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CHAPTER 1

Background

There is a new concept emerging in the field of web development: using data visualizations as communication tools.
This concept is something that is already well established in other fields and departments. At the company where
you work, your finance department probably uses data visualizations to represent fiscal information both internally
and externally; just take a look at the quarterly earnings reports for almost any publicly traded company. They are
full of charts to show revenue by quarter, or year over year earnings, or a plethora of other historic financial data.
All are designed to show lots and lots of data points, potentially pages and pages of data points, in a single easily
digestible graphic.

Compare the bar chart in Google’s quarterly earnings report from back in 2007 (see Figure 1-1) to a subset of the
data it is based on in tabular format (see Figure 1-2).
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Figure 1-1. Google Q4 2007 quarterly revenue shown in a bar chart
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Figure 1-2. Similar earnings data in tabular form

The bar chart is imminently more readable. We can clearly see by the shape of it that earnings are up and
have been steadily going up each quarter. By the color-coding, we can see the sources of the earnings; and with the
annotations, we can see both the precise numbers that those color-coding represent and what the year over year
percentages are.

With the tabular data, you have to read labels on the left, line up the data on the right with those labels, do your
own aggregation and comparison, and draw your own conclusions. There is a lot more upfront work needed to take
in the tabular data, and there exists the very real possibility of your audience either not understanding the data
(thus creating their own incorrect story around the data) or tuning out completely because of the sheer amount of
work needed to take in the information.

It's not just the Finance department that uses visualizations to communicate dense amounts of data. Maybe your
Operations department uses charts to communicate server uptime, or your Customer Support department uses graphs
to show call volume. Whatever the case, it’s about time Engineering and Web Development got on board with this.

As a department, group, and industry we have a huge amount of relevant data that is important for us to first be
aware of so that we can refine and improve what we do; but also to communicate out to our stakeholders,
to demonstrate our successes or validate resource needs, or to plan tactical roadmaps for the coming year.

Before we can do this, we need to understand what we are doing. We need to understand what data visualizations
are, a general idea of their history, when to use them, and how to use them both technically and ethically.

What Is Data Visualization?

OK, so what exactly is data visualization? Data visualization is the art and practice of gathering, analyzing, and
graphically representing empirical information. They are sometimes called information graphics, or even just
charts and graphs. Whatever you call it, the goal of visualizing data is to tell the story in the data. Telling the story is
predicated on understanding the data at a very deep level, and gathering insight from comparisons of data points in
the numbers.

There exists syntax for crafting data visualizations, patterns in the form of charts that have an immediately known
context. We devote a chapter to each of the significant chart types later in the book.

Time Series Charts

Time series charts show changes over time. See Figure 1-3 for a time series chart that shows the weighted popularity
of the keyword “Data Visualization” from Google Trends (http://www.google.com/trends/).


http://www.google.com/trends/
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Figure 1-3. Time series of weighted trend for the keyword “Data Visualization” from Google Trends

Note that the vertical y axis shows a sequence of numbers that increment by 20 up to 100. These numbers represent
the weighted search volume, where 100 is the peak search volume for our term. On the horizontal x axis, we see years
going from 2007 to 2012. The line in the chart represents both axes, the given search volume for each date.

From just this small sample size, we can see that the term has more than tripled in popularity, from a low of 29
in the beginning of 2007 up to the ceiling of 100 by the end of 2012.

Bar Charts

Bar charts show comparisons of data points. See Figure 1-4 for a bar chart that demonstrates the search volume by
country for the keyword “Data Visualization,” the data for which is also sourced from Google Trends.
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Figure 1-4. Google Trends breakdown of search volume by region for keyword “Data Visualization”
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We can see the names of the countries on the y axis and the normalized search volume, from 0 to 100, on the
x axis. Notice, though, that no time measure is given. Does this chart represent data for a day, a month, or a year?
Also note that we have no context for what the unit of measure is. I highlight these points not to answer them
but to demonstrate the limitations and pitfalls of this particular chart type. We must always be aware that our
audience does not bring the same experience and context that we bring, so we must strive to make the stories
in our visualizations as self evident as possible.

