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Preface

Who this book is for

I have interacted with many people over the past several years after making my “MAT-
LAB/R Reference” available on my Web site. Based on those conversations, there is a large
population of people out there who have used MATLABr1 for some period of time, but
who now find themselves working with biologists, statisticians, or some other professionals
who speak R rather than MATLAB. There is a complementary group of people who use R,
who now find themselves trying to work and share code with colleagues who use MATLAB.
The intended reader is someone who already knows one package, and for whatever reasons,
now needs or wants to learn the other.

This book grew out of the MATLAB/R Reference document mentioned above. That doc-
ument is a concise reference summary of many of the key topics presented in this book, and
continues to be available on my Web site, at http://www.math.umaine.edu/~hiebeler.

My own experience learning R

I fall into the first category of users described above. I used MATLAB for many years,
primarily for prototyping my research simulations (which I would then rewrite in C for
faster performance) and for data visualization and graphics. I also regularly taught a course
on “Modeling and Simulation” in which I used MATLAB as the software platform. The
course covers various biological models, including stochastic spatial models. I found more
and more biologists signing up for the class over the years, and some of them started asking
if they could use R because they had already started learning to use it in their statistics
classes. I was somewhat tired of learning new programming languages/environments, and
was not particularly eager to learn another one.2 But I reluctantly decided to look into R.
At first I was very frustrated with some of the differences that struck me right away — for
example, when you edit a file defining a new R function, you cannot just type its name to
call the function, but instead must “source” it first. Typing a matrix into R is certainly
more tedious than doing so in MATLAB.

However, over time, I came to appreciate the power and flexibility of many features of
R. The fact that it is available for free on Windows, Mac OS-X, and Linux certainly has

1MATLABr and Simulinkr are registered trademarks of The MathWorks, Inc. For product information,
please contact: The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA; Tel: 508-647-7000;
Fax: 508-647-7001; E-mail: info@mathworks.com; Web: www.mathworks.com.

2The main programming languages I had used over the years at that point were Applesoft BASIC, Apple
][+ machine language, Pascal, Modula-2, Forth, C, Lisp, APL, SNOBOL, PostScript, Java, Perl, MATLAB,
and a bit of Python. Plus various libraries/environments and programming-like things such as SunView,
X11, csh scripting, LATEX, and HTML. That list is certainly smaller than that of many computer scientists,
but long enough for me.
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made it easier for the many students who work on research with me or take my courses to
obtain a copy for their own computers.

There are still some times when I miss the more concise/simple way of expressing things
in MATLAB (in particular, how much more convenient it is to type in a matrix), but I have
now come to enjoy the time I spend working in R.

Formatting conventions and terminology

R and MATLAB commands, i.e., things you could actually type at the command prompt,
are generally formatted using a non-bold typewriter font, for example x = sqrt(7). A
bold font is used when referring to the name of a function, file, variable, or keyword, for
example the sqrt function, the variable foo, or for loops.

R and MATLAB are referred to in the book as “platforms,” rather than the perhaps
more natural “software packages,” because the word “package” is a loaded word with specific
meaning in R.

In some parts of the book, R and MATLAB code are placed side by side. This is done
for brief commands and concepts which do not need much explanation. In other parts, R
material is presented, followed by MATLAB material, with some differences between the
platforms emphasized.

Commands vs. GUI

There are two main approaches to working with software platforms like MATLAB and R:
doing things primarily with commands, and doing things primarily via menus through a
graphical user interface (GUI). I will admit that I am old-school, and started using com-
puters before they had graphical user-interfaces. Personally, I can type commands much
more quickly than I can click my way to equivalent commands via menus, so I prefer the
command-line approach over the GUI approach.

As one justification for my preference, using commands to achieve goals is usually a bit
more portable and easier to share with others than using menus. The placements of various
items in menus is sometimes different on different operating systems such as Mac OS-X vs.
Microsoft Windows, so if you are trying to explain to someone how to accomplish something,
and they have a different operating system than you (or even simply a different version of the
software), you may have some trouble. Admittedly, some commands may also differ between
operating systems or between versions of the software. But for the most part, if you write
an R or MATLAB script on one operating system, it will work identically on others, and can
be usefully shared with other people more easily than a description of which menu items to
select and which buttons to push. The configuration and details of user-interfaces also tend
to change more frequently than the commands in packages like MATLAB and R; if you
tell someone how to do something using commands, it is likely to work on a wider variety
of versions of the software. I therefore focus more on using commands than on clicking on
menu items in this book, for those tasks where both approaches can be used.
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What this book is not

This book is not intended to be a comprehensive introduction or overview of either the R

or MATLAB platforms. I should warn you up front that this book will not teach you what
many may consider the “best” way to do things in R or MATLAB, according to the deeper
philosophy of either platform. My goal, based on my experience, is to try and show how to
do things in either platform which is most similar to the ways they are done in the other,
to make the transition from one platform to the other as quick and painless as possible for
you. If you want to delve into the deeper ways of thinking behind using either platform,
this reference can help get you started, but you should follow up with some of the other
plentiful resources available.

This book is also not intended to steer you toward one platform or the other. Quite
often, the choice of software platform to use depends on your context, i.e., your employer
and colleagues. If you truly have a wide-open choice, it is difficult to say which platform
is best for you. My personal feeling is that many things are easier to do in MATLAB, but
can be done more flexibly in R, at the expense of being more complicated. That is just a
general impression, and there are of course many counterexamples. Another thing to note
is that The MathWorks, Inc. (developer of MATLAB) has been quite aggressive recently
about improving the performance of various types of MATLAB code; many of my MATLAB
computations run many times faster in newer versions of MATLAB than they used to. If
you are at a large company or academic institution, you likely have access to a site license
to use MATLAB. If you are looking for routines to perform specialized statistical tests, R
has a vast and quickly growing library of packages to fit that need. R is of course available
to download free of charge, although MATLAB can be evaluated in a free trial, and there
is very affordable pricing for students or for personal use.
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Installing and Running R and MATLAB

1.1 Obtaining and installing

R

R can be downloaded for free from The R Project Web site at http://www.r-project.org.
Follow the link to CRAN (Comprehensive R Archive Network) to download R. You must
first choose a CRAN mirror, i.e., one of the many Web sites around the world that keep
copies of the R software. It is probably best to choose one that is geographically close to
you.

Once you have chosen a mirror, you can choose which operating system (Linux, Mac
OS-X, or Windows) you use. Depending on your operating system, you may then have
further choices to make, such as which distribution of Linux or which version of OS-X you
use. Note that the source code for R is also freely available for download from the same site.

When you actually run R on Windows or Mac OS-X, you will see a graphical user in-
terface like the one shown in Figure 1.1. The interface primarily consists of the R Console
or Command window, where you can interactively type commands for R to interpret. The
standard command prompt in R is “>,” which means R is waiting for you to type a com-
mand. You can try it out with some simple computations; for example, type 7*8 (and then

press Enter) to do a simple multiplication, or sqrt(exp(3)) to compute
√
e3. When you

run R on Linux in a terminal, you just get the command prompt, without the various menus
in the interface for OS-X and Windows.

You may wish to use a much more comprehensive, friendlier interface, especially if you
are coming to R from MATLAB. A very popular integrated development environment for
R, which has many of the same useful feature’s as MATLAB’s interface, is called RStudio;
it is available from http://www.rstudio.com. RStudio’s interface is shown in Figure 1.2.
If you are trying to ease your transition from MATLAB to R, you may seriously want to
consider installing and loading the pracma package, as it implements many functions which
behave nearly equivalently with MATLAB routines; see Section 13.9 for information about
installing and loading packages.

MATLAB

MATLAB is available from The MathWorks, Inc. (http://www.mathworks.com). Pric-
ing and licensing information is available under their “Products & Services” link. There is a
very inexpensive option for students, and also special pricing for home and educational use.
It is also possible to obtain a trial version of the software. When you purchase MATLAB,
you will receive information for how to download and activate your copy.

MATLAB is available for all three popular operating systems (Linux, Mac OS-X, and
Windows).

When you run MATLAB, you will see a graphical user interface like the one shown in
Figure 1.3. The large region in the middle of the user interface is the Command Window,

1
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FIGURE 1.1
The R graphical user interface in Mac OS-X.
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FIGURE 1.2
The RStudio graphical user interface in Mac OS-X.
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FIGURE 1.3
The MATLAB graphical user interface in Mac OS-X.

where you can interactively type commands for MATLAB to interpret. The standard com-
mand prompt in MATLAB is “>>,” which means MATLAB is waiting for you to type a
command. You can try it out with some simple computations; for example, type 7*8 (and

then press Enter) to do a simple multiplication, or sqrt(exp(3)) to compute
√
e3.

There are also many other things visible in the user interface. These include:

• A file browser, listing the files in a given directory.

• More information about a selected file.

• The MATLAB workspace viewer, showing the variables that are currently defined.

1.2 Commands for getting help

Both platforms offer extensive built-in documentation. Depending on your operating sys-
tem, documentation may be available from menus or other items in the user interface.
Example commands are shown below, demonstrating how to access the various built-in
documentation systems from the command window.

R

help('eigen') Display documentation for the eigen function.
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?eigen Shorthand for the above command.

?'if' When using the shorthand form of the help command, if you are requesting help
for a built-in keyword or punctuation, you need to surround the item with quotes. For
example, you can also do ?'+' to display help about the addition operator.

help.search('eigenvalues') Search for documentation matching the specified string
when you cannot remember the name of a function. Enter ?help.search for more
details about options for the search.

??eigenvalues Shorthand for the above command. You should also enclose reserved words
or punctuation in quotes, as well as multi-word phrases, e.g., ??'linear models'.

help('expm', package=Matrix) or ?Matrix::expm Search for help about expm specifi-
cally within the Matrix package. This is useful if, for example, you have loaded both
the Matrix and pracma package, both of which define functions named expm. See
Section 13.9 for more about R packages.

help.start() Open a browser window showing general documentation installed locally.

RSiteSearch('binomial') Search on-line help in a browser via the site http://search.r-
project.org. See the “How to search” link there for more information. For exam-
ple, to search for an exact phrase, use a command like RSiteSearch('{logistic

regression}').

help(package='Matrix') See the general help for the Matrix package.

library(help='pracma') Provide information about a given package (pracma in this
example), including a list of the functions it provides.

example(sort) Many of the documentation pages include examples at the end; this com-
mand runs the examples from the sort documentation.

data() List the various data sets that are included with R.

data(mtcars) Load the mtcars data set containing Motor Trend road tests. You can then
enter the command mtcars to see the raw data.

vignette() Display the various vignettes that are available in R. Vignettes are short pieces
of documentation that are less formal than the regular “help” information. Packages may
include vignettes, so which vignettes are available to you depends on which packages
you have installed.

apropos('^pr..$') Display all four-letter objects (variable names, functions, etc.) that
start with pr. The argument you provide can be a regular expression (see the help for
regex for details about regular expressions).

MATLAB

help('eig') or help eig Display documentation for the eig command. When using the
second form of the command, no quotes are needed around reserved keywords or punc-
tuation; that is, help + and help if both work.

lookfor eigenvalues Search for documentation matching the specified string when you
cannot remember the name of a function. See help lookfor for more details on just
what this searches.
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help stats Display help for the Statistics Toolbox.

doc Open the help browser.

doc eig Open the help browser and display information about the eig function.

1.3 Demos

Both platforms include mechanisms for demonstrating some of the available features, in-
cluding mathematical computations and graphics. In R, enter the command demo() to bring
up a list of available demos. You may then run specific demos from the list via commands
like demo(graphics), demo(image), and demo(colors). In MATLAB, enter the command
demo to bring up the MATLAB browser where you can navigate a page of various demos.
The page contains an extensive set of demos in a wide variety of topics such as Mathematics,
Graphics, Programming, and so on.

1.4 Quitting

To exit R, you can enter the command quit(), or its shorter alias q(). R will ask whether
or not you want to save your workspace (all of your data/variables), or if you wish to cancel
the quit.

To exit MATLAB, enter either of the two equivalent commands quit or exit.
See Section 13.8 for more information about what happens when starting up or exiting

both platforms, and how you can provide additional code to customize the startup and
shutdown sequences.

1.5 Additional resources

Resources such as discussion forums about both R and MATLAB are plentiful on the In-
ternet. You can find questions and answers at typical technology Q&A Web sites such as
http://stackoverflow.com (just prefix your search at the site with either the string [r]
or [matlab] to restrict your search to the given platform). There are also on-line resources
dedicated to each platform.

R

The R Project Web site (http://www.r-project.org) has links to many additional re-
sources. Under the R Project section of the site, there are links to various mailing lists
and conferences about R. Under the Documentation section of the site, there are links to
additional manuals, The R Journal, which has in-depth articles on various topics, a Wiki,
and so on. If you navigate to a CRAN repository site (i.e., a site where you would actually
download R), there is also a link to a page listing many pieces of contributed documen-
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tation. Another site to try is http://www.rseek.org, which performs Web searches for
information specifically about R.

MATLAB

The official support page from The MathWorks (http://www.mathworks.com/support)
has links to several helpful resources, including official documentation, a question & answer
forum a file-exchange repository with many user-contributed files. There is also a link to
something called Cody, a coding game which asks you to write MATLAB programs to
solve specific tasks, and to do so in the most efficient way possible. The Cody problems
generally have interesting discussions among the many users who have tried them. There is
also a MATLAB Digest, and The MathWorks News&Notes. There are very many excellent
introductions and references for MATLAB available, aimed at audiences in many different
fields (engineering, digital signal processing, and so on). See References [2, 9, 11, 12, 22]
for just a few examples, and see http://www.mathworks.com/support/books/ for a list of
more than 1,500 books related to MATLAB, organized by category.





2

Getting Started: Variables and Basic Computations

Performing simple computations is virtually identical in both packages. Commands like
y = sqrt(7) and x = sin(y) will work in both R and MATLAB, although what you see
on your screen after doing them differs between the two platforms. One difference is that
in MATLAB, parentheses are optional when calling a function which needs no arguments.
That is, you can enter date (which returns the current date) in MATLAB instead of date()
if you like. In R, you must enter date() to call the analagous function.

2.1 Variable names

Variable names in R can consist of letters, digits, periods, and underscores. R installations
in some locales may allow for additional characters, such as accented letters. However, for
greatest portability, it is probably best to stick with simple alphanumeric characters. Vari-
able names must start with either a letter or period; if a variable name starts with a period,
the second character cannot be a numerical digit. The name “...” should also be avoided,
as it has a special meaning, as will be seen in Section 8.1.5. Variable names were limited to
256 bytes before R version 2.13.0, and since then are apparently “effectively unlimited” [28].
The function make.names can be used to turn a questionable string into a valid variable
name; for example, make.names('7 hi there') returns the string “X7.hi.there.” This
method also has the advantage of avoiding reserved words (it appends a period if you give
it a reserved word), although it allows “...” through untouched, along with the names of
built-in functions such as sqrt.

Variable names in MATLAB can consist of letters, digits, and underscores. The first
character must be a letter. Note that the name of a variable must be less than the built-in
variable namelengthmax, which is 63 on my reference system. Also, do not use periods in
variable names, as they have a special meaning, namely to refer to fields of structures (see
Section 3.8.3).

As seen above, variable names in MATLAB are more restrictive than they are in R, in
both length and the characters allowed in them. If you will be moving between the two
platforms, it may therefore be prudent to follow MATLAB’s restrictions, as such variable
names will be valid in both platforms. While variable names such as N and X are lacking
in their descriptive abilities, I find it difficult to imagine a scenario where more than 63
characters are useful or needed for a variable name.

9
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2.2 Assignment statements

One of the first things you will likely notice when comparing R and MATLAB code is that
R has a different syntax for assigning values to variables. Although the “=” symbol can
be used in both platforms (so that y = sqrt(7) will work, as mentioned above) and is
the standard way to perform assignments in MATLAB, R has an another way to perform
variable assignments. In R, one can use the syntax y <- sqrt(7) (or even sqrt(7) -> y,
though this is much less common). Just to warn you, R purists eschew writing y = sqrt(7)

in favor of the <- notation, and you will likely be derided at some point if you choose to
use =. However, I still strongly prefer to simply use =, which is the notation used by most
of the programming languages I have used in my life. It also makes it slightly less work to
translate code between R and MATLAB. On the other hand, if you will be interacting with
someone who uses S-PLUS, you may prefer to use <- to increase compatibility with them,
as that is the syntax S-PLUS uses for variable assignment. I will use = for the assignment
operator throughout this book. For the most part, = and <- may be used interchangeably in
R. They are always equivalent for simple assignment statements, but they have an important
difference when used in parameters to function calls (see Page 85).

Another difference between the two platforms is that R allows statements like a=b=7 and
x = (y=7)+3 (which assign the value 7 to a, b, and y, and the value 10 to x). MATLAB
does not allow you to chain together assignments in this way.

The final obvious difference between doing an assignment statement like y = 7 is in the
output displayed. Entering the command in R does not display the value. You must enter
the command y to see the results of the computation:

R

> y = 7

> y

[1] 7

Notice that you do not just see the value 7, but also get that odd-looking [1] at the beginning
of the line. That is because technically, the value computed was a vector (of length 1), and
the line of output containing the 7 begins at position 1 of that vector. If you produce a
bigger vector, say with a command like runif(13) to produce thirteen random numbers,
you will see that each line is prefixed with the position of the first value on that line:

R

> runif(13)

[1] 0.045741256 0.957446628 0.233276158 0.645035735 0.518672549

[6] 0.002810847 0.842379136 0.925471541 0.178368850 0.264167924

[11] 0.300473767 0.913935277 0.775792785

The second line of output begins with the sixth element of the vector, while the third line of
output begins with the eleventh element. Personally, I found the numbers in square brackets
on all of R’s output very distracting at first, particularly because they are there even on
strings that you output in a standard way. But I have eventually gotten used to them and
even find them useful; also, there is a way to suppress them to display things in a prettier
way (see Page 166). There is also another way to see the results of a computation that is
normally silent; namely, you can enclose the expression in parentheses:

R

> (y = 7)

[1] 7
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Commands in MATLAB display their results by default:
MATLAB

>> y = sqrt(7)

y =

2.6458

which shows both the value computed, and the fact that it was stored in the variable y.1

You can force MATLAB to suppress its output by appending a semicolon to the command.
You can then explicitly type y (as in R) to see its value:

MATLAB
>> y = sqrt(7);

>> y

y =

2.6458

See the next section for more about the difference in visible output between R and
MATLAB.

2.3 Basic computations

Basic computations on scalar values can be performed directly at the command prompt in
both packages. You can evaluate expressions directly, such as sin(3)+sqrt(17), although
you will probably more often store the results of such expressions in variables. If you evaluate
an expression without storing the results into a variable (as in the example above), both
platforms will show the result of the computation.2 As explained in the previous section, if
you store a value into a variable, R does not display the value, while MATLAB does.

You can put multiple commands on a single line. In R, simply separate the commands
with semicolons, such as x=7; y=8. You can end a line containing a single R command with
a semicolon too; the semicolon will have no effect. This is useful when translating MATLAB
code to R; if you accidentally forget to delete some trailing semicolons, they are harmless.
In MATLAB, it is a bit more complicated. You can suppress the output from whichever
commands you like on the line, by using semicolons and commas as separators. A command
followed by a semicolon has its output suppressed, while a command followed by a comma
does not. Observe the following commands and their output from MATLAB:

MATLAB
>> x=7; y=8;

>> x=7, y=8;

x =

7

>> x=7; y=8

y =

8

>> x=7, y=8

1Note that before entering the displayed commands, I had previously entered the MATLAB command
format compact to get rid of the extra white space around MATLAB’s output.

2There are exceptions to this in R. When executing commands in certain ways, such as within loops or
from a file, R is less verbose. See Section 7.3 for how to get around this problem. Some functions also return
their values “invisibly”; see Section 8.1.1.
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x =

7

y =

8

A comma at the end of a line (as in x=7, y=8,) has no effect and is unnecessary, while a
semicolon at the end of a line suppresses the output from the final command.

If you want to break up an expression across multiple lines of input, the two platforms
handle this differently. R will automatically detect that an expression is not complete at the
end of one line, and change its “>” prompt to “+” to let you know that it is waiting for
more input to complete the expression:

R

> x = 5 *

+ 8

> x

[1] 40

(Note that the “+” before the 8 above is the prompt provided by R; it is not user input.)
MATLAB will not automatically detect that an expression is incomplete and prompt

you for more; instead, it gives an error. However, if you end a line with three dots (“...”),
then it lets you continue an expression on the following line:

MATLAB
>> x = 5 *

x = 5 *

|

Error: Expression or statement is incomplete or incorrect.

>> x = 5 * ...

8

x =

40

The advantage of MATLAB’s approach is that you can break up an expression in places
where R would not know that you want to continue typing:

MATLAB
>> x = 5 * 8 ...

/ 3

x =

13.3333

The advantage of R’s approach is that the behavior is more automatic, without the need
for an explicit sign from you that input will be continued. However, if you want to split the
expression x = 5 * 8 / 3 up, you need to do it in such a way that R knows more code is
coming for the expression; otherwise, it thinks you are done. If you really want to break up
an expression in a place that would confuse R, you can always put parentheses around the
entire thing, to let it know when you are truly done:

R

> x = 5 * 8

> / 3

Error: unexpected '/' in "/"

> x = 5 * 8 /
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Description R/MATLAB command

a+ b, a− b, ab, a/b a+b, a-b, a*b, a/b√
a sqrt(a)

ab a^b

absolute value |a| abs(a)

ea exp(a)

ln(a) log(a)

log2(a), log10(a) log2(a), log10(a)

sin(a), cos(a), tan(a) sin(a), cos(a), tan(a)

sin−1(a), cos−1(a), tan−1(a) asin(a), acos(a), atan(a)

Two-argument arctangent atan2(y,x)

sinh(a), cosh(a), tanh(a) sinh(a), cosh(a), tanh(a)

sinh−1(a), cosh−1(a), tanh−1(a) asinh(a), acosh(a), atanh(a)

Sign of a (-1, 0, or 1, according to whether a
is negative, zero, or positive)

sign(a)

Round a to nearest integer round(a)3

Largest integer not greater than a (round
down)

floor(a)

TABLE 2.1
Basic computations which are identical in R and MATLAB.

+ 3

> x

[1] 13.33333

> x = (5 * 8

+ / 3)

> x

[1] 13.33333

Both platforms will automatically store the results of a recent computation in an internal
variable, but with a subtle difference. R stores the results of the last expression in the
variable .Last.value. For example, if you enter the commands 4+8; x=15 then .Last.value
will contain the value 15. In MATLAB, the results of the last expression which were not
explicitly stored in a variable will be stored in the variable ans. So after entering the
commands 4+8; x=15, ans will contain 12 rather than 15, because the value 15 was stored
in x.

Most of the simple functions and operators typically used with real numbers have the
same names in R and MATLAB, with those names being common to many if not most
programming languages. Table 2.1 shows such commands which are identical in the two
platforms.

Both platforms include special values to represent infinity; for example, this comes up
when you try to compute 1/0. In R, you can enter the value infinity as Inf; in MATLAB,
you can type either inf or Inf, though MATLAB itself will always display the latter. Both
platforms also include the special value NaN, which represents “Not a Number.” This arises

3
R uses the IEC 60559 standard, rounding 5 to the even digit. So for example, in R, round(3.5) and

round(4.5) both return 4. In MATLAB, those two commands return 4 and 5, respectively.
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Description R command MATLAB command

Smallest integer not less than a
(round up)

ceiling(a) ceil(a)

Round a toward zero trunc(a) fix(a)

n MOD k (modulo arithmetic, the
remainder when dividing n by k)

n %% k mod(n,k)

TABLE 2.2
Basic computations which are different in R and MATLAB.

when computing, for example, 0/0 or Inf*0. In R, you can enter this value as NaN; in
MATLAB, you enter either nan or NaN.

Both platforms also provide ways to check whether values are finite, infinite, or NaN.
In R, you can use is.finite(x), is.infinite(x), and is.nan(x); in MATLAB, you can
use isfinite(x), isinf(x), and isnan(x). In both platforms, these functions also work
with vectors and arrays/matrices.

R also has another value, called NA. This is a special value representing missing data, or
the absence of values. Many statistical routines and other functions will either ignore NA
or treat them specially. You can type NA to enter the value NA. The expression is.na(x)

can be used to check whether a given value is NA. However, note that is.na(x) will also
return TRUE if x is NaN.

2.4 Formatting of output

Although internal computations are done using the full precision of whatever data types
are involved (such as double-precision floating point values), you can control how values are
displayed in both platforms.

In R, the command options(digits=6) requests that values be displayed using 6 digits.
The default is 7 digits; you can use getOptions('digits') to see the current setting.

In MATLAB, the format command can be used to control how values are displayed.
Some of its possible usages are as follows:

• format short: scaled fixed point format with 5 digits

• format long: 15 digits for double and 7 digits for single

• format shorte: floating point with 5 digits

• format longe: floating point with 15 digits for double and 7 digits for single

• format shortg: MATLAB chooses the best of fixed or floating point format with 5
digits, according to the magnitude of the value

• format longg: best of fixed or floating point format, with 15 digits for double and 7
digits for single

The format command can take other arguments as well, such as for banking format or
hexadecimal. Also, as mentioned in the footnote on page 11, the command format compact

tells MATLAB not to pad its output with so much vertical white space. The command
format loose enables the extra white space again.
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2.5 Other computations

Several other miscellaneous functions are listed below, along with the commands to calculate
them in both platforms.

1. The error function erf(x) = (2/
√
π)

∫ x

0
e−t2dt

R MATLAB

2*pnorm(x*sqrt(2))-1 erf(x)

2. The complementary error function cerf(x) = (2/
√
π)

∫

∞

x e−t2dt = 1-erf(x)

2*pnorm(x*sqrt(2),lower=FALSE) erfc(x)

3. The inverse error function

qnorm((1+x)/2)/sqrt(2) erfinv(x)

4. The inverse complementary error function

qnorm(x/2,lower=FALSE)/sqrt(2) erfcinv(x)

5. Binomial coefficient

(

n
k

)

= n!/(n!(n− k)!)

choose(n,k) nchoosek(n,k)

6. Factorial, n!

factorial(n) factorial(n)

7. Gamma function Γ(x) =
∫ inf

0 tx−1e−tdt

gamma(x) gamma(x)

Note that R’s gamma function returns NaN when x is either zero or a negative integer,
while MATLAB’s gamma function returns Inf.

8. Log gamma function ln(Γ(x))

lgamma(x) gammaln(x)

9. Beta function β(z, w) =
∫ 1

0 tz−1(1 − t)w−1dt = Γ(z)Γ(w)/Γ(z + w)

beta(z,w) beta(z,w)

10. Log beta function ln(β(z, w))
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Description R command MATLAB command

Modulus (magnitude) abs(z) or Mod(z) abs(z)

Argument (angle) Arg(z) angle(z)

Complex conjugate Conj(z) conj(z)

Real part of z Re(z) real(z)

Imaginary part of z Im(z) imag(z)

Construct complex number
a+ bi from variables a and
b

complex(real=a,

imaginary=b)

or complex(1,a,b)

complex(a,b)

TABLE 2.3
Basic functions for working with complex numbers.

lbeta(z,w) betaln(z,w)

2.6 Complex numbers

Both R and MATLAB can deal with complex numbers. To assign the value i =
√
−1 to

the variable x, you cannot simply enter x=i, as the variable i may already have been given
another value. However, you can enter x=1i in both platforms. Similarly, the value 3+4i can
be entered as 3+4i. If you have real variables a and b and want to construct the complex
number a + bi, you cannot simply write a+bi, because bi will be interpreted as a variable
name. You could instead write a+1i*b, or see Table 2.3 for another way.

Table 2.3 displays some functions specifically for working with complex numbers. Most
of the functions and operators from Tables 2.1 and 2.2 will also work with complex num-
bers, with the following exceptions. The modulo operator does not work in either platform.
sign(z) does not work in R, while in MATLAB it is equivalent to z/abs(z), i.e., it re-
turns a value with unit modulus/magnitude and the same argument/angle as z. Finally,
atan2(y,z) with complex arguments in MATLAB will not work.

2.7 Strange variable names in R

Although guidelines for variable names in R were given in Section 2.1, those rules really
are just a convenience for R’s command parser. It turns out you can make variable names
consisting of any valid string, regardless of how strange that string is. For example, you can
make a variable named “17 is nice!”. You can store the value 18 in this variable via the
command assign('17 is nice!', 18). You can then access the contents of the variable
via get('17 is nice!'). You can build up more complex expressions in this way, e.g.,
assign('odd name', get('odd too') + get('enough already!')). I’m not sure why
you might want to create such strange variable names, but the option is there.
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2.8 Data types

2.8.1 R

The standard data types in R or modes of data, are numeric, complex numbers, logical (i.e.,
boolean TRUE/FALSE), character, and raw (which allows you to work with raw bytes).
You can find out the mode of an object such as a variable x via the command mode(x).
Objects also have a class, which can be looked up via class(x). For simple scalars and
vectors, the class is the same as the mode. However, some objects have a different mode,
such as matrix, array, data.frame, factor, and so on. Matrices, arrays, and data frames
will be covered in Chapter 3. In addition to the above information, the command typeof(x)

displays the internal storage mode of x.

Factors

A factor in R is a data type for representing ordered or unordered (nominal) categorical
values. They are somewhat like an enum variable in the C programming language, in that
they let you equate a set of scalar values (such as 1, 2, 3, etc.) with a more meaningful set
of labels, so that you can use the latter labels when analyzing data.

The function factor can convert a vector into this special data type. For example:
R

> v=c('red','red','blue','red','blue')

> fv = factor(v)

> fv

[1] red red blue red blue

Levels: blue red

> c(fv)

[1] 2 2 1 2 1

> summary(fv)

blue red

2 3

> str(fv)

Factor w/ 2 levels "blue","red": 2 2 1 2 1

The vector v contains five values, with two unique values, called levels. We convert this into
a factor stored in the variable fv. When you look at fv, you see the five values and the two
levels displayed. Internally, fv is equivalent to the vector containing the five values 2, 1,
1, 2, and 1. The summary function indicates how many elements of fv there are for each
level, while str shows the internal structure of fv.

Note that factor sorts the levels alphabetically by default. If for some reason you want
them in a different order, you can provide a vector specifying the labels in the desired order:

R

> fv = factor(v,levels=c('red','blue'))

> fv

[1] red red blue red blue

Levels: red blue

> c(fv)

[1] 1 1 2 1 2

> summary(fv)

red blue

3 2
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> str(fv)

Factor w/ 2 levels "red","blue": 1 1 2 1 2

To specify that a factor represents ordered categorical data, use the ordered=TRUE
argument to factor:

R

> w=c('M','XL','M','XL','L','L')

> fw=factor(w,ordered=TRUE,levels=c('M','L','XL'))

> fw

[1] M XL M XL L L

Levels: M < L < XL

> c(fw)

[1] 1 3 1 3 2 2

> summary(fw)

M L XL

2 2 2

> str(fw)

Ord.factor w/ 3 levels "M"<"L"<"XL": 1 3 1 3 2 2

Certain statistical routines operate differently on unordered versus ordered factors.

2.8.2 MATLAB

In MATLAB, the basic data types are logical (boolean TRUE/FALSE), double and single
(for floating-point values), signed integer values of various lengths (int8, int16, int32, and
int64, where the numeric suffix denotes how many bits per value are used for storage),
unsigned integer values of various lengths (uint8, uint16, uint32, and uint64), and character.
The standard data structure is a matrix (indeed, scalar values are simply 1 × 1 matrices).
Other data structures include cell arrays (see Chapter 5) and structures (see Section 3.8.3).
You can also store inline functions or function handles in MATLAB variables.
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Matrices and Vectors

3.1 Overview

Both MATLAB and R can work directly with vectors and with m × n matrices (with the
usual convention that m specifies the number of rows and n the number of columns). Both
platforms support vectorized computations, i.e., expressions that implicitly operate on entire
vectors or matrices. However, there are some important differences between the two.

• A key difference in syntax is that R uses square brackets to delimit matrix subscripts
(e.g., A[2,3]), while MATLAB uses parentheses (e.g., A(2,3)). R’s syntax has the ad-
vantage here because when reading MATLAB code, it is not immediately apparent
whether g(2,3) is accessing an element of a matrix g, or calling a function g with two
parameters.

• In R, a vector is a primitive data type, and a matrix (which is actually a special case of
an array) is another distinct type. A vector with n elements is neither a row vector nor
a column vector, but simply an ordered set of n values. Care must sometimes be taken
to ensure that a value is stored as a vector or matrix in particular.

In MATLAB, the fundamental data type is a matrix. A scalar value is simply a 1 × 1
matrix, while a vector with n elements is either an n × 1 matrix (column vector) or a
1 × n matrix (row vector). Care must sometimes be taken to ensure that a vector is a
row vector or a column vector in particular.

• In R, you can use array subscripting on expressions. For example, to access the element
in row 1, column 2 of the matrix A2, you can do (A%*%A)[1,2]. You cannot perform
the corresponding command (A*A)(1,2) in MATLAB. The easiest way around this is
to use a temporary variable, e.g., tmp=A*A; tmp(1,2), although there is another way
(see Section 3.9).

3.2 Creating vectors

In R, a vector is an ordered sequence of values; it is neither a row vector nor a column
vector. In MATLAB, a vector is simply a special case of a matrix which has either one row
or one column.

Below are many of the common ways of creating vectors.

1. Create a vector containing the specified values 4, 8, 15, 16, 23, 42

19
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R MATLAB

c(4,8,15,16,23,42)

Or you can call scan(), then enter the
values separated by spaces, and press
Return/Enter twice to signal the end of
the values. To explicitly construct a row
vector (stored as a matrix), use
cbind(4,8,15,16,23,42); for a column
vector, use rbind(4,8,15,16,23,42).

Either [4,8,15,16,23,42] or [4 8 15

16 23 42] for a row vector. For a column
vector, [4;8;15;16;23;42] or
[4

8

15

16

23

42]

(R): The often-used function c “combines” its arguments; it can work with many data
types.

(MATLAB): When entering matrices, commas or spaces can be used as delimiters be-
tween columns. Semicolons or newlines can be used between rows.

2. Vector of length k containing all zeros

rep(0,k) or numeric(k) zeros(k,1) (for column vector) or
zeros(1,k) (for row vector)

3. Vector of length k containing the value j in all positions

rep(j,k) j*ones(k,1) or repmat(j,k,1) (for
column vector); j*ones(1,k) or
repmat(j,1,k) (for row vector)

(R): rep is a widely used function which replicates its argument. It can work with various
data types, and can be used in a few different ways with vectors.

(MATLAB): repmat is used to replicate a matrix; because a scalar is simply a 1 × 1
matrix, it can also be used as above.

4. Sequence with unit increment: 7, 8, 9, 10, 11

7:11 7:11 (for row vector), or (7:11)' (for
column vector).

(MATLAB): The apostrophe transposes a matrix (but see entries 66 and 67), and can
also be used to produce column vectors instead of row vectors for the entries below.

5. Values j − 1 through k + 1 with unit increment

(j-1):(k+1) j-1:k+1

The fact that the colon has higher order of precedence than arithmetic operators in R

but not in MATLAB is a major nuisance. I have seen many people struggle to find why
their code is broken, only for it to be caused by this issue. In R, writing j-1:k+1 really
means j-(1:k)+1 which is almost never what was intended. To be extra-cautious, I suggest
always using parentheses when writing expressions like this in either platform.

6. Sequence with increment -1: 11, 10, 9, 8, 7

11:7 11:-1:7

If you have gotten used to doing things like 11:7 in R, be careful when using MATLAB,
because it produces an empty matrix, and does not display any warnings or explicit signs
of trouble.

7. Sequence with specified increment: 4, 7, 10, 13

seq(4,13,by=3) or simply seq(4,13,3) 4:3:13
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8. n equally spaced values from a to b

seq(a,b,length.out=n) or this can also
be shortened to seq(a,b,len=n)

linspace(a,b,n)

For entries 7 and 8, note that in R, the same function (seq, which generates a regular
sequence of values) is used whether you are specifying the increment between values or the
total number of values desired. In MATLAB, two different methods are used for these two
cases.

9. The vector 1, 2, . . . , n, where n is the length of vector v

seq_len(length(v)) 1:length(v)

Just writing 1:length(v) in R will fail if v is an empty vector, i.e., a vector of length
zero. That is because 1:0 in R produces a vector of length 2, with the values 1 and 0.
Using seq_len avoids this problem, and produces an empty vector in R if v is empty. In
MATLAB, because 1:0 produces an empty matrix, the above command works whether v
is empty or not.

10. n logarithmically equally spaced values from 10a to 10b

10^seq(a,b,len=n) logspace(a,b,n)

11. The values 1 through n, but excluding any values which are in the vector v

(1:n)[is.na(match(1:n,v))] z=1:n; z(~ismember(1:n,v))

See entry 28 for more info about how/why these commands work.

12. Build a vector by making 3 copies of the vector v end-to-end

rep(v,3) repmat(v,1,3) if v is a row vector;
repmat(v,3,1) if v is a column vector.
Or, v(repmat(1:length(v),1,3)) works
with both row and column vectors

13. Build a vector by repeating each element of vector v 3 times

rep(v,each=3) inds=repmat(1:length(v),3,1);

v(inds(:)) This works with both row
and column vectors

14. Build a vector w of length n by making copies of the vector v end-to-end

w=numeric(n); w[1:n]=v Note: a
warning will be displayed if n is not an
integer multiple of the length of v, but the
commands will still work.

k=length(v); m=floor(n/k);

r=mod(n,k); inds=[repmat(1:v1,1,m)

1:r]; w=v(inds)

This is what is known as “recycling” of values in R; see entry 24 for more information
on how this works.

15. Build a vector w of length n by repeating each element of vector v 3 times
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w=numeric(n);

w[1:n]=v[rep(1:length(v),each=3)]

First use the commands in entry 13 to
produce a vector u which has each
element of v repeated 3 times. Then use
the commands in entry 14 to replicate
copies of u to build a vector of length n.

In both platforms, if repeating each element of v 3 times produces a vector of length
less than n, then the produced values “start over again” to produce a vector long enough.

3.3 Working with vectors

16. Access or set the third element of vector v

R MATLAB

v[3] or v[3]=17 v(3) or v(3)=17

This is one of the most immediately obvious differences between R and MATLAB, that
R uses square brackets and MATLAB uses parentheses when accessing matrix or vector
elements. R’s syntax is better here, since in MATLAB, v(3) could represent either the
third element of vector v, or a call to a function v. When translating code from MATLAB
to R, it is easy to miss places where you have forgotten to make this change. If you have a
function and a vector with the same name, the error may be difficult to track down.

See item 37 for what happens if you store a value past the end of a vector.
Also, be aware that in MATLAB, v(0) will give an error. In R, v[0] gives “nothing,”

or more precisely, a vector of length zero (with no error or warning).

17. Length of vector v

length(v) length(v)

Because this is equivalent to
max(size(v)), it works with both row
and column vectors.

18. Ensure that v is a column vector, whether it was previously a row or column vector

cbind(v) turns v into a matrix with one
column

v=v(:) or v=reshape(v,length(v),1)

19. Ensure that v is a row vector, whether it was previously a row or column vector

rbind(v) turns v into a matrix with one
row

v=v(:)' or v=reshape(v,1,length(v))

20. Last entry of v

v[length(v)] v(end)

21. Combine vectors v and w by concatenating them

c(v,w) [v w] if they are row vectors, or
[v ; w] if they are column vectors
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22. Reverse the order of elements in vector v

rev(v) v(end:-1:1)

(MATLAB): This produces either row or column vector results, corresponding to
whether the original was a row or column vector.

23. A vector consisting of the fourth, first, and second elements of v

v[c(4,1,2)] v([4 1 2])

(MATLAB): This produces either row or column vector results, corresponding to
whether the original was a row or column vector.

24. Replace the second, fifth, sixth, and tenth element of v with specified values

v[c(2,5,6,10)] = c(17,42,77,68) v([2 5 6 10]) = [17 42 77 68]

Amajor feature in R is what is called “recycling,” where if you do not provide enough val-
ues, the values you do provide will be repeatedly re-used from the beginning as many times
as necessary. So if you do something like v[3:8] = c(50,51) to try to set six values in v but
only provide two values, it would be as if the right-hand side were c(50,51,50,51,50,51).
If the number of values needed is not an integer multiple of the number of values provided,
a warning is displayed, but the command still executes (some of the values will be used
more than others in that case). This recycling behavior is very common in R.

MATLAB does not have this recycling feature, and will simply give an error if the
incorrect number of values is provided. The exception is that a single (scalar) value will be
recycled as many times as needed; the scalar is said to be “promoted to a vector” in that
case.

25. Elements of v from position a through the end

v[a:length(v)] v(a:end)

26. Given a vector b containing logical values, create a vector giving the indices of the
TRUE elements

which(b) find(b)

Note that R’s which function only works with logical values, not numerical values.
MATLAB’s find will work with numerical values as well, treating non-zero values as TRUE.
The R equivalent of MATLAB’s find([6 0 7]) would be which(c(6,0,7) != 0). The
above constructs are often used with logical vectors built from expressions involving a
vector, as in the next entry.

27. The indices of the positive elements of vector v

which(v > 0) find(v > 0)

When testing elements of a vector, the various logical comparison operators that can be
used are shown in Table 3.1. Note that they are all identical except for the “NOT” operator,
which is ! in R and ˜ in MATLAB.

28. Given a vector b containing logical (TRUE/FALSE) values, build a new vector by
extracting only those elements of vector v whose corresponding elements of b are TRUE

v[b] v(b)

This idea is often used to extract only elements from a vector v satisfying a certain
condition, as in the next entry.

(R): If b is shorter than v, its elements will be recycled. If b is longer than v, any values
of TRUE in positions of b beyond the length of v will produce NA values in the result. To
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Description R expression MATLAB expression

True where v is less than a v < a v < a

True where v is greater than a v > a v > a

True where v is less than or equal to
a

v <= a v <= a

True where v is greater than or equal
to a

v >= a v >= a

True where v is equal to a v == a v == a

True where v is not equal to a v != a v ~= a

TABLE 3.1
Comparison operators. These can be applied to scalars, vectors, or matrices.

understand why, note that v[b] is equivalent to v[which(b)] as long as b is at least as
long as v. (If b is shorter, it is first recycled up to the length of v.)

(MATLAB): If the length n of b is shorter than v, only the first n elements of v are used.
If b is longer than v, an error is given. To understand why, note that v(b) is equivalent to
v(find(b)).

29. A vector containing only the positive elements of vector v

v[v > 0] v(v > 0)

30. Given vector b containing logical values, and vector w, set the elements of v whose
corresponding elements of b are TRUE to the consecutive elements of w. w may also be a
scalar. See the following entry for a common example.

v[b]=w v(b)=w

For example, say the second, fifth, and sixth entries of b are TRUE and the other entries
are FALSE, and the vector w (of length 3) contains the values 10, 11, and 12. Then the
second, fifth, and sixth elements of v will be set to 10, 11, and 12, and other elements of v
will remain unchanged.

31. Set the negative entries of v to zero.

v[v < 0] = 0 v(v < 0) = 0

32. All but the kth element of vector v

v[-k] v(k) = [ ] will do it, but modifies the
original vector v. To do it without
modifying v, you need to either build a
vector containing all indices into v except
for k, i.e., v([1:(k-1) (k+1):end]) or
use logical vector indexing as in entry 28:
v(~ismember(1:end,k))

33. All but the second, fourth, and seventh elements of v

v[-c(2,4,7)] or v[c(-2,-4,-7)] v(~ismember(1:end,[2 4 7]))

34. All elements of v which are in vector w

v[!is.na(match(v,w))] v(ismember(v,w))
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35. All elements of v which are not in vector w

v[is.na(match(v,w))] v(~ismember(v,w))

36. Truncate vector v, keeping only the first 10 elements

v = v[1:10] or length(v)=10 v = v(1:10)

37. For a vector v which has less than 10 elements, “grow” the vector to have length 10

length(v)=10 or v[10]=NA v(10)=0

In both platforms, trying to store a value beyond the end of a vector simply grows the
vector. Doing this repeatedly is deceptively inefficient, however. When you grow a vector in
this way, a new block of memory is allocated for the new, larger vector, and the previous
contents are copied over to the new memory. If you know your vector will repeatedly need
to grow, it is best to allocate sufficient space for all of its values ahead of time to avoid
repeated copying.

R pads vectors with NA when growing them; MATLAB pads them with zeros.

3.4 Creating matrices

38. Create a matrix containing arbitrary values:

[

4 8 15
16 23 42

]

R MATLAB

matrix(c(4,8,15,16,23,42),

nrow=2,byrow=TRUE)

to enter the values by rows, or
matrix(c(4,16,8,23,15,42), nrow=2)

to enter them by columns. The parameter
ncol can be used to specify the number of
columns in the matrix, instead of or in
addition to nrow to specify the number of
rows.

[4 8 15 ; 16 23 42]

or
[4 8 15

16 23 42]

(R): Values are recycled here if you do not provide enough values when creating a matrix
(see item 24). That is, matrix(1:3, nrow=2, ncol=6) creates the matrix

[

1 3 2 1 3 2
2 1 3 2 1 3

]

.

You can also construct matrices by reshaping vectors. That is, you can do this: A=c(4, 16,

8, 23, 15, 42); dim(A) = c(2,3). Note that the values must be provided in column
order. If you wish to provide them in row order, you must transpose: A = c(4, 8, 15,

16, 23, 42); dim(A)=c(3,2); A = t(A).

39. m× n matrix of zeros

matrix(0,nrow=m,ncol=n) or simply
matrix(0,m,n)

zeros(m,n) or zeros([m n])

(R): This is actually another case of recycling of values; the single value is recycled
enough times to fill in the entire matrix.
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(MATLAB): The latter form is more useful if you have the desired dimensions stored in
a vector v, i.e., you can do zeros(v).

40. m× n matrix containing the value j in all positions

matrix(j,m,n) j*ones(m,n) or repmat(j,m,n)

(R): This is yet another case of recycling of values.
(MATLAB): Again, to facilitate using a vector containing the desired dimensions, you

can also use j*ones([m n]) or repmat(j,[m n]).

