

Real-Time
Digital Signal Processing
from MATLAB® to C with

Second Edition

the TMS320C6x DSPs

K13903_FM.indd 1 12/1/11 12:43 PM

This page intentionally left blankThis page intentionally left blank

Real-Time
Digital Signal Processing
from MATLAB® to C with

 TMS320C6x DSPs

Second Edition

Thad B. Welch
Boise State University, Boise, Idaho

Cameron H.G. Wright
University of Wyoming, Laramie, Wyoming

Michael G. Morrow
University of Wisconsin, Madison, Wisconsin

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

the

K13903_FM.indd 3 12/1/11 12:43 PM

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20111129

International Standard Book Number-13: 978-1-4398-8305-1 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To Donna. . .

To Robin and little Jacob. . .

To all those people whose friendship, counsel, and criticism have helped us
along the way. . .

v

This page intentionally left blankThis page intentionally left blank

Foreword

Digital signal processing is at the “heart” of most technologies that we use today. Our
cell phones use digital signal processing to generate the DTMF (dual tone multi-frequency)
tones that are sent to wireless networks. Our noise-canceling headphones use adaptive
digital signal processing to cancel the noise in the environment around us. Digital cameras
use digital signal processing to compress images into JPEG formats for efficient storage so
that we can store hundreds of images in a single memory card. It is digital signal processing
that allows us to play compressed music in our iPods. Digital signal processing controls
even the anti-lock brakes in our cars today. And these are just a few of the examples of
real-time signal processing in the world around us.

There are many good textbooks today to teach digital signal processing—but most of
them are content to teach the theory, and perhaps some MATLAB� simulations. This
book has taken a bold step forward. It not only presents the theory, it reinforces it with
simulations, and then it shows us how to actually use the results in real-time applications.
This last step is not a trivial step, and that is why so many books, and courses, present
only theory and simulations. With the combined expertise of the three authors of this
text—Thad Welch, Cam Wright, and Mike Morrow—the reader can step into the real-time
world of applications with a text that presents an accessible path. This Second Edition
continues to support the C6713 DSK, but it also includes support for the new multi-core
OMAP-L138 board from Texas Instruments. The multi-core OMAP-138 chip includes both
a C6784 DSP core and an ARM9 GPP core, making it very powerful and attractive to a
wide variety of users. New project chapters cover QPSK and QAM transmitters, QPSK
receivers, and a new section on pseudonoise signal generation for spread spectrum.

I have been fortunate to co-author several papers with the authors of this text, and can
speak from first-hand experiences of their dedication to engineering education. They go the
extra mile to continue to expand their understanding and their abilities to present com-
plex material in a logical, straightforward manner. They attend conferences on engineering
education; they chair sessions on engineering education; they write papers on engineering
education; they live engineering education! (One of the co-authors, Thad Welch, was re-
cently selected as the first Signal Processing Engineering Network Fellow to recognize his
leadership and contributions.). I am delighted to be able to have an opportunity to tell the
readers of this text that they are in for, in the authors’ own words, “a ride. . . ”.

Delores M. Etter
Texas Instruments Distinguished Chair in Electrical Engineering
Executive Director, Caruth Institute for Engineering Education
Lyle School of Engineering
Southern Methodist University
Dallas, Texas

(Dr. Etter is a member of the National Academy of Engineering and is a Fellow of the IEEE and of
the American Society of Engineering Education. She served as the Assistant Secretary of the Navy
for Research, Development and Acquisitions from 2005–2007, and as the Deputy Under Secretary
of Defense for Science and Technology from 1998–2001. She is also the author of a number of
engineering textbooks, including several on MATLAB.)

vii

About the Authors

Thad B. Welch, Ph.D., P.E., is a Professor and past Chair of the Department of Elec-
trical and Computer Engineering at Boise State University. He previously taught
in the Department of Electrical and Computer Engineering at both the U.S. Naval
Academy (USNA) and the U.S. Air Force Academy (USAFA). A retired Comman-
der in the U.S. Navy, he was the inaugural 2011 SPEN Fellow, won the 2001 ECE
Outstanding Educator Award, the 2002 Raouf Award for Excellence in the Teaching
of Engineering, the John A. Curtis Lecture Award from the Computers in Education
Division of ASEE in 1998, 2005, and 2010, the 2003 ECE Outstanding Researcher
Award at USNA, and the 1997 Clements Outstanding Educator Award at USAFA.
Dr. Welch is the former Chair and a founding member of the Technical Committee
on Signal Processing Education for the Institute of Electrical and Electronic Engi-
neers (IEEE) Signal Processing Society. He is a senior member of the IEEE and a
member of the American Society for Engineering Education (ASEE), Tau Beta Pi
(the engineering honor society), and Eta Kappa Nu (the electrical engineering honor
society).

Cameron H. G. Wright, Ph.D., P.E., is an Associate Professor and Associate Depart-
ment Head in the Department of Electrical and Computer Engineering at the Uni-
versity of Wyoming, and previously taught for nearly 10 years at the U.S. Air Force
Academy (USAFA) in the Department of Electrical and Computer Engineering where
he was Professor and Deputy Department Head. A retired Lieutenant Colonel in the
U.S. Air Force, he won the Brigadier General R. E. Thomas Award for Outstanding
Contributions to Cadet Education in 1992 and 1993. In 2005 and 2008, he won the
IEEE Student Choice Award for Outstanding Professor of the Year, the Mortar Board
“Top Prof” Award at the University of Wyoming in 2005 and 2007, the Outstanding
Teaching Award from the ASEE Rocky Mountain Section in 2007, the John A. Curtis
Lecture Award from the Computers in Education Division of ASEE in 1998, 2005, and
2010, and the Tau Beta Pi WY-A chapter Undergraduate Teaching Award in 2011.
Dr. Wright is a founding member of the Technical Committee on Signal Processing
Education for the IEEE Signal Processing Society, a senior member of the IEEE, and a
member of ASEE, the National Society of Professional Engineers, the Biomedical En-
gineering Society, SPIE–The International Society of Optical Engineering, Tau Beta
Pi, and Eta Kappa Nu.

Michael G. Morrow, M.Eng.E.E., P.E., is a Faculty Associate in the Department of
Electrical and Computer Engineering at the University of Wisconsin–Madison. A re-
tired Lieutenant Commander in the U.S. Navy, he previously taught in the Electrical
and Computer Engineering Engineering Department at the U.S. Naval Academy and
in the Department of Electrical and Computer Engineering at Boise State University.
Mr. Morrow won both the 2002 Department of Electrical and Computer Engineering
Outstanding Educator Award and the 2003 Gerald Holdridge Teaching Excellence

ix

x

Award at the University of Wisconsin–Madison. He is the founder and president of
Educational DSP (eDSP), LLC, a company devoted to the development of affordable
DSP solutions for educators and students worldwide. He is a member of the Tech-
nical Committee on Signal Processing Education for the Institute of Electrical and
Electronic Engineers (IEEE) Signal Processing Society, a senior member of the IEEE,
and a member of the American Society for Engineering Education (ASEE).

Contents

List of Figures xix

List of Tables xxv

List of Program Listings xxvii

Preface xxxi

Acknowledgments xxxv

Section I: Enduring Fundamentals 1

1 Introduction and Organization 3
1.1 Why Do You Need This Book? . 3

1.1.1 Other DSP Books . 3
1.1.2 Demos and DSP Hardware . 4
1.1.3 Philosophy of This Book . 4

1.2 Real-Time DSP . 4
1.3 How to Use This Book . 5

1.3.1 Supported Boards . 5
1.3.2 Host Computer to DSP Board Communication 6
1.3.3 Transition to Real-Time . 10
1.3.4 Chapter Coverage . 10
1.3.5 Hardware and Software Installation 11
1.3.6 Reading Program Listings . 12

1.4 Get Started . 12
1.5 Problems . 12

2 Sampling and Reconstruction 15
2.1 Theory . 15

2.1.1 Choosing a Sampling Frequency . 15
2.1.2 Input/Output Issues: Samples or Frames? 15
2.1.3 The Talk-Through Concept . 16

2.2 winDSK Demonstration . 16
2.2.1 Starting winDSK . 16
2.2.2 Talk-Thru Application . 18

2.3 Talk-Through Using Windows . 19
2.4 Talk-Through Using MATLAB and Windows 22

2.4.1 Talk-Through Using MATLAB Only 24

xi

xii CONTENTS

2.4.2 Talk-Through Using MATLAB and the DSK 26
2.5 DSK Implementation in C . 27
2.6 Follow-On Challenges . 28
2.7 Problems . 29

3 FIR Digital Filters 31
3.1 Theory . 31

3.1.1 Traditional Notation . 31
3.1.2 FIR Filters Compared to IIR Filters 32
3.1.3 Calculating the Output of a Filter 32

3.2 winDSK Demonstration . 34
3.2.1 Graphic Equalizer Application . 34
3.2.2 Notch Filter Application . 36
3.2.3 Audio Effects Application . 37

3.3 MATLAB Implementation . 39
3.3.1 Built-In Approach . 39
3.3.2 Creating Your Own Filter Algorithm 43

3.4 DSK Implementation in C . 44
3.4.1 Brute-Force FIR Filtering in C: Part 1 45
3.4.2 Brute-Force FIR Filtering in C: Part 2 47
3.4.3 Circular Buffered FIR Filtering . 49

3.5 Follow-On Challenges . 52
3.6 Problems . 52

4 IIR Digital Filters 55
4.1 Theory . 55
4.2 winDSK Demonstration: Notch Filter Application 58
4.3 MATLAB Implementation . 60

4.3.1 Filter Design and Analysis . 60
4.3.2 IIR Filter Notation . 70
4.3.3 Block Diagrams . 71
4.3.4 Built-In Approach . 76
4.3.5 Creating Your Own Filter Algorithm 78

4.4 DSK Implementation in C . 79
4.4.1 Brute-Force IIR Filtering . 79
4.4.2 More Efficient IIR Filtering . 81

4.5 Follow-On Challenges . 81
4.6 Problems . 81

5 Periodic Signal Generation 83
5.1 Theory . 83

5.1.1 Periodic Signals in DSP . 83
5.1.2 Signal Generation . 85

5.2 winDSK Demonstration . 92
5.2.1 Arbitrary Waveform . 92
5.2.2 DTMF . 93

5.3 MATLAB Implementation . 94
5.3.1 Direct Digital Synthesizer Technique 94
5.3.2 Table Lookup Technique . 95

5.4 DSK Implementation in C . 96
5.4.1 Direct Digital Synthesizer Technique 96

CONTENTS xiii

5.4.2 Table Lookup Technique . 98
5.4.3 Table Lookup Technique with Table Creation 99
5.4.4 Digital Resonator Technique . 100

5.5 Pseudonoise Sequences . 102
5.5.1 Theory . 103
5.5.2 winDSK Demonstration . 107
5.5.3 MATLAB Implementation . 107
5.5.4 DSK Implementation in C . 112

5.6 Follow-On Challenges . 118
5.7 Problems . 118

6 Frame-Based DSP 121
6.1 Theory . 121

6.1.1 Drawbacks of Sample-Based DSP . 121
6.1.2 What Is a Frame? . 122

6.2 winDSK Demonstration . 123
6.3 MATLAB Implementation . 124
6.4 DSK Implementation in C . 125

6.4.1 Triple Buffering . 125
6.4.2 A Frame-Based DSP Example . 126
6.4.3 Using Direct Memory Access . 130

6.5 Summary of Frame-Based Processing . 138
6.6 Follow-On Challenges . 139
6.7 Problems . 139

7 Digital Filters Using Frames 141
7.1 Theory . 141
7.2 winDSK Demonstration . 141
7.3 MATLAB Implementation . 141
7.4 DSK Implementation in C . 141

7.4.1 Understanding the FIR Process for Frames 142
7.4.2 How to Avoid the “Edge” Problems 143
7.4.3 Explanation of the C Code . 143

7.5 Follow-On Challenges . 145
7.6 Problems . 146

8 The Fast Fourier Transform 147
8.1 Theory . 147

8.1.1 Defining the FFT . 147
8.1.2 The Twiddle Factors . 147
8.1.3 The FFT Process . 148
8.1.4 Bit-Reversed Addressing . 151
8.1.5 Using the FFT for Filtering . 151
8.1.6 Avoiding Circular Convolution . 152
8.1.7 Real-Time Fast Convolution . 154

8.2 winDSK Demonstration . 157
8.3 MATLAB Implementation . 157
8.4 Implementation in C . 157
8.5 Follow-On Challenges . 160
8.6 Problems . 161

xiv CONTENTS

9 Spectral Analysis and Windowing 163
9.1 Theory . 163

9.1.1 Power Spectrum of a Signal . 163
9.1.2 The Need for Windowing . 165
9.1.3 Window Characteristics . 167

9.2 winDSK Demonstration . 170
9.3 MATLAB Implementation . 170
9.4 DSK Implementation in C . 173
9.5 Conclusion . 173
9.6 Follow-On Challenges . 173
9.7 Problems . 174

Section II: Projects 177

10 Project 1: Guitar Special Effects 179
10.1 Introduction to Projects . 179
10.2 Theory . 179

10.2.1 Background . 179
10.2.2 How the Effects Work . 180

10.3 winDSK Demonstration . 192
10.4 MATLAB Implementation . 192

10.4.1 FIR Comb Filter . 192
10.4.2 IIR Comb Filter . 193
10.4.3 Notch Filter . 195
10.4.4 Flanger . 196
10.4.5 Tremelo . 197

10.5 DSK Implementation in C . 198
10.5.1 Real-Time Comb Filters . 198
10.5.2 Other Real-Time Special Effects . 201

10.6 Follow-On Challenges . 201

11 Project 2: Graphic Equalizer 203
11.1 Theory . 203
11.2 winDSK Demonstration . 204

11.2.1 Graphic Equalizer Application . 204
11.2.2 Effect of the Graphic Equalizer . 205

11.3 MATLAB Implementation . 206
11.4 DSK Implementation in C . 209

11.4.1 Applying Gain to Filter Bands . 209
11.4.2 GEL File Slider Control . 210

11.5 Follow-On Challenges . 211

12 Project 3: Peak Program Meter 213
12.1 Theory . 213
12.2 winDSK Demonstration: commDSK . 214
12.3 MATLAB Implementation . 214
12.4 DSK Implementation in C . 215

12.4.1 Example PPM Code . 215
12.4.2 DSK LED Control . 217
12.4.3 Another PPM Code Version . 217

12.5 Follow-On Challenges . 218

CONTENTS xv

13 Project 4: AM Transmitters 219
13.1 Theory . 219
13.2 winDSK Demonstration . 222
13.3 MATLAB Implementation . 222
13.4 DSK Implementation in C . 224
13.5 Follow-On Challenges . 226

14 Project 5: AM Receivers 227
14.1 Theory . 227

14.1.1 Envelope Detector . 228
14.1.2 The Hilbert-Based AM Receiver . 233

14.2 winDSK Demonstration . 237
14.3 MATLAB Implementation . 237
14.4 DSK Implementation in C . 239
14.5 Follow-On Challenges . 241

15 Project 6: Phase-Locked Loop 243
15.1 Theory . 243
15.2 winDSK Demonstration . 244
15.3 MATLAB Implementation . 244

15.3.1 PLL Simulation . 244
15.3.2 A Few Updates to the MATLAB Implementation 250

15.4 DSK Implementation in C . 253
15.4.1 Components of the PLL . 253
15.4.2 System Testing . 256

15.5 Follow-On Challenges . 256

16 Project 7: BPSK Digital Transmitters 259
16.1 Theory . 259

16.1.1 Random Data and Symbol Generation 259
16.1.2 BPSK Using Antipodal Rectangularly Shaped Bits 261
16.1.3 BPSK Using Impulse Modulated Raised-Cosine Shaped Bits 261

16.2 winDSK Demonstration . 262
16.2.1 commDSK: Unfiltered BPSK . 263
16.2.2 commDSK: Raised-Cosine Filtered BPSK 264

16.3 MATLAB Implementation . 267
16.3.1 Rectangular Shaped BPSK Signal Generator 268
16.3.2 Impulse Modulated Raised-Cosine BPSK Signal Generator 269

16.4 DSK Implementation in C . 273
16.4.1 A Rectangular Pulse Shaped BPSK Transmitter 273
16.4.2 A Raised-Cosine Pulse Shaped BPSK Transmitter 274
16.4.3 Summary of Real-Time Code . 276

16.5 Follow-On Challenges . 276

17 Project 8: BPSK Digital Receivers 279
17.1 Theory . 279

17.1.1 The Output of the Matched Filter 281
17.1.2 The Eye-Pattern . 282
17.1.3 Maximum Likelihood Timing Recovery 283

17.2 winDSK Demonstration . 285
17.3 MATLAB Implementation . 286

xvi CONTENTS

17.4 DSK Implementation in C . 290
17.4.1 Components of the Digital Receiver 290
17.4.2 System Testing . 294

17.5 Follow-On Challenges . 296

18 Project 9: MPSK and QAM Digital Transmitters 297
18.1 Theory . 297

18.1.1 I- and Q-Based Transmitters . 297
18.1.2 A Few Constellation Diagrams . 299

18.2 winDSK Demonstration . 302
18.2.1 commDSK: Root-Raised-Cosine Filtered QPSK 303

18.3 MATLAB Implementation . 306
18.3.1 Impulse Modulated Root-Raised-Cosine QPSK Signal Generator . . 306

18.4 DSK Implementation in C . 310
18.4.1 A Root-Raised-Cosine Pulse Shaped QPSK Transmitter 310
18.4.2 A More Efficient RRC Pulse Shaped QPSK Transmitter 312
18.4.3 Summary of Real-Time Code . 315

18.5 Higher-Order Modulation Schemes . 315
18.6 Follow-On Challenges . 316

19 Project 10: QPSK Digital Receivers 317
19.1 Theory . 317
19.2 winDSK8 Demonstration . 318
19.3 MATLAB Implementation . 319

19.3.1 Through the AGC . 320
19.3.2 A complete QPSK receiver . 323

19.4 DSK Implementation in C . 329
19.4.1 Through the AGC . 329
19.4.2 A complete QPSK receiver . 333
19.4.3 System Testing . 339

19.5 Follow-On Challenges . 340

Section III: Appendices 343

A Code Composer Studio: An Overview 345
A.1 Introduction . 345
A.2 Starting Code Composer Studio . 345
A.3 Conclusion . 346

B DSP/BIOS 349
B.1 Introduction . 349

B.1.1 DSP/BIOS Major Features . 349
B.1.2 DSP/BIOS Threads . 349

B.2 DSP/BIOS Sample Projects . 350

C Numeric Representations 351
C.1 Endianness . 351
C.2 Integer Representations . 352
C.3 Integer Division and Rounding . 353
C.4 Floating-Point Representations . 354
C.5 Fixed-Point Representations . 356

CONTENTS xvii

C.6 Summary of Numeric Representations . 357

D TMS320C6x Architecture 359
D.1 Computer Architecture Basics . 359

D.1.1 Instruction Set Architecture . 360
D.1.2 Register Architectures . 360
D.1.3 Memory Architectures . 361
D.1.4 Fetch-Execute Model . 362
D.1.5 Pipelining . 362
D.1.6 Single- versus Multiple-Issue . 365
D.1.7 Scheduling . 365

D.2 TMS320C671x Architecture . 366
D.2.1 Memory System . 368
D.2.2 Pipeline and Scheduling . 369
D.2.3 Peripherals . 370
D.2.4 Host Port Interface . 370

D.3 TMS320C674x Architecture . 370

E Related Tools for DSKs 373
E.1 Introduction . 373
E.2 Windows Control Applications . 373

E.2.1 Sample Windows Control Application 374
E.3 MATLAB Exports . 374

E.3.1 Exporting Direct-Form II Implementations 374
E.3.2 Exporting Second-Order Section Implementations 375

E.4 MATLAB Real-Time Interface . 376

F Programming Perils and Pitfalls 377
F.1 Debug versus Release Builds . 377
F.2 The Volatile Keyword . 377
F.3 Function Prototypes and Return Types . 378
F.4 Arithmetic Issues . 379
F.5 Controlling the Location of Variables in Memory 380
F.6 Real-Time Schedule Failures . 381
F.7 Variable Initialization . 382
F.8 Integer Data Sizes . 383

G Abbreviations, Acronyms, and Symbols 385

References 391

Index 397

This page intentionally left blankThis page intentionally left blank

List of Figures

1.1 The supported DSK circuit boards. 7
1.2 The HPI interface board on the C6713 DSK. 8

2.1 A generic DSP system. 16
2.2 A talk-through system. 16
2.3 The winDSK program ready to load the Talk-Thru application. 17
2.4 winDSK running the Talk-Thru application. 18
2.5 Various types of audio mini-plugs used with devices such as MP3 players

and CD players. 19
2.6 The Windows sound recorder program. 21
2.7 A freely available sound recorder, mixer, and editing program called Audacity. 21
2.8 MATLAB command window with the help pull-down menu open. 23
2.9 MATLAB interface to the PC sound card. 24
2.10 Simulink model of a PC-based talk-through system. 26
2.11 Block parameters from the wave device in Figure 2.10. 26
2.12 Click on the start simulation icon on the Simulink toolbar. 27

3.1 A summary of the continuous-time and discrete-time notation. 32
3.2 Block diagram associated with the implementation of an FIR filter. 34
3.3 winDSK running the Graphic Equalizer application. 34
3.4 Block diagram associated with winDSK’s Graphic Equalizer application. . 35
3.5 Frequency response of winDSK’s 5-band Graphic Equalizer application. . . 35
3.6 winDSK running the Notch Filter application with r = 0. 36
3.7 The frequency response of four different notch filters. 37
3.8 winDSK running the Audio Effects application. 38
3.9 The block diagram of the flanging effect. 38
3.10 The block diagram of the chorus effect. 38
3.11 Stem plot of the filtering of x with B. 40
3.12 Magnitude of the frequency response for MA filters. 41
3.13 Filtered and unfiltered closing values of the NASDAQ composite index. . . 42
3.14 One method of listening to the unfiltered and filtered audio signals. 47
3.15 The MATLAB FDATool for designing digital filters. 48
3.16 The linear memory concept with static memory location labeling. 50
3.17 Static circular buffer concept. 51
3.18 Dynamic circular buffer concept. 51

4.1 Schematic for a continuous-time (analog) first-order RC filter. 55
4.2 Linear plot of the impulse response for a first-order analog LPF. 56
4.3 Semilog plot of the impulse response for a first order LPF. 57

xix

xx LIST OF FIGURES

4.4 winDSK running the Notch Filter application with r = 0.9. 59
4.5 The frequency responses of four different notch filters. 59
4.6 The GUI associated with SPTool. 62
4.7 The GUI associated with MATLAB’s FDATool showing the magnitude re-

sponse of a Butterworth LPF. 62
4.8 The impulse response associated with a fourth-order Butterworth lowpass

filter having a cutoff frequency of 0.25Fs/2. 64
4.9 Frequency response for a fourth-order Butterworth LPF. 65
4.10 Pole/zero diagram for a fourth-order Butterworth LPF. 65
4.11 Pole/zero diagram for poles at 0.998446047456247± j0.045491015143694. 67
4.12 The group delay associated with a fourth-order Butterworth LPF. 68
4.13 The FVTool filter viewer program GUI, with annotations. 69
4.14 DF-I form of an IIR filter. 71
4.15 IIR DF-I using one summing node. 72
4.16 DF-II form of an IIR filter. 72
4.17 Second-order section IIR filter. 73
4.18 Parallel version of an IIR filter. 73
4.19 Pole/zero plot for a fourth-order elliptic filter. 74
4.20 The qfilt GUI evaluating the performance of a lowpass filter. 75
4.21 DF-I implementation of a fourth-order elliptic filter. 76
4.22 DF-II implementation of a fourth-order elliptic filter. 77
4.23 Second-order section elliptic filter. 77
4.24 Parallel version of an elliptic filter. 77

5.1 Continuous and discrete-time sinusoids. 85
5.2 Block diagram associated with sinusoid generation. 86
5.3 Accumulated phase for four different frequencies. 86
5.4 Accumulated phase for a 1000 Hz sinusoid. 87
5.5 Accumulated phase for a 1000 Hz sinusoid (zoomed in from Figure 5.4). . 87
5.6 Accumulated phase for a 1000 Hz sinusoid with modulus 2π applied. . . . 88
5.7 winDSK running the Arbitrary Waveform application. 92
5.8 winDSK running the DTMF application. 93
5.9 The DTMF frequencies. 94
5.10 An r-stage simple shift register generator. 103
5.11 A 3-stage simple shift register generator. 103
5.12 An r-stage modular shift register generator. 104
5.13 A 3-stage modular shift register generator. 104
5.14 Output of a 3-stage SSRG. 105
5.15 Normalized autocorrelation of a length N = 7 maximal length PN sequence. 106
5.16 PSD of a length N = 7 maximal length PN sequence. 107
5.17 Autocorrelation using MATLAB of a length N = 7 maximal length PN

sequence. 109
5.18 Crosscorrelation of two N = 7 maximal length PN sequences. 109
5.19 Autocorrelation of a length N = 31 maximal length PN sequence. 110
5.20 Crosscorrelation of two length N = 31 maximal length PN sequences. . . . 110
5.21 Autocorrelation of a length N = 31 sequence that is not a valid maximal

length PN sequence. 111
5.22 Power spectral density estimate using pn_spec.m. 111
5.23 Time domain display from a DSK generating a 65,535-chip length PN se-

quence using a 16-stage SRG. 117

LIST OF FIGURES xxi

5.24 Frequency domain display from a DSK generating a 65,535-chip length PN
sequence using a 16-stage SRG. 117

6.1 Generic sample-based versus frame-based processing system. 122
6.2 The oscilloscope control window in winDSK. 124
6.3 The oscilloscope function display in winDSK. 125
6.4 A pictorial representation of triple buffering. 126

7.1 Implementing a second-order FIR filter with a frame-based approach. . . . 142

8.1 The placement of twiddle factor points for the DFT or FFT. 148
8.2 Relative calculation time for the “brute-force” DFT versus a commercially

available radix-2 FFT routine. 149
8.3 Butterfly diagram of a decimation-in-time radix-2 FFT for N = 2. 150
8.4 Butterfly diagram of a decimation-in-time radix-2 FFT for N = 4. 150
8.5 Butterfly diagram of a decimation-in-time radix-2 FFT for N = 8. 150
8.6 The overlap-add fast convolution process. 155
8.7 The impulse response associated with the lowpass filter used in the overlap-

add fast convolution process. 155
8.8 The overlap-save fast convolution process. 156

9.1 The time domain effect of applying a rectangular window. 165
9.2 The “rect ↔ sinc” Fourier transform pair. 166
9.3 The frequency domain effect of applying a rectangular window. 166
9.4 A few windows in the time domain. 167
9.5 Two windows compared in the time and frequency domains. 169
9.6 Spectrum analyzer windows for winDSK. 171
9.7 Spectrum plot from the pwelch command in MATLAB. 172

10.1 Block diagrams of a simple echo (or delay) effect using an FIR filter. . . . 180
10.2 Block diagrams of a multiple echo effect using IIR filters. 181
10.3 Block diagrams for allpass filters. 181
10.4 Block diagram for a second-order IIR notch filter. 182
10.5 FIR comb filter response. 183
10.6 Effect of changing delay value R for an FIR comb filter. 183
10.7 Response for the IIR comb filter shown at the top of Figure 10.2. 184
10.8 Response for the IIR comb filter shown at the bottom of Figure 10.2. . . . 185
10.9 Response of the IIR allpass filters shown in Figure 10.3. 186
10.10 Response of the IIR notch filter shown in Figure 10.4. 186
10.11 A block diagram of the flanging effect using a single comb filter. 187
10.12 A block diagram of the chorus effect using three comb filters. 188
10.13 Block diagrams of the phasing effect. 189
10.14 A proposed block diagram for the reverb effect. 189
10.15 Block diagrams of the tremelo effect. 190
10.16 Block diagram of the ring modulation effect. 191
10.17 Clipping a signal produces the fuzz effect. 191

11.1 Block diagrams of a multi-band Graphic Equalizer. 203
11.2 A 31-band commercial graphic equalizer. 204
11.3 winDSK running the Graphic Equalizer application. 205
11.4 Frequency response of winDSK’s 5-band Graphic Equalizer application. . . 205
11.5 Unity gain impulse response. 207

xxii LIST OF FIGURES

11.6 Impulse response with different frequency band gains. 207
11.7 Frequency response of the five FIR filters and the equivalent filter. 208
11.8 Impulse and frequency response of the equivalent filter. 208

12.1 A generic DSP system. 213
12.2 winDSK running the commDSK application. 214
12.3 LED turn-on levels for the PPM. 215

13.1 The block diagram for AM generation. 219
13.2 Plot of 100 ms of voice data. 220
13.3 Plot of 100 ms of voice data with 5 mV of added bias. 220
13.4 Plot of 100 ms of voice data with 20 mV of added bias. 221
13.5 Voice signal modulating (DSB-LC) a 12 kHz carrier. 221
13.6 Sinusoidal signal modulating (DSB-LC) a 12 kHz carrier. 222

14.1 An AM signal shown in the time domain. 227
14.2 An AM signal shown in the frequency domain. 228
14.3 A rectified AM signal shown in the time domain. 229
14.4 A rectified AM signal shown in the frequency domain. 229
14.5 An AM signal’s spectral content after halfwave rectification. 230
14.6 The effect of different LP filters on envelope recovery. 231
14.7 LP filters used for envelope recovery. 232
14.8 AM waveform (fmsg = 5 kHz and fc = 12 kHz). 233
14.9 AM spectrum (fmsg = 5 kHz and fc = 12 kHz). 233
14.10 AM waveform (fmsg = 8 kHz and fc = 12 kHz). 234
14.11 AM spectrum (fmsg = 8 kHz and fc = 12 kHz). 234
14.12 Coefficients associated with a 22nd-order FIR Hilbert transforming filter. . 235
14.13 Magnitude responses of three Hilbert transforming filters. 236
14.14 Zoomed magnitude response of the Hilbert transforming filter’s passband . 236
14.15 Real envelope recovery from and AM signal. 237
14.16 MATLAB simulation results of the Hilbert-based AM receiver. 238

15.1 The simplified block diagram of a second order Costas loop. 243
15.2 The block diagram of the parallel implementation of the loop filter. 246
15.3 The normalized spectral estimate of the BPSK message signal mixed with

a carrier frequency of 12 kHz. 247
15.4 The pole/zero plot of the loop filter. 248
15.5 The frequency response of the loop filter. 248
15.6 Well behaved startup transient of the PLL. 249
15.7 Well behaved startup transient of the PLL with a 180◦ phase error. 249
15.8 A more protracted startup transient of the PLL. 250
15.9 Filter coefficients for a 30th-order FIR Hilbert transforming filter. 251
15.10 Response of the 30th-order FIR Hilbert transforming filter. 252
15.11 Close-up of the FIR Hilbert transforming filter passband. 252
15.12 The group delay of the 30th-order FIR Hilbert transforming filter. 253
15.13 The response of the system to a 750 Hz message modulated (AM-DSB-SC)

with a 12 kHz carrier, as viewed on a multichannel oscilloscope. 257
15.14 A typical transient response of the system to a 750 Hz message modulated

(AM-DSB-SC) with a 12 kHz carrier. 257
15.15 A typical transient response of the system to a 750 Hz message modulated

(AM-DSB-SC) with a 12 kHz carrier. 258

LIST OF FIGURES xxiii

16.1 Block diagram of a rectangularly pulse shaped BPSK transmitter. 261
16.2 Block diagram of an impulse modulated BPSK transmitter. 261
16.3 An example of how the impulse modulator functions. 262
16.4 Another example of how the impulse modulator functions. 262
16.5 winDSK running the commDSK application. 263
16.6 commDSK set to generate a rectangular pulse shaped, 2400 bps signal. . . 263
16.7 commDSK waveform of a rectangular pulse shaped, 2400 bps signal. 264
16.8 An averaged spectrum associated with a rectangular pulse shaped, 2400 bps

signal generated by commDSK. 265
16.9 commDSK set to generate a raised-cosine pulse shaped, 2400 bps signal. . 265
16.10 commDSK waveform of a raised-cosine pulse shaped, 2400 bps signal. . . . 266
16.11 An averaged spectrum associated with a raised-cosine pulse shaped, 2400

bps signal generated by commDSK. 266
16.12 An example of a VSA display associated with a raised-cosine pulse shaped

BPSK signal. 267
16.13 Example of the output from the rectangular shaped BPSK simulation. . . 269
16.14 Example of the output from the impulse modulated BPSK simulation. . . 272
16.15 Spectral estimate of an impulse modulated BPSK simulation. 272

17.1 A simplified block diagram of a BPSK communications system. 280
17.2 A maximum likelihood based timing recovery scheme. 280
17.3 Output of the receiver’s matched filter (120 bits). 281
17.4 BPSK eye-pattern (100 ms of data from MF output). 282
17.5 BPSK eye-pattern (1000 ms of data from MF output). 283
17.6 The frequency response of a second order FIR difference filter compared

with a scaled version of the theoretical response. 284
17.7 The timing recovery scheme for an ideal eye-pattern. 285
17.8 BPSK receiver exhibiting excellent performance. 289
17.9 BPSK receiver exhibiting undesired phase reversal. 289
17.10 Comparison of two Hilbert transform filters. 293
17.11 BPSK eye-pattern histogram with recovered timing pulses. 295
17.12 BPSK eye-pattern histogram. 296

18.1 Block diagram of a impulse modulated BPSK transmitter. 298
18.2 Block diagram of a impulse modulated QPSK transmitter. 298
18.3 Block diagram of a impulse modulated 16-QAM transmitter. 299
18.4 The constellation diagram associated with a QPSK signal. 300
18.5 The constellation diagram associated with an 8-PSK signal. 301
18.6 The constellation diagram associated with a 16-PSK and a 32-PSK signal. 301
18.7 The constellation diagram associated with a 16-QAM signal. 302
18.8 winDSK running the commDSK application. 303
18.9 commDSK set to generate a QPSK, root-raised-cosine pulse shaped, 4800

bps signal. 304
18.10 commDSK waveform of a QPSK, root-raised-cosine pulse shaped, 4800 bps

signal. 304
18.11 An averaged spectrum associated with a QPSK, root-raised-cosine pulse

shaped, 4800 bps signal generated by commDSK. 305
18.12 VSA display associated with a root-raised-cosine pulse shaped QPSK signal. 305
18.13 Example of the output from the impulse modulated, QPSK simulation. . . 308
18.14 Spectral estimate of an impulse modulated, QPSK simulation. 309

xxiv LIST OF FIGURES

19.1 A simplified block diagram of a QPSK receiver. 318
19.2 A QPSK constellation in need of de-rotation. 319
19.3 A single constellation point in need of de-rotation and scaling. 319
19.4 A basic block diagram associated with an AGC. 320
19.5 The block diagram of a maximum likelihood phase error detector. 320
19.6 QPSK phase trajectory plot prior to AGC. 323
19.7 QPSK magnitude plot prior to AGC. 323
19.8 QPSK phase trajectory plot prior to AGC. 324
19.9 QPSK phase trajectory plot prior to AGC. 324
19.10 QPSK constellation plot from simulation start-up. 329
19.11 A lowpass filter for connecting to test and measurement equipment. 340
19.12 A stabilized QPSK phase trajectory. 341
19.13 A stabilized QPSK phase trajectory histogram. 341

A.1 The opening splash screen for Code Composer Studio version 4.2. 347
A.2 The main project screen for Code Composer Studio version 4.2. 347

C.1 IEEE-754 floating-point representations. 354

D.1 Basic microprocessor system. 360
D.2 Memory architectures. 361
D.3 Pipeline stages. 363
D.4 Example instruction sequence with an unconditional jump. 364
D.5 Pipeline operation of instructions in Figure D.4. 364
D.6 TMS320C671x core. 367
D.7 TMS320C671x memory organization. 369

List of Tables

1.1 Organization of the book’s CD-ROM. 11

5.1 Some special case frequencies of direct digital synthesis (DDS). 89

9.1 Characteristics of the most commonly used window functions. 168

10.1 Typical methods for creating various special effects with basic filters. 187

16.1 Data rate for an integer number of samples per symbol. 260

C.1 Summary of numeric representations. 358

xxv

This page intentionally left blankThis page intentionally left blank

Program Listings

2.1 Reading and playing back a wav-file using MATLAB. 22
2.2 A simple MATLAB m-file for DSK talk-through. 26
2.3 Talk-through declarations. 27
2.4 Talk-through code to swap left and right channels. 28

3.1 Simple MATLAB FIR filter example. 39
3.2 MATLAB FIR filter adjusted for real-time processing. 43
3.3 Brute-force FIR filter declarations. 45
3.4 Brute-force FIR filtering for real-time. 45
3.5 An example coeff.h file. 49
3.6 FIR filter using a circular buffer. 50

4.1 Simple MATLAB IIR filter example. 79
4.2 Brute-force IIR filter declarations. 80
4.3 Brute-force IIR filtering for real-time. 80

5.1 MATLAB implementation of phase accumulator signal generation. 94
5.2 MATLAB implementation of the table lookup-based signal generation. . . 95
5.3 Variable declaration associated with sinusoidal signal generation. 97
5.4 Algorithm associated with sinusoidal signal generation. 97
5.5 Variable declaration associated with sinusoidal signal generation. 98
5.6 Algorithm associated with sinusoidal signal generation. 98
5.7 Variable declaration for table-based signal generation. 99
5.8 Algorithm for table-based sinusoidal signal generation. 99
5.9 Variable declaration associated with a digital resonator. 101
5.10 Algorithm associated with a digital resonator. 101
5.11 MATLAB implementation of circular and linear correlation for PN sequences.108
5.12 MATLAB program to generate PN sequences for a given set of feedback taps.112
5.13 Declarations for the PN Generator code. 114
5.14 Algorithm for the PN Generator code. 114

6.1 Main program for simple frame-based processing using ISRs. 127
6.2 Declarations from the “ISRs.c” file. 127
6.3 The input part of the interrupt service routine from the “ISRs.c” file. . . . 128
6.4 Abbreviated version of ProcessBuffer from the “ISRs.c” file. 129
6.5 The output part of the interrupt service routine from the “ISRs.c” file. . . 129
6.6 Main program for frame-based processing using EDMA. 131
6.7 Declarations from EDMA version of the “ISRs.c” file. 132
6.8 Function for implementing triple buffering using the EDMA hardware. . . 133
6.9 Function for initializing the DSK when using EDMA. 133

xxvii

xxviii PROGRAM LISTINGS

6.10 Function for initializing the EDMA hardware. 133
6.11 An abbreviated version of the ProcessBuffer function from the EDMA

version of the “ISRs.c” file. 136

7.1 ProcessBuffer() routine for implementing a frame-based FIR filter. . . . 144

8.1 A MATLAB listing that compares linear and circular convolution. 152
8.2 A MATLAB listing that demonstrates how to convert circular convolution

into the equivalent of linear convolution. 153
8.3 A structure for implementing complex numbers in C. 157
8.4 A function for calculating the complex twiddle factors. 158
8.5 The C code for performing the FFT butterfly operation. 158
8.6 A routine for “unscrambling” the order from bit-reversed addressing to

normal ordering. 159
8.7 MATLAB commands used to confirm the correctness of your FFT. 160

10.1 A MATLAB FIR comb filter example. 192
10.2 A MATLAB FIR comb filter example closer to C. 193
10.3 A MATLAB IIR comb filter example. 194
10.4 A MATLAB IIR comb filter example closer to C, in Direct Form I. 194
10.5 A MATLAB IIR comb filter example closer to C, in Direct Form II. 195
10.6 A MATLAB IIR notch filter example, in Direct Form II. 195
10.7 A MATLAB flanger example. 196
10.8 A MATLAB tremelo example. 197
10.9 Excerpt of variable declarations for the ISRs_A.c comb filter. 198
10.10 Real-time comb filter from ISRs_A.c. 199
10.11 Efficient circular buffer in the ISRs_B.c comb filter. 200

11.1 Calculating an equivalent impulse response. 206
11.2 Calculating a new equivalent impulse response. 206
11.3 Graphic equalizer project main.c code. 209

12.1 Declarations associated with the PPM. 215
12.2 Example PPM code from PPM_ISRs.c. 216
12.3 Another approach to creating the PPM, excerpted from PPM_ISRs3.c. . . 217

13.1 MATLAB example of AM (DSB-LC) generation. 223
13.2 C code for scaled implementation of DSB-LC AM. 225
13.3 C code to extract the sine function values from the lookup table. 226
13.4 C code for scaled implementation of DSB-LC with sine table lookup. . . . 226

14.1 Using MATLAB to design a Hilbert transforming filter. 235
14.2 MATLAB simulation of a Hilbert-based AM receiver. 238
14.3 Variable declaration associated with a Hilbert-based AM receiver. 239
14.4 Algorithm associated with Hilbert-based AM demodulation. 240

15.1 Simulation of a PLL. 244
15.2 Declaration portion of the PLL project code. 254
15.3 Algorithm portion of the PLL project code. 255

16.1 Simulation of a rectangular shaped BPSK signal generator. 268
16.2 Simulation of a impulse modulated raised-cosine BPSK signal generator. . 270

PROGRAM LISTINGS xxix

16.3 Declaration portion of the rectangular BPSK project code. 273
16.4 Algorithm portion of the rectangular BPSK project code. 274
16.5 Declaration portion of the impulse modulation raised-cosine pulse shaped

project code. 274
16.6 Algorithm portion of the impulse modulation raised-cosine pulse shaped

project code. 275

17.1 Declarations associated with the simulation of the BPSK receiver. 286
17.2 ISR simulation of the BPSK receiver. 287
17.3 Declaration portion of the BPSK receiver project code. 290
17.4 Algorithm portion of the BPSK receiver project code. 291

18.1 Simulation of an impulse modulated root-raised-cosine QPSK signal gener-
ator. 306

18.2 Declaration portion of the impulse modulation root-raised-cosine pulse shaped
QPSK project code. 310

18.3 Algorithm portion of the impulse modulation root-raised-cosine pulse shaped
project code. 311

18.4 Declaration portion of the more efficient impulse modulation root-raised-
cosine pulse shaped QPSK project code. 312

18.5 Algorithm portion of the improved efficiency impulse modulation root-
raised-cosine pulse shaped project code. 313

19.1 Modified sections of the QPSK signal generator. 320
19.2 Simulation of a QPSK receiver (through the AGC only). 320
19.3 Simulation of the complete QPSK receiver. 323
19.4 Declarations for the “through AGC” portion of the QPSK receiver code. . 330
19.5 Algorithm portion of the “through AGC” portion of the QPSK receiver code.331
19.6 Declaration portion of the complete QPSK receiver project code. 333
19.7 Algorithm portion of the complete QPSK receiver project code. 335

F.1 Checking for real-time schedule failure using the WriteDigitalOutputs()

function. 381
F.2 Checking for real-time schedule failure using the interrupt flags register. . 382
F.3 Example IIR filter code with incorrect variable initialization. 382
F.4 Correct variable initialization. 382
F.5 C6000 typedef directives. 383
F.6 C5000 typedef directives. 383

This page intentionally left blankThis page intentionally left blank

Preface

THIS book is intended to be used by students, educators, and working engineers who
need a straightforward, practical background in real-time digital signal processing

(DSP). In the past, there has been a formidable “gap” between theory and practice with
regard to real-time DSP. This book bridges that gap using methods proven by the authors.
The book is organized into three sections: Enduring Fundamentals (9 chapters), Projects
(10 chapters), and Appendices (6 chapters). The CD-ROM that accompanies this book
includes all necessary source code, along with additional information and tutorial material
to help the reader master real-time DSP.

We anticipate that the reader will use this book in conjunction with a more traditional,
theoretical signal processing text if this is their first exposure to DSP. The book you are
now reading is not intended to teach basic DSP theory ; we assume you already know or
are in the process of learning the theory of DSP. Instead of teaching theory, this book
uses a highly practical, step-by-step framework that provides hands-on experience in real-
time DSP and, in so doing, reinforces such basic DSP theory (what the authors refer to as
enduring fundamentals).1 This framework utilizes a series of demonstrations, exercises, and
hands-on projects in each chapter that begins with a quick overview of the applicable theory,
progresses to applying the concepts using MATLAB�, and ultimately running applicable
programs in real-time on some of the latest high-performance DSP hardware. For the
projects, the reader is coached into creating for themselves various interesting real-time
DSP programs. Be sure to check out the appendices of this book—some people think
they are worth the price of the book all by themselves! Each of the enduring fundamentals
chapters include at the end of the chapter a number of problems, for homework or self-study,
that probe the reader’s understanding of key DSP concepts important to that particular
chapter. These key concepts are typically only briefly covered in this text, as mentioned
above; more depth is expected to come from the more traditional and theoretical text that
the reader has already read or uses now in conjunction with this book. If the solutions
to the end of chapter problems prove elusive to the reader, then a review of the theory is
warranted.

Ideally, the reader should either be enrolled in, or have already taken, an introductory
DSP (or discrete-time signals and systems) class. However, we have had success using
various parts of this book with students who have not yet had a DSP class, using a “just in
time” approach to supplemental theory. The topic coverage of this book is broad enough
to accommodate both undergraduate and graduate level courses. A basic familiarity with
MATLAB and the C programming language is expected—but you don’t have to be an
expert in either. To take full advantage of this book, the reader should have access to a
modest collection of hardware and software tools. In particular, recommended items include
a standard PC running a fairly recent version of Windows (e.g., XP, Vista, Windows 7,

1It would be highly impractical for a book of reasonable size to teach both theory and hand-on practice
in an effective manner.

xxxi

xxxii PREFACE

etc.), a copy of MATLAB and its Signal Processing Toolbox, and one of the inexpensive
Texas Instruments DSP Starter Kit boards (with software) described below. Some other
miscellaneous items, such as a signal source (a portable digital music player such as an
iPod works well, as does a CD player); speakers (the powered type typically attached to
a PC works well), headphones, or earbuds; and 3.5 mm stereo patch cables (sometimes
called 1/8th inch stereo phono plug cables) will all be useful. For processing the input and
output signals with the greatest flexibility, several different codecs for the DSP boards are
supported (see Chapter 1). Access to some common test equipment such as an oscilloscope,
a spectrum analyzer, and a signal generator allows even more flexibility, but we show how
a second inexpensive DSP board or even a PC’s soundcard can be used as a substitute for
such test equipment if desired.

The real-time software explained in and provided with this book supports several of
the relatively inexpensive DSP boards available from Texas Instruments. These boards in-
clude the latest OMAP-L138 Experimenter Kit and the still available TMS320C6713 DSK.2

There is limited backward compatibility with the TMS320C6711 DSK as well, but there
is no explicit coverage in the text of this now-discontinued board. These boards all come
standard with (or have available for free download) powerful software development tools
(Code Composer StudioTM) of which we make considerable use in the following chapters.

The first edition of this book was written in response to the many requests by both
students and faculty at a variety of universities. When the authors presented some of the
concepts and code that appear in this book at various conferences, we were besieged by an
audience trying to “bridge the gap” from theory to practice (using real-time hardware) on
their own. This book collects in a single source our unified step-by-step transition to get
across that “gap,” and the first edition proved to be quite popular.

This second edition was written for several reasons. First, it updates the book to in-
clude support for one of the latest and most powerful of the inexpensive DSP development
boards now available from Texas Instruments, the OMAP-L138 Experimenter Kit. This
complicated but extremely versatile board is a good example of why our book is used by
so many engineers, educators, and students: we make it easy to begin using this board for
real-time DSP and save the reader many hours of frustration. A more detailed description
of the DSP boards supported by this book is included in Chapter 1. Second, this edition
includes some additional topics (e.g., PN sequences) and some more advanced real-time
DSP projects (e.g., higher-order digital communications projects such as QPSK and QAM
for transmitters and receivers) that were requested by readers of the first edition. Third,
we have incorporated all the valuable feedback and suggestions from many users of the first
edition that has resulted in what we hope is an even better book.

Note that any errata, updates, additional software, and other pertinent material will be
posted on the book’s web site maintained by the authors at http://rt-dsp.com. Since
DSP hardware updates are made faster than we can publish a new addition of the book, this
web site will provide a means for the authors to provide support even for selected new DSP
boards that are introduced after this second edition is published. For your convenience,
the QR code at the end of this preface will also take you to this web site. The publisher,
CRC Press (part of the Taylor & Francis Group), also has a web page for this book. As
of this writing, that URL is: http://www.crcpress.com/product/isbn/9780849373824.
However, the “Downloads” tab for that web page simply points to the appropriate page at
http://rt-dsp.com.

2The acronym “DSK” stands for “DSP StarterKit.” While the OMAP-L138 Experimenter Kit discussed
in this book is not officially called a “DSK” by TI, we choose to simplify the discussion and often call both
boards DSKs. Both of these boards can be purchased from authorized TI distributors or directly from TI
(see dspvillage.ti.com). Note that significant academic discounts and donations from TI are available (go
to www.ti.com/university).

PREFACE xxxiii

The path from DSP theory to real-time implementation is filled with many potential
potholes, roadblocks, and other impediments that have historically created that “gap” be-
tween theory and practice. This book provides a proven method to smooth out the path,
clear the obstacles, and avoid the usual frustrations to get you across the gap. We hope
you enjoy the ride. . .

T.B.W., C.H.G.W., M.G.M.

Scan the QR code below to access http://rt-dsp.com.

MATLAB� is a trademark of The MathWorks, Inc. For product information, please contact:
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
Email: info@mathworks.com
Web: www.mathworks.com

This page intentionally left blankThis page intentionally left blank

Acknowledgments

THIS book would not have been possible without the support and assistance of Texas
Instruments (TI), Inc. In particular, the authors would like to extend a sincere thank-

you to Cathy Wicks, whose tireless efforts for TI’s University Program has helped make DSP
affordable for countless students and professors. Cathy’s predecessors Christina Peterson,
Maria Ho, and Torrence Robinson also contributed to our efforts that eventually resulted in
this book. TI’s support of DSP education is unsurpassed in the industry, and the authors
greatly appreciate such a forward-looking corporate vision.

We would also like to thank Nora Konopka, Jessica Vakili, and Jim McGovern of CRC
Press (part of the Taylor & Francis Group), who helped guide this second edition project
to completion. Their ready help, quick responses, and never-failing sense of humor should
be the model to which other publishers aspire. Note that the manuscript was provided to
the publisher fully formatted in “camera-ready” form, so any typos, if found, are the fault
of the authors and not the publisher.

The authors would like to acknowledge Robert W. Conant for his valuable contributions
to the chapter on QPSK digital receivers.

This book was certainly improved because of the input of both anonymous reviewers
and the experiences of the many users of the first edition, who gave us valuable feedback
and some excellent suggestions.

Our appreciation also extends to Debbie Rawlings as well as to Susan and Alan Czarnecki
for the generous use of their waterfront vacation homes for some of our more productive
“geek-fests” during which key parts of this book were written.

We would be remiss if we omitted an acknowledgment related to the mechanics of writing
the text: this book was typeset using LATEX, a wonderfully capable document preparation
system developed by Leslie Lamport as a special version of Donald Knuth’s TEX program.
LATEX is ideally suited to technical writing, and is well supported by the worldwide members
of the TEX Users Group (TUG); investigate http://www.tug.org/ for details. Both LATEX
and TEX are freely available in the public domain (the name TEX is a trademark of the
American Mathematical Society). We used the excellent WinEdt shareware editor (see
http://www.winedt.com/) as a front-end to the free MikTeX distribution of LATEX (see
http://www.miktex.org/). For maintaining our database of bibliographic references in
the standard BibTEX syntax, we used the freely available and highly capable JabRef (see
http://jabref.sourceforge.net/).

xxxv

This page intentionally left blankThis page intentionally left blank

Section I:
Enduring Fundamentals

1

This page intentionally left blankThis page intentionally left blank

Chapter 1

Introduction and Organization

1.1 Why Do You Need This Book?

IF you want to learn about real-time1 digital signal processing (DSP), this book can save
you many hours of frustration and help you avoid countless dead ends. In the past,

“bridging the gap” from theory to practice in this area has been challenging. We wrote
this book to eliminate the impediments that were preventing our own and our colleagues’
students from learning about this fascinating subject. When these barriers are removed, as
this book will do for you, we believe that you will find real-time DSP to be an exciting field
that is relatively straightforward to understand. The expected background of the reader
and the tools needed to get the most out of this book are listed in the Preface.

Real-time DSP can be one of the “trickiest” topics to master in the field of signal
processing. Even if your algorithm is perfectly valid, the actual implementation in real-time
may suffer from problems that have more to do with computer engineering and software
engineering principles than anything related to signal processing. While becoming an expert
in real-time DSP typically requires many years of experience and learning, such skills are in
very high demand. This book was written to start you on the path toward becoming such
an expert.

1.1.1 Other DSP Books

There are dozens of books that eloquently discuss and explain the various theoretical aspects
of digital signal processing. Texts such as [1–7], written primarily for electrical engineering
students, are all excellent. For a less mathematical treatment, [8,9] are good choices. It has
been shown that computer-based demonstrations help students grasp various DSP concepts
much more easily [10–17]. To take advantage of this fact, a number of books also include
software programs that help the student more clearly understand the underlying concepts or
mathematical principles that the author is trying to relate. In recent years, as MATLAB�

has become an integral part of engineering education at most institutions, this software
has increasingly been provided as MATLAB programs (often called m-files) delivered via
enclosed CD-ROMs, DVDs, or the World Wide Web. Textbooks such as [1,4,18] are popular
examples of comprehensive theoretical DSP texts that include MATLAB software. Some
books are less theoretical but provide many MATLAB demonstrations [9,19–21]. These are
often used along with one of the more in-depth texts listed previously. Finally, there are

1The phrase real-time means that the system is responding “fast enough” to some external event or
signal to allow proper functioning. DVD players, digital cellular telephones, automobile anti-lock brake
systems, and aircraft digital flight controls are common examples that rely on real-time DSP.

3

4 CHAPTER 1. INTRODUCTION AND ORGANIZATION

books that are aimed at helping the reader learn to make the best use of MATLAB for DSP
and other technical pursuits [22–24].

1.1.2 Demos and DSP Hardware

Demonstrations using MATLAB are extremely valuable, and we use them extensively in
our own courses. However, they typically use previously stored signal files and cannot be
considered “real-time” demonstrations. Some MATLAB programs, using a PC sound card
or data acquisition card, have a fairly limited ability to bring signals in from the “real world”
and perform some processing using the general purpose CPU of the PC, but we have found
this to be inadequate for teaching real-time DSP. Students need to be introduced to some
of the more common aspects of specialized hardware used for real-time DSP, but in a way
that minimizes the many frustrations that past students and faculty have encountered.

While there are other books available that include discussions of using real-time DSP
hardware (e.g., [25–27]), we found that these other books don’t really meet our students’
needs. These other books just don’t provide a smooth transition for a reader unfamiliar with
real-time DSP or specialized programming concepts, and many require fairly expensive DSP
hardware to run the included programs. In response to that need, we created a set of tools
that could be used to learn real-time DSP in a series of reasonable steps, beginning with the
easy-to-use winDSK program, progressing to the familiar MATLAB environment, and finally
making the transition to actual real-time hardware using inexpensive DSP Starter Kits
(DSKs). When these tools became known [28–52] to our colleagues at various universities,
we were inundated with requests to consolidate these tools into a book, which became the
first edition of this book. This second edition is the result of several years of feedback from
users worldwide, and our own continuing work in the field.

1.1.3 Philosophy of This Book

This book is designed to be used standalone or with any of the previously mentioned DSP
texts. What sets this book apart is that it allows the reader to take the next step in
mastering DSP: we take a concept and show the reader how to easily progress from a
demonstration in MATLAB to running a similar demonstration in real-time code on actual
DSP hardware. Until this book was published, the learning curve in moving to real-time
DSP hardware has been too steep for most students and too time-intensive for most faculty.
This book overcomes these problems in both a methodical and practical way.

The reader is guided through examples and exercises which demonstrate various DSP
principles. In each case, we begin using familiar interfaces such as MATLAB, then lead the
reader in a step-by-step fashion to the point where the algorithms are running in real-time
on industry-standard DSP hardware. It’s important to note that unlike most other DSP
hardware-related books, the software for this book allows the transition to DSP hardware
without requiring the reader to first learn assembly language or obscure C code libraries
to implement the examples and exercises in real-time. Some examples don’t even require a
knowledge of MATLAB or C.

1.2 Real-Time DSP

An underlying assumption of most digital signal processing operations is that we have a
sampled signal, our digital signal, that we wish to process. In an educational environment,
these signals are often stored for subsequent retrieval or synthesized when needed. While
this storage or synthesis method is very convenient for classroom demonstrations, computer-
based assignments, or homework exercises, it does not allow for real-time processing of a

1.3. HOW TO USE THIS BOOK 5

signal. Our students get much more excited about DSP when we incorporate real-time
signal processing into our classroom presentations and the associated laboratory exercises.
This increased excitement leads to greatly increased learning opportunities for our students.

We use the term real-time processing to mean that the processing of a particular sample
must occur within a given time period or the system will not operate properly. In a hard
real-time system, the system will fail if the processing is not done in a timely manner. For
example, in a gasoline engine control system, the calculations of fuel injection and spark
timing must be completed in time for the next cycle or the engine will not operate. In a soft
real-time system, the system will tolerate some failures to meet real-time targets and still
continue to operate, but with some degradation in performance. For example, in a handheld
audio player, if the decoding for the next output sample is not completed in time, the system
could simply repeat the previous sample instead. As long as this happened infrequently,
it would be imperceptible to the user. Although general purpose microprocessors can be
employed in many situations, the performance demands and power constraints of real-time
systems often mandate specialized hardware. This may include specialized microprocessors
optimized for signal processing (digital signal processors or DSPs), programmable logic
devices, application specific integrated circuits (ASICs), or a combination of any or all
of them as required to meet system constraints. Please note that we have now used the
acronym “DSP” in two different ways—a very common occurrence in the digital signal
processing field! In the first case, “DSP” meant “digital signal processing.” In the second
case, “DSP” referred to a “digital signal processor.” The intended use of the acronym DSP
should be clear from the context in which it is used.

1.3 How to Use This Book

This book is designed to allow someone with a basic understanding of DSP theory to rapidly
transition from the familiar MATLAB environment to performing DSP operations on a
realistic hardware target. Our DSP target of choice is a member of the high-performance
Texas Instruments (TI) C6000TM DSP family. Specifically, we chose the TMS320C67xx
digital signal processor series, which supports both floating-point and fixed-point operation.
The C67xx DSK target was selected because of its relatively inexpensive purchase price,
widespread utilization and compatibility with designs used in industry, and a feature-rich
software development tool set (called Code Composer StudioTM) that is provided for this
target.

1.3.1 Supported Boards

Two very affordable development boards supported by this book that use C67xx processors
are the OMAP-L138 Experimenter Kit and the TMS320C6713 DSK (often just called the
C6713 DSK).2 These boards can be purchased from authorized TI distributors or directly
from TI (see dspvillage.ti.com); academic discounts and donations are available (go
to www.ti.com/university).3 Both boards come standard with (or have available free
downloads of) the powerful software development tools called Code Composer Studio (CCS)
of which we make considerable use in the following chapters (note that this book assumes
the use of CCS version 4.2 or higher). See Figure 1.1 for photos of the OMAP-L138 and

2As mentioned in the preface, the acronym “DSK” stands for “DSP Starter Kit.” To simplify the
discussion, we often choose to use the term “DSK” for both the OMAP-L138 Experimenter Kit and the
C6713 DSK boards.

3At the time of this writing the list prices were $495 for the new and more powerful OMAP-L138
Experimenter Kit and $395 for the older C6713 DSK. It is anticipated that board-only packages of the
OMAP-L138 Kit will become available soon for less than $300.

6 CHAPTER 1. INTRODUCTION AND ORGANIZATION

C6713 DSKs. While the first edition of this book contained some explicit support of the
now-discontinued C6711 and C6211 DSKs, we will not discuss them in this edition (although
there is some limited backward compatibility with these older boards).

The OMAP-L138 is a multi-core processor that contains both a C6748 VLIW digital
signal processor and an ARM926EJ-S RISC general purpose processor, both running at
300 MHz. In the Experimenter Kit configuration, the multi-core processor is located on
a replaceable system-on-chip (SoC) module along with 64 MB of DDR RAM and a wide
variety of I/O capabilities. The C6713 DSK uses a single-core TMS320C6713 VLIW digital
signal processor running at 225 MHz, with 16 MB of RAM.

Typically, real-time DSP hardware has to communicate with the “outside” world. This
is usually accomplished on the input side with an analog-to-digital converter (ADC) and
on the output side with a digital-to-analog converter (DAC). Integrated circuit (IC) chips
that combine the ADC and DAC functions in one device are often called codec chips, which
is an acronym for “coder and decoder.” This book supports several different codecs for
the supported boards. We primarily support the codec that is included on each board,
along with some optional plug-in codecs for specialized applications. The OMAP-L138
Experimenter Kit includes a high quality stereo codec (TLV320AIC3106) that is capable of
up to 32-bits per sample and a maximum sample frequency of 96 kHz. The C6713 DSK’s
built-in stereo codec (TLV320AIC23) is capable of up to 24-bits per sample and a maximum
sample frequency of 96 kHz. Most of the examples in this book configure these codecs to
use 16-bits per sample at a sample frequency of 48 kHz, but we include all the necessary
code to reconfigure the codecs as desired.

1.3.2 Host Computer to DSP Board Communication

Many demonstrations, examples, and projects in this book need to transfer data at high
speed between the host PC and the memory space of the DSP, bypassing the codecs. This
can be accomplished with the OMAP-L138 Experimenter Kit though careful use of the serial
port (RS-232) that is included on the board. The C6713 DSK, on the other hand, does not
include any way to transfer data to and from the host computer except through the JTAG
debugger interface, which is extremely limited in bandwidth and requires that the TI Code
Composer Studio (CCS) software tools be available. This means that the existing suite of
winDSK [33,53–56] demonstration software4 and other software tools cannot run on the “out
of the box” C6713 DSK, denying educators a valuable teaching and classroom demonstration
resource. Also, there is no way to interface an application on the host PC directly to the
C6713 DSK, limiting the ability of students to create stand-alone, interactive projects using
this DSK. To solve this problem, the authors created a small, inexpensive add-on interface
board for the TMS320C6713 DSK that uses the Host Port Interface (HPI) to provide both
a means for a PC host application to boot software onto the DSK, and to permit the
transfer of data between the DSK and the host PC application [49]. Figure 1.2 shows
this interface board installed on the C6713 DSK. We also created a software package that
makes it possible for students to create stand-alone Windows applications that communicate
directly with the OMAP-L138 Experimenter Kit or with the C6713 DSK (if the C6713 DSK
has the HPI interface board installed).

While the OMAP-L138 Experimenter Kit has many built-in I/O options, the C6713 DSK
does not. To rectify this, the HPI interface board for the C6713 DSK provides parallel port
communication, USB, RS-232, and digital input/output ports as user selectable resources
available to the DSK software (as shown in Figure 1.2(b); see the eDSP web site [57] for

4Important: Note that there are two versions of winDSK that accompany this book: winDSK6 and
winDSK8. The former is to be used with the C6713 DSK and the latter is to be used with the OMAP-L138
Experimenter Kit. The high speed communication methods differ greatly between the two winDSK versions.

1.3. HOW TO USE THIS BOOK 7

(a) The OMAP-L138 Experimenter Kit, manufactured by Logic PD for Texas Instruments.

(b) The C6713 DSK, manufactured by Spectrum Digital for Texas Instruments.

Figure 1.1: The supported DSK circuit boards.

8 CHAPTER 1. INTRODUCTION AND ORGANIZATION

(a) Top view of the HPI interface board on the C6713 DSK.

(b) Side view of the HPI interface board on the C6713 DSK.

Figure 1.2: The HPI interface board on the C6713 DSK.

1.3. HOW TO USE THIS BOOK 9

more information). Using the HPI interface board on the C6713 DSK permits full use of
all the winDSK features that appear throughout this book; this add-on board is not needed
for the OMAP-L138 Experimenter Kit.

As mentioned above, the OMAP-L138 Experimenter Kit has many built-in I/O options.
In addition to a number of specialized connections, the board includes multiple USB ports,
an RJ-45 (Ethernet), and an RS-232 (serial port) connector. When using Code Composer
Studio to run C programs on the C6748 core, the USB “mini-B” receptacle located closest
to the RS-232 connector is used. Both this USB connector and the RS-232 connector can
be seen at the upper left of the board in Figure 1.1(a). However, this USB connector is not
currently used with winDSK. While we ultimately hope to use either the RJ-45 (Ethernet) or
one of the USB connectors for host computer communications in a future implementation5

of winDSK, the RS-232 port represented a more readily available solution for establishing
reliable high-speed host to real-time target communications that would allow the full suite
of winDSK programs to run [55,56].

To prepare the OMAP board for use with winDSK8, the user loads the necessary code
into the OMAP-L138 Experimenter Kit’s flash memory utilizing the RS-232 port and a
free flash programming utility (see instructions on the bookware CD-ROM). This needs to
be done only once (unless the user needs to reprogram the flash memory for some other
purpose later). Power-on program execution is determined by the board’s DIP switches.
With the DIP switches in the correct position (again, see instructions on the bookware
CD-ROM), the ARM9 processor will load the winDSK8 code from the flash memory upon
power up, and the ARM9 then takes control of the C6748 DSP core with communication
to the host computer accomplished via the RS-232 port. In this way, the ARM9 is acting
in much the same way that the host port interface (HPI) board acted on the older C6713
DSK, but accomplishes these communication functions locally via the RS-232 port and the
SoC without the need for an additional interface board. In this configuration, both the
ARM9 core and the C6748 core are being used.

Many newer computers, particularly laptops, don’t come with serial ports anymore,
since the ubiquitous USB interface has taken over many of the I/O needs of users. If the
particular host computer to be used with the OMAP board and winDSK8 has no serial port,
an inexpensive USB-to-serial adapter works quite well. We have achieved transfer rates of
over 900 kBaud using these adapters (but be aware that some older USB-to-serial adapters
do not support such high rates).

When using winDSK6 with a C6713 DSK, clicking on a button in the graphical user
interface (GUI) on the host computer initiates a download of the appropriate code from the
host to the DSK, and starts the code running on the DSK. When using winDSK8 with the
OMAP-L138 Experimenter Kit, clicking on a button in the GUI on the host computer sends
a short message to the ARM9 core on the OMAP SoC, telling it to load the appropriate
winDSK8 code from the on-board flash memory into the C6748 core and start it running.
From the user’s perspective, the primary difference between running winDSK6 on the C6713
DSK and running winDSK8 on the OMAP-L138 board is that the former uses the USB
connection on the HPI interface board, while the latter uses the serial RS-232 connection
on the main OMAP-L138 board. The “user experience” is very similar, regardless of the
DSP hardware being used.

In a course-based laboratory setting, a mix of C6713 and OMAP-L138 Experimenter
Kit boards could be used as desired for nearly all aspects of this book, including winDSK
demonstrations and C programs using Code Composer Studio. The authors have gone
to great lengths to maintain compatibility and similar operation for both of these boards

5Any changes that affect instructions provided in this book will be minimized and will be listed on the
authors’ book web site (http://rt-dsp.com) as soon as possible.

10 CHAPTER 1. INTRODUCTION AND ORGANIZATION

throughout the book.

1.3.3 Transition to Real-Time

For each DSP concept in this book, we will typically take a four-step approach. Specifically,
we will follow the approach listed below.

• Briefly review the relevant DSP theory.

• Demonstrate the concept with an easy-to-use tool called winDSK. With winDSK, you
can program and manipulate the real-time hardware without having to write a pro-
gram.

• Explain and demonstrate how MATLAB techniques can be used to implement the
concept (not necessarily in real-time, but in a way most students find easy to under-
stand).

• Provide and explain the C code necessary for you to implement your own real-time
program using a DSK and its software development tools.

For most readers of this book, the first step should serve only as a refresher and to set in
context the overall discussion.6 The next step permits the reader to further explore the
concept and facilitates “what if” experimentation unencumbered by the need to program
any code. The next step, using MATLAB examples, helps to reinforce your understanding
of the underlying DSP theories. These examples use standard MATLAB commands that
occasionally require the Signal Processing Toolbox.7 Our well-commented MATLAB code
is written such that the algorithm is clearly evident; optimizations that may obscure the
underlying concept are avoided. Once the reader has worked through this non-real-time
DSP experience, the final step is the key to “bridging the gap” to real-time operation.
From the discussion in the book, the reader will be able to confidently implement the
same algorithms in C using state-of-the-art real-time DSP hardware. Each chapter ends
with a list of follow-on challenges that the reader should now be prepared to implement as
desired. Section I (Enduring Fundamentals) chapters also include end-of-chapter problems
for homework or self-study.

A cautionary note: some of our students have tried to “save time” by skipping the
MATLAB step and jumping right into the C code. Don’t do it! It’s been demonstrated
time and time again that the students who first work with the algorithms in MATLAB
consistently get the C version to work correctly. Those who skip the MATLAB step have
a much harder time, and often can’t get their code to work properly at all. Don’t say we
didn’t try to warn you!

1.3.4 Chapter Coverage

The first nine chapters of this book cover topics that we believe are a significant part of
the enduring fundamentals of DSP, presented in the context of real-time operation. The
experience you gain while studying these chapters is crucial to being ready for the real-time
DSP projects that are presented in the chapters of Section II (Projects). A special mention

6As mentioned in the Preface, we anticipate that the reader will use this book in conjunction with a
more traditional, theoretical signal processing text if this is their first exposure to DSP. The book you are
now reading is not intended to teach basic DSP theory.

7The Signal Processing Toolbox is an optional product for MATLAB, also available from The Math-
Works. You may also want to explore graphical programming environments suitable for DSP (i.e., Simulink
from The MathWorks and LabVIEW from National Instruments).

1.3. HOW TO USE THIS BOOK 11

Table 1.1: Top-level directory organization of the book’s CD-ROM. CCS stands for Code
Composer Studio, the software development environment for Texas Instruments DSPs.

File or Directory Comment

code contains subdirectories with source code for each chapter

code\chapter_xx\matlab contains MATLAB files for Chapter xx

code\chapter_xx\ccs contains CCS files for Chapter xx

code\appendix_x contains files related to Appendix x

code\common_code contains files related to all CCS projects

code\target_configuration contains board setup for all CCS projects

docs contains supplemental information

test_signals contains test signals for exercises and projects

pc_apps contains winDSK6 and winDSK8 software

needs to be made here regarding the appendices in Section III. While most other DSP
books force you to track down and look up various key pieces of information that you need
for real-time DSP from a plethora of sources, the appendices at the end of this book (with
supplemental information provided on the CD-ROM) collect in a single location a distilled
and simplified version of all the important topics that are needed to work effectively with
DSP hardware such as the C67xx DSK. The appendices by themselves are probably worth
the price of this book!

1.3.5 Hardware and Software Installation

The CD-ROM that accompanies this book contains a great deal of useful software (see
Table 1.1 for the directory organization). This software is an integral part of the book, and
the remaining chapters assume that you have already installed it all properly, along with
the DSK itself and the software that accompanies the DSK. To install the DSK hardware
and software, complete the “Hardware Getting Started” guide and the “Software Getting
Started” guide that come with your DSK. To install the software that accompanies this
book, follow the procedure outlined below.

1. Put the bookware CD-ROM into your computer’s CD drive.

2. View the ReadMe file for the latest information.

3. Run the setup program contained on the bookware CD-ROM.

The setup program is provided to make the overall software installation much easier, and
will also install winDSK6 or winDSK8 as appropriate. Just copying files yourself from the
CD-ROM to your hard disk may not result in the files being copied to the appropriate
directories. We highly recommend using the setup program.

After you have completed the hardware and software installation discussed above, launch
either winDSK6 or winDSK8 (depending upon which DSK you are using). Important:
Ensure the correct selections have been made in the “DSK and Host Configuration” panel of
winDSK6 or the “Board and Interface Configuration” panel of winDSK8 for each parameter8

8You may want to experiment with communication port parameters, as more than one speed or con-
figuration will probably work. In general, with either version of winDSK, try to use the fastest mode that
works with your computer. See the winDSK “Help” button for more information.

12 CHAPTER 1. INTRODUCTION AND ORGANIZATION

prior to initiating the DSK Confidence Test. A successfully completed DSK confidence test
will be one of your best indicators that you have properly installed the DSK. You can also
use the winDSK confidence test in the future to easily verify the proper operation of your
DSK.

Note that when using a C6713 DSK, the USB port on the HPI interface card, shown
in Figure 1.2(b), is used when running winDSK6, but the USB port on the DSK itself is
used when running C code with Code Composer Studio. This has been a common point
of confusion in the past. When using the OMAP-L138 Experimenter Kit, the RS-232
serial connector is used when running winDSK8, but the USB port located next to the RS-
232 connector is used when running C code with Code Composer Studio. Both of these
connectors on the OMAP-L138 Experimenter Kit are shown at the upper left of the board
in Figure 1.1(a). See the previous discussion in Section 1.3.2 for more details.

A minor point: where the text shows figures depicting various screen shots of winDSK,
MATLAB, Code Composer Studio, or other software tools, keep in mind that later versions
of these tools may have slightly different screen representations for the user interface. There
will also be slight variations between winDSK6 and winDSK8 screens, but the functionality
will be essentially the same. It should be fairly obvious to the reader how a given figure as
shown in the text relates to a possible newer version of the same software tool.

1.3.6 Reading Program Listings

Important: Some of the code listings in this book include lines that, despite our best
efforts, are too long to fit within the book’s margins and yet still use meaningful variable
and function names. So be watchful when reading program listings for those instances where
a line wrap occurred in the listing due only to page margins. In that case, the wrapped
part of the line is indented, and the characters “[+]” show up to identify the beginning
of the wrapped part of the line. The “[+]” characters are not part of the program, which
you’ll confirm if you compare the listing as printed in the book to the actual program file
on the CD-ROM. Note that the line numbers shown at the left edge of the listings do not
increment for the wrapped part of a line.

A minor point: a particular code listing shown in the text may not always match exactly
the associated code listing you’ll find on the CD-ROM (but should be very similar). This is
because the text is “frozen” before the code, and there may be slight improvements in the
code before the CD-ROM is created. There may also be improvements and updates to the
code available on the textbook web site, as mentioned in the Preface.

1.4 Get Started

Once the hardware and software are installed and you begin reading the remainder of this
book, we encourage you to stop frequently and try out various programs and examples
as they are mentioned. As Sophocles once said, “One must learn by doing the thing; for
though you think you know it, you have no certainty until you try it.” Real-time DSP can
be tremendous fun; we hope this book helps you find it as much fun as we do . . .

1.5 Problems

1. Describe the difference between real-time DSP and non-real-time DSP. Give an ex-
ample of each.

1.5. PROBLEMS 13

2. Describe the difference between a hard real-time system and a soft real-time system.
Give an example of each.

3. What are the two definitions of the acronym “DSP” used in this chapter? Give an
example of each.

This page intentionally left blankThis page intentionally left blank

Chapter 2

Sampling and Reconstruction

2.1 Theory

WHENEVER we wish to obtain a real world signal in order to process it digitally, we
must first convert it from its natural analog form to the more easily manipulated

digital form.1 This involves grabbing, or “sampling,” the signal at certain instants in time.
We assume the sampling instants are equally spaced in time (Ts), so that the sampling
frequency (Fs) is equal to 1/Ts. Each individual sample represents the amplitude of the
signal at that instant in time, and the number of bits per sample that we use to store this
amplitude determines how accurately we can represent it. More bits means better fidelity,
but it also means greater storage and processing requirements. The effect of changing the
number of bits will be discussed later in the chapter.

2.1.1 Choosing a Sampling Frequency

One potential problem that can occur during sampling is called aliasing, which results in
samples that do not properly represent the original signal. Once aliasing has crept into
your data, no processing in the world can “fix” your samples so that the original signal
can be recovered. To prevent aliasing, the sample frequency, Fs, of the ADC (analog to
digital converter) must be greater than twice the maximum frequency fh contained in the
analog input signal.2 Often the sample frequency is considerably higher than 2fh. Typically,
some form of input signal conditioning (such as an analog lowpass filter) ensures that the
maximum frequency contained in the analog input signal is less than Fs/2. The effect of
changing the sample frequency will be discussed later in the chapter.

2.1.2 Input/Output Issues: Samples or Frames?

While it is easier to understand DSP theory and operations on a sample-by-sample basis,
in reality this is often an inefficient way to configure the actual input and output of data.
Just as a computer hard disk transfers data in blocks of many bytes rather than one byte
or word at a time, many DSP systems transfer data in “blocks” known as frames. We will
discuss both methods in this book, beginning with sample-by-sample processing. Chapter 6
discusses frame-based processing in more detail.

1There is also an increasing number of signals that are “born digital;” that is, they are created inside a
computer. For these signals, each data point is considered a “sample.”

2This assumes a lowpass, or baseband, signal. For a bandpass signal having bandwidth BW , we find
Fs ≥ 2BW but Fs must also satisfy other conditions. See [5] for more detail.

15

16 CHAPTER 2. SAMPLING AND RECONSTRUCTION

������
������

	
�
��������

�
	
��������

���
����������

�������������
������
������

Figure 2.1: A generic DSP system.

2.1.3 The Talk-Through Concept

A block diagram of a generic DSP system is shown in Figure 2.1. While this figure shows
a highly simplified block diagram of a DSP system, for this discussion we can simplify the
diagram even more. Our goal at this point in the text is simply to pass the signal entering
the ADC directly to the DAC (digital to analog converter), with no actual processing being
performed. This process is routinely called talk-through, and is often used as the first test
of a DSP system to determine if it is working, if the input and output connections are
correct, and to familiarize the user with the system and its software tools. Talk-through is
also invaluable for showing the user what the underlying limitations of the ADC and DAC
process will impose on more complicated applications. The DSP algorithm for talk-through
is simply to pass the sample from the ADC directly to the DAC. A block diagram of this
very basic operation is just a simplified version of Figure 2.1, and is shown in Figure 2.2.
Note that the DSP talk-through algorithm is so simple that the entire DSP algorithm block
can be omitted.

Ideally, the reconstructed analog signal coming out of the DAC should be identical to
the analog input signal that went into the ADC. Once we have implemented a talk-through
system similar to Figure 2.2, we can explore some of the capabilities and limitations of
the hardware we are using. This may seem like a trivial step, but having a more detailed
understanding of this process is very helpful before we move on to incorporating more
complicated DSP algorithms into the system.

2.2 winDSK Demonstration

2.2.1 Starting winDSK

If you start the winDSK program, a window similar to either Figure 2.3(a) or Figure 2.3(b)
will appear, depending upon whether you are running winDSK6 (with the C6713 DSK) or
winDSK8 (with the OMAP-L138 Experimenter Kit). While the exact location of certain
functions may be in a slightly different location in the two versions, it should be easy to find
the function you need using either user interface. In the future, we won’t show the main
interface screens. The secondary interface screens we show in this and in later chapters
may be from winDSK6 or from winDSK8, but since winDSK6 and winDSK8 are so similar
the reader should have no trouble following along no matter which version of winDSK you
are actually using.

Ensure the correct selections have been made in the “DSK and Host Configuration”
panel of winDSK6 or the “Board and Interface Configuration” panel of winDSK8 for each
parameter before proceeding. These selections are “sticky,” such that the next time you

��������	���
�

�����������
����

���������

����

���������

������

�����

Figure 2.2: A talk-through system.

2.2. WINDSK DEMONSTRATION 17

(a) The main winDSK6 user interface.

(b) The main winDSK8 user interface.

Figure 2.3: The winDSK program ready to load the Talk-Thru application.

18 CHAPTER 2. SAMPLING AND RECONSTRUCTION

(a) winDSK6 (b) winDSK8

Figure 2.4: winDSK running the Talk-Thru application.

run winDSK, the choices you made will still be selected.

2.2.2 Talk-Thru Application

Clicking on the winDSK Talk-Thru button will start the Talk-Thru (talk-through) program
in the attached DSK, and a window similar to Figure 2.4(a) or Figure 2.4(b) will appear.
Both winDSK6 and winDSK8 are shown to illustrate that while the GUI for the two versions
of winDSK may have a somewhat different layout, the functionality is identical and the
discussion in the text is appropriate to either version. In the future, we show only one
version of winDSK windows in the figures. If you have an audio source (e.g., an MP3 player
or a CD player) connected to the DSK’s audio input, and a pair of speakers (common
powered PC speakers work fine) connected to the DSK’s audio output, then whatever music
you are playing on your MP3 or CD player should now be audible. If you are using the
headphone jack of the MP3 or CD player (instead of the “line out” jack) to send the signal
to the DSK, you may need to adjust your player’s volume level to obtain a proper result.

If you are experiencing difficulty (i.e., no audio heard), verify that your player and
speakers are functioning properly by connecting the speakers directly to the player. At
this point, adjust the system volume to your desired level. When everything is functioning
properly, reconnect the player and the speakers to the DSK.

One other common cause of no signal is using a monaural (mono) audio cable instead of
a stereo audio cable. Most small audio devices use 3.5 mm stereo patch cables (sometimes
called 1/8th inch stereo phono plug cables). As shown in Figure 2.5, a mono cable’s mini-
plug has 2 metal segments while a stereo cable’s mini-plug has 3 metal segments. Some
devices use proprietary variations on the mini-plug, also shown in Figure 2.5. The DSK
input and output connectors are intended to be used with the type of mini-plug shown in
Figure 2.5(b); using any other type of mini-plug may cause problems.

If your output signal sounds fuzzy, distorted, or clipped (basically, not as you expected),
you may be overdriving the ADC. For example, the TLV320AIC3106 codec used on the
OMAP-L138 Experimenter Kit has a maximum input voltage of about ±1 volt. If you input
a signal that exceeds this allowed range, your signal will sound fuzzy, distorted, or clipped.3

3How your ADC deals with this overdriven condition depends on how it was designed. The most common
results are saturation or wraparound. Some ADCs can be programmed to either saturate or wraparound,

2.3. TALK-THROUGH USING WINDOWS 19

������������� ���������������

����������������
���������������

�������������������
������������������

Figure 2.5: Various types of audio mini-plugs used with devices such as MP3 players and
CD players.

When using a multichannel Analog Interface Circuit (AIC) such as the native stereo
codec found on the OMAP-L138 Experimenter Kit or the C6713 DSK board, the Talk-
Thru demonstration application is executed independently on both left and right channels.

The application permits demonstration of three basic effects:

1. Quantization — The effect of different bit-length conversions can be shown by the
variable truncation of the audio data, reducing the effective resolution of the codec
converters to a minimum of one bit. From DSP theory, we know that the signal to
quantization noise ratio (SQNR) is proportional to the number of bits used (approxi-
mately 6 dB increase in SQNR for each added bit of resolution).

2. Spectral Inversion — By selecting the Invert Spectrum checkbox, the sign bit of every
other sample is changed (the same as having every other sample multiplied by −1).
This is equivalent to modulating the input signal with a frequency of one-half the
sample frequency. The effect is that the frequency spectrum is flipped around a
frequency equal to the sample frequency divided by four, effectively “scrambling” the
signal as it would be heard by a listener. If the resulting signal is then passed through
a second DSK performing the same operation, the original signal will be recovered.

3. Aliasing — The effective sample rate (or sample frequency Fs) can be varied by using
a variable decimation factor.4 A single input sample is repeatedly transmitted for
an integral number of output samples, which reduces the effective sample rate of the
converter by that integral number. In this way, aliasing can be easily demonstrated
even when using a sigma-delta converter. When operating with a reduced effective
sample rate, the Invert Spectrum effect is modified to give inversion about the effective
Fs, not the actual codec Fs.

2.3 Talk-Through Using Windows

If you have a personal computer (PC), you almost certainly have the ability to record,
store, and play back sound files. For PCs running Microsoft Windows,5 the recorded files
typically have file names that end with extensions such as .wav, .wma, .mp3, .m4a, and
so on (depending on your input source, your hardware, and your version of Windows).

depending upon the user’s desires.
4All of the supported codecs use sigma-delta conversion, which internally oversamples the signal. This

means that simply changing the basic sample frequency won’t necessarily result in the expected aliasing.
5Microsoft Windows is a trademark of Microsoft Corporation.

20 CHAPTER 2. SAMPLING AND RECONSTRUCTION

There are many other audio file formats we don’t have time or space to discuss. The
*.wma file format, for example, is a proprietary Microsoft standard for compressed audio
files created to compete with the *.mp3 file format. The *.m4a file format is an open
standard for compressed audio files intended to be the successor to the *.mp3 file format.
The older, but simpler, *.wav file format is a free and open standard that most commonly
contains uncompressed linear pulse code modulation (LPCM) audio data, similar to the
audio encoded on CDs. We prefer to deal with *.wav files for our purposes here. Even
though the *.wav file sizes are larger, the uncompressed sound quality is higher which
allows better comparison of DSP results (e.g., is signal degradation due to your algorithm
or is it related to the lossy compression of the file format?). It’s also sometimes easier to
import *.wav files directly into MATLAB�, which will be handy when using this text.

If you haven’t worked with wav-files before, you may be surprised to learn that even
the latest versions of Windows include many such *.wav files. For example, all the little
sounds your PC makes when Windows wants to alert the user to various events or errors
are typically stored as *.wav files. For most recent versions of Windows, you can find many
of them in the subdirectory C:\WINDOWS\MEDIA. Double-clicking on a *.wav file name will
play back the wav-file through the PC’s sound system. Note that this is really only the
DAC half of the talk-through operation; the ADC has already been performed, and the
resulting samples were stored in the wav-file.

In order to create your own wav-files, you’ll need an input source (such as a microphone
or MP3 player) that can be connected to your PC’s sound input. Note that some computers
have separate sound cards, while others (lower-priced PCs and most laptop computers) have
the sound card circuitry integrated on the main board (motherboard) of the computer;
however, the connectors and operation should be similar. There are usually at least three
sound connectors on a typical PC: “microphone in,” “line out,” and “speaker out.” PCs
with higher-end sound cards may have additional connectors. Most laptop computers have
only two sound connectors: “microphone in,” and “headphones out.” The “microphone in”
jack is typically where you connect your input source.

Different sound cards (or integrated sound circuits on motherboards) are shipped with
different software to support them; use the appropriate program to ensure that the mi-
crophone input setting is not muted, or no signal will be sent to the ADC. Be sure to
also adjust the input levels so that while you are recording the system does not saturate
(overdrive the input). The status of the input level is usually indicated by some type of
colored bar or bars with an adjustable slider control nearby. A common implementation
used is such that as the input level increases, a green bar grows in length. As the input
increases further, the bar continues to grow in length, but the color changes to yellow (a
warning), then to red (saturation or clipping is occurring). You will need to adjust your
system using trial and error. While you do not want saturation (red bar) to occur (resulting
in a distorted signal), you also don’t want the system gain set so low that little or no green
is displayed while you are recording (which would result in a low signal-to-noise ratio, and
thus a “noisy” recording).

The Windows operating system ships with a rudimentary sound recording program,
typically found under the “Accessories” category. The program included with Windows XP
is simple but useful, and is shown in Figure 2.6(a). The program included with Windows
Vista and Windows 7, shown in Figure 2.6(b), is not very useful for our purposes, as it can
only save files in the *.wma compressed file format.

There are many freely available programs that can be used for recording your own wav-
files (and for doing many other audio-related tasks such as mixing and editing). An example
shown in Figure 2.7 is called Audacity. While Audacity can save recorded audio in over a
dozen file formats, for our purposes here we recommend staying with simple *.wav files.

To actually record a wav-file, determine the sequence needed for the particular program

2.3. TALK-THROUGH USING WINDOWS 21

(a) Windows XP (b) Vista and Windows 7

Figure 2.6: The Windows sound recorder program.

Figure 2.7: A freely available sound recorder, mixer, and editing program called Audacity.

you are using, provide an input source, and start the recording. Once you have recorded a
wav-file, you can play back the file either in the program you used to record the file or by
double clicking the file name (after it has been saved) from Windows Explorer.

You now have explored the ability to record, save, and playback a wav-file using only
your PC. Playback using some sound recording programs can also incorporate various
special effects such as changing the playback speed, adding an echo, or playing the file
backward.6 Options within most sound recording programs also allow you to vary the
sample rate, the number of bits used to represent each sample, and whether the recording
is stereo or monaural. A few typical combinations of these settings, along with a subjective
label regarding the sound quality, are shown below for uncompressed audio.

Telephone quality 8 bits/sample mono 8,000 samples/sec

AM radio quality 8 bits/sample mono 22,050 samples/sec

FM radio quality 16 bits/sample stereo 32,000 samples/sec

CD quality 16 bits/sample stereo 44,100 samples/sec

Studio quality A 16 bits/sample stereo 48,000 samples/sec

Studio quality B 24 bits/sample +stereo+ 96,000 samples/sec

The term “+stereo+” means at least two channels of recording but often more. In many
parts of this book, the audio format we use for real-time DSP operation is uncompressed

6For example, the free program Audacity mentioned in this chapter includes 36 built-in special effects.

22 CHAPTER 2. SAMPLING AND RECONSTRUCTION

LPCM, 16 bits/sample stereo at 48,000 samples/sec, which is the “studio quality A” listed
above. These settings are convenient for reasons that will become more obvious later in
the text, but the software supplied with this book allows the user to easily change to other
settings if desired. Most audio software and sound systems also allow for other recording
specifications and for encoding formats other than the default Pulse Code Modulation
(PCM).

While the sound recording programs greatly simplify the basic tasks of recording, storing,
and playing back wav-files, you are limited to the features built into the program and by the
ADC and DAC specifications of your PC’s sound card. Obviously, this is not a real-time
operation.

2.4 Talk-Through Using MATLAB and Windows

MATLAB has a number of data manipulation functions [58]. Executing the command

help audiovideo

will display the functions associated with data manipulation.7 For the PC platform, the
following edited results of the help command are of interest for the talk-through operation:

Audio input/output objects.

audioplayer - Windows audio player object.

audiorecorder - Windows audio recorder object.

Audio hardware drivers.

sound - Play vector as sound.

soundsc - Autoscale and play vector as sound.

wavplay - Play sound using Windows audio output device.

wavrecord - Record sound using Windows audio input device.

Audio file import and export.

wavread - Read Microsoft WAVE (".wav") sound file.

wavwrite - Write Microsoft WAVE (".wav") sound file.

Help on these or any of the individual MATLAB functions can be accessed, as before, by
typing the command

help functionname

where functionname is the name of the MATLAB function for which you desire help.
Additionally, you can access a number of help options using the pull-down help menu
directly from the MATLAB menu bar (see Figure 2.8). Given these audio file related
MATLAB functions, we will now discuss a solution to the talk-through problem. We can
import an existing wav-file using the wavread command, then play the file back using the
sound command. Example code to do this would be

Listing 2.1: Reading and playing back a wav-file using MATLAB.

1 [Y , Fs , Nbits , Opts] = wavread(’c:\windows\media\tada.wav’) ;
sound (Y , Fs)

7You may need to use help audio for earlier versions of MATLAB. For other audio/video file formats,
free converters such as mmread and mmwrite can be found at http://www.mathworks.com/matlabcentral/

fileexchange/.

2.4. TALK-THROUGH USING MATLAB AND WINDOWS 23

Figure 2.8: MATLAB command window with the help pull-down menu open.

The first command reads a wav-file named tada.wav, which is located in the c:\windows\
media directory. The outputs Y , Fs, Nbits, and Opts of the wavread command represent
the file data, sample frequency, number of bits per sample, and the optional file informa-
tion, respectively. If you wish to find out what the wavread command outputs were, you
can look at the “Workspace” subwindow (by default in the upper right of the MATLAB
command window). If you don’t use the “Workspace” subwindow, you can type whos at
the MATLAB command line, for which you’ll see a screen output similar to

Name Size Bytes Class Attributes

Fs 1x1 8 double

Nbits 1x1 8 double

Opts 1x1 1280 struct

Y 71296x2 1140736 double

Typing Fs, Nbits, or Opts.fmt will allow you to determine that the sample frequency is
44,100 Hz, the number of bits per sample is 16 bits/sample, and Opts is a structured array
with the element fmt that contains significant amount of information about the tada.wav

file.8 Finally, the sound command plays back the vector Y at a sample frequency of Fs
through the PC’s sound card.

A more compact form could be

[Y , Fs] = wavread(’c:\windows\media\tada.wav’) ;
2 sound (Y , Fs)

If you execute these two commands the wav-file will sound as it did before. An even more
compact form would be

8These values may differ depending upon your version of Windows.

24 CHAPTER 2. SAMPLING AND RECONSTRUCTION

�����������
��������

���������������
�����������

�

!	"�	#�
��������

�����
����$��

%�����
����$��

Figure 2.9: MATLAB interface to the PC sound card.

Y = wavread(’c:\windows\media\tada.wav’) ;
2 sound (Y)

If you execute these two commands the wav-file will not sound as it did before. In fact,
the sound command default sample frequency is 8192 Hz. The reduction of the playback
sample frequency from 44100 Hz to 8192 Hz results in a significantly increased playback
time, and the subsequent distortion (to much lower frequencies) of the intended information
within the wav-file.9 This playback speed problem can be corrected by using the command

sound (Y , 44100)

While this solution seems straightforward, it is much easier to obtain the correct sample
frequency, Fs, using the wavread command, and include this value in the sound playback
command. This Windows and MATLAB technique has the added advantage that a wav-file
can be created using a sound recording program and then either played back unmodified,
or processed off-line and played back later. The results, after MATLAB processing, can be
stored in the *.mat format by using the save command or in the *.wav format by using the
wavwrite command. As with any computer file, it can also be stored on removable media
such as a USB memory stick or on a CD-R disk.

2.4.1 Talk-Through Using MATLAB Only

There are several ways that will allow a simple talk-through operation to be performed
using only MATLAB and the PC sound card. Since our goal is to easily transition to DSP
hardware implementation of this and other DSP algorithms, we will limit our discussion to
MATLAB’s built-in audiorecorder function and the Simulink� program (also from The
MathWorks).

MATLAB’s audiorecorder.m function

Recent versions of MATLAB provide the audiorecorder.m function. This function allows
for sound recording and playback using the PC’s soundcard without the need for MATLAB’s
DAQ (data acquisition) toolbox. Figure 2.9 depicts MATLAB interfacing to the sound card.
The MATLAB help associated with the audiorecorder is provided next. Included in this
help is a complete example related to sound recording and playback.

9The change from the correct value of 44,100 Hz to the default of 8,192 Hz results in frequencies being
almost 5.4 times lower. This may be difficult to hear on some PC or laptop speakers.

2.4. TALK-THROUGH USING MATLAB AND WINDOWS 25

>> help audiorecorder

AUDIORECORDER Audio recorder object.

AUDIORECORDER creates an 8000 Hz, 8-bit, 1 channel AUDIORECORDER

object. A handle to the object is returned.

AUDIORECORDER(Fs, NBITS, NCHANS) creates an AUDIORECORDER object with

sample rate Fs in Hertz, number of bits NBITS, and number of channels

NCHANS. Common sample rates are 8000, 11025, 22050, and 44100 Hz. The

number of bits must be 8, 16, or 24 on Windows, 8 or 16 on UNIX. The

number of channels must be 1 or 2 (mono or stereo).

AUDIORECORDER(Fs, NBITS, NCHANS, ID) creates an AUDIORECORDER object

using audio device identifier ID for input. If ID equals -1 the default

input device will be used. This option is only available on Windows.

Example: Record your voice on-the-fly. Use a sample rate of 22050 Hz,

16 bits, and one channel. Speak into the microphone, then

pause the recording. Play back what you’ve recorded so far.

Record some more, then stop the recording. Finally, return

the recorded data to MATLAB as an int16 array.

r = audiorecorder(22050, 16, 1);

record(r); % speak into microphone...

pause(r);

p = play(r); % listen

resume(r); % speak again

stop(r);

p = play(r); % listen to complete recording

mySpeech = getaudiodata(r, ’int16’); % get data as int16 array

See also audioplayer, audiodevinfo, methods, audiorecorder/get,

audiorecorder/set.

Simulink

Simulink is a graphical programming and simulation tool that complements the capabilities
of MATLAB.10 It contains a huge variety of modeling and simulation environment tools
and blocksets (similar to toolboxes) for use with MATLAB. The example here uses the
Signal Processing Blockset for Simulink. As shown in Figure 2.10, the diagrams can look
quite simple but still provide remarkable flexibility and versatility.

By double clicking on the From Audio Device Simulink block, all of the user adjustable
parameters for that block are available for viewing and modification. This can be seen
in Figure 2.11. To start the simulation, click on the start simulation button as shown in
Figure 2.12. This example is talk-through with the added feature of performing a recording
to a wav-file. The wav file, data.wav, can be read back into MATLAB using the wavread

function at anytime.

10Another very popular graphical programming, simulation, and data acquisition tool that is useful for
DSP applications is LabVIEW from National Instruments.

26 CHAPTER 2. SAMPLING AND RECONSTRUCTION

Figure 2.10: Simulink model of a PC-based talk-through system.