Histograms

Histograms are a type of bar chart used to show the distribution of data or how often groups of information appear
in the data. See Figure 1-5 for a histogram that shows how many articles the New York Times published each year,
from 1980 to 2012, that related in some way to the subject of data visualization. We can see from the chart that the
subject has been ramping up in frequency since 2009.
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Figure 1-5. Histogram showing distribution of NY Times articles about data visualization
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Data Maps

Data maps are used to show the distribution of information over a spatial region. Figure 1-6 shows a data map used
to demonstrate the interest in the search term “Data Visualization” broken out by U.S. states.

Figure 1-6. Data map of U.S. states by interest in “Data Visualization” (data from Google Trends)

In this example, the states with the darker shades indicate a greater interest in the search term. (This data also
is derived from Google Trends, for which interest is demonstrated by how frequently the term “Data Visualization”
is searched for on Google.)

Scatter Plots

Like bar charts, scatter plots are used to compare data, but specifically to suggest correlations in the data, or where
the data may be dependent or related in some way. See Figure 1-7, in which we use data from Google Correlate,
(http://www.google.com/trends/correlate), to look for a relationship between search volume for the keyword
“What is Data Visualization” and the keyword “How to Create Data Visualization.”


http://www.google.com/trends/correlate
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Figure 1-7. Scatter plot examining the correlation between search volume for terms related to “Data Visualization,
“How to Create” and “What is”

This chart suggests a positive correlation in the data, meaning that as one term rises in popularity the other also
rises. So what this chart suggests is that as more people find out about data visualization, more people want to learn
how to create data visualizations.

The important thing to remember about correlation is that it does not suggest a direct cause—correlation is not
causation.

History

If we're talking about the history of data visualization, the modern conception of data visualization largely started with
William Playfair. William Playfair was, among other things, an engineer, an accountant, a banker, and an all-around
Renaissance man who single handedly created the time series chart, the bar chart, and the bubble chart. Playfair’s
charts were published in the late eighteenth century into the early nineteenth century. He was very aware that his
innovations were the first of their kind, at least in the realm of communicating statistical information, and he spent a
good amount of space in his books describing how to make the mental leap to seeing bars and lines as representing
physical things like money.

Playfair is best known for two of his books: the Commercial and Political Atlas and the Statistical Breviary. The
Commercial and Political Atlas was published in 1786 and focused on different aspects of economic data from national
debt, to trade figures, and even military spending. It also featured the first printed time series graph and bar chart.
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His Statistical Breviary focused on statistical information around the resources of the major European countries
of the time and introduced the bubble chart.

Playfair had several goals with his charts, among them perhaps stirring controversy, commenting on the
diminishing spending power of the working class, and even demonstrating the balance of favor in the import and
export figures of the British Empire, but ultimately his most wide-reaching goal was to communicate complex
statistical information in an easily digested, universally understood format.

Note Both books are back in print relatively recently, thanks to Howard Wainer, lan Spence, and Cambridge
University Press.

Playfair had several contemporaries, including Dr. John Snow, who made my personal favorite chart: the cholera
map. The cholera map is everything an informational graphic should be: it was simple to read; it was informative;
and, most importantly, it solved a real problem.

The cholera map is a data map that outlined the location of all the diagnosed cases of cholera in the outbreak
of London 1854 (see Figure 1-8). The shaded areas are recorded deaths from cholera, and the shaded circles on the
map are water pumps. From careful inspection, the recorded deaths seemed to radiate out from the water pump on
Broad Street.

Figure 1-8. John Snow’s cholera map
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Dr. Snow had the Broad Street water pump closed, and the outbreak ended.

Beautiful, concise, and logical.

Another historically significant information graphic is the Diagram of the Causes of Mortality in the Army in the
East, by Florence Nightingale and William Farr. This chart is shown in Figure 1-9.
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Figure 1-9. Florence Nightingale and William Farr’s Diagram of the Causes of Mortality in the Army in the East

Nightingale and Farr created this chart in 1856 to demonstrate the relative number of preventable deaths and,
at a higher level, to improve the sanitary conditions of military installations. Note that the Nightingale and Farr
visualization is a stylized pie chart. Pie charts are generally a circle representing the entirety of a given data set with
slices of the circle representing percentages of a whole. The usefulness of pie charts is sometimes debated because it
can be argued that it is harder to discern the difference in value between angles than it is to determine the length of
a bar or the placement of a line against Cartesian coordinates. Nightingale seemingly avoids this pitfall by having not
just the angle of the wedge hold value but by also altering the relative size of the slices so they eschew the confines of
the containing circle and represent relative value.