41. n× n identity matrix In
diag(n) eye(n)

42. Build a diagonal matrix A using elements from vector v

diag(v) works, although if v is a vector
of length 1 containing the value n, then
this command will behave like the
previous one and create an n× n identity
matrix, rather than a 1× 1 matrix
containing the value n. To ensure this
problem does not occur, you can instead
use diag(v,nrow=length(v)).

diag(v)

43. Build a matrix by stacking matrix A and B on top of each other (they must have the
same numbers of columns)

rbind(A,B) [A ; B]

(MATLAB): This is actually the same syntax as used in items 1 and 38. The syntax works
whether you use scalars as in that entry, or matrices, as long as the matrices’ dimensions
are conformable.

44. Build a matrix by gluing matrix A and B beside each other left-to-right (they must
have the same numbers of rows)

cbind(A,B) [A B]

(MATLAB) See the note following the previous entry.

45. Given vector v, create a matrix which has k columns, each of which is a copy of v

matrix(rep(v,k),ncol=k) If v is a column vector, then
repmat(v,1,k). If v is a row vector, then
transpose it, i.e., repmat(v',1,k). If you
are unsure if v will be a row or column
vector, force it to be treated as a column
as in entry 18, via repmat(v(:),1,k).
The indexing method from entry 60 can
also be used; if v is a column vector, then
v(:,ones(1,k)). If v is a row vector,
then v(ones(1,k),:)’. This latter
method is called “Tony’s trick,” but it
may be a bit slower.
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46. Given vector v, create a matrix which has k rows, each of which is a copy of v

Either simply transpose the previous item,
i.e., t(matrix(rep(v,k),ncol=k)), or
construct it directly via
matrix(rep(w,each=k),nrow=k)

Transpose one of the methods from the
previous item, e.g., repmat(v(:),1,k)'.

47. Combine the previous two items: given vectors x and y of lengths m and n, respectively,
build n×m matrices X whose rows are copies of x and Y whose columns are copies of y

m=length(x); n=length(y); X=

matrix(rep(x,each=n),nrow=n);

Y=matrix(rep(y,m),nrow=n)

[X,Y]=meshgrid(x,y)

This operation is actually very useful, which is why a function is provided to do it in
MATLAB. If you build such matrices X and Y, you can then use matrix computations
to construct a matrix Z using a function Z = f(X,Y ) to plot as a contour plot or im-
age/heatmap plot.

48. n× n Hilbert matrix H where Hij = 1/(i+ j − 1)

Hilbert(n), but this is part of the
Matrix package (see Section 13.9 for
information about installing/loading
packages).

hilb(n)

3.5 Working with matrices

One of the most noticeable differences between R and MATLAB is how you access an entire
row or column of a matrix. In R, you simply leave out the row index in order to specify
that you want all rows. In MATLAB, you must use the special symbol “:” as the row index
in order to specify all rows. If you have gotten used to the MATLAB way of things, the R

syntax looks quite strange, with commas that are not actually separating two symbols.

49. Access or set the element in row 2, column 3 of matrix A

R MATLAB

A[2,3] or A[2,3]=17 A(2,3) or A(2,3)=17

See the note following entry 16 regarding parentheses and square brackets. See item 73
for what happens if you store a value outside the bounds of a matrix.

50. Use a single index to access or set an element of matrix A

A[5] or A[5]=42 A(5) or A(5)=42

When accessing matrix elements with a single index, the index counts down the first
column, then down the second column, etc. So for a matrix with 5 rows, then A[5] or A(5)
refers to the last element in the first column; A[6] or A(6) refers to the first element in the
second column; and so on.

51. Use a set of single indices to access elements of matrix A
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A[c(5,8,7)] A([5 8 7]) for result as a row vector, or
A([5;8;7]) for a column vector

52. Extract the diagonal elements of matrix A, as a vector

diag(A) diag(A) Note: this produces a column
vector

53. The dimensions of matrix A (i.e., numbers of rows and columns) as a vector

dim(A) size(A)

54. Number of rows or columns in matrix A

nrow(A) or ncol(A), or you could use
dim(A)[1] or dim(A)[2]

size(A,1) or size(A,2)

(R): You may wish to use NROW(A) or NCOL(A) if A could possibly be a vector. In that
case, the latter functions treat the vectorA of length n as if it were a column vector, or more
specifically an n × 1 matrix. That is, NROW(A) and NCOL(A) return n and 1, respectively.
nrow(A) and ncol(A) both return NULL if A is a vector rather than a matrix.

55. The maximum dimension of A, i.e., the larger of the numbers of rows and columns

max(dim(A)) length(A)

56. Column 2 of matrix A

A[,2]

Note: this gives the result as a vector. To
have the result instead be an m× 1
matrix, use A[,2,drop=FALSE]. The
drop=FALSE argument indicates that
you do not want to “drop” dimensions
that have length 1.

A(:,2)

This is a rather glaring difference in syntax between the two packages. In MATLAB, you
use the special index “:” to indicate that you want all elements along a given dimension. In
R, you simply leave out the indices for that dimension, which may look somewhat strange
until you get used to it. To further demonstrate, in R, A[,] is equivalent to A, i.e., it gives
you the entire matrix. In MATLAB, the equivalent is A(:,:).

57. Row 7 of matrix A

A[7,] gives the result as a vector. As in
the previous entry, use A[7,,drop=FALSE]
to give the result as a 1× n matrix.

A(7,:)

58. All elements of A (column by column) as a single vector

c(A) A(:) (this gives a column vector)

59. Rows 2–4, columns 6–10 of A (this is a 3× 5 matrix)

A[2:4,6:10] A(2:4,6:10)



Matrices and Vectors 29

As the next entry points out, you do not need to use a set of consecutive values when
selecting the rows or columns, and in fact you can choose a given row or column more than
once.

60. A 3× 2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order)

A[c(7,7,6),c(2,1)] A([7 7 6], [2 1])

When using vectors r (of length p) and c (of length q) as the row and column indices
with a matrix A, all columns are used in combination with each row, i.e., the result is a
p× q matrix. This idea can be used to set all elements within a specified submatrix as well
(see entry 65).

61. Given a single index ind into matrix A (as in entry 50), compute the row r and column
c of that position.

tmp = arrayInd(ind, dim(A))

r = tmp[,1]; c = tmp[,2]

[r,c] = ind2sub(size(A), ind)

The commands above work even if ind is a vector containing many such indices; in that
case, r and c will be corresponding vectors of the same size.

62. Given the row r and column c of an element in matrix A, compute the single index
ind which can be used to access that element (as in entry 50).

ind = (c-1)*nrow(A)+r ind = sub2ind(size(A), r, c)

The commands above work even if r and c are vectors containing many such indices; in
that case, ind will be a corresponding vector of the same size.

63. Given equal-sized vectors ind and v, use single-indexing (as in entry 50) so that the

kth value in v is stored in the element of A referred to by the kth element of ind, i.e., set
many specified elements of the matrix A at once. If a scalar value v is provided instead, all
specified elements of A will be set to that value.

A[ind]=v A(ind)=v

64. Given equal-sized vectors r, c, and v, store the kth value in v in the element of A

which is in the row and column referred to by the kth elements of r and c, i.e., set many
specified elements of the matrix A at once. (A scalar value v can also be provided instead
of a vector.)

A[cbind(r,c)]=v will work, as will
A[(c-1)*nrow(A)+r] = v

A(sub2ind(size(A),r,c))=v

(R): The first method utilizes the fact that if you use a matrix B which has two columns
to index A, i.e., A[B], then R interprets the two columns of B as row and column indices
into A. The second method simply uses single-indexing as computed in entry 62.

65. Given vectors r (of length p) and c (of length q) and p× q matrix B, set the submatrix
of A using row and column indices from r and c equal to B (see entry 60).1

A[r,c]=B A(r,c)=B

A scalar value can be provided, rather than matrix B, in which case all elements of the
specified submatrix of A will be set to that value.

1I will leave it as an exercise for the reader to determine what happens if either r or c has repeated
indices as in entry 62, which would then try to store multiple elements of B into the same positions of A.
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66. The transpose of the matrix A.

t(A) A.'

67. The complex conjugate transpose of the matrix A.

Conj(t(A)) A'

(MATLAB): If A only contains real values, then A' and A.' give the same result; in
that case, the former is frequently used for simplicity.

68. Circularly shift the rows of matrix A down by s1 elements, and right by s2 elements

Modulo arithmetic on the row and column
indices can be used:
A[(1:nrow(A)-s1-1)%%nrow(A)+1,

(1:ncol(A)-s2-1)%%ncol(A)+1]

circshift(A, [s1 s2])

69. Flip the order of elements in each row of matrix A

t(apply(A,1,rev)) or A[,ncol(A):1] fliplr(A)

(R): The apply function returns its results down the columns of a matrix (even if you
are operating on rows); this is why it is necessary to transpose the result. See Section 4.1
for more information.

70. Flip the order of elements in each column of matrix A

apply(A,2,rev) or A[nrow(A):1,] flipud(A)

71. Given matrix A, create a new matrix L containing the lower-triangular portion of A
(i.e., with all elements above the diagonal set to zero).

L=A; L[upper.tri(L)]=0 L = tril(A)

(R): See the logical indexing entries below, in particular entry 80, for how this and the
following entry work.

72. Given matrix A, create a new matrix U containing the upper-triangular portion of A
(i.e., with all elements below the diagonal set to zero).

U=A; U[lower.tri(U)]=0 U = triu(A)

73. For a matrix A which has dimensions less than 6× 8, “grow” the matrix to have those
dimensions.

tmp = matrix(NA,6,8)

tmp[1:nrow(A),1:ncol(A)] = A

A = tmp

A(6,8)=0

(R): Note that R will grow a vector if you store a value off its end, but it will not do
the same with a matrix (instead it produces an error). There is no simple way to expand a
matrix. The commands above first produce an appropriately sized matrix of NAs in tmp,
copies the original matrix A into part of it, and then stores the results back in A. The value
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NA was used here for consistency with growing vectors as described in entry 37, but any
value could be used.

* * * * *

Note that the various commands from entries 26–31 using logical values with vectors
also work with matrices. Essentially, the matrices work like vectors when doing so, by laying
out their elements column by column. Single-indexing (as in entry 50) is also used in these
commands.

74. Given a matrix B containing logical values, create a vector giving the (single-) indices
of the TRUE elements.

which(B) find(B)

75. The (single-) indices of the positive elements of matrix A

which(A > 0) find(A > 0)

76. Build vectors r and c containing the rows and columns of the positive elements of A.

tmp = which(A > 0, arr.ind=TRUE);

r=tmp[,1]; c=tmp[,2]

[r,c] = find(A > 0)

77. Given a vector b containing logical (TRUE/FALSE) values, build a vector by extracting
only those elements of matrix A whose corresponding elements of b are TRUE

A[b] A(b)

For both platforms, if you use a matrix B rather than a vector b, the results are still
returned as a vector.

78. A vector containing only the positive elements of matrix A

A[A > 0] A(A > 0)

79. Given vector b containing logical values, and vector w, set the elements of A whose
corresponding elements of b are TRUE to the consecutive elements of w. w may also be a
scalar. See the following entry for a common example.

A[b]=w A(b)=w

80. Set the negative entries of A to zero.

A[A < 0] = 0 A(A < 0) = 0

3.6 Reshaping matrices, and higher-dimensional arrays

It is possible to create higher-dimensional arrays in both platforms, i.e., arrays that have
more than just the two dimensions of rows and columns. Note that in R, an array is a data
type that can have any number of dimensions; a matrix is a special case of an array that
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has exactly two dimensions. In MATLAB, there is no fundamental difference between an
array with two dimensions and an array with more than two dimensions.

In both platforms, the easiest way to construct an array with more than two dimensions
is either to take a vector containing the desired values and turn it into an array with the
desired dimensions, or to create an “empty” array (one containing zeros) and then fill in its
entries one two-dimensional “slice” at a time.

81. Reshape a 2-D matrix/array to have m rows and n columns.

R MATLAB

dim(A) = c(m,n) A = reshape(A,m,n)

82. Number of dimensions of array A.

length(dim(A)) ndims(A)

83. The actual dimensions of array A (the dimensions are returned in a vector).

dim(A) size(A)

84. Total number of elements in array A.

length(A) numel(A)

85. Create a 3× 4× 2 array containing all zeros.

A=array(0,c(3,4,2)) A=zeros(3,4,2) or A=repmat(0,[3 4

2])

(MATLAB): zeros([3 4 2]) also works, but note that repmat(0,3,4,2) does not.

86. Create a 3× 4× 2 array containing the values from the vector v. Values are entered in
the array with the earlier dimensions varying most rapidly. That is, if the three dimensions
are referred to as rows, columns, and depths, the elements of v are placed down the rows of
the first column and first depth, then down the rows of the second column and first depth,
and so on until the rows of all columns of the first depth are filled. Subsequent elements are
then placed into the second depth.

A=array(v,c(3,4,2)) A=reshape(v,3,4,2) or A=reshape(v,[3
4 2])

(R): Values in v are recycled if needed (see entry 24).
(MATLAB): The vector vmust have exactly 24 elements in it for this example, otherwise

an error is produced. In general, A=reshape(v,dims) will fail if length(v) does not equal
prod(dims).

87. Given array A, change its dimensions to be 2× 6× 2.

dim(A)=c(2,6,2) A=reshape(A,2,6,2) or A=reshape(A,[2
6 2])

In either package, an error occurs if the number of elements in A does not match the
product of the dimensions specified.
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88. Given an array of dimensions d1 × d2 × d3, extract a two-dimensional d1 × d2 “slice”
(with third index of i3).

To extract as a d1 × d2 matrix: A[,,i3].
To extract as a d1 × d2 × 1 3-D array:
A[,,i3,drop=FALSE]

To extract as a d1 × d2 × 1 3-D array:
A(:,:,i3). To extract as a d1 × d2 array:
squeeze(A(:,:,i3))

(MATLAB): The squeeze function will have no effect on 2-D arrays; this is so that
squeeze(r) where r is a row vector will remain a row vector, rather than dropping the first
dimension which has length 1 and turning it into a column vector.

89. Given an array of dimensions d1 × d2 × d3 × d4, set a two-dimensional d1 × d2 “slice”
(with third and fourth indices of i3 and i4, respectively) equal to the matrix B.

A[,,i3,i4]=B A(:,:,i3,i4)=B

3.7 Sparse matrices

Both platforms have facilities for working with sparse matrices, that is, matrices which
are (typically) large and which contain mostly zeros. Such matrices have a more compact
internal representation than standard matrices. Once they have been constructed, standard
matrix operations may then be used on sparse matrices.

In R, the Matrix package allows you to construct sparse matrices using either the
Matrix function (to construct a sparse matrix from a dense one) or the sparseMatrix
function.

In MATLAB, the sparse function can be used to construct a sparse matrix. Other useful
functions are sprand, spconvert, spfun, and nnz.

3.8 Names with vectors and matrices/arrays

Both platforms provide ways of associating names with vectors, matrices, or arrays, allowing
one to access elements by name rather than simply by number. However, the mechanisms
are quite different between the two platforms.

3.8.1 R: names for vector/matrix elements and matrix rows/columns

R allows you to give names to the elements of a vector, and to the rows and/or columns of
a matrix if desired. Those names are displayed when the vector or matrix is displayed, and
can also be used to access their elements. The names function can be used to get or set
the names of the elements of a vector, while colnames and rownames can be used with a
matrix. Note that the latter two are really special cases of working with dimnames to access
a list of the dimension names. The following commands demonstrate names associated with
a vector.

R

> v = c(4,8,15)

> v

[1] 4 8 15
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> names(v) = c('one','hmmm','OK')

> v

one hmmm OK

4 8 15

> v[1]

one

4

> v['one']

one

4

> names(v)[1] = 'new'

> v['new'] = 16

> v

new hmmm OK

16 8 15

> w=c(foo=4, bar=8, baz=15)

> w

foo bar baz

4 8 15

The following commands demonstrate this feature for a matrix:
R

> A = matrix(c(4,8,15,16,23,42),nrow=2,byrow=TRUE)

> A

[,1] [,2] [,3]

[1,] 4 8 15

[2,] 16 23 42

> colnames(A) = c('one','hmmm','OK')

> rownames(A) = c('first', 'second')

> A

one hmmm OK

first 4 8 15

second 16 23 42

> A['second','hmmm']

[1] 23

> cn = c('fee', 'fi', 'fo')

> rn = c('hi', 'lo')

> dimnames(A) = list(rn,cn)

> A

fee fi fo

hi 4 8 15

lo 16 23 42

> B=matrix(1:6,nrow=2,dimnames=list(rn,cn))

> B

fee fi fo

hi 1 3 5

lo 2 4 6

You can also assign names to individual elements of a matrix. Doing so, and working with
those names, is done in the same way as it is for vectors. For example, names(A)=c('a',
'b', 'c', 'd', 'e', 'f'); A['b'] = 50.
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3.8.2 R data frames

A data frame is a matrix in which the different columns (referred to as components) can
contain different types of data, such as numeric, logical, factor, character, etc. Data frames
are very commonly used in R for data analysis and statistics.

R

> color = c('red','red','blue','red','blue','blue')

> size = c('M','XL','M','XL','L','XL')

> size = factor(size, ordered=TRUE, levels=c('M','L','XL'))

> IDNum = c(4, 8, 15, 16, 23, 42)

> quality = c(42.1, 17.2, 121.3, 7.4, 11.5, 55.6)

> d = data.frame(IDNum, color, size, quality)

> d

IDNum color size quality

1 4 red M 42.1

2 8 red XL 17.2

3 15 blue M 121.3

4 16 red XL 7.4

5 23 blue L 11.5

6 42 blue XL 55.6

You can see above that R creates column labels from the names of the variables provided to
data.frame, and also applies the default row labels 1 through 6. You can provide alternate
column names via tags:

R

> d = data.frame(ID=IDNum, hue=color, scale=size, qual=quality)

> d

ID hue scale qual

1 4 red M 42.1

2 8 red XL 17.2

3 15 blue M 121.3

4 16 red XL 7.4

5 23 blue L 11.5

6 42 blue XL 55.6

You can specify different row names as well. You can provide a vector with the names (a
numeric vector will be converted to character strings, and the vector you provide here can
be the same as one of the data frame’s columns). Alternatively, you can specify that one of
the data frame’s columns should instead be used as the labels (note that this removes it as
one of the regular columns); this can be done either by giving a column number or name.

R

> d = data.frame(ID=IDNum, hue=color, scale=size, qual=quality,

+ row.names=quality)

> d

ID hue scale qual

42.1 4 red M 42.1

17.2 8 red XL 17.2

121.3 15 blue M 121.3

7.4 16 red XL 7.4

11.5 23 blue L 11.5

55.6 42 blue XL 55.6
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> d = data.frame(ID=IDNum, hue=color, scale=size, qual=quality,

+ row.names='qual') # Note: same results achieved using row.names=4

> d

ID hue scale

42.1 4 red M

17.2 8 red XL

121.3 15 blue M

7.4 16 red XL

11.5 23 blue L

55.6 42 blue XL

In the last example above, the same results could have been achieved using row.names=4,
because qual was the fourth column in the data frame.

You can access values within a data frame in a couple of different ways. First, you can
use matrix-like indexing, to access single elements, or slices across rows or down columns.
For example, using the final data frame d defined above:

R

> d[4,1]

[1] 16

> d[,1]

[1] 4 8 15 16 23 42

> d[4,]

ID hue scale

7.4 16 red XL

Note that the row name 7.4 appears when we select all of row 4 in the final command
above. There are two more ways to extract an entire column from a data frame: using
single-indexing, or via dollar-sign matching:

R

> d[1]

ID

42.1 4

17.2 8

121.3 15

7.4 16

11.5 23

55.6 42

> d$ID

[1] 4 8 15 16 23 42

Single-indexing extracts the column still inside a data frame (note that multiple columns
could be extracted in this way, e.g., d[c(1,3)]), while using dollar-sign matching extracts
the data as a standard vector variable (as a numeric vector in the example above).

Because data are so often stored in data frames for analysis, and it can become cumber-
some to repeatedly use notation like d$ID to access its components, there are a couple of
convenient ways to work with a particular data frame: via attach/detach and via with.

If you have a data frame named d, the command attach(d) will add the data frame to
R’s search path. This means that you can simply type hue rather than d$hue to access that
component of the data frame. For example, you can enter str(hue) to see the structure of
that component. You can then enter detach(d) to remove d from the search path. There are
a couple of caveats to note about the use of attach: first, say you already have a variable not
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within the data frame named, for example ID. This variable will mask the ID component
within the data frame when you attach it (by default, attach will display a message warning
you of this). You can still use the explicit d$ID notation to access that component of the
data frame. Second, if you try to make a change to a component of the data frame, e.g., via a
command like scale = rep('L', 6), it does not change that component of the data frame.
Instead, it creates a new variable named scale within your user workspace and assigns the
value there; this new variable will still exist after you detach your data frame. Technically,
only a copy of the data frame is added to the new environment constructed by attach, so
even other tricks such as calling assign will not assign values to the data frame itself; you
must explicitly refer to the data frame (e.g., d$scale = rep('L', 6) to assign values to
its components. Note that in addition to data frames, you can also attach lists.

A second method provided to more conveniently work with data frames (and lists) is the
with function. You can use with(d, expr) to evaluate the given expression expr with d
attached. Technically, a temporary environment is constructed containing the components
of d available, and the expression evaluated within that environment. If you want to evaluate
multiple commands inside the with, enclose them with curly brackets:

R

with(d, {print(summary(hue)); plot(scale)})

Note that you must use print to display the summary of hue, just as you would within a
script or function (see Page 79). Also, because the commands in the with statement are
executed within a temporary environment, any variables created or modified are limited to
that environment, just as they would be within a function. To construct a new variable or
make changes to an existing one that persist beyond the call to with, use the <<- operator
(see Page 87). If you wish to modify your data frame, you can use within rather than with.
Any changes made to the data frame inside a within statement will be stored within a local
copy of the data frame which is then returned by within, as in the following example (you
must then store this copy of the data frame, back in the original or somewhere else if you
wish to keep it):

R

> new.d = within(d, {ID=6:1})

> new.d

ID hue scale

42.1 6 red M

17.2 5 red XL

121.3 4 blue M

7.4 3 red XL

11.5 2 blue L

55.6 1 blue XL

3.8.3 MATLAB structs

MATLAB has a data type called a “structure.” A structure can contain values of different
types, which can be referred to by name. To understand the behavior of structures, you
should remember that like other MATLAB data types, structures are fundamentally arrays.
You can create a structure via the struct command.

MATLAB
>> s = struct('ID', {4 8 15 16}, 'hue', {'red','red','blue','red'}, ...

'scale', {'M', 'XL', 'M', 'XL'}, 'qual', {42.1, 17.2, 121.3, 7.4})

s =
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1x4 struct array with fields:

ID

hue

scale

qual

>> s.ID

ans =

4

ans =

8

ans =

15

ans =

16

>> s(3)

ans =

ID: 15

hue: 'blue'

scale: 'M'

qual: 121.3000

>> x = s.ID

x =

4

>> s.ID(3)

Field reference for multiple structure elements that is followed by more

reference blocks is an error.

>> s(3).ID

ans =

15

The above command creates a structure with four fields named ID, hue, scale, and qual.
Four corresponding 1× 4 cell arrays are also passed to struct (cell arrays are explained in
Chapter 5). The resulting structure s is also 1× 4. You can use the syntax s.ID to refer to
the ID field of the structure s; note that you get back the four values as four different return
values. If you examine s(3), you get all fields from the third element of the structure. To
access the third ID, you must access the ID field of the third element of the structure via
s(3).ID. The command s.ID(3) fails, because s is a 1× 4 vector; the ID field of s is not.

If you really wish to create a 1 × 1 structure whose fields contain arrays, then you can
pass in 1× 1 cell arrays as the corresponding values. The elements of those cell arrays can
be vectors, as below.

MATLAB
>> s = struct('ID', {[4 8 15 16]}, 'hue', {{'red','red','blue','red'}}, ...

'scale', {{'M', 'XL', 'M', 'XL'}}, 'qual', {[42.1, 17.2, 121.3, 7.4]})

s =

ID: [4 8 15 16]

hue: {'red' 'red' 'blue' 'red'}

scale: {'M' 'XL' 'M' 'XL'}

qual: [42.1000 17.2000 121.3000 7.4000]

>> s.ID

ans =

4 8 15 16
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>> s.ID(3)

ans =

15

Note that the strings passed in for the hue and scale fields still need to be within cell
arrays, to avoid the strings being concatenated into the combined strings “redredbluered”
and “MXLMXL” which would happen if regular vectors were used.

3.9 Miscellaneous

In R, you can use subscripting on expressions; e.g., f(A)[1,2] to access the value in row
1, column 2 of the matrix returned by f(A). In MATLAB, one way to do this is to use a
temporary variable, e.g., tmp=f(A); tmp(1,2). Another way to do it is with the help of the
subsref function, which is what handles array referencing: S.type='()'; S.subs={1,2};

subsref(f(A),S). This latter trick can be accomplished without use of a temporary variable
by instead building a temporary structure using struct: subsref(f(A), struct('type',

'()', 'subs', {{1,2}})).
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Matrix/Vector Calculations and Functions

Both platforms are designed to work natively with vectors and matrices. Many of the stan-
dard functions to perform basic mathematical calculations are vectorized, meaning they will
operate on all elements of a vector or matrix. That is, you can write things like sqrt(v) to
compute the square roots of all elements of vector v, or exp(A) to raise e to the power of
each element of matrix A. In a non-vectorized platform like the C programming language, a
for loop would be needed to iterate over the elements of the vector or matrix. In both R and
MATLAB, that for loop is internal, running at the speed of code compiled to the native
computer language, and therefore runs much more quickly than a loop you would write
yourself, which runs more slowly due to R and MATLAB being interpreted languages.1

4.1 Applying a function to rows or columns of a matrix

One very useful operation is to apply a function to parts of a matrix. It can be useful to
do this along a certain dimension of a matrix. For example, you may wish to compute the
means of all columns or rows of a matrix. Because those particular examples are so commonly
needed, there are already facilities to compute them (see Section 4.4). But suppose you wish
to compute the sum of the cubes of the elements in the rows or columns of a matrix.

R

R has the very useful function apply which lets you apply a function along particular
dimensions of a matrix. To apply a function f (which should receive a vector as its parameter)
to the rows of a matrix A, use apply(A, 1, f). To apply the function to the columns of A,
use apply(A, 2, f). The second parameter to apply specifies the “margins” or dimensions
that you want to keep in the results; keeping margin m means you apply the function to
all elements whose mth index is 1, then to all elements whose mth index is 2, and so on. If
the function you are applying to a matrix returns scalars, then apply will return a vector
containing the resulting values. If the function you are applying returns a vector which is
always the same length, then apply returns a matrix whose kth column has the results of
applying the function to the kth slice of the matrix (regardless of which margin you are
applying it to, i.e., rows or columns). If the function you are applying returns vectors which
are of different lengths for the different slices of your matrix, then apply returns its results
in a list (see Chapter 5 for more about “Lists”).

The following code performs the computation described in the example above, summing
the cubes of the elements of the rows or columns of A.

R

> a=matrix(1:12,nrow=3,byrow=TRUE)

1Recent versions of MATLAB are fairly aggressive about optimizing simple for loops, so they often run
much more quickly than analagous loops in R.

41
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> sumcubes=function(v) { return(sum(v^3)) } # sums cubes of elements of v

> apply(a, 1, sumcubes) # sums of the rows

[1] 100 1196 4788

> apply(a, 2, sumcubes) # sums of the columns

[1] 855 1224 1701 2304

See Section 8.1.1 for more information about writing functions.

MATLAB

MATLAB does not have a function directly equivalent to R’s apply, but there is a way
to achieve the same effect. First, the matrix A can be turned into a cell array, with the
elements of the cell array containing either the rows or columns of A. The cellfun function
can then be used to apply a given function to that cell array, i.e., the rows or columns of
the original matrix.

MATLAB
>> A = [1 2 3 4 ; 5 6 7 8; 9 10 11 12];

>> numRows = size(A,1); numCols = size(A,2); % for convenience

>> % rowsCell contains the rows of A in a 3x1 cell array

>> rowsCell = mat2cell(A, ones(1,numRows), numCols)

rowsCell =

[1x4 double]

[1x4 double]

[1x4 double]

>> % colsCell contains the columns of A in a 1x4 cell array

>> colsCell = mat2cell(A, numRows, ones(1, numCols))

colsCell =

[3x1 double] [3x1 double] [3x1 double] [3x1 double]

>> sumcubes = @(v) sum(v.^3); % sums cubes of elements of v

>> cellfun(sumcubes,rowsCell) % sums of the rows

ans =

100

1196

4788

>> cellfun(sumcubes,colsCell) % sums of the columns

ans =

855 1224 1701 2304

See Section 8.2.1 for information about writing anonymous functions like sumcubes above,
and Section 8.2.7 for information about creating handles to built-in functions which can then
be passed as parameters to cellfun.

4.2 Applying a function to all elements of a matrix

You may also wish to apply a function to every element of a matrix. For example, if A is
an m× n matrix containing integers, we may wish to generate a new matrix B, where the
number bij in row i, column j is a random integer from within the range 1 to aij inclusive.
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R

The apply function can work here as well. We first write a function myfunc(n) which
generates a single random integer within the range 1 to n, and then apply that function
to all elements of our matrix A:

R

> A=matrix(1:12,nrow=3,byrow=TRUE)

> myfunc = function(n) { return(sample(n, 1)) }

> apply(A, c(1,2), myfunc) #gives different results when called repeatedly

[,1] [,2] [,3] [,4]

[1,] 1 1 3 3

[2,] 4 5 6 5

[3,] 1 2 5 11

MATLAB

The arrayfun function gives the desired behavior. We can use the randi function, since
randi(n) will generate a single integer from 1 to n, and apply that function to every element
of A:

MATLAB
>> A = [1 2 3 4 ; 5 6 7 8; 9 10 11 12];

>> arrayfun(@randi, A) % gives different results when called repeatedly

ans =

1 2 2 3

1 4 5 3

3 2 8 2

4.3 Linear algebra calculations with vectors and matrices

1. Compute the dot product of vectors x and y.

R MATLAB

sum(x*y) dot(x,y)

2. Compute the vector cross-product of x and y.

Not in base R, but you can use
cross(x,y) after loading the pracma
package.

cross(x,y)

3. Given matrices A and B, compute the matrix product AB.

A %*% B A * B

4. Element-by-element multiplication of matrices A and B.

A * B A .* B
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5. Solve the matrix equation A~x = ~b.

solve(A,b) A \ b

(R): This only works with square invertible matrices.
(MATLAB): If A is square and singular (or non-square and has rank less than the

number of rows), you will receive a warning. If the system is inconsistent, MATLAB will

compute a least-squares solution, i.e., a vector ~y which minimizes A~y − ~b. Be especially
aware of the fact that if A has fewer columns than rows, and ~b is not in the column space
of A, MATLAB will give you a least-squares solution without any warnings or indication
that it is not an actual solution.

6. Reduced echelon form of matrix A.

Not in base R, but the rref function from
the pracma package will do it.

rref(A)

7. Determinant of matrix A.

det(A) det(A)

8. Inverse of matrix A.

solve(A) inv(A)

9. Trace of matrix A.

sum(diag(A)) trace(A)

10. Compute the matrix product AB−1, assuming matrix B is invertible.

A %*% solve(B) A / B

11. Compute the matrix product A−1B, assuming matrix A is invertible.

solve(A) %*% B A \ B

12. Element-by-element division of matrices A and B.

A / B A ./ B

13. Raise matrix A to the kth power.

First load the expm package; then use
A %^% k

A ^ k

14. Raise each element of matrix A to the kth power.

A ^ k A .^ k

15. Rank of matrix A.

qr(A)$rank rank(A)

16. Let w be a vector containing the eigenvalues of A, and V a matrix containing the
corresponding eigenvectors.

tmp = eigen(A); w=tmp$values;

V=tmp$vectors

[V,D] = eig(A); w = diag(D)
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R’s eigen function returns the eigenvalues and eigenvectors in a list, while MATLAB’s
eig function returns the eigenvalues packed within the diagonal elements of a matrix.

17. Perform an LU factorization of matrix A, by finding matrices P , L, and U satisfying
PA = LU .

tmp = expand(lu(Matrix(A)));

L=tmp$L; U=tmp$U; P=solve(tmp$P)

Note that expand and lu are part of the
Matrix package.

[L,U,P] = lu(A)

(R): The lu function does the factorization as A = PLU rather than PA = LU , so if you
really want it in the latter form, you need to invert the matrix P returned by lu, as in the
commands above. The results will all be of class Matrix; if you want standard R matrices,
you can convert via the commands L = as.matrix(tmp$L); U = as.matrix(tmp$U); P

= as.matrix(solve(tmp$P))*1. Also note that LU factorization of dense matrices will
work for square or non-square matrices, but sparse matrices must be square.

18. Singular-value decomposition: given an m× n matrix A, assuming k = min(m,n), find
m× k matrix P with orthormal columns, square diagonal k× k matrix S, and n× k matrix
Q with orthonormal columns such that PSQT = A.

tmp=svd(A); P=tmp$u; S=diag(tmp$d);

Q=tmp$v

[P,S,Q] = svd(A, 'econ')

(MATLAB): If you omit the 'econ' parameter, then S will have the same dimensions
as A, P will be m×m, Q will be n× n, and P and Q will both be unitary matrices.

19. Schur decomposition of square matrix, A = QTQ∗ where T is upper triangular and Q

is unitary, i.e., Q∗Q = I, with Q∗ = QT the Hermitian (conjugate) transpose of Q.

tmp=Schur(Matrix(A));

T=tmp@T; Q=tmp@Q

Note that Schur is part of the Matrix
package

[Q,T]=schur(A)

(R): T and Q will be of class Matrix; if you want to make them into standard R matrices,
instead do T=as.matrix(tmp@T) and Q=as.matrix(tmp@Q) above.

20. Cholesky factorization of a square, symmetric, positive definite matrix A = R∗R, where
R is upper-triangular.

R = chol(A) R = chol(A)

21. Permuted AE = QR factorization of matrix A, where E is a permutation matrix, Q is
orthogonal, and R is upper-triangular.

tmp=qr(A); Q=qr.Q(tmp);

R=qr.R(tmp);

E=diag(ncol(A))[,tmp$pivot]

[Q,R,E] = qr(A)

22. Vector norms of vector v in R
n: ‖~v‖1 =

∑n
i=1 |vi|, ‖~v‖2 =

(
∑n

i=1 |vi|2
)0.5

, ‖~v‖p =

(
∑n

i=1 |vi|p)
(1/p)

, ‖~v‖∞ = maxni=1 |vi|.
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N1=norm(matrix(v),'1');

N2=sqrt(sum(abs(v)^2));

Np=sum(abs(v)^p)^(1/p);

Ninf=norm(matrix(v),'i')

N1=norm(v,1); N2=norm(v,2);

Np=norm(v,p); Ninf=norm(v,inf)

23.Matrix norms ‖A‖1, ‖A‖2, ‖A‖∞, and Frobenius norm
(
∑

i(A
TA)ii

)1/2
of square matrix

A.

N1=norm(A,'1'); N2=norm(A,'2');

Ninf=norm(A,'i'); Nfrob=norm(A,'f')

N1=norm(A,1); N2=norm(A);

Ninf=norm(A,inf);

Nfrob=norm(A,'fro')

24. Condition numbers cond1(A) = ‖A‖1‖A−1‖1, cond2(A) = ‖A‖2‖A−1‖2, cond∞(A) =
‖A‖∞‖A−1‖∞ of square matrix A.

c1=1/rcond(A,'1');

c2=kappa(A,exact=TRUE);

cinf=1/rcond(A,'I')

c1=cond(A,1); c2=cond(A,2);

cinf=cond(A,inf)

(MATLAB): There is also a function rcond(A) which computes the reciprocal of the
condition number.

25. Orthonormal basis for the null space of matrix A.

null(A) This function is in package
pracma.

null(A)

26. Orthonormal basis for the image/range/column space of matrix A.

orth(A) This function is in package
pracma.

orth(A)

4.4 Statistical calculations

27. Mean of all elements in vector v or matrix A.

R MATLAB

mean(v) and mean(A) mean(v) and mean(A(:))

28. Means of all columns of matrix A.

colMeans(A) mean(A)

29. Means of all rows of matrix A.

rowMeans(A) mean(A,2)

30. Standard deviation of all elements in vector v or matrix A.

sd(v) and sd(A) std(v) and std(A(:))

Both platforms use n − 1 as the denominator in the calculations, where n is the num-
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ber of observations. In MATLAB, use std(v,1) or std(A(:),1) to instead use n as the
denominator.

31. Standard deviation of columns of matrix A.

apply(A,2,sd) std(A) or std(A,0,1) to normalize by
n− 1, or std(A,1,1) to normalize by n

An easy source of confusion is the difference in how you specify which dimensions to
operate over in R vs. MATLAB. R’s apply function takes the margins to retain as its
second parameter; giving the value 2 as the margin above means you wish to retain the
second dimension (the columns) in the result, that is, compute the standard deviation
of each column. MATLAB’s std function takes the dimension to compute the standard
deviation along as its third parameter; giving the value 1 above means you compute the
standard deviation along dimension 1 (the rows), and therefore perform the computation
separately for each column.

32. Standard deviation of rows of matrix A.

apply(A,1,sd) std(A,0,2) to normalize by n− 1, or
std(A,1,2) to normalize by n

33. Variance of all elements in vector v or matrix A.

var(v) and var(c(A)) var(v) and var(A(:))

As with standard deviations, both platforms use n− 1 as the denominator in the calcu-
lations, where n is the number of observations. In MATLAB, use var(v,1) or var(A(:),1)
to instead use n as the denominator.

34. Variance of columns of matrix A.

apply(A,2,var) var(A) or var(A,0,1) to normalize by
n− 1, or var(A,1,1) to normalize by n

35. Variance of rows of matrix A.

apply(A,1,var) var(A,0,2) to normalize by n− 1, or
var(A,1,2) to normalize by n

36. Mode of values in vector v.

There is no simple built-in function to
compute the mode. The table or unique
functions can be used to first gener-
ate a set of the unique values in v,
and then used to extract the most fre-
quent value. To choose the smallest value
in case of a tie, use: tmp=table(v);

as.numeric(names(sort(-tmp)))[1]

To generate a vector of all values tied
as most frequent, use: tmp=table(v);

as.numeric(names(tmp)[tmp ==

max(sort(tmp))])

To choose whichever of the tied values
occurs first in v, use: tmp=unique(v);

tmp[which.max(tabulate(match(v,

tmp)))]

mode(v) chooses the smallest value if two
values are tied as most frequent. If you
use [m,f,c]=mode(v), then c{1} is a
vector containing all of the values tied as
most frequent.



48 R and MATLAB

37. Median of values in vector v.

median(v) median(v)

38. Basic summary statistics of values in vector v.

summary(v) summary(dataset(v(:)))

(MATLAB): If you are sure v is a column vector as opposed to a row vector, you can
simply use summary(dataset(v)).

39. Given vector v, compute quantiles specified by vector p of probabilities.

quantile(v,p) quantile(v,p)

Note that the details of how quantiles are computed differ in the two platforms; refer
to the documentation for the quantile function in each platform for more information. In
particular, R allows you to specify a type parameter to control how quantiles are computed.
Use type=5 in R to match MATLAB’s method of interpolation, i.e., quantile(v, p,

type=5).

40. Covariance of paired values in vectors v and w.

cov(v,w) tmp=cov(v,w); tmp(2,1)

(MATLAB): In MATLAB, cov(v,w) produces a covariance matrix; extracting the off-
diagonal element in row 2, column 1 gives the desired covariance.

41. Covariance matrix for two vectors v1 and v2.

cov(cbind(v1,v2)) cov(v1,v2)

42. Covariance matrix giving covariances between more than two vectors, e.g., v1, v2, and
v3, or between the columns of matrix A.

cov(cbind(v1,v2,v3)) or cov(A) cov([v1 v2 v3]) or cov(A)

(R): You can also use var(cbind(v1,v2,v3)) or var(A).
(MATLAB): The vectors must be column vectors. If they may be either row vectors or

column vectors, use cov([v1(:) v2(:) v3(:)]).

43. Given matrices A and B, build covariance matrix C where the value in row i, column
j is the covariance between column i of A and column j of B.

cov(A,B) MATLAB has a function to do this for
correlation coefficients; its results can be
used to construct the desired covariances:
[Y,X]=meshgrid(std(B),std(A));

X.*Y.*corr(A,B)

44. Pearson’s linear correlation coefficient between elements of vectors v and w.

cor(v,w) corr(v,w)

(MATLAB): v and w must be column vectors; use corr(v(:),w(:)) if they may pos-
sibly be row vectors. The same applies for the next two entries.

45. Kendall’s tau correlation statistic for vectors v and w.

cor(v,w,method='kendall') corr(v,w,'type','kendall')

46. Spearman’s rho correlation statistic for vectors v and w.
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cor(v,w,method='spearman') corr(v,w,'type','spearman')

47. Correlation matrix of pairwise Pearson’s correlation coefficient between columns of
matrix A.

cor(A) corr(A)

The method argument may be used in R, and the type argument used in MATLAB, as
in the previous two items to choose Kendall’s tau or Spearman’s rho correlation statistics.

48. Given matrices A and B, build correlation matrix C where the value in row i, column
j is Pearon’s correlation between column i of A and column j of B.

cor(A,B) corr(A,B)

The method argument may be used in R, and the type argument used in MATLAB, as
in the previous two items to choose Kendall’s tau or Spearman’s rho correlation statistics.

4.5 Vectorized logical tests

Section 3.3 (items 26–31) and Section 3.5 (items 74–80) introduced some examples of vec-
torized logical operators. Additional information is provided here.

Given vectors v and w containing logical/Boolean/TRUE-FALSE values, both R and
MATLAB provide ways to perform pairwise logical operations on the vectors, or operations
that apply to all elements within a given vector.

49. AND operation: element k of x will be TRUE if and only if element k of both v and w
are TRUE.

x = v & w x = v & w

50. OR operation: element k of x will be TRUE if and only if element k of either v or w
(or both) are TRUE.

x = v | w x = v | w

51. XOR (exclusive-or) operation: element k of x will be TRUE if and only if element k of
either v or w (but not both) are TRUE.

x = xor(v,w) x = xor(v,w)

52. NOT operation: element k of x will be TRUE if and only if element k of v is FALSE.

x = !v x = ~v

53. TRUE if all elements of v are TRUE, and FALSE otherwise.

all(v) all(v)

See items 57–58 on Page 50 for information about how to apply this function to all rows
or columns of a matrix, since the method is the same as when summing matrix entries. In
R, you can use apply to apply all to rows or columns of a matrix. In MATLAB, all accepts
a parameter indicating the dimension of a matrix to operate along.

54. TRUE if any elements of v are TRUE, and FALSE otherwise.

any(v) any(v)
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55. In both platforms, when the entries of a vector containing logical values are summed,
FALSE counts as 0 and TRUE counts as 1. This lets you easily count the number of entries
satisfying certain conditions. For example, the command below counts how many values in
v are greater than 4 and less than or equal to 7.

sum((v > 4) & (v <= 7)) sum((v > 4) & (v <= 7))

4.6 Other calculations

56. Sum of all elements in vector v or matrix A.

R MATLAB

sum(v) or sum(A) sum(v) or sum(A(:))

57. Sums of columns of matrix A.

colSums(A) or apply(A,2,sum) sum(A,1) or just sum(A)

58. Sums of rows of matrix A.

rowSums(A) or apply(A,1,sum) sum(A,2)

59. Product of all elements in vector v or matrix A.

prod(v) or prod(A) prod(v) or prod(A(:))

60. Products of columns of matrix A.

apply(A,2,prod) prod(A,1) or just prod(A)

61. Products of rows of matrix A.

apply(A,1,prod) prod(A,2)

62. Matrix exponential eA =
∑

∞

k=0 A
k/k!.

expm(Matrix(A))

This function is in package Matrix.
expm(A)

63. Cumulative sum of values in vector v.

cumsum(v) cumsum(v)

64. Cumulative sums down columns of matrix A.

apply(A, 2, cumsum) cumsum(A,1) or just cumsum(A)

65. Cumulative sums across rows of matrix A.

t(apply(A, 1, cumsum)) cumsum(A,2)

66. Cumulative sum of all elements in a matrix A, going down the columns sequentially.

cumsum(A) cumsum(A(:))
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67. Cumulative product of all elements in a matrix v.

cumprod(v) cumprod(v)

In both platforms, cumprod can be used in the same ways as cumsum above to
compute cumulative products of all elements of a matrix, or the elements down all columns
or across all rows.

68. Cumulative minimum or maximum of elements in vector v.

cummin(v) or cummax(v) MATLAB does not currently have a
built-in function to do this, but a basic
for loop can be used. Because MATLAB
optimizes/accelerates such loops, this
actually runs quite quickly:
w=zeros(size(v)); w(1)=v(1);

for i=2:length(v)

w(i)=min(w(i-1),v(i));

end

69. Construct a vector whose ith element is the difference between the (i + 1)st and ith

elements of vector v, i.e., the difference between consecutive elements of v. The resulting
vector has one fewer element than v.

diff(v) diff(v)

70. Make a vector y the same size as vector x, which equals 4 everywhere that x is greater
than 5, and equals 3 everywhere else.

y = ifelse(x > 5, 4, 3) This is like a
vectorized version of the C programming
language’s ternary operator.

There is no simple built-in function, but it
can be accomplished in a couple of
different ways via vectorized
computations:
z = [3 4];

y = z((x>5)+1)

Another approach is:
y = 3*ones(size(x)); y(x>5) = 4

71. Find the minimum element of vector v.

min(v) min(v)

Both platforms also have a corresponding max function.
(R): If any of the values in v are NA, min(v) will return NA. You can ignore NA

values by instead using min(v, na.rm=TRUE).

72. Find the minimum element of matrix A.

min(A) min(A(:))

73. Find the minimum elements of each column of matrix A.

apply(A,2,min) min(A)

74. Find the minimum elements of each row of matrix A.

apply(A,1,min) min(A, [ ], 2)
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75. Given matrices A and B, compute a matrix where each element is the minimum of the
corresponding elements of A and B.

pmin(A,B) min(A,B)

R also has a corresponding pmax function.