Figure 2.11: Block parameters from the wave device in Figure 2.10.

2.4.2 Talk-Through Using MATLAB and the DSK

Controlling a DSK from MATLAB is not a trivial task, so we’ve provided a support library
for you. The files necessary to run this application are on the CD-ROM that accompanies
this book in the matlab directory of Appendix E. Using this MATLAB-to-DSK interface
software (see details in Appendix E), a single MATLAB m-file allows a simple talk-through
program to be constructed which uses the DSK rather than the PC sound card. In this
instance, we are reading frames (groups of samples) from the DSK into a MATLAB variable,
then writing that same data back out to the DSK. The frame size in this example is 500
samples each. As shown below, the m-file consists of an initial setup phase (lines 1–8), then
reads a single frame of data (line 10) before entering a forever loop (lines 12–15) where the
“SwapFrame” function is used to do the actual talk-through operation. This is your first
actual real-time operation! The code shown below is written for a C6713 DSK connected
to the PC via the USB port on the HPI interface board port; to use a different DSK and/or
configuration see Appendix E, Section E.4.

2.5. DSK IMPLEMENTATION IN C 27

Figure 2.12: Click on the start simulation icon on the Simulink toolbar.

Listing 2.2: A simple MATLAB m-file for DSK talk-through.

1 c6x_daq (’Init’ , ’6713_AIC23.OUT’ , ’DSK6713_USB_COM4’) ;
c6x_daq (’FrameSize’ , 500) ;

3 c6x_daq (’QueueSize’ , 2000) ;
Fs = c6x_daq (’SampleRate’ , 8000) ;

5 numChannels = c6x_daq (’NumChannels’ , ’1’) ;
c6x_daq (’TriggerMode’ , ’Immediate’) ; % disables triggering

7 c6x_daq (’LoopbackOff’) ; % turn off the direct DSK loopback

c6x_daq (’FlushQueues’) ; % flush the DSK’s queues

9

data = c6x_daq (’GetFrame’) ; % read frame to prime for SwapFrame

11

while 1 % begin forever loop

13 c6x_daq (’SwapFrame’ , data) ; % send/receive data

% data = data * 10; % add gain

15 end

To keep the number of samples acquired down, this demonstration uses a relatively low
8 kHz sample frequency for the DSK’s onboard codec (TLV320AIC23), even though the
codec itself is capable of much higher speeds. Most other programs in this book use a
sample frequency of 48 kHz.

To verify that the data stream is actually being transferred through MATLAB, you can
activate line 14 in the forever loop by removing the comment symbol (%). This adds gain
to the signal.

2.5 DSK Implementation in C

The files necessary to run this application are in the ccs\MyTalkThrough directory of Chap-
ter 2 on the CD-ROM that accompanies this book. The primary file of interest is ISRs.c,
which contains the interrupt service routines. This file includes the necessary variable dec-
larations and performs a swap of the left and right channel data. This swap of left and right
channel data is used so that you actually have a few lines of code to view.

The code listings are given below.

Listing 2.3: Talk-through declarations.

1 #define LEFT 0
#define RIGHT 1

3

f loat temp ;

An explanation of Listing 2.3 follows.

1. (Lines 1–2): Define LEFT and RIGHT for user convenience.

2. (Line 4): Declares a temporary variable that is used to allow for channel swapping.

28 CHAPTER 2. SAMPLING AND RECONSTRUCTION

Listing 2.4: Talk-through code to swap left and right channels.

/* I added my routine here */

2

temp=CodecData . channel [RIGHT] ; // R to temp

4 CodecData . channel [RIGHT]=CodecData . channel [LEFT] ; // L to R

CodecData . channel [LEFT]=temp ; // temp to L

6

/* end of my routine */

An explanation of Listing 2.4 follows.

1. (Line 3): Assigns the right channel data to the variable temp.

2. (Line 4): Assigns the left channel data to the right channel.

3. (Line 5): Assigns temp to the left channel.

Note that if you are using a C6713 DSK, the board’s input circuitry contains a voltage
divider that reduces the input voltage level by a factor of 2 (i.e., a −6 dB change in voltage).
To counteract this signal level decrease, the DSK_Support.c file (in the common_code direc-
tory on the book’s CD-ROM) automatically inserts +6 dB of input gain whenever the C6713
DSK is selected. This voltage divider is not present on the OMAP-L138 Experimenter Kit.

Now that you understand the code. . .

Go ahead and copy all of the files into a separate directory to preserve the originals. Open
the project in Code Composer Studio (CCS) and select “Rebuild All.” Once the build is
complete, select “Load Program” to load the binary code into the DSK and then click on
“Run.” Your talk-through system should now be running on the DSK. Remember, the
codecs for the DSKs do not contain audio power amplifiers to drive the connected loads.
For the best results, use amplified speakers with your DSK (e.g., powered speakers used
with PCs), headphones, or earbuds to hear the audio output.11

2.6 Follow-On Challenges

Consider extending what you have learned, using the C compiler and the DSK.

1. Experiment with scaling the output values (multiplying the input value, e.g., by 0.3,
1.6, and so on. . .) that you pass to the DAC. Are there limits associated with this
scaling?

2. Implement your own program for spectral inversion on the DSK.

3. Change the sign bit of every sample that you pass to the DACs. Describe the effect
of this sign bit change on how the output signal sounds.

4. Modify your talk-through code to output only the left or right channel value.

5. Modify your talk-through code to combine the left and right channel inputs and
send the result to both the left and right channel outputs. Are there any limitations
associated with combining the left and right channels?

11The OMAP-L138 Experimenter Kit only provides a line output, not a separate headphone output.
Since impedance and efficiency of headphones (and earbuds) varies, the performance using a line output
with these devices will also vary.

2.7. PROBLEMS 29

6. Reduce the number of bits used by the DAC by using only the 8 most significant bits
(MSBs). Can you hear the difference when only the 8 MSBs are used?

7. Reduce the number of bits used by the DAC by using only the 4 most significant bits
(MSBs). Can you hear the difference when only the 4 MSBs are used?

8. Reduce the number of bits used by the DAC by using only the 2 most significant bits
(MSBs). Can you hear the difference when only the 2 MSBs are used?

9. Reduce the number of bits used by the DAC by using only the most significant bit
(MSB). Can you hear the difference when only the MSB is used?

2.7 Problems

1. Given a sample frequency of Fs = 48 kHz, what is the highest input frequency that,
in theory, can be sampled without aliasing?

2. Suppose an input signal with a significant frequency component at 30 kHz was sampled
at a frequency of Fs = 48 kHz, in a simple “talk-through” configuration. Assume no
anti-aliasing filter is present. At what frequency would the original 30 kHz component
appear at the output of the “talk-through” configuration?

3. An input signal ranges in amplitude from +1 V to −1 V, which matches the dynamic
range of the ADC being used. No clipping of the input signal occurs. If each sample
is uniformly quantized to 16 bits, what is the approximate resolution (also called the
LSB voltage), in volts, of this ADC?

4. An input signal ranges in amplitude from +1 V to −1 V, which matches the dynamic
range of the ADC being used. No clipping of the input signal occurs, and the signal
amplitude is equally likely across the full dynamic range of the ADC. If each sample
is uniformly quantized to 16 bits, what is the approximate signal to quantization noise
ratio (SQNR) in dB? Assume no noise shaping or other advanced techniques are being
used in the ADC design.

5. It was mentioned earlier in the chapter that changing the sign of every other sample
of an input signal is equivalent to modulating the input signal by a sinusoid with a
frequency of one-half the sample frequency. Explain why this is true.

This page intentionally left blankThis page intentionally left blank

Chapter 3

FIR Digital Filters

3.1 Theory

FILTERING is one of the most common DSP operations. Filtering can be used for noise
suppression, signal enhancement, removal or attenuation of a specific frequency, or to

perform a special operation such as differentiation, integration, or the Hilbert transform [1].
While this is not a complete list of all of the possible applications of filters, it may serve to
remind us of the importance of filtering.

Filters can be thought of, designed, and implemented in either the sample domain or
the frequency domain. This chapter, however, will only deal with sample domain filter im-
plementation on a sample-by-sample basis. Frame-based processing and frequency domain
filter implementation are discussed in Chapters 6 and 7, respectively.

3.1.1 Traditional Notation

The notation used in many continuous-time signals and systems texts1 is to label the input
signal as x(t), the output signal as y(t), and the impulse response of the system as h(t).
These time domain descriptions have frequency domain equivalents; they are obtained using
the Fourier transform, which is shown as F{ }. The Fourier transform of x(t) is F{x(t)} =
X(jω); similarly the Fourier transform of y(t) is Y (jω) and that of h(t) is H(jω). H(jω)
is also called the frequency response of the system. These Fourier transform pairs are
summarized below.

x (t)
F←→ X (jω)

y (t)
F←→ Y (jω)

h (t)
F←→ H (jω)

The most common notation used in discrete-time signals and systems texts is to label
the input signal samples as x[n], the output signal samples as y[n], and the impulse response
as h[n]. Note that the discrete-time impulse response h[n] is called the unit sample response
in some texts. In this book, parentheses “()” will be used to denote continuous-time, while
square brackets “[]” will be used to denote discrete-time. Discrete-time descriptions (such
as x[n], y[n], and h[n]) have frequency domain equivalents that are obtained using the

1As in essentially all subject areas covered by engineering and science texts, there is no universally agreed
upon standard notation. We use the notation of the majority here, but your favorite book may be different.

31

32 CHAPTER 3. FIR DIGITAL FILTERS

discrete-time Fourier transform (DTFT), which we will also abbreviate as F{}. The DTFT
of x[n] is F{x[n]} = X

(
ejω

)
, of y[n] is Y

(
ejω

)
, and of h[n] is H

(
ejω

)
. H

(
ejω

)
is also

called the frequency response of the system. These discrete-time Fourier transform pairs
are summarized below.

x [n]
F←→ X

(
ejω

)
y [n]

F←→ Y
(
ejω

)
h [n]

F←→ H
(
ejω

)

Notice that the abbreviation used for the continuous-time Fourier transform and the DTFT
are the same because the context should make it clear which transform is used. For example,
if the signal or system being transformed is a discrete-time signal or system, it will be implied
by the square bracket notation and thus the DTFT should be inferred. Also of interest is
the fact that the DTFT of a discrete-time signal, e.g., x[n], results in a continuous-frequency
function, X

(
ejω

)
, since ω is a continuous variable. A summary of the continuous-time and

discrete-time notation is provided in Figure 3.1.

3.1.2 FIR Filters Compared to IIR Filters

The title of this chapter contains the acronym FIR, which stands for Finite Impulse
Response. All FIR filters are, by definition, discrete-time filters (there is no such thing
as a continuous-time FIR filter). If we excite an FIR filter with a unit sample (a sample
of value one) followed by an infinite number of zero-valued samples, we will have excited
the system with the discrete-time version of an impulse function (sometimes called a unit
sample function). Exciting an Nth order FIR filter with an impulse will result in N + 1
output terms before all the remaining terms will have a value of exactly zero (since the filter
has N + 1 coefficients). Thus, the impulse response is finite.

Another type of filter, called an IIR filter, has an Infinite Impulse Response. If you have
ever designed analog (i.e., continuous-time) filters, you have designed IIR filters. Think
about the output of an analog filter that has an impulse for its input. Mathematically, the
output of the system never fully decays to (and remains at) the exact value of zero. IIR
filters can be either continuous-time or discrete-time, and are discussed in more detail in
Chapter 4.

3.1.3 Calculating the Output of a Filter

We assume that our filter system is linear time invariant (LTI), which allows us to use some
powerful linear analysis tools. To calculate the output of a continuous-time system that
has been given a continuous-time input signal, we need to convolve the input signal with
the system’s impulse response. Since this involves continuous signals, we use integration

����

���ω�
����

	��ω�

���

���ω�

���

����ω�

���

	���ω�

��

����ω�

Figure 3.1: A summary of the continuous-time and discrete-time notation.

3.1. THEORY 33

(discrete signals use summation instead of integration). Thus, to calculate the output,
we need to evaluate the convolution integral. This is an operation that many beginning
students find to be mysterious and intimidating (but get used to convolution—it comes up
over and over again). The general form of the convolution integral is

y(t) =

∞∫
−∞

h(τ)x(t− τ) dτ.

If we restrict our discussion to realizable signals and systems, then because of causality (i.e.,
we can’t calculate the output based on an input that hasn’t arrived yet) the convolution
integral becomes

y(t) =

∞∫
0

h(τ)x(t− τ) dτ.

Similarly, to calculate the output of a discrete-time system that has a discrete-time input
signal we use the convolution sum. The general form of the convolution sum is

y[n] =
∞∑

k=−∞
h[k]x[n− k].

If we again restrict our discussion to realizable signals and systems, then due to causality
the convolution sum becomes

y[n] =

∞∑
k=0

h[k]x[n− k].

For an FIR system, the filter coefficients are the individual terms that make up the impulse
response of the system. These FIR filter coefficients are commonly called the b coefficients.
In MATLAB�, when all of the b coefficients are formed into a vector, it is called the B
vector. Making this substitution (b for h) and remembering that an FIR filter of order N
has N + 1 coefficients, the convolution sum takes on the general form of the FIR difference
equation, namely,

y[n] =

N∑
k=0

b[k]x[n− k].

This equation tells us that in order to calculate a value for the current output, y[0], we
must perform the dot product of B ·X, where B = {b[0], b[1], . . . , b[N]} and X represents
the current and past values of the input, X = {x[0], x[−1], . . . , x[−N]}. That is,

y[0] =
N∑

k=0

b[k]x[−k] = b[0]x[0] + b[1]x[−1] + · · ·+ b[N]x[−N].

The block diagram associated with implementing the FIR difference equation, which is
another way of saying an FIR filter, is shown in Figure 3.2. The blocks containing z−1 are
delay blocks that store the value in the block for one sample period. The delay blocks may
be thought of as synchronous shift registers that have their clocks tied to the ADC and
DAC’s sample clock, but are typically just memory locations accessed by the DSP CPU.

34 CHAPTER 3. FIR DIGITAL FILTERS

&'(

&'(

&'(

&'(

)

)

)

)

*+�, �+�,
�-

�(

�.

�/

�0

*+�'(,

*+�'.,

*+�'/,

*+�'0,

Figure 3.2: Block diagram associated with the implementation of an FIR filter.

Figure 3.3: winDSK running the Graphic Equalizer application.

3.2 winDSK Demonstration

Start the winDSK application, and the main user interface window will appear. Ensure the
correct selections have been made in the “DSK and Host Configuration” panel of winDSK6
or the “Board and Interface Configuration” panel of winDSK8 for each parameter before
proceeding. These selections are “sticky,” such that the next time you run winDSK, the
choices you made will still be selected.

3.2.1 Graphic Equalizer Application

Clicking on the winDSK Graphic Equalizer button runs that program in the attached DSK,
and a window similar to Figure 3.3 will appear. The Graphic Equalizer application imple-
ments a five-band audio equalizer as shown in the signal flow shown in Figure 3.4. The
DSK has a stereo codec, so an independently adjustable equalizer is active on both left and
right channels.

3.2. WINDSK DEMONSTRATION 35

��1*+�, �+�,

#�1(

#�1/

#�1.

2�1

	(

	.

	/

	0

	3

)

)

)

)

Figure 3.4: Block diagram associated with winDSK’s 5-band Graphic Equalizer application.

The equalizer uses five FIR filters (a lowpass (LP) filter, three bandpass (BP) filters,
and a highpass (HP) filter) operating in parallel. The gain sliders (A1 to A5) in the dialog
box operate on memory locations used to control the gains of each filter and the overall
system gain. The five FIR filters are designed as high-order (N = 128) filters; the resulting
steep roll-off of these filters can be seen in Figure 3.5.

There are a number of ways you can experience the effect of the graphic equalizer
filtering. For example, you could connect the output of a CD player to the signal input
of the DSK, and connect the DSK signal output to a set of powered speakers. Play some
familiar music while you adjust the graphic equalizer slider controls and listen to the result.
A more objective experiment would be to play the track of additive white Gaussian noise
(AWGN) on the CD-ROM that accompanies this book (in directory test_signals play

0 4 8 12 16 20 24
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

frequency (kHz)

m
ag

ni
tu

de
 (

dB
)

Figure 3.5: Frequency response of winDSK’s 5-band Graphic Equalizer application. The
dotted straight line at 0 dB represents the sum of all five bands.

36 CHAPTER 3. FIR DIGITAL FILTERS

file awgn.wav), which theoretically contains all frequencies. If the DSK signal output is
then connected to a spectrum analyzer, you could observe which band of frequencies is
affected, and how much it is affected, as you adjust the slider controls. If you don’t have a
spectrum analyzer available, a second DSK running winDSK can be used in its place (select
the “Oscilloscope” button from the main screen, select “Spectrum Analyzer” from the next
screen, and select “Log10” to display the result in decibels). Alternatively, you can use your
computer’s sound card to gather a portion of the DSK’s output. This can be accomplished
using the Windows sound recorder, MATLAB’s data acquisition (DAQ) toolbox, or the
audio recorder that is part of MATLAB (version 6.1 or later). This recorded data can be
analyzed and displayed using MATLAB.

3.2.2 Notch Filter Application

The winDSK Notch Filter application actually implements a second order IIR filter, but
we can make it seem to be an FIR filter. Clicking on the Notch Filter button will run
the program in the attached DSK, and a window similar to Figure 3.6 will appear. If you
decrease the Q adjustment (r) until it reaches zero, you have put the poles of the filter at
the origin of the z-plane and the system will behave just like an FIR filter (this concept
will be discussed further in Chapter 4). This adjustment is shown on the bottom slider
bar in Figure 3.6. Also notice that the “Filter Type” was changed from “Bandpass” to
“Notch”. The frequency responses associated with four different settings of the notch filter
are overlaid and shown in Figure 3.7. Ideally, an infinite amount of attenuation is present
at the notch frequency. This explains why a properly adjusted (tuned) notch filter can
completely remove an interfering tone.

The effect of the Notch Filter application can be heard by adding a sinusoidal signal
(tone) to a music signal. Most computer sound cards will perform this summing for you.
You will need to experiment with your sound card’s mixer controls to determine exactly how
your particular system responds. Most systems are capable of summing an external audio
signal (such as from a portable music player or a function generator) with an internal audio
signal by playing a sound file or CD on the computer. In this example, one audio signal
(typically the external source) is a tone and the other is music. Inject the external signal
via the sound card “line input” or “microphone input” connector. The sound card “line
output” or “headphone output” is then connected to the signal input of the DSK. As before,
the DSK signal output is connected to a set of powered speakers. If a function generator
isn’t available, you can use one of the audio test tones (*.wav) in directory test_signals

on the CD-ROM that accompanies this book and play them with a second, external CD

Figure 3.6: winDSK running the Notch Filter application with r = 0.

3.2. WINDSK DEMONSTRATION 37

0 3 6 9 12 15 18 21 24
−60

−50

−40

−30

−20

−10

0

10

20

|H
(e

jω
)|

 (
dB

)

frequency (kHz)

 3 kHz
 9 kHz
15 kHz
21 kHz

Figure 3.7: The frequency response of four different notch filters having notch frequencies
of 3, 9, 15, and 21 kHz, respectively.

player or transfer the file to a portable music player. You can also easily create your own
audio test tones in MATLAB, then save them as an audio file and play them in the same
way on an external CD or music player (this concept will be discussed further in Chapter 5).

When the center frequency of the notch filter equals the frequency of the injected tone,
you will hear the sound of the tone disappear from the speakers.

3.2.3 Audio Effects Application

The winDSK Audio Effects application contains a mixture of both FIR and IIR applications.
Clicking on the Audio Effects button will load the program into the attached DSK, and
a window similar to Figure 3.8 will appear. The flanging and chorus effects are both
implemented with FIR filters, so they provide good examples for this chapter.

The block diagram of the flanging effect is shown in Figure 3.9, where α is a scale factor
and β[n] is a periodically varying delay described by

β[n] =
R

2
(1− cos (ω0n)) .

R is the maximum number of sample delays and ω0 is some low frequency. In winDSK, you
can adjust α with the Alpha slider, ω0 with the Frequency slider, and R with the Delay

slider enclosed in the Flanger portion of the winDSK Audio Effects window (see Figure 3.8).
Thus, the delay time β[n] varies sinusoidally from a minimum of 0 to a maximum of R.
Flanging is a special sound effect often used by musicians (particularly guitarists); it sounds
as if the musical instrument has taken on a sort of “whooshing” sound up and down the
frequency scale. More about this and other special effects can be found in Chapter 10.

The block diagram of another musical special effect, the chorus effect, is shown in Fig-
ure 3.10. To generate the chorus effect, three separately flanged signals are summed with
the original signal. For a proper chorus effect, each of the β’s and α’s should be independent.

Audio special effects such as flanging and chorus are described in more detail in Chap-
ter 10.

38 CHAPTER 3. FIR DIGITAL FILTERS

Figure 3.8: winDSK running the Audio Effects application.

)*+�, �+�,

& β+�,
α

Figure 3.9: The block diagram of the flanging effect.

*+�, �+�,

)

)

)

& β1+�,
α1

)

& β2+�,
α2

)

& β3+�,
α3

Figure 3.10: The block diagram of the chorus effect.

3.3. MATLAB IMPLEMENTATION 39

3.3 MATLAB Implementation

MATLAB has a number of ways of performing the filtering operation. In this chapter, we
will only discuss two of them. The first is the built-in filter function, and the second
is to build your own routine to perform the FIR filtering operation. The built-in function
allows us to filter signals almost immediately, but does very little to prepare us for real-time
filtering using DSP hardware.

3.3.1 Built-In Approach

As mentioned previously, MATLAB has a built-in function called filter.m. This function
can be used to implement both an FIR filter (using only the numerator (B) coefficients)
and an IIR filter (using both the denominator (A) and the numerator (B) coefficients). The
first few lines of the online help associated with the filter command are provided below.
This and any other MATLAB help is available from the command line by typing,

help MATLAB function or command name

In the case of the filter command,

>> help filter

FILTER One-dimensional digital filter.

Y = FILTER(B,A,X) filters the data in vector X with the

filter described by vectors A and B to create the filtered

data Y. The filter is a "Direct Form II Transposed"

implementation of the standard difference equation:

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)

- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

Notice that in the difference equation discussion of the MATLAB filter command,
the A and B coefficient vector indices start at 1 instead of at 0. MATLAB does not allow
for an index value equal to zero. While this may only seem like a minor inconvenience,
improper vector indices account for a significant number of the errors that occur during
MATLAB algorithm development. In our classes, we typically create another vector, say
n, which is composed of integers with the first element equal to zero (i.e., n=0:15 creates
n = {0, 1, 2, 3, . . . , 15}), and use this n vector to “fool” MATLAB into counting from zero
for things such as plot axes. See the code given below for an example of this technique.

The MATLAB code shown below will filter the input vector x using the FIR filter
coefficients in vector B. Notice that the input vector x is zero padded (line 6) to flush
the filter. This technique differs slightly from the direct implementation of the MATLAB
filter command in which for M input values there will be M output values. Our technique
assumes that the input vector is both preceded and followed by a large number of zeros.
This implies that the filter is initially at rest (no initial conditions) and will relax or flush
any remaining values at the end of the filtering operation.

Listing 3.1: Simple MATLAB FIR filter example.

1 % Simulation inputs

x = [1 2 3 0 1 −3 4 1] ; % input vector x

3 B = [0 . 2 5 0 .25 0 .25 0 . 2 5] ; % FIR filter coefficients B

40 CHAPTER 3. FIR DIGITAL FILTERS

0 2 4 6 8 10
0

0.5

1

1.5

ou
pu

t v
al

ue
s

sample number

Figure 3.11: Stem plot of the filtering of x with B.

5 % Calculated terms

PaddedX=[x zeros (1 , length (B)−1)] ; % zero pad x to flush filter

7 n=0:(length (x)+length (B)−2) ; % plotting index for the output

y=f i l t e r (B , 1 , PaddedX) ; % performs the convolution

9

% Simulation outputs

11 stem(n , y) % output plot generation

ylabel (’output values’)
13 xlabel (’sample number’)

The output for this example follows.

y =

Columns 1 through 8

0.2500 0.7500 1.5000 1.5000 1.5000 0.2500 0.5000 0.7500

Column 9

0.5000 1.2500 0.2500

The stem plot from the example is shown in Figure 3.11.

In this example, eight input samples were filtered and the results were returned all at
once. Notice that when an 8-element vector x is filtered by a 4-element vector B that 11
elements were returned (8+4−1 = 11). This is an example of the general result that states
that the length L of the sequence resulting from the convolution (filtering) of x and B is
L = length(x) + length(B)− 1.

The FIR filter coefficients associated with this filter were B = [0.25 0.25 0.25 0.25]. Since
there are four coefficients for the filter, this is a third-order filter (i.e., N = 3). The filtering
effect in this case is an averaging of the most recent 4 input samples (i.e., the current sample
and the previous three samples). This type of filter is called a moving average (MA) filter

3.3. MATLAB IMPLEMENTATION 41

and is one type of lowpass FIR filter. Figure 3.12 shows the frequency response associated
with MA filters of order N = 3, 7, 15, and 31, for a sample frequency of 48 kHz.

0 3 6 9 12 15 18 21 24
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5
|H

(e
jω

)|
 (

dB
)

frequency (kHz)

N = 3
N = 7
N = 15
N = 31

Figure 3.12: Magnitude of the frequency response for MA filters of order 3, 7, 15, and 31.

All of the MA filters shown in Figure 3.12 have a 0 Hz (D.C.) gain of 1 (which equals
0 dB). To ensure that any FIR filter has a D.C. gain of 0 dB, the impulse response h[n]
must sum to 1. The relationship between the D.C. response and the impulse response can
be shown quickly by recalling the z-transform for a causal system described by h[n],

H(z) =

∞∑
n=0

h[n]z−n.

To convert H(z) into the frequency response H(ejω), the variable substitution z = ejω is
required.2 Making this substitution,

H
(
ejω

)
=

∞∑
n=0

h[n]
(
ejω

)−n
.

To evaluate the D.C. response of an N th order FIR filter, set ω = 0 and the upper limit of
summation equal to N . This results in

H
(
ejω

)∣∣
ω=0

= H(1) =
N∑

n=0

h[n](1)−n =
N∑

n=0

h[n].

This relationship explains why, for N = 3, each of the four h[n] terms associated with the
MA filter were defined as 1/4 = 0.25. Similarly, for N = 31, each of the h[n] terms would
be 1/32 = 0.03125 to ensure a D.C. response equal to 1 (i.e., 0 dB).

2The expression ejω can be thought of as a vector with a magnitude of 1 and an angle of ω.

42 CHAPTER 3. FIR DIGITAL FILTERS

A Real-World Filtering Example

There are an unlimited number of data sets or processes that can be filtered. For example,
what if we wanted to know the 4-day or 32-day average value of a stock market’s closing
value? If the closing values are filtered, much of the day-to-day market variations can be
removed. The cutoff frequency3 of the filter used to process the closing values would control
the amount of the remaining variations. As shown in Figure 3.12 for an MA filter, the cutoff
frequency is inversely related to the filter order. Figure 3.13 shows filtered and unfiltered
closing values of the NASDAQ composite index for calendar year 2001.

100 120 140 160 180 200 220
1000

1500

2000

2500

cl
os

in
g

va
lu

e

days open

raw data
MA 4
MA 32

100 120 140 160 180 200 220
1000

1500

2000

2500

cl
os

in
g

va
lu

e

days open

raw data
MA 4
MA 32

11 September 2001

Figure 3.13: Filtered and unfiltered closing values of the NASDAQ composite index for
calendar year 2001. The upper plot was generated with the MATLAB function filtfilt.
The lower plot was generated with the MATLAB function filter.

The upper portion of the figure plots the raw data and the results of filtering the raw
data with both a 4-term (3rd-order) and a 32-term (31st-order) MA filter. This subplot
was created using the MATLAB function filtfilt. This function implements a zero-phase
forward and reverse filter (that is, there is zero group delay). This forward/reverse technique
to eliminate group delay cannot be used in real-time filtering. For additional information
on the MATLAB function filtfilt, type help filtfilt from the MATLAB command
prompt.

The lower portion of the figure plots the raw data and the results of filtering the raw data
with both a 4-term (3rd-order) and a 32-term (31st-order) MA filter using the MATLAB
function filter. Since realizable MA filters have nonzero group delay, the filtered data
lags the raw data by an amount of time equal to the group delay GD multiplied by the
sample period Ts. In non-real-time applications, this time lag due to filter group delay can
be eliminated in postprocessing.

3A common definition of “cutoff frequency” for a filter is where the output has dropped to −3 dB com-
pared to the maximum output level. Additional characteristics, such as ripple in the passband, attenuation
in the stopband, width of the transition bandwith, and phase response, are also important in filter design
but not mentioned for this simple example.

3.3. MATLAB IMPLEMENTATION 43

3.3.2 Creating Your Own Filter Algorithm

The previous example helped us with MATLAB-based filtering, but the built-in function
filter.m is of little use to us in performing real-time FIR filtering with DSP hardware.
The next MATLAB example more closely implements the algorithm needed for a real-time
process. This code will calculate a single output value based on the current input value and
the three previous input values.

Listing 3.2: MATLAB FIR filter adjusted for real-time processing.

1 % This m-file is used to convolve x[n] and B[n] without

% using the MATLAB filter command. This is one of the

3 % first steps toward being able to implement a real-time

% FIR filter in DSP hardware.

5 %

% In sample-by-sample filtering , you are only trying to

7 % accomplish two things,

%

9 % 1. Calculate the current output value, y(0), based on

% just having received a new input sample, x(0).

11 % 2. Setup for the arrival of the next input sample.

%

13 % This is a BRUTE FORCE approach!

%

15

% Simulation inputs

17 x = [1 2 3 0] ; % input x = [x(0) x(-1) x(-2) x(-3)]

N = 3 ; % order of the filter = length(B) - 1

19 B = [0 . 2 5 0 .25 0 .25 0 . 2 5] ; % FIR filter coefficients B

21 % Calculated terms

y = 0 ; % initializes the output value y(0)

23 for i = 1 : N+1 % performs the dot product of B and x

y = y + B (i) ∗x (i) ;
25 end

27 for i = N :−1:1 % shift stored x samples to the right so

x (i+1) = x (i) ; % the next x value, x(0), can be placed

29 end % in x(1)

31 % Simulation outputs

x % notice that x(1) = x(2)

33 y % average of the last four input values

The input and output vectors from this FIR moving average filter program are shown below.
Note the four input samples result in a single output sample, as expected of a third-order
filter. Also, the displayed version of vector x shows the effect of shifting the values to the
“right” to make room for the next sample, as discussed below.

x =

1 1 2 3

y =

1.5000

44 CHAPTER 3. FIR DIGITAL FILTERS

A few items need to be discussed concerning this example.

1. The filter order N was declared (line 21) despite the fact that MATLAB can determine
the filter order based solely on the length of the vector B (that is, N=length(B)-1).
Declaring both the filter order N and the FIR filter coefficients B (line 22), increases
the portability of the C/C++ code we will derive from the MATLAB code. Increased
code portability may also be thought of as decreased machine dependence, which is
generally a sought-after code attribute.

2. Only four values of x were stored (line 17). FIR filtering involves the dot product of
only N + 1 terms. Since in this example N = 3, only four x terms are required.

3. The example is called a “brute force” approach, which is based largely on the shifting
of the stored x values within the x vector (lines 27–29), to make room for the next
sample that would overwrite the value at x(0). This unnecessary operation wastes
resources which may be needed for other parts of the algorithm. Since our ultimate
goal is efficient real-time implementation in DSP hardware, more elegant and efficient
solutions to this problem will be discussed in the next section.

3.4 DSK Implementation in C

Several modifications of the MATLAB thought process are needed as we transition toward
efficient real-time programming.

1. A semantic change is required since in MATLAB B is often called a vector, but in
the C/C++ programming language, B is called an array.

2. The zero memory index value, which does not exist in a MATLAB vector, does exist
in the C/C++ programming language, and it is routinely used in array notation.

3. The DSP hardware must process the data from the analog-to-digital converter (ADC)
in real-time. Therefore, we cannot wait for all of the message samples to be received
prior to beginning the algorithmic process.

4. Real-time DSP is inherently an interrupt-driven process and the input samples should
only be processed using interrupt service routines (ISRs). Given this observation, it is
incumbent upon the DSP programmer to ensure that the time requirements associated
with periodic sampling are met. More bluntly, if you do not complete the algorithm’s
calculation before another input sample arrives, you have not met your real-time
schedule, and your system will fail. This leads to the observation that, “the correct
answer, if it arrives late, is wrong!”

5. Even though the DSP hardware has a phenomenal amount of processing power, this
power should not be wasted.

6. The input and output ISRs are not magically linked! Nothing will come out of your
DSP hardware unless you program the device to do so.

7. The digital portion of both an ADC and a digital-to-analog converter (DAC) are in-
herently integer in nature. No matter what the ADC’s input range is, the analog input
voltage is mapped to an integer value. For a 16-bit converter using two’s complement
signed representation, the possible integer values range from +32, 767 to −32, 768.

8. For clarity and understandability, declarations and assignments of variables (e.g., FIR
filter coefficients) can be moved into .c and .h files.

3.4. DSK IMPLEMENTATION IN C 45

3.4.1 Brute-Force FIR Filtering in C: Part 1

The first version we will examine of FIR filter implementation code in C continues with
a brute-force approach, similar to the last MATLAB example. The purpose of this first
approach is understandability, which comes at the expense of efficiency.

The files necessary to run this application are in the Chapter 3 ccs\FIRrevA directory.
The primary file of interest is FIRmono_ISRs.c, which contains the interrupt service rou-
tines. This file includes the necessary variable declarations and performs the actual FIR
filtering operation. To allow for the use of a stereo codec (e.g., the native codecs on the
OMAP-L138 Experimenter Kit and the C6713 DSK), the program implements independent
Left and Right channel filters if you use FIRstereo_ISRs.c. However, for clarity only the
Left channel (as used in the mono mode) will be discussed below. In the code example, N
is the filter order, the B array holds the FIR filter coefficients, the xLeft array holds both
the current input value (x[0]) and the past input values (x[−1], x[−2], and x[−3]). The
variable yLeft is the current output value of the filter, y[0]. The integer i is used as an
index counter in the for loops.4

Listing 3.3: Brute-force FIR filter declarations.

1 #define N 3

3 f loat B [N+1] = {0 .25 , 0 . 25 , 0 . 25 , 0 . 2 5 } ;
f loat xLeft [N+1] ;

5 f loat yLeft ;

7 Int32 i ;

The code shown below, part of the interrupt service routine Codec_ISR, performs the
actual filtering operation. The program instructions that move an incoming sample value
from the appropriate ADC register to CodecDataIn.Channel[LEFT] and a processed sample
from CodecDataOut.Channel[LEFT] to the appropriate DAC register are not shown here.
The five main steps involved in the filtering operation will be discussed following the code
listing.

Listing 3.4: Brute-force FIR filtering for real-time.

1 /* I added my routine here */

xLeft [0] = CodecDataIn . Channel [LEFT] ; // current input value

3 yLeft = 0 ; // initialize the output value

5 for (i = 0 ; i <= N ; i++) { // x is length N+1

yLeft += xLeft [i]∗ B [i] ; // perform the dot-product

7 }

9 for (i = N ; i > 0 ; i−−) {
xLeft [i] = xLeft [i−1] ; // shift for the next input

11 }

13 CodecDataOut . Channel [LEFT] = yLeft ; // output the value

/* end of my routine */

4Note: to help our code run as intended on this and future versions of CCS, and to gain some platform
independence, we use specific declarations such as Int32 and Uint32 for signed and unsigned 32-bit integers,
respectively. The meaning of other declarations, such as Int16 and Uint8 should be clear.

46 CHAPTER 3. FIR DIGITAL FILTERS

The five real-time steps involved in brute-force FIR filtering

An explanation of Listing 3.4 follows.

1. (Line 2): The most current sample from the ADC side of the codec is assigned to the
current input array element, xLeft[0].

2. (Line 3): The current output of this filter is given the name yLeft. Since this same
variable will be used in the calculation of each output value of the filter, it must be
reinitialized to zero before each dot product is performed.

3. (Lines 5–7): These 3 lines of code perform the dot product of x and B. The equivalent
operation is,

yLeft = xLeft[0]B[0] + xLeft[−1]B[1] + xLeft[−2]B[2] + xLeft[−3]B[3].

4. (Lines 9–11): These 3 lines of code shift all of the values in the x array one element
to the right. The equivalent operation is,

xLeft[2]→ xLeft[3]

xLeft[1]→ xLeft[2]

xLeft[0]→ xLeft[1].

After the shift to the right is complete, the next incoming sample, x[0] can be written
into the xLeft[0] memory location without a loss of information. Also notice that
xLeft[3] was overwritten by xLeft[2]. You might expect the operation xLeft[3] →
xLeft[4] and so on should be performed, but there is no xLeft[4] or higher because
xLeft only contains four elements. In summary, the “old” xLeft[3] is no longer
needed and is therefore overwritten.

5. (Line 13): This line of code completes the filtering operation by transferring the result
of the dot product, yLeft, to the CodecDataOut.Channel[LEFT] variable for transfer
to the DAC side of the codec.

Now that you understand the code. . .

Go ahead and copy all of the files into a separate directory. Open the project in CCS and
“Rebuild All.” Once the build is complete, “Load Program” into the DSK and click on
“Run.” Your FIR LP filter is now running on the DSK. Remember this program would
typically be used for audio filtering, so a good way to experience the effects of your filter is to
listen to unfiltered and filtered music.5 Figure 3.14 shows a method to listen to the original
(unfiltered) music and the filtered music for comparison. This technique does require a
second set of speakers, but it is a bit more convenient than using only one set of speakers
and changing the connections back and forth. Remember, the DSKs do not contain audio
power amplifiers to drive the connected loads. For the best results, use amplified speakers
(e.g., powered speakers of the type used with PCs) or headphones with your DSK.

5You may need to increase the order of the filter to really hear a difference in the filtered output. Try a
31st-order MA filter by setting N = 31 and making all the values of B equal to 1/32 = 0.03125.

3.4. DSK IMPLEMENTATION IN C 47

������
����$��

�����
����$��

�����
����
������
�����

	�����
������

��4

������
����$��

�����
����$��

Figure 3.14: One method of listening to the unfiltered and filtered audio signals.

3.4.2 Brute-Force FIR Filtering in C: Part 2

The previous section introduced a brute-force approach to FIR filtering. While this imple-
mentation was straightforward and relatively easy to understand, it suffers from two major
problems.

1. Routinely, FIR filters use a considerably higher order than the fourth-order filter
discussed in the previous example. Most filters also require more than a few digits of
numerical precision to accurately specify the B coefficients. These facts make manual
entry of the B coefficients very inconvenient.

2. Step four in the five real-time steps involved in the brute-force FIR filtering section
(that was discussed previously) shifted all of the values in the x array one element to
the right after each dot product operation. This “manual” shifting is a very inefficient
use of the DSK’s computational resources.

These problems will be addressed in the sections that follow.
The declaration for array B[N+1] shown below represents just the first 12 lines required

to initialize a 30th-order FIR filter (not a simple MA filter, obviously) that was designed
with then exported from MATLAB’s FDATool (see Figure 3.15 for a preview of this design
tool). FDATool will be discussed in more detail in the next chapter.

f loat B [N+1] = {
2 {−0.031913481327} , /* h[0] */

{0.000000000000} , /* h[1] */

4 {−0.026040505746} , /* h[2] */

{−0.000000000000} , /* h[3] */

6 {−0.037325855883} , /* h[4] */

{0.000000000000} , /* h[5] */

8 {−0.053114839831} , /* h[6] */

{−0.000000000000} , /* h[7] */

10 {−0.076709627018} , /* h[8] */

{0.000000000000} , /* h[9] */

12 {−0.116853446730} , /* h[10]*/

48 CHAPTER 3. FIR DIGITAL FILTERS

Figure 3.15: The MATLAB FDATool for designing digital filters.

Do you really want to enter all of these coefficient values manually? What about a 200th-
order filter or an even higher-order filter? Supposing you had the time and inclination to do
so, do you actually believe you could enter these coefficients without making a typographical
error?

If you are designing your FIR filters using MATLAB, a solution to this problem could
be copying and pasting coefficients from the MATLAB window to your C program editor
screen.6 An even better solution involves a single MATLAB script file that will create
a coeff.h and a coeff.c file for use in your CCS project.7 The script file is named
FIR_DUMP2C.m and it can be found in the Appendix E \MatlabExports directory on the
bookware CD-ROM. The MATLAB help associated with this file is shown below.

>> help FIR_dump2c

function FIR_DUMP2C(filename, varname, coeffs, FIR_length)

Dumps FIR filter coefficients to file in C language format in forward

order. Then "cd" to the desired directory PRIOR to execution.

6This assumes you’ve used MATLAB tools such as firpm, fdatool, or sptool to design your filter. Use
the help files in MATLAB to explore these commands; later chapters will discuss them further.

7Recent versions of the MATLAB Signal Processing Toolbox GUI FDATool include a similar capability
via “Targets→Generate C header,” but we feel it’s not as easy to understand the result as with our technique.

3.4. DSK IMPLEMENTATION IN C 49

This will provide for increased C code portability.

e.g., FIR_dump2c(’coeff’, ’B’, filt1.tf.num, length(filt1.tf.num))

Arguments: filename - File to write coefficients, no extension

varname - Name to be assigned to coefficient array

coeffs - Vector with FIR filter coefficients

FIR_length - Length of array desired

This help output discusses the MATLAB cd function, which is an alternative to using the
Current Directory field in the MATLAB desktop toolbar. Alternatively, you can allow the
m-file FIR_dump2c to create the two files (coeff.h and coeff.c) in the current directory
and then move the files to your CCS project using, for example, the Windows Explorer
program. Once these files are in your CCS project directory you must add the files to your
project. Note that Appendix A includes a short tutorial to help you get started with the
basics of using CCS. In addition to adding the two files (coeff.h and coeff.c) to your
project, the single line of C code,

#include c o e f f . h

must also be added to your FIRmono_ISRs.c or FIRstereo_ISRs.c file. An example of a
coeff.h file is shown below.

Listing 3.5: An example coeff.h file.

1 /* coeff.h */

/* FIR filter coefficients */

3 /* exported by MATLAB using FIR_DUMP2C */

5 #define N 30

7 extern f loat B [] ;

Within the coeff.h file, line 5 is used to define the filter order (not the filter length!) and
line 7 allows the B coefficients to be defined in another file. In this case, the coefficients are
defined in the file coeff.c.

Once you become familiar with these procedures and some of the MATLAB filter design
techniques, FIR filters can be designed, implemented, and run in real-time very easily.

Now that you understand the code. . .

The files necessary to run this application are in the Chapter 3 ccs\FIRrevB directory. Go
ahead and copy all of the files into a separate directory. Open the project in CCS and
“Rebuild All.” Once the build is complete, “Load Program” into the DSK and click on
“Run.” Your FIR filter is now running on the DSK.

3.4.3 Circular Buffered FIR Filtering

As previously stated, shifting all of the values in the x array one element to the right after
each dot product operation is a very inefficient use of the DSK’s computational resources.
The need to perform this shift is based on the assumption that the physical memory is
linear. Given linear memory, with the inherent static labeling of each memory location, this
shifting of values would seem to be an absolute requirement.

50 CHAPTER 3. FIR DIGITAL FILTERS

*+-, *+'(, *+'., *+'/, *+'5, *+'�5)(�,...
Figure 3.16: The linear memory concept with static memory location labeling.

Figure 3.16 shows a linear memory model for the input to the filter x. As expected, to
buffer the N + 1 elements in the x array, there are memory locations labeled x[0], x[−1],
· · · , x[−N], but there is also an x[−(N + 1)]. While this location was not declared, it does
physically exist, and any attempt to access the x array beyond its declared bounds will
result in something being retrieved and used in any subsequent calculations. The results of
this indexing error may be catastrophic (e.g., a run-time error), or more subtle (e.g., the
program runs, but gives inaccurate results). Either way, this type of indexing error must
be avoided at all costs.

An alternative to the linear memory paradigm is to think of an array as circular memory.
As shown in Figure 3.17, the circular memory concept wraps the next memory location
“beyond” the one labeled x[−N] back to the memory location labeled x[0]. Since the
purpose of this circular memory is to store or buffer x, this concept is routinely referred to
as circular buffering.

If instead of using static memory location labels, a pointer can be used to point to and
insert the newest sample that just arrived, x[0], into the memory location containing the
oldest sample, x[−N], that is no longer needed, then a circular buffer has been created. No
physical shifting of the x values is required since the pointer will always point to the most
recent sample value. As the pointer advances, the oldest sample in the buffer is replaced by
the most recent sample. This process can be continued indefinitely. The results of inserting
the next sample into the buffer is shown in Figure 3.18.

To implement the circular buffer, a pointer must be established that points to the array
xLeft. The required C code to create this pointer is shown below.

1 f loat xLeft [N+1] , ∗pLeft = xLeft ;

The remainder of the circular buffered FIR filter code is shown below, with explanatory
comments. Note that the proper use of pre- or post-increment and -decrement commands
as shown in the code is very important to obtain correct operation.

Listing 3.6: FIR filter using a circular buffer.

1 ∗pLeft = CodecDataIn . Channel [LEFT] ; // store LEFT input value

3 output = 0 ; // set up for LEFT channel

p = pLeft ; // save current sample pointer

5 i f (++pLeft > &xLeft [N]) // update pointer, wrap if necessary

pLeft = xLeft ; // and store

7 for (i = 0 ; i <= N ; i++) { // do LEFT channel FIR

output += (∗p−−) ∗ B [i] ; // multiply and accumulate

9 i f (p < &xLeft [0]) // check for pointer wrap around

p = &xLeft [N] ;
11 }

CodecDataOut . Channel [LEFT] = output ; // store filtered value

The files necessary to run this application are in the Chapter 3 ccs\FIRrevD directory.8

Go ahead and copy all of the files into a separate directory. Open the project in CCS and

8We haven’t mentioned the code in ccs\FIRrevC for Chapter 3. Consider it a bonus.

3.4. DSK IMPLEMENTATION IN C 51

*+-,

*+'(, *+'.,

*+'/,

*+'0,

*+'�5'(�,

*+'5,

...
Figure 3.17: The circular buffer concept with static memory location labeling.

*+-,

*+'(,

*+'., *+'/,

*+'0,

+'�5'(�,+'5,

...

Figure 3.18: The circular buffer concept with dynamic memory location labeling, one sample
time after Figure 3.17.

52 CHAPTER 3. FIR DIGITAL FILTERS

“Rebuild All.” Once the build is complete, “Load Program” into the DSK and click on
“Run.” Your FIR filter is now running on the DSK.

3.5 Follow-On Challenges

Consider extending what you have learned.

1. Change the B coefficients associated with the FIRrevA code and verify that as ad-
ditional terms are added to the moving average filter, the LP filter cutoff frequency
decreases (see Figure 3.12). As you increase the filter order, don’t forget to scale each
filter coefficient so that they all sum to 1 (i.e., the D.C. response equals 0 dB).

2. There are many different ways to implement an FIR filter. Most of the examples
in this chapter have used only the direct-form one (DF-I) techniques. Investigate
and implement other forms, e.g., direct-form two, direct-form two transpose, lattice
structure, second-order sections (SOS), etc.

3. Routinely, FIR filter coefficients have even or odd symmetry. Develop an algorithm
that takes advantage of this symmetry. This will result in lower storage requirements
for the filter coefficients.

4. Some FIR filters, for example, a Hilbert transforming filter (bandpass filter) symmetri-
cally centered around Fs

4 , contain a significant number of zeros in the filter coefficients.
Develop an algorithm that takes advantage of the fact that you don’t need to calculate
the terms that involve multiplication by zero.

5. Explore some of the FIR filter design tools that are available in MATLAB (e.g., remez,
SPTool, and FDATool). A complete listing of the functional capabilities included in the
signal processing toolbox can be found by typing help signal. The toolbox functions
are grouped by category. You are looking for the FIR filter design heading (which
in recent versions is found by clicking on the higher-level heading Digital Filters).
Use the FIR_dump2c function from the text CD-ROM to export the filter coefficients.
Implement your design using the FIRrevB code.

6. There is a limit to the number of calculations that the DSK can complete before the
next input sample arrives. Design and implement an increasingly higher-order lowpass
filter using the FIRrevB code (compiled as a DEBUG build) until the output of the
filter sounds either distorts or no longer can be heard at all. These are two of the
possible indications that you are no longer meeting your real-time schedule. Is the
FIRrevD code (circular buffering) able to implement a higher-order filter compared to
the FIRrevB code (brute force) before it fails?

7. Repeat the previous challenge, but compile your code as a RELEASE build. You
should be able to use a higher filter order before the real-time schedule fails, since a
greater number of optimizations are used by the compiler.

3.6 Problems

1. In terms of a z-plane plot of the poles and zeros, what are the conditions required for
an FIR filter to be stable?

2. How many filter coefficients are there for a 41st-order FIR filter?

3.6. PROBLEMS 53

3. How many poles and zeros are there in the transfer function of a 10th-order FIR filter?

4. Only an FIR filter can exhibit truly linear phase, but not all FIR filters have linear
phase. What is the specific requirement for an FIR filter to have a linear phase
response?

5. What is meant by the term “group delay” and why is it particularly important for
applications such as audio signal processing and phase-sensitive demodulation of com-
munication signals?

6. What is the relationship between group delay and phase response?

7. What is the group delay, in seconds, of a 20th-order linear phase FIR filter when the
sampling frequency is Fs = 48 kHz?

This page intentionally left blankThis page intentionally left blank

Chapter 4

IIR Digital Filters

4.1 Theory

GIVEN the simplicity and stability of the FIR filter, why would you ever want to consider
using an IIR filter? This issue has been debated over the years in numerous articles,

papers, and book chapters in the DSP literature. The short answer to the FIR versus IIR
question can be distilled down to two brief points.

1. There is a tremendous amount of analog filter design knowledge available and, as
mentioned in Chapter 3, these analog filters are all IIR in nature. There are times
when we should take advantage of this wealth of design information.

2. To meet certain filter design specifications, very high-order FIR filters may be needed.
Yet we can usually implement a lower-order (sometimes much lower-order) IIR filter
that can meet such filter specifications.

Discrete-time IIR filter design takes advantage of decades of analog (continuous-time) filter
design discoveries and advances and provides implementations usually requiring consider-
ably less complexity (lower order) than an equivalently performing FIR filter. With this
realization that IIR filters can play a vital role in some real-time DSP systems, we provide
below a brief reminder of how IIR digital filters are typically designed.

Analog filters are, in most cases, the basis on which digital (i.e., discrete-time) IIR filters
are created. As an example of why analog filters are IIR, let’s examine a simple RC analog
filter. A first-order analog filter can be built using a single resistor R and capacitor C. If
the output of the circuit is taken to be the voltage across the capacitor, then a lowpass (LP)
filter has been created. Figure 4.1 shows the schematic diagram of this circuit. Similarly,
if the output is taken to be the voltage across the resistor, then the circuit implements a
highpass (HP) filter.

��

�

� ����

Figure 4.1: Schematic for a continuous-time (analog) first-order RC filter. The configuration
of the inputs and outputs results in a lowpass filter.

55

56 CHAPTER 4. IIR DIGITAL FILTERS

Using voltage division and the fact that the impedance of a capacitor is Zc = 1/sC, the
transfer function of this first-order RC LP filter is

H(s) =
1
sC

R+ 1
sC

=
1

sRC + 1
=

1
RC

s+ 1
RC

.

Since the impulse response and the transfer function of a continuous-time system are a
Laplace transfer pair,

h(t)
L←→ H(s)

the impulse response of this filter, h(t), can be obtained by taking the inverse Laplace
transform of H(s); that is, h(t) = L−1{H(s)}. This results in

h(t) =
1

RC
e−

t
RC u(t),

where u(t) is the unit step function. For this system, as t gets very, very large (i.e., as
t→∞), the impulse response h(t) gets very, very small—but it would still take an infinite
amount of time for h(t) to actually reach and remain at zero. For this reason, this first-
order LP filter is an example of an IIR filter, because its impulse response lasts an infinite
amount of time. An example of this behavior can be seen in Figure 4.2. In this example,
the RC time constant (τ = RC) is 1 ms; an engineering rule of thumb states that after
approximately five time constants, the system has reached its final or steady-state value.
Notice in Figure 4.2 that the impulse response value at 5 ms appears to be approximately
zero. But Figure 4.3 plots the same impulse response on a semilog plot all the way out to
500 ms. Looking at this new figure, it now becomes clear that the impulse response of the
system never actually reaches and remains at a zero value—so it must be categorized as an
IIR filter. We hasten to say that practically speaking, the impulse response decays to a low
enough value (usually below the noise floor of our measurement equipment) shortly after
five time constants, so the engineering rule of thumb is useful.

0 0.002 0.004 0.006 0.008 0.01
0

200

400

600

800

1000

1200

ou
tp

ut
 (

V
)

time (s)

Figure 4.2: Linear plot of the impulse response associated with the first-order analog lowpass
filter of Figure 4.1 with R = 1000 Ω and C = 1 μF.

4.1. THEORY 57

0 0.1 0.2 0.3 0.4 0.5
10

−250

10
−200

10
−150

10
−100

10
−50

10
0

10
50

ou
tp

ut
 (

V
)

time (s)

Figure 4.3: Semilog plot of the impulse response shown in Figure 4.2.

Enough about analog filters—this is a DSP book! IIR digital filters are routinely created
by adapting well-proven analog filter designs using one of three major techniques listed
below.

Impulse invariance methods These methods are based on the idea that we can design
a discrete-time filter with an impulse response h[n] that is a scaled and sampled
version of hc(t), the analog (continuous-time) filter’s impulse response [2]. Using
these techniques the impulse response of the discrete-time filter becomes,

h [n] = Tshc [nTs]

where Ts is the sample period and hc[nTs] is the sampled (i.e., discrete-time) version of
the continuous-time impulse response associated with the original analog filter. Since
reality forces us to only a finite duration h[n], we can never truly sample the entire
infinite duration of hc(t).

Bilinear transformation methods These methods take a continuous-time transfer func-
tion, Hc(s), and replace its independent variable, s, with a discrete-time, independent
transform variable, z, to produce a discrete-time transfer function, H(z). This trans-
formation can be accomplished using the variable substitution,

s =
2

Ts

(
1− z−1

1 + z−1

)
,

which results in the transfer function,

H(z) = Hc

(
2

Ts

(
1− z−1

1 + z−1

))
,

where Ts is the sample period and Hc is the continuous-time transfer function. Note
that even though z is used as the transform variable for discrete-time functions, the
variable z itself is continuous across the entire z-plane.

58 CHAPTER 4. IIR DIGITAL FILTERS

Optimization methods These methods are based on optimizing filter performance using
iterative numerical techniques that converge (we hope!) to a design that is close to
the stated filter specifications.

In this book we assume you are designing your digital filters with the help of software tools
such as SPTool or FDATool in MATLAB�. The fact that the software arrives at the IIR
digital filter coefficients using one of the previously mentioned methods may or may not
be of interest to you. See the appropriate chapter of a more theoretical DSP text for more
detail about filter design, if needed.

As is almost always the case in engineering design, systems that perform well in some
areas routinely perform poorly in other areas. With IIR filters, we are particularly concerned
about two issues:

• Stability: Since feedback is always involved in an IIR design, the system may become
unstable. For real-time (causal) systems, we can mathematically ensure stability by
keeping the poles inside the unit circle (magnitude of the poles < 1) as plotted on the
z-plane. As a reminder, the poles are the roots of the denominator polynomial and
the zeros are the roots of the numerator polynomial of the system transfer function,
H(z). The transfer function normally takes the form,

H (z) =
Y (z)

X(z)
=

b0 + b1z
−1 + b2z

−2 + b3z
−3 + · · ·

1 + a1z−1 + a2z−2 + a3z−3 + · · · .

• Phase response: A symmetric (or antisymmetric) FIR filter exhibits a linear phase
response, while an IIR filter does not (cannot!) exhibit true linear phase. Different
IIR filter design techniques can result in varying approximations to a linear phase
response, but can never achieve it completely. Depending on the application, having
linear phase (i.e., constant group delay) may be crucial to the proper operation of
the DSP-based filtering operation. If so, symmetric (or antisymmetric) FIR filters are
recommended.

In summary, IIR filters can take advantage of known analog filter designs and can meet
steep requirements (particularly for the magnitude response) at a lower order than FIR
filters. But IIR filters are subject to instability if the designer is not careful, and their
phase response can never be truly linear. There are times when an IIR filter is exactly what
you want for your DSP application, so let’s explore them further.

4.2 winDSK Demonstration: Notch Filter Application

Start the winDSK application, and the main user interface window will appear. Ensure the
correct selections have been made in the “DSK and Host Configuration” panel of winDSK6
or the “Board and Interface Configuration” panel of winDSK8 for each parameter before
proceeding.

The winDSK Notch Filter application implements a second-order IIR filter. Clicking on
the Notch Filter button will run the program in the attached DSK, and a window similar
to Figure 4.4 will appear.

In Chapter 3, we decreased the Q adjustment (determined by the value of variable r in
the filter’s transfer function) until it reached zero. This put the poles of the filter at the
origin of the z-plane and the DSK behaved as if it was running an FIR filter. In this section,
we will increase the Q adjustment (by increasing |r|) which causes the poles to move away
from the origin and approach the unit circle. This adjustment (via the slider control at the

4.2. WINDSK DEMONSTRATION: NOTCH FILTER APPLICATION 59

Figure 4.4: winDSK running the Notch Filter application with r = 0.9.

bottom of the Notch/Bandpass Filter window) is shown in Figure 4.4. Also notice that the
“Filter Type” was selected to be “Notch” rather than “Bandpass” for this demonstration;
a notch filter may also be called a bandreject filter. As the poles of the notch filter get
closer to the unit circle (i.e., as |r| → 1.0) they progressively increase the “steepness” of the
notch. But as with all IIR filters, stability is an issue: if |r| = 1.0, then the poles are on
the unit circle and the filter will not be stable (it will tend to break into oscillation).

To show you the effect on the notch filter’s magnitude response caused by moving the
poles, we keep a constant notch frequency and change only |r|. Theoretically, an infinite
amount of attenuation is present at the exact notch frequency (in practice it’s a very large
yet finite amount of attenuation, but it’s so large that we can treat it as if it’s infinite
attenuation). This explains why a properly adjusted (tuned) notch filter can completely
remove an interfering tone for all practical purposes. The frequency responses associated
with four different settings of |r| for the notch filter are overlaid and shown in Figure 4.5.
Comparing the frequency responses shown in this figure demonstrates two ramifications of

0 3 6 9 12 15 18 21 24
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

|H
(e

jω
)|

 (
dB

)

frequency (kHz)

r = 0
r = 0.5
r = 0.9
r = 0.99

Figure 4.5: The frequency responses of four different notch filters having a notch frequency
of 9 kHz and r values of 0, 0.5, 0.9, and 0.99.

60 CHAPTER 4. IIR DIGITAL FILTERS

moving the poles of an IIR filter close to the unit circle.

1. As |r| → 1.0, the maximum gain of the filter (without scaling) approaches 1 (0 dB).
For any value of |r|, the maximum gain may always be forced to 1 (0 dB) by including a
multiplicative scale factor that would have to be multiplied by all of the b coefficients,
but we would prefer to avoid this extra step. Remember, excess gain in a DSP
algorithm can cause significant problems if it results in an output value that exceeds
the numerical range of the DAC.

2. As |r| → 1.0, the Q of the filter (i.e., steepness of the notch) increases dramatically.
At the same time, as the poles approach the unit circle, that portion of the impulse
response of the filter with significant non-zero values increases in length.1 This indi-
cates that more time will be needed for the filter to effectively reach a steady-state
condition (that’s right, there’s no free lunch!). And as mentioned earlier, if we ever
allow |r| = 1.0 (or more precisely |r| ≥ 1.0), then the filter would be unstable.

To hear the effect of the Notch Filter application, add a sinusoidal signal (tone) to a
music signal in a similar fashion as we described in Chapter 3. Most software programs
that support computer sound cards will perform this summing for you. You will need
to experiment with your audio mixer program controls to determine exactly how your
particular system responds. Most systems are capable of summing an external audio signal
(such as from a portable music player or a function generator) with an internal audio signal
by playing a sound file or CD on the computer. In this example, one audio signal (typically
the external source) is a tone and the other is music. Inject the external signal via the
sound card “line input” or “microphone input” connector. The sound card “line output”
or “headphone output” is then connected to the signal input of the DSK. As before, the
DSK signal output is connected to a set of powered speakers. If a function generator isn’t
available, you can use one of the audio test tones (*.wav) in directory test_signals on the
CD-ROM that accompanies this book and play them with a second, external CD player or
transfer the file to a portable music player. You can also easily create your own audio test
tones in MATLAB, then save them as an audio file and play them in the same way on an
external CD or music player (this concept will be discussed further in Chapter 5).

When the center frequency of the notch filter equals the frequency of the injected tone,
you should hear the sound of the tone disappear from the speakers.

4.3 MATLAB Implementation

4.3.1 Filter Design and Analysis

After designing a filter in MATLAB, the discrete-time difference equation is routinely avail-
able in the form of two vectors: B (numerator coefficients) and A (denominator coefficients).
Given these two vectors, MATLAB can rapidly analyze and plot your filter’s performance
using several different toolbox functions. To find help on the MATLAB Signal Processing
Toolbox, type help signal. Then click on “Digital Filters” to see more information on
that subtopic. An edited version of the results associated with entering this command and
mouse click are shown below.

>> help signal

1Recall that while the impulse response of an FIR filter is equal to the filter coefficients, this is not the
case for an IIR filter. In this example, the number of non-trivial impulse response values of a second-order
IIR filter can be quite large if the poles are close to the unit circle.

4.3. MATLAB IMPLEMENTATION 61

Signal Processing Toolbox

. . .

Filter analysis

abs - Magnitude

angle - Phase angle

filternorm - Compute the 2-norm or inf-norm of a digital filter

freqz - Z-transform frequency response

fvtool - Filter Visualization Tool

grpdelay - Group delay

impz - Discrete impulse response

phasedelay - Phase delay of a digital filter

phasez - Digital filter phase response (unwrapped)

stepz - Digital filter step response

unwrap - Unwrap phase angle

zerophase - Zero-phase response of a real filter

zplane - Discrete pole-zero plot

Of particular interest are the frequency response, impulse response, pole-zero, and group
delay plots.

Creating an Impulse Response Plot

Unlike an FIR filter, the filter coefficients of the IIR filter are not the individual terms that
make up the impulse response of the system. The impulse response of an IIR filter must be
calculated iteratively. The MATLAB command impz can greatly simplify this process. For
example, if we design our filter using the butter command (for Butterworth filters) and
wish to examine the impulse response, we will need to use commands similar to:

[B , A] = butter (4 , 0 . 2 5) ;
2 impz (B , A , 10 , 48000) ;

to create the impulse response plot. In line 1, we design a fourth-order Butterworth lowpass
filter with a cutoff frequency of 0.25Fs/2. In the second line of code, we use the four
argument variation of impz to determine the impulse response of the filter, where B and
A are the numerator and denominator coefficient vectors (respectively), 10 is the desired
number of points of the impulse response to be calculated and plotted, and 48000 is the
sample frequency to be used with the filter. Since we included the sample frequency (the
fourth input argument), the horizontal axis of the resulting plot will have units of time.
If we leave off the forth argument (sample frequency), the horizontal axis will have units
of samples (i.e., sample number n). If we further leave off the third argument (number of
points to be calculated), the algorithm will determine for you the number of samples to be
evaluated and plotted. Try it and see!

Instead of using the command line execution of butter, we could have used the command
SPTool (Signal Processing Tool), which brings up a graphical user interface (GUI) as shown
in Figure 4.6 that, among other things, allows us to design digital filters.2 To design a new
digital filter, click the “New” button in the center column of the SPTool GUI. This will
result in the FDATool GUI that is shown in Figure 4.7, where we show the Butterworth filter
already having been designed using this GUI.3 Note that this tool defaults to designing

2The descriptions we provide here for using particular MATLAB tools may require modification with
later versions of MATLAB, but the overall techniques should be similar.

3Note that you can call up FDATool directly by typing fdatool at the MATLAB command line.

62 CHAPTER 4. IIR DIGITAL FILTERS

Figure 4.6: The GUI associated with SPTool.

Figure 4.7: The GUI associated with MATLAB’s FDATool showing the magnitude response
of a Butterworth LPF.

4.3. MATLAB IMPLEMENTATION 63

this particular filter in a form called “second-order sections” that is discussed in more detail
later in this chapter. To use the impz program, we would need to use FDATool to convert
to a single section (“Edit, Convert to Single Section”), export the filter coefficients to the
workspace (“File, Export”), and then call impz(Num,Den), assuming you kept the default
names for the numerator and denominator coefficient vectors instead of B and A that we
used above.4 Using this version of the impz command will result in the plot shown in
Figure 4.8(a).

While the command line use of tools such as impz are still quite useful, the same infor-
mation can be obtained directly from the FDATool GUI. Once the filter has been designed,
you can use the “Analysis” drop-down menu or click on the desired icon near the top of
the GUI. Clicking on the “Impulse response” icon in FDATool results in Figure 4.8(b).
Compare the two figures. In a similar, one-click fashion, FDATool can show plots of the
filter’s magnitude, phase, group delay, phase delay, step response, pole-zero plot, and other
useful information. Explore the capabilities of this versatile tool.

We will show a few more examples of using the individual command line tools, but if you
prefer you can accomplish similar tasks directly from FDATool. Advantages of command
line tools include more direct control over the resulting plots (font size, line thickness, etc.)
and the ease of incorporating the various operations into your own m-files.5 Therefore, time
invested to learn the command line tools is well spent. If all you desire is a bit more control
over figures but prefer to stay with FDATool, use “View, Filter Visualization Tool” to call
up another GUI from which you can export just the plots.

Creating a Frequency Response Plot

Plotting the frequency response can be accomplished using the MATLAB command freqz.
An example of using this command follows.

freqz (B , A) ;

The resulting frequency response plot is shown in Figure 4.9. Without specifying the sample
frequency as an additional argument to freqz, the frequency axis of the plot is shown as
normalized radian frequency in π units, so the far right value shown as 1 on the x-axis is
where the normalized radian frequency equals π. This is equivalent to where the frequency
equals Fs/2. Where the normalized axis equals 0.25 is where f = 0.25Fs/2; this is the cutoff
frequency (where the filter magnitude response is down by 3 dB) that we specified earlier
when we designed the filter. Note the nonlinear phase response of this IIR filter (although
just in the passband, the deviation from linear phase is not too egregious).

Creating a Pole/Zero Plot

Plotting the locations of the poles and zeros on the z-plane can be accomplished using the
MATLAB command zplane. An example using this command follows.

1 zplane (B , A) ;

The resulting pole/zero plot is shown in Figure 4.10. In filter design, the location of poles
and zeros with respect to the unit circle is very important, and the designer may rely quite
a bit on plots such as those produced by zplane. But there instances when such plots can
be misleading. The MATLAB command zplane calls another function called zplaneplot

which actually creates the pole/zero plot, including plotting the unit circle on the z-plane.

4You could also export the second-order sections and then use sos2tf or a related conversion command
in MATLAB.

5FDATool is simply a GUI shell that calls these very same command line tools for you.

64 CHAPTER 4. IIR DIGITAL FILTERS

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

n (samples)

 A
m

pl
itu

de

Impulse Response

(a) Using the impz command.

(b) Using the GUI of FDATool.

Figure 4.8: The impulse response associated with a fourth-order Butterworth lowpass filter
having a cutoff frequency of 0.25Fs/2.

4.3. MATLAB IMPLEMENTATION 65

0 0.2 0.4 0.6 0.8 1
−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.2 0.4 0.6 0.8 1
−400

−200

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Figure 4.9: The frequency response diagram associated with a fourth-order Butterworth
lowpass filter having a cutoff frequency of 0.25Fs/2.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

real part

im
ag

in
ar

y
pa

rt

4

Figure 4.10: Pole/zero diagram for a fourth-order Butterworth lowpass filter having a cutoff
frequency of 0.25Fs/2.

66 CHAPTER 4. IIR DIGITAL FILTERS

This is also how the pole/zero plot is created for FDATool. At this point in our discussion,
it may be useful to many readers if we briefly digress from IIR filter design and turn to a
short side discussion about zplaneplot.

The original version of zplaneplot used only 70 points to form the unit circle. Since
MATLAB plots are largely straight lines drawn between points, this leads to a 69-sided
polygon. This very faceted approach to plotting a circle or arc may be inadequate if your
poles and/or zeros are very close to the unit circle. After feedback to The MathWorks from
the authors of this text (and perhaps others), a modified version of zplaneplot tests to
see how close the poles and zeros are to the unit circle and uses more points than 70 if
needed. This version of zplaneplot can use a maximum of 50,000 points to construct the
unit circle, which might seem to be enough. Unfortunately, the problem of plotting poles
and zeros very close to the unit circle continues to exist for versions up through MATLAB
2010b. For MATLAB 2011a and later, The MathWorks modified zplaneplot again and
has resolved the issue.

For the benefit of those readers who are using a version of MATLAB earlier than 2011a,
we discuss a simple fix. Suppose, for example, that the location of poles for a particular filter
design included the conjugate pair described by 0.998446047456247± j0.045491015143694.
This is obviously very close to the unit circle, and if the poles are on or outside the unit
circle, our filter design would be unstable. We can manually calculate the magnitude (using
MATLAB’s abs() command, for example), which we would find to be 0.999481836823364,
so the filter should be stable (ignoring possible coefficient quantization issues, discussed
later in this chapter). But most people would just look at the pole/zero plot, and zoom in
to see if the pole was beyond the unit circle. An enhanced pole/zero plot for this conjugate
pole pair is shown in Figure 4.11. In particular, note the bottom zoomed-in plot. The
dashed line to the left of the “X” is supposedly the unit circle as would be plotted by the
zplaneplot routine, and the solid line to the right of the “X” is a more accurate plot of
the unit circle (as would be plotted by our own ucf routine) by using 100,000 points for the
entire circle. In this situation, the designer could be misled by zplaneplot into thinking a
stable filter was unstable.

There are two easy solutions to this problem.

• RECOMMENDED Use the ucf function provided on the CD-ROM (in the Chap-
ter 4 matlab directory) to correct the problem. Basically, ucf erases the original
unit circle by overwriting it with a white line and then plots a more accurate unit
circle. The name ucf stands for “unit circle fixer,” and can be updated to your own
specifications without causing problems with any MATLAB toolbox functions.

• NOT RECOMMENDED Edit the MATLAB m-file zplaneplot where the number
of points is determined. As of this printing, the lines that do this are in the range of
line numbers 85–94. This code in this section of zplaneplot.m is shown below.

closest = min(1−[abs (z (:)) ; abs (p (:))]) ;
86 points = 1/2e8/closest ;

i f points < 70
88 points = 70 ;

e l s e i f points > 50000
90 points = 50000;

e l s e i f isempty (points)
92 points = 70 ;

end
94 theta = linspace (0 ,2∗pi , points) ;

4.3. MATLAB IMPLEMENTATION 67

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

Real Part

Im
ag

in
ar

y
P

ar
t

0.997 0.9975 0.998 0.9985 0.999 0.9995 1
0.0445

0.045

0.0455

0.046

0.0465

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 4.11: Pole/zero diagram for poles at 0.998446047456247±j0.045491015143694. Top:
entire plot. Bottom: zoomed in to the upper pole.

Line 85 determines how close the poles and zeros are to the unit circle. Lines 86–93
determine how many points to use to plot the unit circle. The linspace command
on line 94 creates a variable, theta, which consists of the value of points elements
that are uniformly spaced between 0 and 2π. Changing the value of points to a much
larger integer (for example, 100,000), will result in more points being used to plot the
unit circle. More points allow the plotted polygon to much more closely approximate
a circle. However, this approach is not recommended because it modifies a MATLAB
toolbox function that was provided to you by The MathWorks. Modifying this and

68 CHAPTER 4. IIR DIGITAL FILTERS

other code that you have paid money to other people to develop and maintain is a
bad idea for at least four different reasons.

1. If you believe production code is in error, you should submit a formal request to
have the code corrected. This may allow others to benefit from your efforts.

2. If you do modify the MATLAB code, the next update of the toolbox that you
receive and install will invariably overwrite the updated function that you have
created and all of your modifications will be lost.

3. The chance that you will remember what you have done in the distant future is
very small, and you will need to rediscover the entire unit circle plotting problem
after installing a new version of the toolbox.

4. You may break the toolbox function so that it no longer works or even worse:
you think that the function is working, but it is actually returning inaccurate
results.

If you remember these ideas each time that you inevitably encounter a problem with someone
else’s software, you will have fewer problems in the long run. Now we return to the discussion
of IIR filter design.

Creating a Group Delay Plot

Plotting the group delay can be accomplished using the MATLAB command grpdelay. An
example using this command follows.

grpdelay (B , A) ;

The resulting plot is shown in Figure 4.12. Note that the group delay is not constant, which
is due to the nonlinear phase response of this filter.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Normalized Frequency (×π rad/sample)

G
ro

up
 d

el
ay

 (
sa

m
pl

es
)

Figure 4.12: The group delay associated with a fourth-order Butterworth lowpass filter
having a cutoff frequency of 0.25Fs/2.

4.3. MATLAB IMPLEMENTATION 69

Figure 4.13: The FVTool filter viewer program GUI, with annotations.

Using FDATool and FVTool

As we’ve already implied, the MATLAB environment and its Signal Processing Toolbox
provides even more tools for designing digital filters. For example, you can use MATLAB’s
FDATool (Filter Design and Analysis Tool) to design your filter. As shown earlier in Fig-
ure 4.7 and Figure 4.8(b), there several software pushbuttons in FDATool that are available
to allow you to not only specify and design your filter, but also to view a number of filter
analysis plots. The filter coefficients exported from FDATool are just vectors (by default).

Finally, regardless of how you design your filter, you can analyze your filter by using
MATLAB’s FVTool (Filter Visualization Tool) either by using the “View” drop-down menu
of FDATool or by calling FVTool directly:

1 fvtool (B , A) ;

As shown in Figure 4.13, several software pushbuttons are available in FVTool that will
allow you to view a number of filter analysis plots, which we’ve annotated with labels and
arrows on the figure. In that figure, the group delay of the filter has been selected (compare
Figure 4.13 to Figure 4.12).

While all the MATLAB commands and tools were discussed here in the context of IIR
filters, they can all just as easily be used for FIR filters. The primary difference is that the
“vector” A for all FIR filters is equal to the scalar value of 1.

70 CHAPTER 4. IIR DIGITAL FILTERS

4.3.2 IIR Filter Notation

IIR filters are more complicated than FIR filters, and there are various choices the designer
must make when implementing them. The remainder of this chapter will focus primarily
on implementation issues associated with IIR filters. Recall that the generalized difference
equation associated with a causal IIR filter is

M∑
k=0

a[k]y[n− k] =
N∑

k=0

b[k]x[n− k]

or in output variable form,

a[0]y[n] = −
M∑
k=1

a[k]y[n− k] +

N∑
k=0

b[k]x[n− k].

The a[0] term, the coefficient of y[n], is usually normalized to 1. In fact, MATLAB nor-
malizes the a[0] coefficient prior to almost all of its calculations. This normalization results
in

y[n] = −
M∑
k=1

a[k]y[n− k] +

N∑
k=0

b[k]x[n− k],

where each of the remaining a[k] and b[k] terms are scaled by a[0]. We have chosen not to
rename this normalized version of the coefficients in the equation above, as this form is how
most DSP books depict the difference equation of an IIR filter.

Alternatively, the IIR filter’s difference equation can be converted to a transfer function
in the z-domain:

H (z) =
b0 + b1z

−1 + b2z
−2 + · · ·+ bNz−N

1 + a1z−1 + a2z−2 + · · ·+ aMz−M
.

If we use a similar notation for filter implementation as we did in Chapter 3, the transfer
function becomes

H (z) =
b [0] + b [1] z−1 + b [2] z−2 + · · ·+ b [N] z−N

1 + a [1] z−1 + a [2] z−2 + · · ·+ a [M] z−M
.

Notice that the number of a terms (M + 1) and the number of b terms (N + 1) are often
not equal. That is the reason for using M for the order of the denominator and N for the
order of the numerator in the transfer function polynomial.

To calculate y[0] (the current output value of the IIR filter), we must perform two
operations:

1. the dot productB·x, whereB = {b[0], b[1], . . . , b[N]} and x = {x[0], x[−1], . . . , x[−N]}
(the current and past values of the input signal), and

2. a dot product of A·y, whereA = {1, a[1], . . . , a[M]} and y = {y[0], y[−1], . . . , y[−M]}
(the current and past values of the output signal).

Specifically,

y[0] = −a[1]y[−1]− a[2]y[−2]− · · · − a[M]y[−M] + b[0]x[0] + b[1]x[−1] + · · ·+ b[N]x[−N].

Notice that the A · y term is really only a partial dot product because the a[0]y[0] term is
not needed and is therefore not calculated.

4.3. MATLAB IMPLEMENTATION 71

4.3.3 Block Diagrams

Routinely, engineers use block diagrams to help understand implementation issues and
signal flow. One of the standard block diagram forms associated with implementing this
IIR filter is shown in Figure 4.14. The blocks containing z−1 are delay blocks that store
the input into the block for one sample period. The delay blocks may be thought of as
synchronous shift registers that have their clocks tied to the ADC and DAC’s sample clock,
but are typically just memory locations accessed by the DSP CPU. This form is called direct
form I (DF-I) and is the most straightforward implementation of the standard difference
equation. Alternatively, a single summing node can be used to more accurately implement
the difference equation as a single equation. This can be seen in Figure 4.15.

Another variant is shown in Figure 4.16. It is called direct form II (DF-II) and is
achieved by reversing the order of the feed forward and feedback terms and combining the
delay elements. This form only requires half the DF-I memory elements, and thus would be a
more efficient implementation. Figure 4.17 is called a cascade of two second order sections
(SOS). Higher-order filters can be divided into a number of first- or second-order terms
that can then be multiplied (cascaded) together. Second-order terms are preferred over
higher-order terms since real coefficients can be used to accurately describe the locations of
complex conjugate pairs. This often forgotten fact is a result of the fundamental theorem
of algebra. Coefficient quantization effects are also far less problematic using cascaded SOS
compared to other implementations. MATLAB does provide a wide variety of conversion
m-files for various implementations. Of particular interest is tf2sos (transfer function to
second-order section) and zp2sos (zero/pole to second-order section). A complete listing
of the MATLAB conversion routines can be found using help signal; click on the Linear
Systems heading and see the functions listed under Linear systems transformations.

The final block diagram we will mention is the parallel form, which is shown in Fig-
ure 4.18. We have shown only first-order numerator (b) terms in this figure because that is
routinely the result after the parallel decomposition is complete. MATLAB’s Signal Pro-

&'(

)

)

)

)

�+�,

&'(

&'(

&'(

&'(

�-

�(

�.

�/

�0
)

&'(

&'(

&'(

�-

�(

�.

�/

�0

�

*+�,

*+�'(,

*+�'.,

*+�'/,

*+�'0,

�+�'(,

�+�'.,

�+�'/,

�+�'0,

Figure 4.14: Block diagram associated with the DF-I implementation of an IIR filter. Typ-
ically, a0 is normalized to 1.0.

72 CHAPTER 4. IIR DIGITAL FILTERS

&'(

&'(

&'(

&'(

�-

�(

�.

�/

�0

*+�,

*+�'(,

*+�'.,

*+�'/,

*+�'0,

) �+�,

&'(

&'(

&'(

&'(

�(

�.

�/

�0

�+�'(,

�+�'.,

�+�'/,

�+�'0,

�

Figure 4.15: Block diagram associated with the direct form I (DF-I) implementation of an
IIR filter using only one summing node. Coefficient a0 is not shown (assumed to be 1.0).

�

&'(

)

)

)

)

&'(

&'(

&'(

�-

�(

�.

�/

�0

�+�,*+�,

)

)

)

)

�(

�.

�/

�0

Figure 4.16: Block diagram associated with the DF-II implementation of an IIR filter.
Coefficient a0 is not shown (assumed to be 1.0).

4.3. MATLAB IMPLEMENTATION 73

)*+�,)

)

&'(

&'(

)

) �+�,)

)

&'(

&'(

)

+�, �+�,�(-

�((
�((

�(.�(.

�.(

�..

�.-

�.(

�..

Figure 4.17: Block diagram associated with the second-order section (SOS) implementation
of an IIR filter.

))

&'(

&'(

)

*+�,

))

&'(

&'(

)

�+�,

�(-

�((�((

�(.

�.(

�..

�.-

�.(

)

$(

Figure 4.18: Block diagram associated with the parallel implementation of an IIR filter.
Coefficient k1 is an overall gain factor.

74 CHAPTER 4. IIR DIGITAL FILTERS

0.7 0.8 0.9 1 1.1 1.2 1.3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Real part

Im
ag

in
ar

y
pa

rt

Effects of 16 Bit Quantization, DF Implementation

Figure 4.19: Pole/zero plot (zoomed in) associated with a fourth-order elliptic filter imple-
mentation using direct form techniques.

cessing Toolbox does not currently have an m-file that converts to parallel form. We have
written such an m-file and included it in the matlab directory for Chapter 4. Conforming
to the MATLAB naming convention, our m-file is named filt2par. This m-file converts
numerator and denominator vectors of filter coefficients to parallel form.

There are dozens of implementation block diagrams, and we have selected only a few of
the most common forms for discussion here. Each form has advantages and disadvantages,
and we will not dwell on this topic; however, a design example will be used to help explain
a few of these issues. The MATLAB code associated with this example can also be found in
the matlab directory for Chapter 4. The m-file is called ellipticExample and as its name
implies it designs and implements an elliptic filter. The ellipticExample m-file generates
the filter coefficients, pole/zero diagrams, and frequency responses associated with DF-
I/DF-II, SOS, and parallel implementation. This fourth-order filter was carefully selected
to cause the filter to become unstable if it is implemented using single precision DF-I or
DF-II techniques. Instability in IIR filters is often caused by the result of finite precision
arithmetic (i.e., coefficient quantization) causing the poles to move outside the unit circle.
This can be seen in Figure 4.19 where the smaller circles (zeros) and x’s (poles) represent
the correct location of the filter’s poles and zeros. The larger circles and x’s are where
the poles and zeros end up when direct form arithmetic is used, and the coefficients are
represented as 16-bit fixed-point integers. Because one of the larger-x poles is outside the
unit circle, this filter will be unstable if implemented as a direct form I or direct form II
using 16-bits to represent each the coefficient. Any attempt to implement such a filter in
either MATLAB or real-time code will produce an undesirable result. Simply changing to
an SOS implementation fixes the problem. Of course zeros outside the unit circle do not

4.3. MATLAB IMPLEMENTATION 75

Figure 4.20: The qfilt GUI evaluating the performance of a lowpass filter.

effect stability in any way.

A useful MATLAB-based tool to help evaluate the implementation effects associated
with DF-I, DF-II, and SOS is included on the CD. The tool is a collection of MATLAB m-
files that are controlled through the qfilt GUI, seen in Figure 4.20. This GUI was written
not only to evaluate finite precision arithmetic effects but to implement the quantized
coefficient FIR or IIR filter on a TI TMS320C31 DSK. Not having a C31 DSK attached to
the host PC will only prevent you from loading and running the displayed filter on the DSK.
You will be able to use all the other features of the program. Years after we introduced the
qfilt program, the MathWorks released a number of tools and toolboxes (e.g., FDATool in
the Signal Processing Toolbox, when used with the Fixed Point Toolbox) to deal with the
same finite precision effects. They have also introduced a series of toolboxes and blocksets
that allow some of your work to be run in Simulink via CCS on selected TI hardware targets.
You may want to investigate these recent tools from The MathWorks on your own.

Should you implement an unstable filter, it may sound similar to audio feedback (getting
the microphone too close to the speakers). But most of the time it sounds as if the speakers
are not plugged in, since the output of the DSP algorithm grows rapidly to the point that
the numbers can no longer be represented in the DSP hardware. Using a CCS watch window
to troubleshoot this and other logical programming errors can be a very effective technique.

76 CHAPTER 4. IIR DIGITAL FILTERS

&'(

)

)

)

)

�+�,

&'(

&'(

&'(

&'(

)

&'(

&'(

&'(

-6---778

*+�,

'-6--/7

-6--37

'-6--/7

-6---778

(6-

/679

'367(

/67(

'-679(

Figure 4.21: Block diagram of direct form I (DF-I) fourth-order elliptic filter.

Evaluating and plotting the frequency response of an unstable system, although allowed
by MATLAB, is meaningless, since the DFT operation upon which the freqz command is
based is undefined for unstable systems.

If you run the ellipticExample m-file, the filter coefficients will be available in the
MATLAB workspace. The resulting transfer functions (rounded) are shown below.

HDF (z) =
0.000996− 0.0039z−1 + 0.0059z−2 − 0.0039z−3 + 0.000996z−4

1− 3.97z−1 + 5.909z−2 − 3.911z−3 + 0.971z−4

Hsos (z) =
0.00101− 0.00195z−1 + 0.00101z−2

1− 1.99z−1 + z−2
· 1− 1.98z−1 + 0.978z−2

1− 1.99z−1 + 0.992z−2

Hparallel (z) =
−0.00385 + 0.00360z−1

1− 1.99z−1 + 0.992z−2
+

0.00382− 0.00348z−1

1− 1.98z−1 + 0.978z−2

In Figures 4.21, 4.22, 4.23, and 4.24, we show the DF-I, DF-II, SOS, and parallel imple-
mentation block diagrams, respectively, with the filter coefficients. The coefficient values
in the figures are also rounded to three significant digits in the block diagrams for compact-
ness. In each figure the same filter is implemented, but each implementation has its own
advantages and disadvantages.

4.3.4 Built-In Approach

As mentioned in Chapter 3, MATLAB has a built-in function called filter.m. It can be
used to implement FIR filters (using only the numerator (B) coefficients and setting A = 1)
and IIR filters (using both the numerator (B) and the denominator (A) coefficients). The
first few lines of the online help associated with the filter command are provided next.

>> help filter

FILTER One-dimensional digital filter.

Y = FILTER(B,A,X) filters the data in vector X with the

filter described by vectors A and B to create the filtered

4.3. MATLAB IMPLEMENTATION 77

) �+�,*+�,)
(6-

& '(

)

)

)

&'(

& '(

& '(

)

)

)

'-679(

/679

/67(

-6---778

'-6--/7

-6--37

'-6--/7

-6---778

'367(

Figure 4.22: Block diagram of a direct form II (DF-II) fourth-order elliptic filter.

)*+�,)

)

&'(

&'(

)

) �+�,)

)

&'(

&'(

)

-6--(-(

'-6--(73(677

-6--(-('(

(677

'-677.

(

'(67:

-679:

Figure 4.23: Block diagram of a the second-order section (SOS) implementation of a fourth-
order elliptic filter.

))
'-6--/:3

&'(

&'(

)
(677

'-677.

-6--/8

*+�,

))
-6--/:.

&'(

&'(

)
(67:

'-679:

'-6--/0:

�+�,)

Figure 4.24: Block diagram of a parallel implementation of a fourth-order elliptic filter.

78 CHAPTER 4. IIR DIGITAL FILTERS

data Y. The filter is a "Direct Form II Transposed"

implementation of the standard difference equation:

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)

- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

This function is useful for quickly implementing a filter with minimal programming on your
part.

4.3.5 Creating Your Own Filter Algorithm

In this next MATLAB example, we are trying to implement a first-order IIR notch filter
(this is not the same notch filter implemented in winDSK). We desire the filter to have a
zero at z = 1 and a pole at z = 0.9. The transfer function associated with this pole/zero
diagram is

H(z) =
1− z−1

1− 0.9z−1

and the difference equation is

y[n] = 0.9y[n− 1] + x[n]− x[n− 1].

We will use a unit impulse as the input to the system. If we calculate an infinite number of
output terms, we will have determined the system’s impulse response. Manually calculating
a few terms from the difference equation is very helpful in understanding this process.

1. Label the columns as shown below.

n y[n] y[n− 1] x[n] x[n− 1]

2. Fill in the n = 0 row information.

n y[n] y[n− 1] x[n] x[n− 1]

0 0 1 0

3. Calculate the y[0] term.

n y[n] y[n− 1] x[n] x[n− 1]

0 1 0 1 0

4. Fill in the n = 1 row information. Notice the “down and to the right” flow of the
stored values.

n y[n] y[n− 1] x[n] x[n− 1]

0 1 0 1 0

1 1 0 1

5. Calculate the y[1] term.

n y[n] y[n− 1] x[n] x[n− 1]

0 1 0 1 0

1 −0.1 1 0 1

6. Continue this process until you have calculated all of the terms that you need.

4.4. DSK IMPLEMENTATION IN C 79

The MATLAB code shown in the listing below will only calculate the y[1] term. This
code more closely implements the algorithm required for the real-time process. While it
may seem strange to calculate only a single term, you must remember that this is exactly
how sample-by-sample processing works.

Listing 4.1: Simple MATLAB IIR filter example.

1 % begin simulation

3 % Simulation inputs

x = [0 1] ; % input vector x = x[0] x[-1]

5 y = [1 1] ; % output vector y = y[0] y[-1]

B = [1 −1]; % numerator coefficients

7 A = [1 −0 .9] ; % denominator coefficients

9 % Calculated terms

y (1) = −A (2) ∗y (2) + B (1) ∗x (1) + B (2) ∗x (2) ;
11 x (2) = x (1) ; % shift x[0] into x[-1]

y (2) = y (1) ; % shift y[0] into y[-1]

13

% Simulation outputs

15 x % notice that x(1) = x(2)

y % notice that y(1) = y(2)

17

% end simulation

As in the manual calculations, you should find that the output value is −0.1. In sum-
mary, the input (receive) ISR provides a new sample to the algorithm, the algorithm calcu-
lates the new output value, the algorithm prepares for the arrival of the next sample, and
finally, the algorithm gives the new output value to the output (transmit) ISR, so that it
may be converted back into an analog value. Notice that for low-order filters, the actual
calculation of the output value may be a single line of code!

4.4 DSK Implementation in C

4.4.1 Brute-Force IIR Filtering

This version of the IIR implementation code, similar to the last MATLAB example, takes
a brute-force approach. The intention of this approach is understandability, which comes
at the expense of efficiency.

The files necessary to run this application are in the ccs\IIRrevA directory of Chapter 4.
The primary file of interest is the IIR_mono_ISRs.c interrupt service routine. This file con-
tains the necessary variable declarations and performs the actual IIR filtering operation.
To allow for the use of a stereo codec (e.g., the native codecs on the OMAP-L138 Experi-
menter Kit and the C6713 DSK), the program can easily implement independent Left and
Right channel filters (see the difference between FIRmono_ISRs.c and FIRstereo_ISRs.c

in Chapter 3). For clarity, however, only the Left channel mono version will be discussed
below. In the code shown below, N is the filter order, the B array holds the filter’s numer-
ator coefficients, the A array holds the filter’s denominator coefficients, the x array holds
the current input value x[0], and past values of x (namely, x[−1] for this filter), and the
y array contains the current output value of the filter, y[0], and past values of y (namely,
y[−1] for this filter).

80 CHAPTER 4. IIR DIGITAL FILTERS

Listing 4.2: Brute-force IIR filter declarations.

#define N 1 // filter order

2

f loat B [N+1] = {1 . 0 , −1.0} ; // numerator filter coefficients

4 f loat A [N+1] = {1 . 0 , −0.9} ; // denominator filter coefficients

f loat x [N+1] ; // input values

6 f loat y [N+1] ; // output values

The code shown below performs the actual filtering operation. The four main steps
involved in this operation will be discussed following the code listing.

Listing 4.3: Brute-force IIR filtering for real-time.

/* I added my routine here */

2 x [0] = CodecDataIn . Channel [LEFT] ; // current input value

4 y [0] = −A [1] ∗ y [1] + B [0] ∗ x [0] + B [1] x [1] ; // calc. the output

6 x [1] = x [0] ; // setup for the next input

y [1] = y [0] ; // setup for the next input

8

CodecDataOut . Channel [LEFT] = y [0] ; // output the result

10 /* end of my routine */

The four real-time steps involved in brute-force IIR filtering

An explanation of Listing 4.3 follows.

1. (Line 2): This code receives the next sample from the receive ISR and assigns it to
the current input array element, x[0].

2. (Line 4): This code calculates a single value of the difference equation’s output, y[0].

3. (Lines 6–7): These 2 lines of code shift the values in the x and y arrays one element
to the right. The equivalent operation is,

x[0]→ x[1]

y[0]→ y[1].

After the shift to the right is complete, the next incoming sample, x[0] can be written
into the x[0] memory location without a loss of information.

4. (Line 9): This line of code completes the filtering operation by transferring the result of
the filtering operation, y[0], to the CodecDataOut.Channel[LEFT] variable for transfer
to the DAC side of the codec via the transmit ISR.

Now that you understand the code. . .

Go ahead and copy all of the files into a separate directory. Open the project in CCS
and “Rebuild All.” Once the build is complete, “Load Program” into the DSK and click
on “Run.” Your IIR HP filter (actually a D.C. blocking filter) is now running on the
DSK. Remember this program would typically be used for audio filtering, so a good way
to experience the effects of your filter is to listen to unfiltered and filtered music.6

6You may need to adjust the value of A[1] from −0.9 to a value such as −0.7 or even −0.5 to hear the
effect well.

4.5. FOLLOW-ON CHALLENGES 81

4.4.2 More Efficient IIR Filtering

Making the processor physically shift the location of the x and y values to make room
for the next sample (lines 6 and 7 above) is very inefficient. For the particular example
above that has such a low filter order, it doesn’t take much time to do it that way. But for
larger-order filters, this would be a bad idea. Looking back at Section 3.4.3, review how the
idea of a circular buffer was implemented for an FIR filter; that same idea using the same
technique with pointers, can be applied to IIR filters. Rather than just give you the code,
this is left as one of the Follow-On Challenges below.

4.5 Follow-On Challenges

Consider extending what you have learned.

1. We have discussed only the brute-force approach to IIR filtering. Similar to the
Chapter 3 discussion, investigate and implement a version of the code that will work
with MATLAB exported coefficient files (coeff.c and coeff.h). Put your solution in
a directory called IIRrevB. Use the IIR_dump2c function from the text CD to export
the filter coefficients for this program.

2. There are dozens of different ways to implement an IIR filter. Most of the examples
in this chapter have used only the direct-form one (DF-I) techniques. Investigate and
implement other forms, e.g., DF-II, DF-II transposed, lattice structure, parallel form,
second-order sections, etc.

3. Explore the IIR filter design tools that are available in MATLAB (e.g., butter,
cheby1, cheby2, SPTool, and FDATool). A complete listing of the functional ca-
pabilities included in the Signal Processing Toolbox can be found by typing help

signal. The toolbox functions are grouped by category. You are looking for the IIR
filter design heading. Use the IIR_dump2c function from the text CD to export
the filter coefficients. Implement your design using the IIRrevB code that you created
as part of Challenge 1 above.

4. Create an IIR filter routine using circular buffers. You may want to review the dis-
cussion related to the FIRrevD code in Chapter 3 (see Section 3.4.3).

4.6 Problems

1. In terms of a z-plane plot of the poles and zeros, what are the conditions required for
an IIR filter to be stable?

2. Can an IIR filter exhibit truly linear phase? Why or why not?

3. Some traditional designs from analog filters commonly adapted for digital filters in-
clude Butterworth, Chebychev, Elliptic, and Bessel. Compare these four in terms of
phase linearity, sharpness of cutoff for a given filter order, and ripple in the passband.

4. When implementing an IIR filter with a 16-bit fixed-point processor, what does the
designer need to pay close attention to as compared to using a floating-point processor?

5. With regard to filter coefficient quantization (primarily due to the use of a fixed-point
processor), what is the general effect on the IIR filter response?

82 CHAPTER 4. IIR DIGITAL FILTERS

6. With regard to filter coefficient quantization (primarily due to the use of a fixed-point
processor), which implementation is generally best: direct form I, direct form II, or
cascaded second-order sections? Explain why.

Chapter 5

Periodic Signal Generation

5.1 Theory

MANY interesting and useful signals can be generated using a DSP. Applications of
some DSP-generated signals include, but are not limited to,

alerting signals such as different telephone rings, beeper message alerts, the call waiting
tone, and the emergency alert system, which is the replacement for the emergency
broadcast system tones;

system signaling such as telephone dialing tones (DTMF) and caller ID tones;

oscillators such as a sine and/or cosine waveform that are routinely used to generate a
wide variety of communications signals; and

pseudonoise such as the special signals used for spread spectrum methods (e.g., satellite
communication, Wi-Fi, etc.) and other uses.

