1 − p)
β − A

. (7.51)

The simulation of stock price paths under Quadratic Exponential scheme is
implemented with the QESim.m function. Parts of the function have been removed
to conserve space.



Simulation in the Heston Model 197

function [S V] = QESim(params,gamma1,gamma2,...)
% Loop through the simulation runs
for i=1:N;

% Loop through the time increments
for t=2:T;

% Generate two dependent N(0,1) variables
Zv = randn(1);
Zs = rho*Zv + sqrt(1-rho^2)*randn(1);
% QE Agorithm
m = theta + (V(t-1,i) - theta)*E;
s2 = V(t-1,i)*sigma^2*E/kappa*(1-E) + ...;
phi = s2/m^2;
Uv = rand;
if phi <= phic

b = sqrt(2/phi - 1 + sqrt(2/phi*(2/phi-1)));
a = m/(1+b^2);
if icdf==1

Zv = norminv(Uv);
elseif icdf==2

Zv = normICDF(Uv);
end
V(t,i) = a*(b + Zv)^2;
% Martingale correction: Define new K0
if (MC==1) & A<(1/(2*a));

M = exp(A*b^2*a/(1-2*A*a))/sqrt(1-2*A*a);
K0 = -log(M) - (K1+0.5*K3)*V(t,i);

end
S(t,i) = S(t-1,i)*exp((r-q)*dt + K0 + ...;

else
p = (phi-1)/(phi+1);
beta = (1-p)/m;
if (0<=Uv) & (Uv<=p);

phiinv = 0;
elseif (p<Uv) & (Uv<=1);

phiinv = 1/beta*log((1-p)/(1-Uv));
end
V(t,i) = phiinv;
% Martingale correction: Define new K0 if possible
if MC==1 & A<beta;

M = p + beta*(1-p)/(beta-A);
K0 = -log(M) - (K1+0.5*K3)*V(t,i);

end
S(t,i) = S(t-1,i)*exp((r-q)*dt + K0 + ...;

end;
end

end

Using the same settings as the example throughout this chapter, we obtain a price
of 11.2173, which represents an error of less than 1 percent from the closed-form
price of 11.2087.

Inversion of the standard normal CDF using the built-in Matlab function
norminv.m slows down the simulation. To rectify this problem we create the Matlab
function normICDF, which implements the approximation algorithm of Wichura



198 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

(1988). This function is an adaptation of Fortran code AS241 downloaded from
StatLib (lib.stat.cmu.edu), a software and data repository hosted by the Department
of Statistics at Carnegie Mellon University. In the QESim.m Matlab function, we set
the ‘‘icdf’’ argument to 2, which replaces the Matlab function

Zv = norminv(Uv);

with the function based on the Wichura (1988) approximation

Zv = normICDF(Uv);

This reduces the simulation time by more than 50 percent. The approximation
to �−1(p) considers three cases separately. The first case is for p ≈ 0.5, the second is
for p not close to 0, 0.5, or 1, and the third is for p ≈ 0 or p ≈ 1. As usual, most of
the function is not presented here.

function y = normICDF(p)
q = p - 0.5;
if (abs(q) < 0.425)

% For p close to 0.5
y = q*(((((((a7*r + a6)*r + a5)*r + a4)*r + a3)...;

else
if (r <= 5)

% For p not close to 0, 0.5, or 1
y = (((((((c7*r + c6)*r + c5)*r + c4)*r + c3)...;

else
% For p near 0 or 1
y = (((((((e7*r + e6)*r + e5)*r + e4)*r + e3)...;

end
end

The C# code to implement the Quadratic Exponential method and the Wichura
(1988) approximation is very similar and is not presented here.

ALFONSI SCHEME FOR THE VARIANCE

Alfonsi (2010) proposes a simulation scheme that performs well under the Heston
model and that avoids negative variances. Define

� = 1 − exp(−κdt/2)
κ

and define the constant K2 as

K2 = exp(κdt/2)

⎡⎣(
σ 2

4
− θκ

)
� +

(√
eκdt/2

(
σ 2

4
− θκ

)
� + σ

2

√
3dt

)2⎤⎦



Simulation in the Heston Model 199

when σ 2 > 4κθ , and as K2 = 0 when σ 2 ≤ 4κθ . At each simulation step, we compare
vt to K2, and we have a different updated value vt+dt depending on the results of the
comparison.

Case 1, vt > K2 Updating to vt+dt requires two steps. In the first step we need
to simulate a discrete random variable Y ∈ {0,

√
3, −√

3} with probabilities
2/3, 1/6, and 1/6, respectively. This can be done by first simulating a uniform
random variable U on (0, 1) and then assigning a value of Y depending on
the realized value of U. In the second step we update to vt+dt using

vt+dt = exp(−κdt/2)

(√(
κθ − σ 2

4

)
� + e−κdt/2vt + σ

2

√
dtY

)2

+
(

κθ − σ 2

4

)
�.

Case 2, vt ≤ K2 Denote the first two moments of vt+dt conditional on vt by

u1 = E[vt+dt|vt], u2 = E[v2
t+dt|vt].

The first moment, u1 was presented in Chapter 1, where it was denoted m. The
second moment, u2 can be obtained as u2 = s2 + u2

1, where s2 = Var[vt+dt|vt] is the
conditional variance, also presented in Chapter 1. Define the quantity π as

π = 1
2

− 1
2

√
1 − u2

1

u2

.

In the first step, we simulate a uniform random variable U on (0, 1). In the
second step, we update to vt+dt by comparing U to π so that

vt+dt = u1

2π
if U ≤ π

vt+dt = u1

2(1 − π )
if U > π.

The function CIRmoments.m calculates the moments u1 and u2.

function [u1 u2] = CIRmoments(param,Vs,dt)
u1 = theta + (Vs - theta)*exp(-kappa*dt);
s2 = Vs*sigma^2*exp(-kappa*dt)/kappa*(1-exp(-kappa*dt)) + ...;
u2 = s2 + u1^2;

The algorithm to update vt is implemented with the Matlab function
AlfonsiV.m.



200 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

function newV = AlfonsiV(param,vt,dt);
phi = (1-exp(-kappa*dt/2))/kappa;
S = (sigma^2/4 - theta*kappa);
E = exp(kappa*dt/2);
if sigma^2 > 4*kappa*theta

K2 = E*(S*phi + (sqrt(E*S*phi) + sigma ...;
else

K2 = 0;
end
if vt >= K2

U = rand(1);
if U <= 1/6;

Y = sqrt(3);
elseif U <= 1/3;

Y = -sqrt(3);
else

Y = 0;
end
phi = (1-exp(-kappa*dt/2))/kappa;
S = (theta*kappa - sigma^2/4);
E = exp(-kappa*dt/2);
newV = E*(sqrt(S*phi + E*vt) + sigma/2 ...;

else
[u1 u2] = CIRmoments(param,vt,dt);
Pi = 0.5 - 0.5*sqrt(1 - u1^2/u2);
U = rand(1);
if U <= Pi

newV = u1/2/Pi;
elseif U > Pi

newV = u1/2/(1-Pi);
end

end

The AlfonsiV.m function is used in the AlfonsiSim.m function, which simulates
the stock price in accordance with the Predictor-Corrector scheme, and simulates
the variance using the Alfonsi scheme. To conserve space parts of the function are
omitted.

function [S V] = AlfonsiSim(params,S0,Mat,r,q,T,N)
% Time increment
dt = Mat/T;
% Required quantities
K0 = -rho*kappa*theta*dt/sigma;
K1 = dt/2*(kappa*rho/sigma - 1/2) - rho/sigma;
K2 = dt/2*(kappa*rho/sigma - 1/2) + rho/sigma;
K3 = dt/2*(1-rho^2);
% Generate the stock and volatility paths
for i=1:N;

for t=2:T;
% Alfonsi discretization
V(t,i) = AlfonsiV(params,V(t-1,i),dt);
% Predictor-Corrector for the stock price



Simulation in the Heston Model 201

B = randn(1);
logS = log(exp(-r*t*dt)*S(t-1,i)) + K0 ...;
S(t,i) = exp(logS)*exp(r*(t+1)*dt);

end
end

The stock price and variance simulated with the AlfonsiSim.m function
are then passed to the AlfonsiPrice.m function, which returns the price of a
European call or put.

function [S V SimPrice] = AlfonsiPrice(params,PutCall,...)
% Obtain the simulated stock price and simulated variance
[S V] = AlfonsiSim(params,S0,Mat,r,q,T,N);
% Terminal stock prices
ST = S(end,:);
% Payoff vectors
if strcmp(PutCall,'C')

Payoff = max(ST - K,0);
elseif strcmp(PutCall,'P')

Payoff = max(K - ST,0);
end
% Simulated price
SimPrice = exp(-r*Mat)*mean(Payoff);

The C# code to implement the Alfonsi (2010) method is similar and not
presented. Continuing with the example throughout this book, the Alfonsi method
returns a call price of 11.4065.

MOMENT MATCHING SCHEME

Andersen and Brotherton-Ratcliffe (2005) propose a moment-matched discretization
scheme that generates positive variances only. The scheme produces a variance that
is distributed as lognormal, so a natural choice of parameterization is one that
matches the first two moments of the discretized process to lognormal moments.
This produces a discretization of the form

vt+dt = (θ + (vt − θ )e−κdt) exp
(

−1
2

�2
t + �tZV

)
(7.52)

where

�t = ln

(
1 + σ 2vt

(
1 − e−2κdt

)
2κ(θ + (vt − θ )e−κdt)2

)
.

The Moment Matching scheme is implemented with the function MMSim.m.
The C# code is very similar and is not presented.



202 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 7.1 European Call Prices Using Simulation

Scheme Price Dollar Error

Exact 11.2087
Euler 11.3855 0.1768
Milstein 11.1413 −0.0674
Implicit Milstein 11.0692 −0.1395
Weighted Milstein 11.1566 −0.0521
Zhu Euler 11.1040 −0.1047
Zhu Transformed Volatility 11.1524 −0.0563
IJK 11.2833 0.0746
Pathwise Adapted 11.2192 0.0105
Balanced Implicit 11.2841 0.0754
Quadratic Exponential 11.2173 0.0086
Moment Matching 11.1091 0.0996
Alfonsi 11.4065 −0.1978

function [S V F] = MMSim(params,S0,Mat,r,q,T,N)
for i=1:N;

for t=2:T;
% Generate two dependent N(0,1) variables
Zv = randn(1);
Zs = rho*Zv + sqrt(1-rho^2)*randn(1);
% Matched moment lognormal approximation
dW = sqrt(dt)*Zv;
num = 0.5*sigma^2*V(t-1,i)*(1-exp(-2*kappa*dt)) ...;
den = (exp(-kappa*dt)*V(t-1,i) + (1-exp(-kappa*dt)) ...;
Gam = log(1 + num/den);
V(t,i) = (exp(-kappa*dt)*V(t-1,i) + (1-exp(-kappa*dt)) ...;
% Euler/Milstein discretization log stock prices
S(t,i) = S(t-1,i)*exp((r-q-V(t-1,i)/2)*dt + ...;

end
end

Using the same settings as the example in this chapter, we obtain a price of
11.1091, which represents an error of less than −1 percent from the true price
of 11.2087. Table 7.1 summarizes the call prices obtained using the simulations
schemes covered in this chapter.

Table 7.1 suggests that the Quadratic-Exponential and Pathwise Adapted
schemes are the most accurate, with many of the other schemes showing mod-
erate to poor accuracy. The prices of Table 7.1, however, are based on only 5,000
simulated paths and 100 time steps per path and are for illustrative purposes only.
In practice, the number of simulations would be much larger.

CONCLUSION

In this chapter, we describe several popular simulation schemes for the bivariate
system (St, vt) or (ln St, vt) of the Heston model. Some of these schemes are traditional



Simulation in the Heston Model 203

schemes that are applied to the Heston model, while others are developed specifically
for the model to address the problem of slow convergence and negative variances.

The exact simulation scheme of Broadie and Kaya (2006) is not covered in this
chapter. It is an important scheme from a theoretical standpoint, but is difficult to
implement in practice. See Van Haastrecht and Pelsser (2010) for an explanation.
Other notable methods not covered in this chapter include those by Smith (2007),
Van Haastrecht and Pelsser (2010), Chan and Joshi (2010a), and additional schemes
by Kahl and Jäckel (2006).

One of the most important applications of simulated stock prices is for the
calculation of American option prices using the Least Squares Monte Carlo approach
of Longstaff and Schwartz (2001). We describe this method as part of the next
chapter on American option valuation in the Heston model.



CHAPTER 8
American Options

Abstract

In this chapter, we present methods to value American options in the Heston model.
We first present the simulation-based algorithm of Longstaff and Schwartz (2001).
Next, we present a finite difference method, the explicit method, for American
options. This method will be presented in its entirety in Chapter 10. We present the
bivariate tree of Beliaeva and Nawalkha (2010), an adaptation of the trinomial tree
in which the stock price and the volatility evolve along separate trees. We also cover
the method of Medvedev and Scaillet (2010), which approximates the American
option price using an analytic expansion and is thus able to produce option prices
very quickly. Finally, we present the method of Chiarella and Ziogas (2006) for the
valuation of American calls.

LEAST-SQUARES MONTE CARLO

The Least-Squares Monte Carlo (LSM) algorithm was developed by Longstaff and
Schwartz (2001) as a way to price American options using simulation. The algorithm
can be applied to any stock price stochastic process that lends itself to simulation. It
is especially useful for multi-dimensional processes for which high-dimension trees
are difficult to construct. In this section, we implement the method for the Heston
model.

Denote by C(ω, s; t, T) the set of cash flows generated by the option along the
stock price path ω, conditional on the option not being exercised prior to time t,
and on the holder following the optimal stopping strategy at all times s, s < t ≤ T.
Longstaff and Schwartz (2001) assume that the American option can be exercised
only at K discrete times 0 < t1 ≤ t2 ≤ · · · ≤ tK = T, where T is the time to maturity.
At time tk, the value F(ω, tk) of continuing to hold the option, as opposed to
immediate exercise, is the discounted expectation of the remaining cash flows, under
all stock price paths and using the risk-neutral measure, Q. Assuming a constant
rate of interest r, the value of continuation is, therefore,

F(ω, tk) = e−r(T−tk)EQ

⎡⎣ K∑
j=k+1

C
(
ω, tj; tk, T

)∣∣∣∣∣Ftk

⎤⎦ . (8.1)

205The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



206 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The American option is valued by comparing the value of immediate exercise,
which is known, with F(ω, tk), which is unknown. Longstaff and Schwartz (2001)
estimate F(ω, tk) using least squares on a set of basis functions, which they select to
be the weighted Laguerre polynomials we encountered in Chapter 5

L0(x) = e−x/2,

L1(x) = e−x/2(1 − x),

L2(x) = e−x/2(1 − 2x + x2/2), · · ·

LM(x) = e−x/2
M∑

r=0

(−1)r

r!

(
M

r

)
xr.

(8.2)

Using the first M basis functions, F(ω, tk) can be approximated by

FM(ω, tk) =
M∑

j=0

ajLj(Sk) (8.3)

where Sk = Sk(ω) is the value of the underlying stock price at time tk along the
price path ω. The coefficients aj are constants that are estimated using least squares.
Equation (8.3) can be written in matrix form, as F = La, where

F
K×1

=

⎛⎜⎜⎜⎝
FM

(
ω, t1

)
FM(ω, t2)

...

FM(ω, tK)

⎞⎟⎟⎟⎠ , L
K×N

=

⎛⎜⎜⎜⎝
L0

(
S1

)
L1(S1) · · · LM(S1)

L0(S2) L1(S2) · · · LM(S2)
...

...
...

L0(SK) L1(SK) · · · LM(SK)

⎞⎟⎟⎟⎠ , a
N×1

=

⎛⎜⎜⎜⎝
a0

a1
...

aM

⎞⎟⎟⎟⎠ (8.4)

with N = M + 1. Longstaff and Schwartz (2001) emphasize that other basis
functions are possible, and that even simple powers of Sk will yield accurate
approximations to the American option price.

The cash flows at an arbitrary time tk depend on whether or not exercise occurs
at tk+1. If exercise occurs, the cash flows going forward will change. Hence, it is
not possible to determine the cash flows at tk by going forward. Consequently,
Longstaff and Schwartz (2001) apply the LSM algorithm to approximate the cash
flows backward, from tK−1 to t1. At time tK = T, the cash flow is simply the payoff.
At each time tk (2 ≤ k ≤ K − 1), we find all stock price paths that are in-the-money
and discount by one period the cash flows at tk+1 along the in-the-money paths.
We then estimate the M + 1 coefficients a0, · · · , aM of Equation (8.3) by regression,
using the basis functions in a design matrix and using the single-period discounted
cash flows as the dependent variable. The least-squares regression estimates are,
therefore,

â = (L′L)−1L′F. (8.5)

See, for example, Kutner et al. (2004). Next, we form the predicted continuation
value F̂(ω, tk−1) as the fitted values from the regression

F̂(ω, tk−1) = â0L0(Sk−1) + â1L1(Sk−1) + · · · + âMLM(Sk−1). (8.6)



American Options 207

We compare the predicted continuation to the value of exercise, and replace the
current cash flows (at time tk) in those stock paths where it is optimal. We repeat
until time t1 and form the American option value by discounting the time t1 cash
flows by a single period.

To illustrate with a simple example, suppose we have six stock prices, each with
seven time steps. These appear at the top of Figure 8.1.

The strike price is K = 10 and we wish to value an American put. This implies
that at time t = 6 there are three paths that are in-the-money: paths 3, 4, and 6. The

FIGURE 8.1 Illustration of the LSM Algorithm



208 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

least-squares estimates in Equation (8.5) are thus obtained using these three values of
the stock price in the design matrix, L. Paths 3 and 6 both have a value of immediate
exercise that is greater than that of the predicted cash flows from the regression,
so early exercise is optimal in those two paths. Consequently, the cash flows from
these paths are updated with the value of immediate exercise. The other remaining
path 4 has a predicted cash flow greater than immediate exercise, indicating that
continuation is optimal for that path. Consequently, its cash flow is not updated.
At the next time step t = 5 there are four in-the-money paths, so four stock prices
points for L, but early exercise is optimal only for path 3, so only the third cash
flow is updated. At t = 4, there are four in-the-money paths, and early exercise is
optimal in all of them so the four cash flows are all updated. The regressions for the
final two time steps are based on 4 and 3 in-the-money stock prices, respectively,
but all of the predicted cash flows are greater than the value of immediate exercise.
Early exercise is therefore not optimal in any of the paths in these final time steps,
and consequently none of the cash flows is updated.

The accuracy of the American option value can be improved by using the control
variate technique. The idea behind this technique is that, if we assume that the error
in LSM pricing of an American option from its true value is the same as the error in
LSM pricing of a European option from its true value, then we can write

American Error = European Error

American PriceTrue −American PriceLSM = European PriceTrue

− European PriceLSM.

The control variate price of the American option is, therefore,

American PutCV = European PriceTrue

+ (American PriceLSM − European PriceLSM).
(8.7)

In Equation (8.7), we use the American and European prices obtained from
the LSM algorithm, and we use the closed form using the original Heston (1993)
formulation obtained with 32-point Gauss-Laguerre quadrature. Note that (8.7)
amounts to adding the early exercise premium estimated by the LSM algorithm to
the closed form European price. See Hull and White (1988) for a discussion of the
control variate technique for pricing American options.

The Matlab function LSM.m implements the Longstaff-Schwartz (2001) algo-
rithm and returns American and European prices. The function requires a matrix of
simulated Heston stock prices as input along with a function handle for the regression
design matrix. In the example later in this subsection, we use the moment-matching
algorithm presented in Chapter 7 to simulate the stock prices. The following code
snippet presents a stripped-down version of the LSM.m function, for puts only.

function [EuroPrice AmerPrice] = LSM(...,PutCall,XmatrixHandle)
% Initialize the Cash Flows and set the last CF to the
% intrinsic value.
CF = zeros(NS,NT);



American Options 209

CF(:,NT) = max(K - S(:,NT), 0);
% European price
EuroPrice = exp(-r*T)*mean(CF(:,NT));
% Work backwards through the stock prices until time t=2.
for t = NT-1:-1:2

% Stock paths in-the-money at time t
I = find(S(:,t) < K);
X = S(I,t);
% Cash flows at time t+1, discounted one period
Y = CF(I,t+1)*exp(-r*dt);
% Regression to predict cash flows
Z = zeros(length(X),NX);
for k=1:NX

Z(:, k) = feval(XmatrixHandle{k}, X);
end
beta = Z\Y;
PredCF = Z*beta;
% Indices for stock paths where immediate exercise is optimal
J = max(K - X, 0) > PredCF;
Ex = I(J);
% All other stock path indices --> continuation is optimal
Co = setdiff((1:NS),Ex)’;
% Replace cash flows with exercise value where exercise
% is optimal
CF(Ex,t) = max(K - X(J), 0);
% Continued CF are discounted back one period.
CF(Co,t) = exp(-r*dt)*CF(Co,t+1);

end
% The American option price
AmerPrice = exp(-r*dt)*mean(CF(:,2));

The C# code to implement the Longstaff-Schwartz (2001) algorithm is more
complicated because we do not have a function for identifying in-the-money stock
price paths and for producing the regression estimates in Equation (8.5). In the
code for the Matlab LSM.m function, we use the built-in Matlab function find.m to
identify in-the-money paths. In C#, we can use indexing to identify the paths and
then use the List<> function in Linq to arrange the in-the-money paths into a matrix.
The List<> function is convenient, because its dynamic nature accommodates the
different number of in-the-money paths at each time point and at each simulation.
The following snippet is an extract of the C# function HestonLSM().

// Indices for stock paths in-the-money at time t
int[] I = new int[NS];
for(int s=0;s<=NS-1;s++) {

I[s] = 0;
if(((PutCall == "P") & (S[s,t] < K)) | ((PutCall == "C")

& (S[s,t] > K)))
I[s] = 1; }

// Stock paths in-the-money at time t
int NI = 0;



210 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

List<double> X = new List<double>();
List<int> Xi = new List<int>();
for(int s=0;s<=NS-1;s++)

if(I[s] == 1) {
X.Add(S[s,t]);
Xi.Add(s);
NI += 1;

}

Estimating the coefficients in (8.5) with C# requires a method for matrix inver-
sion. One popular method is to use LU decomposition, as described in Burden
and Faires (2010) and Press et al. (2007), among others. Suppose that we wish
to obtain the inverse of a square matrix A. The LU decomposition requires that
A be factored into the product of a lower triangular matrix L and an upper
triangular matrix U, so that A = LU. The inverse of A is then A−1 = U−1L−1.
The method requires little computation time because the inverse of a triangular
matrix can be obtained very quickly. The C# function LU() performs LU decom-
position and returns the upper and lower triangular matrices into the structure
LUstruct.

static LUstruct LU(double[,] A) {
int N = A.GetLength(0);
double[,] B = new double[N,N];
for(int i=0;i<=N-1;i++)

for(int j=0;j<=N-1;j++) B[i,j] = A[i,j];
for(int k=0;k<=N-2;k++) {

for(int i=k+1;i<=N-1;i++) B[i,k] = B[i,k] / B[k,k];
for(int j=k+1;j<=N-1;j++) {

for(int i=k+1;i<=N-1;i++) B[i,j] = B[i,j] -
B[i,k]*B[k,j]; } }
double[,] L = new double[N,N];
double[,] U = new double[N,N];
for(int i=0;i<=N-1;i++) {

L[i,i] = 1.0;
for(int j=0;j<=N-1;j++) {

if(i>j) L[i,j] = B[i,j];
else U[i,j] = B[i,j]; } }

LUstruct Mats;
Mats.LM = L;
Mats.UM = U;
return Mats;
}

The C# functions MatUpTriangleInv() and MatLowTriangleInv() return the
inverse of an upper and lower triangular matrix, respectively. These algorithms are
described in Burden and Faires (2010).



American Options 211

// Inverse of an upper triangular matrix
static double[,] MatUpTriangleInv(double[,] U)
{
int N = U.GetLength(0);
double[,] V = new double[N,N];
for(int j=N-1;j>=0;j--) {

V[j,j] = 1.0/U[j,j];
for(int i=j-1;i>=0;i--)

for(int k=i+1;k<=j;k++)
V[i,j] -= 1.0 / U[i,i] * U[i,k] * V[k,j]; }

return V; }
// Inverse of a lower triangular matrix
static double[,] MatLowTriangleInv(double[,] L) {
int N = L.GetLength(0);
double[,] V = new double[N,N];
for(int i=0;i<=N-1;i++) {

V[i,i] = 1.0/L[i,i];
for(int j=i-1;j>=0;j--)

for(int k=i-1;k>=j;k--)
V[i,j] -= 1.0 / L[i,i] * L[i,k] * V[k,j]; }

return V;
}

The inverse of a matrix is then found by straightforward matrix multiplication
of the inverses of the upper and lower triangular matrices. This is accomplished
using the MInvLU() function.

// Inverse of a matrix through LU decomposition
static double[,] MInvLU(double[,] A)
{

LUstruct Mats;
Mats = LU(A);
double[,] L = Mats.LM;
double[,] U = Mats.UM;
double[,] Uinv = MatUpTriangleInv(U);
double[,] Linv = MatLowTriangleInv(L);
double[,] Ainv = MMMult(Uinv,Linv);
return Ainv;

}

Finally, the estimates of the regression coefficients in Equation (8.5) are obtained
using the C# function Beta().

// Regression parameters
static double[] Beta(double[,] X,double[] y)
{

double[,] Xt = MTrans(X);
double[,] XtX1 = MInvLU(MMMult(Xt,X));
double[] Xty = MVMult(Xt,y);
return MVMult(XtX1,Xty);

}



212 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The C# functions MTrans(), MMMult(), and MVMult() are used to find the
transpose of a matrix, to multiply a matrix with another matrix, and to multiply a
matrix with a vector, respectively. These three functions are not presented here.

To illustrate, we implement the example of Clarke and Parrott (1999), which
uses the settings K = 10, r = 0.1, and T = 0.25 years, with parameter values κ = 5,
θ = 0.16, σ = 0.9, ρ = 0.1, and v0 = 0.0625, and spot prices 8, 9, 10, 11, and 12.
We use the value of American puts computed by Ikonen and Toivanen (2008) for the
Clarke and Parrott (1999) settings, namely 2.0000, 1.107641, 0.520030, 0.213668,
and 0.082036. The following C# code is used to implement the LSM algorithm with
these settings. We use the Moment-Matching method of Chapter 7 to simulate a set
of stock price paths. The values of the correlated random variables are generated
once, and the same values are fed into the Moment Matching and LSM algorithms
to obtain each American put price. We use 50,000 stock price paths and 1,000 time
steps per path. We also calculate the control variate prices, using the closed-form
European price obtained with 32-point Gauss-Laguerre quadrature.

// Simulation settings
int NS = 50000;
int NT = 1000;
// Generate the correlated random variables
for(int t=0;t<=NT-1;t++)

for(int s=0;s<=NS-1;s++)
{

Zv[t,s] = RandomNorm();
Zs[t,s] = rho*Zv[t,s] + Math.Sqrt(1-rho*rho)*RandomNorm();

}
for(int k=0;k<=M-1;k++)
{

// LSM Euro and American prices
settings.S = Spot[k];
LSMPrice = HestonLSM(MTrans(MMSim(param,settings,NT,NS,

Zv,Zs)),...);
LSMEuro[k] = LSMPrice[0];
LSMAmer[k] = LSMPrice[1];
// Closed Euro price
ClosedEuro[k] = HestonPriceGaussLaguerre(param,settings,X,W);
// Control variate price
CVAmer[k] = ClosedEuro[k] + (LSMAmer[k] - LSMEuro[k]);

}

The RandomNorm() function defined in Chapter 7 is used to generate inde-
pendent standard normal random variables. The MMSim() function generates the
stock price paths, using a different spot price at each ‘‘k’’ iteration. The matrix of
paths is first transposed using the MTrans() function before being passed to the
HestonLSM() function. To conserve memory these two steps are combined into a
single step.



American Options 213

The prices using the control variate technique with the LSM algorithm are
1.99958, 1.103571, 0.519039, 0.226137, and 0.082123, which are all close the
prices obtained by Ikonen and Toivanen (2008). The LSM prices are also very close,
but slightly less so.

THE EXPLICIT METHOD

In Chapter 10 we will encounter methods to obtain the Heston price of European
options by approximating with finite differences the PDE that these options satisfy.
It is straightforward to adapt one of these methods, the explicit method, to price
American options. Recall from Chapter 1 that the value U(S, v, t) of a derivative
with maturity t satisfies the PDE

∂U
∂t

= 1
2

vS2 ∂2U
∂S2

+ ρσvS
∂2U
∂v∂S

+ 1
2

σ 2v
∂2U
∂v2

− rU

+ (r − q)S
∂U
∂S

+ κ(θ − v)
∂U
∂v

,

(8.8)

where we have defined λ = 0. Recall also that, since we are using t to represent
maturity, the sign of the derivative ∂U/∂t is the opposite of what it would be if t
represented time. We will see in Chapter 10 that the first step in solving the PDE
with finite differences is to build discrete grids for the stock price, volatility, and
maturity. Denote by Un

i,j = U(Si, vj, tn) the value of the European derivative when
the stock price and volatility are at points i and j respectively of their grids, and
when the maturity is at the point n, for i = 0, · · · , NS, for j = 0, · · · , NV , and for
n = 0, · · · , NT. The explicit method defines the value of the derivative at maturity
point n + 1 as

Un+1
i,j = Un

i,j + dt
[

1
2

vjS
2
i

∂2

∂S2
+ 1

2
σ 2vi

∂2

∂v2

+ρσvjSi

∂2

∂v∂S
+ (r − q) Si

∂

∂S
+ κ(θ − vj)

∂

∂v
− r

]
Un

i,j.

(8.9)

To evaluate Un+1
i,j we need to substitute finite difference approximations of the

derivatives. We will see in Chapter 10 that, when a uniform grid is constructed,
namely, one that uses equidistant spacing between successive values of the stock
price and volatility, the expression for Un+1

i,j in (8.9) reduces to a very simple form.
A non-uniform grid, however, leads to greater accuracy with fewer grid points, but
also to an expression for Un+1

i,j that is slightly more complicated.
Since the explicit method works backward in time, we start with the value U0

i,j,
namely the value of the derivative at maturity. For a put option, we use

U0
i,j = max(K − Si, 0) (8.10)



214 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

This quantity is identical for all points j = 0, · · · , NV in the v-direction. We then
obtain U1

i,j, U2
i,j, . . . in succession until we reach the last maturity point, representing

zero time to maturity. To price an American put, at each time step we add the early
exercise condition

Un+1
i,j = max(K − Si, Un+1

i,j ) for j = 0, · · · , NV . (8.11)

Finally, to price the option, we need boundary conditions on the maximum
and minimum values of S and v. Please refer to Chapter 10 for these boundary
conditions.

The Matlab function HestonExplicitPDENonUniformGrid.m calculates the Hes-
ton price of an American call or put using the explicit method and a non-uniform
grid. To conserve space, parts of the function are omitted. The first part of the
function defines the payoff of the option at maturity.

function U = HestonExplicitPDENonUniformGrid(params,...,EuroAmer)
% Temporary grid for previous time steps
u = zeros(NS,NV);
% Boundary condition for t=maturity
for s=1:NS

if strcmp(PutCall,'C')
U(s,:) = max(S(s) - K, 0);

elseif strcmp(PutCall,'P')
U(s,:) = max(K - S(s), 0);

end
end

The middle part of the function loops through time and updates the option
value in accordance with Equation (8.9), the derivatives of which are approximated
with finite differences.

for t=1:NT-1
U(1,:) = 0;
% Boundary condition for Vmin.
if strcmp(PutCall,'C')

U(NS,:) = max(0, Smax - K)
U(:,NV) = max(0, S - K);

elseif strcmp(PutCall,'P')
U(NS,:) = max(0, K - Smax);
U(:,NV) = max(0, K - S);

end
% Update the temporary grid u(s,t)
u = U;
% Boundary condition for Vmin.
for s=2:NS-1

derV = (u(s,2) - u(s,1)) / (V(2)-V(1));
derS = (u(s+1,1) - u(s-1,1)) / (S(s+1)-S(s-1));
LHS = - r*u(s,1) + (r-q)*S(s)*derS + ...;



American Options 215

U(s,1) = LHS*dt + u(s,1);
end
u = U;
% Interior points of the grid
for s=2:NS-1

for v=2:NV-1
derS = (u(s+1,v) - u(s-1,v)) / (S(s+1)-S(s-1));
derV = (u(s,v+1) - u(s,v-1)) / (V(v+1)-V(v-1));
derSS = ((u(s+1,v) - u(s,v)) / ...;
derVV = ((u(s,v+1) - u(s,v)) / ...;
derSV = (u(s+1,v+1) - u(s-1,v+1) - U(s+1,v-1) + ...;
L = 0.5*V(v)*S(s)^2*derSS + rho*sigma*V(v)*S(s) ...;
U(s,v) = L*dt + u(s,v);

end
end

end

Finally, the last part of the function applies the condition in Equation (8.11) at
each time step to determine whether or not early exercise is optimal.

if strcmp(EuroAmer,'A')
for s=1:NS

if strcmp(PutCall,'C')
U(s,:) = max(U(s,:), S(s) - K);

elseif strcmp(PutCall,'P')
U(s,:) = max(U(s,:), K - S(s));

end
end

end

The function returns the entire grid at maturity, namely UNT
i,j for i = 0, · · · , NS,

and j = 0, · · · , NV . The Matlab function interp2.m employs two-dimensional inter-
polation to obtain the price of the option for values of (S, v) that lie in between
points on the grid.

The C# code for implementing the explicit method is very similar and is not
presented here. We do need a function for two-dimensional linear interpolation,
however. This is accomplished with the C# function interp2().

static double interp2(double[] X,double[] Y,double[,] Z,...) {
// Find the index for X
if(xi == X[0]) {x1 = 0; xflag = 1;}
else if(xi == X[NX-1]) {x1 = NX-1; xflag = 1;}
else

for(int i=1;i<=NX-1;i++)
if((X[i-1] <= xi) & (xi < X[i])) {x1 = i-1; x2 = i;}
// Find the index for Y



216 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

if(yi == Y[0]) {y1 = 0; yflag = 1;}
else if(yi == Y[NY-1]) {y1 = NY-1; yflag = 1;}
else

for(int i=1;i<=NY-1;i++)
if((Y[i-1] <= yi) & (yi < Y[i])) { y1 = i-1;

y2 = i; }
// Interpolation: both xi and yi lie off the grid points
if((xflag==0) & (yflag==0)) {

double z11 = Z[y1,x1]; double z12 = Z[y1,x2];
double z21 = Z[y2,x1]; double z22 = Z[y2,x2];
double px = (xi - Convert.ToDouble(X[x1])) / ...;
double py = (yi - Convert.ToDouble(Y[y1])) / ...;
double Y1int = (1.0-py)*z11 + py*z21;
double Y2int = (1.0-py)*z12 + py*z22;
IntValue = (1.0-px)*Y1int + px*Y2int;

}
// Interpolation: xi lies on the grid point, yi off
if((xflag==1) &(yflag==0)) {

double z11 = Z[y1,x1]; double z21 = Z[y2,x1];
double py = (yi - Convert.ToDouble(Y[y1])) / ...;
IntValue = (1.0-py)*z11 + py*z21;}

// Interpolation: xi lies off the grid point, yi on
if((xflag==0) & (yflag==1)) {

double z11 = Z[y1,x1]; double z12 = Z[y1,x2];
double px = (xi-Convert.ToDouble(X[x1]))/...;

IntValue = (1.0-px)*z11 + px*z12; }
// Interpolation: both xi and yi lie on the grid;
if((xflag==1) & (yflag==1))

IntValue = Z[y1,x1];
// Return the result
return IntValue;

}

To illustrate, we use the numerical example of Clarke and Parrott (1999) and
Ikonen and Toivanen (2008) described in the previous section. The explicit method
is implemented with the following code.

U = HestonExplicitPDENonUniformGrid(...);
for k=1:length(Spot);

S0 = Spot(k);
AmerPrice(k) = interp2(V,S,U,V0,S0);

end

Using a grid size of 140 and 90 for the stock price and volatility, respectively,
along with 3,000 time steps, we obtain 2.000000, 1.106130, 0.518422, 0.212221,
and 0.080802, respectively.



American Options 217

BELIAEVA-NAWALKHA BIVARIATE TREE

Beliaeva and Nawalkha (2010) have developed a path-independent two-dimensional
tree for the Heston model. In their approach, separate trees for the stock price and
for the variance are constructed independently of one another, and then recombined.
This requires a transformation Yt of St that renders Yt and vt independent. Recall
that the Heston model is defined by the bivariate system of stochastic differential
equations (SDEs)

dSt = rStdt + √
vtStdW1,t

dvt = κ(θ − vt)dt + σ
√

vtdW2,t

(8.12)

where EQ[dW1,tdW2,t] = ρdt is the correlation between the SDEs. The transformation
of St is defined by

Yt = ln St − ρ

σ
vt − ht (8.13)

where

ht =
(

r − ρκθ

σ

)
t. (8.14)

Applying Itō’s lemma produces the SDE for Yt

dYt = μY(t)dt + σY(t)dW∗
1,t (8.15)

where the drift and volatility are given by

μY(t) =
(

ρκ

σ
− 1

2

)
vt, σY(t) =

√
1 − ρ2√vt. (8.16)

The stochastic term of the SDE in (8.15) is

dW∗
1,t = dW1,t − ρdW2,t√

1 − ρ2
. (8.17)

Since EQ[dW∗
1,tdW2,t] = 0 the bivariate process (Yt, vt) is uncorrelated. This

implies that the processes for Yt and vt can each be approximated with trinomial
trees that are constructed independently of one another. Moreover, the joint prob-
abilities in the two-dimensional tree for (Yt, vt) will be the product of the marginal
probabilities for Yt and vt.

Given a value Yt, the stock price can be recovered by inverting (8.13)

St = exp
(
Yt + ρ

σ
vt + ht

)
. (8.18)



218 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Beliaeva and Nawalkha (2010) build a trinomial tree for the transformed
variance xt defined as

xt = 2
√

vt

σ
. (8.19)

They recover the variance vt through the inverse transformation

vt = 1
4

x2
t σ

2. (8.20)

A trinomial tree for the transformed variance xt is constructed first, and
transformed into a tree for the variances vt through (8.20). Next, a tree for the
transformed stock price Yt is constructed, and transformed into a tree for the stock
price St through (8.18). Finally, the trees are combined to form a bivariate tree on
which American options can be priced. In the following sections, we explain how
this is done.

Trinomial Tree for the Variance

By Itō’s lemma the transformed variance xt follows an SDE with drift

μ(xt, t) = 1
xt

(
2κθ

σ 2
− κx2

t

2
− 1

2

)
. (8.21)

The time-zero node of the trinomial tree for xt is x0, obtained by substituting
the initial variance parameter v0 into Equation (8.19). At time t > 0, given that the
process is at node xt, there are two sets of moves, depending on whether xt > 0 or
xt = 0.

Case 1. If xt > 0, the up, middle, and down moves at time t + dt are

xu
t+dt = xt + b(J + 1)

√
dt,

xm
t+dt = xt + bJ

√
dt,

xd
t+dt = xt + b(J − 1)

√
dt

(8.22)

where J and b are defined in Equations (8.25) and (8.26) later. The
probability of each move is

pu
v = 1

2b2
− J

2
+ 1

2b
μ(xt, t)

√
dt,

pm
v = 1 − 1

b2
,

pd
v = 1

2b2
+ J

2
− 1

2b
μ(xt, t)

√
dt.

(8.23)



American Options 219

Case 2. If xt = 0, the up move xu
t+dt is defined identically to that in Equation

(8.22), the down move is xd
t+dt = 0, and the middle move xm

t+dt is not used.
The probabilities in this case are

pu
v = κθdt

vu
t+dt

, pm
v = 0, pd

v = 1 − pu
v (8.24)

where vu
t+dt is obtained by substituting xu

t+dt into Equation (8.20).

The preceding equations use J and b defined by

J = floor

(
μ
(
xt, t

)√
dt

b
+ 1

b2

)
(8.25)

and

b =
{

bc if
∣∣∣bc − √

1.5
∣∣∣ < |be − √

1.5|
be otherwise

(8.26)

where

be = x0/
√

dt

floor(x0/
√

1.5dt)
, bc = x0/

√
dt

floor(x0/
√

1.5dt + 1)
. (8.27)

The trinomial tree for xt and vt are each truncated below zero (they can
be truncated above an arbitrary value also, to reduce computation time). The b
parameter is defined within the range 1 ≤ b ≤ √

2 and serves to contract or expand
the tree to ensure that the last row of the tree for xt is exactly zero. The trinomial
tree for vt is obtained by substituting the value of xt at each node into Equation
(8.20).

Trinomial Tree for the Stock Price

In the trinomial tree for the transformed stock price Yt defined in Equation (8.13),
jumps across multiple nodes are allowed. High values of vt cause Yt to jump up and
down across multiple nodes while low values of vt allow for jumps across single
nodes only. Beliaeva and Nawalkha (2010) define the node span as ktσY(0)

√
dt,

which represents the distance between nodes for values of Yt+dt, given that the
process is at the node Yt. The case kt = 1 represents a jump across a single node,
while kt > 1 represents a jump across multiple nodes. This parameter is defined as

kt =
{

Ceiling
(√

vt/v0

)
if vt > 0,

1 otherwise.
(8.28)

Multiple jumps in Yt are illustrated in Figure 8.2, which reproduces Exhibit 3
of Beliaeva and Nawalkha (2010). The left panel is for the case kt = 1 is analogous



220 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

kt 5 2kt 5 1

FIGURE 8.2 Jumps in the Transformed Stock Price

to an ordinary trinomial tree. The right panel illustrates the case kt = 2. Note that
in both cases, the tree recombines at every time step.

The time-zero value of the tree at the initial node is given by Y0, obtained by
setting t = 0 in Equations (8.13) and (8.14). Conditional on Yt, the up, middle, and
down values of Yt+dt are

Yu
t+dt = Yt + (I + 1) · ktσY(0)

√
dt,

Ym
t+dt = Yt + I · ktσY(0)

√
dt,

Yd
t+dt = Yt + (I − 1) · ktσY(0)

√
dt

(8.29)

where I is the integer closest in absolute value to

μY(t)
√

dt
ktσY(0)

.

In these expressions, σY(0) is obtained by setting t = 0 in σY(t) from Equation
(8.16). The probabilities of up, middle, and down moves are given by

pu
Y = 1

2
σ 2

Y (t)dt + emed

(ktσY(0))2dt
,

pm
Y = −σ 2

Y (t)dt + eued

(ktσY(0))2dt

pd
Y = 1

2
σ 2

Y (t)dt + euem

(ktσY(0))2dt
,

(8.30)



American Options 221

where

eu = Yu
t+dt − Yt − μY(t)dt = (I + 1) · ktσY(0)

√
dt − μY(t)dt,

em = Ym
t+dt − Yt − μY(t)dt = I · ktσY(0)

√
dt − μY(t)dt,

ed = Yd
t+dt − Yt − μY(t)dt = (I − 1) · ktσY(0)

√
dt − μY(t)dt.

(8.31)

When the number of time steps is large, I approaches zero and the expressions
in (8.30) take on the simpler form given in Equation (18) of Beliaeva and Nawalkha
(2010). The tree for the stock price St is obtained by applying the inverse transfor-
mation of (8.18) at every node of the tree for Yt. Note that since Yt depends on kt,
and since kt depends on vt, the tree for the variance must be constructed before the
tree for the stock price.

Combining the Trinomial Trees

The final step in the approach of Beliaeva and Nawalkha (2010) is to mesh the
trinomial trees for vt and St into a single tree. At time zero there is a single node
for (S0, v0). At each subsequent node (St, vt) of the tree, St and vt each evolve to one
of three possible values (up, middle, or down). Hence, each node branches out to
3 × 3 = 9 potential new nodes. Since these nodes recombine, however, the actual
number of nodes does not increase by a factor of nine at each time step. Rather,
the number of nodes depends on the values of kt at the nodes; higher values of kt

require more nodes. The number of nodes can increase very rapidly but the fact
that the tree for Yt recombines mitigates this increase substantially. In Exhibit 11
of Beliaeva and Nawalkha (2010), for example, there are 35 nodes at the second
time step.

Each node (St, vt) branches out to nine nodes. Since the trees for Yt and vt are
uncorrelated, the joint probabilities of these branches are the product of the three
marginal probabilities from each tree, defined in Equations (8.23) and (8.30).

puu = pu
Y × pu

v , pmu = pm
Y × pu

v , pdu = pd
Y × pu

v ,

pum = pu
Y × pm

v , pmm = pm
Y × pm

v , pdm = pd
Y × pm

v ,

pud = pu
Y × pd

v , pmd = pm
Y × pd

v , pdd = pd
Y × pd

v .

(8.32)

With the tree for the stock price St and the joint probabilities, pricing American
options is done exactly as in an ordinary trinomial tree, by working backward in
time from the maturity where the payoff is known, and at each node comparing the
value of the American option with the value of immediate exercise. Hence, the price
of the American put at time t is

U(St, vt) = e−r×dt max
(
K − St,

puuU
(
Su

t+dt, vu
t+dt

) + pumU(Su
t+dt, vm

t+dt) + · · · + pddU(Sd
t+dt, vd

t+dt)
)
.

(8.33)



222 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Beliaeva and Nawalkha (2010) also compute the price of American puts using
the control variate technique

American PutCV = European PutTrue

+ (American PutBivariate Tree − European PutBivariate Tree).
(8.34)

In (8.34), we use the American and European puts obtained from the tree, and
we use the closed form using the original Heston (1993) formulation with 32-point
Gauss-Laguerre integration.

Computer Implementation

The Matlab function BuildVolTree.m builds the trees for the transformed variance
xt and the variance vt. The first part of the function computes the b parameter from
Equation (8.26), finds the number of required rows (NR) and the middle row (M)
where the first node x0 is placed, and initializes the first two columns of the tree,
corresponding to time zero and time one, respectively. To conserve space portions
of the function have been removed.

function [X V RBound M] = BuildVolTree(...)
X0 = 2*sqrt(V0)/sigma;
NR = 2*NT-1;
M = (NR+1)/2;
X(M,1) = X0;
% Time 1 node for X. Equations (22) and (30)
muX = 1/X(M,1)*(0.5*kappa*(4*theta/sigma^2-X(M,1)^2)-0.5);
J = floor(muX*sqrt(dt)/b + 1/b^2);
X(M-1,2) = X(M,1) + b*(J+1)*sqrt(dt);
X(M+0,2) = X(M,1) + b*(J+0)*sqrt(dt);
X(M+1,2) = X(M,1) + b*(J-1)*sqrt(dt);

The second part of the function creates the remaining nodes xu
t+dt, xm

t+dt and
xd

t+dt, based on the current node xt and using Equation (8.22). Values of xt smaller
than a user-defined threshold are assumed to be zero. Next, a parameter (RBound)
is created that identifies the row at which xt becomes zero. Finally, the tree for the
variances vt is constructed using (8.20).

% Remaining nodes for X
for t=2:M-1

for n=M-t+1:M+t-1
muX = 1/X(n,t)*(0.5*kappa*(4*theta/sigma^2 ...;
J = floor(muX*sqrt(dt)/b + 1/b^2);
if X(n,t)>threshold && X(n,t)^2*sigma^2/4>threshold

% Case 1: Nodes where X > 0 -- Equation (27)



American Options 223

X(n-1,t+1) = X(n,t) + b*(J+1)*sqrt(dt);
X(n+0,t+1) = X(n,t) + b*(J+0)*sqrt(dt);
X(n+1,t+1) = X(n,t) + b*(J-1)*sqrt(dt);
% Case 2: Nodes where X = 0

else
X(n-1,t+1) = X(n-1,t);
X(n-0,t+1) = X(n-0,t);
X(n+1,t+1) = X(n+1,t);

end
end

end
% Identify row of the tree where X = 0
RBound = 1;
while X(RBound,M)>=threshold && RBound < NR;

RBound = RBound+1;
end
% Build the volatility tree V(n,t)
for t=1:NT

for n=1:NR
V(n,t) = X(n,t)^2*sigma^2/4;
if V(n,t) < threshold

V(n,t) = 0;
end
if X(n,t) < threshold

X(n,t) = 0;
end

end
end

The probabilities for vt are calculated using the Matlab function probV.m.
The function applies Equation (8.23) for the case xt > 0 and (8.24) for the case
xt = 0.

function [pu pm pd] = probV(X,X0,dt,kappa,theta,sigma)
muX = 1/X*(0.5*kappa*(4*theta/sigma^2 - X^2) - 0.5);
J = floor(muX*sqrt(dt)/b + 1/b^2);
if X > 0

% Probabilities where X > 0 (Equation 28)
pu = 1/2/b^2 - J/2 + 1/2/b*muX*sqrt(dt);
pm = 1 - 1/b^2;
pd = 1/2/b^2 + J/2 - 1/2/b*muX*sqrt(dt);

else
% Probabilities where X = 0 (Equation 33)
Xu = X + b*(J+1)*sqrt(dt);
Vu = Xu^2*sigma^2/4;
pu = kappa*theta*dt/Vu;
pm = 0;
pd = 1 - pu;

end



224 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The probabilities for St are calculated using the Matlab function probY.m,
which applies Equation (8.30).

function [pu pm pd] = probY(Vt,V0,Yt,dt,rho,sigma,kappa)
% Equation 11
if Vt > 0

k = ceil(sqrt(Vt/V0));
else

k = 1;
end
% Equations 9 and 6
muY = (rho/sigma*kappa - 0.5)*Vt;
sigmayt = sqrt(1-rho^2)*sqrt(Vt);
sigmay0 = sqrt(1-rho^2)*sqrt(V0);
% Calculate the Yu, Ym, Yd from Equation 13
I = (round(muY/k/sigmay0*sqrt(dt)));
Yu = Yt + (I+1)*k*sigmay0*sqrt(dt);
Ym = Yt + (I+0)*k*sigmay0*sqrt(dt);
Yd = Yt + (I-1)*k*sigmay0*sqrt(dt);
% Equations 17 and 16
eu = Yu - Yt - muY*dt;
em = Ym - Yt - muY*dt;
ed = Yd - Yt - muY*dt;
pu = 0.5*(sigmayt^2*dt + em*ed)/k^2/sigmay0^2/dt;
pm = -(sigmayt^2*dt + eu*ed)/k^2/sigmay0^2/dt;
pd = 0.5*(sigmayt^2*dt + eu*em)/k^2/sigmay0^2/dt;

The transformed stock price tree Yt, the stock prices St and the American and
European prices are all built using the BuildBivariateTree.m function. The structure
of Yt is upper triangular and constructed by placing Y0 in the top left-hand corner
of the matrix for Yt. The values at the first time step are placed in the first nine rows
of the second column of the matrix, the values at the second time step are placed in
the third column starting from the top row, and so on.

The first part of the function generates the tree for the variance, finds the value
of kt at each node of vt, and finds the number of rows needed at each time step
based on the maximum value of kt and the number of variance nodes at that step.
The value of kt at each node is obtained from Equation (8.28).

function [EuroPrice AmerPrice ... Branch] = BuildBivariateTree(...)
dt = T/NT;
sigmay0 = sqrt(1-rho^2)*sqrt(V0);
% Generate the volatility tree
[X V RBound M] = BuildVolTree(...);
ColChange = RBound - M + 2;
% The values of k(t) from Equation (11) and I(t) from (14)
k = zeros(2*NT-1,NT);
for t=1:NT

for n=M-(t-1):M+(t-1);



American Options 225

if V(n,t) > 0
k(n,t) = ceil(sqrt(V(n,t)/V0));

else
k(n,t) = 1;

end
end

end
% Find dimensions of the tree
maxK = max(k);
numY = [1 3];
numV = [1 3];
numRows = [1 9];
for t=3:NT

numY(t) = numY(t-1) + 2*maxK(t);
numV(t) = 2*t - 1;
numRows(t) = numV(t)*numY(t);

end
NR = max(numRows);

The next part of the function finds the nine branch indices at each node, and
stores these in a Matlab cell. The indices depend on the current values of Yt and kt.
In Exhibit 11 of Beliaeva and Nawalkha (2010), for example, at the first time step
the top node (denoted V11, Y11 in their exhibit) has a jump size k11 = 2. This node
therefore branches out to nodes 1, 3, 5 for V21, to nodes 8, 10, 12 for V22, and to
nodes 15, 17, and 19 for V23. These nodes are placed two steps apart. The last node
at the first time step (denoted V13, Y13) has a jump size k13 = 1. The node therefore
branches out to nodes 17, 18, 19 to nodes 25, 26, 27, and to nodes 32, 33, and 34.
These nodes are placed one step apart.

Branch = cell(numRows(NT-1),NT-1);
Branch(1,1) = {[1:9]};
B = zeros(numV(NT-1)*numY(NT-1),9);
% To Branches
for t=2:NT-1

nY = numY(t);
First = maxK(t)+1;
K = k(M-(t-1):M+(t-1),t);
for n = 1:numRows(t);

a = ceil(n/nY);
b = mod(n-1,nY);
% Find the middle-to-middle branches
B(n,2) = First + (a-1)*numY(t+1) + b;
B(n,5) = B(n,2) + numY(t+1);
B(n,8) = B(n,2) + 2*numY(t+1);
% Find the rest of the branches
B(n,1) = B(n,2) - K(a); B(n,3) = B(n,2) + K(a);
B(n,4) = B(n,5) - K(a); B(n,6) = B(n,5) + K(a);
B(n,7) = B(n,8) - K(a); B(n,9) = B(n,8) + K(a);
Branch(n,t) = {B(n,:)};

end
end



226 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

clear B;
% Adjust the last branch upward
for t=ColChange:NT-1

for j=7:9
Branch{numRows(t),t}(j) = Branch{numRows(t)-1,t}(j);

end
end

The next part of the function creates the tree for Yt, based on the branch indices
defined earlier, and creates the joint probabilities in Equation (8.32). At each node
defined by time (‘‘t’’ loop), volatility (‘‘j’’ loop), and transformed stock price (‘‘r’’
loop), several quantities are needed: the current values of Yt, xt, vt, and kt, the values
of μ(xt, t) and I, and the branch indices to where Yt evolves to Yt+dt. These indices
are in the Matlab array NewBranch. At each node, nine future values of Yt+dt are
created whenever Yt > 0; if Yt = 0 then no branches evolve from that node, and a
probability of zero is assigned to each joint probability. In Exhibit 11 of Beliaeva
and Nawalkha (2010) at the second time step, no branches originate from nodes
(V24, Y21), (V24, Y27), (V25, Y21), or (V25, Y27). In our notation, these are rows number
22, 28, 29, and 35 in the third column of the matrix for Yt. Finally, the joint
probabilities are stored in the Matlab cell Prob.

% Log stock tree (Yt), (St), and (Prob)
Yt = zeros(NR,NT);
Y0 = log(S0) - rho*V0/sigma;
Yt(1,1) = Y0;
Prob = cell(numRows(NT-1),NT-1);
X0 = X(M,1);
for t=1:NT-1;

n = 0;
J = -(t-1):(t-1);
for j=1:numV(t);

for r=1:numY(t);
n = n + 1;
Vt = V(M+J(j),t);
Xt = X(M+J(j),t);
Kt = k(M+J(j),t);
NewBranch = cell2mat(Branch(n,t));
muy = (rho*kappa/sigma - 0.5)*Vt;
I = round(muy/Kt/sigmay0*sqrt(dt));
if Yt(n,t) > 0;

for s=1:9
if s==2 || s==5 || s==8 % Middle node

Yt(NewBranch(s),t+1) = Yt(n,t)+(I+0)...;
elseif s==1 || s==4 || s==7 % Up node

Yt(NewBranch(s),t+1) = Yt(n,t)+(I+1)...;
elseif s==3 || s==6 || s==9 % Down node

Yt(NewBranch(s),t+1)=Yt(n,t)+(I-1)...;
end

end
else



American Options 227

Branch(n,t) = {['No branch from (' ...]};
end
if Yt(n,t) == 0;

Prob(n,t) = {zeros(1,9)};
else

[pvu pvm pvd] = probV(Xt,X0,...);
[pyu pym pyd] = probY(Vt,V0,Yt(n,t),...);
prob = [pvu*pyu pvu*pym pvu*pyd pvm*pyu ...];
Prob(n,t) = {prob};

end
end

end
end

The last part of the function calculates the European and American prices in the
usual fashion, by working backward from maturity where the payoff is known. At
each time step, the probabilities are needed to calculate the option price, and the
branches are needed to link the option prices from the previous step. The function
produces the price of an American option by calculating the value of St at each
node, and comparing the value of the option with the value of immediate exercise,
in accordance with Equation (8.33).

% Last column for the stock price and payoff at maturity
t = NT;
ht = (rf - rho*kappa*theta/sigma)*(t-1)*dt;
n = 0;
J = -(t-1):(t-1);
ST = zeros(numRows(t),1);
for j=1:numV(t);

for r=1:numY(t);
n = n + 1;
Vt = V(M+J(j),t);
if Yt(n,t) > 0

ST(n) = exp(Yt(n,t) + rho/sigma*Vt + ht);
end

end
end
if strcmp(PutCall,'C')

Euro(:,NT) = max(ST - Strike, 0);
Amer(:,NT) = max(ST - Strike, 0);

elseif strcmp(PutCall,'P')
Euro(:,NT) = max(Strike - ST, 0);
Amer(:,NT) = max(Strike - ST, 0);

end
for t = NT-1:-1:1

n = 0;
ht = (rf - rho*kappa*theta/sigma)*(t-1)*dt;
J = -(t-1):(t-1);
for j=1:numV(t);

for r=1:numY(t);
n = n + 1;



228 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Vt = V(M+J(j),t);
if Yt(n,t) > 0

St = exp(Yt(n,t) + rho/sigma*Vt + ht);
P = cell2mat(Prob(n,t));
B = cell2mat(Branch(n,t));
Euro(n,t) = P(1)*Euro(B(1),t+1) + ...;
Euro(n,t) = exp(-rf*dt)*Euro(n,t);
Amer(n,t) = P(1)*Amer(B(1),t+1) + ...;
Amer(n,t) = exp(-rf*dt)*Amer(n,t);

end
if strcmp(PutCall,'C')

Amer(n,t) = max(St - Strike, Amer(n,t));
elseif strcmp(PutCall,'P')

Amer(n,t) = max(Strike - St, Amer(n,t));
end

end
end

end
EuroPrice = Euro(1,1);
AmerPrice = Amer(1,1);

We use three possible versions of the BuildBivariateTree.m functions, each of
which are identical except for how the branch indices and nine joint probabilities
are stored. The function presented in the earlier snippets use Matlab cells for the
probabilities and the branches. This simplifies the coding in Matlab, but increases
the computation time. The function BuildBivariateTree2.m uses Matlab cells for the
probabilities but arrays for the branches. Finally, BuildBivariateTree3.m uses arrays
for the probabilities and the cells. This last function runs faster than the other two.
Moreover, since it does not employ Matlab cells, it is more easily translated into C#.
The disadvantage is that for the purposes of building the bivariate tree, arrays are
more difficult to work with than cells. The C# code to calculate American option
prices using the method of Beliaeva and Nawalkha (2010) is similar to the Matlab
code and the BuildBivariateTree3.m function and is not presented here.