76. Given matrix A and scalar c, compute a matrix where each element is the minimum of
c and the corresponding element of A.

pmin(A,c) min(A,c)

77. Given matrices A and B, find the minimum value among all elements of both A and
B.

min(A,B) min([A(:) ; B(:)])

78. Given vector v, find the index ind of the first element in v equal to the minimum
element of v.

ind = which.min(v) [y,ind] = min(v)

R also has a corresponding which.max function.

79. Given matrix A, find the rows inds of the minimum elements within each column of
A.

inds = apply(A, 2, which.min) [y,inds] = min(A)

80. Given matrix A, find the columns inds of the minimum elements within each row of
A.

inds = apply(A, 1, which.min) [y,inds] = min(A, [ ], 2)

81. Sort elements of the vector v.

sort(v) sort(v)

For complex numbers, R sorts first by the real part, and then by the imaginary part.
MATLAB sorts first by the magnitude, and then by the angle.

82. Create sorted vector s containing the elements of v, with corresponding index vector
idx, such that s[k] = x[idx[k]].

tmp=sort(v,index.return=TRUE)

s=tmp$x; idx=tmp$ix

[s,idx]=sort(v)

83. Given matrix A, sort the rows according to the first column. Use column 2 to break
ties, then column 3 to break remaining ties, etc. Construct sorted matrix sA, and index
vector idx as in the previous entry, where row k of sA is row idx[k] of A.

idx=do.call(order, data.frame(A))

sA=A[idx,]

[sA,idx] = sortrows(A)

84. Sort the rows of A according to columns x, y, and z.

idx=order(A[,x],A[,y],A[,z])

sA=A[idx,]

[sA,idx]=sortrows(A,[x y z])

85. Same as previous item, but use decreasing order when sorting by columns x and y.
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idx=order(-A[,x],-A[,y],A[,z])

sA=A[idx,]

[sA,idx]=sortrows(A[-x -y z])

86. Given a vector v of presumably discrete values, build a vector w containing the unique
values in v, and corresponding vector c containing the counts of those values.

tmp=table(v); c=as.numeric(tmp)

w=as.numeric(names(tmp))

w=unique(v); c=hist(v,w)

(R): The table function actually works with non-numeric data, such as character strings.
If you want to build vectorsw and c describing character data, use w=names(tmp), i.e., omit
the as.numeric().

87. Given a vector v of presumably continuous values, divide the values into k equally sized
bins, then build a vector m containing the midpoints of the bins and a corresponding vector
c containing the counts of values in the bins.

tmp=hist(v,seq(min(v),max(v),

len=k+1),plot=FALSE);

m=tmp$mids; c=tmp$counts

[c,m]=hist(v,k)

88. Compute the convolution of the vectors x and y.

convolve(x, rev(y), type='open') conv(x,y)
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Lists and Cell Arrays

In both R and MATLAB, a matrix or vector can only hold a set of values of the same type,
for example floating-point values, integers, logical values, characters, etc. Sometimes it is
convenient to build a more general object which can contain values of different types. Both
platforms provide ways of doing this. In R, lists are used, while in MATLAB, cell arrays
are used (but also see MATLAB structs in Section 3.8.3). As with matrices and vectors,
in R, a list is fundamentally a vector object (from which you can build matrices), while in
MATLAB a cell array is fundamentally a matrix (which may be equivalent to a vector if it
happens to have only one row or column).

5.1 Creating lists and cell arrays

Let us create a list or cell array containing four elements: (1) a vector V1 containing the
values 4, 8, and 15; (2) a variable V2 containing the string “hello”; (3) a 2×3 matrix V3 of
random values; and (4) the variable V4 containing the logical value TRUE. We will build
the object in two forms: first, as a vector tmp, and second, as a 2× 2 matrix tmpA (with
the four elements arranged down the first column and then the second column).

R

First set up the temporary variables:
R

V1 = c(4,8,15); V2 = 'hello'

V3 = matrix(runif(6), nrow=2); V4 = TRUE

As with vectors, the elements of lists can be referred to by number, but if names are
provided, then they may also be used to access elements of the list. To create our example
list in vector form without names, you can use tmpNoNames = list(V1, V2, V3, V4). If
you wish to provide names as well, you can instead use tmp = list(foo=V1, bar=V2,

baz=V3, quux=V4). As shown in the example, the names of the list elements do not need
to match the variables originally holding their values.

To create the list as a 2 × 2 matrix, you can either reshape a vector, or use matrix. If
you have already created the vector list above, you can either do tmpA = tmp; dim(tmpA)

= c(2,2) or else tmpA = matrix(tmp, nrow=2). Note that both of these methods strip
out names of elements that were present in the original list tmp. You can restore them via
names(tmpA) = names(tmp). In general, the same mechanisms for working with the names
of elements of a vector described in Section 3.8.1 can be used with lists.

An alternative way to create a list is to first create an empty list of the desired length
and then fill in its elements, as follows.
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R

tmpNoNames = vector('list', 4)

tmpNoNames[[1]] = V1

tmpNoNames[[2]] = V2

tmpNoNames[[3]] = V3

tmpNoNames[[4]] = V4

See Section 5.2 for more about the notation involving double square brackets.

MATLAB

First set up the temporary variables:
MATLAB

V1 = [4 8 15]; V2 = 'hello'

V3 = rand(2,3); V4 = true

To create a 1× 4 cell array (a row vector), use the command tmp = { V1, V2, V3, V4

}. Use semicolons instead of commas between the four elements to create a 4 × 1 (column
vector) cell array.

To create a 2 × 2 cell array, you can reshape the vector cell array above using tmpA =

reshape(tmp, 2, 2). You could also type in the matrix directly, using tmpA = { V1 V3;

V2 V4 }. In this case, the values are entered across the rows, rather than down the columns,
and so they are typed in a different order than when constructing the tmp vector cell array.
You could enter the values down the columns by transposing: tmpA = { V1 V2; V3 V4 }'.

Alternatively, you can first create an empty cell array of the desired length, and then
fill in its elements, as follows.

MATLAB
tmp = cell(1,4);

tmp{1} = V1;

tmp{2} = V2;

tmp{3} = V3;

tmp{4} = V4;

See Section 5.2 for more about the notation involving curly braces.

5.2 Using lists and cell arrays

In both platforms, there are two very different methods for extracting the contents of one
or more elements of a list or cell array. You can extract elements “bare,” i.e., as their
fundamental data types. For example, extracting the first element of the example list or cell
array in the previous section gives a vector containing the values 4, 8, and 15. You can also
extract one or more elements still wrapped within a list or cell array. The danger is that it
is easy to make a typo and extract things in the wrong way but not realize it until things
start behaving strangely later on. Fortunately, because this issue exists in both platforms,
it does not really make it more difficult to transition from one platform to the other.
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R

To access elements of a vector list “bare,” you can refer to the elements by name or number.
You can use double square brackets with names and numbers, or a dollar sign with names
only. For the example list tmp created in Section 5.1, the following three commands will all
access the first element of the list: tmp$foo, tmp[['foo']], and tmp[[1]]. You can use all
three methods to replace an element of the list, e.g., tmp[[1]] = c(16, 23, 42). R also
lets you do things like modify part of the vector contained within a list, via commands like
tmp[[1]][2] = 100, which modifies the second element of the vector stored in the first
element of the list.

To access elements of a vector list still within a list, you can use single square brackets,
with names or numbers, for example tmp['foo'] and tmp[1]. Notice the slight difference
in output when using double and single square brackets. The difference can be made explicit
by checking what type of data the two commands return.

R

> tmp[[1]]

[1] 4 8 15

> tmp[1]

$foo

[1] 4 8 15

> class(tmp[[1]])

[1] "numeric"

> class(tmp[1])

[1] "list"

The first command returns a vector of length 3, while the second command returns a list
of length 1 whose single element (named foo) is a vector of length 3.

MATLAB

To access the elements of a cell array “bare,” you use curly braces for matrix indexing.
For the example cell array tmp from Section 5.1, the command tmp{1} will access the
first element of the cell array. You can assign a new value to an element of the list in the
same way, e.g., tmp{1} = [16 23 42]. You can modify part of a vector contained within a
cell array, via commands like tmp{1}(2) = 100, which modifies the second element of the
vector stored in the first element of the cell array.

To access elements of a cell array still contained within a cell array, use the usual
parentheses for matrix indexing, for example tmp(1). Notice the difference in output when
using curly braces and parentheses, which can be confirmed by checking the types returned
by the two expressions:

MATLAB
>> tmp{1}

ans =

4 8 15

>> tmp(1)

ans =

[1x3 double]

>> class(tmp{1})

ans =

double

>> class(tmp(1))
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ans =

cell

The first command returns a 1× 3 row vector, while the second command returns a 1 × 1
cell array whose single element is a 1× 3 row vector.

5.3 Applying functions to all elements of lists and cell arrays

Besides simply being useful because they can contain collections of objects of different types
or sizes, one of the nice things about lists and cell arrays is that you can also apply functions
to all of the data contained within them. Consider two examples. For the first example, say
we have a collection tmp1 which contains three vectors, of lengths 4, 8, and 15, respectively.
The three vectors will contain the integers from 11–14, eight equally spaced values between
15 and 18 inclusive, and the squares of the integers from 21–35, respectively. We wish to
compute the mean of each of the three vectors. We could of course write a for loop to
compute the mean of each vector, one at a time. But there is a better way, in both R and
MATLAB. For the second example, suppose we have a collection tmp2, each element of
which is a vector with three elements, m, n, and p. For a given element of tmp2, we wish
to generate m random values chosen from a binomial distribution with parameters n and
p.

R

The functions lapply, sapply, and vapply allow you to apply a specified function to the
elements of a list. lapply returns its results in a list, while sapply attemps to simplify its
results to a vector or a matrix if possible. vapply lets you specify more information about
the type of data produced each time the function is applied to an element of the list, and
has a return value similar to sapply.

Example 1: We can set up our sample data via the command tmp1 = list(11:14,

seq(15,18,len=8), (21:35)^2). We can then compute the means of the three vectors in
tmp1 in three different ways, as follows.

R

> lapply(tmp1,mean)

[[1]]

[1] 12.5

[[2]]

[1] 16.5

[[3]]

[1] 802.6667

> sapply(tmp1,mean)

[1] 12.5000 16.5000 802.6667

> vapply(tmp1,mean,numeric(1))

[1] 12.5000 16.5000 802.6667
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lapply returns its results as a list of length 3, where each element contains the desired mean
of the corresponding element of tmp1. sapply returns the same three scalar values, but
combined into a vector. (If lapply returned a list in which each element contained a vector
of the same size, then sapply would return a matrix obtained by packing those vectors
together as the columns.) vapply returns the same thing as sapply, but we must explicitly
tell it that the function mean will return a single numeric value.

Example 2: We can set up an example list via tmp2 = list(c(4, 8, 0.3), c(7,

16, 0.5), c(12, 42, 0.8)). We also need to build a function which takes a vector con-
taining three values m, n, and p, and returns m random values from the binomial distribu-
tion with parameters n and p. This can be done with the following code: f=function(v)
{return(rbinom(v[1],v[2],v[3]))}. (See Section 8.1.1 for more information about writ-
ing functions.) The lapply function then does what we want:

R

> lapply(tmp2,f)

[[1]]

[1] 2 2 3 4

[[2]]

[1] 9 2 8 5 8 9 8

[[3]]

[1] 36 31 34 33 31 31 33 32 35 35 32 34

The results are returned in a list of length 3. Note that using sapply(tmp, f) would give
the same results; sapply would not be able to simplify the results to a vector or matrix,
because the different elements of tmp2 produced vectors of different lengths.

MATLAB

The function cellfun lets you apply a function to the elements of a cell array.
Example 1: We can set up our sample data via the command tmp1 = {11:14,

linspace(15, 18, 8), (21:35).^2}.We can then compute the means of the three vectors
in tmp1 as follows.

MATLAB
>> cellfun(@mean,tmp1)

ans =

12.5000 16.5000 802.6667

See Section 8.2.7 for information about the@mean notation, which builds a function handle
to the mean function. This provides a way to pass a reference to the mean function as an
argument to the cellfun function.

Example 2: We can set up an example list via tmp2 = { [4 8 0.3], [7 16 0.5],

[12 42 0.8] }. Then, we need to write a function which takes a vector [m n p] containing
three scalar values m, n, and p and produces m random values from a binomial distribution
with parameters n and p. If you have the Statistics Toolbox installed, this will define a
function which produces a 1×m row vector of such values: myfunc = @(v) binornd(v(2),

v(3), [1 v(1)]). See Section 8.2.1 for information about this @() notation, which creates
what is called an anonymous function that can then be passed to other functions. If you
do not have the Statistics Toolbox, you can produce a binomial(n, p) random value by
generating n random values from the continuous uniform distribution between 0 and 1 and
counting how many of them are less than p. To simultaneously generate m binomial(n, p)
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values, create an n×mmatrix of random values and count how many in each column are less
than p. This function will do the trick: myfunc = @(v) sum(rand(v(2),v(1)) < v(3)).
(Note that when you write sum(A) in MATLAB with a matrix A, it adds the values within
each column. In R, sum(A) adds up all of the values in the entire matrix.)

There is one additional complication here. The cellfun function by default returns its
results in a vector or matrix with the same dimensions as the original cell array. However,
that only works when the function we provide to cellfun returns a scalar value. Here, our
function myfunc produces vectors containing 4, 7, and 12 values when called with the three
elements of our tmp2 cell array. We can tell cellfun to produce a cell array, rather than a
regular array or vector, via the 'UniformOutput' argument, as follows.

MATLAB
>> out=cellfun(myfunc,tmp2,'UniformOutput',false)

out =

[1x4 double] [1x7 double] [1x12 double]

>> out{:}

ans =

3 2 2 3

ans =

11 7 10 8 9 9 6

ans =

33 34 30 37 35 35 32 31 30 32 36 34

5.4 Converting other data types to lists and cell arrays

It is necessary sometimes to convert various types of data (such as vectors or matrices)
to/from lists and cell arrays. Several common conversion mechanisms of this type are given
below.

5.4.1 All values in a numeric vector or matrix

Simple numeric vectors or matrices can be converted to lists or cell arrays quite easily in
both platforms.

R

To convert a simple numeric vector v to a list, use myList = as.list(v). If the ele-
ments of v have names, they will be preserved in the list. To convert a matrix A to
a list, you can use either approach from Section 5.1 for constructing a matrix list: ei-
ther myList = as.list(A); dim(myList) = dim(A) or myList = matrix(as.list(A),

nrow=dim(A)[1]). Note that names for the elements of A, as well as for the rows and
columns of A, will be lost by either of the above mechanisms. If the elements of A were
named, you can use names(myList) = names(A) to restore them. Use rownames(myList) =

rownames(A) and colnames(myList) = colnames(A) if the original matrix had row and/or
column names that you wish to preserve.
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MATLAB

Converting a matrix to a cell array in MATLAB is very straightforward, whether it is a
vector v (a 1× n or n× 1 matrix) or a full-blown 2-D matrix A. Simply use myCellArray
= num2cell(v) or myCellArray = num2cell(A). If you wish to change the dimensions of
the cell array, you can use the reshape function.

5.4.2 Matrix, by columns or rows

Suppose you have an m×n matrix A, and wish to split it into either: (1) a list or cell array
of length n, where the kth element contains the values from column k of A; or (2) a list or
cell array of length m, where the kth element contains the values from row k of A.

R

If you wish to split A into a list whose elements contain the different columns of A, use
myList = split(A, col(A)). If you instead wish to split A into a list whose elements
contain the rows of A, use myList = split(A, row(A)).

MATLAB

If you wish to split A into a cell array whose elements contain the different columns of A,
use myCellArray = num2cell(A,1). This will produce a 1 × n cell array, each element of
which contains a column vector. If you instead wish to split A into cell array containing
the different rows of A, use myCellArray = num2cell(A,2). This will produce an m × 1
cell array, each element of which contains a row vector.

5.5 Converting lists and cell arrays to other data types

5.5.1 Set of vectors to a single vector

Suppose you have a set S (here, “set” will be used to refer to either a list in R or a cell array
in MATLAB), where the various elements of the set consist of vectors. The different vectors
may or may not be the same length. You wish to combine the sets into a single vector.

R

You can combine all elements of all of the vectors into a single vector via the command v

= unlist(S).

MATLAB

The ease with which you can combine these data into a single vector depends on the details
of how the vectors within the cell array are arranged, as well as whether the cell array itself
is arranged as a row vector or column vector.

In the simplest case, if all elements of the cell array are row vectors and the cell
array itself is a row vector (i.e., everything has just 1 row), you can simply use v =
cell2mat(cellArray). This will produce a row vector. This also works if the cell array
itself, as well as its elements, are column vectors, in which case the result is a column
vector.

A bit of trouble arises if your cell array is a row vector but its elements are column
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vectors, or vice versa. In that case, you must first reshape everything to ensure that they
are properly aligned for combining. You can first write a small function which reshapes a
given matrix into a row vector. You then apply that function to all elements of your cell
array. Next, reshape the cell array itself to ensure that it is a row vector, and then finally
convert to a matrix:

MATLAB
myfunc = @(A) reshape(A, 1, [ ]);

tmpCellArray = cellfun(myfunc, cellArray, 'UniformOutput', false);

v = cell2mat(reshape(tmpCellArray, 1, [ ]));

5.5.2 Set of vectors to matrix

There may be times when you have a set (a list or cell array), where each element of the
set is a vector containing k elements, and you wish to turn the data into a matrix. Suppose
you wish to turn the ith element of the list into the ith row of the matrix. If you wish to
put the data into columns of the matrix, you can simply transpose the result.

R

This situation arises, for example, when using scan to read data from a text file (see
Section 12.2). You can create a simple example of such a list with two elements, each being
a vector containing three values, via L = list(c(4,8,15), c(16,23,42)). Two ways to
convert this to a matrix are as follows:

1. do.call(rbind,L). This calls rbind, passing it the set of vectors in the elements
of L as its arguments.

2. t(simplify2array(L)). Note that we must transpose the result of sim-
plify2array because it returns a matrix whose ith column contains the vector
from the ith element of the list L.

The function simplify2array is a helper function usually called by sapply. The same result
could be obtained by going through sapply, e.g., by doing sapply(L,c) to just apply the
c function to each of the vectors contained in the list L (which does nothing), and then
letting sapply put the results together into a matrix.

MATLAB

In MATLAB, unlike R, the orientation (row or column) matters, for both the cell array
itself and for the vectors contained in its elements. Assume vectors v1, v2, and v3 are all
1 × n row vectors, and that two cell arrays are created via the commands C1 = { v1 v2

v3 }; C2 = { v1 ; v2 ; v3 }. The command cell2mat(C1) will produce a 1 × 3n row
vector, equivalent to the matrix produced by the command [v1 v2 v3]. The command
cell2mat(C2) will produce a 3 × n matrix, equivalent to the matrix produced by the
command [v1 ; v2 ; v3].

Now consider the case where v1, v2, and v3 are all n× 1 column vectors instead, and
C1 and C2 are constructed as above. The command cell2mat(C1) will produce an n× 3
row vector, again equivalent to the matrix produced by the command [v1 v2 v3]. The
command cell2mat(C2) will produce a 3n× 1 matrix, equivalent to the matrix produced
by the command [v1 ; v2 ; v3].
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5.5.3 Set of sets to matrix

Suppose we have a set, each element of which is a set of numeric values, and we wish to
convert all of this into a matrix. To do this, all of the subsets must have the same length.
As in Section 5.5.2, we will place the values from the ith element of the set in the ith row
of the matrix.

R

An example of such a list of lists can be created via L = list(list(4, 8, 15), list(16,

23, 42)). To convert this to a matrix, we can use the unlist function on each element of
the list. This would produce a set of vectors. The function sapply will let us apply the
unlist function to every element of our list L, and fortunately will gather up the results
into a matrix, assuming all elements of L are lists of the same length. So we can simply
do t(sapply(L,unlist)), again needing to transpose because sapply puts the resulting
vectors into the columns of the matrix, rather than the rows.

MATLAB

Suppose you have a 1-D cell array where each element is a 1-D cell array whose elements
are scalars. The cell2mat function converts cell arrays to matrices, but it only works when
the elements of the cell array are vectors or matrices. So we need to do two conversions.

First, each element of the outer cell array should be converted from a cell array to a
vector. This can be done by applying the cell2mat function to each element using cellfun.
Here, because each cell is being converted to a vector, i.e., cell2mat is returning a vector
rather than a scalar, we must set the 'UniformOutput' parameter of cellfun to FALSE,
or zero. This command performs this stage of the conversion, assuming C is our cell array:
cellfun(@cell2mat,C,'UniformOutput', false).

The result of the command above is a cell array whose elements are vectors; one more
call to cell2mat will convert that to an array. Overall, the command cell2mat(cellfun(

@cell2mat, C, 'UniformOutput', 0)) will therefore convert the cell array of cell arrays
to a matrix.

5.5.4 Set of strings to a set of numeric vectors

Suppose you have a set containing strings representing vectors of numeric values. For ex-
ample, each element of the set may contain one line of text from a file.

R

An example of a list of this type can be created by the command tmp=list('4 8 15',

'16 23 42').
The scan command can turn a single such string (such as s='4 8 15') into a vector,

via the command scan(text=s). However, scan will not operate directly on a list of such
strings. This is a good candidate for the function lapply, which allows us to apply the func-
tion scan to each element of our list tmp. However, lapply does not provide a mechanism
to specify the name (text in our example) of the parameter to pass to the function being
called (scan). We can get around this by creating a wrapper function which takes a single
parameter (the string to scan from), and then in turn calls scan, passing that single param-
eter as the text parameter. So this will work: lapply(tmp, function(x) scan(text=x,

quiet=TRUE)). The quiet=TRUE argument to scan prevents it from displaying how many
records it converted in each line.
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MATLAB

An example of such a cell array can be created by the command tmp = {'4 8 15', '16

23 42'}.
The textscan function can be used to extract the numerical values from any one of the

strings into a new cell array. The cellfun function can be used to apply textscan to each
element of the overall cell array. This is facilitated by first creating a small function which
takes a string as a parameter and calls textscan with the string as well as the necessary
parameter indicating what format to use when scanning the data:

MATLAB
myfunc = @(s) textscan(s, '%f');

cellfun(myfunc, tmp)
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Flow Control

Both R and MATLAB have similar and standard methods for controlling the flow of code
— statements such as if/else, while, and for. The two packages are more similar than
different, with mainly just some differences in the syntax used to delimit the loops.

6.1 Conditional (“if”) statements

Both platforms have if statements to allow a block of code to optionally be executed,
depending on the value of a logical test. The common logical operators are listed in Table 6.1.

R

In R, an if statement has the form
R

if (condition) command

The condition should be a logical (TRUE/FALSE) value; unlike MATLAB, this should
be a scalar value. If you provide a vector, only the first element is used, and a warning
is displayed. Values other than logicals can be used, as long as they can be interpreted
as logicals. For example, non-zero numeric values are interpreted as TRUE while zero is
FALSE. The character strings “T,” “TRUE,” “True,” and “true” are interpreted as TRUE,
with similar versions for FALSE. The command can be on a new line following the if
statement. Unlike MATLAB, the condition must be contained within parentheses. Finally,
one additional warning is needed. Although by default the commands T and F will produce
the values TRUE and FALSE, respectively, they can be changed. That is, you can enter

Description R expression MATLAB expression

a AND b a && b a && b

a OR b a || b a || b

a XOR b xor(a,b) xor(a,b)

NOT a !a ~a

TABLE 6.1
Scalar logical operators. The && and || operators are short circuiting. That is, when evalu-
ating a logical condition from left to right, && stops evaluating its arguments as soon as any
of them are FALSE, and || stops evaluating as soon as any of its arguments are TRUE.

65
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the command T = 0, or even T = FALSE. I have seen a graduate student unwittingly set T
to zero, and then use it later on, thinking its value was still TRUE.1

A simple example of an if statement is
R

x = sample(100,1) # a random integer from 1 to 100

if (x > 50) print('x is large')

Because R does not terminate if statements with an end as MATLAB does, if you wish to
put more than one command inside the body of the if, you need to enclose the commands
within curly brackets:

R

x = sample(100,1)

if (x > 50) {

print('x is large')

x = floor(x/2)

}

In MATLAB, you can provide a vector or matrix of logical values as the condition in
an if statement; the commands get executed only if all elements of the object are TRUE.
In R, you can accomplish the equivalent via the all function:

R

A = matrix(runif(6), nrow=2) # 2x3 matrix of numeric values

# Note: "A > 0.5" is a matrix of logical values

if (all(A > 0.5))

print('All values of A were large')

MATLAB

In MATLAB, an if statement has the form
MATLAB

if condition

commands

end

Unlike R, even if the clause of the if statement only contains a single command, you must
still use an end statement to explicitly flag the end of the if. Corresponding MATLAB
examples of the if statements from Section 6.1 are below. First, a simple example with a
single command inside of the if statement:

MATLAB
x = randi(100, 1); % a random integer from 1 to 100

if x > 50

disp('x is large')

end

Multiple statements inside the if statement require nothing different:

1Fortunately, R will not let you do TRUE = FALSE, so it is always safe to compare to TRUE and FALSE
without worry. However, I have heard stories about older versions of FORTRAN in which it was possible
to change the values of numerical constants such as 5 via an odd trick.
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MATLAB
x = randi(100, 1);

if x > 50

disp('x is large')

x = floor(x/2);

end

If the condition is a vector or matrix of logical values, the commands get executed only
if all elements are TRUE:

MATLAB
A = rand(2,3); % 2x3 matrix of numeric values

b = (A > 0.5); % matrix of logical values

if b

disp('All values of A were large')

end

6.2 “If/else” statements

Like most programming languages, both platforms also provide “if/else” statements allowing
you to execute one set of statements if a condition evaluates as TRUE, and another set of
statements if the condition is FALSE.

R

The syntax for R’s if/else statement has a possible pitfall that does not arise in MATLAB.
If both the TRUE and FALSE sets of code have only one statement, you can write the
command like this:

R

if (condition) command1 else command2

If the code for the FALSE clause has multiple statements, you can enclose them in curly
braces. And of course even if you have only a single statement (whether in the TRUE or
FALSE clauses or both), you can still enclose it in curly braces.

A problem arises in R if you try to put the else on a new line, as in the following two
code fragments:

R

if (condition)

command1

else

command2

if (condition) {

command1a

command1b

}

else {
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command2a

command2b

}

The problem is that when R is parsing its input line by line, it thinks the if statement
is done before it gets to the else. So the safe way to write an if/else statement in R is
as follows, which keeps the else on the same line as the curly brace which terminates the
TRUE clause of the statement.

R

if (condition) {

commands1

} else {

commands2

}

For safety and simplicity, some people recommend the use of curly braces even when the if
or else contains only one command, following the pattern in the block of code above.

Testing against multiple cases is written as follows:
R

if (x < 5) {

print('x is very small')

} else if (x < 10) {

print('x is somewhat small')

} else if (x < 50) {

print('x is medium')

} else {

print('x is large')

}

Leaving out any of the sets of curly braces except for the last pair would cause an error;
the pair of braces around the final clause is not strictly necessary in the above example.

MATLAB

MATLAB’s if/else statements do not have the potential problem that R’s do, because
MATLAB always forces you to terminate an if statement with an end, no matter how
many commands are inside the TRUE/FALSE clauses. So the code looks like this:

MATLAB
if (condition)

commands1

else

commands2

end

MATLAB also provides the elseif mechanism for testing against multiple cases. For
example:

MATLAB
if x < 5

disp('x is very small')

elseif x < 10

disp('x is somewhat small')
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elseif x < 50

disp('x is medium')

else

disp('x is large')

end

6.3 “for” loops

Both platforms have for loops which behave in a very similar manner. They differ somewhat
from how for loops work in languages like C, C++, and Java. R and MATLAB’s for
loops are more similar to foreach loops in Perl, in that you specify a set of values for the
dummy/index variable to take on, and changing that variable’s value inside of the loop does
not affect how many iterations are performed.

R

The syntax for a loop in R is:
R

for (ind in vec) command

where ind is the name of a dummy variable (you can use any legitimate variable name
here), and vec is a vector of values. This is equivalent to the set of statements

R

ind = vec[1]

command

ind = vec[2]

command

...

ind = vec[N]

command

where N is the length of the vector vec. If multiple statements are to be included inside
the loop, enclose them with curly braces. For example, to add the values from 1 to 100, as
well as their squares:

R

mySum = 0

mySumSqr = 0

for (i in 1:100) {

mySum = mySum + i

mySumSqr = mySumSqr + i^2

}

print(sprintf('sum of values is %d', mySum))

print(sprintf('sum of squaresis %d', mySumSqr))

One thing to watch out for in R is that some commands which would normally print output
when typed at the command prompt will be silent if you put them inside of a for loop. For
example, if you insert the simple statement mySum inside the for loop in the above code to
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see how the value of mySum changes over time, you will not see any output. Instead you
should use print(mySum). The same is true for commands executed from script files (see
Section 7.3).

If you pass a matrix A in as the set of values a for loop, using a command like for (i
in A), it will sequentially loop over each individual element of A, one column at a time.
That is, it is equivalent to the command for (i in c(A)).

MATLAB

As with if statements, MATLAB terminates the body of a loop with an explicit end state-
ment, even if the loop only contains one command. The syntax for a loop in MATLAB
is:

MATLAB
for ind=vec

command

end

where ind is the name of a dummy variable (you can use any legitimate variable name
here), and vec is a vector of values. This is equivalent to the set of statements

MATLAB
ind = vec(1)

command

ind = vec(2)

command

...

ind = vec(N)

command

where N is the length of the vector vec. For example, to add the values from 1 to 100 as
well as their squares:

MATLAB
mySum = 0;

mySumSqr = 0;

for i = 1:100

mySum = mySum + i;

mySumSqr = mySumSqr + i^2;

end

disp(sprintf('sum of values is %d', mySum))

disp(sprintf('sum of squaresis %d', mySumSqr))

One important thing to watch out for with MATLAB for loops is that the vector of
values you provide must be a row vector, rather than a column vector. That is, for i=[1
2 3 4 5] is a loop which will have five iterations (with i being a scalar value inside each
iteration), while for i=[1; 2; 3; 4; 5] will have only one iteration (with i being a 5 × 1
vector in that one iteration). Fortunately, the most common way of constructing the values
for for loops, namely expressions like a:b or linspace(a, b, n) return row vectors.

More generally, if you write for i=A, where A is an array, the loop will iterate with i
being assigned sequential columns of A throughout the loop, as shown below:

MATLAB
>> A=[4 8 15 ; 16 23 42]

A =
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4 8 15

16 23 42

>> mySum=0;

>> for i=A

i

mySum = mySum+i;

end

i =

4

16

i =

8

23

i =

15

42

>> mySum

mySum =

27

81

6.4 “while” loops

Both platforms have while loops, which allow you to execute blocks of code as long as a
given condition is satisfied. A very simple example would be to repeatedly choose random
values between 0 and 1 until a value larger than 0.95 is chosen, and display how many tries
it took until such a value was found.

R

The R syntax for a while loop is while (condition) expression. The condition must be
enclosed in parentheses. If the expression consists of more than one command, it should be
enclosed in curly braces. Here is code to implement the example:

R

numTries = 1

while (runif(1) <= 0.95) {

numTries = numTries + 1

}

print(numTries)

Note that I have used curly braces here, even though there is only one statement inside
the while loop. I tend to use curly braces most of the time, to guard against accidentally
leaving them out if I add additional commands to a loop which previously contained only
one command.
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MATLAB

Like if statements and for loops, MATLAB’s while statements must be terminated with
an end to delimit the commands enclosed within the loop. Here is code for the example:

MATLAB
numTries = 1;

while rand < 0.95

numTries = numTries + 1;

end

numTries

6.5 Breaking out of loops

Both platforms provide a way to either entirely stop executing a for or while loop early, or
to stop executing just the current iteration and continue with the next iteration. A break
statement inside of a for loop will exit the entire loop immediately in both R and MATLAB.
If you have nested loops, the break exits only the innermost loop.

To stop execution of just the current iteration of the loop and begin the next iteration,
in R you can use the command next, while the MATLAB equivalent is continue. Sample
code is given below which simulates the repeated flipping of two coins to generate one of the
values 1, 2, or 3. Any of the outcomes tails/tails, tails/heads, or heads/tails increments one
of three counters; the outcome heads/heads is ignored. The process is repeated until one of
the three counters reaches 10, in which case the “winning” counter is displayed. However,
if the sum of the three counters ever exceeds 20, the loop is terminated early.

R
R

# Flip two coins to choose a value from 1..3. Repeat until one of

# the values has been seen 10 times.

counts = rep(0, 3)

while (max(counts) < 10) {

if (sum(counts) > 20) {

print('Stopping early!')

break

}

coin1 = sample(c(0,1), 1) # 0=tails, 1=heads

coin2 = sample(c(0,1), 1)

if (coin1 + coin2 == 2) # skip if both are heads

next

index = coin1 + 2*coin2 + 1 # index of 0, 1, or 2 for T/T, H/T, T/H

counts[index] = counts[index] + 1

}

print(counts)

if (max(counts) == 10) { # display winner if anyone won

winner = which(counts == 10)

print(sprintf('Counter # %d won', winner))

}
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Note that unlike MATLAB, R also has a repeat command, equivalent to while
(TRUE). It is mentioned here, because the only way to escape from a repeat loop is
via break. For example, here is how to write the example from Section 6.4 which counts
how many random values are generated until one larger than 0.95 is found:

R

numTries = 1

repeat {

if (runif(1) > 0.95)

break

numTries = numTries + 1

}

print(numTries)

MATLAB
MATLAB

% Flip two coins to choose a value from 1..3. Repeat until one of

% the values has been seen 10 times.

counts = zeros(1,3);

while max(counts) < 10

if sum(counts) > 20

disp('Stopping early!')

break

end

coin1 = randi([0 1]); % 0=tails, 1=heads

coin2 = randi([0 1]);

if coin1 + coin2 == 2 % skip if both are heads

continue

end

index = coin1 + 2*coin2 + 1; % index of 0, 1, or 2 for T/T, H/T, T/H

counts(index) = counts(index) + 1;

end

counts

if (max(counts) == 10) % display winner if anyone won

winner = find(counts == 10);

disp(sprintf('Counter # %d won', winner))

end

6.6 “switch” statements

In some programming languages such as C, C++, and Java, a switch statement provides
a convenient way to excute one set of commands among several sets, according to the value
of a variable. It is equivalent to a set of if ... else statements, but more concise.
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R

R’s switch statement is actually quite different from MATLAB’s and the one in
C/C++/Java. In R, switch is used to select one of a set of values, rather than to per-
form a set of commands. However, it can be fairly easily coerced into behaving in a manner
somewhat similar to MATLAB’s.

R’s switch statement behaves differently according to whether you provide it with a
character string or a numeric value as its first argument. If the first argument is not a string,
the value gets coerced to an integer (floating point values, for example, get truncated to
integers). The return value of the command switch(x, a, b, c, ...) is one of the values
a, b, c, . . . according to whether x is 1, 2, 3, . . .. If you provide k arguments in addition
to the parameter x, but the value of x is greater than k, then NULL is returned. Here is
an example that lets you set y equal to one of the first five prime numbers, according to
whether x is 1, 2, 3, 4, or 5:

R

> x = 4

> y = switch(x, 2, 3, 5, 7, 11)

> y

[1] 7

> x = 6

> y = switch(x, 2, 3, 5, 7, 11)

> y

NULL

Note that the results of the above switch commands are almost identical to what would
be achieved via the command v = c(2,3,5,7,11); y = v[x]. However, where switch
returns NULL if no match is made, the command v[x] would give NA instead.

switch is capable of some other behaviors as well. If the first parameter to switch is
a character string, it is matched against the names of the other parameters. Only exact
matches count. For example:

R

> x='beta'

> switch(x,alpha=101,beta=102,gamma=103)

[1] 102

> x='delta'

> y=switch(x,alpha=101,beta=102,gamma=103)

> y # note, if you just call switch directly, you won't see the NULL

NULL

If there is more than one match, the first one is used. If one of the arguments is unnamed,
it will be used as the value of the command if the first parameter does not match any of
the other parameter names:

R

> x='beta'

> switch(x,alpha=11,99,beta=12,gamma=13)

[1] 12

> x='delta'

> switch(x,alpha=11,99,beta=12,gamma=13)

[1] 99

If the value of the matching parameter is missing, the next non-missing parameter’s value
is used:
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R

> x='alpha'

> switch(x,alpha=,beta=,gamma=17,99)

[1] 17

As mentioned above, R’s switch statement can be coerced into executing one of a
different set of commands according to the value of a variable. This is achieved by making
the various parameters be blocks of code enclosed in curly braces:

R

> x=0; z=0

> y = 'beta'

> switch(y, alpha={x=12; z=17},

+ beta={x=57; z=42},

+ gamma={x=17; z=121})

> x

[1] 57

> z

[1] 42

If you use a numeric variable as the first argument, then if that variable evaluates to the
value i, the ith block of code will be executed.

MATLAB

MATLAB’s switch statement is more similar to that of C/C++/Java. One of a set of
commands will be executed according to which value an expression matches. For example:

MATLAB
x = 4

switch x

case 1

disp('x is small')

y = -1;

case {2, 3, 4}

disp('x is medium')

y = 0;

case 5

disp('x is large')

y = 1;

otherwise

disp('x outside range 1..5')

y = -99;

end

When the above code is executed, it displays “x is medium” and sets y to zero. The above
code demonstrates that to match against a set of multiple values, those values should be
combined in a cell array. It also shows that you can have an otherwise clause (equivalent
to C’s default case). Finally, also note that you do not need break statements at the end
of each block of commands, as you do in the C programming language.

String values can also be used in switch statements.
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6.7 “ifelse” statements in R

R has an additional statement called ifelse, which provides a way to select values from two
vectors. You provide a vector test, along with vectors yes and no. The return value is a
vector the same size as test, where the ith element of the vector is chosen from yes if the
ith element of test is TRUE, and is otherwise chosen from no. For example:

R

> v = c(TRUE, FALSE, TRUE, TRUE, FALSE)

> first = 11:15

> second = 71:75

> ifelse(v, first, second)

[1] 11 72 13 14 75

The same trick could be achieved by turning the TRUE/FALSE values into 1 and 2, re-
spectively (this can be done using the expression 2-v), and then using matrix indexing of
a matrix following entry 64 from Section 3.5:

R

> cbind(first, second)[cbind(1:length(v), 2-v)]

[1] 11 72 13 14 75

However, this latter method is admittedly harder to make sense of.
Although MATLAB does not have a direct equivalent of R’s ifelse statement, the same

result can be achieved with matrix indexing similar to the alternative approach for R given
above. First, a temporary matrix can be built, whose columns contain the vectors first and
second. Then, column indices to choose elements from either the first or second column
can be constructed from v:

MATLAB
>> v = [true,false,true,true,false];

>> first=11:15;

>> second=71:75;

>> tmp=[first(:) second(:)]

tmp =

11 71

12 72

13 73

14 74

15 75

>> tmp(sub2ind(size(tmp), 1:length(v), 2-v))

ans =

11 72 13 14 75
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Running Code from Files: Scripts

If you will be entering more than a small handful of commands, rather than simply typing
them at the command prompt, it is prudent to use an editor to place them in a file. This
allows you to fix any errors in your code without needing to retype all of your commands.
It is also very useful if you are experimenting with some properties of a figure to get it just
right; when you have it just the way you like, you can save your commands to a file so that
you can easily reproduce or modify the figure again later.

Both R and MATLAB have built-in editors1 and ways to execute commands from their
built-in editors and from files. Following standard computer terminology, a file (or editor
window) containing some R or MATLAB commands is typically called a script.

7.1 Current working directory

Both R and MATLAB use what is called a current working directory.2 The current working
directory is the default location for reading and writing files.

R

The command getwd() will display the current working directory. In the OS-X ver-
sion of R, it is also displayed at the top of the Console window. You can use
setwd('some/path/here') to set the current working directory to the specified path.
Use forward slashes as the path separators. Tilde expansion will be done on sys-
tems that support it, where a tilde represents your home directory. (You can enter
path.expand('~') to see what R considers your home directory to be.) So for ex-
ample, on most platforms you can enter a command like setwd('~/R-documents'),
and under an appropriate version of Windows you could enter a command like
setwd('C:/Users/hiebeler/Documents/R-documents').

You can see a listing of the files in the current working directory via the command dir(),
and can make a new directory (folder) named foo via dir.create('foo').

MATLAB

The command pwd shows (prints) the current working directory, or you can also use cd

with no arguments. You can use cd with an argument to set the working directory, e.g., cd
some/path/here. Tilde expansion will be done on some operating systems. Note that if your
path contains directories with spaces in them, you’ll need to use the function-call form of

1The standard Linux version of R does not have a GUI with an editor, but there are facilities to integrate
the Emacs editor with R. Also see the free and open source RStudio project.

2“Directory” is the traditional Unix name for what many people refer to as a “folder” under Windows
and Mac OS-X.

77
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cd, for example cd('C:/Users/David Hiebeler/Desktop'). And note that cd(dir) sets
the current working directory to the path stored in the string variable named dir, and not
to a directory named dir.

You can see a listing of the files in the current working directory via the command dir,
and can make a new directory (folder) named foo via mkdir foo.

7.2 The MATLAB search path

In addition to the current working directory, MATLAB also has a search path, which is a
set of directories it searches when looking for commands. This can be useful if you create
some scripts or functions that you may want to use regularly. Entering the command path

will show you the current search path; this may be quite long if you have many toolboxes
installed. The addpath command can be used to add a new folder to the search path. For
example, addpath ~/myMatlabStuff -end will add the specified folder to the end of the
search path (append -begin to the command to place the folder at the beginning of the
search path instead). You could remove that folder from your path via the command rmpath

~/myMatlabStuff. You can also use the GUI to edit the search path; simply click on the
“Set path” menu item (this is under the File menu in older versions of MATLAB). After
modifying the path, you can either click “Save” in the GUI window or use the savepath
command to save your changes so that they will still be used the next time you run MAT-
LAB.

Sometimes you may not be sure where in your path a file resides. For example, you
may be able to call a function foo1, but do not know where the file is. You can use the
command which foo1 to find the location of a file on your path. This is especially useful
if you accidentally gave a variable the same name as a function, such as sqrt. If you enter
the command sqrt=8, then the command sqrt(2) will no longer compute

√
2. (In fact,

it will give an error, thinking you are trying to access the second element of your variable
sqrt, which only has one element.) The command which sqrt will tell you that sqrt is
a variable. If you clear sqrt, then which sqrt will tell you that it is a built-in function
again. You can also use the command edit foo1 to open up the M-file defining foo1 in
MATLAB’s built-in editor (or another editor, if you have set one in the preferences), if it
can be found in the search path. The command type foo1 will display the contents of the
M-file right in the main MATLAB window.

Note that R does not have a search path that it uses when executing code from files.

7.3 Executing code from a file

For now, let us assume that you have already created a text file containing some R or
MATLAB commands. How you execute the contents of the file is quite different between
the two platforms.

R

In R, executing the contents of a file is called “sourcing” the file. You can do this by
selecting “File → Source File” (Mac) from the user-interface menus or “File → Source R
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code” (Windows).3 A file browser window will pop up, and you can choose the file whose
contents you wish to execute.

You can also source the contents of a file by using the source function at the command
prompt, for example, source('dostuff.R'). That command will look for the file in the
current working directory (see Section 7.1). You can also specify a partial or full pathname
of a file when using the source command, such as source('myFiles/dostuff2.R') or
source('~/dostuff3.R').

In most ways, sourcing a file is equivalent to typing (or copying and pasting) the contents
of the file at the R command prompt. The main exception is that some commands which
produce output when entered at the R console will be silent when they are executed by
sourcing a file. For example, entering y=7*8; y at the command prompt will show the result,
56. If you save those commands in a file and source it, you will not see any output. There are
a couple of ways to address this issue. First, you can add the print.eval=TRUE argument
to the command, i.e., use source('dostuff.R', print.eval=TRUE). Alternatively, you
can use source('dostuff.R', echo=TRUE) to see all of the commands themselves in your
file, as well as their output, as they are executed. The other way to make the output of
commands visible when sourcing a file is to use the print function on any expressions
whose output you wish to see. For the example commands above, you would change them
to y=7*8; print(y). Then you would see the value of y whether you enter the commands
in the R console, or source them from a file. This same issue arises when you put commands
inside of a function, or a loop such as a for or while loop. Also note that this issue applies
to some graphical output, including calls to lattice graphics functions such as levelplot.
You should use print(levelplot(...)) if you are executing the commands by sourcing a file.
Forgetting to print inside a script or a loop is a common source of frustration when your
code is not producing the expected output!

MATLAB

Executing commands from a file in MATLAB is much simpler than in R; you simply need to
enter the name of the file containing the commands (without the “.m” suffix). For example,
if there is a file dostuff.m in the current working directory or in the search path (see
Sections 7.1 and 7.2), then entering the command dostuff at the MATLAB command
prompt will execute the contents of the file, just as if you had typed them in directly.

7.4 Creating a new script document in the editor

R

You can use the “File → New Document” (Mac) or “File → New Script” (Windows) menu
item to open up a new window for editing code.

3Note that in Windows, this menu item is only visible in the File menu if the R Console window is active.
That is, you should click on that window first to be sure it has the mouse’s focus, as opposed to an editor
window or a figure window.
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MATLAB

Under newer versions of MATLAB, you can use the “New → Script” menu item to open
up a new window for editing code; in older versions of MATLAB, use the “File → New →
Blank M-File” menu item.

7.5 Comments in script files

R

In R, the comment character is #. Anything from that character to the end of the line will
be ignored. So you may have a short script that looks like this:

R

# set up a variable with Avogadro's constant

avogadro = 6.02e23 # three significant digits, in scientific notation

You can type comments directly at the R command prompt, but there is usually not much
reason to; comments are primarily used in scripts and functions.

MATLAB

In MATLAB, the comment character is %. Anything from that character to the end of the
line will be ignored. So you may have a short script that looks like this:

MATLAB
% set up a variable with Avogadro's constant

% Here is the actual variable definition:

avogadro = 6.02e23 % three significant digits, in scientific notation

As in R, you can type comments directly at the MATLAB command prompt, but comments
are primarily used in scripts and functions.