To keep the length of this chapter reasonable, we will only discuss periodic signal generation.
We first review how periodic signals are represented as discrete-time signals, then transition
to how such signals can be generated by a DSP. Pseudonoise (PN) sequences are a special
class of periodic signals that are used for many purposes, but because they are so different,
they are covered in a separate section toward the end of this chapter.

5.1.1 Periodic Signals in DSP

Periodic signals have a fundamental period that is usually just called the period. During
the period the entire signal is defined, and the signal repeats for every period that follows.
For a continuous-time signal the fundamental period T0 is the least amount of time required
to completely define the signal; we shall see that the associated fundamental frequency is
f0 = 1/T0. A periodic signal may contain many frequencies but only a single fundamental
frequency. The simplest periodic signal is a sinusoid because it contains only a single
frequency. Using the sine wave as an example, the concept of the fundamental period
means that the sine must satisfy the equation

sin (2πf0t+ φ) = sin (2πf0t+ 2πf0T0 + φ) = sin (2πf0(t+ T0) + φ) ,

where f0 is the frequency (Hz) of the sine, t is the time (s) variable, φ is some arbitrary
phase (rad), and T0 is the period.1 For T0 to be one full period of 2π radians, 2πf0T0 ≡ 2π.

1If you prefer to work with angular frequency, simply substitute ω0 for 2πf0.

83

84 CHAPTER 5. PERIODIC SIGNAL GENERATION

This means that, as we mentioned earlier, f0 = 1/T0. Notice that T0 must be both positive
and real. While this seems to be a trivial discussion, it proves useful when changing from
continuous-time to discrete-time representations.

For a discrete-time version of our sine wave, we sample every Ts seconds (recall Ts =
1/Fs), and thus we replace the variable t with nTs for n = 0, 1, 2, . . . for however many
samples we obtain. The period N of a discrete-time signal will be expressed in units of
samples and in the case of our sine wave example must satisfy the equation

sin [2πf0nTs + φ] = sin

[
2π

f0
Fs

n+ φ

]

= sin

[
2π

f0
Fs

n+ 2π
f0
Fs

N + φ

]

= sin

[
2π

f0
Fs

(n+N) + φ

]
,

where the value 2π(f0/Fs) is the normalized discrete angular frequency (radians/sample).
If the discrete-time signal is periodic, then the value at sample n must be equal to the value
at sample n + N for some integer N . This implies that 2π(f0/Fs)N ≡ 2πk, where k is
another arbitrary integer. Rearranging this equation results in

N

k
=

Fs

f0
.

Since both N and k must be integers, the ratio Fs/f0 must be rational for the discrete-time
signal to be periodic. In this case, k represents the number of periods of the continuous-time
signal spanned by the N samples of the periodic discrete-time signal. If there are no integer
values of N and k that solve the equality N/k = Fs/f0, then the sampled version of the
signal is not periodic. This result of the sampling process is why many continuous-time
signals that are periodic do not result in periodic discrete-time signals.

The information that defines a discrete-time signal is not necessarily unique; we can
define one period of the signal starting at any point. To help understand this concept,
Figure 5.1 shows portions of both a continuous and discrete-time 1 kHz sinusoid. Part (a)
shows the continuous-time sinusoid with the horizontal axis (time axis) labeling on top of
the figure. Additionally, the period (T = 1 ms) is also shown. To calculate the period of
the sampled, discrete-time version of this signal we must solve

N

k
=

Fs

f0
=

48000

1000
.

The obvious solution is N = 48 and k = 1. Part (b) shows the first 48 samples (i.e., for
n = 0, 1, 2, . . . , 47) of a discrete-time (sampled) version of the 1 kHz sinusoid (Fs = 48 kHz)
starting at t = 0. It is very important to realize that the last sample in part (b), where n =
47, does not equal the value at n = 0. Rather, the next sample (at n = 48) would equal the
value at n = 0. If a complete discrete-time period is provided, the signal can be “continued”
by replicating the information in the selected period. This concept is demonstrated in part
(c) where 48 consecutive samples are replicated and concatenated together for two full
periods. Repeating this concatenation process will allow you to generate arbitrary length
versions of the signal. Parts (d–f) are examples of the same signal where the signal was
defined by starting the sampling process at n = 20, 30, and 40 samples, respectively, and
providing the next N = 48 samples of the signal.

5.1. THEORY 85

0 0.5 1 1.5 2 2.5

−1
0
1

(a
)

time (ms)

T

−1
0
1

(b
)

−1
0
1

(c
)

−1
0
1

(d
)

−1
0
1

(e
)

0 20 40 60 80 100 120
−1

0
1

(f
)

n (samples)

Figure 5.1: Continuous and discrete-time sinusoids. (a): 1 kHz continuous-time sinusoid.
(b–f): 1 kHz sinusoid sampled at 48 kHz. (b): one period starting at n = 0. (c): demon-
stration of the periodic nature of a sampled sinusoid. (d–f): sampling/display commencing
at n = 20, 30 and 40 samples, respectively.

5.1.2 Signal Generation

In order to limit the discussion to a reasonable length, we will only discuss the following
techniques to generate a sinusoid:

direct digital synthesizer (DDS): these techniques can use a phase accumulator with
a sin() or cos() trigonometric function call or use a table lookup system.

special cases: this includes sine and cosines with f = Fs/2, f = Fs/4, and other frequen-
cies that result in reasonable values for N .

digital resonator: this technique uses an impulse-excited, second-order, IIR filter, where
the complex conjugate pole-pairs are placed on the unit circle.

impulse modulator (IM): this technique is based on using scaled impulses to periodi-
cally excite an FIR filter. Impulse modulation is commonly used in digital communi-
cations transmitters and is discussed further in Chapter 16.

We will discuss the theory of these signal generation techniques before proceeding to exam-
ples.

Direct Digital Synthesizer Case

You are probably familiar with plotting deterministic waveforms such as

w(t) = A sin(2πft)

86 CHAPTER 5. PERIODIC SIGNAL GENERATION

in many of your math, physics, and engineering classes. In the equation above, A is the
waveform’s amplitude, f is the desired output frequency, and t represents the time variable.

The DDS idea, as it is implemented in real-time hardware, starts by converting w(t) to
a discrete-time process. This conversion is accomplished by replacing t by nTs, where n
is an integer and Ts is the sample period. Therefore, w(t) becomes w[nTs], which is equal
to A sin[2πfnTs]. Remembering that Ts = 1/Fs, where Fs is the sample frequency and
rearranging the argument of the sine function, we arrive at

w[n] = A sin[2πfnTs] = A sin

[
n

(
2π

f

Fs

)]
= A sin [nφinc] ,

where we have used the common notation of using w[n] in place of w[nTs] since Ts is tacitly
assumed. The value φinc = 2πf/Fs is called the phase increment. A phase accumulator
can be used to add the phase increment to the previous value of the phase accumulator
every sample period. The phase accumulator is kept in the interval 0 to 2π by a modulus
operator. Since real-time processes can run for an indefinite amount of time, a modulus
operation is required to prevent an overflow of the phase accumulator. Finally, the sin()
of the phase accumulator’s value can be calculated and the value provided as the system’s
output. The block diagram for this process is shown in Figure 5.2. Notice that since φinc is
added to the phase accumulator each time the input ISR is called (which is every Ts = 1/Fs

seconds or 48,000 times/sec in this example), the value n never appears in the algorithm.
The argument of the sin() operator, nφinc, is a linearly increasing function whose slope

depends on the desired output frequency. To illustrate this point, Figure 5.3 plots the
accumulated phase as a function of time for four different frequencies. Figure 5.4 plots the
sampled (Fs = 48 kHz) version of Figure 5.3 for only the 1000 Hz case. Figure 5.5 expands
a portion of Figure 5.4 and adds additional labeling. To prevent aliasing, a minimum of

φ����

�
.π � /��

����.π �����
�����������

����
����
���

Figure 5.2: Block diagram associated with sinusoid generation.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

ph
as

e
(r

ad
ia

ns
)

time (ms)

2000 Hz
1000 Hz
 500 Hz
 250 Hz

Figure 5.3: Accumulated phase for four different frequencies.

5.1. THEORY 87

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
ph

as
e

(r
ad

ia
ns

)

time (ms)

continuous
sampled

Figure 5.4: Accumulated phase for a 1000 Hz sinusoid.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

ph
as

e
(r

ad
ia

ns
)

time (ms)

φ
inc

1/F
s

Figure 5.5: Accumulated phase for a 1000 Hz sinusoid (zoomed in from Figure 5.4).

88 CHAPTER 5. PERIODIC SIGNAL GENERATION

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

ph
as

e
(r

ad
ia

ns
)

time (ms)

phase accumulator’s value without th
e m

odulus operation

phase accumulator’s maximum value of 2π

continuous
sampled

Figure 5.6: Accumulated phase for a 1000 Hz sinusoid with modulus 2π applied.

two samples per period are required. This limit requires that φinc ≤ π. Finally, Figure 5.6
demonstrates the effect of the modulus operation on the phase accumulator’s value.

Special Cases

If the characteristics (frequency and phase) of the signal that you need to generate will not
change with time, then you may not need a phase accumulator at all. A few special cases
follow.

1. Sine and cosine with f = Fs

2 . Substituting f = Fs

2 into the φinc equations results in

φinc = 2π

(
f

Fs

)∣∣∣∣
f=Fs

2

= π.

This is the aliasing limit for φinc and results in

w [n] = A sin (nφinc)|(φinc=π) = A sin (nπ) = 0.

A signal generator that always has an output = 0 is of little use. However, the cosine
version results in

w [n] = A cos (nφinc)|(φinc=π) = A cos (nπ) = A,−A,A,−A . . .

This implies that a cosine waveform of frequency Fs/2 can be created by simply gen-
erating A,−A, . . . for however long you need the signal. The CPU resources required
to generate these or other alternating values are inconsequential. Notice that for
f = Fs/2, N = 2 (2 samples per period).

5.1. THEORY 89

Table 5.1: Some special case frequencies of direct digital synthesis (DDS). The frequency
values shown in the right column assume Fs = 48 kHz.

Fs ratio N frequency (Hz)

Fs/2 2 24,000

Fs/3 3 16,000

Fs/4 4 12,000

Fs/5 5 9,600

Fs/6 6 8,000

Fs/8 8 6,000

Fs/10 10 4,800

Fs/12 12 4,000

Fs/15 15 3,200

Fs/16 16 3,000

Fs/20 20 2,400
...

...
...

Fs/N N 48, 000/N

2. Sine and cosine with f = Fs

4 . Substituting f = Fs

4 into the φinc equations results in

φinc = 2π

(
f

Fs

)∣∣∣∣
f=Fs

4

=
π

2
.

This yields

w [n] = A sin (nφinc)|(φinc=
π
2)

= A sin
(
n
π

2

)
= 0, A, 0,−A, . . .

and

w [n] = A cos (nφinc)|(φinc=
π
2)

= A cos
(
n
π

2

)
= A, 0,−A, 0, . . .

This implies that a sine or cosine waveform of frequency Fs

4 can be created by simply

generating 0, A, 0,−A, . . . or A, 0,−A, 0, . . ., respectively. As in the Fs

2 case, the CPU
resources required to generate these or other repeating values are inconsequential.
Notice that for f = Fs

4 , N = 4 (4 samples per period).

3. Sines and cosines with other frequencies that result in reasonable values for N . As-
suming from our discussion in Section 5.1 that k = 1, we simply divide Fs by the
desired frequency f to find N . Table 5.1 shows several possible frequencies and the
corresponding values of N .

All of the table entries in the right column are based on Fs = 48 kHz. For example,
to generate a 4,800 Hz cosine waveform, we would only need to calculate the first 10
values of the sequence. These values are based on N = 10 and φinc =

π
5 . Specifically,

we would need to evaluate

w [n] = A cos
(π
5
n
)
, for n = 0, 1, . . . , 9.

90 CHAPTER 5. PERIODIC SIGNAL GENERATION

These values can be calculated once by the real-time program (i.e., in StartUp.c) or
off-line using tools such as a handheld calculator, spreadsheet program, or MATLAB�.
Continuously repeating all 10 values (in the proper order), with one value every sample
time of Ts =

1
48,000 seconds, will result in the desired 4,800 Hz signal.

Digital Resonator

The digital resonator technique is based on the idea that if you refer to any z-transform
table you will find an entry similar to,

[rn sin (ω0n)]u [n]
Z←→ r sin (ω0) z

−1

1− [2r cos (ω0)] z−1 + r2z−2
.

Letting r = 1 (equivalent to placing the poles on the unit circle), this equation simplifies to

[sin (ω0n)]u [n]
Z←→ sin (ω0) z

−1

1− [2 cos (ω0)] z−1 + z−2
.

This transform pair implies that if you excite this system with an impulse, the system’s
output will be a sine wave. The system’s difference equation can be determined from the
transfer function

H(z) =
Y (z)

X(z)
=

sin (ω0) z
−1

1− [2 cos (ω0)] z−1 + z−2
.

Cross multiplying, taking the inverse z-transform, and rearranging the terms into the stan-
dard form results in the difference equation

y[n] = sin(ω0)x[n− 1] + 2 cos(ω0)y[n− 1]− y[n− 2] .

Thus, to create a sine wave of digital frequency ω0 = 2πf0/Fs, we need to excite this
second-order IIR filter with an impulse. To find out where the poles and zeros are located,
we convert the transfer function to positive powers of z, then factor the transfer function.
This leads to

sin (ω0) z
−1

1− [2 cos (ω0)] z−1 + z−2
=

sin (ω0) z
−1

1− [2 cos (ω0)] z−1 + z−2
· z

2

z2
=

sin (ω0) z

z2 − [2 cos (ω0)] z + 1
.

The numerator term reveals a single zero at the origin. For the denominator, we apply the
quadratic equation

2 cos (ω0)±
√
(2 cos (ω0))

2 − 4 (1) (1)

2 (1)
= cos (ω0)±

√
cos2 (ω0)− 1,

which, using the trigonometric identity

sin2 (ω0) + cos2 (ω0) = 1 ∴ cos2 (ω0)− 1 = − sin2 (ω0) ,

can be simplified to

cos (ω0)±
√
− sin2 (ω0) = cos (ω0)± j sin (ω0) = e±jω0 .

This result, shown above in both rectangular and polar forms, should be recognized as
indicating that the complex conjugate poles are located on the unit circle at the frequency
±ω0. This is at best a marginally stable system (in that it oscillates at a constant frequency

5.1. THEORY 91

of ω0), and some authors would call this system unstable. Actually, it is “intentionally
unstable.” Oscillators and resonators are definitely on a fine line between systems that are
clearly stable and those that are clearly unstable. While the system is unstable in the sense
that the output does not change regardless of the input, it is stable in the sense that the
output frequency remains the same.

We will now use a unit impulse as the input to the system and calculate the first few
output terms. Manually calculating a few terms for the difference equation is very helpful,
not only in understanding this process, but it will greatly assist our real-time algorithm
development. Remember that the difference equation is

y[n] = sin(ω0)x[n− 1] + 2 cos(ω0)y[n− 1]− y[n− 2].

1. Label the columns as shown below.

n y[n] y[n− 1] y[n− 2] x[n] x[n− 1]

2. Fill in the n = 0 at rest row information.

n y[n] y[n− 1] y[n− 2] x[n] x[n− 1]

0 0 0 1 0

3. Calculate the y[0] term.

n y[n] y[n− 1] y[n− 2] x[n] x[n− 1]

0 0 0 0 1 0

4. Fill in the n = 1 row information. Notice the “down and to the right” flow of the
stored y values and the stored x values.

n y[n] y[n− 1] y[n− 2] x[n] x[n− 1]

1 0 0 0 1

5. Calculate the y[1] term.

n y[n] y[n− 1] y[n− 2] x[n] x[n− 1]

1 sin(ω0) 0 0 0 1

6. Fill in the n = 2 row information.

n y[n] y[n− 1] y[n− 2] x[n] x[n− 1]

2 sin(ω0) 0 0 0

We stop here with the n = 2 initial conditions loaded and ready to calculate y[2]. This is
an excellent place for us to pause and pick the idea up again for our real-time C digital
resonator discussed later in this chapter. The difference equation for the rest of time (i.e.,
where n ≥ 2) now simplifies to

y[n] = 2 cos(ω0)y[n− 1]− y[n− 2]

since, from this point on, all of the x[n− 1] terms will equal zero.
Note that the impulse modulator (IM) technique is commonly used in digital communi-

cations transmitters. We therefore postpone its discussion until Chapter 16, which includes
a digital transmitter project.

92 CHAPTER 5. PERIODIC SIGNAL GENERATION

Figure 5.7: winDSK running the Arbitrary Waveform application.

5.2 winDSK Demonstration

Start the winDSK application, and the main user interface window will appear. Ensure the
correct selections have been made in the “DSK and Host Configuration” panel of winDSK6
or the “Board and Interface Configuration” panel of winDSK8 for each parameter before
proceeding.

5.2.1 Arbitrary Waveform

Clicking on the winDSK Arbitrary Waveform button will run that program in the attached
DSK, and a window similar to Figure 5.7 will appear. The arbitrary waveform program
generates sine, square, and triangle waves at frequencies between 1 Hz and the upper limit
of the codec in use. For multichannel codecs, each output channel is capable of simultaneous
independent operation. The displays show the settings for the currently selected channel,
as indicated by the channel number display. The frequency displays will turn red if the
selected frequency exceeds the capabilities of the codec, and the DSK frequency will not
be updated. As an arbitrary waveform generator, the program can load up to 2,000,000
sample values (depending on the DSK version) per channel from a text file. In this mode,
the sample values in the file are repeatedly used as the system output. The values will be
automatically scaled to fit within the ADC range. A sample waveform file called chirp.asc

is included in the winDSK installation. This file contains a 2,500 sample chirp waveform
that can be played through the application.2 The arbitrary waveform generator can also
function as a noise generator. Finally, one-shot operation is also supported.

Selecting the arbitrary waveform generator in the “sine” mode will run a program in
the DSK that is most similar to the examples given in the preceding discussion regarding

2A chirp is typically a short duration signal in which the frequency sweeps monotonically (up or down)
with time. Chirps can have linear sweeps or logarithmic sweeps, and are used in a variety of radar, sonar,
and communications applications.

5.2. WINDSK DEMONSTRATION 93

(a) 12-keys (b) 16-keys

Figure 5.8: winDSK running the DTMF application.

periodic signal generation. Of course square and triangle waves are also periodic signals.

5.2.2 DTMF

Clicking on the winDSK DTMF button will load and run that program into the attached
DSK, and a 12-keypad window similar to Figure 5.8(a) will appear by default. Clicking
on the “16-keys” button will add a fourth column to the keypad display as shown in Fig-
ure 5.8(b).

This application generates standard Dual-Tone, Multiple-Frequency (DTMF) signals as
defined by telephone companies. These are signals that consist of two sinusoids of different
frequencies that are added together. Anytime you dial a modern telephone, DTMF tones
are generated that correspond to the buttons you pressed on the telephone’s keypad (or
correspond to a telephone number that was stored as an autodial selection). The DTMF
standard specifies that tones must persist for at least 40 ms and have at least 50 ms of
“quiet time” between tones. Additionally, DTMF tones must not occur at a faster rate
than 10 characters/sec [59].

A speed-dial feature is available on the DTMF application of winDSK by clicking the
“Dial” button; it provides automatic generation of DTMF sequences based on the number
you type into the “Speed Dial” entry window. For this option, only the standard 12-key
tone pairs are generated by the characters 0-9, #, *. Any other characters are ignored. The
duration and volume (i.e., gain) of a tone, as well as the interval of silence between tones,
may be adjusted by using the slider controls in the upper right of the DTMF application
window.

If you’re using a stereo codec on the DSK, both channels are driven with the same signal.
As mentioned above, a 12-key or 16-key keypad can be selected. In 16-key mode, all 16
standardized tone pairs can be generated. The two frequencies that are generated for any
given key press can be determined by inspecting Figure 5.9.

94 CHAPTER 5. PERIODIC SIGNAL GENERATION

(. / 	

0 3 8 #

9 : 7

; - < �

879�2&

99-�2&

:3.�2&

70(�2&

(.-7�2& (//8�2& (099�2& (8//�2&

Figure 5.9: The DTMF frequencies.

5.3 MATLAB Implementation

MATLAB has a number of ways of generating sinusoids. However, we will focus on three of
the techniques that can help prepare us for the realities of real-time signal generation using
DSP hardware.

5.3.1 Direct Digital Synthesizer Technique

In this technique, MATLAB is used to implement the phase accumulator process. A listing
demonstrating this technique is shown below.

Listing 5.1: MATLAB implementation of phase accumulator signal generation.

% Simulation inputs

2 A = 32000; % signal’s amplitude

f = 1000 ; % signal’s frequency

4 phaseAccumulator = 0 ; % signal’s initial phase

Fs = 48000; % system’s sample frequency

6 numberOfTerms = 50 ; % calculate this number of terms

8 % Calculated and output terms

phaseIncrement = 2∗pi∗f/Fs ; % calculate the phase increment

10

for i = 1 : numberOfTerms
12 % ISR’s algorithm begins here

phaseAccumulator = phaseAccumulator + phaseIncrement ;
14 phaseAccumulator = mod (phaseAccumulator , 2∗pi) ;

output = A∗ sin (phaseAccumulator)
16 % ISR’s algorithm ends here

end

A few items need to be discussed concerning this listing.

5.3. MATLAB IMPLEMENTATION 95

1. Variable initialization section (lines 2–6). Remembering that the sine and cosine
functions are constrained to being between ±1 requires an amplitude scale factor, A,
or the DAC’s output will only use the least significant bit (LSB).

2. For a constant output frequency, the calculation of the phase increment (line 9) need
only be accomplished once. The calculated value of the phase increment must be ≤ π
or signal aliasing will occur.

3. The actual algorithm to generate the sinusoidal signal requires only three lines of code
(lines 13–15), inside a “for” loop that simulates the execution of an ISR in C that is
called each time a new sample arrives. These lines of code accomplish the following
three tasks each time the “ISR” is called:

(a) line 13: add the phase increment’s value to the phase accumulator.

(b) line 14: perform a modulus 2π operation to keep the phase accumulator in the
range 0 to 2π.

(c) line 15: calculate the system’s output value by scaling the sine of the phase
accumulator’s value by A.

These three lines of code could be combined, but that would result in less understand-
able code.

5.3.2 Table Lookup Technique

This section demonstrates how MATLAB can be used to implement the table lookup tech-
nique, which is a very efficient method to generate a discrete-time signal. In this technique,
we repeatedly cycle through a stored vector of predefined signal values. We will again sim-
ulate the execution of an ISR at the sample frequency by using a “for” loop. A new value
of the signal is read from the table each time the “ISR” is called.

Listing 5.2: MATLAB implementation of the table lookup-based signal generation.

1 % Simulation inputs

signal = [32000 0 −32000 0] ; % cosine signal values (Fs/4 case)

3 index = 1 ; % used to lookup the signal value

numberOfTerms = 20 ; % calculate this number of terms

5

% Calculated and output terms

7 N = length (signal) ; % signal period

9 for i = 1 : numberOfTerms
% ISR’s algorithm begins here

11 i f (index >= (N + 1))
index = 1 ;

13 end
output = signal (index)

15 index = index + 1 ;
% ISR’s algorithm ends here

17 end

A few items need to be discussed concerning this listing.

96 CHAPTER 5. PERIODIC SIGNAL GENERATION

1. Variable initialization section (lines 2–4). These lines of code establish the variable
signal that stores the required values of the output signal and the integer variable
index that is used to access the different storage locations of signal.

2. Period determination (line 7). This line of code determines the period of the signal
based on the length of the variable signal.

3. The actual algorithm to generate the sinusoidal signal requires only five lines of code
(lines 11–15). These lines of code accomplish the following three tasks each time the
ISR is called:

(a) line 11–13: performs a modulus N operation to keep index in the range 1 to N .
Remember, that unlike C/C++, MATLAB array indices start at 1 instead of 0.

(b) line 14: calculates the system’s output value by selecting the appropriate index
of signal.

(c) line 15: increments the integer variable index.

5.4 DSK Implementation in C

Note that the examples in this section may require you to change the ISR file in a project
to change the operation of the code. Important: you must have only one of these ISR
files loaded as part of your project at any given time. To switch from using one ISR file to
another, right click the current ISR file in the left project window and select “Remove from
Project.” At the top of the Code Composer Studio window click “Project,” “Add Files to
Project,” and select the new ISR file. Then click “Rebuild All” (or “Incremental Build”).
Once the build is complete, “Load Program” (or “Reload Program”) into the DSK and click
on “Run.” You will then be using the new ISR file.

5.4.1 Direct Digital Synthesizer Technique

This version of the direct digital synthesizer technique is very similar to the DDS MATLAB
example. The intention of this first approach is understandability, which often comes at the
expense of efficiency.

The files necessary to run this application are in the ccs\sigGen directory of Chapter 5.
The primary file of interest is the sinGenerator_ISRs.c, which contains interrupt service
routines; ensure this is the only ISR file included in the project. This file contains the
necessary variable declarations and performs the actual sinusoid generation. However, as
with all the Code Composer Studio projects we include with this text, you should make a
habit of inspecting other files in the project, such as StartUp.c, to be sure you understand
the full workings of the program.

If you’re using one of the stereo codecs on your DSK, the program could implement
two independent sinusoid generators for the Left and Right channels. For clarity, this
example program will contain only a single phase accumulator, but that phase will be used
to generate a sine wave for the Left channel and a cosine wave for the Right channel.

In the code shown below, A, fDesired, and phase (lines 1–3) are the signal’s amplitude,
frequency, and phase, respectively. Remember, that a 16-bit DAC has a range of +32, 767
to −32, 768. The variable phase sets not only the signal’s initial phase, but will also serve
as the phase accumulator. Having π (pi on line 5), and the system’s sample frequency (fs
on line 8), defined allows us to calculate the phase increment, which is declared on line 6.

5.4. DSK IMPLEMENTATION IN C 97

Listing 5.3: Variable declaration associated with sinusoidal signal generation.

1 f loat A = 32000; /* signal’s amplitude */

f loat fDesired = 1000 ; /* signal’s frequency */

3 f loat phase = 0 ; /* signal’s initial phase */

5 f loat pi = 3.1415927 ; /* value of pi */

f loat phaseIncrement ; /* incremental phase */

7

Int32 fs = 48000; /* sample frequency */

The code shown below performs the actual signal generation operation. The four main
steps involved in this operation will be discussed below the code listing.

Listing 5.4: Algorithm associated with sinusoidal signal generation.

/* algorithm begins here */

2 phaseIncrement = 2∗pi∗fDesired/fs ;
phase += phaseIncrement ; // calculate the next phase

4

i f (phase >= 2∗pi) phase −= 2∗pi ; // modulus 2*pi operation

6

CodecDataOut . Channel [LEFT] = A∗sinf (phase) ; // scaled L output

8 CodecDataOut . Channel [RIGHT] = A∗cosf (phase) ; // scaled R output

/* algorithm ends here */

The four real-time steps involved in DDS-based signal generation

An explanation of Listing 5.4 follows.

1. (Line 2): This code calculates the phase increment each time the ISR is called. This
will allow us to change the signal’s frequency if desired during program execution.

2. (Line 3): This code adds the phase increment to the current value of the phase.

3. (Line 5): This code performs the equivalent of a modulus 2π operation. To prevent
signal aliasing, the phase increment must be ≤ π. With a maximum increment value
of π, the modulus operation can be simplified to just a test and a subtraction of 2π.
Subtracting 2π “starts over” by one full period. This method is far more efficient than
using the modulus operation.

4. (Lines 7–8): These two lines of code calculate the sine and cosine values, scale these
values by A, and write the results to the DAC.

You may want to refer Appendix F, in particular section F.3, if you are unsure why the
math.h header had to be included in the DDS code.

Now that you understand the code. . .

Go ahead and copy all of the files into a separate directory. Open the project in CCS and
“Rebuild All.” Once the build is complete, “Load Program” into the DSK and click on
“Run.” Your 1 kHz sine generator is now running on the DSK.

98 CHAPTER 5. PERIODIC SIGNAL GENERATION

5.4.2 Table Lookup Technique

This version of the table lookup technique is very similar to the table lookup MATLAB
example. The files necessary to run this application are in the same place as before, the
ccs\sigGen directory of Chapter 5. The primary file of interest this time is sinGenerator_
ISRs1.c, which contains the interrupt service routines; remove the previous ISR file from
your project and add this one. This file contains the necessary variable declarations and
performs the actual sinusoid generation.

To allow for the use of a stereo codec (e.g., the on-board codec on the C6713 or the
OMAP-L138 Experimenter Kit), the program implements independent Left and Right chan-
nel sinusoid generators. For clarity, this example program will only generate f = Fs/4 =
12 kHz, but will output a sine wave to the Left channel and a cosine wave to the right
channel.

In the code shown below, N (line 1) is the signal’s period, signalCos (line 3) and
signalSin (line 4) store the table values for the cosine and sine waveforms, respectively,
and index (line 5) is a integer used to cycle through the different values stored in the table.

Listing 5.5: Variable declaration associated with sinusoidal signal generation.

1 #define N 4 // signal period for f = Fs/4

3 Int32 signalCos [N] = {32000 , 0 , −32000 , 0} ; // cos waveform

Int32 signalSin [N] = {0 , 32000 , 0 , −32000}; // sin waveform

5 Int32 index = 0 ; /* signal’s indexing variable */

The code shown below performs the actual signal generation operation. The three main
steps involved in this operation will be discussed below the code listing.

Listing 5.6: Algorithm associated with sinusoidal signal generation.

1 /* algorithm begins here */

i f (index == N) index = 0 ;
3

CodecDataOut . Channel [LEFT] = signalCos [index] ; // cos output

5 CodecDataOut . Channel [RIGHT] = signalSin [index] ; // sin output

7 index++;
/* algorithm ends here */

The three real-time steps involved in table lookup-based signal generation

An explanation of Listing 5.6 follows.

1. (Line 2): This code performs a modulus operation and keeps the variable index

between 0 and 3.

2. (Line 4–5): This code outputs the next value from the cosine and sine tables. Notice
that the signal’s amplitude is included in the signalCos and signalSin array values.

3. (Line 7): This code increments (increases by 1) the value of index.

Now that you understand the code. . .

Go ahead and copy all of the files into a separate directory. Open the project in CCS and
“Rebuild All.” Once the build is complete, “Load Program” into the DSK and click on
“Run.” Your 12 kHz (Fs

4) cosine and sine generators are now running on the DSK.

5.4. DSK IMPLEMENTATION IN C 99

5.4.3 Table Lookup Technique with Table Creation

This version of the table lookup technique adds a table creation routine. While this adds
marginally to the code size, it frees you from needing a special table length or requiring a
specific ratio between f0 and Fs. Note that the table creation routine only needs to run
once at startup, so the real-time operation is not affected. The files necessary to run this
application are in the ccs\sigGenTable directory of Chapter 5. In the previous examples,
we only looked at the ISR file in detail. For this example, there are two files of interest:
StartUp.c and tableBasedSinGenerator_ISRs.c. The file StartUp.c contains code not
tied to any interrupt, and so is the appropriate place for the code that runs just once to
create the table values. The file tableBasedSinGenerator_ISRs.c contains the interrupt
service routines. These files contain routines to generate and fill the table as well as the
necessary variable declarations and routines to perform the actual sinusoid generation.

To allow for the use of a stereo codec (e.g., the on-board codec on the C6713 DSK or
the OMAP-L138 Experimenter Kit), the program could implement independent Left and
Right channel sinusoid generators. For clarity, this example program will only generate a
6 kHz sine wave, which will be heard on both the Left and Right channels.

In the code shown below, NumTableEntries (line 2) defines the size3 of the table,
desiredFreq (line 4) is the desired output frequency, and SineTable (line 5) is the array
(i.e., table) that will be filled with sine values. The FillSineTable function (lines 7–13)
is only called once by the StartUp.c file. This function call occurs just after the DSK fin-
ishes initializing. This one-time calculation prevents repeated calls of the computationally
expensive trigonometric function sinf().

Listing 5.7: Variable declaration and table creation associated with table-based sinusoidal
signal generation.

/* declared at file scope for visibility */

2 #define NumTableEntries 100

4 f loat desiredFreq = 6000 . 0 ;
f loat SineTable [NumTableEntries] ;

6

void FillSineTable ()
8 {

Int32 i ;
10

for (i = 0 ; i < NumTableEntries ; i++) // fill table values

12 SineTable [i]=sinf (i∗(f loat) (6 .283185307/ NumTableEntries)) ;
}
The code shown below performs the actual signal generation operation. The four main
steps involved in this operation will be discussed below the code listing.

Listing 5.8: Algorithm associated with table-based sinusoidal signal generation.

1 /* ISR’s algorithm begins here */

index += desiredFreq ; // calculate the next phase

3 i f (index >= GetSampleFreq ()) // keep phase between 0-2*pi

index −= GetSampleFreq () ;
5

sine=SineTable [(Int32) (index/GetSampleFreq () ∗NumTableEntries)] ;
3Using a larger value of NumTableEntries produces a larger lookup table which, in general, produces a

more “pure” sinusoid with less harmonic distortion. Experiment with various sizes of the lookup table.

100 CHAPTER 5. PERIODIC SIGNAL GENERATION

7 CodecData . Channel [LEFT] = 32767∗sine ; // scale the result

CodecData . Channel [RIGHT] = CodecData . Channel [LEFT] ;
9 /* ISR’s algorithm ends here */

The four real-time steps involved in table lookup-based signal generation with
table creation

An explanation of Listing 5.8 follows.

1. (Line 2): This code is the equivalent operation of adding the phase increment to the
phase accumulator.

2. (Lines 3–4): This code performs a modulus operation and maintains index between
0 and the sample frequency (typically, Fs = 48 kHz). Note the use of the function
GetSampleFreq() in these lines and line 6. This is a very simple function call which
returns a float value equal to the sample frequency you chose for the DSK. Using a
function call instead of hard-coding a number makes the code a bit more portable.

3. (Line 6): This code calculates the next floating point value of the table index, converts
this number to an integer, and then uses this to access the required table value’s
location in the SineTable array.

4. (Lines 7–8): This code scales the table’s output (sine) and outputs the result to both
the Left and Right channels.

Now that you understand the code ...

Go ahead and copy all of the files into a separate directory. Open the project in CCS and
“Rebuild All.” Once the build is complete, “Load Program” into the DSK and click on
“Run.” Your 6 kHz sine generator is now running on the DSK.

5.4.4 Digital Resonator Technique

The digital resonator technique implements a second-order IIR filter with very special initial
conditions stored in the y[n− 1] and y[n− 2] memory locations. You may want to refer to
the theoretical discussion of digital resonators given earlier in the chapter. The intention of
the approach we use is understandability, which may come at the expense of efficiency.

The files necessary to run this application are in the same ccs\sigGen directory of
Chapter 5 that contained the files for the first two C examples of this chapter. The primary
file of interest this time is resonator_ISRs.c, which contains the interrupt service routines;
remove any other ISR file from the project and add this one. This file contains the necessary
variable declarations and performs the actual sinusoid generation.

If you’re using one of the stereo codecs on your DSK, the program could implement
independent Left and Right channel sinusoid generators. For clarity, this example program
only generates one sine wave but outputs the sine wave to both the Left and Right channels.

In the code shown below, fDesired and A (lines 1–2) are the signal’s frequency and
amplitude, respectively. Remember that a 16-bit DAC has a range of +32, 767 to −32, 768.
Having π (pi on line 4), and the system’s sample frequency (fs on line 8), defined will
allow us to calculate theta, the digital frequency, which is declared on line 5. Finally, y[3]
declares the storage for the current and past output values. Only three terms are needed
to implement the second-order difference equation.

5.4. DSK IMPLEMENTATION IN C 101

Listing 5.9: Variable declaration associated with a digital resonator.

1 f loat fDesired = 1000 ; // your desired signal frequency

f loat A = 32000; // your desired signal amplitude

3

f loat pi = 3.1415927 ; // value of pi

5 f loat theta ; // the digital frequency

f loat y [3] = {0 , 1 , 0} ; // the last 3 output values.

7

Int32 fs = 48000; // sample frequency

The code shown below performs the actual signal generation operation using the digital
resonator techniques. The four main steps involved in this operation will be discussed
below the code listing.

Listing 5.10: Algorithm associated with a digital resonator.

/* algorithm begins here */

2 theta = 2∗pi∗fDesired/fs ; // calculate digital frequency

4 y [0] = 2∗cosf (theta) ∗y [1] − y [2] ; // calculate the output

y [2] = y [1] ; // prepare for the next ISR

6 y [1] = y [0] ; // prepare for the next ISR

8 CodecDataOut . Channel [LEFT] = A∗sinf (theta) ∗y [0] ; // scale

CodecDataOut . Channel [RIGHT] = CodecDataOut . Channel [LEFT] ;
10 /* algorithm ends here */

The four real-time steps involved in digital resonator-based signal generation

An explanation of Listing 5.10 follows.

1. (Line 2): This code calculates the digital frequency. This term is needed as an input
argument for both a scale factor and a filter coefficient.

2. (Line 4): This code calculates the current output value by implementing the system’s
difference equation.

3. (Lines 5–6): These two lines of code shift the values in the y arrays one element to
the right. The equivalent operation is

y[1]→ y[2]

y[0]→ y[1].

4. (Lines 8–9): These two lines of code scale the filter’s output to achieve an amplitude
of A. The resulting value is then sent to both the Left and Right output channels.

Now that you understand the code. . .

Go ahead and copy all of the files into a separate directory. Open the project in CCS and
“Rebuild All.” Once the build is complete, “Load Program” into the DSK and click on
“Run.” Your 1 kHz sine generator is now running on the DSK.

102 CHAPTER 5. PERIODIC SIGNAL GENERATION

5.5 Pseudonoise Sequences

There are many, many application areas today that use the special class of periodic sig-
nals called pseudonoise (PN) sequences.4 For example, applications that depend on PN
sequences include cellular (mobile) telephones and base stations, GPS navigation systems,
wireless Internet (Wi-Fi) communications, Bluetooth communications protocol, satellite
communications transmitters and receivers, deep space probes, satellite TV transmitters
and receivers, garage door openers, wireless (residential) telephones, data scramblers, dither
generators, timing recovery modules, system synchronization modules, noise generators,
concert hall equalizers,. . . the list goes on and on. We hope you can appreciate that the
topic of PN sequences is important!

All the applications listed above use some form of real-time DSP to generate, process, or
otherwise manipulate PN sequences, which is why the topic shows up in this book. Because
PN sequences are so different from other signals, they are covered here in a separate section
in which we introduce just the main ideas. Space limitations won’t allow us to cover this
fascinating topic in detail, so we will refer you to some excellent texts. Use of PN sequences
is central to a form of digital communications called “spread spectrum,” so any good digital
communications book, such as [60–64], will cover much more of the theoretical aspects of
PN sequences than we can include here. For a very practical and extremely useful book
that goes beyond the theory, we highly recommend Dixon [65]. While we are reluctant
to recommend web pages as references (since they can change without warning), at the
time of this writing the web site of New Wave Instruments provides an excellent online
resource regarding PN sequences [66]. Note that much of the following discussion assumes
the primary application of the PN sequences is spread spectrum (SS) communications, but
is applicable to any use of these special periodic signals.

Why are they called PN sequences? While a PN sequence is just a sequence of symbols
(typically called chips) that represent binary 1’s and 0’s, the sequence at first glance appears
to be just random noise, and indeed has many of the characteristics of random noise. But if
you know the “secret,” each PN sequence is deterministic and can be generated, predicted,
or extracted from a signal with relative ease. Note that by convention, we use the distinction
in our terminology that data is made up of bits but that a PN sequence is made up of chips.
The time duration of a chip is almost always much shorter than the time duration of a bit,
so the bandwidth (i.e., the spectrum) of a PN sequence is much greater than the bandwidth
of just the data.

In spread spectrum communications, a PN sequence is used in various ways to modulate
the data, and thus “spreads” the spectrum of the data greatly. This has many advantages.
For example, for a given transmitter output power, spreading out the bandwidth lowers the
energy at any particular frequency, often near the apparent noise level, making SS signals
hard to detect if you don’t know they are there.5 But by using a receiver that “knows”
the correct PN sequence, the data from the SS signal can be easily “pulled out of the
noise” and recovered. Other advantages of SS communication include greater resistance to
jamming or interference, better performance in multipath environments, and the ability for
multiple users (each having their “own” PN sequence) to simultaneously share the same
frequency band (a technique called code division multiple access, or CDMA). PN sequences
also enable precise ranging and timing measurements (such as with GPS), and allow robust
synchronization of data in noisy environments. We hope the preceding discussion has piqued
your interest, and stimulated your desire to learn more about PN sequences.

4Note that the term “PN code” is commonly used synonymously with the term “PN sequence.”
5While spread spectrum techniques can provide a level of privacy from the casual observer, they are not,

by themselves, a secure communications technique. For secure communications, other techniques such as
data encryption must be used.

5.5. PSEUDONOISE SEQUENCES 103

(�'(. �/

)
����.

������������

�����������$

�����

Figure 5.10: An r-stage simple shift register generator with one feedback tap shown.

)

(. /
������������

�����������$

�����

����.

Figure 5.11: A 3-stage simple shift register generator with one feedback tap shown.

5.5.1 Theory

The easiest way to introduce PN sequences is in the context of a type of finite state machine
called a shift register. Consider the generalized r-stage shift register generator (SRG), with
feedback, shown in Figure 5.10. Each stage contains (or stores its state as) a 1 or 0, which
we will call a chip.6

Each time the clock ticks, the contents of stage n moves “to the right” to stage (n+1).
The new contents of stage 1 is determined by the feedback path, which in Figure 5.10 is the
result of the modulo-2 addition (equivalent to the exclusive OR binary logic operation) of
the contents of stage (r− 1) and stage r. Since the operation in the feedback path is linear,
this is sometimes called a Linear Feedback Shift Register (LFSR). Nonlinear feedback shift
registers are interesting theoretically, but are not commonly used in practice. All shift
registers discussed here are LFSRs. The final stage (i.e., stage r) is always fed back, and
one or more other stages can be combined in modulo-2 addition to produce the new value
for stage 1 each time the clock ticks. Connecting the output of a given stage in such a way
is commonly called a “feedback tap.” If the selection of the feedback taps is made carefully,
then the output will have a period of N = 2r−1 clock cycles, and thus the output sequence
will have a length of N . This PN sequence output is called a “maximal length sequence” (or
more commonly, m-sequence) and it has special properties that make it very useful. Note
that the “all zeros state” is a forbidden state for the SRG (why?). The remaining part of
this discussion will be restricted to m-sequences unless otherwise noted, and when we write
the phrase “PN sequence” here, we mean an m-sequence.

As an example of a specific SRG, see Figure 5.11. This SRG has only 3 stages, and has
a feedback tap coming from stage 1. A compact way to describe this SRG configuration is

6Important: An r-stage shift register can be implemented in hardware (e.g., where each stage could be
a D flip-flop), or in software (where each “stage” could be just a single memory location or more commonly
where each “stage” is just one bit of a single r-bit wide memory location or CPU register).

104 CHAPTER 5. PERIODIC SIGNAL GENERATION

)(�'(. �/)))
��������������

����$

��������

��������

����
)

Figure 5.12: An r-stage modular shift register generator with one feedback tap shown.

)(. /
��������

����$

))

Figure 5.13: A 3-stage modular shift register generator with one feedback tap shown.

[3, 1]s using the notation found in Dixon [65].7 The first number is the number of stages, r,
and the subsequent numbers define the stages from which the feedback taps are taken. The
“s” subscript here denotes use of a “simple shift register generator,” or SSRG (sometimes
called a Fibonacci implementation), as opposed to another type called a “modular shift
register generator,” or MSRG (sometimes called a Galois implementation). Both figures
5.10 and 5.11 depict SSRGs.

Figure 5.12 shows a generalized r-stage modular shift register generator (MSRG), where
in this case each “stage” includes both a storage location for one bit (or rather, one chip)
and an exclusive OR gate for the modulo-2 addition. While the MSRG is better suited to
hardware implementations, both due to the modular form of the stages and the elimination
of logic gates in the main feedback path, the SSRG is simpler to understand and is more
often the version discussed in textbooks. Figure 5.13 shows a 3-stage MSRG with a feedback
tap entering stage 2. A compact way to describe this MSRG configuration, again using
the notation found in Dixon, is [3, 2]m. The SSRG of Figure 5.11 (designated [3, 1]s) and
the MSRG of Figure 5.13 (designated [3, 2]m) will output an identical PN sequence. This
illustrates the relationship between a Fibonacci implementation (i.e., SSRG) and a Galois
implementation (i.e., MSRG): [r, n, p, q, . . .]s is equivalent to [r, n − r, p − r, q − r, . . .]m.
Some reference authors choose to reverse the ordering of stage numbers for an SSRG from
that shown in Figure 5.10, resulting in identical feedback listings for either Fibonacci or
Galois implementations (for example, see [66]). We mention all this here to warn the reader
to pay careful attention to the notation used in a given reference source regarding how the
feedback taps are listed, especially if a particular PN sequence is desired. Reference sources
such as [65, 66] provide extensive tables listing feedback taps for valid m-sequences using
both SSRGs and MSRGs.8

As an example, let’s follow the output for the [3, 1]s SSRG shown in Figure 5.11. Re-
calling that the contents of each stage is a binary 1 or 0, and that the modulo-2 addition is

7Another compact method is a polynomial representation [60,62].
8Finite (Galois) field mathematics can be used to derive feedbacks taps for m-sequences, but this can be

tedious and is beyond the scope of this text.

5.5. PSEUDONOISE SEQUENCES 105

(����������(����������(�����������-���������(������������-���������-(((�
- ((�
(- (�
- (-�
- - (�
(- -�
((-�
(((�
- ((�
(- (�
- (-�
- - (�
(- -�
((-�

)(

��������

����������
+/=(,���'��>�����

Figure 5.14: Output of a [3, 1]s SSRG. Left: contents of all three stages. Top right: output
chips. Bottom right: antipodal signal conversion of chips.

just the exclusive OR binary logic operation, start with the state where all stages contain
a 1 (the “all ones state”) and calculate the output until you see it repeat. You should find
that the repeating output will be: 1 1 1 0 1 0 0, as depicted in Figure 5.14. The output is
taken from the 3rd stage, and it repeats after N = 23−1 = 7 clock cycles, thus the length of
the PN sequence is N = 7 chips; this is a maximal length PN sequence. Note that the “all
zeros state” never occurs, and as mentioned earlier is a forbidden state.9 In practical use,
the PN sequence is usually converted to ±1 as shown at the bottom right of Figure 5.14.
While this particular SRG has too few stages to be useful for nontrivial applications, its
simplicity makes it well-suited for a first exposure to the concept.

As mentioned earlier, the SSRG of Figure 5.11 (designated [3, 1]s) and the MSRG of
Figure 5.13 (designated [3, 2]m) will output an identical PN sequence. However, for the
same initial state (often called the “seed” state), the sequence will start at a different point
in the sequence. You should confirm that if you start with the “all ones state” as the seed
state, the [3, 2]m MSRG of Figure 5.13 will provide the repeating output of 1 0 1 0 0 1 1,
which is the same output sequence, but shifted by two positions. To obtain the identical
output shown at the right of Figure 5.14, you would need to begin [3, 2]m with the seed
state of 0 0 1.

Maximal length PN sequences have many valuable properties (see [61, p. 371] for a
succinct summary), with one of the most important being their correlation properties.
Recall that the normalized (by the length of the sequence) autocorrelation of a truly random
process will have a single peak equal to 1.0 only at the zero offset point, and essentially
zero everywhere else. The normalized autocorrelation of a maximal length PN sequence will
also have a peak equal to 1.0 at the zero offset point, and will drop linearly to a very low
constant value (equal to −1/N) at ±Tc on either side of that peak (where Tc is the time
duration of one chip). Because the PN sequence is periodic, the normalized autocorrelation
of a maximal length PN sequence will also have identical peaks equal to 1.0 spaced at offsets
equal to NTc. See Figure 5.15 for a plot of the normalized autocorrelation of a maximal

9For robust operation, real-world PN sequence generators include the ability to detect and recover from
the “all zeros state.”

106 CHAPTER 5. PERIODIC SIGNAL GENERATION

NTc

Rc(τ)

τ

Tc

1.0

1

N

Figure 5.15: Normalized autocorrelation of a length N = 7 maximal length PN sequence.

length PN sequence. The fact that any timing offset more than ±0.5Tc from an integer
value of Tc will result in a very low constant autocorrelation equal to −1/N is a valuable
property for CDMA, ranging, synchronization, and other applications. Note that for very
long sequences, the −1/N term is approximately zero, and the autocorrelation peaks are
spaced so far apart that it appears to be very much like random noise. The IS-95 2G cellular
telephone standard, for example, uses a 15-stage SRG, so the m-sequences used are 32,767
chips long.

We need to make a few comments about Figure 5.15. Essentially, all text books that ex-
plain maximal length PN sequences show a figure similar to Figure 5.15. However, well over
half the textbooks we have seen fail to mention two assumptions behind the result shown in
this figure. One assumption is that the values of the chips in the PN sequence are not 1 and
0 but rather the antipodal pair +1 and −1. Another key assumption is that the operation
performed is circular correlation, not the more common linear correlation. The different
result of circular versus linear correlation will be shown in a MATLAB demonstration later
in the chapter. For now, just accept the result of Figure 5.15.

Since we have the autocorrelation Rc(τ), the Wiener-Khintchine theorem tells us that
the power spectral density (PSD) of the PN sequence is simply F{Rc(τ)}, the Fourier
transform of the autocorrelation function. Before showing the result, we should be able
to predict certain aspects of the PSD. Since Rc(τ) is periodic, its spectrum should be
discrete, with a fundamental frequency equal to the reciprocal of the period of Rc(τ). The
envelope of the discrete components should follow the shape of the Fourier transform of the
basic shape of one period of Rc(τ), which is a triangular pulse. The Fourier transform of a
triangular pulse is a squared sinc. The PSD of Rc(τ), often designated Sc(f), is shown in
Figure 5.16.

Our predictions hold true for Figure 5.16, including the fact that for this N = 7 example,
the fundamental frequency of the discrete components, 1/(NTc), is 1/7 the frequency of the
first zero of the envelope at 1/(Tc). This is because the period of the PN sequence is N = 7
times longer than the period of one chip.

Besides the autocorrelation properties of PN sequences, we are often interested in the
crosscorrelation properties, which is when one PN sequence is correlated with a different
PN sequence. Ideally, we would like the crosscorrelation to be as close to zero as possible.
This is especially important, for example, in CDMA systems such as the IS-95 (2G) and
CDMA2000 (3G) cellular telephone systems, where low crosscorrelation allows multiple
users to simultaneously share the same frequency band without interfering with each other.
But not all PN sequence pairs have low crosscorrelation, so great care must be taken when
assigning the PN sequences for such applications. When appropriate m-sequences can’t be

5.5. PSEUDONOISE SEQUENCES 107

f
1
Tc

2
Tc

3
Tc

1
Tc

2
Tc

3
Tc

(�
NTc

Envelope = sinc2(f Tc�)�
N + 1

N 2

1

N 2
DC Term =

0

Figure 5.16: PSD of a length N = 7 maximal length PN sequence.

found, engineers then turn to alternative sequences such as Gold codes (non-maximal length
PN sequences formed from two or more m-sequences) or Barker codes (not PN sequences
at all, but rather hard-coded sequences of length 2, 3, 4, 5, 7, 11, or 13; no other Barker
codes are known to exist). Gold codes are widely used in applications from deep space
probes to CDMA cellular telephone systems, and an N = 11 Barker code is part of the
IEEE-Std-802.11 wireless Internet (Wi-Fi) digital communications standard.

5.5.2 winDSK Demonstration

The winDSK program does not provide any functions which incorporate PN sequences.

5.5.3 MATLAB Implementation

Using MATLAB to explore various aspects of PN sequences and to generate PN sequences
as desired is relatively easy, but there are a few potential pitfalls that we will point out at
the appropriate place. Readers should note that there are PN sequence generators built
into the Communications Toolbox (for MATLAB) and the Communications Blockset (for
Simulink), but as we’ve indicated in earlier chapters, avoid such tools until you’ve written
some of your own code and become familiar with the fundamentals of a given topic. The xor
logic function is now built into MATLAB, which is handy for generating PN sequences. The
programs pngen.m and pngen2.m are included on the bookware CD-ROM; they generate
PN sequences given the SSRG feedback specifications.

Let’s explore the autocorrelation properties of some PN sequences. The MATLAB
program pn_corr.m is included on the bookware CD-ROM, and provides a handy way to
do this. Multiple sequences are hard coded into the program, both valid and invalid m-
sequences. Simply uncomment the pair of (equal length) sequences you want to use and
run the program. Both autocorrelation and crosscorrelation can be easily performed, and
the program illustrates the difference between circular and linear correlation. The key part
of the pn_corr.m program is shown in Listing 5.11.

108 CHAPTER 5. PERIODIC SIGNAL GENERATION

Listing 5.11: MATLAB implementation of circular and linear correlation for PN sequences.

N=length (seq1) ;
2

% Convert to +/- 1

4 seqn1=(2∗seq1)−1;
seqn2=(2∗seq2)−1;

6

% Set up correlation with three periods of the PN sequence

8 tmp1=[seqn1 seqn1 seqn1] ;

10 % Time domain method for circular correlation of seq1 and seq2.

% Could also use frequency domain method with no zero padding

12 for index=1:2∗N+1;
tmp2=[zeros (1 , index−1) seqn2 zeros (1 ,2∗N−index+1)] ;

14 cor (index)=sum(tmp1 .∗ tmp2) /N ;
end ;

16 n=0:2∗N ;

18 %% frequency domain method of circular correlation

%% uncomment and use this instead if desired

20 % S1=fft(seqn1);

% S2=fft(seqn2);

22 % cor=ifft(S1.*conj(S2));

24 % standard linear correlation in MATLAB

lincor=xcorr (seqn1 , seqn2) /N ;
26 nn=0:2∗N−2;

Note that the program shows both a time domain method (lines 12–15) and a frequency
domain method (lines 20–22) of performing circular correlation, along with the linear cor-
relation (line 25) using xcorr that is built into MATLAB’s Signal Processing Toolbox.
Figure 5.17 shows both methods of correlation for the autocorrelation of the PN sequence
shown back in Figure 5.14. Observe that the theoretical autocorrelation of Figure 5.15 is
only obtained when circular autocorrelation is used. The chips of the PN sequence are
shown in Figure 5.17 as a MATLAB bar plot for clarity; the actual PN sequence would
be like that shown in Figure 5.14. If someone new to PN sequences just used the xcorr

command in MATLAB expecting to get a result similar to Figure 5.15, they might be con-
fused when they did did not get that result. We hope this short example dispels any such
confusion, and we won’t waste space showing any further linear correlation results.

The crosscorrelation of [3, 1]s (from Figure 5.14) and [3, 2]s is shown in Figure 5.18.
Notice there is no peak equal to 1.0 in this case. The autocorrelation of the 31-chip maximal
length PN sequence specified by [5, 2]s is shown in Figure 5.19. The crosscorrelation of
maximal length PN sequences [5, 3]s and [5, 4, 3, 2]s is shown in Figure 5.20. As a last
example of correlation properties, Figure 5.21 shows the autocorrelation of a sequence that
is not a maximal length PN sequence. Note that while there is a peak of 1.0 at zero offset
and at offsets equal to multiples of NTc, similar to a maximal length PN sequence, the
highly desirable low autocorrelation at other offsets does not exist. Compare Figure 5.21
with Figure 5.19.

Exploring the spectral properties of PN sequences using MATLAB presents some po-
tential pitfalls as well.10 Trying to observe the PSD by using traditional spectral analysis

10Spectral analysis is covered in more detail in Chapter 9.

5.5. PSEUDONOISE SEQUENCES 109

1 2 3 4 5 6 7
−1

0

1

chip number

P
N

 1

1 2 3 4 5 6 7
−1

0

1

chip number

P
N

 2

0 2 4 6 8 10 12 14
−1

0

1

R
xy

Chip Offset − Circular Correlation

0 2 4 6 8 10 12
−1

0

1

R
xy

Chip Offset − Linear Correlation

Figure 5.17: Autocorrelation using MATLAB of a length N = 7 maximal length PN se-
quence. Second from bottom: circular autocorrelation. Bottom: linear autocorrelation.

1 2 3 4 5 6 7
−1

0

1

chip number

P
N

 1

1 2 3 4 5 6 7
−1

0

1

chip number

P
N

 2

0 2 4 6 8 10 12 14
−1

0

1

R
xy

Chip Offset − Circular Correlation

Figure 5.18: Crosscorrelation of two N = 7 maximal length PN sequences.

110 CHAPTER 5. PERIODIC SIGNAL GENERATION

0 5 10 15 20 25 30
−1

0

1

chip number

P
N

 1

0 5 10 15 20 25 30
−1

0

1

chip number

P
N

 2

0 10 20 30 40 50 60
−1

0

1

R
xy

Chip Offset − Circular Correlation

Figure 5.19: Autocorrelation of a length N = 31 maximal length PN sequence.

0 5 10 15 20 25 30
−1

0

1

chip number

P
N

 1

0 5 10 15 20 25 30
−1

0

1

chip number

P
N

 2

0 10 20 30 40 50 60
−1

0

1

R
xy

Chip Offset − Circular Correlation

Figure 5.20: Crosscorrelation of two length N = 31 maximal length PN sequences.

tools such as the psd or pwelch commands in MATLAB on a PN sequence will typically
not provide a satisfactory result, yielding a plot with little resemblance to Figure 5.16. The
frequency resolution of the FFT, determined in part by the number of data points provided
to the FFT, is partly to blame.11 Trying to get around this problem by using many copies
of the PN sequence strung together in a single row vector as input to the FFT doesn’t
provide much improvement.

One way around this problem is to “fool” MATLAB into “thinking” that the input is a

11The FFT is covered in more detail in Chapter 8.

5.5. PSEUDONOISE SEQUENCES 111

0 5 10 15 20 25 30
−1

0

1

chip number

P
N

 1

0 5 10 15 20 25 30
−1

0

1

chip number

P
N

 2

0 10 20 30 40 50 60
−1

0

1

R
xy

Chip Offset − Circular Correlation

Figure 5.21: Autocorrelation of a length N = 31 sequence that is not a valid maximal
length PN sequence.

−20 −10 0 10 20
0

5

10

15

20

25

k

P
S

D

Power spectrum of [3,1]
s
 PN Sequence

(a)

−40 −20 0 20 40
0

5

10

15

20

25

k

P
S

D

Power spectrum of [4,1]
s
 PN Sequence

(b)

Figure 5.22: Power spectral density estimate using pn_spec.m.

continuous waveform that follows the pattern of the desired PN sequence. We can do this by
providing MATLAB with multiple data points per chip; a reasonable number that provides
a very nice output is 20 data points per chip. This technique is exploited in the program
pn_spec.m included on the bookware CD-ROM; it generates a very nice plot of the PSD
of a PN sequence. See Figure 5.22. In particular, compare Figure 5.22(a) to Figure 5.16.
In this N = 7 example, both figures show that the fundamental frequency of the discrete
components is 1/7 the frequency of the first zero of the envelope. This is because the period
of the PN sequence is N = 7 times longer than the period of one chip.

We have provided programs in MATLAB for exploring the correlation properties and

112 CHAPTER 5. PERIODIC SIGNAL GENERATION

spectral properties of PN sequences, and for generating any desired PN sequence for a
given set of feedback taps. While some examples have been provided in the text and in
the MATLAB programs, recall that massive tables of feedback taps for generating valid
maximal length PN sequences are available in books such as [65] or online such as [66].

The more general of the two PN sequence generation programs is pngen2.m, and it can
accept any number of feedback taps in the [r, n, p, q, . . .]s format we have used in this chapter.
The taps are provided as input fb to pngen2.m in row vector format, and the output of
pngen2.m is the PN sequence specified by those feedback taps. If you’re generating long
codes, be sure to use a semicolon at the end of the command line on which you call pngen2.m
to keep the output from filling the screen and slowing down the program execution. The
key part of the code for pngen2.m is given in Listing 5.12.

Listing 5.12: MATLAB program to generate PN sequences for a given set of feedback taps.

% perform one cycle of code generation

2 for i = 1 : N
output (i) = shift_reg (r) ;

4 i f (ntaps > 2) % multiple feedback taps

feedback = shift_reg (fb (2)) ;
6 for j = 3 : ntaps

feedback = xor (shift_reg (fb (j)) , feedback) ;
8 end

feedback = xor (shift_reg (r) , feedback) ;
10 else % only one feeback tap

feedback = xor (shift_reg (r) , shift_reg (fb (2))) ;
12 end

% perform brute force shift

14 shift_reg (2 : r) = shift_reg (1 : r−1) ;
shift_reg (1) = feedback ;

16 end

The number of stages is r, and the program uses the vector fb to determine from which
stages to perform the exclusive OR operation. Note that one entire period of the PN
sequence is generated before the program exits and provides output, so this code would
need to be modified for a real-time approach. That is, a real-time approach would output
a single chip of the desired PN sequence each “tick” of the clock, and keep running for
however many periods were needed.

Before continuing, it should be noted that the PN sequence generation programs we
have provided implement shift registers in a brute force way for simplicity of the code. For
example, the shift_reg variable is a memory array of length r, which is very wasteful
since each stage of the shift register only needs to store a single-bit binary value. There are
certainly more elegant techniques that can be used.

5.5.4 DSK Implementation in C

This chapter is a rather long one, and space limitations restrict what we can show here for
the real-time generation of PN sequences on the DSK. We will show only one method of
generating a PN sequence in real-time on the DSK, and provide some basic suggestions for
how you might use it.

One of the first questions to be answered would be, “Do you really need to generate the
PN sequence in real time?” If the desired sequence is not long, it would be more efficient to
just store it in memory (this method is really just a look-up table implementation). This
is always true for Barker sequences, which are not generated by an SRG, and are always

5.5. PSEUDONOISE SEQUENCES 113

relatively short in length. But for longer-length PN sequences, storing them in memory
becomes impractical, and it is more efficient to just generate them with a DSP software
SRG implementation.

Real-Time Considerations

Following the same method we’ve used in previous chapters, you can carefully modify “de-
vectorized” MATLAB code to get an initial version of C code that will run in real-time on
the DSK. Looking at Listing 5.12, for example, you would first remove the outer for loop to
convert to a sample-by-sample (or, in this case, chip-by-chip) approach. In an earlier part of
the code, you would have already have declared in memory an integer variable of sufficient
size to hold shift_reg (that is, having at least r bits), and an appropriate variable for fb;
only a single bit would be needed for output since each chip of the PN sequence would be
output individually in real-time. Note that by using an appropriate size of unsigned integer
variable (such as Uint32 for an SRG up to 32 stages) in your C code for the shift register,
you can take advantage of the highly efficient shift-right command. The basic approach
from Listing 5.12 could then be used to output a given PN sequence (as determined by the
feedback taps defined by fb) on a chip-by-chip basis. After getting such a “brute force”
method to work, the next step would be to implement a more elegant technique.

If you intend to use the PN sequence as part of a real-time program using one or more
DSKs where the input and output go through the codec(s), don’t neglect the fact that
the Fs/2 bandwidth limitation imposed by the sampling theorem also applies to the PN
sequence if it (or data modulated by it) goes through the codec. For this reason, it may be
prudent to include in your real-time PN sequence generation code a method of some kind
for constraining the “chip rate” of 1/Tc to stay within the limits of the sampling theorem.

This brings up the question how to provide the output containing the real-time PN se-
quence. While the PN sequence can be used to modify (i.e., “spread” or “de-spread”) input
data as part of the desired DSP algorithm and output the result via the codec, we recognize
that some users may want access to just the PN sequence itself. Therefore, we make the real-
time PN sequence available as a digital output on the DSK, using the WriteDigitalOutputs
function (see OMAPL138_Support_DSP.c or DSK6713_Support.c in the common_code direc-
tory of the bookware CR-ROM). Note that the WriteDigitalOutputs function behaves
a bit differently on the OMAP-L138 Experimenter Kit versus the C6713 DSK. On the
OMAP-L138 Experimenter Kit, WriteDigitalOutputs sends signals to four digital output
pins on the LCD connector J15. Specifically, four bits 0–3 (where bit 0 is the LSB) are sent
to pins 6–9, respectively, of connector J15. Ground is available on that connector at pins
1, 5, and 10. On the C6713 DSK, WriteDigitalOutputs sends four bits 0–3 (where bit 0
is the LSB) to four user LEDs (LED 1 through LED 4, respectively) included on the board
that are easily accessible. In either case, this allows the user to connect (e.g., with a test
probe clip) to the digital output signal as desired.

Generating a Real-Time PN sequence

We show an example of C code for real-time generation of a PN sequence using the DSK.
The files necessary to run this application are provided in the ccs\PN directory of Chapter 5.
The primary file of interest is ISRs_LFSR.c, which contains various declarations and the
interrupt service routine to perform the PN sequence generation algorithm. As this program
is written, the PN sequence that is generated does not modify the input data in any way.
Data samples are brought in from the codec and output to the codec with no modification
(i.e., a simple “talk-through”). The PN sequence is sent as a digital output as described
above. The reader is free to modify the input data with the PN sequence as desired.

114 CHAPTER 5. PERIODIC SIGNAL GENERATION

An excerpt of the declaration section of the code is shown in Listing 5.13.

Listing 5.13: Declarations for the PN Generator code.

// implementing Galois 16-bit LFSR x^16 + x^14 + x^13 + x^11 + 1

2 #define LFSR LENGTH 16
#define LFSR BIT MASK ((1 << LFSR LENGTH) − 1)

4 #define LFSR XOR MASK (((1 << 16) | (1 << 14) | (1 << 13) |
[+] (1 << 11)) >> 1)

#define LFSR SEED VALUE 3
6

// reduce LFSR update rate to Fs/DIVIDE_BY_N

8 #define DIVIDE BY N 10

10 Uint32 LSFR_reg = LFSR_SEED_VALUE ;

An explanation of Listing 5.13 follows.

1. (Line 1): Note the SRG will be a Galois implementation, which has implications for
how the feedback taps should be specified.

2. (Line 2): Declares the SRG to have 16 stages.

3. (Line 3): This mask is used in the ISR to set the SRG to the number of stages specified
by line 1.

4. (Line 4): This is where you specify the feedback taps for the PN sequence you wish
to generate. In this case, the PN sequence to be generated will be [16, 14, 13, 11]m,
which produces a maximal-length sequence with a length of 65,535 chips. By simply
changing this line and line 2, you can specify any PN sequence of up to 32 stages.

5. (Line 5): Determines the “seed state” for the SRG. It doesn’t matter what value is
used here, as long as it’s not zero.

6. (Line 8): The factor by which the chip rate will be slowed compared to the sample
frequency of the codec.

7. (Line 10): This 32-bit unsigned integer LFSR_reg is where the stages of the SRG are
stored.

The algorithm section of the code is shown in Listing 5.14.

Listing 5.14: Algorithm for the PN Generator code.

interrupt void Codec_ISR ()
2 {

/* add any local variables here */

4 Uint8 lsb ;
stat ic Int32 divide_by_n = 0 ; // used to slow PN rate

6

i f (CheckForOverrun ()) // overrun error occurred

8 return ; // so serial port is reset

10 CodecDataIn . UINT = ReadCodecData () ; // get input data

12 /* add your code starting here */

5.5. PSEUDONOISE SEQUENCES 115

14 i f (−−divide_by_n <= 0) { // wait for counter to expire

divide_by_n = DIVIDE_BY_N ; // reset counter

16 LSFR_reg &= LFSR_BIT_MASK ; // mask LFSR to desired length

lsb = LSFR_reg & 1 ; // store state of LS bit

18 LSFR_reg >>= 1 ; // shift LFSR right

i f (lsb)
20 LSFR_reg ˆ= LFSR_XOR_MASK ; // XOR only if LSB was 1

22 WriteDigitalOutputs (LSFR_reg) ; // write LS four bits to

[+]digital outputs

}
24

CodecDataOut . UINT = CodecDataIn . UINT ; // just do talk-

[+]through

26

/* end your code here */

28

WriteCodecData (CodecDataOut . UINT) ; // send output data

30 }
An explanation of Listing 5.14 follows.

1. (Line 4): Declares the lsb variable as an 8-bit unsigned integer. While this variable
is used to store just a single bit (the least significant bit (LSB) of LFSR_reg), an 8-bit
memory location is typically the smallest individually addressable unit. This might
be a good time to remind readers that the Boolean variable type, bool, is not part of
the C language but rather part of the C++ language. Note that we typically visualize
a register in such a way that the MSB is on the far left and the LSB is on the far
right; thus, the LSB of LFSR_reg is where stage r of the SRG is located and is where
we take the output from the SRG.

2. (Line 5): Used in conjunction with line 8 of Listing 5.13 to implement the slowing of
the chip rate compared to the sample frequency of the codec. This is needed if you
must output the PN sequence (or data modified by the PN sequence) through the
codec.

3. (Lines 7–8): Checks to see if the DSK halted due to an overrun of the McASP (on
the OMAP) or McBSP (on the C6713) and if so resets the port as necessary.

4. (Line 10): Gets an input sample from the codec (both left and right channels together).

5. (Line 14): Pre-decrements the divide_by_n counter and only executes the PN se-
quence generation algorithm if the counter is “finished.” This effectively slows down
the chip rate of the PN sequence as desired.

6. (Line 15): Resets the divide_by_n counter.

7. (Line 16): Using a bit mask and the logical AND operation, keeps only the part of
LFSR_reg, in particular the least significant part, needed to implement the desired
number of stages for the SRG. This forces the unused “upper” bits of LFSR_reg to 0,
which ensures a 0 will be shifted into the MSB of LFSR_reg by default.

8. (Line 17): Saves just the least significant bit of LFSR_reg in variable lsb.

116 CHAPTER 5. PERIODIC SIGNAL GENERATION

9. (Line 18): Performs the shift-right operation on the SRG.

10. (Lines 19–20): Implements the equivalent of a Galois LFSR using the specified feed-
back taps.

11. (Line 22): Writes the least significant four bits to the digital output pins. While
LFSR_reg is 32-bits long, the WriteDigitalOutputs function will only send the least
significant four bits of the input argument as outputs. In most cases, the reader
will only be interested in just one bit, the LSB, which by convention constitutes the
output of the SRG. For the OMAP-L138 Experimenter Kit, the LSB will be found at
connector J15 pin 6, and for the C6713 DSK, the LSB will be found at LED 1.

12. (Lines 25 and 29): Sends the input sample obtained in line 10 back out to the codec,
in a “talk-through” operation.

Now that you understand the code. . .

Go ahead and copy all of the files into a separate directory. Open the project in CCS and
“Rebuild All.” Once the build is complete, “Load Program” into the DSK and click on
“Run.” Your PN sequence generator is now running in real-time on the DSK. Assuming
the sample frequency is set to 48 kHz, then the divide by 10 will result in a chip rate of
4800 chips per second.

Example Results

Assuming your real-time PN sequence generation project is working, and you have access
to appropriate test and measurement equipment,12 you should be able to observe the re-
sulting PN sequence in both the time domain and frequency domain. An example of the
[16, 14, 13, 11]m PN sequence in the time domain is shown in Figure 5.23. For clarity, only
20 ms are shown, which for this 4800 chip per second PN sequence equates to 96 chips.
If we tried to show one full cycle of all 65,535 chips (lasting just over 13.6 seconds) the
chips would be so tightly packed together that the display would be meaningless. Note that
this is a unipolar digital output; conversion to an antipodal chip sequence has not been
implemented here.

An example of the PN sequence in the frequency domain is shown in Figure 5.24. Note
the shape follows that of a sinc squared, and the first null of this 4800 chip per second PN
sequence is located at 4.8 kHz, as expected.

The PN sequence we generated was slowed down by a factor of 10 to 4800 chips per
second. If we set the DIVIDE_BY_N factor to 1, we would have obtained a 48,000 chip per
second PN sequence. As long as we are taking the PN sequence directly from the digital
outputs and not the codec DAC, this would still be acceptable. What if you needed an
even faster chip rate? You could easily change the codec sample frequency to 96 kHz by
changing which #define SampleRateSetting is uncommented in the DSP_Config.h file
in your project, and obtain a 96,000 chip per second PN sequence with no other code
modifications. What if you needed an even faster chip rate than this? Instead of using the
codec interrupt, you could use a timer interrupt and easily get rates in the low MHz range.
Alternatively, you could disable interrupts and put the PN sequence generation algorithm
in the main.c loop and obtain chip rates in the 10’s of MHz.

12Alternatively, you could use a spare DSK running winDSK and select the oscilloscope function or the
spectrum analyzer function.

5.5. PSEUDONOISE SEQUENCES 117

Figure 5.23: Time domain display from a DSK generating a 65,535-chip length PN sequence
using a 16-stage SRG. For clarity, only 96 chips are shown.

Figure 5.24: Frequency domain display from a DSK generating a 65,535-chip length PN
sequence using a 16-stage SRG. Note the first null is located at 4.8 kHz.

118 CHAPTER 5. PERIODIC SIGNAL GENERATION

Using the Real-Time PN sequence

The generation of PN sequences in real-time on a DSK could be used in many ways. For
example, the DSK could provide the source signal for measuring the acoustic frequency re-
sponse of a room (the first step in acoustic equalization of a room, sometimes called “digital
room correction”). Or your interests may run more toward communications applications, in
which case you may want to refer to digital communications books, such as [60–65] for some
ideas. For example, the DSK could provide the spreading (and/or despreading) signal to an-
other DSK acting as a BPSK or QPSK modulator or demodulator (see Chapters 16 through
19 for projects that implement these digital communication methods on the DSK) to create
a spread spectrum communication system, although the bandwidth of such an application
is a challenge if you restrict yourself to the onboard codec and audio frequencies. A DSK
generating a PN sequence could provide the basis for a simple CDMA demonstration. . . Let
your imagination guide you.

5.6 Follow-On Challenges

Consider extending what you have learned.

1. The trigonometric function call-based technique discussed in this chapter uses single
precision variables (floats). Design and implement a double precision variable (dou-
bles) version of the real-time program. What are the advantages and disadvantages
of this higher-precision technique?

2. Create a DTMF signal generator that creates the tones associated with your phone
number.

(a) Consider starting the process by embedding the phone number in your ISR. You
can always add more sophisticated coding techniques later.

(b) Ensure that your system will work with any phone number.

(c) Ensure that your system will handle parentheses, space, and dash characters.

(d) Ensure that your system allows for user-defined tone durations and tone spacing.

(e) Ensure that your system has the ability to repeat dial.

3. The table lookup technique actually only needs to define 1/4 of the table since the sine
and cosine functions are symmetric functions (only 1/4 of a 0 to 2π table is unique).
Design and implement a real-time program that takes advantage of this symmetry.

4. Modify your PN sequence generator to detect and recover from an accidental condition
of the forbidden“all zeros state.”

5. Modify your PN sequence generator to generate chip rates faster than the codec sample
frequency.

5.7 Problems

1. If you use a trigonometric function call such as sinf() in your real-time C code, what
will happen if the math.h header file is not included in your program?

2. Describe the effect of coefficient quantization (or just a low precision when specifying
the coefficients) on the digital resonator form of sinusoid generation.

5.7. PROBLEMS 119

3. Compare and contrast DDS, digital resonator, and lookup table methods of sinusoid
generation.

4. Which is more suitable for arbitrary waveform generation: DDS, digital resonator, or
the lookup table method?

5. In what way would the topic of “harmonic distortion” be applicable to sinusoid gen-
eration?

6. In what way would the topic of “intermodulation distortion” be applicable to DTMF
generation?

7. Why is the “all zeros state” forbidden for SRGs used to generate PN sequences?

8. Manually calculate the autocorrelation of a [3, 1]s PN sequence. Show both linear
autocorrelation and circular autocorrelation, and compare the results.

This page intentionally left blankThis page intentionally left blank

Chapter 6

Frame-Based DSP

6.1 Theory

THE discussion up until this point in the book has usually assumed that the real-time
processing is accomplished on a sample-by-sample basis. That is, an input sample

x(t) was converted to digital form x[n] by the ADC part of the codec and transferred to
the DSK’s CPU for whatever processing was desired. This processed sample y[n] was then
transferred to the DAC part of the codec, converted back to analog form y(t), and sent
to an output device (e.g., a speaker). Processing the data in this way has two distinct
advantages. First, this approach makes the DSP algorithms easier to understand and easier
to program. Second, sample-by-sample processing also minimizes the system latency by
acting on each sample as soon as it is available. However, sample-by-sample processing has
serious drawbacks, and is not commonly used for many types of commercial code.

6.1.1 Drawbacks of Sample-Based DSP

One of the implications of real-time sample-based DSP is that all processing must be com-
pleted in the time between samples. For many complex DSP algorithms, this becomes
difficult if not impossible, especially for fast sampling rates. For example, if we are us-
ing the sample frequency of Fs = 48 kHz that we often use in this text, we have only
Ts = 1/(48 × 103) = 20.83 μs to process both the left and the right channel samples (as-
suming stereo operation), or 10.42 μs per sample. Given the 300 MHz clock frequency of
the OMAP-L138 Experimenter Kit (3.333 ns per clock cycle), this means we have approxi-
mately 3,126 clock cycles per sample.1 Note that we must also include in this time period
all the “overhead” such as that associated with codec transfers, memory access, instruction
and data cache latency, and other unavoidable factors when we assess the available clock
cycles. While this many clock cycles may seem to be plenty, a complex algorithm with
many memory transfers could easily exceed this number. Of course, if we are performing
non-real-time DSP with previously stored data, then this limitation does not exist.

Another implication of real-time sample-based DSP, which seems fairly obvious, is that
there is only one sample available for processing at any given time. Certain classes of DSP
algorithms, such as many implementations that use the FFT (Fast Fourier Transform),
require some contiguous range of samples to be available at any given time, which is clearly
impossible with sample-based DSP.2 A second implication of real-time sample-based DSP

1The C6713 DSK runs at a clock frequency of 225 MHz, or 4.444 ns per clock cycle.
2Be aware that there are other classes of DSP algorithms, such as active noise cancelation, that typically

require sample-by-sample processing to update the adaptive algorithm as quickly as possible.

121

122 CHAPTER 6. FRAME-BASED DSP

is that the processor must respond to each interrupt from the devices that are data sources
and sinks (such as a codec) in order to perform the required data transfers. Doing this means
that the current processing is interrupted, the state of the processor preserved, control is
transferred to the appropriate interrupt service routine and it is executed, then the processor
state must be restored and execution restarted at the interrupted point. During this process,
additional inefficiencies also occur, such as pipeline flushes and cache misses. This overhead
represents lost processing time, and can significantly reduce the overall performance of the
DSP. To remove this burden from the processor, specialized hardware components, referred
to as direct memory access (DMA) controllers, are normally included as peripheral elements
on the DSP device itself. Once the DMA controller is programmed to respond to a device
that is sourcing or sinking data, it will automatically perform the required transfers to
or from a memory buffer without processor intervention. When a buffer has been filled
or emptied, the DMA controller then interrupts the DSP. This frees the DSP from the
mundane task of repetitive data transfers, and allows its resources to be focused on the
computationally-intense processing once a buffer of data is available. In order to make this
process efficient, the buffers will typically be designed to contain hundreds or thousands
of samples. For those instances where one or both of these situations occur, we need an
alternative method of processing signals, which we shall call frame-based DSP.

6.1.2 What Is a Frame?

A frame is the name we will use to describe a group of consecutive samples. Some other
texts may use the term “block” or “packet” instead of “frame,” but they mean essentially
the same thing. In order to implement frame-based DSP, we must collect N samples, and
at that point initiate the processing of the frame. See Figure 6.1 for a pictorial comparison
of sample-based versus frame-based processing.

How many samples constitute a frame? While frame sizes are common where the number

	������
������

?���������
������

��������
������������
������

@����������
������

%�������������
�������������

	������
������

?���������
������

��������
�5���������
������

@������5�
�������

%�������������
�������������

 ���������
5��������A

5� B��

�����������������
������*�������

������'�����

1����'�����

Figure 6.1: A comparison of a generic sample-based (top) versus frame-based (bottom)
processing system. Note that some systems may not require the input or output conversions
from/to analog as shown here.

6.2. WINDSK DEMONSTRATION 123

of samples is some power of two (i.e., N = 2n), there is no particular number that must
be used. The frame size is selected based on several factors such as the DSP algorithm to
be used, the speed and efficiency of the ADC, the overhead required for memory transfers,
other hardware limitations, and the performance of the DSP system. This last consideration
is driven by the fact that whatever result is obtained by the DSP, a new “updated” result
cannot be obtained any faster than it takes to sample an entire frame of data.

For example, suppose we are graphically displaying the spectrum of a signal based on
the FFT of that signal. The FFT requires a frame of data to be available at one time. If
we assume a sample frequency of Fs = 48 kHz (thus, Ts = 1/(48× 103) = 20.83 μs) and a
frame size of 2048 samples, then the spectrum display cannot be updated any faster than
2048 × 20.83 μs = 42.66 ms, which equates to 23.44 display updates per second. Around
the world, standard definition television video (both older analog formats and newer digital
formats) is updated either 25 or 30 frames per second, and movies in theaters are typically
updated 24 frames per second, so this might be satisfactory.3 Note the implication in this
example is that we now have 42.66 ms or over 12.8 million clock cycles of the OMAP-L138
Experimenter Kit to process the data! If we double the frame size, we get twice as much
time to process the data, but we can only update the spectrum display half as fast, which
may not be acceptable to the user. Thus, as the frame size increases we get more time to
process the data, but the response time of the system output gets slower. Frame size is one
of many engineering design tradeoffs that need to be made. If the system output frames are
sent to the DAC, they will be converted to an analog signal on a sample-by-sample basis,
at the given sample frequency Fs. For proper operation, the next frame for output must
be available by the time the last sample of the current frame is converted. If, for example,
we were performing audio processing, this ensures that from the listener’s perspective there
would be no “gap” in the music and the output would sound no different than if sample-
based processing were being used. Of course there is a time lag, or latency, equal to the
frame period, but it is imperceptible to the listener.

Most real-time DSP, such as CD and DVD players, the telephone system (both land-
line and wireless cellular), internet communications, and digital television (such as HDTV)
implement a form of frame-based processing. For example, CD players use a data frame
that is made up of six sample periods (six left channel samples, six right channel samples,
alternating) [67]. Each sample is two bytes (16-bits), so the initial frame size is 24 bytes in
length.4

6.2 winDSK Demonstration

Most of the functions available in winDSK are implemented as sample-based programs to
keep the code simple. However, one exception is the Oscilloscope function, which must
transfer information to be displayed in real-time on the video screen of the PC via the I/O
port interface. Since there is significant timing overhead in both I/O port transfers and
video screen rendering, frame-based processing is used. In fact, the overhead incurred just
in writing to the video screen would make sample-by-sample video transfers impractical.
The actual frame size used in this part of winDSK is 512 samples per channel.

If you haven’t yet tried the Oscilloscope function of winDSK, try it now. Note that

3Various “tricks” are often used to increase the apparent screen update rate so the human visual system
will not perceive a flickering image. Most television standards allow two interlaced fields per frame (although
this has other drawbacks compared to progressive scan), some high-end television display units internally
reformat the frame rate to a higher frequency, and movie projectors often use a light source chopper to
provide the illusion of a higher frame rate.

4Additional DSP steps, including error correction and modulation, expand this to 73.5 bytes (588 bits)
per frame that is actually stored on the CD.

124 CHAPTER 6. FRAME-BASED DSP

Figure 6.2: The primary user interface window for the Oscilloscope function of winDSK.

in winDSK8, the word “Oscilloscope” is abbreviated to “Oscope” to fit on the button.
The primary user interface window for this function is shown in Figure 6.2. Note that
this function can provide both time domain (i.e., Oscilloscope) or frequency domain (i.e.,
Spectrum Analyzer) displays. In some DSP texts “time domain” is called “sample domain.”
A time domain example is shown in Figure 6.3. When the spectrum display is selected,
frequency domain values are calculated by performing the FFT on each 512 sample block of
data. Using the Log10 units option often provides better results for the spectrum display.
Try the “waterfall” option as well, which adds a moving time-axis to the display. A waterfall
spectral display is often called a spectrogram, which may seem familiar to you if you have
tried the non-real-time spectrogram function (or the related specgramdemo) in MATLAB�.
In winDSK, the most recent data is shown at the top of the waterfall display.5

6.3 MATLAB Implementation

Frame-based processing in MATLAB was demonstrated previously in Section 2.4.2, where
frames of 500 samples each were transferred from the DSK to the PC and manipulated
using MATLAB. Another MATLAB-related application where frame-based processing is
typically used is Simulink, which was demonstrated in Section 2.4.1 where frames of 1024
samples each were used. In fact, for those MATLAB Toolboxes that generate code for
a C6x target DSP from Simulink models, we have found that the actual code generated
uses a double buffering scheme for both input and output streams, or four buffers total.
The triple-buffered frame-based approach we explain in the next section is actually a more

5In case you’re interested, this is similar to the type of readout provided by a typical sonar system on
U.S. nuclear submarines.

6.4. DSK IMPLEMENTATION IN C 125

Figure 6.3: An example of a two-channel time domain display using the Oscilloscope func-
tion of winDSK.

efficient technique as it requires only three buffers rather than four to achieve the same
effect.

6.4 DSK Implementation in C

Important: As mentioned in Chapter 1, some of the code listings in this book (and
particularly in this section) include lines that, despite our best efforts, are too long to fit
within the book’s margins and still allow us to use meaningful variable and function names.
So we remind you that in all program listings where a line wrap occurred in the listing
due only to page margins, the characters “[+]” show up to identify the beginning of the
wrapped part of the line. The line numbers shown at the left edge of the listings do not
increment for the wrapped part of a line.

Note that for a real-time process, the collection of samples by the ADC never stops as
long as the system is in operation. WhenN samples have been collected, they are transferred
for processing by the DSP and the collection of a new frame begins without interruption.
As shown in Figure 6.1, frame-based processing requires some means to determine when we
have acquired N samples. A common technique is to incorporate a counter and a flag in
the associated ISR.

6.4.1 Triple Buffering

For real-time frame-based processing, we need at least three memory buffers at any given
time: one for filling a frame with new samples, one for processing a frame by the DSP,
and one for sending a frame of processed samples to the output. Let’s call them buffer A,
buffer B, and buffer C, then follow a single frame through the system to illustrate the basic

126 CHAPTER 6. FRAME-BASED DSP

#������	

#������#

#������

���������?����

����������������

���������@�����

?������� ��&�����

"- "(". "/ "0�������

�?����

��������

�@�����

#������	

#������#

#������

#������

#������	

#������#

#������#

#������

#������	

#������	

#������#

#������

#������

#������	

#������#

���������666

���������666

���������666

���������666

"���������������

5����C(6�D�������������$��6
���� .6�"����"-C�#������	�����������=�#�������#����� �����������������������&����6
�������� /6�"����"(C�#������ �����������=�#������	�������������������=�#������#��������&����6
������� 06�"����".C��������������������������������������#������	�����������������	 6
������� 36�"���6

Figure 6.4: A pictorial representation of triple buffering.

process. A brute force method would fill the input frame using buffer A to store samples
from the ADC, then copy the contents of buffer A to buffer B for processing (freeing up
buffer A for the next frame), then after processing the samples copy the contents of buffer
B to buffer C, whereupon the contents of buffer C are sent to the DAC and so on. . . but
this technique is extremely inefficient. All the memory transfers involved incur considerable
overhead.

The most efficient way to implement frame-based processing in real-time is to use a
technique known as “triple buffering.” There is a related method called “ping pong buffers,”
which uses four buffers (two for input, two for output), but we focus here on the more
efficient triple buffering method. In this technique, no copying of buffer contents is needed.
All we do is define three pointers that will be used for the addresses of the input, processing,
and output buffer memory locations. When the input buffer fills up, we just change the
pointers instead of physically copying any of the buffer contents. The best way to visualize
the process is with a picture; Figure 6.4 shows the typical sequence in which the pointers
are updated. We could think of this as a variation on circular buffering (first discussed in
Chapter 3), but which in this case rotates through frames instead of samples.

To implement triple buffering, we use a single ISR that performs both input and output
of the data, and tracks the status of the frame filling and processing. The input part of the
ISR brings samples in from the ADC and fills the input buffer, the output part of the ISR
sends samples from the output buffer to the DAC, and the main program runs whatever
algorithm is needed on the processing buffer when it isn’t being interrupted by an ISR. The
ISR must be responsible for keeping track of when a full frame has been gathered, and sets
a flag so the main program can update the pointer assignments for the buffers. The ISR
also checks if the buffer processing is “finished” in time, or else erroneous output may occur
without the user’s knowledge.

6.4.2 A Frame-Based DSP Example

We will keep the DSP algorithm very simple so we don’t obscure the main point: to introduce
you to frame-based processing. A more realistic example will be shown in Chapter 7. Since

6.4. DSK IMPLEMENTATION IN C 127

the primary purpose of this section is to show you how to input, process, and output data
in “blocks” of samples called frames, the actual processing we do doesn’t matter as long as
it doesn’t exceed the real-time schedule. Suppose we simply make the left channel output
be the sum (L+R) of the left and right channel inputs and make the right channel output
be the difference (L − R) of the left and right channel inputs. An example of this simple
program implemented in frame-based code is given in the ccs\Frame directory of Chapter 6.
Be sure to inspect the full code listings in this directory to understand the complete working
of the program.6 Here we simply point out some highlights. The main program (main.c)
is very basic, as shown below.

Listing 6.1: Main program for simple frame-based processing using ISRs.

#include "DSK_Config.h"

2 #include "frames.h"

4 int main () {
// initialize all buffers to 0

6 ZeroBuffers () ;

8 // initialize DSK for selected codec

DSK_Init (CodecType , TimerDivider) ;
10

// main loop here, process buffer when ready

12 while (1) {
i f (IsBufferReady ()) // process buffers in background

14 ProcessBuffer () ;
}

16 }
While this is similar in many respects to the main program used in previous examples

that implemented sample-based processing, there are a few significant differences. For
example, in line 6 we ensure that the contents of all three buffers are set to zero before the
program proceeds.7 In line 12, we enter a continuous while loop similar to what we did
for sample-based processing, only in this instance the while loop isn’t empty: we first test
to see if the buffer is full in line 13, and when it is full we process the samples in the full
buffer in line 14.

The real “meat” of the program is in the file ISRs.c, which contains the interrupt service
routine. The first part of this file contains various declarations as shown below.

Listing 6.2: Declarations from the “ISRs.c” file.

#define LEFT 0
2 #define RIGHT 1

4 volat i le union {
Uint32 UINT ;

6 Int16 Channel [2] ;
} CodecDataIn , CodecDataOut ;

8

6Be sure to look also in the DSK_Support.c file in the common_code directory for initialization functions
shared by multiple programs.

7While many modern compilers set the contents of a newly created buffer or variable to zero, it may not
be wise to rely on that feature.

128 CHAPTER 6. FRAME-BASED DSP

10 /* add any global variables here */

// frame buffer declarations

12 #define BUFFER LENGTH 96000 // buffer length in samples

#define NUMCHANNELS 2 // supports stereo audio

14 #define NUMBUFFERS 3 // don’t change

#define INITIAL FILL INDEX 0 // start filling this buffer

16 #define INITIAL DUMP INDEX 1 // start dumping this buffer

18 // allocate buffers in external SDRAM

#pragma DATA SECTION (bu f f e r , "CE0") ;
20 volat i le f loat buffer [NUM_BUFFERS] [2] [BUFFER_LENGTH] ;

// there are 3 buffers in use at all times, one being filled,

22 // one being operated on, and one being emptied

// fill_index --> buffer being filled by the ADC

24 // dump_index --> buffer being written to the DAC

// ready_index --> buffer ready for processing

26 Uint8 buffer_ready = 0 , over_run = 0 , ready_index = 2 ;

Note that lines 4 to 7 continue our previous technique of efficiently bringing in both the left
and right 16-bit samples as a single 32-bit unsigned integer, but still allowing separate ma-
nipulation of the left and right channels by declaring both CodecDataIn and CodecDataOut

as a union. Lines 12 and 13 specify the dimensions of the buffers to be used for frames: in
this example, each frame will be 192,000 samples long, consisting of 96,000 samples from
the left channel and 96,000 samples from the right channel; line 14 specifies that there will
be three identical buffers of this size. Lines 15 and 16 specify which of the three buffers
will start out as the input buffer and which will start out as the output buffer. Line 20 is
the actual declaration that allocates memory space for all three buffers, and the compiler
pragma on line 19 ensures that the external SDRAMmemory space is used for these buffers.8

Line 26 establishes variables that will indicate when a buffer is full, whether or not there
has been a buffer overrun (i.e., the DSP operation on the current processing buffer didn’t
complete before the current input buffer needed to become the new processing buffer), and
an index value used to determine the next buffer to start filling with input samples.

The interrupt service routine Codec_ISR transfers input samples from the ADC to the
proper input buffer. The input part of that routine is shown below.

Listing 6.3: The input part of the interrupt service routine from the “ISRs.c” file.

interrupt void Codec_ISR () {
2 stat ic Uint8 fill_index = INITIAL_FILL_INDEX ; // for fill buffer

stat ic Uint8 dump_index = INITIAL_DUMP_INDEX ; // for dump buffer

4 stat ic Uint32 sample_count = 0 ; // current sample count in buffer

6 i f (CheckForOverrun ()) // overrun error occurred (halted DSP)

return ; // so serial port is reset to recover

8

CodecDataIn . UINT = ReadCodecData () ; // get input data samples

10

// store input in buffer

12 buffer [fill_index] [LEFT] [sample_count] = CodecDataIn . Channel [
[+]LEFT] ;

8Unless the buffers are rather small, they typically won’t fit in the RAM space on the DSP chip itself.
We’ll see this again later.

6.4. DSK IMPLEMENTATION IN C 129

buffer [fill_index] [RIGHT] [sample_count] = CodecDataIn . Channel [
[+]RIGHT] ;

The variable fill_index in line 2 is used to select which buffer is the current input buffer,
and the variable sample_count in line 4 is used as a counter to determine when the buffer
is filled. As we saw in previous chapters, declaring these variables as static allows them
to keep their values between calls of the ISR. Keep in mind that this ISR gets called
many times (96,000 times in this implementation) before the input buffer is filled, and the
processing routine ProcessBuffer has all this time (minus the brief times devoted to any
other ISRs) to do its work. Line 9 brings the new sample in from the ADC. Lines 12 and
13 transfer the new sample into the appropriate location in the current input buffer.

Now that we’ve seen how the input buffer is filled, just what does the ProcessBuffer

function look like? As stated earlier, we show a very simple example of forming the sum
and difference of the left and right channels just to illustrate how the buffer values are
manipulated.

Listing 6.4: Abbreviated version of ProcessBuffer from the “ISRs.c” file.

1 ProcessBuffer () {
Uint32 i ;

3 f loat ∗pL = buffer [ready_index] [LEFT] ;
f loat ∗pR = buffer [ready_index] [RIGHT] ;

5 f loat temp ;

7 /* addition and subtraction */

for (i=0;i < BUFFER_LENGTH ; i++){
9 temp = ∗pL ;

∗pL = temp + ∗pR ; // left = L+R

11 ∗pR = temp − ∗pR ; // right = L-R

pL++;
13 pR++;

}
15

buffer_ready = 0 ;
17 }

Two things in particular should be noticed about the ProcessBuffer function. First, all
the values in the buffer (96,0000 samples of the left channel and 96,000 samples of the right
channel) are processed before this function is completed (although it is interrupted many
times by ISRs). Second, when the processing is completed, the variable buffer_ready is
set to 0, so that the rest of the program will know that this function completed properly.

How do the processed samples get sent to the output? When the buffers change, the
current processing buffer becomes the new output buffer, which is sent to the DAC by the
part of the ISR Codec_ISR shown below.

Listing 6.5: The output part of the interrupt service routine from the “ISRs.c” file.