To illustrate, we reproduce the American put prices of Clarke and Parrott
(1999) and Ikonen and Toivanen (2008). Using 50 time steps and the control variate
technique, we obtain 1.996724, 1.105855, 0.519488, 0.213408, and 0.081948, all
of which are accurate to within less than one penny.

MEDVEDEV-SCAILLET EXPANSION

Medvedev and Scaillet (2010) develop a method in which the American put price can
be expressed analytically, as an asymptotic expansion. Their method is applicable
to a wide class of stochastic volatility models. In this section, we first introduce
their method for American puts under the Black-Scholes model, and then present
their expansion for the Heston model. The advantage of their method is that the
American put price is available in an expansion which involves analytic terms only.
Hence, the method is able to generate Black-Scholes and Heston American option
prices very quickly.



American Options 229

Medvedev-Scaillet for Black-Scholes

Under the assumptions of the Black-Scholes model the price P(S(t), t) at time t of an
American put option with time to maturity τ = T − t follows the PDE

Pt + (r − q)SPS + 1
2

σ 2S2PSS − rP = 0 (8.35)

with boundary conditions

P(∞, t) = 0

P(S(T), T) = max(K − S(T), 0)

P(S(τ ), t) = max(K − S(τ ), 0)

PS(S(τ ), t) = −1

(8.36)

where S(τ ) is the early exercise price. See, for example, Albanese and Campolieti
(2006). In Equations (8.35) and (8.36), the subscripts denote differentiation, r and
q are the risk-free rate and dividend yield, and σ is the stock price volatility.

Medvedev and Scaillet (2010) construct a modified version of the PDE in (8.35)
in terms of the modified price P(θ , τ ) = P(Ke−σθ

√
τ , T − τ ), where θ is the normalized

moneyness

θ = ln(K/S)
σ
√

τ
. (8.37)

The modified version of the PDE still follows Equation (8.35) but replaces the
last condition in (8.36) with the requirement that the early exercise price satisfy
S(τ ) = Ke−θy

√
τ . The unique solution to this modified problem is the price of a

barrier option that is exercised immediately as θ reaches the barrier level y, where
y ≈ 2.

By applying the chain rule and using the PDE (8.35), it is straightforward to
obtain the modified PDE, namely, (8.35) expressed in terms of P(θ , τ )

θPθ + Pθθ + 1
σ

[σ 2 + 2(q − r)]Pθ

√
τ − 2(Pτ + rP)τ = 0. (8.38)

Again, subscripts denote differentiation. The boundary conditions to the modi-
fied PDE are

P(−∞, τ ) = 0,

P(y, τ ) = K(1 − e−σy
√

τ ).
(8.39)

The main result of Medvedev and Scaillet (2010) is that the solution to the
modified PDE (8.38) is the expansion

P(θ , τ ) =
∞∑

n=1

Pn(θ )τ n/2. (8.40)



230 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The terms inside the sum are defined as

Pn(θ ) = Cn[p0
n(θ )
(θ ) + q0

n(θ )φ(θ )] + p1
n(θ )
(θ ) + q1

n(θ )φ(θ )

= CnP0
n(θ ) + P1

n(θ )
(8.41)

where 
(θ ) and φ(θ ) denote the standard normal cumulative distribution function
and density, respectively. We will see later that the coefficients Cn in (8.41) are
evaluated at θ = ỹ. To obtain the American put price P(θ , τ ), we first find the
polynomials p0

n, q0
n, p1

n and q1
n, and the coefficients Cn. We then find non-negative

values of the barrier ỹ ≥ θ as

ỹ = arg max
y≥θ ,y≥0

P(θ , τ , y) (8.42)

where P(θ , τ , y) is P(θ , τ ) in (8.40), but with the extra argument to emphasize the
dependence of P(θ , τ ) on y through Cn. The approximation of Medvedev and Scaillet
(2010) for the price of an American put, P(θ , τ , ỹ), given p0

n, q0
n, p1

n, q1
n, and Cn is the

following.

Construct P(θ , τ , y) using Equation (8.40) with Cn = Cn(y).

Find ỹ using (8.42), under the constraint ỹ ≥ θ .

Use Cn = Cn (̃y) in P(θ , τ , ỹ) to find the price, using (8.40) and (8.41).

In the derivation of the quantities required of (8.40), we will need the following
first- and second-order derivatives of P0

n(θ ), obtained using the chain rule

P0
nθ = p0

nθ
 + (p0
n + q0

nθ − θq0
n)φ

P0
nθθ = p0

nθθ
 + (2p0
nθ − θp0

n + q0
nθθ − 2θq0

nθ − q0
n + θ2q0

n)φ.
(8.43)

The derivatives P1
nθ and P1

nθθ are identical to those in Equation (8.43) but in terms
of p1

n and q1
n and their first- and second-order derivatives. To obtain the solution in

(8.40), the polynomials p0
n, q0

n, p1
n and q1

n in (8.41) are found first, and the coefficients
Cn are obtained afterward. First, p0

n and q0
n are defined recursively in Appendix A of

Medvedev and Scaillet (2010) as

p0
n(θ ) = π0

n0θ
n + π0

n1θ
n−2 + π0

n2θ
n−4 + · · ·

q0
n(θ ) = x0

n0θ
n−1 + x0

n1θ
n−3 + x0

n2θ
n−5 + · · ·

(8.44)

with coefficients π0
n0 = x0

n0 = 1, and with

π0
n,i+1 = (n − 2i)(n − 2i − 1)

2i + 2
π0

n,i

x0
n,i+1 = x0

n,i(n − 1 − 2i)(n − 2 − 2i) + 2π0
n,i+1(n − 2i − 2)

2n − 2i − 2

(8.45)

for i = 0, 1, 2, · · ·. Note the dependence of x0
n,i+1 on π0

n,i+1. Obtaining p0
n and q0

n

is done through a straightforward application of (8.45). The coefficients of these
polynomials for n ≤ 7 appear in Tables 8.1 and 8.2.



American Options 231

TABLE 8.1 Coefficients for the Polynomials p0
n

N θ7 θ6 θ5 θ4 θ3 θ2 θ1 θ0

1 0 0 0 0 0 0 1 0
2 0 0 0 0 0 1 0 1
3 0 0 0 0 1 0 3 0
4 0 0 0 1 0 6 0 3
5 0 0 1 0 10 0 15 0
6 0 1 0 15 0 45 0 15
7 1 0 21 0 105 0 105 0

TABLE 8.2 Coefficients for the Polynomials q0
n

N θ7 θ6 θ5 θ4 θ3 θ2 θ1 θ0

1 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 0
3 0 0 0 0 0 1 0 2
4 0 0 0 0 1 0 5 0
5 0 0 0 1 0 9 0 8
6 0 0 1 0 14 0 33 0
7 0 1 0 20 0 87 0 48

The polynomials p1
n and q1

n are of the form

p1
n(θ ) = π1

n0θ
n + π1

n1θ
n−2 + π1

n2θ
n−4 + · · ·

q1
n(θ ) = x1

n0θ
n−1 + x1

n1θ
n−3 + x1

n2θ
n−5 + · · ·

(8.46)

with π1
n0 = x1

n0 = 0. Obtaining p1
n and q1

n is more involved and is done by substituting
separate solutions into the PDE of Equation (8.38). The expansion (8.40) is substi-
tuted into (8.38) and terms common to τ n/2 are collected. This produces Equation
(29) of Medvedev and Scaillet (2010)

−nPn + θPnθ + Pnθθ + σ̃Pn−1θ − 2rPn−2 = 0 (8.47)

where σ̃ = [σ 2 − 2μ]/σ and μ = r − q. The solution to (8.47) is obtained by sep-
arating the PDE into its homogeneous and non-homogeneous part, and finding a
solution for each part separately.

1. The homogeneous part of Equation (8.47) has the solution P1
n(θ ).

2. The non-homogenous part of Equation (8.47) has solution Pn(θ ) = CnP0
n(θ ) +

P1
n(θ ).

The homogenous part of (8.47) involves the first three terms only, those with Pn

and its derivatives. In the homogeneous part, substitute P1
n(θ ) from (8.41) and make

use of the derivatives in (8.43) to obtain

(p1
nθθ + θp1

nθ − np1
n)
(θ ) + (−(n + 1)q1

n − θq1
nθ + q1

nθθ + 2p1
nθ )φ(θ ) = 0. (8.48)



232 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

In the non-homogenous part of Equation (8.47), which involves only the last
two terms on the left-hand side of (8.47), substitute CnP0

n(θ ) + P1
n(θ ) and apply the

chain rule again to obtain(
σ̃Cn−1p0

n−1,θ + σ̃p1
n−1,θ − 2rCn−2p0

n−2 − 2rp1
n−2

)

(θ )

+ (
σ̃Cn−1p0

n−1 + σ̃Cn−1q0
n−1,θ − σ̃Cn−1q0

n−1θ + σ̃p1
n−1

+ σ̃q1
n−1,θ − σ̃q1

n−1θ − 2rCn−2q0
n−2 − 2rq1

n−2

)
φ(θ ) = 0.

(8.49)

Regroup (8.48) and (8.49) into terms common to 
(θ ) and φ(θ ), which produces
the system of two equations

p1
nθθ + θp1

nθ − np1
n + σ̃Cn−1p0

n−1,θ + σ̃p1
n−1,θ − 2r(Cn−2p0

n−2 + p1
n−2) = 0,

− (n + 1)q1
n − θq1

nθ + q1
nθθ + 2p1

nθ + σ̃Cn−1(p0
n−1 + q0

n−1,θ − θq0
n−1)

+ σ̃ (p1
n−1 + q1

n−1,θ − θq1
n−1) − 2r(Cn−2q0

n−2 + q1
n−2) = 0.

(8.50)

For each n, the first PDE in Equation (8.50) is solved for p1
n; all other quantities

are known. Similarly, the second PDE in (8.50) is solved for q1
n. At the end of this

section, we should how this can be done using the symbolic module in Matlab.
Once the polynomials p0

n, q0
n are obtained by recursion, and p1

n, q1
n obtained

through the set of two PDEs in Equation (8.50), the coefficients Cn can be obtained
by evaluating (8.40) at θ = y, substituting the Taylor series expansion for e−σy

√
τ in

(8.39), and equating the two equations for successive powers of τ n/2. After cancelling
τ n/2 from both sides, this produces the following equation, which is readily solved
for Cn

Cn[p0
n(y)
0 + q0

n(y)φ0] + p1
n(y)
0 + q1

n(y)φ0 = (−1)n+1 K
n!

σ nyn (8.51)

where 
0 = 
(̃y) and φ0 = φ(̃y) are the standard normal distribution and density,
respectively, evaluated at θ = ỹ, the optimized value from (8.42). For example, when
n = 1 we will see that p0

1 = θ , q0
1 = 1, and p1

1 = q1
1 = 0. Hence C1 is obtained as

C1 = Kyσ

ỹ
0 + φ0

. (8.52)

The first step in implementing the Medvedev and Scaillet (2010) expansion to
the Black-Scholes price of an American put is to generate the coefficients for the
polynomials p0

n and q0
n. This is done with the following code, taken from the Matlab

file GeneratePQ.m. The code finds coefficients up to n = 7, but can easily be modified
for higher n.

p0n = inline('(n-2*i)*(n-2*i-1)/(2*i+2)*pi','n','i','pi');
q0n = inline('(qi*(n-1-2*i)*(n-2-2*i) + 2*pi*(n-2*i-2)) ...');
Q = {'q01','q02','q03','q04','q05','q06','q07'};
P = {'p01','p02','p03','p04','p05','p06','p07'};
N = 7;



American Options 233

% Coefficients for p0n
p0 = zeros(N,N+1);
for n=1:N

p0(n,N-n+1) = 1;
i = 0;
for j=N-n+3:2:N+1

p0(n,j) = p0n(n,i,p0(n,j-2));
i = i+1;

end
end
% Coefficients for q0n
q0 = zeros(N,N+1);
for n=1:N

q0(n,N-n+2) = 1;
i = 0;
for j=N-n+4:2:N+1

q0(n,j) = q0n(n,i,q0(n,j-2),p0(n,j-1));
i = i+1;

end
end

The code automatically generates the coefficients for powers of θ in p0
n and q0

n,
up to n = 7. These are represented in Tables 8.1 and 8.2.

Using the tables, it is simple to evaluate the polynomials at any desired power.
Hence, for example, p0

5 = θ5 + 10θ3 + 15θ and q0
5 = θ4 + 9θ2 + 8.

The Matlab function PQ.m uses the symbolic calculator in Matlab to generate
symbolic representations of the required polynomials and their derivatives, which
are needed to solve the two PDE in Equation (8.50). These polynomials are

p0
n, q0

n, p1
n, q1

n, p1
n−1, q1

n−1, p1
n−2, q1

n−2, p0
n−1, q0

n−1, p0
n−2, q0

n−2,

p1
nθ , p1

nθθ , p0
n−1,θ , p1

n−1,θ , q1
nθ , q1

nθθ , q0
n−1,θ , q1

n−1,θ .
(8.53)

The polynomial q1
nθθ , for example, denotes the second-order derivative

d2q1
n(θ )/dθ2, where q1

n(θ ) is defined by (8.46). To conserve space parts of the PQ.m
function have been omitted.

function [p0n q0n ... dq0n_1 dq1n_1] = PQ(n,N,p0,q0)
syms theta
thet = [theta^7 theta^6 theta^5 theta^4 theta^3 theta^2 ...];
% Generate the polynomials p0n and q0n
for i=1:N

pp(i,:) = sym(p0(i,:));
qq(i,:) = sym(q0(i,:));

end
p0n = dot(pp(n,:),thet);
q0n = dot(qq(n,:),thet);
% Generate the polynomial p1n
syms pi11 pi12 pi13 pi14 pi15 pi16 pi17 % add more as needed
pis = [pi11 pi12 pi13 pi14 pi15 pi16 pi17; ...
syms pi



234 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

for i=1:N
for k=1:N-i+2

pi(i,k) = 0;
end
j = N-i+3;
k = 1;
while j<=N+1

pi(i,j) = pis(i,k);
k = k+1;
j = j+2;

end
end
p1n = dot(pi(n,:)’,thet);
% Generate the polynomial q1n
syms qi11 qi12 qi13 qi14 qi15 qi16 qi17 % add more as needed
qis = [qi11 qi12 qi13 qi14 qi15 qi16 qi17; ...
syms qi
for i=1:N;

for k=1:N-i+3;
qi(i,k) = 0;

end
j = N-i+4;
k = 1;
while j<=N+1

qi(i,j) = qis(i,k);
k = k+1;
j = j+2;

end
qi = qi(:,1:N+1);

end
q1n = dot(qi(n,:)’,thet);
% Generate the past polynomials p0n-1 and p0n-2, etc.
if n>=2

p0n_1 = dot(pp(n-1,:) ,thet);
q0n_1 = dot(qq(n-1,:) ,thet);
p1n_1 = dot(pi(n-1,:)’,thet);
q1n_1 = dot(qi(n-1,:)’,thet);

else
p0n_1 = 0; q0n_1 = 0;
p1n_1 = 0; q1n_1 = 0;

end
if n>=3

p0n_2 = dot(pp(n-2,:) ,thet);
q0n_2 = dot(qq(n-2,:) ,thet);
p1n_2 = dot(pi(n-2,:)’,thet);
q1n_2 = dot(qi(n-2,:)’,thet);

else
p0n_2 = 0; q0n_2 = 0;
p1n_2 = 0; q1n_2 = 0;

end
% Create the derivatives
dp1n = diff(p1n,theta); d2p1n = diff(dp1n,theta);
dp0n_1 = diff(p0n_1,theta); dp1n_1 = diff(p1n_1,theta);
dq1n = diff(q1n,theta); d2q1n = diff(dq1n,theta);
dq0n_1 = diff(q0n_1,theta); dq1n_1 = diff(q1n_1,theta);



American Options 235

The PQ.m function is used in the GeneratePQ.m Matlab file, which generates
symbolic representations of the polynomials p1

n and q1
n by solving Equation (8.50),

and representations of the coefficients Cn by using (8.51). The polynomials for n = 1
are generated by calling the PQ.m function.

n = 1;
[p0n q0n ... dq0n_1 dq1n_1] = PQ(n,N,p0,q0);
p01 = p0n;
p11 = p1n;
q01 = q0n;
q11 = q1n;

This generates p0
1 = θ , q0

1 = 1 and p1
1 = q1

1 = 0. The code becomes more com-
plicated for higher powers. For n = 2, we obtain p0

2 = θ2 + 1 and q0
2 = θ directly

from the PQ.m function, and from Equation (8.46), we know that q1
2 = 0 and

that p1
2 = π1

21. To obtain the unknown coefficient π1
21, we create a symbolic object

for the first PDE in (8.50) and solve the PDE using the Matlab built-in function
solve.m. This produces π1

21 = C1(σ 2 − 2μ)/(2σ ), where μ = r − q. We then define
p1

2 = π1
21.

n = 2;
[p0n q0n ... dq0n_1 dq1n_1] = PQ(n,N,p0,q0);
p02 = p0n;
q02 = q0n;
% Solve the first PDE for p12
syms sigma mu C1 C0 r pi21 sigma_
sigma_ = (sigma^2-2*mu)/sigma;
PDE1 = d2p1n + theta*dp1n -
n*p1n + sigma_*C1*dp0n_1 + sigma_*dp1n_1 ...;
pi21 = solve(PDE1,pi21);
p12 = pi21;
% Set q12 to known value of 0
q12 = 0;

For higher powers of n, the code involves cutting and pasting from the Matlab
output window. The polynomials p0

n and q0
n are generated by the PQ.m function, as

shown below for n = 5.

n = 5;
[p0n q0n ... dq0n_1 dq1n_1] = PQ(n,N,p0,q0);
p05 = p0n;
q05 = q0n;



236 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

From Equation (8.46), we know that p1
5 = π1

51θ
3 + π1

52θ . Using the Matlab
function subs.m, we substitute all previous values of the coefficients (for n ≤ 4) in
the first PDE in (8.50) so that π1

51 and π1
52 are the only unknowns remaining. We

then use the collect.m function to regroup terms common to θ3 and θ . We cut and
paste the resulting two PDEs from the Matlab output into the code, and solve the
first and second PDE for π1

51 and π1
52 respectively, using the solve.m function and the

simplify.m function. With the values of π1
51 and π1

52 we then create p1
5.

% Solve the first PDE for p15
syms pi51 C4 C3
PDE1 = d2p1n + theta*dp1n - n*p1n + sigma_*C4*dp0n_1 + ...;
PDE1 = subs(PDE1);
collect(PDE1,theta);
pi51 = solve('-2*pi51-2*r*C3+4*(sigma^2-2*mu) ... ','pi51');
pi52 = solve('6*pi51-4*pi52+2*r*(-C2*sigma^2 ... ','pi52');
pi52 = subs(pi52);
pi52 = simplify(pi52);
p15 = pi51*theta^3 + pi52*theta;

Finding q1
5 is done in the same fashion. We know from Equation (8.46) that

q1
5 = x1

51θ
2 + x1

52. We substitute all previous values of the coefficients in the second
PDE in (8.50) using the subs.m function and regroup terms using the collect.m
function, cut and paste into the code, solve the two resulting equations for x1

51 and
x1

52, and create q1
5.

% Solve the second PDE for q15
syms qi51
PDE2 = -(n+1)*q1n - theta*dq1n + d2q1n + 2*dp1n + sigma_*C4*p0n_1 ...;
PDE2 = subs(PDE2);
collect(PDE2,theta);
qi51 = solve('(1/48*sigma^2-1/24*mu)/sigma^4 ... ','qi51');
qi52 = solve('(-6*r*C3*sigma^2+12*C4 ... ','qi52');
qi51 = simplify(qi51);
qi52 = simplify(qi52);
q15 = qi51*theta^2 + qi52;

Finally, the last part of the GeneratePQ.m function finds the Cn coefficients
using (8.51). For example, with n = 2 the code is

Exp2 = -sigma^2*y^2*K/2;
C2 = (Exp2 - p12*cdf - q12*pdf)/(p02*cdf + q02*pdf);
C2 = subs(C2,theta,y);
C2 = simplify(C2);



American Options 237

Note that we do not need to invoke the solve.m function to obtain Cn, because
it is readily available from Equation (8.51). The code produces the coefficient

C2 = −C1
0σ
2 − 2C1
0μ + Kσ 3y2

2σ (
0y2 + 
0 + φ0y)
.

The output of the GeneratePQ.m function is a list of all the required coefficients,
which allows an expansion of P(θ , τ ) in (8.40) up to n = 5 terms. This output is
presented in the following snippet for n = 3.

Set 1 polynomials
-----------------
p01 = theta;
p11 = 0;
q01 = 1;
q11 = 0;

Set 2 polynomials
p12 is of the form p12 = pi21
-----------------
p02 = theta^2+1;
p12 = -1/2*(-sigma^2+2*mu)*C1/sigma;
q02 = theta;
q12 = 0;

Set 3 polynomials
p13 is of the form p13 = pi31*theta
q13 is of the form q13 = qi31
-----------------
p03 = theta^3+3*theta;
p13 = -theta*(-sigma^2*C2+2*C2*mu+r*C1*sigma)/sigma;
q03 = theta^2+2;
q13 = -1/8*(-8*C2*sigma^3+16*C2*mu*sigma ...;

"C" Coefficients
----------------
C1 = sigma*y*K/(y*cdf+pdf);
C2 = -1/2*(cdf*sigma^2*C1-2*mu*C1*cdf+sigma^3*y^2*K) ...;
C3 = 1/24*(-24*y*cdf*sigma^3*C2+48*y*cdf*sigma*C2*mu ...;

The coefficients are copied and pasted from the Matlab output window into
the Matlab function MSPutBS.m for pricing an American call option under Black-
Scholes, shown here only up to n = 2 to conserve space.

function Price = MSPutBS(y,theta,K,sigma,r,q,T)
mu = r-q;
% The "C" coefficients evaluated at theta = y
cdf = normcdf(y);
pdf = normpdf(y);



238 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

C1 = sigma*y*K/(y*cdf+pdf);
C2 = -1/2*(C1*cdf*sigma^2-2*C1*cdf*mu+sigma^3*y^2*K) ...;
% Set 1 polynomials
p01 = theta ;
p11 = 0 ;
q01 = 1 ;
q11 = 0 ;
% Set 2 polynomials
p02 = theta^2+1 ;
p12 = -1/2*C1*(-sigma^2+2*mu)/sigma ;
q02 = theta ;
q12 = 0 ;
% The Black-Scholes American put approximation
cdf = normcdf(theta);
pdf = normpdf(theta);
Price = (C1*(p01*cdf + q01*pdf) + p11*cdf + q11*pdf)*T^(1/2) ...

+ (C2*(p02*cdf + q02*pdf) + p12*cdf + q12*pdf)*T^(2/2);

We do not create C# code to obtain the polynomials and their derivatives in
Equation (8.53), because C# does not have a symbolic calculator that allows us to
solve the PDEs. We do, however, create the C# function MSPutBS(), which is very
similar to the MSPutBS.m function presented in the earlier code snippet. This C#
function is not presented here.

Finally, obtaining American put prices is done in two steps. In the first step, we
find the barrier ỹ using Equation (8.42). In the second step, we feed ỹ into P(θ , τ , y)
in (8.40). In Matlab, this is accomplished with the MSPriceBS.m function, which
uses the built-in function fmincon.m for the first step. The moneyness θ is used for
the lower bound for ỹ in the fmincon.m function.

function [Price y theta] = MSPriceBS(S,K,T,sigma,r,q)
% Moneyness and optimization settings
theta = log(K/S)/sigma/sqrt(T);
start = 2;
options = optimset('LargeScale','off');
% Find the barrier
[y feval] = fmincon(@(p) -MSPutBS(p,...),start,...,theta);
Price = MSPutBS(y,theta,K,sigma,r,q,T);

We can use the bisection algorithm to find the barrier ỹ in C#, by setting the
objective function to be the derivative of (8.42) and finding its zero. The following
function creates the derivative.

static double MSPutBSdiff(double y,MSset mssettings,double dy) {
return (MSPutBS(y+dy,mssettings) - MSPutBS

(y-dy,mssettings))/2.0/dy;
}



American Options 239

The C# function Bisection() presented in Chapter 2 is easily modified to find the
zero of this objective function and is not presented here. Prices of American puts are
generated in C# using the MSPriceBS() function.

static double MSPriceBS(double S,double K,double T,...) {
mssettings.theta = Math.Log(K/S)/sigma/Math.Sqrt(T);
double a = 0.5*mssettings.theta;
double y = Bisection(mssettings,a,b,Tol,MaxIter,dt);
if(y<mssettings.theta)

y = mssettings.theta;
return MSPutBS(y,mssettings);

}

To illustrate, we reproduce Table 2 of Medvedev and Scaillet (2010). The
settings are S = 40, r = 0.0488, and q = 0 for various values of volatility (σ ) and
maturity (τ ). We benchmark the results to the American put prices obtained using a
trinomial tree with 500 steps. European puts are obtained using the Black-Scholes
formula. This is done with the following Matlab code.

% Black Scholes European price
BSP = @(s,K,rf,q,v,T) (K*exp(-rf*T)*normcdf(-(log(s/K) + ...;
% Find the tree and M-S prices for Table 2
K = [35 40 45];
for k=1:3

for i=1:9
BSPut(k,i) = BSP(S,K(k),r,q,sigma(i),T(i));
MSPut(k,i) = MSPriceBS(S,K(k),T(i),sigma(i),r,q);
BTPut(k,i) = TrinomialTree(S,K(k),r,q,sigma(i),T(i),...);

end
end

The portion of Table 2 for K = 45 from Medvedev and Scaillet (2010) is
reproduced in Table 8.3. The table indicates close agreement between the American
put prices obtained under the trinomial tree and those obtained using the Medvedev

TABLE 8.3 American Put Prices Under Black-Scholes

τ = 1
12 τ = 1

3 τ = 7
12 τ = 1

12 τ = 1
3 τ = 7

12 τ = 1
12 τ = 1

3 τ = 7
12

σ = 0.2 σ = 0.2 σ = 0.2 σ = 0.3 σ = 0.3 σ = 0.3 σ = 0.4 σ = 0.4 σ = 0.4

European 4.840 4.780 4.840 4.980 5.529 5.972 5.236 6.377 7.165
M.-S. 5.000 5.085 5.261 5.059 5.702 6.237 5.286 6.506 7.377
Tree 5.000 5.088 5.267 5.060 5.706 6.243 5.287 6.510 7.383



240 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

and Scaillet (2010) expansion with five terms. The results in Table 8.3 are nearly
identical to those obtained by the authors in their Table 2.

The entries in the last row of Table 8.3 are calculated with the Matlab function
TrinomialTree.

function y = TrinomialTree(Spot,K,r,q,v,T,N,PutCall,EuroAmer)
% Trinomial tree parameters and probabilities.
dt = T/N;
u = exp(v*sqrt(2*dt));
d = 1/u;
pu = (exp((r-q)*dt/2) - exp(-v*sqrt(dt/2)))^2/

(exp(v*sqrt(dt/2)) ... ;
pd = (exp(v*sqrt(dt/2)) - exp((r-q)*dt/2))^2/

(exp(v*sqrt(dt/2)) ...;
pm = 1 - pu - pd;
% Calculate all the stock prices.
S = zeros(2*N+1,N+1);
S(N+1,1) = Spot;
for j=2:N+1

for i=N-j+2:N+j
S(i,j) = Spot*u^(N+1-i);

end
end
% Calculate terminal option prices.
V = zeros(2*N+1,N+1);
V(:,N+1) = max(K - S(:,N+1), 0);
% Calculate remaining entries
for j=N:-1:1

for i=N-j+2:N+j
V(i,j) = max(K - S(i,j), exp(-r*dt)*(pu*V(i-1,j+1)

+ pm*V(i,j+1) + ...;
end

end
% Option price is at the first node.
y = V(N+1,1);

The C# code for the trinomial tree is similar and not presented here.

Medvedev-Scaillet for Heston

The Medvedev and Scaillet (2010) approximation for the American put price under
the Heston (1993) model is identical in form to that for the Black-Scholes model in
Equation (8.40)

P(θ , τ , v) =
∞∑

n=1

Pn(θ , v)τ n/2. (8.54)



American Options 241

The terms inside the sum are defined as

Pn(θ , v) = Cn(v)[p0
n(θ )
(θ ) + q0

n(θ )φ(θ )] + p1
n(θ , v)
(θ ) + q1

n(θ , v)φ(θ )

= Cn(v)P0
n(θ ) + P1

n(θ , v). (8.55)

Note that the polynomials superscripted with 1 now depend on v as well as
on θ , and that the Cn coefficients depend on v. To simplify the notation, we write
p1

n = p1
n(θ , v), q1

n = q1
n(θ , v), p0

n = p0
n(θ ), q0

n = q0
n(θ ), and Cn = Cn(v).

Recall the Heston PDE from Chapter 1, written here using the notation of
Medvedev and Scaillet (2010) and using θ to denote the mean reversion level of the
variance process

Pt + (r − q)SPS + 1
2

vS2PSS − rP + ρσvSPvS + 1
2

σ 2vPvv + κ(θ − v)Pv = 0. (8.56)

Redefine the normalized moneyness as

θ = ln(K/S)√
v
√

τ
(8.57)

and consider the transformation from P(S, v, t) to P(θ , v, t). We need the following
derivatives, obtained as total derivatives and by applying the chain rule

Pt = θ

2τ
Pθ − Pτ ,

PS = Pθ θS = −1
S
√

v
√

τ
Pθ ,

PSS = Pθθ (θS)
2 + Pθ θSS = 1

S2vτ
Pθθ + 1

S2
√

v
√

τ
Pθ ,

Pv = Pv + Pθ θv = Pv − θ

2v
Pθ ,

PvS = Pvθ θS − 1
2v

(θSPθ +θPθθ θS) = −1
S
√

v
√

τ
Pvθ + 1

2Sv3/2
√

τ
Pθ + θ

2Sv3/2
√

τ
Pθθ ,

Pvv = Pvv − θ

v
Pvθ + θ2

4v2
Pθθ + 3θ

4v2
Pθ . (8.58)

We have used the following derivatives of θ

θS = −1
S
√

v
√

τ
, θSS = 1

S2
√

v
√

τ
, θSv = 1

2Sv3/2
√

τ
,

θv = −θ

2v
, θvv = θ − θvv

v2
= 3θ

4v2
.

(8.59)



242 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Substitute the derivatives in Equation (8.58) into the Heston PDE of (8.56),
multiply by 2τ , and group terms common to

√
τ and τ to obtain

Pθθ + θPθ − 2τPτ

+ √
τ

[
1√
v

(v + 2 (q − r)) Pθ + ρσ
√

v
(

−2Pvθ + 1
v

Pθ + θ

v
Pθθ

)]
+ τ

[
κ
(
θ −v

) (
2Pv − θ

v
Pθ

)
+σ 2v

(
Pvv − θ

v
Pvθ + θ2

4v2
Pθθ + 3θ

4v2
Pθ

)
−2rP

]
= 0. (8.60)

As before, express the PDE of Equation (8.60) in terms of Pn(θ , v). Terms that
are multiplied by

√
τ get shifted back once in n, while those multiplied by τ get

shifted back twice in n. After re-arranging this produces

Pnθθ + θPnθ − nPn

+ 1√
v

(v + 2(q − r))Pn−1,θ + ρσ
√

v
(

−2Pn−1,vθ + 1
v

Pn−1,θ + θ

v
Pn−1,θθ

)
+ κ(θ − v)

(
2Pn−2,v − θ

v
Pn−2,θ

)
+ σ 2v

(
Pn−2,vv − θ

v
Pn−2,vθ + θ2

4v2
Pn−2,θθ + 3θ

4v2
Pn−2,θ

)
− 2rPn−2 = 0.

(8.61)

The solution to the PDE in Equation (8.61) is found using the same reasoning
that was applied to solve the Black-Scholes PDE in (8.47), by considering the
homogeneous and non-homogeneous portions of the PDE separately. Hence, the
first three terms of (8.61) comprise the homogeneous part, and the remaining terms
comprise the non-homogeneous part. As in the Black-Scholes case the homogeneous
part assumes a solution of the form

P1
n(θ , v) = p1

n(θ , v)
(θ ) + q1
n(θ , v)φ(θ ) (8.62)

while the non-homogeneous part assumes a solution of the form

Pn(θ , v) = Cn(v)P0
n(θ ) + P1

n(θ , v)

= Cn(v)[p0
n(θ )
(θ ) + q0

n(θ )φ(θ )] + p1
n(θ , v)
(θ ) + q1

n(θ , v)φ(θ ).
(8.63)

We will need the following derivatives of Pn(θ , v), obtained by applying the
chain rule

Pnθ = Cn[p0
nθ
 + p0

nφ + q0
nθφ − q0

nθφ] + p1
nθ
 + p1

nφ + q1
nθφ − q1

nθφ,

Pnθθ = Cn[p0
nθθ
 + 2p0

nθφ − p0
nθφ + q0

nθθφ − 2q0
nθ θφ − q0

nφ + q0
nθ

2φ]

+ p1
nθθ
 + 2p1

nθφ − p1
nθφ + q1

nθθφ − 2q1
nθ θφ − q1

nφ + q1
nθ

2φ,

Pnv = Cnv[p
0
n
 + q0

nφ] + p1
nv
 + q1

nvφ,



American Options 243

Pnvv = Cnvv[p
0
n
 + q0

nφ] + p1
nvv
 + q1

nvvφ,

Pnvθ = Cnv[p
0
nθ
 + p0

nφ + q0
nθφ − q0

nθφ] + p1
nvθ
 + p1

nvφ + q1
nvθφ − q1

nvθφ.
(8.64)

Substitute these derivatives into the solutions for Equations (8.62) and (8.63)
of the homogeneous and non-homogeneous parts, respectively, and collect terms
common to 
(θ ) and to φ(θ ). The terms common to 
(θ ) are

p1
nθθ + θp1

nθ − np1
n + 1√

v
(v + 2(q − r)){Cn−1p0

n−1,θ + p1
n−1,θ }

+ ρσ
√

v
(

−2
{
Cn−1,vp

0
n−1,θ + p1

n−1,vθ

} + 1
v
{Cn−1p0

n−1,θ + p1
n−1,θ }

)
+ ρσ

√
v
(

θ

v

{
Cn−1p0

n−1,θθ + p1
n−1,θθ

})
+ κ(θ − v)

(
2
{
Cn−2,vp

0
n−2 + p1

n−2,v

} − θ

v
{Cn−2p0

n−2,θ + p1
n−2,θ }

)
+ σ 2v

(
Cn−2,vvp

0
n−2 + p1

n−2,vv − θ

v

{
Cn−2,vp

0
n−2,θ + p1

n−2,vθ

})
+ σ 2v

(
θ2

4v2

{
Cn−2p0

n−2,θθ + p1
n−2,θθ

} + 3θ

4v2
{Cn−2p0

n−2,θ + p1
n−2,θ }

)
− 2r{Cn−2p0

n−2 + p1
n−2} = 0.

(8.65)

The terms common to φ are

− (n + 1)q1
n − θq1

nθ + q1
nθθ + 2p1

nθ

+ 1√
v

(v + 2(q − r))(Cn−1[p0
n−1 + q0

n−1,θ − q0
n−1θ] + p1

n−1 + q1
n−1,θ − q1

n−1θ)

+ ρσ
√

v

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−2

⎧⎨⎩Cn−1,v

[
p0

n−1 + q0
n−1,θ − q0

n−1θ
]

+p1
n−1,v + q1

n−1,vθ − θq1
n−1,v

⎫⎬⎭ + 1
v

⎧⎨⎩Cn−1

[
p0

n−1 + q0
n−1,θ − q0

n−1θ
]

+p1
n−1 + q1

n−1,θ − q1
n−1θ

⎫⎬⎭
+ θ

v

⎧⎨⎩Cn−1

[
2p0

n−1,θ − p0
n−1θ + q0

n−1,θθ − 2q0
n−1,θ θ − q0

n−1 + q0
n−1θ

2
]

+2p1
n−1,θ − p1

n−1θ + q1
n−1,θθ − 2q1

n−1,θ θ − q1
n−1 + q1

n−1θ
2

⎫⎬⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ κ(θ − v)

⎛⎝2
{
Cn−2,vq0

n−2 + q1
n−2,v

}
− θ

v

⎧⎨⎩Cn−2

[
p0

n−2 + q0
n−2,θ − q0

n−2θ
]

+p1
n−2 + q1

n−2,θ − q1
n−2θ

⎫⎬⎭
⎞⎠

+ σ 2v

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{
Cn−2,vvq0

n−2 + q1
n−2,vv

}
− θ

v

⎧⎨⎩Cn−2,v

[
p0

n−2 + q0
n−2,θ − q0

n−2θ
]

+p1
n−2,v + q1

n−2,vθ − θq1
n−2,v

⎫⎬⎭
+ θ2

4v2

⎧⎨⎩Cn−2

[
2p0

n−2,θ − p0
n−2θ + q0

n−2,θθ − 2q0
n−2,θ θ − q0

n−2 + q0
n−2θ

2
]

+2p1
n−2,θ − p1

n−2θ + q1
n−2,θθ − 2q1

n−2,θ θ − q1
n−2 + q1

n−2θ
2

⎫⎬⎭
+ 3θ

4v2 {Cn−2[p0
n−2 + q0

n−2,θ − q0
n−2θ] + p1

n−2 + q1
n−2,θ − q1

n−2θ}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 2r(Cn−2q0

n−2 + q1
n−2) = 0.

(8.66)



244 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Note that the homogeneous parts of Equations (8.65) and (8.66) are identical to
that for the Black-Scholes case, so combining these two parts produces (8.48) from
the previous section.

Equations (8.65) and (8.66) form the system of two equations to be solved,
done in a manner analogous to that used to solve the two equations in (8.50) for
the Black-Scholes American put. For each n, the PDE in (8.65) is solved for p1

n as
all other quantities are known. Similarly, the PDE in (8.66) is solved for q1

n as all
other quantities are known. The polynomials p0

n and q0
n are obtained by recursion

and are identical to those in Tables 8.1 and 8.2, respectively. The polynomials p1
n

are identical in form to those in (8.46), reproduced here for convenience

p1
n(θ , v) = π1

n0θ
n + π1

n1θ
n−2 + π1

n2θ
n−4 + · · · (8.67)

The polynomials q1
n, on the other hand, now take the form

q1
n(θ , v) = x1

n1θ
3n−5 + x1

n2θ
3n−7 + x1

n3θ
3n−9 + x1

n4θ
3n−11 + · · · (8.68)

For example

q1
4 = x1

41θ
7 + x1

42θ
5 + x1

43θ
3 + x1

44θ ,

q1
5 = x1

51θ
10 + x1

52θ
8 + x1

53θ
6 + x1

54θ
4 + x1

55θ
2 + x1

56.

Once the polynomials p1
n, q1

n, p0
n, and q0

n have been obtained, the coefficients
Cn(v) are constructed by evaluating Equation (8.55) at θ = y and substituting a
Taylor series expansion for exp(

√
vy

√
τ ). After canceling τ n/2 from both sides, this

produces the following equation, which is readily solved for Cn

Cn(v)[p0
n(y)
0 + q0

n(y)φ0] + p1
n(y, v)
0 + q1

n(y, v)φ0 = (−1)n+1K
n!

vn/2yn. (8.69)

As in the Black-Scholes case the coefficients Cn are evaluated at θ = ỹ. To obtain
the American put price P(θ , τ , v), we first find the polynomials p0

n, q0
n, p1

n and q1
n, and

the coefficients Cn(v). We then find the barrier y as

ỹ = arg max
y≥θ ,y≥0

P(θ , τ , v, y) (8.70)

where P(θ , τ , y, v) is P(θ , τ , v) in Equation (8.54) but with the extra argument to
emphasize the dependence of P(θ , τ , v) on y through Cn(v). The first approximation
of Medvedev and Scaillet (2010) for the price of an American put, P(θ , τ , v, ỹ), given
p0

n, q0
n, p1

n, q1
n, and Cn is analogous to that in the Black-Scholes case.

Approximation 1:

Construct P(θ , τ , v, y) using (8.54) with Cn = Cn(v, y).

Find ỹ using (8.70), under the constraint ỹ ≥ θ .

Use Cn = Cn(v, ỹ) in P(θ , τ , v, ỹ) to find the price.



American Options 245

Medvedev and Scaillet (2010) point out that the case of an infinite barrier,
ỹ = ∞, corresponds to a European put. They recommend obtaining the price of
an American put as the European put obtained using a closed-form, such as those
covered in Chapters 1, 3, or 4, plus the early exercise premium. Their second
approximation for the American put is, therefore, the control variate price.

Approximation 2:

Find the price of the European put P(K) using a closed-form solution.

Find ỹ as in the first approximation.

Obtain the early exercise premium as ε = P(θ , τ , v, ỹ) − P(θ , τ , v, ∞).

Obtain the American put price as PA(K) = P(K) + ε.

We illustrate the maximization problem in Equation (8.70) in Figure 8.3 by
plotting P(θ , τ , v, y) over various values of y, using the settings of Clarke and Parrott
(1999) for the spot prices 8, 9, and 11. The optimal values ỹ are represented by
dashed lines and all lie within the vicinity ỹ ≈ 2. The curves have been rescaled so
to make the graph more illustrative.

In the remainder of this section, we present the Matlab code for obtaining the
Medvedev and Scaillet (2010) approximation for the American put under the Heston

1.7
0 0.5 1 1.5

Spot = 9,  y = 2.06
Spot = 8,  y = 2.37

Spot = 11, y = 2.14

2 2.5 3 3.5 4

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

FIGURE 8.3 Barrier Levels for the Medvedev-Scaillet Approximation



246 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

model. The Matlab function PQHeston.m creates the polynomials p0
n, q0

n, p1
n, q1

n, in
the same way that was done with the PQ.m function for the Black-Scholes model
in the previous section. It is nearly identical to PQ.m, and similarly requires the
coefficients for p0

n and q0
n, taken from Tables 8.1 and 8.2, as inputs.

function [p0n q0n p1n q1n ...] = PQHeston(n,N,p0,q0)
syms theta
thet = [theta^7 theta^6 theta^5 theta^4 theta^3 theta^2

theta^1 theta^0];
% Generate the coefficients p0n and q0n
for i=1:N

pp(i,:) = sym(p0(i,:));
qq(i,:) = sym(q0(i,:));

end
% Generate the polynomials p0n and q0n
p0n = dot(pp(n,:),thet);
q0n = dot(qq(n,:),thet);

The PQHeston.m function is used in the GeneratePQHeston.m Matlab file. This
file is analogous to the GeneratePQ.m file for the Black-Scholes model presented in
the previous section. The code generates symbolic representations of the polynomials
p1

n and q1
n by solving Equations (8.65) and (8.66), and the coefficients Cn by solving

(8.69). For each n, the code works in the same manner as in the Black-Scholes case:
by generating symbolic representations of the polynomials using the PQHeston.m
function, forming two PDEs, collecting terms common to powers of θ , and solving
for p1

n, q1
n, and Cn. This requires that output from the collect.m function be cut and

pasted into the Matlab file GeneratePQHeston.m itself.
The portion of the GeneratePQHeston for n = 4 is presented later for illustration.

The first part of the code uses the GeneratePQ.m function to generate symbolic
representations of the polynomials p0

4 and q0
4, and also generates the required first-

and second-order derivatives of the polynomials.

n = 4;
[p0n q0n p1n q1n p1n_1 q1n_1 ...] = PQHeston(n,N,p0,q0);
p04 = p0n;
q04 = q0n;
dp1n_1 = diff(p1n_1,theta); % Der of p1(n-1) wrt theta
dq1n_1 = diff(q1n_1,theta); % Der of q1(n-1) wrt theta
d2p1vt_1 = diff(dp1n_1,v); % Der of p1(n-1) wrt theta & v

The second part of the code sets Cn−1 = C3 and Cn−2 = C2, takes the volatility
derivatives of both, and creates the first PDE in (8.65). Terms common to powers
of θ (namely θ2 and θ0 for n = 4) are collected using the collect.m function, and the



American Options 247

expressions resulting from this collection are cut and paste into the solve.m function.
The solve.m functions are used to solve the expressions for π1

41 and π1
42, and p1

4 is
formed as p1

4(θ , v) = π1
41θ

2 + π1
42, in accordance with Equation (8.67).

Cn_1 = C3;
Cn_2 = C2;
Cvn_1 = diff(Cn_1,v);
Cvn_2 = diff(Cn_2,v);
Cvvn_2 = diff(Cn_2,v,2);
syms pi41 pi42
PDE1 = d2p1n + theta*dp1n - n*p1n + 1/sqrt(v)*(v - 2*mu) ... ;
collect(subs(PDE1),theta)
pi41 = solve(' (3/v*(v-2*mu)*(2*cdf^2*y*mu^2 ... ',pi41);
pi42 = solve('2*pi41+rho*sigma*v^(1/2) ... ',pi42);
p14 = pi41*theta^2 + pi42;

Similarly, the next part of the code defines the second PDE and collects
terms common to powers of θ . The resulting expressions are cut and paste and
solved for x1

41, x1
42, x1

43, and x1
44. The polynomial q1

4 is the formed as q1
4(θ , v) =

x1
41θ

7 + x1
42θ

5 + x1
43θ

3 + x1
44θ , in accordance with Equation (8.68).

syms qi41 qi42 qi43 qi44
PDE2 = -(n+1)*q1n - theta*dq1n + d2q1n + 2*dp1n ...;
collect(subs(PDE2),theta)
qi41 = solve('(-12*qi41+1/32*rho^3*sigma^3 ... ',qi41);
qi42 = solve('(rho*sigma/v^(1/2) ... ',qi42);
qi43 = solve('(rho*sigma/v^(1/2)*(1/4*y* ... ',qi43);
qi44 = solve('(-6*qi44+3/4*sigma^2/v ... ',qi44);
q14 = qi41*theta^7 + qi42*theta^5 + qi43*theta^3 + qi44*theta;

The last part of the code for n = 4 uses p0
4, q0

4, p1
4 and q1

4 to obtain the coefficient
C4, in accordance with Equation (8.69). Note that the code substitutes ỹ for θ , using
the subs.m function.

syms C4
Put4 = C4*(p04*cdf + q04*pdf) + p14*cdf + q14*pdf;
Exp4 = -v^(4/2)*y^4*K/24;
C4 = solve(Put4 - Exp4,C4);
C4 = subs(C4,theta,y);

The code in the GeneratePQHeston.m file, thus, generates polynomials and
coefficients up to and including n = 5. The expressions for these quantities are cut



248 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

and paste from the Matlab output screen into the function MSPutHeston.m, which
is similar to the MSPutBS.m function defined in the previous section for pricing
American puts under the Black-Scholes model. The function can accommodate an
expansion up to and including fifth order, but can be reduced to third or fourth
orders to reduce computational time.

function Price = MSPutHeston(y,theta,K,params,r,q,T,NumTerms)
cdf = normcdf(y);
pdf = normpdf(y);
% First set of polynomials
p11 = 0 ;
q11 = 0 ;
p01 = theta ;
q01 = 1 ;
C1 = v^(1/2)*y*K/(y*cdf+pdf) ;
% Second set of polynomials
p12 = 1/2*(v-2*mu)*y*K/(y*cdf+pdf) ;
q12 = 1/4*rho*sigma*theta*y*K/(y*cdf+pdf) ;
p02 = theta^2+1 ;
q02 = theta ;
C2 = -1/4*y*K*(2*v*cdf-4*cdf*mu+y*rho*sigma*pdf ... ;
% Fifth set of polynomials
if NumTerms == 5

p15 = -1/192*y*K/v^(3/2)*(-16*v*y^2*sigma^3 ... ;
q15 = 1/6144*rho^4*sigma^4/v^(3/2)*y*K ... ;
p05 = theta^5+10*theta^3+15*theta ;
q05 = theta^4+9*theta^2+8 ;
C5 = -1/645120*(-40320*y^13*cdf^2*v^6 ...;

end
% The Heston American put approximation
cdf = normcdf(theta);
pdf = normpdf(theta);
Price = (C1*(p01*cdf + q01*pdf) + p11*cdf + q11*pdf)*T^(1/2)...

+ (C2*(p02*cdf + q02*pdf) + p12*cdf + q12*pdf)*T^(2/2)...
+ (C3*(p03*cdf + q03*pdf) + p13*cdf + q13*pdf)*T^(3/2);

if NumTerms == 4
Price = Price + (C4*(p04*cdf + q04*pdf) + p14*cdf

+ q14*pdf)*T^(4/2);
elseif NumTerms == 5

Price = Price + (C4*(p04*cdf + q04*pdf) + p14*cdf
+ q14*pdf)*T^(4/2) ...

+ (C5*(p05*cdf + q05*pdf) + p15*cdf
+ q15*pdf)*T^(5/2);

end

The Matlab function MSPrice.m returns the second approximation of Medvedev
and Scaillet (2010) of the American put price. Recall that this approximation uses the
expansion to find the early exercise premium, and obtains the price of the American
put as the price of the European put obtained under a closed-form solution plus



American Options 249

the early exercise premium. The built-in Matlab function fminbnd.m for bounded
optimization in a single variable is used to find ỹ from Equation (8.70), using
(max(θ , 2), 3) as the bounds.

function [EuroPutClosed AmerPutMS AmerPut EEP theta y] = MSPrice(...)
% Closed-form European put
EuroPutClosed = HestonPriceNewtonCoates('P',...);
% Find the barrier level, y
theta = log(Strike/S)/sqrt(v0)/sqrt(T);
lo = max(2,theta);
y = fminbnd(@(p) -MSPutHeston(p,...,NumTerms),lo,3);
% Euro and Amer put by MS expansion, and early ex. premium
EuroPutMS = MSPutHeston(yinf,...,NumTerms);
AmerPutMS = MSPutHeston(y, ...,NumTerms);
EEP = AmerPutMS - EuroPutMS;
% American put terms using Approximation 2
AmerPut = EuroPutClosed + EEP;

With these functions, generating American put prices using the second approxi-
mation of Medvedev and Scaillet (2010) is straightforward. The C# code to generate
the American put price is similar and not presented. In C#, however, we use the
bisection algorithm to find ỹ. We, therefore, need the following C# function for the
derivative of the put price.

static double MSPutDiff(y,...,dy)
{

return (MSPutHeston(y+dy,...) - MSPutHeston(y-dy,...))/2.0/dy;
}

The MSPrice() function uses the MSPutHeston() function, which contains the
expansion terms, to generate the American put price as the closed-form European
put, plus the early exercise premium.

static double[] MSPrice(HParam param,...,int NumTerms,double yinf)
// Closed-form European put
double EuroPutClosed = HestonPriceNewtonCoates(param,opset,

method,A,B,N);
// Moneyness
double theta = Math.Log(K/S)/Math.Sqrt(v0)/Math.Sqrt(T);
// Lower point for the bisection algorithm
double a = Math.Max(2.0,theta);
// Find the barrier level



250 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

double y = Bisection(a,b,theta,K,param,r,q,T,NumTerms,tol,
MaxIter,dy);

if(y<theta)
y = theta;

// Find the early exercise premium
double AmerPutMS = MSPutHeston(y,theta,K,param,r,q,T,NumTerms);
double EuroPutMS = MSPutHeston(yinf,theta,K,param,r,q,T,NumTerms);
double EEP = AmerPutMS - EuroPutMS;
// Control variate American put
double AmerPut = EuroPutClosed + EEP;

To illustrate, we continue with the example of Clarke and Parrott (1999) and
Ikonen and Toivanen (2008). This is accomplished with the following Matlab code,
which uses five terms in the expansion.

% Settings from Clarke and Parrott
S = [8 9 10 11 12];
TruePrice = [2.00 1.107641 0.520030 0.213668 0.082036];
Strike = 10;
% Find the Medvedev-Scaillet Heston price
NumTerms = 5;
yinf = 1e4
for k=1:5

[EuroPut AmerPutMS AmerPut(k) EEP theta(k) y(k)]
= MSPrice(S(k),...);

error(k) = TruePrice(k)—AmerPut(k);
end

The results with five expansion terms are in the last row of Table 8.4, along with
the same prices obtained using the other methods described earlier in this chapter
and the total absolute error of each method. For comparison, the last row contains
the European put prices, obtained with Simpson’s three-eighths rule.

All of the methods produce American put prices that are fairly accurate.
The method of Medvedev and Scaillet (2010) forgoes accuracy slightly, especially

TABLE 8.4 Clarke and Parrott (1999) American Put Prices Under Various Models

St = 8 St = 9 St = 10 St = 11 St = 12 Abs(Error)

Clarke-Parrott Price 2.0000 1.1076 0.5200 0.2137 0.0820 —
L.S. Monte Carlo 1.9996 1.1036 0.5190 0.2261 0.0821 0.0179
Explicit Method 2.0000 1.1061 0.5184 0.2122 0.0808 0.0058
Bivariate Tree 1.9967 1.1059 0.5195 0.2134 0.0819 0.0059
M.S. Approximation 2.0030 1.1111 0.5202 0.2137 0.0830 0.0077
European Put Price 1.8389 1.0483 0.5015 0.2082 0.0804 —



American Options 251

compared to the explicit method or the bivariate tree, but it is able to produce prices
much faster than the other methods.

Parameter Estimation

The fact that the Medvedev and Scaillet (2010) expansion produces American put
prices with little computation time makes it feasible to estimate Heston parameters
for pricing American options. We illustrate this with American puts written on IBM
on May 7, 2010. The closing price of IBM was $122.10. We use the Medvedev
and Scaillet (2010) method to obtain Black-Scholes implied volatilities for American
puts. This is accomplished with the Matlab function BisecMSIV.m function, which
is similar to the BisecBSIV.m function presented in Chapter 2. The difference is
that model prices are obtained using the MSPriceBS.m function for the Medvedev-
Scaillet-Black-Scholes pricing of American puts, rather than using the Black-Scholes
European closed form.

function y = BisecMSIV(S,K,rf,q,T,a,b,MktPrice,Tol,MaxIter)
lowCdif = MktPrice - MSPriceBS(S,K,T,a,rf,q);
highCdif = MktPrice - MSPriceBS(S,K,T,b,rf,q);
if lowCdif*highCdif > 0

y = -1;
else

for x=1:MaxIter
midP = (a+b)/2;
midCdif = MktPrice - MSPriceBS(S,K,T,midP,rf,q);
... ;

end
y = midP;

end

The following code snippet extracts implied volatilities from the IBM American
put prices.

% Settings for the bisection algorithm
a = 0.01;
b = 2.0;
Tol = 1e-5;
MaxIter = 1000;
% American implied volatilities
for t=1:NT

for k=1:NK
MktIV(k,t) = BisecMSIV(K(k),T(t),MktPrice(k,t),...);

end
end



252 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The BisecMSIV.m function can easily be modified to allow for an alternate
pricing model for Black-Scholes American puts, such as the trinomial tree or the
approximation of Barone-Adesi and Whaley (1987).

The function HestonObjFunMS.m applies the RMSE loss function discussed
in Chapter 6. Prices and implied volatilities are obtained with the MSPrice.m and
BisecMSIV.m functions, respectively.

function y = HestonObjFunMSIV(param,MktIV,...)
for k=1:NK

for t=1:NT
ModelPrice(k,t) = MSPrice(K(k),T(t),...,yinf);
ModelIV(k,t) = BisecMSIV(K(k),T(t),

ModelPrice(k,t),...);
error(k,t) = (ModelIV(k,t) - MktIV(k,t))^2 /

MktIV(k,t);
end

end
% MSE loss function
y = sum(sum(error));

Parameter estimation is done by passing the HestonObjFunMS.m function to
the built-in Matlab function fmincon.m for constrained minimization.

% kappa theta sigma v0 rho
start = [1.0, 0.01, 3.2, 0.12, -0.5];
% Estimation bounds
e = 1e-3;
lb = [e e e e -.99];
ub = [20 2 5 2 .99];
% Constrained minimization
[param feval] = fmincon(@(p) HestonObjFunMSIV(p, MktIV,...),

start,...,lb,ub);

The C# code to obtain the parameter estimates is similar to the Matlab code
and not presented here.

We estimate parameters using IBM American put prices on the first maturity,
14 days. We then fit Medvedev and Scaillet (2010) prices using four terms in the
expansion, and extract implied volatilities from these prices. Both sets of implied
volatilities appear in Figure 8.4. The mean square error between both sets of implied
volatilities is 3.15 × 10−5.



American Options 253

0.25

0.3

0.35

0.4

0.45

0.5

Market IV
Model IV

0.55

0.6

115 120110105100
Strike Price

125 130 135 140

Im
pl

ie
d 

V
ol

at
ili

ty

FIGURE 8.4 Implied Volatility From American Puts

CHIARELLA AND ZIOGAS AMERICAN CALL

In this section, the last of this chapter, we present the method of Chiarella and
Ziogas (2006) for pricing American calls in the Heston (1993) model. Their method
requires an estimate of the early exercise boundary. The early exercise boundary and
other features of American options are discussed in Kwok (2008), for example.