MATLAB also has another convention for comments in scripts. If the above script is
stored in the file avo.m and is in your search path, then typing help avo at the command
prompt will display all comments up to the first line which does not begin with a comment
(whether that is a blank line, or a line containing some commands). The percent signs are
stripped out when displaying the comments. For the example script above, you would see
the following:

MATLAB
>> help avo

set up a variable with Avogadro's constant
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7.6 Executing code from the editor window

R

You can execute selected code from your R editor window. Note that you must first ensure
that the editor window containing the code you want to execute is the active window, i.e.,
you should click on that window to make sure it has the application’s focus.

You can select some text in your editor window (perhaps all of it), and then choose
“Edit → Execute” (Mac) or “Edit → Run line or selection” (Windows). R will essentially
copy and paste the selected text into the command window, as if you had typed it yourself
at the prompt.4 In Windows, using “Edit → run line or selection” when you have no text
selected will simply execute the line of code containing the cursor; also, you can use “Edit
→ Run all” to execute the entire contents of the editor window.

Because executing code from an editor window as above essentially copies and pastes
the selected code into the R console, there is one danger to be aware of. If your code uses
scan to read input from the user, it will not work correctly. Consider the following short
code:

R

x = scan()

y = 17

If you execute this code from an editor window, rather than reading the input for x from
the keyboard, it will try to read the text “y = 17”. This will fail because it is trying to read
numeric data. This may come as a surprise, since MATLAB does not exhibit this behavior
with its input statement. Note that this problem with scan() does not occur if you use
the source command to execute your code from the file.

Under Mac OS-X, you can also use “Edit → Source Document” to execute the entire
contents of the editor window by sourcing it, as described in Section 7.3. If your file has
not been changed since you last saved it, R will simply source your file. If the file has not
been saved since you last modified it in the editor, R will create a temporary file which
contains the contents of your editor window, source that file, and then “unlink” (remove)
the temporary file. Keep in mind that the same issues that arise when you source a file
will occur here, namely you will not see the output of various commands whose results you
would see if you typed them directly at the command prompt. Also, if R needs to create
and then unlink a temporary file to source, you will have the problem with scan mentioned
above.

MATLAB

To run code within the editor without saving it, you can first delineate a block or section of
code by creating lines in the document that each only contains the special comment string
%%. All lines between any pair of such lines will be a code block. You can execute a code
block by moving the cursor within that block, and then from the Editor toolbar at the
top of the editor window selecting “Run Section.” If the document has only a single line
which contains just the string %%, all lines above this special comment line will be one
section, while all lines below will be another section. In slightly older versions of MATLAB,
you could first select some or all of the text, and then from the Editor toolbar select “Run

4One slight difference is that on Mac OS-X, after executing code in this way, if you then press the Up-
Arrow key at the command prompt, it will insert all of the code that you executed, rather than just the
last line. You can then edit the block of commands before pressing <Enter> to execute them.
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Section.” In even older versions of MATLAB, the menu item was called “Text → Evaluate
Selection.”

To save the code and run it, you can select “Run” from the Editor toolbar, or in older
versions, use “Debug→ Save File and Run” (if you have already saved the file as dostuff.m,
this menu item will change to “Debug → Run dostuff”). Note that if you save the file and
run it as described above, if you save the file in a folder other than the current working
directory and that folder is not in the search path, MATLAB will give you the option to
either add that folder to the search path or make that folder the current working directory.

7.7 Summary of differences

• In MATLAB, you simply type the name of a script file (without the “.m” suffix) to execute
its contents. In R, you must use a source command to read and execute the contents of
a file. This makes MATLAB feel more customizable, as running commands from a file is
syntactically identical with running a built-in MATLAB command with no arguments.
By setting up your search path in MATLAB, you can keep a folder containing often-used
or useful scripts, which MATLAB will automatically find.

• In R, commands which display their output when typed at the command prompt are silent
when executed from within a script. Calls to lattice graphics functions also produce no
output when called from within a script. You must use print (or another workaround) to
make such output visible.
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Writing Your Own Functions

Putting commands in a script is a useful way to build up more complex code, with an easy
way to modify and debug your commands. But sometimes you want a convenient way to
modify the behavior of your script by specifying some parameters. For this, the easiest way
is to write a function, which takes zero or more parameters as inputs, and returns zero or
more values as outputs. A function with no formal returned outputs can still be very useful,
because it may produce what are called side effects. For example, it may produce a plot, or
write some data to a file.

8.1 R

8.1.1 Writing functions

In R, a function is technically stored in a variable, whose name corresponds to the name of
the function. For example, at the command prompt you can type: f=function(x) x*x. If
you then type f, you will see the function definition. You can call it by entering a command
such as f(11), which will return the value 121. You can use your function in expressions,
just as any of R’s built-in functions, e.g., y=sin(f(11)).

You do not need to put the definition of your function f into a file called f.R (analagous to
what is typically done in MATLAB). But for functions which are more than a few lines long,
it is generally recommended to put the code in a file, for easier editing and debugging. For
example, consider the file fib.R below, which defines a function which computes Fibonacci
numbers defined by Fn+1 = Fn + Fn−1. Note that the standard Fibonacci sequence begins
with F0 = 0 and F1 = 1.

fib.R
1 # Compute Fibonacci numbers

2 # steps: how many iterations to do -- if steps=k then compute the

3 # (k+1)'st Fibonacci number

4 # first,second: the first two numbers in the sequence

5 fib=function(steps,first=0,second=1) {

6 for (i in 1:steps) {

7 nextval = first+second # compute next value

8 first = second # update records

9 second = nextval

10 }

11 return(second)

12 }

Some things to note about functions in R are listed below.

1. Default values can be provided for some or all parameters; this is done for the
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last two of the three parameters in the fib function above. If values for first
and second are not provided when the function is called, those default values (0
and 1, respectively) will be used. You can check whether a value was explicitly
provided for a parameter by using the function missing. For example, in the fib
function, you could use if (missing(second)) to test whether a value for the
second parameter was given. This can be useful for altering how one parameter
is used based on whether another parameter is given (e.g., a plotting function
that can receive both x and y data, but behaves differently if only y data are
provided).

2. Unlike MATLAB, no information about return values of the function is provided
at the top of the definition.

3. A return statement is used to return a value from the function. This is not strictly
necessary; if the end of your function is reached without encountering a return
statement, then the result of the last evaluated expression will be returned. For
example, line 11 in the above function could be changed to simply read second.
Personally, I think it is best to always explicitly call return, as it highlights all
of the locations where execution may exit your function, and explicitly indicates
just what value you want returned to the caller.

4. Expressions which would normally display output when typed at the R command
prompt will instead be silent when executed inside of a function. This behavior
is the same as for R code executed from a script (see Page 79). If you want to
see the contents of the variable myVar from within a function, you need to use
print(myVar) rather than simply using the expression myVar. And in particular,
if you use lattice graphics, you need to embed those commands in print calls
as well in order for the graphics to be displayed. I use levelplot from within
functions quite often, but I still frequently forget to do this.

5. You cannot return multiple values to be stored in separate variables by the caller,
as in MATLAB where you can do [a,b]=f(x). If you wish to do something
similar, the easiest thing to do is return a list (see Section 5.1) containing the
various items via a command like return(list(val1,val2)), and then let the
caller extract the elements of the list and store them in the different variables.

6. Assuming the code for your function is defined in a file, such as fib.R in this
example, if you modify the code, you must remember to first save the file, and
then explicitly source('fib.R') to read in the updated definition. It does not
happen automatically, as it does in MATLAB. If you are a long-time MATLAB
user, it can take a while to train yourself to remember to do this and cause quite a
bit of frustration when you modify your function but do not see the new behavior
when calling it.

7. You can write a function (which may have some side effects, such as creating a
plot) which does not print anything if its return value is not assigned. This is
done via the function invisible. For example, if line 11 of fib.R is changed to
return(invisible(second)), then entering x=fib(15) stores the value 987 in
x, but fib(15) produces no visible output.1

1Calling fib(15) and entering .Last.value will show that the value 987 was in fact invisibly returned.
Or, you can use the parentheses trick from Page 10 and use (fib(15)) to see the invisible return value, or
simply print(fib(15)).



Writing Your Own Functions 85

8.1.2 Calling functions

When calling functions in R, values of parameters may be given either by order/position
or by name. For an example of giving parameters by order, one may enter fib(10,2,1)

to compute the tenth Lucas number2 after the first two, namely L11 = 199. The three
parameters in the call to fib specify the values of the three arguments steps, first, and
second that the function fib accepts, in that order.

You can instead specify parameters by name, in any order. For example, calling the
function as fib(second=1, steps=10, first=2) will also compute L11, as above. You
can abbreviate parameter names, as long as the abbreviation is unique; for example,
fib(se=1,st=10,f=2). If the abbreviation is not unique, as in fib(s=5), R will give an
error. The full rules are a bit more complicated than that — exact matches take a parame-
ter out of consideration for partial matching. For example, fib(steps=10,s=5) will work,
because steps has an exact match, so the only thing s can match is the parameter named
second. A unique partial match does not give the same behavior, i.e., fib(st=10,s=5) will
fail.

You can mix and match order- and name-based parameters. For example, the command
fib(first=2,10,1) gives the named parameter value first the value 2. There are then
two remaining unnamed parameter values, 10 and 1. They are assigned to the remaining
unassigned arguments, namely steps and second, in that order. I personally try to avoid
mixing the two methods of passing parameters in this way, with the following exception:
I may specify some leading parameters by order (i.e., the first through the nth parame-
ters), and then specify additional parameters by name. For example, fib(20, second=4)

to specify the first parameter (steps) and the value for second, while accepting the default
value for first.

Note that passing parameters by name to functions is where the difference between
the assignment operators = and <- becomes very important in R. Consider the following
examples: f(x=12) calls the function f, specifying that its argument x should have the value
12. The command f(x<-12) first assigns the value 12 to the variable x, and then also uses
the value 12 as the first argument to the function f, whatever that parameter may be called
in f. So the very misleading fib(second<-4)would assign the value 4 to the variable named
second, and then call fib with a value of 4 as the first argument (namely steps), and the
default values of the other two parameters (first=0 and second=1). Be aware that this
type of command, where one of the arguments has a side effect (such as assigning a value to
a variable in the above examples) may give surprising results, depending on the function f. R
has a “lazy” method of evaluating function arguments, only doing so when needed [26]. For
example, if you have defined f = function(a,b) return(42+b), then f(x<-12, y<-10)

will assign the value 10 to y, but will not assign the value 12 to x. This is because the first
argument is not actually used within the function, and therefore the expression “x<-12”
does not get evaluated.

If you have used MATLAB for some time, one final difference you may notice with R is
that you must provide an empty parameter list (empty parentheses) when calling a function
which takes no parameters. For example, you must use the command date(), rather than
just date.

8.1.3 Environments and variable scope

As in many languages, variables defined within a function are only visible within that
function, and vanish when the function exits. For example, if you define the function

2Lucas numbers are a Fibonacci sequence defined via Ln+1 = Ln + Ln−1, with L0 = 2 and L1 = 1.
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R

f1 = function(x) {

y = 12

return(y*x)

}

then the variable y has not been set at the top-level or global scope. If you enter f1(8),
then subsequently entering y will not show the value 12. When the function f1 exits, the
variable y created inside of it disappears. If you already had a variable y defined before
calling the function, its contents will not be modified. This behavior is common to both R

and MATLAB (and many other programming languages as well).
There are three types of variables that can exist within a function. The first type is a

formal parameter, which is a variable defined as an input to the function. In our earlier fib
function, the formal parameters are steps, first, and second. The second type is a local
variable, i.e., a variable defined inside of the function. In fib, we had a local variable i used
in the for loop, while the function f1 above has a local variable y. The third type is a free
variable, which is a variable that is neither a formal parameter nor a local variable. An
example of a free variable would be w in the following function:

R

f2 = function(x) {

return(w*x)

}

If you refer to a free variable inside of a function, R looks for its definition in the environment
in which the function was defined. Consider the following example, which also demonstrates
that you can nest one function inside another:

R

f3 = function(x) {

y = 2

f4 = function(z) {

return(y*z)

}

return(x + f4(x))

}

Inside the function f4, there is no local variable y. When y is referred to, f4 looks in its
parent environment, namely the function f3, and uses the value of y it finds there. Typically,
if you are not writing nested functions, this behavior means that if R cannot find a variable
inside of your function, it will use a “global” variable defined at the top-level environment.
This behavior is quite different from MATLAB’s.

If you assign a value to a free variable, it becomes a local variable [28], rather than
affecting a variable in the parent environment. Consider this function:

f5.R
1 f5 = function(x) {

2 y = 2

3 f6 = function(z) {

4 tmp = y*z

5 y = 20

6 return(y*tmp)

7 }

8 tmp2 = f6(x)
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9 print(y)

10 return(x + tmp2)

11 }

The function f6 first uses the free variable y, obtaining its value of 2 from the parent
environment, namely the function f5. It then assigns a value to y, which creates a local
variable within f6; the value of y within the function f5 is unchanged, as can be seen by
calling z=f5(3), where the printed value of y is still 2.

If you wish to assign values to variables in the parent environment of a function, use the
<<- operator. For example, line 5 in the file f5.R above could be changed to y <<- 20. This
searches up the hierarchy of parent environments until it finds a variable with the specified
name, and assigns the given value to it. If it does not find a variable that matches, then
a variable by that name is created in the top-level/global environment. If line 5 in f5.R is
changed as specified above, calling f5(3) shows that the value of y in the function f5 does
get changed to 20.

If your function has a formal parameter or local variable named y, but you still wish to
access a top-level/global variable y, there is still a way to do so. You can use the expression
get('y', envir=globalenv()).

8.1.4 Static variables

If you have programmed in a language like C, you may have used something called static
variables. Normally, if you declare a local variable inside of a function, that variable gets “cre-
ated” each time the function is called. When the function exits, the variable gets “cleared,”
i.e., its value is lost. However, you can also create static variables, whose values persist
between consecutive calls to the function. Static variables are useful for example if the
function needs to create some large data structure, such as a large matrix, which may be
time-consuming to initialize. For efficiency, you could have the function set up the data
structure the first time it is called, and then re-use it on subsequent calls. Or you may wish
the function to open a file the first time it is called, and then send some output to that
file each subsequent time it is called. Another common use is to have a counter inside a
function which keeps track of how many times the function is called.

R does not provide a way to declare that you wish to make a variable static. Instead, what
you can do is create a new local environment, essentially a namespace where a collection
of variables can reside. This can be done using local(). This new local environment will
contain a variable (or several variables, if you want more than one static variable), along
with your function. The function can then refer to that variable which was created within
the local environment. Note that when assigning to the variable, you need to use the <<-

operator, to assign to the variable in the local environment (but outside of the function)
rather than simply assigning to a regular local variable inside of the function. The file below
implements this.

statictest.R
statictest = local({

y = 0

myfunc = function(x) {

y <<- y + 1

if (y == 1) {

pluralStr = ''

} else {

pluralStr = 's'

}
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cat(sprintf('Function called %d time%s', y, pluralStr))

return(x*x)

}

})

The code below demonstrates how to use it. Note that to effectively clear out the static
variable, you can re-source the code creating a local environment and the function. The
differing outputs of the two environment commands below show that rather than clearing
the static variable, what is really happening is that a new environment is being created,
with a new variable inside it.

R

> source('statictest.R')

> environment(statictest)

<environment: 0x100d7be38>

> statictest(11)

[1] "Function called 1 time"

[1] 121

> statictest(11)

[1] "Function called 2 times"

[1] 121

> statictest(11)

[1] "Function called 3 times"

[1] 121

> source('statictest.R')

> environment(statictest)

<environment: 0x1219036b0>

> statictest(11)

[1] "Function called 1 time"

[1] 121

> statictest(11)

[1] "Function called 2 times"

[1] 121

8.1.5 Variable arguments

Sometimes, it is desirable to write a function which can receive an arbitrary set of extra
parameters which are then passed along to some other function. A common example of this
is when you write a function which creates, reads, or modifies some data and then plots it.
You may wish to pass in some parameters to your function which specify the plotting style.
An example is below, which creates n random (x, y) points and plots them.

plotrand.R
plotrand = function(n,...) {

x = runif(n); y = runif(n);

plot(x, y, ...)

}

If any extra arguments (beyond the number of points, n) are passed to plotrand, it simply
passes them along to plot. So you can call plotrand(10) to plot 10 random points with
the default plotting style (black circles, with no lines), or use something like the following
to specify various attributes of the plot (thick blue lines and large gray filled markers



Writing Your Own Functions 89

with blue boundaries): plotrand(10, type='o', col='blue', cex=2, lwd=3, pch=21,

bg='gray'). The expression ... is a list (in the formal sense, as in Section 5.1) of all of the
extra arguments. If for some reason you wanted, say, a list containing only the second and
fifth extra parameters, you could use an expression like list(...)[c(2,5)].

8.2 MATLAB

8.2.1 Inline and anonymous functions

MATLAB has two mechanism for creating a function definition which gets stored within a
variable, somewhat similar to R. These are called inline functions and anonymous functions.
Do not confuse MATLAB’s inline functions with inline functions in a language like C,
which are supposed to run more quickly than standard functions. In fact, inline functions in
MATLAB run very slowly compared to standard functions defined in files; they should be
avoided if you will be calling them very often or performance is a concern. Both methods are
described below since you may encounter them, but anonymous functions are now generally
the preferred way to handle this type of short function.

Inline functions are constructed from a single MATLAB expression. For example, if you
want to define a function which computes the logistic growth rate f(r,K, x) = rx(1−x/K),
you can use the following command:

MATLAB
logistic = inline('r*x*(1-x/K)')

Note that the expression is passed to inline as a string. MATLAB will determine that the
function takes arguments K, r, and x. It decides what order the parameters should go in;
if you are not happy with its choice, you can specify the order yourself:

MATLAB
logistic = inline('r*x*(1-x/K)', 'K', 'r', 'x')

You can also use argnames(logistic) to see the names of the parameters to the function.
You can then call your function via a command like logistic(10,2,4.8).

A similar mechanism exists for writing short, single-expression functions in MATLAB,
called anonymous functions. These run much more quickly than inline functions. To write
the logistic function as an anonymous function, you can enter

MATLAB
logistic = @(K,r,x) r*x*(1-x/K)

You list the parameters to the function inside the parentheses after the @, and then follow
that with the expression defining the function. You call this version of logistic the same
way you called the inline version, e.g., logistic(10,2,4.8).

8.2.2 Writing functions

The standard mechanism for writing a function in MATLAB is to put its code in a file whose
name matches the function name (with a “.m” suffix). For example, to write a MATLAB
Fibonacci function fib analagous to the R version from Section 8.1.1, we would put the
following into the file fib.m:
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fib.m
function retval = fib(steps,first,second)

% fib Compute Fibonacci numbers

%

% FIB(STEPS,FIRST,SECOND)

% STEPS: how many iterations to do -- if steps=k then compute the

% (k+1)'st Fibonacci number

% FIRST,SECOND: the first two numbers in the sequence

% (default: 0 and 1, respectively)

% set up default parameters if necessary

if (nargin < 2)

first = 0;

end

if (nargin < 3)

second = 1;

end

for i = 1:steps

nextval = first+second; % compute next value

first = second; % update records

second = nextval;

end

retval = second;

Some things to note about functions in MATLAB:

1. The word retval on the first line is not a reserved word; it is simply a variable
name I chose. To return a value from the function, store that value in the variable
you have specified after the keyword function on the first line of your file. (I use
retval, for “RETurn VALue,” merely as a name that is easy for me to remember,
and one that I am unlikely to use for anything else.)

2. As mentioned in the previous item, a return statement is not used to specify
what value the function will return; assigning a value to the special variable you
designate in the function definition is used for that. But MATLAB does have a
return statement, which takes no arguments. It causes execution of your function
to finish, and return to the caller.

3. Commands without a semicolon inside a function will display their output, even
if you use a semicolon when calling the function. That is, if line 20 of fib.m had
no semicolon, you would still see its output even if you entered the command f
= fib(20); with a semicolon. If you are writing functions that someone else may
use, it is good etiquette to be sure all lines inside your function have semicolons
so that it will run silently.

4. The name of the function on the first line (fib in our example here) should match
the filename (fib.m), although MATLAB currently does not strictly enforce this.

5. Formal parameters are given in parentheses after the function name. There is
no way to specify default values for parameters on this line, although there are
mechanisms for detecting when parameters are missing (see next item).

6. The special variable nargin indicates how many formal parameters were passed
in when the function was called. The fib function checks this value, and sets
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default values for the second and third parameters (first and second) if they
were not specified.

7. To write a function which does not return any values, do not list any variables
on the first line. The first line of a file defining such a function would look like
function foo(x,y).

8. A function can return multiple values to the caller. To do so, you can simply list
the multiple return values on the first line, like this:

f1.m
function [sqr,cube] = f1(x)

sqr = x^2;

cube = x^3;

Then just assign values to the return values somewhere within the body of the
function. The different return values do not need to have the same data type; for
example, you can return a matrix and a string. You can check the special variable
nargout to see how many return values the caller requested. For example, to
return the square and cube of the formal parameter x in a single vector if only
one or fewer return values were requested by the caller, or in two separate return
values, the following function can be used:

f2.m
function [sqr,cube] = f2(x)

sqr = x^2;

cube = x^3;

if (nargout < 2)

sqr = [sqr cube];

end

9. If you put comments immediately below the function line, they will be displayed
by MATLAB’s help system. For the fib function above, if you type help fib (and
your search path contains the fib.m file), you will see the block of comments at
the top of the file displayed. If you have additional comments at the top of your
file that you do not want displayed by the help system, put a blank line above
the comments you do not want displayed (as with the comment about setting up
default parameters in fib.m). Also note that the lookfor help system will display
only the first line of comments after the function line if your function (or its first
comment line) matches a search.

10. You can put multiple functions within a single file. Subsequent functions within
the file (which are entered after the body of the first function) are called sub-
functions. Subfunctions are only visible within that file (or more precisely, to
functions defined within that file); they are not callable from the MATLAB com-
mand prompt or by other functions defined in other files. See Section 8.2.3 for an
example. You can also define additional functions within other functions (these
are called nested functions). If you do so, all functions within the file must be
terminated with an end statement.

8.2.3 Calling functions

Function parameters in MATLAB are specified purely by order. You cannot write some-
thing like fib(first=3) to specify a parameter by name as is common in R. You also cannot
write f1(y=7) to assign a value to the variable y and then pass that value 7 as a parameter
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to the function f1. Note, however, that as a way around this limitation, some of MATLAB’s
functions are written to take their parameters in an arbitrary order by using strings to spec-
ify which parameter is which. For example, the commands plot(x, y, 'MarkerSize',

10, 'LineWidth', 2) and plot(x, y, 'LineWidth', 2, 'MarkerSize', 10) will be-
have identically.

Because the function fib was written to handle missing values for the second and third
parameters,3 you can call it in a few different ways: fib(10) to compute the eleventh Fi-
bonacci number F11 = 89, or fib(10,2) or fib(10,2,1) to compute the eleventh Lucas
number L11 = 199.

When a function has multiple return values, you can store the values by calling the
function with multiple variables within square brackets. For example, for our function f1
which computes the square and cube of its argument, you can call [a,b]=f1(7) to store the
value 72 = 49 in a and 73 = 343 in b. If you call c=f1(7), only the value 49 will be stored
in c; although the function itself assigns two return values, the second one is lost if it is not
stored. Similarly, calling just f1(7) will only display the single value 49.

For the function f2 which modifies its behavior according to the number of outputs, if
zero or one outputs are specified, a vector is returned; if two outputs are specified, they
are assigned the two scalar return values. This can be seen in the following sequence of
commands and outputs:

MATLAB
>> f2(7)

ans =

49 343

>> a=f2(7)

a =

49 343

>> [a,b]=f2(7)

a =

49

b =

343

The file below contains a function as well as two subfunctions, to simulate a stochastic
birth-death process with constant per capita rates.

birthdeath.m
function [eventTimes,popSizes] = birthdeath(phi,mu,numEvents,n0)

% birthdeath Stochastic birth-death process with constant

% per capita rates

eventTimes = zeros(1,numEvents+1);

popSizes = zeros(1,numEvents+1);

eventTimes(1) = 0; popSizes(1) = n0;

for i=1:numEvents

if (popSizes(i) == 0)

eventTimes((i+1):(numEvents+1)) = eventTimes(i);

popSizes((i+1):(numEvents+1)) = 0;

break;

end

eventTimes(i+1) = eventTimes(i)+interEventTime(phi,mu,popSizes(i));

3You could write a function so that missing parameters are not necessarily assumed to be the last ones.
But because of the fact that MATLAB function parameters are specified by position, assuming that missing
parameters are the last ones is a good convention to follow.
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if (rand < probBirth(phi,mu))

popSizes(i+1) = popSizes(i) + 1;

else

popSizes(i+1) = popSizes(i) - 1;

end

end

% time between consecutive events

function retval = interEventTime(phi,mu,N)

totalRate = (phi+mu)*N;

retval = -log(rand)/totalRate;

% probability that the next event is a birth

function retval = probBirth(phi,mu)

retval = phi/(phi+mu);

You could call this function and plot the results by doing, for example, [et,n]=birthdeath(2,
1, 100, 2); plot(et, n, ’o-’).

One nice feature of MATLAB is that if you are calling a function without providing any
parameters, you can omit the parentheses. That is, you can simply enter date to call the
date function, rather than date() as you do in many languages, including R (though you
can include the empty parentheses in MATLAB too, if you like). Another convenience built
into MATLAB is that you can use a “command-style” format when calling a function which
takes only string arguments. For example, if the function foo takes two string arguments,
then foo('hi', 'there') is equivalent to foo hi there.

One exception to the above is with anonymous functions that take no arguments. Be-
cause a variable referring to an anonymous function is technically a function handle in
MATLAB (see Section 8.2.7), if f is an anonymous function, typing f will simply show you
the definition of f, rather than calling it. In that case, to call the function you must include
empty parentheses, i.e., write f().

8.2.4 Environments and variable scope

In MATLAB, as in R, variables defined within a function are only visible within that func-
tion, and they vanish when the function exits (unless they are declared persistent). For
example, if you define the function

f3.m
function retval = f3(x)

y = 12;

retval = y*x;

then the variable y has not been set at the top-level or global scope, i.e., if you enter f1(8),
then subsequently entering y will not show the value 12. When the function f1 exits, the
variable y created inside of it disappears. If you already had a variable y defined before
calling the function, its contents will not be modified. This behavior is common to both R

and MATLAB (and many other programming languages as well).
Unlike R, if you try within a function to access a variable which does not exist locally,

MATLAB will not examine the parent’s workspace to look for the variable. There is a way
to share variables between functions, or between a function and the top-level/global/base
workspace. Variables can be declared global, with a command like global someVar

anotherVar. If you want two functions to share a variable, they must both declare them
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global. You can also issue the global command at the MATLAB prompt (with accompany-
ing variable names) to share a variable between a function and the base workspace, which
is where variables created at the command prompt exist.

A function can also assign a value to a variable in either its parent’s (the caller’s)
or the base (top-level) workspace, via the assignin function. You can do, for example,
assignin('base', 'y', 12) to assign a value to y which will be visible at the command
prompt, or assignin('caller', 'y', 12) to assign a value of y in the workspace the
current function was called from, i.e., the parent of the function.

If your function has a formal parameter or local variable named y, but you still wish to
access a top-level/global variable y, there is still a way to do so. You can use the expression
evalin('base', 'y').

8.2.5 Static variables

A static variable is called a persistent variable in MATLAB. You can declare a variable y to
be persistent via the command persistent y, but note that this can only be done within
a function defined within a file. A persistent variable is essentially a global variable which
is only visible within the function where it is declared. When a variable is first declared as
persistent, it is initialized to be an empty (0 × 0) matrix. You can test for that condition
to determine whether the variable needs to be initialized. Consider the following file:

statictest.m
function retval = statictest(x)

persistent y

if isempty(y)

y = 1; % first time initialization

else

y = y + 1; % do this on subsequent calls

end

if (y == 1)

pluralStr = '';

else

pluralStr = 's';

end

disp(sprintf('Function called %d time%s', y, pluralStr));

retval = x*x; % return x^2

This behaves as follows:
MATLAB

>> statictest(11)

Function called 1 time

ans =

121

>> statictest(11)

Function called 2 times

ans =

121

>> statictest(11)

Function called 3 times

ans =

121

>> clear statictest



Writing Your Own Functions 95

>> statictest(11)

Function called 1 time

ans =

121

>> statictest(11)

Function called 2 times

ans =

121

The above code shows that you can clear the function to remove its static variables from
memory, so that they will be reinitialized the next time the function is called.

8.2.6 Variable arguments

Sometimes, it is desirable to write a function which can receive an arbitrary set of extra
parameters which are then passed along to some other function. A common example of this
is when you write a function which creates, reads, or modifies some data and then plots it.
You may wish to pass in some parameters to your function which specify the plotting style.
An example is below, which creates n random (x, y) points and plots them.

plotrand.m
function plotrand(n,varargin)

x = rand(n,1); y = rand(n,1);

plot(x, y, varargin{:})

If any extra arguments (beyond the number of points, n) are passed to plotrand, it sim-
ply passes them along to plot. So you can call plotrand(10) to plot 10 random points
with the default plotting style (blue lines, with no point markers), or use something like
the following to specify various attributes of the plot (thicker lines and large gray filled
markers with blue boundaries): plotrand(10, ’o-’,’ LineWidth’, 2, ’MarkerSize’,

10, ’MarkerFaceColor’, [.5 .5 .5]). The expression varargin{:} gets replaced by a
comma-separated list of all of the extra arguments. If for some reason you wanted, say, only
the second and fifth extra parameters, you could use an expression like varargin{[2 5]}.

There is a similar mechanism varargout if your function may return an arbitrarily
large number of return values (unlike the function f2 earlier, which returns at most two
values). For example, consider a function moments which takes a vector v of length n as a
parameter, and computes µ(k) := (1/n)

∑n
i=1(vi)

k for k = 1, 2, 3, . . .. The following function
will do this:

moments.m
function varargout=moments(v)

maxk = max(nargout,1);

for k=1:maxk

varargout(k) = {mean(v.^k)};

end

If you then create a vector v and do either moments(v) or m = moments(v), you only receive
the first moment µ(1) as a return value. But if you call [a,b,c] = moments(v), you receive
the first three moments µ(1), µ(2), and µ(3), which get stored in a, b, and c, respectively.
(If you wish to write a function like this in R, the simplest thing to do is simply have
the function take an additional argument which indicates how many moments should be
computed, and have the function return those moments in a vector or list.)
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8.2.7 Function handles

Sometimes it is necessary to pass a function to another function; for example, to minimize a
function of one variable, you can use the function fminbnd. If you have defined a function
myfunc(x) that you want to minimize, you need tell fminbnd that that is the function you
want to minimize. To do so, you use what is called a function handle. This is essentially a
way of storing a reference to a function within a MATLAB variable. For example, you can do
fh = @sin to build a handle to the sin function. You can then call it like a normal function,
e.g., using the command fh(2) to compute sin 2. You can also pass it as an argument to
other functions, e.g., fminbnd(fh, 4, 6), or more directly, fminbnd(@sin, 4, 6).

When you build an anonymous function as in Section 8.2.1, the variable you create is
in fact a function handle. So if you wish to pass it to another function, you do not need to
prefix it with an “@.”

Also, you can manipulate function handles in ways similar to other variables, except you
cannot combine them within a matrix. That is, you cannot do v = [ @sin @cos]. There
would be confusion between using parentheses to access elements of such a matrix, versus
using parentheses to delimit the parameters to the function. You can, however, build a cell
array containing function handles:

MATLAB
>> c = {@sin @cos @(x) x^3};

>> c{1}(2) % call sin(2)

ans =

0.9093

>> c{3}(8) % call the anonymous function w/ parameter 8

ans =

512

8.3 Summary of main differences

User-defined functions have some key differences between R and MATLAB, in particular,
the way functions are accessed from files, the way parameters are passed to functions, the
way multiple values are returned from a function, and how functions search for nonlocal
variables. In MATLAB, a function is most commonly written in a file, say foo.m. When
you type foo(8) at the MATLAB command prompt, it goes looking in a specified set of
folders (the search path; see Section 7.2) to find the file foo.m containing the definition of
the function. If you update the file containing the function’s code, then the next time you
call the function, MATLAB will automatically read and use the updated version from the
file. In R, on the other hand, storing a function’s code in a file is a convenience. It is up to
you to tell R to read the contents of that file to read in the definition of the function. If you
update the file, you need to explicitly tell R to read its contents again.

In R, functions can define default values for their parameters. When you call a function,
you can specify values for particular parameters in any order, without providing any infor-
mation about the other parameters. In MATLAB, it is possible to set up default values for
function parameters, but with less flexibility. Parameters must be passed to functions in a
fixed order. If you want to use default values for the first two parameters but specify a value
for the third, you still need to pass in values for those first two parameters. (But note that
some functions are written so that if you pass in, say, an empty matrix as a parameter, a
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default value will be used instead, while other functions use parameter strings to allow you
to pass in parameters in an arbitrary order.)

Multiple values can be returned from a MATLAB function and stored in separate vari-
ables by the caller. In R, the closest equivalent is for the function to return a list containing
the multiple values. And finally, if an R function tries to access a variable that was not
defined locally within the function, it will search up the chain of parents (callers), using the
value of a variable by that name in one of the ancestors (commonly, the value of a top-level
R variable). MATLAB does not automatically search for variables in this way, but you can
explicitly request that your function do so.
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Probability and Random Numbers

Facilities are provided in both packages to work with random numbers following various
probability distributions, and to calculate probability densities and cumulative probabilities.
In MATLAB, some of the more advanced or powerful functions are part of the Statistics
Toolbox, although the core MATLAB does provide the essentials.

Both platforms currently use the Mersenne Twister [20] as the default random number
generator, but include other generators as well.

9.1 Basic random values, permutations, and samples

1. Generate a continuous uniform random value between 0 and 1.

R MATLAB

runif(1) rand

Neither function above will generate either of the extreme values 0 or 1, i.e., they both
generate values from the open interval (0,1).

2. Generate a vector of n uniform random values between 0 and 1.

runif(n) rand(n,1) for a column vector, or
rand(1,n) for a row vector

3. Generate an m× n matrix of uniform random values between 0 and 1.

matrix(runif(m*n), nrow=m, ncol=n)

or simply matrix(runif(m*n),m)

rand(m,n)

4. Generate an m× n matrix of continuous uniform random values between a and b.

matrix(runif(m*n,a,b),m) If you have the Statistics Toolbox:
unifrnd(a,b,m,n) Otherwise:
a+rand(m,n)*(b-a)

5. Generate a random integer between 1 and k from the discrete uniform distribution.

sample(k,1) randi(k)

6. Generate an m× n matrix of discrete uniform values between 1 and k.

matrix(sample(k, m*n,

replace=TRUE), m)

randi(k, m, n)

99
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7. Generate an m× n matrix where each value is 1 with probability p, and otherwise 0.

matrix(sample(c(0,1), m*n,

replace=TRUE, prob=c(1-p,p)), m)

Or: matrix(runif(m*n)<p, m)*1

(rand(m,n)<p)*1

The “*1” above converts logical values back into numeric values.

8. Generate an m× n matrix where each value is a with probability p, and otherwise b.

matrix(sample(c(b,a), m*n,

replace=TRUE, prob=c(1-p,p)), m)

Or: b+(a-b)matrix(runif(m*n)<p, m)

b+(a-b)*(rand(m,n)<p)

9. Generate a random integer between a and b inclusive from the discrete uniform distri-
bution.

a+floor((b-a+1)*runif()) or
sample(a:b, 1)

If you have the Statistics Toolbox:
unidrnd(b-a+1)+a-1 Otherwise:
a+floor((b-a+1)*rand) or
a-1+randi(b-a+1)

10. With probability p, perform a given set of commands.

if (runif(1) < p) {

...some commands...

}

Or:
if (sample(c(TRUE,FALSE),1,

prob=c(p,1-p))) {

...some commands...

}

if (rand < p)

...some commands...

end

11. Generate a random permutation of the integers from 1 to n.

sample(n) randperm(n)

12. Sample k values between 1 and n without replacement.

sample(n, k) If you have the Statistics Toolbox:
randsample(n, k) Otherwise:
ri=randperm(n); ri=ri(1:k)

13. Choose k values from the vector v (with replacement), storing the results in w.

w=sample(v, k, replace=TRUE) If you have the Statistics Toolbox:
w=randsample(v,k,true) Otherwise:
w=v(floor(length(v)*rand(k,1))+1)

Both the sample and randsample commands above will have trouble if the vector v
may possibly contain only a single value. If v contains only the single value n, then both
commands will sample from the integers between 1 and n, rather than just choosing the
actual value n itself. To get around this problem, you can instead first generate k integers
between 1 and length(v), and then use those as indices into v, as follows:
inds = sample(length(v), k)

w = v[inds]

inds = randsample(length(v),k,true)

w = v(inds)



Probability and Random Numbers 101

14. Choose k values from the vector v (without replacement), storing the results in w.

w=sample(v, k) If you have the Statistics Toolbox:
w=randsample(v,k) Otherwise:
inds=randperm(length(v));

w=v(inds(1:k))

15. Generate a random integer between 1 and n, with corresponding probabilities in vector
pv.

sample(n,1,prob=pv) If you have the Statistics Toolbox:
randsample(n,1,true,pv) Otherwise:
sum(rand > cumsum(pv)/sum(pv))+1

(MATLAB): If you know the entries of pv sum to 1, you can omit the /sum(pv) in the
second form above.

9.2 Random number seed

When performing stochastic simulations, or any calculations involving random numbers, it
is sometimes essential to be able to reproduce particular results. This can be done by using
a given seed value to set the random number generator back to a known state, so that the
sequence of random numbers subsequently produced will be reproducible by using the same
seed again. Although the internal state of the Mersenne Twister is fairly complex (a vector
containing more than 600 integers), you can use a single integer as a seed in both platforms.
To set the seed to the value 12, for example, in R use set.seed(12), and in MATLAB use
rng(12)1.

By default, R seeds the random number generator based on the current time and process
ID the first time you generate a random value. MATLAB begins with the same seed each
time; you can reset the random number seed back to this initial state via the command
rng('default'). You can use the current time to seed the random number generator in
MATLAB via the command rng('shuffle').

You may also wish to make your results repeatable without using a specified fixed random
number seed. The simplest way to do this is to first generate a random integer, and use
that as a random number seed before proceeding. For example, to use (and save for later
re-use) a random seed between 1 and 109, you could do the following:
R MATLAB

saved.seed = sample(1e9,1)

set.seed(saved.seed)

saved.seed = randi(1e9);

rng(saved.seed)

1In older versions of MATLAB, you would instead use rand('state',12). Using this command in a
newer version of MATLAB activates a legacy random number generator; use rand('default') to switch
back to the standard one.
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9.3 Random variates from probability distributions

Here, methods are introduced for generating random values from specified distributions,
such as normal, Poisson, exponential, and so on. One of the main differences between the
functions for generating random values is that R’s functions use the first parameter to
indicate how many random values you want (in a vector), followed by the parameters for
the distribution; MATLAB’s functions take the parameters for the distribution first, followed
by parameters indicating how many rows and columns in the matrix of random values (i.e.,
how many random values you want).

In R, the various functions to generate random values all begin with the letter “r.” Each
command below generates w independent, identically distributed values from the given
probability distribution. If you want an r × c matrix of such values, use a command such
as matrix(rbinom(r*c,n,p),r). Use the command ?Distributions to see a list of the
standard probability distributions available.

In MATLAB, the various functions to generate random values all end with the letters
“rnd.” Each command below generates an r×cmatrix of independent, identically distributed
values from the given probability distribution. An alternative approach is the random
function, which takes the name of a distribution, followed by parameters, and optionally
a set of sizes. For example, to generate a 4 × 8 matrix of random values from the normal
distribution with mean 15 and standard deviation 16, you can use random('norm', 15,

16, 4, 8). Note that these functions are part of MATLAB’s Statistics Toolbox, although
alternatives are available in some cases for those without that additional Toolbox.

16. Generate values from the binomial distribution with parameters n and p.

R MATLAB

rbinom(w,n,p) binornd(n,p,r,c)

(MATLAB): If you do not have the Statistics Toolbox, you can instead use the command
reshape(sum(rand(n,r*c) < p), r, c). This sums over Bernoulli trials to generate bi-
nomial values, and then reshapes the results into an r × c matrix.

17. Generate values from the Poisson distribution with mean λ.

rpois(w,lambda) poissrnd(lambda,r,c)

18. Generate values from the exponential distribution with mean µ.

rexp(w,1/mu) exprnd(mu,r,c)

Note that R’s rexp function takes the reciprocal of the mean as its parameter to char-
acterize the probability distribution, while MATLAB’s exprnd takes the mean itself.

(MATLAB): If you do not have the Statistics Toolbox, you can instead use the command
-mu*log(rand(r,c)).

19. Generate values from the discrete uniform distribution on integers 1, . . . , k.

sample(k,w,replace=TRUE) unidrnd(k,r,c)

(MATLAB): Without the Statistics Toolbox, use: randi(k,r,c).

20. Generate values from the continuous uniform distribution on the interval (a, b).

runif(w,a,b) unifrnd(a,b,r,c)

(MATLAB): Without the Statistics Toolbox: a+(b-a)*rand(r,c).
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21. Generate values from the normal distribution with mean µ and standard deviation σ.

rnorm(w,mu,sigma) normrnd(mu,sigma,r,c)

(MATLAB): Without the Statistics Toolbox: mu + sigma*randn(r,c).

22. Generate values from the chi-squared (χ2) distribution with df degrees of freedom.

rchisq(w,df) chi2rnd(df,r,c)

(MATLAB): Without the Statistics Toolbox: sum(randn(r,c,df).^2,3). This repeat-
edly sums the squares of sets of df values from the standard normal distribution.

23. Generate values from the noncentral chi-squared distribution with df degrees of freedom
and noncentrality parameter delta.

rchisq(w,df,delta) ncx2rnd(df,delta,r,c)

24. Generate values from the F distribution with parameters d1 and d2.

rf(w,d1,d2) frnd(d1,d2,r,c)

25. Generate values from the noncentral F distribution with parameters d1 and d2 and
noncentrality parameter delta.

rf(w,d1,d2, delta) ncfrnd(d1,d2,delta,r,c)

26. Generate values from the gamma distribution with shape parameter k and scale pa-
rameter θ.

rgamma(w,k,theta) gamrnd(k,theta,r,c)

(R): Alternatively, you can use rgamma(w, alpha, rate=beta) to produce values using
shape parameter α and rate parameter β = 1/θ.

27. Generate values from the geometric distribution with parameter p.

rgeom(w,p) geornd(p,r,c)

28. Generate values from the hypergeometric distribution counting the number of white
balls seen when drawing n balls from an urn containing a total of m balls, k of which are
white.

rhyper(w,k,m-k,n) hygernd(m,k,n,r,c)

(R): The three parameters to the rhyper function are the number of white balls in the
urn, the number of black balls in the urn, and the number of balls drawn from the urn,
which is different from MATLAB’s hygernd function.

29. Generate values from the lognormal distribution with parameters µ and σ being the
mean and standard deviation of the logarithm of the values.

rlnorm(w,mu,sigma) lognrnd(mu,sigma,r,c)

30. Generate values from the negative binomial distribution with parameters n and p.

rnbinom(w,n,p) nbinrnd(n,p,r,c)

31. Generate values from the beta distribution with parameters a and b.

rbeta(w,a,b) betarnd(a,b,r,c)
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32. Generate values from the Student t distribution with df degrees of freedom.

rt(w,df) trnd(df,r,c)

33. Generate values from the noncentral Student t distribution with df degrees of freedom
and noncentrality parameter delta.

rt(w,df,delta) nctrnd(df,delta,r,c)

34. Generate values from the Weibull distribution with shape parameter b and scale pa-
rameter a.

rweibull(w,b,a) wblrnd(a,b,r,c)

R and MATLAB give the two parameters a and b to these routines in opposite order.

35.Generate random vectors from the multinomial distribution with n trials and probability
vector p.

rmultinom(w,n,p) mrnd(n,p,r)

(R): This generates w random vectors, and returns those vectors as the columns within
a matrix.

(MATLAB): This generates r random vectors, and returns those vectors as the rows
within a matrix.

9.4 PDFs, CDFs, and inverse CDFs

Both platforms also have function to compute PDFs (probability density functions), CDFs
(cumulative distribution functions), and inverse CDFs. Again, in MATLAB, these functions
are part of the Statistics Toolbox.

R

There is a PDF function corresponding to each of the functions that generates random
values. It can be obtained by changing the “r” (for “random”) at the beginning of the
function name to “d” (for “density”). The first argument to the PDF functions is the value
at which you want to evaluate the function; the later arguments are the parameters of
the probability distribution. For example, to compute the density at x = 0.2 for a normal
distribution with mean 1.3 and standard deviation 1.1, use dnorm(0.2, 1.3, 1.1). Note
that R does not include functions for the discrete uniform distribution, as the sample
command can be used to generate values from that distribution (see Item 9 in Section 9.1).
However, you can piece together the discrete uniform PDF (or more precisely, probability
mass function) yourself. For example, the PDF for the discrete uniform distribution on the
values 1 . . . n can be computed via the following function.

R

# PDF for value x from discrete uniform distribution on values 1...n

dunid = function(x, n) {

return(((x==round(x)) & (x >= 1) & (x <=n))/n)

}
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Similarly, there is a CDF function corresponding to each random variate generator func-
tion. It can be obtained by changing the initial “r” in the function name to “p” (for “prob-
ability”). The first argument to the CDF functions is the value x for which you want to
evaluate the cumulative probability P (X ≤ x). For example, to compute the cumulative
probability P (X ≤ 1.3) for a random value X following an exponential distribution with
mean 0.7, use pexp(1.3, 1/0.7). A function implementing the CDF for the discrete uni-
form distribution on values 1 . . . n is below.