All the above examples had specific goals or problems that they were trying to solve.

Note A rich comprehensive history is beyond the scope of this book, but if you are interested in a thoughtful,
incredibly researched analysis, be sure to read Edward Tufte’s The Visual Display of Quantitative Information.

Modern Landscape

Data visualization is in the midst of a modern revitalization due in large part to the proliferation of cheap storage
space to store logs, and free and open source tools to analyze and chart the information in these logs.

8
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From a consumption and appreciation perspective, there are websites that are dedicated to studying and talking
about information graphics. There are generalized sites such as FlowingData that both aggregate and discuss data
visualizations from around the web, from astrophysics timelines to mock visualizations used on the floor of Congress.

The mission statement from the FlowingData About page (http://flowingdata.com/about/) is appropriately
the following: “FlowingData explores how designers, statisticians, and computer scientists use data to understand
ourselves better—mainly through data visualization.”

There are more specialized sites such as quantifiedself.com that are focused on gathering and visualizing
information about oneself. There are even web comics about data visualization, the quintessential one being
xkcd. com, run by Randall Munroe. One of the most famous and topical visualizations that Randall has created thus far
is the Radiation Dose Chart. We can see the Radiation Dose Chart in Figure 1-10 (it is available in high resolution here:
http://xkcd.com/radiation/).
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Figure 1-10. Radiation Dose Chart, by Randall Munroe. Note that the range in scale being represented in this
visualization as a single block in one chart is exploded to show an entirely new microcosm of context and information.
This pattern is repeated over and over again to show an incredible depth of information
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This chart was created in response to the Fukushima Daiichi nuclear disaster of 2011, and sought to clear up
misinformation and misunderstanding of comparisons being made around the disaster. It did this by demonstrating the
differences in scale for the amount of radiation from sources such as other people or a banana, up to what a fatal dose of
radiation ultimately would be—how all that compared to spending just ten minutes near the Chernobyl meltdown.

Over the last quarter of a century, Edward Tufte, author and professor emeritus at Yale University, has been
working to raise the bar of information graphics. He published groundbreaking books detailing the history of data
visualization, tracing its roots even further back than Playfair, to the beginnings of cartography. Among his principles
is the idea to maximize the amount of information included in each graphic—both by increasing the amount of
variables or data points in a chart and by eliminating the use of what he has coined chartjunk. Chartjunk, according to
Tufte, is anything included in a graph that is not information, including ornamentation or thick, gaudy arrows.

Tufte also invented the sparkline, a time series chart with all axes removed and only the trendline remaining to
show historic variations of a data point without concern for exact context. Sparklines are intended to be small enough
to place in line with a body of text, similar in size to the surrounding characters, and to show the recent or historic
trend of whatever the context of the text is.

Why Data Visualization?

In William Playfair’s introduction to the Commercial and Political Atlas, he rationalizes that just as algebra is the
abbreviated shorthand for arithmetic, so are charts a way to “abbreviate and facilitate the modes of conveying
information from one person to another” Almost 300 years later, this principle remains the same.

Data visualizations are a universal way to present complex and varied amounts of information, as we saw in our
opening example with the quarterly earnings report. They are also powerful ways to tell a story with data.

Imagine you have your Apache logs in front of you, with thousands of lines all resembling the following:

127.0.0.1 - - [10/Dec/2012:10:39:11 +0300] "GET / HTTP/1.1" 200 468 "-" "Mozilla/5.0 (X11; U;
Linux 1686; en-US; rv:1.8.1.3) Gecko/20061201 Firefox/2.0.0.3 (Ubuntu-feisty)"
127.0.0.1 - - [10/Dec/2012:10:39:11 +0300] "GET /favicon.ico HTTP/1.1" 200 766 "-" "Mozilla/5.0

(X11; U; Linux i686; en-US; rv:1.8.1.3) Gecko/20061201 Firefox/2.0.0.3 (Ubuntu-feisty)"

Among other things, we see IP address, date, requested resource, and client user agent. Now imagine this
repeated thousands of times—so many times that your eyes kind of glaze over because each line so closely resembles
the ones around it that it’s hard to discern where each line ends, let alone what cumulative trends exist within.