Early Exercise Boundary Approximation

Recall from Chapter 1 that the price U(S, v, τ ) a European option satisfies the Heston
(1993) PDE, subject to certain boundary conditions. We saw in the previous sections
that an American option satisfies the same PDE, but with different boundaries. For
an American call option CA(S, v, τ ), we can therefore write

∂CA

∂τ
= 1

2
vS2 ∂2CA

∂S2
+ ρσvS

∂2CA

∂v∂S
+ 1

2
σ 2v

∂2CA

∂v2

− rCA + (r − q)S
∂CA

∂S
+ [κ(θ − v) − λv]

∂CA

∂v

(8.71)



254 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where τ is the time until maturity. The PDE holds for 0 ≤ τ < T, where T is the
maturity calendar time, and for 0 < S ≤ b(v, τ ), where b(v, τ ) is the early exercise
boundary. Essentially, this means that as long as the stock price is within the early
exercise boundary, the American call option behaves like its European counterpart
and the PDE in Equation (8.71) holds.

Building on the work of Tzavalis and Wang (2003), Chiarella and Ziogas (2006)
approximate the early exercise boundary b(v, τ ) with the log-linear function

b(v, τ ) ≈ exp(b0(τ ) + b1(τ )v0). (8.72)

In the following section we explain how b(v, τ ) is estimated, and how the
American call price is obtained.

The American Call Price

To implement the method of Chiarella and Ziogas (2006), we need to intro-
duce an additional time variable t into the characteristic function, by replacing τ

with τ − t, and an additional integration variable ψ . They write the characteristic
function f2 as

f2(φ, ψx0, v0, τ − t) = exp(C2(τ − t, φ, ψ) + D2(τ − t, φ, ψ)v0 + iφx0) (8.73)

where the coefficients are

C2(τ − t, φ, ψ) = (r − q)iφ(τ − t)

+ a
σ 2

[(
b2 − ρσ iφ + d2

)
(τ − t) − 2 ln

(
1 − g2ed2(τ−t)

1 − g2

)]
,

D2(τ − t, φ, ψ) = iψ + b2 − ρσ iφ − σ 2iψ + d2

σ 2

(
1 − ed2(τ−t)

1 − gjed2(τ−t)

)
.

(8.74)

The required quantities are

g2 = b2 − ρσ iφ − σ 2iψ + d2

b2 − ρσ iφ − σ 2iψ − d2

, d2 =
√

(ρσ iφ − b2)2 − σ 2(2u2iφ − φ2). (8.75)

Note that, when t = ψ = 0, the coefficients reduce to those of the original
Heston (1993) model. As before, we have b2 = κ + λ, u2 = − 1

2 , and a = κθ . The
characteristic function f1 is

f1(φ, ψ; x0, v0, τ − t) = exp(−x0 − (r − q)(τ − t)) × f2(φ − i, ψ; x0, v0, τ − t) (8.76)

where x0 = ln S0 the log spot price, and v0 is the initial variance. Obtaining the
European call price C(x0, v0, τ ) is straightforward, by setting ψ = 0 and t = 0 into



American Options 255

the characteristic functions. The calculation is identical to that in the original Heston
(1993) model

C(x0, v0, τ ) = S0e−qτ P1 − Ke−rτ P2 (8.77)

where, for j = 1, 2

Pj = 1
2

+ 1
π

∫ ∞

0
Re

(
e−iφ ln K

iφ
fj

(
φ, 0; x0, v0, τ

))
dφ. (8.78)

Chiarella and Ziogas (2006) show that the early exercise premium V(x0, v0, τ )
on an American call with strike K and maturity is τ is

V(x0, v0, τ ) = 1
2

[S0(1 − e−qτ ) − K(1 − e−rτ )]

+ S0

π
qe−qτ

∫ τ

0

∫ ∞

0
eqtRe

(
exp

(−b0 (t) iφ
)

iφ
f1(φ, −b1(t)φ; x0, v0, τ − t)

)
dφdt

− K
π

re−rτ

∫ τ

0

∫ ∞

0
ertRe

(
exp

(−b0 (t) iφ
)

iφ
f2(φ, −b1(t)φ; x0, v0, τ − t)

)
dφdt.

(8.79)
Finally, the control variate price of an American call is obtained by adding the

early exercise premium to the price of the European call

CA(S0, v0, τ ) = C(x0, v0, τ ) + V(x0, v0, τ ). (8.80)

To evaluate the integral for the European call C(x0, v0, τ ), we can use Gauss-
Laguerre quadrature. To evaluate the double integrals in the early exercise premium
V(x0, v0, τ ), we can use either composite Gauss-Legendre quadrature or the compos-
ite trapezoidal rule. Both of these rules were presented in Chapter 5. As explained in
that chapter, Gauss-Legendre quadrature requires a transformation of the integra-
tion domain from (−1, +1) × (−1, +1) to (0, τ ) × (0, M), where M is a large number
that replaces ∞ in the upper limit of the φ integrals in (8.79).

The Matlab functions CZCharFun.m implements the characteristic functions in
Equations (8.73) and (8.76).

function y = CZCharFun(S0,tau,t,params,K,rf,q,phi,psi,FunNum)
x = log(S0);
a = kappa*theta;
b = kappa + lambda;
d = sqrt((rho*sigma*i*phi - b)^2 + sigma^2*phi*(phi+i));
g = (b - rho*sigma*i*phi - sigma^2*i*psi + d) ...;
% The components of the affine characteristic function.
G = (1-g*exp(d*(tau-t)))/(1-g);
C = (rf-q)*i*phi*(tau-t) + a/sigma^2* ...;
F = (1-exp(d*(tau-t)))/(1-g*exp(d*(tau-t)));



256 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

D = i*psi + (b - rho*sigma*i*phi - sigma^2*i*psi ...;
% The second characteristic function
f2 = exp(C + D*v0 + i*phi*x);
if (FunNum == 2)

y = f2;
else

d = sqrt((rho*sigma*i*(phi-i) - b)^2 + sigma^2*(phi-i)*phi);
...
F2 = exp(C + D*v0 + i*(phi-i)*x);
% The first characteristic function
y = 1/S0 * exp(-(rf-q)*(tau-t)) * F2;

end

The first part of the function calculates the coefficients C2(τ − t, φ, ψ) and
D2(τ − t, φ, ψ), and returns the second characteristic function, f2. The second part
of the function calculates C2(τ − t, φ − i, ψ) and D2(τ − t, φ − i, ψ), and returns the
first characteristic function, f1. The function is identical to that for the characteristic
functions of the Heston (1993) model, except for the additional integration variable
and the fact that τ is replaced by τ − t.

The function CZEuroCall.m calculates the European call price in Equation
(8.77). The first part of the function sets ψ = t = 0 in the characteristic functions, as
required by (8.78), and calculates the European call price exactly as in the original
Heston (1993) model.

function y = CZEuroCall(S0,tau,params,K,rf,q,x,w)
t = 0;
psi = 0;
% Create the integrands
for k=1:length(x);

phi = x(k);
Int1(k) = w(k)*real(exp(-i*phi*log(K))*CZCharFun(...,1) ...;
Int2(k) = w(k)*real(exp(-i*phi*log(K))*CZCharFun(...,2) ...;

end
P1 = 1/2 + (1/pi)*sum(Int1);
P2 = 1/2 + (1/pi)*sum(Int2);
% The call price
y = S0*exp(-q*tau)*P1 - K*exp(-rf*tau)*P2;

The function CZEarlyExercise.m implements the early exercise premium in
Equation (8.79) using either composite Gauss-Legendre quadrature or the composite
trapezoidal rule. The arguments (a, b) represent the integration domain for time, and
(c, d) represent the integration domain for the stock price.

function V = CZEarlyExercise(...,a,b,c,d,DoubleType)
% The integrals
if strcmp(DoubleType,'GLe')

Int1 = DoubleGaussLegendre(...,1);
Int2 = DoubleGaussLegendre(...,2);



American Options 257

elseif strcmp(DoubleType,'Trapz')
ht = (b-a)/Nt;
hs = (d-c)/Nt;
X = zeros(Nt,1);
T = zeros(Nt,1);
for j=1:Nt+1;

T(j) = a + (j-1)*ht;
X(j) = c + (j-1)*hs;

end
Int1 = DoubleTrapezoidal(...,b0,b1,X,T,1);
Int2 = DoubleTrapezoidal(...,b0,b1,X,T,2);

end
% The early exercise premium
V1 = S0*(1-exp(-q*tau))/2 + (1/pi)*S0*q*exp(-q*tau)*Int1;
V2 = K*(1-exp(-rf*tau))/2 + (1/pi)*K*rf*exp(-rf*tau)*Int2;
V = V1 - V2;

The function DoubleGaussLegendre.m calculates the double integrals for the
exercise premium using composite Gauss-Legendre quadrature. The function exploits
the fact that the double integrals in Equation (8.79) are identical in form, except
that the first contains eqt while the second contains ert.

function y = DoubleGaussLegendre(...,a,b,c,d,funNum)
y = 0;
if (funNum == 1)

qr = q;
elseif (funNum == 2)

qr = rf;
end
for t=1:Nt;

time = h1*xt(t) + h2;
for x=1:Ns

phi = k1*xs(x) + k2;
fun = real(exp(-b0*i*phi)*CZCharFun(...,funNum) ...;
y = y + h1*k1*wt(t)*ws(x) * exp(qr*time)*fun;

end
end

The function DoubleTrapezoidal.m calculates the double integrals using the
composite trapezoidal rule. It is similar to that presented in Chapter 5 and is not
presented here.

Finally, the function CZAmerCall.m adds the early exercise premium to the
European call to obtain the American call.

function [Amer Euro] = CZAmerCall(...,b0,b1,a,b,c,d,DoubleType)
Euro = CZEuroCall(S0,tau,params,K,rf,q,xs,ws);
Premium = CZEarlyExercise(...,b0,b1,a,b,c,d,DoubleType);
Amer = Euro + Premium;



258 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The C# code to calculate the American call using the method of Chiarella and
Ziogas (2006) is similar and not presented here.

Estimating the Early Exercise Boundary

The European call in Equation (8.77) requires no new quantities beyond those of the
original Heston (1993) model, but the early exercise premium V(x0, v0, τ ) requires
estimates of the two unknowns b0(τ ) and b1(τ ) in (8.72). Using two distinct values
v0 = v0(τ ) and v1 = v1(τ ) of the variance, along with the boundary condition for
the call at b(v, τ ), Chiarella and Ziogas (2006) obtain the following system of two
equations

CA(b(v0, τ ), v, τ ) = exp(b0(τ ) + b1(τ )v0(τ )) − K

CA(b(v1, τ ), v, τ ) = exp(b0(τ ) + b1(τ )v1(τ )) − K
(8.81)

and suggest an iterative method to solve this system. The method works by dividing
the time interval (0, T) into N subintervals of increasing length τ1, . . . , τN, where
τn = n · dτ , n = 1, . . . , N and dτ = τ/N is the time increment. Denote bn

0 = b0(τn),
bn

1 = b1(τn), vn
0 = v0(τn), and vn

1 = v1(τn). The starting values for b0
0 and b0

1 at time
zero are

b0
0 = max

(
ln

rK
q

, ln K
)

and b0
1 = 0 (8.82)

and the starting values for values for v0
0 and v0

1 are

v0
0 = E[vτ |v0] + σ

κ

√
κθ

2

v0
1 = E[vτ |v0] − σ

κ

√
κθ

2
.

(8.83)

The conditional expectation for the variance was presented in Chapter 2

E[vt|vs] = θ + (vs − θ )e−κ(t−s). (8.84)

At each time step n, the variances vn
0 and vn

1 are updated using Equation (8.83)
with vs = v0, and using t = τ and s = τn in (8.84). This specification ensures that
vn

0 and vn
1 will be distinct, as indicated in Figure 8.5, which reproduces Figure 1 of

Chiarella and Ziogas (2006).
The coefficients bn

0 and bn
1 are updated iteratively, by obtaining a successive set

of coefficients bn
0,k and bn

1,k that are the roots of the non-linear equations g1 and g0

defined as

g1(bn
1,k) = 1

vn
0

{ln[CA(exp(bn
0,k−1 + vn

0bn
1,k), vn

0, τ ) + K] − bn
0,k−1} − bn

0,k−1

g0(bn
0,k) = ln[CA(exp(bn

0,k + vn
1bn

1,k), vn
1, τ ) + K] − vn

1bn
1,k − bn

0,k.

(8.85)



American Options 259

0
0 1 2 3

Maturity

V
ar

ia
nc

e

4 5

0.005

0.01

0.015

0.02

0.025
Upper variance v1(t)
Expected variance E[v(t)]
Lower variance v0(t)

FIGURE 8.5 Sample Values of Variances

The starting values in (8.85) are the values of the coefficients in the previous time
step, so that bn

1,0 = bn−1
1 and bn

0,0 = bn−1
0 . At step k, the quantities bn

0,k−1, vn
0, and τ are

substituted into g1 and Newton’s method is used to find bn
1,k. Then bn

1,k, vn
1, and τ

are substituted into g2 and Newton’s method is used to find bn
0,k. The iterations stop

when both |bn
0,k − bn

0,k−1| < ε0 and |bn
1,k − bn

1,k−1| < ε1, where ε0 and ε1 are tolerance
levels. Chiarella and Ziogas (2006) use ε1 = ε2 = 5 × 10−4, and N = 25 time steps.
The values of bn

0 and bn
1 are the last values of bn

0,k and bn
1,k returned in the iteration.

The values of b0(τ ) and b1(τ ) are the values at the last time step, so that b0(τ ) = bN
0

and b1(τ ) = bN
1 .

The function CZNewton.m uses Newton’s method to find the roots the functions
g1 or g0 defined in (8.85). The derivatives required of Newton’s method are obtained
with central differences.

function b = CZNewton(v0,v1,B0,B1,gNum,...)
params0 = [kappa theta sigma v0 rho lambda];
params1 = [kappa theta sigma v1 rho lambda];
B = mat;
% Newton's method
while (abs(diff) > tol)

if gNum == 1
% First set of functions and derivative
[CallA1 Euro] = CZAmerCall(exp(B0 + b*v0),...,B0,b);



260 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

g0 = (log(CallA1 + K) - B0)/v0 - b;
[CallA1 Euro] = CZAmerCall(exp(B0 + (b+db)*v0),...,B0,b+db);
g = (log(CallA1 + K) - B0)/v0 - (b+db);
[CallA1 Euro] = CZAmerCall(exp(B0 + (b-db)*v0),...,B0,b-db);
g_ = (log(CallA1 + K) - B0)/v0 - (b-db);

else
% Second set of functions and derivatives
[CallA0 Euro] = CZAmerCall(exp(b + B1*v1),...,b,B1);
g0 = (log(CallA0 + K) - v1*B1) - b;
[CallA0 Euro] = CZAmerCall(exp(b+db + B1*v1),...,b+db,B1);
g = (log(CallA0 + K) - v1*B1) - (b+db);
[CallA0 Euro] = CZAmerCall(exp(b-db + B1*v1),...,b-db,B1);
g_ = (log(CallA0 + K) - v1*B1) - (b-db);

end
% The derivative by finite difference
dg = (g - g_)/2/db;
% Newton's method
b_new = b - f0/dg;
diff = b_new - b;
b = b_new;

end

The findB.m function loops through the time steps and applies the iterative
procedure to the functions g1 and g0 at each time step. It returns the vectors bn

0 and
bn

1 for n = 0, · · · , N.

function [b0 b1] = findB(...,a,b,c,d,DoubleType)
% Conditional expected value of variance and time increment
EV = @(Vt,theta,kappa,T,t) (theta + (Vt - theta)* ...;
dtau = tau/Ntau;
for n=2:Ntau

% Maturity
mat = n*dtau;
Evt = EV(v0t,theta,kappa,tau,mat);
v0(n) = Evt + sigma/kappa*sqrt(kappa*theta/2);
v1(n) = Evt - sigma/kappa*sqrt(kappa*theta/2);
% Starting values for Newton's method
b0k_ = b0(n-1);
b1k_ = b1(n-1);
% Set the counter and the initial differences
diff0 = 1.1*tol0;
diff1 = 1.1*tol1;
% Loop through until Newton's method returns bk and bk(-1)
while (diff0>tol0) && (diff1>tol1)

b1k = CZNewton(b1k_,v0(n),v1(n),...,b0k_,b1k_,1);
b0k = CZNewton(b0k_,v0(n),v1(n),...,b0k_,b1k ,0);
b0(n) = b0k;
b1(n) = b1k;
diff0 = abs(b0k_ - b0k);
diff1 = abs(b1k_ - b1k);
b0k_ = b0k;
b1k_ = b1k;

end
end



American Options 261

The C# code is very similar and not presented here. To illustrate, we use the
settings S = K = 100, a maturity of 3 months, r = 0.01, q = 0.12, along with the
parameter values κ = 4, θ = 0.09, σ = 0.1, v0 = 0.04, and ρ = 0. The findB.m
function returns b0(τ ) = 4.7237, b1(τ ) = 0.1674, and the American call price using
these values is 3.6256, which is 0.10 less than the price of 3.7301 produced by the
explicit method covered in this chapter. The Heston (1993) European put price is
3.5058.

CONCLUSION

In this chapter, we have presented several methods to value American options in
the Heston model. The Least-Squares Monte Carlo (LSM) algorithm can be applied
to the model in this regard, and as will be shown in Chapter 12, to the double
Heston model of Christoffersen et al. (2009) as well. The explicit method, which
will be covered in Chapter 10 when we present finite difference methods, can easily
be adapted to handle American options also.

In this chapter, we have reviewed the bivariate tree of Beliaeva and Nal-
walkha (2010). Other multivariate trees for pricing American options in a stochastic
volatility framework are those of Ruckdeschel et al. (2013) and Vellekoop and
Nieuwenhuis (2009), which are designed for the Heston model, and Leisen (2000)
which can handle more general models. Finally, Zhylyevskyy (2010) extends the
Geske and Johnson (1984) approximation to the Heston model. We also reviewed
the approximation of Medvedev and Scaillet (2010), which is able to produce
option prices very quickly, and the method of Chiarella and Ziogas (2006), which
is designed for American calls and borrows from the method of Tzavalis and Wang
(2003). In a recent paper, AitSahlia et al. (2012) adapt the method of Chiarella and
Ziogas (2006) to American puts.

All of the methods presented so far have assumed the Heston parameters to
be static, as in the original formulation of Heston (1993). As shown in Chapter 6,
however, the Heston model with static parameters is sometimes unable to provide
a good fit to the volatility surface at short maturities. A number of researchers
have modified the original Heston (1993) model to allow for parameters to be
time-dependent. This enrichment of the model makes it more flexible and better able
to fit the volatility surface at all maturities. We introduce the Heston model with
time-dependent parameters in the next chapter.



CHAPTER 9
Time-Dependent Heston Models

Abstract

The Heston model is sometimes unable to provide a good fit to short-maturity
market implied volatilities. One common remedy to this problem is to enrich the
model with additional parameters by specifying a more realistic volatility process,
which is the approach of the double Heston model covered in Chapter 12. Another
approach is to allow the parameters to be time-dependent. This latter approach is the
one adopted by Mikhailov and Nögel (2003), Elices (2009), Benhamou, Gobet, and
Miri (2010) and others. In this chapter, we present these time-dependent models.
First, we introduce a generalization of the Riccati equation from Chapter 1 that
allows for non-zero initial conditions. Then we introduce the bivariate characteristic
function, and we show that the generalization of the Riccati equation arises as a
special case. We then present the models with time-dependent parameters and show
how to estimate these parameters using loss functions.

GENERALIZATION OF THE RICCATI EQUATION

Recall from Chapter 1 that the general solution to the Riccati equation for Dj(φ, τ ) is

Dj(φ, τ ) = − 2
σ 2

(
Kjαje

αjτ + βje
βjτ

Kje
αjτ + eβjτ

)
. (9.1)

Recall also that the initial condition Dj(φ, 0) = 0 at expiry τ = 0 produced
Kj = −βj/αj and the solution for Dj given by

Dj(φ, τ ) = bj − ρσ iφ + dj

σ 2

(
1 − edjτ

1 − gje
djτ

)
. (9.2)

This expression uses the quantities

dj =
√

(ρσ iφ − bj)2 − σ 2(2ujiφ − φ2), gj = bj − ρσ iφ + dj

bj − ρσ iφ − dj

= βj

αj

(9.3)

with u1 = 1
2 , u2 = − 1

2 , a = κθ , b1 = κ + λ − ρσ , and b2 = κ + λ.

263The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



264 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Similarly, the general solution for Cj(φ, τ ) was

Cj(φ, τ ) = (r − q)iφτ + a
dj

(
Qj + dj

σ 2

)∫ exp(djτ )

1

(
1 − x

1 − gjx

)
1
x

dx + k1 (9.4)

for a constant k1. The initial condition Cj(φ, 0) = 0 produced k1 = 0 and the solution
for Cj(φ, τ ) given by

Cj(φ, τ ) = (r − q)iφτ + a
σ 2

[(
bj − ρσ iφ + dj

)
τ − 2 ln

(
1 − gje

djτ

1 − gj

)]
. (9.5)

Suppose that instead of the initial conditions Cj(φ, 0) = Dj(φ, 0) = 0, we use the
general non-zero initial conditions

Cj(φ, 0) = C0
j , Dj(φ, 0) = D0

j . (9.6)

This generalization is illustrated by Mikhailov and Nögel (2003) and Elices
(2009). Letting τ = 0 in Equation (9.1), equating the result to the initial condition
D0

j , and solving for Kj produces

K̃j = −
(

2βj + D0
j σ

2

2αj + D0
j σ

2

)
= −

(
bj − ρσ iφ + dj − D0

j σ
2

bj − ρσ iφ − dj − D0
j σ

2

)
. (9.7)

Now define g̃j = −K̃j. Substituting K̃j back into (9.1), it is easy to see that the
solution for Dj when the general, non-zero initial condition in (9.6) holds is

D̃j(φ, τ ) = (bj − ρσ iφ + dj) − (bj − ρσ iφ − dj)g̃je
djτ

σ 2(1 − g̃je
djτ )

. (9.8)

The notation D̃j(φ, τ ) is meant to distinguish it from its time-static counterpart
Dj(φ, τ ). The general condition Cj(φ, 0) = C0

j produces k1 = C0
j and the solution for

Cj(φ, τ ) given by

C̃j(φ, τ ) = (r − q)iφτ + a
σ 2

[(
bj − ρσ iφ + dj

)
τ − 2 ln

(
1 − g̃je

djτ

1 − g̃j

)]
+ C0

j . (9.9)

Note that the solution for C̃j(φ, τ ) is identical to Cj(φ, τ ), except that gj is
replaced by g̃j, and k1 = 0 is replaced by k1 = C0

j . Note also that setting C0
j = D0

j = 0
in Equations (9.8) and (9.9) reduces C̃j(φ, τ ) and D̃j(φ, τ ) to their original Heston
(1993) forms Cj(φ, τ ) and Dj(φ, τ ), respectively.

BIVARIATE CHARACTERISTIC FUNCTION

In Chapter 1, it was shown that the characteristic function of the log asset price
at maturity, xT = ln ST, is of the following form (dropping the j subscripts on fj,



Time-Dependent Heston Models 265

Cj(τ , φ) and Dj(τ , φ) for notational convenience)

f (φ, τ ; xt, vt) = E[exp(iφxT)] = exp(C(τ , φ) + D(τ , φ)vt + iφxt). (9.10)

Recall that the initial conditions C(0, φ) = D(0, φ) = 0 were used to find analytic
expressions for C(τ , φ) and D(τ , φ), based on a Riccati equation and an ordinary
differential equation.

In this section, the bivariate characteristic function of the joint process (xT, vT)
is derived. This function is defined as

f (φ1, φ2; vt, xt) = E[exp(iφ1xT + iφ2vT)]. (9.11)

Duffie, Pan, and Singleton (2000) show that the characteristic function of a wide
class of multivariate affine models (of which the Heston model is a special case)
has a log linear form and can be obtained as the solution of a system of Riccati
equations. Singleton (??) illustrates this with the Heston model, which he shows to
be affine in (xt, vt). The Heston model can be written in terms of two independent
Brownian motions B1,t and B2,t as

dxt = μ(xt)dt + σ(xt)dBt (9.12)

where

μt =
(

r − 1
2 vt

κ
(
θ − vt

)) , σ(xt) =
( √

vt 0

σρ
√

vt σ
√

1 − ρ2√vt

)
, dBt =

(
dB1,t

dB2,t

)
. (9.13)

The drift μ and the matrix σσ T in the Heston model can both be written in the
affine form

μ(xt) = K0 + K1xt + K2vt

σ (xt)σ (xt)
T = H0 + H1xt + H2vt

(9.14)

with

K0 =
(

r
κθ

)
, K1 =

(
0
0

)
, K2 =

(− 1
2−κ

)
,

H0 = H1 =
(

0 0
0 0

)
, H2 =

(
1 ρσ

ρσ σ 2

)
.

The result of Duffie, Pan, and Singleton (2000) is that the characteristic function
has the log-linear form

f
(
φ1, φ2; xt, vt

) = exp
(
A(τ , φ1, φ2) + B(τ , φ1, φ2)xt + C(τ , φ1, φ2)vt

)
(9.15)



266 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where τ = T − t is the time remaining until expiry. Moreover, the coefficients
of the characteristic function can be obtained by solving the system of Riccati
equations

∂A
∂t

= −KT
0 β − 1

2
βTH0β

∂B
∂t

= −KT
1 β − 1

2
βTH1β

∂C
∂t

= −KT
2 β − 1

2
βTH2β

(9.16)

subject to the boundary conditions B(0) = iφ1, C(0) = iφ2, and A(0) = 0, and where
βT = (B, C). After substituting, this produces the set of differential equations

∂A
∂t

= −rB − κθC

∂B
∂t

= 0

∂C
∂t

= −1
2

σ 2C2 − (ρσB − κ)C − 1
2

B2 + 1
2

B.

(9.17)

For the Heston model, it is straightforward to find the equations in (9.17) and
their boundary conditions directly, without using the result of Duffie, Pan, and
Singleton (2000). First, note that, as in the univariate case, at expiry (τ = 0) the
expected value in Equation (9.11) disappears, since (xT, vT) is known. Hence, at
expiry, f (φ1, φ2; x, v) in (9.15) must be equal to

f (φ1, φ2; x, v) = exp(iφ1xT + iφ2vT). (9.18)

This implies the following initial conditions

A(0, φ1, φ2) = 0, B(0, φ1, φ2) = iφ1, C(0, φ1, φ2) = iφ2. (9.19)

Recall from Chapter 1 the partial differential equation (PDE) for the second
characteristic function f2, which we denote simply by f

− ∂f
∂τ

+ ρσv
∂2f

∂v∂x
+ 1

2
v

∂2f
∂x2

+ 1
2

σ 2v
∂2f
∂v2

+
(

r − 1
2

v
)

∂f
∂x

+ κ(θ − v)
∂f
∂v

= 0.
(9.20)

Note that we have substituted for u2 = − 1
2 , a = κθ , and b2 = κ + λ with λ = 0.

The PDE in (9.20) holds for the bivariate characteristic function also. We proceed
exactly as in Chapter 1, by obtaining the derivatives of f (φ1, φ2; x, v) in (9.15) with



Time-Dependent Heston Models 267

respect to x, v, and τ , substituting them into the PDE (9.20), and eliminating f from
both sides of the resulting equation, which produces

−
(

∂A
∂τ

+ ∂B
∂τ

x + ∂C
∂τ

v
)

+ ρσvBC + 1
2

vB2 + 1
2

σ 2vC2

+
(

r − 1
2

v
)

B + κ(θ − v)C = 0.

(9.21)

Grouping terms common to x and common to v, and equating each set of terms
to zero results in the equations

∂A
∂τ

= rB + κθC

∂B
∂τ

= 0

∂C
∂τ

= 1
2

σ 2C2 + (ρσB − κ)C + 1
2

B2 − 1
2

B.

(9.22)

These equations are identical to those given by the result of Duffie, Pan, and
Singleton (2000) in Equation (9.17), except for the sign which has been reversed.
This is because, in (9.22), we are differentiating with respect to the time to maturity
τ = T − t, but, in (9.17), the derivative is with respect to t.

To solve the system of equations in (9.22), first note that the second equation
along with the boundary condition B(0, φ1, φ2) = iφ1 implies that B(τ , φ1, φ2) = iφ1.
After substituting for B, this leaves us with two equations

∂A
∂τ

= riφ1 + κθC

∂C
∂τ

= −1
2

φ1(φ1 + i) − (κ − ρσ iφ1)C + 1
2

σ 2C2.

(9.23)

The second equation in Equation (9.23) is a Riccati equation that can be solved
using the method described in Chapter 1. We can write this equation as

∂C
∂τ

= P2 − Q2C + RC2 (9.24)

where

P2 = −1
2

φ1(φ1 + i), Q2 = κ − ρσ iφ1, R = 1
2

σ 2. (9.25)

The coefficients in (9.25) are exactly those of the Riccati coefficients Pj, Qj,
and Rj for j = 2 described in Chapter 1 that lead to a solution for D2(τ , φ) for
the univariate characteristic function, reproduced in Equation (9.1). Note that, in
the univariate case, the coefficient for vt is denoted D2(τ , φ) in Equation (9.10),
while in the bivariate case the coefficient for vt is denoted C(τ , φ1, φ2) in Equation
(9.15). Recall that, in the bivariate case, the initial condition for the Riccati equation



268 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

is different. Hence, to solve for the vt coefficient in the bivariate characteristic
function, first we set τ = 0 along with C(0, φ1, φ2) = iφ2 in the general solution of
Equation (9.1) to obtain

iφ2 = − 2
σ 2

(
K2α2 + β2

K2 + 1

)
. (9.26)

We then solve for K2

K̃2 = −
(

2β2 + iφ2σ
2

2α2 + iφ2σ
2

)
= −

(
b2 − ρσ iφ1 + d2 − iφ2σ

2

b2 − ρσ iφ1 − d2 − iφ2σ
2

)
. (9.27)

Since α2 and β2 are constructed from the quantities in (9.25), they are functions
of φ1 but not of φ2

α2 = −b2 + ρσ iφ1 + d2

2
, β2 = −b2 + ρσ iφ1 − d2

2
. (9.28)

Note that K̃2 in Equation (9.27) is identical to K̃2 in (9.7) for j = 2, with
D0

2 replaced by iφ2. Defining g̃2 = −K̃2 and substituting in the general solution of
Equation (9.1) produces the solution for C(τ , φ1, φ2), in which we have set λ = 0
in b2

C(τ , φ1, φ2) = (κ − ρσ iφ1 + d2) − (κ − ρσ iφ1 − d2)g̃2ed2τ

σ 2(1 − g̃2ed2τ )
. (9.29)

In this expression, C(τ , φ1, φ2) is identical to D̃(φ, τ ) defined in (9.8) for j = 2,
but again, with D0

j replaced by iφ2.
We obtain A(τ , φ1, φ2) by integrating the first equation in (9.23), and by using

the initial condition A(0, φ1, φ2) = 0, exactly as in Chapter 1

A(τ , φ1, φ2) = (r − q)iφ1τ + κθ

[
Q2 + d2

σ 2

∫ τ

0

1
1 − g̃2ed2y

dy

−Q2 − d2

σ 2

∫ τ

0

g̃2ed2y

1 − g̃2ed2y
dy + k1

]
.

(9.30)

Both integrals in (9.30) can be evaluated by substitution of x = exp(d2y) and
partial fractions, exactly as in Chapter 1. After substituting for the integrals and for
d2 and Q2, and applying the initial condition A(0, φ1, φ2) = 0 to produce k1 = 0 we
end up with the solution for A(τ , φ1, φ2)

A(τ , φ1, φ2) = (r − q)iφ1τ + κθ

σ 2

[(
κ − ρσ iφ1 + d2

)
τ − 2 ln

(
1 − g̃2ed2τ

1 − g̃2

)]
. (9.31)

Finally, we note that A(τ , φ1, φ2) is equivalent to C̃j(φ, τ ) in Equation (9.9), but
with C0

j = 0 and D0
j = iφ2.



Time-Dependent Heston Models 269

LINKING THE BIVARIATE CF AND THE GENERAL
RICCATI EQUATION

The univariate characteristic function for xT in the Heston model is Equation (9.10)

f
(
φ, τ ; xt, vt

) = exp
(
C (τ , φ) + iφxt + D(τ , φ)vt

)
(9.32)

with C(τ , φ) given by (9.5) and D(τ , φ) given by (9.2). The bivariate characteristic
function for (xT, vT), on the other hand, is (9.15)

f
(
φ1, φ2; x, v

) = exp
(
A(τ , φ1, φ2) + iφ1xt + C(τ , φ1, φ2)vt

)
(9.33)

with A(τ , φ1, φ2) given by (9.31) and C(τ , φ1, φ2) given by (9.29). The two charac-
teristic functions are clearly similar in form. We showed in the previous subsection
that the coefficients are different, however. The difference arises from the choice
of initial conditions for the general solution of the Riccati equation presented ear-
lier. To obtain the univariate characteristic function, we set C0

j = 0 and D0
j = 0 in

Equation (9.6), but to obtain the bivariate characteristic function we set C0
j = 0

and D0
j = iφ2.

If we set φ2 = 0 and write φ = φ1 in the bivariate characteristic function (9.11)
we obtain f (φ, 0; x, v) = E[exp(iφxT)], which is the univariate characteristic function
f2(φ; x, v) for xT, and we also obtain D0

j = 0. Hence, when we set φ2 = 0 in the
coefficients of the bivariate characteristic function, we should recover the coefficients
of the univariate characteristic function f2(φ; x, v). In other words, we should
obtain

A(τ , φ, 0) = C2(τ , φ), C(τ , φ, 0) = D2(τ , φ). (9.34)

It is easy to verify that setting φ2 = 0 in Equation (9.27) produces g2 = (Q2 +
d2)/(Q2 − d2), exactly as in Chapter 1, and consequently, that C(τ , φ, 0) in (9.29)
becomes

C(τ , φ, 0) = κ − ρσ iφ + d2

σ 2

(
1 − ed2τ

1 − ged2τ

)
(9.35)

which is exactly D2(τ , φ) from Chapter 1. Furthermore, with g2 = (Q + d2)/
(Q2 − d2), A(τ , φ, 0) in (9.31) becomes C2(τ , φ).

Finally, the coefficients of the bivariate characteristic function can be written
in an equivalent form that is consistent with the ‘‘Little Trap’’ formulation of
Albrecher et al. (2006), as in Kahl (2008). Indeed, by defining c̃2 = 1/g̃2 we can
write C(τ , φ1, φ2) in Equation (9.29) as

C(τ , φ1, φ2) = (κ − ρσ iφ1 − d2) − (κ − ρσ iφ1 + d2)c̃2e−d2τ

σ 2(1 − c̃2e−d2τ )
. (9.36)

This is the definition of Kahl (2008) with c = G(u) from his Equation (2.119),
D(u) in his Equation (2.120) equivalent to d2, and with u1 replacing φ1, and u2



270 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

replacing φ2. Similarly, using (9.31) we can write A(τ , φ1, φ2) as

A(τ , φ1, φ2) = (r − q)iφ1τ + κθ

σ 2

[(
κ − ρσ iφ1 − d2

)
τ − 2 ln

(
1 − c̃2e−d2τ

1 − c̃2

)]
(9.37)

which is Equation (2.118) of Kahl (2008).
The bivariate characteristic function is implemented using the HestonBivari-

ateCF.m Matlab function.

function y = HestonBivariateCF(phi1,phi2,...,trap);
x0 = log(S);
b = lambda + kappa;
d = sqrt((rho*sigma*i*phi1 - b)^2 - sigma^2* ...;
g = (b - rho*sigma*i*phi1 + d - sigma^2*i*phi2) ...;
c = 1/g;
B = i*phi1;
if trap==1

% Little Trap formulation in Kahl (2008)
G = (c*exp(-d*tau)-1)/(c-1);
A = (r-q)*i*phi1*tau + a/sigma^2 ...;
C = ((b - rho*sigma*i*phi1 - d) ...;

elseif trap==0
% Original Heston formulation.
G = (1-g*exp(d*tau))/(1-g);
A = (r-q)*i*phi1*tau + a/sigma^2 ...;
C = ((b - rho*sigma*i*phi1 + d) ...;

end
% The characteristic function.
y = exp(A + B*x0 + C*v0);

This function can be passed to the HestonGaussLaguerre.m function, which
illustrates that the call price can be identically obtained with either the univariate
or bivariate characteristic function. This is accomplished by setting the second
argument to zero in the HestonBivariateCF.m function.

function y = HestonPriceGaussLaguerre(...,CF)
for k=1:length(x);

phi = x(k);
weight = w(k);
if CF==1

% Univariate CF
f2(k) = HestonCF(phi ,kappa,...);
f1(k) = HestonCF(phi-i,kappa,...)/(S*exp((r-q)*T));

elseif CF==2
% Bivariate CF
f2(k) = HestonBivariateCF(phi ,0,kappa,...);
f1(k) = HestonBivariateCF(phi-i,0,kappa,...)/(S*exp((r-q)*T));

end



Time-Dependent Heston Models 271

int2(k) = weight * real(exp(-i*phi*log(K))*f2(k)/i/phi);
int1(k) = weight * real(exp(-i*phi*log(K))*f1(k)/i/phi);

end
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);

MIKHAILOV AND NÖGEL MODEL

This model introduces time dependency in the Heston model by allowing the
parameters in the model to be piecewise constant. The model makes use of the
general Riccati equation defined earlier in this chapter. We denote the coefficients
of the characteristic function by C̃j(φ, τ1;�) and D̃j(φ, τ1;�) to emphasize their
dependence on the parameters � = (κ, θ , σ , v0, ρ).

Suppose we are given the N maturities 0 < T1 < T2 < · · · < TN < ∞. Divide the
time axis [0, TN] into the maturity increments τ1, τ2, . . . , τN, where τk = Tk − Tk−1

for k = 2, . . . , N, and with τ1 = T1. The idea is to obtain expressions for C̃j and
D̃j recursively. In first estimation step, we obtain C̃j(φ, τ1;�) and D̃j(φ, τ1;�) for
the first maturity τ1 using the static initial conditions C0

j = 0 and D0
j = 0, exactly

as in the ordinary Heston model. We then construct the characteristic functions
and the Heston model option prices, and estimate �. This produces the first set of
estimates �1 = (κ (1), θ (1), σ (1), v(1)

0 , ρ(1)) corresponding to the first maturity τ1. In the
subsequent steps, the estimation is modified since we are using general Ck

j �= 0 and
Dk

j �= 0. Hence, in the second estimation step, substitute �1 into the expressions for
C̃j and D̃j to produce the second set of initial conditions C1

j and D1
j . Then construct

C̃j(φ, τ2;�) and D̃j(φ, τ2;�) for the second maturity τ2, construct the characteristic
functions and the Heston model option prices, and produce the parameter estimate
�2 = (κ (2), θ (2), σ (2), v(2)

0 , ρ(2)). We continue in this recursive fashion until the last
maturity, τN. The following steps summarize this recursive method.

Step 1. Use C0
j = D0

j = 0 to form C̃j(φ, τ1;�) and D̃j(φ, τ1;�) as

C̃j(φ, τ1;�) = (r − q)iφτ1 + a
σ 2

[(
bj − ρσ iφ + dj

)
τ1 − 2 ln

(
1 − gje

djτ1

1 − gj

)]

D̃j(φ, τ1;�) = bj − ρσ iφ + dj

σ 2

(
1 − edjτ1

1 − gje
djτ1

)

where dj and gj are from Equation (9.3). Obtain the characteristic functions
fj (j = 1, 2) at time τ1

fj(φ; x, v, �) = exp(C̃j(φ, τ1;�) + D̃j(φ, τ1;�)v0 + iφx)

where x = ln S0, the log spot price. Form the Heston option prices, and
use them or the Heston implied volatilities to obtain �1 = (κ (1), θ (1), σ (1),



272 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

v(1)
0 , ρ(1)), the set of parameter estimates for maturity τ1. In this first step, the

estimation of � is exactly the same as that for the ordinary Heston model,
using the maturity τ1.

Step k ≥ 2. Substitute the parameter estimates �k−1 = (κ (k−1), θ (k−1), σ (k−1),
v(k−1)

0 , ρ(k−1)) from the previous step into the expressions for C̃j and D̃j

to obtain the next initial conditions Ck−1
j = C̃j(φ, τk−1;�k−1) and Dk−1

j =
D̃j(φ, τk−1;�k−1), using Equations (9.9) and (9.8), respectively. Construct
C̃j(φ, τk;�) and D̃j(φ, τk;�) for the maturity τk, again using (9.9) and (9.8)

C̃j(φ, τk;�) = (r − q)iφτk + a
σ 2

[(
bj − ρσ iφ + dj

)
τk − 2 ln

(
1 − g̃je

djτk

1 − g̃j

)]
+ Ck−1

j

D̃j(φ, τk;�) = (bj − ρσ iφ + dj) − (bj − ρσ iφ − dj)g̃j exp(djτk)

σ 2(1 − g̃j exp(djτk))
(9.38)

where g̃j was defined after Equation (9.7)

g̃j =
(

bj − ρσ iφ + dj − Dk−1
j σ 2

bj − ρσ iφ − dj − Dk−1
j σ 2

)
(9.39)

and where dj is defined in (9.3). Use the characteristic function

fj(φ; x, v, �) = exp(C̃j(φ, τk;�) + D̃j(φ, τk;�)v0 + iφx)

to form the integrand for the probabilities P1 and P2, obtain the Heston
prices with maturity τk, and obtain the parameter estimates �k = (κ (k), θ (k),
σ (k), v(k)

0 , ρ(k)).

Final Step. At the final time τN we have the parameter estimates �N =
(κ (N), θ (N), σ (N), v(N)

0 , ρ(N)), which we use to form the characteristic function

fj(φ; x, v, �N) = exp(C̃j(φ, τN;�N) + D̃j(φ, τN;�N)v(N)
0 + iφx). (9.40)

We use this characteristic function to form the integrand for the probabilities P1

and P2, and obtain the Heston prices with maturity τN.
Note that the estimation in Step k ≥ 2 is for the current parameter set � only.

The parameter set from the previous iteration, �k−1, is fixed and used in the initial
conditions Ck−1

j and Dk−1
j . Hence, the initial conditions do not impact the estimation

of � directly. Note, however, that even though the initial conditions are not functions
of the current parameter set �, they are functions of the integration variable φ. For
the purposes of integration, the initial conditions cannot be treated as constants.

Note that D̃j(φ, τk;�) in Equation (9.38) depends on Dk−1
j through g̃j in (9.39).

On the other hand, C̃j(φ, τk;�) in (9.38) also depends on Dk−1
j through g̃j, and

depends on Ck−1
j also.

The Matlab function MNProb.m implements the integrand for the time-
dependent Heston model of Mikhailov and Nögel (2003). The function accepts



Time-Dependent Heston Models 273

as inputs a vector of parameter estimates obtained in the prior time steps, stored in
the matrix param0, with the parameter estimates arranged in rows. The estimates
from the most recent time step are in the top row, and the oldest estimates are in the
bottom row. It also accepts vector of prior maturities (tau0), with the most recent
maturity on top, and the oldest at the bottom. The function returns the integrand
for the probabilities P1 and P2.

function y = MNProb(phi,param,param0,tau,tau0,...)
N = length(tau0);
C = 0;
% Create the past Cj and Dj values for the old maturities
for t=1:N

kappa = param0(t,1);
theta = param0(t,2);
sigma = param0(t,3);
v0 = param0(t,4);
rho = param0(t,5);
T = tau0(t);
if t==1

D0 = 0; C0 = 0;
else

D0 = D; C0 = C;
end
C = Ct(phi,...,C0,D0);
D = Dt(phi,...,C0,D0);

end
% Cj and Dj values for a single maturity
if N==0

D0 = 0; C0 = 0;
else

D0 = D; C0 = C;
end
C = Ct(phi,...,C0,D0);
D = Dt(phi,...,C0,D0);
f = exp(C + D*v0 + i*phi*x);
y = real(exp(-i*phi*log(K))*f/i/phi);

The function makes use of the Matlab functions Ct.m and Dt.m, which construct
C̃j(φ, τk;�) and D̃j(φ, τk;�), respectively, from (9.38).

function C = Ct(phi,...,C0,D0)
d = sqrt((rho*sigma*i*phi - b)^2 - sigma^2* ...;
g = (b - rho*sigma*i*phi + d - D0*sigma^2) ...;
G = (1 - g*exp(d*T))/(1-g);
C = (rf-q)*i*phi*T + kappa*theta/sigma^2 ...;

function D = Dt(phi,...,C0,D0)
d = sqrt((rho*sigma*i*phi - b)^2 - sigma^2* ...;
g = (b - rho*sigma*i*phi + d - D0*sigma^2) ...;
G = (1 - g*exp(d*T))/(1-g);
D = ((b - rho*sigma*i*phi)*(1-g*exp(d*T)) + ...;



274 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Finally, the MNProb.m function is passed to the MNPriceGaussLaguerre.m
function, which uses Gauss-Laguerre integration to obtain the call price.

function y = MNPriceGaussLaguerre(param,param0,tau,tau0,...)
N = length(x)
for k=1:N;

int1(k) = w(k)*HestonProbTD(x(k),...,1);
int2(k) = w(k)*HestonProbTD(x(k),...,2);

end
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);
Call = S*exp(-q*tau)*P1 - K*exp(-rf*tau)*P2;
if strcmp(PutCall,'C')

y = Call;
else

y = Call—S*exp(-q*tau) + K*exp(-rf*tau);
end

The C# code to implement the model is similar to the Matlab code and is not
presented here.

To illustrate, we reproduce Table 1 of Mikhailov and Nögel (2003). They use
S = 1, r = 0 and a maturity of T = 5 years. The parameters θ = v0 = 0.1, σ = 0.2,
ρ = −0.3 are fixed, and κ varies from κ = 1, 2, 4 in the three periods, which we
assume to be equal in length. This is implemented with the following code.

tau = [5/3 5/3 5/3];
param0 = [4 theta sigma v0 rho; ...

2 theta sigma v0 rho];
param = [1 theta sigma v0 rho];
tau0 = [5/3 5/3];
tau = 5/3;
K = [0.5:.25:1.5];
[x w] = GenerateGaussLaguerre(32);
for k=1:length(K)

NM(k) = MNPriceGaussLaguerre(param,param0,tau,tau0,...);
end

The results are presented in the second column of Table 9.1. For comparison,
the result of Mikhailov and Nögel (2003) is presented in the third column. The table
indicates that both sets of prices are in close agreement.

Parameter Estimation

In this section, we use loss functions to estimate the time-dependent parameters
of the Mikhailov and Nögel (2003) model. The Matlab function MNObjFun.m



Time-Dependent Heston Models 275

TABLE 9.1 Replication of Table 1 of Mikhailov and Nögel (2003)

Strike Matlab Price Mikhailov-Nögel Price

0.50 0.5429 0.5430
0.75 0.3852 0.3851
1.00 0.2737 0.2733
1.25 0.1960 0.1954
1.50 0.1420 0.1412

allows for piecewise constant parameters, and also accommodates three types of
loss functions, MSE, RMSE, and the proxy IVMSE of Christoffersen, Heston, and
Jacobs (2009).

function y = MNObjFun(param,param0,tau,tau0,...);
[NK,NT] = size(MktPrice);
for k=1:NK

MPrice(k) = MNPriceGaussLaguerre(param,param0,tau,tau0,...);
switch ObjFun

case 1 % MSE
error(k) = (MPrice(k) - MktPrice(k))^2;

case 2 % RMSE
error(k) = (MPrice(k) - MktPrice(k))^2 / MktPrice(k);

case 3 % CHJ (2009)
Vega(k) = BSV(S,K(k),rf,q,MktIV(k),tau);
error(k) = sqrt((MPrice(k) - MktPrice(k))^2) / Vega(k);

end
end
y = sum(sum(error))/(NT*NK);

The loss function allows for past values of parameters and maturities to be
used as inputs, stored in the matrix param0 and in the vector tau0, respectively. To
initialize time-dependent parameter estimation, we use the MNObjFun.m function
with empty matrices [ ] in the place of param0 and tau0. This produces the first set
of estimates at the first maturity.

ParamTD = fmincon(@(p) MNObjFun(p,[],tau(1),[],MktPrice(:,1),...)...);
oldparam = [];
oldtau = [];

We then loop through the remaining maturities, using the previous maturity’s
parameter estimates as starting values for the next estimation.



276 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

for t=2:NT
oldparam = [oldparam; ParamTD(t-1,:)];
oldtau = [oldtau, tau(t-1)];
start = ParamTD(t-1,:);
ParamTD(t,:) = fmincon(@(p)MNObjFun(p,oldparam,tau(t),oldtau,

MktPrice(:,t),...)...);
end

The time-dependent parameters are stored in the matrix ParamTD, with the
parameters estimates obtained from the shortest maturity in the first row. To obtain
the time-dependent prices for a given strike K, we loop through the maturities, and
construct a matrix of previous parameter values (oldparam) and previous maturities
(oldtau) at each step. The parameter estimates are appended at the bottom of the
ParamTD matrix, so that estimates from the shortest maturity appear in the top
row, and those from the longest maturity in the bottom row. The time-dependent
prices are stored in the matrix PriceTD, again with the top row corresponding
to the shortest maturity. The prices with static parameters are in the matrix
PriceTI.

oldparam = [];
oldtau = [];
for t=1:NT

PriceTI(t) = MNPriceGaussLaguerre(ParamTI,[],T(t),[],...);
if t==1

PriceTD(t) = MNPriceGaussLaguerre(ParamTD(t,:),[],tau(t),[],...);
else

oldparam = [oldparam; ParamTD(t-1,:)];
oldtau = [oldtau, tau(t-1)];
PriceTD(t) = MNPriceGaussLaguerre(ParamTD(t,:),oldparam,

tau(t),...);
end

end

The C# code to implement the estimation is very similar and is not presented
here. One key feature is that we use the ArrayList() function to allow for allocation
of the maturities into a dynamic array.

// Arrays for old maturities and parameters
ArrayList OldTau = new ArrayList ();
for(int mat=1;mat<=NT-1;mat++)
{

OldTau.Add(tau[mat-1]);
tau0 = OldTau.ToArray();

}



Time-Dependent Heston Models 277

TABLE 9.2 Estimates from Mikhailov and Nögel (2003) Model, DIA Data

Maturity
(days) κ θ σ v0 ρ

Estimation
Error

37 1.9946 0.0073 1.2699 0.0423 −0.2733 1.44 × 10−6

72 2.0340 0.2157 1.0430 0.0156 −0.4787
135 1.9857 0.0010 1.1213 0.0486 −0.5022
226 1.9877 0.0194 1.1452 0.0837 −0.5347
All 1.9967 0.0942 1.2056 0.0314 −0.4695 2.02 × 10−5

We illustrate the estimation of time-dependent parameters in the model of
Mikhailov and Nögel (2003) by using puts on the Dow Jones Industrial Average
EFT (DIA) on May 10, 2012. The spot price is S = 129.14, the strikes range from
K = 124 to K = 136 in increments of $1, and there are four maturities. We assess
the estimation error using IVMSE

1
N

√∑
t,k

(IVtk − IV�
tk)2 (9.41)

0.16

125 130

Maturity 37 days

135

0.18

0.2

Static
M-N
Market

0.22

0.16

125 130

Maturity 72 days

135

0.18

0.2

Static
M-N
Market

0.22

0.16

125 130

Maturity 135 days

135

0.18

0.2

Static
M-N
Market

0.22

0.16

125 130

Maturity 226 days

135

0.18

0.2

Static
M-N
Market

0.22

FIGURE 9.1 Implied Volatilities from the Mikhailov and Nögel (2003) Model, DIA Data



278 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where N is the number of quoted implied volatilities used in the estimation, IVtk

is the quoted implied volatility at the k-th strike and t-th maturity, and IV�
tk is the

model implied volatility using the piecewise constant parameter estimates.
The MSE parameter estimates obtained from the time-dependent model, and

those obtained from the static model, are presented in Table 9.2, along with the
estimation error. For each maturity, we fit Heston call prices under both models, and
we obtain implied volatilities from each set of prices. These are plotted in Figure 9.1,
along with the implied volatility quotes. The table and the figure both suggest that
the time-dependent model provides a closer fit to the market volatilities than the
static model, especially at short maturities.

ELICES MODEL

The time-dependent models of Elices (2009) and Mikhailov and Nögel (2003)
both make use of a recursive calculation on the bivariate characteristic function,
presented in Afshani (2010) and Kahl and Lord (2010). In Elices (2009), however,
this calculation is more clearly illustrated. Recall from Equations (9.11) and (9.33)
that the time-t bivariate characteristic function for (xT, vT) is

f (φ1, φ2, τ , xt, vt) = E
[
exp

(
iφ1xT + iφ2vT

) |Ft

]
= exp(A(τ , φ1, φ2) + iφ1xt + C(τ , φ1, φ2)vt)

(9.42)

where τ = T − t is the time to maturity. As before, suppose that we are given the
N maturities 0 < T1 < T2 < · · · < TN < ∞ and that the time axis [0, TN] is divided
into the maturity increments τ1, τ2, . . . , τN, where τk = Tk − Tk−1 for k = 2, . . . , N
and with τ1 = T1. Define xk, vk and Fk to represent xt, vt and Ft, but each evaluated
at Tk. Lord and Kahl (2010) apply the law of iterated expectations by conditioning
on the information set at TN−1 to obtain the characteristic function for xN as

E
[
exp

(
iφ1xN

)] = E
[
E

[
exp

(
iφ1xN

) |FN−1

]]
= E

[
f
(
φ1, 0, τN, xN−1, vN−1

)]
= E

[
exp

(
A

(
τN, φ1, 0

) + iφ1xN−1 + C(τN, φ1, 0)vN−1

)]
= exp(A(τN, φ1, 0))E

[
exp

(
iφ1xN−1 + i

[−iC
(
τN, φ1, 0

)]
vN−1

)]
= exp(A(τN, φ1, 0))E

[
exp

(
iφ1xN−1 + iφN−1

2 vN−1

)]
(9.43)

where φN−1
2 = −iC(τN, φ1, 0). Recognizing that the second argument of the bivariate

characteristic can be written in this form is the trick that makes the recursive
calculation possible. Now apply the law of iterated expectations again to the last
term of the last equation in (9.43), conditioning this time on FN−2. We obtain

E[eiφ1xN ] = exp(A(τN, φ1, 0))E[E[exp(iφ1xN−1 + iφN−1
2 vN−1)|FN−2]]

= exp(A(τN, φ1, 0))E[f (φ1, φN−1
2 , τN−1, xN−2, vN−2)]



Time-Dependent Heston Models 279

= exp(A(τN, φ1, 0) + A(τN−1, φ1, φN−1
2 ))

× E[exp(iφ1xN−2 + C(τN−1, φ1, φN−1
2 )vN−2)]

= exp(A(τN, φ1, 0) + A(τN−1, φ1, φN−1
2 ))E[exp(iφ1xN−2 + iφN−2

2 vN−2)]

where φN−2
2 = −iC(τN−1, φ1, φN−1

2 ). Continuing in this manner, by repeated applica-
tion of the law of iterated expectations and the trick, the characteristic function for
xN = xTN

can be written

f (φ1, x0, v0) = E[exp(iφ1xN)]

= exp

(
N−1∑
k=0

A
(
τN−k, φ1, φN−k

2

))
exp(iφ1x0 + C(τ1, φ1, φ0

2)v0)
(9.44)

with φN−k
2 ≡ −iC(τN−k+1, φ1, φN−k+1

2 ) and φN
2 ≡ 0.

As explained in Chapter 2, we use f (φ, x0, v0) in (9.44) directly for the second
characteristic function, but for the first characteristic function we must use f (φ −
i, x0, v0)/(Se(r−q)TN ).

Elices (2009) estimates v0 at the first maturity, and restricts this parameter
to remain constant throughout the remaining maturities. The other parameters
are piecewise constant and change their value at the maturities. Denote by �k =
(κ (k), θ (k), σ (k), ρ(k)) the parameter set estimated in the time increment (Tk−1, Tk). The
model of Elices (2009) is implemented from the first maturity to the last, using the
following steps.

Step 1. Construct the characteristic function at the first maturity, which depends
on the parameter set �1, as

exp(A(τ1, φ1, 0;�1)) × exp(iφ1x0 + C(τN, φ1, 0;�1)v0)

Obtain the parameter estimates v0 and �1 by minimizing the loss
function using market prices or implied volatilities at the first maturity.

Step 2. Construct the characteristic function at the second maturity, which
depends on the parameter sets �1 and �2, as

exp(A(τ2, φ1, 0;�2) + A(τ1, φ1, φ1
2;�1)) × exp(iφ1x0 + C(τ1, φ1, φ0

2;�1)v0)

where φ1
2 = −iC(τ2, φ1, 0;�2) and φ0

2 = −iC(τ1, φ1, φ1
2;�1). Obtain the

parameter estimates �2 by minimizing the loss function using prices or
volatilities at the second maturity, keeping �1 and v0 fixed.

Step k. Construct the characteristic function at maturity k, which depends on
the parameter sets set �1, �2, . . . , �k, as

exp(A(τk, φ1, 0;�k) + A(τk−1, φ1, φk−1
2 ;�k−1) + · · · + A(τ1, φ1, φ1

2;�1))

× exp(iφ1x0 + C(τ1, φ1, φ0
2;�1)v0)



280 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where
φk

2 = 0

φk−1
2 = −iC(τk, φ1, φk

2;�k)
...

φ1
2 = −iC(τ2, φ1, φ2

2;�2)

φ0
2 = −iC(τ1, φ1, φ1

2;�1).

Obtain the estimates �k by minimizing the loss function using prices or
volatilities at the kth maturity, keeping �1, �2, . . . , �k−1 and v0 fixed.

At the final step, we have the characteristic function in Equation (9.44) at
the last maturity, written here to emphasize its dependence on the parameter sets
�1, �2, . . . , �N

f (φ1, x0, v0) = exp

(
N−1∑
k=0

A
(
τN−k, φ1, φN−k

2 ;�N−k

))
× exp(iφ1x0 + C(τ1, φ1, φ0

2;�1)v0).