R

# CDF for value x from discrete uniform distribution on values 1..n

punid = function(x, n) {

return((x >= 1)*pmin(n,floor(x))/n)

}

Finally, the inverse CDF functions can be obtained by changing the initial letter in the
function name to “q” (for “quantile”). The first argument to the quantile functions is the
probability p; the function then finds the value x satisfying P (X ≤ x) = p. For exam-
ple, qexp(0.7, 1/3). A function implementing an inverse CDF for the discrete uniform
distribution on values 1 . . . n which behaves identically with MATLAB’s is below.

R

# inverse CDF for value x from discrete uniform distribution on values 1..n

qunid = function(p, n) {

return(ifelse((p<=0)|(p>=1),NaN,ceiling(p*n)))

}

MATLAB

There is a PDF function corresponding to each of the functions that generates random
values. It can be obtained by changing the “rnd” (for “random”) at the end of the function
name to “pdf.” The first argument to the PDF functions is the value at which you want to
evaluate the function; the later arguments are the parameters of the probability distribution.
For example, to compute the density at x = 0.2 for a normal distribution with mean 1.3
and standard deviation 1.1, use normpdf(0.2, 1.3, 1.1).

Similarly, there is a CDF function corresponding to each random variate generator func-
tion. It can be obtained by changing the suffix “rnd” in the function name to “cdf.” The first
argument to the CDF functions is the value x for which you want to evaluate the cumulative
probability P (X ≤ x). For example, to compute the cumulative probability P (X ≤ 1.3) for
a random value X following an exponential distribution with mean 0.7, use expcdf(1.3,

0.7).
Finally, the inverse CDF functions can be obtained by changing the suffix in the function

name to “inv.” The first argument to the inverse CDF functions is the probability p; the
function then finds the value x satisfying P (X ≤ x) = p. For example, expinv(0.7, 3).
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Graphics

Both R and MATLAB include facilities for producing a wide variety of high-quality graphics.
Both platforms have fairly straightforward and similar ways of producing simple scatterplots
of 2-D data, with a large set of additional routines to modify those plots or produce other
types of graphical output.

R has two fundamentally different ways of producing graphics (what are called graphics
systems): the traditional graphics system and the grid graphics system. The two systems do
not interact very well, so it is best to try and work with just one system at a time. The grid
graphics system is in some ways more powerful and convenient than the traditional graphics
system, depending on what you are doing. Some things, such as figure legends, margins,
etc. have better defaults or automatic behavior in grid graphics than in traditional graphics.
Personally, when I was getting started in R, I found the traditional graphics system to be
more similar to the MATLAB graphics commands I was used to, and so I primarily use
traditional graphics in R, with occasional exceptions. Paul Murrell has written an excellent
reference [21] covering traditional and grid graphics, which is an essential reading for R

users.

10.1 Creating, selecting, and closing figure windows

In both R and MATLAB, you can have multiple figure windows open simultaneously.1 Only
one window is considered “active” at a time, where subsequent plotting commands will
display their results.

10.1.1 Creating windows

In both environments, trying to plot something will automatically create a new figure win-
dow if none exists. However, it is often nice to create additional ones, so that multiple figures
may be displayed simultaneously.

To create a new figure window, in R you can use the command dev.new(). There are
also device-specific commands: in Windows, you can use windows(), in Mac OS-X you can
use quartz(), and in Linux you can use x11().2

In MATLAB, simply enter the command figure to create a new figure window.

1Currently, RStudio is an exception to this. It lets you cycle through different figures within a single
subwindow in its interface.

2You can also use x11() under Mac OS-X if you prefer to have graphics appear in an X11 window. And
you can use options(device='x11') or options(device='quartz') to specify the default device that you
want dev.new() to create. In RStudio, if you really want multiple figure windows, dev.new() will not work,
but you can use one of the device-specific commands to create a separate figure window.

107
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10.1.2 Listing and selecting windows

In both environments, figure windows can be identified via integers, referred to as device
numbers (R) or figure numbers (MATLAB). Figure number 1 is reserved in R as a “null
device,” with active figure windows beginning with figure number 2. In MATLAB, figure
numbers begin with 1. To get a list of open figure windows, in R, use dev.list(). In
MATLAB, use get(0,'children').

To select figure number n and make it the active one, in R, use dev.set(n). In Mac OS,
you can also click on a Quartz figure window, and then select Window → Activate Quartz
Device Window from the menu. In MATLAB, use figure(n), which will create the figure if
one does not already exist with that number. Alternatively, simply clicking in a MATLAB
figure window will make it the active one.

To find out which figure number is the currently active one, in R use dev.cur(); in
MATLAB use gcf. R will also give an indication of which figure window is active; the active
one will have the word ACTIVE or an asterisk [*] in the titlebar, depending on the operating
system and which type of graphics device the window is using (e.g., Quartz or X11).

10.1.3 Closing windows

To close a figure window, you can use your platform’s standard method for closing win-
dows (typically, clicking on some type of “x” or red button in the window’s title bar, or
using a keyboard shortcut such as Cmd-W in Mac OS). To do it via commands, in R use
dev.off() to close the current figure window, dev.off(n) to close figure number n, and
graphics.off() to close all figures. In MATLAB, the corresponding commands are close,
close n, and close all.

10.2 Basic 2-D scatterplots

One of the simplest and perhaps most common type of graphics is a scatterplot of (x, y)
data. Say we have vectors x and y of the same length. Both platforms allow you to simply
type plot(x,y), although doing so produces different types of plots (just points in R, and
just lines in MATLAB). When producing 2-D scatterplots, the options you typically want
to specify are: (1) color; (2) plotting symbols, if any, placed at the data points; and (3) the
type of lines, if any, connecting the points.

R

The color used in a plot can be specified via a col parameter to the plot function. The
color itself can be specified in a couple of different ways. First, you can use a named color,
e.g., col='red'. Enter the command colors() to see a list of available named colors (there
are 657 on my system). Second, you can use Red-Green-Blue hexadecimal triplets. For
example, col='#FF00FF' gives red=255, green=0, and blue=255, which corresponds to
the color magenta. You can use col2rgb to see the RGB triplet for a named color, e.g.,
col2rgb('magenta'). You may also find the rgb function useful to construct colors from
numerical values, e.g., rgb(1,0,1) will build the string '#FF00FF'.

As for what is actually plotted, in R, you do not simply specify plotting symbols and line
types as you do in MATLAB. Instead, the plot command can take a parameter type that
indicates which overall kind of plot to make. Each type is specified using a single character,
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'p' Points
'l' Lines (that is a lowercase “L”, not the number 1)
'b' Both points and lines, but there are small gaps in the lines at each data point to

make room for a plotting symbol
'c' Only the lines from type 'b', with no symbols at the points
'o' “Overplotted,” both lines and points but with no gaps in the lines around the

points
'h' Vertical lines like a histogram
's' Steps that move first horizontally then vertically
'S' Steps that move first vertically then horizontally
'n' No plotting (can be used to set up axes, plot titles, etc.)

TABLE 10.1
Possible values for the type parameter to the R plot command.

'a' The character “a”. Other characters in quotes can be similarly used.
0 Open square
1 Open circle
2 Triangle pointing up
3 + (plus)
4 × (cross)
5 Diamond
6 Triangle pointing down

(numbers 7–25) Various other shapes
'. ' Rectangle of size 0.01 inch, 1 pixel, or 1 point (1/72 inch) depending

on device

TABLE 10.2
Values for the pch (“Plotting CHaracter”) parameter to the R plot command.

as listed in Table 10.1. For example, plot(x, y, type='o') plots data using both lines
and points.

You can then use the pch (“Plotting CHaracter”) and lty (“Line TYpe”) parameters
to specify the plotting symbol and line type to use, as listed in Tables 10.2 and 10.3. Note
that for the line type, you can specify either an integer from the first column of Table 10.3
(e.g., lty=2), or a character string from the second column (e.g., lty='dashed').

For example, plot(x, y, col='red', type='o', lty=2) plots using red circles and
dashed lines, while plot(x, y, type='p', pch=0) plots using black squares with no lines.
To plot using a blue dash-dot line with no markers, use plot(x, y, type='l', lty=4).
To plot using small circles as the markers with a solid line, use plot(x, y, type='o',

pch=16). Various other parameters can be used to give further control over things like line
width and plotting character colors and size; see the help for plot, points, and lines for
more, as well as Section 10.13.

MATLAB

When making a basic plot in MATLAB, you can provide a single character string specifying
the color, plot marker or symbol, and line style. It is best to put them in that order, as
explained below. There are 8 colors, 13 plot markers, and 4 line styles you can choose from,
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0 blank
1 solid
2 dashed
3 dotted
4 dotdash
5 longdash
6 twodash

TABLE 10.3
Values for the lty (“Line TYpe”) parameter to the R plot command. Integers from the first
column can be used (e.g., lty=2), or strings from the second column (lty='dashed').

Symbol Color Symbol Marker Symbol Line style

b blue . point (.) - solid line

g green o circle (◦) : dotted line

r red x cross (×) -. dash-dot line
c cyan + plus sign (+) -- dashed line

m magenta * asterisk (∗)
y yellow s square (�)

k black d diamond (♦)
w white v triangle (down) (▽)

^ triangle (up) (△)

< triangle (left) (⊳)

> triangle (right) (⊲)

p pentragram star
h hexagram star

TABLE 10.4
Available colors, plotting symbols/markers, and line styles for basic MATLAB plots.

as shown in Table 10.4. You can optionally choose an entry from each column in the table.
If you do not specify a color, blue is used as the default. If you specify a plotting symbol
but no line type, then no lines are drawn; similarly if you specify a line style but no plotting
symbol. If you do not specify any kind of plotting style, blue lines are used.

For example, plot(x, y, 'ro--') plots using red circles and dashed lines, while
plot(x, y, 'ks') uses black squares with no lines. To plot using a dash-dot line, with
the default color of blue and no markers, use plot(x,y,'-.'). To plot using small circles
as the markers with a solid line, use plot(x,y,'.-'). To avoid the obvious confusion be-
tween these last two, it is best to always specify the color, marker, and line style in that
order. Various other parameters can be passed along to plot to control things like line
width, and the colors and size of markers; see the end of the plot help for more, as well as
Section 10.13.

Note that internally, MATLAB keeps “handles” to various things plotted in a figure.
You can save the handle when adding something to a figure, and then get and set various
properties (via functions with those names). That is, the commands h = plot(x, y);

get(h) will display the list of properties of the plot that you can set. You can then change
those properties via commands like set(h, 'LineWidth', 2).
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10.3 Adding additional plots to a figure

Sometimes, after plotting some data, you wish to add additional plots within the same
figure window. It is fairly straightforward to do this in both platforms, but there are some
key differences between the two.

R

The points and lines functions both behave like plot, and take the same parameters as
plot, but they add the new plots to an existing figure rather than replacing what was there.
The only difference between points and lines is that the former defaults to type='p' while
the latter defaults to type='l'. So points(x2, y2) will add some points to an existing plot,
while lines(x2, y2) will add lines. You can in fact use lines(x2, y2, type='p').

One major limitation of adding things to plots in this way is that, unlike MATLAB, R
will not automatically adjust the axis ranges for you to ensure that all of the old and new
data are visible. Once the axis ranges are set up by the initial plot when using traditional
graphics, they are fixed. You should therefore make sure those ranges will make all data that
are to be plotted visible when your plot is completed; see Section 10.4 for how to specify
axis ranges.

MATLAB

In MATLAB, if you enter the command hold on, then all subsequent plotting commands
will add their graphics to an existing plot, rather than replacing what was there. Coordinate
axes will automatically update their ranges so that all data from the existing plots as well
as the new one are visible. You can enter hold off to turn this off, so that the next plotting
command will overwrite the current figure.

10.4 Axis ranges

You can specify the coordinate ranges for the axes in a figure, if you wish to override the
defaults. In R, this is necessary if you plan to add additional plots to a figure and the
secondary data lie outside the range of the first data you plot. In both platforms, you may
wish to adjust the axis ranges simply to make your plots look better, or to leave room for
a figure legend.

In R, you can use the xlim and ylim parameters to the plot function to specify the
ranges for the x and y axes, respectively. Each parameter value should be a vector of length
2, with the minimum and maximum values. For example, plot(x, y, xlim=c(0,17),

ylim=c(-5,42)). Note that R expands the ranges of x and y values by 4% on each end,
and then further adjusts things slightly to make the axes look better. You can eliminate
this 4% padding in the x and y directions by including the parameters xaxs='i', yaxs='i'
in your plot command; see the help for par for more information.

In MATLAB, you can adjust the axis ranges any time after making a plot, via the axis
command. You provide a vector of length 4, containing the min and max x values, and min
and max y values in that order. For example, axis([0 17 -5 42]). The nice thing about
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this feature is that you can make repeated adjustments to the axis ranges until you have
gotten things looking just the way you like.

10.5 Logarithmic axis scales

In R, the log parameter to the plot function specifies which axes you want to have loga-
rithmic scales. Specifically, you can use log='x', log='y', and log='xy' to use logarithmic
scales for the x axis, the y axis, and both axes, respectively.

In MATLAB, three different functions are provided to achieve the above results:
semilogx, semilogy, and loglog. These functions behave just like plot, but with the
different scales for the axes.

10.6 Background grid

Sometimes it is useful to add a grid to the background of your plot, to make it easier to
identify the coordinates of displayed points. In R, the command grid() will add a grid with
gray dashed lines. The parameters nx and ny let you specify how many lines you want in
the x and y directions, while parameters col, lty and lwd let you specify the color, line
type, and line width of the lines. These are especially useful, since the default line style is
not very visible on some devices.

In MATLAB, you can use grid on to turn on a grid, grid minor to turn on a finer
one, and grid off to remove the grid.

10.7 Plotting multiple data sets simultaneously

Section 10.3 describes how to include additional plots within an already-existing figure, but
sometimes it is more convenient to plot several things at once. For example, say you have
vectors x1, y1, x2, and y2 containing two sets of (x, y) coordinates, and wish to plot two
separate curves displaying the data.

R

R has a couple of mechanisms for doing this. First, matplot lets you provide matrices X
and Y whose columns contain x and y coordinates. You can bind the vectors into columns
of the needed matrices using cbind, e.g., with a command like matplot(cbind(x1, x2),

cbind(y1, y2)). The disadvantage of this approach is that it requires the different curves
to have the same length, i.e., the vectors x1 and x2 should be the same length, as should
y1 and y2. If the original vectors have different lengths, you can pad the shorter ones with
enough NA values to match the length of the longest one. For example, if the second data
set has three fewer points than the first one, this command can be used: matplot(cbind(x1,
c(x2, rep(NA, 3))), cbind(y1, c(y2, rep(NA, 3)))). You can provide separate plot-
ting parameters (e.g., plot type, color, plotting character, line type) using vector ver-
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FIGURE 10.1
Left: a plot of matrix data produced by matplot(X, Y) (in R) or plot(X, Y) (in MAT-
LAB). Right: corresponding image of transposed data produced by matplot(t(X), t(Y))

or plot(X', Y').

sions of the standard plot parameters. For example, matplot(X, Y, type=c('o', 'b'),

col=c('red', 'blue'), lty=c(2, 4)). The type parameter can be specified more com-
pactly by packing the elements of the vector into a single string, e.g., type='ob'. Also, these
parameter vectors will be recycled if necessary (see Page 23). There are separatematpoints
and matlines functions which behave like matplot but which add their new graphics to
an existing plot, just as points and lines do. Note that transposing the data matrices will
produce very different-looking plots. For example, for ten equally spaced x1 values between
1 and 4 and x2 values between 2 and 5, with corresponding y values satisfying y1 = x2

1

and y2 =
√
x2, respectively, Figure 10.1 shows the plots that result when using matplot

with original data and a transposed version of the data. The figures were generated via the
following commands:

R

x1 = seq(1, 4, len=10); x2 = seq(2, 5, len=10)

y1 = x1^2; y2 = sqrt(x2)

X = cbind(x1, x2); Y = cbind(y1, y2)

matplot(X, Y, type='l', col='black', lty=1, xlab='', ylab='', lwd=2)

dev.new()

matplot(t(X), t(Y), type='l', col='black', lty=1, xlab='', ylab='', lwd=2)

The second way to plot multiple data sets simultaneously in R is by combining the sepa-
rate x vectors into a single one, with NA values separating the coordinates corresponding to
different data. Each NA in the x and y vectors causes R to “pick up the pen” before moving
on to the next points. So for example, plot(c(x1, NA, x2), c(y1, NA, y2), type='o')

will plot two separate curves. The limitation of this approach is that you cannot specify
different parameters (plot type, plotting character, line type, color) for the different curves.
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MATLAB

MATLAB also has a couple of ways to simultaneously plot multiple data sets. First, MAT-
LAB’s plot function includes functionality similar to R’s matplot. The command plot(X,

Y) plots each column of Y against the corresponding column of X. You cannot specify plot-
ting parameters separately for each curve; by default, differently colored lines are used. If
you instead enter plot(X, Y, 'o'), differently colored points are used. Transposing data
matrices will produce plots that look quite different. See Figure 10.1 for images of original
data and a transposed version of the data, produced by the following commands:

MATLAB
x1 = linspace(1, 4, 10); x2 = linspace(2, 5, 10);

y1 = x1.^2; y2 = sqrt(x2);

X = [x1' x2']; Y = [y1', y2'];

plot(X, Y, 'k-'); figure; plot(X', Y', 'k-')

MATLAB also allows you to include multiple (x, y, style) triplets in a plot command.
For example, plot(x1, y1, 'ro-', x2, y2, 'k*') will plot the first data set with red
circles and solid lines and the second data set with black stars only.

10.8 Axis labels and figure titles

Unlike MATLAB, by default R labels the x and y axes of plots according to the data
used to generate them. For example, if you use the command plot(A[,3], yvec), then
the x axis will be labeled A[,3] and the y axis will be labeled yvec. As in MATLAB,
there will be no title on the plot by default. You can specify labels for the x and y
axes in an R plot, along with a title, by using the xlab, ylab, or main parameters
to the plot function. For example, plot(xdat, ydat, xlab='time', ylab='humidity',

main='moisture versus time'). You can also use the sub parameter to specify a subtitle
at the bottom of the plot. If you wish to instead add the labels after making the plot, you
can use the title function, which accepts all of the above arguments. However, note that
title adds the labels you specify, rather than replacing them. If you use title(xlab='days
elapsed') and there was already a label on the x axis (such as the default one R provided),
the new label’s text will appear on top of the existing one. This is in contrast with MAT-
LAB, which replaces any existing axis label when you provide a new one. If you wish to add
labels later, you may wish to use empty strings or the value NA for the labels when first
making the plot, using arguments xlab=NA, ylab=NA to suppress the default labels.

MATLAB has separate functions xlabel, ylabel, and title for creating axis labels and
a figure title. You can call them after using a plot command to create the figure, as in the
following sequence of commands: plot(x, y); xlabel('time'); ylabel('humidity');

title('moisture versus time'). Calling these functions to set an axis label or the title
replaces any previous label that may have been present.

10.9 Adding text to figures

Both platforms allow you to add text labels to plots via the command text(x, y, 'my

string').
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In R, by default, the text is centered at the specified coordinates. You can use the adj
parameter with a vector containing two elements, each within the range from 0 to 1, to
specify adjustments in both the x and y directions. The value 0 specifies the left or bottom;
0.5 specifies the middle, and 1 specifies the right or top. To have the left end of the text at
the specified coordinates, but still centered in the vertical direction, use text(x, y, 'my

string', adj=c(0, 0.5), and so on. You can add multiple strings simultaneously by pass-
ing in vectors for the coordinates and strings, e.g., text(c(4,8), c(15,16), c('label1',

'label2')).
In MATLAB, by default, the left end of the text is at the specified coordinates, and

the text is vertically centered. You can use a command like text(x, y, 'my string',

'HorizontalAlignment', 'center', 'VerticalAlignment', 'baseline') to horizon-
tally center the text at the given coordinates (use 'right' to position the right end of
the text at the specified coordinates) and raise the text so its baseline is at the specified y
coordinate. You can add multiple strings simultaneously by passing in vectors for x and y,
and an array of strings which has the same number of rows as the lengths of the coordinate
vectors. However, note that all rows of the array must have the same length, so you will need
to pad shorter strings with spaces. For example, you could use a command like text([4

8], [15 16], 'short ', 'long label'). If you are centering the text, the added
spaces will mess up the positioning; in that case, it is better to add the labels one at a time.
Use the command h = text(x, y, 'my string') to save a handle to some text, followed
by set(h) to see a list of object properties you can set with text strings.

10.10 Greek letters and mathematical symbols

Both platforms allow you to include mathematical expressions, including Greek letters, in
text annotations such as axes labels and figure titles. Let us say we wish to plot some (x, y)

data with a title of “y =
3
√
x7,” a y-axis label of “λ = φ

3.5 (but where the value 3.5 is
obtained from the variable w, rather than hardcoded in the code), and with an added text
label of “E[ξ]” at position (0.5, 0.6).

R

See the help for plotmath for information about the variety of mathematical symbols
available. To build the plot with the desired main title and y-axis label, the following
commands can be used:

R

plot(x, y, main=expression(y == sqrt(x^7,3)),

ylab=bquote(lambda == over(phi,.(w))))

The main title is not too bad: we use expression to build a mathematical expression;
a double-equals == is displayed as a single equals sign in the output, sqrt(a,b) is used
to produce b

√
a, and aˆb is used to produce ab. The y-axis label is more complicated,

because we wish to substitute in the value from the variable w. If we simply wrote ylab
= expression(lambda == over(phi, w)), we would get λ = φ

w , i.e., we would see w
rather than the value contained in w. The function bquote works much like expression
here, except things surrounded by .( ) are evaluated in the parent frame by default, which
substitutes in the value for w.
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To add the text label, if we just write text(0.5, 0.6, expression(E[xi])), we will in-
stead get Eξ, because square brackets are used to surround subscripts. The way around this
is to use paste to combine pieces of the expression, to avoid the square brackets trigger-
ing a subscript: text(0.6, 0.4, expression(paste('E[', xi, ']'))). Obviously, these
things can get quite complicated fairly quickly, and it is better to tweak commands like this
in a script rather than trying to get them right by typing them directly in the R console.

MATLAB

If you know LATEX, the great news is that MATLAB allows you to include some TEX/LATEX
in your labels. (If you do not, there is an abundance of introductions/tutorials and references
about basic LATEX mathematical expressions available on-line.) Depending on what you are
doing, you need to surround your expression with dollar signs to ensure LATEX is in math
mode, and you may also need to explicitly request MATLAB to use LATEX to interpret your
labels (rather than TEX). We can use the following commands:

MATLAB
plot(x, y)

title('$y = \sqrt[3]{x^7}$', 'interpreter', 'latex')

tmpStr = sprintf('$\\lambda = \\frac{\\phi}{%g}$', w);

ylabel(tmpStr, 'interpreter', 'latex')

text(0.6, 0.4, '$E[\xi]$', 'interpreter', 'latex')

Our solution to including the value of w (rather than the character “w”) in the y-axis label
is to use sprintf to produce a string containing the LATEX expression we want. The string
tmpStr will contain the string “$\lambda = \frac{\phi}{3.5}$”. Note that we have
to use “\\” in the sprintf command to produce a single backslash in tmpStr, because a
single backslash is used to denote a special escaped character (such as “\n” for a newline
character).

10.11 Arrows

Assume the vectors xt and yt contain (x, y) coordinates of the tails of some arrows, and
vectors xh and yh contain the coordinates of the corresponding arrow heads.

R

The command arrows(xt, yt, xh, yh) will add the specified arrows to the figure. Ap-
pending the parameter code = 3 will draw double-headed arrows instead.

MATLAB

The annotation function can be used, but note that it can only draw a single arrow at a
time. If you have several arrows to add, you will need to use a loop to draw them all. For
example:

MATLAB
for i = 1:length(xt)

annotation('arrow', [xt(i) xh(i)], [yt(i) yh(i)])

end
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There is another catch, however — the coordinates you provide must be in normalized figure
coordinates, rather than in coordinates within the axes displayed in the figure. There are two
solutions to this. First, you can search for the file implementing the function dsxy2figxy
on The MathWorks File Exchange Web site; this will convert your (x, y) coordinates into
the needed normalized figure coordinates. A second method is that you can instead set the
parent of the arrow to the current figure axis. That is, this will do the trick:

MATLAB
for i = 1:length(xt)

ah = annotation('arrow', [xt(i) xh(i)], [yt(i) yh(i)])

set(ah, 'parent', gca)

end

Use 'doublearrow' rather than 'arrow' to produce double-headed arrows.

10.12 Figure legends

R

Producing a figure legend in R takes much more work than in MATLAB because you must do
everything yourself. However, you also have greater control over what appears in the legend
and where it is placed. The general form of the command is legend(posStr, strVec), with
one or more of several optional parameters also included. The posStr parameter is a position
string indicating where to place the legend in the figure; possible values are 'topleft', 'top',
'topright', 'left', 'center', 'right', 'bottomleft', 'bottom', 'bottomright'. The strVec
is a vector of strings to display in the legend. The legend function interprets its parameters
in a somewhat clever way, to allow you to specify x and y coordinates of either the top-left
corner of the box, or two opposite corners. All coordinates are specified using the same
coordinates axes or scales as the data plotted in the figure, rather than the 0–1 scale used
by MATLAB for its legends. The way this works is that if a parameter named legend is
not provided and the parameter named y does not contain numeric values, then the second
parameter to the function is assumed to be the legend text (what I have called strVec
above) and the first parameter has the coordinates. To place a legend with its top-left corner
at coordinates (4.8, 15.16), you can use legend(4.8, 15.16, strVec). To place a legend
with corners at (4.8, 15.16) and (23,42), you can either build a list with x and y elements
via pos = list(x=c(4.8, 23), y=c(15.16, 42)) or a matrix with the x and y values
in two columns via pos = matrix(c(4.8, 15.16, 23, 42), nrow=2, byrow=TRUE); you
can then use legend(pos, posStr) to create the legend.

To specify what types of lines, plotting characters, colors and so on go into the legend,
you can provide arguments lty, pch, and col. Each argument should be a vector giving the
values to use for the various elements of the legend (values will be recycled if necessary;
see page 23). Use an entry of NA if you do not want a line or plotting character for
a particular entry. For example, assuming strVec has three strings, then legend(pos,

strVec, lty=c(2, NA, 1), pch=c(NA, 2, 8)) produces a legend with three entries: the
first entry has a dashed line (with no plotting character because of the NA in the first
element of pch); the second entry has triangles (but no line because of the NA in the
second element of lty), and the third entry has a solid line with stars.

There are many more parameters you can use with legend, to do things like add a
title to the legend, specify the color of the text, control the arrangement of the items (for
example horizontally or vertically), and so on.
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MATLAB

MATLAB automates the production of figure legends for you much more than R does;
this is usually more convenient, but also makes it a bit more challenging to craft a legend
manually. Say you have plotted three things in the same figure window (and used hold

on after the first plot, so they are all displayed together). You can then use the command
legend('first', 'second', 'third label') to add a legend to the figure, showing the
plotting markers and line styles for the three plots. By default, the legend is in the top-right
corner. This can be changed with an additional string argument using compass directions
(with 'NorthEast' being the default top-right location). So for example, legend('first',
'second', 'third label', 'Location', 'South') will put the legend in the middle of
the bottom of the plot. A location of 'Best' will try to determine the best place inside the
plot to put the legend.

You can also specify the location of the legend using a 1× 4 position vector. This vector
contains the (x, y) coordinates of the lower-left corner of the legend, along with the width
and height. All four values in this vector range from 0 to 1 and are in terms of proportions
within the figure window. For example, legend('first', 'second', 'Location', [0.3

0.2 0.25 0.1]) places the legend 30% from the left and 20% from the bottom; the legend
will have 25% of the width of the figure window and 10% of its height.

You may wish to hand-craft what appears in a legend. For example, you may only want
the legend to display information about some of the things shown in the figure. In this case,
you should save “handles” to your plots as you create them, as in the following sample code,
and then pass those handles to legend:

MATLAB
h1 = plot(x1, y1, 'bo-')

hold on

h2 = plot(x2, y2, 'g-')

h3 = plot(x3, y3, 'r*')

legend([h1 h3], 'stuff', 'more stuff')

If for some reason you want the legend to display something which is not in the plot, you
could plot something with the desired style, save the handle of that plot, and then make it
invisible in the actual figure but pass the handle to legend:

MATLAB
h1 = plot(0, 0, 'bo-')

hold on

h2 = plot(0, 0, 'g-')

h3 = plot(x3, y3, 'r*')

h4 = plot(x4, y4, 'cs:')

set(h1, 'Visible', 'off')

set(h2, 'Visible', 'off')

legend([h1 h2], 'strange', 'more strange')

When you make the first two plots invisible, the axis automatically rescales if necessary,
without the influence of the invisible points.

There are many more parameters you can use with legend, to do things like control
the arrangement of the items (horizontally or vertically), turn the bounding box around the
legend off, and so on.
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10.13 Size and font adjustments

It is often useful to adjust the size of plotting characters or markers, the thickness of lines,
the font size of axis labels, and so on. Both platforms give the user a fair amount of control
over such things.

R

There are many parameters that can be passed to the plot (or points or lines) function
to adjust the sizes of things. cex=2 rescales the size of the plotting characters by a factor
of 2. lwd specifies line width, but also the widths of lines used to draw plotting characters
(circles, squares, etc.). If you want to use different line widths for the lines and the plotting
characters, first use a command like plot(x, y, type='c', lwd=3) and then points(x, y,
lwd=2) to draw them separately.

cex.axis rescales the numerical labels on the axes. cex.lab rescales the axis labels (those
set with the xlab and ylab parameters). cex.main rescales the main plot title. cex.sub
rescales the plot subtitle. For text labels added with the text function, use cex=2 to double
the font size.

For a figure legend, include cex=2 to double the size of both the plotting characters
and the legend text. You can use pt.cex=3 to separately specify the size multiplier for the
plotting characters and title.cex for the title text (if there is any) if you do not want them
to share the same multiplier with the legend text.

For example, the following commands plot some data with customized sizes of pretty
much everything in the plot, including different line thicknesses for the lines and the plotting
characters:

R

plot(x, y, type='c', lwd=3, xlab='x values', ylab='dependent var',

title='My data', sub='customized', cex.axis=2, cex.lab=3,

cex.main=4, cex.sub=2, lwd=3)

points(x, y, cex=2)

MATLAB

Adjusting the sizes of things in MATLAB happens in a couple of different ways. Some
properties are set via arguments to plot, whereas axis properties are adjusted by calls to
set. Among arguments to plot, adding the pair of parameters 'MarkerSize', 10 sets the
size of the plotting marker. Including the parameters 'LineWidth', 2 changes the line
width. This affects both the line width, and the width of lines used to draw the plotting
markers. To use different line widths for lines and plotting markers, first plot only the lines,
followed by hold on, and then add the markers.

Use set(gca, 'FontSize', 20) to adjust the font size of numerical labels on the axes.
(gca stands for “get current axis,” and returns a handle to the axis; use just get(gca) to
see a list of properties you can set.) xlabel('xfoo', 'FontSize', 20) specifies the x-axis
label font size; and similarly with ylabel and title. For added text labels, use text(x, y,

'some text', 'FontSize', 20) to specify font size. Alternatively, when you create the
axis labels or added text, you can save handles for them, and set things via the handles.
For example, h1 = xlabel('xfoo'); set(h1, 'FontSize', 25) and similarly with h2 =

text(3, 4, 'hmmmm'); set(h2, 'FontSize', 18). You must use the handle approach
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to adjust font size of legend text: h3 = legend('foo', 'bar'); set(h3, 'FontSize',

25).

10.14 Two y axes

Sometimes, when plotting two data sets containing y values of fairly different magnitudes,
it is useful to have two separate y axes in a plot. One axis is drawn on the left side of
the figure, and another on the right side. Here we will plot the functions y1 = sin(x) as
x varies between 0 and 10, and y2 = 5e−x cos(10x) as x varies between 0.5 and 8. This
takes somewhat complicated manual fiddling with things like axes and margin text in R to
accomplish; in MATLAB, the plotyy function does the hard work. The resulting plots are
shown in Figure 10.2.

R
R

x1=seq(0,10,len=200)

y1=sin(x1)

x2=seq(0.5,8,len=200)

y2=5*exp(-x2)*cos(10*x2)

par(mar=c(5.1, 4.1, 4.1, 5.1))

plot(x1, y1, type='l')

par(new=TRUE)

plot(x2, y2, type='l', lty=2, xaxt='n', yaxt='n', xlab='', ylab='')

axis(4)

mtext('y2', side=4, line=3)

legend('top', legend=c('y1', 'y2'), lty=c(1,2))

MATLAB
MATLAB

x1=linspace(0,10,200);

y1=sin(x1);

x2=linspace(0.5,8,200);

y2=5*exp(-x2).*cos(10*x2);

[ax,h1,h2]=plotyy(x1,y1,x2,y2);

set(h1, 'color', [0 0 0]) % black line

set(h2, 'color', [0 0 0], 'linestyle', '--') % black dashed line

set(ax(1), 'ycolor', [0 0 0]) % black y-axis1 labels

set(ax(2), 'ycolor', [0 0 0]) % black y-axis2 labels

legend('y1', 'y2', 'location', 'north')
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FIGURE 10.2
Figures with two y axes, produced with the R (left) and MATLAB (right) commands from
Section 10.14.

10.15 Plotting functions

Sometimes you may wish to plot a function y = f(x) over some range of values of x. A simple
way to do so is to generate a vector x containing some values of x (with equally spaced
values being the straightforward way), compute a vector y containing the corresponding
function values, and then plot the values stored in x and y. Choosing how many values you
need in x to produce a nice-looking plot may take some trial and error. R does not have a
built-in function to aid you in doing this. It does have a function curve that you can use to
plot a function at equally spaced points, without the need to explicitly set up your own x
and y vectors. For example, curve(sin, 0, 15) plots the function sin(x) with x ranging
from 0 to 15 (with 101 points by default, but you can use the parameter n to modify that).

MATLAB provides a nice function fplot to perform this task somewhat automatically.
You provide a function and the minimum and maximum values of x, and it determines
how many values of x to use, along with their spacing. It places the x values more closely
together where the function is varying more rapidly. You can either specify the function to
plot as a string, or via a function handle. For example, to plot sin(x) from 0 to 4π, you can
either use fplot(@sin, [0 4*pi]) or fplot('sin(x)', [0 4*pi]). To plot the function
sin(1/x)/x from 0.01 to 0.2 with red points and lines, you can use one of the following two
commands:

MATLAB
fplot(@(x) sin(1/x)/x, [0.01 0.2], 'r.-')

fplot('sin(1/x)/x', [0.01 0.2], 'r.-')

The first command above uses an anonymous function (see Section 8.2.1). fplot also lets
you specify a minimum number of points to use (the default minimum is 2) and a relative
error tolerance which adjusts how many points are used.



122 R and MATLAB

10.16 Image plots and contours

There are many other types of plots besides the basic scatterplots or line plots already
discussed. There are 3-D surface plots, pie charts, and many others. One common type of
plot is an image plot of some data in a matrix. There are two ways image plots are typically
made: the matrix contains discrete integer values that are used as indices into a colormap,
or the matrix contains continuous values that are plotted as different colors in a colormap.
The x and y coordinates corresponding to the matrix entries may simply be the integers
1, 2, 3, . . ., or they may be continuous values from within some range.

To have some concrete examples to work with, we will set up three matrices. Let A
be a 10 × 10 matrix containing the values 1 through 10 arranged so that the value in
row i, column j is simply j, but we will then change two entries in the four corners to
have the values 1, 2, 3, and 4 (counterclockwise from the top left, i.e., a1,1 = a2,2 = 1,
a10,1 = a9,2 = 2, a10,10 = a9,9 = 3, and a1,10 = a2,9 = 4) to better see the orientation of
how A is plotted. Next, let A2 be the same as A, but all values greater than 5 will be
replaced by the value 5. And finally, B will be a matrix containing values of the function
z = f(x, y) = cos(xy) sin(x2+y3), which will be computed for 200 values of x equally spaced
between 1 and 4, and 200 values of y between -3 and +3.

R

The following commands will set up the three matrices we will be using, along with two
rainbow colormaps. The first colormap has 10 entries and the second has 250 entries. The
end=5/6 parameter to rainbow tells it to begin with red and end with violet, rather than
beginning and ending with red. Two additional colormaps are also generated, containing
shades of gray.

R

A = matrix(rep(1:10, 10), nrow=10, byrow=TRUE)

A[1,1] = 1; A[2,2] = 1; A[10,1] = 2; A[9,2] = 2;

A[10,10] = 3; A[9,9] = 3; A[1,10] = 4; A[2,9] = 4

A2 = A; A2[A2 > 5] = 5

x=seq(1, 4, len=200)

y=seq(-3, 3, len=200)

B=cos(outer(x, y)) * sin(outer(x^2, y^3, '+'))

cmap1 = rainbow(10, end=5/6); cmap2 = rainbow(250, end=5/6)

cmap1g = gray(seq(0, 1, len=10)); cmap2g = gray(seq(0, 1, len=250))

You can use the command image(A) to plot an image of A, or image(A, col=cmap1) to
plot it using the small rainbow colormap (the default colormap is the one produced by
heat.colors(12)). Doing so and examining the colors in the four corners shows that the
image is displayed rotated 90◦ from the way the values are displayed if you simply type A

at the R command prompt. That is, column 1 of the matrix is plotted along the bottom
row of the image. The (row, column) indices in the matrix get used as (x, y) coordinates in
the image, after rescaling them to lie between 0 and 1. A grayscale version of the figure is
shown in Figure 10.3.

If you wish to display the matrix in the orientation used by MATLAB’s image command,
you need to reverse the direction of the y axis (which can be done by specifying the ylim
parameter with the larger value followed by the smaller one) as well as transpose the matrix.
The image function lets the x and y coordinates range from 0 to 1 by default. The cells are
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FIGURE 10.3
Left: An image plot produced in R via image(A, col=cmap1g). Right: An image plot pro-
duced via image(B, col=cmap2g).

centered at values in that range, with widths of 1/m and heights of 1/n for an m×n matrix.
That means when you transpose the matrix the y coordinates will range from −1/(2n) to
1+ 1/(2n), so the following command will display the matrix A in MATLAB’s orientation:
m=dim(A)[1]; image(t(A), col=cmap1, ylim=c(1+1/(2*m), -1/(2*m))).

If you look at the output produced by image(A2, col=cmap1), you will notice that the
colors still range over the full red to violet spread of the colormap, even though the values
only range from 1 to 5 (rather than 1 to 9 as in the matrix A). By default, image rescales
and maps the values in the matrix being plotted onto the entire range of the colormap.
You can instead explicitly specify “break points,” i.e., cutoff values indicating which ranges
of values should be displayed using each color. If your colormap has n entries, you must
specify n + 1 break points. If the break points are in vector b, then the ith color in the
colormap is used to display values in the matrix that lie between b[i] and b[i+1]. The first
interval (b[1] to b[2]) includes both of its boundaries; subsequent intervals contain only
their upper boundaries. Using the vector 0:10 for the break points will display the value 1
using the first color (all values from 0 to 1 inclusive would be drawn using this color), the
value 2 using the second color, and so on. Any values which do not fall within the range
of values specified by break points are not drawn. The command image(A2, col=cmap1,

breaks=0:10) therefore plots the data using the values in A2 as indices into the colormap.
To plot the z = f(x, y) values in the matrix B, with x and y coordinates taken from

the vectors x and y, the command image(x, y, B, col=cmap2) can be used. A grayscale
version is shown in Figure 10.3.

One limitation of graphics produced by the image command is that they do not con-
tain a legend indicating which colors represent which values (as you can produce in MAT-
LAB via the colorbar command). The levelplot function in the lattice package will
produce image plots with a colorbar (see Section 13.9 for how to load a package; the
lattice package is included in default installations of R, but not loaded). To reproduce
the plot in the right part of Figure 10.3 but with a colorbar legend added, a command
like this is needed: levelplot(B, row.values=x, column.values=y, aspect='fill',
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xlim=c(min(x), max(x)), ylim=c(min(y), max(y)), col.regions=cmapg, cuts=249).
The parameters are as follows:

row.values, column.values: Vectors containing the x and y values, respectively.

aspect: We specify 'fill' so the plot fills the figure window; the default when using levelplot
with a matrix is to make each element of the image square.

xlim,ylim: If the x and y limits are not specified, the plotted image will not fill the figure.
The detailed appearance of the results will depend on the range of x and y coordinates.

col.regions: Specifies the colormap to use.

cuts: How many breaks there are between colors. With 250 entries in our colormap, there
are 249 breaks between the colors.

Instead of cuts to request equally spaced cutoffs in z values for the colors, you can specify
at to give an explicit vector of cutoffs. This works like the breaks argument to image, so if
you want 250 levels, your at vector should have 251 values, e.g., at=seq(-1, 1, len=251).

You can also provide a colorkey parameter to levelplot, containing a list with detailed
information about the color legend. This can be used to do things such as construct a color
scale with logarithmically spaced intervals for the colors.

MATLAB

The following commands set up the three matrices we will be using, along with two rainbow
colormaps. The first colormap has 10 entries and the second has 250 entries. The command
cmap = hsv(10) would set up a rainbow colormap with 10 entries which begins and ends
with red. To generate one that begins with red and ends with violet, here we first build a
3-column HSV (hue-saturation-value) matrix where the hue goes from 0 to 5/6 with the
saturation and value set to 1, and convert it to RGB (red-green-blue). An alternative would
be to make a colormap 6/5 times as long as we want, and then take the first 5/6 entries to
get a red-violet rainbow, using the commands tmp=hsv(300); cmap2=tmp(1:250,:);.

MATLAB
A = repmat(1:10, 10, 1);

A(1,1) = 1; A(2,2) = 1; A(10,1) = 2; A(9,2) = 2;

A(10,10) = 3; A(9,9) = 3; A(1,10) = 4; A(2,9) = 4;

A2= A; A2(A2 > 5) = 5;

B = repmat(1:100, 100, 1);

x = linspace(1, 4, 200);

y = linspace(-3, 3, 200);

[X,Y] = meshgrid(x,y);

B = cos(X .* Y) .* sin(X .^ 2 + Y .^ 3);

cmap1 = hsv2rgb([linspace(0, 5/6, 10)' ones(10, 2)]);

cmap2 = hsv2rgb([linspace(0, 5/6, 250)' ones(250, 2)]);

cmap1g = gray(10); cmap2g = gray(250);

You can use image(A) to plot an image of A with the default colormap (the one produced
by jet(64)). After making the plot, the command colormap(cmap1) can be used to switch
to the small rainbow colormap. Doing so and examining the colors in the four corners shows
that the image displays the values in the same arrangement that you would see by simply
typing A at the MATLAB command prompt. That is, the values in the last (bottom) row
of the matrix go across the bottom of the image. The results are shown in Figure 10.4.
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FIGURE 10.4
Left: An image plot produced in MATLAB via image(A); colormap(cmap1g). Right:
An image plot produced via imagesc(x, y, B); colormap(map2g); set(gca, 'YDir',

'normal').

Also note that the y axis label increases from top to bottom (as the rows of a matrix are
numbered), rather than from bottom to top as usual. This is because image sets the YDir
property of the axis to 'reverse'. You can flip it upside down via the command set(gca,

'YDir', 'normal'). To plot the matrix in the same orientation as R’s image function,
instead plot the transpose of A and then flip the YDir, i.e., use image(A'); set(gca,

'YDir', 'normal').
The command colorbar adds a very useful color legend to the right side of the fig-

ure. The colorbar function can take optional arguments to specify the location or other
properties of the legend, for example, colorbar('FontSize', 14).

MATLAB does not have a simple method for specifying break points to use with the
colors when display a matrix using the image function. Instead, the values in the array are
simply used as indices into the current colormap. (For values of type double, the indices
should be in the range 1, 2, . . .; for values of type uint8 or uint16, they should be in the
range 0, 1, . . ..) Instead, you can build a vector of break points, and then use histc to build
a matrix of values which can be used as indices into the colormap. For example, if you want
three bins to represent values satisfying 0 ≤ x < 2, 2 ≤ x < 3, and 3 ≤ x ≤ 7, then use the
following commands:

MATLAB
edges = [0 2 3 7];

[tmp, binidx] = histc(A, edges);

image(binidx)

If you have continuous values in your matrix, the imagesc function will automatically
rescale your values so that the full range of the colormap corresponds to the range of values
in the matrix. The pcolor function works like imagesc, but the YDir attribute is set to
normal by default, and the last row and column of the matrix are not drawn. pcolor also
has a number of shading mechanisms available. The default is faceted, in which the last
row and column are not drawn, and there are thin black lines drawn between the cells of the
matrix. The command shading flat will switch to flat shading, which eliminates the black
lines. shading interp uses linear interpolation within each cell, according to the values at
the cell’s corners.
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To plot the z = f(x, y) values in the matrix B set up earlier, with x and y coordinates
taken from the vectors x and y, the commands imagesc(x, y, B); colormap(cmap2);

set(gca, 'YDir', 'normal') can be used. A grayscale version is shown in Figure 10.4.

10.17 Colormaps

In R, built-in functions to provide various colormaps are rainbow, heat.colors, ter-
rain.colors, topo.colors, cm.colors, and gray. You can also build a colormap your-
self. For example, a colormap containing the colors red, magenta, tan, and green could be
built via mycmap = c('#ff0000', '#ff00ff', '#d2b48c', '#00ff00'). The functions
colors, palette, hsv, hcl, rgb, col2rgb, and convertColor may also be useful, for ex-
ample for converting a set of color values encoded as numerical values from 0 to 1 into the
above format. The above colormap could be built by first constructing a 4× 3 matrix, with
each row containing the intensities of red, green, and blue (ranging from 0 to 1), and then
converting it as follows:

R

A=matrix(c(1,0,0,1,0,1,210/255,180/255,140/255,0,1,0),nrow=4,byrow=TRUE)

mycmap = rgb(A[,1], A[,2], A[,3])

In MATLAB, built-in colormaps are provided by the functions jet, hsv, hot, cool, pink,
flag, spring, summer, autumn, winter, gray, bone, copper, and lines. A colormap
containing the colors red, magenta, tan, and green could be built by constructing a 4 × 3
matrix, with each row giving intensities of red, green, and blue: mycmap=[1 0 0 ; 1 0 1

; 210/255 180/255 140/255; 0 1 0]. The functions rgbplot, hsv2rgb, and rgb2gray
may also be useful.