1 // bound output data before packing

// use saturation of SPINT to limit to 16-bits

3 CodecDataOut . Channel [LEFT] = _spint (buffer [dump_index] [LEFT] [
[+]sample_count] ∗ 65536) >> 16 ;

CodecDataOut . Channel [RIGHT] = _spint (buffer [dump_index] [RIGHT] [
[+]sample_count] ∗ 65536) >> 16 ;

5

130 CHAPTER 6. FRAME-BASED DSP

// update sample count and swap buffers when filled

7 i f (++sample_count >= BUFFER_LENGTH) {
sample_count = 0 ;

9 ready_index = fill_index ;
i f (++fill_index >= NUM_BUFFERS)

11 fill_index = 0 ;
i f (++dump_index >= NUM_BUFFERS)

13 dump_index = 0 ;
i f (buffer_ready == 1) // set a flag if buffer isn’t

[+]processed in time

15 over_run = 1 ;
buffer_ready = 1 ;

17 }

19 WriteCodecData (CodecDataOut . UINT) ; // send output data to port

}
In lines 3 and 4, the processed sample is bounded to the allowable range of a signed 16-bit
number by the compiler intrinsic function _spint, which is faster than a double comparison
with the largest positive value and the smallest negative value as would otherwise have to
be performed. Lines 3 and 4 also transfer the processed sample from the buffer to the
appropriate CodecDataOut variable. Lines 7 to 17 contain the logic that changes to the
next buffer when the current input buffer is full and determines if the processing buffer is
ready to be switched as well. Note that if the processing buffer is not ready (indicated by
buffer_ready9 being equal to 1 in line 16) the program will still switch the buffers, but the
over_run flag indicates that this error condition has occurred. A buffer overrun means you
have not met the real-time schedule; this means the ProcessBuffer function must be made
faster somehow. The actual DSP algorithm is implemented within the ProcessBuffer

function.
Note that each time an ISR interrupts the CPU, some time is “lost” that might have

been used for the main algorithm. If we can reduce the number and duration of these
interruptions, we can gain even more programming efficiency and gain time for our main
algorithm. One very elegant method of achieving this goal, briefly mentioned earlier in this
chapter, is to take advantage of something called Direct Memory Access.

6.4.3 Using Direct Memory Access

Direct Memory Access (DMA) is a mechanism that transfers data from one memory location
to another without any intervention or work required by the CPU. In essence, the DMA
hardware contains a controller unit that can perform memory transfer operations, either
one location at a time or in blocks, independent of the CPU. Once the DMA hardware has
been configured with the initial source and destination memory locations, and the number
of transfers to perform, it can run on its own without any need to “bother” the CPU. Since
transferring data from a memory buffer to the codec (or vice versa) is essentially a memory
transfer, we can cut the CPU interruptions dramatically by delegating these tasks to the
DMA hardware instead of using the CPU to perform such memory transfers.

In order to implement triple buffering with DMA, our program must first initialize and
configure the DMA hardware. The C6x DSK documentation calls this hardware “EDMA,”
where the “E” stands for enhanced because it has more capabilities than typical DMA

9Recall the buffer_ready flag is set to 0 at the end of the ProcessBuffer function, indicating that
processing is completed.

6.4. DSK IMPLEMENTATION IN C 131

hardware. For a complete description of the C6x EDMA, see the TMS320C6000 Peripherals
Reference Guide [68]. For our purposes here, we shall only use a subset of the EDMA
capabilities.

One consideration we can’t ignore when using DMA is the need to keep the input and
output synchronized. While we gain the advantage of not needing the CPU to perform
memory transfers, we must realize that the CPU will thus be unaware of when and how fast
these transfers are taking place unless we include some type of code to ensure synchroniza-
tion. Without such code, the three buffers may get “out of step” with each other, leading
to unpredictable behavior. Luckily, the EDMA hardware has the ability to configure and
monitor “events” that behave in many ways as interrupts do with the CPU. This gives us
a flexible method of keeping the three buffers synchronized, and enables us to swap buffer
pointers as needed to implement the triple buffering scheme, all with minimal interruption
of the CPU. Thus, the CPU’s time can be devoted almost entirely to whatever DSP algo-
rithm is being performed. This technique represents one of the most efficient ways possible
to implement a real-time DSP program.

In the following example program, we have modified our previous example in only one
significant aspect: we now get the input from the ADC side of the codec and send the
output to the DAC side of the codec using the EDMA hardware instead of having the CPU
do it inside of an ISR. This EDMA program is given in the ccs\Frame_EDMA subdirectory
for Chapter 6. All the code we show here is for the C6713 DSK; the OMAP-
L138 Experimenter Kit code is very similar and is also provided on the CD-ROM in the
equivalent directory for the OMAP code. Use the code appropriate for your hardware. Be
sure to inspect the full code listings in the appropriate directory to understand the complete
working of the program. Here we simply point out some highlights. The main program
(main.c) is once again very basic, as shown below, with only a few minor differences from
Listing 6.1 (see lines 10 and 13).

Listing 6.6: Main program for frame-based processing using EDMA.

#include "DSP_Config.h"

2 #include "frames.h"

4 int main ()
{

6 // initialize all buffers to 0

ZeroBuffers () ;
8

// initialize EDMA controller

10 EDMA_Init () ;

12 // initialize DSP for EDMA operation

DSP_Init_EDMA () ;
14

// call to StartUp not needed here

16

// main loop here, process buffer when ready

18 while (1) {
i f (IsBufferReady ()) // process buffers in background

20 ProcessBuffer () ;
}

22 }

132 CHAPTER 6. FRAME-BASED DSP

The functions ZeroBuffers and IsBufferReady are unchanged from the non-EDMA
versions presented earlier. However, the initialization routines required, the single ISR
routine (triggered by an EDMA “event”), and the ProcessBuffer function are all different
from what we have presented before, so we need to examine these. Because we’re changing
the way the interrupts are assigned, we’ll also use a different file that assigns the interrupt
vectors; that is, instead of vectors.asm we’ll use vectors_EDMA.asm. We’ll also define a
different buffer size just for variety. Note that, as with our previous Code Composer Studio
projects, the EDMA version of the DSK initialization functions can be found in the file
DSK_Support.c, which is in the common_code directory. This is also where the interrupt
vector files are located. Other files for the EDMA version are located in the ccs\Frame_EDMA
subdirectory for Chapter 6.

We begin by listing the declarations in the EDMA version of the file ISRs.c, as they
differ somewhat from the non-EDMA version.

Listing 6.7: Declarations from EDMA version of the “ISRs.c” file.

#include "DSP_Config.h"

2 #include "math.h"

#include "frames.h"

4

// frame buffer declarations

6 #define BUFFERCOUNT 1024 // buffer length per channel

#define BUFFER LENGTH BUFFERCOUNT∗2 // two channels

8 #define NUMBUFFERS 3 // don’t change this!

10 #pragma DATA SECTION (bu f f e r , "CE0") ; // put buffers in SDRAM

Int16 buffer [NUM_BUFFERS] [BUFFER_LENGTH] ;
12 // 3 buffers used at all times, one being filled from the McBSP,

// one being operated on, and one being emptied to the McBSP

14 // ready_index --> buffer ready for processing

volat i le Int16 buffer_ready = 0 , over_run = 0 , ready_index = 0 ;

Note that in this EDMA version of the declarations the data buffers in line 11 are declared
as type Int16, which we have defined as a 16-bit signed integer. In all our past code, we
have used buffers of type float to take advantage of the ease and flexibility that floating
point numbers provide. We will continue to do so here, and the values in these buffers will
be converted to type float before processing. Why the extra conversion step? Recall that
the samples coming in from the ADC (or going out to the DAC) of the codec are integers.
In non-EDMA code, the transfer of values to or from the codec and the buffer is performed
by the CPU, which takes care of the necessary conversion between floating point and integer
data types. However, in the EDMA code the transfer to or from the codec and the buffer is
performed without any participation of the CPU, so in effect this is a “brainless” transfer
that cannot do any data type conversions. Such conversions require the CPU, so we move
the necessary conversion from integer to floating point (and back to integer again) into the
ProcessBuffer function as will be shown subsequently.

The frame size specified in lines 6 and 7 is 1024 samples per frame (1024 left channel
samples and 1024 right channel samples). Previously, we efficiently moved both the left and
right channel samples (each 16-bits) in a single 32-bit transfer operation, but by declaring a
union we were able to individually manipulate the two channels. We accomplish a similar
feat here by observing that the data type Uint32 is twice the length of Int16, and you will
see that the EDMA hardware is initialized to transfer Uint32 data types.

We now discuss EDMA_ISR, which is the function that actually implements the triple
buffering scheme (i.e., enabling the pointer addresses to change as necessary). In the

6.4. DSK IMPLEMENTATION IN C 133

non-EDMA program, this task was performed by the function Codec_ISR in Listing 6.5.
EDMA_ISR is contained in the ISRs.c file located in the ccs\Frame_EDMA subdirectory for
Chapter 6 and is shown below. This code is simpler and faster than the code in Listing 6.5.

Listing 6.8: Function for implementing triple buffering using the EDMA hardware.

1 interrupt void EDMA_ISR () {
∗(volat i le Uint32 ∗) CIPR = 0xf000 ; // clear all McBSP events

3 i f (++ready_index >= NUM_BUFFERS) // update buffer index

ready_index = 0 ;
5 i f (buffer_ready == 1) // if buffer isn’t processed in time

over_run = 1 ;
7 buffer_ready = 1 ; // mark buffer as ready for processing

}
Note that in the non-EDMA version the ISR was triggered by an interrupt which was
generated for every sample, in the EDMA version the ISR-like “event” only occurs when
the entire frame of samples has been transferred. This event triggers an interrupt which
causes interrupt service routine EDMA_ISR to run. Thus, in this example, EDMA_ISR is called
1024 times less often than Codec_ISR would be in the non-EDMA program for a frame size
(per channel) of 1024. Using the EDMA event allows us to keep all the buffers synchronized
just as well as the non-EDMA version.

While we still use an interrupt service routine for the EDMA version shown here,
EDMA_ISR is a very short and fast routine that minimizes the interruption of the CPU.
It is important to reiterate here that in order to map the vector for the proper interrupt
(INT8, triggered by an EDMA event) to the proper address of the EDMA_ISR function, the
Code Composer Studio project for this program must include the file vectors_EDMA.asm

(provided for you in the common_code directory) not the file vectors.asm as was the case
in our previous programs that used CPU ISRs.

Because the DSK initialization is slightly different for this EDMA program compared
to previous programs, we show the initialization function below.

Listing 6.9: Function for initializing the DSK when using EDMA.

void DSP_Init_EDMA () {
2 CSR=0x100 ; // disable all interrupts

IER=0;
4

Init_6713PLL () ;
6 Init_AIC23 (CodecType) ; // initialize codec using McBSP0

8 IER |= 0x0102 ; // enable EDMA interrupt (INT8)

ICR = 0xffff ; // clear all pending interrupts

10 CSR |= 1 ; // set GIE

}
The primary difference in this version compared to the non-EDMA version used before is in
line 8, where we enable interrupt 8 for the EDMA hardware (rather than using interrupts
11 and 12 as we did before for the McBSP interrupts). You may want to verify for yourself
that vectors_EDMA.asm maps interrupt 8 to the EDMA_ISR function.

The next function we need to discuss, EDMA_Init, is quite a bit more involved. It is
contained in the ISRs.c file located in the ccs\Frame_EDMA subdirectory for Chapter 6 and
is shown next.

134 CHAPTER 6. FRAME-BASED DSP

Listing 6.10: Function for initializing the EDMA hardware.

1 void EDMA_Init () {
EDMA_params∗ param ;

3

// McBSP tx event params

5 param = (EDMA_params ∗) (EVENTE_PARAMS) ;
param−>options = 0x211E0002 ;

7 param−>source = (Uint32) (&buffer [2] [0]) ;
param−>count = (0 << 16) + (BUFFER_COUNT) ;

9 param−>dest = 0x34000000 ;
param−>reload_link = (BUFFER_COUNT << 16) + (EVENTN_PARAMS &

[+]0xFFFF) ;
11

// set up first tx link param

13 param = (EDMA_params ∗) EVENTN_PARAMS ;
param−>options = 0x211E0002 ;

15 param−>source = (Uint32) (&buffer [0] [0]) ;
param−>count = (0 << 16) + (BUFFER_COUNT) ;

17 param−>dest = 0x34000000 ;
param−>reload_link = (BUFFER_COUNT << 16) + (EVENTO_PARAMS &

[+]0xFFFF) ;
19

// set up second tx link param

21 param = (EDMA_params ∗) EVENTO_PARAMS ;
param−>options = 0x211E0002 ;

23 param−>source = (Uint32) (&buffer [1] [0]) ;
param−>count = (0 << 16) + (BUFFER_COUNT) ;

25 param−>dest = 0x34000000 ;
param−>reload_link = (BUFFER_COUNT << 16) + (EVENTP_PARAMS &

[+]0xFFFF) ;
27

// set up third tx link param

29 param = (EDMA_params ∗) EVENTP_PARAMS ;
param−>options = 0x211E0002 ;

31 param−>source = (Uint32) (&buffer [2] [0]) ;
param−>count = (0 << 16) + (BUFFER_COUNT) ;

33 param−>dest = 0x34000000 ;
param−>reload_link = (BUFFER_COUNT << 16) + (EVENTN_PARAMS &

[+]0xFFFF) ;
35

37 // McBSP rx event params

param = (EDMA_params ∗) (EVENTF_PARAMS) ;
39 param−>options = 0x203F0002 ;

param−>source = 0x34000000 ;
41 param−>count = (0 << 16) + (BUFFER_COUNT) ;

param−>dest = (Uint32) (&buffer [1] [0]) ;
43 param−>reload_link = (BUFFER_COUNT << 16) + (EVENTQ_PARAMS &

[+]0xFFFF) ;

6.4. DSK IMPLEMENTATION IN C 135

45 // set up first rx link param

param = (EDMA_params ∗) EVENTQ_PARAMS ;
47 param−>options = 0x203F0002 ;

param−>source = 0x34000000 ;
49 param−>count = (0 << 16) + (BUFFER_COUNT) ;

param−>dest = (Uint32) (&buffer [2] [0]) ;
51 param−>reload_link = (BUFFER_COUNT << 16) + (EVENTR_PARAMS &

[+]0xFFFF) ;

53 // set up second rx link param

param = (EDMA_params ∗) EVENTR_PARAMS ;
55 param−>options = 0x203F0002 ;

param−>source = 0x34000000 ;
57 param−>count = (0 << 16) + (BUFFER_COUNT) ;

param−>dest = (Uint32) (&buffer [0] [0]) ;
59 param−>reload_link = (BUFFER_COUNT << 16) + (EVENTS_PARAMS &

[+]0xFFFF) ;

61 // set up third rx link param

param = (EDMA_params ∗) EVENTS_PARAMS ;
63 param−>options = 0x203F0002 ;

param−>source = 0x34000000 ;
65 param−>count = (0 << 16) + (BUFFER_COUNT) ;

param−>dest = (Uint32) (&buffer [1] [0]) ;
67 param−>reload_link = (BUFFER_COUNT << 16) + (EVENTQ_PARAMS &

[+]0xFFFF) ;

69 ∗(volat i le Uint32 ∗) ECR = 0xf000 ; // clear all McBSP events

∗(volat i le Uint32 ∗) EER = 0xC000 ;
71 ∗(volat i le Uint32 ∗) CIER = 0x8000 ; // interrupt on rx reload

[+]only

}

To fully understand what this EDMA_Init function does, you should read the TI documen-
tation that describes how to use EDMA, TMS320C6000 Peripherals Reference Guide [68],
and look at the header file c6x11dsk.h in common_code that contains the various defines
for the DSK. If you’re a bit rusty regarding structures and pointers in C, now might be a
good time to refresh yourself! The EDMA_Init function runs only once, and it is where we
specify various necessary parameters such as the source address, the destination address,
and the number of elements for each DMA transfer. This function also sets up the links
so that a triple buffering scheme is implemented. In the interest of brevity, only a synopsis
of the transmit (i.e., output) function is described in any detail. The receive (i.e., input)
function operates similarly.

Keep in mind we are still dealing with three buffers as before. The function EDMA_

Init sets up two EDMA channels, one to service the McBSP transmitter and one for the
McBSP receiver. Each channel of the EDMA has an “event” dedicated to it (as mentioned
previously, this relationship is quite similar to that between the CPU and the interrupt
lines). Each EDMA transfer is controlled by values set in a parameter RAM block; setting
up these RAM blocks is the primary purpose of EDMA_Init. The first block of code (lines 5
to 10) sets the appropriate parameters. The parameter values given in the listing configure
the event for the number of elements (which themselves are each 32-bit unsigned integers)

136 CHAPTER 6. FRAME-BASED DSP

specified by BUFFER_COUNT (defined in ISRs.c), and transfers them to buffer[2],10 the initial
buffer designated for output. The code is written such that when it finishes that transfer,
it automatically reconfigures the channel with the information stored at EVENTN_PARAMS in
the parameter RAM (this is accomplished by the reload_link field in line 10). EVENTN

is set up in the next code block starting at line 13, which configures the EDMA to use
buffer[0] and reconfigures the channel with the information stored at EVENTO_PARAMS when
it finishes. EVENTO_PARAMS (starting on line 21) will then cause the EDMA transfer to use
buffer[1], and reconfigures the channel with the information stored at EVENTP_PARAMS when
it finishes. EVENTP_PARAMS (starting on line 29) will then cause the EDMA transfer to use
buffer[2], and reconfigures the channel with the information stored at EVENTN_PARAMS when
it finishes, which is effectively a loop back to the original buffer; this cycle of using the three
buffers in sequence continues for as long as the program runs. This illustrates an important
point: for essentially zero CPU overhead, we can get automatic n-way (in this case 3-way)
buffering. The receive channel (see lines 37 to 67) operates in an identical fashion, but
it begins with a different buffer (buffer[1]) so we can keep the input and output transfers
working on different buffers.

The last few lines of EDMA_Init cannot be ignored. Line 69 clears all McBSP events
(although we are only using two events—transmit and receive—we might as well clear them
all). Line 70 sets the appropriate value in the event enable register. Finally, line 71 is a
critical line in that it sets the channel interrupt enable register so that an EDMA “event”
occurs when the particular EDMA channel serving the McBSP receive operation finishes
transferring a frame, which means that an event is only triggered each time the input frame
buffer is full.

Finally, we now show the function ProcessBuffer as modified for the EDMA version
of the program. This function is where the actual DSP algorithm is implemented. The
first thing you will notice is that this version of ProcessBuffer is much longer than the
non-EDMA version from Listing 6.4. This is due to the need to perform type conversions
on the data in the buffers (we also included in the listing other simple examples).

Listing 6.11: An abbreviated version of the ProcessBuffer function from the EDMA ver-
sion of the “ISRs.c” file.

void ProcessBuffer () {
2 Int16 ∗pBuf = buffer [ready_index] ;

stat ic f loat Left [BUFFER_COUNT] , Right [BUFFER_COUNT] ;
4 f loat ∗pL = Left , ∗pR = Right ;

Int32 i ;
6 f loat temp ;

8 WriteDigitalOutputs (0) ; // set digital outputs low for time

[+]measurement

10 for (i = 0 ; i < BUFFER_COUNT ; i++) { // extract data to float

[+]buffers

∗pR++ = ∗pBuf++;
12 ∗pL++ = ∗pBuf++;

}
14

pL = Left ; // reinitialize pointers

16 pR = Right ;

10Recall that &buffer[2][0] is the address of the first element of buffer[2].

6.4. DSK IMPLEMENTATION IN C 137

18 /* gain

for(i=0;i < BUFFER_COUNT;i++){

20 *pL++ *= 0.5;

*pR++ *= 2.0;

22 } */

24 /* zero out left channel

for(i=0;i < BUFFER_COUNT;i++){

26 *pL = 0.0;

pL++;

28 } */

30 /* zero out right channel

for(i=0;i < BUFFER_COUNT;i++){

32 *pR = 0.0;

pR++;

34 } */

36 /* reverb on right channel

for(i=0;i < BUFFER_COUNT -4;i++){

38 *pR = *pR + (0.9 * pR[2]) + (0.45 * pR[4]);

pR++;

40 }

*/

42

/* addition and subtraction */

44 for (i=0;i < BUFFER_COUNT ; i++){
temp = ∗pL ;

46 ∗pL = temp + ∗pR ; // left = L+R

∗pR = temp − ∗pR ; // right = L-R

48 pL++;
pR++;

50 }

52 /* add a sinusoid

for(i=0;i < BUFFER_COUNT;i++){

54 *pL = *pL + 1024*sinf(0.5*i);

pL++;

56 }

*/

58

/* AM modulation

60 for(i=0;i < BUFFER_COUNT;i++){

*pR = *pL * *pR * (1/32768.0); // right = L*R

62 *pL = *pL + *pR; // left = L*(1+R)

pL++;

64 pR++;

}

66 */

138 CHAPTER 6. FRAME-BASED DSP

68 pBuf = buffer [ready_index] ;
pL = Left ;

70 pR = Right ;

72 for (i = 0 ; i < BUFFER_COUNT ; i++) { // pack into buffer after

[+]bounding

∗pBuf++ = _spint (∗pR++ ∗ 65536) >> 16 ;
74 ∗pBuf++ = _spint (∗pL++ ∗ 65536) >> 16 ;

}
76

pBuf = buffer [ready_index] ;
78

WriteDigitalOutputs (1) ; // set digital output bit 0 high for

[+]time measurement

80

buffer_ready = 0 ; // signal we are done

82 }
Many examples of simple DSP algorithms are included in this code; all but one have been
commented out. You can see that the actual DSP algorithm, which is just the same example
of adding and subtracting the left and right channels, is implemented in lines 44 to 50.

In line 2, a pointer is declared that is set to the address of the frame buffer of data
type Int16 that was previously filled using EDMA and is now designated to be ready for
processing. Line 3 declares two buffers of floats that will be used to contain the left and
right frame data, after conversion to floating point. Line 4 declares pointers that will be
used to manipulate individual samples (in floating point format) in the frames. Line 8 and
line 79 are used only for testing and evaluation purposes during code development. The
actual conversion from Int16 to float occurs in lines 10 to 13; the C compiler ensures
that when the CPU transfers the integer values pointed to by *pBuf into the floating point
locations pointed to by *pR for the right channel and *pL for the left channel, that the
appropriate conversion takes place. Note the transfer and conversion alternates first right
channel then left channel, which is the order in which the data was stored in the EDMA
buffer in the first place. We could also have used a “cast” from Int16 to float here, but
there is no advantage and we prefer this method. While it may seem inefficient to transfer
from one buffer to another in this way, it is in fact very fast. The CPU savings realized by
the EDMA transfers far outweigh the CPU time required for this buffer transfer.

Lines 15 and 16 set the appropriate pointers back to the first element of the arrays of
floating point values for the left and right channels, and the actual DSP algorithm can then
commence. Similarly, lines 68 to 70 reset the appropriate pointers after the DSP algorithm
has completed. To convert the now “processed” floating point values back into integer
values suitable for EDMA transfer to the codec, the code in lines 72 to 75 uses bounds
checking (a good idea) via the intrinsic _spint function. Line 77 resets the *pBuf pointer
after the packing operation performed in lines 72 to 75.

6.5 Summary of Frame-Based Processing

This chapter has introduced you to a new way of thinking about how to implement DSP
programs. While the sample-by-sample processing of earlier chapters is typically easier to
understand, there are many reasons to consider frame-based processing. First and fore-
most, the speed and efficiency of frame-based processing—especially when using EDMA
transfers—cannot be matched using sample-by-sample processing. Second, certain DSP

6.6. FOLLOW-ON CHALLENGES 139

algorithms require that a contiguous block of samples be available at once, which is not
possible with sample-by-sample processing.

The disadvantages of frame-based processing are somewhat greater code complexity,
and a time latency equal to NTs where N is the frame size and Ts = 1/Fs is the time
between samples. While the latency is unavoidable, code complexity should not deter you.
Most users can adapt the example code given in this chapter to create a “skeleton” of a
frame-based program where they only need to adjust the frame size and the operations
performed in the ProcessBuffer function to produce their own customized program. Keep
in mind that nearly every DSP text discusses theory on a sample-by-sample basis, but
that most production real-time DSP code is written on a frame-by-frame basis. Having an
understanding of frame-based processing is therefore highly recommended.

The next chapter will introduce frame-based DSP programs that are more complicated
(and more useful) than the simple L+R and L−R used in this chapter.

6.6 Follow-On Challenges

Consider extending what you have learned.

1. Replace the addition and subtraction of the left and right channels in ProcessBuffer

with some other operation of your choosing. Try this with both the interrupt-driven
and the EDMA versions of the program.

2. Making no other changes to the non-EDMA version of the triple buffer program,
increase the size of the buffer until the process can no longer “keep up” with the
real-time schedule.

3. Making no other changes to the EDMA version of the triple buffer program, increase
the size of the buffer until the process can no longer “keep up” with the real-time
schedule. Is there a difference with what you found for the non-EDMA version?

4. If you are (or are willing to become) familiar with the profiler capability of Code
Composer Studio, you can use this to measure the increase in program speed of the
EDMA version compared to the non-EDMA version of the program.

5. Some algorithms implement an “overlap and add” process where some portion of the
processed frame is combined with some portion of the prior frame. How would you
implement such a process with your own code?

6.7 Problems

1. Describe the difference between sample-based DSP and frame-based DSP.

2. What are some types of “overhead” that are reduced using frame-based processing
compared to sample-based processing?

3. What are some of the practical considerations that help determine the frame size for
a particular DSP algorithm?

4. Suppose frame-based processing is used to provide visual data to a video screen.
Assume the sample frequency is Fs = 48 kHz, the the screen updates must occur
at a minimum of 60 frames per second. Ignoring time lost to overhead, what is the
maximum frame size that could be used to support the desired display rate?

140 CHAPTER 6. FRAME-BASED DSP

5. What are the definitions of the acronyms “DMA” and “EDMA” used in this chapter?

6. Describe the difference between a non-DMA implementation of a DSP algorithm and
a DSP implementation that uses DMA.

Chapter 7

Digital Filters Using Frames

7.1 Theory

AS discussed in Chapter 6, using frame-based processing greatly increases the efficiency
of DSP programs. The CPU performing the signal processing algorithm is only inter-

rupted at the end of a frame rather than at every sample. In this chapter, we will show
how frames can be used for time-domain digital filtering similar to the filters we discussed
in Chapter 3.

Recall that a time-domain implementation of a digital filter involves an iterative calcu-
lation of the filter’s difference equation. The only change in this chapter is that we will be
dealing with our samples a frame at a time rather than a sample at a time. For simplicity,
we will restrict this discussion to FIR filters, but IIR filters can be implemented with frames
in essentially the same manner.

7.2 winDSK Demonstration

The winDSK program does not provide an equivalent function; all the filtering in winDSK
is accomplished sample by sample to keep the code very simple.

7.3 MATLAB Implementation

Frame-based filtering in MATLAB� can be accomplished using resources such as the Data
Acquistion Toolbox or by using Simulink�, both available from The MathWorks, or by
using the MATLAB-to-DSK interface software included with this book. See Section 2.4.1
and Section 2.4.2 for examples, and Appendix E for more details.

7.4 DSK Implementation in C

To demonstrate frame-based digital filtering on the DSK, we provide a C program that
implements a filter similar to the FIR filters shown in Chapter 3. Before discussing the C
code, however, it’s important to understand the process required to implement an FIR filter
in a frame-based manner.

141

142 CHAPTER 7. DIGITAL FILTERS USING FRAMES

1���
�������
�����

������������ ���� ���� ���� ������������ ���� ���� ���� ������������

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

1�����(1�����.

��������������
�������������#�

 ��E�
��������

 ��E�
��������

 ��E�
��������

Figure 7.1: Implementing a second-order FIR filter with a frame-based approach. Note
that the b coefficients can’t “slide” past the edge of Frame 1 without some programming
“tricks.”

7.4.1 Understanding the FIR Process for Frames

Using triple-buffered EDMA-transferred frames for I/O will make the program far more
efficient and faster than the sample-based versions discussed in Chapter 3. However, the
program will have available to it a fixed-size frame of samples at any given time, which
complicates the filter convolution at the “edges” of the frame. Recall from Chapter 3 that
the output y[n] of a digital filter is calculated by performing the discrete-time convolution
of the input x[n] with the filter’s impulse response h[n]. When written as the difference
equation for an FIR filter, the numerator values b[n] are equivalent to the impulse response
h[n]. Making this substitution (b for h) and remembering that an FIR filter of order K
has K +1 coefficients, the convolution sum becomes the general form of the FIR difference
equation, namely,

y[n] =

K∑
k=0

b[k]x[n− k] for n = 0, 1, 2, . . . , N − 1,

where N represents the length of x[n] and K + 1 is the length of b[n].1 This equation tells
us that to calculate the values for an entire frame’s worth of filter output, we will need
to “slide” the filter coefficients “across” the entire frame of filter input, multiplying and
summing point-by-point as indicated by the equation above. This process is depicted in
Figure 7.1, where it can be seen that there is a potential problem at the “edges” of the
frame.

There is only a single frame of input data available at any given time. In Figure 7.1,
the values in Frame 2 aren’t available yet, and the values from the previous frame shown to

1There is nothing magical about the letters K, N , M , and so on. Sometimes N is used to represent the
length of the input data as we do here; another time N might represent the order of a filter. The context
of the discussion should make clear what the letters represent.

7.4. DSK IMPLEMENTATION IN C 143

the left of Frame 1 would be “gone” by now unless we use some programming “tricks” to
keep those values around. If we ignore the “edges” of the frame, we would be ignoring the
initial and final conditions of the filter for that frame of data, and we would not correctly
implement the filter. For audio applications, the result of ignoring these “edge” problems
would be heard as a distinctive “clicking” or “popping” noise in the output occurring at
the frame rate.

7.4.2 How to Avoid the “Edge” Problems

How do we fix this problem? We create a buffer large enough to contain both the frame of
current input data and also have room to hold the necessary edge values from the previous
frame. In Figure 7.1 this would mean an array that includes both the values labeled “From
previous frame” and the values labeled Frame 1. We “slide” the filter starting from the left
most element (the first “From previous frame” element) until the right edge of the filter
reaches the end of Frame 1, indicated in the figure by a thick, dark line. We can’t go any
farther than this because the data for Frame 2 isn’t available yet. Before the current frame
(Frame 1) is transferred out and the next frame (Frame 2) comes in to overwrite it, we
copy the right edge values of Frame 1 into the locations labeled “From previous frame.”
The next frame values are stored in the remaining locations, so we have effectively “saved”
the values from the previous frame. In this way, the edge effects are eliminated, as will be
shown in the actual C code.

7.4.3 Explanation of the C Code

As an illustrative example, we will show you a program that implements a simple low-
pass FIR filter that provides a similar output result to that of the FIR filters discussed
in Chapter 3. But the method used to obtain our output will be to use frame-based
processing, written in such a way that we avoid the “edge” problems discussed above.
Thus, the associated “clicking” or “popping” noise in the output is avoided. Before you
read the program listing, you may want to glance back at Figure 7.1.

The C program to implement this as frame-based code can be found in the ccs\

FiltFrame directory of Chapter 7. Be sure to inspect the full code listings in this di-
rectory to understand the complete working of the program.2 Here we simply point out
some highlights. The discussion which follows assumes you have read and are familiar with
the explanation of frame-based processing given in Chapter 6.

Realistically, you would use MATLAB or some other filter design program to determine
your filter coefficients. To easily use FIR filter coefficients generated by the filter design
tools in MATLAB, you can use the script file named fir_dump2c.m that is located in the
MatlabExports directory for Appendix E (there are other script files in the same directory
for IIR filters). As discussed in Chapter 3, this script creates two files needed by your C
program, typically named coeff.h and coeff.c. These files define N , representing the
order of the filter, and B[N + 1], the array of filter coefficients.

The program we provide makes use of the EDMA capabilities of the DSK. This C code
is almost identical to the EDMA version of the frame-based C code described in Chapter 6.
The only differences are the need to include coeff.h and coeff.c in your project, and the
changes described below to the ProcessBuffer() routine in the ISRs.c file. The contents
of coeff.h and coeff.c were discussed in Chapter 3. The code for the ProcessBuffer()

routine is shown in Listing 7.1.

2Look also in the DSK_Support.c file in the common_code directory for initialization functions shared by
multiple programs.

144 CHAPTER 7. DIGITAL FILTERS USING FRAMES

Listing 7.1: ProcessBuffer() routine for implementing a frame-based FIR filter.

void ProcessBuffer () {
2 Int16 ∗pBuf = buffer [ready_index] ;

// extra buffer room for convolution "edge effects"

4 // N is filter order from coeff.h

stat ic f loat Left [BUFFER_COUNT+N]={0} ;
6 stat ic f loat Right [BUFFER_COUNT+N]={0} ;

f loat ∗pL = Left , ∗pR = Right ;
8 f loat yLeft , yRight ;

Int32 i , j , k ;
10

// offset pointers to start filling after N elements

12 pR += N ;
pL += N ;

14

// extract data to float buffers

16 for (i = 0 ; i < BUFFER_COUNT ; i++) {
// order is important here: must go right first then left

18 ∗pR++ = ∗pBuf++;
∗pL++ = ∗pBuf++;

20 }

22 // reinitialize pointer before FOR loop

pBuf = buffer [ready_index] ;
24

//

26 // Implement FIR filter

// Ensure COEFF.C is part of project

28 //

for (i=0;i < BUFFER_COUNT ; i++){
30 yLeft = 0 ; // initialize the L output value

yRight = 0 ; // initialize the R output value

32

for (j=0,k=i ; j <= N ; j++,k++){
34 yLeft += Left [k] ∗ B [j] ; // perform the L dot-product

yRight += Right [k] ∗ B [j] ; // perform the R dot-product

36 }

38 // pack into buffer after bounding (first right then left)

∗pBuf++ = _spint (yRight ∗ 65536) >> 16 ;
40 ∗pBuf++ = _spint (yLeft ∗ 65536) >> 16 ;

}
42

// save end values at end of buffer array for next pass

44 // by placing at beginning of buffer array

for (i=BUFFER_COUNT , j=0;i < BUFFER_COUNT+N ; i++,j++){
46 Left [j]=Left [i] ;

Right [j]=Right [i] ;
48 }

7.5. FOLLOW-ON CHALLENGES 145

50 //////// end of FIR routine ///////////

52 // reinitialize pointer

pBuf = buffer [ready_index] ;
54

buffer_ready = 0 ; // signal we are done

56 }
The key parts of the code that differ the EDMA code in Chapter 6 are:

• (lines 5–6) declaring the arrays to be BUFFER_COUNT+N, which leaves enough room for
the edge values that need to be saved;

• (lines 12–13) advancing the pointers so that the incoming data doesn’t overwrite the
edge values from the previous frame;

• (lines 33–36) using different array index values to implement the convolution properly
across the frame; and

• (lines 45–48) copying the edge values of the current frame to the beginning of the
buffer so they will be available when the next frame comes in.

Now that you understand the code. . .

Go ahead and copy all of the files into a separate directory. If you wish to design your
own FIR filter using MATLAB rather than using the provided filter (a simple low-pass
filter), use the script file fir_dump2c.m that can be found in the MatlabExports directory
of Appendix E and was first discussed in Chapter 3. Copy any new versions of coeff.h and
coeff.c that you create into your project directory before proceeding. When ready, open
the project in CCS and “Rebuild All.” Once the build is complete, “Load Program” into
the DSK and click on “Run.” Your frame-based FIR filter is now running on the DSK.

7.5 Follow-On Challenges

Consider extending what you have learned.

1. Compare the sample-based FIR code to the frame-based FIR code. Which do you
predict could handle the higher-order filter in real time? Try to get the sample-based
FIR code to break the real-time schedule by using a large-order filter; try the same
filter with the frame-based code.

2. Many FIR filters exhibit some form of symmetry in the coefficients to ensure linear
phase response. For example, b[0] = b[N − 1], b[1] = b[N − 2], b[2] = b[N − 3], and so
on. Modify the code provided in this chapter to take advantage of this symmetry.

3. In addition to symmetry, some FIR filters also exhibit a regular pattern of zero-valued
coefficients (such as every other value). Modify the code provided in this chapter to
take advantage of this fact.

4. This chapter demonstrated an FIR filter using frames. Implement an IIR filter using
frames.

146 CHAPTER 7. DIGITAL FILTERS USING FRAMES

7.6 Problems

1. Suppose an FIR filter of order N = 30 is implemented using frames. Assume the
sample frequency is Fs = 48 kHz, and the frame size is 1024 (per channel) as defined
by BUFFER_COUNT in the C code. If the “edge effects” described in this chapter are
not avoided by increasing the size of the Left and Right buffers, how many times per
second would a “clicking” or “popping” noise (due to edge effects) be heard in the
output?

2. Suppose an FIR filter of order N = 30 is implemented using frames. Assume the
sample frequency is Fs = 48 kHz, and the frame size is 1024 (per channel) as defined
by BUFFER_COUNT in the C code. Further assume that the “edge effects” described
in this chapter are avoided by increasing the size of the Left and Right buffers as
needed, but that the programmer neglected the step of copying the end values of the
buffers to the beginning of the buffers before the new frame data arrives. How many
times per second would the output be in error, and for how long would it be in error?

3. Assume the sample frequency is Fs = 48 kHz, and the frame size is 1024 (per channel)
as defined by BUFFER_COUNT in the C code for the frame-based approach. Compare
the time available to the DSP to implement an FIR filter (on both the left and right
channels) using a frame-based approach versus a sample-by-sample approach. Neglect
overhead in your answer.

Chapter 8

The Fast Fourier Transform

8.1 Theory

THE Fast Fourier Transform (FFT) is just what the name says it is: a fast way for com-
puters to calculate the Fourier transform, specifically the Discrete Fourier Transform

(DFT). The introduction of the FFT algorithm by Cooley and Tukey in 1965 revolution-
ized signal processing and has had an enormous effect on engineering and applied science
in general [1]. This chapter is by no means a treatise on the FFT. Despite the fact that we
will only cover a few of the major points, this is still a long chapter, but we encourage you
to read it completely. For more details about the FFT, see [2, 4, 69].

Having a fast way to calculate the DFT has many advantages. We will see in Chapter 9
how it can be used for practical spectral analysis. In this chapter, we investigate how the
FFT can be used for efficiently implementing digital filters.

8.1.1 Defining the FFT

Before proceeding with a discussion of this application of the FFT, we first need to briefly
discuss the DFT and how the FFT is faster. The N -point DFT for k = 0, 1, . . . , N − 1 is
defined as

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N =
N−1∑
n=0

x[n]W kn
N

where the “twiddle factor” notation WN = exp
(−j 2π

N

)
is often used for a more compact

form. This equation is identical for the FFT; we simply use an efficient programming
method to implement it. The inverse DFT or FFT is defined by

x[n] =
1

N

N−1∑
n=0

X[k]ej2πkn/N =
1

N

N−1∑
n=0

X[k]W−kn
N

Some books may show the 1/N factor as part of the FFT definition rather than the inverse
FFT definition, and some even show a 1/

√
N factor in both definitions. All three forms of

the definition are correct, since 1/N is just a scale factor to ensure invertibility.

8.1.2 The Twiddle Factors

The only difference between the FFT and the inverse FFT (IFFT) is the division by N and
the negative power of the twiddle factors; thus, the same basic algorithm can be used for

147

148 CHAPTER 8. THE FAST FOURIER TRANSFORM

%���
&'�*��

?��������
&'�*��

1�
5

F:
-

F:
(

F:
.

F:
/

F:
0

F:
3

F:
8

F:
9

Figure 8.1: The placement of twiddle factor points for the DFT or FFT.

both. Note that the integer powers of WN form a periodic sequence of numbers, having a
period of N . That is, Wn

N = Wn+N
N . Since in the DFT and FFT definition both k and n in

W kn
N are always integers, the same set of twiddle factors appear over and over again. For

example, in a 2-point FFT the only two twiddle factors for any of the positive k values are

W 0
2 = exp

(
−j 2π(0)

2

)
= 1,

W 1
2 = exp

(
−j 2π(1)

2

)
= −1.

Likewise, for a 4-point FFT the only four twiddle factors for all the positive values of k
are W 0

4 = 1, W 1
4 = −j, W 2

4 = −1, W 3
4 = j. To visualize this, we can plot Wn

N on a circle
(analogous to the unit circle on the z-plane). Figure 8.1 shows where all the twiddle factor
points would be for an 8-point FFT given any positive value of k. This can be thought of
as a vector rotating clockwise along the unit circle, and the spacing of the twiddle factors
in real-world frequency is always Fs/N , where Fs is the sample frequency.1 For W−kn

N used
in the IFFT the vector would be rotating counterclockwise, and W−1

8 = W 7
8 , W

−2
8 = W 6

8 ,
. . . , W−7

8 = W 1
8 . We take advantage of the periodicity of the twiddle factors to implement

the FFT.

8.1.3 The FFT Process

The main idea behind the FFT developed by Cooley and Tukey is that when the length
N of the DFT is not a prime number, the calculation can be decomposed into a number
of shorter length DFTs. The total number of multiplications and additions required for all
the shorter-length DFTs is fewer than the number required for the single full-length DFT.
Each of these shorter-length DFTs can then be further decomposed into a number of even
shorter DFTs, and so on, until the final DFTs are of a length that is a prime factor of N .

1Note that Fs/N is the best frequency resolution possible for the FFT or DFT.

8.1. THEORY 149

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

ex
ec

ut
io

n
tim

e
(s

)

n, where the FFT block size is N = 2n

DFT
FFT

Figure 8.2: Relative calculation time for the “brute-force” DFT versus a commercially avail-
able radix-2 FFT routine. The data plotted is the averaged empirical timing results from
a desktop workstation. The specific execution time isn’t important, only the comparison
between the DFT and FFT.

Then these shortest DFTs are calculated in the normal fashion. The opposite order can be
used, starting with the smallest DFTs and building (recombining) into larger ones for an
equivalent savings. For the radix-2 FFT (a common type), the length of the FFT must be
a power of 2. If N = 8, for example, the FFT would decompose this into two 4-point FFTs,
which are each decomposed into two 2-point FFTs (for a total of four 2-point FFTs), and
the calculation is complete. Or it could perform four 2-point DFTs, using these results to
compute two 4-point DFTs for the final result. The former method is called decimation-in-
frequency, and the latter method is called decimation-in-time. With appropriate summing
and reuse of intermediate results, as well as taking advantage of the periodicity of the
twiddle factors, the FFT can be performed at a tremendous increase in efficiency compared
to the “brute-force” DFT. The number of complex mathematical operations required to
calculate an N -point DFT is proportional to N2; for the same N -point radix-2 FFT, it
would be proportional to N log2 N . Thus, for a 512-point example, the DFT would require
on the order of 262,144 complex mathematical operations, while the FFT would require
only 4,608 operations—which is more than 50 times faster than the DFT! For larger DFTs,
the difference is even more dramatic. The empirical speedup provided by the FFT on a
typical computer is shown graphically in Figure 8.2. Note from the figure that the FFT can
perform the DFT on N = 220 = 1, 048, 576 data points in the same amount of time that
the “brute-force” DFT would take for N = 27 = 128 data points. That’s a speedup factor
of 8,192, which shows why the FFT is so widely used.

The traditional way to show the FFT algorithm is through the use of “butterfly di-
agrams,” which depict the decomposition, intermediate summing, and application of the
twiddle factors. These are shown in Figures 8.3, 8.4, and 8.5 for a 2-point, 4-point, and
8-point decimation-in-time FFT. It is very beneficial to manually trace your way through
these small butterfly diagrams, until you get a feel for what is going on.

150 CHAPTER 8. THE FAST FOURIER TRANSFORM

����

����

	���

	���
��

 �

Figure 8.3: Butterfly diagram of a decimation-in-time radix-2 FFT for N = 2. Any branches
not marked have a gain of +1.

	���

	���

	�!�

	���

 �

��

 �

��

 �

��

����

����

����

��!�
��

 �

Figure 8.4: Butterfly diagram of a decimation-in-time radix-2 FFT for N = 4. Any branches
not marked have a gain of +1.

	���

	���

	�!�

	���

 �

��

 �

��

 �

��

����

��"�

����

��#�
��

 �

	�"�

	�$�

	�%�

	�#�

 �

��

 �

��

 �

��

����

��$�

��!�

��%�
��

 �

&
'

�

&
'

�

&
'

�

&
'

!

&
'

"

&
'

$

&
'

#

&
'

%

Figure 8.5: Butterfly diagram of a decimation-in-time radix-2 FFT for N = 8. Any branches
not marked have a gain of +1.

8.1. THEORY 151

8.1.4 Bit-Reversed Addressing

The ordering of the input values on the left side of the butterfly figures may seem strange to
you. To account for the most efficient way to perform the butterfly operation by computer
for a decimation-in-time FFT, the order of the input values must be rearranged into what
is known as bit-reversed addressing. You know that to address (or index) N values for
an N = 2n FFT input array requires n bits if the index is expressed in binary from. For
bit-reversed addressing, the binary index number of the data array element at the input
is reversed left to right. For example, in Figure 8.5, you might expect the second input
element to be x[1]. With the index expressed as a 3-bit binary number this would be
x[001]. Reversing the bits of the index yields x[100], which in decimal notation is x[4]; this
is the actual second input element in bit-reversed addressing. The dual of a decimation-
in-time FFT is a decimation-in-frequency FFT. The only difference in the butterfly for
a decimation-in-frequency FFT is that the order of the butterfly sections are reversed,
the twiddle factors swap positions, and the output values rather than the input values
appear in bit-reversed order. There is no intrinsic advantage of one over the other and the
implementation choice is typically arbitrary.

When we use bit-reversed addressing on either the input or output side of a butterfly,
we can perform what is called an “in-place” calculation, which means the same memory
array that holds the input data is used to hold the output data. The bit-reversed addressing
ensures that no input data element gets overwritten by an output value until it is no longer
need for any more calculations of the FFT.

8.1.5 Using the FFT for Filtering

As the order of a filter increases, the time required to calculate the output value associated
with each input sample also increases. As we saw in Chapter 7, frame-based filtering helps
increase the overall efficiency of the filtering operation by reducing the time required to pass
samples to and from the DSP CPU. Yet we are still calculating a time domain convolution.
If we can also take advantage of the FFT to perform the equivalent of convolution, then we
can save even more time and thus implement even longer (higher-order) filters in real-time.
Using the FFT in this way is generally referred to as fast convolution.

Frequency-domain techniques such as this extend the concepts first introduced in Chap-
ter 3. We know the filtering equation is really just the convolution integral

y (t) =

∞∫
0

h (τ)x (t− τ) dτ.

If we take the Fourier transform of the convolution integral, we obtain

Y (jω) = H (jω)X (jω) .

Notice that the original convolution operation in the time domain has been converted into
a multiplication operation in the frequency domain. Similarly, the discrete-time version of
the convolution integral (the convolution sum) is

y[n] =

M−1∑
m=0

h[m]x[n−m] for n = 0, 1, 2, . . . , N − 1,

where, in this context, M is the length of the filter (thus, the filter order is M − 1) and N

152 CHAPTER 8. THE FAST FOURIER TRANSFORM

is the length of the data.2 The FFT of the convolution sum is

Y [k] = H[k]X[k].

Again notice that the convolution operation in the discrete-time domain has been converted
into a multiplication operation in the discrete-frequency domain.

We might expect that to calculate the digital filter’s output back in the time domain,
we can use the IFFT and calculate

y[k] = IFFT{Y [k]}
= IFFT{H[k]X[k]}
= IFFT{FFT{h[n]}FFT{x[n]}}.

Using this approach we would take the FFT of our filter’s impulse response, h[n], and
multiply the result by the FFT of the input signal, x[n]. We would then take the inverse
FFT of the product. As we shall see below, this approach requires a slight modification
to avoid the effects of circular convolution but otherwise will work splendidly. As the
lengths of h[n] and x[n] increase, there comes a point beyond which the frequency-domain
transform technique of fast convolution will require fewer mathematical operations than the
traditional time-domain convolution approach. For a constant coefficient filter (non-time
varying), additional savings can be gained by realizing that the transform of the filter’s
impulse response need only be calculated once.

8.1.6 Avoiding Circular Convolution

Remembering that for discrete-time systems the transform-based approach results in circu-
lar convolution instead of linear convolution, we must zero pad both h[n] and x[n]. When
two sequences h[n] and x[n] are properly padded, the circular convolution of the two that
is due to multiplication in the frequency domain provides the exact same result as would
the linear convolution of h[n] and x[n] in the time domain. Without such padding, circular
convolution is not equivalent to linear convolution. This can be seen in the MATLAB�

listing shown below.

Listing 8.1: A MATLAB listing that compares linear and circular convolution.

% Simulation inputs

2 h = [1 2 3 2 1] ; % impulse response declaration

x = [1 3 −2 4 −3]; % input term declaration

4

% Calculated and output terms

6 y = conv (h , x)
yLength = length (y)

8 circularConvolutionResult = i f f t (f f t (h) .∗ f f t (x))
circularConvolutionResultLength=length (circularConvolutionResult)

In this listing, line 2 declares the impulse response, h[n], of a fourth-order filter and line 3
declares the input sequence, x[n], which will be “processed” by the filter. Line 6 performs
the linear convolution with MATLAB’s built-in conv() command, and line 7 determines
the length of the convolution result. Line 8 performs the circular convolution (by using
the FFT, point-by-point multiplication, and the IFFT), and line 9 determines the length of
that resulting sequence. The MATLAB command window results are similar to:

2As mentioned earlier, it is common practice in DSP texts to use letters such as N as the filter order
in some contexts and as the filter length in other contexts. From the nature of the discussion, it should be
clear to the reader which definition is being used.

8.1. THEORY 153

y = 1 5 7 11 6 5 -3 -2 -3

yLength = 9

circularConvolutionResult = 6.0000 2.0000 5.0000 8.0000 6.0000

circularConvolutionResultLength = 5.

At this point, two very important observations are required.

1. The outputs of the two processes, y and circularConvolutionResult are not the
same sequence.

2. The resulting sequences, y and circularConvolutionResult are not the same length.

As stated earlier, zero padding (sometimes just called padding), can turn circular convolu-
tion into the equivalent of linear convolution. To accomplish this task, we must

1. Ensure that the padded lengths of h[n] and x[n] are the same.

2. Adjust the padded lengths of h[n] and x[n] to be at least equal to the length of the
resulting linear convolution of the sequences h[n] and x[n], given by

N +M − 1

where N is the unpadded length of x[n] and M is the unpadded length of h[n]. In the
previous MATLAB code listing output, N = 5 and M = 5. Therefore,

N +M − 1 = 5 + 5− 1 = 9.

Notice that this result, 9, is the length of the linear convolution, yLength, calculated pre-
viously by MATLAB. So, to convert the circular convolution to the equivalent of linear
convolution we must pad h[n] and x[n] to at least a length of 9. The updated MATLAB
code listing to accomplish this task is shown below.

Listing 8.2: A MATLAB listing that demonstrates how to convert circular convolution into
the equivalent of linear convolution.

1 % Simulation inputs

format short g % set format to short g

3 h = [1 2 3 2 1] ; % impulse response declaration

x = [1 3 −2 4 −3]; % input term declaration

5

hZeroPad = [h zeros (1 , 4)] ;
7 xZeroPad = [x zeros (1 , 4)] ;

9 % Calculated and output terms

y = conv (h , x)
11 yLength = length (y)

circularConvolutionResult= i f f t (f f t (hZeroPad) .∗ f f t (xZeroPad)) ;
13 circularConvolutionResult=real (circularConvolutionResult)

circularConvolutionResultLength=length (circularConvolutionResult)

In this listing, line 2 changes the display format to suppress trailing zeros while lines 6
and 7 pad h[n] and x[n] by appending 4 zeros onto the original sequences. The MATLAB
command window results are similar to:

154 CHAPTER 8. THE FAST FOURIER TRANSFORM

y = 1 5 7 11 6 5 -3 -2 -3

yLength = 9

circularConvolutionResult = 1 5 7 11 6 5 -3 -2 -3

circularConvolutionResultLength = 9.

Notice that the results, and therefore the lengths of both techniques, are the same. Did
you also notice that in line 13 of the listing the MATLAB command real was added to
remove unwanted imaginary terms from the answer? Since we know that the convolution
of two real-valued sequences, namely, h[n] and x[n], is another real valued sequence, these
imaginary terms are the result of numerical “noise” that occurs due to limited numerical
precision during the transform process. Since the imaginary part of the filter’s output
should be zero, the resulting imaginary noise should be ignored.

Note that the padding may also be driven by the requirements of the FFT. For a radix-2
FFT, the input array length must be a power of 2. In our example above, if we were using
a radix-2 FFT, we would need to pad M and N so that their padded length L is the next
higher power of two such that L ≥ (N +M − 1). In the above example, N +M − 1 = 9, so
we would need to pad to L = 16. A time-domain convolution requires on the order of NM
operations, but the fast convolution using an L-point radix-2 FFT requires on the order of
(8L log2(L) + 4L) operations [59].

8.1.7 Real-Time Fast Convolution

The techniques developed above work well for filtering short- or medium-length sequences,
but what about filtering very long sequences? How about real-time systems, where nearly
infinite length sequences (sequences where the input may persist for days or months) are
common? We need to find a variation on the fast convolution described above to perform
the filtering operation since we don’t want to store all the input samples in memory before
processing. Additionally, the wait or latency associated with gathering all the samples of
a long sequence before we commence the actual filtering operation defeats the intent of
real-time DSP.

To filter very long signal sequences, we must, therefore, partition the signal into shorter
length sequences that we can filter individually and then recombine into a complete, filtered
version of the original signal. A number of techniques have been developed to perform
this operation, but we will limit our discussion to the two most common: overlap-add
and overlap-save techniques. In our brief discussion of these two techniques we will use
only short input sequences for both h[n] and x[n] in the hope that this will improve the
understandability of the processes required, but the technique is intended for very long
sequences of data.

Overlap-Add

In Figure 8.6, x[n] is a 30-point sequence that is padded out to 36 points (0 ≤ n ≤ 35)
to allow for a uniform x-axis labeling for all of the subplots. In this example, we wish
to convolve x[n] with the impulse response h[n] of the sixth-order lowpass filter shown in
Figure 8.7. Obviously, the length of h[n] is M = 7. The second (x0[n]), third (x1[n]), and
fourth (x2[n]) subplots in Figure 8.6 partition x[n] into 3 non-overlapping segments, each
segment being 10 samples in length (N = 10). This partition length (N = 10 samples)
was chosen based on the desire to use a 16-point FFT. Remember that the output of a
convolution operation has a length equal to L = N +M − 1. For this example, the total
length is L = 16, the filter length is M = 7, and therefore our data length is required to be
N = 10 samples. The fifth (y0[n]), sixth (y1[n]), and seventh (y2[n]) subplots in Figure 8.6
show the results of the transform-based filtering operation (fast convolution using the FFT

8.1. THEORY 155

−5
0
5

x [n
]

−5
0
5

x 0[n
]

−5
0
5

x 1[n
]

−5
0
5

x 2[n
]

−5
0
5

y 0[n
]

−5
0
5

y 1[n
]

−5
0
5

y 2[n
]

−5
0
5

 s
um

0 5 10 15 20 25 30 35
−5

0
5

x[
n]

*h
[n

]

n

Figure 8.6: The overlap-add fast convolution process. Filled circles are zero padded values.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

h[
n]

n

Figure 8.7: The impulse response associated with the lowpass filter used in the overlap-add
fast convolution process.

156 CHAPTER 8. THE FAST FOURIER TRANSFORM

and IFFT) of x0[n], x1[n], and x2[n] with h[n]. Notice that the filtering of x0[n], a 10 sample
sequence, using h[n], results in the 16 sample sequence y0[n]. The last 6 samples of y0[n]
overlap with the first 6 samples of y1[n]. Similarly, the last 6 samples of y1[n] overlap with
the first 6 samples of y2[n]. To obtain the filter’s proper output, the overlapping regions
must be added prior to these samples being sent to the DSP system’s output device (hence
the name, “overlap-add”). The final subplot in Figure 8.6 is provided for comparison
and is the system’s output using traditional time-domain convolution. These last two
subplots demonstrate that the transform-based technique and the traditional convolution
sum technique return the same result.

Overlap-Save

In Figure 8.8, x[n] is once again a 36-point input sequence. In this example, our desire
is to convolve x[n] with the impulse response of the same sixth-order lowpass filter as
before, shown in Figure 8.7; therefore, the length of h[n] is M = 7. The second (x0[n]),
third (x1[n]), and fourth (x2[n]) subplots in Figure 8.8 partition x[n] into 3 overlapping
segments, each segment being 16 samples in length, and the overlap being 6 samples in
length. This partition length was chosen based on the desire to use a 16-point FFT. The
fifth (y0[n]), sixth (y1[n]), and seventh (y2[n]) subplots in Figure 8.8 show the results of the
transform-based filtering operation of x0[n], x1[n], and x2[n] with h[n]. The first 6 samples
(M − 1 = 6, which is the order of the LP filter) of y0[n], y1[n], and y0[n] are not accurate
and are not used. To indicate this fact, these values have large X’s drawn through them.

−5
0
5

x [n
]

−5
0
5

x 0[n
]

−5
0
5

x 1[n
]

−5
0
5

x 2[n
]

−5
0
5

y 0[n
]

−5
0
5

y 1[n
]

−5
0
5

y 2[n
]

−5
0
5

 s
av

e

0 5 10 15 20 25 30 35
−5

0
5

x[
n]

*h
[n

]

n

Figure 8.8: The overlap-save fast convolution process. Filled circles are zero padded values.

8.2. WINDSK DEMONSTRATION 157

To obtain the filter’s output, the portions of y0[n], y1[n], and y0[n] that do not have large
X’s drawn through them are concatenated. The final subplot in Figure 8.8 is provided for
comparison and is the system’s output using traditional time-domain convolution. These
last two subplots demonstrate that, with the exception of the filter’s initial transient, the
transform-based technique and traditional convolution return the same result.

In summary, the overlap and add technique has no overlap of the inputs but must add
the overlapped portions of the output segments for a correct result. The overlap and save
technique overlaps the input segments then throws away the resulting overlapped regions
of the output segments and seamlessly “stitches together” the remaining portions. Either
technique allows real-time filtering of long duration input sequences even if you’re using
high-order filters.

8.2 winDSK Demonstration

There is no example of fast convolution in winDSK.

8.3 MATLAB Implementation

There are many ways to demonstrate the FFT using MATLAB, and a basic example of fast
convolution was shown on line 12 of Listing 8.2. The overlap techniques for real-time DSP
can be simulated in MATLAB, but because this chapter is already rather lengthy, we prefer
to move on to the C code.

8.4 Implementation in C

We are dealing with several new ideas in this chapter, namely, the FFT and its inverse, fast
convolution in general, and the two overlap methods of real-time fast convolution. It would
be unwise of us to attempt to cover them all in detail within a single chapter. We therefore
choose to concentrate here on helping you become familiar with just the FFT algorithm.
The other concepts, including real-time implementation, are left for follow-on exercises. If
you understand the FFT code example that follows, they are not hard to implement on
your own.

To ensure we understand and have implemented the FFT algorithm correctly, we can
test it in non-real-time using the CPU of your workstation or laptop (i.e., the host PC you
normally connect to the DSK) and compare the output to known correct values. The C
program to implement this can be found in the fft_example directory of Chapter 8. It is
by no means a fully optimized FFT routine, but is useful for understanding the concepts.
Because it’s intended to be compiled and run on your host PC and not the DSK, you won’t
use CCS this time as the compiler.

The code in fft_example is fairly straightforward C programming. We incorporate a
common “trick” in the code: since the FFT must be able to handle complex numbers, and
C does not support complex numbers directly, we use a structure.

Listing 8.3: A structure for implementing complex numbers in C.

typedef struct {
2 f loat real , imag ;
} COMPLEX ;

The float datatype that we use above is typical for DSP CPUs to save memory and gain
speed if we don’t really need the full precision of the double datatype, so we continue that

158 CHAPTER 8. THE FAST FOURIER TRANSFORM

practice here. If we were only interested in implementing this FFT on a PC or other general
purpose processor, we would probably have used double for the structure.

The calculation of the twiddle factors is accomplished by the function init_W(). Recall
the twiddle factors are Wn

N = exp
(−j 2πn

N

)
. By using the very helpful Euler’s formula from

complex analysis,

ejx = cosx+ j sinx,

our function init_W() can use the trigonometric equivalent of the complex exponential to
make it easy to separate the real and imaginary parts of the twiddle factors. This works
very well with the structure we defined above for complex numbers. Function init_W() is
shown below; it runs only once and stores all the twiddle factors that will be needed for the
specified length FFT.

Listing 8.4: A function for calculating the complex twiddle factors.

1 void init_W (int N , COMPLEX ∗W)
{

3 int n ;
f loat a = 2.0∗ PI/N ;

5

for (n = 0 ; n < N ; n++) {
7 W [n] . real = (f loat) cos(−n∗a) ;

W [n] . imag = (f loat) sin(−n∗a) ;
9 }
}
In the listing above, N is the length of the FFT, PI was defined earlier in the program, and
W is a global array of complex numbers. It should be clear to you that function init_W()

creates all the complex numbers needed for Wn
N .

The actual N -point butterfly for the FFT is performed by the code shown below, ex-
cerpted from the fft_c() function.

Listing 8.5: The C code for performing the FFT butterfly operation.

// perform fft butterfly

2 Windex = 1 ;
for (len = n/2 ; len > 0 ; len /= 2) {

4 Wptr = W ;
for (j = 0 ; j < len ; j++) {

6 u = ∗Wptr ;
for (i = j ; i < n ; i = i + 2∗len) {

8 temp . real = x [i] . real + x [i+len] . real ;
temp . imag = x [i] . imag + x [i+len] . imag ;

10 tm . real = x [i] . real − x [i+len] . real ;
tm . imag = x [i] . imag − x [i+len] . imag ;

12 x [i+len] . real = tm . real∗u . real − tm . imag∗u . imag ;
x [i+len] . imag = tm . real∗u . imag + tm . imag∗u . real ;

14 x [i] = temp ;
}

16 Wptr = Wptr + Windex ;
}

18 Windex = 2∗Windex ;
}

8.4. IMPLEMENTATION IN C 159

The input data is in array x, which is made up of complex datatype elements as defined
by the structure discussed earlier, and the twiddle factors are accessed via pointer u. The
variable len is used to successively split the data sets in half (see line 3 of the listing). The
remaining lines simply perform the additions and multiplications required by the butterfly
operations. You should work your way through this code with a small number of data
elements (such as N = 8), while looking back frequently at the appropriate butterfly figure
(such as Figure 8.5).

Finally, since the data coming out of the butterfly is in bit-reversed addressing order, we
need to reorder the data back to “normal” order by “unscrambling” the elements of array
x, which by now contains the FFT result, not the input data. This is accomplished by the
code shown below.

Listing 8.6: A routine for “unscrambling” the order from bit-reversed addressing to normal
ordering.

1 // rearrange data by bit reversed addressing

// this step must occur after the fft butterfly

3 j = 0 ;
for (i = 1 ; i < (n−1) ; i++) {

5 k = n /2 ;
while (k <= j) {

7 j −= k ;
k /= 2 ;

9 }
j += k ;

11 i f (i < j) {
temp = x [j] ;

13 x [j] = x [i] ;
x [i] = temp ;

15 }
}

Now that you understand the code. . .

Go ahead and copy all of the project files into a separate directory. Note that this is a very
simple program, without any real-time requirements, so the project is quite small. When
ready, open the project in an appropriate C programming environment3 that targets your
host PC’s CPU, and compile (or build) the entire project. Once the build is complete, run
the program on your host PC; the output can be seen on the StdIO window provided by
your programming environment.4

To keep things as simple as possible, the input data is hard-coded into the program file
as x = {0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0}. This means you will be calculating a 16-point
FFT. Based on our underlying knowledge of the Fourier transform, we can easily predict a
few things about the result of an FFT on this data: (1) since the average value of the input
data is non-zero, the frequency domain DC (or zero Hertz) value will also be non-zero; (2)
since we have 16 input values we should have 16 output values (although the output will
consist of 16 complex numbers); and (3) since the input data is real, the output data will be
symmetrical about the Fs/2 point. While you are free to change the input data or modify

3Any of the various programming environments for C or C++ can be used, such as Microsoft Visual
C/C++, GCC, lcc, MinGW, etc.

4We use the host PC for this example primarily because getting output via StdIO to show the FFT
result is easy on a PC but not so on a DSK.

160 CHAPTER 8. THE FAST FOURIER TRANSFORM

the code to accept input data as an argument passed to the function, we wrote it this way
so you could easily verify the correctness of the algorithm. It’s also closer to how you might
implement this in real-time, where the input would come from a predefined memory buffer.
All you need to do now is compare the output of the C code running on the DSK to the
result of the following MATLAB commands.

Listing 8.7: MATLAB commands used to confirm the correctness of your FFT.

x=[0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0] ;
2 X=transpose (f f t (x))

We used the transpose operator in line 2 only so that the output would line up better as a
column.5 The MATLAB command window results should be similar to:

X =

28.0000

-9.1371 -20.1094i

-4.0000 + 9.6569i

2.3801 - 5.9864i

-4.0000 + 4.0000i

3.2768 - 2.6727i

-4.0000 + 1.6569i

3.4802 - 0.7956i

-4.0000

3.4802 + 0.7956i

-4.0000 - 1.6569i

3.2768 + 2.6727i

-4.0000 - 4.0000i

2.3801 + 5.9864i

-4.0000 - 9.6569i

-9.1371 +20.1094i

These numbers should be essentially identical to the output of the FFT when run via C
code on your host PC. Not only is our algorithm functioning correctly but our predictions
about the FFT result are also verified: the DC value is non-zero (28.0000), there are 16
output values, and there is symmetry on either side of the Fs/2 value (the Fs/2 value is
where X[8] = −4.0000). Feel free to try other input data sets and compare with the FFT
from MATLAB. Once you are comfortable with the algorithm and the code, you can start
thinking about how you would implement this on a DSK to run in real time.

There is much more to using the FFT and interpreting its results than we have room to
discuss here. We will revisit this topic in the context of spectral analysis in Chapter 9.

8.5 Follow-On Challenges

Consider extending what you have learned.

1. Modify the non-real-time FFT code given in this chapter to run on a DSK inside a
ProcessBuffer function. Extend it to create and test a frame-based implementation
of an overlap-add filter that uses real-time fast convolution.

5Note that if we used the prime character (’) at the end of line 2 as a shortcut for the transpose operation,
we would have gotten the conjugate (or Hermitian) transpose. A shortcut for the nonconjugate transpose
is the “dot prime” (.’) character pair.

8.6. PROBLEMS 161

2. Modify the non-real-time FFT code given in this chapter to run on a DSK inside a
ProcessBuffer function (if you haven’t already as part of the previous challenge).
Extend it to create and test a frame-based implementation of an overlap-save filter
that uses real-time fast convolution.

3. Determine a specific filtering situation where overlap-add or overlap-save is faster than
one of the filtering techniques discussed earlier in this text.

4. Implement a Hilbert transform filter using the fast convolution approach.

8.6 Problems

1. Given an input data length of 4096 values, compare the approximate number of com-
plex mathematical operations needed to evaluate a DFT versus a radix-2 FFT.

2. If you are using a radix-2 FFT and a sample frequency of Fs = 48 kHz, what is the
minimum input data length needed to achieve a frequency resolution of approximately
50 Hz? Assume no smoothing window is being used on the data, and that the data
length must be a power of two.

3. If fast convolution is used on a real input signal (i.e., having no imaginary values),
why does the result of the inverse FFT typically contain non-zero imaginary values?

4. Suppose you were going to use fast convolution with the FFT to filter 50 samples of
x[n] with a 19th-order FIR lowpass filter h[n]. Assume the 50 samples of x[n] are
already stored, so you do not need to use real-time techniques such as overlap-add or
overlap-save. Would you need to zero-pad either x[n], h[n], or both to avoid circular
convolution effects? If so, specify the minimum number of zeros you would have to
add to each if necessary.

5. The figure below is the plot of the magnitude spectrum from the output of a 20-point
FFT, where the sample frequency was Fs = 8 kHz. Based on the magnitude spectrum,
what specific things can you infer about the input signal provided to the FFT?

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

M
ag

ni
tu

de
 F

F
T

This page intentionally left blankThis page intentionally left blank

Chapter 9

Spectral Analysis and
Windowing

9.1 Theory

AS discussed in Chapter 8, the Fast Fourier Transform (FFT) allows us to transform a
discrete-time signal from the sample (i.e., time) domain to the frequency domain. It

is useful and often necessary to view the frequency content of a signal, and test equipment
manufacturers market spectrum analyzers costing many thousands of dollars to perform
this task. Nearly any engineer or technician working, for example, with communications or
audio systems such as satellite up/down links, cellular telephone networks, radio/television
stations, home theaters, or any high-end sound systemmust be able to analyze the frequency
domain representation of signals. Rather than use a dedicated spectrum analyzer, we will
explore how we can apply some basic DSP algorithms to achieve the same purpose.

Spectral analysis and estimation is a very broad topic in signal processing, and we
will only scratch the surface of it here. If you wish to learn more about it, there are
many fine texts available that cover the topic at different levels of detail (see, for example,
[1,2,18,70–72]). Note that spectral estimation can be divided into nonparametric methods
and parametric methods. By using the FFT we are using a nonparametric method, which
is not optimal with certain special types of signals, but it is very easy to use and can
be efficiently calculated. For this reason, FFT-based spectral analysis is by far the most
common technique in use today. Digital oscilloscopes and spectrum analyzers typically
implement a form of FFT-based spectral analysis. Parametric methods (such as those
using ARMA, MUSIC, or ESPIRIT models) may be more sophisticated, but a discussion
of them is well beyond the scope of this text.

9.1.1 Power Spectrum of a Signal

Our goal in this chapter is to obtain the distribution of power versus frequency for a given
signal; this is called the power spectrum. Recall that the output values of an FFT are
complex numbers; we will concentrate here only on the magnitude of the power spectrum,
and not concern ourselves with the phase. While the phase response may be important for
some applications, we don’t pursue it here in order to keep the discussion to a reasonable
length.

If a discrete-time signal x[n] is provided as input to the FFT, the output is X[k], i.e.,
FFT{x[n]} = X[k]. Recall that just as each increment of n in the time domain equates to a

163

164 CHAPTER 9. SPECTRAL ANALYSIS AND WINDOWING

difference of Ts = 1/Fs seconds in the signal, each increment of k in the frequency domain
equates to a difference of Δf = Fs/N , where N is the length of the FFT. The value of Δf
is called the frequency resolution of the spectrum. If x[n] was originally a voltage versus
time signal or a current versus time signal, then the resulting X[k] would be voltage versus
frequency or current versus frequency, respectively. Thus, to get the normalized power
spectrum (i.e., normalized to an impedance of 1 Ω), we just use the relationship

|X[k]|2 = (X[k]real)
2
+ (X[k]imaginary)

2
,

which will yield the squared magnitude in watts versus frequency.
For examples of how to interpret the result of the FFT-based power spectrum, let’s

recall a few things about the FFT. The FFT (just like the DFT) will output the same
number of data points, in the form of complex numbers, as it is provided as input data
points. If the input signal is real, the output magnitude will be symmetrical about the
Fs/2 point, which is where k = N/2. From k = 0 up to k = N/2 (i.e., up to the Fs/2
point), we interpret that value of k as corresponding to f = kΔf = kFs/N . Beyond the
k = N/2 point, the k values correspond to negative frequencies, and we interpret them as
f = −[(N − k)Δf] = −[(N − k)Fs/N]. Now let’s proceed to the examples.

Assume a signal x(t) is sampled at Fs = 48 kHz for 2 seconds; we would obtain 96,000
data points such that x[n] exists for 0 ≤ n ≤ 95999. If we take a fairly large FFT of x[n], for
example, FFT{x[n]} of just the first N = 65536 data points,1 then X[k] would be created
for 0 ≤ k ≤ 65535. In this case, Δf ≈ 0.732 Hz. If the squared magnitude of this FFT
showed a significant spike at k = 100 (and also at k = N − 100 = 65436 for the negative
frequency component), it would mean the signal had significant power at f ≈ 732 Hz. If
instead we took a more reasonably sized FFT, for example, N = 4096, then Δf ≈ 11.7 Hz.
If the squared magnitude of this FFT showed a significant spike at k = 100 (and also at
k = N − 100 = 3996 for the negative frequency component), it would mean the signal had
significant power at f ≈ 1170 Hz, not 732 Hz as before. Thus, changing only the length
of the FFT changes the frequency resolution Δf , which changes how we interpret the FFT
results.

For real-time spectral analysis, we need to keep the FFT size reasonably small for two
reasons.

1. A large FFT may take too long to calculate to meet the real-time schedule.

2. A large FFT may take too long to present results (even if it can be calculated in real
time), may exceed the desired response time, and may not respond well to signals
containing quickly changing frequency content.

As seen above, large FFTs result in far greater frequency resolution (that is, where Δf is
very small) than we are likely to need: a resolution of less than 7/10 of one hertz as in the
first example above may be overkill. On the other hand, if we choose a value for N that
is too small, then while the FFT is calculated quickly the frequency resolution Δf is too
coarse to be useful. As with most engineering trade-offs, the choice for the “best” FFT size
is not clear cut.

In general, for real-time spectral analysis you would write a frame-based program (be-
cause the FFT needs more than one sample at a time) that continuously calculates the FFT
of each new frame of data and provides the power spectrum output for presentation on the
PC display. However, it’s not quite that simple.

It turns out that to get a more accurate estimate of a signal’s power spectrum, it is
sometimes better to add a few more steps to the computation. The Welch periodogram for

1We assume a radix-2 FFT, which requires N to be a power of 2.

9.1. THEORY 165

����

-

(

Figure 9.1: The time domain effect of applying a rectangular window. Top: a signal that
lasts for an infinite time. Middle: a finite duration rectangular window. Bottom: The result
of multiplying the infinite signal with the rectangular window is a finite duration signal.

example, a very popular method of calculating the power spectrum with the FFT, uses a
smoothing window on each frame of data (as discussed below), averages the power spectrum
of multiple frames of data, and overlaps the data by some percentage (often 50%) from one
frame to the next. To discuss these finer points further would be beyond the scope of this
text; see [18] for a very clear discussion.

9.1.2 The Need for Windowing

In many situations, we need to apply a smoothing window to each frame of data to get the
best results from the FFT. If we don’t apply a smoothing window to our data, then we
have in effect applied a rectangular window, which has a constant value of 1 for its entire
length.

Why is this true? As far as the FFT “knows,” all data lasts an infinite amount of time,
repeating for infinity with a period equal to the time duration of the given data. When
we present only a finite length of data (as we must) to be transformed, this is the same as
presenting an infinite length of data that has been multiplied with a finite length window
having a constant value equal to 1. A visual example of this is shown in Figure 9.1. Why do
we care? Recall that multiplication in the time domain is equivalent to convolution in the
frequency domain. So the spectrum of the signal is effectively convolved with the spectrum
of the window, and there’s always a window of some sort—even if it’s an unintentional
rectangular window. What does the spectrum of a rectangular window look like?

A rectangular window is just like a single rectangular pulse (sometimes called a “rect
function”) that has a value of 1 for some finite region of time and a value of 0 everywhere
else. You may recall from your signals and systems course that if we take the Fourier
transform of a rectangular pulse, the resulting frequency spectrum is in the shape of a
“sinc function,” which is defined as sinc(x) = sin(πx)/(πx). Another helpful recollection
from Fourier theory is the reciprocal spreading property, which tells us in this case that as
the rectangular pulse gets wider, the width of the sinc lobes get more narrow. A “wider”
rectangular pulse in this sense is equivalent to a rectangular window with a larger value of
N (i.e., a “longer” window with more data points). This “rect↔ sinc” relationship can be
observed in Figure 9.2.

Suppose you take the FFT of a signal with no smoothing window applied to it first; then
you have in effect used a rectangular window. Because the result is as if the true spectrum
of the signal is convolved with the spectrum of the window, the observable signal spectrum
gets unavoidably “blurred,” as shown in Figure 9.3. This has two consequences of particular

166 CHAPTER 9. SPECTRAL ANALYSIS AND WINDOWING

−2 0 2
0

0.5

1

time (s)
−10 0 10
0

1

2

frequency (Hz)

−2 0 2
0

0.5

1

time (s)
−10 0 10
0

1

2

frequency (Hz)

Figure 9.2: The “rect ↔ sinc” Fourier transform pair. The left two plots are rectangular
pulses in the time domain. The right two plots are the corresponding magnitude spectra of
the Fourier transform; the phase plots are not shown. Note that a wider pulse in the time
domain results in narrower lobes of the sinc in the frequency domain.

−60 −40 −20 0 20 40 60

0

0.5

1

0 20 40 60 80 100 120

0
2
4
6

0 20 40 60 80 100 120

0
2
4
6

k

Figure 9.3: The frequency domain effect of applying a rectangular window. Top: the mag-
nitude spectrum of a rectangular window is a sinc pulse. Middle: the theoretical spectrum
(only positive frequencies shown) of some arbitrary infinite time duration signal that has
three frequency components at k = 10, k = 18, and k = 60. Bottom: The result of
convolving the window spectrum with the signal spectrum.

9.1. THEORY 167

importance to spectral analysis that can be seen in the figure. First, the minimum width of
a frequency component is limited by the width of the main lobe of the window’s spectrum.
Second, the ability to detect a weaker signal near a stronger signal is limited by the “height”
of the sidelobes (called the sidelobe level).

The first effect is obvious in the bottom of Figure 9.3 where the frequency component
“spikes” have been smeared to become wider lobes. If two frequency components are closer
than half the main lobe width of the window, they will “blend into” each other and it
will be impossible to distinguish them as separate components. The second effect can also
be seen in the bottom of Figure 9.3 where the frequency component at k = 18 is almost
obscured by the sidelobes from the component at k = 10. If the component at k = 18 had
been slightly weaker in amplitude it would have been “covered up” by the nearby sidelobes.
Remember that we always have a window applied to your data; if we didn’t explicitly apply
a smoothing window to our data then we have in effect used a rectangular window. From
the discussion above, it should be obvious that we need to know two critical characteristics
about any windows we may use: the main lobe width and the sidelobe level.

9.1.3 Window Characteristics

Many smoothing windows have been developed over the years, most taking the name of
the person who first proposed them. In addition to the rectangular window, there is the
Bartlett (a triangular window), the Hamming, the von Hann (also called the Hanning or the
Hann), the Blackman (also called the Blackman-Harris), the Kaiser, and the Dolph (also
called the Chebyshev or the Dolph-Chebyshev). The time domain “shape” of some of these
windows are shown in Figure 9.4.

The shape of the spectrum of each of these windows are somewhat similar to the sinc
shape of the rectangular window’s spectrum, in that there is a main lobe and some sidelobes.
But the width of the main lobe and the sidelobe level differ from window to window; these
are the two main criteria you use to select a window for a given spectral analysis application.

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

w
in

do
w

 v
al

ue

n

Rectangular
Kaiser, α = 3
Hamming
Bartlett

Figure 9.4: A few windows in the time domain. Note that all the windows smooth the data
toward zero at the beginning and end of the data set, except for the rectangular window.

168 CHAPTER 9. SPECTRAL ANALYSIS AND WINDOWING

You can spend a great deal of time tracking down all the window characteristics in various
DSP books, but we’ve collected the most important aspects of commonly used windows for
you in Table 9.1.

In keeping with the practice of other DSP texts, the table shows main lobe width in
normalized radian frequency (where π equates to Fs/2), with N being the length of the
window, and the sidelobe level is shown in decibels. We don’t show all the defining equations
for the windows (which can be found in most theoretical DSP texts [2, 18]) because we’ll
discuss how you can easily create the windows you need using MATLAB�.

For spectral analysis, only the “Main Lobe Width” and “Sidelobe Level” columns in
Table 9.1 are important. The other columns are useful if you ever design FIR filters using the
window method; we included the extra columns here to collect all the window information
in one place. What we most desire in a window is: (1) a narrow main lobe width so that
we can resolve closely spaced frequency components and (2) a low sidelobe level so that
we can resolve a weak signal near a strong signal. Unfortunately, these are two conflicting
requirements. Take a moment to notice in Table 9.1 that, in general, the main lobe width
(for a given data length N) tends to get wider as the sidelobe level gets lower. This can
also be seen in Figure 9.5. Furthermore, the main lobe width will get narrower as the
window length (which must be equal to the data length) gets longer—but the sidelobe level
is independent of window length. As with most engineering decisions, the “best” choice of
a window will be a tradeoff of these characteristics based on your specific needs.

The main lobe width of the rectangular window is the “best” that we can do, since half
the main lobe width is 2π/N = Fs/N , which is the best resolution that we can ever get from
anN -point FFT. But the sidelobe level of the rectangular window is the “worst” that we can
do. Windows other than the rectangular window are very often recommended for spectral
analysis. There is another reason that we may want to avoid the rectangular window:
a phenomenon called “bias” in which the center peaks of two closely spaced frequency
components appear to be farther away from each other than they really are (see [1] for a
nice example). Applying one of the common smoothing windows instead of a rectangular
window eliminates the bias problem.

Table 9.1: A summary of the characteristics of the most commonly used window functions.

Windowa Main Lobe Sidelobe Transition Passband Stopband

(length N) Width Level (dB) Bandwidth Ripple (dB) Attenuation (dB)

rectangular 4π/N −13.5 1.8π/N 0.75 21

Bartlett 8π/N −27 6.1π/N 0.45 25

von Hann 8π/N −32 6.2π/N 0.055 44

Hamming 8π/N −43 6.6π/N 0.019 53

Blackman 12π/N −57 11π/N 0.0017 74

Kaiser, α = 4 6.8π/N −30 5.2π/N 0.049 45

Kaiser, α = 8 10.8π/N −58 10.2π/N 0.00077 81

Kaiser, α = 12 16π/N −90 15.4π/N 0.000011 118

Dolph, α = −40 7.4π/N −40 NA NA NA

Dolph, α = −60 10.1π/N −60 NA NA NA

Dolph, α = −80 13.2π/N −80 NA NA NA

aOther window names: rectangular=boxcar, Bartlett= triangular, von Hann=Hann=Hanning, and
Dolph=Chebyshev=Dolph-Chebyshev. In some books, the parameter α is called β instead. NA: not
applicable, as the Dolph window is not often used for FIR filter design.

9.1. THEORY 169

0 32 64 96 128

0

0.5

1
re

ct
an

gu
la

r
w

in
do

w

n
0 2 4 6

−60

−40

−20

0

|H
(jω

)|
 −

 r
ec

ta
ng

ul
ar

frequency (kHz)

0 32 64 96 128

0

0.5

1

H
am

m
in

g
w

in
do

w

n
0 2 4 6

−60

−40

−20

0

|H
(jω

)|
 −

 H
am

m
in

g

frequency (kHz)

Sidelobe level

 Half of the
mainlobe width

Figure 9.5: Two windows compared in the time and frequency domains. Note that a narrow
main lobe also results in a high sidelobe level.

To bring these windowing ideas into focus, let’s try a couple of simple examples. Suppose
we want to perform spectral analysis on a signal, sampled at 48 kHz, for which we expect
there to be a frequency component at 14.0 kHz and another frequency component of nearly
equal strength at 14.1 kHz. Thus, the frequency separation of the two components of
interest is 100 Hz. Assume that for some other reason our data frame length is going to
be fairly short at N = 512, so our window length must also be N = 512. We want to
use a smoothing window to eliminate bias but don’t want to smear these two components
together with too wide a main lobe width. The sidelobe level is less important for this
example because the magnitudes of the two signals are nearly equal. Can we use a Hamming
window? From Table 9.1, half of the main lobe width of a Hamming window is 4π/N =
2Fs/N = 96000/512 = 187.5 Hz, which is wider than the frequency separation of the two
components of interest, so the answer is “No,” we can’t use a Hamming window—it will
smear the two frequencies together—unless something changes. The only narrower window
is the rectangular, but then we’ll have a bias problem. The best alternative would be to
increase the frame length to 1024 points, which would decrease the half main lobe width for
the Hamming window to 93.75 Hz, less than the separation of the components of interest.
In this case, the Hamming window would work.

Now suppose the second example is the same as before but that the amplitude ratio
between the two components of interest is 100:1 (or 1:0.01) instead of being nearly equal.
The frame size is still 1024 so the Hamming window won’t smear the two components into
each other. But what about the sidelobes? When amplitudes will be very different, we
need to check the sidelobe level. In decibels, a 1:0.01 amplitude ratio is 20 log(0.01) =
−40 dB. From Table 9.1, we see that this eliminates the rectangular, Bartlett, and von

170 CHAPTER 9. SPECTRAL ANALYSIS AND WINDOWING

Hann windows but that the Hamming window will work, although we’re cutting it a bit
close. The Blackman window would be better in terms of the sidelobe level, but the main
lobe width would be too wide.

Given these examples, perhaps you can appreciate the thought process that goes into
choosing an appropriate smoothing window. If resolving closely spaced frequencies of similar
magnitude is more important, we will tend to choose a window with a narrow main lobe
width. If resolving frequency components of very different magnitudes is more important,
we will tend to choose a window with a low sidelobe level. In off-line applications, it is
common to examine a signal with at least two windows, one with a narrow main lobe, the
other with a low sidelobe level. However, we don’t have that luxury if we are performing
real-time spectral analysis, so in that situation we have to make an educated compromise
when selecting the window. If we don’t really know what frequencies and amplitudes may
be lurking in the signal, at least we should know what could be hidden from us because of
the window we choose!

9.2 winDSK Demonstration

The winDSK application has the ability to perform real-time spectral analysis, using a frame
size of 512 samples. Plug an input signal into the DSK, start up winDSK, and click the
Oscilloscope button (called “Oscope” on the winDSK8 main interface). Two screens similar
to Figure 9.6 appear; be sure the Spectrum Analyzer function is selected.

Note that the magnitude of only the positive frequencies are displayed by the Spectrum
Analyzer function. The frequency range for the x-axis is automatically adjusted to be 0 Hz
to Fs/2 Hz, so to read the frequency scale we must know what sample frequency is being
used. Under the Display category, you can also select a logarithmic y-axis (most common
for displaying spectra) and choose to average the spectrum of a specified number of frames.
Under the Data Window category you can choose which window type to apply; the available
choices span the windows most commonly used for spectral analysis.

A logarithmic display of the spectrum of a 7 kHz sinusoidal signal sampled at 48 kHz is
shown in the figure. The small spike close to DC is a 60 Hz power line artifact. You can
experiment with a variety of input signals to the DSK and observe the associated spectral
analyzer display.

9.3 MATLAB Implementation

Spectral analysis of stored signals using MATLAB is very easy and flexible, but real-time
spectral analysis with MATLAB is more difficult. Let’s discuss topics related to non-real-
time analysis first.

If you want to see how to generate, analyze, or use various types of data windows, explore
MATLAB functions such as window, wintool, wvtool, sptool, and fdatool. Functions
which create only a single type of window include rectwin, bartlett, hamming, hann,
kaiser, and chebwin (which creates a Dolph window). Use MATLAB’s help command
with any of these functions to get more detail.

For non-real-time spectral analysis in MATLAB, we’ll assume you already have a discrete-
time signal x[n] stored on your computer in the MATLAB workspace as x. If you use the
command pwelch(x) you’ll quickly obtain a plot showing the power spectrum of signal x[n]
using the Welch periodogram method. For example, Figure 9.7 shows the output obtained
from the pwelch command when x contains 512 samples of a 7 kHz sinusoid sampled at
48 kHz. Type help pwelch to get information on this command and all of its many options.

9.3. MATLAB IMPLEMENTATION 171

(a)

(b)

Figure 9.6: Spectrum analyzer windows for winDSK. Note that you can select averaging,
window type, log or linear y-axis, etc.

172 CHAPTER 9. SPECTRAL ANALYSIS AND WINDOWING

You may also want to explore functions such as periodogram, pburg, and pmusic for other
methods of spectral analysis.

Obviously, what we have shown so far in MATLAB is not real-time. If you have the
Data Acquisition Toolbox for MATLAB (available from The MathWorks), you can bring a
signal in via your sound card and calculate the spectrum in real time. For those of you who
do have the Data Acquisition Toolbox, we’ve included on the CD-ROM (in the Chapter 9
matlab directory) a MATLAB program called specAn.m which is a very simple real-time
spectrum analyzer. It uses the sound card input of the PC to obtain the signal, with a
default sample frequency of 8 kHz, and displays a real-time spectrum in a figure window
very similar in appearance to Figure 9.7.

To use the program, copy specAn.m to some directory on your hard disk, and make
that directory visible to MATLAB. Connect a signal source such as a CD player or a
microphone to the input of your PC’s sound card. In the MATLAB workspace, enter the
command specAn, and press “Enter” on your keyboard to start the real-time process. To
end the real-time process, click either mouse button anywhere on the figure window. If
you want to use some other sample frequency Fs, specify that as an input argument (e.g.,
specAn(44100) for Fs = 44.1 kHz), keeping in mind that both MATLAB and your sound
card will impose certain practical limits on Fs. If you don’t have the Data Acquisition
Toolbox, there is a MATLAB function called audiorecorder (see Chapter 2) that can
bring samples into the MATLAB workspace via the sound card. However, we have found
this function to be so much less capable than the functions in the Data Acquisition Toolbox
(especially for a real time demonstration), that we haven’t included a program using it. If
possible, get access to the Data Acquisition Toolbox.

0 0.2 0.4 0.6 0.8 1
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (×π rad/sample)

P
ow

er
/fr

eq
ue

nc
y

(d
B

/r
ad

/s
am

pl
e)

Power Spectral Density Estimate via Welch

Figure 9.7: Spectrum plot from the pwelch command in MATLAB. The signal is a 7 kHz
sinusoid, and the sample frequency is Fs = 48 kHz.

9.4. DSK IMPLEMENTATION IN C 173

9.4 DSK Implementation in C

To achieve higher performance real-time spectrum analysis, we need to transition to a
frame-based C program running on the DSK. However, we ideally want to view a live plot
of the spectrum on the monitor of the host PC, which introduces an additional programming
challenge. We have a general idea of how to program an FFT from Chapter 8, but how
does the spectrum information get passed from the DSK back to the PC, and plotted on
the monitor?

We could use some of the built-in capabilities of Code Composer Studio to do this,
such as inserting a probe point at the appropriate place in the DSK program and using
the rudimentary plot window available in Code Composer Studio. However, this approach
will only work in DEBUG mode, and it halts the DSK’s CPU for each plot update on the
PC. While this technique might be useful in many situations (particularly for debugging
purposes), it is not real-time operation.

Because this problem is more a problem of how to pass information back from the DSK
to the PC and plot it than it is a problem of how to do spectral analysis on the DSK, we
need to put off this discussion for now. In Appendix E you’ll find a discussion of how to
pass information back from the DSK and plot it on the PC monitor. This is explained in
the appendix with a very basic real-time oscilloscope application first, followed by a short
discussion and example of how to make the transition to real-time spectral analysis.

9.5 Conclusion

This concludes our coverage of what we call the enduring fundamentals of DSP, presented
in the context of real-time operation. The next section of the book presents a series of
projects that we hope you will find as fun and exciting as our students have. Don’t stop
now, for the fun is just beginning. . .

9.6 Follow-On Challenges

Consider extending what you have learned.

1. Use the winDSK spectrum analyzer to view a sinusoidal test signal. Increase the
amplitude of this input signal until you exceed the limits of the ADC and clipping
occurs. Does the spectrum change as you expect when the signal is clipped?

2. Use the winDSK spectrum analyzer to view a square wave test signal. Does the spec-
trum match what you expect from Fourier theory (i.e., do you see just odd harmonics
that decrease in amplitude as they increase in frequency)?

3. Using the winDSK spectrum analyzer, select different windows and different numbers
of frames for averaging. How does the spectral result change?

4. Explore all the options available for the pwelch function in MATLAB. Do the same
for periodogram, spectrogram, pburg, and pmusic. Use various known input signals
both with and without random noise added, and compare these different methods of
spectral estimation.

5. Add features to the real-time spectrum analyzer example shown in Appendix E, such
as those that are available in winDSK.

174 CHAPTER 9. SPECTRAL ANALYSIS AND WINDOWING

9.7 Problems

1. For basic spectral analysis using the FFT (or DFT), proper window choice is crucial
to success. Suppose some continuous-time signal data before sampling is known to
be x(t) = 2.1 cos(2π50t) + 0.007 cos(2π75t) V, and is sampled at a frequency of Fs =
500 Hz. A frame of N = 256 data points (0 ≤ n ≤ 255) is used for the FFT, with no
zero padding. Assume an ideal ADC, and ignore any quantization effects. Choose,
from the windows listed in Table 9.1, a window that should allow you to detect the
two sinusoids in this signal using the FFT and quantitatively justify why the window
you selected should work.

2. You wish to observe the magnitude spectrum a signal consisting of a single sinusoid
with an amplitude of 1.5 V and a frequency of 250 Hz, plus a DC offset voltage of 1.5 V.
No other frequencies are present. You use exactly five cycles of the sinusoid (plus the
DC offset) as input to an FFT. One cycle lasts 4 ms (since T0 = 1/F0 = 1/250), so
five cycles last 20 ms. At a sample frequency of Fs = 1 kHz, this means you send
20 samples (data points) of the input signal to the FFT. Sketch an xy plot of the
output of the magnitude of the FFT that results (you can ignore the phase of the
FFT output). Be sure to show the output in the order which the data comes from
the FFT, with no shifting or centering of any kind. The vertical axis should be the
magnitude, in linear units (not decibels), and scaled for the number of data points
as appropriate. Label the units of both axes. Note this this sketch should be of the
magnitude spectrum, not the power spectrum.

3. With respect to the previous question, how would the FFT magnitude plot be different
if the only changes were that the sinusoidal frequency was increased to 600 Hz, and
you send exactly 12 cycles to the FFT (yes, this means you are again providing 20
data points to the FFT). Sketch a plot of this new magnitude spectrum.

4. Assume you sample a continuous-time signal x(t) at Fs = 500 Hz for a total time
duration of 100 milliseconds to obtain x[n]. Further, assume that x(t) was sinusoidal.
You then perform an FFT on x[n] to obtain the magnitude spectrum as shown below.
All the FFT magnitude values are shown; assume there was no zero padding, no
windowing, no shifting or centering of the FFT output, and no aliasing occurred in
the sampling process.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

k

M
ag

ni
tu

de
 F

F
T

9.7. PROBLEMS 175

(a) How many samples of x(t) did you obtain?

(b) What is the real-world frequency resolution (Δf) of the FFT?

(c) What was the real-world frequency of x(t)?

(d) Exactly how many periods of x(t) were sampled?

This page intentionally left blankThis page intentionally left blank

Section II:
Projects

177

This page intentionally left blankThis page intentionally left blank

Chapter 10

Project 1: Guitar Special
Effects

10.1 Introduction to Projects

SINCE this is the first chapter in the Projects section, let’s explain how this part of the
book differs from the previous section. All the the previous chapters cover topics we

have called the “enduring fundamentals” of DSP. The topics were relatively broad, and the
examples shown were meant only to illustrate that particular topic.

In the Projects section, we change our focus somewhat; we will now provide in each
chapter at least one fully functional version of an interesting DSP application we have
found to be popular with students over the years. In particular, the two general areas
students seem to be drawn to when first learning DSP are audio (such as the special effects
of this chapter and the graphics equalizer of the next chapter) and communications (such
as the various receiver and transmitter projects of later chapters). While we provide fully
functional code to get you started, we intentionally leave it to you to implement and improve
the applications further. That’s why they’re called projects !

We remind the reader that most of the code shown for the projects in this and the
following chapters is intentionally not fully optimized, because maximally efficient code is
often very hard to understand—and our goal is for you to understand the code! You may
want to explore ways in which you can improve the efficiency of these projects on your own.
This first project chapter involves concepts that are fairly easy to understand; later project
chapters progress to increasingly more involved examples.

10.2 Theory

10.2.1 Background

Special effects for electric guitars (and microphones) are a fun application of DSP. You
can create all sorts of interesting sound variations quite easily with fairly simple DSP al-
gorithms. Some of the more familiar effects include echo, chorus, flanger, phasing, reverb,
tremelo, frequency translation, subharmonic generation, ring modulation, fuzz, compres-
sion/expansion, equalization, noise gating, and others. Whether you know them by these
common names or not, you probably know what each of these effects “sounds” like if you’ve
listened to even a moderate amount of popular music over the past 40 years or so. We will
discuss a representative group of these effects in this chapter.

179

180 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

Special effects for electric guitars started to become more popular in the 1960s, not long
after electric guitars themselves became widely available. Of course, in the early days, these
special effects were typically created with hardwired analog circuit designs, and thus a single
“effects box” (as they were called) could only produce a single type of effect. As a result,
an electric guitar player who needed multiple effects used to be surrounded by a gaggle of
effects boxes and pedals on the floor, each requiring its own foot switch, power, and signal
cable. Later, some analog effects boxes were redesigned to include multiple related effects
such as echo and reverb, or chorus and flanger, but the “rat’s nest” of cables was still a
problem. Another serious problem was the noise (particularly hum) which was added to
the analog guitar signal, due in large part to using so many cables and connections between
the guitar and the amplifier.

When DSP was first being taught in engineering colleges, algorithms were quickly derived
that would produce the special effects being used by so many musicians. Unfortunately,
the cost of the required hardware remained prohibitive for many years. But in the 1990s,
this all changed and digital implementation of guitar special effects quickly replaced analog
designs. A single DSP-based effects box is able to produce many variations of special effects,
with improved signal-to-noise ratio and a single cable. As more people became familiar with
DSP, new effects never produced with analog boxes were invented; this continues to this
day.

10.2.2 How the Effects Work

A brief introduction to a few of these types of special effects was first given in Chapter 3 in
the context of FIR filters. In this chapter, we’ll discuss these and other special effects in a
more general way.