(9.45)

The coefficients A(τj, φ1, φj
2;�j) and C(τj, φ1, φj

2;�j) are implemented with the
Matlab functions A.m and C.m, respectively.

function y = A(phi1,phi2,param,tau,r,q,trap)
if trap==1

% Little Trap formulation
G = (c*exp(-d*tau)-1)/(c-1);
AA = (r-q)*i*phi1*tau + a/sigma^2 ...;

elseif trap==0
% Original Heston formulation.
G = (1-g*exp(d*tau))/(1-g);
AA = (r-q)*i*phi1*tau + a/sigma^2 ...);

end
y = AA;

function y = C(phi1,phi2,param,tau,S,trap)
if trap==1

% Little Trap formulation
G = (c*exp(-d*tau)-1)/(c-1);
CC = ((b - rho*sigma*i*phi1 - d) ...;

elseif trap==0
% Original Heston formulation.
G = (1-g*exp(d*tau))/(1-g);
CC = ((b - rho*sigma*i*phi1 + d) ...;

end
y = CC;



Time-Dependent Heston Models 281

These are used in the Matlab function ElicesCF.m, which calculates the char-
acteristic function in Equation (9.45). The parameters for the current maturity are
passed in the vector param, while the parameters of the prior maturities are passed
in the matrix paramfixed. The initial variance parameter estimate is passed as an
argument to the function. The maturity increments are passed in the vector tau, with
the increment for the shortest maturity in the top position of the vector. The first
portion of the function calculates the coefficients φk

2 recursively, going backwards
from the last maturity value φN

2 = 0.

function y = ElicesCF(phi1,param,paramfixed,v0,tau,...)
% Maturity increments
N = length(tau);
% phi2 coefficients vector.
phi2(N) = 0;
if N>=2

phi2(N-1) = -i*C(phi1,phi2(N),param,tau(N),S,trap);
end
if N>=3

for t=N-2:-1:1
phi2(t) = -i*C(phi1,phi2(t+1),paramfixed(t+1,:),tau(t+1),...);

end
end
if N>=2

phi20 = -i*C(phi1,phi2(1),paramfixed(1,:),tau(1),...);
else

phi20 = -i*C(phi1,phi2(1),param,tau(1)...;
end

The next part of the function calculates the coefficients A(τj, φ1, φj
2;�j) and

C(τ1, φ1, φ0
2;�1), and returns the characteristic function.

% A coefficients.
Ah(N) = A(phi1,0,param,tau(N),r,q,trap); % Current params
if N>=2

for t=N-1:-1:1
Ah(t) = A(phi1,phi2(t),paramfixed(t,:),tau(t),r,q,trap);

end
end
% C coefficient
if N>=2

Ch = C(phi1,phi20,paramfixed(1,:),tau(1),...);
else

Ch = C(phi1,phi20,param,tau(1),...);
end
% Characteristic function
y = exp(sum(Ah) + i*phi1*x0 + Ch*v0);



282 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The function ElicesPrice.m uses the characteristic function to produce the Heston
call or put price with time-dependent parameters. The current parameters are in the
vector param, while the fixed parameters from the previous periods are in the matrix
paramfixed.

function y = ElicesPrice(...,param,paramfixed)
Mat = T(end);
% Numerical integration
for k=1:length(x);

phi = x(k);
weight = w(k);
f2(k) = ElicesCF(phi ,param,paramfixed);
f1(k) = ElicesCF(phi-i,param,paramfixed)/(S*exp((r-q)*Mat));
int2(k) = weight * real(exp(-i*phi*log(K))*f2(k)/i/phi);
int1(k) = weight * real(exp(-i*phi*log(K))*f1(k)/i/phi);

end
% Probabilities
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);
% Call and Put price
HestonC = S*exp(-q*Mat)*P1 - K*exp(-r*Mat)*P2;
HestonP = HestonC - S*exp(-q*Mat) + K*exp(-r*Mat);
if strcmp(PutCall,'C')

y = HestonC;
else

y = HestonP;
end

Finally, the function ElicesObjFun.m produces an objective function for loss
function estimation of the time-dependent parameters. Note that, since the estimation
is done for a single maturity, only at each maturity step, the function includes only
a loop for strikes.

function y = ElicesObjFun(param,paramfixed,v0,,MktPrice,MktIV,)
[NK,NT] = size(MktPrice);
% BlackScholes vega
BSV = @(S,K,r,q,v,T) (S*exp(-q*T)*normpdf((log(S/K) + ...;
for k=1:NK

MPrice(k) = ElicesPrice(K(k),param,paramfixed,v0,...);
switch ObjFun

case 1
% MSE
error(k) = (MktPrice(k) - MPrice(k))^2;

case 2
% RMSE
error(k) = (MktPrice(k) - MPrice(k))^2 / MktPrice(k);



Time-Dependent Heston Models 283

case 3
% CHJ (2009)
Vega(k) = BSV(S,K(k),rf,q,MktIV(k),T(end));
error(k) = sqrt((MPrice(k) - MktPrice(k))^2) / Vega(k);

end
end
y = sum(sum(error));

The C# code to implement the Elices (2009) time-dependent model is similar to
the Matlab code and is not presented.

To illustrate piecewise constant parameter estimation in the model of Elices
(2009), we use the same Dow Jones Industrial Average (DJIA) data used to gen-
erate Table 9.2 for the Mikhailov and Nögel (2003) model. This is accomplished
with the following code. The first snippet defines the starting values and choice
of loss function, and obtains the original Heston (1993) static parameter esti-
mates across all maturities, for comparative purposes with the piecewise constant
estimates. Prices and implied volatilities are obtained using these static parameter
estimates. The code also estimates the parameter v0 using the market data at the first
maturity only.

% Static parameter estimates, prices, and implied vol
start = [2 0.1 1.2 0.05 -.5];
e = 1e-3;
lb = [e e e e -.999]; % Lower bound on the estimates
ub = [20 10 10 10 .999]; % Upper bound on the estimates
ObjFun = 1;
% Parameter estimation
ParamTI = fmincon(@(b) HestonObjFun(b,T,MktPrice,...),start,...,lb,ub);
% Prices and implied vol
for t=1:NT

for k=1:NK
PriceTI(k,t) = HestonPriceGaussLaguerre(K(k),T(t),...);
IVTI(k,t) = BisecBSIV(K(k),T(t),PriceTI(k,t),...);

end
end
% Volatility estimated from first maturity only
ParamTemp = fmincon(@(b) HestonObjFun(b,MktPrice(:,1),T(1),...),...);
v0 = ParamTemp(4);

The next portion of the code obtains the piecewise constant estimates, which
are stored in the matrix ParamTD. At each maturity step, the starting values for the
minimization are the parameter estimates from the previous maturity. During the
optimization for the first maturity, the empty array [ ] is passed to the argument in
the ElicesObjFun.m function corresponding to the fixed parameters.



284 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

% Time dependent parameter estimates, prices, and implied vol
% Remove v0 from subsequent parameter estimation.
start(4) = [];
lb(4) = [];
ub(4) = [];
% Elices (2009) model for remaining parameters
ParamTD(1,:) = fmincon(@(b) ElicesObjFun(b,[],tau(1),MktIV(:,1));
start = ParamTD(1,:);
ParamTD(2,:) = fmincon(@(b) ElicesObjFun(b,ParamTD(1,:),

tau(1:2),MktIV(:,2));
start = ParamTD(2,:);
ParamTD(3,:) = fmincon(@(b) ElicesObjFun(b,ParamTD(1:2,:),

tau(1:3),MktIV(:,3));
start = ParamTD(3,:);
ParamTD(4,:) = fmincon(@(b) ElicesObjFun(b,ParamTD(1:3,:),

tau(1:4),MktIV(:,4));

The final portion of the code uses the piecewise constant parameter estimates to
obtain the piecewise constant prices, and implied volatilities extracted from those
prices.

% Prices and implied vol
HParam = [ParamTD(1,1) ParamTD(1,2) ParamTD(1,3) v0 ParamTD(1,4)];
for k=1:NK

PriceTD(k,1) = ElicesPrice(K(k),tau(1), ParamTD(1,:),
[] ,v0);

PriceTD(k,2) = ElicesPrice(K(k),tau(1:2),ParamTD(2,:),
ParamTD(1,:) ,v0);

PriceTD(k,3) = ElicesPrice(K(k),tau(1:3),ParamTD(3,:),
ParamTD(1:2,:),v0);

PriceTD(k,4) = ElicesPrice(K(k),tau(1:4),ParamTD(4,:),
ParamTD(1:3,:),v0);

end
for t=1:NT

for k=1:NK
IVTD(k,t) = BisecBSIV(K(k),T(t),PriceTD(k,t));

end
end

The Elices (2009) piecewise parameter estimates based on the DJIA data and
the MSE loss function are in Table 9.3. The table also includes in the last row the
static parameter estimates of the original Heston (1993) model.

The model and quoted implied volatilities are in Figure 9.2. The time-dependent
model shows a good fit to the data, most notably at the short maturity.



Time-Dependent Heston Models 285

TABLE 9.3 Parameter Estimates From the Elices (2009) Model, DJIA Data

Maturity
(days) κ θ σ v0 ρ

Estimation
Error

37 5.8947 0.0067 1.0246 0.0341 −0.2686 1.14 × 10−6

72 5.3900 0.1736 3.7798 0.0341 −0.6429
135 4.1022 0.1544 5.9139 0.0341 −0.4599
226 3.7900 0.1760 5.8142 0.0341 −0.5475
All 1.8887 0.1065 1.4756 0.0340 −0.4418 1.41 × 10−5

0.16

124 126 128 130 132 134 136

Maturity 37 days

0.18

0.2 Static
Elices
Market

0.22

0.16

124 126 128 130 132 134 136

Maturity 72 days

0.18

0.2 Static
Elices
Market

0.22

0.16

124 126 128 130 132 134 136

Maturity 135 days

0.18

0.2 Static
Elices
Market

0.22

0.16

124 126 128 130 132 134 136

Maturity 226 days

0.18

0.2 Static
Elices
Market

0.22

FIGURE 9.2 Implied Volatilities from the Elices (2009) Model, DIA Data

BENHAMOU-MIRI-GOBET MODEL

Benhamou, Gobet, and Miri (2010) use a volatility of variance expansion similar
to the one employed by Lewis (2000) to derive an expression for the European put
price that is not only very fast but also allows for the parameters θ , σ , and ρ to be
piecewise constant. The remaining two parameters, v0 and κ, are assumed constant.



286 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Denote the time-t log forward price by Xt = ln(Se(r−q)τ ), where τ = T − t is the time
to maturity. Applying Itō’s lemma, the bivariate process for the time-dependent
Heston model of Benhamou et al. (2010) is

dXt = −vt

2
dt + √

vtdW1,t

dvt = κ(θt − vt)dt + σt

√
vtdW2,t

EQ[dW1,tdW2,t] = ρtdt

(9.46)

where v0 is the initial variance. Using a perturbed version of the model and Malliavin
calculus, they show that the put price in the Heston model can be expressed as a sum
of the Black-Scholes put price and a set of correction terms involving derivatives of
the Black-Scholes put. Assuming a constant rate of interest and dividend yield, the
Black-Scholes put price can be expressed in terms of the total variance y = σ 2τ and
the log-spot price x = ln S as1

PBS(x, y) = Ke−rτ(f (x, y)) − Se−qτ(g(x, y)) (9.47)

where

f (x, y) = 1√
y

[−x + ln K − (r − q)T] +
√

y

2
,

g(x, y) = 1√
y

[−x + ln K − (r − q)T] −
√

y

2
.

Note that f = g + √
y and that g = f − √

y. The put price in the model appears
in Theorem 2.2 of Benhamou et al. (2010) as

e−rτ EQ[(K − erτ+XT )+] = PBS(x, ŵT) + a1,T

∂2PBS

∂x∂y
(x, ŵT) + a2,T

∂3PBS

∂x2∂y
(x, ŵT)

+ b0,T

∂2PBS

∂y2
(x, ŵT) + b2,T

∂4PBS

∂x2∂y2
(x, ŵT) (9.48)

where

ŵT =
∫ T

0
v0,tdt (9.49)

and

v0,t = e−κt

(
v0 +

∫ t

0
θsκeκsds

)
. (9.50)

1Benhamou et al. (2010) use a time-varying interest rate and dividend yield, but we assume
these are constant for notational simplicity. The generalization to the time-varying versions is
straightforward.



Time-Dependent Heston Models 287

The coefficients in Equation (9.48) are obtained using the integral operators
defined by Benhamou et al. (2010). The coefficients are defined in their Equation
(2.13) as

a1,T =
∫ T

0
eκtρtσtv0,t

(∫ T

t
e−κudu

)
dt, (9.51)

a2,T =
∫ T

0
eκtρtσtv0,t

(∫ T

t
ρsσs

(∫ T

s
e−κudu

)
ds

)
dt, (9.52)

b0,T =
∫ T

0
e2κtσ 2

t v0,t

(∫ T

t
e−κs

(∫ T

s
e−κudu

)
ds

)
dt, (9.53)

b2,T = a2
1,T

2
. (9.54)

Note that only the parameters θ , σ , and ρ are allowed to vary; κ is assumed
constant, and v0 is an unobserved state variable.

Constant Parameters

If the parameters are assumed constant, then θt = θ , σt = σ , and ρt = ρ. Moving
these parameters outside the integrals and evaluating the integrals in (9.51) through
(9.53) produces the following expressions, which appear in Proposition 2.4 of
Benhamou et al. (2010)

a1,T = ρσe−κT

κ2

[
v0

(−κT + eκT − 1
) + θ

(
κT + eκT (κT − 2) + 2

)]
,

a2,T = ρ2σ 2e−κT

2κ3
[v0

(−κT (κT + 2) + 2eκT − 2
)

+ θ
(
2eκT (κT − 3) + κT (κT + 4) + 6

)
],

b0,T = σ 2e−2κT

4κ3
[v0

(−4eκTκT + 2e2κT − 2
)

+ θ
(
4eκT (κT + 1) + e2κT (2κT − 5) + 1

)
],

b2,T = a2
1,T/2.

(9.55)

Note that under constant parameters we have

v0,t = θ + (v0 − θ )e−kt, ŵT = (v0 − θ )
(

1 − e−κT

κ

)
+ θT (9.56)

so that ŵT reduces to the form we encountered in Chapter 2. To obtain the put price,
substitute the coefficients from Equation (9.55) into (9.48), using the Black-Scholes
derivatives presented at the end of this chapter. The call price is obtained by put-call
parity.

As noted by Benhamou et al. (2010), the put price expansion in Equation
(9.48) under constant parameters is identical to the volatility of variance expansion
of Lewis (2000) covered in Chapter 4. Indeed, it is straightforward to verify that



288 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

a1,T = σ J1(v, T), a2,T = σ 2J4(v, T), and b0,T = σ 2J3(v, T), and that identical put prices
are produced.

The Matlab function BGMApproxPrice.m implements the approximation to the
Heston put in (9.48) assuming constant parameters. To conserve space, parts of the
function have been omitted. The function also returns the price of a call obtained by
put-call parity.

function y = BGMApproxPrice(params,S,K,rf,q,T,trap,PutCall)
g = y^(-1/2) * (-x + log(K) - (rf-q)*T) - (1/2)*sqrt(y);
f = y^(-1/2) * (-x + log(K) - (rf-q)*T) + (1/2)*sqrt(y);
BSPut = K*exp(-rf*T)*normcdf(f) - S*exp(-q*T)*normcdf(g);
a1T = (rho*sigma*ekTm/k^2) * (v0*(-kT+ekT-1) ... ;
a2T = (rho^2*sigma^2*ekTm/2/k^3) * (v0*(-kT*(kT+2)+2*ekT-2) ...;
b0T = (sigma^2*exp(-2*kT)/4/k^3) * (v0*(-4*ekT*kT+ ...;
b2T = a1T^2/2;
dPdxdy = K*exp(-rf*T)*PHIfxy - exp(-q*T)*S ...;
dPdx2dy = K*exp(-rf*T)*PHIfx2y - exp(-q*T)*S ...;
dPdy2 = K*exp(-rf*T)*PHIfy2 - exp(-q*T)*S ...;
dPdx2dy2 = K*exp(-rf*T)*PHIfx2y2 - exp(-q*T)*S ...;
Put = BSPut + a1T*dPdxdy + a2T*dPdx2dy + b0T*dPdy2 + b2T*dPdx2dy2;
if strcmp(PutCall(1),'P')

y = Put;
else

y = Put - K*exp(-rf*T) + S*exp(-q*T);
end

The C# code to implement the model under constant parameters is very similar
and is not presented here.

To illustrate, in Table 9.4 we reproduce the call prices and implied volatilities in
Tables 4 and 3, respectively, of Benhamou et al. (2010).2 Their tables use S = 100,
θ = 0.06, κ = 3, σ = 0.3, and ρ = 0. To conserve space, only the at-the-money
column is presented in Table 9.4. For each maturity the implied volatility and call
price is presented, each obtained using the closed-form Heston model with 32-point
Gauss-Laguerre integration and using the approximation in Equation (9.48).

The entries in Table 9.4 are identical to those obtained by Benhamou et al.
(2010) in their Tables 9.3 and 9.4.

Piecewise Constant Parameters

Suppose that there are N maturities 0 < T1 < T2 < · · · < TN < ∞. Benhamou et al.
(2010) assume that κ and v0 are constant over [0, TN], but that θ , σ , and ρ have the
piecewise constant values θi+1, σi+1 and ρi+1 respectively, over the interval [Ti, Ti+1].
They provide recursive expressions for the price coefficients a1,Ti+1

, a2,Ti+1
and b0,Ti+1

by separating the domain of integration in Equations (9.51) through (9.53) over

2Note that the prices in Tables 3 and 4 of Benhamou et al. (2010) are those of calls, not puts.
We thank Emmanuel Gobet for pointing this out.



Time-Dependent Heston Models 289

TABLE 9.4 ATM Call Prices and Implied Volatility, Closed Form and Approximation

Maturity
Closed Form

Call Price
Approximate

Call Price
Closed Form
Implied Vol

Approximate
Implied Vol

3M 4.23 4.22 21.19 21.19
6M 6.20 6.19 21.99 21.98
1Y 9.12 9.11 22.90 22.89
2Y 13.26 13.26 23.61 23.61
3Y 16.39 16.39 23.89 23.89
5Y 21.26 21.26 24.12 24.12
7Y 25.14 25.14 24.23 24.22
10Y 29.92 29.92 24.30 24.30

(0, Ti) and (Ti, Ti+1). Hence, for a1,Ti+1
we have, from (9.51) and the proof of

proposition 2.5 of Benhamou et al. (2010)

a1,Ti+1
=

∫ Ti+1

0
eκtρtσtv0,t

(∫ Ti+1

t
e−κudu

)
dt

=
∫ Ti

0
eκtρtσtv0,t

(∫ Ti+1

t
e−κudu

)
dt +

∫ Ti+1

Ti

eκtρtσtv0,t

(∫ Ti+1

t
e−κudu

)
dt.

(9.57)

The first term in the second line of (9.57) can be separated into two parts by
breaking up the domain (t, Ti+1) of the inner integral into (t, Ti) and (Ti, Ti+1)∫ Ti

0
eκtρtσtv0,t

(∫ Ti

t
e−κudu

)
dt +

∫ Ti

0
eκtρtσtv0,t

(∫ Ti+1

Ti

e−κudu
)

dt. (9.58)

The first term in (9.58) is a1,Ti
. This implies that we can write a1,Ti+1

as

a1,Ti+1
= a1,Ti

+
∫ Ti

0
eκtρtσtv0,t

(∫ Ti+1

Ti

e−κudu
)

dt

+
∫ Ti+1

Ti

eκtρtσtv0,t

(∫ Ti+1

t
e−κudu

)
dt. (9.59)

Since the parameters are piecewise constant over the intervals (Ti, Ti+1), we need
to break up the integral over the (0, Ti) domain into integrals over domains (Ti, Ti+1).
Hence Equation (9.59) becomes

a1,Ti+1
= a1,Ti

+ ρ1σ1

∫ T1

0
eκtv0,t

(∫ Ti+1

Ti

e−κudu
)

dt

+ ρ2σ2

∫ T2

T1

eκtv0,t

(∫ Ti+1

Ti

e−κudu
)

dt + · · ·

+ ρiσi

∫ Ti

Ti−1

eκtv0,t

(∫ Ti+1

Ti

e−κudu
)

dt

+ ρi+1σi+1

∫ Ti+1

Ti

eκtv0,t

(∫ Ti+1

t
e−κudu

)
dt

(9.60)



290 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

which can be written

a1,Ti+1
= a1,Ti

+
i∑

j=1

ρjσj

∫ Tj

Tj−1

eκtv0,t

(∫ Ti+1

Ti

e−κudu
)

dt

+ ρi+1σi+1

∫ Ti+1

Ti

eκtv0,t

(∫ Ti+1

t
e−κudu

)
dt

(9.61)

where T0 = 0. The other recursive coefficients are obtained in a similar fashion.
From Equation (9.52)

a2,Ti+1
= a2,Ti

+
∫ Ti

0

∫ Ti

t

∫ Ti+1

Ti

+
∫ Ti

0

∫ Ti+1

Ti

∫ Ti+1

s
+

∫ Ti+1

Ti

∫ Ti+1

t

∫ Ti+1

s

= a2,Ti
+

i∑
j=1

(ρjσj)
2

∫ Tj

Tj−1

eκtv0,t

∫ Ti

t

(∫ Ti+1

Ti

e−κudu
)

dsdt

+
i∑

j=1

(ρjσj)
2

∫ Tj

Tj−1

eκtv0,t

∫ Ti+1

Ti

(∫ Ti+1

s
e−κudu

)
dsdt

+ (ρi+1σi+1)2

∫ Ti+1

Ti

eκtv0,t

∫ Ti+1

t

(∫ Ti+1

s
e−κudu

)
dsdt.

(9.62)

In the first line of (9.62), the integrands are suppressed to simplify the equation.
From Equations (9.53) and (9.54)

b0,Ti+1
= b0,Ti

+
∫ Ti

0

∫ Ti

t

∫ Ti+1

Ti

+
∫ Ti

0

∫ Ti+1

Ti

∫ Ti+1

s
+

∫ Ti+1

Ti

∫ Ti+1

t

∫ Ti+1

s

= b0,Ti
+

i∑
j=1

σ 2
j

∫ Tj

Tj−1

e2κtv0,t

∫ Ti

t
e−κs

(∫ Ti+1

Ti

e−κudu
)

dsdt

+
i∑

j=1

σ 2
j

∫ Tj

Tj−1

e2κtv0,t

∫ Ti+1

Ti

e−κs

(∫ Ti+1

s
e−κudu

)
dsdt

+ σ 2
i+1

∫ Ti+1

Ti

e2κtv0,t

∫ Ti+1

t
e−κs

(∫ Ti+1

s
e−κudu

)
dsdt,

b2,Ti+1
= a2

1,Ti+1
/2. (9.63)

In these expressions, we use the following form for v0,t, the piecewise constant
version of Equation (9.50)

v0,t = e−κt

(
v0 + θi+1

∫ t

0
κeκsds

)
= e−κt(v0 − θi+1) + θi+1. (9.64)

Although these integrals can be evaluated by hand, it is convenient to evaluate
them with the symbolic toolbox in Matlab. For a2,Ti+1

, this is accomplished with the
following code.



Time-Dependent Heston Models 291

% Coefficients for a2T(T+1)
% First element in the first sum
f10 = int(exp(kappa*t)*v0t

* int(int(exp(-kappa*u),u,s,Tip1),s,Ti,Tip1),t,0,Tj);
% Remaining elements in the first sum
f11 = int(exp(kappa*t)*v0t

* int(int(exp(-kappa*u),u,s ,Tip1),s,Ti,Tip1),t,Tjm1,Tj);
% First element in the second sum
f20 = int(exp(kappa*t)*v0t

* int(int(exp(-kappa*u),u,Ti,Tip1),s,t,Ti),t,0,Tj);
% Remaining elements in the second sum
f21 = int(exp(kappa*t)*v0t

* int(int(exp(-kappa*u),u,Ti,Tip1),s,t,Ti),t,Tjm1,Tj);
% Final term
f3 = int(exp(kappa*t)*v0t

* int(int(exp(-kappa*u),u,s,Tip1),s,t,Tip1),t,Ti,Tip1);

Once the code is run, the symbolic terms must be changed into Matlab arrays
where applicable, using the search and replace feature in a word processor. For
example, Tj must be changed to T(j), and Tip1 to T(t+1). The code to obtain the
remaining coefficients is similar.

To evaluate the put price under piecewise constant parameters, we first evaluate
a1,T1

, a2,T1
, b0,T1

and b2,T1
using Equations (9.55) with parameters κ, v0, θ1, σ1 and ρ1.

We then evaluate a1,T2
, a2,T2

, b0,T2
and b2,T2

using Equations (9.60) through (9.64)
with parameters κ, v0, θ2, σ2 and ρ2, and θ1, σ1 and ρ1. We continue to apply (9.60)
through (9.64) until we reach the last maturity TN, and we substitute a1,TN

, a2,TN
,

b0,TN
and b2,TN

into (9.48) to obtain the put price.
Recall that the parameters κ and v0 are fixed for all maturities, but θ , σ , and ρ are

allowed to vary. Hence, if there are N maturities, there will be 2 + 3N parameters.
It is convenient to stack the parameters in a vector. We use κ and v0 in the first two
positions, and θj, σj, and ρj (in that order) for the remaining positions. For example,
for three maturities, the vector is

(κ, v0, θ1, σ1, ρ1, θ2, σ2, ρ2, θ3, σ3, ρ3). (9.65)

To implement the price in Matlab, it is convenient to break up the sums in
the expressions for a1,Ti+1

, a2,Ti+1
and b0,Ti+1

into the first term of the sum and the
remaining terms. For example, a1,Ti+1

in Equation (9.61) is written as

a1,Ti+1
= a1,Ti

+ ρ1σ1

∫ T1

0
eκtv0,t

(∫ Ti+1

Ti

e−κudu
)

dt

+
i∑

j=2

ρjσj

∫ Tj

Tj−1

eκtv0,t

(∫ Ti+1

Ti

e−κudu
)

dt

+ ρi+1σi+1

∫ Ti+1

Ti

eκtv0,t

(∫ Ti+1

t
e−κudu

)
dt.

(9.66)



292 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The function BGMApproxPriceTD.m calculates the approximate put value
under piecewise constant maturities. We illustrate the function with the code for
the coefficient a1,Ti+1

in (9.66). The code for the other coefficients is similar. The
beginning of the function stacks the parameters in the order specified by (9.65) and
calculates the first component of the coefficients, corresponding to the first time step.
The first component is the term a1,Ti

in (9.66), obtained using (9.55).

function y = BGMApproxPriceTD(param,T,S,K,rf,q,PutCall)
NT = length(T);
Nparam = 2 + 3*NT;
kappa = param(1);
v0 = param(2);
for i=3:3:Nparam

j = floor(i/3);
theta(j) = param(i);
sigma(j) = param(i+1);
rho(j) = param(i+2);

end
% First set of coefficients
a1T(1) = -rho(1)*sigma(1)*(2*theta(1)*exp(kappa*T(1))+ ...;
a2T(1) = -1/2*rho(1)^2*sigma(1)^2*(kappa^2*v0*T(1)^2+ ...;
b0T(1) = -1/4*sigma(1)^2*(5*theta(1)*exp(kappa*T(1))^2+ ...;
b2T(1) = a1T(1)^2/2;

The second part calculates the remaining portion of the coefficients. The terms
A1 correspond to the integrals in (9.66), in the same order.

% Remaining sets of coefficients
A1 = 0;
if NT>=2

for t=1:NT-1
% Coefficients for a1T(T+1)
for j=1

A1 = A1 + rho(j)*sigma(j)*(-exp(-kappa*T(t))+ ...;
end
for j=2:t

A1 = A1 - rho(j)*sigma(j)*(-exp(-kappa*T(t))+ ...;
end
for j=t+1

A1 = A1 - rho(j)*sigma(j)*(-v0*exp(kappa*T(t+1))...;
end
a1T(t+1) = a1T(t) + A1;

end
end

The third and final part retains the last element of the arrays for the coefficients,
calculates the required derivatives, and calculates the put price in Equation (9.48).
The function returns the call price by put-call parity.



Time-Dependent Heston Models 293

% Coefficients for the expansion are the last ones in the iterations
A1T = a1T(end);
A2T = a2T(end);
B0T = b0T(end);
B2T = b2T(end);
% Integrated variance
wT = (v0-theta(end))*(1-exp(-kappa*T(end)))/kappa + ...;
% Derivatives of Black-Scholes Put
dPdxdy = K*exp(-rf*T(end))*PHIfxy - ...;
dPdx2dy = K*exp(-rf*T(end))*PHIfx2y - ...;
dPdy2 = K*exp(-rf*T(end))*PHIfy2 - ...;
dPdx2dy2 = K*exp(-rf*T(end))*PHIfx2y2 - ...;
% Benhamou, Gobet, Miri expansion
Put = BSPut + A1T*dPdxdy + A2T*dPdx2dy + B0T*dPdy2 + B2T*dPdx2dy2;

The C# code is similar and not presented here.
To illustrate pricing with time-dependent parameters in the model of Benhamou

et al. (2010), we reproduce the at-the-money (K = 100) put prices in their Table 8.
This is done with the following snippets of code. The first snippet constructs the
time-varying parameters across 40 time periods.

% Construct the parameters
for i=1:40;

T(i) = i/4;
theta(i) = 0.04 + (i-1)*0.05/100;
sigma(i) = 0.30 + (i-1)*0.50/100;
rho(i) = -0.20 + (i-1)*0.35/100;

end;

The second snippet constructs the Benhamou et al. (2010) prices, concatenating
the parameter vector with the piecewise constant parameters at each time step.

% BGM (2010) model prices
param = [kappa v0];
for t=1:40;

param = [param theta(t) sigma(t) rho(t)];
ApproxPW(t) = BGMApproxPriceTD(param,T(1:t),...;

end

The next snippet constructs the Mikhailov and Nögel (2003) prices. At the first
time step these are the closed-form prices. In the next time steps, the parameter and
maturity vectors are updated by concatenation. Only time steps corresponding to
the maturities are retained.



294 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

% Mikhailov-Nogel (2003) model prices
for t=1:40;

if t==1
ClosedPW(t) = HestonPriceGaussLaguerre(T(1),theta(1),

sigma(1),...);
else

MNparam0 = [kappa theta(t-1) sigma(t-1) v0 rho(t-1); MNparam0];
tau0 = [tau(t-1) tau0];
MNparam = [kappa theta(t) sigma(t) v0 rho(t)];
ClosedPW(t) = HestonPriceGLTD(MNparam,MNparam0,tau(t),...);

end
end
I = ismember(T,[3/12 6/12 1 2 3 5 7 10]);
ApproxPW = ApproxPW(I);
ClosedPW = ClosedPW(I);

Finally, the last snippet obtains the Heston (1993) closed form prices, using the
averaged parameter values of Benhamou et al. (2010).

% The averaged parameter values. Note: v0(5) has been changed
v0 = [.04 .0397 .0328 .0464 .05624 .2858 .8492 .1454]';
theta = [.04 .0404 .0438 .0402 .0404 .0268 .0059 .0457]';
sigma = [.30 .3012 .3089 .3112 .3210 .3363 .3541 .3998]';
rho = -[.20 .1993 .1972 .1895 .1820 .1652 .1480 .1232]';
% The time-static prices using the averaged parameter values
for t=1:N;

ClosedAvg(t) = HestonPriceGaussLaguerre(T(t), theta(t),...);
end

The prices generated from this code are in Table 9.5. The first column contains
the closed form Heston prices using 32-point Gauss-Laguerre integration and the

TABLE 9.5 Comparison of Put Prices

Maturity
(years)

Heston,
Averaged

Parameters

Mikhailov & Nögel,
Piecewise

Parameters

Benhamou et al.,
Piecewise

Parameters
Benhamou et al.,

True Prices

0.25 3.93 3.93 3.93 3.93
0.5 5.53 5.54 5.54 5.53
1.0 7.84 7.86 7.80 7.85
2.0 11.23 11.24 11.11 11.23
3.0 13.92 13.93 13.78 13.92
5.0 18.35 18.37 18.24 18.37
7.0 22.13 22.16 21.99 22.15

10.0 27.14 27.17 26.77 27.17



Time-Dependent Heston Models 295

averaged parameter values that appear in Table 6 of Benhamou et al. (2010).
The second column contains the prices from the Mikhailov and Nögel (2003)
formulation described earlier in this chapter. The third column contains prices
computed using the model of Benhamou et al. (2010) in Equation (9.47), using the
recursive relationships on the coefficients in (9.60) through (9.64). Finally, the last
column contains the Benhamou et al. 2010 piecewise prices from Table 8 of their
paper. Only the at-the-money (K = 100) results are presented.

Parameter Estimation

To estimate constant (not time-dependent) parameters, we use a loss function that
estimates κ, v0, θ , σ , and ρ across all maturities. This is accomplished using the
HestonObjFun.m function from Chapter 6.

function y = HestonObjFun(...);
for t=1:NT

for k=1:NK
MPrice(k,t) = HestonPriceGaussLaguerre(K(k),T(t),...);
switch ObjFun

case 1
error(k,t) = (MPrice(k,t)-MktPrice(k,t))^2;

case 2
error(k,t) = (MPrice(k,t)-MktPrice(k,t))^2/

MktPrice(k,t);
end

end
end
y = sum(sum(error));

To estimate piecewise constant parameters, we use a loss function that simul-
taneously estimates all these parameters. This is accomplished with the Matlab
function HestonBGMObjFun.m. The only difference between this loss function
and the HestonObjFun.m one described earlier is that the Benhamou et al. (2010)
approximation is used to obtain model prices, rather than the Heston (1993) closed
form.

function y = HestonBGMObjFun(...);
for t=1:NT

for k=1:NK
MPrice(k,t) = BGMApproxPutTD(param,T(1:t),K(k),...);
switch ObjFun

case 1
error(k,t) = (MPrice(k,t)-MktPrice(k,t))^2;

end
end

end
y = sum(sum(error));



296 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

To illustrate, we use the same set of puts on the DJIA index used to generate
the time-dependent parameter estimates of Mikhailov and Nögel (2003) in Table
9.2. To estimate the static parameters, we use the usual HestonObjFun.m objective
function, along with the same starting values to generate Table 9.3.

% Starting values
kappa0 = 2.0;
theta0 = 0.1;
sigma0 = 1.2;
v00 = 0.05;
rho0 = -0.5;
start = [kappa0 theta0 sigma0 v00 rho0];
e = 1e-3;
lb = [e e e e -.999]; % Lower bound on the estimates
ub = [20 10 10 10 .999]; % Upper bound on the estimates
% Static parameter estimates
ParamTI = fmincon(@(p) HestonObjFun(p,..), start,...,lb,ub);

To estimate the piecewise constant parameters, we use the HestonBGMObj-
FunTD.m objective function along with the static parameter estimates as starting
values.

% Starting values
kappa0 = ParamTI(1);
theta0 = ParamTI(2);
sigma0 = ParamTI(3);
v00 = ParamTI(4);
rho0 = ParamTI(5);
start = [kappa0 v00 repmat([theta0 sigma0 rho0],1,length(T))];
% Parameter bounds
lb = [e e repmat([e e -.999],1,length(T))];
ub = [100 2 repmat([10 10 .999],1,length(T))];
% Time dependent parameter estimates
paramTD = fmincon(@(p) HestonBGMObjFun(p,...), start,...,lb,ub);

We then separate the piecewise constant parameters into separate vectors, and
obtain both sets of prices and implied volatilities. The parameter estimates are in
the vector paramTD and stacked in the matrix ParamTD. Parameter estimates for
the shortest maturity are stacked on top, and those for the longest maturity on the
bottom.

% Number of time dependent parameters
Nparam = 2 + 3*length(T);
kappa = paramTD(1);
v0 = paramTD(2);



Time-Dependent Heston Models 297

for i=3:3:Nparam
j = floor(i/3);
theta(j) = paramTD(i);
sigma(j) = paramTD(i+1);
rho(j) = paramTD(i+2);

end
% Static the parameter estimates in a matrix
for t=1:NT

ParamTD(t,:) = [kappa v0 theta(t) sigma(t) rho(t)];
end
% Obtain prices for both sets of parameters
for k=1:NK

for t=1:NT
% Prices using static and piecewise constant params
PriceTI(k,t) = HestonPriceGaussLaguerre(ParamTI,...);
PriceTD(k,t) = BGMApproxPutTD(paramTD,T(1:t),...);
% Implied volatilities
IVTI(k,t) = BisecBSIV(PriceTI(k,t),...);
IVTD(k,t) = BisecBSIV(PriceTD(k,t),...);

end
end

The C# code to implement time-dependent parameter estimation in the model of
Benhamou et al. (2010) is similar and not presented here. One key difference is that
we make use of the List function, which allows us to stack the parameters estimated
from previous maturities. These lists are then converted to arrays and passed to the
BGMApproxPriceTD() function in C#, which returns the call or put price.

List<double> MatList = new List<double>();
List<double> thetaList = new List<double>();
List<double> sigmaList = new List<double>();
List<double> rhoList = new List<double>();
double[] Mat,Theta,Sigma,Rho;
for(int t=0;t<NT;t++) {

// Stack the parameters
MatList.Add(T[t]);
thetaList.Add(theta[t]);
sigmaList.Add(sigma[t]);
rhoList.Add(rho[t]);
// Convert to arrays
Mat = MatList.ToArray();
Theta = thetaList.ToArray();
Sigma = sigmaList.ToArray();
Rho = rhoList.ToArray();
for(int k=0;k<NK;k++) {

ModelPrice[k,t] = BGMApproxPriceTD(opset,K[k],...);
ModelIV[k,t] = BisecBSIV(opset,K[k],T[t],ModelPrice[k,t],...);
Error += Math.Pow(ModelIV[k,t] - MktIV[k,t],2.0);

}
}



298 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 9.6 Piecewise Constant and Static Parameters, DIA Data

Maturity
(days) κ v0 θ σ ρ

Estimation
Error

Time 37 1.7850 0.0341 0.2900 2.2764 −0.1640 2.48 × 10−6

Dependent 72 1.7850 0.0341 0.2579 1.4506 −0.6297
Model 135 1.7850 0.0341 0.2371 1.2833 −0.0452

226 1.7850 0.0341 0.2099 1.1512 −0.3383
Static Model All 1.4601 0.0302 0.1048 0.9967 −0.4529 1.87 × 10−5

The estimates of the piecewise constant and static parameters appear in
Table 9.6. As expected, the static estimates in the last rows of Table 9.2 (which
contains the estimates from the Mikhailov and Nögel (2003) model) and of Table 9.6
are similar, as is the MSE.

The implied volatilities from the static and piecewise constant models are plotted
for each maturity in Figure 9.3, along with the market implied volatilities. As in the
other models with time-dependent parameters, the figure indicates that the piecewise
constant model provides a better fit to the market implied volatilities than the static
model, especially for short maturities.

0.15

0.16

0.17

124 126 128 130 132 134 136

Maturity 37 days

0.18

0.19

0.2

0.21
Static
BGM
Market

0.22

0.15

0.16

0.17

124 126 128 130 132 134 136

Maturity 72 days

0.18

0.19

0.2

0.21
Static
BGM
Market

0.22

0.15

0.16

0.17

124 126 128 130 132 134 136

Maturity 135 days

0.18

0.19

0.2

0.21
Static
BGM
Market

0.22

0.15

0.16

0.17

124 126 128 130 132 134 136

Maturity 226 days

0.18

0.19

0.2

0.21
Static
BGM
Market

0.22

FIGURE 9.3 Implied Volatilities for the Benhamou et al. (2010) Model, DIA Data



Time-Dependent Heston Models 299

BLACK-SCHOLES DERIVATIVES

To obtain the approximated put price of Benhamou et al. (2010) in Equation
(9.48), we need high-order derivatives of the Black-Scholes put. The derivative of the
standard normal density φ(x) = e−x2/2/

√
2π is φx(x) = −xφ(x). It is easy to verify

the derivatives fx = gx = −y−1/2, gy = − 1
2 y−1f and fy = − 1

2 y−1g.
For the derivatives of (f ) and φ(f ) we have (f )x = −φ(f )y−1/2, φ(f )x =

y−1/2fφ(f ), φ(f )y = 1
2 y−1fgφ(f ), (f )xy = 1

2 y−3/2φ(f )(1 − fg), and

(f )x2y = 1
2y2

φ(f )[2f + g − f 2g],

(f )y2 = 1
2y2

φ(f )
(

g + 1
2

f − 1
2

f g2

)
,

(f )y2x2 = 1
2

[(y−2φy − 2y−3φ)(2f + g − f 2g) + y−2φ(2fy + gy − 2fyfg − f 2gy)].

Similarly, for derivatives involving (g) and φ(g), we have (g)x = −φ(g)y−1/2,
(g)y = − 1

2 fφ(g)y−1, φ(g)x = y−1/2gφ(g), φ(g)y = 1
2 y−1fgφ(g), (g)xy = 1

2 y−3/2φ(g)
(1 − fg), and

(g)x2y = 1
2y2

φ(g)[2g + f − f g2],

(g)y2 = 1
2

y−2φ(g)
(

f + 1
2

g − 1
2

f 2g
)

,

(g)xy2 = 1
4y2

[φ(g)x(2f + g − f 2g) + φ(g)(2fx + gx − fxgf − f 2gx)],

(g)y2x2 = 1
2

[(
y−2φy − 2y−3φ

)
(2g + f − f g2) + y−2φ(2gy + fy − 2fggy − g2fy)

]
.

The required derivatives of the Black-Scholes put are, therefore,

∂2PBS

∂x∂y
= Ke−rτ(f )xy − e−qτ ex[(g)y + (g)xy],

∂3PBS

∂x2∂y
= Ke−rτ(f )x2y − e−qτ ex[(g)y + 2(g)xy + (g)x2y],

∂2PBS

∂y2
= Ke−rτ(f )yy − e−qτ ex(g)yy,

∂4PBS

∂x2∂y2
= Ke−rτ(f )x2y2

− e−qτ ex[(g)y + 2(g)xy + (g)x2y + (g)yy + 2(g)xy2 + (g)x2y2 ].



300 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

CONCLUSION

In this chapter, we have shown that the univariate characteristic function for xT

and the bivariate characteristic function for (xT, vT) are identical in form except for
the coefficients in each function. What differentiates the coefficients is solely the
initial condition for the Riccati equation that is solved to obtain them. We have
also shown that the univariate characteristic function is a special of the bivariate
characteristic function that arises by setting the argument for vT to zero. Next,
we have presented the time-dependent parameter models of Mikhailov and Nögel
(2003) and Elices (2009). Both of these models rely on a recursive relation on the
bivariate characteristic function illustrated by Kahl and Lord (2010). Finally, we
have presented the model of Benhamou et al. (2010), which relies on an analytic
expansion to obtain prices under time-dependent parameters. As such, it produces
option prices much faster than either of the other two time-dependent models
covered in this chapter. All the models with time-dependent parameters that we
have examined, however, provide a better fit to quoted implied volatilities than the
models with constant parameters covered up to now.

In Chapter 8, we introduced the explicit method and we explained that it is an
example of methods that approximate the Heston partial differential equation (PDE)
with finite differences. We also saw in that chapter that these methods produce a
set of option prices along a two-dimensional grid of stock prices and volatility,
and not solely for a single value of stock price and volatility. The literature on
finite difference methods in option pricing is rich and varied, and we present several
popular methods in the next chapter.



CHAPTER 10
Methods for Finite Differences

Abstract

In this chapter, we present methods to obtain the European call price by solving
the Heston PDE along a two-dimensional grid representing the stock price and
the volatility. We first show how to construct uniform and non-uniform grids
for the discretization of the stock price and the volatility, and present formulas
for finite difference approximations to the derivatives in the Heston PDE. We
then present the weighted method, a popular method which includes the implicit
scheme, explicit scheme, and Crank-Nicolson scheme as special cases. We
encountered the explicit scheme briefly in Chapter 8, when we applied this method
to the pricing of American options. Next, we explain the boundary conditions of
the PDE for a European call. Finally, we present the Alternating Direction Implicit
(ADI) method, which produces accurate results with very few time points.

The methods can easily be modified to allow for the pricing of European puts,
which requires a reformulation of the boundary conditions. In many cases, however,
it is simpler to use put-call parity to obtain the put price.

THE PDE IN TERMS OF AN OPERATOR

Recall from Chapter 1 the Heston PDE for the value U(S, v, t) of an option on a
dividend-paying stock, with λ = 0, when the spot price is S and the volatility is v,
and when the maturity is t

∂U
∂t

= 1
2

vS2 ∂2U
∂S2

+ ρσvS
∂2U
∂v∂S

+ 1
2

σ 2v
∂2U
∂v2

− rU + (r − q)S
∂U
∂S

+ κ(θ − v)
∂U
∂v

.

(10.1)

Recall also that, since we are using t to represents maturity, the sign of the
derivative ∂U/∂t is the opposite of what it would be if t represented time. Using
U(t) = U(S, v, t) as compact notation we can express the PDE as

∂U
∂t

= LU(t) (10.2)

301The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



302 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where the operator L is defined as

L = 1
2

vS2 ∂2

∂S2
+ 1

2
σ 2v

∂2

∂v2
+ ρσvS

∂2

∂v∂S

+ (r − q)S
∂

∂S
+ κ(θ − v)

∂

∂v
− r.

(10.3)

Finite difference methods are techniques to find a numerical approximation to
the PDE. To implement finite differences, we first need a discretization grid for the
two state variables (the stock price and the variance), and a discretization grid for
the maturity. These grids can have equally or unequally spaced increments. Second,
we need discrete approximations to the continuous derivatives that appear in the
PDE. Finally, we need a finite difference methodology to solve the PDE.

BUILDING GRIDS

Uniform grids are those that have equally spaced increments for the two state
variables. These grids have two advantages: first, they are easy to construct, and
second, since the increments are equal, the finite difference approximations to
the derivatives in the PDE take on a simple form. Non-uniform grids are more
complicated to construct, and the finite difference approximations to the deriva-
tives are more complicated. These grids, however, can be made finer around
certain points, in particular, around the region (S, v) = (K, 0) where option prices
are often required. Hence, non-uniform grids are often preferable since they pro-
duce more accurate prices with fewer grid points, and consequently, with less
computation time.

We denote the maximum values of S, v, and t as Smax, vmax and tmax = τ

(the maturity), and the minimum values as Smin, vmin, and tmin = 0. We denote by
Un

i, j = U(Si, vj, tn) the value of a European call at time tn when the stock price is Si

and the volatility is vj. We use NS + 1 points for the stock price, NV + 1 points for
the volatility, and NT + 1 points for the maturity. For convenience, sometimes we
write simply U(Si, vj) for Un

i, j.
Using the minimum values Smin = vmin = 0 a uniform grid for (S, v, t) can be

constructed as

Si = i × ds, i = 0, 1, . . . , NS

vj = j × dv, j = 0, 1, . . . , NV (10.4)

tn = n × dt, n = 0, 1, . . . , NT

where the increments are ds = (Smax − Smin)/NS, dv = (vmax − vmin)/NV , and dt =
(tmax − tmin)/NT. The maximum values are therefore Smax = NSds and vmax = NVdv.

Building on the work of Clarke and Parrott (1999) and Kluge (2002), In’T Hout
and Foulon (2010) describe a non-uniform grid that is finer around the strike price



Methods for Finite Differences 303

K and around the spot volatility v0 = 0. Their grid of size NS + 1 for the stock
price is

Si = K + c sinh(ξi), i = 0, 1, . . . , NS

where they select c = K/5, and where

ξi = sinh−1(−K/c) + i
ξ

with


ξ = 1
NS

[
sinh−1

(
Smax − K

c

)
− sinh−1

(
−K

c

)]
.

The grid of size NV + 1 for the volatility is

vj = d sinh(j
η), j = 0, 1, . . . , NV

with


η = 1
NV

sinh−1
(

Vmax

d

)
.

In’T Hout and Foulon (2010) use d = Vmax/500, and a uniform grid for t.
Figure 10.1 illustrates a non-uniform grid using their settings, along with NS = 70,
NV = 50 and K = 10. The grid for the stock price is represented by blue lines, and
the volatility by red lines. Note that in the stock price dimension the grid is finest
around the strike price, while in the volatility dimension the grid becomes finer as
we progress towards zero.

FINITE DIFFERENCE APPROXIMATION OF DERIVATIVES

Recall that we use the notation Un
i, j, U(Si, vj, tn), or U(Si, vj) to represent the value of

a European call at time tn when the stock price is Si and the volatility is vj. The finite
difference approximations to the derivatives are simple when the grids are uniform.
The generalization to non-uniform grids is straightforward, but the approximations
are a little more complicated. Whenever possible throughout this book, we use
central difference approximations to the first- and second-order derivatives in the
S and v directions in the PDE for Un

i, j in Equation (10.1). In general, first- and
second-order derivatives of Un

i, j at a point (Si, vj) on the grid can be written in terms
of sums of values of U at points adjacent to (Si, vj).

In the following paragraphs, we express the central difference approximation to
the derivatives assuming a non-uniform grid. The approximations under a uniform
grid arise as a special case and reduce the expressions to much simpler forms. In the
remainder of this section, we treat the approximations for the interior and boundary
points of the PDE separately.



304 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

5

10

15

20

25

FIGURE 10.1 Non Uniform Grid

Interior points lie on the interior of the grid, so they are off the boundary. The
first-order derivatives approximated with central differences for an interior point
(Si, vj) are

∂U
∂S

(Si, vj) = Un
i+1, j − Un

i−1, j

Si+1 − Si−1

,
∂U
∂v

(Si, vj) = Un
i, j+1 − Un

i, j−1

vj+1 − vj−1

. (10.5)

When uniform grids are used, the denominators are replaced by 2ds and 2dv,
respectively. The central differences for second-order derivatives are in Table 4.1 of
Kluge (2002) and also in In’T Hout and Foulon (2010). These are

∂2U
∂S2

(Si, vj) = Un
i−1, j

(Si − Si−1)(Si+1 − Si−1)
− 2Un

i, j

(Si − Si−1)(Si+1 − Si)

+ Un
i+1, j

(Si+1 − Si)(Si+1 − Si−1)



Methods for Finite Differences 305

and

∂2U
∂v2

(Si, vj) = Un
i, j−1

(vj − vj−1)(vj+1 − vj−1)
− 2Un

i, j

(vj − vj−1)(vj+1 − vj)

+ Un
i, j+1

(vj+1 − vj)(vj+1 − vj−1)
.

When uniform grids are used, the denominators are replaced by (ds)2 and (dv)2,
respectively, and the resulting expressions are much simpler. Finally, the mixed
derivative of an interior point appears in Table 4.4 of Kluge (2002) as

∂2U
∂S∂v

(Si, vj) = a−1,−1Un
i−1, j−1 + a−1,0Un

i−1, j + a−1,1Un
i−1, j+1

+ a0,−1Un
i, j−1 + a0,0Un

i, j + a0,1Un
i, j+1 (10.6)

+ a1,−1Un
i+1, j−1 + a1,0Un

i+1, j + a1,1Un
i+1, j+1

where the coefficients are

a−1,1 = 
si+1


si(
si + 
si+1)
× 
vj+1


vj(
vj + 
vj+1)
,

a−1,0 = −
si+1


si(
si + 
si+1)
× 
vj+1 − 
vj


vj
vj+1

,

a1,0 = −
si+1


si(
si + 
si+1)
× 
vj


vj+1(
vj + 
vj+1)
,

a0,−1 = 
si+1 − 
si


si
si+1

× −
vj+1


vj(
vj + 
vj+1)
,

a0,0 = 
si+1 − 
si


si
si+1

× 
vj+1 − 
vj


vj
vj+1

,

a0,1 = 
si+1 − 
si


si
si+1

× 
vj


vj+1(
vj + 
vj+1)
,

a1,−1 = 
si


si(
si + 
si+1)
× −
vj+1


vj(
vj + 
vj+1)
,

a1,0 = 
si


si+1(
si + 
si+1)
× 
vj+1 − 
vj


vj
vj+1

,

a1,1 = 
si


si+1(
si + 
si+1)
× 
vj


vj+1(
vj + 
vj+1)
.



306 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

In these coefficients, the increments are 
si = Si − Si−1 and 
vj = vj − vj−1.
These simpler expressions for the second-order derivatives also work but are not as
accurate

∂2U
∂S2

(Si, vj) =
(

Un
i+1, j − Un

i, j

Si+1 − Si

− Un
i, j − Un

i−1, j

Si − Si−1

)
1

Si+1 − Si

,

∂2U
∂v2

(Si, vj) =
(

Un
i, j+1 − Un

i, j

vj+1 − vj

− Un
i, j − Un

i, j−1

vj − vj−1

)
1

vj+1 − vj

,

∂2U
∂S∂v

(Si, vj) =
(

Un
i+1, j+1 − Un

i−1, j+1 − Un
i+1, j−1 + Un

i−1, j−1(
Si+1 − Si−1

)
(vj+1 − vj−1)

)
.

When the grid is uniform, the mixed derivative in Equation (10.6) reduces to
the much simpler form

∂2U
∂S∂v

(Si, vj) = Un
i+1, j+1 + Un

i−1, j−1 − Un
i−1, j+1 − Un

i+1, j−1

4 ds dv
. (10.7)

Regardless of whether a uniform or non-uniform grid is used, all derivatives at
the point (Si, vj) can be expressed in terms of sums involving U evaluated at points
adjacent to (Si, vj), and their coefficients, as∑

k,l

ak,lU
n
i+k, j+l.

See Kluge (2002) or Burden and Faires (2010) for details. On the boundary
points of the PDE, which are defined later in this chapter, we need to use approx-
imations which do not involve points off the grid. Hence, we can use forward or
backward differences. For the first-order S-derivative, for example, the differences
are, respectively

∂U
∂S

(Si, vj) = Un
i+1, j − Un

i, j

Si+1 − Si

,
∂U
∂S

(Si, vj) = Un
i, j − Un

i, j−1

Si − Si−1

. (10.8)

The textbook by Duffy (2006) is also an excellent reference for finite difference
approximations to PDEs in the context of option pricing.

THE WEIGHTED METHOD

This is a general method that incorporates other finite difference schemes as special
cases. Recall that Un

i, j denotes the value of the European call at the grid points
(Si, vj) and at maturity tn. Since the two-dimensional grid for (S, v) is of size
N = (NS + 1)(NV + 1), at each tn there are N possible values for Un

i, j, as indicated in
Figure 10.2.

To apply the weighted method, we must construct a vector Un of size N
with these values, arranged in any way we like. We choose to stack the NV



Methods for Finite Differences 307

S0 Un
0,0

v0 v1

v-direction

S
-d

ire
ct

io
n

vNv

Un
1,0

Un
Ns,0

S1

SNs

... ...

Un
0,1

Un
1,1

Un
Ns,1

...

Un
0,Nv

Un
1,Nv

Un
Ns,Nv

...

...

...

...

...

...

FIGURE 10.2 Value of the European Call Along the
Stock Price and Variance Grids

column vectors u0, u1, u2, . . . ,uNV
in Figure 10.2 on top of one another, so that

Un = (uT
0 , uT

1 , . . . , uT
NV

)T is our vector. The entries of Un therefore correspond to the
following (Si, vj) points

(S0, v0), (S1, v0), . . . , (SNS, v0)︸ ︷︷ ︸
Values of S for v0

, (S0, v1), (S1, v1), . . . , (SNS, v1)︸ ︷︷ ︸
Values of S for v1

, . . . ,

(S0, vNV−1), (S1, vNV−1), . . . , (SNS, vNV−1)︸ ︷︷ ︸
Values of S for vNV−1

, (S0, vNV), (S1, vNV), . . . , (SNS, vNV)︸ ︷︷ ︸
Values of S for vNV

. (10.9)

The weighted method, also called the θ -method, is defined via the relationship

Un+1 − Un

dt
= L(θUn+1 + (1 − θ )Un) (10.10)

where L is a sparse matrix of dimension N × N. This matrix is based on the operator
defined in Equation (10.3). The initial condition U0 is known, since it represents the
value of the call at expiry. Hence, we can work from expiry, starting with the initial
value U0, and we use L to obtain U1, U2, and so forth, until we reach UNT . This is
done by solving, at each time, the system

(I − θdtL)Un+1 = (I + (1 − θ )dtL)Un (10.11)

where I is the identity matrix of size N. The system can be solved by taking the
inverse of the matrix on the left-hand side, so that

Un+1 = (I − θdtL)−1(I + (1 − θ )dtL)Un. (10.12)

Several algorithms have been proposed that exploit the sparse nature of L to
speed up the inversion. We refer readers to Duffy (2006).

The vector U0 depends on the option being priced. For a call option, it will
contain S − K in the components of U that correspond to S > K, and zero in the



308 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

components that correspond to S < K. The order in which these appear in the vector
will depend on how the components of U are arranged.

A number of finite difference schemes arise as a special case of Equation (10.11),
depending on the value of θ . Setting θ = 0 produces the explicit scheme, θ = 1

2
produces the Crank-Nicolson scheme, and θ = 1 produces the implicit scheme. See
Kluge (2002) for details of a general derivation of the weighted method, and a
discussion of the numerical difficulties that can arise when N is large. The explicit
Euler scheme is the simplest to deal with numerically, because when we set θ = 0 in
(10.12) we no longer need to invert a matrix.

The L matrix is a square matrix of dimension N = (NS + 1)(NV + 1), with rows
and columns that depend on how the vector Un is constructed. Since we have
constructed Un by stacking the NV column vectors u0, u1, . . . , uNV

from Figure 10.2
on top of one another, the row and columns of L correspond to the entries of the
vector Un in (10.9).

We modify the matrix L for the operator L in Equation (10.3) by separating
∂/∂v in L into two components

L = 1
2

vS2 ∂2

∂S2
+ 1

2
σ 2v

∂2

∂v2
+ ρσvS

∂2

∂v∂S

+ (r − q)S
∂

∂S
+ κθ

∂

∂v
− κv

∂

∂v
− r.