10.18 3-D plotting

Three-dimensional surface plots are available in both packages; these can be used to plot a
function of two variables, z = f(x, y). MATLAB colors the surface according to the height z
by default; R does not do this automatically, but you can provide a color matrix to duplicate
this functionality. Here we will plot the function z = e−x sin(3y) for 30 equally spaced x
values between 1 and 4, and 80 equally spaced y values between -3 and +3.

R

There is a function persp in the traditional graphics system which produces 3-D surface
plots. You can provide vectors x and y containing the independent variables and a matrix z,
along with usual parameters like xlab to label the x axis, ylim to specify the range of values
shown on the y axis, and so on. By default, the axes simply have arrows showing the direction
in which they increase, without numerical labels. You can use ticktype='detailed' to get
back the standard numerical labels. The parameters theta and phi can be used to specify
the viewing angle. Other parameters are available, including shade to apply shading to the
surface.

If you provide an mx×my matrix (as with the image function, the rows correspond to x
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FIGURE 10.5
Surface plots of the function z = e−x sin(3y). Left: in R using persp. Right: in MATLAB
using surf.

coordinates and the columns correspond to y), an (mx−1)×(my−1) mesh of surface facets
is produced. If you wish to provide a colormap matrix, it should therefore be of that size.
To color the facets according to the heights z, you can first use either cut or findInterval
to transform the z matrix into a set of values indicating which bin each z value lies within.
That matrix of bin numbers can then be used to index a colormap, producing a colormap
matrix. Commands to do this for our example function above are below. The outer function
is used to build the matrix Z from the vectors x and y.

R

x = seq(1, 4, len=30)

y = seq(-3, 3, len=80)

Z=outer(exp(-x), sin(3*y))

cmapLength = 20

# reverse violet-to-red rainbow colormap similar to Matlab "jet" colormap

cmap = rev(rainbow(cmapLength, end=5/6))

cmapg = gray(seq(0, 1, len=cmapLength)) # or use gray colormap

# Calculate matrix of bins for Z values

edges = seq(min(Z), max(Z), len=cmapLength) # edges of the bins

bins=array(findInterval(Z, edges, rightmost.closed=TRUE), dim=dim(Z))

bins = bins[1:(length(x)-1),1:(length(y)-1)]

persp(x, y, Z, col=cmap[bins], theta=-40, phi=30, ticktype='detailed')

This produces the image in the left half of Figure 10.5 when used with the cmapg gray
colormap.

The lattice package has a function wireframe that can be used to produce a similar
plot. One should first build a data frame containing all pairs of (x, y) coordinates, and then
create a z column. This can be done via the following commands, assuming x and y have
been set up as above:
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R

g=expand.grid(x=x,y=y)

g$z=exp(-g$x)*sin(3*g$y)

> wireframe(z~x*y, g)

MATLAB

In MATLAB, the surf function will produce a surface plot. You provide a matrix Z contain-
ing the z coordinates, whose rows correspond to the y coordinates and columns correspond
to x (this is the opposite of R). It is convenient to use meshgrid to build matrices X and
Y containing the x and y coordinates, and then use element-by-element matrix calculations
to produce Z, as shown below.

MATLAB
x = linspace(1, 4, 30);

y = linspace(-3, 3, 80);

[X,Y] = meshgrid(x, y);

Z = exp(-X) .* sin(3*Y);

surf(X,Y,Z)

% Then use, e.g., colormap(jet) or colormap(gray)

This produces the image in the right half of Figure 10.5.
For variations on this type of plot, see the mesh and waterfall functions. You can also

use surfc to produce a surface plot with contour lines, or surfl to produce a shaded surface
with lighting.

10.19 Multiple subplots in one figure

It is often desirable to have several smaller graphs within a single figure. Depending on the
details, I typically save the different graphs in separate files and then combine the images
when formatting my document. For example, the two images in Figure 10.1 were placed
beside each other using a LATEX tabular environment. But sometimes it is more convenient
to have several smaller graphs within a single figure window in the software itself. MATLAB
makes this relatively easy to do. R provides a couple of ways to do it which may not be
quite as simple as MATLAB’s methods, but which give more flexibility.

R

There are three approaches to using subfigures in the traditional graphics system. The three
approaches are incompatible with one another; you cannot mix and match.

The first approach is to use the command par(mfrow=c(m, n)) to request an m × n
grid of equally sized subfigures (m rows, n columns). Subsequent plot commands will draw
things in consecutive subfigures; lines and points can be used as usual to add things
to an existing subfigure. For example, par(mfrow=c(1,2)); plot(x1, y1); lines(x2,

y2); plot(x3, y3) will plot the first two data sets in the first subfigure, and the third
data set in the second subfigure.

The second approach is to use the layout function. This is most similar to MATLAB’s
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mechanism for working with subfigures. You first create a layout matrix describing the
arrangement of the subfigures. For example, consider the matrix

A =





1 1 2
1 1 3
4 5 5



 .

The matrix is 3× 3, so the figure window will be conceptually divided into a 3× 3 array of
cells. The values in the matrix A show that the upper-left 2×2 block of cells will correspond
to subfigure 1, the lower-right 1 × 2 block will correspond to subfigure 5, and so on. The
matrix is a visual map showing which subfigures are in which locations. Consecutive plot
commands will draw in consecutive subfigures, as when using par(mfrow). The following
sequence of commands will produce plots of some random data in this layout, as seen in
Figure 10.6.

R

A = matrix(c(1,1,2,1,1,3,4,5,5), nrow=3, byrow=TRUE)

layout(A)

plot(runif(25))

lines(runif(25))

plot(runif(10))

plot(runif(15), pch=4)

plot(runif(50), pch=6)

plot(runif(20), type='b')

Note that you can put the value 0 in the matrix A to mark locations where you do not
want any subfigures, if you want to leave some “holes” in the final figure.

To reset the figure window back to using a single subfigure, you can use the command
par(mfrow=c(1,1)) to request one row and one column.

The third approach to subfigures in R’s traditional graphics system is with the
split.screen function and some related functions. You can use split.screen to divide the
graphics device into subfigures; you can then further divide some of those into smaller sub-
figures. You can either pass in a vector containing the number of rows and columns to divide
things into, or pass in a 4-column matrix where each row contains (left, right, bottom, top)
values (in the interval from 0 at the bottom/left to 1 at the top/right) describing one of the
subfigures. For example, in the image shown in Figure 10.6, there are five subfigures with
the following ranges:

Subfigure Left Right Bottom Top
Top-left large 0 2/3 1/3 1
Top-right small 2/3 1 2/3 1
Middle-right small 2/3 1 1/3 2/3
Bottom-left small 0 1/3 0 1/3
Bottom-right wide 1/3 1 0 1/3

Calling v = split.screen(A) with the above 5× 4 matrix would divide the figure win-
dow as in Figure 10.6. The return value stored in the vector v contains the screen numbers.
You can then use screen(n) to select screen number n for drawing in, erase.screen(n) to
erase a screen, or close.screen(all.screens = TRUE) to close all screens and go back to
regular plotting. See the warnings in the help for split.screens, including the fact that you
should not draw something in one screen (subfigure), draw something in a different screen,
and then go back and try to add more things to the first screen.
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FIGURE 10.6
Subfigures produced with the layout function in R.
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As an example of further subdividing screens, you can create a 2×1 grid of screens, then
subdivide the second one into a 1× 2 grid of smaller screens, via the following commands:

R

v1 = screen(c(2,1)) # v1 contains the values 1 and 2

v2 = screen(c(1,2), 2) # v2 contains the values 3 and 4

screen(1); plot(runif(5)) # plot in screen 1

screen(3); plot(runif(15)) # plot in screen 3

screen(4); plot(runif(30)) # plot in screen 4

Note that after doing the above commands, you could then still use the command screen(2)

and plot things in screen 2, even though it occupies the same locations as screens 3 and 4.
The screen mechanism will not stop you from doing strange things like this.

MATLAB

The subplot function is used to divide a figure window into smaller portions. One way
to call it is as subplot(m, n, p). This divides the figure window into an m × n array of
subfigures, and selects the pth one to draw in. The subfigures are counted across the top row,
then across the second row, and so on. p can be a vector containing several such positions,
in which case the subfigure will span all of them. Below is an example, with the results
shown in Figure 10.7.

MATLAB
clf % clear figure window

subplot(3,3,[1 2 4 5])

plot(rand(25,1),'o')

hold on

plot(rand(25,1),'-')

subplot(3,3,3)

plot(rand(10,1),'o')

subplot(3,3,6)

plot(rand(15,1),'x')

subplot(3,3,7)

plot(rand(50,1),'v')

subplot(3,3,[8 9])

plot(rand(20,1),'o-')

An alternative way to use subplot is to instead call subplot('position', [left

bottom width height]), where the four values in the position vector are given in nor-
malized coordinates which range from 0 to 1.

You can use the command clf to clear a figure window at any time, which among other
things resets the subplot structure of the window so that the next plotting command uses
the entire figure window.

10.20 Saving figures

This section describes how to save the contents of a figure to a file, in various formats. Of
course, you may also be able to save the contents of a figure window via the user-interface,
and you may find that more convenient for casual use. If the figure window is active, either
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FIGURE 10.7
Subfigures produced with the subplot function in MATLAB.

right-clicking in the figure, or going to the File menu may provide various options for
saving. But as usual, the commands described in this section provide for a way which can
be automated in your program scripts. In my own work, it is not usual to produce a figure
in PDF form for a journal article, and then several months later be asked by one of the
reviewers to make some changes to the figure such as changing the font size. I typically
write a separate script to produce each figure and save the output in PDF form, so that I
can simply edit the appropriate script to make the requested changes to the figure.

R

There are two primary ways to save a figure to a file. You can either produce a figure using
one of the graphics devices (e.g., Windows, Quartz, or X11) available under your operating
system and then copy the contents of the figure window to a file, or else you can directly
open a file (using a format such as PDF, JPG, etc.) and then “draw” directly to the file.
If you are working interactively at the R console, the first method is most convenient, as
you can see what you are doing while building the plot before saving the results. If you are
producing your graphics via a script, either method is convenient. Note that fonts and some
details may differ between the two methods of saving graphics, so if you are having trouble
with one method, you may wish to try the other.

To copy the contents of the active figure window to a file, you can use the dev.copy
function. The first argument should be a device. The second argument can be a filename;
if none is provided, RplotXXX will be used (with an appropriate suffix), where XXX
is the first three-digit number for which a saved file does not already exist. For example,
dev.copy(jpeg, 'foo.jpg') saves the active figure to the file foo.jpg in JPEG format.
The devices pdf and postscript are generally most useful for those working with LATEX. If
using postscript, you may wish to include the parameter horizontal = FALSE to force it
to use portrait mode rather than landscape mode. The win.metafile device (only available
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under Windows) produces a WMF file which may be useful for those working with Microsoft
Office. Devices jpeg, png, bmp, and tiff are useful for those who prefer to work with raster
images. When using jpeg, you can also specify a quality parameter (as a percentage, e.g.,
quality=90), with higher quality values producing larger files with better-quality images.
After using dev.copy to save an image, you must then call dev.off() to turn off the new
graphics device that gets created during the copying, in order to flush the data to the file.
Also see the files dev.print, dev.copy2eps, and dev.copy2pdf, including information
about sizing the resulting saved images.

Also note, some people may use dev.control(displaylist = 'inhibit') to disable
an internal display list which is used to redraw the contents of a figure window if the
window is resized; disabling this feature reduces memory usage. However, if this has been
done, dev.copy will not function properly, because it uses the display list.

The second method of saving graphics to a file is to simply call a function named
according to one of the above devices, use all of your plot or other commands to
produce the graphics, and then call dev.off() to flush the output and close the file.
For example, pdf('foo1.pdf'); plot(runif(50)); dev.off(). Or jpeg('foo1.jpg',

quality=85); plot(runif(50)); dev.off().

MATLAB

The print function allows you to save the contents of the current (or a specified) figure
window to a file. For example, print -deps foo1.pdf saves to the file foo1.pdf using the
Encapsulated PostScript device driver. Other drivers include:

• -depsc: Encapsulated Color PostScript

• -dpdf: PDF

• -dmeta: Windows Metafile format (available under Windows only)

• -djpegXX: JPEG with specified quality level, e.g., -djpeg90 for a quality level of 90

• -dpng: PNG

• -dtiff: TIFF

10.21 Other types of plots

There are of course a huge variety of other types of plots one may wish to make.

Bar plots: Assume you have vectors x and y, respectively, containing the x coordinates
and the heights of some bars you wish to draw. In R, you can use plot(x, y, type='h',

lwd=10) to draw a histogram-style plot with lines made thick enough to look like bars.
In MATLAB, you can simply use bar(x, y).

Histograms: In both platforms, hist(v) will produce a histogram of values in the vector
v. To produce a histogram with k bins, you can try hist(v, k).

However, note that in R, the number of bins k you specify is treated as merely a “sug-
gestion,” and it often does not actually produce the number of bins you request. You can
force it to use the desired number of bins by instead giving a “breaks” vector (say, b)
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containing the breakpoints between the bins. Because the ith bin goes from b[i] to b[i+1],
to obtain k bins your breaks vector should be of length k + 1. So for example, hist(v,
seq(min(x), max(x), len=k+1)) will produce a histogram with k bins.

Pie charts: pie(v) will produce a pie chart using the values in vector v in both platforms.

Filled circles of various sizes and colors: Say x and y are vectors containing coordi-
nate values, s contains values between 1 and 10, and c contains values from 1 to 8. In
R, plot(x, y, pch=21, cex=s, col=c, bg=c) produces this graph, using s to specify
the sizes and c to specify the colors. See the palette function (i.e., call palette()) to
see which colors are referred to by the color indices. One could instead build a vector c
of color strings (like '#FFFF00' for yellow). Note that plotting characters 21–25 can be
filled in this manner; the col parameter gives the color of the border, while bg gives the
internal color (gray by default). An alternative way to do this in R is via symbols(x, y,

circles=s, bg=c, fg=c). The symbols function can produce other shapes as well.

In MATLAB, scatter(x, y, s, c, 'filled') will produce the desired plot.

Error bars: While you could of course construct a plot containing error bars yourself by
drawing the various line segments, both platforms provide routines to facilitate this. Let us
say we wish to plot a curve with (x, y) coordinates stored in vectors x and y, while vectors
a and b give the desired corresponding heights of the error bars above and below that
curve, respectively. Note below that R and MATLAB handle their arguments specifying
the error bars slightly differently, and in opposite order for the heights above/below the
main curve.

In R, you can use errbar(x, y, y+a, y-b); this function is part of the Hmisc package
(this package is not included in the standard R installation; see Section 13.9 for more
about installing and loading packages). In MATLAB, you can use errorbar(x, y, b,

a). If you want the error bars to have the same height s above and below the curve in
MATLAB, just errorbar(x, y, s) will work. You can specify the usual plotting style
for the main curve itself, e.g., errorbar(x, y, b, a, 'o--') to use circles and a dashed
line.

For additional control over plotting styles, e.g., to use different line thicknesses for the
main curve and the error bars, you may wish to construct the plot in two separate pieces
for the main curve and the error bars. In MATLAB, you can of course use hold on to
do this. In R, including the parameter add=TRUE in the call to errbar will add a new
error bar to the existing plot, rather than creating a new plot.

3-D plots: In R, the traditional graphics system does not provide any nice 3-D plotting
routines. Some alternatives are: scatterplot3d(x, y, z) from the scatterplot3d pack-
age, cloud(z~x*y) from the lattice package, and plot3d(x, y, z) from the rgl package.
The rgl package also lets you interactively rotate the 3-D plot using your mouse. In MAT-
LAB, you can use plot3(x, y, z). By clicking on the small icon showing a circular arrow
around a cube, you can then rotate the plot using your mouse.

Contour plots: Both platforms have a contour function which works much like the sur-
face plotting functions persp (in R) and surf (in MATLAB), in terms of how to set up
the data and call the function contour(x, y, Z).

Other: The MATLAB command stairs(x, y) produces a figure equivalent to R’s
plot(x, y, type='s'). The MATLAB command stem(x, y) produces a plot equiv-
alent to the R commands plot(x, y, type='h'); points(x, y).
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10.22 Final notes about graphics

R

As pointed out in Section 7.3, some graphics functions, particularly those in the lattice
package (such as levelplot) do not display their results when called from within scripts,
functions, or loops such as for loops. To ensure they are displayed in those situations, rather
than simply calling levelplot(...), you should instead use print(levelplot(...)).

MATLAB

MATLAB typically only updates figure windows when control returns to the MATLAB
command window after a script or function finishes, along with a few other circumstances.
Usually, this is not a problem. However, if you write a script or function which performs
some iterative calculations and draws some graphics along the way, you may wish to see the
graphics as the code is running. In that case, you can call the command drawnow, which
flushes the event queue and updates figures. (See the help for drawnow for the other cases
in which the figure windows will be updated.)
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Numerical Computing

Both platforms contain facilities for performing standard numeric computations such as
root-finding, function optimization, numerical integration or quadrature, numerically solv-
ing differential equations, and so on. MATLAB has a longer history of use in scientific
computing, and there are a number of standard numerical analysis textbooks whose exam-
ples are all based around MATLAB [4, 7, 10, 17, 18, 19, 27]. The textbook market in this
area has not yet matured for R, though reference [14] includes some material on numerical
computing.

11.1 Root-finding

Given a function of one variable, f(x), one may want to find a value x satisfying f(x) = 0.
Both platforms provide straightforward ways to do this.

One special case is when the function f is a polynomial of degree n, f(x) = anx
n +

an−1x
n−1+ . . .+a2x

2+a1x+a0. Say the vector vecd contains the coefficients an, an−1, . . .,
a1, a0, in descending order, and the vector veci contains the coefficients a0, a1, . . . , an−1, an
in increasing order. In R, you can find the roots of the polynomial using polyroot(veci),
while in MATLAB, use roots(vecd). See entry 22 in Section 3.3 if you need to reverse the
order of the coefficients in your vector.

To find a zero of a general function f(x), first define an R or MATLAB function of a
single variable, as in Section 8.1.1 or Section 8.2.2. Suppose this function is named myfunc
and that you want to search for the zero among all values of x satisfying a ≤ x ≤ b.

In R, use uniroot(myfunc, c(a,b)). This returns a list containing the estimated root x̂,
the value of the function f(x̂) at that point, the number of iterations used, and an estimate
of the precision of the root. You can extract the root via uniroot(myfunc, c(a,b))$root

or the function value there via uniroot(myfunc, c(a,b))$f.root.
In MATLAB, use fzero(@myfunc, [a b]). (The notation @myfunc builds a “function

handle” to pass your function to fzero, rather than trying to call myfunc directly. See
Section 8.2.7 for more information about function handles.) This returns only the estimate
of the root. You can use multiple return values to receive extra information. For example,
[x,fval,exitflag,output]=fzero(@myfunc,[a b]) returns an estimate x of the root,
the function value f(x̂) there, an exit flag (which will be 1 if it found a root), and an
output structure indicating how many iterations and how many calls to your function were
used. MATLAB also lets you provide just a single starting guess x0 rather than an interval
to search. That is, you can do fzero(@myfunc, x0). In that case, fzero searches for an
interval near x0 where the sign of the function changes, and then looks for a root within
that interval.

137
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11.1.1 Something to watch out for

One of the biggest differences between R and MATLAB when using root-finding is the
default tolerance. Let ǫ be machine epsilon; this is the smallest value you can add to 1.0
and get a value which is larger than 1.0 using the computer’s representation of values. The
value of ǫ is approximately 2.22 × 10−16 with double-precision floating point.1 R uses a
forward tolerance (i.e., change in x from one step to the next) of ǫ0.25 ≈ 1.22× 10−4, while
MATLAB uses a tolerance of ǫ. Depending on your function, this can produce striking
differences in the estimates produced by the two packages. To tell R to use a tolerance
of ǫ, you can use uniroot(myfunc, c(a,b), tol=.Machine$double.eps). To change the
tolerance in MATLAB to match the default behavior of R, use optimset to construct an
optimization options set: fzero(myfunc, [a b], optimset(’TolX’, eps^0.25)).

11.2 Univariate optimization

To minimize a function f(x) of one variable, as with root-finding, you should first define
an R or MATLAB function which takes a single argument x and returns the function value
f(x) for that value of x. Suppose myfunc is such a function, and you wish to minimize it
within the interval a ≤ x ≤ b. In some cases, you may wish your function f to receive extra
parameters, i.e., define it as f(x, p1, p2). These extra parameters could for example be data
vectors, where the function computes a goodness-of-fit metric given the value of x. Here we
will simply use example values of 17 and 121 for p1 and p2, respectively.

R

In R, use optimize(myfunc, c(a,b)). This returns a list with elements named minimum,
containing the estimate x̂ of the value of x which minimizes f , and objective, containing
the value of the function there.

If your function receives extra parameters, you can pass them in by name to optimize,
and it will pass them along to your function. For example, if your function myfunc(x, p1,
p2) takes the parameter x to optimize over, along with two extra parameters, you can use
a command like optimize(myfunc, c(a,b), p1=17, p2=121).

To maximize a function, include the maximum=TRUE argument to optimize.

MATLAB

In MATLAB, use fminbnd(@myfunc, a, b) to obtain the estimate x̂. To obtain other
information, call fminbnd in a way similar to that used with fzero in Section 11.1:
[x,fval,exitflag,output]=fminbnd(@myfunc, a, b). This returns the estimate x, the
function value fval there, an exit flag (which will be 1 upon success), and an output
structure containing information about the number of iterations and function calls used.

If your function receives extra parameters, you can first construct an anonymous function
(see Section 8.2.1) which receives only the argument x, but which then in turn calls your
function with the extra parameters. For example, if your function myfunc(x, p1, p2) takes
the parameter x to optimize over, along with two extra parameters, you can use a command
like fminbnd(@(x) myfunc(x,17,121), a,b).

1This value can be obtained via the command .Machine$double.eps in R, and eps in MATLAB.
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To maximize f(x), you should instead minimize the function g(x) = −f(x). This can be
done via a small anonymous function: fminbnd(@(x) -myfunc(x), a,b).

11.3 Multivariate optimization

Minimizing a function f(x, y) of several variables is something of a black art. If you visu-
alize the function as describing a surface, there are various methods for trying to find a
local minimum, but they can all behave very poorly for certain types of surfaces. They may
become trapped in a local optimum, or converge very slowly if the value of the function
changes much more quickly in some directions than others. Rather than a search interval
or region, the standard methods here simply take a starting guess, and adaptively search
“near” that initial point. As usual, you should write an R or MATLAB function implement-
ing the mathematical function you are trying to minimize. Suppose the function f has two
arguments, x and y. You should implement a function myfunc(v), or myfunc(v,p1,p2)
if the function also takes a couple of extra parameters that will not be part of the opti-
mization. The first parameter to the function should be a vector v, whose elements are x
and y, respectively. (The order of the actual function parameters within the vector v is
not important, as long as you are consistent among your function implementation and your
calls to the optimizer.) Also assume that the initial guesses will be x = 1 and y = 2.2, and
again the extra parameters will have values p1 = 17 and p2 = 121 when they are provided.

R

Use optim(c(1, 2.2), myfunc), which returns a list containing the following elements:

• par, a vector containing the estimates of the parameters in the same order in which they
are packed into the vector parameter v of your function

• value, the value of the function at the value par

• counts, how many times your function was called

• convergence, which is either 0 (indicating success) or a code indicating a problem

• message, which is either NULL or a character string with some additional information.

If you just want the parameter values which minimize the function, you can extract just that
element of the return value: optim(c(1, 2.2), myfunc)$par. To include extra parameters,
provide them by name to optim, and it will pass them along to your function: optim(c(1,
2.2), myfunc, p1=17, p2=121).

By default, the Nelder-Mead method is used, but you can request other methods; you
can also provide a function which computes the gradient of your function if you have that
information available.

To maximize or to change the stopping criteria, optim takes an additional parameter
named control, which should be a list. If the list contains an element named fnscale which is
negative, then the function will be maximized rather than minimized. You can also specify
a value for reltol to provide a tolerance during the search (see the documentation for
full details). For example, use optim(c(1, 2.2), myfunc, control=list(fnscale=-1,

reltol=1e-12)) to maximize a function with relative tolerance of 10−12.
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MATLAB

Use fminsearch(@myfunc, [1 2.2]), which returns a vector containing the estimates of
the parameters in the same order in which they are packed into the vector parameter of your
function. As with fzero and fminbnd, you can instead use [x,fval,exitflag,output]

= fminsearch(@myfunc, [1 2.2]) to retrieve additional information about the function
value and whether or not the procedure terminated successfully. To include extra parameters
for your function, you can again use an anonymous function as with the earlier numerical
routines: fminsearch(@(x) myfunc(x,17,121), [1 2.2]).

11.4 Numerical integration

Both platforms include routines to perform numerical integration, or quadrature, using
adaptive step sizes to achieve a desired level of accuracy. MATLAB also includes a function
trapz which performs trapezoidal numerical integration. With a vector y, trapz(y) uses
trapezoidal integration, assuming a corresponding set of x values with uniform unit spacing.
You can use trapz(x,y) to provide your own set of corresponding x values. Note that trapz
will also operate with matrices, performing the integration down each column, or along a
specified dimension.

R does not include a built-in function to perform trapezoidal integration, but you can
use a simple command to reproduce the effects of MATLAB’s trapz. Given vectors x and
y, use sum(diff(x)*(y[-length(y)]+y[-1]))/2. If you wish to assume the x values have
unit spacing, you can omit the “diff(x)*”.

Now suppose you wish to integrate the function f over the interval from a to b using
adaptive quadrature. In both R and MATLAB, your function f must be written in such
a way that it can operate on an entire vector x of values simultaneously, and return the
corresponding vector of function values.

In R, integrate(f, a, b) will work, using relative and absolute error tolerances of
ǫ0.25. You can specify one or both tolerances via additional arguments: integrate(f, a,

b, rel.tol=tol1, abs.tol=tol2).
In MATLAB, integrate(@f, a, b) will work, using a default relative tolerance of 10−6

and absolute tolerance of 10−10. You can specify different tolerances via integrate(@f,

a, b, 'RelTol', tol1, 'AbsTol', tol2). Note that the quad command was commonly
used for numerical quadrature in previous versions of MATLAB, but it will be removed in
a future release.

11.5 Curve fitting

11.5.1 Piecewise linear interpolation

Routines exist in both platforms to aid you in constructing a function which implements
piecewise linear interpolation based on a set of points (xi, yi). Suppose x and y are vectors
of the same length, and xnew is a vector of x coordinates where you would like to know the
linearly interpolated y coordinates. In R, you can use approx(x, y, xnew). In MATLAB,
you can use interp1(x, y, xnew) or interp1(x, y, xnew, 'linear'). As the latter
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form suggests, MATLAB’s interp1 command is capable of doing other types of interpolation
as well, including piecewise constant functions and cubic splines.

11.5.2 Polynomial fitting

Suppose you have vectors x and y containing the coordinates (xi, yi) of some points, and
wish to fit a polynomial y = p(x) = c0+ c1x+ c2x

2+ · · ·+ cnx
n to the data. The coefficients

c0, c1, . . . , cn can be chosen in the least-squares sense, to minimize the sum of squared
residuals

∑

i[yi − p(xi)]
2.

R

The lm (“Linear Models”) function can be used for this purpose, but it it is only convenient
when the degree n of the polynomial is small (which it typically is). Note that each of the
commands below returns a vector with the coefficients of the polynomial in ascending order,
i.e., c0, c1, . . ..

To fit a line y = c0 + c1x, use coef(lm(y ~ x)). To fit a quadratic y = c0 + c1x+ c2x
2,

use coef(lm(y ~ x + I(x^2))).
To fit a polynomial of higher degree n, you can use a command of the above form,

although it becomes tedious for large n. To automate the process, you can first construct a
string of the form “y ˜ I(x ˆ 1 ) + I(x ˆ 2) + · · · + I(x ˆ n)”, and then feed that string
as a formula to the lm function. This can be done via the following somewhat daunting
commands, which first build up a string containing the right-hand side of the formula (i.e.,
everything after the tilde):

R

RHS = paste('I(x^', 1:n, ')', sep='', collapse='+') # right-hand side

coef(lm(as.formula(paste('y~', RHS))))

If you wish to fit a polynomial with a zero intercept, you can include a “-1” in the formula.
For example, to fit the function y = c1x+ c2x

2, use coef(lm(y ~ -1 + x + I(x^2))).

MATLAB

The polyfit function will conveniently fit a polynomial. Simply use polyfit(x, y, n) to
fit a polynomial of degree n. The return vector has the coefficients in descending order, e.g.,
c2, c1, and c0 for a quadratic fit obtained via polyfit(x, y, 2).

To fit a polynomial with zero intercept, there is no simple way to use polyfit for the
task. Instead, you can write a function which computes the sum of squared residuals given
the data points and coefficients, and then minimize that function. For example, to fit a
quadratic polynomial with zero intercept, y = c1x+ c2x

2, you can first create a file L.m:
L.m

1 function retval = L(v, x, y)

2 % Sum of squared residuals for quadratic polynomial with zero intercept

3 % The polynomial is c1*x + c2*x^2 where v(1)=c1 and v(2)=c2

4 c1 = v(1);

5 c2 = v(2);

6

7 yhat = c1*x + c2*x.^2; % fitted values

8 retval = sum((y - yhat).^2);

Then, to perform least-squares optimization with starting guesses of 1 for both coefficients,
use fminsearch(@(v) L(v,x,y), [1 1]).
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11.5.3 Splines

Both R and MATLAB have a spline function capable of fitting cubic splines; consult the
documentation, as both platforms’ versions can compute a variety of versions of splines,
depending on the data vectors and arguments passed in. Assume x and y contain some
data points, and sx contains some x values where we want to know the values of the
interpolated spline. In R, tmp = spline(x, y, xout=sx) uses the method of Forsythe,
Malcolm, and Moler, where an exact cubic polynomial is fitted through the four points at
each end of the data. It returns a list tmp containing x and y components; the x component
simply contains the sx values, and the y component has the corresponding fitted y values.
In MATLAB, sy = spline(x, y, sx) uses “not-a-knot” conditions, where the first two
piecewise cubic polynomials coincide, as do the last two.

R’s spline function can take a number of options to fit various types of splines. MATLAB
has a Spline Toolbox which contains a number of functions that can fit splines; the csapi
function is a good place to start.

11.6 Differential equations

Both platforms provide facilities for numerically solving systems of differential equations,
using adaptive step sizes to achieve a desired level of estimated error. We will consider three
cases as examples.

I. The single ordinary differential equation dx/dt = 5x, which we will solve from t = 3 to
t = 12 with initial condition x(3) = 7.

II. The system of two predator-prey ODEs dw/dt = 1.8w − 0.7wz and dz/dt = 1.26wz −
0.6z, from t = 3 to t = 12 with initial conditions w(3) = 1, z(3) = 1.2.

III. The single ODE dx/dt = rx(1 − x/K) from t = 0 to t = 20 with initial condition
x(0) = 2.5. Note that this ODE includes parameters r and K; we will use values r = 1.3
and K = 50.

To numerically solve ODEs in both platforms, you must write a function which receives the
current time, a vector containing the current values of the state variables, and the values
of any additional parameters in the ODEs. The function should return the rates of change
of the state variables.

R

The function lsoda in the package deSolve is a commonly used method for numerically
solving ODEs (see Section 13.9 for information about installing and loading packages). It
automatically switches between nonstiff and stiff solvers.

The function you write receives three parameters:

t: the current time

y: a vector containing the values of the state variables at the current time

parms: a vector containing the values of any additional parameters.
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Your function should return a list, whose first element is a vector containing the derivatives
of the state variables. If your list contains additional elements, they are recorded as the
values of “global” values over time. If you are coming from MATLAB, it can be easy to
forget the requirement that your function must pack the vector of derivatives within a list.

To solve the ODE in the first example, use the function below.
func1.R

func1 = function(t, y, parms) {

return(list(5*y))

}

Again, speaking from (too much) experience, a common mistake is to forget to put the
return value inside of a list, but fortunately lsoda gives a clear error message if you do so.

To solve the ODE using equally spaced values between t = 3 and t = 12 with a spacing
of ∆t = 0.1, use tmp = lsoda(7, seq(3,12,0.1), func1, NA). The parameters to lsoda
are:

• The initial condition x(3)

• The sequence of time values for which you want the value of x

• The function defining your ODE

• Additional parameters to pass to your function (NA in this case, because no additional
parameters are needed).

The lsoda function returns a matrix with class deSolve. The first column contains the
time values you requested. The next set of columns contains the state variables at those
times (in this example we only have one state variable). If your function returns any global
values, those will be contained in subsequent columns.

Because the return value from lsoda is a special type of matrix, you can simply use
plot(tmp) to plot x versus time. Or to be more explicit you can use plot(tmp[,1],

tmp[,2], type='l').
For the second example ODE, use the following function.

func2.R
func2 = function(t, y, parms) {

w = y[1]; z = y[2] # assign convenient names

dwdt = 1.8*w - 0.7*w*z

dzdt = 1.26*w*z - 0.6*z

return(list(c(dwdt, dzdt)))

}

A common mistake to make here is to forget the c(), and return a list containing the two
derivatives, rather than a list containing a single vector which has the two derivatives. If
you do this, lsoda complains about the number of derivatives returned being incorrect.

The command tmp=lsoda(c(1,1.2), seq(3,12,0.1), func2, NA) numerically solves
the ODEs. You can use plot(tmp) to make two separate subplots showing w versus time
and z versus time, respectively. Or use matplot(tmp[,1], tmp[,2:3], type='l') to plot
them together.

For the third example ODE, the method for writing your function and calling lsoda
are very similar to the first example. You will pass a vector of parameters as the fourth
argument to lsoda, rather than simply NA.
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func3.R
func3 = function(t, y, parms) {

r = parms[1]; K = parms[2] # assign convenient names

return(list(r*y*(1-y/K)))

}

Then solve via tmp=lsoda(2.5, seq(0,20,0.1), func3, c(1.3,50)).
Consult the documentation for lsoda for the wide variety of arguments it takes regarding

tolerances, Jacobians, and so on.

MATLAB

There are a number of functions in MATLAB used for solving systems of differential equa-
tions. The different functions use solvers of different order, are specialized for stiff or nonstiff
systems, and so on. Probably the most commonly used solver is ode45, a fourth- to fifth-
order Runge Kutta solver for nonstiff systems.

The function you write requires two parameters, but can take more:

t: the current time

y: a vector containing the values of the state variables at the current time

additional parameters: optional parameters for the ODEs can be provided as well.

Your function should return a column vector containing the derivatives of the state variables.
Note that returning a row vector will generate an error.

To solve the ODE in the first example, use the function below.
func1.m

function retval = func1(t,y)

retval = 5*y;

To solve the ODE and let ode45 choose the spacing between time intervals, use
ode45(@func1, [3 12], 7). The parameters to ode45 are:

• A handle (see Section 8.2.7) to your function

• The beginning and end of the time interval to solve over

• The initial condition.

The ode45 function by default will just plot the solution it calculates. If you wish to save the
results it computes, use [t,y] = ode45(@func1, [3 12], 7). The t vector will contain
the time values, and the y vector the corresponding values of the state variable.

Rather than letting ode45 decide the spacing of the time intervals, you can specify it
yourself by providing a vector of time values instead of simply the beginning and ending
points: [t,y] = ode45(@func1, 3:0.1:12, 7).

For the second example ODE, use the following function.
func2.m

function retval = func2(t,y)

w = y(1); z = y(2); % assign convenient names

dwdt = 1.8*w - 0.7*w*z;

dzdt = 1.26*w*z - 0.6*z;

retval = [dwdt; dzdt];
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The command [t,y] = ode45(@func2, [3 12], [1; 1.2]) numerically solves the
system. Leaving off the [t,y] = will cause ode45 to automatically plot the results, or
you can use the command as given followed by plot(t, y). Also note that the vector of
initial conditions can be provided as a row or column vector. Because the function must
return the derivatives as a column vector, it may be helpful to be consistent and provide
the initial conditions in column form as well.

For the third example ODE, use the following function.
func3.m

function retval = func3(t,y,r,K)

retval = r*y*(1-y/K);

Then solve via [t,y]=ode45(@func3, [0 20], 2.5, [ ], 1.3, 50);. Note that the
empty array [ ] is there as a placeholder for the fourth parameter to ode45, which can
contain various options controlling the behavior of the solver.

You can use the odeset function to create a set of options for ode45, such as tol-
erances, Jacobians, and so on. For example, to specify a relative tolerance of 10−4,
do the following: [t,y]=ode45(@func3, [0 20], 2.5, odeset(’RelTol’, 1e-4), 1.3,

50). Consult the documentation for ode45 and odeset for more options.
There are a variety of other solvers you can try if ode45 has trouble, for example for a

stiff system (one where different state variables are changing over very different time scales).
If ode45 fails, ode15s is usually a good one to try next. Others include ode23, ode23s,
ode23t, ode23tb, ode113, and ode15s. See the documentation for more details about the
various methods. In particular, the reference page for ode45 brought up via the command
doc ode45 includes a table suggesting when to try which solver.
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File Input and Output

Getting data into and out of files is one of the fundamental necessities of a computing
platform. There are many facilities for doing so in both R and MATLAB.

For reading text data from files, R has the functions read.table, scan, and readLines,
while MATLAB has load, fgetl, fscanf, textread, textscan, and importdata. Often,
more than one of these functions can be used to accomplish a given task. Which one is
best is partly personal preference, and may also depend on the type of variable you want to
store the data in. The following examples of some common tasks may help to suggest some
possible approaches. Note that these commands will all read and write files in the current
working directory (see Section 7.1), unless you specify a path to a file in another directory.

12.1 Opening files

Both R and MATLAB have various functions which will operate on files via what are called
file descriptors.1 A file descriptor is a “handle” which refers to an open file, and generally
appears to the user as an integer. In MATLAB, as in the C programming language, the
file descriptors 0, 1, and 2 are generally reserved for standard input, standard output,
and standard error, the standard input/output channels for programs. In R, these three
connections are accessed via the function calls stdin(), stdout(), and stderr().

When you open a file and create a file descriptor, you can specify whether you want
to open the file for reading, writing, appending, or a combination of reading with writ-
ing/appending. This is done by providing a permissions mode string. The string can be
“r,” “w,” or “a” for reading, writing, and appending, respectively. Using “r+,” “w+,” and
“a+” specifies reading and writing without overwrite, reading and writing with overwrite
(discarding the existing contents of the file), and reading and appending.

In R, you can open a file for reading via the command fid = file('filename', 'r').
You can test for success by calling isOpen(fid), which returns TRUE if the file was
successfully opened. In MATLAB, you can use fid = fopen('filename', 'r'). It will
return a positive integer upon success, and -1 on failure. In MATLAB, the 'r' string is
optional, as that is the default.2 Also in both platforms, be aware that if you open a file
for writing (using either 'w' or 'w+'), the file will be overwritten, i.e., any existing data
in them will be erased without warning! When you are done accessing a file, you should

1R uses what are called connections rather than simple file descriptors, but for most practical uses, they
are equivalent.

2Technically the 'r' string is optional in R as well. But note that if you omit it, actually opening the file
will be deferred until you try to access the file (i.e., read from it). It will be closed again immediately after
reading, and the current position for reading will be reset. That is, fid=file(’foo.txt’); isOpen(fid);

x1=scan(fid,n=1); x2=scan(fid,n=1) will show that fid is not open, and will then read the first value
from the file twice, storing it in x1 and x2. Including the 'r' in the call to file will cause it to read the first
two values on the consecutive calls to scan.

147
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close its file descriptor. In R, you can do this via close(fid), and in MATLAB, you can
use fclose(fid).

Many of the R functions for working with files can accept either file descriptors or file
names; the examples given in this chapter are all written to use file names, rather than
explicitly opening and closing the file descriptor (or the “connections” that encapsulate the
file descriptors).

12.2 Reading a table of numbers

One of the simplest common tasks is to read a table of numbers from a text file. For example,
say the file mynumbers.txt contains the following:

mynumbers.txt
4 8 15 16 23 42

8 10.4 7.7 14.2 5.9 6.1

12.3 17 8.5 11.1 21 18.3

It is also common to be given a file where the first line is a header containing the names of
the columns, as below:

numwithheaders.txt
height weight length stress age thickness

4 8 15 16 23 42

8 10.4 7.7 14.2 5.9 6.1

12.3 17 8.5 11.1 21 18.3

You may even have a file which has both column labels at the top and row labels to the
left:

rowcollabels.txt
height weight length stress age thickness

Troy 4 8 15 16 23 42

Ithaca 8 10.4 7.7 14.2 5.9 6.1

Cambridge 12.3 17 8.5 11.1 21 18.3

For the last file above, note that the first row has six fields, while subsequent rows have
seven fields each.

R

To read the first file into an Rmatrix, you can use the command A=as.matrix(read.table(

'mynumbers.txt')). Note that the matrix A will have column names V1, V2, V3, etc.
You can remove those names via colnames(A)=NULL if desired. R will ignore comments
prefixed by a hash mark (#). That is, the following text file will give the same results when
read in using the above method:

mynumbers-Rcomments.txt
# This file contains the

# numbers I will be using

4 8 15 16 23 42 # lucky numbers

8 10.4 7.7 14.2 5.9 6.1 # some unlucky numbers?

12.3 17 8.5 11.1 21 18.3
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By default, read.table requires the values in the file to be separated by white space (tabs
or spaces). You can use the sep parameter to specify other separators between values. For
example, if your values are separated by commas, you can use A=as.matrix(read.table(
'foo.txt', sep=',')). Also see read.csv and read.csv2 for reading comma-separated
values, or for semicolon-separated values which use commas as decimal points (but also take
care that those functions default to header=TRUE, which treats the first line of the file
specially, interpreting it as the names of the variables).

To read the files with column labels, use the command A = as.matrix(read.table(

'numwithheaders.txt', header=TRUE)) to inform read.table that the first row has
header information. For the file with row and column labels, use A = as.matrix(read.table(

'rowcollabels.txt')). Because the first row contains one fewer field than the other rows,
read.table deduces that the first row contains column labels and the first column contains
row labels (but see the row.names parameter for how to specify otherwise).

Note that read.table is really designed for reading data frames, not matrices, and it can
be slow for large files. The use of scan is encouraged for reading large matrices from files.
However, scan will not automatically determine the size of the matrix; it will return all the
values in a vector, which you can then convert into a matrix. For the simple data file above,
you could use the following command to read it in: A = matrix(scan('mynumbers.txt'),

ncol=6, byrow=TRUE). The scan function also allows you to use the sep parameter to
specify the separator between values in the file. It will not skip comments by default,
but you can use the comment.char='#' argument to skip over R comments in the file.
If you are calling scan from within a function or script, you may also want to use the
quiet=TRUE argument so that scan does not report how many items it read in.

For the file with a header line at the top, you can tell scan to skip over that first line
via its skip argument: A = matrix(scan('numwithheaders.txt', skip=1), ncol=6,

byrow=TRUE). See below for how to handle the third file with row and column labels.
As seen above, you can use matrix to reshape the vector returned by scan into a

matrix. There are other ways to use scan to read in data and turn them into a matrix.
First, you can use the what parameter to tell scan what types of values (and how many)
are on each line. For example, to tell it there will be 6 numeric values on each line, you
can let what be a list containing six numeric values, as in tmp = scan('mynumbers.txt',

what=as.list(numeric(6))). This reads the data into a list of vectors; the ith element of
the list contains the ith column of data as a vector. You then need to convert this result
to a matrix; this can be done using the ideas from Section 5.5.2. Here, we can simply use
either A = t(do.call(rbind,tmp)) or A = simplify2array(tmp). You can also use the
what parameter with scan to name the columns of your data, by providing a list with
the names you would like to use. The data types of the list elements specify the types of
values being read in; you can simply use 0 to specify numeric data. So for example, you
could use tmp = scan('mynumbers.txt', what=list(height=0, weight=0, length=0,

stress=0, age=0, thickness=0)) to read the data into the list tmp, and then do the
subsequent conversion to a matrix as above, to read in the data using the labels height,
weight, length, stress, age, and thickness as the labels for the six columns of data.

The what parameter with scan also allows you to handle the third data file above, with
row and column labels. You can build a what list for scan containing one string and 6
numeric values, and then convert the numeric data (in elements 2–7 of the list) to a matrix:

R

mywhat = c(list(''), numeric(6))

tmp = scan('rowcollabels.txt', skip=1, what=mywhat)

A = simplify2array(tmp[2:7])
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MATLAB

To read a simple text file with numeric data into a MATLAB matrix, you can simply do
A=load('mynumbers.txt'). The numbers within a row in the file can be separated by
spaces, tabs, commas, or semicolons. MATLAB will also ignore comments prefixed by a
percent sign (%). That is, the following text file will give the same results when read in
using load:

mynumbers-matlabcomments.txt
% This file contains the

% numbers I will be using

4 8 15 16 23 42 % lucky numbers

8 10.4 7.7 14.2 5.9 6.1 % some unlucky numbers?

12.3 17 8.5 11.1 21 18.3

The command A=importdata('mynumbers.txt') can also be used. This method, however,
will not work if there are MATLAB comments in the file, and spaces are the only delimiters
allowed (somewhat strange results are given if any of these conditions are violated).

There is no very simple way to skip over the header line in the other two files and read
the values into a matrix, but there are several ways to accomplish the task. You can first
open the file, manually read and discard one line using fgetl, and then read the data using
fscanf. By default, fscanf reads all data from the file into a single vector. You can provide
an argument indicating either the total number of elements to read in (the data will still
be read into a single vector), or the size of a matrix to place the data in. In the latter case,
the data across the rows of the files are placed down the columns of the matrix. You must
specify the number of rows in the matrix (i.e., the number of columns of data in the file).
If you do not wish to specify how many lines of data there are, specify an infinite number
of columns for the matrix. The return value of fscan can then be transposed so that the
matrix entries have the same orientation as the data in the file. The following commands
achieve this:

MATLAB
fid = fopen('numwithheaders.txt');

fgetl(fid); % don't store return value, to discard first line of file

A = fscanf(fid, '%f', [6 inf])'; % for 6 columns of data, all rows

fclose(fid);

You could also use textread. It takes a filename to read from (rather than a file descrip-
tor), a format string, and some other optional arguments. You can use one of the optional
arguments to indicate how many header lines to skip over at the top of the file. The com-
mand v = textread('numwithheaders.txt', '%f', 'headerlines', 1), for example,
skips over one header line. This will read all 18 values into a single vector, which you can
then reshape into a matrix. Recall that reshaping a vector into a matrix places the ele-
ments down the columns of the matrix, so we should reshape into a 6× 3 matrix and then
transpose: A = reshape(v, 6, 3)'.