By using some analysis and visualization tools such as R, or even a commercial product such as Splunk, we can
artfully pull out all kinds of meaningful and interesting stories out of this log, from how often certain HTTP errors occur
and for which resources, to what our most widely used URLs are, to what the geographic distribution of our user base is.

This is just our Apache access log. Imagine casting a wider net, pulling in release information, bugs and
production incidents. What insights we could gather about what we do: from how our velocity impacts our defect
density to how our bugs are distributed across our feature sets. And what better way to communicate those findings
and tell those stories than through a universally digestible medium, like data visualizations?

The point of this book is to explore how we as developers can leverage this practice and medium as part of
continual improvement—both to identify and quantify our successes and opportunities for improvements, and more
effectively communicate our learning and our progress.

Tools

There are a number of excellent tools, environments, and libraries that we can use both to analyze and visualize our
data. The next two sections describe them.

10
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Languages, Environments, and Libraries

The tools that are most relevant to web developers are Splunk, R, and the D3 JavaScript library. See Figure 1-11 for a
comparison of interest over time for them (from Google Trends).

Explore trends Interest over time

Hot searches The number 100 represents the peak search volume News headlines

Search terms ~

* I Splunk
x I R Language

D3,js
+ Add term
~ Other comparisons
@ Search terms
Locations

Time ranges

Figure 1-11. Google Trends analysis of interest over time in Splunk, R, and D3

From the figure we can see that R has had a steady consistent amount of interest since 200; Splunk had an
introduction to the chart around 2005, had a spike of interest around 2006, and had steady growth since then.

As for D3, we see it just start to peak around 2011 when it was introduced and its predecessor Protovis was sunsetted.

Let’s start with the tool of choice for many developers, scientists, and statisticians: the R language. We have a
deep dive into the R environment and language in the next chapter, but for now it’s enough to know that it is an open
source environment and language used for statistical analysis and graphical display. It is powerful, fun to use, and,
best of all, it is free.

Splunk has seen a tremendous steady growth in interest over the last few years—and for good reason. It is easy to
use once it’s set up, scales wonderfully, supports multiple concurrent users, and puts data reporting at the fingertips of
everyone. You simply set it up to consume your log files; then you can go into the Splunk dashboard and run reports on
key values within those logs. Splunk creates visualizations as part of its reporting capabilities, as well as alerting. While
Splunk is a commercial product, it also offers a free version, available here: http://www.splunk.com/download.

D3 is a JavaScript library that allows us to craft interactive visualizations. It is the official follow-up to Protovis.
Protovis was a JavaScript library created in 2009 by Stanford University’s Stanford Visualization Group. Protovis was
sunsetted in 2011, and the creators unveiled D3. We explore the D3 library at length in Chapter 4.

Analysis Tools

Aside from the previously mentioned languages and environments, there are a number of analysis tools available
online.

A great hosted tool for analysis and research is Google Trends. Google Trends allows you to compare trends on
search terms. It provides all kinds of great statistical information around those trends, including comparing their
relative search volume (see Figure 1-12), the geographic area those trends are coming from (see Figure 1-13), and
related keywords.

11
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Web Search Interest: "data scientist”, "computer scientist”. Worldwide, 2004 - present.
Trends

G -

Explore trends Interest overtime ~

Hot searches The number 100 represents the peak search volume News headlines Forecast 7

Search terms 7 1o

x I "data scientist" =

x I "computer scier
+ Add term

» Other comparisons

Limit to

Web Search

Figure 1-12. Google Trends for the terms “data scientist” and “computer scientist” over time; note the interest in the
term “data scientist” growing rapidly from 2011 on to match the interest in the term “‘computer scientist”
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Figure 1-13. Google Trends data map showing geographic location where interest in the key words is originating
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Another great tool for analysis is Wolfram|Alpha (http://wolframalpha.com). See Figure 1-14 for a screenshot of
the Wolfram|Alpha homepage.