(10.13)

It is preferable to construct the sub-matrices of L (namely, the sub-matrices
for the first- and second-order derivatives) without the Heston parameters, and
add the parameters later when we construct L from its sub-matrices. In this way,
we can construct the sub-matrices once, and then obtain L for any values of the
Heston parameters we desire. Note that, to separate the Heston parameters from
the construction of the sub-matrices, two separate matrices are required for ∂/∂v, as
indicated in (10.13).

To summarize, we construct the following sub-matrices

LSS for vS2 ∂2

∂S2
, Lvv for v

∂2

∂v2
, LvS for vS

∂2

∂v∂S

LS for S
∂

∂S
, Lv1 for

∂

∂v
, Lv2 for v

∂

∂v
, and I for r.

Coding the sub-matrices of L in a programming language is tricky, since some
values adjacent to a point (Si, vj) on the grid in Figure 10.2 will no longer be adjacent
in the v-direction when we arrange the grid into the vector Un, although they will
still be adjacent in the S-direction. Hence, we lose the convenient indexing of having
Un

i, j represented in a two-dimensional grid.
To illustrate how these sub-matrices are constructed with finite differences,

suppose we are at the point (Si, vj) on the stock price/volatility grid, and suppose
that this point corresponds to cell (r, c) in the L matrix. We use the sub-matrices LS



Methods for Finite Differences 309

and Lv2 in the illustration. When a uniform grid is used the central difference for the
S-derivative is

∂U
∂S

(Si, vj) = U(Si+1, vj) − U(Si−1, vj)

2ds
.

From Equation (10.9), the points (Si−1, vj) and (Si+1, vj) in Un lie immediately
below and above the point (Si, vj), respectively, as indicated in (10.14).

(10.14)

Since the point Un
i, j itself is not used in the central difference approximation to

the S-derivative, the entries of LS are simply

LSS(r − 1, c) = − 1
2ds

× Si

LSS(r, c) = 0 (10.15)

LSS(r + 1, c) = 1
2ds

× Si.

Since the sub-matrix LS is for the operation (∂/∂S) × S evaluated at the point
(Si, vj), the terms involving 2ds are for differentiation and the terms Si are for S.
When a non-uniform grid is used then 2ds in the denominators in Equation (10.15)
are replaced with (Si+1 − Si−1). The central difference for the v-derivative is more
complicated to deal with. It is given by

∂U
∂v

(Si, vj) = U(Si, vj+1) − U(Si, vj−1)

2dv
.



310 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The points (Si, vj−1) and (Si, vj+1) in Un lie NV + 1 positions below and above
(Si, vj) respectively, as indicated in Equation (10.16)

(10.16)

The entries of Lv2 are therefore

Lv2(r − Ns − 1, c) = −1
2dv

× vj

Lv2(r, c) = 0 (10.17)

Lv2(r + NS + 1, c) = 1
2dv

× vj.

When a non-uniform grid is used then 2dv in the denominators of (10.17) are
replaced with (vj+1 − vj−1).

The Matlab function BuildDerivatives.m is a lengthy program that creates the
sub-matrices of L. It requires three grids as inputs: for the stock price, volatility, and
maturity. It assumes that these are built using uniform grids. To conserve space we
present the most important parts only.

The first section identifies the elements of U that correspond to boundary points
for S and v.

function [derS ... derSV R] = BuildDerivatives(S,V,T)
N = NS*NV;
Si = repmat(S',NV,1);
Vi = reshape(kron(V,ones(NS,1)),N,1);



Methods for Finite Differences 311

VminB = zeros(N,1); VmaxB = zeros(N,1);
SminB = zeros(N,1); SmaxB = zeros(N,1);
VminB(1:NS-1) = 1;
VmaxB(N-NS+2:N) = 1;
for i=NS+1:N

if mod(i,NS)==0 & (i∼=N)
SmaxB(i) = 1;

end
if mod(i,NS)==1 & (i∼=1)

SminB(i) = 1;
end

end

The second section identifies non-boundary points, and identifies which elements
of U receive forward, backward, or central differences.

NB = zeros(N,1);
for b=2:NV-1

for k=b*NS-(NS-2):b*NS-1;
NB(k) = 1;

end
end
NB(NS) = 1;
Cs = zeros(N,1); % Central differences
Fs = zeros(N,1); % Forward differences
Bs = zeros(N,1); % Backward differences
for b=2:NV-1

for k=b*NS-(NS-3):b*NS-2;
Cs(k) = 1;

end
end
Fs((2:NV-1)*NS-(NS-2)) = 1;
Bs((2:NV-1)*NS-1) = 1;
Cv = zeros(N,1); % Central differences
Fv = zeros(N,1); % Forward differences
Bv = zeros(N,1); % Backward differences
for b=3:NV-2

for k=b*NS-(NS-2):b*NS-1;
Cv(k) = 1;

end
end
Fv(2*NS-(NS-2):2*NS-1) = 1;
Bv((NV-1)*NS-(NS-2):(NV-1)*NS-1) = 1;
Csv = zeros(N,1);
for b=2:NV-1

for k=b*NS-(NS-2):b*NS-1
Csv(k) = 1;

end
end



312 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The final section loops through the identified points, and attributes the coef-
ficients for central, forward, or backward differences to each of the first- and
second-order matrices. To conserve space, only the central differences of the interior
points are shown.

I = find(Cs==1);
for k=1:length(I)

% Create the matrix for S-derivatives
derS(I(k),I(k)-1) = -1/2/ds * Si(I(k));
derS(I(k),I(k)) = 0;
derS(I(k),I(k)+1) = 1/2/ds * Si(I(k));
derSS(I(k),I(k)-1) = 1/ds^2 * Vi(I(k))*Si(I(k))^2;
derSS(I(k),I(k)) = -2/ds^2 * Vi(I(k))*Si(I(k))^2;
derSS(I(k),I(k)+1) = 1/ds^2 * Vi(I(k))*Si(I(k))^2;

end
I = find(Cv==1);
for k=1:length(I)

% Create the matrix for V-derivatives
derV1(I(k),I(k)-NS) = -1/2/dv;
derV1(I(k),I(k)) = 0;
derV1(I(k),I(k)+NS) = 1/2/dv;
derV2(I(k),I(k)-NS) = -1/2/dv * Vi(I(k));
derV2(I(k),I(k)) = 0;
derV2(I(k),I(k)+NS) = 1/2/dv * Vi(I(k));
derVV(I(k),I(k)-NS) = 1/dv^2 * Vi(I(k));
derVV(I(k),I(k)) = -2/dv^2 * Vi(I(k));
derVV(I(k),I(k)+NS) = 1/dv^2 * Vi(I(k));

end
I = find(Csv==1);
for k=1:length(I)

% Create the matrix for SV-derivatives
derSV(I(k),I(k)+NS+1) = 1/(4*ds*dv)*Vi(I(k))*Si(I(k));
derSV(I(k),I(k)+NS-1) = -1/(4*ds*dv)*Vi(I(k))*Si(I(k));
derSV(I(k),I(k)-NS-1) = 1/(4*ds*dv)*Vi(I(k))*Si(I(k));
derSV(I(k),I(k)-NS+1) = -1/(4*ds*dv)*Vi(I(k))*Si(I(k));

end

The BuildDerivatives.m function is used in the WeightedMethod.m function,
which applies Equation (10.12) and updates U at every time step iteration.
The value of the derivative is returned by interpolating U at the desired point
(S0, v0).

function WPrice = WeightedMethod(thet,...)
u = zeros(NS*NV,1);
Si = repmat(S',NV,1);
U = max(0, Si - K);
for t=2:NT

u = U;



Methods for Finite Differences 313

if thet==0
U = B*u; % Explicit Method

elseif thet==1
U = invA*u; % Implicit Method

else
U = A\B*u; % Weighted Method

end
end
U = reshape(U,NS,NV);
WPrice = interp2(V,S,U,V0,S0);

To illustrate the weighted method we use the parameter values defined in
Case 1 of Table 1 of In’T Hout and Foulon (2010), namely κ = 1.5, θ = 0.04,
σ = 0.3, ρ = −0.9, r = 0.02, λ = 0, and a strike price of K = 100. In addition,
we use v0 = 0.05, q = 0.05, and a maturity of τ = 0.15 years. We wish to obtain
the price at the spot S = 101.52 when the volatility is v = 0.05412. The fol-
lowing Matlab code builds a uniform grid of size 40 × 40 and uses 20 time
steps. It obtains prices from the explicit, implicit, and Crank-Nicolson schemes,
all from the same WeightedMethod.m function, but with different settings for the
parameter θ .

nS = 39; % Stock price
nV = 39; % Volatility
nT = 19; % Maturity
[derS derSS derV1 derV2 derVV derSV R] = BuildDerivatives(S,V,T);
L = (r-q).*derS + kappa.*theta.*derV1 - kappa.*derV2 + ...;
I = eye(NS*NV);
S0 = 101.52;
V0 = 0.05412;
thet = 0;
A = (I - thet.*dt*L);
B = (I + (1-thet).*dt.*L);
invA = inv(A);
EPrice = WeightedMethod(thet,S0,V0,K,S,V,T,A,invA,B);

In this example, the exact price using the Heston closed-form solution is
4.1086. The explicit scheme price is 4.1679, which as expected, is a poor
approximation because of the small number of steps. The implicit and Crank-
Nicolson schemes produce 4.1023 and 4.1350, respectively, which are both much
more accurate.

The Matlab function BuildDerivativesNonUniform.m is a version of the function
BuildDerivatives.m that accepts a non-uniform grid and returns the sub-matrices
of L. For each entry of the sub-matrices, the divisors ds and dv are specified in
accordance with the values of (S, v), and must respect the non-adjacent positions of
successive values in the vector that stores the volatilities.



314 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

function [derS ... derSV R] = BuildDerivativesNonUniform(S,V,T)
I = find(Cs==1);
for k=1:length(I)

ds = Si(I(k)) - Si(I(k)-1);
derS(I(k),I(k)-1) = -1/2/ds * Si(I(k));
derSS(I(k),I(k)-1) = 1/ds^2 * Vi(I(k))*Si(I(k))^2;
ds = Si(I(k)+1) - Si(I(k));
derS(I(k),I(k)+1) = 1/2/ds * Si(I(k));
derSS(I(k),I(k)+1) = 1/ds^2 * Vi(I(k))*Si(I(k))^2;
ds = (Si(I(k)+1) - Si(I(k)-1))/2;
derS(I(k),I(k)) = 0;
derSS(I(k),I(k)) = -2/ds^2 * Vi(I(k))*Si(I(k))^2;

end
I = find(Cv==1);
for k=1:length(I)

dv = Vi(I(k)) - Vi(I(k)-NS);
derV1(I(k),I(k)-NS) = -1/2/dv;
derV2(I(k),I(k)-NS) = -1/2/dv * Vi(I(k));
derVV(I(k),I(k)-NS) = 1/dv^2 * Vi(I(k));
dv = Vi(I(k)+NS) - Vi(I(k));
derV1(I(k),I(k)+NS) = 1/2/dv;
derV2(I(k),I(k)+NS) = 1/2/dv * Vi(I(k));
derVV(I(k),I(k)+NS) = 1/dv^2 * Vi(I(k));
dv = (Vi(I(k)+NS) - Vi(I(k)-NS))/2;
derV2(I(k),I(k)) = 0;
derV1(I(k),I(k)) = 0;
derVV(I(k),I(k)) = -2/dv^2 * Vi(I(k));

end

To illustrate, we use the same settings as in the example under the uniform
case, but use a smaller grid size of 30 × 30 along with 20 time steps. This produces
results with similar accuracy, but requires much less computation time. The Heston
closed-form solution is 4.1086. The explicit scheme price is 4.1577, the implicit
scheme price is 4.0901, and the Crank-Nicolson scheme price is 4.1241, which is
fairly accurate. The prices obtained under the uniform and non-uniform grids are
summarized in Table 10.1.

The C# code to construct the L matrix and to implement the weighted method is
very similar and is not presented here. The code does require, however, a routine for
matrix inversion. We use the MInvLU() function for this purpose, which applies LU
decomposition to calculate the inverse of (I − θdtL) in (10.12) when θ �= 0. This is

TABLE 10.1 Value of the European Call Using Uniform and Non-Uniform Grids

Uniform
Grid Price Error

Non-Uniform
Grid Price Error

Closed-Form 4.1086 4.1086
Explicit 4.1679 0.0593 4.1577 0.0491
Implicit 4.1023 −0.0062 4.0901 −0.0184
Crank-Nicolson 4.1350 0.0264 4.1241 0.0156



Methods for Finite Differences 315

the same C# function we used in the Longstaff and Schwartz (2001) algorithm
to price American options in Chapter 8. We also need the C# function interp2()
for two-dimensional interpolation. Please refer to Chapter 8 for an explanation of
both functions.

BOUNDARY CONDITIONS FOR THE PDE

Boundary conditions for the PDE in Equation (10.1) for a European call are
explained by Heston (1993) and by In’T Hout and Foulon (2010), among others.
We describe them in the following paragraphs for a European call option.

Boundary Condition at Maturity
At maturity (t = 0) the value of the call is its intrinsic value (the payoff)

U(Si, vj, 0) = max(0, Si − K).

This implies that the boundary condition for t = 0 is U0
i, j = (Si − K)+ for i =

0, 1, . . . , NS and j = 0, 1, . . . , NV . The vector U0 will contain zeros and Si − K,
depending on how the components of U are arranged. A boundary condition for L
at t = 0 is not required since L is not used to obtain U0.

Boundary Condition for S = Smin

When S = Smin = 0, the call is worthless. Hence, we have U(0, vj, tn) = 0 and the
boundary condition is Un

0, j = 0 for n = 0, . . . , NT and j = 0, 1, . . . , NV . The entries
of L corresponding to the points Un

0, j are therefore zero as well.

Boundary Condition for S = Smax

As S becomes large, delta for the call option approaches one. Hence, for S = Smax,
we have

∂U
∂S

(Smax, vj, tn) = 1.

The boundary condition for Smax is, therefore, Un
NS, j = Smax for n = 0, . . . , NT

and j = 0, . . . , NV . The sub-matrix LS takes on the value Smax at the boundary points,
while the sub-matrices LSS and LvS take on the value zero.

Boundary Condition for v = vmax

When v becomes large, we have U(Si, vmax, tn) = Si. The boundary condition for
vmax is, therefore, Un

i,NV
= Si for n = 0, . . . , NT, and i = 0, . . . , NS. Since at vmax we

have U = Si and, therefore, ∂U/∂S = 1, the sub-matrix LS takes on the value Si at
the vmax boundary points. The sub-matrices LSS, LvS, Lv1, and Lv2 all take on the
value zero.

Boundary Condition for v = vmin

When v = vmin = 0, the boundary condition is a little more complicated. When
v = 0 the PDE in (10.1) becomes

∂U
∂t

= −rU + (r − q)S
∂U
∂S

+ κθ
∂U
∂v

.



316 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

We can use central differences for ∂U/∂S

∂U
∂S

(Si, 0, tn) = Un
i+1,0 − Un

i−1,0

Si+1 − Si−1

but for ∂U/∂v, we must use forward differences, for example, the simple form

∂U
∂S

(Si, 0, tn) = Un
i,1 − Un

i,0

v1

since v0 = 0. Remember that in this context we are using v0 to denote the first point
on the grid for the variance, and not the Heston parameter for the spot variance.
The sub-matrices LSS, LvS, and Lvv take on the value zero at the boundary points.

EXPLICIT SCHEME

The explicit scheme produces an expression for the PDE that is very simple when the
grids are uniform. It is a special case of the weighted method that arises by setting
θ = 0 in Equation (10.11)

Un+1 = (I + dtL)Un. (10.18)

Hence, given the matrix L, we can obtain Un+1 directly from Un, without
requiring matrix inversion. The element of Un+1 corresponding to Un+1

i, j is

Un+1
i, j = Un

i, j + dt
[

1
2

vjS
2
i

∂2

∂S2
+ 1

2
σ 2vj

∂2

∂v2
(10.19)

+ ρσvjSi

∂2

∂v∂S
+ (r − q)Si

∂

∂S
+ κ(θ − vj)

∂

∂v
− r

]
Un

i, j.

This is the same expression for Un+1
i, j that we encountered in Chapter 8, when

we used the explicit scheme to price American options. To implement the explicit
scheme, we need to substitute finite difference approximations of the derivatives.
The simplest implementation arises when we use a uniform grid for (Si, vj). In that
case, the expression for Un

i, j can be reduced to a simple expression that involves
only the parameters, the index values, points adjacent to Un

i, j, and the increments.
We substitute the approximations to the derivatives under a uniform grid to obtain

Un+1
i, j = Un

i, j + dt
[

1
2

vjS
2
i

Un
i+1, j − 2Un

i, j + Un
i−1, j

(ds)2

+ ρσvjSi

Un
i+1, j+1 + Un

i−1, j−1 − Un
i−1, j+1 − Un

i+1, j−1

4 ds dv

+ 1
2

σ 2vj

Un
i, j+1 − 2Un

i, j + Un
i, j−1

(dv)2

+ 1
2

(r − q)Si

Un
i+1, j − Un

i−1, j

2ds
+ κ(θ − vj)

Un
i, j+1 − Un

i, j−1

2dv
− r

]
Un

i, j.



Methods for Finite Differences 317

Grouping common terms and simplifying, noting that Si = i × ds and vj = j × dv
produces

Un+1
i, j =

[
1 − dt

(
i2jdv + σ 2j

dv
+ r

)]
Un

i, j

+
[

idt
2

(
ijdv − r + q

)]
Un

i−1, j +
[

idt
2

(
ijdv + r − q

)]
Un

i+1, j

+
[

dt
2dv

(
σ 2j − κ(θ − jdv

)]
Un

i, j−1 +
[

dt
2dv

(
σ 2j + κ(θ − jdv

)]
Un

i, j+1

+ ijdtσ
4

(Un
i+1, j+1 + Un

i−1, j−1 − Un
i−1, j+1 − Un

i+1, j−1). (10.20)

The Matlab function HestonExplicitPDE.m returns the matrix that contains all
the elements UNT

i, j . All the intermediate time values Ut
i, j for t < NT are discarded. The

function requires as inputs the grids for S, v, and t. To conserve space some steps of
the function have been removed.

function U = HestonExplicitPDE(params,...)
for s=1:NS

for v=1:NV
U(s,v) = max(S(s) - K, 0);

end
end
for t=1:NT-1

for v=1:NV-1
U(1,v) = 0;
U(NS,v) = max(0, Smax - K);

end
for s=1:NS

U(s,NV) = max(0, S(s) - K);
end
u = U; % Update the temporary grid u(s,t)
for s=2:NS-1

DerV = (u(s,2) - u(s,1)) / dv;
DerS = (u(s+1,1) - u(s-1,1))/2/ds;
U(s,1) = u(s,1)*(1 - r*dt - kappa*theta*dt/dv) ...;

end
u = U;
for s=2:NS-1

for v=2:NV-1
A = (1 - dt*(s-1)^2*(v-1)*dv - sigma^2*(v-1) ...);
B = (1/2*dt*(s-1)^2*(v-1)*dv - 1/2*dt*(r-q)*(s-1));
C = (1/2*dt*(s-1)^2*(v-1)*dv + 1/2*dt*(r-q)*(s-1));
D = (1/2*dt*sigma^2*(v-1)/dv - 1/2*dt*kappa ...);
E = (1/2*dt*sigma^2*(v-1)/dv + 1/2*dt*kappa ...);
F = 1/4*dt*sigma*(s-1)*(v-1);
U(s,v) = A*u(s,v) + B*u(s-1,v) + C*u(s+1,v) ...;

end
end

end



318 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

When we use a non-uniform grid, simplification of Equation (10.19) to (10.20)
is not possible, and we work with (10.19) directly. This is illustrated with the Matlab
function HestonExplicitPDENonUniformGrid.m. Again, only the terminal values of
UNT

i, j are retained.

function U = HestonExplicitPDENonUniformGrid(params,...)
for s=1:NS

for v=1:NV
U(s,v) = max(S(s) - K, 0);

end
end
for t=1:NT-1

for v=1:NV-1
U(1,v) = 0;
U(NS,v) = max(0, Smax - K);

end
for s=1:NS

U(s,NV) = max(0, S(s) - K);
end
u = U;
for s=2:NS-1

derV = (u(s,2) - u(s,1)) / (V(2)-V(1));
derS = (u(s+1,1) - u(s-1,1)) / (S(s+1)-S(s-1));
LHS = - r*u(s,1) + (r-q)*S(s)*derS + kappa*theta*derV;
U(s,1) = LHS*dt + u(s,1);

end
u = U;
for s=2:NS-1

for v=2:NV-1
derS = (u(s+1,v) - u(s-1,v)) / (S(s+1)-S(s-1));
derV = (u(s,v+1) - u(s,v-1)) / (V(v+1)-V(v-1));
derSS = ((u(s+1,v) - u(s,v)) / (S(s+1)-S(s)) ...;
derVV = ((u(s,v+1) - u(s,v)) / (V(v+1)-V(v)) ...;
derSV = (u(s+1,v+1) - u(s-1,v+1) - U(s+1,v-1) ...;
L = 0.5*V(v)*S(s)^2*derSS + rho*sigma*V(v)*S(s) ...;
U(s,v) = L*dt + u(s,v);

end
end

end

Although we can use the non-uniform grid function with a uniform grid,
the function made for a uniform grid is slightly faster. The functions HestonEx-
plicitPDE.m and HestonExplicitPDENonUniformGrid both return the grid UNT

i, j of
terminal values, corresponding to values Si and vj along the grids. To obtain a value
of UNT between points on the grid, we apply the Matlab function interp2.m for
two-dimensional interpolation.

The C# code to implement the explicit method using uniform and non-uniform
grids is similar to the Matlab code and is not presented here. As explained earlier
in this chapter, however, we need to use the C# function interp2() presented in
Chapter 8 for two-dimensional linear interpolation.



Methods for Finite Differences 319

To illustrate, suppose we use the parameter values above, namely κ = 1.5,
θ = 0.04, σ = 0.3, ρ = −0.9, r = 0.02, q = 0.05, λ = 0, K = 100, v0 = 0.05, and
τ = 0.15 years. We wish to obtain the price at the spot S = 101.52 when the
volatility is v = 0.05412. The following Matlab code builds a uniform grid of size
80 × 40 and uses 3,000 time steps.

Smin = 0; Smax = 2*K;
Vmin = 0; Vmax = 0.5;
Tmin = 0; Tmax = Mat;
nS = 79; % Stock price
nV = 39; % Volatility
nT = 3000; % Maturity
ds = (Smax-Smin)/nS;
dv = (Vmax-Vmin)/nV;
dt = (Tmax-Tmin)/nT;
S = [0:nS].*ds;
V = [0:nV].*dv;
T = [0:nT].*dt;

The grid and parameters are then passed to the HestonExplicitPDE.m function,
and the price is obtained by two-dimensional interpolation with the Matlab function
interp2.m.

U = HestonExplicitPDE(params,...);
S0 = 101.52;
V0 = 0.05412;
UniformPrice = interp2(V,S,U,V0,S0);

The following Matlab code constructs the non-uniform grid described by In’T
Hout and Foulon (2010) and presented earlier in this chapter, and also returns
the price.

c = K/5;
dz = 1/nS*(asinh((Smax-K)/c) - asinh(-K/c));
for i=1:nS+1;

z(i) = asinh(-K/c) + (i-1)*dz;
S(i) = K + c*sinh(z(i));

end
d = Vmax/500;
dn = asinh(Vmax/d)/nV;
for j=1:nV+1

n(j) = (j-1)*dn;
V(j) = d*sinh(n(j));

end
U = HestonExplicitPDENonUniformGrid(params,...);
NonUniformPrice = interp2(V,S,U,V0,S0);



320 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The exact price, using the closed-form solution, is 4.1086. The uniform grid
produces a price of 4.0543, while the non-uniform grid produces a price of 4.1100,
which is much more accurate. Even with 10,000 time points, the accuracy of the
uniform grid does not improve much. To increase the accuracy of the uniform grid,
we must use larger grid sizes for the stock price and volatility, which increases
computational time.

Error Analysis

It is informative to investigate the convergence of the explicit scheme to the true price
as the number of grid points for the stock price and the volatility both increase. We
illustrate this using the same settings as in the previous section, and using uniform
and non-uniform grids.

The exact price of a European call, using the Heston closed form, is 4.1086.
We examine the convergence of the PDE price to the true price, as the number of
points for the stock price grid, NS, ranges from 20 to 40 in increments of 5, and as
the number of points for the volatility grid, NV , ranges from 10 to 40 in increments
in 10. We use NT = 1, 000 for the number of time points. The non-uniform grid and
the maximum number of points, NS = 40 and NV = 40, produces a price of 4.1151,
a difference of less than 1 penny from the true price of 4.1086.

If we use the non-uniform grid with the same maximum number of points, we
obtain a price of 4.5811, which is far closer to the true price of 4.5802 than the
price of 4.5511 obtained using an even grid. The convergence to the true price using
a non-uniform grid is also must faster, as indicated in Figure 10.3.

3.8
20 25 30

Number of stock price points

Uniform NV=10
Uniform NV=20
Uniform NV=30
Uniform NV=40
Non-Uniform NV=10
Non-Uniform NV=20
Non-Uniform NV=30
Non-Uniform NV=40
True Price

35 40

4

4.2

4.4

4.6

4.8

5

FIGURE 10.3 Pricing Error of the Explicit Scheme



Methods for Finite Differences 321

In general, it is best not to implement the explicit scheme for European options
using a three-dimensional array for U(S, v, t), since this requires a substantial
allocation of memory. The Matlab and C# code in this chapter both use a two-
dimensional array for U(S, v), and overwrite successive time values of U(S, v) so
that only the value at maturity tmax is retained. Storing values of Un

i, j at interme-
diate time steps is wasteful since only the values at maturity are needed to price
European options.

ADI SCHEMES

Alternating Direction Implicit (ADI) schemes have the advantage of being stable
and showing good convergence for a small number of time points. Recall that, in
the weighted method, we constructed the matrix L from components corresponding
to the first- and second-order derivatives. We also constructed the vector Un using
the components of Un

i, j on the (S, v) grid illustrated in Figure 10.2. The idea behind
ADI schemes is that the components of L are treated separately, so that certain
components are treated explicitly, and others implicitly. We decompose L into three
matrices A0, A1, and A2 each of size N × N, so that

L = A0 + A1 + A2 (10.21)

where A0 contains all entries of L corresponding to the mixed derivative ∂2U/∂S∂v,
A1 contains all entries corresponding to ∂U/∂S and ∂2U/∂S2, and A2 contains all
entries corresponding to ∂U/∂v and ∂2U/∂v2. The entries of L corresponding to rUn

i, j

are split evenly between A1 and A2. Hence, we construct the matrices as

A0 = ρσvS
(

∂U
∂S∂v

)
N×N

A1 = (r − q)S
(

∂U
∂S

)
N×N

+ 1
2

vS2

(
∂2U
∂S2

)
N×N

− 1
2

r(U)N×N

A2 = κ(θ − v)
(

∂U
∂v

)
N×N

+ 1
2

σ 2v
(

∂2U
∂v2

)
N×N

− 1
2

r(U)N×N.

(10.22)

From Equation (10.2) we can write

U′(t) = LU(t). (10.23)

This system of equations can be solved using various ADI schemes that all work
iteratively, by updating a given Ut−1 = U(t − 1) to a new value Ut = U(t). All the
schemes require an initial value U0. For the call option, this initial value is exactly the
same as that described in previous sections of this chapter. Denote by I the identity
matrix of dimension N. The schemes covered by In’T Hout and Foulon (2010) are
the following.

Douglas Scheme
This is the simplest ADI scheme under consideration. Given Ut−1, we update to

Ut using the following steps.



322 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Step 1. Y0 = [I + dtL]Ut−1.

Step 2. Yk = [I − θdtAk]−1[Y0 − θdtAkUt−1] for k = 1, 2.

Step 3. Set Ut = Y2.

Craig-Sneyd Scheme
This scheme is similar to the Douglas scheme, expect that two additional steps

are added.

Step 1. Y0 = [I + dtL]Ut−1.

Step 2. Yk = [I − θdtAk]−1[Yk−1 − θdtAkUt−1] for k = 1, 2.

Step 3. Ỹ0 = Y0 + 1
2 dt[A0Y2 − A0Ut−1].

Step 4. Ỹk = [I − θdtAk]−1[Ỹk−1 − θdtAkUt−1].

Step 5. Set Ut = Ỹ2.

Modified Craig-Sneyd Scheme

Step 1. Y0 = [I + dtL]Ut−1.

Step 2. Yk = [I − θdtAk]−1[Yk−1 − θdtAkUt−1].

Step 3. Ŷ0 = Y0 + θdt[A0Y2 − A0Ut−1].

Step 4. Ỹ0 = Ŷ0 + (
1
2 − θ

)
dt[LY2 − LUt−1].

Step 5. Ỹk = [I − θdtAk]−1[Ỹk−1 − θdtAkUt−1].

Step 6. Set Ut = Ỹ2.

Hundsdorfer-Verwer Scheme

Step 1. Y0 = [I + dtL]Ut−1.

Step 2. Yk = [I − θdtAk]−1[Yk−1 − θdtAkUt−1].

Step 3. Ỹ0 = Y0 + 1
2 dt[LY2 − LUt−1].

Step 4. Ỹk = [I − θdtAk]−1[Ỹk−1 − θdtAkY2].

Step 5. Ỹ2 = [I − θdtA2]−1[Ỹ1 − θdtA2Y2].

Step 6. Set Ut = Ỹ2.

The parameter θ controls the type of weighing being implemented, exactly as
in the weighted method. Hence, θ = 0 produces the fully explicit scheme, θ = 1

2
produces the Crank-Nicolson scheme, and θ = 1 produces the fully implicit scheme.
Hence, an ADI scheme is specified by the scheme itself and the value of the
parameter θ .

Once the L matrix is constructed, it is straightforward to implement the ADI
schemes. This is done with the ADIPrice.m function. The first part of the func-
tion builds the required matrices of derivatives, which can be constructed with
either a uniform or non-uniform grid. The functions used to build the matri-
ces are the same that were used for the weighted method presented earlier in
this chapter.



Methods for Finite Differences 323

function y = ADIPrice(scheme,GridType,...)
if strcmp(GridType,'NonUniform')

[derS ... derSV R] = BuildDerivativesNonUniform(S,V,T);
else

[derS ... derSV R] = BuildDerivatives(S,V,T);
end

The second part uses the derivatives matrices to construct the matrices A0, A1,
and A2, in accordance with (10.22), creates a vector stock prices from the grid, and
initializes the vector Un as the value of the European call at maturity.

A0 = rho.*sigma.*derSV;
A1 = (r-q).*derS + (1/2).*derSS - r.*R./2;
A2 = kappa.*theta.*derV1 - kappa.*derV2 + ...;
Si = repmat(S',NV,1);
U = max(0, Si - K);

Finally, the last part of the function loops through time and applies the desired
ADI scheme. It then re-arranges the vector Un into a matrix, and interpolates the
matrix to find the European call price at the desired values of S0 and v0.

for t=2:NT
u = U;
Y0 = (I + dt.*(A0+A1+A2))*u;
Y1 = (I - thet.*dt.*A1) \ (Y0 - thet.*dt.*A1*u);
Y2 = (I - thet.*dt.*A2) \ (Y1 - thet.*dt.*A2*u);
if strcmp(scheme,'DO')

U = Y2;
elseif strcmp(scheme,'CS')

Y0_ = Y0 + (1/2).*dt.*(A0*Y2 - A0*u);
Y1_ = (I - thet.*dt.*A1) \ (Y0_ - thet.*dt.*A1*u);
Y2_ = (I - thet.*dt.*A2) \ (Y1_ - thet.*dt.*A2*u);
U = Y2_;

elseif strcmp(scheme,'MCS')
Y0h = Y0 + thet.*dt.*(A0*Y2 - A0*u);
Y0_ = Y0h + (1/2-thet).*dt.*((A0+A1+A2)*Y2 - (A0+A1+A2)*u);
Y1_ = (I - thet.*dt.*A1) \ (Y0_ - thet.*dt.*A1*u);
Y2_ = (I - thet.*dt.*A2) \ (Y1_ - thet.*dt.*A2*u);
U = Y2_;

elseif strcmp(scheme,'HV')
Y0_ = Y0 + (1/2).*dt.*((A0+A1+A2)*Y2 - (A0+A1+A2)*u);
Y1_ = (I - thet.*dt.*A1) \ (Y0_ - thet.*dt.*A1*Y2);
Y2_ = (I - thet.*dt.*A2) \ (Y1_ - thet.*dt.*A2*Y2);
U = Y2_;

end
end
U = reshape(U,NS,NV);
y = interp2(V,S,U,V0,S0);



324 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The C# code to implement the ADI schemes is very similar to the Matlab code
and is not presented here. As required for the C# code for the weighted method,
however, we need the C# functions MInvLU() and interp2() for matrix inversion
and two-dimensional interpolation, respectively. We also need functions for vector
and matrix operations. The ADIPrice() function calculates the option price under
a selected ADI scheme. The following snippet of code contains the portion of the
ADIPrice() function for the Hundsdorfer-Verwer scheme.

elseif(scheme == "HV")
{ // Hundsdorfer-Verwer ADI scheme

double[] A0Y2 = MVMult(SumA,Y2);
double[] A0u = MVMult(SumA,u);
double[] A0A0 = VSub(A0Y2,A0u);
double[] dtA = VMultS(A0A0,dt*0.5);
Y0_ = VAdd(Y0,dtA);
double[] A1Y2 = VMultS(MVMult(A1,Y2),thet*dt);
double[] Y0_minusA1Y2 = VSub(Y0_,A1Y2);
Y1_ = MVMult(MInvLU(IminusA1),Y0_minusA1Y2);
double[] A2Y2 = VMultS(MVMult(A2,Y2),thet*dt);
double[] Y1_minusA2Y2 = VSub(Y1_,A2Y2);
Y2_ = MVMult(MInvLU(IminusA2),Y1_minusA2Y2);
U = Y2_;

}

We continue with the example earlier in this chapter, using NT = 20 time
steps and a uniform grid with NS = Nv = 40. The exact price is 4.1086. With the
Modified Craig-Sneyd method the prices under the explicit ADI, implicit ADI, and
Crank-Nicolson schemes are 4.1123, 4.1124, and 4.1132, respectively, all of which

TABLE 10.2 ADI Prices Under a Uniform Grid, Size 40 × 40 × 20

Scheme Explicit Error Implicit Error C.-N. Error

Douglas 4.1467 0.038 4.0928 −0.016 4.1197 0.011
C.S. 4.1400 0.031 4.0864 −0.022 4.1132 0.005
M.C.S. 4.1123 0.004 4.1124 0.004 4.1132 0.005
H.V. 4.1123 0.004 4.1124 0.004 4.1132 0.005

TABLE 10.3 ADI Prices Under a Non-Uniform Grid, Size 20 × 20 × 10

Scheme Explicit Error Implicit Error C.-N. Error

Douglas 4.2133 0.105 4.1042 −0.004 4.1582 0.050
C.S. 4.1946 0.086 4.0856 −0.023 4.1395 0.031
M.C.S. 4.1363 0.028 4.1360 0.028 4.1395 0.031
H.V. 4.1363 0.028 4.1357 0.027 4.1395 0.031



Methods for Finite Differences 325

are accurate to roughly 1 penny. If a non-uniform grid is used, then the grid size
can be reduced to 20 × 20 and the time steps reduced to 10. This produces results
that are comparable in accuracy but that require much less computational time. The
complete results are in Table 10.2 for the uniform grid and in Table 10.3 for the
non-uniform grid.

CONCLUSION

In this chapter, we have presented some of the finite difference methods that are
commonly used to obtain European prices in the Heston model. These methods
have been extended to obtain the prices of American options also. As we saw in
Chapter 8, the explicit method is particularly simple to adapt for American options.
Pricing models that employ finite differences are varied and have been applied in a
stochastic volatility framework by Clarke and Parrott (1999), In’T Hout and Foulon
(2010), and Ikonen and Toivanen (2008), among many others. Please see Tavella
and Randall (2000) and Duffy (2006) for an overview of finite differences for pricing
European and American options.

All of the methods we have encountered up to this chapter have dealt with
either the European or American price. Central to option pricing theory, however,
are the option price sensitivities to the inputs used in the price: the Greeks. This is
the subject of the next chapter.



CHAPTER 11
The Heston Greeks

Abstract

In this chapter, we present the option sensitivities—the Greeks—from the Heston
model. We first derive analytic expressions for the most popular Greeks. We illustrate
the Heston Greeks by comparing them to Greeks from Black-Scholes prices that
are close to the Heston prices. We show that finite differences produce very good
approximations to analytic Greeks, at the expense of increased computation time.
We do this for Greeks obtained from the original Heston (1993) model, but also
with Greeks from the Attari (2004), Lewis (2000, 2001), and Carr and Madan
(1999) formulations. We show that fast Fourier transform (FFT) of Carr and Madan
(1999) and that the fractional FFT of Chourdakis (2005), both covered in Chapter
5, are able to very quickly produce a set of Greeks across a wide range of strikes, in
the same way that these methods produce prices. Finally, we show that Greeks of
American options can be obtained from simulation methods presented in Chapter 7,
from the Medvedev and Scaillet (2010) expansion covered in Chapter 8, and from
the explicit method covered in Chapter 10.

ANALYTIC EXPRESSIONS FOR EUROPEAN GREEKS

The prices of European calls and puts in the Heston model are available in closed
form. It is, therefore, possible to differentiate the call or put price and obtain
expressions for most of the Greeks in closed form also. Recall that the call and put
price are, respectively,

C(K) = Ste
−qτ P1 − Ke−rτ P2, P(K) = C(K) + Ke−rτ − Ste

−qτ (11.1)

where

Pj = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iφ ln Kfj

(
φ; xt, vt

)
iφ

]
dφ. (11.2)

Hence, the sensitivity of calls and puts to a parameter or input y usually involves
first- and second-order derivatives of the in-the-money probabilities Pj

∂Pj

∂y
= 1

π

∫ ∞

0
Re

[
∂fj

∂y
× e−iφ ln K

iφ

]
dφ,

∂2Pj

∂y2
= 1

π

∫ ∞

0
Re

[
∂2fj

∂y2
× e−iφ ln K

iφ

]
dφ.

(11.3)

327The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



328 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

In the following subsections, we use (11.3) to derive analytic expressions for
most of the popular first- and second-order Greeks.

Delta, Gamma, Rho, Theta, and Vega

Delta, gamma, rho and theta are obtained by differentiating Equation (11.1) and
applying (11.3) when required. Vega is more arbitrary, since there are several
parameters that affect the volatility smile in the Heston model. The second-order
volatility Greeks vanna and volga will be covered in the next section.

As explained by Bakshi, Cao, and Chen (1997), Reiss and Wystup (2000), and
Bakshi and Madan (2000), and others, delta for the call and put and are given by,
respectively

�C = ∂C
∂S

= e−qτ P1 and �P = ∂P
∂S

= e−qτ (P1 − 1). (11.4)

Gamma is found by differentiating delta. By definition, it is the same for calls
and puts. Using ∂f1/∂S = iφf1/St in Equation (11.3) to obtain ∂P1/∂S, we can express
gamma as

� = ∂2C
∂S2

= e−qτ
∂P1

∂S
= e−qτ

πSt

∫ ∞

0
Re[e−iφ ln Kf1(φ; xt, vt)] dφ. (11.5)

Rho is found by differentiating (11.1) with respect to the risk-free rate, r. For
calls and puts rho is, respectively

ρC = ∂C
∂r

= Ke−rτ τP2 and ρP = ∂P
∂r

= Ke−rτ τ (P2 − 1). (11.6)

Theta is the negative of the derivative with respect to maturity, τ . For calls and
puts, theta is, respectively,

	C = −∂C
∂τ

= −Ste
−qτ

(
−qP1 + ∂P1

∂τ

)
+ Ke−rτ

(
−rP2 + ∂P2

∂τ

)
	P = −∂P

∂τ
= 	C + Kre−rτ − qSte

−qτ

(11.7)

where

∂fj

∂τ
= exp(Cj + Djvt + iφxt)

(
∂Cj

∂τ
+ ∂Dj

∂τ
vt

)
(11.8)

and

∂Cj

∂τ
= (r − q)φi + κθ

σ 2

[
bj − ρσφi + dj +

2gjdje
djτ

1 − gje
djτ

]
,

∂Dj

∂τ
= bj − ρσφi + dj

σ 2
× (gj − 1)dje

djτ

(1 − gje
djτ )2

.

(11.9)



The Heston Greeks 329

In Equation (11.8), xt = ln St is the log spot price, and vt is the initial variance,
which is unobserved and estimated as the parameter v0. The quantities bj, gj, and dj

are given in Chapter 1 for j = 1, 2.
Vega is defined as the derivative of the call and put price with respect to the

implied volatility. In the Black-Scholes model, the implied volatility is represented
by the volatility parameter σBS, so vega for the call is readily obtained as ∂CBS/∂σBS,
where CBS is the Black-Scholes call price. Recall from Chapter 1 that in the Heston
model, however, the shape of the implied volatility surface is determined by the
parameters driving the process for the variance, namely the mean reversion speed κ,
the mean reversion level θ , the initial level of the variance v0, and the correlation ρ.
Since v0 and θ are responsible for the initial and long-term level of the variance,
Zhu (2010) recommends basing vega on those two parameters. Both parameters
represent variance, so to create measures of sensitivity to volatility, Zhu (2010)
defines two vegas, one based on υ = √

v0 and the other based on ω = √
θ . The vegas

for the call are, therefore, the derivatives

V1 = ∂C
∂υ

= ∂C
∂v0

2
√

v0 and V2 = ∂C
∂ω

= ∂C
∂θ

2
√

θ. (11.10)

The first vega is

V1 = Se−qτ
∂P1

∂v0

2
√

v0 − Ke−rτ ∂P2

∂v0

2
√

v0 (11.11)

where

∂Pj

∂v0

= 1
π

∫ ∞

0
Re

[
e−iφ ln Kfj

(
φ; xt, vt

)
Dj(τ , φ)

iφ

]
dφ. (11.12)

The second vega is

V2 = Se−qτ
∂P1

∂θ
2
√

θ − Ke−rτ ∂P2

∂θ
2
√

θ (11.13)

where

∂Pj

∂θ
= 1

π

∫ ∞

0
Re

[
e−iφ ln Kfj

(
φ; xt, vt

)
∂Cj/∂θ

iφ

]
dφ (11.14)

and

∂Cj

∂θ
= κ

σ 2

[(
bj − ρσ iφ + dj

)
τ − 2 ln

(
1 − gje

djτ

1 − gj

)]
. (11.15)

By examination of Equation (11.1), it is easy to verify that V1 and V2 for the put
are the same as those for the call.



330 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Vanna, Volga, and Other Greeks

The most popular second-order Greeks are vanna, the derivative of vega with respect
to the spot price, and volga, the derivative of vega with respect to volatility. In this
subsection, we focus only the first vega, V1 in Equation (11.11). Hence, vanna and
volga are

Vanna = ∂2C
∂υ∂S

= ∂2C
∂v0∂S

2
√

v0 and Volga = ∂2C
∂υ2

(11.16)

where υ = √
v0. Again, it is easy to verify that vanna and volga for the put are

identical. Vanna can be obtained from delta as

Vanna = ∂

∂υ

(
∂C
∂S

)
= 2e−qτ√v0

∂P1

∂v0

(11.17)

where we use the derivative in (11.12). Volga can be obtained from vega, by using
(11.10)

Volga = ∂V1

∂υ
= Se−qτ

∂2P1

∂υ2
− Ke−rτ ∂2P2

∂υ2
(11.18)

where

∂2Pj

∂υ2
= 4

(
∂2Pj

∂v2
0

v0 + 1
2

∂Pj

∂v0

)

= 1
π

∫ ∞

0
Re

[
e−iφ ln K

iφ
2Dj (τ , φ) fj(φ; xt, vt)(2Dj(τ , φ)v0 + 1)

]
dφ.

(11.19)

Equivalently,

Volga = ∂V1

∂v0

2
√

v0 = 4
√

v0

(
∂2C
∂v2

0

√
v0 + V1

4v0

)
= 4

(
∂2C
∂v2

0

v0 + 1
2

∂C
∂v0

)
. (11.20)

We need the second order derivative

∂2C
∂v2

0

= Se−qτ
∂2P1

∂v2
0

− Ke−rτ ∂2P2

∂v2
0

(11.21)

with, from Equation (11.12)

∂2Pj

∂v2
0

= 1
π

∫ ∞

0
Re

[
e−iφ ln Kfj

(
φ; xt, vt

)
Dj(τ , φ)2

iφ

]
dφ. (11.22)

We have defined vega (V1), vanna, and volga all in terms of the spot volatility,
υ = √

v0. On the other hand, the Heston PDE for the option price U(St, vt, t),
which we encountered in Chapter 1, contains derivatives expressed in terms of the
variance, v0. If we redefine vega, vanna, and volga in terms of v0 instead of υ, then



The Heston Greeks 331

we can substitute the Greeks into the PDE and show that it is satisfied. Hence,
we obtain

	 + 1
2

v0S2
0� + (r − q)S0� − rU

ρσv0S0Vanna + 1
2

σ 2v0Volga + κ(θ − v0)Vega1 = 0

(11.23)

where we have set λ(St, vt, t) = 0 and where S0 is the spot price. The first line in
(11.23) is the Black-Scholes PDE, and the second line adds correction terms for
stochastic volatility, as specified in the Heston model. It is easy to verify that the
PDE with Greeks holds for both the Black-Scholes and Heston models, provided
that vega, vanna, and volga are constructed in terms of variance rather than in
terms of volatility. This is accomplished with the following snippet of code. The
code makes use of the HestonGreeks.m function, which we introduce later in
this chapter.

% Heston Greeks and PDE
Price = HestonPriceGaussLaguerre(...);
Delta = HestonGreeks(...,'Delta');
Gamma = HestonGreeks(...,'Gamma');
Theta = HestonGreeks(...,'Theta');
Vega1 = HestonGreeks(...,'Vega1') / (2*sqrt(v0));
Vanna = HestonGreeks(...,'Vanna') / (2*sqrt(v0));
Volga = HestonGreeks(...,'Volga');
Volga = (1/4/sqrt(v0)*Volga — Vega1/2/sqrt(v0))/sqrt(v0);
Heston = Theta + 0.5*v0*S0^2*Gamma + (r-q)*S0*Delta ...;
% Black Scholes Greeks and PDE
Theta = BSGreeks(PutCall,S0,K,r,q,T,sigma,'Theta');
Gamma = BSGreeks(PutCall,S0,K,r,q,T,sigma,'Gamma');
Delta = BSGreeks(PutCall,S0,K,r,q,T,sigma,'Delta');
Price = BSPrice(PutCall,S0,K,r,q,T,sigma);
BS = Theta + 0.5*sigma^2*S0^2*Gamma + (r-q)*S0*Delta ...;

In the above code snippet, we invert Equations (11.10), (11.16), and (11.18)
to express the derivatives in terms of v0 rather than υ before substituting these
derivatives into the Heston PDE. See Zhu (2010) for a further discussion of the
Heston PDE with Greeks.

As mentioned in Chapter 2, the correlation ρ and the volatility of variance σ

control the slope and curvature, respectively, of the implied volatility backed out
from Heston model prices, while κ controls the speed of reversion to the mean level
θ of volatility. When ρ < 0, the slope of the implied volatility curve is negative, and
when ρ > 0, it is positive. The curvature increases as σ increases. The sensitivity of
the call price to these parameters is

∂C
∂ξ

= Se−qτ
∂P1

∂ξ
− Ke−rτ ∂P2

∂ξ
(11.24)



332 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

with

∂Pj

∂ξ
= 1

π

∫ ∞

0
Re

[
∂fj

∂ξ
× e−iφ ln K

iφ

]
dφ (11.25)

and

∂fj

∂ξ
= exp(Cj + Djvt + iφxt)

(
∂Cj

∂ξ
+ ∂Dj

∂ξ
vj

)
(11.26)

for ξ ∈ (ρ, σ , κ). Obtaining the derivatives of Cj and Dj in Equation (11.26) is
complicated, but can be easily handled with a symbolic calculator such as Matlab.
By examination of (11.1) it is easy to verify that the sensitivities of the put to ρ, σ ,
and κ are the same as those for the call.

Finally, recall from Chapter 1 that we can consolidate the integrals for P1 and P2

into a single integral, and from Chapter 2 that we can express the first characteristic
function, f1(φ), in terms of the second, f2(φ), as f1(φ) = f2(φ − i)/(Ste

(r−q)τ ). This
implies that we can write the call price as

C(K) = 1
2

Ste
−qτ − 1

2
Ke−rτ + 1

π

∫ ∞

0
Re

[
e−iφ ln K−rτ

iφ

(
f2 (φ − i) − Kf2(φ)

)]
dφ. (11.27)

The Greeks can be obtained by straightforward differentiation of C(K), in the
same manner as described earlier in this section.

FINITE DIFFERENCES FOR THE GREEKS

In the previous section, we derived analytic expressions for the Greeks from the
Heston call or put price. Recall that, in the last chapter, we used finite differences
to approximate the derivatives that appear in the Heston PDE. We can apply
finite differences to find the Greeks and other option sensitivities also. When this
approach is used to calculate Greeks, however, the computation time is increased
because the option price must be calculated more than once, multiple times in the
case of the second-order Greeks. For the first-order Greeks, delta (�), theta (	),
rho (ρ), vega1 (V1), and vega2 (V2), as well as for the first-order sensitivities ∂U/∂ξ ,
for ξ ∈ (ρ, σ , κ), the sensitivity of the option price to a parameter or variable can
be approximated with first-order central differences. For example, delta for the call
C(S, v, t) is approximated as

�C ≈ C(S + dS, v, t) − C(S − dS, v, t)
2dS

.

As another example, to approximate the first vega in Equation (11.10) we
approximate the derivative with respect to v0 by a central difference and we multiply
the result by 2

√
v0

V1 ≈ C(S, v, t; v0 + dv) − C(S, v, t; v0 − dv)
2dv

× 2
√

v0. (11.28)



The Heston Greeks 333

For the second-order Greeks, gamma (�) and volga, we can use the second-
order central differences for a single variable. Hence, for example, gamma is
approximated as

� ≈ C(S + dS, v, t) − 2C(S, v, t) + C(S − dS, v, t)
(dS)2

.

For volga, which we express in terms of υ = √
v0, we first approximate the

following second order derivative in v0 as

∂2C
∂v2

0

≈ C(S, v, t; v0 + dv) − 2C(S, v, t; v0) + C(S, v, t; v0 − dv)
(dv)2

. (11.29)

We then approximate V1 using Equation (11.28) and substitute it along with
(11.29) into (11.20). Finally, for vanna, we use the second-order central difference
in two variables. We first approximate the second order derivative in (11.16), and
then multiply by 2

√
v0. Hence, vanna is approximated as

Vanna ≈ 2
√

v0

[
C

(
S + dS, v, t; v0 + dv

) − C(S + dS, v, t; v0 − dv)

−C
(
S − dS, v, t; v0 + dv

) + C(S − dS, v, t; v0 − dv)]/(4dSdv)
]
. (11.30)

NUMERICAL IMPLEMENTATION OF THE GREEKS

The Matlab function HestonGreeksProb.m contains the integrands to compute the
Greeks in closed form. The first part of the function calculates the coefficients Cj(τ , φ)
and Dj(τ , φ), and calculates the characteristic functions fj(φ) in the usual way. The
second part of the function returns the integrands. Delta in Equation (11.4) and rho
in (11.6) require Pj, so the function simply returns the integrand for Pj.

function y = HestonGreeksProb(phi,...,Greek);
f = exp(C + D*v + i*phi*x);
if strcmp(Greek,'Delta') | strcmp(Greek,'Rho')

y = real(exp(-i*phi*log(K))*f/i/phi);

Gamma requires the integrand specified in (11.5).

elseif strcmp(Greek,'Gamma')
y = real(exp(-i*phi*log(K))*f);

Theta is slightly more complicated because the derivatives for Cj(τ , φ) and
Dj(τ , φ) in (11.9) need to be obtained.



334 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

elseif strcmp(Greek,'Theta')
dD = d*exp(d*tau)*(b-rho*sigma*phi*i+d)*(g-1) ...;
dC = (r-q)*phi*i + kappa*theta/sigma^2 ...;
df = f*(dC + dD*v);
y = real(exp(-i*phi*log(K))*df/i/phi);

The first vega (V1) is straightforward since only the integrand in (11.12) is
required.

elseif strcmp(Greek,'Vega1')
y = real(exp(-i*phi*log(K))*f*D/i/phi);

The second vega (V2) is straightforward also, and uses the integrand in (11.15).
It allows for the ‘‘Little Trap’’ formulation of Albrecher et al. (2007).

elseif strcmp(Greek,'Vega2')
if Trap==1

dC = kappa/sigma^2*((b - rho*sigma*i*phi - d)*tau ...);
elseif Trap==0

dC = kappa/sigma^2*((b - rho*sigma*i*phi + d)*tau ...);
end
df =f*dC;
y = real(exp(-i*phi*log(K))*df/i/phi);

Volga in Equation (11.18) requires the integrand in (11.22).

elseif strcmp(Greek,'Volga')
y = real(exp(-i*phi*log(K))*f*D^2/i/phi);

Finally, the risk sensitivities with respect to ρ, σ , κ in Equation (11.24) require
the derivatives in (11.26) which are lengthy and, therefore, not presented in their
entirety. The integrand for the correlation sensitivity, for example, is the following.

elseif strcmp(Greek,'Corr')
if Pnum==1

dCdr = kappa*theta/sigma^2*((-sigma-sigma ...;
dDdr = (-sigma-sigma*i*phi+1/2/(rho^2*sigma ...;

elseif Pnum==2
dCdr = kappa*theta/sigma^2*((-sigma*i*phi+1 ...;
dDdr = (-sigma*i*phi+1/2/(rho^2*sigma^2*i^2 ...;

end
y = real(exp(-i*phi*log(K))*f*(dCdr + dDdr*v)/i/phi);



The Heston Greeks 335

The derivatives in (11.26) were evaluated symbolically using the Matlab file
SymbolicDerivatives.m, and pasted into the HestonGreeksProb.m function described
above.

To calculate the Greeks, the HestonGreeksProb.m function is then passed to
the HestonGreeks.m function, which performs the required integration using Gauss-
Laguerre integration, and returns the desired Greek. To conserve space, parts of the
function have been removed.

function y = HestonGreeks(PutCall,...,Greek)
if strcmp(Greek,'Delta')

for k=1:length(x);
int1(k) = w(k)*HestonGreeksProb(x(k),...1,'Delta');

end
P1 = 1/2 + 1/pi*sum(int1);
y = exp(-q*T)*P1;

elseif strcmp(Greek,'Volga')
for k=1:length(x)

int1(k) = w(k)*HestonGreeksProb(x(k),...,1,'Vega1');
int2(k) = w(k)*HestonGreeksProb(x(k),...,2,'Vega1');

end
dP1 = 1/pi*sum(int1)*2*sqrt(v0);
dP2 = 1/pi*sum(int2)*2*sqrt(v0);
Vega1 = S*exp(-q*T)*dP1 - K*exp(-r*T)*dP2;
for k=1:length(x);

int1(k) = w(k)*HestonGreeksProb(x(k),...,1,'Volga');
int2(k) = w(k)*HestonGreeksProb(x(k),...,2,'Volga');

end
dP1 = 1/pi*sum(int1);
dP2 = 1/pi*sum(int2);
dC2 = S*exp(-q*T)*dP1 - K*exp(-r*T)*dP2;
y = 4*sqrt(v0)*(dC2*sqrt(v0) + Vega1/4/v0);

elseif strcmp(Greek,'Corr') | strcmp(Greek,'Sigma') ...;
for k=1:length(x)

int1(k) = w(k)*HestonGreeksProb(x(k),...,1,Greek);
int2(k) = w(k)*HestonGreeksProb(x(k),...,2,Greek);

end
dP1 = 1/pi*sum(int1);
dP2 = 1/pi*sum(int2);
y = S*exp(-q*T)*dP1 - K*exp(-r*T)*dP2;

end

The C# code for the Heston Greeks is very similar and is not presented here.
The only difference is that, in C#, we do not calculate the sensitivity with respect to
ρ, κ, and σ in closed form, but using finite differences only.

To illustrate the calculation of the Greeks, recall from Chapter 1 that when
we set σ = 0 and θ = v0 in the Heston model, we retrieve the Black-Scholes model
exactly. We also saw in that chapter that we cannot simply set σ = 0 in the Heston
characteristic function, since that will entail division by zero. We can, however, set
σ to be small, and set θ = v0. We will then obtain Heston prices that are close to
Black-Scholes prices, and we can compare the Heston Greeks with the Black-Scholes
Greeks, which are all available in closed form, in Haug (2006), for example.



336 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 11.1 Comparison of Greeks Under Heston and Black-Scholes

Greek Closed Form Finite Differences Black-Scholes

Delta (�C) 0.5501 0.5501 0.5501
Gamma (�) 0.0208 0.0208 0.0208
Rho (ρC) 23.6031 23.6031 23.6030
Theta (	C) −7.9833 −7.9837 −7.9834
Vega #1 (V1) 27.4908 27.4908 27.4909
Vanna 0.0589 0.0589 0.0589
Volga −0.6153 −0.6154 −0.6123

TABLE 11.2 Comparison of Heston Parameter Sensitivities

Parameter Closed Form Finite Differences

Vega #2 (V2) 17.4217 17.4217
Correlation (ρ) 0.0726 0.0726
Mean Reversion (κ) 0.0169 0.0169
Volatility (σ ) −0.4900 −0.4899

We use the following settings: S = K = 100, r = 0.05, q = 0.03, and a maturity
of 6 months. In addition, we set κ = 0, θ = v0 = 0.07, ρ = −0.8, and σ = 0.0001.
The Heston and Black-Scholes price of a call with these features are each 7.8057.
The Heston Greeks obtained using their closed forms, the Heston Greeks by finite
differences, and the Black-Scholes Greeks, are all presented in Table 11.1.