For the third file, with row and column labels, yet another approach is best. If you try
to use fscanf with the rowcollabels.txt file, the combination of character and numeric
data on each row causes the entire matrix returned by fscanf to be converted to numeric
values. This is inconvenient, especially because the text labels on the rows have different
lengths, and so will take up varying numbers of elements in any vector or matrix returned
by fscanf. The function textscan works better here, as it returns its results in a cell array,
with one element per column of data from the file. You provide textscan with an fprintf-
style format string as well. All but the first element of the cell array, i.e., all of the columns
of numeric data, can then be converted into a standard matrix. Like textread, textscan
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has many optional arguments, including one indicating how many header lines to skip over
at the top of the file.

MATLAB
fid = fopen('rowcollabels.txt');

tmp = textscanf(fid, '%s%f%f%f%f%f%f', 'Headerline', 1);

fclose(fid);

A = cell2mat(tmp(2:end));

textread can also be used to read in the file with row and column labels, but you
must provide as many output values as there are fields in the format string. Since there are
seven columns (one string and six numeric values), seven output values should be provided:
[col1,col2,col3,col4,col5,col6,col7] = textread('rowcollabels.txt',

'%s%f%f%f%f%f%f', 'headerlines', 1). The variable col1 will then be a cell array con-
taining the strings from column 1 of the file, while each of the other variables col2 through
col7 will be a column vector containing data from the corresponding column of the file.

12.2.1 Subsets of a data file

Sometimes, when writing a program to analyze a large data file, it is convenient to work
with a smaller subset of the data while debugging your script. Once the script is working,
you can then apply it to the entire data set. Although you could in theory simply read in
the entire data file and then extract just a portion of the data matrix to work with for
debugging, it can be faster to read in only part of your data file, especially if the file is very
large.

R

The read.table function takes an argument nrows to limit the number of rows it reads.
For example, you can do A = as.matrix(read.table('mynumbers.txt', nrows=2)) to
read in just the first two lines of the data file.

Similarly, scan takes an argument n indicating the maximum number of elements
to read in, as in A = matrix(scan('mynumbers.txt', n=12), ncol=6, byrow=TRUE).
When scan is called in this way, the argument nmax=12 would have the same effect.

When you provide scan with a list for its what parameter, nmax instead in-
dicates the maximum number of records to read, i.e., how many times to apply
the what list.3 So this will also limit the data read in to the first two lines
of the file: tmp = scan('mynumbers.txt', what=as.list(numeric(6)), nmax=2); A =

simplify2array(tmp).

MATLAB

Neither load nor importdata provide a way to restrict the number of rows read in. But
the fscanf function, which lets you provide an argument indicating how many elements to
read in, will work. As stated before, fscanf reads the data from the rows of a file into the
columns of a matrix, so if you wish to read in 2 rows with 6 columns each, you should
specify that you want a 6 × 2 matrix and then transpose the resulting matrix to orient it
the same way as the data file:

3The what list does not necessarily correspond to one entire line. The what list could get used multiple
times for a single line, or it may take multiple lines to gather enough data to match the entire what list.
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MATLAB
fid = fopen('mynumbers.txt');

A = fscanf(fid, '%f', [6 2])'

fclose(fid);

If you instead used fscanf(fid, '%f', 12), the 12 elements from the first two rows of the
data file would be read into a 12× 1 column vector.

12.3 Reading numeric data with a different comment character

Sometimes one has a file containing numbers with comments delimited by a different com-
ment character. This happens, for example, if you want to read a file that was intended for
MATLAB (and has its comments prefixed by “%” characters) into R, or vice versa. Usually
I will simply open a text editor and use search-and-replace to fix the comment characters
to match whichever software platform I am using, but sometimes (particularly if there are
many files to read), this is not convenient.

R

This is very simple to do in R, thanks to the comment.char argument to the read.table
function. You can simply do A=as.matrix(read.table('mynumbers-matlabcomments.txt',
comment.char='%')). The scan function also allows you to specify a comment.char pa-
rameter.

MATLAB

None of load, importdata, and fscanf have a way to specify a comment character, but
textscan does, through its optional CommentStyle parameter. textscan will return the
data in a single vector (which is contained in the first element of a cell array), which can
be reshaped into a matrix:

MATLAB
fid = fopen('mynumbers-Rcomments.txt');

tmp = textscan(fid, '%f', 'CommentStyle', '#');

fclose(fid);

A = reshape(tmp{1}, 6, 3)' % convert to matrix

If you want a way to accomplish the task without knowing in advance how many columns
the file has, you can read the file in a line at a time using fgetl, and then use textscan to
parse the data from each line. This can be done as follows:

MATLAB
fid = fopen('mynumbers-Rcomments.txt'); % open the file

A = [ ]; % initialize empty matrix

while 1

tline = fgetl(fid); % read next line

if ~ischar(tline), break, end % exit loop if end-of-file

tmp = textscan(tline, '%f', 'CommentStyle', '#');

v = tmp{1}; % extract cell element as a vector

% The line may have only contained comments.



File Input and Output 153

% If we got any actual data, append to bottom of matrix A.

if (length(v) > 0), A = [A ; v(:)']; end

end

fclose(fid);

Note that textscan can process text from a string variable (tline above) as well as via a
file-descriptor. The above script dynamically grows the matrix A, which will be very slow
if the file is very large. If you have a large file, you may want to preallocate the correct
amount of space for A if you know how many lines containing data are in the file, and then
fill them in rather than appending to A, or dynamically grow the size of the matrix in a
more clever way than just one row at a time. Another possibility would be to scan the file
to count how many lines of data there are but without storing anything, preallocate space
for the matrix A, and then read the file again while storing the data.

12.4 Reading numbers from a file where different lines have varying
numbers of values

Sometimes, different lines in a file may contain different numbers of values. For example,
consider the following file:

varyinglength.txt
8 6 7

5 3 0 9

3 1 4 1

17 121

8

4 8 15 16 23 42

10 9 8

R

If you just wish to read all of the values into a single vector, scan is the best approach.
By default, v=scan('varyinglength.txt') will read all of the values, line by line, into a
single vector.

Another way to read and store the data would be to create a list, where each element of
the list is a vector containing the values from a single line. This can be done by first using
readLines to read everything into a list of strings (with each string containing a line of the
file), and then converting to a list of numeric vectors using the method from Section 5.5.4:

R

tmp = readLines('varyinglength.txt')

mylist = lapply(tmp, function(x) scan(text=x, quiet=TRUE))

A third way to read the values in is to read them into a matrix, with each row of the
matrix containing values from one line of the file, and padding the shorter rows with the
special value NA. This can be done by using the fill=TRUE argument with read.table.
However, the varyinglength.txt example file here highlights two dangers to watch out for
when using read.table, which can be seen in the output of the command below:

R

> A=as.matrix(read.table('varyinglength.txt',fill=TRUE))
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> A

X8 X6 X7

5 3 0 9

3 1 4 1

17 121 NA NA

8 NA NA NA

4 8 15 16

23 42 NA NA

10 9 8 NA

First, read.table determines the upper bound on the number of entries per row by
examining only the first five lines of the file. The first five lines in this example file have
at most four entries per line, so read.table assumed that all lines do. Because line 6 has
six entries, its values get spread out over two rows of the matrix (the last row containing
the values from line 6 gets padded with NA). Second, because the first line of the file has
three entries, which is one less than the maximum of four entries seen in the first five lines,
read.table assumed that column 1 contains row labels and that line 1 contains labels for
the remaining three data columns (observe the X8, X6, and X7 labels at the top, and the
fact that the first column of the displayed output has left-justified formatting; those are row
labels rather than actual matrix entries). Our resulting matrix is 7 × 3, rather than 7 × 6
as it should be.

The first problem can be addressed by telling read.table the maximum number of data
entries per row. This can be determined using the count.fields function, which counts the
number of fields in each line of a file, and computing the maximum among those values. This
number can then be used to build a set of column names, which is the only way to override
read.table’s mechanism for automatically determining the number of columns (you cannot
simply give a parameter saying there are 6 columns). The second problem can be fixed by
explicitly specifying header=FALSE to let read.table know that the first line of the file
contains actual data rather than column labels. So the following commands will read the
file into a matrix, with shorter rows padded with NA:

R

maxCols = max(count.fields('varyinglength.txt'))

colNames = seq_len(maxCols)

A = as.matrix(read.table('varyinglength.txt', fill=TRUE, header=FALSE,

col.names=colNames))

That produces the desired matrix:

X1 X2 X3 X4 X5 X6

[1,] 8 6 7 NA NA NA

[2,] 5 3 0 9 NA NA

[3,] 3 1 4 1 NA NA

[4,] 17 121 NA NA NA NA

[5,] 8 NA NA NA NA NA

[6,] 4 8 15 16 23 42

[7,] 10 9 8 NA NA NA

MATLAB

If you just wish to read all of the values into a single vector, textscan will do the trick:
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MATLAB
fid = fopen('varyinglength.txt'); % open file

tmp = textscan(fid, '%f'); % read floating-point values

fclose(fid); % close file

v = tmp{1}; % extract data vector from cell array

The values could also be read into a cell array, where each element of the cell array
contains a vector holding the values from one line of the file. This can be done by repeatedly
calling fgetl to read individual lines from the file, using textscan on that string to extract
the values, and then appending to a growing cell array. This can be done as follows:

matlabreadvaryinglines.m
fid = fopen('varyinglength.txt'); % open the file

myData = { }; % initialize empty cell array

dataLines = 0;

while 1

tline = fgetl(fid); % read next line

if ~ischar(tline), break, end % quit if end-of-file

tmp = textscan(tline, '%f');

% The line may have only contained comments.

% If we got any actual data, append to cell array

if (length(tmp{1}) > 0)

dataLines = dataLines + 1;

myData{dataLines} = tmp{1};

end

end

fclose(fid);

The above script dynamically grows the cell matrix, which is slow. If you know roughly how
many rows of data your file has, you should preallocate space for them, or grow the cell
array by more than one element at a time.

If you wish to read the values into a matrix, padding the rows corresponding to lines
with fewer values, A = dlmread('varyinglength.txt') will work, but it pads the rows
with zeros. These zeros are indistinguishable from actual zero values at the end of a line.
To pad with another more distinctive value, such as NaN, you can first read the data
into a cell array as above, where each cell contains one line’s data. The cell array can
then be converted to a padded array. The following commands will do this, assuming the
matlabreadvaryinglines.m script above has already been run to set up myData and
dataLines:

matlabreadvaryinglines2.m
lineLengths = cellfun('length', myData); % lengths of lines

maxLen = max(lineLengths); % largest number of values on one line

A = NaN(dataLines, maxLen); % create matrix full of NaN values

for i=1:dataLines

A(i,1:lineLengths(i)) = myData{i}; % copy row of data into matrix

end
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12.5 Reading numbers and strings

Now suppose we have some files which contain both numeric data and text strings that we
wish to read in. We will consider a few cases, using the following example data files:

numtext1.txt
Yellow 4.2 6.6

Green 9.2 0.4

Yellow 7.9 8.5

Blue 9.6 9.3

numtext2.txt
Color BoneDensity Alertness

Yellow 4.2 6.6

Green 9.2 0.4

Yellow 7.9 8.5

Blue 9.6 9.3

numtext3.txt
Female 9.6 Yellow 4.2 6.6

Male 4.9 Green 9.2 0.4

Male 8.0 Yellow 7.9 8.5

Female 1.4 Blue 9.6 9.3

numtext4.txt
Gender Length Color BoneDensity Alertness

Female 9.6 Yellow 4.2 6.6

Male 4.9 Green 9.2 0.4

Male 8.0 Yellow 7.9 8.5

Female 1.4 Blue 9.6 9.3

R

read.table can handle all four of the example files given above, with a bit of assistance.
read.table('numtext1.txt') and read.table('numtext3.txt') will work, reading the
data into a data frame. Note that if you use as.matrix to convert the data frame to a
matrix, the matrix will contain character data. All of the numerical values will be converted
to their string representations. For the other two files, you must instruct read.table to skip
over the first header line, e.g., read.table('numtext4.txt', header=TRUE).

You can also use scan to read in the data files. You just need to provide a what list
containing the appropriate data types for each line. Doing tmp = scan('numtext2.txt',

what = list(color='', bdensity=0, alertness=0), skip=1) will return a list with el-
ements named color, bdensity, and alertness. Each element is a vector containing that
column’s data:

R

> tmp = scan('numtext2.txt', what = list(color='',bdensity=0,alertness=0),

skip=1)

Read 4 records

> tmp

$color

[1] "Yellow" "Green" "Yellow" "Blue"
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$bdensity

[1] 4.2 9.2 7.9 9.6

$alertness

[1] 6.6 0.4 8.5 9.3

You can produce a matrix containing the numeric data from the file via the command
A=simplify2array(tmp[2:3]). The list what above contains an empty string and two
zero values, indicating that we want to read one string and two (double-precision) numeric
values. If you want to read a column of a file specifically as integer data, you can include
the value as.integer(0) in your what list. And of course the nmax argument could always
be used to limit how many lines of data are read in by scan (or more precisely, how many
times the what list is applied).

MATLAB

The importdata function can handle these data files, though some of them a bit oddly.
The command A = importdata('numtext1.txt') produces a structure with three fields,
as follows:

MATLAB
>> A = importdata('numtext1.txt')

A =

data: [4x2 double]

textdata: {4x1 cell}

rowheaders: {4x1 cell}

>> A.data

ans =

4.2000 6.6000

9.2000 0.4000

7.9000 8.5000

9.6000 9.3000

>> A.textdata

ans =

'Yellow'

'Green'

'Yellow'

'Blue'

As shown above, A.data is an array containing the numerical data from the file, while
A.textdata is a cell array containing the string data. Although not shown above,
A.rowheaders contains the same strings as A.textdata, because importdata interprets
that first column of text data as row labels for the other numeric data columns.

The command A = importdata('numtext2.txt') produces a structure A with two
fields: A.data will be identical with the outcome above, while A.textdata will still contain
all of the character data, as shown below:

MATLAB
>> A.textdata

ans =

'Color' 'BoneDensity' 'Alertness'

'Yellow' '' ''

'Green' '' ''
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'Yellow' '' ''

'Blue' '' ''

Note that there will be no A.rowheaders — it is only created if there are row headers but
no column headers. Similarly, A.colheaders is created if there are column headers but no
row headers. A.textdata will be created if any kind of text data are read in.

Somewhat odd results are obtained from A = importdata('numtext3.txt'). A.data
will still be a 4 × 2 matrix, even though this file contains a third column of numbers, and
A.textdata contains the following:

MATLAB
>> A.textdata

ans =

'Gender' 'Length' 'Color' 'BoneDensity' 'Alertness'

'Female' '9.6' 'Yellow' '' ''

'Male' '4.9' 'Green' '' ''

'Male' '8.0' 'Yellow' '' ''

'Female' '1.4' 'Blue' '' ''

This happens because importdata finds the rightmost column containing text data and
treats that column, as well as all columns to the left of it, as text data. This happens even
if some columns further to the left of that column contain only numeric data.

Assuming you know how many columns your data file contains and what types of data
they contain, textscan is a better way to read in its contents. Our numtext4.txt file
contains five columns, of type string, float, string, float, and float. We can read all of the
data as follows:

MATLAB
>> fid = fopen('numtext4.txt');

>> tmp = textscan(fid, '%s%f%s%f%f', 'Headerlines', 1)

tmp =

{4x1 cell} [4x1 double] {4x1 cell} [4x1 double] [4x1 double]

>> fclose(fid);

>> tmp{1}

ans =

'Female'

'Male'

'Male'

'Female'

>> tmp{2}

ans =

9.6000

4.9000

8.0000

1.4000

>> tmp{3}

ans =

'Yellow'

'Green'

'Yellow'

'Blue'

(For brevity, the fourth and fifth elements of tmp are not shown.) Element i of the cell array
tmp contains the data from column i of the file. Also note that we instructed textscan
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to skip over the first line of the file, which contained headers/labels. If you wish to pack
the numeric data (which are stored in elements 2, 4, and 5 of the cell array tmp) into
a matrix, you can use the command A = cell2mat(tmp([2 4 5])). If you only want to
read in part of your data, say the first 2 lines, textscan takes an optional argument after
the format string indicating how many times to use that format; tmp = textscan(fid,

'%s%f%s%f%f', 2, 'Headerlines', 1) will do the trick.

12.6 Reading the raw character data in, a line at a time

R

The contents of a file can be read into a vector of strings, with each element of the vector
containing one line of the file. The function readLines is designed just for this, for example:
s = readLines('numtext4.txt'). To read in only the first three lines of the file, you can
use s = readLines('numtext4.txt', n=3).

MATLAB

The contents of a file can be read into a cell array of strings, with each string containing
one line of the file. This can be done using textscan, instructing it to treat each line as a
single string by specifying a newline as the delimiter:

MATLAB
fid = fopen('numtext4.txt');

tmp = textscan(fid, '%s', 'Delimiter', '\n');

fclose(fid);

tmp = tmp{1} % the actual cell array of strings

Note that textscan returns a cell array, whose first element is itself a cell array containing
the lines of the file. To read in only the first three lines of the file, you can change the second
line of the code above to tmp = textscan(fid, '%s', 3, 'Delimiter', '\n');.

12.7 Writing a table of numbers

Now suppose you have a vector v or matrix A, and would like to write its contents to a file,
either to read in again later or perhaps to share with another software application.

R

To write a vector out to a file, you can use write.table(v, 'foo.txt', row.names=FALSE,

col.names=FALSE). The same method works with a matrix: write.table(A, 'foo.txt',

row.names=FALSE, col.names=FALSE). If you use write.table with a vector, it outputs
one value per row, i.e., it outputs it as a column vector. If you wish to output all of the
values on one line, you can use matrix(v, nrow=1) to convert the vector to a matrix with
one row.

Maximal precision is used when writing floating-point numbers to a file, but note that
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the limits of finite precision are different for the base-10 numbers written to a text file and
the base-2 internal representation used by R. For example, observe the following:

R

v = 1/3

write.table(v, 'foo.txt', row.names=FALSE, col.names=FALSE)

v2 =scan('foo.txt')

print(v2-v)

[1] -3.330669e-16

The difference of roughly 3× 10−16 arises because of this discrepancy in representation.
You can control the format of saved values by first using format to convert the data

to strings, and then writing those results. For example, to print values with five significant
digits, you can do the following:

R

> A = matrix(c(pi,5,exp(1),sqrt(2)),nrow=2,byrow=TRUE)

> tmp = format(A, digits=5, drop0trailing=TRUE)

> write.table(tmp, row.names=FALSE, col.names=FALSE, quote=FALSE)

3.1416 5

2.7183 1.4142

In the above commands, the drop0trailing argument to format instructs it not to pad all
of the values with trailing zeros, i.e., to display 5 rather than 5.0000. When a filename is
not provided to write.table (which then uses the default argument file = ''), the output is
displayed in the R console as shown above. The quote=FALSE argument is needed because
format returns the formatted values in a string vector, and write.table by default puts
quotes around all strings that it displays.

write.table has various options which may be useful. For example, the sep parameter
specifies the separator value between entries on a single line. Use sep=',' to separate the
values with commas.

MATLAB

You can use the save function to output a vector or matrix. For example, save('foo.txt',
A, '-ascii') will write the matrix A to the file foo.txt, with spaces separating the values
on a given line. However, save does not have much flexibility. For example, there is no way
to control the number of significant digits in outputted values or the separator between
consecutive values on a single line of the output file.

Another method with more flexibility is dlmwrite. By default, commas are used
to separate values on a line. To output A using spaces between values on a line, use
dlmwrite('foo.txt', A, 'delimiter', ' '). You can also control the format of the
output; the default is to use 5 significant digits. To use 9 significant digits, include the
'precision', 9 arguments to dlmwrite. You can also use format strings from C, e.g., 'pre-
cision', '%6.3f' specifies to use a minimum field width of 6, with 3 digits after the decimal
point.

12.8 Writing a set of strings

You may have a set of strings you wish to output to a file; examples in this section provide
ways to do so.
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R

If you have a vector of strings, sv, you can use the command write(sv, 'foo.txt') to
output the strings (one per line) to the file foo.txt.

If you instead have the strings stored in a list sl, you can output them by first temporarily
converting sl to a vector: write(sapply(sl, c), 'foo.txt').

MATLAB

The standard way to store a set of strings of different lengths in MATLAB is to keep them
in a cell array. If you wish to display the strings in a cell array named sc, first create this
helper function which outputs a string followed by a newline to the specified file-descriptor:

fprintfnl.m
function fprintfnl(s,fid)

fprintf(fid,'%s\n', s);

Then, use the following command to print to the file-descriptor fid: cellfun(@fprintfnl,
sc, num2cell(fid*ones(size(sc)))).

The ugliness in the final argument is because cellfun does not provide a way for you to
include a scalar parameter to pass along to fprintfnl every time it is called. So instead we
must construct a cell array the same size as sc, each element of which contains the scalar
value fid.

A simpler alternative is to simply iterate over the elements of the cell array, outputting
one string at a time:

MATLAB
for i in 1:numel(sc)

fprintf(fid, '%s\n', sc{i})

end

12.9 Saving and loading variables in binary format

Sometimes it is useful to save some or all of your variables in a format specific to the
platform you are using (R or MATLAB), so that they can be reloaded later. This is useful
if you need to shut down your computer while in the middle of something and then later
resume where you left off, or perhaps to switch to another computer.

R

You can use save(A, v, file='my2vars.RData') to save the variables A and v. If you
have the names of the variables you want to save stored in a vector of strings, you can
use the list parameter instead, e.g., save(list=c('A', 'v'), file='my2vars.RData').
If you want to save all of your variables, you can use ls to obtain all of their names:
save(list=ls(all=TRUE), file='allmyvars.RData'). Calling save.image() is a short-
cut for saving all variables to the file .RData, as happens if you quit R and tell it
you wish to save the workspace. You can specify another filename via a command like
save.image('myfile.RData').

You can load in variables saved as above via a command like load('my2vars.RData').
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load invisibly returns a vector containing the names of the variables loaded. You can see it
by doing print(load('my2vars.RData')).

MATLAB

You can use save('my2vars', 'A', 'v') to save the variables A and v to the file named
my2vars.mat (MATLAB automatically appends the “.mat” suffix to the filename if it does
not already have an extension). You can also use the command form, i.e., save my2vars

A v. To save all variables to the file allmyvars.mat, use save('allmyvars'), or save

allmyvars. Entering just the command save saves all variables to the file matlab.mat.
To load in variables saved as above, use load('my2vars'). If you assign the return value

to a variable, it will be a struct containing the variables as the fields. For example:
MATLAB

>> s = load('/tmp/msave')

s =

A: [3x6 double]

v: [3.1416 5 2.7183 1.4142 0.9000 1.2346e+03]

After doing the above, you can obtain a list of the variables loaded by entering
fieldnames(s). Also, entering just the command load (with no arguments) attempts to
load variables from the file matlab.mat.

12.10 Images

R

To read a JPEG image, you can use img = readJPEG('foo.jpg'). Note that readJPEG
is part of the jpeg package. If the JPEG image has a resolution of x×y pixels, it will be read
into a y×x×3 array, where the three layers contain the red, green, and blue values (ranging
between 0 and 1). The rasterImage function can be used to add the image to a specified
region within an existing plot; you should first set up an empty plot if you do not already
have an existing plot. For example, plot(0:1, 0:1, type='n'); rasterImage(img, 0,

0, 1, 1). To save an image stored in a y × x × 3 array A in a JPEG file, you can use
writeJPEG(A, 'foo.jpg') (also from the jpeg package).

For reading and writing GIF images, see the read.gif and write.gif functions in the
caTools package.

MATLAB

To read a JPEG image, you can use img = imread('foo.jpg'). If the JPEG image has a
resolution of x×y pixels, it will be read into a y×x×3 array, where the three layers contain
the red, green, and blue values (ranging between 0 and 255). You can use image(img) to
display the image. To save an image stored in a y × x× 3 array A in a JPEG file, you can
use imwrite(A, 'foo.jpg', 'jpeg').

imread and imwrite can also handle GIF images, as well as a variety of other formats.
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12.11 URLs

It may be desirable to import data directly from a Web site. Both platforms have facilities
for doing this easily by reading from URLs (uniform resource locators), i.e., Web addresses.

R

You can first open a connection to a URL, rather than a file. For example, you can do fid =

url('http://www.example.com'). After that, the various routines for reading data from
files can be used with the opened connection. To read all of the data from the Web site into
a vector of strings, you can use s = readLines(fid). The connection can then be closed
via close(fid).

MATLAB

You can read everything from a given URL into a string variable via a command like s

= urlread('http://www.example.com'). You can then extract data from that string by
using textscan, which will accept a string as its first argument in place of a file descriptor. If
you prefer to use fscanf rather than textscan to read data, you should instead use sscanf,
which is the equivalent function that reads from strings rather than via file descriptors.

12.12 Excel files

R

Although there are ways to read Excel files directly from within R, the general advice is
that it is perhaps best to avoid doing it [25]. It can be simpler to have Excel export the
data in a text file, such as a .csv (comma-separated values) file. The OpenOffice program
may be able to read an Excel file and allow you to export it as a csv file if you do not have
access to Excel itself.

The gdata package includes a read.xls function which can read files from some versions
of Excel, although it relies on Perl being installed on your system. The xlsx package includes
functions for reading and writing Excel files, as well as for manipulating their contents. This
includes being able to edit attributes such as colors, fonts, and data formats, and the ability
to add or remove rows, sheets, etc. There are other options for users of the 32-bit version of
R on Windows, and various options to write Excel files; consult Reference [25] for current
information.

MATLAB

There is a function xlsread which allows you to read data from an Excel file. For full
functionality, including the ability to read just ranges of cells from specified sheets in the
file, you must be running under Windows and have Excel installed. Otherwise, some more
basic functionality is provided. There is also a corresponding xlswrite function to output
data in Excel format.
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Miscellaneous

This chapter collects some other miscellaneous information, such as material about working
with variables and strings.

13.1 Working with variables

Various methods of listing information about variables and clearing or deleting variables
are provided below.

1. Display a concise list of defined variables.

R MATLAB

ls() who

2. Display a concise list of all defined variables whose names contain “xyz”.

ls(pattern='xyz') who *xyz*

(R): The argument to ls is a regular expression; see help('regex') for more.
(MATLAB): In addition to using the wildcard character “*,” you can use regular ex-

pressions to search for variables via a command like who -regexp m[^p]; see doc regexp

for more.

3. Display a more detailed list of all defined variables.

ls.str() whos

The same mechanisms for pattern matching using regular expression from the previous
item can be used here as well.

4. Display detailed information about the variable foo

str(foo) whos foo

5. Display detailed information about all variables whose names contain the string “xyz”

ls.str(pattern='xyz') whos *xyz*

6. Open a graphical data editor to edit the value of variable A. (This can be especially
useful for editing values within a matrix.)

fix(A) openvar A

7. Remove/clear/delete the variable x.

rm(x) clear x

165
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8. Remove/clear/delete the two variables x and y.

rm(x,y) clear x y

9. Remove/clear/delete all variables.

rm(list=ls()) clear all

10. Query to see if the variable x exists.

exists('x') exist('x')

Both of these functions can take additional parameters which allow you to search for
particular types of things, such as functions, or MATLAB M-files in the search path, etc.

13.2 Character strings

Suppose you have a string variable, created in either platform by a command such as s =

'Hello, world!', and you wish to display the contents of the string.
In R, you can use the command print(s). However, the output is a bit ugly:

R

> print(s)

[1] "Hello, world!"

You can hide the quotes by using print(s, quote=FALSE) (or print(noquote(s)) will
also work), but the “[1]” will still be there in the output. To avoid that, you can instead
use cat(s). There is still one more problem, however. If you enter the commands cat(s);
cat(s), you will notice that they get concatenated on the same line. You can fix that by
instead using cat(s, fill=TRUE). Or instead, you can include C-like character escapes in
your string; for example, cat('Hello!\n'). The cat function can actually take a vector of
strings and display all of them; by default, they are separated by a single space, but you can
specify a different separating string instead: v=c('Hi', 'there!'); cat(v, sep='++').
Finally, you can also use the sprintf command to build a string using C-style formatting
codes, as shown below.

R

name = 'Alice'

numGoals = 12

cat(sprintf('%s scored %d goals', name, numGoals), fill=TRUE)

Things are much simpler in MATLAB. To display the string in variable s, you can simply
use disp(s). The disp function will append a newline, so if you call it twice, the two strings
will appear on separate lines. If you do not want a trailing newline, for example if you want
to print two strings on the same line, use fprintf(s) instead. You can also use sprintf to
build a string using C-style formatting codes, as shown below.

MATLAB
name = 'Alice';

numGoals = 12;

disp(sprintf('%s scored %d goals', name, numGoals))

For the sprintf routine in both platforms, use %d to refer to decimal integers, %f for



Miscellaneous 167

floating-point numbers, %e for scientific-notation floating point, and %g to automatically
choose %f or %e based on the value. You can specify field widths or precisions, such as
%5d for decimal integers padded to 5 spaces, or %.7f for floating-point with 7 digits of
precision. Consult the documentation for more information about the many formatting
options accepted by sprintf.

Various other manipulations involving strings are shown below.

11. Create a string containing an apostrophe, such as “It’s nice”.

R MATLAB

s='It\'s nice' or s="It's nice" s = 'It''s nice'

12. Concatenate two strings s1 and s2.

paste(s1, s2) [s1 s2]

13. Concatenate a set of strings stored in v.

v=c('first ', 'second');

paste(v, collapse='')

v={'first', 'second'};

strcat([v{:}])

(MATLAB): If you just write strcat(v{:}), trailing spaces on strings will be dropped.

14. Extract characters 2–6 from the string in s.

substr(s, 2, 6) s(2:6)

15. Find the indices of locations where the regular expression p appears within string s.

inds = gregexpr(p,s)[[1]] inds = regexp(s,p)

(R): If you call gregexpr(p,v) where v is a vector of strings, then the return value will
be a list, where element i of the list contains information about the matches of the pattern p
against element i of the vector v. When called with a single string s, the return value is a list
with one element. Each element of the returned list has additional attributes set (indicating
the lengths of the matches found, and information about the character encoding). You can
remove those attributes via attributes(inds)=NULL.

(MATLAB): If one of s and p is a string and the other is a cell array of strings, then the
matching will be performed using the string together with each element of the cell array.
A cell array will then be returned. If both s and p are cell arrays, then they should be the
same length, and pairwise matches will be performed (with the results returned in a cell
array).

16. If you wish to test whether a regular expression matches against a string, in MATLAB,
you can still use regexp as above, because an empty vector evaluates as FALSE, and a
vector containing any indices of matches evaluates as TRUE. However, in R, you should use
a different function.

if (grepl(p,s)) {

...commands...

}

if (regexp(s,p))

...commands...

end

17. Convert a number to a string.

as.character(x) num2str(x)



168 R and MATLAB

Note that you can also use sprintf. For example, in both platforms, the command
sprintf('%.5f', pi) will work.

18. Compare two strings to determine whether they are the same.

s1 == s2 strcmp(s1,s2)

(MATLAB): The strcmp function can also handle either one or both of s1 and s2 being
cell arrays. In that case, the cell arrays are handled in a manner similar to that of regexp
in item 15 above, except here the return values will be vectors rather than cell arrays.

13.3 Reading user input

Sometimes, particularly in scripts (see Chapter 7), it is useful to prompt the user to input
some data which are then stored in variables.

R

To read numerical data from the user, use commands such as print('Enter data:'); x

= scan(). You can then enter a value, or several values separated by spaces. You can split
the values up among separate lines, if you like. Press the Return/Enter key twice when you
are done entering values. The values you enter will be stored in a vector.

Note that if you execute R code from an editor window, the scan command can behave
in an undesirable way, reading its input from subsequent lines of the file rather than from
the keyboard. See Section 7.6 for more information.

To read text data, you can use the command x = scan(what=character(0)). Because
the default separator character used by scan is a space, if you enter the text “Hi there,”
then x will be a vector with two elements containing the two words. If you want to be able to
enter a string containing spaces, you can use readline instead, which allows you to include
a user prompt: x = readline('Enter string:\n'). You can also use scan and specify
the newline as the separator character: x = scan(what=character(0), sep='\n'). This
latter approach allows you to enter several strings, one per line. The result will be a vector
of strings, with one vector element per line of input.

MATLAB

To read numerical data from the user, use a command like x = input('Enter data: ').
Include “\n” at the end of your prompt string if you want the input to begin on a separate
line. You can then enter a scalar or matrix as you would at the MATLAB command prompt.
In fact, you can enter a full-blown MATLAB expression as your input. For example, you
can enter 3:8, or sin(z) (assuming z is defined), and so on. The results of evaluating the
expression you type will be stored in x.

To read text data, you can use x = input('Enter text data: ', 's'). If you wish
to read multiple lines, with one string per line, there is not a simple built-in way to do it.
However, a simple loop will work. The following code reads lines, appending them to a cell
array of strings, until an empty line is entered.

MATLAB
x = cell(0); % build empty cell array

while true

tmp = input('Enter string: ', 's');
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if (strcmp(tmp, '')) % got empty line; stop

break;

end

x = [x ; tmp]; % append new string

end

13.4 Recording a copy of commands and output

Both platforms offer a way to record a copy of your session’s output to a file.
In R, the command sink('foo.out') will cause all subsequent output to the file

foo.out. You will not see the output in the command window. The command split()

then reverts back to normal behavior. You can use sink('foo.out', split=TRUE) to send
a copy of the output to the named file, but also keep a copy visible in the command window.
Note that sink does not also record a copy of the commands you type in the specified file;
you will only see the output. Because of that, it is likely to be most useful when used from
scripts.

In MATLAB, the command diary foo.out will record a copy of the commands you
type, as well as their output, to the file foo.out. It will also continue to display them in the
MATLAB command window. The command diary off reverts back to normal behavior.
Note that the diary file does not contain the MATLAB command prompt “>>” next to
the commands you type, so it can be more difficult to easily distinguish input from output
in the file. Because of that, it is also likely to be most useful when used from scripts.

13.5 Date calculations

To demonstrate some basic calculations, consider the following tasks:

1. Calculate how many days it has been since Jan. 1, 2000.

2. Calculate how many seconds it has been since 8:30:40pm on Jan. 1, 2015.

3. Determine which date was 1,000 days after Jan. 1, 2000.

4. Calculate the time that was 3× 107 seconds after 8:30:40pm on Jan. 1, 2000.

Note that the format strings given in the first versions of both the R and MATLAB code
below are not necessary, as the formats provided are the defaults. They are included to
demonstrate formatting options.

The following commands show how to perform these calculations in R:
R

#### Task 1

t1 = as.Date('2015-01-01', format='%Y-%m-%d')

today = as.Date(Sys.Date())

print(today - t1)

#### Task 2

t1b=as.POSIXct('2015-01-01 20:40:30', format='%Y-%m-%d %H:%M:%S')

now = as.POSIXct(Sys.time())



170 R and MATLAB

print(now - t1b)

#### Task 3

print(as.character(t1 + 1000, format='%Y-%m-%d'))

print(as.character(t1 + 1000, format='%d-%b-%Y')) # default MATLAB format

#### Task 4

print(as.character(t1b + 3e7, format='%Y-%m-%d %H:%M:%S'))

print(as.character(t1b + 3e7, format='%d-%b-%Y %H:%M:%S')) # MATLAB format

Also see the difftime command for working with the differences between dates.
The following commands show how to perform these calculations in MATLAB:

MATLAB
%%%% Task 1

t1 = datenum('2015-01-01','yyyy-mm-dd');

today = datenum(date);

today - t1

%%%% Task 2

t1b = datenum('2015-01-01 20:40:30', 'yyyy-mm-dd HH:MM:SS');

now - t1b

%%%% Task 3

datestr(t1 + 1000, 'dd-mmm-yyyy')

datestr(t1 + 1000, 'yyyy-mm-dd') % default R format

%%%% Task 4

% Note: need to convert 3e7 seconds to days

datestr(t1b + 3e7/86400, 'dd-mmm-yyyy HH:MM:SS')

datestr(t1b + 3e7/86400, 'yyyy-mm-dd HH:MM:SS') % default R format

Also see the datevec command for working with vector representations of dates and times.

13.6 Miscellaneous

19. Pause for x seconds.

R MATLAB

Sys.sleep(x) pause(x)

20. Wait for the user to press any key.

readline() will wait until the
Return/Enter key is pressed.

pause

21. Produce a beep (or a visual signal, depending on how the software and system prefer-
ences are set).

alarm() beep

22. Display an error message and interrupt execution of the current script, function, etc.

stop('Problem!') error('Problem!')

23. Display a warning message, and continue executing code.
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warning('Small problem!') warning('Small problem!')

24. Evaluate the contents of the string s as one or more commands, as if you had typed
them.

eval(parse(text=s)) eval(s)

25. Measure the CPU time used to perform some commands.

t1=proc.time()

...some commands...

t2=proc.time()

mytime = (t2-t1)[1]

t1=cputime;

...some commands...

t2=cputime;

mytime = t2-t1

26. Measure the elapsed (“wall clock”) time used to perform some commands.

t1=proc.time()

...some commands...

t2=proc.time()

mytime = (t2-t1)[3]

t1=clock;

...some commands...

t2=clock;

mytime = etime(t2,t1)

(MATLAB): You can also use tic; ...commands...; mytime=toc to measure the
elapsed time. You can also save the return value of tic and pass it to toc later, to use multiple
timers. For example, myStartTime=tic; ...commands...; mytime=toc(myStartTime).

27. Boolean value indicating whether the value x is in the set y.

x %in% y ismember(x,y)

If x is a vector, the results will be a vector of Boolean values the same length as x,
indicating whether or not each element of x is in y.

28. The index of the location of value x in vector y.

ind = match(x,y) [tf, ind] = ismember(x,y)

If x is not in the vector y, then R’s match returns NA, while MATLAB’s ismember
returns 0. Also, if x is in the vector y multiple times, both functions return the index of the
first element of y that matches x. (Note that in previous versions of MATLAB, the index
of the last matching element was returned.) If x is a vector, then the return values of these
functions are also vectors of the same size, with the information for each element of x. In
MATLAB, to use ismember with strings, you should pack the strings within cell arrays,
rather than regular vectors.

13.7 Debugging

I am somewhat old-school, in that my first line of action to debug misbehaving code is
usually to simply add some statements to print out the values of variables that seem to
be causing trouble. This can be done via some print statements in R, and by strategically
leaving out semicolons in MATLAB code, perhaps augmented with some sprintf statements
to make things more legible. If matrices/arrays are involved, it may be helpful to print out
their dimensions, or to print out the results of calculations like any(is.nan(v)) (R) or
any(isnan(v)) (MATLAB) to see if there are strange values somewhere in your vector.



172 R and MATLAB

But when printing out values is not enough, both platforms do have facilities to aid in
debugging code.

R

You can insert the command browser() within your code (presumably a script, or a file
defining a function). When that command is reached, execution is suspended, and you are
able to type in R commands. The command prompt changes to Browse[1]> to let you
know you are operating within the browser mode. For example, you can examine or modify
the values of variables. You can also enter the special command n to execute the next line of
code, or c to continue execution. If things get really fouled up, you can enter Q to terminate
execution.

There is also a debug function that lets you tell R to enter debugging mode when a
particular function is called.

MATLAB

You can insert the command keyboard within your code (presumably a script, or M-file
defining a function). When that command is reached, execution is suspended, and you are
able to type in MATLAB commands. The command prompt changes to K>> to let you
know you are operating within keyboard mode. For example, you can examine or modify the
values of variables. Enter the special command return to exit keyboard mode and return
to normal execution. The keyboard command is a simple way to let you stop and check
out the values of various things when your code is having trouble.

MATLAB also has a fairly standard extensive set of debugging tools for further aid in
debugging. Some of the relevant commands are dbstop, dbclear, dbstep, and dbcont.
You can also perform debugging via MATLAB’s built-in editor. For example, if you click
to the left of a line of code in the editor, a small red stop sign will appear, indicating that
a breakpoint has been set at that line. When you run the code, MATLAB will suspend
execution at that point. The command prompt will change to K>> again, to let you know
you can enter debugging commands. You can use things like the “Continue” and “Step”
buttons in the editor window to go through your code.

13.8 Startup and shutdown sequences

Both platforms provide mechanisms for you to specify that some code should be run when
starting up and/or shutting down the software.

R

If a file .Rprofile exists in the current directory or in the user’s home directory, its contents
are sourced. It then looks for a file .RData in the current directory, to load a saved image
(either one created when you quit R, or one saved using the methods of Section 12.9). If
a function named .First() exists (for example, defined in your .Rprofile, though it could
also have been saved in the .RData file), it will be called. There are many additional details
and ways to customize the startup behavior, for example via environment variables in your
operating system. Use the command ?Startup for more information.
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Upon shutdown, if you have defined a function named .Last(), it will be called.

MATLAB

If a file startup.m exists in the search path, its contents will be executed.
Upon shutdown, if a script file finish.m exists in the search path, its contents will be

executed. The script can call the command save to save the workspace, as in Section 12.9.
If for some reason you have a finish script which has errors in it, which is preventing you
from shutting MATLAB down, you can instead use the command quit force. Inside your
finish script, you can use the command quit cancel to abort the shutdown of MATLAB.

13.9 Add-ons: packages and toolboxes

Both R and MATLAB benefit greatly from their vast communities of users; MATLAB
also of course has the advantage of being a commercial product with ongoing support and
development from MathWorks.

R

One of the main sources of power in R is the vast array of packages that are available
to download and install. Currently, there are more than 6,000 packages available, which
perform calculations for a huge variety of particular tasks.

You can browse the list of available packages, with very short descriptions, through a
CRAN mirror (see Section 1.1). You can also see a list with just the package names via
the user menus in R, or via the command install.packages(). To actually use a package,
you must do two things: first install the package (it is only necessary to do this once),
and then load it (this is necessary each time you restart R and want to use the pack-
age, unless you save your workspace with the package installed). For example, to install
the deSolve package you can use the command install.packages('deSolve'). You can
then use library('deSolve') to load it. If you are writing a function in which you want
to be sure the deSolve package is loaded, you can use require('deSolve'), as the re-
quire function returns a Boolean indicating whether the requested package is available.
You can use print(.packages()) to see a list of the names of attached (loaded) pack-
ages (you need the print command, because .packages returns its results invisibly by de-
fault; see Page 84). The command search() shows attached packages and data frames.
To see a list of installed packages available to be attached, use .packages(TRUE), or
installed.packages() for more detailed information. You can detach a package using
a command such as detach('package:deSolve').

There are so many packages available, because they are user-contributed, with a fairly
low barrier of entry to contribute new packages. Documentation about creating packages
is available on CRAN; see Reference [24] for extensive information, or Reference [16] for a
shorter and lighter overview.

MATLAB

For MATLAB, there are more than two dozen add-on products, many of them called tool-
boxes. Toolboxes are available for things like signal processing, statistics, wavelets, and so
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on. The command ver will show you which products you have installed. These add-ons are
available from The MathWorks. An example of a non-Toolbox add-on available from The
MathWorks is MATLAB Coder, mentioned at the very end of section 14.2.

There is also a MATLAB File Exchange with thousands of useful user-contributed re-
sources available
(http://www.mathworks.com/matlabcentral/fileexchange/). That is just one resource
available at “MATLAB Central” (http://www.mathworks.com/matlabcentral/); there
are also interesting challenges called Cody problems, plots, and questions and answers about
MATLAB.

13.10 Object-oriented programming

Both platforms have facilities for object-oriented programming. In R, there are two different
approaches, or types of objects: S3 and S4. It is somewhat easier to write S3 objects, by
providing a set of functions with particular special names that can operate on your objects.
S4 objects are more formal, with more mechanisms to catch errors or abuses, but with a
bigger learning curve to go along with them. See Reference [16] for a very brief introduction
to writing S3 objects, and Reference [26] for more information.

In MATLAB, you can provide a collection of functions all within a folder named after
the object class you are implementing. It is also possible to write a single file containing
the class definition and methods for a given class. See the various resources linked from
http://www.mathworks.com/discovery/object-oriented-programming.html for more
information.

13.11 Other interfaces

We are well past the days where everyone does all of their computations sitting at a desktop
or laptop computer. Many different devices, capable of varying levels of computations, now
pervade our lives. Both R and MATLAB have support for additional devices. There are also
additional software interfaces available.

R

One very popular third-party interface for R is calledRStudio. It is available in a free, open-
source edition as well as a commercial version from http://www.rstudio.com. RStudio
provides a richer integrated development environment, with debugging tools, an editor that
performs syntax-aware text coloring, a workspace inspector showing your defined variables,
and so on. It is widely used among the students in my classes because of its superior editor.
It also provides facilities to run R on a server and access it via the Web.

Other third-party interfaces for R are R Commander, available for download from
http://www.rcommander.com, and Tinn-R, available from
http://nbcgib.uesc.br/lec/software/editores/tinn-r/en. There is also an interface
to R available for the Emacs editor, called ESS (“Emacs Speaks Statistics”), available from
http://ess.r-project.org.

There is a tool called Sweave which allows you to embed R commands within a LATEX
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file to aid in document production incorporating R commands and output, available at
http://www.stat.uni-muenchen.de/~leisch/Sweave. This is similar to MATLAB’s pub-
lish feature.

It is also possible to install and run R directly on a Raspberry Pi device.

MATLAB

Because the standard MATLAB user interface is so well developed, there has not been a
need for third parties to provide alternative interfaces. However, there is a MATLAB mode
for the Emacs text editor available (http://matlab-emacs.sourceforge.net), which aids
in editing MATLAB files (scripts and functions), and also allows you to run MATLAB
commands from within a shell inside of Emacs.