The simplest special effect is an echo. A block diagram of how this can be implemented
with a simple delay is shown in Figure 10.1. Notice the similarity of Figure 10.1 to Figure 3.9.
The two diagrams in Figure 10.1 are equivalent, where the bottom diagram uses a more
common representation for delay and gain. To set the amount of delay time, the value
R specifies the number of sample periods of delay. For example, if the sample frequency
is Fs = 48 kHz, then one sample period is ts = 1/Fs or 20.83 μs. Recall that in most
DSP implementations, each sample period of delay requires a memory location; a 1-second
delay in this case would thus require R = 48000 and need a memory array 48,000 locations
in length. This has some practical ramifications that will be discussed later. Note that

)*+�, �+�,

�����

����

)*+�, �+�,

& %
α

Figure 10.1: Block diagrams of a simple echo (or delay) effect using an FIR filter. The
delayed version of the sound (delayed by R sample times), with amplification specified by
gain value α, is added back to the non-delayed sound.

10.2. THEORY 181

Figure 10.1 shows what is essentially an FIR filter, since only feedforward signal paths are
used. This filter will result in a single echo, which may or may not be what you want. The
filters in Figure 10.1 are of a type that are sometimes called “comb filters” for reasons that
will become apparent.

To achieve multiple echos, we need to use a feedback signal path (sometimes called
“regeneration” by musicians), which means we are now talking about an IIR filter. A
block diagram of two simple ways this can be implemented is shown in Figure 10.2. To be
consistent with most musical special effects references, the sign of the feedback coefficient (α)
is the opposite of what was used in Chapter 4, but the transfer function equations presented
later in this chapter will take this sign change into account. In IIR implementations, the
“echoes” repeat forever, but the volume of the delayed sound decreases each sample time
because of the stability condition of |α| < 1.0. The repeated sound will thus “fade away”
and be inaudible after some finite number of sample times. The filters in Figure 10.2, just
like the one in Figure 10.1, are also called “comb filters.” Both FIR and IIR comb filters
are very common building blocks for the special effects used by musicians.

In addition to comb filters, another common filter used for special effects is the “allpass
filter,” which uses a combination of feedforward and feedback (with complementary gain
values). Generic block diagrams of an allpass filter are shown in Figure 10.3. The version
of the filter shown at the top of Figure 10.3 is the most basic implementation; the version

) �+�,*+�,

) �+�,*+�, & %

α

& %
α

Figure 10.2: Block diagrams of a multiple echo effect using IIR filters. Ensure |α| < 1.0 for
stability.

) & %

α

)

)
(

*+�,

�+�,

) �+�,*+�, & %

α

)

α

Figure 10.3: Block diagrams for allpass filters. Ensure |α| < 1.0 for stability.

182 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

)

)

& (

.β

�+�,*+�,)

)
β�()α�

α

()α�
.

& (

Figure 10.4: Block diagram for a second-order IIR notch filter, implemented as Direct Form
II. The notch frequency is determined by β and the width of the notch is determined by α.

shown at the bottom of the figure implements an identical filter (see [4]) but only requires
a single multiplication operation.

The final type of filter we’ll discuss is the “notch filter.” While it is easy to create an
FIR notch filter, an IIR implementation allows far more flexibility and is more commonly
used. A block diagram for a versatile second-order IIR notch filter is shown in Figure 10.4.

FIR Comb Filters

Since comb filters, both FIR and IIR, are used so often in creating special effects, we will
examine them in more detail. We begin with the FIR version shown earlier in Figure 10.1.
The transfer function of the filter in Figure 10.1 is

H(z) = 1 + αz−R

and from this equation the frequency response can be calculated. For example, using the
freqz command in MATLAB�, where R = 10 and α = 1, yields the frequency response
seen in Figure 10.5.

The magnitude of the frequency response (plotted here on a logarithmic (dB) scale)
shows multiple evenly spaced passbands and stopbands of the filter. The magnitude of
the frequency response resembles the teeth of a comb, which is where the name originated.
Being a symmetric FIR filter, the phase response is linear in each of the passbands.1 For
our purposes, this means the delay time for all frequencies in the passband will be equal
(i.e., constant group delay). The stopbands arise from the fact that the delay or phase shift
of certain frequencies approaches 180 degrees, so when this is added back to the original
signal these frequencies tend to cancel each other out. These stopbands, or nulls, occur at
the frequencies along the unit circle of the z-plane where the zeros of the transfer function
occur. To see this on a z-plane plot in MATLAB where α is represented by alpha, we can
use the command zplane([1 zeros(1, R-1) alpha], 1). Whether you prefer to think
of it as due to phase cancellation or as due to zeros, the result is that frequencies in the
stopbands are attenuated, so this filter provides both a delay and an associated change in
the “tone” of the sound. The number of passbands and stopbands is directly related to the
value of R, which can be easily seen in Figure 10.6.

1If you change the value of α to something other than 1.0, then the filter is no longer truly symmetric
and the phase will thus no longer be truly linear.

10.2. THEORY 183

0 0.1 0.2 0.3 0.4 0.5
−100

0

100

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5
−40

−20

0

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

FIR Comb Filter, R=10 and α = 1

Figure 10.5: FIR comb filter response, with a normalized sample frequency of Fs = 1 Hz.

%�G�.

%�G�3-

%�G�/

%�G�0

%�G�3

%�G�(

1��

.
- -

1��>������%�����������1?%� ����1�������

����������������������=���*����������α + 1)

 ������"����

2�&��G�(�)�α& %

�����"����

2�&��G�(� �α& %

�

�

�

�

�

�

�

�

�

�

�

�

1��

.

Figure 10.6: Effect of changing delay value R for an FIR comb filter. The linear scale
magnitude of the frequency response is shown for two types of FIR comb filters.

184 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

We can infer many things from Figure 10.6. First, the number of stopbands is equal
to R/2; for example, when R = 5, we have two and “one half” stopbands in the magni-
tude response of the filter. For “cosine type” comb filters, the stopbands are located at
0.5(Fs/R), 1.5(Fs/R), 2.5(Fs/R), . . ., and so on, however many fit between 0 and Fs/2. For
“sine type” comb filters, the stopbands are located at 0, (Fs/R), 2(Fs/R), 3(Fs/R), . . ., and
so on, however many fit between 0 and Fs/2. Second, α effects the maximum value of the
magnitude; for example, for the common setting of α = 1.0, the maximum magnitude is 2.0
(on a logarithmic scale this would be +6 dB). When using real-world DSP hardware, we
have to be careful in setting alpha not to exceed the dynamic range of the DAC; an overall
scale factor of less than one may be needed. Third, if we subtract the delayed sample from
the non-delayed sample instead of adding it, we get a different response, as seen on the
right-hand side of Figure 10.6. Fourth, as we use longer delay times such as is shown for
R = 50, the width of the passbands and stopbands is so small that the frequency response
is essentially flat, which is similar to an allpass filter. An allpass filter passes all frequencies
equally well (so the “tone” of the sound is unaffected), but due to its phase response a pure
delay is provided. The difference in this respect between Figure 10.1 and Figure 10.3 is
that Figure 10.3 provides an allpass response at all values of R, which will be very useful
for some types of special effects.

IIR Comb Filters

The transfer function of the filter at the top of Figure 10.2 is

H(z) =
1

1− αz−R
|α| < 1,

which you should recognize as being IIR in nature. Again using the freqz command in
MATLAB, where R = 10 but α = 0.8 (for stability), the frequency response can be seen
in Figure 10.7. The magnitude of the frequency response shows multiple evenly spaced
passbands and stopbands of the filter, similar to the teeth of a comb. As an IIR filter, the
disadvantages are that the phase response cannot be truly linear in each of the passbands

0 0.1 0.2 0.3 0.4 0.5
−100

0

100

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5
−10

0

10

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

IIR Comb Filter, R=10 and α = 0.8, feedback only

Figure 10.7: Response for the IIR comb filter shown at the top of Figure 10.2. The sample
frequency has been normalized to Fs = 1 Hz.

10.2. THEORY 185

0 0.1 0.2 0.3 0.4 0.5
−2000

−1000

0

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5
−10

0

10

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

IIR Comb Filter, R=10 and α = 0.8, feedback + feedforward

Figure 10.8: Response for the IIR comb filter shown at the bottom of Figure 10.2. The
sample frequency has been normalized to Fs = 1 Hz.

and the filter can be unstable (if α ≥ 1.0 through design error or coefficient quantization).
However, an advantage of the IIR version is that the passbands can be much sharper than is
possible with the FIR version for similar memory size and/or computational requirements.

How is the the filter at the bottom of Figure 10.2 different from the filter at the top of
Figure 10.2? The transfer function of the filter at the bottom of Figure 10.2 is

H(z) =
z−R

1− αz−R
|α| < 1

which results in the frequency response shown in Figure 10.8. Note that while the magnitude
of the frequency response shows essentially identical passbands and stopbands as was seen
in Figure 10.7, the phase response of this filter is much closer to linear. This “almost linear”
phase response provides a more uniform delay across the frequency range. For this reason,
when an IIR comb filter is needed for certain audio special effects (particularly reverb),
the version shown at the bottom of Figure 10.2 is often used. However, in this version the
present time input x[n] is delayed and not passed through directly to the output (i.e., there
is no x[n] term in the filter’s difference equation, only an x[n − R] term). Thus, there is
no “present time” output from this filter, which for some other types of effects would be
undesirable (e.g., if you plucked a note on your guitar, nothing would be heard until after
the delay time has passed). Both versions shown in Figure 10.2 have their uses.

Allpass Filters

The transfer function of both of the filters shown in Figure 10.3 is

H(z) =
α+ z−R

1 + αz−R
|α| < 1

and from this the frequency response can be easily shown. The freqz command in MATLAB
(using R = 10 and α = 0.8) provides the frequency response shown in Figure 10.9.

Note that the magnitude of the frequency response shows a “flat” gain of 1 (i.e., 0 dB)
for all frequencies from DC to Fs/2, from which the “allpass” name is derived. However,

186 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

0 0.1 0.2 0.3 0.4 0.5
−2000

−1000

0

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

IIR Allpass Filter, R=10 and α = 0.8

Figure 10.9: Response for the IIR allpass filters shown in Figure 10.3. The sample frequency
has been normalized to Fs = 1 Hz.

0 0.1 0.2 0.3 0.4 0.5
−100

0

100

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5
−60

−40

−20

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 10.10: Response for the IIR notch filter of Figure 10.4. The sample frequency has
been normalized to Fs = 1 Hz.

from the phase response we can see that this filter provides delay (note that the delay will
be a different value in the narrow regions where the stopbands would exist for a comb filter
using the same value of R). Thus, this filter is useful for situations such as reverb effects
where you need to delay the sound without unduly “coloring” the tone of the sound.

Notch Filters

A notch filter is similar to a comb filter, but rather than having multiple evenly spaced
stopbands, it has only a single stopband. An example frequency response of a notch filter
is shown in Figure 10.10. Ideally, both the “sharpness” of the stopband and the location of

10.2. THEORY 187

Table 10.1: Typical methods for creating various special effects with basic filters. Delay
times listed are only suggestions.

Effect Filter Type Delay (ms) Type of delay

single echo comb FIR > 100 constant

multiple echos comb IIR > 100 constant

doubling comb FIR or IIR 50–100 constant

chorus comb FIR 20–30 slowly varying

flanger comb FIR 1–10 slowly varying

flanger (metallic) comb IIR 1–10 slowly varying

phasing allpass or notch IIR < 20 slowly varying

reverb comb and allpass FIR and IIR multiple constant

the stopband on the frequency axis would be adjustable. An efficient and versatile design
that achieves this is defined by the notch filter shown in Figure 10.4, which has the transfer
function of

H(z) =
1 + α

2

1− 2βz−1 + z−2

1− β(1 + α)z−1 + αz−2
0 < α < 1, − 1 ≤ β ≤ 1

where the notch frequency is determined by β, the width of the notch is determined by
α, and the first term of (1 + α)/2 is a scale factor used to normalize the overall filter
gain. To set a particular notch frequency f0 in the allowed range of 0 to Fs/2, simply
set β = cos(2πf0/Fs). Regarding the notch width, the closer α approaches 1.0, the more
narrow will be the notch (but if α ≥ 1.0 the filter will be unstable). Experiment with
different values.

Putting It All Together

Now that we have the building blocks (comb filters, allpass filters, notch filters) used for
many of the most common special effects, let’s put it all together. While up until now we
have assumed a constant delay value of R (or a constant notch frequency determined by
β), we will see that for many of the special effects we will need to vary the delay or notch
frequency slowly over time. Table 10.1 lists the ways in which certain special effects can
be created using the basic filters discussed above. In may cases, a very different sounding
effect can be created with an identical filter form by simply changing the delay time or
notch frequency (or by changing the range over which it varies). Some effects typically need
just a single filter stage, while others (such as reverb) often need multiple filters to achieve
the desired sound.

For example, a block diagram of the flanging effect is shown in Figure 10.11, where only
a single comb filter is used. As before, α is the gain or scale factor, but instead of showing

)*+�, �+�,

& β+�,
α

Figure 10.11: A block diagram of the flanging effect using a single comb filter.

188 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

a constant R for delay, we now use β[n], which represents a periodically varying delay. A
method to vary the delay sinusoidally is described by

β[n] =
R

2

[
1− cos

(
2π

f0
Fs

n

)]
.

In the equation above, R is the maximum number of sample delays, f0 is a relatively low
frequency (often less than 1 Hz), and Fs is the sample frequency. This equation results in
a slowly changing sinusoidally varying delay that ranges from 0 to R samples. Note that
as an alternative to sinusoidally varying the delay, musicians sometimes choose to use a
triangle, sawtooth, or even an exponential function for β[n] in order to obtain a somewhat
different sound.

A block diagram of the chorus effect is shown in Figure 10.12. To generate a chorus
effect that makes one musician sound similar to four musicians playing the same notes, three
separate chorus signals (identical to flanging except having longer delay times) are summed
with the original signal. For the best sound, each of the β’s and α’s should be independent.

The phasing effect can be achieved in various ways. One method uses the output of
an allpass filter with a slowly varying delay that is added back to the original signal; due
to the phase shift, some frequencies will tend to cancel (creating notches). This effect is
very similar to the comb filter used in the flanger. Another method, which is easier to
fine-tune to get exactly the sound you desire, uses the output of a notch filter with a slowly
varying notch frequency that is added back to the original signal. Because it is easy to
independently control the notch frequency and the notch width, this second method has
many advocates.

Two block diagrams that can implement the phasing effect are shown in Figure 10.13.
To generate a rich phasing sound, more than one separately phased signal can be summed
with the original signal. For the best sound, it is recommended that the notch frequencies
not be evenly spaced or harmonically related; experiment with all the parameters to obtain
the sound you wish.

*+�, �+�,

)

)

)

& β1+�,
α1

)

& β2+�,
α2

)

& β3+�,
α3

Figure 10.12: A block diagram of the chorus effect using three comb filters.

10.2. THEORY 189

)*+�, �+�,

�������

�����

)*+�, �+�,

�����

�����

Figure 10.13: Block diagrams of the phasing effect using an allpass filter or a notch filter.

Reverb is an effect that we hear every day and in most cases take for granted. One
proposed design [73] for a realistic-sounding reverb effect is shown in Figure 10.14. Modern
music studios add some amount of reverb to almost every recording to compensate for
consumers listening to the playback in relatively small rooms; without any added reverb
the recording would have a “dead” sound to it. Reverb is caused by a multitude of sound

) & %(

α1

�+�,

*+�,

) & %3

α5

)

)
(

) & %.

α2

) & %/

α3

) & %0

α4

)

)

) & %8

α6

)

)
(

)
α7

������������ ���������������

Figure 10.14: A proposed block diagram for the reverb effect using a combination of comb
and allpass filters [73].

190 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

)*+�, �+�,

β+�,
α

1 α

*+�, �+�,
β+�,

Figure 10.15: Block diagrams of the tremelo effect. The bottom block diagram, while less
simple than the top, allows control of the amount or “depth” of the tremelo effect compared
to the original signal.

reflections coming from the walls of the room or concert hall in which it is played; in
a small room the delay times are too short to notice. In a larger room, we hear these
reflections arrive at many different times, so for a realistic effect, we need to use multiple
delay times. While the block diagram of Figure 10.14 may seem complex, it is actually
much simpler than some of the modern studio-quality reverb algorithms. Discussion of
these studio-quality algorithms would be beyond the scope of this chapter.

We now see that echo, chorus, flanger, phasing, and reverb are all created with some
combination of delays that affect the phase of the signal, which is easy to do in DSP.
Other effects such as tremelo, fuzz, compression/expansion, and noise gating are created by
altering the amplitude (rather than the phase) of the signal.

In general, intentional variations in the amplitude of a signal is called “amplitude mod-
ulation,” or AM. This is used in radio communications systems, but also in special effects.
The two most common special effects that use AM are tremelo and ring modulation.

Tremelo2 (also spelled “tremolo”) is simply a repetitive up/down variation in the volume
of the signal.3 Listen to the original version of the classic song “Crimson and Clover” by
Tommy James and the Shondells for a great example of tremelo. Block diagrams that show
how simple it is to implement tremelo are shown in Figure 10.15. The rate of the variation
in volume is controlled by the time-changing nature of β, and the amount or “depth” of the
tremelo effect compared to the original signal is controlled by α, where 0 ≤ α ≤ 1. Tremelo
usually varies the volume at a constant sinusoidal rate, at a frequency below 20 Hz (some
claim 7 Hz to be “ideal”), which can be expressed as

β[n] =
1

2

[
1− cos

(
2π

f0
Fs

n

)]
.

In this equation, f0 is the frequency of variation and Fs is the sample frequency. A com-
munications engineer would view tremelo as form of amplitude modulation called “double
sideband large carrier” (DSB-LC) because the “carrier” frequency (in tremelo this is just
the original signal) will always show up in the output.

Ring modulation is a special effect whereby the guitar signal is multiplied by some
other signal, usually an internally generated constant frequency sinusoidal signal such as
β[n] = cos(2π(f0/Fs)n). A block diagram that shows how simple it is to implement ring
modulation is shown in Figure 10.16. Pure multiplication of any two frequencies f1 and f2
results in the sum (f1 + f2) and the difference (f1 − f2) frequencies. In communications

2This is not to be confused with the “tremelo technique” in classical guitar and flamenco guitar, which
is a particular right-hand effect for the bass and treble strings.

3Some electric guitar and amplifier manufacturers confuse “tremelo” with “vibrato,” but the correct
definition of vibrato is an up/down variation in pitch not volume.

10.2. THEORY 191

H*+�, �+�,

β+�,

Figure 10.16: Block diagrams of the ring modulation effect. Signal β[n] is usually an
internally generated sinusoid, such as β[n] = cos(2π(f0/Fs)n).

theory this technique is a form of amplitude modulation called “double sideband suppressed
carrier” (DSB-SC). The “suppressed carrier” modifier refers to the fact that the “carrier”
(in Figure 10.16 this would be β[n]) does not show up in the output (nor does the original
guitar signal x[n], for that matter). In fact, a ring modulator can create tremelo by setting
β[n] = [1 + α cos(2π(f0/Fs)n)], where, as before, α controls depth for 0 ≤ α ≤ 1. In
ring modulation, the frequency of β[n] is usually higher than it is for tremelo; selecting a
frequency somewhere in the 500 Hz to 1 kHz range is fairly common. Be aware that aliasing
will occur if the ring modulator’s sum frequencies exceed Fs/2 (a result which you may or
may not want, depending upon the sound you seek).

Fuzz is an intentionally introduced distortion in the signal, typically caused by “clipping”
or limiting the amplitude variations of the signal (see Figure 10.17 for a simple example).
This effect was first discovered accidentally when the dynamic range of a tube-based ampli-
fier stage was exceeded, which caused clipping, which in turn resulted in higher-frequency
harmonics (harmonic distortion) being added to the original signal. Heated debates con-
tinue today about the “tube” sound of fuzz versus the “solid-state” or “transistor” sound
of fuzz. Keep in mind that Figure 10.17 is a very simplistic example of clipping. The
signal can be clipped so that the positive portion is limited to a different magnitude than
the negative portion, or the clipping can be gradual rather than “flat.” These variations
(and others) will all produce a different sound of fuzz effect. Furthermore, the clipping is
often followed by a frequency selective filter (lowpass or bandpass are the most common)
to adjust the “harshness” or “color” of the fuzz sound. More sophisticated fuzz effects also
have the option to engage a frequency selective filter before the clipping stage, in order to
clip just a certain band of frequencies, then add this back to the unmodified or fully clipped
signal. The possibilities are endless; experiment for the sound you like!

This has been a very brief discussion of the theory underlying the special effects used
for electric guitars or microphones. Note that when combining multiple effects, the order
of the effects in the signal chain will result in different sounds at the output. There are
many articles and even entire books written on the subject of special effects, both at an
engineering level and at the hobbyist level. See [4] for an excellent introduction, and [73–75]
for other treatments. A web search on the Internet will also yield a plethora of information;

Figure 10.17: Clipping a signal produces the fuzz effect. Top: original signal. Bottom:
symmetrically clipped signal. Asymmetrical clipping can be used for a somewhat different
fuzz sound.

192 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

at the time of this writing one of the best sources was http://www.harmony-central.

com/Effects/, particularly the “Effects Explained” link. A more theoretical treatment can
be found at the site http://www.sfu.ca/sonic-studio/handbook/index.html. Both of
these web sites have many audio files that demonstrate the various effects.

10.3 winDSK Demonstration

See Chapter 3 for a discussion of the Audio Effects that can be produced by winDSK. At
the click of a mouse, you can create effects such as echo, chorus, flanger, tremelo, frequency
translation, subharmonic generation, and ring modulation (by selecting the DSB-SC option
for tremelo). Equalization is available in the Graphic Equalizer application provided with
winDSK. You can use these functions of winDSK to quickly compare with your own special
effects so you’ll know if you’re getting the kind of sound associated with a particular effect.

10.4 MATLAB Implementation

The next step in the path to real-time DSP is to explore these filters in MATLAB to be sure
we understand them. At first, we are free to take advantage of the “vectorized” optimiza-
tions available in MATLAB along with various built-in functions and toolbox commands.
As we’ve mentioned in previous chapters, this is handy when you want to quickly check
aspects of a DSP algorithm such as the output signal, output spectrum, pole-zero plot, and
so on. But before moving on to a C program running on real-time DSP hardware, we must
“de-vectorize” the MATLAB code and stop using built-in functions and toolbox commands
so that our m-file is as close as possible to a C implementation, while making sure the
program still works as expected. Then, and only then, will we be ready to move on to the
next step of creating a real-time program in C. This is the pattern that has consistently
resulted in student success time after time, and is the pattern we’ll continue to follow for
the projects.

In this section, we’ll examine a subset of the filters described earlier in the chapter.
None of these filters running under MATLAB operate in real time; in a later section we’ll
show example C code for real-time operation. In this section, we’ll show two versions of an
FIR comb filter, three versions of an IIR comb filter, two versions of an IIR notch filter,
and one version of a flanger. Given this foundation, the reader should be able to create in
MATLAB any of the special effects filters described in this chapter.

10.4.1 FIR Comb Filter

The program listed below, fir_comb1.m, takes advantage of the built-in function called
filter.

Listing 10.1: A MATLAB FIR comb filter example.

% Method using the filter command

2

R=round(R) ; % ensure R is an integer before proceeding

4 A=1; % the "A" vector is a scalar equal to 1 for FIR filters

B=zeros (1 , R+1) ; % correct length of vector b

6 B (1) =1; B (R+1)=alpha ;
% B vector is now ready to use filter command

8 y=f i l t e r (B , A , x) ;

10.4. MATLAB IMPLEMENTATION 193

This program can be found in the matlab directory of Chapter 10, along with all the other
MATLAB code for this chapter; only the key parts of the programs are shown in this
section. The program below implements the filter shown at the bottom of Figure 10.1, with
the response shown in Figure 10.5. The input variables are x (input vector), R (number of
sample time delays desired), and alpha (feedforward coefficient α).

The program fir_comb1.m processes all the samples in the entire x input vector, but of
course not in real time. The program was easy to write, but it’s not suitable for getting us
to a C implementation in real time. Note that lines 5 and 6 ensure the B coefficient vector
has the proper length and values.

The next program, fir_comb2.m, is an identical filter that while also not capable of
real-time operation is much closer to C code and will help us transition to C later. This
program has the same input variables as before.

Listing 10.2: A MATLAB FIR comb filter example closer to C.

% Method using a more "C-like" technique

2

R=round(R) ; % ensure R is an integer before proceeding

4 N1=length (x) ; % number of samples in input array

y=zeros (s ize (x)) ; % preallocate output array

6 % create array and index for "circular buffer"

buffer=zeros (1 , R+1) ;
8 oldest=0;
% "for loop" simulates real-time samples arriving one by one

10 for i=1:N1
buffer (oldest+1)=x (i) ; % read input into circular buffer

12 oldest=oldest + 1 ; % increment buffer index

oldest=mod (oldest , R+1) ; % wrap index around

14 y (i)=x (i) + alpha∗buffer (oldest+1) ;
end

Instead of processing one sample at a time as we demonstrated for IIR filters in Chapter 4,
this program uses a “for loop” to simulate samples arriving one by one, thus processing
all the samples in the entire x input vector. This “for loop” would not be used in the
real-time C program, but the code inside the “for loop” would be used in an interrupt
service routine (ISR) for sample-by-sample processing. The use of the modulus operator in
line 13 causes the index value oldest to “wraparound,” creating a circular buffer as was
discussed in Chapter 3 (see Figure 3.17). The use of “oldest + 1” in lines 11 and 14 is due
to MATLAB’s rule of the array index values starting at 1 instead of zero. Incrementing the
index value in line 12 causes the index to point at the oldest sample in the buffer. If you
aren’t sure about this, draw a short circular buffer on paper and run through the whole
circle a few times, placing samples in the buffer one by one. Now are you convinced?

You may want to use the handy program demo_fir_comb2.m to read in a WAV audio
file, run the comb filter, and play the result. Experiment with different values, especially
the delay value, referring to Table 10.1.

10.4.2 IIR Comb Filter

The program listed below, iir_comb1.m, again takes advantage of the built-in function
called filter. It implements the IIR comb filter shown at the bottom of Figure 10.2, with
the response shown in Figure 10.8. The input variables are the same as before (x is the
input vector, R is the number of sample time delays desired), and alpha is now the feedback
coefficient.

194 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

Listing 10.3: A MATLAB IIR comb filter example.

1 % Method using the filter command

3 R=round(R) ; % ensure R is an integer before proceeding

A=zeros (1 , R+1) ; % correct length of vector A

5 A (1) =1; A (R+1)=−alpha ;
% A vector is now ready to use filter command

7 B=zeros (1 , R+1) ; % correct length of vector B

B (R+1)=1; % use "B=1;" for other IIR version

9 % B vector is now ready to use filter command

y=f i l t e r (B , A , x) ;

Lines 4 and 5 ensure the A coefficient vector has the proper length and values (take note
of the sign needed for alpha). Lines 7 and 8 set up the B vector properly. If you would
rather implement the IIR comb filter shown at the top of Figure 10.2, comment out line 7
and change line 8 to read “B=1;” as noted in the comment for line 9.

The next program, iir_comb2.m, is an identical filter that is much closer to C code and
has the same input variables as before. It implements the filter in “Direct Form I” (see
Figure 4.14).

Listing 10.4: A MATLAB IIR comb filter example closer to C, in Direct Form I.

1 % Method using a more "C-like" technique

3 R=round(R) ; % ensure R is an integer before proceeding

N1=length (x) ; % number of samples in input array

5 y=zeros (s ize (x)) ; % preallocate output array

% create array and index for "circular buffer"

7 bufferx=zeros (1 , R+1) ; % to hold the delayed x values

buffery=zeros (1 , R+1) ; % to hold the delayed y values

9 oldest=0; newest=0;
% "for loop" simulates real-time samples arriving one by one

11 for i=1:N1
bufferx (oldest+1)=x (i) ; % read input into circular buffer

13 newest=oldest ; % save value of index before incrementing

oldest=oldest + 1 ; % increment buffer index

15 oldest=mod (oldest , R+1) ; % wrap index around

y (i)=bufferx (oldest+1) + alpha∗buffery (oldest+1) ;
17 buffery (newest+1)=y (i) ;

end

We again use a “for loop” to simulate samples arriving one by one, thus processing all the
samples in the entire x input vector. Since this filter is derived from the block diagram
(not the transfer function), we don’t want a negative sign this time on the value of alpha
for feedback (see line 16). The code shown implements the IIR comb filter shown at the
bottom of Figure 10.2. To implement the IIR comb filter shown at the top of Figure 10.2,
just make a change in line 16 such that the index used for bufferx is newest rather than
oldest.

While a Direct Form I filter implementation is easy derive from the difference equation or
transfer function, its key disadvantage is the need for two buffers (circular buffers as before):
one to hold the delayed x values and one to hold the delayed y values. We can eliminate this
inefficiency easily by using a Direct Form II implementation similar to Figure 4.16. This is
shown below in iir_comb3.m.

10.4. MATLAB IMPLEMENTATION 195

Listing 10.5: A MATLAB IIR comb filter example closer to C, in Direct Form II.

% Method using a more "C-like" technique

2

R=round(R) ; % ensure R is an integer before proceeding

4 N1=length (x) ; % number of samples in input array

y=zeros (s ize (x)) ; % preallocate output array

6 % create array and index for "circular buffer"

buffer=zeros (1 , R+1) ; % to hold the delayed values

8 oldest=0; newest=0;
% "for loop" simulates real-time samples arriving one by one

10 for i=1:N1
newest=oldest ; % save value of index before incrementing

12 oldest=oldest + 1 ; % increment buffer index

oldest=mod (oldest , R+1) ; % wrap index around

14 buffer (newest+1)=x (i) + alpha∗buffer (oldest+1) ;
y (i)=buffer (oldest+1) ;

16 end

While this implements exactly the same filter as before, only one circular buffer is needed.
You may want to use the program demo_iir_comb3.m to read in a WAV audio file (perhaps
from the test_signals directory), run the comb filter, and play the result. Experiment
with different values, especially the delay value, referring to Table 10.1. Once again, the
code shown in the listing implements the IIR comb filter shown at the bottom of Figure 10.2.
To implement the IIR comb filter shown at the top of Figure 10.2, just make a change in
line 15 such that the index used for buffer is newest rather than oldest.

Notice that all the filter programs above that use circular buffers and “for loops” run
much faster than those using the built-in MATLAB filter command. The filter com-
mand is very general and is therefore not optimized to our specific use of it.

10.4.3 Notch Filter

We provide a notch filter program notch1.m that uses the built-in MATLAB filter com-
mand, but we don’t bother to show its code here. A notch filter program notch2.m that
implements a Direct Form II version in a very “C-like” manner is shown below. Its input
variables are x (the input vector), Beta (to set the notch frequency), and alpha (to set the
width of the notch).

Listing 10.6: A MATLAB IIR notch filter example, in Direct Form II.

% Method using a more "C-like" technique

2

N1=length (x) ; % number of samples in input array

4 y=zeros (s ize (x)) ; % preallocate output array

% create array and index for "circular buffer"

6 % This second order filter only needs a buffer 3 elements long

buf=zeros (1 , 3) ; % to hold the delayed values

8 oldest=0; nextoldest=0; newest=0;
x=x∗(1+alpha) /2 ; % scale input values for unity gain

10 % Set coefficients so calculation isn’t done inside "for" loop

% If sweeping Beta over time, do this inside "for" loop

12 B0=1; B1=−2∗Beta ; B2=1;
A0=1; A1=Beta∗(1+alpha) ; A2=−alpha ;

196 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

14 % "for loop" simulates real-time samples arriving one by one

for i=1:N1
16 newest=oldest ; % save value of index before incrementing

oldest=oldest + 1 ; % increment buffer index

18 oldest=mod (oldest , 3) ; % wrap index around

nextoldest=oldest + 1 ; % increment buffer index again

20 nextoldest=mod (nextoldest , 3) ; % wrap index around

buf (newest+1)=x (i)+A1∗buf (nextoldest+1)+A2∗buf (oldest+1) ;
22 y (i)=B0∗buf (newest+1)+B1∗buf (nextoldest+1)+B2∗buf (oldest+1) ;

end

This program uses similar techniques to the previous examples, but you should verify by
comparing the code above to Figure 10.4 that the program really does result in the proper
filter being implemented. Note that because this type of notch filter is always second order,
we only need a circular buffer three elements long, and we access the current (newest) value,
the nextoldest value which has been delayed by one sample time, and the oldest value
which has been delayed by two sample times.

10.4.4 Flanger

Below is the MATLAB code for a flanger; it implements the filter shown in Figure 10.11.
The input variables are x (input vector), t (maximum delay in seconds), alpha (feedforward
coefficient), f0 (variation frequency delay time), and Fs (sample frequency). This program
is similar in many ways to Listing 10.2, except that the delay time is varied sinusoidally.

Listing 10.7: A MATLAB flanger example.

1 % Method using a more "C-like" technique

3 Ts=1/Fs ; % time between samples

R=round(t/Ts) ; % determine integer number of samples needed

5

N1=length (x) ; % number of samples in input array

7 Bn=zeros (1 , N1) ; % preallocate array for B[n]

arg=0:N1−1; arg=2∗pi ∗(f0/Fs) ∗arg ;
9 Bn=(R/2)∗(1−cos (arg)) ; % sinusoidally varying delays from 0-R

Bn=round(Bn) ; % make the delays integer values

11

y=zeros (s ize (x)) ; % preallocate output array

13 % create array and index for "circular buffer"

buffer=zeros (1 , R+1) ;
15 oldest=0;

% "for loop" simulates real-time samples arriving one by one

17 for i=1:N1
offset=R−Bn (i) ; % adjustment for varying delay

19 buffer (oldest+1)=x (i) ; % input sample into circular buffer

oldest=oldest + 1 ; % increment buffer index

21 oldest=mod (oldest , R+1) ; % wrap index around

offset=oldest+offset ; % if delay=R this equates to fir_comb2

23 offset=mod (offset , R+1) ;
y (i)=x (i) + alpha∗buffer (offset+1) ;

25 end

10.4. MATLAB IMPLEMENTATION 197

Notice that lines 7 to 10 create β[n], an array of sinusoidally varying integers ranging from
0 to R to be used as delay values. There are many ways to use β[n] to make the index for
the circular buffer to point to the value with the correct amount of delay. In the program
above, we use a simple technique that clearly shows how this filter operation differs from the
comb filter of Listing 10.2. Line 18 determines by how many locations the circular buffer
index will need to be adjusted (compared to the comb filter of Listing 10.2) to account for
the variable delay. For example, if β[n] = R for a particular n, then the offset calculated in
line 18 will be R−R = 0, and the index value calculated in line 22 will be the same as that
used in Listing 10.2, which results in a delay of R. At the other extreme, if β[n] = 0, then
the offset calculated in line 18 will be R− 0 = R, and the index value calculated in line 22
will be such that it will “wraparound” the circular buffer back to the current sample, which
results in a delay of 0. Thus, the filter uses a sinusoidally varying delay, as needed for the
flanger.

In Listing 10.7 above, the length of the array for β[n] is the same as the length of
the input vector, to keep things simple. When we transition to real-time C code, this
would be impractical, as we can’t predict how many input samples we’ll be processing and
probably wouldn’t want to use an array that long anyway. So how do we overcome this?
We just implement β[n] as a separate circular buffer (with its own index variable) filled
with sinusoidally varying values between 0 and R. How long should this buffer be? You
don’t need to store values in β[n] that exceed one period of the sinusoid. A bit of thought
should convince you that one period of the sinusoid must have a length of Fs/f0 elements.
For example, if the sample frequency is 48 kHz and the frequency of the delay variation is
0.5 Hz (remember f0 is typically a very low frequency), then the array for β[n] would need
to be 96,000 elements long. There are techniques to cut this size to a half or a fourth of
Fs/f0, but we leave that up to your imagination.

10.4.5 Tremelo

The concept of implementing β[n] as a circular buffer is demonstrated below in the program
tremelo.m, which implements the tremelo effect from the bottom of Figure 10.15.

Listing 10.8: A MATLAB tremelo example.

1 % Method using a "C-like" technique

3 N1=length (x) ; % number of samples in input array

N2=Fs/f0 ; % length for one period of a sinusoid

5 Bn=zeros (1 , N2) ; % preallocate array for B[n]

arg=0:N2−1; arg=2∗pi ∗(f0/Fs) ∗arg ;
7 Bn=(0.5) ∗(1−cos (arg)) ; % sinusoidally varying numbers from 0-1

scale=1−alpha ; % to scale the non-modulated component

9

y=zeros (s ize (x)) ; % preallocate output array

11 % create index for "circular buffer" of Bn

Bindex=0;
13 % "for loop" simulates real-time samples arriving one by one

for i=1:N1
15 y (i)=scale∗x (i) + Bn (Bindex+1)∗alpha∗x (i) ;

Bindex=Bindex + 1 ; % increment Bn index

17 Bindex=mod (Bindex , N2) ; % wrap index around

end

198 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

The input variables are x (input vector), alpha (the gain of the amplitude modulated part
of the signal), f0 (frequency of the modulation), and Fs (the sample frequency). This
example also shows how simple multiplication allows you to adjust the amplitude of the
signal. The fuzz effect, which clips amplitude, would be even easier to implement than
tremelo.

The MATLAB code shown above (from the matlab directory of Chapter 10) provides the
basic building blocks for you to create any of the special effects filters described under the
Theory section of this chapter. We now turn our attention to the transition from MATLAB
to real-time C code that will run on a DSK.

10.5 DSK Implementation in C

In this section, we get you started with making the transition from MATLAB code that is
not real time to C code that will run in real time on the DSK. Once you see how to convert
to C for a few types of filters, you will be able to create all the effects discussed in this
chapter. We stay with sample-by-sample processing to keep the code simple, but there is
no reason why you can’t implement these same ideas using frame-based code.

10.5.1 Real-Time Comb Filters

We provide three versions of C code that implement comb filters in real time. All three
versions are written in such a way that you can easily change between an FIR or an IIR
filter by choosing which lines of code to uncomment. If you choose FIR, the C code closely
follows the MATLAB example of Listing 10.2; if you choose IIR, the C code closely follows
the MATLAB example of Listing 10.5 (i.e., Direct Form II so only one circular buffer is
required).

The files necessary to run this application are in the ccs\Echo directory of Chapter 10.
The primary files of interest are ISRs_A.c, ISRs_B.c, and ISRs_C.c. Important: you
must only have one of these ISR files loaded as part of your project at any given time.
The ISR files contain the necessary variable declarations and perform the actual filtering
operation.

One aspect that needs to be discussed is how some of the variables are declared. Just
as with the “C-like” MATLAB examples, an array implemented as a circular buffer will
provide the delays needed for the filter.

Listing 10.9: Excerpt of variable declarations for the ISRs_A.c comb filter.

Uint32 oldest = 0 ; // index for buffer value

2 #define BUFFER LENGTH 96000 // buffer length in samples

#pragma DATA SECTION (bu f f e r , "CE0") ; // buffer in external SDRAM

4 volat i le f loat buffer [2] [BUFFER_LENGTH] ; // for left and right

volat i le f loat gain = 0 . 7 5 ; // set gain value for echoed sample

The index value for the array is declared in line 1. The length of the buffer is defined
in line 2, and the gain is defined in line 5, which is equivalent to R and α, respectively,
in previous examples. Assuming a 48 kHz sample frequency, the value 96000 for R will
provide a delay of 2 seconds. Lines 3 and 4 allocate memory needed for the buffer. Since
we must have room for both left and right channel samples, the array actually requires
2 × 96000 = 192000 elements. Note that line 3 is critical, and its omission is a common
error. The linker, which takes the outputs of the C compiler, will try to fit everything in the
internal RAM for speed purposes, but an array of 192000 floats will not fit in the internal
memory. Without line 3, the linker will generate an error message and the array will not be

10.5. DSK IMPLEMENTATION IN C 199

created. Unfortunately, this error message, which shows up in the bottom Code Composer
Studio window, is often missed because it usually scrolls up and out of sight. But when
you load and run the program without line 3 the filter output will be zero (silent). Line 3
directs the compiler to place the array that will be called buffer in the memory region we
call CE0, which is external SDRAM. Thus, the buffer will have enough room to be created,
the linker will not complain, and the program will run correctly. Another common error
is not using the volatile keyword in lines 4 and 5 (see Appendix F for more about these
issues).

The part of ISRs_A.c that performs the actual filtering operation is in the ISR function
called Codec_ISR(). To allow for the use of a stereo codec, the program implements inde-
pendent Left and Right channel filters. However, for clarity, only the Left channel will be
discussed following the code listing.

Listing 10.10: Real-time comb filter from ISRs_A.c.

1 xLeft=CodecDataIn . Channel [LEFT] ; // current LEFT input to float

xRight=CodecDataIn . Channel [RIGHT] ; // current RIGHT input to float

3

buffer [LEFT] [oldest]=xLeft ;
5 buffer [RIGHT] [oldest]=xRight ;
newest=oldest ; // save index value before incrementing

7 oldest=(++oldest)%BUFFER_LENGTH ; // modulo for circular buffer

9 // use either FIR or IIR lines below

11 // for FIR comb filter effect, uncomment next two lines

yLeft=xLeft + (gain ∗ buffer [LEFT] [oldest]) ;
13 yRight=xRight + (gain ∗ buffer [RIGHT] [oldest]) ;

15 // for IIR comb filter effect, uncomment four lines below

//buffer[LEFT][newest]=xLeft + (gain * buffer[LEFT][oldest]);

17 //buffer[RIGHT][newest]=xRight + (gain * buffer[RIGHT][oldest]);

//yLeft=buffer[LEFT][oldest]; // or use newest

19 //yRight=buffer[RIGHT][oldest]; // or use newest

21 CodecDataOut . Channel [LEFT]=yLeft ; // setup the LEFT value

CodecDataOut . Channel [RIGHT]=yRight ; // setup the RIGHT value

The real-time steps involved in comb filtering

An explanation of Listing 10.10 follows.

1. (Line 1): The ISR first converts the current sample (obtained from the codec as a 16-
bit integer) to a floating point value and assigns it as current input element, equivalent
to x[0].

2. (Line 4): The current (i.e., the newest) sample is written into the circular buffer,
overwriting the oldest sample.

3. (Line 6): The index value pointing to the newest value is saved before the next line of
code causes the index to be incremented. This is used only for the IIR implementation.
In fact, when running the FIR version it’s likely that you’ll get a compiler warning
about the variable “newest” being set but not used. You can safely ignore this warning.

200 CHAPTER 10. PROJECT 1: GUITAR SPECIAL EFFECTS

4. (Line 7): This is the line that causes the buffer to be “circular” in that the modulus
operator (the % character in C and C++) causes the index to “wraparound” in the
same way that mod() did in several of the earlier MATLAB examples. This line also
includes the prefix ++, which increments the index value oldest before the modulus
is applied. Thus, this line of code ensures the value of the index points to what is now
the oldest sample in the circular buffer.

5. (Line 12): This line performs the FIR filter operation. Comment these lines out if
you want the IIR comb filter.

6. (Lines 16 and 18): These lines together perform the IIR filter operation in a Direct
Form II manner. Comment these lines out if you want the FIR comb filter. As shown,
the code implements the IIR comb filter shown at the bottom of Figure 10.2. To
implement the IIR comb filter shown at the top of Figure 10.2, simply change the
index variable oldest in Line 18 to be newest.

7. (Line 21): This line of code transfers the result of the filtering operation, y[0], to the
CodecDataOut.Channel[LEFT] variable for transfer to the DAC side of the codec via
the remaining code of the ISR.

Now that you understand the code. . .

Go ahead and copy all of the files into a separate directory. Open the project in CCS and
“Rebuild All.” Once the build is complete, “Load Program” into the DSK and click on
“Run.” Your comb filter is now running on the DSK. Use a guitar or even a microphone as
input and listen to the output. You should hear an echo (if FIR) or echoes (if IIR) spaced
2 seconds apart, due to the buffer length of each channel being 96000 long (assuming a
sample frequency of 48 kHz). Feel free to change the definition of BUFFER_LENGTH to some
other value to use a different value of R. After making the change, save the ISR file, rebuild
the project, reload the program, and run it. In a similar fashion, you can experiment with
changing the value of the gain variable to use a different value of α.

A small improvement to ISRs A

While the modulus operator used on Line 7 above makes it easy to implement a circular
buffer, it is not the recommended method for real-time processing. Modulus is the remainder
after division, so using modulus in a line of code forces a division operation, which is costly
in terms of CPU cycles since the DSP has no hardware support for division. A far more
efficient way to implement a circular buffer is used in ISRs_B.c, where Line 7 is replaced
with the two lines shown below.

Listing 10.11: Efficient circular buffer in the ISRs_B.c comb filter.

i f (++oldest >= BUFFER_LENGTH) // implement circular buffer

2 oldest = 0 ;

This is the only change between ISRs_A and ISRs_B. Even more efficient code could be
realized by adopting the common practice of sizing your circular buffers to be a power of
two (i.e., 2n) in length, since the index wraparound can then be accomplished very quickly
by “AND-ing” it with 2n − 1. But we leave it to you to implement that change if desired.

To switch from using ISRs_A to ISRs_B, right click ISRs_A.c in the left project window
and select “Remove from Project.” At the top of the Code Composer Studio window, click
“Project,” “Add Files to Project” and select ISRs_B.c. Then click “Rebuild All.” Once
the build is complete, “Load Program” (or “Reload Program”) into the DSK and click on
“Run.” Your improved comb filter is now running on the DSK.

10.6. FOLLOW-ON CHALLENGES 201

Incorporating interactive control

Code Composer Studio supports a general extension language (GEL) that allows you to
rapidly create sliders, menu boxes, and other interfaces to be used with your program.
However, in CCS version 4.2, it appears that the GEL control updates can now be made
only while the program is fully halted, greatly limiting the usefulness of GEL controls (such
as sliders) for CCS projects. We therefore no longer cover GEL controls in any detail.

Support software to facilitate the creation of real-time interactive controls is provided
on the CD-ROM. If you are motivated to include such interactive controls in your real-
time program, and are willing to invest just a bit of time and effort, you can make use of
the functions called Windows Control Applications that accompany this book. They allow
you to run a fully optimized RELEASE version of your compiled program and avoid any
processor halts while still controlling your program. Similar techniques were used to create
the winDSK application. See Appendix E for more information.

10.5.2 Other Real-Time Special Effects

The demonstrations above of how to convert MATLAB examples of comb filters to real-time
C code that will run on the DSK should allow you to create any of the other special effects
described in this chapter. A notch filter, tremelo, fuzz, and so on can all be converted to
C and run in real time. For creating sinusoidally varying delay times for effects such as a
flanger or chorus, consider creating the sinusoidal values for β[n] in the StartUp.c module.
You don’t want to put something like that inside an ISR which executes over and over again
at the rate of the sample clock!

When you start to concatenate multiple special effects, you may exceed the limits of the
real-time schedule because you’re trying to do too much in one sample time. This situation
calls for converting your code to frame-based processing, using EDMA to transfer data
without CPU overhead, and other techniques to extract higher performance from the DSP.

10.6 Follow-On Challenges

Consider extending what you have learned.

1. Add a time-varying (such as sinusoidal) delay time to the real-time comb filter, and
choose an appropriate range of delay times to create the flanger effect.

2. Create three different comb filters similar to the flanger, but with longer delay times,
and use them to create a chorus effect.

3. What do you expect to happen if you set α = 1.0? Try it and find out. How would
you modify the code to avoid this problem?

4. Implement a notch filter and use it for a phasing (i.e., phaser) effect.

5. Implement a tremelo effect.

6. Implement a ring modulator effect.

7. Implement a fuzz effect. Experiment with different ways of clipping the signal. Ex-
periment with following and/or preceding the clipping operation with a frequency
selective filters.

8. Try combining more than one effect, such as a flanger followed by reverb.

9. Convert the real-time comb filter to frame-based operation.

This page intentionally left blankThis page intentionally left blank

Chapter 11

Project 2: Graphic Equalizer

11.1 Theory

THE parallel implementation of a 5-band FIR-based equalizer was first discussed in
Chapter 3. A block diagram of such an equalizer and the generalized extension of

this parallel implementation are shown in Figure 11.1. While this extension to M bands
may not seem like a major change, increasing the computational complexity of the DSP
algorithm by adding additional parallel filters will eventually result in being unable to meet
the real-time schedule. At this stage in the equalizer’s development, we must either settle
for the current level of system performance or rethink our approach to implementing the
algorithm. This is very similar to the approach taken in Chapter 3 where we progressed
from an easily understood brute force implementation of the filter’s dot-product, to a much

��1*+�, �+�,

#�1(

#�1/

#�1.

2�1

	(

	.

	/

	0

	3

)

)

)

)

(a)

��1*+�, �+�,

#�1(

#�1.

	(

	.

	/)

)

)

#�1!'.

2�1

	!'(

	!

)

��

��

�

(b)

Figure 11.1: Left: Block diagram associated with winDSK’s 5-band Graphic Equalizer ap-
plication. Right: generalized block diagram of an M -band graphic equalizer.

203

204 CHAPTER 11. PROJECT 2: GRAPHIC EQUALIZER

Figure 11.2: Photograph of an Applied Research and Technology, Inc. 31-band, 1/3 octave,
ISO spaced, monaural graphic equalizer.

more efficient, but more complicated to understand, implementation using a circular buffer.

One of the first results of “rethinking” our approach to implementing the equalizer is
achieved when we realize that the gains associated with each of the parallel filters are not
changed very often. If we assume that this is the case, why can’t we calculate an equivalent
filter, and implement this single filter instead of summing the outputs of M parallel filters?

Consider a 31-band audio equalizer similar to the commercially available model shown
in Figure 11.2. If we are confident that the gain controls of the individual filters are
only occasionally adjusted, then we can reduce the computational complexity of our DSP
implementation by a factor of nearly 31, by first calculating an equivalent filter. A reduction
factor of 31 is achieved by implementing a single filter instead of 31 filters, but this ignores
the addition of the outputs of the 31 filters. For large order filters, these extra additions
become negligible. This equivalent filter technique will allow us to implement an almost
unlimited number of parallel filters.

The 31-band monaural audio equalizer shown in Figure 11.2 has center frequencies of
20, 25, 31.5, 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250,
1600, 2000, 2500, 3150, 4000, 5000, 6300, 8000, 10000, 12500, 16000, and 20000 Hz, which
constitute frequency bands spaced 1/3 octave apart. An equivalent stereo equalizer would
have identical but independent frequency bands for both the left and right channels.

11.2 winDSK Demonstration

Start the winDSK application, and the main user interface window will appear. Ensure the
correct selections have been made in the “DSK and Host Configuration” panel of winDSK6
or the “Board and Interface Configuration” panel of winDSK8 for each parameter before
proceeding.

11.2.1 Graphic Equalizer Application

Clicking on the winDSK Graphic Equalizer button will run that program in the attached
DSK, and a window similar to Figure 11.3 will appear. The Graphic Equalizer application
implements a five-band audio equalizer, similar to the block diagram shown on the left side
of Figure 11.1. If you’re using a stereo codec on your DSK (and you have selected that
codec from the winDSK main window), independently adjustable equalizers are active on
both the left and the right channels.

The equalizer uses five FIR filters (a lowpass (LP) filter, 3 bandpass (BP) filters, and a
highpass (HP) filter) operating in parallel. The gain sliders (A1 to A5) in the dialog box
operate on memory locations used to control the gains of each filter and the overall system
gain. The 5 FIR filters are designed as high-order (N = 128) filters; the resulting steep
roll-off of these filters can be seen in Figure 11.4.

11.2. WINDSK DEMONSTRATION 205

Figure 11.3: winDSK running the Graphic Equalizer application.

0 4 8 12 16 20 24
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

frequency (kHz)

m
ag

ni
tu

de
 (

dB
)

Figure 11.4: Frequency response of winDSK’s 5-band Graphic Equalizer application. The
dotted straight line at 0 dB represents the sum of all five bands.

11.2.2 Effect of the Graphic Equalizer

There are a number of ways you can experience the effect of the graphic equalizer filtering.
For example, you could connect the output of a CD player to the signal input of the DSK,
and connect the DSK signal output to a powered speaker. Play some familiar music while
you adjust the graphic equalizer slider controls and listen to the result. A more objective
experiment would be to play the track of additive white Gaussian noise (AWGN) on the
CD-ROM that accompanies this book (in directory test_signals play the file awgn.wav),
which theoretically contains all frequencies. If the DSK signal output is then connected
to a spectrum analyzer, you could observe which band of frequencies is affected, and how
much it is affected, as you adjust the slider controls. If you don’t have a spectrum analyzer
available, a second DSK running winDSK can be used in its place (select the “Oscilloscope”
button from the main screen, select “Spectrum Analyzer” from the next screen, and select
“Log10” to display the result in decibels). Alternatively, you can use your computer’s sound
card to gather a portion of the DSK’s output. This can be accomplished using the Windows
sound recorder, the MATLAB� data acquisition (DAQ) toolbox, or the audio recorder that

206 CHAPTER 11. PROJECT 2: GRAPHIC EQUALIZER

was recently introduced into MATLAB (version 6.1 or later). This recorded data can be
analyzed and displayed using MATLAB.

11.3 MATLAB Implementation

As we stated in Chapter 3, MATLAB has a number of ways of performing filtering oper-
ations. In this chapter, we will only emphasize the creation of an equivalent filter based
on the scaled sum of the parallel filters that make up the equalizer. As shown in the list-
ing below, creating this equivalent filter is very straightforward as long as the equalizer is
constructed using filters of equal order. “Zero padding” will be required to sum filters of
differing length.

Listing 11.1: Calculating an equivalent impulse response.

% Simulation inputs

2 load (’equalizer.mat’)
A = [1 . 0 1 .0 1 . 0 1 . 0 1 . 0] ; % graphic equalizer scale factors

4

% Calculated terms

6 equivalentFilter = A (1) ∗filt1 . tf . num + A (2) ∗filt2 . tf . num + . . .
A (3) ∗filt3 . tf . num + A (4) ∗filt4 . tf . num + A (5) ∗filt5 . tf . num ;

A few items need to be discussed concerning this code listing.

1. The stored filter coefficients need to be loaded into the MATLAB workspace (line 2).

2. The filter scale factors, A1, A2, . . . , A5 are specified (line 3). In this example, all of
the scale factors are set equal to 1. This results in a flat response.

3. The scale factors are multiplied by each of the filters impulse response and then
summed together (lines 6–7). The five filters used in this example were previously
designed using the MATLAB function sptool. This function is capable of exporting
structure-based variables to the MATLAB workspace. The variable filt1.tf.num

contains the numerator coefficients num associated with the transfer function tf of
filt1.

The first five subplots of Figure 11.5 show the impulse responses of each of the five FIR
filters that make up the equalizer. The final subplot is the sum of all five impulse responses.
The frequency response associated with these filters was shown in Figure 11.4.

With all of the filter gains set to 1.0, as they are in this example, the system should
have a flat frequency response. Thus, it should come as no surprise that equivalent impulse
response of the sum of all the equalizer filter impulse responses is a single delta function.
That is, the frequency response and the impulse response are a Fourier transform pair, and
the Fourier transform of a single delta function is a flat magnitude spectrum (equal power
at all frequencies).

To change the frequency response of the equalizer, all we need to do is adjust the
individual filter gains. The single line modification to the previous code listing is shown
below.

Listing 11.2: Calculating a new equivalent impulse response.

1 A = [0 . 1 0 .5 1 . 0 0 .25 0 . 1] ; % new graphic equalizer scale factors

The individual impulse responses and their sum are shown in Figure 11.6. The resulting
equalizer’s frequency response is shown in Figure 11.7. Finally, Figure 11.8 shows the
equivalent filter’s impulse and frequency response magnitude together.

11.3. MATLAB IMPLEMENTATION 207

−0.1

0
0.1

h LP

−0.1

0
0.1

h B
P

1

−0.2

0
0.2

h B
P

2

−0.5

0

0.5

h B
P

3

−0.5
0

0.5
1

h H
P

0 20 40 60 80 100 120
0

0.5

1

n (samples)

h to
ta

l

Figure 11.5: Impulse response of the five FIR filters and the sum (at bottom) of these
impulse responses for unity gain at all bands.

−0.1

0
0.1

0.
1h

LP

−0.1

0
0.1

0.
5h

B
P

1

−0.2

0
0.2

h B
P

2

−0.5

0

0.5

0.
25

h B
P

3

−0.5
0

0.5
1

0.
1h

H
P

0 20 40 60 80 100 120
−0.1

0
0.1
0.2

n (samples)

h to
ta

l

Figure 11.6: Impulse response of the five FIR filters and the sum of these impulse responses
with unequal gain in the bands.

208 CHAPTER 11. PROJECT 2: GRAPHIC EQUALIZER

0 4 8 12 16 20 24
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

frequency (kHz)

m
ag

ni
tu

de
 (

dB
)

Figure 11.7: Frequency response of the five FIR filters and the equivalent filter.

0 20 40 60 80 100 120
−0.1

0

0.1

0.2

0.3

n (samples)

h to
ta

l

0 4 8 12 16 20 24

−40

−20

0

frequency (kHz)

m
ag

ni
tu

de
 (

dB
)

A = [0.1 0.5 1.0 0.25 0.1];

Figure 11.8: Impulse and frequency response of the equivalent filter.

11.4. DSK IMPLEMENTATION IN C 209

11.4 DSK Implementation in C

11.4.1 Applying Gain to Filter Bands

When you understand the MATLAB code, the conceptual translation into C is fairly
straightforward. The equalizer is actually implementing a single equivalent FIR filter, and
any of the techniques discussed in Chapter 3 could be used. The new portion of this project
is applying the gains to each filter band’s coefficients and calculating the equivalent filter.
This is accomplished in the main.c file, which is shown in Listing 11.3.

Listing 11.3: Graphic equalizer project main.c code.

1

#include "DSP_Config.h"

3 #include "coeff.h" // coefficients used by FIR filter

#include "coeff_lp.h" // coefficients for equalizer

5 #include "coeff_bp1.h"

#include "coeff_bp2.h"

7 #include "coeff_bp3.h"

#include "coeff_hp.h"

9

volat i le f loat new_gain_lp=1, new_gain_bp1=1, new_gain_bp2=1;
11 volat i le f loat new_gain_bp3=1, new_gain_hp=1;

volat i le f loat old_gain_lp=0, old_gain_bp1=0, old_gain_bp2=0;
13 volat i le f loat old_gain_bp3=0, old_gain_hp=0;

15 void UpdateCoefficients ()
{

17 Int32 i ;

19 old_gain_lp = new_gain_lp ; // save new gain values

old_gain_bp1 = new_gain_bp1 ;
21 old_gain_bp2 = new_gain_bp2 ;

old_gain_bp3 = new_gain_bp3 ;
23 old_gain_hp = new_gain_hp ;

25 for (i = 0 ; i <= N ; i++) { // calculate new coefficients

B [i] = (B_LP [i] ∗ old_gain_lp) + (B_BP1 [i] ∗ old_gain_bp1)
27 + (B_BP2 [i] ∗ old_gain_bp2) + (B_BP3 [i] ∗ old_gain_bp3)

+ (B_HP [i] ∗ old_gain_hp) ;
29 }
}

31

33 int main ()
{

35 UpdateCoefficients () ; // update FIR filter coefficients

37 // initialize DSP board

DSP_Init () ;
39

210 CHAPTER 11. PROJECT 2: GRAPHIC EQUALIZER

// main stalls here, the interrupts control the operation

41 while (1) {
// check if any gains have changed

43 i f ((new_gain_lp != old_gain_lp)
| | (new_gain_bp1 != old_gain_bp1)

45 | | (new_gain_bp2 != old_gain_bp2)
| | (new_gain_bp3 != old_gain_bp3)

47 | | (new_gain_hp != old_gain_hp)) {
UpdateCoefficients () ;

49 }
}

51 }

An explanation of Listing 11.3 follows.

1. (Lines 2–7): Include the header files associated with the filter coefficients.

2. (Lines 9–12): Declare the filter gains. There are old_gain values, which are the gains
that are in use, and there are new_gain values, which are the gains that have been
updated.

3. (Line 14): Beginning of the UpdateCoefficients function.

4. (Lines 18–22): Copy the new_gain values to the old_gain values.

5. (Lines 24–28): Calculate the new equivalent filter coefficients, B[i].

6. (Line 33): Call the UpdateCoefficients function to update filter coefficients.

7. (Line 39): Stalled, waiting for interrupts.

8. (Lines 41–47): If any of the equalizer gains have changed, call the UpdateCoefficients
function.

11.4.2 GEL File Slider Control

Code Composer Studio supports a general extension language (GEL) that allows for sliders,
menu boxes, and other interfaces to be rapidly created. The GEL file system uses the
DEBUG portion of the CCS/DSK communication link to update variable values. Earlier
versions of CCS temporarily halted the processor while the update took place, resulting in
a momentary loss of the output signal. While this loss of signal is undesirable, the relative
ease with which GEL file interfaces could be made to a CCS project made them a potentially
useful tool. However, in CCS version 4.2, it appears that the GEL control updates can be
made only while the program is fully halted, greatly limiting the usefulness of GEL controls
(such as sliders) for CCS projects. We therefore no longer cover GEL controls in any detail.
Using GEL-based sliders used to be fairly easy, but the fact that the program must now be
halted each time you adjust a slider keeps this from being useful for a real-time program. To
get around this problem, Windows-based sliders (as part of a Windows Control Application)
need to be created in such a way that the DSP can run without stopping. Support software
to facilitate this is provided on the CD-ROM. See Appendix E for more information.

11.5. FOLLOW-ON CHALLENGES 211

11.5 Follow-On Challenges

Consider extending what you have learned.

1. Design and implement your own monaural graphic equalizer. Select the frequency
bands you desire and create an equivalent filter that will run in real time, using
Windows-based sliders to control the gain of each frequency band.

2. Design and implement your own stereo graphic equalizer in a fashion similar to the
monaural version.

This page intentionally left blankThis page intentionally left blank

Chapter 12

Project 3: Peak Program Meter

12.1 Theory

THE basic block diagram of the generic DSP system, shown in Figure 12.1, was first
introduced in Chapter 2. We also emphasized in Chapter 2 that the analog signal

that is digitized by the analog-to-digital converter (ADC) should not exceed the maximum
voltage range of the converter. To avoid unintended distortion, be careful to ensure that
the ADC is not driven beyond the maximum input voltage range, in either the positive or
negative directions.

Even if the input analog signal remains within the proper range of the ADC, it is
still possible to distort the signal by exceeding the output range of the digital to analog
converter (DAC). As an example, the possible range of values for a 16-bit converter using
two’s complement representation is +32, 767 to −32, 768. Any operation within the DSP
algorithm that results in an output value being written to the DAC that falls outside this
range will also distort the signal. The only way the signal can exceed the output range for
the DAC is if the DSP algorithm has a gain that exceeds 1.0. That is, if the algorithm results
in an amplification of the signal. While gain greater than one is not strictly prohibited,
saturating the DAC should be avoided, unless for some reason you actually want a distorted
output.

Historically, volume unit (VU) meters were used in audio systems to monitor the signal’s
level. VU meters, however, have display accuracy problems that are largely due to the fact
that the meter takes an average measurement that is severely restricted by the ballistics of
the mechanical metering system. This can result in short, but very loud transients, being
missed or improperly displayed.

More recently, audio equipment manufacturers developed the peak program meter (PPM)
to overcome the VU meter’s lackluster performance at displaying peak signal levels. The
PPM improves on the VU meter’s performance problems by integrating the signal for 5 ms.
This integration process will then only detect peaks that are long enough to be heard by a
typical human listener.

������
������

	
�
��������

�
	
��������

���
����������

�������������
������
������

Figure 12.1: A generic DSP system.

213

214 CHAPTER 12. PROJECT 3: PEAK PROGRAM METER

12.2 winDSK Demonstration: commDSK

Start the winDSK application, and the main user interface window will appear. Ensure the
correct selections have been made in the “DSK and Host Configuration” panel of winDSK6
or the “Board and Interface Configuration” panel of winDSK8 for each parameter before
proceeding. Clicking on winDSK’s commDSK button will run that program in the attached
DSK, and a window similar to Figure 12.2 will appear.

Figure 12.2: winDSK running the commDSK application.

In Figure 12.2, the “Output Control,” “Right” box has been changed from “Symbol timing
signal” to “I&Q modulated output.”

The commDSK program is discussed in more detail in Chapter 16. Operation of a PPM
can be seen by increasing the system gain. Increasing the system gain is accomplished by
clicking on the gain slider located just below the box labeled “Gain,” and then moving
the slider to the right. This will result in positive gain numbers appearing in the “Gain”
box. Additionally, as the “Gain” is increased, the two user LEDs on the OMAP-L138
Experimenter Kit, or three of the four user LEDs on a C6713 DSK will function as a
PPM.1

12.3 MATLAB Implementation

MATLAB� does not have an equivalent function for turning on an LED, except through
an indirect use of the Data Acquisition Toolbox. We therefore omit a MATLAB discussion
for this chapter.

1Note: While the C6713 DSK has four LEDs included on the board, the OMAP-L138 Experimenter Kit
has only two LEDs that are easily accessible to your programs. To allow a similar four-level functionality
with the OMAP-L138 Experimenter Kit, send signals to four digital output pins on the LCD connector
J15 using the WriteDigitalOutputs function. Specifically, bits 0–3 are sent to pins 6–9, respectively, of
connector J15. Ground is available on that connector at pins 1, 5, and 10.

12.4. DSK IMPLEMENTATION IN C 215

12.4 DSK Implementation in C

Like the VU meter and PPM, the primary function of this program is to detect and provide
an LED indication/warning whenever an output value is approaching the range limit of the
DAC. Since these conditions are checked every Ts = 1/Fs, a dwell time is also required to
maintain the “ON” status of each of the LEDs. Without this dwell time, the LED would
cycle on/off too rapidly to be visible. The output values above which an LED turns on were
chosen to be ±28000, ±32000, and ±32767. These turn-on levels are shown in Figure 12.3,
where the sinusoidal signal is at maximum amplitude for the DAC.

12.4.1 Example PPM Code

The files necessary to run this application are in the ccs\PPM directory of Chapter 12.
The primary files of interest are main.c, PPM_ISRs.c, PPM_ISRs1.c, PPM_ISRs2.c, and
PPM_ISRs3.c. Important: you must only have one of the ISR files loaded as part of your
project at any given time. The ISR files contain the necessary variable declarations and
perform the actual filtering operation. The actual update to the LEDs is performed in
main.c.

We will discuss PPM_ISRs.c first. The declarations associated with the PPM code are
shown in the listing that follows.

Listing 12.1: Declarations associated with the PPM.

1 #define RESET 4800 // turns the LED off after 4800 samples

3 #define LED1 BIT 1
#define LED2 BIT 2

5 #define LED3 BIT 4

7 volat i le Uint8 LedMask = 0 ; // used by main() to update the LEDs

An explanation of Listing 12.1 follows.

1. (Line 1): Sets the minimum time that an LED will remain “ON.” This time equals
(RESET)(Ts), which in this case is 4800/48000 = 0.1 seconds.

2. (Lines 2–5): Define contants that represent the “ON” state for each of the 3 LEDs.

3. (Line 7): Defines a variable, LedMask, which is used to control the LEDs.

�D��(�D��.�D��/

Figure 12.3: LED turn-on levels for the PPM.

216 CHAPTER 12. PROJECT 3: PEAK PROGRAM METER

A portion of the receive ISR in PPM_ISRs.c is shown in the listing below.

Listing 12.2: Example PPM code from PPM_ISRs.c.

1 // LED 1 logic

i f ((abs (outputLeft) > 28000) | | (abs (outputRight) > 28000)) {
3 LedMask |= LED1_BIT ; // LED1 on

LED_1_counter = RESET ;
5 }
else {

7 i f (LED_1_counter > 0)
LED_1_counter −= 1 ;

9 else
LedMask &= ˜LED1_BIT ; // LED1 off

11 }

13 // LED 2 logic

i f ((abs (outputLeft) > 32000) | | (abs (outputRight) > 32000)) {
15 LedMask |= LED2_BIT ; // LED2 on

LED_2_counter = RESET ;
17 }

else {
19 i f (LED_2_counter > 0)

LED_2_counter −= 1 ;
21 else

LedMask &= ˜LED2_BIT ; // LED2 off

23 }

25 // LED 3 logic

i f ((abs (outputLeft) > 32767) | | (abs (outputRight) > 32767)) {
27 LedMask |= LED3_BIT ; // LED3 on

LED_3_counter = RESET ;
29 }

else {
31 i f (LED_3_counter > 0)

LED_3_counter −= 1 ;
33 else

LedMask &= ˜LED3_BIT ; // LED3 off

35 }

Explanation of the PPM code

An explanation of Listing 12.2 follows.

1. (Lines 2–5): If either or both of the left or right channel levels is greater than 28,000
in magnitude, then LED 1 is turned on. A counter is also set to 4800. This counter
keeps the light on for 0.1 seconds.

2. (Lines 6–11): This block of code decrements LED 1’s counter and whenever the
counter reaches zero, the LED is turned “OFF.”

3. (Lines 14–17): If either or both of the left or right channel levels is greater than 32,000
in magnitude, then LED 2 is turned on. A counter is also set to 4800. This counter
keeps the light on for 0.1 seconds.

12.4. DSK IMPLEMENTATION IN C 217

4. (Lines 18–23): This block of code decrements LED 2’s counter and whenever the
counter reaches zero, the LED is turned “OFF.”

5. (Lines 26–29): If either or both of the left or right channel levels is greater than 32,767
in magnitude, then LED 3 is turned on. A counter is also set to 4800. This counter
keeps the light on for 0.1 seconds.

6. (Lines 30–35): This block of code decrements LED 3’s counter and whenever the
counter reaches zero, the LED is turned “OFF.”

12.4.2 DSK LED Control

The LEDs on the DSK are controlled using the WriteLEDs function. The LEDs on the
OMAP-L138 Experimenter Kit are controlled via an I2C interface, which is too slow to use
in an ISR. The variable LedMask is used to pass the desired LED state to main.c, and the
code in main.c updates the LEDs only when the state changes. To be consistent, the same
approach is used for the C6713 DSK.

12.4.3 Another PPM Code Version

As noted above, four different versions of the PPM ISR code are provided on the CD-ROM.
We already discussed the pertinent parts of PPM_ISRs.c. We will now discuss PPM_ISRs3.c;
explore the variations present in PPM_ISRs1.cand PPM_ISRs2.c on your own.

This implementation uses the same declarations as those shown earlier for PPM_ISRs.c.
A portion of the ISR in PPM_ISRs3.c is shown in Listing 12.3.

Listing 12.3: Another approach to creating the PPM, excerpted from PPM_ISRs3.c.

1 maxOutput = _fabsf (outputLeft) ;
i f (maxOutput < _fabsf (outputRight))

3 maxOutput = _fabsf (outputRight) ;

5 i f (maxOutput > 32767) {
LED_3_counter = RESET ;

7 LED_2_counter = RESET ∗ 2 ;
LED_1_counter = RESET ∗ 3 ;

9 }
else i f (maxOutput > 32000) {

11 i f (LED_2_counter < RESET)
LED_2_counter = RESET ;

13 i f (LED_1_counter < RESET ∗ 2)
LED_1_counter = RESET ∗ 2 ;

15 }
else i f (maxOutput > 28000) {

17 i f (LED_1_counter < RESET)
LED_1_counter = RESET ;

19 }

21 workingLedMask = 0 ; // all LEDs off

i f (LED_3_counter) {
23 LED_3_counter−−;

workingLedMask |= LED3_BIT ; // LED3 on

25 }

218 CHAPTER 12. PROJECT 3: PEAK PROGRAM METER

27 i f (LED_2_counter) {
LED_2_counter−−;

29 workingLedMask |= LED2_BIT ; // LED2 on

}
31

i f (LED_1_counter) {
33 LED_1_counter−−;

workingLedMask |= LED1_BIT ; // LED1 on

35 }

37 LedMask = workingLedMask ; // update LED mask for main()

An explanation of Listing 12.3 follows.

1. (Lines 1–3): Determines maxOutput (the maximum of the absolute value of both the
left and right output channels).

2. (Lines 5–9): If maxOutput is greater than 32,767 in magnitude, then LEDs 1, 2, and 3
are turned on. Counters for LED 1, 2, and 3 are set at 14400, 9600, and 4800. These
counter values keep LEDs 1, 2, and 3 “ON” for 0.3, 0.2, and 0.1 seconds, respectively.

3. (Lines 10–15): If maxOutput is greater than 32,000 in magnitude, then LEDs 1 and
2 are turned on. Counters for LED 1 and 2 are set at 9600 and 4800. These counter
values keep LEDs 1 and 2 “ON” for 0.2 and 0.1 seconds, respectively.

4. (Lines 16–19): If maxOutput is greater than 28,000 in magnitude, then LED 1 is turned
on. The counter for LED 1 is set at 4800. This counter value keeps the LED “ON”
for 0.1 seconds.

5. (Lines 21–35): Updates the LedMask based on the status of the LED counters.

6. (Line 37): Transfers the desired LED state to LedMask, which is used in main.c to
update the status of the system’s LEDs.

12.5 Follow-On Challenges

Consider extending what you have learned. Remember, to fully test the PPM as part of a
larger program, some part of the DSP algorithm (other than the PPM part) should have a
gain greater than 1. This can be accomplished easily by adding a multiplicative scale factor
somewhere in the algorithm between the input and output.

1. Design and implement your own peak program meter.

2. If you have a C6713 DSK, implement a peak program meter that utilizes all 4 LEDs.

3. If you have an OMAP-L138 Experimenter Kit, implement a peak program meter that
utilizes the four digital output pins of the LCD connector J15.

Chapter 13

Project 4: AM Transmitters

13.1 Theory

ONE of the simplest modulation schemes is amplitude modulation, which is normally
just abbreviated as AM. The commercial AM broadcast radio stations in the United

States use a version of AM called double sideband large carrier (DSB-LC), sometimes also
called double sideband with carrier (DSB-WC). See [61, 76] for some general theoretical
background on amplitude modulated signals, and [77,78] for more DSP-specific background
on AM communications.

For several decades now, commercial AM radio broadcasts can be received on almost
any consumer radio sold in the United States. Most U.S. commercial AM radio stations,
which occupy the 550 to 1600 kHz band, are used primarily for public service, news, talk
radio, and sports reporting, but only for limited music broadcasting. The majority of music
programming has shifted to the more noise immune (and higher fidelity) stereo frequency
modulation (FM) systems in the 88 to 108 MHz band. This is not to imply in any way
that broadcast AM is no longer important! In fact, AM systems are still used all around
the world. Additionally, AM provides an easily understood modulation scheme that can be
thought of as the starting point for many of today’s more complicated modulation schemes.

There are several ways in which AM (DSB-LC) can be generated. One method that is
particularly easy to explain uses two steps:

1. offset the message signal m(t) by adding a D.C. bias signal B, then

2. multiply the offset message signal [B + m(t)] by some higher frequency sinusoidal
carrier signal.

This process can be seen in Figure 13.1. To express this process mathmatically, the AM

)
(���

�������
������

����
	!�������

�6 6
����
������

H

����������
�������
������

Figure 13.1: The block diagram for AM generation.

219

220 CHAPTER 13. PROJECT 4: AM TRANSMITTERS

signal equation can be written as,

s(t) = Ac[B +m(t)] cos(2πfct), (13.1)

where Ac is the carrier amplitude, fc is the carrier frequency, and t represents time.
For distortion-free message recovery using envelope detection techniques (see Chap-

ter 14), the term B +m(t) must be kept greater than zero. This can be accomplished by
adjusting either the bias signal value or the amplitude of the message. Figure 13.2 shows
100 ms of a voice signal. Figure 13.3 shows the result of adding the voice signal from Fig-
ure 13.2 and 5 mV of bias. In Figure 13.3 it is clear that the voice signal plus 5 mV does
not always remain positive. Either the message amplitude needs to be reduced or the bias
value needs to be increased. Otherwise, this will result in distortion if an envelope detector
is to be used for message recovery. Figure 13.4 shows the result of adding the voice signal
from Figure 13.2 and 20 mV of bias; it is clear that the voice signal plus bias now remains
positive for the time period shown.

0 0.02 0.04 0.06 0.08 0.1
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (ms)

si
gn

al
 a

m
pl

itu
de

 (
V

)

Figure 13.2: Plot of 100 ms of voice data.

0 0.02 0.04 0.06 0.08 0.1
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

time (ms)

si
gn

al
 a

m
pl

itu
de

 (
V

)

Figure 13.3: Plot of 100 ms of voice data with 5 mV of added bias.

13.1. THEORY 221

0 0.02 0.04 0.06 0.08 0.1

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

time (ms)

si
gn

al
 a

m
pl

itu
de

 (
V

)

Figure 13.4: Plot of 100 ms of voice data with 20 mV of added bias.

The final step in the AM generation process is to multiply the properly biased message
signal by a sinusoidal signal (called the carrier), as shown in Figure 13.5. The multiplication
is a point-by-point operation, so the MATLAB� operator “.*” must be used.

0 0.02 0.04 0.06 0.08 0.1
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

time (ms)

A
M

 s
ig

na
l a

m
pl

itu
de

 (
V

)

Figure 13.5: Voice signal modulating (DSB-LC) a 12 kHz carrier.

222 CHAPTER 13. PROJECT 4: AM TRANSMITTERS

13.2 winDSK Demonstration

The winDSK program does not provide an equivalent function.

13.3 MATLAB Implementation

The output from a MATLAB simulation of the AM generation process is shown in Fig-
ure 13.6.

0 1 2 3 4 5 6 7 8
−1

0

1

time (ms)

m
es

sa
ge

 (
V

)

0 1 2 3 4 5 6 7 8
−5

0

5

time (ms)

A
M

 s
ig

na
l (

V
)

0 4 8 12 16 20 24

−40

−20

0

frequency (kHz)

sp
ec

tr
um

 (
dB

)

Figure 13.6: Sinusoidal signal modulating (DSB-LC) a 12 kHz carrier.

The simulation inputs, calculated terms, and simulation outputs are as follows.

• Simulation inputs

– Simulation or sample frequency

– Message frequency and amplitude

– Bias level

– Carrier frequency and amplitude

– Simulation duration

• Calculated terms

– Message value (we are calculating or simulating the message)

– Carrier value

13.3. MATLAB IMPLEMENTATION 223

– AM signal value

• Simulation outputs

– Plots of the message signal and the AM modulated signal

– Plot of the estimated power spectrum magnitude of the AM modulated signal

Figure 13.6 is divided into 3 subplots. Subplot 1 (top) plots the message signal (1000 Hz
sinusoid with a 0.5 V amplitude) in the time domain. Subplot 2 (middle) plots the AM
waveform in the time domain. Notice how the message waveform defines the AM signal’s
envelope. Also notice that the carrier appears to resemble a triangle wave. When a 12 kHz
sinusoid is simulated using a 48 kHz sample frequency, only 4 samples per carrier cycle are
present. For a unit amplitude cosine function, without any phase shift, the resulting carrier
values are 1, 0, −1, and 0 per cycle. For a unit amplitude sine function, without any phase
shift, the resulting carrier values are 0, 1, 0, and −1 per cycle. In either case, these values
plot as a triangle wave. This is not a problem in a DSP system since the DAC incorporates
a reconstruction (lowpass) filter. This filter will remove the high frequency components,
only passing the fundamental frequency. This process turns the triangle wave back into a
sinusoidal wave at 12 kHz.

Subplot 3 (bottom) plots the magnitude of the power spectral density (PSD) estimate of
the AM signal. Additional details concerning spectral estimation can be found in Chapter 9.
The m-file that created this plot is called AM_SignalGeneratorAndPlotter.m, and it can
be found in the matlab directory for Chapter 13. The code listing is given below.

Listing 13.1: MATLAB example of AM (DSB-LC) generation.

1 %

% Generates an AM modulation figure that has 3 subplots:

3 %

% 1 - message signal (time domain)

5 % 2 - AM signal (time domain)

% 3 - PSD estimate of the AM signal

7 %

9 % Simulation inputs

Fs = 48000; % sample frequency

11 Fmsg = 1000 ; % message frequency

Amsg = 0 . 4 ; % message amplitude

13 bias = 0 . 6 ; % bias (offset)

Fc = 12000; % carrier frequency

15 Ac = 3 ; % carrier amplitude

duration = 0 . 0 0 8 ; % duration of the signal in seconds

17 Nfft = 2048 ; % number of points used for PSD frames

19 myFontSize = 12 ; % font size for the plot labels

21 % Calculated terms

NumberOfPoints = round(duration∗Fs) ;
23 t = (0 : (NumberOfPoints − 1)) /Fs ; % establish time vector

message = Amsg∗cos (2∗pi∗Fmsg∗t) ; % create message signal

25 carrier = cos (2∗pi∗Fc∗t) ; % create carrier signal

AM_msg = Ac ∗(bias + message) .∗ carrier ; % create AM waveform

27

224 CHAPTER 13. PROJECT 4: AM TRANSMITTERS

% Simulation outputs

29 subplot (3 , 1 , 1)
set (gca , ‘ FontSize ’ , myFontSize)

31 plot (t∗1000 , message)
xlabel (‘ time (ms) ’)

33 ylabel (‘ message (V) ’)
axis ([0 8 −1 1])

35

subplot (3 , 1 , 2)
37 set (gca , ‘ FontSize ’ , myFontSize)

plot (t∗1000 , AM_msg)
39 xlabel (‘ time (ms) ’)

ylabel (‘ AM signal (V) ’)
41

subplot (3 , 1 , 3)
43 set (gca , ‘ FontSize ’ , myFontSize)

[Pam , frequency] = psd (AM_msg , Nfft , Fs , blackmanharris (Nfft)) ;
45 plot (frequency /1000 , 10∗ log10 (Pam))

xlabel (‘ frequency (kHz) ’)
47 ylabel (‘ spectrum (dB) ’)

set (gca , ‘ XTick ’ , [0 4 8 12 16 20 24])
49 set (gca , ‘ XTickLabel ’ , [0 4 8 12 16 20 2 4] ’)

axis ([0 24 −50 0])
51

print −deps2 AM_SignalPlot % save eps file of figure

13.4 DSK Implementation in C

When you understand the MATLAB code, the concept translation into C is fairly straight-
forward. For the MATLAB simulation we listed the simulation inputs, calculated terms,
and the simulation outputs. While these concepts are similar for the DSK’s code, the names
are modified. For the DSK, we will use the terms “declaration” and “algorithmic process.”
We will need few modifications to the MATLAB thought process, however.

• The DSP must process the data from the ADC in real-time; therefore, we cannot
wait for all of the message samples to be received prior to beginning the algorithmic
process.

• Real-time DSP is inherently an interrupt driven process and the input samples should
only be processed using interrupt service routines (ISRs). Given this observation,
it is incumbent upon the DSP programmer to ensure that the time requirements
associated with periodic sampling are met. Also, remember the input and output
ISRs are asynchronous. Nothing will go in and out of your DSP hardware unless you
program the DSP with an appropriate receive and transmit ISR.

• The digital portion of both an ADC and a DAC are inherently integer in nature.
No matter what the ADC’s input range is, the analog input voltage is mapped to
an integer value. For a 16-bit converter using two’s complement representation, the
possible values range from +32, 767 to −32, 768. Since −32, 768 is the maximum
negative value of the signal that can be received by the DSP, a bias level of no more
than +32, 768 will be necessary to prevent envelope distortion at the receiver. You

13.4. DSK IMPLEMENTATION IN C 225

can always make the bias value larger than +32, 768 to explore the effects on AM
signal generation.

Given these considerations, the program is broken into the following parts.

• Declaration

– Bias level

– Carrier frequency

• Algorithmic process

– Read in a message sample from the ADC

– Calculate the next carrier value

– Calculate the AM signal value

– Scale the AM signal value for the DAC

– Write the AM signal value to the DAC

See the files associated with this project in the ccs\AmTx directory for Chapter 13. We
provide two implementations of this project, a direct method (using the file ISRs.c) and a
more efficient method (using the file ISR_Table.c). Select one (and only one) of these two
files to include in your CCS project. If you’re using ISR_Table.c, then modify StartUp.c

so that the function call to FillSineTable() is not commented out.
If we directly implement the AM generation equation s(t) = Ac[B + m(t)] cos(2πfct)

without considering the required scaling for the DAC, we will likely exceed the allowable
range. We must assume that the full ADC range is possible for input data, so CodecData.

Channel[LEFT] can range from −32, 768 to +32, 767. Thus bias must be at least +32, 768
to prevent the combined term bias+CodecData.Channel[LEFT] from possibly becoming
negative. Remember that this combined term must not be negative, or message distortion
will occur at the output of the receiver when using an envelope detector. If bias is set to this
minimum value of +32, 768, then the maximum value of bias+CodecData.Channel[LEFT]
will be 32, 768 + 32, 767 = 65, 535. The magnitude of the sine we will generate for the
carrier is | sin(·)| ≤ 1, so that means that a scale factor of 0.5 is needed to prevent the AM
value from exceeding the allowable range of the DAC.1 The only flexibility we lose by using
this method is that we are no longer able to freely increase the “bias” value without also
changing the 0.5 scale factor. The AM generation equation can therefore be implemented
using the code statement shown in the listing below. Watch for line wraps due to margins
in this and the following listings.

Listing 13.2: C code for scaled implementation of DSB-LC AM.

CodecDataOut . Channel [LEFT]=(f loat) 0 . 5∗ (bias+CodecDataIn . Channel [
[+]LEFT]) ∗sinf (phase) ;
After profiling this code, it becomes obvious that the transmitter ISR is still the major

user of DSP computational resources. This is due to the function sinf, which although
seemingly straightforward to calculate, is a call to a relatively “expensive” (in computational
terms) routine prototyped in the header file math.h. As discussed in Chapter 5, numerous
techniques exist to generate a sinusoid. The following code combines these concepts for
AM signal generation. The only change to StartUp.c is to uncomment the line that makes

1Since division is more “expensive” computationally than multiplication, we multiply by 0.5 rather than
divide by 2.

226 CHAPTER 13. PROJECT 4: AM TRANSMITTERS

the function call to FillSineTable(); this version of the project will use the interrupt service
routines contained in the file ISR_Table.c.

With the array SineTable filled, the line of code shown next extracts noninterpolated
sine function values from the lookup table.

Listing 13.3: C code to extract the sine function values from the lookup table.

1 sine=SineTable [(Int32) (index/GetSampleFreq () ∗NumTableEntries)] ;
The code associated with the final calculations of the AM waveform generation and scaling
follows.

Listing 13.4: C code for scaled implementation of DSB-LC AM with sine table lookup.

1 CodecDataOut . Channel [LEFT]=(f loat) 0 . 5∗ (bias+CodecDataIn . Channel [
[+]LEFT]) ∗sine ;
Code profiling using the new carrier generation algorithm reveals approximately an 80%

reduction in computational resources used by the transmitter ISR.

13.5 Follow-On Challenges

Consider extending what you have learned.

1. Even though both output channels are used, the RIGHT channel data is just a copy
of the LEFT channel data. Investigate how to use DSB-LC to transmit stereo infor-
mation.

2. Since even momentary transmission with a modulation index greater than one results
in distortion for a receiver using an envelope detector, how would you prevent this
situation from occurring?

3. From a practical perspective, if the message signal that you are using to modulate the
carrier has a baseband bandwidth that exceeds the carrier frequency, then aliasing
will occur. Design and implement a system that digitally bandlimits (LP filters) the
message signal prior to modulating the carrier signal.

4. What are the implications of setting the bias term to a value greater than +32, 768?

5. How would you implement a single sideband (SSB) AM transmitter?

6. Now that you understand AM transmitters, consider implementing a frequency mod-
ulation (FM) transmitter. In this case, instead of the input signal changing the carrier
amplitude, the input signal changes the carrier frequency. Refer to any good commu-
nications textbook for a discussion about FM.

Chapter 14

Project 5: AM Receivers

14.1 Theory

AMPLITUDE modulation (AM) is a very popular modulation scheme. As we discussed
in Chapter 13, AM signals are carried in the envelope of the carrier signal. An AM

signal with carrier frequency, fc = 550 kHz, message frequency, fmsg = 5 kHz, and modu-
lation index, μ = 0.8, is shown in Figure 14.1. In this figure, the signal’s envelope is clearly
sinusoidal. Counting the envelope variations shows that the signal envelope experiences five
periods in the displayed time duration of 1 millisecond. The message frequency can now be
verified to be, fmsg = 5/0.001 = 5 kHz. Since the carrier is displayed as solid shading in
this figure, it is impossible to precisely determine its exact frequency without rescaling the
plot. In fact, the carrier frequency is at f = 550 kHz, which means that this AM signal has
550, 000/5, 000 = 110 Hz/period. That is, 110 cycles of the carrier occur for every cycle of
the message. This represents the worst-case ratio for US-based commercial AM detection
since the minimum authorized carrier frequency is 550 kHz and the maximum allowed mes-

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (ms)

A
M

 s
ig

na
l v

al
ue

 (
V

)

Figure 14.1: An AM signal in the time domain (fc = 550 kHz, fmsg = 5 kHz, and μ = 0.8).

227

228 CHAPTER 14. PROJECT 5: AM RECEIVERS

535 540 545 550 555 560 565
−50

−40

−30

−20

−10

0

10

20

30

40

50

frequency (kHz)

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Figure 14.2: An AM signal shown in the frequency domain (fc = 550 kHz, fmsg = 5 kHz,
and μ = 0.8). These are the only three frequency components in the signal.

sage frequency is 5 kHz. We are discussing messages that are sinusoidal in nature. We will
use these sinusoidal tones as example messages to illustrate a number of different points.
In actual radio systems, the messages will be much more complex and usually will occur at
more than one frequency. It is also very common when discussing AM systems to treat the
maximum message frequency as the message’s bandwidth.

The AM signal shown in the time domain in Figure 14.1 is also shown in the frequency
domain as Figure 14.2. Shown from left to right in this figure is the lower sideband (LSB),
carrier frequency, and the upper sideband (USB). The LSB occurs at fc − fmsg = 545
kHz, the carrier frequency is at fc = 550 kHz, and the USB occurs at fc + fmsg = 555
kHz. Theoretically, these spectral components should occur as delta function (spectral lines
with no width); however, this figure was created using the MATLAB� psd function1 using
a Blackman-Harris windowing function. As discussed in Chapter 9, the spectrum of the
windowing function in use is convolved with the actual spectrum. This is why the spectral
components are displayed as “humps” instead of delta functions.

14.1.1 Envelope Detector

One of the most inexpensive AM demodulation techniques employs the envelope detector.
Traditional circuit-based implementations of the envelope detector utilize a diode and an
analog lowpass (LP) filter to demodulate the AM signal. The diode halfwave rectifies the
incoming signal; that is, it passes either the positive half of the AM signal or the negative
half of the AM signal, depending upon how the diode is connected in the circuit. The analog
LP filter extracts the relatively low frequency message from the AM signal’s envelope. The
effect of halfwave rectification can be seen in Figure 14.3 (time domain) and Figure 14.4
(frequency domain), where an ideal diode is assumed to pass only the positive half of the
AM signal. The nonlinear action of the diode has caused other frequency components to
appear in the signal, as is evident in Figure 14.4.

1At this writing, The MathWorks plans to replace the psd function with the pwelch function.

14.1. THEORY 229

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (ms)

R
ec

tif
ie

d
A

M
 s

ig
na

l (
V

)

Figure 14.3: A halfwave rectified version of Figure 14.1 in the time domain.

0 1000 2000 3000 4000 5000
−40

−30

−20

−10

0

10

20

30

40

50

frequency (kHz)

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Figure 14.4: A halfwave rectified version of Figure 14.1 in the frequency domain.

The scale of the plot makes it difficult to distinguish the individual lines of the LSB, the
carrier, and the USB; each “spike” on the plot is actually multiple lines. But we can clearly
see some components near DC (0 Hz), the fundamental frequency components (centered at
fc = 550 kHz), the second harmonic components (centered at 2fc = 2·550 = 1100 kHz), and
the other even harmonic components (centered at nfc = n · 550 kHz for n = 4, 6, 8). The
even harmonics actually continue forever beyond the limits of the plot for n = 10, 12, 14, . . .,
but the amplitude of the harmonics approaches zero as their frequency increases. Figure 14.5
zooms in on the lower 600 kHz of Figure 14.4; look closely and observe five individual

230 CHAPTER 14. PROJECT 5: AM RECEIVERS

0 100 200 300 400 500 600
25

30

35

40

45

frequency (kHz)

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Figure 14.5: An AM signal’s spectral content after halfwave rectification.

spectral components in Figure 14.5. These individual spectral components occur at the five
frequencies that are listed below.

1. D.C., at fDC = 0 Hz

2. Message, at fmsg = 5 kHz

3. Lower sideband (LSB), at fc − fmsg = 545 kHz

4. Carrier, at fc = 550 kHz

5. Upper sideband (USB), at fc + fmsg = 555 kHz

In the list of spectral components above, the second term is our message, and it can be
extracted from the spectrum shown in Figure 14.4 by a LP filter. This filter needs to pass
the fmsg term while providing significant attenuation at the LSB, fc, and USB frequencies
(and all the higher harmonics). These LP filter requirements lead to the design equation

BW 1

τ
 fc −BW.

In this equation, BW is the message signal’s bandwidth (in Hz), τ is the LP filter’s time
constant (in seconds), and fc is the AM signal’s carrier frequency (in Hz). In most radio
frequency (RF) systems, BW fc, so the design equation is routinely approximated by

BW 1

τ
 fc.

Continuing with our example of fmsg = 5 kHz and fc = 550 kHz requires that

5 kHz 1

τ
 550 kHz.

14.1. THEORY 231

0.449 0.4495 0.45 0.4505 0.451
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

A
M

 s
ig

na
l v

al
ue

 (
V

)

time (ms)

AM signal
τ too big
τ about right
τ too small

Figure 14.6: The effect of different LP filters on envelope recovery.

Setting 1
τ ≈ 120 kHz easily satisfies the inequality and allows for direct AM detection/de-

modulation. Figure 14.6 shows the effect of this LP filter in the time domain. This figure
shows an extremely magnified portion (showing just the top peaks) of Figure 14.3 with the
discharge characteristics of three different LP filters superimposed onto the carrier wave-
form. The desired effect is for the LP filter to extract the message frequency by connecting
the peaks of the halfwave rectified AM signal. Examples of filters that discharge too fast
and too slow are also shown in the figure. Setting 1

τ ≈ 120 kHz is seen to be “about right,”
as it almost perfectly “connects” the peaks during the filter’s discharge process. As we will
see below, this may not actually be the optimal choice. In all cases, the discharge rate of
an analog filter is controlled by the time constant τ . For a simple first-order RC LP filter
such as the one shown in Figure 4.1, the time constant is τ = RC.

The previous figures demonstrate the worst-case scenario for using an envelope detector,
in which the carrier is at the lowest frequency value allowed (by the FCC), and the message
is at the highest frequency allowed. This is the worst case because the relative location
of the peaks (in the time domain) drives our LP filter response in one direction, while
the separation between the components we want to keep and the components we want to
remove (in the frequency domain) drives our LP filter response in the opposite direction. In
Figure 14.6, the 1

τ ≈ 120 kHz filter’s discharge characteristic appears to satisfy our needs.
However, if we look at the filter response in the frequency domain, this choice does not look
nearly as good. This can be seen in Figure 14.7 where the LP filter that seemed to meet our
needs in the time domain provides less than 30 dB of attenuation at the carrier frequency
of fc. As previously stated, what is needed is a filter that passes fmsg and significantly
attenuates fc. From Figure 14.7 it is now clear that a higher performance filter (i.e., higher
order) is required.

Even after an acceptable envelope recovery (LP) filter is designed, there is one last
unwanted spectral component at 0 Hz (D.C.) that needs to be removed. In an analog
implementation, this can be accomplished with a single D.C. blocking capacitor.

232 CHAPTER 14. PROJECT 5: AM RECEIVERS

10
3

10
4

10
5

10
6

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

m
es

sa
ge

 fr
eq

ue
nc

y

ca
rr

ie
r

fr
eq

ue
nc

y

frequency (Hz)

|H
(f

)|
 (

dB
)

τ too big
τ about right
τ too small

Figure 14.7: The effectiveness of the LP filters used for envelope recovery as viewed in the
frequency domain.

Having made all of these observations, actual AM radios typically use a frequency selec-
tive, intermediate frequency (IF) stage prior to the envelope detector. This type of system is
called a “superheterodyne receiver” or simply a “superhet.” The IF-based system provides
significant end-to-end gain without amplifier instability/oscillation, as well as providing for
much better isolation of the desired frequency channel from any adjacent channels. Better
channel isolation is accomplished by the use of a high performance IF filter which then
allows the use of lower performance (i.e., less expensive) RF and audio frequency filters.