& WolframAlpha zre.
p

Enter what you want to calculate or know about:

Figure 1-14. Home page for Wolfram|Alpha

Wolfram|Alpha is not a search engine. Search engines spider and index content. Wolfram|Alpha is instead a
Question Answering (QA) engine that parses human readable sentences with natural language processing and
responds with computed results. Say, for example, you want to search for the speed of light. You might go to the
Wolfram|Alpha site and type in “What is the speed of light?” Remember that it uses natural language processing to
parse your search query, not the keyword lookup.

The results of this query can be seen in Figure 1-15. Wolfram|Alpha essentially looks up all the data it has
around the speed of light and presents it in a structured, categorized fashion. You can also export the raw data for
each result.

13
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& WolframAlph
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Figure 1-15. Wolfram|Alpha results for query What is the speed of light

Process Overview

So we understand what data visualization is, have a high-level understanding of the history of it and an idea of
the current landscape. We're beginning to get an inkling about how we can start to use this in our world. We know
some of the tools that are available to us to facilitate the analysis and creation of our charts. Now let’s look at the

process involved.

14
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Creating data visualizations involves four core steps:
1. Identify a problem.
2. Gather the data.
3. Analyze the data.
4. Visualize the data.

Let’s walk through each step in the process and re-create one of the previous charts to demonstrate the process.

Identify a Problem

The very first step is to identify a problem we want to solve. This can be almost anything—from something as
profound and wide-reaching as figuring out why your bug backlog doesn’t seem to go down and stay down, to seeing
what feature releases over a given period in time caused the most production incidents, and why.

For our example, let’s re-create Figure 1-5 and try to quantify the interest in data visualization over time as
represented by the number of New York Times articles on the subject.

Gather Data

We have an idea of what we want to investigate, so let’s dig in. If you are trying to solve a problem or tell a story around
your own product, you would of course start with your own data—maybe your Apache logs, maybe your bug backlog,
maybe exports from your project tracking software.

Note If you are focusing on gathering metrics around your product and you don’t already have data handy, you need to
invest in instrumentation. There are many ways to do this, usually by putting logging in your code. At the very least, you want to
log error states and monitor those, but you may want to expand the scope of what you track to include for debugging purposes
while still respecting both your user’s privacy and your company’s privacy policy. In my book, Pro JavaScript Performance:
Monitoring and Visualization, | explore ways to track and visualize web and runtime performance.

One important aspect of data gathering is deciding which format your data should be in (if you're lucky) or discovering
which format your data is available in. We’ll next be looking at some of the common data formats in use today.

JSON is an acronym that stands for JavaScript Object Notation. As you probably know, it is essentially a way to
send data as serialized JavaScript objects. We format JSON as follows:

[object]{
[attribute]: [value],
[method] : function(){},
[array]: [item, item]

Another way to transfer data is in XML format. XML has an expected syntax, in which elements can have attributes,
which have values, values are always in quotes, and every element must have a closing element. XML looks like this:

<parent attribute="value">
<child attribute="value">node data</child>
</parent>

Generally we can expect APIs to return XML or JSON to us, and our preference is usually JSON because as we can
see it is a much more lightweight option just in sheer amount of characters used.
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But if we are exporting data from an application, it most likely will be in the form of a comma separated value file,
or CSV. A CSV is exactly what it sounds like: values separated by commas or some other sort of delimiter:

valuei,value2,value3
value4,value5,value6

For our example, we’ll use the New York Times API Tool, available at http://prototype.nytimes.com/gst/
apitool/index.html. The API Tool exposes all the APIs that the New York Times makes available, including the Article
Search API, the Campaign Finance API, and the Movie Review API. All we need to do is select the Article Search API
from the drop-down menu, type in our search query or the phrase that we want to search for, and click “Make Request”.

This queries the API and returns the data to us, formatted as JSON. We can see the results in Figure 1-16.