The publish command lets you export MATLAB code and its resulting output in a
variety of formats, including HTML, PDF, LATEX, and so on. Like the Sweave tool for R,
this is useful for producing documents based on MATLAB code.

It is possible to run MATLAB from mobile devices, including iOS devices such as iPhone
and iPad and Android devices (http://www.mathworks.com/mobile). This is done by ei-
ther accessing an instance of MATLAB running on your own computer, or through The
MathWorks Cloud. The MATLAB mobile app for Android can aquire data from built-in
sensors on Android devices, including their accelerometer, orientation, and position sensors.

MATLAB can aquire data from sensors attached to a Raspberry Pi via the MATLAB
Support Package for Raspberry Pi Hardware available from The MathWorks. At this time,
MATLAB itself does not run as a standalone program on a Raspberry Pi.

13.12 Efficiency/performance

Because both R and MATLAB are interpreted languages, the same basic primary advice
applies to both platforms: avoid writing explicit “for” loops if vectorized statements can be
used instead. That is, rather than writing this in R:

R

mysum = 0

for (i in 1:1000000)

mysum = mysum + i

it is better to just write mysum = sum(1:1000000).1 Not only is the latter code shorter,
it also runs much more quickly, because the implied for loop which still takes place runs
internally at compiled speeds, rather than explicitly at interpreted speeds.

The MathWorks has been getting fairly aggressive at making performance enhancements
in MATLAB over the past several years. MATLAB will now take small chunks of iterative
code that are relatively uncomplicated, and precompile them so that they do not need to
be reinterpreted on every iteration. As a result, the following explicit MATLAB code:

MATLAB
mysum=0;

for i=1:1000000

1Technically, the above code will suffer integer overflow, because when you write a:b, the values are stored
as integers. You should instead use as.numeric(1:1000000) to force R to store the values as double-precision
floating point numbers to avoid overflow.
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mysum = mysum+i;

end

runs more than 100 times faster than the equivalent R code above, on my reference system.
MATLAB will optimize the code within a script or function, as long as it is not deemed to
be too complex. Breaking larger computations down into smaller functions and scripts may
improve performance.

The second major piece of advice also applies equally to both platforms: avoid repeatedly
growing a matrix or vector; preallocate additional space if you think you will need it. An
example of inefficient code would be the following MATLAB commands:

MATLAB
x = 1;

for i = 2:1000

x(i) = i^2;

end

This begins with a 1×1 scalar x, and then repeatedly adds a new element to the end; when
the code finishes, x is a 1 × 1000 vector. The problem is that every time a new element is
added to the end of the vector, and new block of memory must be allocated for the new,
larger vector, and then the previous contents copied over to the new area in memory. The
same problem exists in R. It is better to preallocate space for the vector (for the MATLAB
code above, placing the line x = zeros(1,1000); at the beginning will allocate the needed
memory for the vector).

As with most computing environments, drawing graphics and doing input/output to a
file or the command console is usually at least an order of magnitude slower than performing
raw computations. If you can save the graphics and file I/O until after computations are
finished, your code may run much more quickly.

For discussion of some issues in R which include performance, see the somewhat enter-
taining Reference [3]. For more information about performance issues in MATLAB, see the
comprehensive Reference [1].
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Calling C

Both R and MATLAB can perform vectorized computations, where iteration over the el-
ements of a vector or matrix is performed implicitly, i.e., internally. This is much more
efficient than writing explicit “for” loops, which run very slowly due to both platforms be-
ing interpreted (rather than compiled) languages. For some computations, however, explicit
iteration is required. This occurs when each stage of a computation depends on the results
of the previous stage. The following two examples of such computations will be used for
demonstration purposes here.

1. The Fisher Yates shuffle [8] for permuting a set of n values in a vector v; here
we consider a more recent version, sometimes known as the Knuth shuffle [6, 15],
which is more efficient. The algorithm is as follows:
Let i count from n down to 2

Let j be a random integer between 1 and i, inclusive
Exchange the elements in positions i and j of v

2. A stochastic birth-death process simulated for s events. In a given population
at time t, each individual gives birth at rate φ, and dies at rate µ, according to
a Poisson process. We build two vectors, one containing the time of each event
(birth or death), and the other containing the population sizes after the corre-
sponding events at those times. Let n be the population size at the current time.
The simulation proceeds as follows:
Let i count from 1 to s

Generate an exponentially distributed random value with mean 1/(n(φ+ µ))
Add the above value to the current time, as the time of the next event
With probability φ/(φ+ µ), the event is a birth (and n is incremented),
otherwise the event is a death (and n is decremented)

Append the new event time and population size to vectors

Note that the C functions in this chapter call a random-number generator. The details
of such calls are generally very specific to the operating system and/or C compiler you are
using. With the gcc compiler under Mac OS-X and Linux, the function random() returns
a random integer stored as a “long int,” while the function srandom(seed) can be called
with an unsigned int to reset the random number generator’s seed. In other C compilers,
there are sometimes functions rand and srand which behave in an equivalent way (though
on some systems, rand is a very poor-quality generator, in the sense that the values it
produces may have cyclic patterns in some of their bits). You can also search for C code to
generate pseudorandom numbers; for example the “Mersenne twister” is a popular generator
for which source code is freely available.

177
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14.1 R

14.1.1 Example and overview

A R-compatible C function implementing the shuffle is given below. We would like the first
argument to the function to be a vector of double-precision values to sort, and the second
argument to be an integer saying how long the vector is.

Cshuffle.c
#include <stdlib.h> /* for declaration of random() */

#include <math.h> /* for declaration of floor() */

/* Permute the elements of a vector using the Fisher-Yates shuffle */

void Cshuffle(double *v, int *nptr)

{

int i, j, n = nptr[0];

double tmpDbl;

for (i=n; i > 1; i--) {

/* Generate a random integer from 0 to i-1

* (not from 1 to i, because vectors in C use 0-based indexing). */

j = (int)floor(((double) random()) / (RAND_MAX + 1.0) * i);

/* swap v[j] with the last element of v */

tmpDbl = v[j]; v[j] = v[i-1]; v[i-1] = tmpDbl;

}

}

Assume the function above is stored in a file called Cshuffle.c. To compile this function
into a form usable by R, you should enter the following command in a terminal window
(not at the R command prompt), in the same directory or folder containing the C file:

R CMD SHLIB Cshuffle.c

On Unix systems (Mac or Linux) this will most likely produce a file called Cshuffle.so;
it should produce Cshuffle.dll on Windows. If you do not see the appropriate file, look
around and see what suffix was used. (Ignore the Cshuffle.o file; it is just the compiled
object code.)

The function can then be read into R by using the following command:
R

dyn.load('Cshuffle.so') # use 'Cshuffle.dll' in Windows

The function cannot simply be called like any built-in or user-defined function in R, i.e.,
you cannot simply say Cshuffle(v,n). Instead, it must be called via the special routine .C.
For example, to test out the function by permuting the values from 1 to 20, the following
commands can be used in R:

R

v = as.double(1:20)

n = length(v)

tmp = .C('Cshuffle',v,n)

permutedv = tmp[[1]]

There are several things to note about the above process.
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1. R passes scalar values to C functions inside vectors of length 1. This is why the
second parameter in the C function is declared as int *nptr rather than simply
int n. Inside our function, we extract the (single) element of this vector into the
scalar C variable n for clarity.

2. Care must be taken to ensure that data types are correct. For example, the
R command v = 1:20 produces a vector of integers, rather than doubles; v

= as.double(1:20) ensures that the vector contains double-precision floating-
point values. Similarly, n = length(v) produces an integer as needed; if we
had simply written n = 20 instead, it would have been a double. (However, n
= as.integer(20) would work.) Great care must be taken here, as if the data
types are incorrect, you likely will not see any explicit warnings or errors — you
may instead simply get incorrect results (see the testprint example on Page 182).

3. Matrices are passed in to C functions as vectors with column-major order (i.e.,
values arranged column by column), so passing matrix A to a C function is
equivalent to passing the vector c(A).

4. The C function cannot use return to pass return values to the caller, but instead
should be declared to have type void. Values must be returned to the caller by
modifying the vectors passed in as arguments, i.e., the function should have “side
effects” on the vectors. This means if you want to write a function which takes
no arguments in but which returns a vector, you must in fact pass in a vector of
the appropriate length.1

5. When the C function is done, the original R values passed as arguments are not
actually modified. Instead, copies of those values are passed to the .C() function,
and a list is returned containing the modified vectors. That is why the command
permutedv = tmp[[1]] was used to extract the results above; the first item in
the returned list was the modified vector v, and the second item in the list was
the (unmodified) value n.

6. The name of the function does not need to match the name of the C file, although
it is easier to keep track of things if it does. When you call the function using
.C(), use the name of the actual function, rather than the name of the file.

7. If there are multiple functions in your C file, they will all be loaded (and callable
from R) when you load your .so or .dll file via dyn.load().

8. If you load two different files, say test1.so and test2.so which both define func-
tions named testfunc, then calling .C('testfunc', ...) will call whichever was
loaded more recently. You can specify which version to use via an extra PACK-
AGE argument (omit the filename’s suffix), e.g., .C('testfunc', ..., PACK-
AGE='test1').

9. When you use the terminal command R CMD SHLIB foo.c to compile your
C code, be aware of whether the command R in the terminal is running the
32-bit or 64-bit version of R. When trying to run your code, you must ensure
that the interactive version of R you are using has the same architecture as the
version used for compiling. Otherwise, you will see an error about being unable
to load the shared object; it will likely complain that the file has the wrong
architecture. You can use the Terminal command R -q -e 'version$arch' to
try and determine if it the command-line version of R is the 32-bit version (you

1I originally considered writing the Cshuffle function to take a single integer argument n and return
a vector of the permuted values from 1 through n, but because of the above constraints, it was no more
difficult to write the function to receive a vector containing general values to permute.
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will likely see something like “i386”) or the 64-bit version (you will see “x86_64”).
The details are dependent on the processor architecture, operating system, and
version of R. Entering the command version$arch at the command prompt
within R will give the same information for the interactive version of R you are
running.

10. If your C file “mycode.c” contains a function “void R init mycode(DllInfo
*info)”, it will be called when your file is loaded via dyn.load. This gives you an
opportunity to perform any initializations needed for your code to run. Similarly,
if the function void R unload mycode(DllInfo *info) exists, it will be called
if you unload your code via the dyn.unload R function.

Because of items 2–4 above, it is usually easier (and safer) to write an R wrapper around
the C function you wish to call, to ensure that the data types are correct and to extract
the results. For example, the following R function makes it easier to call the C Cshuffle
function. You simply give it a vector v (which may contain integer or double values), and
it returns the permuted vector.

shuffle.R
shuffle = function(v) {

if (!is.numeric(v))

stop('Cshuffle(): Non-numeric v provided!')

tmp = .C('Cshuffle', as.double(v), length(v))

return(tmp[[1]])

}

Note that using a wrapper can make things run less efficiently, depending on how much
data manipulation the wrapper performs. A leaner wrapper function was also written as
below, which does not check the data-types of the vector v:

shuffle2.R
shuffle2 = function(v) {

tmp = .C('Cshuffle', v, length(v))

return(tmp[[1]])

}

Code similar to that shown below was used to measure the time needed to repeatedly
permute a set of values in six different ways:

1. Using .C() to call the Cshuffle C function directly.

2. Using the R wrapper function shuffle2.

3. Using the R wrapper function shuffle.

4. Using the sample function.

5. Using .Call() with the Cshufflecall C function (see Page 186).

6. Using .C() to call the Cshuffle2 C function, which uses R’s random-number
generator (see Page 183).

As shown in Table 14.1, when permuting a large vector (of length n = 2× 105) 1,000 times,
using .C() ran in about 74% of the time it took sample() to permute the same values.

R

iters = 1000; v=as.double(1:200000); n=length(v)

t1=proc.time()

for (i in 1:iters) {
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Raw times Relative to sample
Method User System Elapsed User System Elapsed

.C(’Cshuffle’): 6.84 0.174 6.96 0.801 1.6 0.812
shuffle2: 8.23 0.142 8.3 0.964 1.3 0.968
shuffle: 8.24 0.144 8.32 0.965 1.32 0.97
.C(’Cshuffle2’): 8.07 0.139 8.14 0.945 1.28 0.95
sample: 8.54 0.109 8.58 1 1 1
.Call(’Cshufflecall’): 7.02 0.07 7.03 0.822 0.642 0.82

TABLE 14.1
Timing results (in seconds) of permuting the integers from 1 to 2 × 105, repeated 1000
times, using six different methods. Raw times are given in seconds; the times relative to
using sample are also shown, indicating that the C code can run in as little as three-quarters
the time of R’s sample function for large vectors.

# uncomment one of the following lines to time one of the methods

tmp = .C('Cshuffle',v,n)[[2]]

# tmp = shuffle2(v)

# tmp = shuffle(v)

# tmp = .C('Cshuffle2',v,n)[[2]]

# tmp = sample(v)

# tmp = .Call('Cshufflecall', v, n)

}

t2=proc.time(); print(t2-t1)

14.1.2 Printing, warnings, and errors

If you use the printf() function in your C code, you may not see the output in the R

console.2 The supported way to print values from C code is to use the function Rprintf(),
which behaves like printf() but integrates its output into R’s output stream. Just include
the file R.h first, as in the example below. There is also a commandREprintf() for printing
on the stderr error stream.3

To display a warning, you can call the function warning; to display an error (the
equivalent of using the R function stop), call the C function error. Both of these functions
accept the same types of arguments as printf, i.e., either a simple string, or a formatting
string followed by some parameters. In the example below, a warning is produced if the first
parameter is odd, and if it is negative, an error is generated.

testprint.c
#include <R.h>

void

testprint(int *nptr)

{

int n;

2In Mac OS-X 10.6.8 with R version 2.14.1, output from printf() is shown, but in a faint gray font which
is not very easy to see.

3These messages may be rendered differently, for example in a red font, depending on your operating
system.
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n = nptr[0];

if (n % 2)

warning("n was odd; it had value %d\n", n);

if (n < 0)

error("n was negative! It had value %d\n", n);

Rprintf("n=%d\n", n);

REprintf("Now on the error stream: n=%d\n", n);

}

void

R_init_testprint()

{

Rprintf("hi there, initializing testprint code!\n");

}

Note that calling this function via .C('testprint', 3) shows that the function believes
n is 0, because the value 3 is passed in with type “double” rather than “integer.” Calling
.C(’testprint’, as.integer(3)) gives the correct behavior.

14.1.3 Random numbers

The Cshuffle.c code on Page 178 calls the C library function random() to produce a
random integer from 0 to RAND MAX. It also therefore uses the C library’s random
number seed and state; on Unix systems, this will produce the same sequence of random
numbers every time you restart R and call the code. You may wish to seed C’s random
number generator using the current time; on Unix systems, this can be done by including
the following function in the Cshuffle.c file, and relying on R’s mechanism for initializing
the dynamically loaded file:

R

/** Seed the random number generator, based on the current time **/

void

R_init_Cshuffle(DllInfo *info)

{

struct timeval tp; struct timezone *tzp;

tzp = NULL; gettimeofday(&tp, tzp);

srandom((unsigned int) tp.tv_usec);

}

An alternative would be to have the Cshuffle function accept an additional parameter
which, if it is not zero, gets used as a random number seed.

The advantage of using the C library’s random number generator is that, other than
the interface function that you call from R, your C code will be more portable in the sense
that you can use it as part of a stand-alone C program. A disadvantage is that the built-
in random number generator may not be very good, depending on what compiler you are
using.

Another option is to call R’s random number generators. Three basic generators are
provided which are callable directly from C; they are shown in Table 14.2. If you use
any of R’s random number routines from C, note that you must also call GetRNGstate()
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Function Description

double unif rand() Generate a single random value from the contin-
uous uniform distribution from 0 to 1. The value
0 may be returned; the value 1 should never be
returned.

double norm rand() Generate a single random value from the standard
normal distribution N(0, 1).

double exp rand() Generate a single random value from the exponen-
tial distribution with mean 1.

TABLE 14.2
Basic functions which may be called from C code to produce random values. Placing the
statement #include <R.h> at the top of your C code will include the declarations of these
functions.

before calling them, and PutRNGstate() afterward. These ensure that your calls to the C
random variate generators are integrated into the sequence of states of R’s random number
generator. Below is a version of the Cshuffle.c code which uses unif rnd().

Cshuffle2.c
#include <R.h> /* for declaration of random-number routines */

#include <math.h> /* for declaration of floor() */

/* Permute the elements of a vector using the Fisher-Yates shuffle

* using R's random number generator */

void Cshuffle2(double *v, int *nptr)

{

int i, j, n = nptr[0];

double tmpDbl;

GetRNGstate();

for (i=n; i > 1; i--) {

/* Generate a random integer from 0 to i-1

* (not from 1 to i, because vectors in C use 0-based indexing). */

j = (int)floor(unif_rand() * i);

/* swap v[j] with the last element of v */

tmpDbl = v[j]; v[j] = v[i-1]; v[i-1] = tmpDbl;

}

PutRNGstate();

}

You may find it convenient to call the internal C versions of the various R routines
related to random numbers. Some examples of such functions are listed below. You should
place the statement #include <Rmath.h> at the top of your C code to include declarations
of the functions below.

double rexp(double m): Generate a single random value from the exponential distribu-
tion with mean m (note that this is in contrast with the R function rexp, where you
provide the rate, i.e., the reciprocal of the mean, and can also specify how many random
values you need).
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double dexp(double x, double m, int log): Analogous to R function, except the
mean m should be given, rather than its reciprocal.

double pexp(double q, double m, int lower.tail, int log.p): Analogous to R func-
tion, except the mean m should be given, rather than its reciprocal.

double qexp(double p, double m, int lower.tail, int log.p): Analogous to R func-
tion, except the mean m should be given, rather than its reciprocal.

See the file Rmath.h for declarations of the many other similar C counterparts of R random
number functions, and to check the argument types. For example, there is a function double
rbinom(double size, double prob), but note that its size parameter and its return type
are both double (rather than int as one might expect). You must also call GetRNGstate()
and PutRNGstate() before and after calls to the various functions such as rexp, rbinom,
and so on, to integrate them into the sequence of R’s random number stream.

Below is a C function implementing a stochastic birth-death process, which calls the
exponential random number generator rexp and the uniform generator unif rand. Equiv-
alent R code follows. For this simulation, the R version takes roughly 160 times as long to
run as the C version.

Cbirthdeath.c
#include <R.h> /* decl's of unif_rand(), GetRNGstate(), PutRNGstate() */

#include <Rmath.h> /* for declaration of rexp() */

/* Simulate stochastic birth-death process with per-capita

* birth rate phi and per-capita death rate mu.

* eventTimes and popVec must be vectors of length s,

* large enough to hold data for all of the time steps.

*/

void Cbirthdeath(double *phiptr, double *muptr,int *sptr,

double *eventTimes, int *popVec)

{

int i, s = sptr[0];

double phi = phiptr[0], mu = muptr[0], birthProb, r;

birthProb = phi/(phi+mu); /* probability a given event is a birth */

eventTimes[0] = 0.0; popVec[0] = 100;

GetRNGstate();

for (i=0; i < s-1; i++) {

/* Inter-event time: generate a random value from exponential

* distribution with mean 1/(popSize*(phi+mu)) */

r = rexp(1.0/(popVec[i]*(phi+mu)));

eventTimes[i+1] = eventTimes[i] + r;

if (unif_rand() < birthProb)

popVec[i+1] = popVec[i] + 1; /* event is a birth */

else

popVec[i+1] = popVec[i] - 1; /* event is a death */

}

PutRNGstate();

}

birthdeath.R
birthdeath = function(phi, mu, s) {

birthProb = phi/(phi+mu) # probability a given event is a birth
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Raw times Times faster than R code
Method User System Elapsed User System Elapsed

.C(’Cbirthdeath’) 0.288 0.031 0.316 175 59.6 164

.C(’Cbirthdeath2’) 0.258 0.06 0.315 195 30.8 164
birthdeath.R 50.3 1.85 51.7 1 1 1
.External(’Cbirthdeathexternal’) 0.207 0.011 0.216 243 168 240

TABLE 14.3
Timing results (in seconds) of simulating the birth-death process for s = 3×106 events with
φ = 1.1 and µ = 1 using four different methods. The C code generally runs roughly 200
times as quickly as the R version. Note that among different replicates of the experiment,
different C versions ran in the fastest time, i.e., these timings do not indicate that the
.External version of the C code is necessarily the fastest.

eventTimes = double(s); popVec = integer(s)

eventTimes[1] = 0.0; popVec[1] = 100

for (i in 1:(s-1)) {

# Inter-event time: generate a random value from exponential

# distribution with mean 1/(popSize*(phi+mu))

r = rexp(1,popVec[i]*(phi+mu))

eventTimes[i+1] = eventTimes[i] + r

if (runif(1) < birthProb) {

popVec[i+1] = popVec[i] + 1 # event is a birth

} else {

popVec[i+1] = popVec[i] - 1 # event is a death

}

}

return(list(eventTimes,popVec))

}

An additional C version was used, Cbirthdeath2.c, which used the C library’s random
number generator rather than R’s, to produce the two random values needed per event.
This was done by changing the two relevant lines in the code to:

R

r = -log((random()+1.0)/(RAND_MAX+1.0))/(popVec[i]*(phi+mu));

if (random()/(double)RAND_MAX < birthProb)

Timings of the C and R versions of the code, along with another version using the .Ex-
ternal method for invoking code (see Page 187) are shown in Table 14.3. The C code runs
approximately 200 times faster than the R code, which is typical for sequential simulations
such as this.

14.1.4 More advanced features

If you wish to work more closely with native R variables, pass lists to your function, or pass
a variable number of arguments to your function, the .C mechanism is not the best way to
proceed. Instead, there are two other ways of calling C code from R: .Call and .External.
They require more complex C code to handle function arguments, set up return values,
and handle memory management. Their facilities for dealing with function arguments is
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somewhat similar to MATLAB’s mechanism, requiring you to extract data from generic
data pointers. The primary difference between .Call and .External is in how they pass
arguments to your C function; the latter is more appropriate if you want to allow a variable
number of arguments, i.e., optional parameters.

C variables of type SEXP (“Simple EXPression”) are used to refer to arguments to
your function. Facilities are provided for obtaining pointers to the actual data within those
arguments, for determining and coercing the data types, and so on. Because R uses garbage
collection to periodically clean up allocated memory which is not being used, you must
request that R protect the memory used by newly allocated variables within your code.
This can be done via the PROTECT function. When your code is about to return, you
can instruct R to UNPROTECT the last several items that were protected. See the Cshuf-
flecall.c code below for an example, which can be called via .Call(’Cshufflecall’,

as.double(1:10), as.integer(10)).

Cshufflecall.c
#include <R.h> /* for declaration of random-number routines */

#include <Rinternals.h> /* for dealing with SEXP stuff */

#include <math.h> /* for declaration of floor() */

/* Permute the elements of a vector using the Fisher-Yates shuffle */

SEXP Cshufflecall(SEXP Rv, SEXP Rn)

{

R_len_t i, j, n;

double *v, *newv, tmpDbl;

SEXP Rnewv;

if (!isReal(Rv)) error("Vector v did not have real/double values");

if (!isInteger(Rn)) error("n was not of type integer");

v = REAL(Rv); /* extract pointer to actual data for v */

n = INTEGER(Rn)[0]; /* extract scalar value of n */

if (n > length(Rv)) /* check n against length of vector v */

error("Cshufflecall: n was %d, but vector v only had length %d\n",

n,length(Rv));

/* allocate memory for return value, tell R not to garbage-collect it */

PROTECT(Rnewv=allocVector(REALSXP, n));

newv = REAL(Rnewv); /* extract pointer to actual data for newv */

GetRNGstate();

for (i=0; i < n; i++) /* copy original v to newv to work on it */

newv[i] = v[i];

for (i=n; i > 1; i--) {

/* Generate a random integer from 0 to i-1

* (not from 1 to i, because vectors in C use 0-based indexing). */

j = (int)floor(unif_rand() * i);

/* swap newv[j] with the last element of newv */

tmpDbl = newv[j]; newv[j] = newv[i-1]; newv[i-1] = tmpDbl;

}

PutRNGstate();

UNPROTECT(1); /* we don't need to protect newv any more */

return(Rnewv);

}
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For an example of using .External to allow for a variable number of parameters, see
the following version of the birth-death simulation. It returns a list containing two vec-
tors: a vector of real numbers with the event times, and a vector of integers with the
corresponding population sizes. It assumes default values for its three parameters phi,
mu, and s. These can be overridden by providing named arguments. That is, the sim-
ulation can be called via tmplist = .External(’CbirthdeathExternal’), or tmplist

= .External(’CbirthdeathExternal’, s=as.integer(50), phi=1.4), and so on. The
function does not take unnamed arguments, as it would require lengthier C code to handle
them as well.

Cbirthdeathexternal.c
#include <R.h> /* decl's of unif_rand(), GetRNGstate(), PutRNGstate() */

#include <Rmath.h> /* for declaration of rexp() */

#include <Rinternals.h> /* for dealing with SEXP stuff */

/* Simulate stochastic birth-death process with per-capita

* birth rate phi and per-capita death rate mu.

* Return a list containing two vectors: eventTimes and popVec

*/

SEXP CbirthdeathExternal(SEXP args)

{

int i, s=1000, *popVec;

double phi=1.1, mu=1.0, birthProb, r, *eventTimes;

SEXP returnList, eventTimesSXP, popVecSXP;

args = CDR(args); /* remove function name from args */

Rprintf("length(args) is now %d\n", length(args));

for (i=0; args != R_NilValue; i++, args = CDR(args)) {

if (isNull(TAG(args)))

error("Cbirthdeath(): unnamed arguments not allowed");

/* extract name of next argument */

const char *name = CHAR(PRINTNAME(TAG(args)));

SEXP el = CAR(args); /* and the value of that argument */

if (length(el) != 1)

error("Cbirthdeath(): All arguments must be scalars");

if (!strcmp(name, "phi")) {

if (TYPEOF(el) != REALSXP)

error("Cbirthdeath(): phi must be a real value");

phi = REAL(el)[0];

} else if (!strcmp(name, "mu")) {

if (TYPEOF(el) != REALSXP)

error("Cbirthdeath(): mu must be a real value");

mu = REAL(el)[0];

} else if (!strcmp(name, "s")) {

if (TYPEOF(el) != INTSXP)

error("Cbirthdeath(): s must be an integer value");

s = INTEGER(el)[0];

} else {

error("Cbirthdeath(): unrecognized argument name `%s'", name);

}

}

Rprintf("phi=%g, mu=%g, s=%d\n", phi, mu, s);
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/* allocate memory for the two return vectors */

PROTECT(eventTimesSXP=allocVector(REALSXP, s));

PROTECT(popVecSXP=allocVector(INTSXP, s));

/* then allocate memory for the list of length 2 */

PROTECT(returnList=allocVector(VECSXP, 2));

/* put the two vectors into the list */

SET_VECTOR_ELT(returnList, 0, eventTimesSXP);

SET_VECTOR_ELT(returnList, 1, popVecSXP);

/* get pointers to the two vectors' actual data */

eventTimes = REAL(eventTimesSXP);

popVec = INTEGER(popVecSXP);

birthProb = phi/(phi+mu); /* probability a given event is a birth */

eventTimes[0] = 0.0; popVec[0] = 100;

GetRNGstate();

for (i=0; i < s-1; i++) {

/* Inter-event time: generate a random value from exponential

* distribution with mean 1/(popSize*(phi+mu)) */

r = rexp(1.0/(popVec[i]*(phi+mu)));

eventTimes[i+1] = eventTimes[i] + r;

if (unif_rand() < birthProb)

popVec[i+1] = popVec[i] + 1; /* event is a birth */

else

popVec[i+1] = popVec[i] - 1; /* event is a death */

}

PutRNGstate();

UNPROTECT(3); /* no more need to protect the 3 things we allocated */

return(returnList);

}

For more information about .C, .Call, .External, and interfacing with C and other
languages in general, consult the comprehensive reference [24].

14.2 MATLAB

14.2.1 Example and overview

A MATLAB-compatible C function to perform the shuffle is below, along with an additional
mandatory function called a gateway function. The gateway function checks and manages
arguments to the C function, and allocates memory for return values. In many ways, this is
similar to R’s .Callmechanism for interfacing with C functions, as arguments to the function
are encapsulated within special data structures defined by MATLAB. See Reference [13] for
more information.

Cshuffle.c
#include "mex.h"

#include <stdlib.h> /* for declaration of random() */

#include <math.h> /* for declaration of floor() */
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/* Permute the elements of a vector using the Fisher-Yates shuffle */

void Cshuffle(double *outv, double *v, int n)

{

int i, j;

double tmpDbl;

for (i=0; i < n; i++)

outv[i] = v[i];

for (i=n; i > 1; i--) {

/* Generate a random integer from 0 to i-1

* (not from 1 to i, because vectors in C use 0-based indexing). */

j = (int)floor(((double) random()) / (RAND_MAX + 1.0) * i);

/* swap outv[j] with the last element of outv */

tmpDbl = outv[j]; outv[j] = outv[i-1]; outv[i-1] = tmpDbl;

}

}

/* The gateway function */

void mexFunction( int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

{

int n;

unsigned int rseed;

double *v, *outv;

/* Check for proper number of arguments */

if ((nrhs < 1) || (nrhs > 3))

mexErrMsgIdAndTxt("RMatlab:Cshuffle:nrhs",

"One--three arguments needed: vector n randseed");

if (nrhs == 1)

/* if length of vector wasn't specified, use entire vector */

n = mxGetNumberOfElements(prhs[0]);

else {

/* Make sure second argument is a real scalar */

if (!mxIsDouble(prhs[1]) || mxIsComplex(prhs[1]) ||

mxGetNumberOfElements(prhs[1]) != 1)

mexErrMsgIdAndTxt("RMatlab:Cshuffle:invalidArgument",

"Second argument must be a real scalar");

/* Get length of vector */

n = (int)mxGetScalar(prhs[1]);

if (nrhs == 3) {

/* Make sure second argument is a real scalar */

if (!mxIsDouble(prhs[2]) || mxIsComplex(prhs[2]) ||

mxGetNumberOfElements(prhs[2]) != 1)

mexErrMsgIdAndTxt("RMatlab:Cshuffle:invalidArgument",

"Third argument must be a real scalar");

rseed = (unsigned int)mxGetScalar(prhs[2]);

srandom(rseed);

}

}
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if (nlhs > 1)

mexErrMsgIdAndTxt("RMatlab:Cshuffle:nlhs",

"Only one return value needed");

/* Make sure first argument is a vector, not a matrix */

if (mxGetM(prhs[0]) != 1 && mxGetN(prhs[0]) != 1)

mexErrMsgIdAndTxt("RMatlab:Cshuffle:1stArgNotVector",

"First argument must be a vector");

/* Create pointer to data in input vector */

v = mxGetPr(prhs[0]);

/* Create row vector for return argument */

plhs[0] = mxCreateDoubleMatrix(1,n,mxREAL);

outv = mxGetPr(plhs[0]);

Cshuffle(outv,v,n);

}

The file can be compiled by entering the following command at the MATLAB prompt
(just be sure the working directory is the one containing the C file):

MATLAB
mex Cshuffle.c

This will produce a file with a new suffix which depends on your operating system and
processor architecture; on my machine, it produces a file named Cshuffle.mexmaci64.

Your function can then be called like any other MATLAB function. For example, to
permute the values from 1 to 20, you can simply do the following:

MATLAB
v = 1:20; n = length(v);

permutedv = Cshuffle(v,n);

Code similar to that shown below was used to measure the time needed to repeatedly
permute a set of values in three different ways:

1. Cshuffle(v,n).

2. Cshuffle2(v,n) (see Page 194).

3. The MATLAB command randperm(n).

As shown in Table 14.4, when permuting the integers from 1 to 2 × 105 1,000 times,
the Cshuffle code runs in approximately 14% of the time (User CPU time) compared with
performing the equivalent task via randperm(n).

MATLAB
iters = 1000; v=1:200000; n=length(v);

t1=cputime;

tic

for i = 1:iters

% uncomment one of the following lines to time one of the methods

tmp = Cshuffle(v,n);

% tmp = Cshuffle2(v,n);



Calling C 191

Raw times Relative to randperm
Method User Elapsed User Elapsed

Cshuffle: 3.65 3.64 0.139 0.221
Cshuffle2: 554 553 21.1 33.5
randperm: 26.2 16.5 1 1

TABLE 14.4
Timing results (in seconds) of permuting the integers from 1 to 2 × 105, repeated 1,000
times, using three different methods. Raw times are given in seconds; the times relative to
using randperm are also shown, indicating that the C code can run in as little as 14% the
time of MATLAB’s randperm function for large vectors.

% tmp = randperm(n);

end

toc

t2=cputime; disp(sprintf('CPU time = %5.3g', t2-t1))

Things to note here are:

1. The main MATLAB data structure available to your C code is the mxArray.
The pointer to the actual data within an mxArray variable m can be obtained
via dblPtr = mxGetPr(&m), where dblPtr is of type double *.

2. Your gateway function receives four parameters: (1) nlhs, the Number of Left-
Hand Sides (i.e., the number of return values); (2) plhs, a vector of pointers to
mxArray items where the return values can be stored; (3) nrhs, the Number of
Right-Hand Sides (i.e., the number of arguments provided to your function); and
(4) prhs, a vector of pointers to mxArray items containing those arguments.

3. The values in prhs should be considered read-only. Do not modify them, as doing
so may have bad results.

4. The actual values within a matrix in an mxArray are stored in column-by-
column order. That is, for a 3× 3 matrix, dblPtr[0] refers to the element in row
1, column 1, dblPtr[3] refers to the element in row 1 column 2, and so on.

5. You must allocate memory for any values you wish to return, typically with
mxCreateDoubleMatrix(m, n, mxREAL) to create an m × n matrix with
double-precision real values. You store the return values of the above function
into plhs[0], plhs[1], etc. You can then use mxGetPr to obtain pointers to the
actual data for your newly created variables, to store the return values there.

6. MATLAB does its own memory management. Avoid using C functions like calloc,
malloc, realloc, and free for dynamic memory allocation; instead, use mxCal-
loc, mxMalloc, mxRealloc, and mxFree to avoid unexpected results.

7. Your gateway function must be named mexFunction, but any additional func-
tions which do the “real” work may have any legal C function names, and there
may be several such functions. For example, if your file myfunc.c contains C
functions mexFunction, func1, and func2, at the MATLAB prompt, you can
only call myfunc — you cannot call func1, etc. directly.

8. It is possible to enable your C code to use 64-bit indexing so that it can work
with arrays too large for 32-bit indexing. To do so, use mwSize and mwIndex
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(rather than int) as the data types of variables used to describe the size of an
array or to index an array, and use the -largeArrayDims switch with the mex

command when compiling.

14.2.2 Printing, warnings, and errors

Use the mexPrintf() function to print messages from inside your C code. This function
behaves like printf(); you can either give it a simple string, or a formatting string followed
by additional arguments.

To display a warning, you can call mexWarnMsgIdAndTxt("ErrorID", "Some warning

text"). To print an error and exit your MEX code, call mexErrMsgIdAndTxt("ErrorID",
"Some error text"). For both routines, the first string should be what is called a “message
identifier,” a tag identifying the source of error to MATLAB that can be used with various
error reporting tools. It should consist of a “component:mnemonic” pair separated by a
colon. More than one component can be used, separated by additional colons. For example,
the message identifier “RMatlab:Cshuffle:nrhs” was used in Cshuffle.c to flag errors in the
number of right-hand sides (input parameters). All substrings within the message identifier
must begin with a letter. Subsequent characters can be letters, numbers, or underscores,
and white space is not allowed.

The example below is the MATLAB equivalent of the R testprint.c function from
Page 182.

testprint.c
#include "mex.h"

void

mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

int n;

n = (int)mxGetScalar(prhs[0]);

if (n % 2)

mexWarnMsgIdAndTxt("RMatlab:testprint:argAttributes",

"n was odd; it had value %d\n", n);

if (n < 0)

mexErrMsgIdAndTxt("RMatlab:testprint:argAttributes",

"n was negative! It had value %d\n", n);

mexPrintf("n=%d\n", n);

}

14.2.3 Random numbers

As in R, MATLAB maintains its own seed or state for its random number generators, which
is independent of that used by the standard C library’s random function. This is why the
Cshuffle function was written to accept an optional third argument, which is used as a
seed for the random number generator. It could also be modified to use the clock to see the
random number generator if a special seed is provided, using code like that on Page 182.

There is no documented public API for calling MATLAB’s internal private random
number generators directly from within C; however, one can call any MATLAB function
via the mexCallMATLAB(nlhs, plhs, nrhs, prhs, funcName) function. Arguments
similar to those for the gateway routine must be used. For example, the following bit of code
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will generate an n× 1 vector of random values from the exponential distribution with mean
µ by calling MATLAB’s exprnd function, print the generated values, and then compute
and print their mean. A 1 × 1 matrix (i.e., a scalar) is set up with the desired mean, and
then a 1× 2 vector is initialized with the dimensions of the random vector to be generated.
An mxArray is used to hold the results of calling exprnd, and another one for the results
of calling mean. Note that memory is dynamically allocated to store the results of calling
mexCallMATLAB; the memory is deallocated when the MEX file exits. You can use
mxDestroyArray to manually free the memory earlier if desired.

testmexcall.c
#include "mex.h"

/* Two optional parameters can be given:

* n: how many exponentially-distributed random values to generate

* mu: their mean

* Default values: n=5, mu=2.0

*/

void

mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

double mu=2.0, *dblPtr;

int n=5, i;

mxArray *muArray, *sizeArray, *randValsMxArray, *rhs[2], *meanMxArray;

if (nrhs >= 1) {

n = (int)mxGetScalar(prhs[0]);

if (nrhs == 2)

mu = mxGetScalar(prhs[1]);

if (nrhs > 2)

mexErrMsgIdAndTxt("RMatlab:testmexcall:nrhs",

"One or two arguments needed: n mu");

}

muArray = mxCreateDoubleMatrix(1, 1, mxREAL);

dblPtr = mxGetPr(muArray);

dblPtr[0] = mu;

sizeArray = mxCreateDoubleMatrix(1, 2, mxREAL);

dblPtr = mxGetPr(sizeArray);

dblPtr[0] = (double)n; dblPtr[1] = 1.0;

rhs[0] = muArray; rhs[1] = sizeArray;

mexCallMATLAB(1, &randValsMxArray, 2, rhs, "exprnd");

dblPtr = mxGetPr(randValsMxArray);

for (i=0; i < n; i++)

mexPrintf(" value = %g\n", dblPtr[i]);

mexCallMATLAB(1, &meanMxArray, 1, &randValsMxArray, "mean");

dblPtr = mxGetPr(meanMxArray);

mexPrintf("mean = %g\n", dblPtr[0]);

}

Using mexCallMATLAB to generate random numbers is highly discouraged because
of the large performance cost. An alternative version of theCshuffle function is given below,
which uses MATLAB’s function randi to generate the random values. The mexFunction
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gateway function is identical to the earlier version, and is not shown again here. This version
runs approximately 25 times slower than the original version of the code on Page 188 which
uses the random number generator from the C library. If you need to generate random
values from different probability distributions in your C code and you are at all concerned
with performance, you are much better off using standard techniques (for example, see
References [5, 23]) to produce the values directly from within C than calling MATLAB
code to produce them. If you know how many random values you will need ahead of time
(or have a reasonable upper bound for the number), another alternative is to construct a
vector of random values in MATLAB and pass that vector as a parameter to the C function.
You can either produce a vector of values from a known probability distribution, or just
produce uniform random values and then let the C code transform them into values from
the desired distribution(s); for example, the Cbirthdeath.c function below transforms
uniform random values (generated within the C code itself) into random values following
the exponential distribution.

Cshuffle2.c
void Cshuffle(double *outv, double *v, int n)

{

int i, j;

double tmpDbl, *imaxPtr, *retValPtr;

mxArray *imaxMxArray, *retValMxArray;

imaxMxArray = mxCreateDoubleMatrix(1,1, mxREAL);

imaxPtr = mxGetPr(imaxMxArray);

for (i=0; i < n; i++)

outv[i] = v[i];

for (i=n; i > 1; i--) {

/* Generate a random integer from 0 to i-1

* (not from 1 to i, because vectors in C use 0-based indexing). */

*imaxPtr = (double)i;

mexCallMATLAB(1, &retValMxArray, 1, &imaxMxArray, "randi");

retValPtr = mxGetPr(retValMxArray);

/* subtract 1 since randi gives vals from 1..i */

j = (int)(*retValPtr) - 1;

mxDestroyArray(retValMxArray); /* free memory from mexCallMATLAB */

/* swap outv[j] with the last element of outv */

tmpDbl = outv[j]; outv[j] = outv[i-1]; outv[i-1] = tmpDbl;

}

}

A C version of the birth-death simulation which uses C’s random() function to generate
all of its needed random values is below.

Cbirthdeath.c
#include "mex.h"

#include <stdlib.h> /* for declaration of random() */

#include <math.h> /* for declaration of log() */

/*

* phi, mu, s are input parameters.

* eventTimes, popVec are used to return data

*/

void birthdeath(double phi, double mu, int s,
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double *eventTimes, double *popVec)

{

int i;

double u, r, birthProb;

birthProb = phi/(phi+mu);

eventTimes[0] = 0.0; popVec[0] = 100;

for (i=0; i < s-1; i++) {

/* generate a random value from exponential distribution

* with mean 1/(popSize*(phi+mu)) */

/* First generate uniform (0,1] value, being careful

* not to generate the value 0 */

u = ((double) random()+1.0) / (double)(RAND_MAX+1.0);

r = -1.0/(popVec[i]*(phi+mu))*log(u);

if (random()/(double)RAND_MAX < birthProb)

popVec[i+1] = popVec[i] + 1;

else

popVec[i+1] = popVec[i] - 1;

eventTimes[i+1] = eventTimes[i] + r;

}

}

/* The gateway function.

* Arguments are phi, mu, steps

* Return values are eventTimes, popVec

*/

void mexFunction( int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

{

int s;

unsigned int rseed;

double phi, mu, *eventTimes, *popVec;

/* Check for proper number of arguments */

if ((nrhs < 3) || (nrhs > 4))

mexErrMsgIdAndTxt("RMatlab:birthdeath:nrhs",

"Three input args are needed, and 4th optional: phi mu s [seed]");

if (nlhs != 2)

mexErrMsgIdAndTxt("RMatlab:birthdeath:nlhs",

"Two output values are needed");

phi = mxGetScalar(prhs[0]);

mu = mxGetScalar(prhs[1]);

s = (int)mxGetScalar(prhs[2]);

if (nrhs == 4) {

rseed = (unsigned int)mxGetScalar(prhs[3]);

srandom(rseed);

}

plhs[0] = mxCreateDoubleMatrix(1,s,mxREAL);

plhs[1] = mxCreateDoubleMatrix(1,s,mxREAL);
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eventTimes = mxGetPr(plhs[0]);

popVec = mxGetPr(plhs[1]);

birthdeath(phi, mu, s, eventTimes, popVec);

}

Here is the equivalent MATLAB code:

birthdeath.m
function [eventTimes,popVec]=birthdeath(phi, mu, s)

birthProb = phi/(phi+mu);

eventTimes = zeros(1,s); popVec = zeros(1,s);

eventTimes(1) = 0.0; popVec(1) = 100;

for i = 1:(s-1)

r = exprnd(1/(popVec(i)*(phi+mu)));

eventTimes(i+1) = eventTimes(i) + r;

if (rand < birthProb)

popVec(i+1) = popVec(i) + 1;

else

popVec(i+1) = popVec(i) - 1;

end

end

And finally, a C version which uses mexCallMATLAB to use MATLAB’s random
number generators to produce the needed values from the exponential and continuous
uniform distributions. The mexFunction gateway function is identical with the one in
Cbirthdeath.c, and is not shown again here.

Cbirthdeath2.c
void birthdeath(double phi, double mu, int s,

double *eventTimes, double *popVec)

{

int i;

double u, r, birthProb, *expParmPtr;

mxArray *expParmMxArray, *randValMxArray;

birthProb = phi/(phi+mu);

eventTimes[0] = 0.0; popVec[0] = 100;

expParmMxArray = mxCreateDoubleMatrix(1, 1, mxREAL);

expParmPtr = mxGetPr(expParmMxArray);

for (i=0; i < s-1; i++) {

/* generate a random value from exponential distribution

* with mean 1/(popSize*(phi+mu)) */

expParmPtr[0] = 1.0/(popVec[i]*(phi+mu));

mexCallMATLAB(1, &randValMxArray, 1, &expParmMxArray, "exprnd");

r = mxGetScalar(randValMxArray);

mxDestroyArray(randValMxArray);

eventTimes[i+1] = eventTimes[i] + r;

mexCallMATLAB(1, &randValMxArray, 0, NULL, "rand");

r = mxGetScalar(randValMxArray);

mxDestroyArray(randValMxArray);

if (r < birthProb)
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Raw times Times faster than MATLAB code
Method User Elapsed User Elapsed

Cbirthdeath 0.14 0.141 600 594
Cbirthdeath2 104 104 0.805 0.805
birthdeath.m 84 84 1 1

TABLE 14.5
Timing results (in seconds) of simulating the birth-death process for s = 3×106 events with
φ = 1.1 and µ = 1 using three different methods. The C code (with native random number
generation) runs 600 times as quickly as the MATLAB version.

popVec[i+1] = popVec[i] + 1;

else

popVec[i+1] = popVec[i] - 1;

}

}

Timings of the C and MATLAB versions of the birth-death simulation are shown in
Table 14.5. The first C version of the simulation runs roughly 600 times faster than the
interpreted MATLAB code. However, note that using mexCallMATLAB to generate
the random values causes the C code to run even more slowly than the native MATLAB
simulation, further evidence that making many calls to MATLAB from C code is a poor
idea if performance is a main concern.

Finally, if you are considering using C to speed up your MATLAB code, you should
consider obtaining MATLAB Coder from The MathWorks. This produces C or C++ code
from MATLAB code, which lets you accelerate parts of your programs, or even build stand-
alone executables from them.
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