The discussion concerning the importance of the envelope detector’s LP filter was nec-
essary to demonstrate that while this technique works very well for commercial AM radio
signal recovery, it may not work without severe distortion on our DSK-based AM system,
which we limit to audio carrier frequencies to allow the use of the audio codec. This po-
tential filtering problem can be inferred from Figure 14.8, where a 5 kHz message is AM
modulated by a 12 kHz carrier. Because the carrier is no longer much higher in frequency
than the message frequency (commercial AM carriers are more than 100 times higher than
the message), it is difficult to see the message envelope in this audio waveform without
the “message + D.C.” term also being shown in the plot. Despite the appearance of this
time domain waveform, the message signal can still be extracted using a high performance
LP filter. This can be confirmed by Figure 14.9, where it should be clear that if the LP
filter passes the 5 kHz message and if the passband sharply drops off immediately above 5
kHz, then the “message + D.C.” term can be recovered without distortion from the other
frequency components.

We must take great care in choosing frequencies for our audio carrier AM system. We set
the carrier frequency to fc = 12 kHz carrier (the center of the codec’s alias-free frequency
response limit when Fs = 48 kHz) to allow “room” for both lower and upper sidebands.
But if we increase the message frequency too far (i.e., fmsg ≥ 6 kHz), an envelope detector
will fail to recover the message properly. At fmsg ≥ 6 kHz, the time domain waveform
becomes almost incomprehensible and the spectral components associated with the output
of the halfwave rectifier becomes inseparable using the traditional LP filter approach. These

14.1. THEORY 233

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (ms)

A
M

 s
ig

na
l v

al
ue

 (
V

)

AM signal
message + DC

Figure 14.8: AM waveform (fmsg = 5 kHz and fc = 12 kHz).

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

frequency (kHz)

po
w

er
 s

pe
ct

ru
m

 m
ag

ni
tu

de
 (

dB
)

DC

f
msg

f
c
 − f

msg

f
c

f
c
 + f

msg

2f
c
 − f

msg

2f
c

Figure 14.9: AM spectrum (fmsg = 5 kHz and fc = 12 kHz).

concepts can be seen in Figure 14.10 and Figure 14.11. While there are many known
solutions to this problem, in the rest of this chapter the focus will be on the Hilbert-based
AM receiver.

14.1.2 The Hilbert-Based AM Receiver

The Hilbert-based AM receiver extracts the real envelope [77] from the received signal using
the equation

r (t) =
√
s2 (t) + ŝ2 (t) .

234 CHAPTER 14. PROJECT 5: AM RECEIVERS

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (ms)

A
M

 s
ig

na
l v

al
ue

 (
V

)

AM signal
message + DC

Figure 14.10: AM waveform (fmsg = 8 kHz and fc = 12 kHz).

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

frequency (kHz)

po
w

er
 s

pe
ct

ru
m

 m
ag

ni
tu

de
 (

dB
)

DC

f
msgf

c
 − f

msg

f
c

f
c
 + f

msg

2f
c
 − f

msg

2f
c

Figure 14.11: AM spectrum (fmsg = 8 kHz and fc = 12 kHz).

In this equation, r(t) is the real envelope of the AM signal. The envelope can be expressed
as r(t) = m(t)+D.C., where m(t) is the message signal and “D.C.” represents the bias that
was added at the AM transmitter to keep m(t)+D.C. > 0. Additionally, s(t) is the received
AM signal and ŝ(t) is the Hilbert transform of s(t). Once the real envelope is extracted,
the D.C. term can be removed using an IIR-based D.C. blocking filter.

To create ŝ(t), s(t) must be passed through a system that implements the Hilbert trans-
form. A continuous-time Hilbert transforming filter’s impulse response is defined as

h (t) =
1

πt

14.1. THEORY 235

0 5 10 15 20 25
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

n

fil
te

r
co

ef
fic

ie
nt

 v
al

ue

Figure 14.12: Stem plot of the coefficients associated with a 22nd-order FIR Hilbert trans-
forming filter.

and the frequency response [78,79] is defined as

H(jω) =

⎧⎪⎨
⎪⎩
−j for ω > 0

0 for ω = 0

+j for ω > 0

The magnitude of the frequency response is one (except it is zero at exactly 0 Hz), and
the filter introduces a −90◦ phase shift for positive frequencies and a +90◦ phase shift for
negative frequencies. This phase shifting filter can either be closely approximated by an
FIR digital filter or by using an “FFT/phase shift/IFFT” operation. In this chapter, we
will use an FIR filter to approximate the Hilbert transform.

To design an FIR-based Hilbert transforming filter in MATLAB we will use the remez

command.2 An example of how to use this command is shown below.

Listing 14.1: Using MATLAB to design a Hilbert transforming filter.

1 B = remez (22 , [0 . 1 0 . 9] , [1 1] , ’Hilbert’) ;

In this listing, variable B will store the 23 filter coefficients, 22 is the filter order, 0.1 and
0.9 are the beginning and ending normalized frequencies over which we want the filter’s
magnitude response to remain constant, [1 1] represents the magnitudes at those two
normalized frequencies, and ’Hilbert’ tells MATLAB to design a Hilbert transforming
filter. A stem plot of the resulting B coefficients is provided as Figure 14.12. Notice that for
Hilbert transforming filters such as this one, specified with a passband that is symmetric
on the frequency scale and centered at Fs/4, we see that every other filter coefficient has a
value of zero. This filter’s coefficients are also antisymmetric about the center point (i.e.,
h[n] = −h[N −n]). These traits could be exploited to reduce the computational load of the
DSP CPU.3

2At this writing, The MathWorks plans to replace the remez function with the firpm function.
3Any linear phase FIR filter will exhibit either symmetrical (h[n] = h[N − n]) coefficients or antisym-

metrical (h[n] = −h[N − n]) coefficients.

236 CHAPTER 14. PROJECT 5: AM RECEIVERS

0 3 6 9 12 15 18 21 24
−50

−40

−30

−20

−10

0

10

frequency (kHz)

|H
(jω

)|
 (

dB
)

 4th order

 8th order

22th order

Figure 14.13: Magnitude responses of three Hilbert transforming filters.

0 3 6 9 12 15 18 21 24

−0.1

−0.05

0

0.05

0.1

0.15

|H
(jω

)|
 (

dB
)

frequency (kHz)

 4th order
 8th order
22th order

Figure 14.14: Zoomed magnitude response emphasizing the 22nd-order Hilbert transforming
filter’s passband ripple.

Specifying the Hilbert transforming filter’s design parameters depends greatly on the
characteristics of the signal that you are trying to transform. In Figure 14.13, three dif-
ferent filters of increasing order are shown. Each filter has the same bandpass (BP) filter
specifications. For a given frequency range, the higher the filter order, the flatter the re-
sponse becomes in the passband. Figure 14.14 shows that as the filter order increases, the
filter’s passband ripple decreases, but it will never completely disappear.

A sampled (i.e., discrete-time) system would replace s(t) by s[n] and r(t) by r[n] in the
real envelope extraction equation. The block diagram associated with extracting the real
envelope of the signal is shown in Figure 14.15. Note that to “line up” the unfiltered signal
s[n] with the filtered signal ŝ[n], we need to delay the unfiltered signal by the group delay of
the filter. The group delay associated with any linear phase FIR filter, such as the Hilbert
transforming filter, is one-half of the filter order. For the 22nd-order filter in this example,
the group delay will be 11 samples. Since the input values to this filter are already being

14.2. WINDSK DEMONSTRATION 237

&'()�+�, &'(

2����������������

�����.

�����.

�����������
�����������

�+�,

Figure 14.15: Real envelope recovery from and AM signal.

stored for implementation using direct form I (DF-I) techniques, no additional input sample
buffering is required for us to delay s[n] as needed.

Finally, r[n] must have its D.C. component removed. This is accomplished with a notch
filter where the stopband frequency is set to 0 Hz. This filter places a zero on the unit
circle at z = 1 to determine the location of the stopband, and a pole on the real axis very
near this zero (e.g., z = 0.95) to make the slope of the stopband very sharp. The transfer
function of this system is,

H(z) =

(
1 + r

2

)
1− z−1

1− rz−1
.

In this equation, r represents the location of the pole (we previously used the example
where r = 0.95) and the (1 + r)/2 term normalizes the high frequency (passband) gain to
1.0 (0 dB). The difference equation associated with this system can be derived as follows.

H(z) =
Y (z)

X(z)
=

(
1 + r

2

)
1− z−1

1− rz−1

Y (z)
(
1− rz−1

)
= X(z)

(
1 + r

2

)(
1− z−1

)

y[n]− ry[n− 1] =

(
1 + r

2

)
(x[n]− x[n− 1])

y[n] = ry[n− 1] + 0.5(1 + r) (x[n]− x[n− 1]) .

We now have enough information to implement the AM demodulator shown in Figure 14.15.

14.2 winDSK Demonstration

The winDSK program does not provide an equivalent function.

14.3 MATLAB Implementation

The MATLAB listing provided below generates an AM signal, designs a Hilbert trans-
forming filter, uses this filter to recover the real envelope of the signal, filters out the D.C.
component, and displays both the original message and the recovered message. Figure 14.16
shows the output of this simulation. The initial decaying response of the recovered message
is due to the startup transient associated with the D.C. blocking filter. Despite this tran-
sient, excellent agreement with the original message signal is achieved in fewer than 10 ms;
thereafter, the demodulation would be nearly perfect. Additionally, the very small delay
between the signals is due to the group delay of the D.C. blocking filter.

238 CHAPTER 14. PROJECT 5: AM RECEIVERS

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

time (ms)

am
pl

itu
de

recovered message
original message

Figure 14.16: MATLAB simulation results of the Hilbert-based AM receiver.

Failure to properly account for the group delay of the Hilbert transforming filter is a
very common problem that will cause the receiver to fail. Being off by even a single sample
delay while accounting for the group delay of the Hilbert transforming filter will prevent
the proper operation of the system.

Listing 14.2: MATLAB simulation of a Hilbert-based AM receiver.

1 % Hilbert-based AM receiver simulation

%

3 % variable declarations

Fs = 48000; % sample frequency

5 Ac = 1 . 0 ; % amplitude of the carrier

fc = 12000; % frequency of the carrier

7 Amsg = 0 . 5 ; % amplitude of the message

fmsg = 700 ; % frequency of the message

9 HilbertOrder = 62 ; % Hilbert transforming filter order

r = 0 . 9 9 0 ; % highpass filter pole magnitude

11 duration = 0 . 5 ; % signal duration in seconds

myFontSize = 16 ; % font size for the plot labels

13

% design the FIR Hilbert transforming filter

15 B = remez (HilbertOrder , [0 . 0 5 0 . 9 5] , [1 1] , ’h’) ;
t = 0:1/ Fs : duration ;

17

% generate the AM/DSB w/carrier signal

19 carrier = Ac∗cos (2∗pi∗fc∗t) ;
msg = Amsg∗cos (2∗pi∗fmsg∗t) ;

21 AM = (1 + msg) .∗ carrier ;

14.4. DSK IMPLEMENTATION IN C 239

23

% recover the message

25 % note the HilbertOrder/2 delay to align the signals

% use the MATLAB syntax of "..." to continue a line of code

27

% apply Hilbert transform

29 AMhilbert = f i l t e r (B , 1 , AM) ;

31 % get envelope , but account for filter delay

OffsetOutput = sqrt ((AM (1 : 2000)) . ˆ2 + . . .
33 (AMhilbert ((HilbertOrder/2+1) : (2000 + HilbertOrder /2))) . ˆ 2) ;

35 % remove DC component

demodOutput = f i l t e r ([1 −1]∗(1 + r) /2 , [1 −r] , OffsetOutput) ;
37

% create the desired figure

39 plot ((0 : (length (demodOutput)−1)) /Fs ∗1000 , demodOutput)
set (gca , ’FontSize’ , myFontSize)

41 hold on

plot ((0 : (length (demodOutput)−1)) /Fs ∗1000 , . . .
43 msg (1 : length (demodOutput)) , ’r--’)

ylabel (’amplitude’)
45 xlabel (’time (ms)’)

legend (’recovered message’ , ’original message’)
47 axis ([0 10 −0.5 2 . 0])

hold off

14.4 DSK Implementation in C

This version of the Hilbert-based AM receiver is very similar to the MATLAB simulation
example. The intention of this first approach is understandability, which may come at the
expense of efficiency.

The files necessary to run this application are in the ccs\Proj_AmRx directory of Chap-
ter 14. The primary file of interest is the AMreceiver_ISRs.c, which contains the interrupt
service routines. This file also contains the necessary variable declarations and performs
the Hilbert-based AM demodulation.

If you are using a stereo codec (such as the on-board codec for the C6713 DSK or the
OMAP-L138 Experimenter Kit), the program could implement independent Left and Right
channel demodulators. For clarity, this example program will demodulate only one signal’s
message, but will output this message to both the Left and Right channels.

In Listing 14.3 shown below, array x (Line 1) contains the current and stored (i.e., past)
received AM signal values. The Hilbert transforming filter’s output value is y (Line 2). The
present and most recent real envelope values (r[n] and r[n − 1]) are stored in envelope

(Line 3) and the output of the D.C. blocking filter is stored in output (Line 4). Note that
the output array has to be initialized as shown (Line 4), or it can get stuck with an initial
value of NaN (not a number) and never recover. The D.C. blocking filter’s only adjustable
parameter is r (Line 5), which controls the location of the pole along the real axis. For
proper operation, r should be slightly less than 1.0.

240 CHAPTER 14. PROJECT 5: AM RECEIVERS

Listing 14.3: Variable declaration associated with a Hilbert-based AM receiver.

1 f loat x [N] ; // received AM signal values

f loat y ; // Hilbert Transforming (HT) filter’s output

3 f loat envelope [2] ; // real envelope

f loat output [2] = {0 ,0} ; // output of the D.C. blocking filter

5 f loat r = 0 . 9 9 ; // pole location for the D.C. blocking filter

Int32 i ; // integer index

The code shown below performs the actual AM demodulation operation. The six main
steps involved in this operation will be discussed following the code listing.

Listing 14.4: Algorithm associated with Hilbert-based AM demodulation.

/* algorithm begins here */

2 x [0] = CodecDataIn . Channel [LEFT] ; // current AM signal value

y = 0 ; // initialize filter’s output value

4

for (i = 0 ; i < N ; i++) {
6 y += x [i]∗ B [i] ; // perform HT (dot-product)

}
8

envelope [0] = sqrtf (y∗y + x [1 6] ∗ x [1 6]) ; // real envelope

10

/* implement the D.C. blocking filter */

12 output [0]=r∗output [1]+(f loat) 0 . 5∗ (r+1)∗(envelope [0]− envelope [1]) ;

14 for (i = N−1; i > 0 ; i−−) {
x [i] = x [i−1] ; // setup for the next input

16 }

18 envelope [1] = envelope [0] ; // setup for the next input

output [1] = output [0] ; // setup for the next input

20

CodecDataOut . Channel [LEFT] = output [0] ; // setup the LEFT value

22 CodecDataOut . Channel [RIGHT] = output [0] ; // setup the RIGHT value

/* algorithm ends here */

The six real-time steps involved in Hilbert-based AM demodulation

An explanation of Listing 14.4 follows.

1. (Line 2): This code brings the current value of the AM signal into the DSP.

2. (Lines 3–7): These lines of code initialize the filter’s output and performs the Hilbert
transform of the current and stored input values.

3. (Line 9): This code calculates the real envelope of the AM signal.

4. (Line 12): This code implements the D.C. blocking filter.

5. (Lines 14–19): These lines of code prepare the stored variables to receive the next
input value.

6. (Lines 21–22): These lines of code output the message signal to both the Left and
Right channels.

14.5. FOLLOW-ON CHALLENGES 241

Now that you understand the code. . .

Go ahead and copy all of the files into a separate directory. Open the project in CCS
and “Rebuild All.” Once the build is complete, “Load Program” into the DSK and click
on “Run.” Your Hilbert-based AM receiver is now running on the DSK. AM modulated
signals are available in the test_signals directory of the CD-ROM so you can test your
AM receiver code. The file names begin with AM.

14.5 Follow-On Challenges

Consider extending what you have learned.

1. Implement the Hilbert transform-based AM receiver using an “FFT/phase shift/IFFT”
technique to implement the Hilbert transform. This should reduce the DSP CPU com-
putational load. See Chapter 8 for details concerning the FFT.

2. Design and implement different bandpass Hilbert transforming filters that are matched
in bandwidth to the signal you are trying to recover. Experiment with different filter
orders that will still recover the message signal.

3. Implement the Hilbert transform-based AM receiver taking advantage of the fact that
every other coefficient for the Hilbert transforming filter is zero. This should reduce
the DSP CPU computational load.

4. Implement the Hilbert transform-based AM receiver taking advantage of the fact that
Hilbert transforming filters are antisymmetric filters. This should reduce the DSP
CPU computational load.

5. Use circular buffering techniques to implement the Hilbert transform-based AM re-
ceiver. This should reduce the DSP CPU computational load.

6. Use frame-based techniques to implement the Hilbert-based AM receiver. This should
reduce the DSP CPU computational load.

This page intentionally left blankThis page intentionally left blank

Chapter 15

Project 6: Phase-Locked Loop

15.1 Theory

THE phase-locked loop (PLL) is widely used in communications receiver systems. Since
even the fundamental theory of phase-locked loops has been the topic of dozens of

textbooks, we will only briefly discuss, then implement, a single PLL design: a discretized,
second-order Costas loop [78, 79]. The simplified block diagram of such a system is shown
in Figure 15.1. In this figure, s[n] is the sampled input signal, m[n] is an estimate of the
message signal, T is the sample period, and ωc is the carrier frequency.

The basic operation of the PLL is as follows. The incoming signal s[n] is processed
through a filter that implements a Hilbert transforming (HT) operation to create ŝ[n].
Recall from Chapter 14 that the frequency response magnitude of the HT operation is
one (except it is zero at exactly 0 Hz), and it introduces a −90◦ phase shift for positive
frequencies and a +90◦ phase shift for negative frequencies. A signal commonly called
the “analytic signal” is formed from the sum of the input signal s[n], and the HT-filtered
version of the input signal ŝ[n] that has been multiplied by the imaginary number j (where
j =
√−1). Recall that jx = |x|∠90◦, so multiplication by j is equivalent to a +90◦ phase

shift for all frequencies. Note that you’ll need to account for any group delay in the HT
filtering operation to make sure the signals “line up” properly, as we did in Chapter 14. In

H

&'()

��)

�+�,

�+�,

2�������
���������

�����
�����
������

H

?��������

%���

Figure 15.1: The simplified block diagram of a second order Costas loop.

243

244 CHAPTER 15. PROJECT 6: PHASE-LOCKED LOOP

equation form, the analytic signal is defined as s[n] + jŝ[n]. This is why the block diagram
uses solid and dashed lines to indicate the real and imaginary signals, respectively. All that
remains, at this point, is to strip off the carrier signal.

The first multiplier in Figure 15.1 is actually an approximation of a phase detector.
More specifically, the outputs of the complex exponential block e−j(·) are sine and cosine
waveforms that, ideally, are at the exact frequency and phase of the incoming signal’s carrier.
This complex oscillator, in an analog circuit, would be called a local oscillator (LO). The
output of the multiplier, which can also be called a mixer, contains both the message signal
and an approximation of the LO’s phase error.

Various types of coherently detected amplitude modulated (AM) communication signals
can be recovered by the real part of this mixer output, m[n]. Additional filtering may be
required to recover a more accurate estimate of the transmitted message. Binary phase-shift
keying (BPSK), the more general M-PSK, and quadrature amplitude modulation (QAM)
can all be thought of as special cases of AM. More on this topic can be found in Chapters 16,
17, 18, and 19.

The multiplication of the real and imaginary outputs of the first mixer is the input to
the loop filter. This filter is actually a lowpass filter which only allows an estimate of the
LO’s phase error to be fed back into the complex oscillator. The single input to the complex
oscillator (LO) is the output of a 2-input phase accumulator. This accumulator combines
the existing phase of the oscillator with the free-running oscillator’s next phase increment,
ωcT , and the estimate of the phase error out of the loop filter. The complex oscillator
(LO) and the phase accumulator together are routinely referred to as a voltage-controlled
oscillator (VCO).

If the LO’s rest (or free-running) frequency, is reasonably close to the carrier frequency
of the input signal, the PLL will almost immediately begin to remove any frequency and
phase error between these signals, and “lock” the VCO frequency to the incoming carrier
frequency. This is how the PLL got its name. The phase error feedback loop rapidly
accomplishes this task without any operator interaction with the system.

15.2 winDSK Demonstration

The winDSK program does not provide an equivalent function.

15.3 MATLAB Implementation

15.3.1 PLL Simulation

The MATLAB� simulation of the PLL is shown in Listing 15.1.

Listing 15.1: Simulation of a PLL.

1 % Simulation of a BPSK modulator and its coherent recovery

%

3

% input terms

5 Fmsg = 12000; % carrier frequency of the BPSK transmitter (Hz)

VCOrestFrequencyError = 200∗randn (1) ; % VCO’s error (Hz)

7 VCOphaseError = 2∗pi∗rand (1) ; % VCO’s error (radians)

Fs = 48000; % sample frequency (Hz)

9 N = 20000; % samples in the simulation

samplesPerBit = 20 ; % sample per data bit

15.3. MATLAB IMPLEMENTATION 245

11 dataRate = Fs/samplesPerBit ; % data rate (bits/second)

beta = 0 . 0 0 2 ; % loop filter parameter "beta"

13 alpha = 0 . 0 1 ; % loop filter parameter "alpha"

noiseVariance = 0 .0001 ; % noise variance

15 Nfft = 1024 ; % number of samples in an FFT

amplitude = 32000; % ADC scale factor

17 scaleFactor = 1/32768/32768; % feedback loop scale factor

19 % input term initializations

phaseDetectorOutput = zeros (1 , N+1) ;
21 vcoOutput = [exp(−j∗VCOphaseError) zeros (1 , N)] ;

m = zeros (1 , N+1) ;
23 q = zeros (1 , N+1) ;

loopFilterOutput = zeros (1 , N+1) ;
25 phi = [VCOphaseError zeros (1 , N)] ;

Zi = 0 ;
27

% calculated terms

29 Fcarrier = Fmsg + VCOrestFrequencyError ; % VCO’s rest frequency

T = 1/Fs ; % sample period

31 B = [(alpha + beta) −alpha] ; % loop filter numerator

A = [1 −1]; % loop filter denominator

33 Nbits = N/samplesPerBit ; % number of bits

noise = sqrt (noiseVariance) ∗randn (1 , N) ; % AWGN (noise) vector

35

% random data generation and expansion (for BPSK modulation)

37 data = 2∗(randn (1 , Nbits) > 0) − 1 ;
expandedData = amplitude∗reshape (ones (samplesPerBit , 1) ∗data , 1 , N) ;

39

% BPSK signal and its HT (analytic signal) generation

41 BPSKsignal = cos (2∗pi ∗ (0 : N−1)∗Fmsg/Fs) .∗ expandedData + noise ;
analyticSignal = hilbert (BPSKsignal) ;

43

% processing the data by the PLL

45 for i = 1 : N
phaseDetectorOutput (i+1) = analyticSignal (i) ∗vcoOutput (i) ;

47 m (i+1) = real (phaseDetectorOutput (i+1)) ;
q (i+1) = scaleFactor ∗ real (phaseDetectorOutput (i+1)) . . .

49 ∗ imag(phaseDetectorOutput (i+1)) ;
[loopFilterOutput (i+1) , Zf] = f i l t e r (B , A , q (i+1) , Zi) ;

51 Zi = Zf ;
phi (i+1) = mod (phi (i) + loopFilterOutput (i+1) . . .

53 + 2∗pi∗Fcarrier∗T , 2∗pi) ;
vcoOutput (i+1) = exp(−j∗phi (i+1)) ;

55 end
% Plotting commands follow ...

An explanation of Listing 15.1 follows.

1. (Line 5): Define the system’s carrier frequency as 12 kHz.

2. (Lines 6–7): Define errors in both the carrier’s frequency and phase. These errors add
realism to the simulation.

246 CHAPTER 15. PROJECT 6: PHASE-LOCKED LOOP

3. (Line 8): Defines the system’s sample frequency as 48 kHz. This sample frequency
matches the rate of the DSK’s audio codec.

4. (Line 9): Defines the number of samples in the simulation.

5. (Lines 10–11): Together with the system’s sample frequency, these lines of code specify
the symbol rate. In this binary phase-shift keying (BPSK) simulation, the symbol rate
is equal to the bit rate. It cannot be overemphasized that the requirement specified
by Nyquist must be met! This requirement can be restated as “you must sample fast
enough to prevent aliasing of your input signal.” Given that we are implementing
the BPSK signal as the multiplication of a 12 kHz carrier with an antipodal pulse
train, it should be clear that some aliasing will occur since the bandwidth of a perfect
antipodal pulse train is infinite.

6. (Lines 12–13): Specify the filter coefficients associated with the loop filter.

7. (Line 14): Like Lines 16–17, adding noise to the system adds realism to the simulation.

8. (Line 16): The full range of a 16-bit ADC and DAC is +32, 767 to −32, 768. This
amplitude scale factor simulates an input signal near the full range of values allowed
into the ADC without exceeding the range of the converter.

9. (Line 17): This term scales the phase error signal prior to this signal being fed back
into the phase accumulator. As the PLL drives the system’s phase error to near zero,
we expect the phase error to be a very small number (a small portion of a radian).

10. (Lines 19–26): These lines of code establish the variables for sample-by-sample pro-
cessing of the PLL simulation. Maintaining a vector instead of only the most recent
value will allow for a number of performance plots to be generated.

11. (Lines 31–32): These are the coefficients associated with a single equivalent IIR filter
implementation for the loop filter. This is done only for ease of simulation. In [78,79],
the loop filter is implemented in parallel form, which can be seen in Figure 15.2.

12. (Lines 37–38): These lines of code create the BPSK baseband signal.

13. (Line 41): Mixes the BPSK baseband signal to the carrier frequency and adds noise
to the signal.

14. (Line 42): Calculates the analytic signal of the input signal s[n]. Fortunately, MAT-
LAB defines the analytic signal as s[n] + jŝ[n], which is the same definition we intro-
duced earlier. At this point, we must recognize that the variable analyticSignal is
a complex number.

15. (Line 46): Calculates the output of the first mixer.

)

α

 β
 1 − z 1

Figure 15.2: The block diagram of the parallel implementation of the loop filter.

15.3. MATLAB IMPLEMENTATION 247

0 4 8 12 16 20 24
−50

−40

−30

−20

−10

0

10

sp
ec

tr
al

 e
st

im
at

e
(d

B
)

frequency (kHz)

Figure 15.3: The normalized spectral estimate of the BPSK message signal mixed with a
carrier frequency of 12 kHz.

16. (Line 47): Calculates the estimate of the message signal.

17. (Lines 48–49): Calculate and scales the output of the second mixer.

18. (Line 50): Performs the loop filtering operation.

19. (Line 51): Saves the filter state by copying the filter’s final condition to the filter’s
initial condition variable.

20. (Lines 52–53): Calculate the next value contained in the phase accumulator. The mod
command keeps the phase accumulator’s output value between 0 and 2π.

21. (Line 54): Calculates the LO’s output value. The complex exponential form can also
be thought of as sine and cosine terms by using Euler’s identity.1

Although not shown in the code listing, this simulation results in several plots that allow
for a more detailed understanding of the PLL. Given the simulation’s ability to randomly
initialize the frequency and phase errors associated with the LO and the random nature of
the noise that is added to the signal, the behavior of the simulation will be different every
time the simulation is run. This random behavior can be controlled by either reinitializing
the state of the MATLAB random number generator at the beginning of each simulation
or by setting the variables in lines 16, 17, and 24 equal to zero. The state of the MATLAB
random number generator can be reset using the MATLAB command randn(’state’,0).

The normalized spectral estimate of the BPSK message signal mixed with a carrier
frequency of 12 kHz is shown in Figure 15.3. The pole/zero plot of the loop filter is shown
in Figure 15.4. In this figure, a pole is on the unit circle and although it may not be

1Specifically, e−φ = cos(−φ) + j sin(−φ) = cos(φ) − j sin(φ), with the sign simplifications occurring
because of the even and odd properties of the cosine and sine functions, respectively.

248 CHAPTER 15. PROJECT 6: PHASE-LOCKED LOOP

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 15.4: The pole/zero plot of the loop filter.

0 4 8 12 16 20 24
−40

−30

−20

−10

0

m
ag

ni
tu

de
 (

dB
)

0 4 8 12 16 20 24
−100

−50

0

frequency (kHz)

ph
as

e
(d

eg
re

es
)

Figure 15.5: The frequency response of the loop filter.

evident from Figure 15.5, this results in infinite gain at 0 Hz (DC). An example of a well
behaved startup transient of the PLL is shown in Figure 15.6. While this type of behavior
is quite common, the second-order Costas loop is blind to 180-degree phase ambiguities,
and the system’s output may be as shown in Figure 15.7. In Figure 15.7, the “recovered
message” is clearly 180 degrees out of phase from the “message” signal. This sign error will

15.3. MATLAB IMPLEMENTATION 249

0 100 200 300 400 500
−4

−3

−2

−1

0

1

2

3

4

5
sa

m
pl

e
va

lu
es

 (
in

 1
0,

00
0)

sample number, n

message
recovered message

Figure 15.6: Well behaved startup transient of the PLL.

0 100 200 300 400 500
−4

−3

−2

−1

0

1

2

3

4

5

sa
m

pl
e

va
lu

es
 (

in
 1

0,
00

0)

sample number, n

message
recovered message

Figure 15.7: Well behaved startup transient of the PLL with a 180 degree phase error.

250 CHAPTER 15. PROJECT 6: PHASE-LOCKED LOOP

0 200 400 600 800 1000
−4

−3

−2

−1

0

1

2

3

4

5

sa
m

pl
e

va
lu

es
 (

in
 1

0,
00

0)

sample number, n

message
recovered message

Figure 15.8: A more protracted startup transient of the PLL.

be disastrous (e.g., BPSK communication systems would result in 100% of the bits being
received in error).2 Assuming we are using a two’s complement numeric representation,
reversing the state of all the bits does not just constitute a change in sign! Finally, a very
large frequency error was inserted into the LO to shown a more protracted transient during
PLL initialization. This is shown in Figure 15.8, where it took somewhere between 300 to
500 samples for the PLL to stabilize and track the incoming signal. In this simulation, there
were 20 samples/symbol; this corresponds to 15 to 25 symbols that may not be properly
recovered before the PLL stabilizes. Depending on the intended use of the communication
system, this transient behavior of the PLL may be disastrous or of little concern.

15.3.2 A Few Updates to the MATLAB Implementation

As mentioned earlier, the simulation we presented was designed to be easily implemented in
MATLAB. Since MATLAB is a very high-level language, a few of the specialized commands
must be replaced by commands capable of being readily implemented in C/C++. Some
issues to consider when transitioning the PLL code from MATLAB to C are given below.

1. The vector-based variables need to be replaced by sample-by-sample variables. This
straightforward process will be explained in the next section.

2. There is no longer a need to intentionally offset the LO’s frequency or phase and add
noise to the incoming signal. While these terms were required to make the simulation
more realistic, they are not required for real-time implementation.

3. While MATLAB can easily handle complex numbers, the C language does not have a
native complex variable type. A common way to handle complex numbers is to declare

2If this were an analog PLL performing coherent recovery of an analog voice signal, then this ±180◦
phase ambiguity would be of little or no concern because the human auditory system will not perceive a
difference in the intended message. But for a digital signal, we cannot tolerate reversal of all the bits. The
use of a known preamble code or using differentially encoded message data can solve this problem [61,76,80].

15.3. MATLAB IMPLEMENTATION 251

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

fil
te

r
co

ef
fic

ie
nt

 v
al

ue

sample number, n

Figure 15.9: Filter coefficients associated with a 30th-order FIR Hilbert transforming filter.

real and imaginary variables associated with each of the complex terms. This is just a
rectangular implementation of the MATLAB complex terms. Unlike MATLAB, when
a rectangular version of the complex terms is used, it is incumbent on the system pro-
grammer to properly code the results associated with all of the complex mathematical
operations. For example, if two complex numbers z1 and z2 are multiplied together
the result would be z1z2 = (a+jb)(c+jd) = ac+jad+jbc−bd = (ac−bd)+j(ad+bc).

4. The Hilbert transform of the incoming signal can be implemented in a number of
ways. A sample-by-sample implementation would approximate the transform with a
bandpass FIR filter. The FIR filter can be designed in MATLAB, for example, by
using the command B = firpm(30, [0.1 0.9], [1.0 1.0], ’Hilbert’). In this
command, 30 is the order of the filter, [0.1 0.9] is the normalized frequency range
over which the specified amplitude response [1.0 1.0] applies, and ’Hilbert’ tells
MATLAB that a Hilbert transforming filter is to be designed. This is the identical
syntax used for the remez command discussed in Chapter 14. A plot of the resulting
filter coefficients is shown in Figure 15.9. Just as we saw with the Hilbert transforming
filter we designed in Chapter 14, every other coefficient is zero, and the coefficients
exhibit antisymmetry. We can take advantage of the large number of coefficients with
a value of zero (and also the antisymmetry) to reduce the computational complexity
of the filter. This filter has the frequency response shown in Figure 15.10. While
this bandpass implementation of the Hilbert transforming filter may look flat in the
passband, a closer inspection of the passband will reveal that some amount of passband
ripple is unavoidable. This is clearly shown in Figure 15.11. Increasing the order of the
filter or decreasing the normalized frequency range over which the specified amplitude
response applies will decrease the passband ripple. The group delay of the Hilbert
transforming filter is shown in Figure 15.12. This is an example of a symmetric FIR
filter that has a constant group delay (due to its linear phase response). The group

252 CHAPTER 15. PROJECT 6: PHASE-LOCKED LOOP

0 4 8 12 16 20 24

−30

−20

−10

0
m

ag
ni

tu
de

 (
dB

)

0 4 8 12 16 20 24
−3000

−2000

−1000

0

frequency (kHz)

ph
as

e
(d

eg
re

es
)

Figure 15.10: Frequency response associated with a 30th-order FIR Hilbert transforming
filter.

0 4 8 12 16 20 24
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

frequency (kHz)

m
ag

ni
tu

de
 (

dB
)

Figure 15.11: Close-up inspection of the passband of the frequency response associated with
a 30th-order FIR Hilbert transforming filter. The passband ripple is now quite evident.

15.4. DSK IMPLEMENTATION IN C 253

0 4 8 12 16 20 24
10

11

12

13

14

15

16

17

18

19

20

frequency (kHz)

de
la

y
(s

am
pl

es
)

Figure 15.12: The group delay associated with a 30th-order FIR Hilbert transforming filter.

delay is equal to half the filter order.

5. Alternatively, an FFT/IFFT can be used to implement the Hilbert transform if a
frame-based system is desired. This process can be implemented using the MATLAB
code

transformedSignal = i f f t (f f t (signal) .∗ . . .
2 [−j∗ones (1 ,513) j∗ones (1 ,511)]) ;

In this example, there are 1024 samples per frame.

6. The loop filter can alternatively be implemented in its parallel form.

7. The modulus operation should be replaced by more basic C/C++ commands (e.g.,
an if statement followed by the subtraction of 2π whenever the accumulated phase
is greater than 2π).

15.4 DSK Implementation in C

15.4.1 Components of the PLL

When you understand the MATLAB code, the translation of the concepts into C is fairly
straightforward. The PLL has two major components: a Hilbert transforming FIR filter
(any of the techniques discussed in Chapter 3 could be used to implement this filter), and
the LO’s control loop.

The files necessary to run this application are in the ccs\PLL directory of Chapter 15.
The primary file of interest is the PLL_ISRs.c, which includes the interrupt service routines.
This file includes the necessary variable declarations and performs the actual PLL algorithm.

254 CHAPTER 15. PROJECT 6: PHASE-LOCKED LOOP

If the DSK codec you’re using is a stereo device (such as the on-board codec for the C6713
DSK or the OMAP-L138 Experimenter Kit), the program could implement independent
Left and Right channel PLLs. For clarity, this example program will implement only one
PLL, but will output a delayed version of the input signal and the recovered message signal.
If both signals are displayed on a multichannel oscilloscope, the relationship between the
modulated signal (input signal) and an estimate of the modulating signal (message) should
be clear.

The declaration section of the code is shown in Listing 15.2.

Listing 15.2: Declaration portion of the PLL project code.

f loat alpha = 0 . 0 1 ; /* loop filter parameter */

2 f loat beta = 0 . 0 0 2 ; /* loop filter parameter */

f loat Fmsg = 12000; /* vco rest frequency */

4 f loat Fs = 48000; /* sample frequency */

f loat x [N+1] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
6 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ; /* input signal

[+]*/

f loat sReal ; /* real part of the analytic signal */

8 f loat sImag ; /* imag part of the analytic signal */

f loat q = 0 ; /* input to the loop filter */

10 f loat sigma = 0 ; /* part of the loop filter’s output */

f loat loopFilterOutput = 0 ;
12 f loat phi = 0 ; /* phase accumulator value */

f loat pi = 3.14159265358979 ;
14 f loat phaseDetectorOutputReal ;

f loat phaseDetectorOutputImag ;
16 f loat vcoOutputReal = 1 ;

f loat vcoOutputImag = 0 ;
18 f loat scaleFactor = 3.0517578125e−5;

An explanation of Listing 15.2 follows.

1. (Lines 1–2): Declare and initialize the loop filter coefficients. In this parallel imple-
mentation, beta should be much smaller than alpha.

2. (Lines 3–4): Declare the message (or carrier frequency) and the sample frequency,
respectively.

3. (Lines 5–6): Declare and initializes the input signal’s variable. An FIR filter, even
if not initialized, will rapidly flush any unintended values from its storage variable.
During this transient, it is possible that the output of the filter will be QNAN. This “not-
a-number” state will be fed into the IIR-based loop filter. The filter cannot recover
from this state. For this reason alone, failure to properly initialize variables is
one of the most common causes of properly written algorithms that will not execute
properly.

4. (Lines 7–8): Declare the real and imaginary parts of the analytic signal. These are
two of the four inputs to the first mixer.

5. (Lines 9–11): Declare the intermediate variables needed by the loop filter and the
loop filter’s output.

6. (Line 12): Declares the VCO’s current phase, which is the input argument to the LO.

15.4. DSK IMPLEMENTATION IN C 255

7. (Lines 14–15): Declare the outputs of the first mixer.

8. (Lines 16–17): Declare the final two inputs to the first mixer.

9. (Line 18): Declares a scale factor that brings the product of the second mixer into a
reasonable range for an error signal. Remember, the error signal (output of the loop
filter) is needed to adjust the phase of the VCO. Assuming that the loop is reasonably
close to locking, only small phase adjustments (1 radian) should be added to the
phase accumulator.

The algorithm section of the code is shown in Listing 15.3.

Listing 15.3: Algorithm portion of the PLL project code.

// I added my PLL routine here

2 x [0] = CodecDataIn . Channel [LEFT] ; // current LEFT input value

sImag = 0 ; // initialize the dot-product result

4

for (i = 0 ; i <= N ; i+=2) { // indexing by 2, B[odd] = 0

6 sImag += x [i]∗ B [i] ; // perform the dot-product

}
8

sReal = x [1 5] ∗ scaleFactor ; // grpdelay of filter is 15 samples

10

for (i = N ; i > 0 ; i−−) {
12 x [i] = x [i−1] ; // setup x[] for the next input

}
14

sImag ∗= scaleFactor ; // scale prior to loop filter

16

// execute the D-PLL (the loop)

18 vcoOutputReal = cosf (phi) ;
vcoOutputImag = sinf (phi) ;

20 phaseDetectorOutputReal=sReal∗vcoOutputReal+sImag∗vcoOutputImag ;
phaseDetectorOutputImag=sImag∗vcoOutputReal−sReal∗vcoOutputImag ;

22 q = phaseDetectorOutputReal ∗ phaseDetectorOutputImag ;
sigma += beta∗q ;

24 loopFilterOutput = sigma + alpha∗q ;
phi += 2∗pi∗Fmsg/Fs + loopFilterOutput ;

26

while (phi > 2∗pi) {
28 phi −= 2∗pi ; /* modulo 2pi operation */

}
30

// setup CODEC output values

32 CodecDataOut . Channel [LEFT]=32768∗sReal ; // input signal

CodecDataOut . Channel [RIGHT]=32768∗phaseDetectorOutputReal ; // msg

34 // end of my PLL routine

An explanation of Listing 15.3 follows.

1. (Line 2): Brings the input sample into the ISR.

256 CHAPTER 15. PROJECT 6: PHASE-LOCKED LOOP

2. (Lines 3–7 and 11–13): These lines of code take the Hilbert transform of the input
signal using an FIR filter.

3. (Line 9): Accounts for the group delay of the FIR filter and scales the input signal
prior to the loop filter.

4. (Line 15): Scales the output of the FIR filter. The outputs of lines 9 and 15 form the
analytic signal and represent 2 of the 4 inputs into the first mixer.

5. (Lines 18–19): Calculate the outputs from the complex mixer. These calculations are
the last 2 inputs into the first mixer.

6. (Lines 20–21): Calculate the outputs of the first mixer.

7. (Line 22): Calculates the output to the second mixer, which is the input to the loop
filter.

8. (Lines 23–24): Calculate the intermediate results and the output of the loop filter.

9. (Line 25): Calculates the value of the phase accumulator, phi.

10. (Lines 27–29): Perform a modulus 2π operation on phi. The mod operator is available
in the C implementation of CCS, but it is only defined for integer data types. Addi-
tionally, this subtraction of 2π technique is much faster than most operators requiring
division. The while statement can be replaced by an if statement since the phase
accumulator’s value should only increase by (π/2 plus the loop filter’s feedback signal)
for each sample. A while statement is a more conservative solution to this problem.

15.4.2 System Testing

To test the operation of the PLL, test signals can be created in MATLAB, converted
to wave files, and then played back through a computer’s sound card. Note that some
such signals are included in the test_signals directory of the CD-ROM. The filenames
of these signals start with AM or with BPSK. MATLAB m-files that create these wave
files are contained on the CD-ROM in the matlab directory for Chapter 15 and are named
AMsignalGenerator.m and BPSKsignalGenerator.m. With a slight modification to these
programs (that is, changing the sample rate to 44,100 Hz), the signals created by these
m-files could also be recorded directly on to a CD-R of your choice, and then played back
on any CD player. This effectively turns an inexpensive CD player into an inexpensive
communications signal generator.

The response of the system to a 750 Hz message modulated (AM-DSB-SC) with a
12 kHz carrier, as viewed on a multichannel oscilloscope, is shown in Figure 15.13. A
typical transient response of the system to a 750 Hz message modulated (AM-DSB-SC)
with a 12 kHz carrier, is shown in Figure 15.14. Finally, the response of the system to a
2400 bit per second (bps) BPSK signal with a 12 kHz carrier is shown in Figure 15.15. The
BPSK signal was generated by a PC sound card and shows significant distortion due to the
bandlimited response of the system.

15.5 Follow-On Challenges

Consider extending what you have learned.

1. Design and implement your own loop filter within the PLL.

15.5. FOLLOW-ON CHALLENGES 257

Figure 15.13: The response of the system to a 750 Hz message modulated (AM-DSB-SC)
with a 12 kHz carrier, as viewed on a multichannel oscilloscope.

Figure 15.14: A typical transient response of the system to a 750 Hz message modulated
(AM-DSB-SC) with a 12 kHz carrier.

258 CHAPTER 15. PROJECT 6: PHASE-LOCKED LOOP

Figure 15.15: A typical transient response of the system to a 750 Hz message modulated
(AM-DSB-SC) with a 12 kHz carrier.

2. Design and implement an algorithm that detects, then provides some indication to
the user, when the PLL is locked and tracking the input signal.

3. There are three significant computational inefficiencies (bottlenecks) in the PLL ISR.
Profile the ISR code and identify these bottlenecks.

4. Suggest possible improvements that minimize or remove these bottlenecks.

5. Implement at least one of your improvements and calculate the computational savings
of your new code.

6. Implement a PLL using frame-based techniques.

Chapter 16

Project 7: BPSK Digital
Transmitters

16.1 Theory

IN Chapter 5, we introduced the basic concepts involved in periodic signal generation.
Although we mentioned the idea, we intentionally deferred the discussion of aperiodic

digital communications signals until now. Since digital communications signals can be
generated using an unlimited number of different forms and specifications, we will only
introduce one of these forms and a few of the techniques that can be used to produce this
type of signal. Specifically, we will discuss

1. Random data and symbol generation.

2. Binary phase shift-keying (BPSK) using antipodal rectangularly shaped bits.

3. BPSK using impulse modulated (IM) raised-cosine shaped bits.

This is a good place to reiterate that this text only gives a brief review of the theory
associated with the areas for which we use real-time DSP. For example, in this chap-
ter we can’t teach you the in-depth theory of digital communications; you’ll need a good
communications textbook for that, such as [61–63,76].

16.1.1 Random Data and Symbol Generation

In an actual communication system, the data bits that eventually make up the transmitted
symbols would come from an ADC or some other information source. Unfortunately, using
real information sources can greatly increase the complexity of the system. Additionally,
this tends to severely constrain the communication system design. While these constraints
are necessary in the design of a real communication system, they tend to overly compli-
cate matters for someone who is just getting started in communication system design and
implementation.

To illustrate this point, let’s imagine that we want to create a digital communications
link capable of sending all of the data generated by the DSK’s ADC for a very high fidelity
(better than CD-quality) music signal. This implies stereo (2 channels of data), with 24
bits per sample, and a nominal sample rate (frequency) of 48,000 samples per seconds. This
results in a data rate entering the DSK of 2 × 24 × 48, 000 = 2, 304, 000 bits per second
(bps). Remembering that a T-1 data line, which represents the combined data signals from

259

260 CHAPTER 16. PROJECT 7: BPSK DIGITAL TRANSMITTERS

24 telephone lines, only contains 1,544,000 bps, our desire to transmit such a signal may be
a bit aggressive for our first digital communications project!

Instead, we will derive our data bits from a random number generator. A pseudonoise
(PN or m-sequence) generator or an array of predeclared data could also be used. Speaking
of bits, we need to briefly discuss bits versus symbols in digital communications, since they
are often confused. Numeric values are represented in a computer or DSK as bits, but what
we actually send over a communications link are symbols. If our communication system is
using a set (called a constellation) of symbols that can take on four different values, then we
have two bits per symbol. If our communication system is using a constellation of symbols
that can take on sixteen different values, then we have four bits per symbol. Remember that
a digital communication system sends and receives symbols, not bits. With that being said,
we are discussing BPSK in this chapter, where our symbols can only take on two different
values. This means that for BPSK, we have one bit per symbol so the bit rate and the
symbol rate are identical.

A relatively straightforward starting point for the design of our digital communication
system is to select a data rate such that there are an integer number of samples per symbol.
That is, Fs/Rd = k, where Fs is the sample frequency, Rd is the data rate, and k is an
integer. Using our nominal sample frequency of 48 kHz, and recognizing that we need at
least 2 samples per symbol, we can choose from the data rates shown in Table 16.1. For
the rest of this chapter, we will use k = 20, which implies a great number of things about
our communication system. This includes, but is not limited to,

1. Fs/20 is the symbol rate, which is equal to 2400 symbols per second (sps).

2. The reciprocal of the symbol rate is the symbol period = 1/2400 = 0.416666 ms.

3. There are 20 samples associated with each and every symbol period.

While this may all seem very straightforward, a common mistake is to try to change one of
these parameters (sample frequency, symbol rate, symbol period, or samples per symbol)

Table 16.1: Data rate (in symbols per second) using an integer number of samples per
symbol, where the sample frequency is assumed to be Fs = 48 kHz. Note that for BPSK,
“symbols per second” is identical to “bits per second.”

Fs/k k Data Rate (sps)

Fs/2 2 24,000

Fs/3 3 16,000

Fs/4 4 12,000

Fs/5 5 9,600

Fs/6 6 8,000

Fs/8 8 6,000

Fs/10 10 4,800

Fs/12 12 4,000

Fs/15 15 3,200

Fs/16 16 3,000

Fs/20 20 2,400
...

...
...

Fs/N N 48, 000/N

16.1. THEORY 261

�+�, �+�,�
#��4�
�������

H

��������
������

Figure 16.1: The block diagram associated with a rectangularly pulse shaped BPSK trans-
mitter.

without realizing that they are all interrelated and therefore cannot be changed indepen-
dently of one another.

In this project, our modulated message symbols will come out of the DSK’s DAC as
analog voltage levels. If we were actually going to transmit these symbols, this time-varying
analog voltage level would then go to other stages such as a power amplifier and an antenna.

16.1.2 BPSK Using Antipodal Rectangularly Shaped Bits

This form of BPSK is infrequently used in actual communication systems, but it is by far the
most understandable implementation. Specifically, the BPSK waveform is sBPSK [nTs] =
m[nTs]cos[2πfcnTs], where n is a monotonically increasing integer, Ts is the sample period,
m is the current bit’s value, and fc is the carrier frequency. Additionally, for antipodal
signaling, m will be limited to the values ±A, where A will routinely be an integer that is
near the maximum value allowed by the DAC (e.g., m = 30, 000 for 16-bits per sample).
This form of BPSK is a special case of amplitude modulation (AM), in particular the type
of AM known as double sideband-suppressed carrier (DSB-SC). A block diagram of this
system is shown in Figure 16.1.

16.1.3 BPSK Using Impulse Modulated Raised-Cosine Shaped Bits

Due to its bandlimited nature, the raised-cosine filtered form of BPSK is commonly used
in actual communication systems. The signal, however, is more complicated to understand
and slightly more difficult to generate. In an impulse modulator, a scaled impulse is used
to excite a pulse shaping filter once per symbol period. In our discussions, we will use a
raised-cosine FIR filter as the pulse shaping filter. The output of this filter will then be
multiplied by the carrier signal. A block diagram of this system is shown in Figure 16.2.

An example of how the impulse modulator functions is shown in Figure 16.3. In this
figure, five positive-valued impulses form the input, x[n], of the FIR filter. Each of the five
output waveforms is shown individually on the y[n] plot. The actual output of the filter
would be the sum of the five sinc-shaped output waveforms.

Similarly, if antipodal impulse excitation of the FIR filter is provided, one possible result
is shown in Figure 16.4. In both of these figures, notice how all but one of the sinc-shaped

�+�,*
��������
���������*

�+�,�
#��4�
�������

H

��������
������

1?%�
������

Figure 16.2: The block diagram associated with an impulse modulated BPSK transmitter.

262 CHAPTER 16. PROJECT 7: BPSK DIGITAL TRANSMITTERS

������
�*+�,

1?%�������=��+�,
�������
���+�,

������
�*+�,

�������
���+�,

Figure 16.3: An example of how the impulse modulator functions (positive excitation im-
pulses only).

������
�*+�,

�������
���+�,

Figure 16.4: Another example of how the impulse modulator functions (antipodal excitation
impulses).

waveforms have all of their zero crossings in common. This alignment of the zero crossings
is by design, and is fundamental to minimizing intersymbol interference (ISI) within the
system.

16.2 winDSK Demonstration

Start the winDSK application, and the main user interface window will appear. Ensure the
correct selections have been made in the “DSK and Host Configuration” panel of winDSK6
or the “Board and Interface Configuration” panel of winDSK8 for each parameter before
proceeding. Clicking on winDSK’s commDSK button will run that program in the attached
DSK, and a window similar to Figure 16.5 will appear.

16.2. WINDSK DEMONSTRATION 263

Figure 16.5: winDSK running the commDSK application. By default, the modulated signal
appears on the Left output channel, and a timing signal appears on the Right output
channel. These settings can be changed by the user if needed.

16.2.1 commDSK: Unfiltered BPSK

We need to change a few of the commDSK default settings for now. Change the “Mode” to
“BPSK” and the “Data Rate” to “2400 bits/sec” (see Figure 16.6). An example waveform
is shown in Figure 16.7. BPSK has only two possible symbols. In Figure 16.7, you can
observe the transitions from one type of symbol to the other type of symbol by the sharp
phase reversal in the waveform. With the horizontal scale being set to 500 μs per division,

Figure 16.6: commDSK set to generate a rectangular pulse shaped, 2400 bps signal.

264 CHAPTER 16. PROJECT 7: BPSK DIGITAL TRANSMITTERS

Figure 16.7: commDSK waveform of a rectangular pulse shaped, 2400 bps signal.

the first phase reversal appears to occur at about 350 μs from the left of the display window.

An averaged spectrum associated with this waveform is shown in Figure 16.8. The main
lobe is centered at 12 kHz and the first spectral null above 12 kHz occurs at 14.4 kHz.
This implies that the main lobe is 4.8 kHz wide (twice the symbol rate), with subsequent
nulls occurring at 2.4 kHz spacing. The first side lobe has a relative magnitude that is
approximately 13 dB down from the main lobe’s peak. These are exactly the expected results
associated with band-limited rectangularly-shaped BPSK. Ideally, a perfectly rectangular
signal would have a spectrum that would extend to infinity on the frequency axis. But the
DSK has a reconstruction lowpass filter built into its codec DAC that removes the majority
of the signal energy at frequencies greater than 24 kHz.

16.2.2 commDSK: Raised-Cosine Filtered BPSK

Now we need to adjust commDSK to observe the effect of pulse shaping. We will apply a
raised cosine pulse shaping effect, such that we will no longer have rectangular pulses. For
the“Pulse Shaping” radio buttons on the commDSK user interface window, select “Raised
Cosine.” This change is shown in Figure 16.9. An example waveform is shown in Fig-
ure 16.10. In this mode, it is much easier to observe the transitions from one type of symbol
to the other.

An averaged spectrum associated with this waveform is shown in Figure 16.11. Similar
to the rectangular shaped signal, the main lobe is centered at 12 kHz, but the first spectral
null above 12 kHz occurs at 13.8 kHz. This implies that the main lobe is 3.6 kHz wide
(2 × (13.8 − 12) = 3.6). This agrees with the theoretical prediction of BW = D(1 + α) =
2400× (1 + 0.5) = 3600 Hz, where BW is the signal bandwidth, D is the symbol rate, and
α is the raised-cosine roll-off factor (the roll-off factor must remain between 0 and 1).

16.2. WINDSK DEMONSTRATION 265

Figure 16.8: An averaged spectrum associated with a rectangular pulse shaped, 2400 bps
signal generated by commDSK.

Figure 16.9: commDSK set to generate a raised-cosine pulse shaped, 2400 bps signal.

266 CHAPTER 16. PROJECT 7: BPSK DIGITAL TRANSMITTERS

Figure 16.10: commDSK waveform of a raised-cosine pulse shaped, 2400 bps signal.

Figure 16.11: An averaged spectrum associated with a raised-cosine pulse shaped, 2400 bps
signal generated by commDSK.

16.3. MATLAB IMPLEMENTATION 267

In Figure 16.11, there are no sidelobes visible due to the apparent noise floor at ap-
proximately −46.357 dBm. With the peak of the main lobe at −9.329 dBm, the expected
sidelobe level for raised cosine pulses with a roll-off factor of α = 0.5 is lower than the
observed noise floor. This noise floor is in fact a limitation of the 8-bit ADC associated
with the digitizing oscilloscope that was used to produce this figure.

The commDSK program is capable of generating a number of different digital commu-
nications signals at a number of different data rates. These signals may also be distorted
using the “Channel Impairment” section of commDSK. These impairments are very helpful
if the signal is to be processed by a vector signal analyzer (VSA). An example of a VSA
display is shown in Figure 16.12. In this figure, plot A is a trajectory/constellation diagram,
plot B is the spectral estimate of the BPSK signal, plot C is the error vector magnitude
(EVM), plot D is the eye-pattern, plot E is the EVM’s spectral estimate, and plot F reports
a number of statistics associated with the performance of the signal being analyzed. These
plots can be used to infer a great deal about the communication system performance.

16.3 MATLAB Implementation

As discussed earlier, we will simulate generation of two types of BPSK signals: rectangular
shaped BPSK signals and impulse modulated, raised-cosine BPSK signals.

Figure 16.12: An example of a VSA display associated with a raised-cosine pulse shaped,
2400 bps, BPSK signal generated by commDSK.

268 CHAPTER 16. PROJECT 7: BPSK DIGITAL TRANSMITTERS

16.3.1 Rectangular Shaped BPSK Signal Generator

The first MATLAB� simulation is of a rectangular shaped BPSK signal generator; the code
is shown in Listing 16.1.

Listing 16.1: Simulation of a rectangular shaped BPSK signal generator.

% input terms

2 Fs = 48000; % sample frequency of the simulation (Hz)

dataRate = 2400 ; % data rate

4 time = 0 . 0 0 4 ; % length of the signal in seconds

amplitude = 30000; % scale factor

6 cosine = [1 0 −1 0] ; % cos(n*pi/2) ... Fs/4

counter = 1 ; % used to get a new data bit

8

% calculated terms

10 numberOfSamples = Fs∗time ;
samplesPerSymbol = Fs/dataRate ;

12

% ISR simulation

14 for index = 1 : numberOfSamples
% get a new data bit at the beginning of a symbol period

16 i f (counter == 1)
data = amplitude ∗ (2∗ (rand > 0 . 5) − 1) ;

18 end

20 % create the modulated signal

output = data∗cosine (mod (index , 4) + 1)
22

% reset at the end of a symbol period

24 i f (counter == samplesPerSymbol)
counter = 0 ;

26 end

28 % increment the counter

counter = counter + 1 ;
30 end

32

% Plotting commands follow ...

34 %

An explanation of Listing 16.1 follows.

1. (Line 2): Defines the system’s sample frequency as 48 kHz. This sample frequency
matches the rate of the DSK’s audio codec.

2. (Line 3): Defines the data rate as 2400 bits per second (bps).

3. (Line 5): Scales the output signal near the full range of the 16-bit DAC.

4. (Line 6): Defines the output of the local oscillator (LO). This term is defined math-
ematically as cos(nπ/2), for n = 0, 1, 2, or 3. This simplifies to cos(0π/2) = 1,

16.3. MATLAB IMPLEMENTATION 269

cos(1π/2) = 0, cos(2π/2) = −1, or cos(3π/2) = 0. Thus, the LO will only have
an output value of +1, 0,−1, or 0. For this special case of signal generation, mixing
with the LO requires very few computational resources.

5. (Line 7): The counter variable is used to determine the current position within a
symbol.

6. (Lines 16–18): A new data bit is generated whenever counter is equal to 1.

7. (Line 21): Calculates the output value by multiplying (mixing) the data value with
the LO’s output. The cosine variable is accessed by the MATLAB mod command
which maintains the index value between 1 and 4.

8. (Lines 24–26): The counter variable is reset at the end of a symbol.

9. (Line 29): The counter variable is incremented at the end of the simulated ISR.

An example output plot from this simulation is shown in Figure 16.13.

16.3.2 Impulse Modulated Raised-Cosine BPSK Signal Generator

The second MATLAB simulation is of a impulse modulated raised-cosine BPSK signal
generator; the code is shown in Listing 16.2. Note the local oscillator (LO) is at Fs/4 just
like the previous simulation.

0 50 100 150

−3

−2

−1

0

1

2

3

sample number, n

si
gn

al
 v

al
ue

 (
x

10
4)

BPSK signal
message

Figure 16.13: An example of the output from the rectangular shaped BPSK simulation.
This signal has 2400 bps with a carrier frequency of 12 kHz.

270 CHAPTER 16. PROJECT 7: BPSK DIGITAL TRANSMITTERS

Listing 16.2: Simulation of a impulse modulated raised-cosine BPSK signal generator.

% input terms

2 Fs = 48000; % sample frequency of the simulation (Hz)

dataRate = 2400 ; % data rate

4 alpha = 0 . 5 ; % raised-cosine rolloff factor

symbols = 3 ; % MATLAB "rcosfir" design parameter

6 time = 0 . 0 0 4 ; % length of the signal in seconds

amplitude = 30000; % scale factor

8 cosine = [1 0 −1 0] ; % cos(n*pi/2) ... Fs/4

counter = 1 ; % used to get a new data bit

10

12 % calculated terms

numberOfSamples = Fs∗time ;
14 samplesPerSymbol = Fs/dataRate ;

16 % create filter

B = rcosfir (alpha , symbols , samplesPerSymbol , 1/Fs) ;
18 Zi = zeros (1 , (length (B) − 1)) ;

20

% ISR simulation

22 for index = 1 : numberOfSamples
% get a new data bit at the beginning of a symbol period

24 i f (counter == 1)
data = amplitude ∗ (2∗ (rand > 0 . 5) − 1) ;

26 else
data = 0 ;

28 end

30 % create the modulated signal

[impulseModulatedData , Zf] = f i l t e r (B , 1 , data , Zi) ;
32 Zi = Zf ;

output = impulseModulatedData∗cosine (mod (index , 4) + 1) ;
34

% reset at the end of a symbol period

36 i f (counter == samplesPerSymbol)
counter = 0 ;

38 end

40 % increment the counter

counter = counter + 1 ;
42 end

44

46 % output terms

% Plotting commands follow

48 % see the book CD-ROM for the details

%

16.3. MATLAB IMPLEMENTATION 271

An explanation of Listing 16.2 follows.

1. (Line 2): Defines the system’s sample frequency as 48 kHz. This sample frequency
matches the rate of the DSK’s audio codec.

2. (Line 3): Defines the data rate as 2400 bits per second (bps).

3. (Line 4): Defines the raised-cosine roll-off factor alpha.

4. (Line 5): Defines the length of the raised-cosine FIR filter. The filter length will be
equal to 2*symbols + 1. This length is in “symbol periods.”

5. (Line 7): Scales the output signal near the full range of the 16-bit DAC.

6. (Line 8): Defines the output of the local oscillator (LO). See the LO discussion related
to Listing 16.1.

7. (Line 9): The counter variable is used to determine the current position within a
symbol.

8. (Line 17): Designs the raised cosine filter using MATLAB’s rcosfir function.1

9. (Lines 22–42): These lines of code simulate the real-time ISR.

10. (Lines 24–28): A new data bit is generated whenever counter is equal to 1.

11. (Lines 31–32): These lines of code implement the impulse modulator (IM). The IM is
just an FIR filter with an input of one or more impulses followed by a large number
of zeros. In this simulation, a single impulse with a value of 30,000 is followed by
19 sample values of zero (20 samples per symbol, remember?). The computational
savings of this technique will become clear in the next section.

12. (Line 33): Calculates the output value by multiplying (mixing) the data value with
the LO’s output. The cosine variable is accessed by the MATLAB mod command
which maintains the index value between 1 and 4.

13. (Lines 36–38): The counter variable is reset at the end of a symbol.

14. (Line 41): The counter variable is incremented at the end of the simulated ISR.

An example output plot (with a duration of 4 ms) from this simulation is shown in
Figure 16.14. The large order of the FIR filter (120th-order) results in a large group delay
(of 60 samples). This delay explains why the first “BPSK signal” peaks occur 60 samples
after the first “message” impulse.

Even though the amplitude scale factor is set to 30,000, the system’s simulation results
in output values that approach ±45, 000. These values are much greater than the DAC’s
maximum output values (+32, 767) and (−32, 768). This effect re-emphasizes the impor-
tance of first using a MATLAB simulation to determine an appropriate scale factor prior to
implementing the algorithm in real-time hardware. The simulation time was increased to
2 seconds to allow a higher resolution estimate of the resulting normalized power spectral
density; this is shown in Figure 16.15.

1When designing filters using MATLAB, be aware that as of this writing, the calling sequences of
many filter design commands are in flux. The MathWorks seems intent on moving to an object-oriented
filter design process that is more cumbersome in many ways. Check the documentation for your version
of MATLAB. You may want to read and run the code in filterDesignerComparison.m located in the
MATLAB directory of Chapter 16.

272 CHAPTER 16. PROJECT 7: BPSK DIGITAL TRANSMITTERS

0 50 100 150

−4

−3

−2

−1

0

1

2

3

4

sample number, n

si
gn

al
 v

al
ue

 (
x

10
4)

BPSK signal
message

Figure 16.14: An example of the output from the impulse modulated BPSK simulation.
This signal has 2400 bps, roll-off factor of α = 0.5, and carrier frequency of 12 kHz.

0 4 8 12 16 20 24
−120

−100

−80

−60

−40

−20

0

sp
ec

tr
al

 e
st

im
at

e
(d

B
)

frequency (kHz)

Figure 16.15: An example of the spectral estimate of an impulse modulated BPSK simula-
tion. The signal has 2400 bps, roll-off factor of α = 0.5, and carrier frequency of 12 kHz.

16.4. DSK IMPLEMENTATION IN C 273

The benefits of a spectrally compact, raised-cosine pulse shaped signal cannot be over-
emphasized. As calculated earlier, the null-to-null bandwidth of this raised-cosine signal,
as compared to a rectangular signal, is 3600 Hz instead of 4800 Hz. To summarize:

1. The raised-cosine signal is more spectrally compact (smaller effective bandwidth).

2. The raised-cosine signal has a smaller null-to-null bandwidth (more spectrally effi-
cient).

3. The raised-cosine signal is fairly easy to generate.

4. The digital communications receiver needed to recover the message from this raised-
cosine signal will be more complex than if we used rectangular pulses.

16.4 DSK Implementation in C

When you understand the MATLAB code, the concept translation into C is fairly straight-
forward. The files necessary to run this application are in the ccs\DigTx directory of
Chapter 16. The primary file of interest is the rectangularBPSK_ISRs.c, which contains
the interrupt service routines. This file includes the necessary variable declarations and
performs the BPSK generation algorithm.

Assuming the DSK’s codec you’re using is a stereo device, the program could implement
independent Left and Right channel BPSK transmitters. For clarity, this example program
will implement only one transmitter, but will output this signal to both channels.

16.4.1 A Rectangular Pulse Shaped BPSK Transmitter

The declaration section of the code is shown in Listing 16.3.

Listing 16.3: Declaration portion of the rectangular BPSK project code.

1 Int32 counter = 0 ; // counter within a symbol period

Int32 symbol ; // current bit value ... 0 or 1

3 Int32 data [2] = {−20000 , 20000} ; // table lookup bit value

Int32 x ; // bit’s scaled value

5 Int32 samplesPerSymbol = 20 ; // number of samples per symbol

Int32 cosine [4] = {1 , 0 , −1, 0} ; // cos functions possible values

7 Int32 output ; // BPSK modulator’s output

An explanation of Listing 16.3 follows.

1. (Line 1): Declares and initializes the counter variable which is used to indicate where
the algorithm is relative to the beginning of the symbol (0) or the end of the symbol
(19).

2. (Line 2): Declares the symbol variable, which is the current bit’s value (0 or 1).

3. (Line 3): Declares and initializes the antipodal values associated with a 0 or a 1.

4. (Line 4): Declares the x variable, which is the current message’s value.

5. (Line 5): Declares and initializes the samplesPerSymbol variable, which, as its name
implies, is the number of samples in a symbol. For BPSK, a symbol and a bit are the
same.

274 CHAPTER 16. PROJECT 7: BPSK DIGITAL TRANSMITTERS

6. (Line 6): Declares and initializes the cosine variable that contains all of the possible
LO’s values for a 12 kHz cosine carrier.

7. (Line 7) Declares the BPSK modulator’s output value.

The algorithm section of the code is shown in Listing 16.4.

Listing 16.4: Algorithm portion of the rectangular BPSK project code.

1 // I added my rectangular BPSK routine here

i f (counter == 0) { // time for a new bit

3 symbol = rand () & 1 ; // equivalent to rand() % 2

x = data [symbol] ; // table lookup of next data value

5 }

7 output = x∗cosine [counter & 3] ; // calculate the output value

9 i f (counter == (samplesPerSymbol − 1)) { // end of the symbol

counter = −1;
11 }

13 counter++;

15 CodecDataOut . Channel [LEFT] = output ; // setup the Left value

CodecDataOut . Channel [RIGHT] = output ; // setup the Right value

17 // end of my rectangular BPSK routine

An explanation of Listing 16.4 follows.

1. (Lines 2–5): Once per symbol, create a random bit, and map that bit to an allowed
level. This value remains constant over the next 20 samples.

2. (Line 7): Calculates the product of the current message value with the LO’s value.
This mixes the BPSK signal to 12 kHz.

3. (Lines 9–11): When counter = 19, the algorithm has reached the end of the symbol.
At this point counter is reset to start the next symbol period.

4. (Line 13): Increments the counter variable in preparation for the next ISR call.

5. (Lines 15–16): Output the BPSK transmitter’s current value to both the left and
right channels.

16.4.2 A Raised-Cosine Pulse Shaped BPSK Transmitter

The declaration section of the code is shown in Listing 16.5. One item that isn’t shown here
is that the file coeff.c is also part of the CCS project. This file contains the coefficients
of a 200th-order raised cosine FIR filter exported from MATLAB.

Listing 16.5: Declaration portion of the impulse modulation raised-cosine pulse shaped
project code.

1 Int32 counter = 0 ;
Int32 samplesPerSymbol = 20 ;

3 Int32 symbol ;
Int32 data [2] = {−15000 , 15000} ;

16.4. DSK IMPLEMENTATION IN C 275

5 Int32 cosine [4] = {1 , 0 , −1, 0} ;
Int32 i ;

7

f loat x [1 0] ;
9 f loat y ;
f loat output ;

An explanation of Listing 16.5 follows.

1. (Line 1): Declares and initializes the counter variable, which is used to indicate where
the algorithm is relative to the beginning of the symbol (0) or the end of the symbol
(19).

2. (Line 2): Declares and initializes the samplesPerSymbol variable, which, as its name
implies, is the number of sample in a symbol. For BPSK, a symbol and a bit are the
same.

3. (Line 3): Declares the symbol variable, which is the current bit’s value (0 or 1).

4. (Line 4): Declares and initializes the antipodal values associated with the a 0 or a 1.

5. (Line 5): Declares and initializes the cosine variable that contains all of the possible
LO’s values for a 12 kHz cosine carrier.

6. (Line 6): Declares the variable i that is used as the index in the dot-product.

7. (Line 8): Declares the x array that stores the current and past values of the message’s
value.

8. (Line 9): Declares the variable y that is the impulse modulator’s current output value.

9. (Line 10) Declares the variable output that is the BPSK modulator’s output value.

The algorithm section of the code is shown in Listing 16.6.

Listing 16.6: Algorithm portion of the impulse modulation raised-cosine pulse shaped
project code.

// I added IM BPSK routine here

2

i f (counter == 0) {
4 symbol = rand () & 1 ; // faster version of rand() % 2

x [0] = data [symbol] ; // read the table

6 }

8

// perform impulse modulation based on the FIR filter, B[N]

10 y = 0 ;

12 for (i = 0 ; i < 10 ; i++) {
y += x [i]∗ B [counter + 20∗i] ; // perform the dot-product

14 }

16 i f (counter == (samplesPerSymbol − 1)) {
counter = −1;

18

276 CHAPTER 16. PROJECT 7: BPSK DIGITAL TRANSMITTERS

/* shift x[] in preparation for the next symbol */

20 for (i = 9 ; i > 0 ; i−−) {
x [i] = x [i−1] ; // setup x[] for the next input

22 }
}

24

counter++;
26

output = y∗cosine [counter & 3] ;
28

CodecDataOut . Channel [LEFT] = output ; // setup the LEFT value

30 CodecDataOut . Channel [RIGHT] = output ; // setup the RIGHT value

// end of IM BPSK routine

An explanation of Listing 16.6 follows.

1. (Lines 3–6): Once per symbol, create a random bit, and map that bit to an allowed
level. This value remains constant over the next 20 samples.

2. (Lines 10–14 and 20–22): Perform the FIR filtering associated with the impulse mod-
ulator. The vector B contains the coefficients of the raised cosine filter designed with
and exported from MATLAB, using the rcosfir function. Even though a 200th-order
filter is being implemented, only 10 multiplies are required. This is because all of the
other multiplies have a zero in the operation. These other multiplies are therefore
not required since the outcome is already known! This is one of the most important
advantages of an impulse modulator.

3. (Lines 16–17): When counter is equal to 19, the algorithm has reached the end of
the symbol. At this point counter is reset to start the next symbol period.

4. (Line 25): Increments the variable counter in preparation for the next ISR.

5. (Line 27): Calculate the product of the current message value with the LO’s value.
This modulates the BPSK signal up to 12 kHz.

6. (Lines 29–30): Output the BPSK transmitter’s current value to both the left and
right channels.

16.4.3 Summary of Real-Time Code

Thus, we have created two real-time implementations of a BPSK transmitter. The second
version, while more complicated, is closer to what is used in actual communication systems
due to its superior spectral characteristics. The analog voltage output from the DSK’s
DAC represents message symbols at a data rate of 2,400 bps (remember that for BPSK,
bits and symbols are equivalent). This data stream could be used with a second DSK that
is configured as a digital receiver, a concept covered in Chapter 17.

16.5 Follow-On Challenges

Consider extending what you have learned.

1. In the MATLAB impulse modulator simulations we used a 120th-order FIR filter. In
the real-time implementation we used a 200th-order FIR filter. What is the effect of
using a smaller order filter on the system’s performance?

16.5. FOLLOW-ON CHALLENGES 277

2. Design a bandpass raised-cosine pulse shaping FIR filter/system that, when excited
by a impulse, creates the modulated waveform directly (no separate mixer required).

3. Given your design in Challenge 2 above, what are the advantages and disadvantages
of this approach?

4. How do the approaches discussed in this chapter compare to the analog filter approach?
That is, where you would generate a rectangular shaped BPSK signal and then filter
the signal to the desired bandwidth using traditional analog filters.

This page intentionally left blankThis page intentionally left blank

Chapter 17

Project 8: BPSK Digital
Receivers

17.1 Theory

IN Chapter 16, we introduced a few of the basic techniques that can be used to generate a
binary phase shift-keying (BPSK) signal. Since there are an unlimited number of different

forms and specifications associated with the generation of a BPSK signal, it should not be
surprising that there are just as many variations of the receiver. In this chapter, we will
only introduce one of these forms and a few of the techniques that can be used to recover
the message contained within the BPSK signal.

Specifically, we will discuss a simplified BPSK receiver that must

1. Recover the carrier and remove its effects from the incoming signal. This will be
accomplished using a phase-locked loop (PLL) (see Chapter 15). This process will
recover a baseband version of the BPSK signal.

2. Process the recovered baseband signal through an FIR-based matched filter (MF).
Assume our BPSK signal was generated at the transmitter using impulse modulated
(IM) “root raised-cosine” shaped pulses at 2,400 symbols per second. This is similar
to, but an interesting and common variation of, the normal “raised cosine” shaped
pulses we explored in Chapter 16. As is required for MF operation, the receiver will use
an identical root raised-cosine filter to what was used in the transmitter. We selected
a MF-based receiver because it results in the optimal signal to noise ratio (SNR) of
the decision statistic in the presence of additive white Gaussian noise (AWGN) [62].

3. Finally, symbol timing must be recovered from the signal that comes from the re-
ceiver’s MF. We will use a maximum likelihood (ML) based timing recovery loop
to determine when to sample the matched filter’s output. This sampling/decision
process is equivalent to determining where, on average, the eye-pattern is the most
“open.” We will discuss eye-patterns in more detail later in the chapter. This sam-
pling/decision process also converts a series of filtered sampled signal values back into
a message bit (0 or a 1). Recall that for BPSK, bits and symbols are equivalent.

At this point in our discussion of a BPSK receiver, it cannot be emphasized enough that
carrier recovery, matched filtering, and symbol timing recovery must all occur properly
within the receiver in order for the individual message bits to be recovered correctly. The
combination of these three required processes makes this a very challenging project. It may

279

280 CHAPTER 17. PROJECT 8: BPSK DIGITAL RECEIVERS

reduce your anxiety a bit when we tell you that this project actually consists of stringing
together two concepts you’ve already seen and developing only one new concept. Specifi-
cally, the phase locked loop (PLL) was developed in Chapter 15 and the matched filter is
just an FIR filter, which was developed in Chapter 3. The new portion of this project is
the ML-based timing recovery system, which is where we will direct the majority of our
discussion. Note that we will use the acronym NCO for “numerically controlled oscillator”
to be consistent with the literature, but this is really just another name for a direct digital
synthesizer (DDS) such as we discussed in Chapter 5.

The simplified block diagram of the end-to-end BPSK transmitter-channel-receiver is
shown in Figure 17.1. In this figure, the receiver block diagram is contained within the
dashed box. The timing recovery portion of the receiver is a simplified version derived from
Figure 17.2. See [80] for more details.

�����
������

��������
���������

#��4�
������

������
����������

�������

���
��������
������

�����
�����

����������������
������

�����
������

5 @

��������������

�������� ��
����������
�-����(��

�I�-=�
J�-

%�������#���$��������

Figure 17.1: A simplified block diagram of a BPSK communications system (transmit-
ter/channel/receiver). PLL: phase locked loop. NCO: numerically controlled oscillator.

��������
������

���������
������ ��

��������

��������

�����������

�������������
��������

5 @

������� ��
���������
�-����(������

������

Figure 17.2: A maximum likelihood based timing recovery scheme. NCO: numerically
controlled oscillator.

17.1. THEORY 281

A few key simplifications of Figure 17.2 were made to arrive at Figure 17.1. Specifically,

1. Rather than implement two high-order FIR filters (both a matched filter and a
“matched filter derivative” filter) as shown in Figure 17.2, we will implement only
the matched filter, then approximate the derivative of the matched filter output.

2. The derivative operation will be implemented with a very simple second-order FIR
filter that has a group delay of one sample. This unit delay must be accounted for to
properly align the two signals.

3. The detector shown in Figure 17.2 will be implemented with a slicer. That is, positive
signals will be mapped to +1 (message bit value of 1) and negative signals will be
mapped to −1 (message bit value of 0). The detector block can be thought of as being
the point where the receiver decides the value of the received message bit.

4. The timing error detector (TED) as shown in Figure 17.2 will be approximated by
the multiplication operation.

17.1.1 The Output of the Matched Filter

After the PLL removes the effects of the transmitter’s carrier, the signal is passed through
a matched filter. As previously mentioned, this filter optimizes the signal-to-noise ratio of
the decision statistic in the presence of AWGN. An example of the output of the matched
filter is shown in Figure 17.3. In this figure, the time scale is 5.00 ms/div, and there are 10

Figure 17.3: Output of the receiver’s matched filter (120 bits).

282 CHAPTER 17. PROJECT 8: BPSK DIGITAL RECEIVERS

horizontal divisions shown, so we see a 50 ms duration of data in the figure. At the given
data rate of 2400 symbols/second (sps), this means the 50 ms “snapshot” is showing us 120
symbols of data. Since this is BPSK, 120 symbols is equivalent to 120 bits.

There was no noise intentionally added to the signal that resulted in Figure 17.3. How
difficult is it for you to visually determine the values of all 120 symbols? Can you imagine
trying to determine the message symbol values if a significant amount of noise had been
added to the signal? Any real-world signal will unavoidably have noise added to it. Perhaps
you can begin to appreciate how difficult a task the receiver must accomplish. The entire
message symbol detection process is made possible by knowing when is the “best” time to
sample the matched filter’s output.

17.1.2 The Eye-Pattern

Before we commence our discussion of the timing recovery loop, we need to briefly review
the concept of the eye-pattern. As previously mentioned, the BPSK receiver must remove
the effects of the carrier (also called “down conversion”), filter the down-converted signal,
and then sample the resulting signal at just the right time (timing recovery process) to
convert (in this case) 20 samples (the number of samples in a transmitted symbol) back
into a message symbol (+1 or −1). This process is equivalent to creating what is commonly
called an eye-pattern and sampling this pattern at the point of maximum average eye
opening. An example of an eye-pattern created using an oscilloscope and a recovered symbol
timing signal to trigger the display is shown in Figure 17.4. In this figure, 100 ms of the

Figure 17.4: BPSK eye-pattern (100 ms of data from MF output).

17.1. THEORY 283

Figure 17.5: BPSK eye-pattern (1000 ms of data from MF output).

matched filter’s output is displayed. The eye opening is labeled, but this opening is not
symmetric. To achieve a symmetric eye opening, considerably more data (gathered over
time) is required to be displayed. In Figure 17.5, a full second of matched filter output is
displayed. The eye is now symmetric, and the symbol period is labeled on the horizontal
axis. The symbol rate is 2400 symbols per second, which results in a symbol period of
1/2400 = 416.67 μs. Considering that we wish to display three eye openings (i.e., two
symbol periods), the time scale (the horizontal axis of the oscilloscope) needs to be set to
(1/2400) ∗ 2/10 = 83.33 μs/div, so the oscilloscope time-base was set to the nearest value
of 84 μs/div.

At this point, it should be clear that eye-pattern displays of short periods of time allow for
individual traces to be seen but that the characteristics of the eye opening can be misleading
due to insufficient data. On the other hand, if a much longer time period is displayed, the
individual traces on the eye-pattern will be obscured, but the average characteristics of the
eye opening will be more clearly visible.

17.1.3 Maximum Likelihood Timing Recovery

As stated earlier, the approximation of the optimum ML timing recovery loop that we will
implement is shown in the receiver block diagram portion of Figure 17.1. This diagram is
a modified version of the optimal ML timing recovery loop discussed in Chapter 7 of the
text by Mengali and D’Andrea [80]. The first step in this process is to multiply properly
sampled outputs from the matched filter’s decision (+1 or −1) by the derivative of the
output of the matched filter (this multiplication takes the place of the timing error detector

284 CHAPTER 17. PROJECT 8: BPSK DIGITAL RECEIVERS

10
−3

10
−2

10
−1

10
0

−50

−40

−30

−20

−10

0

10

|H
(jω

)|
 (

dB
)

frequency, (π normalized units)

second difference
theoretical (scaled)

Figure 17.6: The frequency response of a second order FIR difference filter compared with
a scaled version of the theoretical response.

in Figure 17.2). Therefore, we need to somehow implement the derivative operation. The
derivative can be obtained using a number of different techniques, but we will approximate
it with a simple difference operation using a second order FIR filter, y[n] = x[n]− x[n− 2],
which has a group delay of one sample. As shown in Figure 17.6, this implementation is
more than adequate since the difference operation very closely approximates the derivative
operation for highly oversampled signals. As is almost always the case, the group delay
associated with this filter must be accounted for prior to continuing with the algorithm.

An intuitive understanding of why this multiplication results in a signal that is propor-
tional to the timing error can be seen in Figure 17.7. Recall that for this BPSK signal, a
symbol value of −1 is equivalent to a bit value of 0, and a symbol value of +1 is equivalent
to a bit value of 1. The eye-pattern traces labeled as “A01” are associated with message
bit transitions from 0 to 1 and the traces labeled as “A10” are associated with message bit
transitions from 1 to 0. For a random message of equiprobable bit values, the traces labeled
“A01” and “A10,” when taken together, should occur with a probability of 0.5.

The eye-pattern traces labeled as “B” represent extended strings of either ones or zeros
(i.e., the bit value doesn’t change). The eye-pattern traces labeled as “C” represent extended
strings of either ones or zeros followed by a message bit change, or a message bit change
followed by an extended string of either ones or zeros. For a random message of equiprobable
bit values, the traces labeled “B” and “C,” when taken together, should also occur with a
probability of 0.5.

Only the “A” region traces result in a proper error signal being generated by the timing
error detector (TED). In the “B” region, the slope (i.e., the derivative) of the traces is very
close to zero, which results in almost no error signal being generated. In the “C” region,
the traces result in an error signal of the “wrong” polarity. This wrong polarity signal can
be viewed as either providing positive feedback or as a reinforcement of the system’s error,
which is not what we want. Fortunately, the effects of the “A” region are stronger than
that of the combined “B” and “C” regions. Therefore, with the NCO set to free-run at the
2400 symbols per second rate, the system’s error signal should only need to account for very

17.2. WINDSK DEMONSTRATION 285

���� � ���
����

��

����

�

���

�

���

#

��	
������	�����

�	
��

���
�

	-(

	(-

	(-

	-(

#

#

Figure 17.7: The timing recovery scheme for an ideal eye-pattern.

small differences between the transmitter’s and the receiver’s symbol clocks. This allows
for proper operation of the timing recovery loop because, on average, the system tracks the
maximum eye opening.

Finally, the sampling and decision at the output of the matched filter MF extracts
the transmitted data symbols (+1 or −1). The slicer, which implements an even simpler
decision, actually decides between x > 0 or x < 0. Based on the symbol recovered, the data
bits (1 or 0) are obtained from the received BPSK signal.

Important: At this point in the book, we hope you’ve caught on to the need to go
beyond the text and to read the full program listings associated with a given chapter on
the accompanying CD-ROM. While many partial code listings and explanations have been
given in previous chapters, the following discussion is intentionally not as detailed. This an
attempt to help you further develop the ability to teach yourself how read and understand
real-time DSP code; this is a necessary step toward creating your own original code. Try
to go beyond what we’ve written.

17.2 winDSK Demonstration

The winDSK program does not provide an equivalent receiver function. The commDSK
application of winDSK has transmitter functions only.

286 CHAPTER 17. PROJECT 8: BPSK DIGITAL RECEIVERS

17.3 MATLAB Implementation

The MATLAB� simulation of the BPSK receiver is shown in Listings 17.1 and 17.2. List-
ing 17.1 details the variable declarations while Listing 17.2 details the simulated ISR portion
of the MATLAB script file.

Listing 17.1: Declarations associated with the simulation of the BPSK receiver.

1 % generate the BPSK transmitter ’s signal

[BPSKsignal , dataArray] = impModBPSK (0 . 1) ;
3

% simulation inputs ... PLL

5 alphaPLL = 0 . 0 1 0 ; % PLL’s loop filter parameter "alpha"

betaPLL = 0 . 0 0 2 ; % PLL’s loop filter parameter "beta"

7 N = 20 ; % samples per symbol

Fs = 48000; % simulation sample frequency

9 phaseAccumPLL = randn (1) ; % current phase accumulator ’s value

VCOphaseError = 2∗pi∗rand (1) ; % selecting a random phase error

11 VCOrestFrequencyError = randn (1) ; % error in the VCO’s rest freq

Fcarrier = 12000; % carrier freq of the transmitter

13 phi = VCOphaseError ; % initializing the VCO’s phase

15 % simulation inputs ... ML timing recovery

alphaML = 0 .0040 ; % ML loop filter parameter "alpha"

17 betaML = 0 .0002 ; % ML loop filter parameter "beta"

alpha = 0 . 5 ; % root raised-cosine rolloff factor

19 symbols = 3 ; % MATLAB "rcosfir" design parameter

21 phaseAccumML = 2∗pi∗rand (1) ; % initializing the ML NCO

symbolsPerSecond = 2401 ; % symbol rate w/ offset from 2400

An explanation of Listing 17.1 follows.

1. (Line 2): Generation of the transmitter’s signal.

2. (Lines 5–6): Loop filter parameters associated with the PLL.

3. (Lines 7–8): The sample frequency (samples per second) divided by the number of
samples per symbol determines the number of symbols per second (symbol rate or
baud).

4. (Lines 9–11, 13, 21, and 22): Add realism to the simulation by ensuring that errors
exist in the PLL’s initial frequency and phase and also in the ML timing recovery
loop’s initial phase and symbol rate.

5. (Line 12): Carrier rest frequency is set to match the transmitter’s carrier frequency
(12 kHz).

6. (Lines 16–17): Loop filter parameters associated with the ML timing recovery loop.

7. (Line 18): Root raised-cosine roll-off factor. This should match the roll-off factor of
the transmitter.

17.3. MATLAB IMPLEMENTATION 287

8. (line 19): A MATLAB filter design parameter associated with the length (order) of
the FIR filter that was designed using the rcosfir function.1

Listing 17.2: ISR simulation of the BPSK receiver.

% commencing ISR simulation

2 for i = 1 : length (BPSKsignal)
% processing the data by the PLL

4 phaseDetectorOutput = analyticSignal (i) ∗vcoOutput ;
m = 6∗ real (phaseDetectorOutput) ; % scale for a max value

6 q = real (phaseDetectorOutput) ∗imag(phaseDetectorOutput) ;
[loopFilterOutputPLL , Zi_pll]= f i l t e r (B_PLL , A_PLL , q , Zi_pll) ;

8 loopFilterOutputPLLSummary = . . .
[loopFilterOutputPLLSummary loopFilterOutputPLL] ; % plot

10 phi = mod (phi + loopFilterOutputPLL + 2∗pi∗Fcarrier∗T , 2∗pi) ;
vcoOutput = exp(−j∗phi) ;

12

% processing the data by the ML-based receiver

14 [MFoutput , Zi_MF] = f i l t e r (B_MF , 1 , m , Zi_MF) ;
[diffMFoutput , Zi_diff]= f i l t e r ([1 0 −1] , 1 , MFoutput , Zi_diff) ;

16

phaseAccumML = phaseAccumML + phaseIncML ;
18 i f phaseAccumML >= 2∗pi

phaseAccumML = phaseAccumML − 2∗pi ;
20 decision = sign (delayedMFoutput) ;

[error , Zi_ML_loop] = f i l t e r (B_ML , A_ML , . . .
22 decision∗diffMFoutput , Zi_ML_loop) ;

phaseAccumML = phaseAccumML − error ;
24 errorSummary = [errorSummary error] ; % plot

decisionSummary = [decisionSummary decision] ; % plot

26 else
errorSummary = [errorSummary 0] ; % plot

28 end

30 delayedMFoutput = MFoutput ; % accounts for group delay

32 % state storage for plotting ... not part of the ISR

delayedMFoutputSummary = . . .
34 [delayedMFoutputSummary delayedMFoutput] ;

decisionSummaryHoldOn = [decisionSummaryHoldOn decision] ;
36 end

38 % output terms

% Plot commands follow ...

An explanation of Listing 17.2 follows.

1. (Lines 2–36): This “for” loop simulates the sample-by-sample processing of the re-
ceived data.

1As mentioned in Chapter 16, the calling sequence of many filter design commands are in flux. You
may want to read and run the code in filterDesignerComparison.m located in the MATLAB directory of
Chapter 17.

288 CHAPTER 17. PROJECT 8: BPSK DIGITAL RECEIVERS

2. (Lines 4–11): This block of code implements the PLL discussed in Chapter 15.

3. (Line 14): Performs the matched filtering of the data out of the PLL.

4. (Line 15): Performs the second difference of the output of the matched filter. This is
a very good approximation of differentiation for this oversampled signal.

5. (Line 17): Updates the value of the phase accumulator associated with the ML timing
recovery loop. For a free-running frequency of 2400 symbols per second, every time
the ISR is called the accumulator’s value must increment by 2π/20 = π/10 radians.

6. (Lines 18–28): Ensure that whenever the phase accumulator reaches 2π, the accumu-
lator’s value is reduced by 2π. For reasonable values of the ML timing loop error this
is equivalent to a modulo 2π operation. On average, this block of code should only
run once every 20 ISR calls. This effectively is a decimation by 20 operation which
results in only these samples being passed to the ML timing recovery loop filter.

7. (Line 30): Accounts for the group delay of the second difference FIR filter.

Remember that the simulation randomly initializes the frequency and phase errors as-
sociated with the PLL and ML timing recovery loops; this (plus the random nature of any
noise that may be added to the input signal) means that the behavior of the simulation
will be different every time the program is run. This random behavior can be controlled by
either reinitializing the state of the MATLAB random number generator at the beginning
of each simulation or by setting the variables in lines 9, 10, 11, and 21 equal to zero. The
state of the MATLAB random number generator can be reset using the MATLAB command
randn(’state’,0).

A simulation output example exhibiting excellent behavior of the PLL and ML timing
recovery loops is shown in Figure 17.8. In this figure the first (top) subplot shows how the
PLL’s error damps toward zero error. The second subplot shows the ML timing error also
settling toward an average value of zero. Remember that the phase angle between adjacent
samples as measured by the ML timing recovery NCO is π/10 ≈ 0.314 radians. In this
example, the timing error never exceeds 0.1 radians. Keep in mind that the timing error is
only defined when a sample is taken. So the subplot is showing an average of 19 zero error
values for every non-zero value. The third subplot shows the output of the matched filter
and the receiver’s decision. This effectively turns the analog output of the MF back into a
digital signal (data symbols). The fourth (bottom) subplot compares the transmitted and
received symbols. In this simulation, the receiver processed about 15 symbols before the
errors stopped occurring. Remember the symbol to bit mapping for this BPSK example is
defined as (+1→ 1), (−1→ 0).

In Figure 17.9, everything in the first, second, and third subplots indicates that the
algorithm is working quite well. The fourth subplot, however, clearly shows that the received
symbols have been flipped (a transmitted −1 was interpreted as a +1, and a transmitted
+1 was interpreted as a −1)! When we map the received symbols to bits, this will result
in message bit flipping, and our bit error rate will be nearly 100%. This is unacceptable; a
reasonable error rate is more on the order of one error for every million bits received! How
did this catastrophe occur?

As we discussed in the PLL chapter, the Costas loop PLL is blind to 180-degree phase
ambiguities. But there are ways to get around this problem. Sending a known preamble
signal at the beginning of a transmission would allow you to identify the phase inversion
so you could remove it. Another popular technique is to use differential encoding of the
transmitted data (with the accompanying differential decoding after message recovery);
this makes your data impervious to phase inversion at the cost of more complexity in the
transmitter and receiver.

17.3. MATLAB IMPLEMENTATION 289

0 500 1000 1500 2000 2500 3000
−0.04
−0.02

0
0.02
0.04

P
LL

 e
rr

or

0 500 1000 1500 2000 2500 3000
−0.1

0

0.1

tim
in

g
er

ro
r

0 200 400 600 800 1000
−1

0

1

ou
tp

ut

0 10 20 30 40 50
−1

0

1

sample number, n

ou
tp

ut

MF’s output
receiver’s decision

message data
receiver’s decision

Figure 17.8: BPSK receiver exhibiting excellent PLL and ML timing recovery performance.

0 500 1000 1500 2000 2500 3000
−0.04
−0.02

0
0.02
0.04

P
LL

 e
rr

or

0 500 1000 1500 2000 2500 3000
−0.1

0

0.1

tim
in

g
er

ro
r

0 200 400 600 800 1000
−1

0

1

ou
tp

ut

0 10 20 30 40 50
−1

0

1

sample number, n

ou
tp

ut

MF’s output
receiver’s decision

message data
receiver’s decision

Figure 17.9: BPSK receiver exhibiting excellent PLL and ML timing recovery performance.
However, the Costas loop locked up 180 degrees out of phase. This will result in message
bit flipping, and a bit error rate of nearly 100%.

290 CHAPTER 17. PROJECT 8: BPSK DIGITAL RECEIVERS

17.4 DSK Implementation in C

17.4.1 Components of the Digital Receiver

The real-time implementation of the BPSK receiver is shown in Listings 17.3 and 17.4. List-
ing 17.3 provides the declaration of most of the variables used, and Listing 17.4 implements
the algorithm. The files necessary to run this application are in the ccs\DigRx directory
of Chapter 17. The primary file of interest is the BPSK_rcvr_ISRs.c, which contains the
interrupt service routines. This file includes most of the necessary variable declarations and
performs the BPSK receiver operation.

Listing 17.3: Declaration portion of the BPSK receiver project code.

1 f loat alpha_PLL = 0 . 0 1 ; // loop filter parameter float

beta_PLL = 0 . 0 0 2 ; // loop filter parameter

3

f loat alpha_ML = 0 . 1 ; // loop filter parameter

5 f loat beta_ML = 0 . 0 2 ; // loop filter parameter

7 f loat twoPi = 6.2831853072 ; // 2pi

f loat piBy2 = 1.57079632679 ; // pi/2

9 f loat piBy10 = 0.314159265359 ; // pi/10

f loat piBy100 = 0.0314159265359 ; // pi/100

11 f loat scaleFactor = 3.0517578125e−5;
f loat gain = 3276 . 8 ;

13

f loat x [N+1] = {0 , 0 , 0 , 0 , 0 , 0 , 0} ; // input signal

15 f loat sReal = 0 ; // real part of the analytical signal

f loat sImag = 0 ; // imag part of the analytical signal

17

f loat phaseDetectorOutputReal [M+1] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
19 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ; // real part of the analytical signal

21 f loat phaseDetectorOutputImag = 0 ;
f loat vcoOutputReal = 1 ;

23 f loat vcoOutputImag = 0 ;
f loat q_loop = 0 ; // input to the loop filter

25 f loat sigma_loop = 0 ; // part of the PLL loop filter

f loat PLL_loopFilterOutput = 0 ;
27 f loat phi = 0 ; // phase accumulator value

29 f loat ∗pLeft = phaseDetectorOutputReal ;
f loat ∗p = 0 ;

31 f loat matchedfilterout [3] = {0 , 0 , 0} ;

33 f loat diffoutput = 0 ;
f loat sigma_ML = 0 ; // part of the ML loop filter

35 f loat ML_loopFilterOutput = 0 ;
f loat accumulator = 0 ;

37 f loat adjustment = 0 ;
f loat data = 0 ;

39 volat i le f loat ML_on_off = 1 ;

17.4. DSK IMPLEMENTATION IN C 291

41 Int32 i = 0 ;
Int32 sync = 0 ;

An explanation of Listing 17.3 follows.