The three sets of Greeks are all very close, which suggests that the closed form
expressions and their finite difference equivalents are sensible. To generate Vega #2
and the sensitivities to ρ, σ , and κ in Equation (11.24), we keep the same settings
but change κ = 5 and σ = 0.35. Since there are no Black-Scholes counterparts, only
the closed form and finite difference equivalents are presented in Table 11.2.

Again, the Greeks produced by both methods are very close. Finally, the Matlab
function HestonGreeksConsolidated.m implements the Greeks by differentiation of
the consolidated form of the call price in (11.27). The function is similar to the
HestonGreeks.m function and is not presented in its entirety.

function y = HestonGreeksConsolidated(...,Greek)
for j=1:N

phi = x(j);
f1 = HestonCF(phi-i,...);
f2 = HestonCF(phi ,...);
if strcmp(Greek,'Price')

int(j) = w(j) * real(exp(-i*phi*log(K) ...;
elseif strcmp(Greek,'Delta')

df1 = f1 * (i*phi+1)/S;
df2 = f2 * i*phi/S;
int(j) = w(j) * real(exp(-i*phi*log(K) ...;

end
end



The Heston Greeks 337

Integral = sum(int);
if strcmp(Greek,'Price')

y = S*exp(-q*tau)/2 - K*exp(-r*tau)/2 + (1/pi)*Integral;
elseif strcmp(Greek,'Delta')

y = exp(-q*tau)/2 + (1/pi)*Integral;
end

For convenience, the coefficient D2(τ , φ) is calculated in a separate function,
D.m.

function y = D(phi,...)
if Trap==1

% "Little Heston Trap" formulation
c = 1/g;
y = (b - rho*sigma*i*phi - d)/sigma^2 ...;

elseif Trap==0
% Original Heston formulation.
y = (b - rho*sigma*i*phi + d)/sigma^2 ...;

end

The DiffTau.m function returns the derivatives of C2(τ , φ) and D2(τ , φ) with
respect to τ .

function [dC dD] = DiffTau(phi,...)
if trap==1

C = (r-q)*i*phi*tau + a/sigma^2 ...;
D = (b - rho*sigma*i*phi - d)/sigma^2 ...;

elseif trap==0
C = (r-q)*i*phi*tau + a/sigma^2 ...;
D = (b - rho*sigma*i*phi + d)/sigma^2 ...;

end
dD = d*exp(d*tau)*(b-rho*sigma*phi*i+d)*(g-1) ...;
dC = (r-q)*phi*i + kappa*theta/sigma^2 ...;

The C# code to calculate Greeks for the consolidated form in Equation (11.27)
is similar and is not presented here.

It is informative to present visual illustrations of the Greeks. Figure 11.1 presents
a plot of gamma from the Heston model. The mesh with black squares represents
gamma with ρ = −0.9 and the smooth-colored surface, gamma with ρ = 0.9.

Figure 11.2 presents theta with the same parameter settings. Again, the mesh
with black squares corresponds to negative correlation.

In Chapter 2, we saw that the correlation parameter introduces skewness
in the Heston (1993) terminal stock price density, with negative correlation



338 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

0.01 70

Maturity Strike Price

85 100 115 130
0.12

0.25
0.33

0.5
0

0.01

0.02

0.03

0.04

0.05

FIGURE 11.1 Gamma from the Heston Model

leading to a negative skew, and positive correlation, to a positive skew. This effect
is introduced in the Heston Greeks also, and the skewed patterns are discernible in
Figures 11.1 and 11.2.

The figures were created with the following Matlab code.

[x w] = GenerateGaussLaguerre(32);
T = [1/12:.01:.5];
S = [70:130];
GreekChoice = 'Gamma';
rhop = 0.9;
rhon = -0.9;
for s=1:length(S);

for t=1:length(T);
GreekP(s,t) = HestonGreeks(rhop,GreekChoice,...);
GreekN(s,t) = HestonGreeks(rhon,GreekChoice,...);

end
end

The code can be easily modified to plot the other Greeks described in this
section.



The Heston Greeks 339

0.01 70

Maturity Strike Price

85 100 115 130
0.12

0.25
0.33

0.5

–18

–16

–14

–12

–10

–8

–6

–4

–2

0

FIGURE 11.2 Theta from the Heston Model

GREEKS UNDER THE ATTARI AND
CARR-MADAN FORMULATIONS

In the previous sections, we derived and implemented the Greeks under the original
Heston (1993) formulation of the call price. It is also possible to derive analytic
expressions for the Greeks under alternate formulations, such as those encountered
in previous chapters. It is straightforward to obtain delta and gamma using the
Attari (2004) expression for the call price, as explained by Zhu (2010). Recall from
Chapter 3 that the call price in this model is given by

C(K) = St − 1
2

Ke−rτ − Ke−rτ

π

∫ ∞

0
A(u)du.

The integrand is

A(u) =

(
R2 + I2

u

)
cos(�u) +

(
I2 − R2

u

)
sin(�u)

1 + u2

= F(u) cos(�u) + G(u) sin(�u)
1 + u2

(11.31)



340 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where � = ln(Ke−rτ /St). In the integrand (11.31), R2 = Re[ϕ2(u)] and I2 = Im[ϕ2(u)]
denote the real and imaginary parts, respectively, of the Attari (2004) characteristic
function ϕ2(u) given by

ϕ2(u) = exp(C2(τ , u) + D2(τ , u)v0 − iurτ ). (11.32)

In (11.32), the coefficients C2(τ , u) and D2(τ , u) are those of the Heston (1993)
characteristic function, f2(u), and v0 is the spot variance parameter. We saw in
Chapter 3 that ϕ2(u) is independent of the spot price St. The dependency of A(u) on
St arises through the parameter � only. Consequently, it is straightforward to derive
the expression for delta for the call

�C = 1 − Ke−rτ

π

∫ ∞

0

∂A(u)
∂S

du. (11.33)

By applying the chain rule, we obtain the integrand in (11.33) as

∂A(u)
∂S

= −F(u) sin(�u) + G(u) cos(�u)
1 + u2

×
(
−u

S

)
(11.34)

since ∂(�u)/∂S = −u/S. Gamma is given by

� = −Ke−rτ

π

∫ ∞

0

∂2A(u)
∂S2

du (11.35)

with integrand

∂2A(u)
∂S2

= −F(u)(cos(�u)u + sin(�u)) + G(u)(− sin(�u)u + cos(�u))
1 + u2

×
( u

S2

)
. (11.36)

In the Attari (2004) formulation of the call price, delta and gamma are easily
obtained in closed form because ϕ2(u) does not depend on the spot price St. It is not
practical to obtain the other Greeks in this manner, because the parameter for the
Greek will appear in ϕ2(u). Indeed, to obtain the derivatives of A(u), we would need
to separate the real and imaginary parts of ϕ2(u), as specified in Equation (11.31),
and obtain the derivatives of these parts separately. We can still obtain the Greeks
in the model using finite differences, however.

The Matlab function AttariProbGreeks.m calculates the integrand required
for delta and gamma in Equations (11.34) and (11.36). It is very similar to the
AttariProb.m function presented in Chapter 3 and is, therefore, not presented here
in its entirety.

function A = AttariProbGreeks(u,...,Greek)
% The c.f. for Attari and L function.
f = exp(C + D*v0 - i*u*r*tau);
L = log(exp(-r*tau)*K/S0);



The Heston Greeks 341

% The coefficients
F = (real(f) + imag(f)/u);
G = (imag(f) - real(f)/u);
% Return the integrand for the chosen Greek
if strcmp(Greek,'Delta');

A = (F*sin(L*u) - G*cos(L*u)) * u/S0/(1+u^2);
elseif strcmp(Greek,'Gamma');

y = (-F*(cos(L*u)*u + sin(L*u)) + ...;
A = y * u/S0^2/(1+u^2);

end

This function is passed to the AttariGreeks.m function, which uses numerical
integration to calculate delta using Equation (11.33), or gamma using (11.35).

function y = AttariGreeks(PutCall,...,Greek)
for j=1:length(x);

if strcmp(Greek,'Delta')
A(j) = w(j)*AttariProbGreeks(x(j),...,'Delta');

elseif strcmp(Greek,'Gamma')
A(j) = w(j)*AttariProbGreeks(x(j),...,'Gamma');

end
end
Integral = sum(A);
if strcmp(Greek,'Gamma')

y = -exp(-r*T)*K/pi*Integral;
elseif strcmp(Greek,'Delta')

if strcmp(PutCall,'C')
y = 1 - exp(-r*T)*K/pi*Integral;

else
y = - exp(-r*T)*K/pi*Integral;

end
end

Using finite difference approximations, it is easy to verify that the AttariGreeks.m
function produces values of delta and gamma that are quite accurate. Finally,
the C# code for these two Greeks in the Attari (2004) model is similar and
not presented.

We can also derive closed-form expressions for the Greeks under the Carr and
Madan (1999) formulation of the call price, which we first encountered in Chapter 3.
Recall that the call price under their formulation is

C(k) = e−αk

π

∫ ∞

0
Re

[
e−ivk e−rτ f2 (v − (α + 1) i)

α2 + α − v2 + iv(2α + 1)

]
dv (11.37)

where α is the damping factor, k is the logarithm of the strike price, and f2 is
the Heston (1993) characteristic function for xT = ln ST. To obtain the Greeks, we
simply differentiate f2, substitute into (11.37) and evaluate the integral. Theta and



342 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

rho are slightly more complicated, because we need to apply the product rule to
e−rτ f2 in (11.37). Theta, for example, is obtained as

	C = −e−αk

π

∫ ∞

0
Re

[
e−ivk e−rτ

(−rf2 + ∂f2/∂τ
)

α2 + α − v2 + iv(2α + 1)

]
dv (11.38)

where f2 and ∂f2/∂τ are both evaluated at v − (α + 1)i. To calculate volga
for υ = √

v0, note that an application of the chain rule produces ∂2f2/∂υ2 =
2D2f2(2D2v0 + 1), where D2 = D2(τ , v) is the coefficient for the Heston characteristic
function.

The Matlab function HestonCFGreek.m returns the derivative of f2, which
is required to obtain the Greeks for the Carr and Madan (1999) call price. The
function also returns the call price, if desired, by returning f2 itself rather than
a derivative. It is similar to the HestonGreeksProb.m function defined earlier in
this chapter.

function df = HestonCFGreek(phi,...,Greek)
% The characteristic function.
f = exp(C + D.*v0 + i.*phi.*x0);
% Derivatives of f2 required for the Greeks
if strcmp(Greek,'Price');

df = f;
elseif strcmp(Greek,'Delta')

df = f*i*phi/S;
elseif strcmp(Greek,'Gamma')

df = i*phi*f*(i*phi - 1)/S^2;
elseif strcmp(Greek,'Theta')

dDdT = d*exp(d*tau)*(b-rho*sigma*phi*i+d)...;
dCdT = r*phi*i + kappa*theta/sigma^2...;
df = r*f - f*(dCdT + dDdT*v0);

elseif strcmp(Greek,'Rho')
dCdr = i*phi*tau;
df = (f*dCdr - tau*f);

elseif strcmp(Greek,'Vega1')
df = f*D;

elseif strcmp(Greek,'Vanna')
df = f*i*phi*D/S;

elseif strcmp(Greek,'Volga')
df = 2*D*f*(2*D*v0 + 1);

end

The derivatives are then passed to the CarrMadanGreeks.m function, which
uses numerical integration and returns delta, gamma, theta, rho, vega1, vanna, and
volga, or the call price. Both functions can be easily modified to return additional
option sensitivities.



The Heston Greeks 343

function y = CarrMadanGreeks(alpha,...,Greek)
% Perform the numerical integration
for j=1:length(x)

u = x(j);
I(j) = exp(-i*u*log(K))*HestonCFGreek(u-(alpha+1)*i,...,Greek) ...;
I(j) = w(j)*real(I(j));

end
% Calculate the desired Greek
if strcmp(Greek,'Delta') || strcmp(Greek,'Gamma') ...

y = exp(-alpha*log(K))*sum(I)/pi;
elseif strcmp(Greek,'Vega1') || strcmp(Greek,'Vanna')

y = exp(-alpha*log(K))*sum(I)/pi * 2*sqrt(v0);
end

It is straightforward to verify that the Greeks calculated with this function
produce values that are close to their finite difference approximations. The C# code
to implement the Greeks under the Carr and Madan (1999) formulation is similar
to the Matlab code and not presented here.

GREEKS UNDER THE LEWIS FORMULATIONS

Recall from Chapter 4 that the Lewis (2000) expressions for the call price can be
written in terms of the fundamental transform Ĥ(k, v, τ ) as

C1(K) = −Ke−rτ

π

∫ ∞

0
Re

[
e−ikX

k2 − ik
Ĥ

(
k, v, τ

)]
dk (11.39)

for 1 < ki < β, and as

C2(K) = Ste
−qτ − Ke−rτ

π

∫ ∞

0
Re

[
e−ikX

k2 − ik
Ĥ

(
k, v, τ

)]
dk (11.40)

for max(0, α) < ki < min(1, β) and where X = ln(St/K) + (r − q)τ . We can readily
differentiate the integrands for C1(K) and C2(K) to obtain analytical expressions
for the Greeks, as we did in the previous sections. Gamma, for example, is
given by

� = Ke−rτ

πS2

∫ ∞

0
Re[e−ikXĤ(k, v, τ )] dk. (11.41)

The Matlab function LewisIntegrandGreek.m is a modification of the function
LewisIntegrand.m from Chapter 4 and returns the integrand required for the
calculation of Greeks using either C1(K) or C2(K). It also returns the integrand for
the price itself.



344 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

function y = LewisIntegrandGreek(k,...,Greek)
% The fundamental transform, H(k,S,t)
H = exp(C + D*v0);
% Return the real part of the integrand
if strcmp(Greek,'Price')

y = real(exp(-X*i*k-r*tau)/(k^2-i*k)*H);
elseif strcmp(Greek,'Delta')

y = real(exp(-X*i*k-r*tau)/(k^2-i*k)*H*(-i*k/S));
elseif strcmp(Greek,'Gamma')

y = -real(exp(-X*i*k-r*tau)*H/S^2);
elseif strcmp(Greek,'Vega1')

y = real(exp(-X*i*k-r*tau)/(k^2-i*k)*H*D)*2*sqrt(v0);
elseif strcmp(Greek,'Rho')

y = real(exp(-X*i*k-r*tau)*(-i*k*tau-tau)/(k^2-i*k)*H);
elseif strcmp(Greek,'Theta')

dC = kappa*theta*((kappa+d)/2 + g*d*exp(d*t) ...;
dD = (kappa+d)/2*exp(d*t)*d*(g-1)/(1-g*exp(d*t)) ...;
y = real((-i*k*(r-q)-r + (dC+dD*v0))*H*exp(-X*i ...;

elseif strcmp(Greek,'Volga')
I = exp(-X*i*k-r*tau)/(k^2-i*k)*H*D*D*sqrt(v0) ...
y = real(I)*4*sqrt(v0);

elseif strcmp(Greek,'Vanna')
y = real(exp(-X*i*k-r*tau)/(k^2-i*k)*H*D*(-i*k/S))*2*sqrt(v0);

end

The function is passed to the Matlab function HestonLewisGreekPrice.m. The
C# code is similar and not presented here.

The option price C(St) derived by Lewis (2001) that uses Parseval’s identity was
covered in Chapter 4 also. The form that uses ki = 1

2 is Equation (3.11) of Lewis
(2001)

C(St) = Ste
−qτ −

√
KSte

−(r+q)τ/2

π

∫ ∞

0
Re

⎡⎢⎣eiuXϕ

(
u − 1

2
i
)

1

u2 + 1
4

⎤⎥⎦ du

= Ste
−qτ −

√
K

π

∫ ∞

0
Re

⎡⎢⎢⎣K−iue−rτ f2

(
u − 1

2
i
)

u2 + 1
4

⎤⎥⎥⎦ du

where X is defined after (11.40). We have used the fact from Chapter 4 that ϕ(u) =
f2(u)e−iuY, where Y = ln St + (r − q)τ and f2 is the Heston (1993) characteristic
function. Again, by straightforward differentiation of C(St) we can obtain the Greeks
for this form of the Lewis (2001) price. The Matlab function LewisGreeks311.m
and the C# function LewisGreeks311() are used to implement the Greeks for the call
price C(St) from Equation (3.11) of Lewis (2001). These functions are similar to the
ones presented in earlier sections and are not presented.

Table 11.3 presents Greeks calculated using the closed forms derived in this
chapter. We use the following settings: S = K = 100, τ = 0.25, r = 0.05, and q = 0,
along with the parameter values κ = 2, θ = v0 = 0.05, σ = 0.1, and ρ = −0.9.



The Heston Greeks 345

TABLE 11.3 Closed-Form Greeks Under Various Forms

Greek
Heston
(1993)

Attari
(2004)

Carr and
Madan (1999)

Lewis
(2000)

Lewis
(2001)

Price 5.0836 5.0836 5.0837 5.0747 5.0796
Delta 0.5833 0.5833 0.5833 0.5666 0.5833
Gamma 0.0347 0.0347 0.0347 0.0353 0.0347
Theta −11.3995 – −11.4004 −11.3464 −11.4009
Rho 13.3128 – 13.3127 12.8969 13.3133
Vega 1 15.3911 – 15.3909 15.4812 15.3915
Vanna −0.1257 – −0.1257 0.0516 −0.1257
Volga 15.5081 – 15.4273 15.7285 15.4054

GREEKS USING THE FFT AND FRFT

We saw in Chapter 5 that the fast Fourier transform (FFT) and fractional fast
Fourier transform (FRFT) are both able to produce call prices very quickly and for a
wide range of strikes simultaneously. It is straightforward to adapt these methods to
produce the Greeks in the same manner. Recall from Chapter 5 that to implement
the FFT on the call price, we construct the integration grid {vj}N

j=1 and the log-strike
grid {ku}N

u=1, and calculate the points xj = exp(i(b − ln St)vj)ψ(vj)wj for j = 1, . . . , N.
We then obtain x̂u = C(ku), the call price evaluated at the log-strike point ku, as
the sum

x̂u = ηe−αku

π

N∑
j=1

Re
[
e−i 2π

N (j−1)(u−1)xj

]
for u = 1, . . . , N. (11.42)

To obtain a set of Greeks with the FFT, in xj we simply replace the term

ψ(vj) = e−rτ f2(vj − (α + 1)i)

α2 + α − v2
j + ivj(2α + 1)

(11.43)

with a modified version that uses the derivative of f2 instead of f2, such as that
for theta in Equation (11.38), for example. We use this modification to obtain the
Greeks under the fractional fast Fourier transform also.

Implementing the Greeks with the FFT requires a slight modification of the
code presented in Chapter 5. The Matlab function HestonCallFFTGreek.m is nearly
identical to the HestonCallFFT.m function from that chapter, except that it uses the
Matlab function HestonCFGreek.m for the characteristic function. This function
returns either the characteristic function or its derivatives through an extra function
argument.

function [CallFFT K lambdainc eta] = HestonCallFFTGreek(...,Greek)
if fast==1

% Implement the FFT - fast algorithm
U = [0:N-1];
J = [0:N-1];



346 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

psi = HestonCFGreek(v-(alpha+1).*i,...,Greek);
phi = exp(-r*tau).*psi ./ (alpha.^2 + alpha - v.^2 + ...;
x = exp(i.*(b-s0).*v).*phi.*w;
e = exp(-i*2*pi/N.*(U'*J))*x;
CallFFT = eta.*exp(-alpha.*k)./pi .* real(e);

end

The Matlab function HestonCallFRFTGreek.m is used to implement the frac-
tional FFT Greeks and incorporates the same modification.

The following code snippet implements the FFT or FRFT Greeks for the Carr
and Madan (1999) formulation using Simpson’s rule. It also uses the CarrMadan-
Greeks.m function defined in an earlier section to compare the accuracy of the
Greeks obtained in this manner.

rule = 'S';
Greek = {'Price','Delta','Gamma','Theta','Rho','Vega1','Vanna','Volga'};
% FFT or FRFT
for j=1:8;

if strcmp(method,'FFT')
[GreeksFFT(:,j) ...] = HestonCallFFTGreek(...,Greek(j));

else
[GreeksFFT(:,j) ...] = HestonCallFRFTGreek(...,Greek(j));

end
end
% Closed form Greeks and errors
GreeksCM = zeros(length(ATM),8);
for k=1:length(K);

for j=1:8
GreeksCM(k,j) = CarrMadanGreeks(...,Greek(j));

end
end
for j=1:8

error(j) = sum(abs(GreeksCM(:,j) - GreeksFFT(:,j)));
end

The C# code to implement Greeks using the FFT and FRFT is similar and not
presented here.

To illustrate, we run the FRFT Greeks using a spot price of S0 = 100 and a
maturity of 6 months, with 29 points. The strikes are in increments of $0.50. The
results are in Table 11.4, along with the sum of absolute errors from the true Greek
values obtained from the Carr and Madan (1999) formulation.

The table indicates that the Greeks obtained from the fractional FFT are very
accurate. The Greeks from the FFT itself are not presented in Table 11.4, but they
are very accurate also.

AMERICAN GREEKS USING SIMULATION

Recall that in Chapter 8 we used the Least-Squares Monte Carlo (LSM) algorithm
of Longstaff and Schwartz (2001) to value American options in the Heston model.



The Heston Greeks 347

TABLE 11.4 Greeks from the Fractional Fast Fourier Transform

Strike Price Delta Gamma Theta Rho Vega1 Vanna Volga

98.02 9.21 0.649 0.021 −9.25 27.85 16.63 −0.188 27.77
98.51 8.93 0.638 0.021 −9.27 27.46 16.80 −0.163 27.44
99.00 8.66 0.628 0.022 −9.28 27.06 16.96 −0.137 27.14
99.50 8.39 0.617 0.022 −9.29 26.64 17.11 −0.111 26.88

100.00 8.12 0.606 0.022 −9.29 26.23 17.25 −0.084 26.66
100.50 7.86 0.595 0.022 −9.29 25.80 17.37 −0.056 26.49
101.01 7.61 0.583 0.023 −9.28 25.36 17.48 −0.028 26.36
Error 4.5×10−6 5.2×10−6 5.2×10−7 1.8×10−4 4.5×10−6 5.2×10−6 5.2×10−7 1.8×10−4

This algorithm can be modified to calculate American Greeks also. In order for the
Greeks to be accurate, however, we must store the values of the correlated normal
random variables used to generate the stock price and volatility paths, and apply
these same random variables when we generate the paths under the shifted values
of the inputs. This ensures that any differences between the original paths and the
shifted paths are due to the shifts themselves, and not to simulation noise.

It is straightforward to modify the simulation functions of Chapter 7 to obtain
Greeks for American options with the LSM algorithm. The first task is to create
matrices of simulated correlated random variables outside of the functions, and pass
these matrices as function arguments. The Matlab function MMSimGreeks.m is a
simple modified version of the MMSim.m function encountered in Chapter 7 for the
moment-matching simulation scheme of Andersen and Brotherton-Ratcliffe (2005).
The only difference is that the correlated random variables ZS and ZV are generated
outside the function and passed to the function in its argument.

function [S V] = MMSimGreeks(params,...,Zv,Zs)
% Generate the stock and volatility paths
for i=1:N;

for t=2:T;
% Matched moment lognormal approximation
dW = sqrt(dt)*Zv(t,i);
num = 0.5*sigma^2*V(t-1,i)*(1-exp(-2*kappa*dt)) ...;
den = (exp(-kappa*dt)*V(t-1,i) + (1-exp(-kappa ...;
Gam = log(1 + num/den);
V(t,i) = (exp(-kappa*dt)*V(t-1,i) + (1-exp ...;
% Euler/Milstein discretization log stock prices
S(t,i) = S(t-1,i)*exp((r-q-V(t-1,i)/2)*dt + ...;

end
end

To calculate the Greeks, we generate the matrices of correlated random variables,
and we generate a series of stock price paths using the same random variables but
using shifted values of the inputs. Hence, if we wish to estimate delta and gamma with
central differences, we need to shift the spot price twice to obtain two sets of shifted
stock price paths. This is accomplished with the Matlab function LSMGreeks.m.



348 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

function [Euro Amer] = LSMGreeks(...,NT,NS,Zv,Zs,Greek)
ds = 0.01*S;
dv = 0.01*v0;
if strcmp(Greek,'delta') || strcmp(Greek,'gamma')

[Spathsp V] = MMSimGreeks(params,S+ds,...);
[Spathsm V] = MMSimGreeks(params,S-ds,...);
[EuroPricep AmerPricep] = LSM(Spathsp',...);
[EuroPricem AmerPricem] = LSM(Spathsm',...);
if strcmp(Greek,'delta')

Euro = (EuroPricep - EuroPricem)/2/ds;
Amer = (AmerPricep - AmerPricem)/2/ds;

else
[Spaths V] = MMSimGreeks(params,S,...);
[EuroPrice AmerPrice] = LSM(Spaths',...);
Amer = (AmerPricep - 2*AmerPrice + AmerPricem)/ds^2;
Euro = (EuroPricep - 2*EuroPrice + EuroPricem)/ds^2;

end
end
if strcmp(Greek,'vega1')

paramsp = [kappa theta sigma v0+dv rho lambda];
paramsm = [kappa theta sigma v0-dv rho lambda];
[Spathsp V] = MMSimGreeks(paramsp,S,...);
[Spathsm V] = MMSimGreeks(paramsm,S,...);
[EuroPricep AmerPricep] = LSM(Spathsp',...);
[EuroPricem AmerPricem] = LSM(Spathsm',...);
Euro = (EuroPricep - EuroPricem)/2/dv*2*sqrt(v0);
Amer = (AmerPricep - AmerPricem)/2/dv*2*sqrt(v0);

end

The LSMGreeks.m function is used in the following code, which generates delta
and gamma only.

% Matrices for the correlated N(0,1) random variables
Zv = randn(NT,NS);
Zs = rho.*Zv + sqrt(1-rho.^2).*randn(NT,NS);
[EuroDelta AmerDelta] = LSMGreeks(...,'delta');
[EuroGamma AmerGamma] = LSMGreeks(...,'gamma');

The C# code to obtain Greeks of American puts using the LSM algorithm of
Longstaff and Schwartz (2001) is very similar and is not presented here. The only
difference is that we need to create C# functions for obtaining regression parameter
estimates and for generating random numbers. These functions are identical to those
from Chapter 8, where they were used in the LSM algorithm to generate prices of
American options.

To illustrate, we run the LSM algorithm on American puts, using the settings in
Clarke and Parrott (1999) with the prices computed by Ikonen and Toivanen (2008),
namely K = 100, τ = 0.25, r = 0.1, κ = 5, θ = 0.16, σ = 0.9, and ρ = 0.1, with
spot price running from 8 to 12. We use NT = 1, 000 time steps and NS = 50, 000
stock price steps. The results are in Table 11.5.



The Heston Greeks 349

TABLE 11.5 Prices and Greeks for American Puts, LSM Algorithm

Spot Price Delta Gamma Theta Rho Vega1 Vanna

8 2.000 −0.999 0.006 0.006 0.005 −0.005 −0.480
9 1.111 −0.731 0.056 −0.835 −1.094 0.848 1.227

10 0.537 −0.431 0.255 −1.255 −0.726 0.983 −0.465
11 0.225 −0.211 0.168 −1.026 −0.427 0.675 −0.481
12 0.083 −0.086 0.089 −0.575 −0.240 0.317 −0.462

TABLE 11.6 Prices and Greeks for European Puts, LSM Algorithm

Spot
Closed
Price

LSM
Price

Closed
Delta

LSM
Delta

Closed
Gamma

LSM
Gamma

Closed
Vega1

LSM
Vega1

8 1.839 1.834 −0.880 −0.875 0.139 0.174 0.358 0.367
9 1.048 1.057 −0.681 −0.663 0.253 0.252 0.714 0.729

10 0.502 0.522 −0.411 −0.409 0.264 0.241 0.857 0.859
11 0.208 0.221 −0.193 −0.206 0.164 0.155 0.662 0.693
12 0.080 0.081 −0.078 −0.085 0.074 0.085 0.383 0.415

To evaluate the accuracy of the Greeks computed in this way, we can use the
LSM algorithm to generate European option prices, using the same settings as those
in Table 11.5 and compare the Greeks from the LSM algorithm to the closed form
Greeks described previously. The prices and Greeks are in Table 11.6.

The results indicate that the Greeks calculated under the LSM algorithm are
fairly close to their closed-form counterparts.

AMERICAN GREEKS USING THE EXPLICIT METHOD

Recall from Chapter 10 that when the Heston PDE is solved with finite differences,
a matrix in the stock price and volatility dimensions is obtained that contains a
complete set of option prices. Hence, the matrix contains shifted values of the call
value in price and volatility, and finite differences can readily be applied to obtain
the Greeks. This requires two-dimensional interpolation using the Matlab function
interp2.m to obtain the call prices at the shifted values. In this manner, all the
Greeks representing sensitivities in S and v0 can be obtained, namely delta, gamma,
vega1, vanna, and volga. The following code shows how this is done in Matlab
for European options, using the explicit method along a non-uniform grid. The
code uses the Matlab function HestonExplicitPDENonUniformGrid.m presented in
Chapter 10 to approximate the Heston PDE along the two-dimensional grid.

PutCall = 'P';
EuroAmer = 'E';
[U u] = HestonExplicitPDENonUniformGrid(...,PutCall,EuroAmer);
PDEPrice = interp2(V,S,U,V0,S0);
% Delta and Gamma
dS = 1;



350 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

D1 = interp2(V,S,U,V0,S0+dS);
D2 = interp2(V,S,U,V0,S0-dS);
DeltaPDE = (D1-D2)/2/dS;
GammaPDE = (D1 - 2*PDEPrice + D2)/dS^2;
% Vega #1
dV = 1e-2;
V1 = interp2(V,S,U,V0+dV,S0);
V2 = interp2(V,S,U,V0-dV,S0);
Vega1PDE = (V1-V2)/2/dV*2*sqrt(V0);
C1 = interp2(V,S,U,V0+dV,S0+dS);
C2 = interp2(V,S,U,V0-dV,S0+dS);
C3 = interp2(V,S,U,V0+dV,S0-dS);
C4 = interp2(V,S,U,V0-dV,S0-dS);
% Vanna and Volga
VannaPDE = (C1 - C2 - C3 + C4)/4/dV/dS*2*sqrt(V0);
dC2 = (V1 - 2*PDEPrice + V2)/dV^2;
VolgaPDE = 4*sqrt(V0)*(dC2*sqrt(V0) + Vega1PDE/4/V0);

Theta can be obtained by recognizing that the HestonExplicitPDENonUniform-
Grid.m function retains the value of U(S, v, t) in the previous time step, U(S, v, t − dt),
but overwrites this value only until maturity. This provides the time-shifted value
of the derivative that is required for a finite difference approximation to theta. The
code to obtain theta is the following.

[U u] = HestonExplicitPDENonUniformGrid(...);
% Theta
T1 = interp2(V,S,U,V0,S0); % Obtain U(S,v,T)
T2 = interp2(V,S,u,V0,S0); % Obtain U(S,v,T-dt)
ThetaPDE = -(T1 - T2)/dt;

Note that, in the first line, the function is modified to return both U(S, v, τ ) and
U(S, v, τ − dt), rather than U(S, v, τ ) alone.

The explicit method can also be used to obtain Greeks of American options.
The following code calculates American put prices and Greeks for the set of option
prices of Clarke and Parrott (1999). A separate non-uniform grid is built for each
spot price, and centered about the spot price.

S0 = [8 9 10 11 12];
for s=1:length(S0);

% The stock price grid
c = S0(s)/5; % Instead of K/5
dz = 1/nS*(asinh((Smax-S0(s))/c) - asinh(-S0(s)/c));

% Instead of K/c



The Heston Greeks 351

for i=1:nS+1;
z(i) = asinh(-S0(s)/c) + (i-1)*dz; % Instead of K/c
S(i) = S0(s) + c*sinh(z(i));

end
% The volatility grid
d = Vmax/500;
dn = asinh(Vmax/d)/nV;
for j=1:nV+1

n(j) = (j-1)*dn;
V(j) = d*sinh(n(j));

end
% Solve the PDE
[U u] = HestonExplicitPDENonUniformGrid(...);
dS = 0.01*S0(s);
dv = 0.01*v0;
% Price, Delta, and Gamma
PDEPrice(s) = interp2(V,S,U,v0,S0(s));
D1 = interp2(V,S,U,v0,S0(s)+dS);
D2 = interp2(V,S,U,v0,S0(s)-dS);
DeltaPDE(s) = (D1 - D2)/2/dS;
GammaPDE(s) = (D1 - 2*PDEPrice(s) + D2)/dS^2;
% Vega #1
V1 = interp2(V,S,U,v0+dv,S0(s));
V2 = interp2(V,S,U,v0-dv,S0(s));
dCdv0 = (V1 - V2)/2/dv;
Vega1PDE(s) = dCdv0 * 2.0 * sqrt(v0);
% Theta
T1 = interp2(V,S,U,v0,S0(s)); % U(S,v,T)
T2 = interp2(V,S,u,v0,S0(s)); % U(S,v,T-dt)
Theta(s) = -(T1 - T2)/dt;

end

The C# code to generate Greeks of American options using the explicit method
is very similar and uses the C# function HestonExplicitPDENonUniformGrid()
introduced in Chapter 10 to approximate the PDE. This function must be modified
to return both U(S, v, τ ) and U(S, v, τ − dt) also. In C#, this can be done by
creating a structure. The other difference is that we have created the C# function
interp2() for two-dimensional linear interpolation. This function was presented in
Chapter 10 also.

public struct Uu
{

public double[,] bigU;
public double[,] smallU;

}



352 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

for(int k=0;k<=N-1;k++)
{

// Solve the PDE and return U(S,v,T) and U(S,v,T-dt);
Uu output = HestonExplicitPDENonUniformGrid(...);
double[,] U = output.bigU;
double[,] u = output.smallU;
// Price, Delta, Gamma
PDEPrice[k] = interp2(V,S,U,V0,S0[k]);
D1 = interp2(V,S,U,V0,S0[k]+dS);
D2 = interp2(V,S,U,V0,S0[k]-dS);
DeltaPDE[k] = (D1-D2)/2.0/dS;
// Theta
T1 = interp2(V,S,U,V0,S0[k]); // U(S,v,T)
T2 = interp2(V,S,u,V0,S0[k]); // U(s,v,T-dt)
ThetaPDE[k] = -(T1 - T2)/dt;

}

We use the settings of Clarke and Parrott (1999) and the prices of Ikonen
and Toivanen (2008) that were used to generate Table 11.5, along with a stock
price grid size of 80, a volatility grid size of 40, and 3,000 time steps. The results
are in Table 11.7 and are close to those in Table 11.5. Note, however, that the
Explicit Method is unable to accurately calculate vega1, volga, and theta for the
deep in-the-money put in the first row.

AMERICAN GREEKS FROM MEDVEDEV AND SCAILLET

In Chapter 8, we presented the American put approximation of Medvedev and
Scaillet (2010) and noted that one key advantage of this method is its ability to
generate American put prices very quickly. Hence, calculating the Greeks in this
model with finite differences does not require excessive computation time. This is
accomplished with the Matlab function MSGreeks.m, which uses the MSPrice.m
function for the Medvedev and Scaillet (2010) expansion presented in Chapter 8. As
usual, parts of the function have been omitted.

TABLE 11.7 Greeks for American Puts, Explicit Method

Spot Price Delta Gamma Vega1 Vanna Volga Theta

8 2.0000 −0.9998 0.0058 0.0000 0.0408 0.0000 −0.0000
9 1.1042 −0.7483 0.3348 0.6662 0.4653 2.6647 −0.6497

10 0.5188 −0.4349 0.2797 0.8624 −0.0515 3.4496 −1.1288
11 0.2134 −0.2028 0.1721 0.6655 −0.2911 2.6620 −0.9875
12 0.0814 −0.0812 0.0780 0.3841 −0.2515 1.5362 −0.6198



The Heston Greeks 353

function y = MSGreeksFD(params,...,Greek)
if strcmp(Greek,'price')

[EuroPut AmerPutMS AmerPut EEP theta y] = MSPrice(...);
y = EuroPut + EEP;

end
if (strcmp(Greek,'delta') || strcmp(Greek,'gamma'))

ds = 0.01*S;
AmerPutp = MSPrice(S+ds,...);
AmerPutm = MSPrice(S-ds,...);
if strcmp(Greek,'gamma')

AmerPut = MSPrice(S,...);
y = (AmerPutp - 2*AmerPut + AmerPutm)/ds^2;

else
y = (AmerPutp - AmerPutm)/2/ds;

end
end
if strcmp(Greek,'theta')

dt = 0.01*T;
AmerPutp = MSPrice(T+dt,..);
AmerPutm = MSPrice(T-dt,..);
y = -(AmerPutp - AmerPutm)/2/dt;

end
if strcmp(Greek,'vega1') | strcmp(Greek,'volga')

dv = 0.01*v0;
AmerPutp = MSPrice(v0+dv,...);
AmerPutm = MSPrice(v0-dv,...);
Vega1 = (AmerPutp - AmerPutm)/2/dv*2*sqrt(v0);
if strcmp(Greek,'volga')

AmerPut = MSPrice(v0,...);
dC2 = (AmerPutp - 2*AmerPut + AmerPutm)/(dv^2);
y = 4*sqrt(v0)*(dC2*sqrt(v0) + Vega1/4/v0);

else
y = Vega1;

end
end

The C# code to generate Greeks for the Medvedev and Scaillet (2010) American
puts is similar and not presented here.

To illustrate, we use the settings of Clarke and Parrott (1999) that were used
to generate Tables 11.6 and 11.7. Four terms are used in the expansion. The results
are in Table 11.8.

TABLE 11.8 Greeks for American Puts, Medvedev-Scaillet Expansion

Spot Price Delta Gamma Vega1 Vanna Volga Theta

8 2.0008 −0.9642 0.1117 −0.0140 0.4316 4.7165 −0.2162
9 1.1238 −0.7585 0.2924 0.5790 0.6082 3.6768 −0.7937

10 0.5230 −0.4416 0.3030 0.9014 −0.0105 2.2742 −1.1837
11 0.2133 −0.1997 0.1755 0.6830 −0.3256 2.7095 −1.0098
12 0.0822 −0.0792 0.0757 0.3819 −0.2498 2.0886 −0.6288



354 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

0.25 8

Maturity Strike Price

9 10 11 120.5
0.75

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIGURE 11.3 Vega from American put.

We continue with the settings of Clarke and Parrott (1999) to generate the
surface for the first vega (V1). This plot appears as Figure 11.3. Three terms are used
in the Medvedev and Scaillet (2010) expansion.

CONCLUSION

In this chapter, we have presented formulas for the Greeks of the Heston (1993)
model. All of the closed-form pricing formulas can be differentiated analytically to
yield Greeks. The fast Fourier transform and its fractional counterpart can both
produce a large set of Greeks very quickly. In addition, it is straightforward to obtain
Greeks from American options with the explicit finite difference method, the expan-
sion of Medvedev and Scaillet (2010), and the LSM algorithm. Glasserman (2003),
however, cautions that obtaining Greeks with simulation can cause difficulties for all
but the simplest derivatives. Other methods to compute Greeks include the pathwise
method and likelihood ratio method of Broadie and Glasserman (1996) described
in Glasserman (2003) and Chan and Joshi (2010b). Broadie and Kaya (2004)
obtain pathwise and likelihood ratio Greeks under their exact simulation scheme
(Broadie and Kaya, 2006). Benhamou (2002) and Davis and Johansson (2005),
among others, apply Malliavin calculus to obtain simulation-based Greeks in the
Heston model.



The Heston Greeks 355

In Chapter 9, it was shown that one way to make the Heston model more
flexible is to introduce time-dependent parameters. It was shown also that these
models can sometimes provide a better fit to the implied volatility surface than
the original Heston (1993) model, especially at short maturities. Another way to
introduce flexibility into the model is to enrich the volatility dynamics in the model
so that the model allows for two regimes of volatility. This is the idea behind the
double Heston model that we review in the final chapter.



CHAPTER 12
The Double Heston Model

Abstract

The original Heston (1993) model is not always able to fit the implied volatility smile
very well, especially at short maturities. One remedy is to add additional parameters,
which allows the model to be more flexible. This can be accomplished by allowing
the parameters to be time dependent, as was illustrated by the methods covered in
Chapter 9. Another approach is to enrich the variance process. One simple way to
do this is to specify a two-factor structure for the volatility. This is the approach of
Christoffersen et al. (2009) in their double Heston model, which we present in this
chapter.

In this chapter, we first present the multi-dimensional Feynman-Kac theorem,
and we show that the double Heston model is affine in the sense of Duffie et al.
(2000). These results are used to obtain the characteristic function of the double
Heston model. We then show how the double Heston model is a simple extension of
its univariate counterpart, and how its extra parameters allow for a better fit of the
implied volatility smile at multiple maturities. We also show that the ‘‘Little Trap’’
formulation of the characteristic function of Albrecher et al. (2007) can be applied
to the double Heston model. Finally, we present different simulation schemes that
can be applied to the double Heston model. Most of these schemes are extensions of
univariate schemes presented in Chapter 7.

MULTI-DIMENSIONAL FEYNMAN-KAC THEOREM

The bivariate version of this theorem was presented in Chapters 2 and 9. In this
section, we state the multi-dimensional version. Suppose that the vector xt follows
the n-dimensional stochastic process

dxt = μ(xt, t) + σ(xt, t)dBQ
t (12.1)

where xt and μ(xt, t) are each vectors of dimension n, BQ
t is a vector of m-dimension

independent Q-Brownian motion, and σ(xt, t) is a volatility matrix of size n × m.
We can write Equation (12.1) as⎛⎜⎝dx1(t)

...

dxn(t)

⎞⎟⎠ =

⎛⎜⎝μ1

(
xt, t
)

...

μn(xt, t)

⎞⎟⎠dt +

⎛⎜⎝σ11

(
xt, t
) · · · σ1m(xt, t)

...
. . .

...

σn1(xt, t) · · · σnm(xt, t)

⎞⎟⎠
⎛⎜⎝dBQ

1 (t)
...

dBQ
m(t)

⎞⎟⎠ . (12.2)

357The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



358 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Analogous to the univariate case, the generator A of the process is defined as
the operator

A =
n∑

i=1

μi

∂

∂xi

+ 1
2

n∑
i=1

n∑
j=1

(σσT)ij

∂2

∂xi∂xj

(12.3)

where, for notational convenience, μi = μi(xt, t), σ = σ(xt, t), and (σσT)ij is element
(i, j) of the matrix σσT of size n × n. The multi-dimensional version of the Feynman-
Kac theorem states that the partial differential equation of a function f (xt, t)
given by

∂f
∂t

+ Af (xt, t) − r(xt, t)f (xt, t) = 0 (12.4)

and with boundary condition f (xT, T), has the solution

f (xt, t) = EQ

[
exp
(

−
∫ T

t
r
(
xuu
)

du
)

f (xT, T)
∣∣∣∣Ft

]
.

In the following section, we use this result to obtain the PDE and characteristic
function of the double Heston model, and the double Heston call price.

DOUBLE HESTON CALL PRICE

The double Heston model proposed by Christoffersen et al. (2009) introduces a
second factor for the variance, driven by its own SDE

dS = (r − q)Sdt + √
v1SdW1 + √

v2SdW2

dv1 = κ1(θ1 − v1)dt + σ1
√

v1dZ1

dv2 = κ2(θ2 − v2)dt + σ2
√

v2dZ2.

(12.5)

The following correlation structure is specified

E[dW1dZ1] = ρ1dt

E[dW2dZ2] = ρ2dt

E[dW1dW2] = E[dZ1dZ2] = E[dW1dZ2] = E[dW2dZ1] = 0.

(12.6)

Note that we have suppressed the time subscript for notational simplicity. The
idea behind this model is that the additional volatility factor provides more flexibility
in modeling the volatility surface. Recall from Chapter 2 that the correlation between
the returns and their variance (ρ) controls the slope of the implied volatility. When
ρ ≈ 0, the smile is symmetric, but as ρ moves toward ±1 the smile becomes highly
asymmetric, with ρ ≈ −1 corresponding to a negative slope and ρ ≈ +1 to a positive
slope. In the single-factor Heston model, ρ is constant over maturities, which means
that model has trouble providing an adequate fit to market implied volatilities when
the slope of the smile varies substantially across maturities, although it does a good



The Double Heston Model 359

job when the slopes are all relatively flat or all relatively steep. Incorporating a
second volatility factor allows for two different correlations and, hence, for two
different regimes of volatility.

To derive the PDE for the double Heston model, first apply Itō’s lemma to
obtain the SDE for xt = ln St

dx =
(

r − q − 1
2

(
v1 + v2

))
dt + √

v1dW1 + √
v2dW2.

In Equation (12.5), if we set

W1 = B1

W2 = B2

Z1 = ρ1B1 +
√

1 − ρ2
1B3

Z2 = ρ2B2 +
√

1 − ρ2
2B4

(12.7)

where Bj are independent Brownian motion, then we can write the system of SDEs
for xt = (x, v1, v2) as in Equation (12.2). To do this, we note that the correlation
structure in (12.6) corresponds to the volatility matrix of size n × m = 3 × 4

σ(xt, t) =

⎛⎜⎝
√

v1
√

v2 0 0

σ1
√

v1ρ1 0 σ1

√
v1

(
1 − ρ2

1

)
0

0 σ2
√

v2ρ2 0 σ2

√
v2(1 − ρ2

2 )

⎞⎟⎠
and drift

μ =

⎛⎜⎝r − q − 1
2

(
v1 + v2

)
κ1(θ1 − v1)

κ2(θ2 − v2)

⎞⎟⎠ .

We have

σσT =

⎛⎜⎝v1 + v2 σ1v1ρ1 σ2v2ρ2

σ1v1ρ1 σ 2
1 v1 0

σ2v2ρ2 0 σ 2
2 v2

⎞⎟⎠
so the generator for the double Heston model is, from Equation (12.3)

A = [r − q − 1
2

(
v1 + v2

)] ∂

∂x
+ κ1(θ1 − v1)

∂

∂v1

+ κ2(θ2 − v2)
∂

∂v2

+ 1
2

(v1 + v2)
∂2

∂x2
+ ρ1σ1v1

∂2

∂x∂v1

+ ρ2σ2v2

∂2

∂x∂v2

+ 1
2

σ 2
1 v1

∂2

∂v2
1

+ 1
2

σ 2
2 v2

∂2

∂v2
2

.

(12.8)



360 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The PDE follows from (12.4) with r(xt, t) = r, a constant. Note that, when one
of the volatility terms drops out, the generator in (12.8) reduces to that of the
univariate Heston model presented in Chapter 1.

The double Heston system of equations in (x, v1, v2) can be written in affine
form as

μ(xt) = K0 + K1x + K2v1 + K3v2

σ(xt)σ(xt)
T = H0 + H1x + H2v1 + H3v2

with

K0 =
⎛⎝r − q

κ1θ1

κ2θ2

⎞⎠ , K1 =
⎛⎝0

0
0

⎞⎠ , K2 =
⎛⎝− 1

2−κ1

0

⎞⎠ , K3 =
⎛⎝− 1

2
0

−κ2

⎞⎠
and

H0 = H1 =
⎛⎝0 0 0

0 0 0
0 0 0

⎞⎠ , H2 =
⎛⎝ 1 σ1ρ1 0

σ1ρ1 σ 2
1 0

0 0 0

⎞⎠ , H3 =
⎛⎝ 1 0 σ2ρ2

0 0 0
σ2ρ2 0 σ 2

2

⎞⎠ .

We can therefore use the result of Duffie et al. (2000) that the characteristic
function for (xT, v1,T, v2,T) has the log linear form

f (φ0, φ1, φ2; xt, v1,t, v2,t) = E[exp(iφ0xT + iφ1v1,T + iφ2v2,T)]

= exp(A(τ ) + B0(τ )xt + B1(τ )v1,t + B2(τ )v2,t)
(12.9)

where τ = T − t is the time remaining until expiry. In this expression, the coefficients
A, B0, B1, and B2 depend not only on τ but also on φ0, φ1, and φ2 but this has been
omitted for notational convenience. Recall from Chapter 9 that the result of Duffie
et al. (2000) also states that the coefficients of the characteristic function are given
by the system of Riccati equations

∂A
∂t

= −KT
0 β − 1

2
βTH0β

∂B0

∂t
= −KT

1 β − 1
2

βTH1β

∂B1

∂t
= −KT

2 β − 1
2

βTH2β

∂B2

∂t
= −KT

3 β − 1
2

βTH3β

(12.10)

subject to the boundary conditions B0(0) = iφ0, B1(0) = iφ1, B2(0) = iφ2, and A(0) =
0, where βT = (B0, B1, B2). As in Chapter 9, we note that the second equation in
(12.10) along with its initial condition leads immediately to the solution B0(τ ) = iφ0.
After substituting for the other terms in (12.10), and reversing the sign because we



The Double Heston Model 361

need derivatives with respect to time-to-maturity τ rather than t, we are left with the
set of differential equations

∂A
∂τ

= (r − q)iφ0 + κ1θ1B1 + κ2θ2B2

∂B1

∂τ
= 1

2
σ 2

1 B2
1 − (κ1 − iφ0ρ1σ1)B1 − 1

2
φ0(φ0 + i)

∂B2

∂τ
= 1

2
σ 2

2 B2
2 − (κ2 − iφ0ρ2σ2)B2 − 1

2
φ0(φ0 + i).

(12.11)

Since we are interested in the characteristic function for xT only, and not in
the joint characteristic function for (xT, v1,T, v2,T), we set φ1 = φ2 = 0 in Equation
(12.9). The initial conditions for Equation (12.11) become B1(0) = B2(0) = 0, while
B0(0) = iφ and A(0) = 0 remain unchanged (we write φ for φ0). Hence, the Ricatti
equations for B1 and B2 are identical to their univariate counterparts in Chapter 1,
so their solutions are

Bj(τ , φ) = κj − ρjσjφi + dj

σ 2
j

[
1 − edjτ

1 − gje
djτ

]

where

gj = κj − ρjσjφi + dj

κj − ρjσjφi − dj

, dj =
√

(κj − ρjσjφi)2 + σ 2
j φ(φ + i).

Note that dj and gj both refer to the second form for d and g, which we covered
in Chapter 1, corresponding to the second characteristic function f2. In this chapter,
the subscript on dj and gj refers to that of the volatility vj.

The solution for A(τ , φ) is

A(τ , φ) = (r − q)φiτ +
2∑

j=1

κjθj

σ 2
j

[(
κj − ρjσjφi + dj

)
τ − 2 ln

(
1 − gje

djτ

1 − gj

)]
.

By defining cj = 1/gj, we can also use the ‘‘Little Trap’’ formulation of Albrecher
et al. (2007), which expresses the coefficients of the characteristic function in terms of
exp(−djτ ) rather than exp(djτ ), as in Gauthier and Possamaı̈ (2010). This produces
the alternate forms of the coefficients

Bj(τ , φ) = κj − ρjσjφi − dj

σ 2
j

[
1 − e−djτ

1 − cje
−djτ

]

and

A(τ , φ) = (r − q)φiτ +
2∑

j=1

κjθj

σ 2
j

[(
κj − ρjσjφi − dj

)
τ − 2 ln

(
1 − cje

−djτ

1 − cj

)]
.

As in the univariate case, this formulation avoids the discontinuity problems that
can arise with the original formulation. Once the coefficients are obtained, either



362 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

with the original formulation or the ‘‘Little Trap’’ formulation, the characteristic
function is

f (φ; xt, v1,t, v2,t) = exp
(
A(τ , φ) + iφxt + B1(τ , φ)v1,t + B2(τ , φ)v2,t

)
(12.12)

where xt is the log spot price of the underlying, and v1,t and v2,t are the initial
variances, which can be estimated as the parameters v01 and v02, as in the univariate
case. The call price is obtained in the usual fashion

C(K) = Ste
−qτ P1 − Ke−rτ P2 (12.13)

where

P1 = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iφ ln Kf

(
φ − i; xt, v1,t, v2,t

)
iφSte(r−q)τ

]
dφ,

P2 = 1
2

+ 1
π

∫ ∞

0
Re

[
e−iφ ln Kf

(
φ; xt, v1,t, v2.t

)
iφ

]
dφ.

(12.14)

Note that to allow for the stock to pay a continuous dividend yield q, in the first
term of the expression for A(τ , φ) we include r − q rather than r alone. Similarly, the
first term of the call price in Equation (12.13) is Ste

−qτ P1, and in the denominator of
P1 in (12.14), we use Ste

(r−q)τ rather than Ste
rτ .

Implementing the double Heston model is only slightly more complicated
than implementing its univariate counterpart. In the computer code, we order the
parameters as


 = (κ1, θ1, σ1, v10, ρ1, κ2, θ2, σ2, v20, ρ2) (12.15)

The Matlab file DoubleHestonCF.m returns the characteristic function for the
double Heston model.

function y = DoubleHestonCF(phi,...);
if trap==1

d1 = sqrt((kappa1-rho1*sigma1*i*phi)^2 + ...;
d2 = sqrt((kappa2-rho2*sigma2*i*phi)^2 + ...;
G1 = (kappa1-rho1*sigma1*phi*i-d1) ...;
G2 = (kappa2-rho2*sigma2*phi*i-d2) ...;
B1 = (kappa1-rho1*sigma1*phi*i-d1)*(1-exp(-d1*tau)) ...;
B2 = (kappa2-rho2*sigma2*phi*i-d2)*(1-exp(-d2*tau)) ...;
X1 = (1-G1*exp(-d1*tau))/(1-G1);
X2 = (1-G2*exp(-d2*tau))/(1-G2);
A = (rf-q)*phi*i*tau + ...;

else
...

end
y = exp(A + i*phi*x0 + B1*v01 + B2*v02);

The following Matlab function calculates the call price using the trapezoidal
rule, and returns either the call price itself, or the put price by put-call parity.



The Double Heston Model 363

TABLE 12.1 Double Heston Call Prices

Strike Price Maturity Call Price

61.90 1 yr 19.4538
61.90 10 yrs 41.3940
43.33 1 yr 27.6047
43.33 10 yrs 45.2793
80.47 1 yr 13.9276
80.47 10 yrs 38.2719

function y = DoubleHestonPriceTrapezoidal(...,a,b,N)
h = (b-a)/(N-1);
phi = [a:h:b];
w = h.*[1/2 ones(1,N-2) 1/2];
for k=1:length(phi);

u = phi(k);
f2(k) = DoubleHestonCF(u ,...);
f1(k) = DoubleHestonCF(u-i,...);
int2(k) = w(k)*real(exp(-i*u*log(K))*f2(k)/i/u);
int1(k) = w(k)*real(exp(-i*u*log(K))*f1(k)/i/u ...);

end
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);
HestonC = S*exp(-q*T)*P1 - K*exp(-rf*T)*P2;

The C# code to implement the double Heston model is very similar and is not
presented here.

To illustrate the double Heston model, we use Matlab to reproduce Table 3
of Gauthier and Possamaı̈ (2010). The call prices using the trapezoidal rule are
presented in Table 12.1 and are almost identical to those of Gauthier and Possamaı̈.

In practice, we use Gauss-Laguerre quadrature, since this is almost as accurate
as the trapezoidal rule, but much faster.

DOUBLE HESTON GREEKS

In this section, we derive analytic expressions for the Greeks in the double Heston
model. We saw in Chapter 11 that many of the Greeks for the Heston (1993) model
are available analytically, by straightforward differentiation of the call price. We also
saw that by using finite difference approximations to the Greeks, it is easy to verify
the accuracy of the analytic Greeks. This approach can be used with the double
Heston model as well, by differentiation of the call price in (12.13). The Greeks
in the double Heston model are straightforward generalizations of their univariate
counterparts. Gamma, for example, is � = e−qτ ∂P1/∂S, where from Equation (12.14)

∂P1

∂S
= 1

π

∫ ∞

0
Re

[
e−iφ ln Kf

(
φ − i; xt, v1,t, v2,t

)
S2

t e(r−q)τ

]
dφ.



364 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Theta requires

∂P1

∂τ
= 1

π

∫ ∞

0
Re
[

e−iφ ln K

iφSte(r−q)τ

(
∂f
∂τ

− (r − q) f
)]

dφ

where f and its τ -derivative are both evaluated at φ − i. It also requires

∂P2

∂τ
= 1

π

∫ ∞

0
Re
[

e−iφ ln K

iφ

(
∂f
∂τ

)]
dφ

where the τ -derivative of f is evaluated at φ. The expression for theta is identical to
that in Chapter 11. In the derivatives of P1 and P2, we have

∂f
∂τ

= exp(A + iφxt + B1v1,t + B2v2,t)
(

∂A
∂τ

+ ∂B1

∂τ
v1,t + ∂B2

∂τ
v2,t

)
where the τ -derivative of A(τ , φ) is analogous to that for C(τ , φ) in Chapter 11,
and where the τ -derivative of B1(τ , φ) and B2(τ , φ) both correspond to that for
D(τ , φ). Recall that v1,t and v2,t are the initial variances, which are estimated as the
parameters v01 and v02.

We saw in Chapter 11 that Zhu (2010) defines the first vega V1 to be based on
υ = √

v0. Since there are two initial variance parameters in the double Heston model,
there are two such vegas, V11 based on υ1 = √

v01, and V12 based on υ2 = √
v02.

These can be easily obtained, by noting that since ∂f/∂v0j = f × Bj, we have the
derivatives

∂P1

∂v0j

= 1
π

∫ ∞

0
Re
[

e−iφ ln K

iφSte(r−q)τ
f (φ − i; xt, v1,t, v2,t)Bj(τ , φ − i)

]
dφ,

∂P2

∂v0j

= 1
π

∫ ∞

0
Re
[

e−iφ ln K

iφ
f
(
φ; xt, v1,t, v2,t

)
Bj(τ , φ)

]
dφ.