£l Noth G Developer Network

APl Request Tool Return to Developer Network
Request URL
APIs
f = http://api.nytimes.com/sve/search/v1 farticle?format=json&query=Data+Visualization8api-key=2222
| Article Search API - Sl E i e
Article Search APl Documentation
Request Results
Requests ¢ -~
|
"Query - "offset": "0",
ey i "results": [ |
5 |
Fields * required "body": " |
MR. PENUMBRA'S 24-HOUR BOOKSTORE |
Search Query *
e . |
Darta Visualization By Robin Sloan
288 pages. Farrar, Straus & Giroux. $25. A man walks into a bookstore. He is young, smart, and charmilf}
Facets "byl : "By JANET MASLIN", |
date 0121108" |
title": "BOOKS OF THE TIMES; Google Aces Can’'t Defeat Bibliophiles", |
Begin Date [YYYYMMDD] "url": "http:\/\/www.nytimes.com\/2012%/11%/08\ /books\/mr-penumbras-24-hour-bookstore-by-robin-s|
|
b
{ |
"Graphic design is an art best served as ink on paper. Despite the inevitable transition
": "By STEVEN HELLER",
"20121021",
Flelds "VISUALS; Down to the Letters",
"url": "http:\/\/www.nytimes.com\/2012\/10\/21\/books\/review\/graphic-design-before-graphic-des
3y
Offset :
"body": "An air-conditioned data center at Sandia National Laboratories in Livermore, Calif., ha
"byline": "By JOHN MARKOFEP
"date": "20121008",
Rank i “BITS; Simulating a City OFf Android Phones",
| 4 url http:\/\/guery.nytimes.com\/gst\/fullpage.htnl?res=9C0OTEADT143BEI3BAISTSICIAI649DERE]"
i e
Response Format * {
(150N : i , the photographer and impresario of media projects, has tackled all sorts o
AE———————————— E LOHR
z Putting a Pace On the World Of Big Data",
€ Make Request ) "http:\/\/query.nytimes.com\/gst\/fullpage.html?res=980CEIDC1TI1FPII4A2575ACOAIG4IDERE]"
- TR b
#erecy Prim Resuls y 1
ES A Practical Guide to Graphics for Scientists and Engineers By Felice |4
alr

Figure 1-16. The NY Times API Tool

We can then copy and paste the returned JSON data to our own file or we could go the extra step to get an API
key so that we can query the API from our own applications.

For the sake of our example, we will save the JSON data to a file that we will name jsNYTimesData. The contents
of the file will be structured like so:

{

"offset": "0",
"results": [

{
"body": "BODY COPY",
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"byline": "By AUTHOR",

"date": "20121011",

"title": "TITLE",

"url": "http:\/\/www.nytimes.com\/foo.html"
b A

"body": "BODY COPY",

"byline": "By AUTHOR",

"date": "20121021",

"title": "TITLE",

"url": "http:\/\/www.nytimes.com\/bar.html"
}

1

"tokens": [
"JavaScript"

1,

"total": 2

}

Looking at the high-level JSON structure, we see an attribute named offset, an array named results, an array
named tokens, and another attribute named total. The offset variable is for pagination (what page full of results
we are starting with). The total variable is just what it sounds like: the number of results that are returned for our
query. It's the results array that we really care about; it is an array of objects, each of which corresponds to an article.

The article objects have attributes named body, byline, date, title, and url.

We now have data that we can begin to look at. That takes us to our next step in the process, analyzing our data.

DATA SCRUBBING

There is often a hidden step here, one that anyone who'’s dealt with data knows about: scrubbing the data. Often
the data is either not formatted exactly as we need it or, in even worse cases, it is dirty or incomplete.

In the best-case scenario in which your data just needs to be reformatted or even concatenated, go ahead and do
that, but be sure to not lose the integrity of the data.

Dirty data has fields out of order, fields with obviously bad information in them—think strings in ZIP codes—or
gaps in the data. If your data is dirty, you have several choices:

e You could drop the rows in question, but that can harm the integrity of the data—a good example
is if you are creating a histogram removing rows could change the distribution and change what
your results will be.

e The better alternative is to reach out to whoever administers the source of your data and try and
get a better version if it exists.

Whatever the case, if data is dirty or it just needs to be reformatted to be able to be imported into R, expect to
have to scrub your data at some point before you begin your analysis.