1. (Lines 1–2): Declare the PLL’s loop filter parameters.

2. (Lines 4–5): Declare the ML timing recovery loop’s filter parameters.

3. (Lines 7–12): Declare various constants used in the algorithm.

4. (Lines 14–27): Declare variables needed to implement the PLL.

5. (Lines 29–31): Declare variables needed to implement the MF.

6. (Lines 33–38): Declare variables needed to implement the ML timing recovery loop.

7. (Line 39): Declares a flag to turn the ML timing recovery loop “ON” or “OFF.” This
can be used to demonstrate the effect of not having an error control process in the
timing recovery loop.

8. (Line 41): Declares an integer index used in a loop.

9. (Line 42): Declares an integer synchronization signal that is used to send a timing
pulse through the second codec channel. This timing pulse can be used to trigger an
oscilloscope to create an eye-pattern.

Listing 17.4: Algorithm portion of the BPSK receiver project code.

// my algorithm starts here ...

2 // bring in input value

x [0] = CodecDataIn . Channel [LEFT] ; // current LEFT input value

4

// execute Hilbert transform and group delay compensation

6 sImag = (x [0] − x [6]) ∗B_hilbert [0] + (x [2] − x [4]) ∗B_hilbert [2] ;
sReal = x [3] ∗ scaleFactor ; // scale and account the group delay

8

// setup x for the next input

10 for (i = N ; i >0; i−−) {
x [i] = x [i−1] ;

12 }

14 sImag ∗= scaleFactor ;

16 // execute the PLL

vcoOutputReal = cosf (phi) ;
18 vcoOutputImag = sinf (phi) ;

phaseDetectorOutputReal [0] = sReal∗vcoOutputReal . . .
20 + sImag∗vcoOutputImag ;

phaseDetectorOutputImag = sImag∗vcoOutputReal . . .
22 − sReal∗vcoOutputImag ;

q_loop = phaseDetectorOutputReal [0] ∗ phaseDetectorOutputImag ;
24 sigma_loop += beta_PLL∗q_loop ;

PLL_loopFilterOutput = sigma_loop + alpha_PLL∗q_loop ;

292 CHAPTER 17. PROJECT 8: BPSK DIGITAL RECEIVERS

26 phi += piBy2 + PLL_loopFilterOutput ;

28 while (phi > twoPi) {
phi −= twoPi ; // modulo 2pi operation for accumulator

30 }

32 // execute the matched filter (MF)

∗pLeft = phaseDetectorOutputReal [0] ;
34

matchedfilterout [0] = 0 ;
36 p = pLeft ;

i f (++pLeft > &phaseDetectorOutputReal [M])
38 pLeft = phaseDetectorOutputReal ;

for (i = 0 ; i <= M ; i++) { // do LEFT channel FIR

40 matchedfilterout [0] += ∗p−− ∗ B_MF [i] ;
i f (p < phaseDetectorOutputReal)

42 p = &phaseDetectorOutputReal [M] ;
}

44

// execute the differentiation filter

46 diffoutput = matchedfilterout [0] − matchedfilterout [2] ;

48 // execute the ML timing recovery loop

sync = 0 ;
50 i f (accumulator >= twoPi) {

sync = 20000;
52 data = −1;

i f (matchedfilterout [0] >= 0) { // recover data

54 data = 1 ;
}

56 adjustment = data∗diffoutput ;
sigma_ML += beta_ML∗adjustment ;

58 // prevents timing adjustments of more than +/- 1 sample

i f (sigma_ML > piBy10) {
60 sigma_ML = piBy10 ;

}
62 else i f (sigma_ML < −piBy10) {

sigma_ML = −piBy10 ;
64 }

ML_loopFilterOutput = sigma_ML + alpha_ML∗adjustment ;
66

// prevents timing adjustments of more than +/- 0.1 sample

68 i f (ML_loopFilterOutput > piBy100) {
ML_loopFilterOutput = piBy100 ;

70 }
else i f (ML_loopFilterOutput < −piBy100) {

72 ML_loopFilterOutput = −piBy100 ;
}

74 i f (ML_on_off == 1) {
accumulator −= (twoPi + ML_loopFilterOutput) ;

76 }

17.4. DSK IMPLEMENTATION IN C 293

else {
78 accumulator −= twoPi ;

}
80 }

82 // increment the accumulator

accumulator += piBy10 ;
84

// setup matchedfilterout for the next input

86 matchedfilterout [2] = matchedfilterout [1] ;
matchedfilterout [1] = matchedfilterout [0] ;

88

CodecDataOut . Channel [LEFT] = sync ; // O-scope trigger pulse

90 CodecDataOut . Channel [RIGHT] = gain∗matchedfilterout [1] ;
// ... my algorithm ends here

1. (Line 3): Brings the input value into the ISR.

2. (Line 6): Performs the Hilbert transform on the incoming signal. An inspection of the
B_hilbert coefficients in the hilbert.c file included in this CCS project reveals an
odd symmetry with the three odd-numbered terms all equal to zero. This greatly sim-
plifies the dot-product required to implement this FIR filter. A zoomed-in comparison
of the passband frequency response of the filter as designed in MATLAB and this filter
with every other coefficient set equal to zero is shown in Figure 17.10. Notice that
this filter is very close to “flat” in the frequency band of interest (12 kHz ± 2 kHz).
This is not immediately obvious until you notice that the vertical axis units are milli-
dB (mdB). The figure shows the very small but unavoidable passband ripple in both
filters, but they are very close to being the same.

10 11 12 13 14
−5

−4

−3

−2

−1

0

1

2

3

4

5

|H
(e

jω
)|

 (
m

dB
)

frequency (kHz)

theoretical response
actual response

Figure 17.10: Comparison of the MATLAB designed Hilbert transform filter’s passband
frequency response and the same filter with every other coefficient set equal to zero. Note
that the vertical axis scale is in milli-dB.

294 CHAPTER 17. PROJECT 8: BPSK DIGITAL RECEIVERS

3. (Line 7): Applies a scale factor to the signal and accounts for the group delay of the
Hilbert transforming FIR filter prior to the PLL.

4. (Lines 10–12): Update the buffered values of x for the next ISR call.

5. (Line 14): Applies a scale factor to the signal prior to the PLL.

6. (Lines 17–30): Implement the PLL.

7. (Lines 33–43): Implement the FIR-based matched filter.

8. (Line 46): Implements the FIR-based second difference filter which is a very close
approximation to differentiation.

9. (Line 49): Turns the codec’s channel synchronization pulse off.

10. (Lines 50–80): Implement the ML timing recovery loop (the details follow).

11. (Line 50): When the total phase of the ML timing loop’s NCO is ≥ 2π, the sampling
operation that supplies the next 2 inputs to the ML timing loop is activated.

12. (Line 51): Drives the codec’s output synchronization pulse high.

13. (Lines 52–55): Implement the detector (slicer) to decide which symbol was received.

14. (Line 56): Performs the timing error detector operation (multiplication) of the prop-
erly aligned matched filter’s output and its derivative.

15. (Lines 57–73): Implement the ML timing recovery loop’s loop filter (the details follow).

16. (Lines 57–64): Implements the IIR portion of the filter. Note that a non-linear element
(a limiter) prevents this filter’s output from exceeding ±π/10 radians (±1 sample).

17. (Lines 65–73): Finishes the implementation of the loop filter and adds another limiter
to prevent the total error from exceeding ±π/100 (±0.1 samples).

18. (Lines 74–79): Apply the ML timing recovery loop’s error to the NCO if the ML loop
is turned “ON,” otherwise the loop free-runs at the nominal symbol rate (2400 sps).

19. (Line 83): Increments the ML timing loop NCO’s phase by π/10 each time the ISR
is called. This sets the NCO’s free-running speed to the the symbol rate (2400 sps).

20. (Lines 86–87): Update the buffered values of the matched filter’s output in preparation
for the next second difference operation.

21. (Lines 89–90): Output the synchronization signal to the codec’s Left channel and the
group-delayed matched filter output to the codec’s Right channel.

17.4.2 System Testing

Creating an eye-pattern is an excellent way to determine how well your receiver is working.
The DSK system should be set up as follows.

1. The CD-ROM for the book contains wav-files (in the test_signals directory, where
the file name starts with “BPSK RRC” for BPSK root raised cosine) that can be
played through any wav-file playback device (CD player, PC sound card, etc.. . .) to
“stand in” for the BPSK transmitter. This signal should be connected as the input to
the DSK’s ADC. Alternatively, a second DSK could serve as the transmitter, running

17.4. DSK IMPLEMENTATION IN C 295

code similar to the C code for impulse modulated BPSK transmitter in Chapter 16
(but using a root raised cosine filter, not a raised cosine filter). Or a second DSK
could serve as the transmitter, running the commDSK application of winDSK.

2. Use winDSK8 or an oscilloscope to verify that the input to the DSK is near, but does
not reach, the maximum range of the DSK’s codec (typically −1 < x < +1 volt).

3. Connect the signal source to the DSK’s input.

4. Attach the two output channels (Left and Right) of the DSK’s codec to two input
channels of an oscilloscope in the following manner. Set the oscilloscope display to
trigger off of the oscilloscope channel to which the Left output of the DSK (the sync
pulse) is connected. Display both input channels of the oscilloscope on the screen.

5. Ensure that the BPSK input signal is playing, load the BPSK receiver’s .out file into
the DSK, and start the DSK (run).

With the oscilloscope’s display persistence turned up, an image similar to Figure 17.11
should be visible.

In this figure, a color-coded histogram (shown here in the text as shades of gray) has
been produced that indicates where on the screen the MF output trace is most often located.
Synchronization pulses are shown at the top of the display screen. The center synchroniza-
tion pulse appears to be very stable since it is being used to trigger the oscilloscope. The
synchronization pulse immediate before and after this center pulse show clear indications
that the ML timing recovery loop occasionally tracked one sample to either side of the
location of maximum eye opening. This very slight timing error results in a timing jitter

Figure 17.11: BPSK eye-pattern histogram with recovered timing pulses.

296 CHAPTER 17. PROJECT 8: BPSK DIGITAL RECEIVERS

that causes the eye opening to close slightly in both the vertical and horizontal directions.
As the eye opening gets larger, the receiver is performing better.

Without the synchronization pulses displayed, a traditional eye-pattern should be dis-
played such as the one shown in Figure 17.12.

17.5 Follow-On Challenges

Consider extending what you have learned.

1. Design and implement your own loop filter within the ML timing recovery loop.

2. Design and implement an algorithm that detects, then provides some indication to
the user, when the ML timing recovery loop is locked and tracking the symbol rate.

3. Profile the ISR code and identify any bottlenecks.

4. Suggest possible improvements that minimize or remove these bottlenecks.

5. Implement at least one of your improvements and calculate the computational savings
of your new code.

6. Implement the BPSK receiver using frame-based techniques.

Figure 17.12: BPSK eye-pattern histogram.

Chapter 18

Project 9: MPSK and QAM
Digital Transmitters

18.1 Theory

IN Chapter 16, we reviewed a few of the concepts involved in digital communications and
developed an impulse modulated (IM), binary phase shift-keying (BPSK) transmitter.

In this chapter, we will extend those concepts to increase the system’s spectral efficiency
(that is, squeeze more data into the same bandwidth). The system’s spectral efficiency will
be increased by adding a second dimension to the signal’s constellation diagram, similar to
a two-dimensional Cartesian coordinate system in x and y. This added dimensionality will
result in each symbol representing multiple bits. Specifically, we will discuss

1. IM, quadrature phase shift-keying (QPSK) using root-raised-cosine (RRC) filtered
symbols.

2. IM, 8-state phase shift-keying (8-PSK), 16-state phase shift-keying (16-PSK), and
32-state phase shift-keying (32-PSK).

3. IM, 16-state quadrature amplitude modulation (16-QAM).

This is a good place to reiterate that this text only gives a brief review of the theory
associated with the areas for which we use real-time DSP. If you are not already familiar
with digital communication techniques, a review of Chapter 16 or a more theoretical book
on digital communications prior to proceeding would be in your best interest.

18.1.1 I- and Q-Based Transmitters

The block diagram of an impulse modulated, BPSK system as described in Chapter 16 is
provided again in this chapter as Figure 18.1. This BPSK system transmits one bit at a
time (i.e., one bit per symbol). To transmit two bits at a time (e.g., using QPSK), we
will only slightly increase the transmitter’s complexity. The block diagram of an impulse
modulated QPSK system is shown in Figure 18.2.

There are three significant differences between the BPSK transmitter system shown in
Figure 18.1 and the QPSK transmitter system shown in Figure 18.2.

1. The QPSK transmitter processes two bits at a time. This is accomplished by split-
ting the incoming data values into two parallel data streams using a serial-to-parallel

297

298 CHAPTER 18. PROJECT 9: MPSK AND QAM DIGITAL TRANSMITTERS

�+�,*
��������
���������*

� +�

�+�,�
#��4�
�������

H

��������
������

1?%�
������

Figure 18.1: The block diagram associated with a impulse modulated BPSK transmitter.

�+�,*
��������
���������*

� +�

�+�,�
K��4�
�������

H
1?%�
������

��������
������

�
�
���
�'��
'�
�
��
���
��

�
�

�
���
�
H

1?%�
������

7-��

)

Figure 18.2: The block diagram associated with a impulse modulated QPSK transmitter.

converter. In Figure 18.2, it’s most common to label the upper data stream as x[n]
and the lower data stream as y[n], since they are related to the x and y coordinates of
a two-dimensional signal constellation that will be discussed shortly. Note that while
x[n] and y[n] come from a common data stream, for convenience we choose to inter-
pret them such that there is an implied 90-degree (i.e., quadrature) phase difference
between them in terms of how they are used to define a signal constellation.

2. The two parallel data streams, x[n] and y[n], are then filtered by identical FIR filters
(for pulse shaping purposes) and modulated by a carrier signal. The upper mixer
is called the “in-phase” or “I” mixer and the lower mixer is called the “quadrature”
or “Q” mixer. The oscillator associated with the “Q” mixer is 90 degrees out of
phase from the “I” mixer. If the system’s carrier signal is assumed to be a cosine
waveform, then the output of the 90-degree phase shifter will be a sine waveform at
the same frequency. The two mixers and the 90-degree phase shifter taken together
are routinely referred to as a complex mixer.

3. Finally, the two signal paths are recombined by subtracting the bottom signal from the
top signal. A satisfying explanation for the necessity of the substraction operation
requires a quick review of complex envelope notation [61]. Any physical bandpass
waveform s(t) can be expressed as the real part of the product of the signal’s complex
envelope, g(t), and a complex exponential at the desired carrier frequency. To tie this
back to Figure 18.2, g(t) would come from the output of the serial-to-parallel converter,
and the complex exponential would come from the two parts (regular and phase-
shifted) of the carrier signal. See the short derivation below. While the derivation
is written in terms of continuous time signals (e.g., s(t)) it applies equally well to

18.1. THEORY 299

�+�,*
��������
���������*

� +*�,* !+�

�+�,�
(8'K	!�
�������

H
1?%�
������

��������
������

�
�
���
�'��
'�
�
��
���
��

�
�

�
���
�

H
1?%�
������

7-��

)

Figure 18.3: The block diagram associated with a impulse modulated 16-QAM transmitter.

discrete time signals such as s[n].

s(t) = Re
{
g(t) ejωct

}
where g(t) = x(t) + jy(t) and ejωct = cos(ωct) + j sin(ωct)

s(t) = Re {[x(t) + jy(t)][cos(ωct) + j sin(ωct)]}
s(t) = Re

{
x(t) cos(ωct) + jx(t) sin(ωct) + jy(t) cos(ωct) + j2y(t) sin(ωct)

}
s(t) = x(t) cos(ωct)− y(t) sin(ωct)

When properly implemented, this complex mixer translates the baseband I and Q signals
to the frequency of the carrier signal, and since all of these signals are real valued (i.e., not
complex), the resulting modulated signal is also real.

Once this slightly more complicated transmitter structure is understood, the modifi-
cation required to implement other higher-order modulation schemes is straightforward.
Specifically, only the excitation to the FIR filters must change. This can be seen in Fig-
ure 18.3 where four bits are transmitted at a time (16-QAM). In software, the serial-to-
parallel conversion can be implemented by the program’s logical structure and a table look
up operation. The table lookup operation is routinely referred to as “symbol mapping”
which is accomplished by a “symbol mapper.”

18.1.2 A Few Constellation Diagrams

The constellation diagram associated with a QPSK signal is shown in Figure 18.4. Some
comments need to be made concerning this figure. Specifically,

1. The horizontal axis is referred to as the I-axis.

2. The vertical axis is referred to as the Q-axis.

3. The four constellation points, represented by bold “plus” signs, form a circle.

4. The four constellation points can also be thought of in terms of their rectangular
coordinates (+A and −A).

5. On subsequent diagrams, a significant amount of the constellation diagram’s labeling
will be omitted for clarity.

6. The observation that the constellation points can be identified in either polar form
(magnitude and phase) or in rectangular form (I and Q values) can lead to a variety of
different transmitter implementation methods. We will only implement a rectangular
form of the transmitter.

300 CHAPTER 18. PROJECT 9: MPSK AND QAM DIGITAL TRANSMITTERS

'	

'	

)	

)	

?'�*��

K'�*��

---(

(((-

Figure 18.4: The constellation diagram associated with a QPSK signal.

7. The fact that the constellation points form a circle leads to this signal’s characteri-
zation as “constant envelope.” The constant envelope designation only truly exists
for unfiltered signals. Since our implementation involves FIR filtering, the resulting
signal will look very much like an AM (amplitude modulated) waveform.

8. The value of A is used to adjust the signal level exciting each of the impulse modulators
(FIR filters).

9. This version of the QPSK constellation is not unique, but this is a commonly used
diagram.

10. The four constellation points or states are each represented by two bits. Theoretically,
any arrangement of the four constellation points on the I and Q plane is possible;
however, some arrangements have more utility than others.

11. The two-bit binary values assigned to each constellation point is displayed near the
constellation point.

12. The bit assignment shown is not unique, but this is a commonly used assignment.

13. For PSK systems, the bit assignments are almost always accomplished using a Gray
code [81]. The use of a Gray code reduces the number of bit errors associated with the
most common type of receiver error, called the “nearest neighbor” error. You should
notice that when Gray code assignment is used, adjacent constellation points have
only one bit difference (i.e., the Hamming distance [82] is equal to one). This results
in a nearest-neighbor error contributing only a single bit error. A less thoughtful
assignment of the bit values to each constellation point could result in every bit in
the symbol being in error. This type of error would occur, for example, if we had
just assigned values based on binary counting. Specifically, 00, 01, 10, and 11, which
would place 00 and 11 next to each other (i.e., a Hamming distance equal to two).

14. The bandwidth of the transmitted signal s[n] does not change (compared to BPSK)
when the quadrature (Q) portion of the diagram is added. This doubling of the data

18.1. THEORY 301

--(-(-

((((--

---((-

-((

(-(

Figure 18.5: The constellation diagram associated with an 8-PSK signal.

rate, albeit with the same symbol rate and thus the same bandwidth, is one of the
reasons that QPSK is so popular when compared to BPSK.

All of the other forms of phase shift-keying also place their constellation points on a circle.
For example, the constellation diagram associated with an 8-PSK (three bits per symbol)
signal is shown in Figure 18.5. This idea can easily be extended to 16-PSK (four bits per
symbol), 32-PSK (5 bits per symbol), and so forth. As shown in Figure 18.6, as additional
constellation points are added to the circle, the points become closer. While this fact in no
way affects the transmitter, the receiver’s task of being able to distinguish between points
that are getting closer and closer together requires an increased signal-to-noise ratio for
the same error performance. Yet again, a classic engineering tradeoff has been revealed:
spectral efficiency versus signal quality (where the signal quality metric is signal-to-noise
ratio, or more appropriately for digital communication systems, the energy per bit divided

--((-(-(

(((((--(

----((--

-((-

(-(-

---(

--(--(((

-(--

((-(

(((- (-((

(---

Figure 18.6: The constellation diagram associated with a 16-PSK and a 32-PSK signal.

302 CHAPTER 18. PROJECT 9: MPSK AND QAM DIGITAL TRANSMITTERS

---(

-(--

((-(

(------- ((--

(--(-(-(

--((-((((((((-((

--(- -((- (((- (-(-

Figure 18.7: The constellation diagram associated with a 16-QAM signal.

by the noise power spectral density, Eb/N0).

Alternatively, additional constellation points can be added to the I and Q plane using
a combination of both amplitude and phase modulation. This modulation technique is
called quadrature amplitude modulation (QAM or QUAM). The constellation diagram
associated with a 16-QAM signal is shown in Figure 18.7. In the 16-QAM case, it should
be clear that three distinct signal envelope levels will exist, since three circles of different
radii are present. After filtering (with our pulse shaping FIR filters), these levels will not
be at all distinct. Finally, it should be clear that Gray coding is not practical for QAM
constellations; however, preferred coding assignments do exist.

18.2 winDSK Demonstration

Start the winDSK application, and the main user interface window will appear. Ensure the
correct selections have been made in the “DSK and Host Configuration” panel of winDSK6
or the “Board and Interface Configuration” panel of winDSK8 for each parameter before
proceeding. Clicking on winDSK’s commDSK button will run that program in the attached
DSK, and a window similar to Figure 18.8 will appear. In the “Modulation Control” section,
select the “Mode” to QPSK and the “Data Rate” to 4800 bps.

18.2. WINDSK DEMONSTRATION 303

Figure 18.8: winDSK running the commDSK application. By default, the modulated signal
appears on the Left output channel, and a timing signal appears on the Right output
channel. These settings can be changed by the user if needed.

18.2.1 commDSK: Root-Raised-Cosine Filtered QPSK

Now adjust commDSK to observe the effect of pulse shaping. If you apply a root-raised-
cosine pulse shaping effect, you will no longer have rectangular pulses. Select “Root Raised
Cosine” from the“Pulse Shaping” radio buttons on the commDSK user interface window.
This change is shown in Figure 18.9. An example waveform is shown in Figure 18.10. In
this mode, it is much more difficult to detect the transition from one symbol to the next.
An averaged spectrum associated with this waveform is shown in Figure 18.11. Similar to
the rectangular shaped signal, the main lobe is centered at 12 kHz, but the first spectral
null above 12 kHz occurs before 13.8 kHz. The higher frequency marker was left at 13.8 kHz
as in Chapter 16. The markers are separated by 3.6 kHz wide (2× (13.8− 12) = 3.6). The
theoretical prediction for a raised-cosine pulse shaped system would be BW = D(1 + α) =
2400 × (1 + 0.35) = 3264 Hz, where BW is the signal’s bandwidth, D is the symbol rate,
and α is the raised-cosine roll-off factor that was used in this case (the roll-off factor must
remain between 0 and 1). Remember that we are actually using a root-raised-cosine pulse
shaping filter, but the bandwidths associated with these two systems are similar.

In Figure 18.11, no sidelobes are visible due to the apparent noise floor below −33 dBm.
With the peak of the main lobe at −6.857 dBm, the expected sidelobe level for root-raised-
cosine pulses with a roll-off factor of α = 0.35 is lower than the observed noise floor. This
noise floor is in fact a limitation of the 8-bit ADC associated with the digitizing oscilloscope
that was used to produce this figure. The solid horizontal marker (Ay) is actually placed
40 dB below the dashed horizontal marker (By) to help illustrate this point.

The commDSK program is capable of generating a number of different digital commu-
nications signals at a number of different data rates. These signals may also be distorted
using the “Channel Impairment” section of commDSK. These impairments are very helpful
if the signal is to be processed by a vector signal analyzer (VSA). An example of a VSA
display is shown in Figure 18.12.

304 CHAPTER 18. PROJECT 9: MPSK AND QAM DIGITAL TRANSMITTERS

Figure 18.9: commDSK set to generate a QPSK, root-raised-cosine pulse shaped, 4800 bps
signal.

Figure 18.10: commDSK waveform of a QPSK, root-raised-cosine pulse shaped, 4800 bps
signal.

18.2. WINDSK DEMONSTRATION 305

Figure 18.11: An averaged spectrum associated with a QPSK, root-raised-cosine pulse
shaped, 4800 bps signal generated by commDSK.

Figure 18.12: Example of a VSA display associated with a root-raised-cosine pulse shaped,
4800 bps, QPSK signal generated by commDSK.

306 CHAPTER 18. PROJECT 9: MPSK AND QAM DIGITAL TRANSMITTERS

In Figure 18.12, plot A is a trajectory/constellation diagram, plot B is the spectral
estimate of the QPSK signal, plot C is the error vector magnitude (EVM), plot D is the I-
eye-pattern, plot E is the Q-eye-pattern, and plot F reports a number of statistics associated
with the performance of the signal being analyzed. These plots can be used to infer a great
deal about the communication system performance. Recognize that two eye-patterns (I-
eye-pattern and a Q-eye-pattern) are now required since we have added a second dimension
to the constellation.

18.3 MATLAB Implementation

We will only simulate a single form of QPSK signal generation: the impulse modulated,
root-raised-cosine QPSK signal generator.

18.3.1 Impulse Modulated Root-Raised-Cosine QPSK Signal Gen-
erator

The MATLAB� simulation is of a impulse modulated root-raised-cosine QPSK signal gen-
erator; the code is shown in Listing 18.1.

Listing 18.1: Simulation of an impulse modulated root-raised-cosine QPSK signal generator.

1 % input terms

Fs = 48000; % sample frequency of the simulation (Hz)

3 dataRate = 4800 ; % data rate

alpha = 0 . 3 5 ; % root-raised-cosine rolloff factor

5 order = 120 ; % desired filter order

time = 0 . 5 ; % length of the signal in seconds

7 amplitude = 380000; % amplitude scale factor

cosine = [1 0 −1 0] ; % cos(n*pi/2) ... Fs/4

9 sine = [0 1 0 −1]; % sin(n*pi/2) ... Fs/4

counter = 1 ; % counter used to get new data bits

11

% calculated terms

13 numberOfSamples = Fs∗time ;
symbolRate = dataRate /2 ; % for QPSK there are 2 bits/symbol

15 samplesPerSymbol = Fs/symbolRate ;

17 % design the pulse shaping filter

B = firrcos (order , symbolRate /2 , alpha , Fs , ‘ rolloff ’ , ‘ sqrt ’) ;
19

% set the filter’s initial conditions to zero

21 I_state = zeros (1 , (length (B) − 1)) ;
Q_state = zeros (1 , (length (B) − 1)) ;

23

% ISR simulation

25 for index = 1 : numberOfSamples
% generate a new pair of data bits at the

27 % beginning of a symbol period

i f (counter == 1)
29 I_data = 2∗(rand > 0 . 5) − 1 ; % generate a +1 or -1 (bit)

Q_data = 2∗(rand > 0 . 5) − 1 ; % generate a +1 or -1 (bit)

18.3. MATLAB IMPLEMENTATION 307

31 else
I_data = 0 ;

33 Q_data = 0 ;
end

35

% create the modulated signal

37 [I_IM_data , I_state] = f i l t e r (B , 1 , amplitude∗I_data , I_state) ;
[Q_IM_data , Q_state] = f i l t e r (B , 1 , amplitude∗Q_data , Q_state) ;

39 output = I_IM_data∗cosine (mod (index , 4) + 1) . . .
− Q_IM_data∗sine (mod (index , 4) + 1) ;

41

% reset at the end of a symbol period

43 i f (counter == samplesPerSymbol)
counter = 0 ;

45 end

47 % increment the counter

counter = counter + 1 ;
49 end

51 % output terms

% Plotting commands follow ...

An explanation of Listing 18.1 follows.

1. (Line 2): Defines the system’s sample frequency as 48 kHz. This sample frequency
matches the rate of the DSK’s audio codec.

2. (Line 3): Defines the data rate as 4,800 bits per second (bps). For QPSK this is 2,400
symbols per second, since two symbols are transmitted at a time.

3. (Line 4): Defines the root-raised-cosine roll-off factor alpha.

4. (Line 5): Defines the order of the root-raised-cosine FIR filter. In this case, the filter
order is equivalent to six symbols.

5. (Line 7): Scales the output signal near the full range of the 16-bit DAC.

6. (Line 8): Defines the output of the in-phase (I) local oscillator (LO).

7. (Line 9): Defines the output of the quadrature (Q) local oscillator (LO).

8. (Line 10): The counter variable is used to determine the current position within a
symbol.

9. (Line 18): Designs the root-raised-cosine filter using MATLAB’s firrcos function.
This function is part of MATLAB’s signal processing toolbox.1

10. (Lines 25–49): These lines of code simulate the real-time ISR.

11. (Lines 28–34): A new set of data bits are generated whenever counter is equal to 1.

1As mentioned in Chapter 16, the calling sequence of many filter design commands are in flux. You
may want to read and run the code in filterDesignerComparison.m located in the MATLAB directory of
Chapter 18.

308 CHAPTER 18. PROJECT 9: MPSK AND QAM DIGITAL TRANSMITTERS

0 50 100 150 200
−3

−2

−1

0

1

2

3

sample number, n

si
gn

al
 v

al
ue

 (
in

 1
0,

00
0)

transmitted waveform
symbol values

Figure 18.13: An example of the output from the impulse modulated, QPSK simulation.
This signal has 4800 bps, a roll-off factor of α = 0.35, and a carrier frequency of 12 kHz.

12. (Lines 37–38): These lines of code implement the impulse modulators (IMs). The
IMs are just a pair of FIR filter with an input of one or more impulses followed by
a large number of zeros. In this simulation, a single impulse with a value of 380,000
is followed by 19 sample values of zero (20 samples per symbol, remember?). The
computational savings of this technique will become clear in the next section.

13. (Line 39–40): Calculates the output value by multiplying (i.e., mixing) the data value
with the LO’s output. The cosine and sine variable are accessed by the MATLAB
mod command which maintains the index value between 1 and 4.

14. (Lines 43–45): The counter variable is reset at the end of a symbol.

15. (Line 48): The counter variable is incremented at the end of the simulated ISR.

An example output plot (with a duration of about 4 ms) from this simulation is shown
in Figure 18.13. The large order of the FIR filter (120th-order) results in a group delay of
60 samples. This group delay was compensated for by initializing the dataArray variable
with 60 zeros. In this figure, the transmitted symbol values (i.e., the 2 bits) are displayed
as a 4-level signal. This is intended to clearly show the four possible states of the system.
Notice that when the polarity of the 4-level signal changes, the envelope of the QPSK signal
collapses (i.e., drops dramatically). This phenomenon will cause significant implementation
issues in an RF system if a nonlinear power amplifier is used. Slight variations of the QPSK
scheme, such as staggered QPSK, offset QPSK, and π

4 -Differential QPSK were invented to
help minimize this effect.

18.3. MATLAB IMPLEMENTATION 309

0 4 8 12 16 20 24
−80

−70

−60

−50

−40

−30

−20

−10

0

10
sp

ec
tr

al
 e

st
im

at
e

(d
B

)

frequency (kHz)

Figure 18.14: An example of the spectral estimate of an impulse modulated, QPSK sim-
ulation. This signal has 4800 bps, a roll-off factor of α = 0.35, and a carrier frequency of
12 kHz.

The simulation time was increased to 2 seconds to allow a higher resolution estimate of
the resulting normalized power spectral density; this is shown in Figure 18.14. The benefits
of a spectrally compact, root-raised-cosine pulse shaped signal cannot be overemphasized.
To summarize:

1. The root-raised-cosine signal is more spectrally compact (smaller effective bandwidth).

2. The root-raised-cosine signal has a smaller null-to-null bandwidth (more spectrally
efficient).

3. The QPSK version of this root-raised-cosine signal is fairly easy to generate and of
only slightly higher complexity than the BPSK system.

4. The migration from BPSK to QPSK doubles the data rate for a constant symbol rate
system and, therefore, a constant bandwidth.

5. The digital communications receiver needed to recover the message from this root-
raised-cosine signal will be more complex than if we had used rectangular pulses.

6. The matched filter associated with this root-raised-cosine signal’s receiver would ide-
ally experience no intersymbol interference (ISI). In practice, channel impairments,
finite length filters, and other nonideal implementation effects will result in at least
some ISI occurring.

310 CHAPTER 18. PROJECT 9: MPSK AND QAM DIGITAL TRANSMITTERS

18.4 DSK Implementation in C

When you understand the MATLAB code, the concept translation into C is fairly straight-
forward. The files necessary to run this application are in the ccs\Proj_QPSK_Tx direc-
tory of Chapter 18. The primary files of interest are impulseModulatedQPSK_ISRs.c and
impulseModulatedQPSK_ISRs_revA.c, which contain the interrupt service routines. These
files include the necessary variable declarations and perform two different versions of the
QPSK signal generation algorithm. Assuming the DSK’s codec you’re using is a stereo
device, the program could implement independent Left and Right channel QPSK transmit-
ters. For clarity, these example programs implement only one transmitter, but will output
this signal to both channels.

18.4.1 A Root-Raised-Cosine Pulse Shaped QPSK Transmitter

The declaration section of the code is shown in Listing 18.2. One item that isn’t shown here
is the file coeff.c which is also part of the CCS project. This file contains the coefficients of
a 120th-order root-raised-cosine FIR filter designed with and then exported from MATLAB.

Listing 18.2: Declaration portion of the impulse modulation root-raised-cosine pulse shaped
QPSK project code.

Int32 counter = 0 ;
2 #define QPSK SCALE 160000
const Int32 samplesPerSymbol = 20 ;

4 const Int32 cosine [4] = {1 , 0 , −1, 0} ;
const Int32 sine [4] = {0 , 1 , 0 , −1};

6

const f loat QPSK_LUT [4] [2] = {
8 // left (quadrature), right (in-phase)

{ 1 ∗ QPSK_SCALE , 1 ∗ QPSK_SCALE } , /* QPSK_LUT[0] */

10 { 1 ∗ QPSK_SCALE , −1 ∗ QPSK_SCALE } , /* QPSK_LUT[1] */

{ −1 ∗ QPSK_SCALE , 1 ∗ QPSK_SCALE } , /* QPSK_LUT[2] */

12 { −1 ∗ QPSK_SCALE , −1 ∗ QPSK_SCALE } , /* QPSK_LUT[3] */

} ;
14

f loat output_gain = 1 . 0 ;
16 f loat xI [6] ;

f loat xQ [6] ;
18 f loat yI ;

f loat yQ ;
20 f loat output ;

An explanation of Listing 18.2 follows.

1. (Line 1): Declares and initializes the counter variable, which is used to indicate where
the algorithm is relative to the beginning of the symbol (0) or the end of the symbol
(19).

2. (Line 2): Defines and initializes the QPSK constellation scaling constant QPSK_SCALE.
This constant is used in lines 7–13 to modify the excitation amplitude into the impulse
modulation filters.

3. (Line 3): Declares and initializes the samplesPerSymbol variable, which, as its name
implies, is the number of sample in a symbol. A symbol represents two bits in QPSK.

18.4. DSK IMPLEMENTATION IN C 311

4. (Line 4): Declares and initializes the cosine variable that contains all of the possible
LO’s values for a 12 kHz cosine carrier.

5. (Line 5): Declares and initializes the sine variable that contains all of the possible
LO’s values for a 12 kHz sine carrier.

6. (Lines 7–13): Declares and initializes the QPSK constellation lookup table. In this
table, the first column represents the Q-axis information and the second column rep-
resents the I-axis information.

7. (Line 15): Declares and initializes output_gain variable, which, as its name implies,
is the output gain of the transmitter. Unlike QPSK_SCALE, this gain is adjustable while
the program is running.

8. (Line 16): Declares the xI array that stores the current and past values of the mes-
sage’s in-phase bits.

9. (Line 17): Declares the xQ array that stores the current and past values of the mes-
sage’s quadrature bits.

10. (Line 18): Declares the variable yI that stores the current output of the in-phase
impulse modulator.

11. (Line 19): Declares the variable yQ that stores the current output of the quadrature
impulse modulator.

12. (Line 20): Declares the variable output that is the QPSK modulator’s output value.

The algorithm section of the code is shown in Listing 18.3.

Listing 18.3: Algorithm portion of the impulse modulation root-raised-cosine pulse shaped
project code.

// I added my impulse modulated QPSK routine here

2 i f (counter == 0) {
symbol = rand () & 3 ; /* generate 2 random bits */

4 xI [0] = QPSK_LUT [symbol] [RIGHT] ;
xQ [0] = QPSK_LUT [symbol] [LEFT] ;

6 }

8 // perform impulse modulation based on the FIR filter, B[N]

yI = 0 ;
10 yQ = 0 ;

12 for (i = 0 ; i < 6 ; i++) {
yI += xI [i]∗ B [counter + 20∗i] ; // perform the "I" dot-product

14 yQ += xQ [i]∗ B [counter + 20∗i] ; // perform the "Q" dot-product

}
16

i f (counter >= (samplesPerSymbol − 1)) {
18 counter = −1;

20 // shift xI[] and xQ[] in prep to receive the next input

for (i = 5 ; i > 0 ; i−−) {
22 xI [i] = xI [i−1] ; // setup xI[] for the next input value

312 CHAPTER 18. PROJECT 9: MPSK AND QAM DIGITAL TRANSMITTERS

xQ [i] = xQ [i−1] ; // setup xQ[] for the next input value

24 }
}

26

counter++;
28

output = output_gain ∗(yI∗cosine [counter&3] − yQ∗sine [counter&3]) ;
30

CodecDataOut . Channel [LEFT] = output ; // setup the LEFT value

32 CodecDataOut . Channel [RIGHT] = output ; // setup the RIGHT value

// end of my impulse modulated QPSK routine

An explanation of Listing 18.3 follows.

1. (Lines 2–6): Once per symbol period, we generate a random number that is bitwise
ANDed with 3. This bit masking operation generates the variable symbol which is
then used to access the QPSK lookup table. The appropriate row is selected by symbol
and the new values for xI and xQ are assigned. In a practical communications systems
the data bits would come from a data source instead of a random number generator.

2. (Lines 8–15 and 20–24): Performs both the I and Q FIR filtering associated with
the impulse modulators. The vector B contains the coefficients of the root-raised-
cosine filter designed with and exported from MATLAB, using the firrcos function.
Even though a 120th-order filter is being implemented, only 6 multiplies are required.
This is because all of the other multiplies have a zero in the operation. These other
multiplies are therefore not required since the outcome is already known! This is one
of the most important advantages of an impulse modulator.

3. (Lines 17–18): When counter is equal to 19, the algorithm has reached the end of
the symbol. At this point, counter is reset to start the next symbol period.

4. (Line 27): Increments the variable counter in preparation for the next ISR.

5. (Line 29): Calculates and scales the current output value. This results in a QPSK
signal centered at 12 kHz.

6. (Lines 31–32): Output the QPSK transmitter’s current value to both the left and
right channels.

18.4.2 A More Efficient RRC Pulse Shaped QPSK Transmitter

The declaration section of the code is shown in Listing 18.4. The code listing improves the
computational efficiency of the complex mixer by recognizing that only one of the mixers
will have a non-zero output value.

Listing 18.4: Declaration portion of the more efficient impulse modulation root-raised-cosine
pulse shaped QPSK project code.

1 Int32 counter = 0 ;
#define QPSK SCALE 10000

3 const Int32 samplesPerSymbol = 20 ;

5 const f loat QPSK_LUT [4] [2] = {
// left (quadrature), right (in-phase)

7 { 1 ∗ QPSK_SCALE , 1 ∗ QPSK_SCALE } , /* QPSK_LUT[0] */

18.4. DSK IMPLEMENTATION IN C 313

{ 1 ∗ QPSK_SCALE , −1 ∗ QPSK_SCALE } , /* QPSK_LUT[1] */

9 { −1 ∗ QPSK_SCALE , 1 ∗ QPSK_SCALE } , /* QPSK_LUT[2] */

{ −1 ∗ QPSK_SCALE , −1 ∗ QPSK_SCALE } , /* QPSK_LUT[3] */

11 } ;

13 f loat output_gain = 1 . 0 ;
f loat xI [6] ;

15 f loat xQ [6] ;
f loat output ;

An explanation of Listing 18.4 follows.

1. (Line 1): Declares and initializes the counter variable, which is used to indicate where
the algorithm is relative to the beginning of the symbol (0) or the end of the symbol
(19).

2. (Line 2): Defines and initializes the QPSK constellation scaling constant QPSK_SCALE.
This constant is used in lines 7–13 to modify the excitation amplitude to the impulse
modulation filters.

3. (Line 3): Declares and initializes the samplesPerSymbol variable, which, as its name
implies, is the number of sample in a symbol. A symbol represents two bits in QPSK.

4. (Lines 5–11): Declares and initializes the QPSK constellation lookup table. In this
table, the first column represents the Q-axis information and the second column rep-
resents the I-axis information.

5. (Line 13): Declares and initializes output_gain variable, which, as its name implies,
is the output gain of the transmitter. Unlike QPSK_SCALE, this gain is adjustable while
the program is running.

6. (Line 14): Declares the xI array that stores the current and past values of the mes-
sage’s in-phase bits.

7. (Line 15): Declares the xQ array that stores the current and past values of the mes-
sage’s quadrature bits.

8. (Line 16): Declares the variable output that is the QPSK modulator’s output value.

9. (comparing to the previous listing): There is no need for the cosine and sine oscil-
lators since their function (multiplication by -1, 0, or +1) is taken care of within the
program’s case statement. Additionally, yI and yQ are not needed since the system’s
output is assigned directly to the variable output.

The algorithm section of the code is shown in Listing 18.5.

Listing 18.5: Algorithm portion of the improved efficiency impulse modulation root-raised-
cosine pulse shaped project code.

// I added my impulse modulated , QPSK routine here

2 i f (counter == 0) {
symbol = rand () & 3 ; /* generate 2 random bits */

4 xI [0] = QPSK_LUT [symbol] [RIGHT] ; // lookup the I symbol

xQ [0] = QPSK_LUT [symbol] [LEFT] ; // lookup the Q symbol

6 }

314 CHAPTER 18. PROJECT 9: MPSK AND QAM DIGITAL TRANSMITTERS

8 output = 0 ;
switch (counter & 3) {

10 case 0 : // perform the I IM-based on the FIR filter, B[N]

for (i = 0 ; i < 6 ; i++) {
12 output += xI [i]∗ B [counter + 20∗i] ; // "I" dot-product

}
14 break ;

case 1 : // perform the Q IM-based on the FIR filter, B[N]

16 for (i = 0 ; i < 6 ; i++) {
output −= xQ [i]∗ B [counter + 20∗i] ; // "Q" dot-product

18 }
break ;

20 case 2 : // perform the -I IM-based on the FIR filter, B[N]

for (i = 0 ; i < 6 ; i++) {
22 output −= xI [i]∗ B [counter + 20∗i] ; // "-I" dot-product

}
24 break ;

default : // perform the -Q IM-based on the FIR filter, B[N]

26 for (i = 0 ; i < 6 ; i++) {
output += xQ [i]∗ B [counter + 20∗i] ; // "-Q" dot-product

28 }
break ;

30 }
i f (counter == (samplesPerSymbol − 2)) {

32 /* shift xI[] in preparation to receive the next I input */

for (i = 5 ; i > 0 ; i−−) {
34 xI [i] = xI [i−1] ; // setup xI[] for the next input value

}
36 }

else i f (counter >= (samplesPerSymbol − 1)) {
38 counter = −1; // reset in prep for the next set of bits

/* shift xQ[] in preparation to receive the next Q input */

40 for (i = 5 ; i > 0 ; i−−) {
xQ [i] = xQ [i−1] ; // setup xQ[] for the next input value

42 }
}

44

counter++;
46

CodecDataOut . Channel [LEFT] = output_gain∗output ; // LEFT output

48 CodecDataOut . Channel [RIGHT] = CodecDataOut . Channel [LEFT] ; // copy

// end of my impulse modulated , QPSK routine here

An explanation of Listing 18.5 follows.

1. (Lines 2–6): Once per symbol period, we generate a random number that is bitwise
ANDed with 3. This bit masking operation generates the variable symbol which is
then used to access the QPSK lookup table. The appropriate row is selected by symbol
and the new values for xI and xQ are assigned.

2. (Line 8): Initialize the system’s output prior to filtering.

3. (Line 9): Establishes a switch construct based upon a logical AND of the the current

18.5. HIGHER-ORDER MODULATION SCHEMES 315

value of counter and the number 3. This results in a modulo 4 switch operation to
take advantage of the non-zero values of the cosine and sine oscillators.

4. (Lines 10–14): Performs only the I dot product since the Q dot product will be
multiplied by zero.

5. (Lines 15–19): Performs only the Q dot product since the I dot product will be
multiplied by zero. The extra negative sign accounts for the subtraction prior to the
output.

6. (Lines 20–24): Performs only the negative of the I dot product since the Q dot product
will be multiplied by zero.

7. (Lines 25–29): Performs only the negative of the Q dot product since the I dot product
will be multiplied by zero. The extra negative sign accounts for the subtraction prior
to the output.

8. (Lines 31–36): When counter is equal to 18, the algorithm can prepare for the next
xI value.

9. (Lines 37–43): When counter is equal to 19, the algorithm can prepare for the next
xQ value. The algorithm has also reached the end of the symbol and counter is reset
to start the next symbol period.

10. (Line 45): Increments the variable counter in preparation for the next ISR.

11. (Line 47): Scales the output value and assigns the result to the left channel.

12. (Line 48): Copies the left channel output value to the right channel’s output.

18.4.3 Summary of Real-Time Code

We have created two real-time implementations of a QPSK transmitter. The second version,
though somewhat more complicated, requires about half of the computational resources than
the more easily understood, first version. The waveforms from either transmitter could be
used with a second DSK that is configured as a QPSK receiver, a concept that is discussed
in Chapter 19.

18.5 Higher-Order Modulation Schemes

Assuming that we maintain a constant symbol rate of 2,400 symbols per second, we have
increased from 1 bit/symbol using BPSK modulation, to 2 bits/symbol using QPSK mod-
ulation. The next two obvious steps are to proceed to 3 bits/symbol and then 4 bits/sym-
bol. This can be accomplished in a straightforward manner using 8-PSK modulation and
16-QAM modulation, respectively. The constellations associated with these modulations
schemes were previously shown as Figure 18.5 and Figure 18.7.

To implement an 8-PSK transmitter, you will need to generate three random data bits
per symbol. This can be accomplished using, symbol = rand() & 7;. The final change to
the code will require a lookup table that represents the 8-PSK constellation. To implement
an 16-QAM transmitter you will need to generate four random data bits per symbol. This
can be accomplished using, symbol = rand() & 15;. The final change to the code will
require a lookup table that represents the 16-QAM constellation.

316 CHAPTER 18. PROJECT 9: MPSK AND QAM DIGITAL TRANSMITTERS

In both of these cases, the symbol rate will remain at 2,400 symbols per second, the same
as for the BPSK and QPSK modulation examples previously discussed. However, for 8-
PSK modulation the data rate would be 7,200 bits per second, and for 16-QAM modulation
the data rate would be 9,600 bits per second (compared to 2,400 bps for BPSK and 4,800
bps for QPSK). Since it’s the symbol rate, not the data rate, that determines the signal
bandwidth, you can appreciate the advantage these higher-order modulation schemes offer.

18.6 Follow-On Challenges

Consider extending what you have learned.

1. In both the the MATLAB impulse modulator simulation and in the real-time imple-
mentations we used a 120th-order root-raised-cosine FIR filter. What is the effect of
using a lower-order filter on the system’s performance?

2. Research and implement a different modulation scheme.

3. Implement a different data rate. Hint: you will want to consider maintaining an
integer number of samples per symbol.

4. Explain whether the impulse modulators could be implemented using an IIR filter?

5. How would you design a raised-cosine or root-raised-cosine IIR filter?

6. How do the approaches discussed in this chapter compare to the analog filter approach?
That is, where you generate a rectangular shaped QPSK signal and then filter the
signal to the desired bandwidth using traditional analog filters.

7. Should you desire to work with a much lower order IIR filter you will want to explore
the MATLAB command, sosfilt. Notice that this toolbox function does not allow
you to retain the filter’s final condition. Write a MATLAB function that allows the
filter state to be retained.

Chapter 19

Project 10: QPSK Digital
Receivers

19.1 Theory

IN Chapter 18, we introduced a few of the basic techniques that can be used to generate
a QPSK signal. Since there are an unlimited number of different forms and specifications

associated with the generation of a QPSK signal, it should not be surprising that there are
just as many variations of the receiver. In this chapter, we will only introduce one of these
forms and a few of the techniques that can be used to recover the message contained within
a QPSK signal.

Specifically, we will discuss a QPSK receiver that will:

1. Remove the majority of the frequency translating effects of the signal’s carrier from
the incoming QPSK signal. This will be accomplished using a complex mixer driven
by a free-running oscillator set to the expected incoming signal’s carrier frequency.
At this stage in the receiver, the system will not be frequency-locked or phase-locked.

2. Process the near-baseband signal through IIR-based matched filters (MF). An IIR-
based approach will be used to greatly reduce the computational resources required
for this operation. Assume our QPSK signal was generated at the transmitter us-
ing impulse modulated (IM) “root raised-cosine” shaped pulses at 2,400 symbols per
second. This is similar to, but an interesting and common variation of, the normal
“raised cosine” shaped pulses we explored in Chapter 16. As is required for MF oper-
ation, the receiver will use an identical pair of root raised-cosine filters to that which
was used in the transmitter.1 We selected a MF-based receiver because it results in
the optimal signal to noise ratio (SNR) of the decision statistic in the presence of
additive white Gaussian noise (AWGN) [62].

3. Provide amplitude adjustment by an automatic gain control (AGC). The AGC applies
an adjustable, multiplicative scale factor to the output of the matched filters in an
attempt to stabilize the magnitude of the recovered signal’s constellation.

4. Control the phase rotation of the constellation using a de-rotation algorithm. The
phase rotator attempts to stabilize the phase of the signal’s constellation.

1As mentioned in Chapter 16, the calling sequence of many filter design commands are in flux. You
may want to read and run the code in filterDesignerComparison.m located in the MATLAB� directory
of Chapter 19.

317

318 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

5. Finally, symbol synchronization (or timing recovery) must be accomplished. We will
use a maximum likelihood (ML) based timing recovery loop to determine when to
sample the matched filter’s outputs. This sampling/decision process is equivalent to
determining where, on average, the eye-pattern is the most “open.” This sampling/de-
cision process also converts a series of filtered sampled signal values back into message
bits (0 or a 1).

At this point in our discussion, it cannot be overemphasized that all five of the above
actions must be completed properly and in the correct order for the individual message bits
to be recovered effectively. The simplified block diagram of our QPSK receiver is shown in
Figure 19.1.

Note that in general, the technical aspects of transmitters are “easier” than those of
receivers, and so, due to page constraints, receivers are not covered in as much detail
as are transmitters by the majority of textbooks. In particular, not many texts on digital
communications provide much detail regarding the theoretical intricacies of digital receivers,
particularly for modulation schemes beyond BPSK. Two notable exceptions are [63, 83];
both can be used as excellent references concerning digital receivers.

If we were to plot the outputs of the two matched filters versus each other, we would
ideally see the traditional phase trajectory diagram without the highlighted constellation
diagram sample points. We say ideally in that it is almost guaranteed, due to a lack of
frequency-lock or phase-lock, that the diagram will be slowly rotating and of the wrong
magnitude or scale. This can be seen in Figure 19.2. If we focus on just the first quadrant,
as shown in Figure 19.3, it should be clear that adjusting the actual point of magnitude
r1, to the desired point of magnitude r2, is just a scaling operation. This scaling will be
performed using AGC, the block diagram for which is shown in Figure 19.4. In this block
diagram, calculate envelope is accomplished by

√
I2 +Q2. The de-rotation algorithm is

accomplished by rotating the actual constellation by an angle of θ. While a number of
different algorithms exist for this angle determination, we are using a maximum likelihood
phase error detector, the block diagram for which is shown in Figure 19.5. In this diagram,
we used small humps, on three occasions, to make it clear that two lines may cross other
lines, but do not connect, except at their ends.

19.2 winDSK8 Demonstration

The winDSK program does not provide an equivalent receiver function. The commDSK
application of winDSK has transmitter functions only.

�
���������=�?�
�-����(��

�I�-=�
J�-

�I�-=�
J�-

�
���������=�K�
�-����(��

�������
����

������
�������

�
��

�
�
�

�������������
�����������

��������
������

��������
������

	L

Figure 19.1: A simplified block diagram of a QPSK receiver. The signal from the transmit-
ter/channel enters the system from the left.

19.3. MATLAB IMPLEMENTATION 319

Figure 19.2: A QPSK constellation in need of de-rotation and scaling.

������ �������

θ

,�

,�

Figure 19.3: A single constellation point in need of de-rotation and scaling.

19.3 MATLAB Implementation

We have chosen to develop the QPSK receiver in two parts. The first part will develop
the receiver through the AGC, while the second part will complete the receiver system
implementation. In both cases, a slightly modified QPSK transmitter from what we pre-

320 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

����������
�������

������������

	L �
����

����������
����

)

������
������

��M������
������

Figure 19.4: A basic block diagram associated with an AGC.

�
�
'��
��
���
�
�

��������

��������

�
����
���
�
��

�

�����
�������

����

)
�
��
��
�
�
��
�
�
�

�
�
M�
�
��
�
�
��

Figure 19.5: The block diagram of a maximum likelihood phase error detector.

sented perviously is required. This transmitter is based closely on the system developed
in Chapter 18, but modified for this receiver example to allow for the constellation to be
slightly rotated. This small amount of rotation will allow you to verify that your constel-
lation de-rotation loop is functioning properly. Such rotation will not be necessary in your
real-time system since there is no inherent synchronization between the transmitter and
the receiver, and some rotation is inevitable. As a reminder, in MATLAB� simulations,
common timing within the transmitter and receiver m-files provides for a very unrealistic
degree of synchronization between the transmitting and receiving system, so we have to
“force” some real-world effects into the m-file. This modified m-file also omits the plots
that were needed in Chapter 18.

Listing 19.1: Modified sections of the QPSK signal generator.

1 % to rotate the constellation

rotation = pi /6 ;
3 cr = cos (rotation) ;
sr = sin (rotation) ;

5 output = (I_IM_data∗cr−Q_IM_data∗sr) ∗cosine (mod (index , 4) +1) . . .
− (Q_IM_data∗cr+I_IM_data∗sr) ∗sine (mod (index , 4) +1) ;

19.3.1 Through the AGC

The code for a MATLAB simulation of a QPSK receiver, through the AGC, is shown in
Listing 19.2.

19.3. MATLAB IMPLEMENTATION 321

Listing 19.2: Simulation of a QPSK receiver (through the AGC only).

% save the original values from the transmitter simulation

2 temp = outputArray ;

4 % apply an additional scale factor to test the AGC

outputArray = 0.1∗ outputArray ; % 0.1 ... attenuation

6

% initialize the matched filters

8 ZiI = zeros (1 ,120) ;
ZiQ = zeros (1 ,120) ;

10

% preallocate the storage arrays

12 scaledI = zeros (1 , numberOfSamples) ;
scaledQ = zeros (1 , numberOfSamples) ;

14 I_mixer_output = zeros (1 , numberOfSamples) ;
Q_mixer_output = zeros (1 , numberOfSamples) ;

16

reference = 18000; % reference value (AGC’s goal)

18 AGCgain = 1 . 0 ; % initial AGC gain

alpha = 0.005/ reference ; % AGC loop gain

20

% ISR simulation ... storage is for plotting purposes

22 for index = 1 : numberOfSamples
% multiplication by the free running oscillators

24 I_mixer_output (index) = . . .
outputArray (index) ∗cosine (mod (index , 4) +1) ;

26 Q_mixer_output (index) = . . .
outputArray (index) ∗sine (mod (index , 4) +1) ;

28

% matched filters

30 [I (index) , ZiI] = f i l t e r (B , 1 , I_mixer_output (index) , ZiI) ;
[Q (index) , ZiQ] = f i l t e r (B , 1 , Q_mixer_output (index) , ZiQ) ;

32

% apply the AGC gain

34 scaledI (index) = AGCgain∗I (index) ;
scaledQ (index) = AGCgain∗Q (index) ;

36

% calculate the new AGC gain

38 magnitude = sqrt (scaledI (index) ∗scaledI (index) + . . .
scaledQ (index) ∗scaledQ (index)) ;

40 error = reference − magnitude ;
scaledError = alpha∗error ;

42 AGCgain = AGCgain + scaledError ;
end

44

% output terms

46 % Plotting commands follow ...

48 % restore the saved values ... this allows for repeated execution

outputArray = temp ;

322 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

Since a number of variables carry forward from the execution of the modified_QPSK_

DIGTx_listing_01.m file, you must run this script file before you run any of the receiver
files. An explanation of Listing 19.2 follows.

1. (Line 2): Saves the outputArray values from the QPSK transmitter m-file. This is
necessary since the AGC will modify these values. This operation works as a pair
with Line 49.

2. (Line 5): Scales the outputArray to 10 percent of its initial value. This will allow
you to observe and test the AGC’s operation.

3. (Lines 8–9): Initializes to zero the initial conditions associated with the two matched
filters.

4. (Lines 12–15): Preallocates variables for storage. This allows for a number of output
plots.

5. (Lines 17–19): Defines the AGC’s control parameters. The reference variable is
the target value that the AGC is trying to achieve. The AGCgain variable is the
current gain of the AGC system. Finally, the variable alpha is the loop gain of the
AGC’s control loop. Setting this variable to a larger value results in a quick response,
but a great deal of noise-like effects on the signal’s magnitude. Setting the variable
to a smaller value results in a much slower response, but a very consistent signal
magnitude.

6. (Lines 24–27): Multiplies the incoming signal by the free-running oscillator values.

7. (Lines 30–31): Performs the matched filtering and maintains the state of the filter for
the subsequent simulated ISR calls.

8. (Lines 34–35): Scales the signal by the current AGC gain.

9. (Lines 38–39): Calculates the magnitude of the signal. This occurs after the scaling
by the current AGC’s gain.

10. (Line 40): Calculates the error signal; the difference between the magnitude and the
reference value declared on line 17.

11. (Line 41): Scales the error by the AGC’s loop gain, alpha.

12. (Line 42): Implements the accumulator operation referred to in Figure 19.4.

13. (Line 49): Restores the values saved in line 2. This allows for repeated execution of
the receiver code without needing to rerun the transmitter code.

An example output plot of the signal’s constellation prior to the AGC is shown in
Figure 19.6. Notice the constellation’s small magnitude (relative to a 16-bit DAC’s input
range of +32, 767 to −32, 768) and its angular rotation. The de-rotation of the constellation
will be addressed in subsequent sections of this chapter. An example output plot of the first
20 ms of the signal’s magnitude prior to the AGC is shown in Figure 19.7. Notice again
the constellation’s small magnitude (relative to a 16-bit DAC’s input range of +32, 767 to
−32, 768). Also notice the initial transient lasts only a couple of milliseconds as the QPSK
transmitter’s filters warm up (i.e., fill with valid values). Also of interest is when the signal’s
magnitude nears zero. This is the motivation for such modulation schemes as offset QPSK
and π/4 differential QPSK. An example output plot of the signal’s constellation, after
the AGC, is shown in Figure 19.8, and an example output plot of the first 500 ms of the

19.3. MATLAB IMPLEMENTATION 323

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Q
 s

ig
na

l v
al

ue
, i

n
10

00
’s

I signal value, in 1000’s

Figure 19.6: QPSK phase trajectory plot prior to AGC.

0 5 10 15 20
0

0.5

1

1.5

2

si
gn

al
’s

 m
ag

ni
tu

de
, i

n
10

00
’s

time, in ms

Figure 19.7: QPSK magnitude plot prior to AGC.

signal’s magnitude, also after the AGC, is shown in Figure 19.9. Notice in Figure 19.8 the
constellation’s magnitude after AGC, compared to a 16-bit DAC’s input range of +32, 767
to −32, 768 (shown as a box around the constellation). Notice in Figure 19.9 that the AGC’s
transient only lasts a couple of hundred milliseconds.

19.3.2 A complete QPSK receiver

The MATLAB simulation of the complete QPSK receiver is shown in Listing 19.3.

324 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Q
 s

ig
na

l v
al

ue
, i

n
10

00
’s

I signal value, in 1000’s

Figure 19.8: QPSK phase trajectory plot after the AGC.

0 100 200 300 400 500
0

5

10

15

20

25

30

35

si
gn

al
’s

 m
ag

ni
tu

de
, i

n
1,

00
0’

s

time, in ms

Figure 19.9: QPSK magnitude plot after the AGC.

19.3. MATLAB IMPLEMENTATION 325

Listing 19.3: Simulation of the complete QPSK receiver.

1 % save the original values from the transmitter simulation

temp = outputArray ;
3

% apply an additional scale factor to test the AGC

5 outputArray = 0.4∗ outputArray ; % 0.4 ... attenuation

7 % initialize the matched filters

ZiI = zeros (1 ,120) ;
9 ZiQ = zeros (1 ,120) ;

11 % preallocate the storage arrays

Iscaled = zeros (1 , numberOfSamples) ;
13 Qscaled = zeros (1 , numberOfSamples) ;

I_mixer_output = zeros (1 , numberOfSamples) ;
15 Q_mixer_output = zeros (1 , numberOfSamples) ;

IsampledPlot = [] ;
17 QsampledPlot = [] ;

phaseAdjPlot = [] ;
19 phasePlot = [] ;

thetaPlot = [] ;
21

% AGC variables

23 reference = 18000; % reference value (AGC’s goal)

AGCgain = 1 . 0 ; % initial AGC gain

25 alpha = 0.001/ reference ; % AGC loop gain

27 % symbol timing recovery variables

phase = pi /6 ; % symbol timing recovery loop’s phase

29 phaseInc = 2∗pi/samplesPerSymbol ; % phase increment for the NCO

phaseGain = 0.2e−6; % symbol timing loop gain

31 Ziphase = zeros (1 , 13) ; % initial conditions for the MA filter

33 % constellation de-rotation variables

thetaGain = 1.0e−7; % the gain that controls the de-rotation loop

35 st = 1 ;
ct = 1 ;

37 phaseAdj = 0 ;
theta = 0 ;

39

% ISR simulation ... storage is for plotting purposes

41 for index = 1 : numberOfSamples
% multiplication by the free running oscillators

43 I_mixer_output (index) = . . .
outputArray (index) ∗cosine (mod (index , 4) +1) ;

45 Q_mixer_output (index) = . . .
outputArray (index) ∗sine (mod (index , 4) +1) ;

47

% matched filters

49 [I_mf (index) , ZiI]= f i l t e r (B , 1 , I_mixer_output (index) , ZiI) ;

326 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

[Q_mf (index) , ZiQ]= f i l t e r (B , 1 , Q_mixer_output (index) , ZiQ) ;
51

% apply the AGC gain

53 Iscaled (index) = AGCgain∗I_mf (index) ;
Qscaled (index) = AGCgain∗Q_mf (index) ;

55

% calculate the new AGC gain

57 magnitude = sqrt (Iscaled (index) ∗Iscaled (index) + . . .
Qscaled (index) ∗Qscaled (index)) ;

59 error = reference − magnitude ;
scaledError = alpha∗error ;

61 AGCgain = AGCgain + scaledError ;

63 phase = phase + phaseInc ;

65 % timing recovery loop

i f (phase >= 2∗pi)
67 phase = phase − 2∗pi ;

69 % derotation and sampling

st = sin (theta) ;
71 ct = cos (theta) ;

Isampled = Iscaled (index) ∗ct − Qscaled (index) ∗st ;
73 Qsampled = Qscaled (index) ∗ct + Iscaled (index) ∗st ;

IsampledPlot = [IsampledPlot Isampled] ;
75 QsampledPlot = [QsampledPlot Qsampled] ;

77 % slicer ... bit decisions

i f (Isampled > 0)
79 di = 1 ;

else
81 di = −1;

end
83 i f (Qsampled > 0)

dq = 1 ;
85 else

dq = −1;
87 end

89 % derotation adjustment ... calculate the new theta

thetaAdj = (di∗Qsampled − dq∗Isampled) ∗thetaGain ;
91 theta = theta − thetaAdj ;

i f (theta > 2∗pi)
93 theta = theta − 2∗pi ;

end
95

% timing adjustment

97 symTimingAdj = di ∗(Iscaled (index)−Iscaled (index−2)) + . . .
dq ∗(Qscaled (index)−Qscaled (index−2)) ;

99 % 13th order MA filter

[phaseAdj , Ziphase]= f i l t e r (phaseGain∗ones (1 , 14) /14 ,1 , . . .

19.3. MATLAB IMPLEMENTATION 327

101 symTimingAdj , Ziphase) ;
phase = phase − phaseAdj ;

103 end

105 % de-rotation

I (index) = Iscaled (index) ∗ct − Qscaled (index) ∗st ;
107 Q (index) = Qscaled (index) ∗ct + Iscaled (index) ∗st ;

phaseAdjPlot = [phaseAdjPlot phaseAdj] ;
109 phasePlot = [phasePlot phase] ;

thetaPlot = [thetaPlot theta] ;
111 end

113 % output terms

% Plotting commands follow ...

115

% restore the saved values ... this allows for repeated execution

117 outputArray = temp ;

Since a number of variables carry forward from the execution of the modified_QPSK_

DIGTx_listing_01.m file, you must run this script file before you run any of the receiver
files. An explanation of Listing 19.3 follows.

1. (Line 2): Saves the outputArray values from the QPSK transmitter m-file. This is
necessary since the AGC will modify these values. This operation works as a pair
with Line 117.

2. (Line 5): Scales the outputArray to 40 percent of its initial value. This will allow
you to observe and test the AGC’s operation.

3. (Lines 8–9): Initializes to zero the initial conditions associated with the two matched
filters.

4. (Lines 12–20): Preallocates variables for storage. This allows for a number of output
plots.

5. (Lines 23–25): Defines the AGC’s control parameters. The reference variable is the
target value that the AGC is trying to achieve. The AGCgain variable is the current
gain of the AGC system. Finally, the variable alpha is the loop gain of the AGC’s
control loop. Setting this variable to a larger value results in a quick response, but
causes a great deal of noise-like effects on the signal’s magnitude. Setting the variable
to a smaller value results in a much slower response, but a very consistent signal
magnitude.

6. (Line 28): Sets the symbol timing recovery loop to something other than zero.

7. (Line 29): Declares the phase increment associated with the free running oscillator’s
rate of 2400 symbols per second. This corresponds to one rotation per symbol, or 2π
divided by the number of samples in a symbol. For QPSK at 4800 bps and a sample
frequency of 48,000 Hz, this corresponds to 2π/20 = π/10.

8. (Line 30): Defines the symbol timing loop’s gain. This parameter is very sensitive to
even small variations.

9. (Line 31): Initializes to zero the initial conditions associated with the symbol timing
loop filter. This is a 13th-order (fourteen coefficient) filter.

328 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

10. (Line 34): Defines the de-rotation loop’s gain.

11. (Lines 35–38): Initializes st, sine of theta, ct, cosine of theta, phaseAdj, the adjust-
ment to the de-rotation phase (theta), and theta, the de-rotation angle theta.

12. (Lines 41–103): This is the actual ISR simulation.

13. (Lines 43–46): Multiplies the incoming signal by the free running oscillator values.

14. (Lines 49–50): Performs the matched filtering and maintains the state of the filter for
the subsequent simulated ISR calls.

15. (Lines 53–54): Scales the signal by the current value of the AGC gain.

16. (Lines 57–58): Calculates the magnitude of the signal. This occurs after the scaling
by the AGC’s current gain value.

17. (Line 59): Calculates the error signal, which is the difference between the magnitude
and the reference value declared on line 17.

18. (Line 60): Scales the error by the AGC’s loop gain, alpha.

19. (Line 61): Implements the accumulator operation referred to in Figure 19.4.

20. (Line 63): Increments the timing recovery loop’s phase by the phase associated with
one symbol period (π/10).

21. (Lines 66–103): These are the timing recovery and de-rotation loops. These algorithms
should run at the symbol rate (2400 symbols/second).

22. (Lines 66-67): If the phase variable is greater than 2π, it’s time to sample the con-
stellation and to perform a modulus 2π operation.

23. (Lines 70–73): Calculates the sine of theta and the cosine of theta and then de-rotates
the constellation sample values.

24. (Lines 78–87): Performs the bit decision process. This is referred to as slicing.

25. (Line 90–102): Implements the algorithm shown in Figure 19.5.

26. (Line 90): Implements the maximum likelihood phase estimation (high signal-to-noise
ratio (SNR) case).

27. (Line 91): Applies the negative feedback to theta.

28. (Lines 92–94): Performs a modulus 2π operation on theta.

29. (Lines 97–98): Calculates the symbol timing adjustment. We are using a second
difference to minimize the effects of higher frequency (i.e., closer to Fs/2) noise.

30. (Lines 100–101): Performs the loop filtering operation. Ideally, the maximum likeli-
hood symbol timing recovery loop uses an accumulator as its filter. During the initial
MATLAB simulations, this approach resulted in an unsatisfactory oscillation in the
system’s tracking. A moving average (MA) filter solved this problem.

31. (Line 102): Applies the phase adjustment to the phase variable.

32. (Lines 106–110): Calculates and stores intermediate results for subsequent plotting.

19.4. DSK IMPLEMENTATION IN C 329

33. (Line 117): Restores the values saved in line 2. This allows for repeated execution of
the receiver code without needing to rerun the transmitter code.

A number of MATLAB plots are provided at the completion of this QPSK receiver simu-
lation m-file. Only the plot of the constellation diagram is shown in Figure 19.10. In this
figure you can see the combined effects as the AGC, de-rotation, and symbol timing loops
all converge on the expected four crisp constellation points. This is a 2-second simulation
and the last 400 sample points are plotted in white. This is what causes the white holes at
the four expected constellation points.

19.4 DSK Implementation in C

When you understand the MATLAB code for the QPSK receiver, the concept translation
into C is fairly straightforward. The files necessary to run this application are provided in the
ccs\Proj_QPSK_Rx directory of Chapter 19. The primary files of interest are ISRs_AGC.c

and ISRs_Rx.c, which contain the interrupt service routines. These files include the neces-
sary variable declarations and perform two different versions of the QPSK signal generation
algorithm. Assuming the DSK’s codec you’re using is a stereo device, the program could
implement independent Left and Right channel QPSK receivers. For clarity, these example
programs implement only a single receiver, but will output this one signal to both L and R
channels.

19.4.1 Through the AGC

The declaration section of the code is shown in Listing 19.4.

−20 −10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

Q
 s

ig
na

l v
al

ue
, i

n
10

00
’s

I signal value, in 1000’s

Figure 19.10: QPSK constellation plot from simulation start-up.

330 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

Listing 19.4: Declarations for the “through AGC” portion of the QPSK receiver code.

1 Int32 i ;
Int32 fourcount = 0 ;

3 Int32 costable [4] = {1 , 0 , −1, 0} ;
Int32 sintable [4] = {0 , 1 , 0 , −1};

5

f loat Output_Q [5] = {0 , 0 , 0 , 0 , 0} ;
7 f loat Output_I [5] = {0 , 0 , 0 , 0 , 0} ;

9 /* IIR-based matched filters using second order sections (SOS) */

f loat SOS_Gain = −0.005691614547251;
11

f loat Stage1_B [3] = {1.0 ,−0.669057621555000 ,−0.505837557192856} ;
13 f loat Stage2_B [3] = {1.0 ,−1.636373970290336 , 0 .793253123708712} ;

f loat Stage3_B [3] = {1.0 ,−2.189192793892326 , 1 .206129332609970} ;
15 f loat Stage4_B [3] = {1.0 ,−1.927309142277217 , 0 .981006820709641} ;

17 f loat Stage1_A [3] = {1.0 ,−1.898291587416584 , 0 .901843187948439} ;
f loat Stage2_A [3] = {1.0 ,−1.898520943904540 , 0 .909540256532186} ;

19 f loat Stage3_A [3] = {1.0 ,−1.906315962519294 , 0 .928697673452646} ;
f loat Stage4_A [3] = {1.0 ,−1.920806676700677 , 0 .957209542544347} ;

21

f loat Stage1_Q [3] = {0 , 0 , 0} ;
23 f loat Stage2_Q [3] = {0 , 0 , 0} ;

f loat Stage3_Q [3] = {0 , 0 , 0} ;
25 f loat Stage4_Q [3] = {0 , 0 , 0} ;

27 f loat Stage1_I [3] = {0 , 0 , 0} ;
f loat Stage2_I [3] = {0 , 0 , 0} ;

29 f loat Stage3_I [3] = {0 , 0 , 0} ;
f loat Stage4_I [3] = {0 , 0 , 0} ;

31

f loat I , Q ;
33 f loat magnitude ;

f loat reference = 15000 . 0 ; // reference value

35 f loat error ; // error signal

f loat AGCgain = 1 . 0 ; // initial system gain

37 f loat scaledError ;
f loat alpha = 1e−7; // approximately 0.002/reference

An explanation of Listing 19.4 follows.

1. (Line 1): Declares the i variable, which is used in a number of for loops.

2. (Line 2): Declares and initializes the fourcount variable, which is used as a counter
that cycles through the pattern . . . 0, 1, 2, 3, 0, 1, 2, 3, . . .

3. (Lines 3–4): Declares and initializes the costable and sintable variables, which are
used as the free-running oscillators at a frequency of 12 kHz (Fs/4).

4. (Lines 6–7): Declares and initializes the Output_Q and Output_I variables, which are
used as the input and output of each of the four IIR-based second-order section (SOS)
matched filter stages.

19.4. DSK IMPLEMENTATION IN C 331

5. (Line 10): Declares and initializes the SOS_Gain variable, which is the overall gain of
the matched filters.

6. (Lines 12–20): Declares and initializes the SOS filters coefficients.

7. (Lines 22–30): Declares and initializes the states of the SOS filters.

8. (Line 31): Declares and initializes the I and Q variable, which are the outputs of this
system.

9. (Lines 33–38): Declares and initializes the variables involved in the AGC’s control
parameters. The magnitude variable is the magnitude of the received signal. The
reference variable is the target value that the AGC is trying to achieve. The error
variable is the error between the reference and the magnitude. The AGCgain variable
is the current gain of the AGC system. The scaledError variable is an intermediate
variable. Finally, the variable alpha is the loop gain of the AGC’s control loop.

The algorithm section of the code is shown in Listing 19.5.

Listing 19.5: Algorithm portion of the “through AGC” portion of the QPSK receiver code.

// multiplication by the free running oscillators

2 Output_I [0] = . . .
SOS_Gain∗CodecDataIn . Channel [LEFT]∗ sintable [fourcount] ;

4 Output_Q [0] = . . .
SOS_Gain∗CodecDataIn . Channel [LEFT]∗ costable [fourcount] ;

6

// 8th order, IIR-based matched filters

8 Stage1_Q [0] = Stage1_A [0] ∗ Output_Q [0] −
Stage1_A [1] ∗ Stage1_Q [1] −

10 Stage1_A [2] ∗ Stage1_Q [2] ;
Output_Q [1] = Stage1_B [0] ∗ Stage1_Q [0] +

12 Stage1_B [1] ∗ Stage1_Q [1] +
Stage1_B [2] ∗ Stage1_Q [2] ;

14

Stage1_I [0] = Stage1_A [0] ∗ Output_I [0] −
16 Stage1_A [1] ∗ Stage1_I [1] −

Stage1_A [2] ∗ Stage1_I [2] ;
18 Output_I [1] = Stage1_B [0] ∗ Stage1_I [0] +

Stage1_B [1] ∗ Stage1_I [1] +
20 Stage1_B [2] ∗ Stage1_I [2] ;

22 Stage2_Q [0] = Stage2_A [0] ∗ Output_Q [1] −
Stage2_A [1] ∗ Stage2_Q [1] −

24 Stage2_A [2] ∗ Stage2_Q [2] ;
Output_Q [2] = Stage2_B [0] ∗ Stage2_Q [0] +

26 Stage2_B [1] ∗ Stage2_Q [1] +
Stage2_B [2] ∗ Stage2_Q [2] ;

28 Stage2_I [0] = Stage2_A [0] ∗ Output_I [1] −
Stage2_A [1] ∗ Stage2_I [1] −

30 Stage2_A [2] ∗ Stage2_I [2] ;
Output_I [2] = Stage2_B [0] ∗ Stage2_I [0] +

32 Stage2_B [1] ∗ Stage2_I [1] +
Stage2_B [2] ∗ Stage2_I [2] ;

332 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

34

Stage3_Q [0] = Stage3_A [0] ∗ Output_Q [2] −
36 Stage3_A [1] ∗ Stage3_Q [1] −

Stage3_A [2] ∗ Stage3_Q [2] ;
38 Output_Q [3] = Stage3_B [0] ∗ Stage3_Q [0] +

Stage3_B [1] ∗ Stage3_Q [1] +
40 Stage3_B [2] ∗ Stage3_Q [2] ;

Stage3_I [0] = Stage3_A [0] ∗ Output_I [2] −
42 Stage3_A [1] ∗ Stage3_I [1] −

Stage3_A [2] ∗ Stage3_I [2] ;
44 Output_I [3] = Stage3_B [0] ∗ Stage3_I [0] +

Stage3_B [1] ∗ Stage3_I [1] +
46 Stage3_B [2] ∗ Stage3_I [2] ;

48 Stage4_Q [0] = Stage4_A [0] ∗ Output_Q [3] −
Stage4_A [1] ∗ Stage4_Q [1] −

50 Stage4_A [2] ∗ Stage4_Q [2] ;
Output_Q [4] = Stage4_B [0] ∗ Stage4_Q [0] +

52 Stage4_B [1] ∗ Stage4_Q [1] +
Stage4_B [2] ∗ Stage4_Q [2] ;

54 Stage4_I [0] = Stage4_A [0] ∗ Output_I [3] −
Stage4_A [1] ∗ Stage4_I [1] −

56 Stage4_A [2] ∗ Stage4_I [2] ;
Output_I [4] = Stage4_B [0] ∗ Stage4_I [0] +

58 Stage4_B [1] ∗ Stage4_I [1] +
Stage4_B [2] ∗ Stage4_I [2] ;

60

// update the filter’s state

62 for (i=0; i<2; i++) {
Stage1_Q [2−i] = Stage1_Q [(2−i) −1];

64 Stage2_Q [2−i] = Stage2_Q [(2−i) −1];
Stage3_Q [2−i] = Stage3_Q [(2−i) −1];

66 Stage4_Q [2−i] = Stage4_Q [(2−i) −1];

68 Stage1_I [2−i] = Stage1_I [(2−i) −1];
Stage2_I [2−i] = Stage2_I [(2−i) −1];

70 Stage3_I [2−i] = Stage3_I [(2−i) −1];
Stage4_I [2−i] = Stage4_I [(2−i) −1];

72 }

74 // apply the AGC gain

I = AGCgain∗Output_I [4] ;
76 Q = AGCgain∗Output_Q [4] ;

78 // calculate the new AGC gain

magnitude = sqrtf (I∗I + Q∗Q) ;
80 error = reference − magnitude ;

scaledError = alpha ∗ error ;
82 AGCgain = AGCgain + scaledError ;

84 // increment the counter ... 0, 1, 2, 3, ... repeat

19.4. DSK IMPLEMENTATION IN C 333

fourcount++;
86 i f (fourcount > 3) {

fourcount = 0 ;
88 }

90 // output I and Q for a "versus" plot on an oscilloscope

CodecDataOut . Channel [RIGHT] = I ;
92 CodecDataOut . Channel [LEFT] = Q ;

An explanation of Listing 19.5 follows.

1. (Lines 2–5): Multiplies the incoming signal by the free running oscillator values.

2. (Lines 8–59): Performs the matched filtering operations.

3. (Lines 62–72): Updates the state of the filter for subsequent ISR calls.

4. (Lines 75–76): Scales the signal by the current value of the AGC gain.

5. (Line 79): Calculates the magnitude of the signal. This occurs after the scaling by
the AGC’s current gain value.

6. (Line 80): Calculates the error signal, which is the difference between the magnitude
and the reference value.

7. (Line 81): Scales the error by the AGC’s loop gain, alpha.

8. (Line 82): Implements the accumulator operation referred to in Figure 19.4.

9. (Lines 85–88): Increments the fourcount variable and performs a modulus four op-
eration.

10. (Lines 91–92): Writes the I and Q variables to the output.

19.4.2 A complete QPSK receiver

The declaration section of the code is shown in Listing 19.6.

Listing 19.6: Declaration portion of the complete QPSK receiver project code.

Int32 i , di , dq ;
2 Int32 fourcount = 0 ;
Int32 costable [4] = {1 , 0 , −1, 0} ;

4 Int32 sintable [4] = {0 , 1 , 0 , −1};

6 f loat Output_Q [5] = {0 , 0 , 0 , 0 , 0} ;
f loat Output_I [5] = {0 , 0 , 0 , 0 , 0} ;

8

/* IIR-based matched filters using second order sections (SOS) */

10 f loat SOS_Gain = −0.005691614547251;

12 f loat Stage1_B [3] = {1 . 0 , −0.669057621555000 ,−0.505837557192856} ;
f loat Stage2_B [3] = {1 . 0 , −1.636373970290336 , 0 .793253123708712} ;

14 f loat Stage3_B [3] = {1 . 0 , −2.189192793892326 , 1 .206129332609970} ;
f loat Stage4_B [3] = {1 . 0 , −1.927309142277217 , 0 .981006820709641} ;

16

334 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

f loat Stage1_A [3] = {1 . 0 , −1.898291587416584 , 0 .901843187948439} ;
18 f loat Stage2_A [3] = {1 . 0 , −1.898520943904540 , 0 .909540256532186} ;

f loat Stage3_A [3] = {1 . 0 , −1.906315962519294 , 0 .928697673452646} ;
20 f loat Stage4_A [3] = {1 . 0 , −1.920806676700677 , 0 .957209542544347} ;

22 f loat Stage1_Q [3] = {0 , 0 , 0} ;
f loat Stage2_Q [3] = {0 , 0 , 0} ;

24 f loat Stage3_Q [3] = {0 , 0 , 0} ;
f loat Stage4_Q [3] = {0 , 0 , 0} ;

26

f loat Stage1_I [3] = {0 , 0 , 0} ;
28 f loat Stage2_I [3] = {0 , 0 , 0} ;

f loat Stage3_I [3] = {0 , 0 , 0} ;
30 f loat Stage4_I [3] = {0 , 0 , 0} ;

32 f loat I , Q ;
f loat Iscaled [3] = {0 , 0 , 0} ;

34 f loat Qscaled [3] = {0 , 0 , 0} ;
f loat Isampled , Qsampled ;

36 f loat magnitude ;
f loat reference = 15000 . 0 ; // reference value

38 f loat error ; // error signal

f loat AGCgain = 1 . 0 ; // initial system gain

40 f loat scaledError ; // error signal scaled by the AGC loop gain

f loat alpha = 1.0e−7; // approximately 0.002/reference

42

f loat phase = 0 . 5 ; // initial phase for the timing recovery loop

44 f loat phaseInc = 0.314159265358979 ; // phase increment (2pi/20)

f loat phaseGain = 0.2e−6; // gain for the symbol timing loop

46

f loat thetaGain = 1.0e−7; // gain for the de-rotation loop

48 f loat st = 1 . 0 ; // sin(theta)

f loat ct = 1 . 0 ; // cos(theta)

50 f loat phaseAdj = 0 ; // phase adjustment associated with theta

f loat symTimingAdj [1 4] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
52 f loat theta = 0 ; // constellation de-rotation angle

f loat thetaAdj ;

1. (Line 1): Declares the i variable, which is used in a number of for loops. Declares
the di and dq variables, which represent the output bits (digital I and digital Q).

2. (Line 2): Declares and initializes the fourcount variable, which is used as a counter
that cycles through the pattern . . . 0, 1, 2, 3, 0, 1, 2, 3, . . .

3. (Lines 3–4): Declares and initializes the costable and sintable variables, which are
used as the free running oscillators at a frequency of 12 kHz (Fs/4).

4. (Lines 6–7): Declares and initializes the Output_Q and Output_I variables, which are
used as the input and output of each of the four IIR-based second-order section (SOS)
matched filter stages.

5. (Line 10): Declares and initializes the SOS_Gain variable, which is the overall gain of
the matched filters.

19.4. DSK IMPLEMENTATION IN C 335

6. (Lines 12–20): Declares and initializes the SOS filters coefficients.

7. (Lines 22–30): Declares and initializes the states of the SOS filters.

8. (Line 32): Declares and initializes the I and Q variables, which are the outputs of this
system.

9. (Lines 33–34): Declares and initializes the buffers need to calculate the derivative of
Iscaled and Qscaled.

10. (Line 35): Declares the de-rotated I and Q sample points. The collection of these
points form the constellation diagram.

11. (Lines 36–41): Declares and initializes the variables involved in the AGC’s control
parameters. The magnitude variable is the magnitude of the received signal. The
reference variable is the target value that the AGC is trying to achieve. The error
variable is the error between the reference and the magnitude. The AGCgain variable
is the current gain of the AGC system. The scaledError variable is an intermediate
variable. Finally, the variable alpha is the loop gain of the AGC’s control loop.

12. (Line 43): Declares and initializes the phase variable which is used to track symbol
timing. When phase is ≥ 2π, symbol sampling takes place. The symbol sampling
should take place at “maximum eye opening.”

13. (Line 44): Declares and initializes the phaseInc variable to π/10. This is the incre-
mental phase associated with a symbol rate (baud) of 2400.

14. (Line 45): Declares and initializes the phaseGain variable. This variable sets the gain
in the symbol timing tracking loop.

15. (Line 47): Declares and initializes the thetaGain variable. This variable sets the gain
in the constellation de-rotation control loop.

16. (Lines 48–49): Declares and initializes the st and ct variables. These variables rep-
resent the sine and cosine of the angle theta.

17. (Line 50): Declares and initializes the phaseAdj variable. This variable represents the
calculated phase adjustment within the symbol timing control loop.

18. (Line 51): Declares and initializes the symTimingAdj variable. This variable is calcu-
lated based on the bit decisions and an estimate of the signal’s slope. These values
are then buffered and used in a moving average (MA) filter to determine the symbol
timing error, phaseAdj.

19. (Line 52): Declares and initializes the theta variable. This variable represents the
constellation’s rotation angle. This angle, once known, is removed by the de-rotation
algorithm.

20. (Line 53): Declares and initializes the thetaAdj variable. This variable represents the
phase adjustment within the constellation de-rotation control loop.

The algorithm section of the code is shown in Listing 19.7.

Listing 19.7: Algorithm portion of the complete QPSK receiver project code.

1 Output_I [0] =
SOS_Gain∗CodecDataIn . Channel [LEFT]∗ sintable [fourcount] ;

336 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

3 Output_Q [0] =
SOS_Gain∗CodecDataIn . Channel [LEFT]∗ costable [fourcount] ;

5

// 8th order, IIR-based matched filters

7 Stage1_Q [0] = Stage1_A [0] ∗ Output_Q [0] −
Stage1_A [1] ∗ Stage1_Q [1] −

9 Stage1_A [2] ∗ Stage1_Q [2] ;
Output_Q [1] = Stage1_B [0] ∗ Stage1_Q [0] +

11 Stage1_B [1] ∗ Stage1_Q [1] +
Stage1_B [2] ∗ Stage1_Q [2] ;

13

Stage1_I [0] = Stage1_A [0] ∗ Output_I [0] −
15 Stage1_A [1] ∗ Stage1_I [1] −

Stage1_A [2] ∗ Stage1_I [2] ;
17 Output_I [1] = Stage1_B [0] ∗ Stage1_I [0] +

Stage1_B [1] ∗ Stage1_I [1] +
19 Stage1_B [2] ∗ Stage1_I [2] ;

21 Stage2_Q [0] = Stage2_A [0] ∗ Output_Q [1] −
Stage2_A [1] ∗ Stage2_Q [1] −

23 Stage2_A [2] ∗ Stage2_Q [2] ;
Output_Q [2] = Stage2_B [0] ∗ Stage2_Q [0] +

25 Stage2_B [1] ∗ Stage2_Q [1] +
Stage2_B [2] ∗ Stage2_Q [2] ;

27 Stage2_I [0] = Stage2_A [0] ∗ Output_I [1] −
Stage2_A [1] ∗ Stage2_I [1] −

29 Stage2_A [2] ∗ Stage2_I [2] ;
Output_I [2] = Stage2_B [0] ∗ Stage2_I [0] +

31 Stage2_B [1] ∗ Stage2_I [1] +
Stage2_B [2] ∗ Stage2_I [2] ;

33

Stage3_Q [0] = Stage3_A [0] ∗ Output_Q [2] −
35 Stage3_A [1] ∗ Stage3_Q [1] −

Stage3_A [2] ∗ Stage3_Q [2] ;
37 Output_Q [3] = Stage3_B [0] ∗ Stage3_Q [0] +

Stage3_B [1] ∗ Stage3_Q [1] +
39 Stage3_B [2] ∗ Stage3_Q [2] ;

Stage3_I [0] = Stage3_A [0] ∗ Output_I [2] −
41 Stage3_A [1] ∗ Stage3_I [1] −

Stage3_A [2] ∗ Stage3_I [2] ;
43 Output_I [3] = Stage3_B [0] ∗ Stage3_I [0] +

Stage3_B [1] ∗ Stage3_I [1] +
45 Stage3_B [2] ∗ Stage3_I [2] ;

47 Stage4_Q [0] = Stage4_A [0] ∗ Output_Q [3] −
Stage4_A [1] ∗ Stage4_Q [1] −

49 Stage4_A [2] ∗ Stage4_Q [2] ;
Output_Q [4] = Stage4_B [0] ∗ Stage4_Q [0] +

51 Stage4_B [1] ∗ Stage4_Q [1] +
Stage4_B [2] ∗ Stage4_Q [2] ;

53 Stage4_I [0] = Stage4_A [0] ∗ Output_I [3] −

19.4. DSK IMPLEMENTATION IN C 337

Stage4_A [1] ∗ Stage4_I [1] −
55 Stage4_A [2] ∗ Stage4_I [2] ;

Output_I [4] = Stage4_B [0] ∗ Stage4_I [0] +
57 Stage4_B [1] ∗ Stage4_I [1] +

Stage4_B [2] ∗ Stage4_I [2] ;
59

// update the matched filter’s state

61 for (i=0; i<2; i++) {
Stage1_Q [2−i] = Stage1_Q [(2−i) −1];

63 Stage2_Q [2−i] = Stage2_Q [(2−i) −1];
Stage3_Q [2−i] = Stage3_Q [(2−i) −1];

65 Stage4_Q [2−i] = Stage4_Q [(2−i) −1];

67 Stage1_I [2−i] = Stage1_I [(2−i) −1];
Stage2_I [2−i] = Stage2_I [(2−i) −1];

69 Stage3_I [2−i] = Stage3_I [(2−i) −1];
Stage4_I [2−i] = Stage4_I [(2−i) −1];

71 }

73 // apply the AGC gain

Iscaled [0] = AGCgain∗Output_I [4] ;
75 Qscaled [0] = AGCgain∗Output_Q [4] ;

77 // calculate the new AGC gain

magnitude=sqrtf (Iscaled [0] ∗ Iscaled [0]+ Qscaled [0] ∗ Qscaled [0]) ;
79 error = reference − magnitude ;

scaledError = alpha ∗ error ;
81 AGCgain = AGCgain + scaledError ;

83 // increment the counter ... 0, 1, 2, 3, ... repeat

fourcount++;
85 i f (fourcount > 3) {fourcount = 0;}

87 phase = phase + phaseInc ;
// timing recovery and de-rotation control loops

89 i f (phase > 6.283185307179586) {
// GPIO control ... turn ON GPIO pin 6

91 WriteDigitalOutputs (1) ;
phase −= 6.283185307179586 ;

93

// de-rotation

95 st = sinf (theta) ;
ct = cosf (theta) ;

97 Isampled = Iscaled [0] ∗ ct − Qscaled [0] ∗ st ;
Qsampled = Qscaled [0] ∗ ct + Iscaled [0] ∗ st ;

99

// slicer ... bit decisions

101 i f (Isampled > 0) {di = 1;}
else {di = −1;}

103

i f (Qsampled > 0) {dq = 1;}

338 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

105 else {dq = −1;}

107 // de-rotation control ... calculate the new theta

thetaAdj = (di∗Qsampled − dq∗Isampled) ∗thetaGain ;
109 theta = theta − thetaAdj ;

i f (theta > 6.28318530717) {theta −= 6.28318530717 ;}
111

// symbol timing adjustment

113 symTimingAdj [0] = di ∗(Iscaled [0] − Iscaled [2]) +
dq ∗(Qscaled [0] − Qscaled [2]) ;

115

// MA filter of symTimingAdj (loop filter)

117 phaseAdj = 0 ;
for (i = 0 ; i < 14 ; i++) {phaseAdj += symTimingAdj [i] ; }

119 phaseAdj ∗= phaseGain /14 ;
for (i = 13 ; i > 0 ; i−−) {

121 symTimingAdj [i] = symTimingAdj [i−1] ;
}

123 phase −= phaseAdj ;

125 // GPIO control ... turn OFF GPIO pin 6

WriteDigitalOutputs (0) ;
127 }

129 I = Iscaled [0] ∗ ct − Qscaled [0] ∗ st ;
Q = Qscaled [0] ∗ ct + Iscaled [0] ∗ st ;

131

// update memory

133 Iscaled [2] = Iscaled [1] ;
Iscaled [1] = Iscaled [0] ;

135 Qscaled [2] = Qscaled [1] ;
Qscaled [1] = Qscaled [0] ;

137

CodecDataOut . Channel [RIGHT] = I ;
139 CodecDataOut . Channel [LEFT] = Q ;

An explanation of Listing 19.7 follows.

1. (Lines 1–4): Multiplies the incoming signal by the free running oscillator values.

2. (Lines 6–58): Performs the matched filtering operations.

3. (Lines 61–71): Updates the state of the filter for subsequent ISR calls.

4. (Lines 74–75): Scales the signal by the current AGC gain.

5. (Line 78): Calculates the magnitude of the signal. This occurs after the scaling by
the current AGC’s gain.

6. (Line 79): Calculates the error signal; the difference between the magnitude and the
reference value.

7. (Line 80): Scales the error by the AGC’s loop gain, alpha.

8. (Line 81): Implements the accumulator operation referred to in Figure 19.4.

19.4. DSK IMPLEMENTATION IN C 339

9. (Lines 84–85): Increments the fourcount variable and performs a modulus four op-
eration.

10. (Line 87): Increments the phase variable by π/10. This is the phase associated with
a symbol period.

11. (Line 89–127): Implements the timing recovery and de-rotation control loops. The
control loops activate if the phase exceeds 2π.

12. (Line 91): Turns “ON” GPIO pin number 6. This digital signal can be used to trigger
an oscilloscope.

13. (Line 92): Performs a modulus 2π operation.

14. (Line 95–98): Calculates the sine and cosine of theta and then de-rotates the I and
Q samples.

15. (Line 101–105): Performs the bit decision operation (slicer).

16. (Line 108–110): Calculates the new value of theta.

17. (Line 113–114): Calculates the adjustment to the symbol timing.

18. (Line 117–123): Implements a MA loop filter and corrects the timing recovery loop’s
phase.

19. (Line 126): Turns “OFF” GPIO pin number 6. This digital pulse is very narrow but
should occur at the symbol rate (2400 Hz). If you are using a digital oscilloscope, be
sure that your oscilloscope’s sample frequency captures every timing pulse.

20. (Line 129–130): Calculates the output values I and Q. This code is required to ensure
that an output occurs from each ISR call.

21. (Line 133–136): Buffers the values so that the derivative can be calculated.

22. (Lines 138–139): Writes the I and Q variables to the output.

19.4.3 System Testing

Both the C6713 DSK and the OMAP-L138 Experimenter Kit utilize audio codecs for their
conversions both to and from the analog world. Audio codecs in general are designed
with the assumption that they are only concerned with signal processing within the human
hearing range (typically, 20 Hz to 20 kHz). Despite this, it is common for the digital-to-
analog converters (DACs) in audio codecs to output energy outside of this band. In the
case of the OMAP-L138 Experimenter Kit, for example, there is significant energy above
the audio band that extends to about 2.5 MHz, which can be problematic when using test
and measurement equipment to evaluate your real-time project. This out-of-band energy
can be significantly suppressed using a simple circuit similar to that shown in Figure 19.11.
Even after applying this type of RC filter, it is not uncommon for the test and measurement
equipment (e.g., an oscilloscope) to display a phase trajectory, constellation, or eye pattern
that shows a significant amount of what appears to be noise. These signal variations are
probably not noise per se, but rather are caused by a number of non-noise phenomena such
as ground loops and coupling capacitors.