(12.16)

The two vegas are identical to the form derived in Chapter 11

V1j = Se−qτ
∂P1

∂v0j

2
√

v0j − Ke−rτ ∂P2

∂v0j

2
√

v0j (12.17)

for j = 1, 2. Similarly, the two volgas are obtained with ∂2f/∂v2
0j = f × B2

j . Using the
relationship derived in Chapter 11, ∂2P1/∂υ2

j is

∂2P1

∂υ2
j

= 4

(
∂2P1

∂v2
0j

v0j +
1
2

∂P1

∂v0j

)

= 1
π

∫ ∞

0
Re
[

e−iφ ln K

iφSte(r−q)τ
2B1f (2B1v0j + 1)

]
dφ

where f and B1 are both evaluated at φ − i. The expression for ∂2P2/∂υ2
j is identical,

except that Ste
(r−q)τ is not included in the denominator and f and B1 are both

evaluated at φ. The volgas are then

Volgaj = Se−qτ
∂2P1

∂υ2
j

− Ke−rτ ∂2P2

∂υ2
j

. (12.18)



The Double Heston Model 365

There are also two vannas, based on υ1 and υ2

Vannaj = 2e−qτ√v0j

∂P1

∂v0j

. (12.19)

The Matlab function DoubleHestonGreeks.m calculates the analytical Greeks
of the double Heston model. The function calls the B.m function to calculate the
coefficients B1(τ , φ) and B2(τ , φ) required for vega, vanna, and volga, as well as the
DiffTau.m function to calculate the τ -derivatives of A(τ , φ), B1(τ , φ), and B2(τ , φ)
required for theta. To conserve space, most of the function has been omitted. The
first part of the function creates the integrands for the selected Greek.

function y = DoubleHestonGreeks(...,Greek)
for k=1:N;

u = x(k);
f2 = DoubleHestonCF(u ,...);
f1 = DoubleHestonCF(u-i,...);
if strcmp(Greek,'Price')

int2(k) = w(k) * real(exp(-i*u*log(K))/i/u*f2);
int1(k) = w(k) * real(exp(-i*u*log(K))/i/u ...);

elseif strcmp(Greek,'Gamma')
int1(k) = w(k) * real(exp(-i*u*log(K))/exp((rf-q)*T)...);

elseif strcmp(Greek,'Vega11') || strcmp(Greek,'Vega12')
if strcmp(Greek,'Vega11') v0choice = 1;
else v0choice = 2; end
B1 = B(u-i,param,T,trap,v0choice);
B2 = B(u ,param,T,trap,v0choice);
df1 = f1*B1;
df2 = f2*B2;
int2(k) = w(k) * real(exp(-i*u*log(K))/i/u*df2);
int1(k) = w(k) * real(exp(-i*u*log(K))/i/u ...);

elseif strcmp(Greek,'Theta')
int2(k) = w(k) * real(exp(-i*u*log(K))/i/u*f2);
int1(k) = w(k) * real(exp(-i*u*log(K))/i/u ...);
v01 = param(4);
v02 = param(9);
[dA1 dB11 dB21] = DiffTau(u-i,param,T,S,rf,q);
df1 = f1*(dA1 + dB11*v01 + dB21*v02) - (rf-q)*f1;
[dA2 dB12 dB22] = DiffTau(u ,param,T,S,rf,q);
df2 = f2*(dA2 + dB12*v01 + dB22*v02);
dint2(k) = w(k) * real(exp(-i*u*log(K))/i/u*df2);
dint1(k) = w(k) * real(exp(-i*u*log(K))/i/u ...);

end
end

The second part of the function calculates the integrals and returns the price or
the Greek.

if strcmp(Greek,'Price')
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);



366 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

y = S*exp(-q*T)*P1 - K*exp(-rf*T)*P2;
elseif strcmp(Greek,'Gamma')

y = exp(-q*T)*sum(int1)/pi;
elseif strcmp(Greek,'Vega11') || strcmp(Greek,'Vega12')

if strcmp(Greek,'Vega11') v0 = param(4);
else v0 = param(9); end
dP1 = 1/pi*sum(int1);
dP2 = 1/pi*sum(int2);
dC = S*exp(-q*T)*dP1 - K*exp(-rf*T)*dP2;
y = dC*2*sqrt(v0);

elseif strcmp(Greek,'Rho')
P2 = 1/2 + 1/pi*sum(int2);
y = K*T*exp(-rf*T)*P2;

elseif strcmp(Greek,'Theta')
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);
dP1 = 1/pi*sum(dint1);
dP2 = 1/pi*sum(dint2);
y = -S*exp(-q*T)*(-q*P1+dP1) + K*exp(-rf*T)*(-rf*P2+dP2);

end

The Matlab function DiffTau.m returns the τ -derivatives of A(τ , φ), B1(τ , φ),
and B2(τ , φ).

function [dA dB1 dB2] = DiffTau(phi,...)
d1 = sqrt((kappa1-rho1*sigma1*phi*i)^2 + ...;
g1 = (kappa1-rho1*sigma1*phi*i+d1) ...;
dC1 = kappa1*theta1/sigma1^2 ...;
% The derivatives
dA = (rf-q)*phi*i + dC1 + dC2;
dB1 = d1*exp(d1*tau)*(kappa1-rho1*sigma1*phi*i+d1)*(g1-1) ...;
dB2 = d2*exp(d2*tau)*(kappa2-rho2*sigma2*phi*i+d2)*(g2-1) ...;

The Matlab function B.m returns the coefficient B1(τ , φ) or B2(τ , φ), depending
on the choice of ‘‘j’’ in the function argument. The function allows for the original
Heston (1993) formulation, or for the ‘‘Little Trap’’ formulation of Albrecher et al.
(2007).

function y = B(phi,...,j)
if trap==1

B1 = (kappa1-rho1*sigma1*phi*i-d1)*(1-exp(-d1*tau)) ...;
B2 = (kappa2-rho2*sigma2*phi*i-d2)*(1-exp(-d2*tau)) ...;

else
B1 = (kappa1-rho1*sigma1*phi*i+d1)*(1-exp(d1*tau))/ ...;
B2 = (kappa2-rho2*sigma2*phi*i+d2)*(1-exp(d2*tau))/ ...;



The Double Heston Model 367

end
if j==1

y = B1;
else

y = B2;
end

The C# code to calculate the analytical Greeks of the double Heston model is
very similar to the Matlab code and is not presented here.

To illustrate the double Heston Greeks, we use the same settings as those in
Table 12.1 and generate the Greeks of the at-the-money call price with a maturity
of 1 year. The results are in Table 12.2. Recall from Table 12.1 that the price with
these settings is 19.4538. The analytic Greeks are all accurate, as indicated by their
absolute difference with their finite difference counterparts. This difference appears
in the last column of Table 12.2.

We saw in Chapter 11 that the Greeks satisfy the PDE of the univariate Heston
model, provided that the PDE be expressed in terms of S rather than x = ln S, and
provided that vega, vanna, and volga be in terms of the variance v0 rather than
the volatility υ = √

v0. It is straightforward to demonstrate this for the PDE of
the double Heston model also. Using the generator in Equation (12.8) for S along
with (12.4), and substituting the Greeks for the derivatives in S, v01, and v02 of the
resulting PDE produces


 + (r − q)S0 + κ1(θ1 − v01)Vega1 + κ2(θ2 − v02)Vega2

+ 1
2

(v01 + v02)S2
0� + ρ1σ1v01S0Vanna1 + ρ2σ2v02S0Vanna2

+ 1
2

σ 2
1 v01Volga1 + 1

2
σ 2

2 v02Volga2 − rC = 0.

(12.20)

TABLE 12.2 Double Heston Greeks

Greek Analytic Difference

Price 19.4538
Delta 0.6730 3.3 × 10−7

Gamma 0.0075 4.2 × 10−9

Rho 22.2029 4.1 × 10−6

Theta −7.0594 1.8 × 10−6

Vega11 11.2973 1.8 × 10−6

Vega12 11.5147 1.4 × 10−6

Vanna1 0.0745 2.6 × 10−7

Vanna2 0.0816 2.7 × 10−7

Volga1 10.4625 1.3 × 10−7

Volga2 7.7954 2.1 × 10−7



368 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

The following snippet of code demonstrates that the PDE in (12.20) holds.

Vega11p = Vega11 / (2*sqrt(v01));
Vega12p = Vega12 / (2*sqrt(v02));
Vanna1p = Vanna1 / (2*sqrt(v01));
Vanna2p = Vanna2 / (2*sqrt(v02));
Volga1p = (1/4/sqrt(v01)*Volga1 - Vega11p/2/sqrt(v01))/sqrt(v01);
Volga2p = (1/4/sqrt(v02)*Volga2 - Vega12p/2/sqrt(v02))/sqrt(v02);
% The double Heston PDE
A = (rf-q)*S*Delta ...

+ kappa1*(theta1-v01)*Vega11p ...
+ kappa2*(theta2-v02)*Vega12p ...
+ 0.5*(v01+v02)*S^2*Gamma ...
+ rho1*sigma1*v01*S*Vanna1p ...
+ rho2*sigma2*v02*S*Vanna2p ...
+ 0.5*sigma1^2*v01*Volga1p ...
+ 0.5*sigma2^2*v02*Volga2p;

PDE = Theta + A - rf*Price;

Note that we express the derivatives of the PDE (12.20) in terms of v0 rather than
υ, before substituting these derivatives into the Heston PDE, as we did in Chapter
11. With the settings used to generate Table 12.2, the code returns 1.1 × 10−7 for
the value of the PDE.

PARAMETER ESTIMATION

Christoffersen et al. (2009) estimate the volatility parameters v01 and v02 as daily
spot volatilities v01,t and v02,t, and the remaining parameters � = {κj, θj, σj, ρj}j=1,2 on
a yearly basis. Their estimation works in two steps. In the first step, a given value of
the fixed parameters � = {κj, θj, σj, ρj}j=1,2 is used in their loss function with options
available on day t to obtain estimates v̂01,t and v̂02,t. This is repeated until a yearly
time series {v̂01,t}T

t=1 and {v̂02,t}T
t=1 of spot volatilities is obtained. In the second step,

these time series are fed into the same objective function, but using options across
the entire year, to obtain an updated estimate of �. The two steps are repeated until
there is no significant reduction in the value of the objective function at the second
step. This approach requires a longitudinal set of option prices.

In this section, we employ the simpler approach of treating v01 and v02 as fixed
parameters, analogous to what is done in Chapter 6 for the univariate Heston model.
Recall from that chapter that there are many possible loss functions that can be
used in the estimation, but if the intent is to minimize the fit of the model to market
implied volatilities, then it is preferable to use a loss function that involves implied
volatilities. One such example is the IVRMSE loss function

1
N

∑
t,k

wtk

(IVtk − IV

tk)2

IVtk

(12.21)

where IVtk and IV

tk are the market and model implied volatilities respectively, wtk is

an optional weight, and N is the total number of observations used in the estimation.



The Double Heston Model 369

As first mentioned in Chapter 6, the problem with using IVRMSE and other objective
functions that use implied volatility is that the model implied volatility IV


tk must be
obtained at every iteration of the optimization, which is computationally intensive.
To address this issue, in Chapter 6 we introduced the Christoffersen et al. (2009)
proxy of (12.21)

1
N

∑
t,k

wtk

(
Ctk − C


tk

BSVegatk

)2

(12.22)

where Ctk and C

tk are the market and model call prices, respectively, and where

BSVegatk is the Black-Scholes vega evaluated at the strike Kk, at the maturity τt, and
using the market implied volatility IVtk as the volatility input. The Black-Scholes
vega is given by

BSVegatk = S exp(−qτt)n(dtk)
√

τt (12.23)

where

dtk = ln(S/Kk) + (r − q + IV2
tk/2)τt

IVtk
√

τt

(12.24)

and where n(x) = exp(−x2/2)/
√

2π is the standard normal density. The loss function
in Equation (12.22) is implemented with the Matlab function DoubleHestonObj-
Fun.m.

function y = DoubleHestonObjFun(...)
for t=1:NT
for k=1:NK
MP(k,t)= DoubleHestonPriceGaussLaguerre(K(k),T(t),...);
BSVega(k,t) = BSV(K(k),MktIV(k,t),T(t),...);
error(k,t) = (MP(k,t) - MktPrice(k,t))^2 ...;

end
end
y = sum(sum(error));

The function also allows for MSE and RMSE loss functions, and can be easily
modified to accept additional loss functions. The BSV function is a Matlab function
that computes vega in (12.23).

We can also use the Strike Vector Computation method of Kilin (2007) described
in Chapter 6 to estimate the parameters of the double Heston model, which reduces
the estimation time dramatically. This is accomplished with the Matlab function
DoubleHestonObjFunSVC.m.

function y = DoubleHestonObjFunSVC(param,...)
for t=1:NT

for j=1:length(x)
phi = x(j);



370 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

f2(j) = DoubleHestonCF(phi ,...);
f1(j) = DoubleHestonCF(phi-i,...);

end
for k=1:NK

for j=1:length(x);
phi = x(j);
int2(j) = w(j)*real(exp(-i*phi*log(K(k)))*f2(j)...);
int1(j) = w(j)*real(exp(-i*phi*log(K(k)))*f1(j)...);

end
P1 = 1/2 + 1/pi*sum(int1);
P2 = 1/2 + 1/pi*sum(int2);
CallPrice = S*exp(-q*T(t))*P1 - K(k)*exp(-rf*T(t))*P2;
if strcmp(PutCall(k,t),'C')

ModelPrice(k,t) = CallPrice;
else

ModelPrice(k,t) = CallPrice - S*exp(-q*T(t)) + ...;
end
d = (log(S/K(k)) + (rf-q+MktIV(k,t)^2/2)*T(t))...;
BSVega(k,t) = S*normpdf(d)*sqrt(T(t));
error(k,t) = (ModelPrice(k,t) - MktPrice(k,t))^2 ...;

end
end
y = sum(sum(error));

The C# code to estimate parameters in the double Heston model is very similar
to the Matlab code and is not presented. The main difference is that, in C#, we
need the NelderMead() function presented in Chapter 6 to minimize the objective
function and return the parameters. Please refer to that chapter for details on the
NelderMead() function.

To illustrate parameter estimation under the double Heston model, we use the
same Dow Jones Industrial Average implied volatilities quoted on May 10, 2012,
that were used to estimate the time-dependent model of Mikhailov and Nögel (2003)
in Chapter 9. The fit of each model is evaluated using the IVMSE estimation error

1
N

√∑
t,k

(IVtk − IV
̂
tk)2. (12.25)

The parameter estimates 
̂ from the univariate and double Heston models,
along with their estimation error and estimation time, are in Table 12.3. Parameters
are estimated using the Christoffersen et al. (2009) loss function (12.22) and the
ordinary summation of the terms in the objective function. We also repeat the
estimation using (12.22) but with Kilin’s (2007) Strike Vector Computation method
of summation.

The estimates are consistent with a double regime of volatility described by
Christoffersen et al. (2009). The first volatility factor has a low mean reversion
level and corresponds to a mildly steep smile for long maturities, while the second
factor has much higher reversion and corresponds to a smile that is much steeper
for shorter maturities. The fact that the double Heston model can capture the time-
varying nature of the smile is reflected in an estimation error that is lower than that



The Double Heston Model 371

TABLE 12.3 Univariate and Double Heston Parameter Estimates, DIA Data

κ̂ θ̂ σ̂ v̂0 ρ̂

Estimation
Error

Estimation
Time (sec)

Univariate
Heston

1.3750 0.1254 1.3185 0.0332 −0.4436 5.13 × 10−4 29.5

Double 3.0590 0.0317 1.9850 0.0258 0.0643 1.56 × 10−4 41.5a

Heston 1.8467 0.0605 0.7149 0.0092 −0.9750 5.0b

aUsing ordinary estimation method
bUsing Strike Vector Computation method

of the univariate Heston model. This is also illustrated in Figure 12.1, which plots
the market implied volatilities and the implied volatilities extracted from each model.
Finally, the estimates produced using the ordinary and SVC methods of summation
in the objective function are identical, but the latter reduces the estimation time by
nearly 90 percent.

The implied volatility surface and local volatility surface, obtained using the
finite difference approximation presented in Chapter 2, are plotted in Figure 12.2.
The figure uses the parameter estimates of the double Heston model from Table 12.3.
As expected, local volatility shows much more variability than implied volatility.

We can also extract the risk-neutral densities (RND) from the Heston call prices
generated with the estimated parameters in Table 12.3. These appear in Figure 12.3.

0.16

125 130

Market

Maturity 37 days

Single
Double

135

0.18

0.2

0.22

0.16

125 130

Market

Maturity 72 days

Single
Double

135

0.18

0.2

0.22

0.16

125 130

Market

Maturity 135 days

Single
Double

135

0.18

0.2

0.22

0.16

125 130

Market

Maturity 226 days

Single
Double

135

0.18

0.2

0.22

FIGURE 12.1 Implied Volatilities from Univariate and Double Heston Models



372 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

124 0.1
0.2

0.3
0.4

0.5
0.6

126
128

130
132

134
136
0.1

0.15

0.2

0.25

MaturityStrike Price

FIGURE 12.2 Implied and Local Volatilities from the Double Heston Model,
DJIA Data

0
0 50 100 150 200

Terminal Stock Price

R
N

D

250 300 350

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
37-day maturity
72-day maturity
135-day maturity
226-day maturity

FIGURE 12.3 Risk Neutral Densities, DJIA Data



The Double Heston Model 373

Figure 12.3 is generated with the following Matlab code, which is very similar
to that in Chapter 6 for extracting RNDs from call prices obtained with original
Heston (1993) model.

% Strike increment and ranges
dK = 0.5;
K{1} = 60:dK:220;
K{2} = 40:dK:300;
K{3} = 18:dK:380;
K{4} = 8:dK:600;

% Extract the RNDs, areas, and zeros
for t=1:NT

NK = length(K{t});
for k=1:NK

Calls{t}(k) = DoubleHestonPriceGaussLaguerre(K{t}(k),T(t),...);
end
[RND{t} Strike{t}] = ExtractRND(K{t},Calls{t});
Area(t) = trapz(RND{t})*dK;
Zero(t) = length(find(RND{t}<0));

end

SIMULATION IN THE DOUBLE HESTON MODEL

In Chapter 7, we presented a set of discretization and simulation schemes for
the Heston (1993) model, many of which are designed specifically for the model.
Gauthier and Possamaı̈ (2010) adapt many of these schemes to the double Heston
model. In this section, we present a few of these simulation schemes. In most cases,
the generalization of the scheme from the Heston model to the double Heston model
is straightforward and intuitive. In each scheme, it is possible to apply a martingale
correction to improve the accuracy of the scheme, but these are not covered.

Simulation of the Stock Price

Rather than simulating the log stock price ln St, Gauthier and Possamaı̈ (2010)
suggest simulating the discounted log price ln(e−rtSt) and applying the Predictor-
Corrector scheme. This scheme is given in terms of two standard Brownian motion
W1,t and W2,t as

ln(e−r(t+dt)St+dt) = ln(e−rtSt)

+ K1
0 + K1

1v1,t + K1
2v1,t+dt +

√
K1

3(v1,t + v1,t+dt)W1,t

+ K2
0 + K2

1v2,t + K2
2v2,t+dt +

√
K2

3(v2,t + v2,t+dt)W2,t

(12.26)



374 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

where the constants are, for j = 1, 2

Kj
0 = −ρjκjθj

σj

dt, Kj
1 = dt

2

(
κjρj

σj

− 1
2

)
− ρj

σj

Kj
2 = dt

2

(
κjρj

σj

− 1
2

)
+ ρj

σj

, Kj
3 = dt

2
(1 − ρ2

j ).

Note that the Brownian motions W1,t and W2,t are independent, but the dis-
cretization scheme preserves correlation through the constants Kj

i. The stock price is
then found by exponentiating ln(e−r(t+dt)St+dt) and multiplying the result by er(t+dt).

Euler Scheme for the Variance

This is a straightforward extension of the univariate case. Under the full truncation
scheme, for example, each variance vj,t+dt is generated independently of the other
using the current value vj,t as

vj,t+dt = v+
j,t + κj(θj − v+

j,t)dt + σj

√
v+

j,t

√
dtZj,V (12.27)

for j = 1, 2 and where Z1,V and Z2,V are independent Brownian motion. The current
and updated values vj,t and vj,t+dt are then fed into the simulation of Equation
(12.26), and the process is repeated. Note that v+

j,t = max(0, vj,t) so that in (12.27),
negative variances are avoided. It is also possible to use the reflective scheme instead,
by replacing v+

j,t in (12.27) with |vj,t|.

Alfonsi Scheme for the Variance

Gauthier and Possamaı̈ (2010) adapt the second-order discretization scheme of
Alfonsi (2010) to the double Heston model. For notational simplicity, we drop the
‘‘j’’ subscript from all the parameters and variances. As in Chapter 7, define

� = 1 − exp(−κdt/2)
κ

and define the constant K2 as

K2 = exp(κdt/2)

⎡⎣(σ 2

4
− θκ

)
� +

(√
eκdt/2

(
σ 2

4
− θκ

)
� + σ

2

√
3dt

)2⎤⎦ (12.28)

when σ 2 > 4κθ , and as
K2 = 0 (12.29)

when σ 2 ≤ 4κθ . At each simulation step, we compare vt to K2, and we have a
different updated value vt+dt, depending on the results of the comparison. Hence, in
this scheme, two cases are considered separately, exactly as in Chapter 7.



The Double Heston Model 375

Case 1, vt > K2

Updating to vt+dt requires two steps. In the first step, we simulate a
discrete random variable Y ∈ {0,

√
3, −√

3} with probabilities 2/3, 1/6, and
1/6, respectively. In the second step, we update to vt+dt using

vt+dt = exp(−κdt/2)

(√(
κθ − σ 2

4

)
� + e−κdt/2vt + σ

2

√
dtY

)2

+
(

κθ − σ 2

4

)
�. (12.30)

Case 2, vt ≤ K2

Denote the first two moments of vt+dt conditional on vt by

u1 = E[vt+dt|vt]

u2 = E[v2
t+dt|vt].

Define the quantity π as

π = 1
2

− 1
2

√
1 − u2

1

u2

.

In the first step, we simulate a uniform random variable U on (0, 1). In the
second step, we update to vt+dt by comparing U to π so that

vt+dt = u1

2π
if U ≤ π

vt+dt = u1

2(1 − π )
if U > π.

(12.31)

The function CIRmoments.m calculates the moments u1 and u2. The algorithm
to update vt is implemented with the Matlab function AlfonsiV.m. These functions
are identical to those presented in Chapter 7. Please refer to that chapter for details.

The AlfonsiV.m function is used in the DHEulerAlfonsiSim.m function, which
simulates the stock price in accordance with the Predictor-Corrector scheme in
Equation (12.26), simulates the variance using the Euler scheme under full truncation
in (12.27) or the Alfonsi scheme in (12.30) and (12.31), and returns the simulated
value of the call or put. To conserve space, parts of the function are omitted.

function [S ... Price] = DHEulerAlfonsiSim(scheme,...)
S(1,:) = S0;
V1(1,:) = v01;
V2(1,:) = v02;
for i=1:N;

for t=2:T;
if strcmp(scheme, 'Euler')

% Generate two independent N(0,1) variables
G1 = randn(1);
G2 = randn(1);



376 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

% Euler discretization with full truncation
V1(t,i) = V1(t-1,i) + kappa1*(theta1-V1(t-1,i)) ...;
V1(t,i) = max(0,V1(t,i));

elseif strcmp(scheme,'Alfonsi')
% Alfonsi discretization
V1(t,i) = AlfonsiV(params1,V1(t-1,i),dt);

end
% Predictor-Corrector for the stock price
B1 = randn(1);
B2 = randn(1);
logS = log(exp(-r*t*dt)*S(t-1,i)) + K01 + K11*V1(t-1,i) + ...; ...;
S(t,i) = exp(logS)*exp(r*(t+1)*dt);

end
end
ST = S(end,:);
if strcmp(PutCall,'C')

Payoff = max(ST - Strike,0);
elseif strcmp(PutCall,'P')

Payoff = max(Strike - ST,0);
end
Price = exp(-r*Mat)*mean(Payoff);

The C# code to implement the Alfonsi (2010) method on the double Heston
model is similar and not presented here.

Zhu Scheme for the Transformed Variance

We saw in Chapter 7 that one way to avoid negative variances is to simulate the
volatility instead of the variance, and then square the volatility before using it as an
input to the stock price process. It is straightforward to apply this approach to the
double Heston model also. Recall from Chapter 7 that an application of Itō’s lemma
produces the process for the volatility ωj,t = √vj,t, and that Euler discretization of
the volatility produces

ωj,t+dt = ωj,t + κj

2

[(
θj −

σ 2
j

4κj

)
1

ωj,t

− ωj,t

]
dt + 1

2
σj

√
dtZj,V (12.32)

for j = 1, 2. Hence, we first simulate (ω1,t, ω2,t) and then obtain the variances
as v1,t = ω2

1,t and v2,t = ω2
2,t. These are then fed into the Predictor-Method of

Equation (12.26) to obtain St+dt. Note that this method suffers the same problem of
numerical instability as the univariate version, due to the fact that the mean levels
θω,j = [θj − σ 2

j /(4κj)]/ωj,t are stochastic.
We saw in Chapter 7 that the remedy proposed by Zhu (2010) to this numerical

instability is the transformed volatility scheme. Gauthier and Possamaı̈ (2010) show
how to apply this scheme to the double Heston model also. The transformed
volatilities are defined analogously to those in Chapter 7

ωj,t+dt = ωj,t + κj

2
[θ ∗

j − ωj,t]dt + 1
2

σj

√
dtZj,V (12.33)



The Double Heston Model 377

for j = 1, 2, where

θ ∗
j = βj − ωj,t exp(−κjdt/2)

1 − exp(−κjdt/2)

and

βj =
√√√√(θj +

(
vj,t − θj

)
e−κjdt − σ 2

j

4κj

(1 − e−κjdt)

)+

.

Implementing the transformed volatility scheme for the double Heston model
is no more complicated than in the univariate case described in Chapter 7. This
is accomplished with the DHTransVolSim.m function, which simulates values of
the stock price using the Predictor-Corrector method in Equation (12.26), and
volatilities in either (12.32) or (12.33). It is important to remember that the square
root of the initial variance parameters must be used to initialize the volatilities,
and that the volatilities must be squared before they are fed into the stock price
process at the end of the function. To conserve space, part of the function has been
omitted.

function [S ... Price] = DHTransVolSim(scheme,...)
S(1,:) = S0;
w1(1,:) = sqrt(v01);
w2(1,:) = sqrt(v02);
for i=1:N;

for t=2:T;
Zv1 = randn(1);
Zv2 = randn(1);
if strcmp(scheme,'Euler')

% Euler volatility scheme
w1(t,i) = w1(t-1,i) + 0.5*kappa1 ...;

elseif strcmp(scheme,'TV')
% Zhu (2010) process for t.v.
m11 = theta1 + (v1(t-1,i) - theta1)*exp(-kappa1*dt);
m12 = sigma1^2/4/kappa1*(1-exp(-kappa1*dt));
beta1 = sqrt(max(0,m11-m12));
thetav1 = (beta1 - w1(t-1,i)*exp(-kappa1*dt/2)) ...;
w1(t,i) = w1(t-1,i) + 0.5*kappa1*(thetav1 ...;

end
v1(t,i) = w1(t,i)^2;
v2(t,i) = w2(t,i)^2;
% Predictor-Corrector for the stock price
logS = log(exp(-r*t*dt)*S(t-1,i)) + K01 ...;
S(t,i) = exp(logS)*exp(r*(t+1)*dt);

end
end

The C# code is similar and is therefore not presented here.



378 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

Quadratic Exponential Scheme

The last simulation scheme we cover in this chapter is the Quadratic Exponential
(QE) scheme developed by Andersen (2008) and adapted to the double Heston
model by Gauthier and Possamaı̈ (2010). It is implemented in the same manner
as in the univariate case described in Chapter 7. Denote the conditional means by
mj = E[vj,t+dt|vj,t] and the conditional variances by s2

j = Var[vj,t+dt|vj,t]. Also, denote
the ratio by ψj = s2

j /m2
j . Define the quantities

bj =
⎛⎝ 2

ψj

− 1 +
√√√√ 2

ψj

(
2
ψj

− 1

)⎞⎠
1
2

, aj = mj

1 + b2
j

,

pj = ψj − 1

ψj + 1
, βj = 1 − pj

mj

(12.34)

and

�−1
j (u) =

⎧⎪⎨⎪⎩
0 for 0 ≤ u ≤ pj

1
βj

ln
(

1 − pj

1 − u

)
for pj ≤ u ≤ 1.

(12.35)

The scheme proceeds as follows

n Given vj,t, obtain mj and s2
j , and set ψj = s2

j /m2
j .

n Draw a uniform random number UV ∈ [0, 1].
n If ψj < ψc compute ZV = �−1(UV) and define vj,t+dt = aj(bj + ZV)2.
n If ψj > ψc define vj,t+dt = �−1

j (UV).

As in the univariate case, we use the value of ψc = 1.5 recommended by Andersen
(2008). The QE simulation scheme for the double Heston model is implemented
using the DHQuadExpSim.m Matlab function. The function calls the normICDF.m
function described in Chapter 7 for inversion of the standard normal distribution
function, which applies the algorithm of Wichura (1988) and leads to a considerable
reduction in simulation time.

function [S ... Price] = DHQuadExpSim(params,...)
for i=1:N;

for t=2:T;
m1 = theta1 + (V1(t-1,i) - theta1)*exp(-kappa1*dt);
s1 = V1(t-1,i)*sigma1^2*exp(-kappa1*dt) ...;
phi1 = s1/(m1^2);
p1 = (phi1-1)/(phi1+1);
U1 = rand(1);
if phi1 < 1/2

b1 = sqrt(2/phi1 - 1 + sqrt(2/phi1*(2/phi1-1)));
a1 = m1/(1+b1^2);
Zv1 = normICDF(U1);



The Double Heston Model 379

V1(t,i) = a1*(b1+Zv1)^2;
elseif phi1 >= 1/2

if U1 <= p1
V1(t,i) = 0;

elseif U1 > p1
beta1 = (1-p1)/m1;
V1(t,i) = log((1-p1)/(1-U1))/beta1;

end
end
m2 = theta2 + (V2(t-1,i) - theta2)*exp(-kappa2*dt);
s2 = V2(t-1,i)*sigma2^2*exp(-kappa2*dt)/kappa2 ...;
phi2 = s2/(m2^2);
p2 = (phi2-1)/(phi2+1);
U2 = rand(1);
if phi2 < 1/2

b2 = sqrt(2/phi2 - 1 + sqrt(2/phi2*(2/phi2-1)));
a2 = m2/(1+b2^2);
Zv2 = normIcdf(U2);
V2(t,i) = a2*(b2+Zv2)^2;

elseif phi2 >= 1/2
if U2 <= p2

V2(t,i) = 0;
elseif U2 > p2

beta2 = (1-p2)/m2;
V2(t,i) = log((1-p2)/(1-U2))/beta2;

end
end

end
end

The C# code to implement the quadratic-exponential of Andersen (2008) for
the double Heston model is similar and not presented here.

To illustrate the different simulation schemes covered in this chapter, we use the
same settings as those in Gauthier and Possamaı̈ (2010) that were used to generate
Table 12.1, with a maturity of one year. We use 50,000 simulations and 1,000 time
steps per simulation. This is accomplished with the following code.

NS = 50000;
NT = 1000;
trap = 1;
[x w] = GenerateGaussLaguerre(32);
True = DoubleHestonPriceGaussLaguerre(...);
[S V1 V2 Alfonsi] = DHEulerAlfonsiSim('Alfonsi',...);
[S V1 V2 Euler] = DHEulerAlfonsiSim('Euler',...);
[S v1 v2 ZEuler] = DHTransVolSim('ZhuEuler',...);
[S v1 v2 ZhuTV] = DHTransVolSim('ZhuTV',...);
[S V1 V2 QE] = DHQuadExpSim(...);

The results of the simulation are in Table 12.4.



380 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 12.4 Double Heston Call Prices

Method Price Dollar Error Percent Error

Closed Form 19.4538 — —
Euler 19.6286 0.17 0.90
Alfonsi 19.5271 0.07 0.38
Zhu-Euler 19.5231 0.07 0.36
Zhu Transformed Vol 19.4650 −0.01 −0.06
Quadratic Exponential 19.3214 −0.13 −0.68

0.02
0 50 100 150 200 250

50

100

150

200
Stock Price
Low Var, Pos rho
High Var, Neg rho

0.04

0.06

0.02
0 50 100 150 200 250

50

100

150

200
Stock Price
Low Var, Pos rho
High Var, Neg rho

0.04

0.06

FIGURE 12.4 Simulated Stock Price and Variances with the Double Heston Model

As expected, the Euler scheme is the least accurate of the schemes. The other
schemes perform well, with the transformed volatility scheme of Zhu (2010) the
most accurate, in this example at least.

It is instructive to plot the effect of double variances on a single simulated stock
price path. This is illustrated in Figure 12.4. The stock price starts at S0 = 100 and
is represented by the black line. The high variance path (green line) uses σ = 0.3,
ρ = −0.9, and starts at v01 = 0.05, while the low variance path (red line) uses
σ = 0.1, ρ = 0.9, and starts at v02 = 0.03. The effect of the correlations on the
price-volatility relationships is evident.

AMERICAN OPTIONS IN THE DOUBLE HESTON MODEL

In the previous sections, we covered a number of simulation schemes adapted to
the double Heston model by Gauthier and Possamaı̈ (2010). We can use these



The Double Heston Model 381

schemes along with the Least-Squares Monte-Carlo (LSM) algorithm of Longstaff
and Schwartz (2001) to obtain the prices of American options, in the same way
that the LSM algorithm was applied to the univariate Heston (1993) model in
Chapter 8. We can also apply the control variate technique described by Hull and
White (1988) and used by Beliaeva and Nawalkha (2010) in their bivariate tree,
which we encountered in Chapter 8 also. The control variate price of the American
put is

American PutTrue = European PutTrue + (American PutLSM −European PutLSM)

We use the closed form of the double Heston model to calculate the true price
of the European put.

To implement the pricing of American puts with the LSM algorithm and the
double Heston model, we first choose a simulation scheme among those covered
in this chapter to generate a set of stock price paths. We then feed these stock
price paths into the LSM functions to obtain the simulated prices of American and
European puts. Finally, we apply the control variate technique to obtain the price of
the American put. The required Matlab and C# functions for the LSM algorithm are
those described earlier in this chapter and in Chapter 8, and are not presented here.

For example, suppose we use NS = 50,000 simulations along with NT = 1,000
time steps per simulation to obtain the price of an American price, using the same
settings as those used to create Table 12.2. This is accomplished with the following
C# code.

// Simulation settings
string PutCall = "P";
int NS = 50000;
int NT = 1000;
// Select the simulation scheme
string scheme = "QE";
double LSMEuro,LSMAmer,Premium,CVPrice;
DHSim Soutput = new DHSim();
if((scheme == "Alfonsi") || (scheme == "Euler"))

Soutput = DHEulerAlfonsiSim(scheme,...);
else if((scheme=="ZhuEuler") || (scheme=="ZhuTV"))

Soutput = DHTransVolSim(scheme,...);
else if(scheme == "QE")

Soutput = DHQuadExpSim(...);
double[,] S = Soutput.S;
double SimEuro = Soutput.EuroPrice;
// LSM algorithm
double[] LSMoutput = new double[2];
double[,] St1 = MTrans(S);
LSMoutput = HestonLSM(St1,K,rf,q,Mat,NT,NS,PutCall);
LSMEuro = LSMoutput[0];
LSMAmer = LSMoutput[1];
Premium = LSMAmer - LSMEuro;
// Control variate American price
double TrueEuroPrice = DoubleHestonPriceGaussLaguerre(...);
CVPrice = TrueEuroPrice + Premium;



382 THE HESTON MODEL AND ITS EXTENSIONS IN MATLAB AND C#

TABLE 12.5 Double Heston Prices of an American Put

Method Price Exercise Premium

Closed-form European 17.6244 —
Euler 17.8278 0.2034
Alfonsi 17.8095 0.1851
Zhu-Euler 17.8068 0.1824
Zhu Transformed Vol 17.8372 0.2128
Quadratic Exponential 17.8185 0.1941

The closed form European price is 17.6244, and the American prices obtained
under the simulation schemes covered in this chapter are in Table 12.5.

The schemes all point to an early exercise premium of roughly $0.20 and a price
of roughly $17.82 for the American option using the control variate technique.

CONCLUSION

The double Heston model is a convenient way to introduce flexibility in the model by
allowing for additional parameters. The characteristic function of the double Heston
model is a natural extension of its univariate counterpart. As such, obtaining the
call price and Greeks in the double Heston model is only slightly more complicated
than in the original Heston (1993) model. Moreover, simulation schemes specifically
designed for the original model translate easily to the double version. With these
simulation schemes, it is straightforward to obtain American option prices with the
LSM algorithm of Longstaff and Schwartz (2001).

Other investigations of the double Heston model, or multifactor volatility
versions of the model, include the double-lattice approach of Costabile et al. (2012),
the multifactor volatility Wishart process of da Fonseca et al. (2008), and the
variance curve approach of Buehler (2006).



Bibliography

Afshani, S. (2010). ‘‘Complex Logarithms and the Piecewise Constant Extension of the Heston
Model.’’ Working Paper, Standard Bank.

AitSahlia, F., Goswami, M., and S. Guha. (2012). ‘‘Are There Critical Levels of Stochastic
Volatility for Early Option Exercise?’’ Working Paper, University of Florida.

Aı̈t-Sahalia, Y. (2002). ‘‘Maximum Likelihood Estimation of Discretely Sampled Diffusions:
A Closed-Form Approximation Approach.’’ Econometrica, 70(1): 223–62.

Aı̈t-Sahalia, Y., and R. Kimmel. (2007). ‘‘Maximum Likelihood Estimation of Stochastic
Volatility Models.’’ Journal of Financial Economics, 83:413–52.

Albanese, C., and G. Campolieti. (2006). Advanced Derivatives Pricing and Risk Manage-
ment: Theory, Tools, and Hands-On Programming Applications, London, UK: Elsevier
Academic Press.

Albrecher, H., Mayer, P., Schoutens, W., and Tistaert, J. (2007) ‘‘The Little Heston Trap.’’
Wilmott Magazine, January 2007, 83–92.

Alfonsi, A. (2010). ‘‘High Order Discretization Schemes for the CIR Process: Application to
Affine Term Structure and Heston Models.’’ Mathematics of Computation, 79:209–37.

Andersen, L. (2008). ‘‘Efficient Simulation of the Heston Stochastic Volatility Model.’’ Journal
of Computational Finance, 11(3):1–42.

Andersen, L.B.G., and R. Brotherton-Ratcliffe. (2005). ‘‘Extended Libor Market Models with
Stochastic Volatility.’’ Journal of Computational Finance, 9(1):1–40.

Andersen, L.B.G., and V.V. Piterbarg. (2007). ‘‘Moment Explosions in Stochastic Volatility
Models.’’ Finance and Stochastics, 11(1):29–50.

Atiya, A.F., and S. Wall (2009). ‘‘An Analytic Approximation of the Likelihood Function for
the Heston Model Volatility Estimation Problem.’’ Quantitative Finance, 9(3):289–96.

Attari, M. (2004). ‘‘Option Pricing Using Fourier Transforms: A Numerically Efficient
Simplification.’’ Working Paper, Charles River Associates, Boston, MA.

Backus D., Foresi, S., and L. Wu. (2004) ‘‘Accounting for Biases in Black-Scholes.’’ Working
Paper, Stern School of Business, New York University.

Bagby, R.J. (1995). ‘‘Calculating Normal Probabilities.’’ The American Mathematical
Monthly, 102(1):46–9.

Bakshi, G., Cao, C., and Z. Chen. (1997). ‘‘Empirical Performance of Alternative Option
Pricing Models.’’ Journal of Finance, 52(5):2033–49.

Bakshi, G., and D. Madan. (2000). ‘‘Spanning and Derivative-Security Valuation.’’ Journal of
Financial Economics, 55:205–38.

Bams, D., Lehnert, T., and C.C.P. Wolff. (2009). ‘‘Loss Functions in Option Valuation: A
Framework for Selection.’’ Management Science, 55:853–62.

Barone-Adesi, G., and R.E. Whaley. (1987). ‘‘Efficient Analytic Approximation of American
Option Values.’’ Journal of Finance, 42(2):301–20.

Beerends, R.J., ter Morsche, H.G., van den Berg, J.C., and E.M. van de Vrie. (2003). Fourier
and Laplace Transforms. Cambridge, UK: Cambridge University Press.

Beliaeva, N.A., and S.K. Nawalkha. (2010). ‘‘A Simple Approach to Pricing American Options
Under the Heston Stochastic Volatility Model.’’ Journal of Derivatives, 17(4):25–43.

Benaim, S., and P. Friz. (2008). ‘‘Smile Asymptotics II: Models With Known Moment
Generating Functions.’’ Journal of Applied Probability, 45(1):16–32.

383The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



384 BIBLIOGRAPHY

Benhamou, E. (2002). ‘‘Smart Monte Carlo: Various Tricks Using Malliavin Calculus.’’
Quantitative Finance, 2(5):329–36.

Benhamou, E., Gobet, E., and M. Miri. (2010). ‘‘Time Dependent Heston Model.’’ SIAM
Journal on Financial Mathematics, 1:289–325.

Bollerslev, T., Gibson, M., and H. Zhou (2011). ‘‘Dynamic Estimation of Volatility Risk
Premia and Investor Risk Aversion From Option-Implied and Realized Volatilities.’’
Journal of Econometrics, 160(1):235–45.

Borak, S., Detlefsen, K., and W. Härdle. (2011). ‘‘FFT Based Option Pricing.’’ SFB Discussion
Paper 2005–11, Humboldt University.

Breeden, D. (1979). ‘‘An Intertemporal Asset Pricing Model With Stochastic Consumption
and Investment Opportunities.’’ Journal of Financial Economics, 7:265–96.

Breeden, D., and R. Litzenberger. (1978). ‘‘Prices of State-Contingent Claims Implicit in
Option Prices.’’ Journal of Business, 51:621–51.

Brigo, D., and F. Mercurio. (2006). Interest Rate Models - Theory and Practice: With Smile,
Inflation, and Credit. Second Edition. New York, NY: Springer.

Broadie, M., and P. Glasserman. (1996). ‘‘Estimating Security Price Derivatives Using Simu-
lation.’’ Management Science, 42(2):269–85.

Broadie, M., and Ö. Kaya. (2006). ‘‘Exact Simulation of Stochastic Volatility and Other
Affine Jump Diffusion Processes.’’ Operations Research, 54(2):217–31.

Broadie, M., and Ö. Kaya. (2004). ‘‘Exact Simulation of Option Greeks Under Stochastic
Volatility and Jump Diffusion Models.’’ In Ingalls, R.G., Rossetti, M.D., Smith, J.S., and
B.A. Peters, eds. Proceedings of the 2004 Winter Simulation Conference, pp. 1607–15.

Brunner, B., and R. Hafner. (2003). ‘‘Arbitrage-Free Estimation of the Risk-Neutral Density
From the Implied Volatility Smile.’’ Journal of Computational Finance, 7(1):75–106.

Buehler, H. (2006). ‘‘Consistent Variance Curve Models.’’ Finance & Stochastics, 10(2):
178–203.

Burden, R.L., and J.D. Faires. (2010). Numerical Analysis. Ninth Edition. Boston, MA:
Brooks Cole.

Carr, P. (2004). ‘‘Implied Vol Constraints.’’ Working Paper, Bloomberg.
Carr, P., and D. Madan. (1999). ‘‘Option Valuation Using the Fast Fourier Transform.’’

Journal of Computational Finance, 2(4):61–73.
Carr, P., and D. Madan. (2005). ‘‘A Note on Sufficient Conditions for no Arbitrage.’’ Finance

Research Letters, 2:125–30.
Carr, P., Madan, D., and E.C. Chang. (1998). ‘‘The Variance Gamma Process and Option

Pricing.’’ European Finance Review, 2:79–105.
Chacon, P. (1991). ‘‘Applications of the Fourier Transform to Probability Theory and

Stochastic Processes.’’ International Journal of Mathematical Education in Science and
Technology, 22(5):695–708.

Chan, J.H., and M.S. Joshi. (2010a). ‘‘Fast and Accurate Long Stepping Simulation of the
Heston Stochastic Volatility Model.’’ Working Paper, University of Melbourne.

Chan, J.H., and M.S. Joshi. (2010b). ‘‘First and Second Order Greeks in the Heston Model.’’
Working Paper, University of Melbourne.

Chensey, M., and L. Scott. (1989). ‘‘Pricing European Currency Options: a Comparison of
the Modified Black-Scholes Model and a Random Variance Model.’’ Journal of Financial
and Quantitative Analysis, 24(3):267–84.

Chernov, M., and E. Ghysels. (2000). ‘‘A Study Towards a Unified Approach to the Joint Esti-
mation of Objective and Risk Neutral Measures for the Purpose of Options Valuation.’’
Journal of Financial Economics, 56:407–58.

Chiarella, C., and A. Ziogas. (2006). ‘‘Pricing American Options Under Stochastic Volatility.’’
Working Paper, University of Technology, Sydney.

Chourdakis, K. (2005). ‘‘Option Pricing Using the Fractional FFT.’’ Journal of Computational
Finance, 8(2):1–18.



Bibliography 385

Chriss, N.A. (1996). Black-Scholes and Beyond: Option Pricing Models. New York, NY:
McGraw-Hill.

Christoffersen, P., Jacobs, K., and K. Mimouni. (2010) ‘‘Volatility Dynamics for the S&P500:
Evidence from Realized Volatility, Daily Returns, and Options Prices.’’ Review of
Financial Studies, 23(8):3141–89.

Christoffersen, P., Heston, S., and K. Jacobs. (2009). ‘‘The Shape and Term Structure of
the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well.’’
Management Science, 55:1914–32.

Christoffersen, P., and K. Jacobs. (2004) ‘‘The Importance of the Loss Function in Option
Valuation.’’ Journal of Financial Economics, 72:291–318.

Clarke, N., and K. Parrott. (1999) ‘‘Multigrid for American Option Pricing With Stochastic
Volatility.’’ Applied Mathematical Finance, 6:177–95.

Cohen, H. (2011) Numerical Approximation Methods. New York: Springer.
Corrado, C.J., and T. Su. (1997). ‘‘Implied Volatility Skews and Stock Index Skewness and

Kurtosis Implied by S&P500 Index Option Prices.’’ Journal of Derivatives, 4(4):8–19.
Costabile, M., Massabò, I., and E. Russo. (2012). ‘‘On Pricing Contingent Claims Under

the Double Heston Model.’’ International Journal of Theoretical and Applied Finance,
15(5):1250033-1-1250033-27.

Cox, J.C., Ingersoll, J.E., and S.A. Ross (1985). ‘‘A Theory of the Term Structure of Interest
Rates.’’ Econometrica, 53(2):385–408.

Da Fonseca, J., Grasselli, M., and C. Tebaldi. (2008). ‘‘A MultiFactor Volatility Heston
Model.’’ Quantitative Finance, 8(6):591–604.

Davis, M.H.A., and M.P. Johansson. (2005). ‘‘Malliavin Monte Carlo Greeks for Jump
Diffusions.’’ Working Paper, Imperial College.

Demeterfi, K., Derman, E., Kamal, M., and J. Zhou. (1999). ‘‘A Guide to Volatility and
Variance Swaps,’’ Journal of Derivatives, 6(4):9–32.

Derman, E., Kani, I., and J.Z. Zhou. (1995). ‘‘The Local Volatility Surface: Unlocking the
Information in Index Option Prices.’’ Goldman Sachs Quantitative Strategies Research
Notes. December, 1995.

Dréo, J., Nunes, J.-C., and P. Siarry. (2009).‘‘Metaheuristics for Continuous Variables.’’ In
Siarry, P. (ed). Optimization in Signal and Image Processing. Hoboken, NJ: John Wiley
& Sons.

Duffie, D., Pan, J., and K. Singleton. (2000). Transform Analysis and Asset Pricing for Affine
Jump-Diffusions. Econometrica, 68:1343–76.

Duffy, D.J. (2006) Finite Difference Methods in Financial Engineering: A Partial Differential
Equation Approach. Hoboken, NJ: John Wiley & Sons.

Duffy, D.J., and J. Kienitz. (2009). Monte Carlo Frameworks: Building Customisable High-
Performance C++ Applications. Hoboken, NJ: John Wiley & Sons.

Dupire, B. (1994). ‘‘Pricing With a Smile.’’ Risk, 7:18–20.
Elices, A. (2009) ‘‘Affine Concatenation.’’ Wilmott Journal, 1(3):155–62.
Eraker, B. (2004). ‘‘Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot

and Option Prices’’. Journal of Finance, 59(3):1367–403.
Fang, F., and C.W. Oosterlee (2008). ‘‘A Novel Pricing Method for European Options

Based on Fourier-Cosine Series Expansions.’’ SIAM Journal on Scientific Computing,
31(2):826–48.

Fengler, M. (2009). ‘‘Arbitrage-Free Smoothing of the Implied Volatility Surface.’’ Quantita-
tive Finance, 9(4):417–28.

Forde, M., and A. Jacquier. (2009). ‘‘Small-Time Asymptotics for Implied Volatility
Under the Heston Model.’’ International Journal of Theoretical and Applied Finance,
12(6):861–876.

Forde, M., Jacquier, A., and A. Mijatovic. (2010). ‘‘Asymptotic Formulae for Implied Volatility
in the Heston Model.’’ Proceedings of the Royal Society, 466(2124):3593–3620.



386 BIBLIOGRAPHY

Galiotos, V. (2008). ‘‘Stochastic Volatility and the Volatility Smile.’’ Working Paper, Depart-
ment of Mathematics, Uppsala University.

Gatheral, J. (2006). The Volatility Surface: A Practitioner’s Guide. Hoboken, NJ: John Wiley
& Sons.

Gauthier, P., and D. Possamaı̈. (2010). ‘‘Efficient Simulation of the Double Heston Model.’’
Working Paper, Pricing Partners (www.pricingpartners.com).

Gauthier, P., and P.-Y. H. Rivaille (2009). ‘‘Fitting the Smile: Smart Parameters for SABR and
Heston.’’ Working Paper, Pricing Partners (www.pricingpartners.com).

Geske, R., and H.E. Johnson. (1984). ‘‘The American Put Option Valued Analytically.’’
Journal of Finance, 39(5):1511–24.

Gil-Pelaez, J. (1951). ‘‘Note on the Inversion Theorem.’’ Biometrika, 38(3-4):481–2.
Gilli, M., and E. Schumann. (2011). Calibrating Option Pricing Models with Heuristics. In

Brabazon, A., O’Neill, M., and D. Maringer, eds. Natural Computing in Computational
Finance, Volume 4. Berlin: Springer-Verlag.

Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. New York, NY:
Springer.

Guillaume, F., and W. Schoutens. (2012). ‘‘Use a Reduced Heston or Reduce the Use of
Heston?’’ Wilmott Journal, 2(4):171–92.

Haug, E.G. (2006). The Complete Guide to Option Pricing Formulas. Second Edition. New
York, NY: McGraw-Hill.

Heston, S.L. (1993). ‘‘A Closed-Form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options.’’ Review of Financial Studies, 6:327–43.

Hogg, R.V., and S. Klugman. (1984) Loss Distributions. New York, NY: John Wiley & Sons.
Hull, J.C. (2011). Options, Futures, and Other Derivatives. Eighth Edition. New York, NY:

Prentice-Hall.
Hull, J.C., and A. White. (1987). ‘‘The Pricing of Options on Assets with Stochastic Volatili-

ties.’’ Journal of Finance, 42:281–300.
Hull, J.C., and A. White. (1988) ‘‘The Use of the Control Variate Technique in Option

Pricing.’’ Journal of Financial and Quantitative Analysis, 23(3):237–51.
Ikonen, S., and J. Toivanen. (2008). ‘‘Efficient Numerical Methods for Pricing Ameri-

can Options Under Stochastic Volatility.’’ Numerical Methods for Partial Differential
Equations, 24(1):104–26.

In ’T Hout, K.J., and S. Foulon. (2010). ‘‘ADI Finite Difference Schemes for Option Pricing in
the Heston Model with Correlation.’’ International Journal of Numerical Analysis and
Modeling, 7(2):303–320.

Itkin, A. (2010). Pricing Options With VG Model Using FFT. Working Paper, Department of
Mathematics, Rutgers University.

Janek, A., Kluge, T., Weron, R., and U. Wystup. (2010). FX Smile in the Heston Model.
SFB 649 Discussion Paper 2010-047, Humboldt University, Berlin. Also in Cizek, P.,
Härdle, W.K., and R. Weron, eds. Statistical Tools for Finance and Insurance. New
York: Springer.

Jarrow, R., and A. Rudd. (1982). ‘‘Approximate Option Valuation for Arbitrary Stochastic
Processes.’’ Journal of Financial Economics, 10:347–69.

Johannes, M.S., Polson, N.G., and J.R Stroud. (2009) ‘‘Optimal Filtering of Jump Diffusions:
Extracting Latent States from Asset Prices.’’ Review of Financial Studies, 22(7):2759–99.

Jondeau, E., Poon, S.-H., and M. Rockinger. (2007). Financial Modeling Under Non-Gaussian
Distributions. New York, NY: Springer.

Jones, C.S. (2003). ‘‘The Dynamics of Stochastic Volatility: Evidence From Underlying and
Options Markets.’’ Journal of Econometrics, 116:181–224.

Joshi, M. (2008) The Concepts and Practice of Mathematical Finance. Second Edition.
Cambridge, UK: Cambridge University Press.

Kahalé, N. (2004). ‘‘An Arbitrage-Free Interpolation of Volatilities.’’ Risk, May 2004:
102–106.



Bibliography 387

Kahl, C. (2008). Modeling and Simulation of Stochastic Volatility in Finance. Published by
Dissertation.com.

Kahl, C., and P. Jäckel. (2005). ‘‘Not-so-Complex Logarithms in the Heston Model.’’ Wilmott
Magazine, September 2005:94–103.

Kahl, C., and P. Jäckel. (2006). ‘‘Fast Strong Approximation Monte-Carlo Schemes for
Stochastic Volatility Models.’’ Quantitative Finance, 6(6):513–36.

Kahl, C., and R. Lord. (2010). ‘‘Fourier Inversion Methods in Finance.’’ Working Paper,
Commerzbank, and Cardano.

Kilin, F. (2007). ‘‘Accelerating the Calibration of Stochastic Volatility Models.’’ Working
Paper, Frankfurt School of Finance and Management.

Kloeden, P.E., and E. Platen. (1992). Numerical Solution of Stochastic Differential Equations.
New York, NY: Springer.

Kluge, T. (2002). ‘‘Pricing Derivatives in Stochastic Volatility Models Using the Finite
Difference Method.’’ Diploma Thesis, Chemnitz University of Technology, Chemnitz,
Germany.

Kutner, M.H., Nachtsheim, C.J., Neter, J., and W. Li. (2004). Applied Linear Statistical
Models with Student CD-ROM. Fifth Edition. New York, NY: McGraw-Hill Education.

Lee, R. (2004a). ‘‘Option Pricing by Transform Methods: Extensions, Unification, and Error
Control.’’ Journal of Computational Finance, 7(3):51–86.

Lee, R. (2004b). ‘‘The Moment Formula for Implied Volatility at Extreme Strikes.’’ Mathe-
matical Finance, 14(3):469–80.

Leisen, D. (2000). ‘‘Stock Evolution Under Stochastic Volatility: A Discrete Approach.’’
Journal of Derivatives, 8(2):9–27.

Lewis, A.L. (2000). Option Valuation Under Stochastic Volatility: With Mathematica Code.
Finance Press.

Lewis, A.L. (2001). ‘‘A Simple Option Formula for General Jump-Diffusion and Other
Exponential Levy Processes.’’ www.optioncity.net.

Lin, S. (2008). ‘‘Finite Difference Schemes for the Heston Model.’’ M.Sc. Dissertation,
University of Oxford.

Lipton, A. (2002). ‘‘The Vol Smile Problem.’’ Risk (February 2002), pp. 61–65.
Longstaff, F.A., and E.S. Schwartz. (2001). Valuing American Options by Simulation: A

Simple Least-Squares Approach. Review of Financial Studies, 14(1):113–47.
Lord, R., and C. Kahl. (2007). ‘‘Optimal Fourier Inversion in Semi-Analytical Option Pricing.’’

Working Paper, Rabobank International and ABN AMRO.
Lord, R., Fang, F., Bervoets, F., and C.W. Oosterlee (2008). ‘‘A Fast and Accurate FFT-Based

Method for Pricing Early-Exercise Options Under Lévy Processes.’’ SIAM Journal on
Scientific Computing, 30(4):1678–1705.

McNamee, J.M. (2007). Numerical Methods for Roots of Polynomials, Part I. Studies in
Computational Mathematics 14. Amsterdam, the Netherlands: Elsevier.

Medvedev, A., and O. Scaillet (2010). ‘‘Pricing American Options Under Stochastic Volatility
and Stochastic Interest Rates.’’ Journal of Financial Economics, 98(1):145–59.

Mikhailov, S., and U. Nögel. (2003). ‘‘Heston’s Stochastic Volatility Model: Implementation,
Calibration, and Some Extensions.’’ Wilmott Magazine, July 2003:74–9.

Milstein, G.N., Platen, E., and H. Schurz. (1998). ‘‘Balanced Implicit Methods for Stiff
Stochastic Systems.’’ SIAM Journal on Numerical Analysis, 35(3):1010–9.

Musiela, M., and M. Rutkowsi. (2011). Martingale Methods in Financial Modelling. Second
Edition. New York, NY: Springer.

Nelder, J.A., and R. Mead. (1965). ‘‘A Simplex Method for Function Minimization.’’ The
Computer Journal, 7(4):308–13.

Nykvist, J. (2009). ‘‘Time Consistency in Option Pricing Models.’’ Doctoral Thesis, KTH
Royal Institute of Technology.

Pan, J. (2002). ‘‘The Jump-Risk Premia Implicit in Options: Evidence From an Integrated
Time-Series Study.’’ Journal of Financial Economics, 63(1):3–50.



388 BIBLIOGRAPHY

Platen, E., and D. Heath. (2009). A Benchmark Approach to Quantitative Finance, Volume
13. New York, NY: Springer.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and B.P. Flannery. (2007). Numerical Recipes
Third Edition: The Art of Scientific Computing. New York, NY: Cambridge University
Press.