Analyze Data

Having data is great, but what does it mean? We determine it through analysis.
Analysis is the most crucial piece of creating data visualizations. It’s only through analysis that we can understand
our data, and it is only through understanding it that we can craft our story to share with others.
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To begin analysis, let’s import our data into R. Don’t worry if you aren’t completely fluent in R; we do a deep
dive into the language in the next chapter. If you aren’t familiar with R yet, don’t worry about coding along with the
following examples: just follow along to get an idea of what is happening and return to these examples after reading
Chapters 3 and 4.

Because our data is JSON, let’s use an R package called rjson. This will allow us to read in and parse JSON with
the fromJSON() function:

library(rjson)
json data <- fromJSON(paste(readLines("jsNYTimesData.txt"), collapse=""))

This is great, except the data is read in as pure text, including the date information. We can’t extract information
from text because obviously text has no contextual meaning outside of being raw characters. So we need to iterate
through the data and parse it to more meaningful types.

Let's create a data frame (an array-like data type specific to R that we talk about next chapter), loop through our
json_data object; and parse year, month, and day parts out of the date attribute. Let’s also parse the author name out
of the byline, and check to make sure that if the author’s name isn’t present we substitute the empty value with the
string “unknown”.

df <- data.frame()
for(n in json_data$results){
year <-substr(n$date, 0, 4)
month <- substr(n$date, 5, 6)
day <- substr(n$date, 7, 8)
author <- substr(n$byline, 4, 30)
title <- n$title
if(length(author) < 1){
author <- "unknown"
}

Next, we can reassemble the date into a MM/DD/YYYY formatted string and convert it to a date object:

datestamp <-paste(month, "/", day, "/", year, sep="")
datestamp <- as.Date(datestamp,"%m/%d/%Y")

And finally before we leave the loop, we should add this newly parsed author and date information to a
temporary row and add that row to our new data frame.

newrow <- data.frame(datestamp, author, title, stringsAsFactors=FALSE, check.rows=FALSE)
df <- rbind(df, newrow)

rownames (df) <- df$datestamp

Our complete loop should look like the following:

df <- data.frame()

for(n in json data$results){
year <-substr(n$date, 0, 4)
month <- substr(n$date, 5, 6)
day <- substr(n$date, 7, 8)
author <- substr(n$byline, 4, 30)
title <- n$title
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if(length(author) < 1){
author <- "unknown"
}

datestamp <-paste(month, "/", day, "/", year, sep="")

datestamp <- as.Date(datestamp,"%m/%d/%Y")

newrow <- data.frame(datestamp, author, title, stringsAsFactors=FALSE, check.rows=FALSE)
df <- rbind(df, newrow)

rownames(df) <- df$datestamp

Note that our example assumes that the data set returned has unique date values. If you get errors with this, you
may need to scrub your returned data set to purge any duplicate rows.

Once our data frame is populated, we can start to do some analysis on the data. Let’s start out by pulling just the
year from every entry, and quickly making a stem and leaf plot to see the shape of the data.

Note John Tukey created the stem and leaf plot in his seminal work, Exploratory Data Analysis. Stem and leaf plots
are quick, high-level ways to see the shape of data, much like a histogram. In the stem and leaf plot, we construct the
“stem” column on the left and the “leaf” column on the right. The stem consists of the most significant unique elements
in a result set. The leaf consists of the remainder of the values associated with each stem. In our stem and leaf plot below,
the years are our stem and R shows zeroes for each row associated with a given year. Something else to note is that
often alternating sequential rows are combined into a single row, in the interest of having a more concise visualization.

First, we will create a new variable to hold the year information:
yearlist <- as.POSIX1t(df$datestamp)$year+1900
If we inspect this variable, we see that it looks something like this:

> yearlist

[1] 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2011 2011 2011 2011 2011 2011
2011 2011 2011 2011 2011 2011 2011 2011 2011 2011

[30] 2011 2011 2011 2011 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2009 2009 2009 2009 2009
2009 2009 2008 2008 2008 2007 2007 2007 2007 2006

[59] 2006 2006 2006 2005 2005 2005 2005 2005 2005 2004 2003 2003 2003 2002 2002 2002 2002 2001 2001
2000 2000 2000 2000 2000 2000 1999 1999 1999 1999

[88] 1999 1999 1998 1998 1998 1997 1997 1996 1996 1995 1995 1995 1993 1993 1993 1993 1992 1991 1991
1991 1990 1990 1990 1990 1989 1989 1989 1988 1988