Using a traditional oscilloscope, set for “channel 1” versus “channel 2” to obtain a two-
dimensional “plot” if the I and Q signals, a display similar to that shown in Figure 19.12
should be obtained from the QPSK receiver project running in real-time. If a “histogram”

340 CHAPTER 19. PROJECT 10: QPSK DIGITAL RECEIVERS

))

�������
�����

���������
�����������

Figure 19.11: A lowpass filter for connecting to test and measurement equipment.

option is available for the oscilloscope, a display similar to that shown in Figure 19.13 can
be obtained.

Note that figures 19.12 and 19.13, taken from the receiver DSK, result from two DSKs
in operation simultaneously; one DSK is acting as the real-time QPSK transmitter, and the
other DSK is acting as the real-time QPSK receiver. The two DSKs are connected only
via the codec output of the transmitter and the codec input of the receiver, so there is no
synchronization between the DSKs. All synchronization is provided by the real-time code.

19.5 Follow-On Challenges

Consider extending what you have learned.

1. Design and implement your own loop filter within the ML timing recovery loop.

2. Design and implement an algorithm that detects, then provides some indication to
the user, when the AGC loop has converged to a constant gain value.

3. Design and implement an algorithm that detects, then provides some indication to
the user, when the de-rotation loop has converged to a constant theta value.

4. Design and implement an algorithm that detects, then provides some indication to
the user, when the ML timing recovery loop is locked and tracking the symbol rate.

5. Profile the ISR code and identify any computational bottlenecks.

6. Suggest possible improvements that minimize or remove these bottlenecks.

7. Implement at least one of your improvements and calculate the computational savings
of your new code.

8. Implement differential encoding and decoding to remove the phase ambiguity of the
QPSK system.

9. Implement the QPSK receiver using frame-based techniques.

19.5. FOLLOW-ON CHALLENGES 341

Figure 19.12: A stabilized QPSK phase trajectory.

Figure 19.13: A stabilized QPSK phase trajectory histogram.

This page intentionally left blankThis page intentionally left blank

Section III:
Appendices

343

This page intentionally left blankThis page intentionally left blank

Appendix A

Code Composer Studio: An
Overview

A.1 Introduction

CODE Composer StudioTM (CCS) is Texas Instruments’ (TI) integrated development
environment (IDE) for developing application programs on a wide variety of their

DSPs. In CCS, the editing, code generation, and debugging tools are all integrated into one
unified environment. You can select the target DSP, adjust the optimization parameters,
and set the user preferences as you desire.

An application program is developed based on the concept of a project, where the
information in the project file determines what source code files are used and how they will
be processed. Learning to use Code Composer Studio is a necessary step in bridging the gap
between DSP theory and real-time DSP if you plan to use TI processors. We recommend
that you devote some time to getting to know CCS.

In the first edition of this book, we included in Appendix A a tutorial on how to use CCS
for a typical project. That information is still provided (in updated form), but to allow more
versatility in the formatting of the tutorial information, we have moved the bulk of it on
to the CD-ROM that comes with this book. Look for files such as App_CCS_4_2_dsk6713.
pdf and App_CCS_4_2_omapl138.pdf in the docs\appendix_a directory on the CD-ROM.
This expanded tutorial is based on versions we have given as part of our Real-Time DSP
Workshops at various IEEE and ASEE conferences, and has been “field-tested” by many
people.

A.2 Starting Code Composer Studio

This book assumes that CCS is properly installed on a computer running a relatively recent
version of the Windows operating system (such as Windows XP, Windows 7, or later). As
stated in Chapter 1, this book also assumes your version of CCS is version 4.2 or later. If
your version is earlier than 4.2, you can usually obtain an updated version via download
from TI. If CCS is not yet installed, please install it now before continuing. This short
overview and the tutorial on CD-ROM are much more effective if you can follow along on
your computer.

How do you know if CCS is installed? Before moving on to the tutorial on the CD-ROM,
find on your computer either an icon or an entry on the start menu for CCS and use that

345

346 APPENDIX A. CODE COMPOSER STUDIO: AN OVERVIEW

to start the program.1 As the program is starting, you should see a CCS splash screen
similar to Figure A.1. The progress bar at the bottom of the splash screen indicates how
far the program initialization has proceeded. This initialization can take several seconds
depending on your system.

When the initialization is complete, the splash screen should disappear and the main
project window should appear in its place. This main project window should look similar to
Figure A.2, which shows a typical project already loaded into the CCS environment. Note
the hierarchal structure of the files associated with your project are shown on the left-most
pane in Figure A.2, the C source code is shown in the largest pane, and so forth. If you
have gotten this far, you are ready to turn to the tutorial on the CD-ROM.

A.3 Conclusion

After completing the CCS tutorial, you will be much more confident using this powerful
development tool, and will probably avoid some of the problems and frustrations that can
come with unfamiliarity with CCS. We also hope that, in the context of your new familiarity
of CCS, the format of all our CCS projects included with this book will make some sense
to you.

1CCS may have more than one icon and/or more than one start menu entry if you have installed the
program for more than one target DSP.

A.3. CONCLUSION 347

Figure A.1: The opening splash screen for Code Composer Studio version 4.2.

Figure A.2: The main project screen for Code Composer Studio version 4.2.

This page intentionally left blankThis page intentionally left blank

Appendix B

DSP/BIOS

B.1 Introduction

SOME readers are curious about DSP/BIOS, which is a real-time operating system spe-
cific to the Texas Instruments DSPs [84,85]. This appendix provides a short description

of DSP/BIOS, and several projects intended to get you started in the DSP/BIOS environ-
ment.

B.1.1 DSP/BIOS Major Features

The major features of DSP/BIOS include:

• The scheduler and its associated thread classes provide a mechanism for arranging
and controlling the software’s execution. The scheduler is preemptive, meaning that it
will periodically interrupt the currently executing thread, determine what the highest
priority thread is that is ready to execute, and start that thread running. One of the
DSP’s hardware timers is used to implement this preemptive behavior. The available
thread types will be discussed in more detail later in the chapter.

• Memory manager to control the operation of the memory/cache architecture and
control allocation of memory resources.

• Instrumentation that provides deterministic, minimally-invasive analysis, profiling,
and statistical functions.

• Communications resources, including queues, pipes and streams, and a device driver
mechanism.

• Support libraries providing standardization of access and hardware abstraction across
multiple DSPs. These include the board support library (BSL) providing board-level
functional support and the chip support library (CSL) providing DSP device-level
support.

B.1.2 DSP/BIOS Threads

DSP/BIOS provides several classes of threads that can be scheduled for execution:

• Hardware Interrupt (HWI): Executed in response to a hardware interrupt, so should
be very short and fast. Typically, these threads simply transfer data, and schedule

349

350 APPENDIX B. DSP/BIOS

a software interrupt for any further processing. The DSP/BIOS interrupt dispatcher
can be used to permit ordinary C functions to serve as interrupt service routines.

• Software Interrupt (SWI): Software interrupts are typically posted (scheduled) by a
HWI, and handle more involved interrupt processing while allowing hardware inter-
rupts to be processed without delay. The posting mechanism has a mailbox variable
that can be used to condition posting of ISR (i.e., can countdown to posting, or use
bits as flags). SWIs are preempted by HWIs and higher priority SWIs.

• Periodic Function (PRD): Periodic functions are a class of SWI that are scheduled at
regular intervals. DSP/BIOS automatically implements a hardware timer HWI and
SWI for PRD scheduling. PRDs are preempted by HWIs and higher priority SWIs.

• Tasks (TSK): Tasks are functions that run to completion once scheduled, and are in-
tended for longer duration, more complex processing that must be done when required.
TSKs are preempted by HWIs, SWIs, PRDs, and higher priority TSKs.

• Idle Functions (IDL): Idle functions execute when DSP/BIOS has no other pending
threads. They are most useful for true background tasks, like system maintenance
and self-test. If multiple IDLs are present, they are run to completion in round-robin
order.

B.2 DSP/BIOS Sample Projects

Sample project documentation and the complete source code is available in the threads

directory of Appendix B.

Appendix C

Numeric Representations

IN the digital domain, a given number may be stored and used in a number of different
representations. A number may be exactly representable in one form, but not in others.

How the number is represented will affect the accuracy of calculations, the memory and bus
bandwidth requirements, and the speed of calculations that can be attained.

C.1 Endianness

Typically, computer memories are addressable in bytes. If a data element is larger than
one byte, then a decision must be made as to how the individual bytes of the data element
are to be stored in memory. Given a 32-bit (4 byte) data element with hexadecimal value
12345678h, the data can be ordered in memory in two distinctly different ways. Assuming
the data is stored at address 00001000h, it could represented in either of the orderings
shown below.

Address 00001000h 00001001h 00001002h 00001003h

Big-endian 12h 34h 56h 78h

Little-endian 78h 56h 34h 12h

The choice of storage method determines what is commonly referred to as endianness, so
named since it is based on which end of a number is stored in the first byte of the memory
space that the number occupies. Big-endian organization placed the most significant byte
of the data at the first address, while little-endian places the least significant byte of the
data at the first address. There is no advantage of one over the other, and both are used
in practice. In fact, the TMS320C6x DSPs are capable of operating with either endianness
based on the setting of a processor pin at reset. By default, the DSK is configured to
operate in little-endian mode.

To verify the DSK’s endianness, open Code Composer Studio, and use View→Memory
to open two memory windows at address 00000000h. Set the properties on one memory
window to 32-Bit Hex - TI Style and the other to 8-Bit Hex - TI Style. Then, in the
32-bit window, set the value at address 00000000h to 12345678h. After making the change,
observe how the bytes of the value are stored in the 8-bit window in order to determine the
endianness in use.

While endianness will likely not affect typical single-processor DSP code, you should
be aware of it, particularly if transferring information between processors, working in a
multiprocessor environment with shared memory, or manipulating individual bytes of multi-
byte data elements directly.

351

352 APPENDIX C. NUMERIC REPRESENTATIONS

C.2 Integer Representations

Integer representations use a number of bits to represent just the integer part of a number;
that is, they cannot represent any fractional part of a number. Integer representations
can be broadly divided into those that represent signed numbers and those that represent
unsigned (nonnegative) numbers.

In general, an unsigned integer can represent any value in the range from 0 to 2n − 1,
where n is the width of the unsigned integer in bits. For example, with an 8-bit unsigned
integer value, the minimum value will be 000000002 = 010. The maximum value will be
111111112 = 25510 = 28 − 1.

Signed representations can represent both positive and negative values, using one of
several conventions. The most commonly used is the 2’s-complement representation. In
this representation, the most significant bit determines the sign of the number, with a 1
signifying a negative number. The determination of a positive value is straight forward in
that it can simply be interpreted as an unsigned number. However, if a number is negative,
then it is easiest to determine its value by negating it and interpreting the resulting positive
value as the magnitude of the negative value. To negate a 2’s-complement number, simply
complement the number (flip the value of each bit) and add 1. If the addition carries beyond
the number of bits in the number, the carry is discarded.1 The number that remains is
interpreted as though it is unsigned, and a negative sign is added. This is illustrated for
six different 8-bit 2’s-complement numbers below, with only the first of the numbers being
positive.

binary value complement add 1 decimal value

01100011 (not needed) NA 99

11100011 00011100 00011101 −29
11111111 00000000 00000001 −1
11111110 00000001 00000010 −2
10000001 01111110 01111111 −127
10000000 01111111 10000000 −128

While the 2’s-complement representation may seem strange, it has a great advantage over
other representations in the design of computer arithmetic hardware. In general, 2’s-
complement integers can represent any value in the range from (−2n−1) to (+2n−1 − 1),
where n is the width of the 2’s-complement integer in bits. For example, with an 8-bit 2’s-
complement integer value, the minimum value will be 100000002 = −12810. The maximum
value will be 011111112 = +12710.

Another relatively common method for representing signed binary integers is to use the
sign-magnitude convention. In this case, the most significant bit again determines the sign
with a 1 signifying a negative number, but the remaining bits are interpreted as an unsigned
magnitude. This has an advantage in that the representation is symmetric about 0, as
compared to the 2’s-complement representation where it can represent one more negative
value than positive value. For example, with an 8-bit sign-magnitude integer value, the
lowest value will be 111111112 = −12710. The highest value will be 011111112 = +12710.
The values 000000002 and 100000002 both represent 0.

Note that for an integer representation, every possible bit combination is in fact a valid
value—this makes it impossible to represent or detect erroneous values in hardware without
modifying the representation.

1An alternate method of negating a 2’s-complement number: begin at the least significant bit, and move
to the left keeping digits unchanged up to and including the first “1” that is encountered. Then complement
all the remaining bits.

C.3. INTEGER DIVISION AND ROUNDING 353

C.3 Integer Division and Rounding

In general, if we were asked to round the result of a division, the common solution is to
see if the fraction part is 0.5 or greater; if so, add 1 to the result, then simply truncate to
the integer value. However, integer division hardware produces the integer quotient and a
remainder, not a fractional value. So, to do rounding, one method would be to add one
to the quotient if the remainder is greater than the divisor divided by two. However, this
requires the following additional steps:

1. obtain the divisor divided by two

2. compare to the remainder

3. conditionally add one to the quotient

A more efficient approach is to recognize that if we add one half of the divisor to the dividend
before division, the result will be rounded. This requires the following additional steps:

1. obtain divisor divided by two (with any remainder truncated)

2. add to the dividend before the division

The truncated result will in fact be rounded, as shown below for an 8-bit unsigned integer.

Operation Dividend Divisor Quotient

47÷3 001011112 (47) 000000112 (3) 000011112 (15)

(47+(3÷2))÷3 001100002 (48) 000000112 (3) 000100002 (16)

When programming computer hardware that does not have a hardware integer divider
(i.e., the TMS320C6x family), great pains are taken in algorithm implementation to avoid
division by anything other than a power of two. This allows the division operations to be
accomplished using bit-wise shifts, since every right-shift is equivalent to division by two,
as shown below for an 8-bit unsigned integer. (Conversely, a left shift is equivalent to a
multiplication by two.) Even in machines having a hardware integer divider, it is much
faster to perform division by powers of 2 as shifts.

Initial Value Shift Equivalent to Result

001011112 (4710) right 1 ÷2 000101112 (2310)

001011112 (4710) right 2 ÷4 000010112 (1110)

001011112 (4710) right 3 ÷8 000001012 (510)

001011112 (4710) right 4 ÷16 000000102 (210)

001011112 (4710) right 6 ÷64 000000002 (010)

001011112 (4710) left 1 ×2 010111102 (9410)

001011112 (4710) left 2 ×4 101111002 (18810)

001011112 (4710) left 3 ×8 011110002 (12010)

Note that in the last result, overflow occurred and the result is erroneous. This highlights
a significant limitation in the dynamic range available when using integer representations.
Floating point representations help to mitigate this problem, although they are subject to
similar issues as well.

354 APPENDIX C. NUMERIC REPRESENTATIONS

C.4 Floating-Point Representations

In floating point representations, numbers are stored as a mantissa and exponent value,
similar to the scientific notation we commonly use. However, instead of being stored in
the form (mantissa10 × 10exponent10), a floating point representation is stored in a binary
format as (mantissa2 × 2exponent2). Commonly used floating point representations include
the IEEE single-precision and double-precision formats [86], as illustrated in Figure C.1.

� D D D D D D D D D D D !!!!!!! !!!! !!!

8/8. 3.3(-/(/.

� D D D D D D D D!!!!!!!!!!!!!!!!!!!!!!!

-...//-/(

����������������

����������������

Figure C.1: IEEE-754 floating-point representations.

The following discussion focuses on the single-precision representation in detail; the dou-
ble precision representation is conceptually similar. In the single precision representation,
the S bit determines the sign of the number, where a 0 value indicates a positive number
and a 1 value indicates a negative value. This can be expressed as −1S. The 8-bit exponent
portion of the number is biased by 127 (called “excess 127”), such that an exponent value
of 000000002 is interpreted as a value of −127, a value of 111111112 (25510) is interpreted
as +128, and a value of 011111112 (12710) is interpreted as an exponent of 0. This results
in an potential exponent term multiplier of 2−127 to 2+128, but as we shall see later, some
exponent values are reserved for special cases. The 23-bit mantissa portion is interpreted
as a binary value 1.MMM· · · MMM, where the radix point is a binary point, not a decimal point.
The value of each mantissa bit therefore takes on the values shown below.

1 . M M M · · · M M M

2−1 2−2 2−3 · · · 2−21 2−22 2−23

By assuming the leading bit to be a 1 (the normalized condition), the allowable range
of the mantissa can be seen to be from a low of (1.0), where all M bits are 0, to a high of
(2.0− 2−23), where all M bits are 1. Example floating point values are shown next.

C.4. FLOATING-POINT REPRESENTATIONS 355

Hexadecimal SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM

= −1S × (1.MMMMMMMMMMMMMMMMMMMMMMM2)× 2EEEEEEEE2−127

0x3F800000 0011 1111 1000 0000 0000 0000 0000 0000

= −10 × (1.000000000000000000000002)× 2127−127

= 1× (1)× 20 = 1.0

0xBF800000 1011 1111 1000 0000 0000 0000 0000 0000

= −11 × (1.000000000000000000000002)× 2127−127

= −1× (1)× 20 = −1.0
0xC2820000 1100 0010 1001 0011 0000 0000 0000 0000

= −11 × (1.001001100000000000000002)× 2133−127

= −1× (1 + 2−3 + 2−6 + 2−7)× 26 = −73.5
0x7F00000 0111 1111 0000 0000 0000 0000 0000 0000

= −10 × (1.000000000000000000000002)× 2254−127

= 1× (1)× 2127 = 1.7014118× 1038

0x3DCCCCCD 0011 1101 1100 1100 1100 1100 1100 1101

= −10 × (1.100110011001100110011012)× 2123−127

= 1× (1 + 2−1 + 2−4 + 2−5 + 2−8 + 2−9 + 2−12 + 2−13

+ 2−16 + 2−17 + 2−20 + 2−21 + 2−23)× 2−4

= 0.10000000149012 ≈ 0.1

As the last entry above shows, even though the floating point number has a seemingly
benign value such as 0.1, it may well not be possible to represent it exactly in a given
format. In fact, 0.1 can be exactly represented only by the infinite binary series

∞∑
i=1

1

24i
+

1

24i+1
,

and so any use of it in calculations is inexact. Although the difference may seem trivial,
using the value in a repeated calculation leads to larger accumulated errors, and a form of
quantization noise will be found in the results.

If a leading 1 in the mantissa is assumed, then it is not possible to exactly represent 0.0.
To overcome this, a special case is designated to represent 0.0 exactly; if the exponent and
the mantissa fields are both all 0’s, then the value of the number is defined by the IEEE
standard to be exactly 0.0.

Although the floating point representation permits the representation of a much wider
range of values, there exists the potential for other inaccuracies in mathematical computa-
tion. One such effect that may occur happens when adding a small number to a much larger
number. In order to add or subtract two floating point numbers, they must be converted to
the same exponent value, then the mantissas can be added. After adding the mantissas, the
resulting number is normalized by determining the most significant 1 bit, then adjusting
the exponent so that bit becomes the assumed 1 bit in the representation. If two numbers
are added together where one number is substantially larger than the other, the result may
not be accurate. By way of illustration, assume that there are two operands with values as
given below.

SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM

Operand1 0100 1011 1000 0000 0000 0000 0000 0000 (16,777,216.0)

Operand2 0011 1111 1000 0000 0000 0000 0000 0000 (1.0)

356 APPENDIX C. NUMERIC REPRESENTATIONS

After converting both numbers to the same exponent by converting Operand2 to an expo-
nent of 151 (100101112), the mantissa addition would take place as shown below (exponents
not shown).

1.MMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM

Mantissa1 1.000 0000 0000 0000 0000 0000 ---- ---- ---- ---- ----

Mantissa2 0.000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000

Sum 1.000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000

Sum mantissa 000 0000 0000 0000 0000 0000

In order to store the resultant mantissa, it must be truncated to 23 bits. When this is done,
it can be seen that the original Operand1 mantissa value has not changed, and therefore
the addition operation had no effect. A more complete discussion of numerical accuracy in
computing can be found in [87,88].

In addition to storing normalized numbers, special representations are used in the IEEE
floating-point standard to express non-normalized numbers as well as various invalid num-
bers and error conditions, such as NaN (not a number). A complete discussion of these can
be found in [86].

C.5 Fixed-Point Representations

Although floating-point data representation and manipulation are more intuitive to most
engineers, the use of floating-point is not without penalty. First, the floating-point rep-
resentations may be wider than necessary and therefore increase system cost and power
consumption with no benefit. Also, integer hardware is significantly simpler than floating
point hardware, so it can be designed to operate faster and consume less power. These
attributes are the reason that floating-point DSPs are almost never used in high-volume
portable product applications, notably in most cellular telephones. In these commodity
market environments, cost and low power consumption are dominating factors, and the
additional programming complexity required to implement algorithms on fixed-point hard-
ware can be amortized over a large number of units. Also for a given width (i.e., 32 bits),
the fixed-point number will have better resolution (and hence a lower noise floor) than a
floating-point representation (assuming the proper scaling is performed). This is due to the
fewer number of bits in the floating-point mantissa as compared to the fixed-point number.

Fixed-point representations are used to allow the implementation of fractional arithmetic
using only integer arithmetic hardware. In fixed-point, a binary point is assumed to exist
at a fixed location in a 2’s-complement number, typically in a 16-bit value. The location of
the binary point is indicated by the Q-number notation, such that a Qn number is assumed
to have n bits to the right of the binary point. The most commonly used are the Q15 and
Q12 formats, as illustrated below.

Q15 S.XXX XXXX XXXX XXXX 10000000000000002 = −1.0000000
01111111111111112 = +0.9999695

Q12 SXXX. XXXX XXXX XXXX 10000000000000002 = −8.0000000
01111111111111112 = +7.9997559

To determine the decimal value of a fixed-point number, first determine if it is positive or
negative. The sign bit S is 1 for negative numbers and 0 for positive numbers. For a negative
number, convert it to the corresponding positive value as was done for 2’s-complement

C.6. SUMMARY OF NUMERIC REPRESENTATIONS 357

integers. Then determine the value based on sum of the individual bits multiplied by their
weight.

binary value complement add 1 decimal value

Q15 0.110100000000000 not needed NA 1
2
+ 1

4
+ 1

16
= 0.8125

Q12 0110.100000000000 not needed NA 4 + 2 + 1
2
= 6.5

Q15 1.110100000000000 0.001011111111111 0.001100000000000 −(1
8
+ 1

16
) = −0.1875

Q12 1110.100000000000 0001.011111111111 0001.100000000000 −(1 + 1
2
) = −1.5

It is important to note that fixed-point arithmetic is intended to be accomplished on
standard 2’s-complement integer arithmetic hardware, so it must yield correct results with-
out modification. Using the Q15 values of 0.375 (38) and −0.25 (− 1

4), addition using integer
logic is illustrated below.

0.375 = 0.011000000000000

+ −0.250 = 1.110000000000000

10.001000000000000 but carry out is lost

0.001000000000000 = 0.125

Binary multiplication of two n-bit numbers results in a 2n-bit result. The result of
multiplying two Q15 numbers is a 32-bit number in Q30 representation with a redundant
sign bit. To return the result to Q15 format, it is shifted right 15 bits and truncated to 16
bits. (Note that multiplying negative numbers requires a different algorithm, not illustrated
here.)

0.375 = 0011 0000 0000 0000

× 0.750 = 0110 0000 0000 0000

0 0110 0000 0000 000

00 1100 0000 0000 00

0001 0010 0000 0000 0000 0000 0000 0000

(shift right 15 bits)→ 0 0010 0100 0000 0000

(truncate to 16 bits)→ 0010 0100 0000 0000 = 0.28125

It is useful to note that the exponent in floating point provides automatic scaling,
whereas in fixed-point the scaling must be performed in the algorithm as required to pre-
vent overflow. Q15 is commonly used in signal processing since multiplication of two Q15

numbers will never overflow beyond the range of the Q15 number with the exception of the
(−1×−1) case.

C.6 Summary of Numeric Representations

A summary of the numeric range, precision, and dynamic range of various number represen-
tations is provided in Table C.1. Signed integer calculations are based on the 2’s-complement
representation. Numeric range shows the most negative and most positive values that can
be represented. Precision is defined as the smallest increment that the given representation
can represent in normalized form. For floating point representations, the precision figure
is based on the smallest mantissa increment that can be used in an addition/subtraction

358 APPENDIX C. NUMERIC REPRESENTATIONS

with a value of 1.0 and still affect the resultant mantissa value. Dynamic range D for all

representations can be calculated (in decibels) as D = 20 log
(

numeric range
precision

)
. Note that the

floating point representations can represent a much larger range of values than the precision
represented by the mantissa (for example, a range in excess of 1600 dB for single-precision
values), however, for any given value being represented there is a related range of values
that can be added to the current value without the computation’s effect being lost. In a
sense, the exponent of the floating-point number could be thought of as determining where
the current dynamic range of the floating-point number exists in the much larger value
space of the numeric representation.

Table C.1: Summary of numeric representations.

Numeric Dynamic

Bits Range Precision Range

8 Unsigned integer 0 → +255 1 ≈ 48 dB

8 Signed integer −128 → +127 1 ≈ 48 dB

16 Unsigned integer 0 → +65, 536 1 ≈ 96 dB

16 Signed integer −32, 768 → +32, 767 1 ≈ 96 dB

16 Fixed-point (Q12) −8.0 →≈ +7.999756 ≈ 0.000244 ≈ 96 dB

16 Fixed-point (Q15) −1.0 →≈ +0.9999695 ≈ 0.0000305 ≈ 96 dB

32 Unsigned integer 0 → +4, 294, 967, 296 1 ≈ 193 dB

32 Signed integer −2, 147, 483, 648 → +2, 147, 483, 647 1 ≈ 193 dB

32 Single-precision ≈ ±3.402823× 1038 ≈ 1.19× 10−7 ≈ 138 dB

64 Double-precision ≈ ±1.797693× 10308 ≈ 2.22× 10−16 ≈ 314 dB

Appendix D

TMS320C6x Architecture

THE first section of this appendix is intended to serve as a basic primer on computer
architecture to the extent necessary to have a better understanding of the TMS320C6x

architecture. It is assumed that the reader has a basic understanding of microprocessor
operations. The second section then discusses the TMS320C6x architecture in some detail.
Readers familiar with computer architecture may find it unnecessary to read the first section
in order to understand the second section. For more detailed information on the TMS320C6x
processors, the reader is referred to the technical documentation from Texas Instruments
(for example [68,89]).

D.1 Computer Architecture Basics

One definition of computer architecture is “. . . an abstract interface between the hardware
and the lowest level software of a machine that encompasses all the information necessary to
write a machine language program that will run correctly, including instructions, registers,
memory size, and so on” [90]. When selecting and using a processor to perform a given task,
the underlying construction of the processor will determine what it does well and what it
does not, and ultimately, whether it meets the design requirements.

A basic microprocessor system is illustrated in Figure D.1. The central processing unit
(CPU) contains registers (in this example, R0–R7) and the functional units (in this example
just an arithmetic-logic unit (ALU)), all interconnected by signaling buses and sequenced
by the timing and control unit. The memory system and input/output (I/O) subsystems
are connected to the CPU by the system bus. The clock generator provides the timing for
the logic operation and the reset circuit ensures the processor starts from a known state. A
number of peripheral devices are commonly found in the I/O subsystem of a microprocessor
system.

• Parallel I/O ports interface to external devices for control or sensing.

• Serial ports facilitate communications with local or distant devices using various serial
protocols and hardware.

• Counter/timers are used to established precise timing intervals, generate rectangular
waveforms, and to count external events.

Although the I/O and memory are shown in Figure D.1 as external to the CPU, in practice
they may be integrated onto the actual processor device.

359

360 APPENDIX D. TMS320C6X ARCHITECTURE

	�N

%-

%.

%(

%/

%0

%3

%8

%9

"������
O�

 ������

!������
���������

?����
@������
���������

 ���$�
O�

%����

 ������������������N���

D*�������
������

Figure D.1: Basic microprocessor system.

D.1.1 Instruction Set Architecture

One way to differentiate processors is in the make-up of their instruction set architecture
(ISA), the set of commands that the processor can execute and the hardware required to
execute them. On one end, the complex instruction set computer (CISC) supports instruc-
tions that can perform complicated tasks. For example, a single instruction may execute a
complete FIR filter routine, or search for a given value in an array. At the other extreme,
reduced instruction set computers (RISC) have only a limited number of low-level instruc-
tions. So, more complex tasks must be accomplished as a series of simple instructions. In
particular, a RISC instruction set usually only permits operations on data stored in the
processor’s registers, and has a very limited number of instructions that move data between
memory and the registers. Since the CISC machine effectively executes complex tasks in
hardware, it should have (and often does have) a performance advantage on a limited set
of very specific task(s). However, complex instruction sets make it extremely difficult to
optimize the performance of a processor in a general sense (and to develop efficient compil-
ers for high-level languages), so nearly all general-purpose microprocessors are now RISC.
(Although the ubiquitous Intel 80x86 architecture is programmed using a CISC instruction
set, Pentium Pro and later implementations perform real-time translation of those instruc-
tions into RISC-like micro-operations that are then executed by the processor core.) The
ARM family of processors, such as the ARM926EJ-S core in the OMAP-L138 multi-core
system-on-chip, is RISC.

D.1.2 Register Architectures

Another broad classification of processor architectures is based on the possible locations
of an instruction’s source and destination operands. There are two common architectures
classified in this way.

Register-memory: architectures allow one or more instruction operands to be located in
memory. This architecture is commonly used in CISC machines.

Load-store: architectures require that all instruction operands be in registers. Only a

D.1. COMPUTER ARCHITECTURE BASICS 361

����
!�����

 ���
!�����

�
N

�
N

����

����

 ���

1���

1���

 ���

2������	����������� P���5������	�����������

Figure D.2: Memory architectures.

very few instructions have access to memory, and these typically perform only simple
transfers from memory to a register (load) or from a register to memory (store). The
TMS320C6x DSPs use a load-store architecture.

D.1.3 Memory Architectures

The organization of processor memory space is a key element of the overall operation of the
system. The information in memory consists of two distinct types:

1. instructions that the processor will execute exist in code space, and

2. information that the processor accesses as part of its program execution is stored in
data space.

In the design of the processor, these two spaces can be placed into physically independent
memories, or can exist in the same physical memories, as shown in Figure D.2. Architectures
with separate code and data spaces are referred to as Harvard architectures. The primary
advantage of the Harvard architecture is that there can be simultaneous operations in code
and data memory, increasing memory bandwidth. Also, since the code and data spaces have
different buses to the processor, their widths can be different in order to optimize each, and
the code can be absolutely protected from inadvertent corruption by data operations. The
primary disadvantage is that code and data can only be placed in their respective spaces,
so any free memory in code space cannot be used by for data, or vice versa. The Harvard
architecture is commonly used in microcontrollers and special purpose processors, including
the Texas Instruments TMS320C2x and TMS320C5x families of DSPs.

Processors where the code and data exist in the same memory space are referred to as
Von Neumann (or Princeton) architectures. The primary advantage is that all of memory
is available for code or data in any proportion, giving it much greater memory allocation
flexibility. The disadvantages include the fact that code and data cannot be simultane-
ously accessed, and that the possibility exists for corruption between the code and data
spaces. This architecture is used by nearly all general purpose microprocessors and numer-
ous specialized processors as well, due primarily to its flexibility. The Texas Instruments
TMS320C6x family of DSPs use a Von Neumann architecture for external memory.

In addition to their main memories, modern processor systems often have cache mem-
ories. These are very fast local memories of a limited size that are often internal to the
processor itself, and typically operate without any explicit control by the processor. The

362 APPENDIX D. TMS320C6X ARCHITECTURE

purpose of the cache memory is to retain a subset of all instructions in the hope that a
significant percentage of the overall instruction stream will be present in the cache when
needed and therefore the processor will not have to wait for it to be read from the slower
main memory. If an object is in the cache when it is requested by the processor, it is said
to be a cache hit. If it is not in the cache, it is said to be a cache miss. The underlying
principle that makes this technique very effective is that programs typically display some-
what predictable behavior that can be exploited. (Note that if the instruction stream were
truly random, then a cache would be of no use.) In particular, most caches are optimized
to take advantage of the following properties.

Temporal locality: this is the property whereby code or data that is accessed has a high
likelihood of being needed again in the near future. By keeping recently used code
and data in the cache, the possibility of reuse is high.

Spatial locality: this is the property whereby code or data that is close to a memory
location that was accessed is more likely to be needed than other memory locations
that are more distant. To exploit spatial locality, most processor caches automatically
fetch a larger block of data from the main memory when any location in the block is
accessed.

Since cache memories have limited size, various algorithms are used to try to maintain
only the information that is most likely to be needed in the cache. Caches can provide
a substantial performance improvement, in fact, modern general-purpose processors rely
heavily on multi-level cache hierarchies to achieve good performance. However, caches
make it difficult to predict program execution time since it becomes probabilistic whether
the needed instructions or data are in the cache or must be fetched from slower main
memory. This is a common theme in modern computer architecture, where many of the
techniques used to speed up the execution of general-purpose processors also make it difficult
or impossible to predict the program execution time.

D.1.4 Fetch-Execute Model

In its simplest form, a processor operates by reading an instruction from memory (referred
to as a fetch), then it executes the instruction. In order to execute an instruction, the
processor must first decode the instruction to determine what it is to do, read in any
required operands, perform the required action, and then write the result to the proper
location. While this sequential behavior results in a very simple design, performance suffers.
For example, once the instruction is fetched, the bus to code memory will be idle until the
instruction is completely executed. Similarly, the functional units that actually perform the
operation (i.e., an adder or multiplier) are idle during the instruction fetch, the instruction
decode, and while the results are being written out. Obviously, if all of the parts of the
system could be kept busy simultaneously, performance would be improved.

D.1.5 Pipelining

In order to improve the utilization of the processor hardware, it is divided into stages,
each of which handles a distinct portion of the total processing of an instruction. As an
instruction is processed through one stage of the pipeline, it is passed to the next stage.
Since the pipeline can only go as fast as the slowest stage, it is designed to be balanced
where each stage has a similar delay. A representative pipeline with four stages is shown
in Figure D.3 (note that modern processors may use deeper pipelines with more than 20
stages). The pipeline stages are abbreviated F, D, E, and W as defined next.

D.1. COMPUTER ARCHITECTURE BASICS 363

1 � D F

Figure D.3: Pipeline stages.

F (fetch) is responsible for reading the next instruction from memory.

D (decode) decodes the instruction to determine what action and operands are required.

E (execute) loads operands (if any) and performs the required operation.

W (write-back) stores the results of the operation into the destination.

If we assume that each stage of the pipeline has a 10 ns delay, then if each instruction
were required to complete before the next could be fetched it would take 40 ns for each
instruction, and the processor could execute 25 million instructions per second (MIPS).
With each stage of the pipeline able to operate independently on a different instruction,
it will still take 40 ns for an instruction to be completely executed. This is an important
observation: in general, pipelining does not improve the latency of a system. However, an
instruction now finishes the journey through the pipeline every 10 ns, so the processor now
operates at 100 MIPS, a 400% increase in throughput. In this case, the processor would
have 4 instructions in flight (being executed) at once. This performance increase can only
be achieved if the pipeline receives a steady stream of instructions and has unfettered access
to the operands required as input and output of the instructions.

Consider the example instruction stream shown in Figure D.4. The operation of the
four stage pipeline with instruction stream from Figure D.4 is shown in Figure D.5. Each
column represents the state of the pipeline at a given processor clock, with time advancing
left to right in the figure. This figure illustrates several common issues that limit pipeline
performance.

• In the execution of Instruction1, the execute stage is shown as being delayed waiting
for the required operands. This could be due to the delay in reading from memory
after a cache miss, or waiting for a previous instruction’s result to become available
(in a longer pipeline). This delay is referred to as a pipeline stall, and causes all
instructions at earlier stages to be delayed as well. Note that Instruction2 cannot
advance to the execute stage, and Instruction3 cannot advance to the decode stage.
Although not shown here, later pipeline stages could continue to operate and the
instructions in them move forward, creating a pipeline bubble (empty pipeline stages).

• When Instruction4 causes a jump or branch, execution now proceeds out of se-
quence. In this case, the address to fetch the next instruction from is not known until
the completion of the write-back stage. The later instructions currently following this
instruction must be discarded in a pipeline flush. Then the pipeline begins to refill
as fetches occur in sequence again. Pipeline flushes are very costly in terms of time,
especially in deeper pipelines. For this reason, modern high-performance processors
use branch prediction to “guess” what the next instruction will be, and execute that
instruction. If the guess is correct, then the pipeline remains full and maximum per-
formance is obtained. If the guess is wrong, then those instructions must be discarded
and the correct instructions executed. Fortunately, branch prediction algorithms typ-
ically have an accuracy in excess of 95 percent. Another technique used to minimize
pipeline flushes is predicated execution, where an instruction’s execution is predicated
on a value in a specified register. Depending on the value in the predicate register,
the instruction either executes normally, or it is passed through the pipeline as a

364 APPENDIX D. TMS320C6X ARCHITECTURE

Address Instruction Action

00001000h Instruction1

00001004h Instruction2

00001008h Instruction3

0000100Ch Instruction4 (jump to 00001040h)

00001010h Instruction5

00001014h Instruction6

00001018h Instruction7
...

...

00001040h InstructionX

00001044h InstructionY

00001048h InstructionZ

Figure D.4: Example instruction sequence with an unconditional jump.

?�����������(

?�����������.

?�����������/

?�����������0

?�����������3

?�����������8

?�����������9

?�����������H

?�����������B

?�����������Q

1 � D F

D F

� D F

1 � D F

1 � D

1 �

1

1 � D F

1 � D F

1 � D F

1 �

1

D

Figure D.5: Pipeline operation of instructions in Figure D.4.

D.1. COMPUTER ARCHITECTURE BASICS 365

no-operation (NOP) instruction. This permits conditional execution without flush-
ing the pipeline. Yet another technique to mitigate the negative performance effects
of branches is to use delayed branch instructions. In this case, the pipeline is not
flushed when the fetch of the branch target is started. Instead, the instructions in the
pipeline continue to move through it as normal. These instructions are said to be in
the delay slots of the delayed branch instruction. From a programming perspective, a
delayed branch instruction must be followed by some number of instructions that will
be executed before the actual branch in program flow occurs. If there are no useful
instructions that can be placed in the delay slots, NOPs must be inserted. This can
mitigate the negative performance effects of branches, but adds to the complexity of
programming the processor. The TMS320C6xxx branch instruction is implicitly a
delayed branch instruction.

D.1.6 Single- versus Multiple-Issue

The processors described to this point have been single-issue processors, that is, they only
execute one operation at a time. Even though pipelining introduces a form of parallelism,
the actual execution of the instructions is still sequential. For example, if there were a
series of three ADD instructions, the actual addition operations would occur in the Execute
stage of the pipeline, and so would occur in sequence. In order to speed up execution
further, amultiple-issue processor is designed to execute more than one operation in parallel.
Multiple-issue processors require the evaluation of a number of considerations.

• Clearly, to do more than one operation requires that the processor have multiple
instances of the required hardware. Examples of functional units would typically be
ALUs, specialized adders and multipliers, and load-store units.

• If the processor is going to execute instructions in parallel, then it must be able to
determine which can be safely executed at any given time. This issue will be discussed
in more detail in Section D.1.7.

• It is likely that the functional units will have unequal delays, so even if instructions are
executed in order it is possible (and likely) that the operations will be completed out
of order. This makes the state of the processor at any instant (i.e., which instructions
are executed and which are not) difficult to determine. So, there must be a mechanism
in place to ensure that the operation results are stored in the proper order to preserve
their interdependencies, and to permit the processor to precisely suspend and restore
execution in order to service interrupts.

D.1.7 Scheduling

On a multiple-issue processor, scheduling is necessary to determine the order in which
instructions can safely be executed. The scheduling must ensure that any dependencies be-
tween instructions are preserved as they are executed and their results stored. For example,
in the example below, the first and third instructions can be executed in any order since
they are independent, but the second instruction may only be executed when the result
from the first instruction is available.

ADD R1, R2, R3 adds R1 & R2 and places result in R3

MUL R1, R3, R4 multiplies R1 & R3 and places result in R4

ADD R1, R5, R6 adds R1 & R5 and places result in R6

366 APPENDIX D. TMS320C6X ARCHITECTURE

Scheduling can either be completed in real-time on the processor hardware (dynamic
scheduling) or can be done in advance by the code generation tools (static scheduling).
This choice leads to fundamentally different architectures that are each well suited to specific
environments.

Dynamic scheduling is primarily used with code that was not written to be intrinsically
parallel. The processor attempts to discover parallelism in the code (instruction level
parallelism, or ILP) by examining the interdependencies between instructions, man-
aging functional unit assignments, and ensuring that results are stored in the proper
order. This gives dynamic scheduling a great advantage in that it can exploit paral-
lelism in code that was not written in a parallel fashion, permitting it to run unaltered
serial code on a parallel architecture (dynamic scheduling is used in nearly all proces-
sors used in computer workstations). The primary disadvantage is that scheduling is
a nontrivial process, so doing it in real-time requires a significant additional amount
of hardware with the attendant cost and power consumption. Due to the hardware
requirements, typical dynamic scheduling hardware is only able to look at a window of
only several hundred instructions, limiting its ability to find parallelism. Superscalar
processors use multiple functional units and dynamic scheduling, with the processor
enforcing all dependencies between instructions. The exact execution order is not
known until run-time, but execution is guaranteed to produce the same results as
would serial execution of the code.

Static scheduling removes the burden of scheduling from the processor and instead re-
quires code that explicitly specifies what instructions may be executed in parallel. In
this case, the compiler is responsible for determining which instructions may be exe-
cuted in parallel, and for ensuring that the result of an operation will in fact be ready
before it is used in another instruction. The primary advantages of static scheduling
are that the compiler can look for parallelism across the entire program and so hope-
fully determine a more efficient execution order, and that it eliminates the need for
the dynamic scheduling hardware — a significant power and cost savings. The main
disadvantage is that the code that is generated is very machine dependent and may
be less adaptive to changing system dynamics. The statically scheduled very-long in-
struction word (VLIW) architecture used in the TMS320C6x fetches eight instructions
in parallel (a fetch packet) to simultaneously pass to its eight functional units. If a
functional unit is not used, then it is passed a no-operation (NOP) instruction. The
high-level language compilers do all instruction scheduling and enforce dependencies.
Writing assembly language for this architecture is a challenge, but is typically only
done for very time critical code to maximize the functional unit utilization and reduce
execution time.

For more detailed reading on VLIW processor design and their use in embedded systems,
the reader is referred to the excellent book by Fisher, Faraboschi, and Young [91].

D.2 TMS320C671x Architecture

The TMS320C67xx DSP is an 8-way VLIW implementation of a RISC load-store archi-
tecture. The CPU core contains 32 general-purpose registers (A0-15, B0-15) and eight
functional units split into two clusters as shown in Figure D.6. Each functional unit has a
primary specialization but most are capable of multiple operations. The primary functions
of each are shown in the following table.

D.2. TMS320C671X ARCHITECTURE 367

#-

#(

#0

#3

#8

#9

#:

#7

#((

#(.

#(/

#(0

#(3

#(-

#.

#/

	-

	(

	/

	0

	3

	8

	9

	:

	7

	((

	(.

	(/

	(0

	(3

	(-

	.

6!.

6�.

6�.

6�.

6!(

6�(

6�(

6�(

 �������
������
����

%��������

?����������������

?�����������������

?����������������

"!�/.- 89(*

����������������(��

�������������(��

"
�
��
�
��
��
�
��
�
�
�
��
*
��
��
�
��
�
�
�
�
��
��
�
�
�
�

Figure D.6: TMS320C671x core.

368 APPENDIX D. TMS320C6X ARCHITECTURE

Unit Integer operations Floating-point operations

.L Logical Arithmetic

Arithmetic / compare Integer/floating-point conversions

.S Shifts and bit fields Compare

Logical Reciprocal

Arithmetic Reciprocal square root

Branches Absolute value

Constant generation Single-/double-precision conversions

.M Multiply Multiply

.D Load and store Load and store

Address calculation

Addition/subtraction

The A and B register banks both have data buses for transferring data to and from the
functional units associated with them, as well as for loading and storing operands. Two
cross paths to permit the use of a single A-side register with a B-side functional unit, and
vice versa. As one might imagine, determining the optimum combination of registers and
functional units to use and efficiently scheduling the instruction stream can be a daunting
task.

D.2.1 Memory System

The overall layout of the TMS320C671x processor’s memory organization is shown in Fig-
ure D.7. The memory system is a Von Neumann architecture with a unified main memory
space, but the cache memory is split into program and data paths. This is a very common
design, since the program and data flows behave very differently (e.g., the program cache
is never written to). The processor core must access memory through one of two caches,
one for data operands (L1D) and one for instruction fetches (L1P). This notation is used to
indicate that these are level 1 caches, that is, the caches closest to the processor core. These
caches do not appear in the processor memory map, and are not directly accessible to the
programmer. If the data is not available in the L1 cache or is being written to memory, then
the request is passed to the L2 cache/SRAM controller. This controller manages a 64 KB
block of memory that can be used either as a level 2 cache or as simply memory, in 16 KB
blocks, by programming the associated control registers. For programs that need 64 KB or
less of memory, the entire block can be left as memory. If a larger program is being run
from off-chip memory, then the cache memory can significantly improve execution time. Or,
if a program may be able to be made more efficient by using some portion of the memory
as L2 cache and the rest used for on-chip memory for frequently accessed data or code. In
the TMS320C6713, there is an additional 192 KB block that can only be used as on-chip
memory.

If a memory request cannot be filled by the L2 controller (the requested data is not
in the L2 cache or memory), it is passed to the enhanced direct memory access (EDMA)
controller, which then executes the transfer. The EDMA controller is an on-chip peripheral
device that can be programmed to automatically transfer data under software control,
however, those transfers requested by the L2 controller are transparent to the programmer.
Since the processor may well be fetching instructions and transferring data at the same time,
the EDMA controller is designed to handle simultaneous requests according to a priority

D.2. TMS320C671X ARCHITECTURE 369

�������������(���
04#

����������������(���
04#

�%	!
�.�������
804#

�%	!�
(7.4#�

�89(/������

"!�/.- 89(*�
����

D�!	�
����������

D!?1

�����������

Figure D.7: TMS320C671x memory organization.

scheme. Based on the address of the memory request, the data transfer will be made to
on-chip memory, one of the on-chip peripherals, or to an external memory device using the
external memory interface (EMIF).

The EMIF is designed to provide a glueless interface to a number of different external
memory devices, including various dynamic memories (SDRAM, SBSRAM, etc.) as well
as static memory devices (ROM, SRAM, FIFOs, etc.). The term glueless refers to the
fact that the processor and the memory device can be connected directly together without
requiring any additional logic devices to create a compatible interface (this interface logic
is commonly referred to as glue logic).

D.2.2 Pipeline and Scheduling

The TMS320C671x’s VLIW architecture utilizes static scheduling. The hardware han-
dles pipeline stalls typically caused by cache misses, but does not enforce any scheduling.
Branch prediction is not used, but predicated execution instructions allow for conditional
code without forcing pipeline flushes. The functional units require different amounts of
time to complete their operations, for example, the ADD instruction result is available in
the next clock cycle, but the MPY (multiply) instruction result is not available until after
an additional 1 clock cycle delay. The branch instructions execute such that branch does
not actually occur until 5 clock cycles after it is executed. The combination of all these
constraints makes simply reading the assembly language difficult, and makes assembly lan-
guage programming much more complex and tedious. Because of this, most programming is
done in a high-level language such as C, and only very time-critical routines are hand-coded
in assembly language.

Since the functional units are pipelined, they also can contain a number of instructions
in the process of execution. For example, to perform a tight loop where a single execution
packet is repeatedly executed, the branch unit would have multiple branch instructions
in-flight, with a branch instruction completing at every clock cycle until the loop finished.

370 APPENDIX D. TMS320C6X ARCHITECTURE

D.2.3 Peripherals

The TMS320C671x DSP incorporates a number of on-chip peripheral devices. Timers are
typically used to provide precise periodic interrupts to the DSP, to generate rectangular
waveforms for external devices (i.e., a clock for an ADC), and to count external events.
Each timer consists of a counter register that is incremented by the DSP clock or an external
signal, a period register that is used to determine when to reset the counter register, and
a control register that is used to configure the timer. Basically, the timer operates by
incrementing the counter register until it matches the period register; when they match the
counter is reset to 0 and an interrupt is generated. This interrupt provides a very accurate
time reference. One of the common uses of the timer interrupt is to permit the DSP/BIOS
operating system to gain control of the DSP at prescribed intervals in order to perform
preemptive multitasking.

The EDMA controller is used to offload data movement from the DSP. As mentioned
above, the EDMA controller operates transparently in handling transfers required by the L2
cache controller. It can also be explicitly programmed to service interrupts by transferring
data between the device and memory, or to move data from one region in memory to
another. The EDMA controller is capable of sophisticated data movements, such as moving
a two-dimensional region of a large array to a smaller array so that the extracted data is
contiguous in memory.

Serial ports provide an interface mechanism to communicate with serial devices (i.e.,
many codecs) using a number of different formats. Once configured, they permit the DSP
to simply write a value to the serial port in order to have it sent in the appropriate serial
format (or to read a value that has been received). The serial ports can be serviced directly
by the DSP, or the EDMA controller can be used to automatically transfer serial port data
to and from memory. The EDMA controller is then programmed to interrupt the DSP when
a complete frame of data has been transferred. This eliminates the need for the processor
to perform basic data movements, freeing up processing power for more complex tasks.

D.2.4 Host Port Interface

The TMS320C6x DSPs all incorporate a Host Port Interface (HPI). The HPI makes it
possible for an external (host) processor to access the entire memory space of the DSP. In
addition to reading and writing memory locations, the host processor can also configure any
of the DSPs peripherals. The DSP is also designed so that it can be forced to boot using the
HPI port. In this mode, the DSP holds itself in reset until signaled by the host processor to
begin execution. While the DSP is in reset, the host can load the desired program into the
memory of the DSP, configure the peripherals, and then issue a host port interrupt to start
the DSP running. While the DSP is running, the host processor can still read and write to
the DSP memory space.

The Host Port Interface provides a very effective means for a central processor to control
the operation of multiple DSPs. It is also used for high-speed communication between two
DSPs, or a DSP and general-purpose processor. The winDSK8 software and the other
software tools described in Appendix E all use the HPI.

D.3 TMS320C674x Architecture

The OMAP-L138 is heterogenous multi-core processor containing an ARM926EJ-S 32-bit
RISC general-purpose microprocessor, a TMS320C6748 DSP, and a host of peripheral de-
vices [92]. A comprehensive discussion of the OMAP-L138 architecture is beyond the scope

D.3. TMS320C674X ARCHITECTURE 371

of this text, but this section will highlight the enhanced capabilities of the C6748 DSP rel-
ative to the C6713 DSP. Note that since our programming is done in a high-level language,
we are not directly exposed to these low-level enhancements, but the compiler is able to take
advantage of them and produce more compact, faster code. Some particularly interesting
enhancements of the C6748 are listed below.

• The C674x instruction set is a superset of the C67x+ floating-point instruction set
and the C64x+ fixed-point instruction set. The C67x+ instructions are an extended
version of the C671x instruction set. The C64x+ instructions are generally focused
on supporting image and video processing operations.

• The C6748 doubles the register file size to two banks of 32 registers, reducing the need
to repeatedly load and store memory variables during periods of heavy register usage.
The L1D and L1P caches are also much larger (32kB versus 4kB).

• The functional units support many single instruction, multiple data (SIMD) opera-
tions. For example, a .M unit can do a single 32-bit by 32-bit multiply, two simul-
taneous 16-bit by 16-bit multiplies, or four simultaneous 8-bit by 8-bit multiplies.
Multiplication of complex numbers is also directly supported.

• Many instructions can be expressed as compressed (16-bit) instructions if only certain
registers can be specified. This increases the number of instructions that can be
contained in a fetch packet, thereby improving performance and reducing code size.

For our purposes of presenting real-time DSP in this book, the differences between the
C6748 and the C6713 have been kept relatively invisible. However, the reader should note
that even if they had the same clock frequency, in many cases identical C code would run
faster on a C6748 than on a C6713.

This page intentionally left blankThis page intentionally left blank

Appendix E

Related Tools for DSKs

E.1 Introduction

THIS appendix contains information on several tools that are available for use with
the OMAP-L138 and TMS320C6713 DSKs. (Note that to use the tools with the

TMS320C6713 DSK, the board must be equipped with the Educational DSP, LLC HPI
daughtercard.) The Host Port Interface provides external access to the DSPs memory
space, as described in Appendix D. This allows the tools to download and start programs,
then read and write DSP memory locations to get data back from the DSK and to control
the program.

E.2 Windows Control Applications

To control the DSK from a Windows application, programs must be created for both the
host computer and the DSK. The sample host computer Windows application is written in
Microsoft Visual C++. The interface between the host computer and the DSK can be serial
RS-232 or USB. The details of this interface are hidden in a dynamic link library (DLL) file
that is included with the host computer program. To transfer data to and from the DSK,
the host computer must know the variable addresses where the data is stored on the DSK.
To simplify this process, a predefined data structure is used, and the interface software has
the ability to determine where the data structure is located in the DSK’s memory space.

The host computer can perform a few basic operations:

• Reset the DSP.

• Load a program onto the DSP.

• Start the DSP program.

• Read and write DSP memory.

Control of a DSP program is implemented by writing to variables in the DSP memory
space. Program status and output data is obtained by reading from variables in the DSP
memory space. However, keeping track of the specific addresses of all the variables in the
DSP program is tedious and error-prone, since variable locations can change each time
a program is recompiled. To simplify the process of finding variable addresses, the DSP
software establishes a special data structure (HostInterfaceData) so that the variables will
be in a known location.

373

374 APPENDIX E. RELATED TOOLS FOR DSKS

The host software first loads the program onto the DSK. Then, the location of the
HostInterfaceData structure is determined by reading the symbol table embedded in the
executable file. The host application can determine a variable’s address by adding the
desired variable’s offset within the HostInterfaceData structure to the address of the
HostInterfaceData symbol. This address is then used in the host read and write functions
that access the DSP’s memory.

E.2.1 Sample Windows Control Application

Detailed documentation and the complete source code for the sample Windows Control
applications are available in the WIN_CONTROL_APPS directory of Appendix E. The basic
Windows Control application implements a simple audio talk-through with a gain control.
Further enhancements show how to create a simple oscilloscope and spectrum analyzer.

E.3 MATLAB Exports

Using the MATLAB� program SPTool is a convenient, graphical way to design digital
filters.1 To be able to use those designs in Code Composer Studio (CCS), we need to
export them into a C language format. There are four MATLAB m-files discussed in this
appendix and included on the CD-ROM that can be used to help automate this process (see
the Appendix E MatlabExports directory). In all cases, two files are created, a C header
file (filename.h) declaring the variables, and C source file (filename.c) defining them.
You can use any filename you wish by specifying it in the argument list for the m-file, as
shown in the examples below. These files can then be included in your CCS project. In
this appendix it is assumed that the reader is familiar with using MATLAB and SPTool. It
is recommended that you add a MATLAB path to the directory where you have installed
the m-files.

E.3.1 Exporting Direct-Form II Implementations

The filt structure created by MATLAB SPTool contains Direct-Form II numerator co-
efficients in filt.tf.num and denominator coefficients in filt.tf.den. If the filter is
designed as a finite impulse response (FIR) filter, then only the numerator coefficients need
to be exported using fir_dump2c.m for floating-point coefficients, or fir_dump2c_Qxx.m

for fixed-point coefficients.
To use fir_dump2c.m, the following steps should be taken:

• Export the filter design from SPTool to the workspace. Ensure that you have specified
an FIR filter design. (The remainder of this procedure assumes that filter design was
exported with name filt1.)

• Execute a MATLAB cd command to change to the desired destination directory for
the exported files.

• Run the m-file by typing

fir_dump2c(’coeff’,’B’,filt1.tf.num,length(filt1.tf.num))

at the MATLAB command line.

1If using another filter design method in MATLAB, such as FDATool, simply adapt the procedure for
using the m-files as needed. The m-files will still eliminate the burden of converting from MATLAB variables
into the format needed by the C language.

E.3. MATLAB EXPORTS 375

This creates two files, coeff.c and coeff.h, which declare a float array B of length
B_SIZE.

To use fir_dump2c_Qxx.m, the following steps should be taken:

• Export the filter design from SPTool to the workspace. Ensure that you have specified
an FIR filter design. (The remainder of this procedure assumes that filter design was
exported with name filt1.)

• Execute a MATLAB cd command to change to desired destination directory for the
exported files.

• Run the m-file by typing

fir_dump2c_Qxx(’coeff’,’B’,filt1.tf.num,length(filt1.tf.num),15)

at the MATLAB command line.

This creates two files, coeff.c and coeff.h, which declare a short array B of length
B_SIZE. The last parameter (Qxx) determines the location of the binary point. Fixed-point
number representations are discussed in Appendix C.

If the filter is designed as an infinite-impulse response (IIR) filter, then the numerator
and denominator coefficients can either be exported individually using the methods de-
scribed for FIR filters above, or both can be exported simultaneously using df2_dump2c.m.

To use df2_dump2c.m, the following steps should be taken:

• Export the filter design from SPTool to the workspace. (The remainder of this proce-
dure assumes that filter design was exported with name filt1.)

• Execute a MATLAB cd command to change to desired destination directory for the
exported files.

• Run the m-file by typing

df2_dump2c(’HPF_coeff’,’HPF’,filt1.tf)

at the MATLAB command line.

This creates two files, HPF_coeff.c and HPF_coeff.h, which declare the float arrays HPF_A
of length HPF_A_SIZE (denominator coefficients), and HPF_B of length HPF_B_SIZE (numer-
ator coefficients). The array length is determined by the length of the filt1 numerator
and denominator vectors.

E.3.2 Exporting Second-Order Section Implementations

An SPTool filter design can be converted from direct-form II to second-order sections by
using the MATLAB function tf2sos (you may want to type help tf2sos in MATLAB for
more details). Running tf2sos creates an L× 6 matrix, where L is the number of second-
order sections needed to implement the filter, with each row of the matrix containing the
coefficients (b0, b1, b2, a0, a1, a2) for a single second-order section. These second-order section
coefficients can be exported using sos_dump2c.m.

To use sos_dump2c.m, the following steps should be taken:

• Export the filter design from SPTool to the workspace. (The remainder of this proce-
dure assumes that filter design was exported with name filt1.)

• Convert the filter design to second-order sections by typing

filt1.sos=tf2sos(filt1.tf.num,filt1.tf.den)

at the MATLAB command line.

376 APPENDIX E. RELATED TOOLS FOR DSKS

• Execute a MATLAB cd command to change to desired destination directory for the
exported files.

• Run the m-file by typing

sos_dump2c(’coeff’,’bqd_coeff’,filt1.sos,size(filt1.sos,1))

at the MATLAB command line.

This creates two files, coeff.c and coeff.h, which declare the 2-dimensional float array
bqd_coeff of size bqd_coeff_SIZE-by-5. The a0 coefficient is assumed to be 1 and is not
used in the actual filter implementation, so it is ignored in the export.

E.4 MATLAB Real-Time Interface

The MATLAB real-time interface is a software tool that permits MATLAB to interface
directly with a DSK. Data can be imported from the DSK inputs into MATLAB variables,
and variables can be written to the DSK outputs. The data transfer capabilities are limited
by the bandwidth of the host PC to DSK connection, and the speed of the host computer.
At lower sample frequencies, real-time behavior can be maintained. At higher sample
frequencies, only a portion of the total codec data stream will be able to be transferred.

An interface that allows the direct importation of real-time DSK data into MATLAB
can be used for a number of purposes. The most basic approach is to simply use the DSK as
a data acquisition board to obtain live data, and perform all signal processing in MATLAB.
This also permits the use of the MATLAB visualization features with real-time DSK data.
An interesting example of this approach was the development of real-time, acoustic beam-
forming systems using multichannel analog input daughtercards on the DSK. Details of
these projects are available in a number of references, including [31,35,41].

The MATLAB real-time interface driver software and example MATLAB scripts are
available in the Appendix E MatlabInterface directory. Detailed descriptions of the inter-
face functions are available in the MatlabInterface\Matlab_API.pdf document that can
be found in the Appendix E subdirectory of the docs directory of the CD-ROM.

Appendix F

Programming Perils and Pitfalls

PROGRAMMING in a real-time environment can be challenging even for experienced
programmers. This appendix is intended to illustrate some of the common problems

that are encountered in this environment, and present practical strategies for avoiding them.

F.1 Debug versus Release Builds

When a project is created in Code Composer Studio, there are two build configurations
that are established; Debug and Release. The debug configuration will embed debugging
information in the object file (information that links assembly instructions to the original
source code), and also will not optimize the generated code so that there is a direct corre-
spondence between a line of source code and the assembly language that is generated. These
permit symbolic debugging, and ensure that the assembly code will execute in the order
that the C code was written. The debug configuration is useful when developing software,
but the generated code is often significantly slower than the release version. In the release
configuration, the compiler attempts to optimize the generated code for best performance,
using a number of transformations and algorithms. This means that there may no longer
be a 1-to-1 correspondence between the source code and the assembly code; as functionality
is moved and reordered, code is reused where possible, and redundancies are eliminated in
order to maximize execution speed and/or minimize code size. Debugging the assembly
code generated by a release build is a significant challenge for even seasoned programmers.
The types and degrees of optimization employed can be controlled on a per-project and
per-file basis; further information on this is available in the CCS documentation.

F.2 The Volatile Keyword

Two common situations in real-time DSP programming are variables that directly reference
hardware, and variables that are used to communicate between interrupt service routines
and the main program. Both of these situations require that the volatile keyword be used
to control the compiler’s optimization of memory references. In the first case, when a
pointer variable is dereferenced to access a hardware register, the compiler’s optimizer will
assume that the transfer is being made to a standard read/write memory location. In the
second case, the compiler will assume that the memory location will only change when it is
written to in the function being compiled, and that no other access will be made concurrent
with that function’s execution. For example, suppose there is an integer pointer variable

377

378 APPENDIX F. PROGRAMMING PERILS AND PITFALLS

mcbsp spcr that is used to read the McBSP1 receive register status bit as shown below, in
order to wait until data is received by the McBSP.

1 unsigned int ∗mcbsp_spcr = (unsigned int ∗) McBSP1_SPCR ;

3 while (! (∗ mcbsp_spcr & 0x00020000)) // wait for codec ready

;

In the debug build, the code executes as expected because no optimization is done. However,
in the release build, the compiler identifies the expression !(*mcbsp spcr & 0x00020000)
to be loop-invariant code, and so pulls it out of the loop and only reads from that location
once. While this is generally a very good optimization for true memory locations, in this
case we are reading a peripheral register that may change; thus, it is NOT loop-invariant.
To force the compiler to actually read the location represented by the variable in each loop
iteration, we add the qualifier volatile to the variable declaration as shown below.

volat i le unsigned int ∗mcbsp_spcr = (unsigned int ∗) McBSP1_SPCR ;

The volatile keywords informs the compiler that it may not optimize out any accesses to this
variable, so it generates code that actually reads the McBSP register in each iteration. A
similar situation occurs when a variable is used to write repeatedly to a hardware register,
in this case McBSP1’s transmit data register, as illustrated below.

1 unsigned int ∗mcbsp_dxr = (unsigned int ∗) McBSP1_DXR ;

3 ∗mcbsp_dxr = 1 ;
∗mcbsp_dxr = 2 ;

5 ∗mcbsp_dxr = 3 ;

If this code is compiled under a release build, only a single write of the value 3 will occur.
Declaring mcbsp dxr to be volatile will force the compiler to perform the three separate
write operations.

When using global variables to communicate between the main program and interrupt
service routines (or between interrupt service routines), you should normally declare the
global variables to be volatile as well, particularly if they are used in loops. Otherwise, the
compiler may optimize out the variable references and you will miss any changes that occur
to the variable during an interrupt.

F.3 Function Prototypes and Return Types

If a function is not declared before it is used, the C language requires that the compiler
assume that function return type is int. This seemingly benign behavior has been observed
as the cause of many programs that fail to work properly, because failing to declare a
function in C is not an error and so it is not flagged as such. Consider the code below,
noting that the sinf function was never declared.

1 f loat x ;

3 x = sinf (0) ;

In the C6000 architecture, register A4 is used for the return of 32-bit or smaller values. The
sinf function actually returns a single-precision floating-point number in A4. However,
since the function was never declared, the compiler assumes that the return type is int.
So, the compiler assumes A4 contains an integer, and adds code (specifically the INTSP

F.4. ARITHMETIC ISSUES 379

instruction) to convert the value in it to a float before storing it in x. As can be imagined,
taking a floating-point bit pattern and performing an integer to floating-point conversion
on it produces meaningless values. To prevent this situation, it is important (and good
programming practice) to declare all functions before use. In the code below, the math.h

header has been included to ensure the proper declaration of the sinf function.

1 #include <math . h>
f loat x ;

3

x = sinf (0) ;

Now knowing that the sinf function returns a float, the compiler will take the return value
in register A4 and transfer it into the variable x directly, giving the correct result. Always
ensuring that all functions are declared before use will avoid these situations. This can be
quite difficult to debug because the code is otherwise correct.

F.4 Arithmetic Issues

A high-level language compiler typically supports a number of arithmetic operations. The
compiler will guarantee correct results; however, in real-time software we are also concerned
with how long it will take to do the calculation. For an operation that is supported in the
processor (i.e., add), the compiler will generate code to use the hardware to perform the
calculation. For operations that are not supported in the processor hardware, the compiler
will generate software to accomplish the calculation. In general, the software calculations
will be much slower than those performed in hardware.

The TMS320C6x DSPs do not have divider hardware, so division should be avoided
whenever possible. In the code below, the calculations are numerically equivalent.

f loat x = 100.0 F ;
2

x = x / 10 .0 F ; // calculation A

4 x = x ∗ 0 .1 F ; // calculation B

Calculation A specifies a division, so the compiler will insert a call to a subroutine to
perform the calculation in software. Since the processor has a hardware multiplier, the
calculation B can be accomplished much faster. Note that the “F” suffix on the numbers
indicates that they are constants of type float — otherwise they would be interpreted as
type double, requiring the promotion of x to type double before performing the calculation
as a double-precision operation.

When using an array variable to implement circular buffering, the index needs to be
“wrapped-around” when the end of the buffer is reached. In the code sample below, a
buffer and index variable are allocated.

#define BUFFER SIZE 100
2 f loat x [BUFFER_SIZE] = {0 .0 F } ;
int index = 0 ;

In the following examples, we will assume the index value is being incremented. A
decrementing index would be handled in a similar fashion. Perhaps the most immediately
intuitive way to accomplish index wraparound is to simply check the index value and set it
back to 0 when it reaches the end of the buffer.

1 index++;
i f (index >= BUFFER_SIZE)

3 index = 0 ;

380 APPENDIX F. PROGRAMMING PERILS AND PITFALLS

Note that this requires a comparison, and is limited to index increments of 1. If arbitrary
increments are needed, we need another approach. The modulus operation (%) provides a
seemingly simple fix.

1 index++;
index = index % BUFFER_SIZE ;

However, the modulus operator computes the remainder of the index value divided
by BUFFER SIZE, so we are implicitly invoking a division operation. As an alternative,
note that if the increment is less than BUFFER SIZE, we can obtain the remainder by
subtracting BUFFER SIZE whenever the index is greater than or equal to BUFFER SIZE.

index++;
2 i f (index >= BUFFER_SIZE)

index = index − BUFFER_SIZE ;

This reduces the modulus calculation to a simple subtraction operation, which is sup-
ported in hardware. However, it still requires a comparison to see if the index needs to be
wrapped around. In real-time code, we may find even this operation to be prohibitively
expensive. To eliminate the comparison completely, the buffer size is set to 2n. Then, the
wraparound is accomplished with only a logical AND operation of the index with 2n − 1.
If the index is less than BUFFER SIZE, the AND operation will leave it unchanged. If the
index is greater than or equal to BUFFER SIZE, the AND operation will result in same
result as the modulus operation.

1 #define BUFFER SIZE 512 // must be a power of 2

f loat x [BUFFER_SIZE] = {0 .0 F } ;
3 int index = 0 ;

5 index++;
index = index & (BUFFER_SIZE − 1) ;

Note that in this implementation the buffer size must be a power of 2. This is a classic
software trade-off between size and speed, and is often seen in production code.

F.5 Controlling the Location of Variables in Memory

When declaring a variable in software, we normally do not concern ourselves with the actual
variable location in memory. Rather, we simply refer to the variable by name. The compiler
and linker are responsible for making sure that the correct memory location(s) are accessed.
However, there are times when we will want to control where variables are placed in memory.
To do that, we need to do two things:

1. instruct the linker where the physical memory is in our system, and

2. tell the compiler which variables we want placed in locations other than the default
locations.

When our code is compiled, the compiler places the output into a number of predefined
sections. Global variables are typically placed in the .data or .bss sections. The linker
command file (i.e., lnk6748.cmd) lists the physical memory available in the system, and
indicates which sections are placed into which memory areas. In the linker command files
used throughout the text, all compiler output is placed into the DSP’s on-chip memory
(the IRAM area). This is a relatively small memory area, so if we want to have large data
buffers we need to place them in the much larger off-chip memory. In the linker command

F.6. REAL-TIME SCHEDULE FAILURES 381

file, this area is designated SDRAM, all compiler output in section “CE0” will be placed
there.

To instruct the compiler to place a given variable into the “CE0” section, we use a
compiler pragma. In general, pragmas are compiler-specific directives that permit detailed
control over various aspects of the compiler’s operation. To control the section into which
a variable is placed, we can use the DATA_SECTION pragma. This instructs the compiler
to place the variable named as the first parameter into the section named as the second
parameter.

#pragma DATA SECTION (bu f f e r , "CE0") ; // allocate buffer in SDRAM

2 volat i le f loat buffer [BUFFER_LENGTH] ;

Further information on the various pragmas available in Code Composer Studio can be
found in the online help and the C compiler user’s manual.

F.6 Real-Time Schedule Failures

One of the most difficult challenges in writing real-time software is determining if the soft-
ware will in fact be able to meet the real-time schedule. In particular, for an interrupt
driven system, each interrupt service routine (ISR) must complete its processing before the
next interrupt occurs, and the programmer must allow sufficient “slack time” to account
for interrupt service overhead. One simple and effective way to measure the time that an
ISR takes is to change the state of a logic signal on entering and leaving the ISR, and then
monitor that signal with an oscilloscope. The WriteDigitalOutputs() function allows this
to be done easily by setting the state of 4 digital signals on the DSKs, as shown below.

DSK type Bit 3 Bit 2 Bit 1 Bit 0

C6713 LED3 LED2 LED1 LED0

OMAP J6-9 J6-8 J6-7 J6-6

Example code is shown below.

Listing F.1: Checking for real-time schedule failure using the WriteDigitalOutputs()

function.

interrupt void MyISR ()
2 {

WriteDigitalOutputs (1) ; // set digital output bit 0 high

4 // your ISR code here

WriteDigitalOutputs (0) ; // set digital output bit 0 low

6 }
The approximate percentage of CPU time spent in the ISR is then approximately the

duty cycle of the digital signal. It is approximate because the time required to recognize the
interrupt and start executing the ISR, and the time required to resume normal execution
after the ISR, are not measurable this way.

As an alternative, the state of the interrupt flags register (IFR) can be examined at the
end of the ISR. For most of the code in this book, hardware interrupt INT12 is used. If the
12th-bit of the IFR is a 1 at the end of ISR, that means that another interrupt is pending
before you finished servicing the current one, so the real-time schedule has not been met.
Example code to implement this method is shown next.

382 APPENDIX F. PROGRAMMING PERILS AND PITFALLS

Listing F.2: Checking for real-time schedule failure using the interrupt flags register.

Uint32 Overrun = 0 ;
2

interrupt void MyISR ()
4 {

// your ISR code here

6 i f (IFR & 0x00001000) { // check if INT12 is pending

Overrun++; // if so, increment the count

8 }
}

F.7 Variable Initialization

In the C programming language, declaring a variable does not automatically cause that
variable to be initialized to a known value. In general, variables must always be set to a
value before they are evaluated in a C program. This does not mean that they need to
be initialized in the declaration, as long as they are written to in an assignment statement
before they are evaluated. The code below implements a simple IIR filter. In this example,
the variables x and y are intentionally (and incorrectly) left uninitialized.

Listing F.3: Example IIR filter code with incorrect variable initialization.

1 // static variables

f loat B [2] = {1 . 0 , −1.0} ; // numerator coefficients

3 f loat A [2] = {1 . 0 , −0.9} ; // denominator coefficients

f loat x [2] ; // input

5 f loat y [2] ; // output

7 // function code

x [0] = input ; // get input value

9 y [0] = −A [1] ∗ y [1] + B [0] ∗ x [0] + B [1] ∗ x [1] ; // calc. the output

x [1] = x [0] ; // setup for the next input

11 y [1] = y [0] ; // setup for the next input

output = y [0] ; // send filter output

For x[0] and y[0], this oversight will not cause a problem. The variable element x[0] is
assigned a value on line 8 before it is evaluated on lines 9 and 10. Similarly, y[0] is assigned
a value on line 9 before it is evaluated on lines 11 and 12. However, it is not acceptable
for x[1] and y[1], since they are both evaluated on line 9 before either has been assigned
a value. Although this may seem minor, it is in fact a major problem. If either variable
randomly has a large numeric value, that is equivalent to a large transient that may take a
long time to decay. The worst case situation is if either x[1] and y[1] have a value of NaN
(not a number). In that case, the result of the line 9 calculation with a NaN results in a
value of NaN being assigned to y[0], which is then assigned to y[1] on line 11. This means
that the line 9 assignment to y[0] thereafter will always be a NaN, so the filter will never
function. To prevent this, the x and y variables should be initialized as shown below.

Listing F.4: Correct variable initialization.

f loat x [2] = {0 . 0 , 0 . 0 } ; // input

2 f loat y [2] = {0 . 0 , 0 . 0 } ; // output

F.8. INTEGER DATA SIZES 383

F.8 Integer Data Sizes

The C programming language does not specify a fixed size for integer data types such as
int, short, long, etc. Rather, the data type int is set to be the machine word size for a
specific compiler target. In the C6000 DSPs, the registers are 32-bits, so the size of the int
data type is 32-bits. Since we only are creating code for the C6000 family, this does not
present a problem once you learn the sizes of the different data types. However, suppose
you then wanted to reuse your code on a different architecture. The size of the integer data
types might be different; if so, you would have to go through your code and change all of
your variable declarations to be the correct size.

To make your code more portable across different architectures, a common technique
is to define a set of data types that explicitly indicate the size of the variable. The C
programming language supports defining new data types using the typedef compiler direc-
tive. An example is shown in Listing F.5 below. The typedef directive on line 1 tells the
compiler that Uint32 is a new name for the data type unsigned int. By coding with a set
of explicitly sized types such as Uint32 and Int16, it is easy for the programmer to select
the required variable size.

Listing F.5: C6000 typedef directives.

typedef unsigned int Uint32 ;
2 typedef short Int16 ;

We use names for our typedef directives that we hope are unambiguous to the reader.
For example, Uint32 is a 32-bit unsigned integer, Int16 is a 16-bit signed integer, Uint8 is
an 8-bit unsigned integer, and so on.

When porting your code to a different architecture, the only change required is to include
an appropriate set of typedef directives. For example, if you were porting code to a C5000
DSP architecture, the size of the unsigned int is 16-bits but the size of the unsigned long

is 32-bits. Therefore, you would use the typedef directives shown in Listing F.6 below.

Listing F.6: C5000 typedef directives.

typedef unsigned long Uint32 ;
2 typedef short Int16 ;

All the necessary typedef directives needed for projects in this book are contained in
the tistdtypes.h file that you include in each project. Using conditional compilation, the
correct set of typedef directives is automatically selected when you compile your code.

This page intentionally left blankThis page intentionally left blank

Appendix G

Abbreviations, Acronyms, and
Symbols

THIS is a partial list of abbreviations, acronyms, and symbols used in the text, provided
in the hope that it will be helpful to some readers.

Symbols

() used for a continuous function.

[] used for a discrete function.

Greek Letters

α feedback coefficient for simple IIR filters, such as those used for a type of echo
generation for guitar special effects.

λ wavelength.

π ratio of a circle circumference to diameter, 3.1415926535897932. . .

τ time constant.

ω radian frequency.

A

a filter coefficient associated with an output term, y. When used in a transfer
function, the a coefficients are associated with the denominator of the transfer
function.

A vector or array containing all of the a terms.

ADC analog-to-digital converter.

AIC analog interface circuit (see codec).

AGC automatic gain control.

AM amplitude modulation.

ARM Advanced RISC Machine, a 32-bit reduced instruction set computer (RISC) in-
struction set architecture (ISA) developed by ARM Holdings.

AWGN additive white Gaussian noise.

385

386 APPENDIX G. ABBREVIATIONS, ACRONYMS, AND SYMBOLS

B

b filter coefficient associated with an input term, x. When used in a transfer func-
tion, the b coefficients are associated with the numerator of the transfer function.

B vector or array containing all of the b terms.

BW bandwidth of a bandpass signal.

BP bandpass.

BPF bandpass filter.

BPSK binary phase shift keying.

C

C value of capacitance.

CCS Texas Instruments’ Code Composer StudioTM.

CD-
ROM

Compact disk read-only memory.

CISC complex instruction set computer.

codec coder-decoder. An integrated circuit that contains both an ADC and a DAC.

CPU central processing unit.

D

DAC digital-to-analog converter.

D.C. direct current (0 Hz).

DDS direct digital synthesizer or direct digital synthesis.

DF-I direct form I.

DF-II direct form II.

DFT discrete Fourier transform.

DMA direct memory access.

DSK DSP starter kit.

DSP digital signal processing or digital signal processor.

DTFT discrete-time Fourier transform.

DTMF dual-tone, multiple-frequency signals as defined by telephone companies.

E

EDMA enhanced direct memory access.

F

FCC Federal Communications Commission.

FIR finite impulse response.

FFT fast Fourier transform.

FT Fourier transform.

F Fourier transform.

F−1 inverse Fourier transform.

APPENDIX G. ABBREVIATIONS, ACRONYMS, AND SYMBOLS 387

fh highest or maximum frequency that is present in a signal.

Fs sample frequency (samples/second) = 1/Ts.

G

GPP general purpose processor.

GPU graphics processing unit.

H

H(ejω) discrete-time frequency response.

H(jω) continuous-time frequency response.

h[n] discrete-time impulse response or unit sample response.

h[t] continuous-time impulse response.

H(s) continuous-time transfer or system function.

H(z) discrete-time transfer or system function.

HDTV high-definition television.

HP highpass.

HPF highpass filter.

HPI host port interface.

Hz hertz (cycles per second).

I

IF intermediate frequency.

IFFT inverse fast Fourier transform.

IIR infinite impulse response.

ISA instruction set architecture.

ISR interrupt service routine.

J

j
√−1; identifies the imaginary part of a complex number. Some authors use i
instead of j.

JTAG Joint Test Action Group, commonly used as the name of a debugging interface
for printed circuit boards and IC chips. Formalized as IEEE Std 1149.1 in 1990.

L

L Laplace transform.

L−1 inverse Laplace transform.

L value of inductance.

LFSR linear feedback shift register.

LP lowpass.

LPF lowpass filter.

LSB lower sideband, also used for least significant bit.

388 APPENDIX G. ABBREVIATIONS, ACRONYMS, AND SYMBOLS

M

M the number of bands in a graphic equalizer.

MA moving average.

McASP multi-channel audio serial port.

McBSP multi-channel buffer serial port.

ML maximum likelihood.

N

n index or sample number.

N often used as filter order; in other contexts, it is used for the length of a sequence,
or for the length of an FFT.

NCO numerically controlled oscillator.

O

OMAP Open Multimedia Application Platform, a family of proprietary multi-core system
on chips (SoCs) by Texas Instruments.

P

PC personal computer.

PCM pulse code modulation.

PLL phase-locked loop.

PN pseudonoise.

PSK phase shift keying.

Q

Q quality factor. Q = bandwidth of a BP filter divided by its center frequency. The
higher the value of Q, the more selective the BP filter is.

QAM quadrature amplitude modulation.

QPSK quadrature phase shift keying.

R

r magnitude of a pole. This is a measure of how far the pole is from the origin.

R value of resistance.

RC resistor-capacitor.

RISC reduced instruction set computer.

RF radio frequency.

S

s the Laplace transform independent variable, s = σ + jω.

SoC system on chip.

APPENDIX G. ABBREVIATIONS, ACRONYMS, AND SYMBOLS 389

T

τ a dummy variable often used in convolution.

t time.

T period of a signal or function.

TED timing error detector.

Ts sample period = 1/Fs.

TI Texas Instruments.

U

u[n] discrete-time unit step function.

u(t) unit step function.

U.S. United States (of America).

USB upper sideband; also used for Universal Serial Bus.

V

V voltage in Volts.

Vin input voltage.

Vout output voltage.

VLIW very long instruction word; this is a type of architecture for DSPs.

W

winDSK original Windows-based program for the C31 DSK, created by Mike Morrow.

winDSK6 Windows-based program, the follow-on to winDSK, for the C6x DSK series. It
was created by Mike Morrow.

winDSK8 Windows-based program, the follow-on to winDSK6, for the OMAP-L138 multi-
core board). It was created by Mike Morrow.

X

X(jω) result of the Fourier transform F{x(t)}; it shows the frequency content of x(t).

x[n] a discrete-time input signal.

x(t) a continuous-time input signal.

Y

Y (jω) result of the Fourier transform F{y(t)}; it shows the frequency content of y(t).

y[n] a discrete-time output signal.

y(t) a continuous-time output signal.

Z

z the independent transform variable for discrete-time signals and systems.

z−1 a delay of 1 sample.

390 APPENDIX G. ABBREVIATIONS, ACRONYMS, AND SYMBOLS

Zc impedance of a capacitor.

Z z-transform.

Z−1 inverse z-transform.

References

[1] B. Porat, A Course in Digital Signal Processing. John Wiley & Sons, 1997.

[2] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Prentice Hall,
3rd ed., 2009.

[3] J. G. Proakis and D. G. Manolakis, Digital Signal Processing. Prentice Hall, 4th ed.,
2007.

[4] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach. McGraw-Hill,
4th ed., 2011.

[5] R. G. Lyons, Understanding Digital Signal Processing. Prentice Hall, 3rd ed., 2011.

[6] S. W. Smith, Digital Signal Processing: A Practical Guide for Engineers and Scientists.
Newnes, 2003.

[7] R. G. Lyons, Streamlining Digital Signal Processing: Tricks of the Trade Guidebook.
John Wiley & Sons, 2007.

[8] C. Marven and G. Ewers, A Simple Approach to Digital Signal Processing. John Wiley
& Sons, 1996.

[9] J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia Approach.
Prentice Hall, 1998.

[10] C. S. Burrus, “Teaching filter design using MATLAB,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing, pp. 20–30, Apr.
1993.

[11] C. J. McCormack, A. S. Ali, R. L. Haupt, and C. H. G. Wright, “Computer supplements
to engineering labs,” ASEE Comput. Educ. J., vol. III, pp. 58–62, Apr. 1993.

[12] R. F. Kubichek, “Using MATLAB in a speech and signal processing class,” in Proceed-
ings of the 1994 ASEE Annual Conference, pp. 1207–1210, June 1994.

[13] R. G. Jacquot, J. C. Hamann, J. W. Pierre, and R. F. Kubichek, “Teaching digital filter
design using symbolic and numeric features of MATLAB,” ASEE Comput. Educ. J.,
vol. VII, pp. 8–11, January–March 1997.

[14] M. A. Yoder, J. H. McClellan, and R. W. Schafer, “Experiences in teaching DSP first
in the ECE curriculum,” in Proceedings of the 1997 ASEE Annual Conference, June
1997. Paper 1220-06.

[15] C. H. G. Wright and T. B. Welch, “Teaching real-world DSP using MATLAB,” ASEE
Comput. Educ. J., vol. IX, pp. 1–5, Jan–Mar 1999.

391

392 REFERENCES

[16] T. B. Welch, B. Jenkins, and C. H. G. Wright, “Computer interfaces for teaching the
Nintendo generation,” in Proceedings of the 1999 ASEE Annual Conference, June 1999.
Paper 3532-02.

[17] T. B. Welch, C. H. G. Wright, and M. G. Morrow, “Poles and zeroes and MATLAB,
oh my!,” ASEE Comput. Educ. J., vol. X, pp. 70–72, Apr. 2000.

[18] S. D. Stearns, Digital Signal Processing with Examples in MATLAB. CRC Press,
2nd ed., 2012.

[19] V. K. Ingle and J. G. Proakis, Digital Signal Processing Using MATLAB V.4. Bookware
Companion Series, PWS Publishing, 1997.

[20] J. H. McClellan, C. S. Burrus, A. V. Oppenheim, T. W. Parks, R. W. Schafer, and
S. W. Schuessler, Computer-Based Exercises for Signal Processing Using MATLAB 5.
MATLAB Curriculum Series, Prentice Hall, 1998.

[21] A. Ambardar and C. Borghesani, Mastering DSP Concepts Using MATLAB. Prentice
Hall, 1998.

[22] D. C. Hanselman and B. L. Littlefield, Mastering MATLAB 7. Prentice Hall, 2005.

[23] D. M. Etter, Engineering Problem Solving with MATLAB. Prentice Hall, 2nd ed., 1997.

[24] D. M. Etter, Introduction to MATLAB. Prentice Hall, 2nd ed., 2011.

[25] H. V. Sorensen and J. Chen, A Digital Signal Processing Laboratory Using the
TMS320C30. Prentice Hall, 1997.

[26] R. Chassaing, DSP Applications Using C and the TMS320C6x DSK. John Wiley &
Sons, 2002.

[27] N. Kehtarnavaz, Real-Time Digital Signal Processing Based on the TMS320C6000.
Elsevier, 2005.

[28] C. H. G. Wright and T. B. Welch, “Teaching DSP concepts using MATLAB and
the TMS320C5X,” in Proceedings of the 1998 Texas Instruments DSP Educators and
Third-Party Conference, August 6–8, 1998.

[29] C. H. G. Wright and T. B. Welch, “Teaching DSP concepts using MATLAB and the
TMS320C31 DSK,” in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, Mar. 1999. Paper 1778.

[30] M. G. Morrow, T. B. Welch, and C. H. G. Wright, “An inexpensive software tool for
teaching real-time DSP,” in Proceedings of the 1st IEEE DSP in Education Workshop,
IEEE Signal Processing Society, Oct. 2000.

[31] M. G. Morrow, T. B. Welch, C. H. G. Wright, and G. York, “Teaching real-time
beamforming with the C6211 DSK and MATLAB,” in Proceedings of the 2000 Texas
Instruments DSP Educators and Third-Party Conference, August 2–4, 2000.

[32] C. H. G. Wright, T. B. Welch, and M. G. Morrow, “Teaching transfer functions with
MATLAB and real-time DSP,” in Proceedings of the 2001 ASEE Annual Conference,
June 2001. Session 1320.

[33] M. G. Morrow, T. B. Welch, and C. H. Wright, “An introduction to hardware-based
DSP using winDSK6,” in Proceedings of the 2001 ASEE Annual Conference, June 2001.
Session 1320.

REFERENCES 393

[34] T. B. Welch, C. T. Field, and C. H. G. Wright, “A signal analyzer for teaching signals
and systems,” in Proceedings of the 2001 ASEE Annual Conference, June 2001. Session
2793.

[35] G. W. P. York, M. G. Morrow, T. B. Welch, and C. H. G. Wright, “Teaching real-time
sonar with the C6711 DSK and MATLAB,” in Proceedings of the 2001 ASEE Annual
Conference, June 2001. Session 1320.

[36] M. G. Morrow, T. B. Welch, and C. H. G. Wright, “A tool for real-time DSP demonstra-
tion and experimentation,” in Proceedings of the 10th IEEE Digital Signal Processing
Workshop, Oct. 2002. Paper 4.8.

[37] T. B. Welch, D. M. Etter, C. H. G. Wright, M. G. Morrow, and G. J. Twohig, “Experi-
encing DSP hardware prior to a DSP course,” in Proceedings of the 10th IEEE Digital
Signal Processing Workshop, Oct. 2002. Paper 8.5.

[38] C. H. G. Wright, T. B. Welch, D. M. Etter, and M. G. Morrow, “A systematic model
for teaching DSP,” in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. IV, pp. 4140–4143, May 2002. Paper 3243.

[39] C. H. G. Wright, T. B. Welch, D. M. Etter, and M. G. Morrow, “Teaching hardware-
based DSP: Theory to practice,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. IV, pp. 4148–4151, May 2002. Paper
4024.

[40] C. H. G. Wright, T. B. Welch, D. M. Etter, and M. G. Morrow, “Teaching DSP:
Bridging the gap from theory to real-time hardware,” in Proceedings of the 2002 ASEE
Annual Conference, June 2002.

[41] G. W. P. York, C. H. G. Wright, M. G. Morrow, and T. B. Welch, “Teaching real-
time sonar with the C6711 DSK and MATLAB,” ASEE Comput. Educ. J., vol. XII,
pp. 79–87, July 2002.

[42] T. B. Welch, R. W. Ives, M. G. Morrow, and C. H. G. Wright, “Using DSP hardware to
teach modem design and analysis techniques,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. III, pp. 769–772, Apr.
2003.

[43] T. B. Welch, M. G. Morrow, C. H. G. Wright, and R. W. Ives, “commDSK: a tool
for teaching modem design and analysis,” in Proceedings of the 2003 ASEE Annual
Conference, June 2003. Session 2420.

[44] C. H. G. Wright, T. B. Welch, and M. G. Morrow, “An inexpensive method to teach
hands-on digital communications,” in Proceedings of the IEEE/ASEE Frontiers in Ed-
ucation Annual Conference, Nov. 2003.

[45] C. H. G. Wright, T. B. Welch, D. M. Etter, and M. G. Morrow, “Teaching DSP: Bridg-
ing the gap from theory to real-time hardware,” ASEE Comput. Educ. J., vol. XIII,
pp. 14–26, July 2003.

[46] T. B. Welch, M. G. Morrow, and C. H. G. Wright, “Using DSP hardware to control
your world,” in Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. V, pp. 1041–1044, May 2004. Paper 1146.

394 REFERENCES

[47] T. B. Welch, M. G. Morrow, C. H. G. Wright, and R. W. Ives, “commDSK: a tool for
teaching modem design and analysis,” ASEE Comput. Educ. J., vol. XIV, pp. 82–89,
Apr. 2004.

[48] T. B. Welch, C. H. G. Wright, and M. G. Morrow, “Caller ID: An opportunity to teach
DSP-based demodulation,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. V, pp. 569–572, Mar. 2005. Paper 2887.

[49] M. G. Morrow, T. B. Welch, and C. H. G. Wright, “Enhancing the TMS320C6713
DSK for DSP education,” in Proceedings of the 2005 ASEE Annual Conference, June
2005.

[50] M. G. Morrow, T. B. Welch, and C. H. G. Wright, “A host port interface board to
enhance the TMS320C6713 DSK,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. II, pp. 969–972, May 2006.

[51] T. B. Welch, C. H. G. Wright, and M. G. Morrow, “Teaching rate conversion using
hardware-based DSP,” in Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing, vol. III, pp. 717–720, Apr. 2007.

[52] C. H. G. Wright, M. G. Morrow, M. C. Allie, and T. B. Welch, “Using real-time DSP to
enhance student retention and engineering outreach efforts,” ASEE Comput. Educ. J.,
vol. XVIII, pp. 64–73, Oct–Dec 2008.

[53] M. G. Morrow and T. B. Welch, “winDSK: A windows-based DSP demonstration
and debugging program,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 6, pp. 3510–3513, June 2000.

[54] M. G. Morrow, “Software for DSP,” 2011. http://eceserv0.ece.wisc.edu/~morrow/
software/.

[55] M. G. Morrow, C. H. G. Wright, and T. B. Welch, “winDSK8: A user interface for
the OMAP-L138 DSP board,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, pp. 2884–2887, May 2011.

[56] M. G. Morrow, C. H. G. Wright, and T. B. Welch, “Old tricks for a new dog: An
innovative software tool for teaching real-time DSP on a new hardware platform,” in
Proceedings of the ASEE Annual Conference, June 2011.

[57] Educational DSP (eDSP), L.L.C., “Accessible technology for education,” 2011. http:
//www.educationaldsp.com/.

[58] The MathWorks, Inc., MATLAB: The Language of Technical Computing, 2011.

[59] S. M. Kuo and B. H. Lee, Real-Time Digital Signal Processing: Implementations,
Applications and Experiments for the TMS320C55x. John Wiley & Sons, 2001.

[60] R. E. Ziemer and R. L. Peterson, Introduction to Digital Communication. Prentice
Hall, 2nd ed., 2001.

[61] L. W. Couch, II, Digital and Analog Communication Systems. Prentice Hall, 7th ed.,
2007.

[62] B. Sklar, Digital Communications: Fundamentals and Applications. Prentice Hall,
2nd ed., 2001.

[63] M. Rice, Digital Communications: A Discrete-Time Approach. Prentice Hall, 2009.

REFERENCES 395

[64] J. G. Proakis, Digital Communications. McGraw-Hill, 4th ed., 2001.

[65] R. C. Dixon, Spread Spectrum Systems with Commercial Applications. John Wiley &
Sons, 3rd ed., 1994.

[66] New Wave Instruments, “Linear feedback shift registers: Implementation, m-sequence
properties, and feedback tables,” 2011. http://www.newwaveinstruments.com/

resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm.

[67] K. C. Pohlmann, Principles of Digital Audio. Howard W. Sams & Co., 2nd ed., 1989.

[68] Texas Instruments, Inc., TMS320C6000 Peripherals Reference Guide, 2001. Literature
Number: SPRU190D.

[69] J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of complex
fourier series,” Mathematics of Computation, vol. 19, pp. 297–301, Apr. 1965.

[70] S. M. Kay, Modern Spectral Analysis: Theory and Application. Prentice Hall, 1988.

[71] S. M. Kay, Fundmentals of Statistical Signal Processing: Estimation Theory, vol. 1.
Prentice Hall, 1993.

[72] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal Process-
ing: Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing.
McGraw-Hill, 2000.

[73] M. R. Schroeder, “Natural sounding artificial reverberation,” Journal of the Audio
Engineering Society, vol. 10, pp. 219–223, 1962.

[74] S. J. Orfanidis, Introduction to Signal Processing. Prentice Hall, 1996.

[75] H. Chamberlin, Musical Applications of Microprocessors. Hayden Book Company,
2nd ed., 1985.

[76] A. B. Carlson, P. B. Crilly, and J. C. Rutledge, Communication Systems. McGraw-Hill,
4th ed., 2002.

[77] M. E. Frerking, Digital Signal Processing in Communication Systems. Van Nostrand
Reinhold, 1994. 7th printing by Kluwer Academic Publishers, 2000.

[78] S. A. Tretter, Communications System Design Using DSP Algorithms: With Laboratory
Experiments for the TMS320C30. Plenum Press, 1995.

[79] S. A. Tretter, Communications System Design Using DSP Algorithms: With Laboratory
Experiments for the TMS320C6701 and TMS320C6711. Kluwer Academic Publishers
(Plenum Press), 2003.

[80] U. Mengali and A. N. D’Andrea, Synchronization Techniques for Digital Receivers.
Plenum Press, 1997.

[81] M. M. Mano and M. D. Ciletti, Digital Design. Prentice Hall, 4th ed., 2007.

[82] R. W. Hamming, Coding and Information Theory. Prentice Hall, 2nd ed., 1986.

[83] J. Kurzweil, An Introduction to Digital Communications. John Wiley & Sons, 2000.

[84] Texas Instruments, Inc., TMS320 DSP/BIOS User’s Guide, 2001. Literature Number:
SPRU423A.

396 REFERENCES

[85] Texas Instruments, Inc., TMS320C6000 DSP/BIOS Application Programming Inter-
face (API) Reference Guide, 2001. Literature Number: SPRU403D.

[86] Institute of Electrical and Electronics Engineers (IEEE), “IEEE standard for binary
floating-point arithmetic: ANSI/IEEE STD 754-1985,” 1985.

[87] R. W. Hamming, Numerical Methods for Scientists and Engineers. McGraw-Hill,
2nd ed., 1973.

[88] S. S. Rao, Applied Numerical Methods for Engineers and Scientists. Prentice Hall,
2002.

[89] Texas Instruments, Inc., TMS320C6000 CPU and Instruction Set Reference Guide,
2000. Literature Number: SPRU189F.

[90] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 4th ed., 2007.

[91] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW Approach
to Architecture, Compilers and Tools. Morgan Kaufmann Publishers, 2004.

[92] Texas Instruments, Inc., OMAP-L138 C6-Integra DSP+ARM Processor, 2011.
Literature Number: SPRS586C. URL: http://focus.ti.com/lit/ds/symlink/

omap-l138.pdf.