Raible, S. (2000). ‘‘Lévy Processes in Finance: Theory, Numerics, and Empirical Facts.’’ Ph.D.
dissertation, Albert Ludwig University of Freiburg.

Reiss, O., and U. Wystup. (2000). ‘‘Efficient Computation of Option Price Sensitivities Using
Homogeneity and Other Tricks.’’ Working Paper, Commerzbank.

Ruckdeschel, P., Sayer, T., and A. Szimayer (2013). ‘‘Pricing American Options in the
Heston Model: A Close Look at Incorporating Correlation.’’ The Journal of Derivatives,
20(3):9–29.

Rudin, W. (1986). Real and Complex Analysis. Third Edition. New York, NY: McGraw-Hill.
Schmelzle, M. (2010). Option Pricing Formulae Using Fourier Transforms: Theory and

Applications. www.pfadintegral.com.
Schoutens, W., Simons, E., and J. Tistaert. (2004). ‘‘A Perfect Calibration! Now What?’’

Wilmott Magazine, March 2004:66–78.
Scott, L.O. (1987). ‘‘Option Pricing When the Variance Changes Randomly: Theory, Estima-

tion, and an Application.’’ Journal of Financial and Quantitative Analysis, 22:419–38.
Shephard, N.G. (1991) ‘‘From Characteristic Function to Distribution Function: a Simple

Framework for the Theory.’’ Economic Theory, 7:519–29.
Shimko, D. (1993) Bounds of Probability. Risk, 6(4):33–7.
Singleton, K.J. (2001). ‘‘Estimation of Affine Asset Pricing Models Using the Empirical

Characteristic Function.’’ Journal of Econometrics, 102(1):111–41.
Smith, R.D. (2007). ‘‘An Almost Exact Simulation Method for the Heston Model.’’ Journal

of Computational Finance, 11(1):115–25.
Stein, E.M., and J.C. Stein, (1991). ‘‘Stock Price Distributions with Stochastic Volatility: An

Analytic Approach.’’ Review of Financial Studies, 4:727–52.
Storn, R., and K. Price. (1997). Differential Evolution—A Simple and Efficient Heuristic

for Global Optimization Over Continuous Spaces. Journal of Global Optimization,
11:341–59.

Stroud, A.H., and D. Secrest. (1966) Gaussian Quadrature Formulas. Upper Saddle River,
NJ: Prentice-Hall.

Stuart, A. (2010). Kendall’s Advanced Theory of Statistics, Three Volume Set. Hoboken, NJ:
John Wiley & Sons.

Tavella, D., and C. Randall. (2000). Pricing Financial Instruments: The Finite Difference
Method. New York, NY: John Wiley & Sons.

Tzavalis, E., and S. Wang. (2003). ‘‘Pricing American Options Under Stochastic Volatility:
A New Method Using Chebyshev Polynomials to Approximate the Early Exercise
Boundary.’’ Working Paper 488, Queen Mary, University of London.

Van Haastrecht, A., and A. Pelsser. (2010). ‘‘Efficient, Almost Exact Simulation of the Heston
Stochastic Volatility Model.’’ International Journal of Theoretical and Applied Finance,
13(1):1–43.

Vellekoop, M., and H. Nieuwenhuis. (2009). ‘‘A Tree-Based Method to Price American
Options in the Heston Model.’’ Journal of Computational Finance, 13(1):1–21.

Vollrath, I., and J. Wendland. (2009). ‘‘Calibration of Interest Rate and Option Models Using
Differential Evolution.’’ Working Paper, FINCAD Corporation.

Whaley, R.E. (2006). Derivatives: Markets, Valuation, and Risk Management. Hoboken, NJ:
John Wiley & Sons.

Wichura, M.J. (1988). ‘‘Algorithm AS241: The Percentage Points of the Normal Distribution.’’
Applied Statistics, 37(3):477–84.

Wiggins, J.B. (1987). ‘‘Option Values Under Stochastic Volatility: Theory and Empirical
Estimates.’’ Journal of Financial Economics, 19:351–72.



Bibliography 389

Wu, L. (2008) ‘‘Modeling Financial Security Returns Using Lévy Processes.’’ In Birge, J.R.,
and V. Linetsky, (eds.). Financial Engineering, Volume 15. Amsterdam: North-Holland
Elsevier.

Zhu, J. (2010). Applications of Fourier Transform to Smile Modeling: Theory and Implemen-
tation. Second Edition. New York, NY: Springer.

Zhylyevskyy, O. (2010). ‘‘A Fast Fourier Transform Technique for Pricing American Options
Under Stochastic Volatility.’’ Review of Derivatives Research, 13(1):1–24.

Zwillinger, D. (1997). Handbook of Differential Equations. Third Edition. Orlando, FL:
Academic Press.



About the Website

The website that accompanies this book contains extensive libraries of Matlab and
C# code. The code includes dozens of functions for implementing all the methods

covered in the book. It also includes scripts and market data to reproduce examples
in the book. The code assumes intermediate-level familiarity with Matlab and C# as
well as an understanding of basic programming principles.

File names have chosen in an intuitive fashion, so that, for example, the
file ‘‘BisectionBSIV’’ implements the bisection algorithm for finding Black-Scholes
implied volatilities, while ‘‘GenerateGaussLaguerre’’ generates abscissas and weights
for Gauss-Laguerre quadrature. Whenever possible, the filenames are identical in
Matlab and in C#, except for the file extension.

CODE FUNCTIONALITY BY CHAPTER

All of the functions and examples in the book have been coded in both Matlab and
C#. The following table describes the functionality of the code, chapter-by-chapter.
Please note that some functions, such as linear regression or interpolation, are not
built into C#, and are included with the C# code. In Matlab, however, these are
available as built-in functions and are therefore not coded. In some cases, usually
to speed up computations, built-in Matlab functions are not used and separate
functions are coded instead. The code also includes scripts to generate most of the
figures in the book, but in Matlab only.

Chapter Code Functionality

1. The Heston Model for
European Options

Obtaining the original Heston characteristic function
Obtaining the original Heston price using

Newton-Cotes integration
Consolidating the integrals into a single integral
Obtaining the Black-Scholes price as a special case of

the Heston model
Generating the figure for the Heston integrand (Matlab

only)

2. Integration Issues,
Parameter Effects, and
Variance Modeling

Calculating the Heston characteristic function under
the ‘‘Little Trap’’ formulation of Albrecher et al.

Obtaining the Heston price using one or two
characteristic functions and Gauss-Laguerre
quadrature

(continues)

391The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



392 ABOUT THE WEBSITE

Chapter Code Functionality

Obtaining Black-Scholes prices of European options
Obtaining implied volatility from Heston prices
Finding the Roger Lee moment formulas and the

Andersen and Piterbarg time to moment explosion
Obtaining local volatility in the Heston model using

the Dupire formulation and the Gatheral
approximation

Calculating the fair strike of variance swaps in the
Heston model

Calculating linear interpolated values along a single
dimension (C# only)

Obtaining the standard normal CDF using Bagby’s
approximation (C# only)

Generating figures for implied and local volatility
surfaces; discontinuities and oscillations in the
integrand; effects of parameters on Heston prices
and implied volatility; and total volatility (Matlab
only)

3. Derivations Using the
Fourier Transform

Obtaining the Heston price under the Attari
formulation

Obtaining the Heston price under Carr and Madan
formulation for calls, puts, and for OTM options
under general values of the spot price

Finding the Roger Lee admissible values for the Carr
and Madan alpha, and the Lord and Kahl optimal
value of alpha

Generating figures for the Attari integrand; alpha
bounds; optimal alpha; and Carr and Madan
integrands (Matlab only)

4. The Fundamental
Transform for Pricing
Options

Obtaining the Heston price using Lewis’ Fundamental
Transform

Obtaining the Heston price using Parseval’s identity
as applied by Lewis

Obtaining the Heston price using Lewis’ volatility of
volatility expansion

Generating figures for the payoff transform and prices
under the volatility of volatility expansions (Matlab
only)



About the Website 393

Chapter Code Functionality

5. Numerical Integration
Schemes

Obtaining the Heston price using Newton-Cotes
integration schemes

Generating abscissas and weights for Gauss-Laguerre,
Gauss-Legendre, and Gauss-Lobatto quadrature.

Obtaining the Heston price using Gauss-Laguerre,
Gauss-Legendre, and Gauss-Lobatto quadrature

Obtaining double integrals using the composite
Gauss-Legendre and composite trapezoidal rule

Obtaining the Heston price using the fast Fourier
transform (FFT) and the fractional fast Fourier
transform (FRFT)

Obtaining the Heston price using the Kahl and Jackel
transformation of the integration domain and
Gauss-Lobatto quadrature

Obtaining the Heston price using Zhu’s multi-domain
integration algorithm

Finding roots of polynomials using Sturm sequences
(C# only)

Obtaining the FFT and inverse FFT (C# only)
Generating figures for the Laguerre polynomial;

integrand and maturity comparison; and Kahl and
Jackel integrand (Matlab only)

6. Parameter Estimation Obtaining parameter estimates using loss functions,
with the original Heston call price, with the FTT
and FRFT formulations, with the Attari
formulation, and with the Lewis formulations

Modifying loss function estimation using Kilin’s
Strike Vector Computation algorithm

Obtaining parameter estimates using the Differential
Evolution algorithm; with the original Heston call
price and with the FRFT formulation

Obtaining the Gauthier and Rivaille ‘‘smart
parameter’’ starting values

Obtaining parameter estimates using Atiya and Wall’s
MLE algorithm

Obtaining the risk neutral density and total implied
volatility

Implementing the Nelder-Mead minimization
algorithm (C# only)

Performing operations on vectors, such as
multiplication, addition, and subtraction (C# only)

(continues)



394 ABOUT THE WEBSITE

Chapter Code Functionality

Generating figures for market and model implied
volatility comparisons; risk neutral density; and
total volatility (Matlab only)

7. Simulation in the
Heston Model

Obtaining the Heston price under various simulation
schemes, including Euler, Milstein, Kahl and
Jackel, Quadratic Exponential, Moment Matching,
and Transformed Volatility.

Calculating the inverse standard normal distribution
Generate uniform and standard normal random

numbers (C# only)
Generating figures to illustrate simulated stock price

paths and volatility paths (Matlab only)

8. American Options Obtaining American option prices under the Heston
model using the Longstaff-Schwartz LSM
simulation algorithm; the Beliaeva-Nawalkha
bivariate tree, the Medvedev-Scaillet expansion;
and the Explicit finite difference method.

Obtaining American option prices under the
Black-Scholes model using the Medvedev-Scaillet
expansion and the trinomial tree

Symbolic code to solve the Medvedev-Scaillet PDE
and find the expansion terms (Matlab only)

Obtaining American call prices using the Chiarella
and Ziogas algorithm

Estimating parameters of the Heston model using the
Medvedev-Scaillet expansion and market prices of
American options

Calculating linear interpolated values along two
dimensions (C# only)

Implementing linear regression, and matrix inversion
using LU-decomposition (C# only)

Generating figures for the illustration of the LSM
algorithm; optimization in the Medvedev-Scaillet
expansion; comparison of estimated and market
implied volatilities; and Chiarella and Ziogas
variance convergence (Matlab only)

9. Time-Dependent
Heston Models

Obtaining parameter estimates and prices under the
Mikhailov and Nogel time-dependent version of
the Heston model

Obtaining parameter estimates and prices under the
Elices time-dependent version of the Heston model



About the Website 395

Chapter Code Functionality

Obtaining parameter estimates and prices under the
Benhamou, Gobet and Miri time-dependent version
of the Model

Symbolic code to obtain coefficients of the
Benhamou, Gobet, and Miri model (Matlab only)

Illustrating how the univariate characteristic function
arises as a special case of the bivariate characteristic
function

Generating figures for comparing market implied
volatilities and implied volatilities from the
time-dependent models (Matlab only)

10. Methods for Finite
Differences

Obtaining Heston prices using the Explicit,
Alternating Direction Implicit (ADI), and Weighted
Methods, including the Implicit and
Crank-Nicolson methods as special case

Obtaining the matrix for the Heston generator
required for the ADI and Weighted Methods

Constructing uniform and non-uniform grids
Generating figures for non-uniform grid and for

accuracy analysis of the Explicit Method (Matlab
only)

11. The Heston Greeks Obtaining American Greeks under the Explicit
Method, the Longstaff-Schwartz Method, and the
Medvedev-Scaillet Method

Obtaining European Greeks under the original
Heston, Attari, Carr Madan FFT and FRFT, and
Lewis formulations, using analytic forms and finite
difference approximations

Generating figures for the Greeks (Matlab only)

12. The Double Heston
Model

Obtaining prices under the double Heston model
Obtaining prices under the double Heston model

using the simulation schemes of Gauthier and
Possamai

Estimating parameters of the model using loss
functions and Kilin’s Strike Vector Computation
modification

Obtaining American option prices under the double
Heston model using the Longstaff-Schwartz
algorithm

Obtaining Greeks under the double Heston model in
analytic form and using finite differences

(continues)



396 ABOUT THE WEBSITE

Chapter Code Functionality

Extracting the risk neutral density from double
Heston call prices

Obtaining local and implied volatilities from the
double Heston model

Generating figures to compare market and estimated
implied volatilities; for local volatility; for the risk
neutral density; and for the simulated stock price
and variances (Matlab only)

ACCESS TO THE CODE AND FILE FORMATS

To access the code, go to www.wiley.com/go/hestonmodel (password: rouah13).
The code files are arranged in directories that correspond to the chapters in

which the code is used. The files are then arranged in subdirectories that correspond
to the type of analysis for which the files are used. Some files are used in several
chapters, so these are included multiple times in the directories.

To access Matlab files, navigate towards the subdirectory that contains the files
you are seeking, and download them to a subdirectory on your local machine.

To access C# files, navigate towards the subdirectory that contains the files you
are seeking, and proceed in one of two ways:

1. Download only the source code files, including the solution files (.sln extension),
project files (.csproj extension), source files (.cs extension), as well as text files
(.txt extension) where applicable, to your machine. Create a new project in C#
and cut and paste the content of these files into your project.

2. Download the entire subdirectory including the \bin, \obj, and \Properties
subdirectories, and copy the entire subdirectory onto your local machine. Double-
click on the solution file to open and run the code in C#.



Index

Abscissas, 107, 115–127, 130, 132,
134–136, 145, 159, 171

Afshani S., 278
Aı̈t-Sahalia, Y., 156, 160, 175–176
Albrecher, H., 14, 25, 29, 31–32, 47, 61,

67, 69, 269, 357, 361, 368
Alfonsi, A., 177, 198, 201, 374
Algorithms

alternate, 33
bisection, 40, 55, 128, 149, 238, 249, 252
Differential Evolution (DE), 147,

162–164, 166, 175
Longstaff and Schwartz, 176, 205, 346,

348, 381–382
minimization, 147
Nelder-Mead, 81, 151–154
non-centrality parameter, 193
non-linear search, 76
replication, 44–45
root-finding, 149
rotation, 33
Simpson’s rule, 133

Alternating Direction Implicit (ADI)
method, 301, 321

American options, 203–261
abstract, 205
Beliaeva-Nawalkha bivariate tree,

217–228
call options, 118, 237, 253–254
call pricing, 214, 237, 253–254, 258, 261
calls, 118, 205, 214, 253–261
Chiarella and Ziogas American call,

253–261
and European puts, 222, 381
explicit method, 213–216
Greeks, 327, 348, 350–354
Least-Squares Monte Carlo (LSM),

205–213
Medvedev-Scaillet expansion, 228–253
option prices, 176, 205, 315–316, 325,

348, 361

option pricing, 203, 205–206, 228, 382
option valuation of, 203, 346
put options, 229
put prices, 212, 214, 221–222, 228, 230,

239–240, 244–245, 248–252, 348,
350, 352, 381

put valuation, 207, 212
puts, 261
conclusion, 261

Andersen, L., 25, 56, 58, 61, 177, 194–195,
201, 378–379

Array indexing, 116, 121
Atiya, A. F., 147, 166–169, 175
Attari, M., 61, 66, 69–71, 73, 89, 115, 159,

161, 327, 339–341

Bagby, R. J., 41
Bakshi, G., 1, 5, 20–21, 25–26, 28, 61, 63,

149, 328
Balanced, pathwise and IJK schemes

balanced implicit scheme, 191
Kahl-Jäckel scheme, 192–193
pathwise adapted linearization quadratic,

191
Bams, D., 149
Barone-Adesi, G., 252
Beerends, R. J., 101
Beliaeva, N. A., 205, 217–219, 221–222,

225–226, 228, 261, 381
Beliaeva-Nawalkha bivariate tree

about, 217–218
computer implementation, 222–228
trinomial tree for stock price, 219–221
trinomial tree for variance, 218–219
trinomial trees, combined, 221–222

Benaim, S., 57
Benhamou, E., 156, 160, 263, 285–289,

293–295, 297, 299–300
Benhamou-Miri-Gobet model

about, 285–287
constant parameters, 287–288

397The Heston Model and Its Extensions in Matlab and C#.      Fabrice Douglas Rouah.
© 2013 Fabrice Douglas Rouah.  Published 2013 by John Wiley & Sons, Inc.



398 INDEX

Benhamou-Miri-Gobet model (Continued)
parameter estimation, 295–298
piecewise constant parameters, 288–295

Bervoets, F., 90
Bivariate characteristic function, 263–269,

278, 300
Bivariate system, 1, 11, 50, 177, 195,

202, 207
Black-Scholes American puts, 244, 252
Black-Scholes call formula, 110
Black-Scholes Greeks, 335–336
Black-Scholes model

American calls under, 237
American puts under, 228, 232, 239–240,

244, 248, 252
call formula, 110
call price, 4, 19–21, 23, 28, 37, 40, 63,

108, 129, 287, 329
closed form, 23, 251, 335
deep in-the-money (ITM) calls, 35–36
deep out-of-the-money (OTM) calls,

35–36
derivatives, 5, 108–109, 111, 156,

286–287, 299
European puts under, 239
Greeks, 327, 331, 335–336
implied volatility, 8, 20, 36, 55, 251, 329
kurtosis, 35
Medvedev-Scaillet, 229–240, 251
in-the-money (ITM) calls, 35
out-of-the-money (OTM) calls, 35, 37
PDE’s, 5, 19–20, 229, 242, 331
portfolio, 5
pricing options, 5, 20
put prices, 228, 244, 286
puts, 156, 286, 299
skewness, 35
as special case of Heston, 1, 19–23
vega, 149, 359, 369

Black-Scholes out-of-the money
(OTM) calls, 37

Black-Scholes vega, 149, 282, 369
Bollerslev, T., 3
Borak, S., 76
Boundary conditions, 7, 214, 229, 253, 258,

266–267, 301, 315, 358, 360
Breeden, D., 3, 7, 171
Brigo, D., 3

Broadie, M., 203, 354
Brotherton-Ratcliffe, R., 177, 201
Brownian component, 19
Brownian motion, 26, 50, 166, 178–180,

195, 265, 357–358, 373–374
Brunner, B., 171
Buehler, H., 382
Burden, R. L., 116, 118, 127, 210, 306

C# functions
Beta(), 211
BiSecBSIV(), 40–41, 55
Bisectional(), 239
Black-Scholes(), 41
FFT(), 143
findinterval(s), 128
FRFT(), 142
HestonExplicitPDENonUniformGrid(),

351
HestonFRFT(), 144
HHLSM(), 209
IFFT(), 143
interp2(), 215, 315, 318, 324, 351
LewisGreeks(), 344
LV(), 210
MatUpTriangelInv(), 210
MInvLU(), 324
MMMult(), 212
MSPriceBS(), 239
MSPutBS(), 238
MTrans(), 212
MVMult(), 212
NormCDF(), 40, 112, 151
RandomInt(), 165
RandomNum(), 165
sturm(), 128
VarianceSwap(), 44–45

Cao, C., 149, 328
Carnegie and Mellon University, 198
Carr, P., 61, 63, 73, 75–77, 84–86, 89–90,

95, 115–116, 137–139, 171, 327,
341–343, 346

Carr and Mandan damping factor
numerical implementation and

illustration, 77–81
optimal, 77
use of, 73–74, 76, 82, 341

Cash flows, 205–208



Index 399

Chacon, P., 65
Chan, J. H., 203, 354
Characteristic functions, 25–29
Chen, Z., 149, 328
Chiarella, C., 118, 205, 253–255,

258–259, 261
Chiarella and Ziogas American call

American call price, 254–258
early exercise boundary approximation,

253–254
early exercise boundary estimation,

258–261
Cholesky decomposition, 50, 179, 195
Chourdakis, K., 90, 116, 141, 327
Chriss, N. A., 19
Christoffersen, P., 8, 149, 151, 174, 261,

275, 357–358, 368–370
CIR process, 42, 108, 178, 194
CIR variance, 179
Clarke, N., 212, 216, 250, 302, 325, 348,

350, 352–354
Close-form

approach, 176
Greeks in, 327, 333, 335–336, 340–341,

344, 349
Heston model, 288, 295, 327, 381
price, 23, 28, 112, 177, 193, 197,

293–294, 320
solution, 28, 245, 248, 313–314, 320
values, 157

Coefficients
binomial, 123
of characteristic function, 266, 271,

360–361
drift volatility, 183
estimation of, 206, 210–211
limiting slope, 60
polynomial, 230, 232
recursive, 290, 295
stating values, 259
of variance process, 184

Cohen, H., 116, 121
Computation time, 18–19, 47, 73, 113,

132–133, 138, 141, 149, 159–162,
175, 210, 219, 228, 248, 251, 296,
302, 314, 320, 325, 327, 332, 352

Consumption model, 3, 7
Convergence properties, 177

Convolution method, 90
Convolution theorem, 101
Cosine method, 90
Costabile, M., 382
Covered call, 98
Cox, J. C., 1, 3–4, 193

Da Fonseca, J., 382
Damping factor

bounds of, 76
Carr and Mandan use of, 73–74, 76,

82, 341
choice of, 63, 75, 87
incorporation of, 73
optimal, 77–78, 80, 87, 90
selection of, 81–82

Deep-in-the-money (ITM) calls, 35–36
Deep-out-of-the money (OTM) calls, 35–36
Delta, 7, 315, 328, 330, 332–333,

339–342, 347–349
Demeterfi, K., 44
Density functions, 27–28, 70, 171
Density functions, cumulative, 21
Density functions, probability, 21, 26, 63
Derman, E., 43–44, 52
Detlefsen, K., 76
Differential algorithm, 162, 188
DiracDelta function, 171, 193
Discretization. See also Euler discretization;

Milstein discretization
about, 178
accuracy, 182
Alfonsi scheme, 374
alternative, 191, 195, 373
central, 196
grids for, 301–302
IJK, 192
integration range, 137
starting point, 178
strike range, 137–138, 154

Double Heston model
abstract, 357
American options in, 380–382
double Heston call price, 358–363
double Heston Greeks, 363–368
multi-dimensional Feymann-KAC

theorem, 357–358
parameter estimation, 368–373



400 INDEX

Double Heston model (Continued)
simulation in, 373–379
conclusion, 382

Double Heston model, simulation
Alfonsi scheme for the variance, 374–376
Euler scheme for the variance, 374
quadratic exponential (QE) scheme,

378–380
in stock price, 373–374
Zhu scheme for the transformed variance,

376–378
Double-lattice approach, 382
Dréo, J., 152
Duffie, D., 63, 265–267, 357, 360
Duffy, D. J., 193, 306–307, 325
Dupire, B., 45
Dupire local volatility, 45–49

Early exercise boundary, 253–254, 258
Early exercise premium, 208, 245, 248–250,

255–257
Elices, A., 263–264, 278–279, 283–284,

300
Equations. See also Ricatti equation

auxiliary, 12
for call price, 99
derivatives, 47–49, 67, 214, 230, 238,

242–243, 307
differential, 265–266, 361
Fourier transforms, 74, 87, 92
indicator function, 87
integrated in, 71–72, 75, 77, 80, 86, 88,

92
inversion, 84, 86
Parseval’s Identity in, 101, 104
partial differential. See Partial differential

equations (PDE)
put-call parity in, 98

Eraker, B., 176
Euler discretization, 18, 179–181,

183–184, 187–190, 195, 376
Euler scheme

about, 179–180
for the stock price, 180–181
for the variance, 180

Euler’s identity, 64, 66
European and American prices, 208, 224,

227, 245, 325, 381

European and American puts, 222, 248,
257, 381

European options, 91–92, 95, 178, 321, 349
call and/or put prices, 15, 23, 136, 190,

192, 201
call options, 7, 92, 315
call price, 1, 4–5, 8, 15, 17, 22, 49, 97,

188, 254–256, 301, 320, 323, 327
calls, 4, 8, 92, 95, 258, 300, 315, 320
Greeks, 327–332, 349
Heston model for, 1–28
option pricing, 113, 178, 208, 213, 253,

321, 349
prices, close form, 208, 212, 249, 251,

320, 382
put prices, 1, 15, 17, 22, 98, 245, 248,

250, 261, 285, 301, 381
put-call parity, 15, 17, 22, 98
puts, 238, 245
value of, 302–303, 306, 323

Expansion implied volatility, 113
Expansion rule, 153
Explicit methods, 205, 213–216, 251, 261,

300, 318
Explicit scheme

about, 316–320
error analysis, 320–321

Faires, J. D., 116, 118, 127, 210, 306
Fang, F., 90
Fast Fourier transforms (FFT), 90, 116,

141–142, 145, 160, 327, 345, 354.
See also Fractional fast Fourier
transforms (FRFT)

discretization of integration range and of
the strike range, 137–138

inverse, 142
numerical integration schemes, 137
summary of, 139–140

Feller condition, 4, 178
Fengler, M., 174
Feynman-Kac theorem, 357–358
Finite difference methods, 205, 261,

300–302, 325, 354
Finite differences, methods for

abstract, 301
Alternating Direction Implicit (ADI)

Scheme, 321–325



Index 401

explicit scheme, 316–321
finite difference aproximation of

derivatives, 303–306
grid building, 302–303
PDE boundary conditions, 315–316
PDE in terms of an operator, 301–302
weighted method, 306–315
conclusion, 325

First order Greeks, 332
First vega. See Vega 1
Forde, M., 56
Foulon, S., 302–304, 313, 319, 325
Fourier transforms, derivations using

about, 63–64
abstract, 63
Attari representation, 69–73
Carr and Mandan representation,

73–76
Carr-Mandan damping factor and

optimal value bounds, 76–81
Carr-Mandan representation for puts,

82–84
Gatheral deviation, 67–69
Gil-Pelaez Fourier inversion, 65–66
OTM options representation, 84–89
probabilities recovery, 65–66
conclusion, 89–90

Fourier transforms equations, 74, 87, 92.
See also Fast Fourier transforms (FFT);
Fractional Fast Fourier transforms
(FRFT)

Fourier transforms methods, 63
Fractional fast Fourier transforms (FRFT),

141–146, 160, 345, 354
Friz, P., 57
Full truncation scheme, 178–181, 184,

187–188, 192
Fundamental transform and option price

about, 92–96
call price using fundamental transform,

94–100
Heston model, 95–97

Fundamental transform approach,
91–92

Fundamental transform for pricing options,
91–113

fundamental transform and option price,
92–100

option prices using Parseval’s identity,
100–108

payoff transform, 91–92
volatilty of volatility series expansion,

108–113
conclusion, 113

Gamma, 328, 333, 337, 339–343,
347–349, 363

Gatheral, J., 5, 25, 43, 50–52, 61, 63,
67–69, 89, 108, 177, 184

Gaussian quadrature
in C#, 127–130
for double integrals, 126–127
Gauss-Laguerre quadrature, 121–123
Gauss-Legendre quadrature,

123–125
Gauss-Lobatto quadrature, 125–126

Gauthier, P., 147, 156, 158, 361, 363,
373–374, 376, 378–380

Geske, R., 261
Gibson, M., 3
Gilli, M., 162
Gil-Pelaez, J., 10, 25, 65, 70, 89
Glasserman, P., 181, 354
Gobet, E., 156, 160, 263, 285–289,

293–295, 297, 299–300
Grasselli, M., 382
Greeks. See also Delta; Gamma; Heston

Greeks; Rho; Theta; Vanna; Vega;
Volga

American options, 327, 348,
350–354

Black-Scholes Greeks, 335–336
double Heston Greeks, 363–368
European options, 327–332, 349
in models, 340–341, 352, 354, 363, 367,

382
numerical integration for, 342

Grid size polynomials, 141
Grids, 138, 142, 213, 301–305, 310, 314,

316–318, 320
Guillaume, F., 160

Hafner, R., 171
Härdle, W., 76
Haug, E. G, 335
Heath, D., 191



402 INDEX

Heston, S. L., 3, 5, 7–8, 10, 12, 31–32, 34,
36–37, 47, 63, 67, 71, 73, 96, 100,
102, 107, 113, 115–116, 118, 149,
151, 159, 161, 171, 174, 176, 184,
240, 253–254, 256, 259, 261, 264,
275, 283–284, 294, 315, 327, 337,
339, 341, 344, 354–355, 357–358,
368–370, 373, 381–382

Heston characteristic functions, 16, 31, 72,
75–76, 106–107, 137, 139, 335, 342

Heston Greeks
abstract, 327
American Greeks from Madvedev and

Scaillet, 352–354
American Greeks using explicit method,

349–352
American Greeks using simulation,

346–349
Delta, Gamma, Rho, Theta and Vega,

328–329
European Greeks, analytic expressions

for, 327–332
finite differences for Greeks, 332–333
Greeks, numerical implementation of,

333–339
Greeks under Attari and Carr-Madan

formulations, 339–343
Greeks under Lewis formulations,

343–345
Greeks using FFT and FRFT, 345–346
Vana, Volga, and other Greeks, 330–332
conclusion, 354–355

Heston model
close-form, 288, 295, 327, 381
Milstein scheme for, 183–185
single-factor, 358

Heston model, for European options, 1–28
Black-Scholes as special case, 19–22
call price summary, 22
dividend yield and put price, 17
European call price, 4–5
hedging portfolio, 6–7
Heston characteristic functions, 10–12
Heston PDE, 5–10
Heston Ricatti equation solution, 12–16
integral consolidation, 18–19
model dynamics, 1–4
option price, PDE for, 7–8

PDE for probability, 8–10
conclusion, 23

Heston model, simulation in, 177–203
abstract, 177
balanced, pathwise and IJK schemes,

191–193
Euler scheme, 179–181
general setup, 177–179
implicit Milstein scheme, 185–188
Milstein scheme for, 181–185
moment matching scheme, 201–202
quadratic-exponential scheme,

193–201
transformed volatility scheme, 188–190
conclusion, 202–203

Heston model, time-dependent
abstract, 263
Benhamou-Miri-Gobet model, 285–298
bivariate CF linkage to general Ricatti

equation, 269–271
bivariate characteristic function (CF),

264–268
Black-Scholes derivatives, 299
Elices model, 278–285
Mikhailov and Nögel model, 271–278
Ricatti equation, generalization of,

263–264
conclusion, 300

Heston model, variance modeling in
Dupire local volatility, 45–49
implied volatility, 54–56
local volatility approximation, 50–52
local volatility, numerical illustration of,

52–54
local volatility with finite differences,

49–50
variance swap, 43–45
conclusion, 61

Heston parameters, effect of, 34–43
Black-Scholes prices comparison,

35–38
Heston implied volatility, 38–43
variance, correlation and volatility of,

34–35
Heston Ricatti equation solution, Ricatti

equation in general setting, 12–13
Hogg, R. V., 21
Hull, J. C., 19, 208, 381



Index 403

Ikonen, S., 212–213, 216, 250, 325, 348,
352

Implicit schemes, 185, 191, 301, 308, 314,
322

Implied volatility, bounds on slope of,
57–60

Implied volatility curve, 331
Implied volatility mean and sum of squares

(IVMSE), 148
Implied volatility models, 38, 54–55, 57,

61, 147–148, 151, 170, 175–176, 278,
355, 368–369, 371

Ingersoll, J. E., 1, 3–4, 193
Inside contraction rule, 153–154
Integration. See also Numerical integration

schemes, 82, 74
area of, 74
constant, 20, 97
contour, 105–106
domain, 113, 115, 117, 121, 126,

130–134
Gauss-Laguerre, 73, 83, 89, 99–100, 107,

122, 124–125, 130, 135, 140, 151,
159, 161, 274, 288, 294

Gauss-Lobatto, 135
grid, 15, 119, 136, 138–139, 142, 145,

345
increment, 140, 142
limits of, 84–85, 92, 100, 130–136, 173
order of, 66, 84, 87
by parts, 64, 94
points, 15, 100, 107, 144, 173
range, 29, 32, 65–66, 92, 115, 121, 125,

133, 137–138
short domain, 61
strips, 99
variable, 67, 74, 84, 116, 254, 256, 272

Integration issues, 25–34
Intergrand, problems with, 29–31
In-the-money (ITM) calls, 35–37
In-the-money (ITM) probability, 10, 27
Inversion theorem, 10, 27, 65
Itkin, A., 106
Itô’s Lemma, 2, 5–6, 19, 27, 50, 67,

181–184, 188, 217–218, 286,
359, 376

IVMSE estimation error, 370
IVMSE parameters, 174

Jäckel, P., 33, 117, 133–135, 145, 177, 181,
191–192, 203

Jacobs, K., 8, 149, 151, 174, 261, 275,
357–358, 368–370

Jacquier, A., 56
Janek, A., 160
Johnson, H. E., 261
Joint process, 365
Jondeau, E., 10, 171
Joshi, M., 5, 203, 354

Kahalé, N., 174
Kahl, C., 33, 74, 77, 80–81, 115, 117,

133–135, 145, 177, 181, 191–192,
203, 269–270, 278, 300

Kamal, M., 44
Kani, I., 43, 52
Kaya, Ö., 203, 354
Kienitz, J., 193
Kilin, F., 147, 158–160, 369–370
Kimmel, R., 156, 160, 175
Kloeden, P. E., 181, 186
Kluge, T., 160, 302, 304–306, 308
Klugman, S., 21
Kurtosis, 34–35, 37
Kutner, M. H., 206

Lee, R., 25, 57, 59, 61, 81
Left-point rule, 179
Legendre polynomials, 124–125
Lehnert, T., 149
Leisen, D., 261
Lewis, A. L., 5, 7, 63, 69, 90–95, 97–100,

102–109, 113, 115, 131, 149, 159,
285, 287, 327, 343–344

Li, W., 206
Lipton, A., 106
Little Heston trap, 31–33
Little Trap formulation, 14, 25, 32–33, 47,

61, 69, 208, 269–270, 334, 357,
361–362, 366

Local volatility
approximation, 50–52
with finite differences, 49–50
numerical illustration, 52–54

Log-moneyness, 50, 57, 60, 67
Longstaff, F. A., 176, 203, 205–206,

208–209, 315, 346, 348, 381–382



404 INDEX

Lord, R., 74, 77, 80–81, 90, 278, 300
LU decomposition, 210–211

Madan, D., 1, 20–21, 25–26, 28, 61, 63,
73, 75–77, 84–86, 89–90, 95, 115,
137–139, 327, 341

Malliavin calculus, 286, 354
Massabò, I, 382
Matlab functions, 345

ADIPrice.m, 322
AlfonsiPrice.m, 201
AlfonsiV.m, 199–200, 375
AttariGreeks.m, 341
AttariPriceGaussLaguerre.m, 72
AttariProbGreeks.m, 340
AttariProb.m, 72, 340
BGMApproxPrice.m, 288
BGMApproxPriceTD.m, 292
BisecBSIV.m, 40, 55
BisecMSIV.m, 251–252
BlackScholesDerivatives.m, 157
B.m, 365–366
BuildBivariateTree2.m, 228
BuildBivariateTree3.m, 228
BuildBivariateTree.m, 224, 228
BuildDerivatives.m, 310, 312–313
BuildDerivativesNonUniform.m, 313
BuildVolTree.m, 222
CardMadanGreeks.m, 342, 346
CarrMadanIntegrand.m, 75, 83
CIRmoments.m, 199, 375
C.m, 280
collect.m, 236, 246
CT.m, 273
CZAmerCall.m, 257
CZCharFun.m, 255
CZEarlyExercise.m, 256
CZEuroCall.m, 256
CZNewton.m, 259
d2P1dK2.m, 48
dCdT.m, 47
DHEuler.AlfonsiSim.m, 375
DHQuadExpSim.m, 378
DHTransVolSim.m, 377
DiffTau.m, 337, 365–366
D.m, 337
DoubleGaussLegendere.m, 127, 257
DoubleHestonCF.m, 362

DoubleHestonGreeks.m, 365
DoubleHestonObjFun.m, 369
DoubleHestonObjFunSVC.m, 369
DoubleTrapezoidal.m, 257
DoubleTrapz.m, 118–119
dP2dK2 2.m, 48
dPjdT.m, 47
DT.m, 273
ElicesObjFun.m, 282–283
ElisesCF.m, 281
ElisesPrices.m, 282
EulerMilsteinPrice.m, 187
EulerMilsteinSim.m, 186
ExtractRND.m, 172
fft.m, 142
find.B, 260–261
find.m, 209
FinLeeBonds.m, 58–59
fminbnd.m, 249
fmincom.m, 238
fmincon.m, 150, 155–156, 168, 252
fminsearch.m, 78, 152, 155–156
FRFT.m, 142
GauthierCoefficients.m, 157
GauthierObjFun.m, 158
GenerateGaussLaguerre.m, 122
GenerateGaussLobotto.m, 126
GeneratePQHeston.m, 246
GeneratePQ.m, 232, 235–237, 246–247
GetGauthierValues.m, 157
HestonBGMObjFun.m, 295
HestonBGMObjFunTD.m, 296
HestonBivariateCF.m, 270
HestonCallFFTGreek.m, 345
HestonCallFFT.m, 139–140
HestonCallFRFTGreeks.m, 346
HestonCallFRFT.m, 142, 160
HestonCallGauss.Laguerre.m, 75
HestonCFGreek.m, 345
HestonCFGreeks.m, 342
HestonCF.m, 139
HestonDE.m, 163, 166
HestonExplicitPDE.m, 317–319
HestonExplicitPDENonUniformGrid.m,

214, 318, 349–350
HestonGaussLaguerre.m, 270
HestonGreeksConsolidated.m, 336
HestonGreeks.m, 331, 335–336



Index 405

HestonGreeksProb.m, 333, 335, 342
HestonInteguard.m, 32
HestonLewisCallPrice.m, 99
HestonLewisGreekPrice.m, 344
HestonLVAnalytic.m, 48
HestonLVApprox.m, 52
HestonLVFD.m, 49
HestonObjFunction.m, 151
HestonObjFunFRFT.m, 160, 164
HestonObjFun.m, 149–150, 161,

295–296
HestonObjFunMS.m, 252
HestonObjFunSVC.m, 159
HestonPriceGaussLaguerre.m, 38,

123–125, 136
HestonPriceGaussLegendre.m, 126, 136
HestonPriceGaussLegendreMD.m, 132
HestonPriceKahlJackel.m, 134
HestonPriceLaguerre.m, 88
HestonPrice.m., 14
HestonPriceNewtonCotes.m, 117–118,

120, 136
HestonProbConsol.m, 18
HestonProb.m, 14–16
HestonProbZeroSigma.m, 21–22
ifft.m, 142
interp1.m, 160–161
interp2.m, 215, 318–319, 349
J.m, 110
KahlJackelPrice.m, 192
KahlJackelSim.m, 192
Lewis Table figure.m, 113
LewisGreeks311.m, 344
LewisIntegrand311.m, 107
LewisIntegrandGreek.m, 343
LewisIntegrand.m, 99, 343
LikelihoodAW,m, 168
LinearInterpolate.m, 161, 164
LordKahlFindAlpha.m, 78
LSMGreeks.m, 347–348
LSM.m, 208–209
A.m, 280
MMGreeksm, 347
MMSim.m, 201, 347
MNObjFun.m, 274–275
MNPriceGaussLaguerre, 274
MNProb.m, 273–274
MomentExplode.m, 56

MomentMatching.m, 37
MSGreeks.m, 352
MSPrice.m, 248, 251–252, 352
MSPutBS.m, 237–238, 248
MSPutHeston.m, 248
mvncdf.m, 119
normCDF.m, 378
norminv.m, 197
PQHeston.m, 246
PQ.m, 233, 235, 246
probV.m, 223
probY.m, 224
QESim.m, 196, 198
repmat.m, 121
R.m, 110
RogerLeeGEXpD.m, 78
roots.m, 124
SeriesICall.m, 111
SeriesIICall.m, 111
simplify.m, 236
solve.m, 235–236, 247
subs.m, 236–237, 247
SymbolicDerivatves.m, 335
TransValPrice.m, 190
TransValSim.m, 189
trapz.m, 15, 173
VarianceSwap.m, 44
WeightedMethod.m, 312–313

Matrix inversion, 210, 314, 316, 324
Maturity parameters, 273, 281
Mayer, P., 14, 25, 29, 31–32, 47, 61, 67,

69, 269, 357, 361, 368
McNamee, J. M., 128
Mead, R., 147, 152
Mean error sum of squares (MSC) loss

function, 148
Mean reversion level, 1, 189, 241, 329, 370
Mean reversion rate, 4
Mean reversion speed, 1, 4, 38, 189, 329
Medvedev, A., 205, 228–232, 239–241,

244–245, 248–252, 261, 327,
352–354

Medvedev-Scaillet expansion
about, 228
Medvedev-Scaillet for Black-Scholes,

229–240
Medvedev-Scaillet for Heston, 240–251
parameter estimation, 251–253



406 INDEX

Mercurio, F., 3
Methods. See also Black-Scholes model;

Heston model; Schemes
Alfonsi, 376
Alternating Direction Implicit (ADI), 301
for American options, 205
for American puts, 228, 250
Attari, 73
Attari and Wall, 169–170
balanced implicit, 191
of Beliaeva and Nowalkha, 228
Carr and Mandan, 61, 79, 89, 299
of Chiarella and Ziogas, 205, 253–254,

258, 261
for constrained optimization, 155
cosine, 90
D.E., 166
for double integration, 118
to estimate parameters of diffusion, 176
to estimate risk-neutral parameters, 175
estimation, 54, 147, 162
estimation by maximum likelihood, 176
explicit, 205, 213–216, 251, 261, 300,

318
of Fang and Oosterlee, 90
fast Fourier transform (FFT), 145–146
finite difference, 205, 261, 300–325, 354
Fourier transform, 63
fractional fast Fourier transform (FRFT),

146
Gauss-Laguerre quadrature, 118
Gauss-Legendre quadrature, 118
Gauss-Lobatto quadrature, 118
of Gauthier and Rivalle, 147, 156–158
integration, 132, 171
iterative, 258
Kahl and Jäckel, 134
of Kilin, 159, 369
of Lewis, 90
for matrix inversion, 210
of Medvedev and Scaillet, 205, 228,

250–251
MLE, 170
moment matching, 212
of moments, 176
multi-domain integration, 132, 173
Nelder and Mead algorithm, 152
Newton’s, 258–259

notable, 203
numerical, 116, 145
numerical integration, 116–145, 173
of optimal valuation, 176
parametric estimates from, 54, 149, 162
pathwise, 354
pathwise adapted linearization quadratic,

191
Predictor-Corrector, 376–377
pricing, 176
quadratic exponentiation, 198
recursive, 271
‘‘Smart Parameter,’’ 147, 156, 158
standard, 177
Strike Vector Computation (SVC),

369–371
of summation, 371
SVC, 162, 371
total absolute error of each, 250
of Tvalis and Wang, 261
for univariate processes, 176
to value American options, 205, 261
of Zhu, 118, 132

Methods of moments, 176
Mid-point rule, 117, 119
Mikhailov, S., 149, 263–264, 272, 274,

277–278, 283, 293, 295–296, 300, 370
Mikhailov and Nögel model

about, 271–274
parameter estimation, 274–278

Milstein discretization, 183–186
Milstein drift-implicit scheme, 185
Milstein scheme

about, 181–183
for Heston model, 183–185
implicit, 185–188
for the stock price, 184–185
for the variance, 184

Miri, M., 156, 160, 263, 285–289,
293–295, 297, 299–300

Model dynamics, variance process
properties, 3–4

Models, 261. See also Black-Scholes model;
Heston model

Attari and Wall, 341
Benhamou-Miri-Gobet, 285–300
Black-Scholes, 4–5, 8, 19–20
call price, 115–116, 369, 382



Index 407

call price in, 23, 339
characteristic function, 31, 61, 63, 69, 76,

116
of Chiarella and Ziogas, 118
consumption, 3, 7
DDE’s from, 23
deep in money calls pricing, 35
deep ITM calls, 35–36
deep OTM calls, 36
derivative, 45, 49
differential evolution algorithm, 147,

162, 175
of dividends, 17
double Heston, 261, 351–382
Elices, 278–285, 300
enrichment of, 261
estimation by loss factor, 175
European prices, 113
Fast Fourier transform (FFT) pricing, 63
Fast Fourier transform (FFT) use in,

63, 145
fit of, 370
flexibility in, 355, 357–358, 382
Fractional Fast Fourier transform (FRFT)

use in, 145
fundamental transform for, 91, 95–98,

113
Gaussian quadrature for double

highlights, 126–129, 145
Gauss-Laguerre quadrature, 121–123,

145
Gauss-Legendre quadrature, 123–125
Gauss-Lobatto quadrature, 125–126, 145
Greeks in, 340–341, 352, 354, 363, 367,

382
initial variance parameter, 168
ITM probabilities, 89
Least-Squares Monte Carlo (LSM)

algorithm application, 261
literature for, 176
long maturities, 55
Mikhailov and Nögel, 271–278, 283,

298, 300, 370
minimize fit in, 368
multivariate affine, 265
option prices, 146
option prices from, 35
option valuation, 176

OTM calls, 35
parameter estimation methods for, 54
parameters estimation in, 283, 297
parameters of, 147, 149
Parseval’s Identity for, 102
piecewise constant, 298
price sources, 251–252
pricing methodologies, 147
probabilities in, 115
put price in, 286
range of, 22
risk neutral density, 172
schemes for, 176
simulation in Heston, 177–203
static, 278, 298
stochastic volatility, 93, 108, 113, 175,

181, 228
tail distribution, 37
time dependency in, 271, 277–278,

283–284, 286, 293, 297–298, 300, 370
time dependent, 263–300
time dependent parameters, 160
underlying stock price in, 25
variance, 43
variance, local, 25
Variance Gamma, 76, 102, 106
of volatility, 2, 5, 10, 23
volatility, implied, 25, 38, 54–55, 57, 61,

147–148, 151, 170, 175–176, 278,
355, 368–369, 371

volatility, local, 48, 50, 52
volatility dynamics in, 355
volatility factor in, 358
volatility of variance parameter in, 19
volatility processes of, 176

Moment explosions, 25, 56–58, 61
Moment-matched discretization, 201
Moneyness, 238. See also Log-moneyness

normalized, 229, 241
Monte Carlo simulation, 177
MSE parameters, 174
Multi-factor volatility, 382
Multivariate processes, 176
Musiela, M., 5

Nachtsheim, C. J., 206
Nawalkha, S. K., 205, 217–219, 221–222,

225–226, 228, 261, 381



408 INDEX

Nelder, J. A., 147, 152
Nelder and Mead algorithm, 81, 151–155
Neter, J., 206
Newton-Cote formulas

about, 116–117
mid-point rule, 117
Simpson’s rule, 119–120
Simpson’s three-eighths rules, 120–121
trapezoidal rule, 118
trapezoidal rule for double integrals,

118–119
Nieuwenhuis, H., 261
Nögel, U., 149, 263–264, 272, 274,

277–278, 293, 295–296, 300, 370
Non-uniform grids, 213–214, 301–303,

306, 309–310, 313–314, 318–320,
322, 325, 349–350

Numerical integration
alternate scheme, 15
characteristic function, 31, 34
consolidation, 18, 46
damped version, 87
for delta calculation, 341
Gauss-Laguerre quadrature for, 33
for Greeks, 342
illustration of, 136
inaccuracies, 25
integrand in, 116
literature on, 116
need for, 91, 108, 113
precision, 16
problems with, 29, 61, 72, 81
semi-closed form, 23
single, 46, 71, 74
speed of, 18, k
upper limit, 71, 99

Numerical integration schemes
abstract, 115–116
fast Fourier transform (FFT), 137
fractional fast Fourier transform (FRFT),

141–145
Gaussian quadrature, 121–130
integrand in, 116
integration limits and Kahl and Jäckel

transformation, 130–138
Newton-Cote formulas, 116–121
numerical integration illustration, 136
conclusion, 145–146

Nunes, J.-C., 152
Nykvist, J, 162

Oosterlee, C. W., 90
Option prices using Parseval’s identity

about, 100–101
Parseval’s Identity, 101

Option Valuation Under Stochastic
Volatility: With Mathematica Code,
(Lewis), 91

Ornstein-Uhlenbeck process, 2
OTM options representation, 84–89

generalization of, 87–89
Out-of-the money (OTM) calls, 35–37, 44,

84, 89, 112
Outside contraction rule, 153–154

Pan, J., 63, 265–267, 357, 360
Parameter effects, 34–43
Parameter estimation

abstract, 147
differential evolution, 162–166
maximum likelihood estimation, 166–170
methods for models, 54, 283, 297
Mikhailov and Nögel model, 274–278
Nelder-Mead algorithm in C#, 151–155
pricing American options, 251–253
risk-neutral density and arbitrage-free

volatility surface, 170–175
speeding up estimation, 158–162
starting values, 155–158
using loss functions, 147–158
volatility surface, 170–175
conclusion, 175–176

Parameters. See also ‘‘Smart Parameter’’
Heston, effect of, 34–43
initial variance, 168
of models, 147, 149
time dependent, 160
volatility of Heston, 34–35
volatility of variance in models, 19

Parameters of diffusion, 176
Parrott, K., 212, 216, 250, 302, 325, 348,

350, 352–354
Parseval’s Identity for Heston model,

102–104
contour variations and the call price,

104–108



Index 409

Partial differential equations (PDE)
boundary conditions, 315–316
option price, 7–8
for probability, 8–10
in terms of an operator, 301–302

Payoff transform, 91–92, 95, 97–98, 104,
106, 113

Pelsser, A., 177, 203
Piterbarg, V. V., 25, 56, 58, 61
Platen, E., 181, 186, 191
Poon, S.-H., 10, 171
Possamaı̈, D., 361, 363, 373–374, 376,

378–380
Predicted continuation value, 206
Price, K., 162
Prior maturities, 273
Put-call parity, 15, 17–18, 22, 72, 82–83,

98, 106, 122, 132, 134, 287–288, 292,
301–302

Quadratic-exponential scheme
about, 193
Alfonsi scheme for the variance, 198–201
log-stock price process, 195–196
martingale correction, 196–198
moment-matching, 194

Raible, S., 76
Randall, C., 325
Reflection rule, 152–153
Reiss, O., 328
Relative mean error sum of squares (MSC)

loss function, 148
Residue theorem, 70, 104–106
Rho, 157, 328, 332–333, 342
Ricatti equation, 1, 12–14, 20, 68–69,

95–96, 263–267, 269–271, 300, 360
Right-point rule, 179
Risk neutral process, 2–3
Risk sensitivity, 334
Risk-neutral densities (RND), 371
Rivaille, P.-Y. H., 147, 156
RMSE loss function, 148, 151, 174, 252,

368–369
RMSE parameters, 175
Rockinger, M., 10, 171
Rodan-Nikodym derivative, 4, 21, 27
Ross, S. A., 1, 3–4, 193

Ruckdeschel, P., 261
Rudin, W., 101
Russo, E., 382
Rutkowsi, M., 5

Sayer, T., 261
Scaillet, O., 205, 228–232, 239–241,

244–245, 248–252, 261, 327,
352–354

Schemes
Alfonsi, 177, 181–188, 190–192,

198–201, 374–376
Alternating Direction Implicit (ADI)

Scheme, 321–324
balanced, pathwise and IJK, 191–193
balanced implicit, 191
Crank-Nicolson, 301, 308, 313–314,

322, 324
discretization, 179, 191, 195, 201, 374
Douglas, 321–322
Euler, 179–181, 188, 308, 374–375, 380
explicit, 316–321
full truncation, 178, 180, 182, 184, 187,

374
IJK (Kahl-Jäckel), 177, 191–193
implicit, 185, 191, 301, 308, 314, 322
Kahl-Jäckel, 192–193
Milstein, 177–178, 181–188, 190–192
in moment matching, 201–202
moment matching, 177, 201–202
numerical integration, 15, 34, 74, 81, 87,

99, 113, 115–146
quadratic exponential (QE), 177, 190,

193–201, 378–380
reflection, 178–180, 184, 188, 192
simulation, 176–180, 184, 198, 202–203,

347, 354, 357, 373, 378–382
Sneyd, 322
transformed volatility, 188–190
volatility, 177, 188–190, 375, 377, 380
Zhu, 376–378

Schmelzle, M., 82, 92, 159
Schoutens, W., 14, 25, 29, 31–32, 47, 61,

67, 69, 76, 160, 269, 357, 361, 368
Schumann, E., 162
Schwartz, E. S., 176, 203, 205–206,

208–209, 315, 346, 381–382
Second order Greeks, 333, 363



410 INDEX

Second vega. See Vega 2
Secrest, D., 121
Shephard, N.G., 64
Shimko, D., 151
Shrinkage, 153
Siarry, P., 152
Simons, E., 76
Simpson’s rule, 117, 119–120, 133, 138,

140, 346
Simpson’s three-eighths rules, 117, 120, 250
Simulation in double Heston model

Alfonsi scheme for the variance, 374–376
Euler scheme for the variance, 374
quadratic exponential (QE) scheme,

378–380
simulation in stock price, 373–374
Zhu scheme for the transformed variance,

376–378
Simulation-based algorithm, 205
Simulation-based Greeks, 354
Single-factor Heston model, 358
Singleton, K., 63, 176, 265–267, 357, 360
Skewness, 34, 337
‘‘Smart Parameter,’’ 147, 156, 158
Smith, R. D., 203
Starting values, 78, 147, 152, 155–156,

166, 258–259, 275, 283, 296
Stochastic differential equation (SQE), 126,

166, 177, 217
Storn, R., 162
Stroud, A. H., 121
Stuart, A., 10, 65
Szimayer, A., 261

’T Hout, K.J., 302–304, 313, 315, 319, 325
Tavella, D., 325
Taylor series expansion, 6, 232, 244
Tebaldi, C., 382
ter Morsche, H.G., 101
Terminal stock price, 2, 10, 22, 37, 56, 69,

71, 178, 187, 201, 337
Terms, of single characteristic function, 25,

61
Theorems

of Calculus, 115
convolution, 101
Feynman-Kac theorem, 8, 11, 17,

357–358

Girsanov’s, 2
inversion, 10, 27, 65
of put price, 286
residue, 70, 104–106

Theta, 328, 332–333, 337, 341–342, 345,
350, 352, 364–365

Time dependency, 271
Time dependent parameters, 261, 263,

274–277, 282, 293, 295–298
Tistaert, J., 14, 25, 29, 31–32, 47, 61, 67,

69, 76, 269, 357, 361, 368
Toivanen, J., 212–213, 216, 250, 325, 348,

352
Trapezoidal integration rule, 99
Trapezoidal rule, 15, 100, 112, 117–119,

127, 137–138, 140, 173, 255–257,
362–363

Trinomial trees, 205, 217–221
Tzavalis, E., 254, 261

Uniform grids, 213, 301–306, 309–310,
313–314, 316, 318–320, 322,
324–325

Univariate characteristic function, 267, 269,
300

Univariate processes, 176

Van den Berg, J.C., 101
Van Haastrecht, A., 177, 203
Vanna, 328, 330–331, 333–334, 342, 349,

352, 364–365, 367
Variance curve approach, 382
Variance modeling in Heston model

Dupire local volatility, 45–49
implied volatility, 54–56
local volatility approximation,

50–52
local volatility, numerical illustration of,

52–54
local volatility with finite differences,

49–50
variance swap, 43–45
conclusion, 61

Vega, 149, 328–331, 364–365, 367, 369
Vega 1, 329–330, 332, 334, 342, 349, 352,

354, 364
Vega 2, 329, 332, 334
Vellekoop, M., 261



Index 411

Volatility
behavior, 184
Black-Scholes, 8, 20, 36
coefficients, 183
Dupire local, 45–49
Euler discretization of, 189–190
evolution of, 205
Heston implied, 38–43
implied, 20, 25, 38–43, 52, 54–61
increasing in, 55
local, 25, 43, 45–54, 61, 371
paths, 187
price risk of, 2–3, 7, 67
scheme, 177, 188–190, 376–377, 380
spot, 303, 330
stochastic, 5–6, 8, 10, 23, 93, 108, 113,

175, 181, 228, 261, 325
stock price, 229, 300–303, 320
surface, 57, 170–176, 261, 329, 355,

358, 371
transformation, 170, 178, 188–190,

376–377
of variance, 34–35, 37–38, 108–109,

189, 285, 287, 331
of volatility, 91
of volatility series expansion, 108–113

Volatility hedge, 5
Volatility risk premiums, 3
The Volatility Surface: A Practitioner’s

Guide (Gatheral), 50

Volga, 328, 330–331, 333–334, 342, 349,
352, 364–365, 367

Vollrath, I., 147, 162, 166
Vrie, E.M. van de, 101

Wall, S., 147, 166–169, 175
Wang, S., 254, 261
Weighted method, 301, 306–308, 313–314,

316, 321–322, 324
Weights, 115, 117, 119–127, 130, 132,

135, 138, 148
Wendland, J., 147, 162
Weron, R., 160
Whaley, R. E., 17, 76, 252
White, A., 208, 381
Wichura, M. J., 378
Wichura approximation, 197–198, 378
Wolff, C. C. P., 149
Wu, L., 63
Wystup, U., 160, 328

Zhou, H., 3
Zhou, J., 44
Zhou, J. Z., 43, 52
Zhu, J., 17, 33, 63, 115, 131–132,

159–160, 177, 189–190, 329, 331,
339, 364, 376, 380

Zhylyevskyy, O., 261
Ziogas, A., 118, 205, 253–255, 258–259,

261


	00fmatter
	ch01
	ch02
	ch03
	ch04
	ch05
	ch06
	ch07
	ch08
	ch09
	ch10
	ch11
	ch12
	zbiblio
	zzoth1
	zzzindex