[117] 1988 1986 1985 1985 1985 1984 1982 1982 1981

That’s great, that’s exactly what we want: a year to represent every article returned. Next let’s create the stem and
leaf plot:

> stem(yearlist)

1980 | 0
1982 | 00
1984 | 0000
1986 | 0

1988 | 000000
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1990 | 0000000

1992 | 00000

1994 | 000

1996 | 0000

1998 | 000000000
2000 | 00000000

2002 | 0000000

2004 | 0000000

2006 | 00000000

2008 | 0000000000
2010 | 000000000000000000000000000000
2012 | 0000000000000

Very interesting. We see a gradual build with some dips in the mid-1990s, another gradual build with another dip
in the mid-2000s and a strong explosion since 2010 (the stem and leaf plot groups years together in twos).

Looking at that, my mind starts to envision a story building about a subject growing in popularity. But what
about the authors of these articles? Maybe they are the result of one or two very interested authors that have quite
a bit to say on the subject.

Let’s explore that idea and take a look at the author data that we parsed out. Let’s look at just the unique authors
from our data frame:

> length(unique(df$author))
[1] 81

We see that there are 81 unique authors or combination of authors for these articles! Just out of curiosity, let’s take
a look at the breakdown by author for each article. Let’s quickly create a bar chart to see the overall shape of the data
(the bar chart is shown in Figure 1-17):

plot(table(df$author), axes=FALSE)

Figure 1-17. Bar chart of number of articles by author to quickly visualize
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We remove the x and y axes to allow ourselves to focus just on the shape of the data without worrying too much
about the granular details. From the shape, we can see a large number of bars with the same value; these are authors
who have written a single article. The higher bars are authors who have written multiple articles. Essentially each
bar is a unique author, and the height of the bar indicates the number of articles they have written. We can see that
although there are roughly five standout contributors, most authors have average one article.

Note that we just created several visualizations as part of our analysis. The two steps aren’t mutually exclusive;
we often times create quick visualizations to facilitate our own understanding of the data. It’s the intention with which
they are created that make them part of the analysis phase. These visualizations are intended to improve our own
understanding of the data so that we can accurately tell the story in the data.

What we've seen in this particular data set tells a story of a subject growing in popularity, demonstrated by the
increasing number of articles by a variety of authors. Let’s now prepare it for mass consumption.

Note We are not fabricating or inventing this story. Like information archaeologists, we are sifting through the raw
data to uncover the story.

Visualize Data

Once we've analyzed the data and understand it (and I mean really understand the data to the point where we are
conversant in all the granular details around it), and once we've seen the story that the data has within, it is time to
share that story.

For the current example, we've already crafted a stem and leaf plot as well as a bar chart as part of our analysis.
However, stem and leaf plots are great for analyzing data, but not so great for messaging out about the findings. It is
not immediately obvious what the context of the numbers in a stem and leaf plot represents. And the bar chart we
created supported the main thesis of the story instead of communicating that thesis.

Since we want to demonstrate the distribution of articles by year, let’s instead use a histogram to tell the story:

hist(yearlist)

See Figure 1-18 for what this call to the hist() function generates.
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Histogram of yearlist
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Figure 1-18. Histogram of yearlist

This is a good start, but let’s refine this further. Let’s color in the bars, give the chart a meaningful title, and strictly
define the range of years.

hist(yearlist, breaks=(1981:2012), freq=TRUE, col="#CCCCCC", main="Distribution of Articles about
Data Visualization\nby the NY Times", xlab = "Year")

This produces the histogram that we see in Figure 1-5.

Ethics of Data Visualization

Remember Figure 1-3 from the beginning of this chapter where we looked at the weighted popularity of the search
term “Data Visualization”? By constraining the data to 2006 to 2012, we told a story of a keyword growing in
popularity, almost doubling in popularity over a six-year period. But what if we included more data points in our
sample and extended our view to include 2004? See Figure 1-19 for this expanded time series chart.
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Figure 1-19. Google Trends time series chart with expanded time range. Note that the additional data points give
a greater context and tell a different story

This expanded chart tells a different story: one that describes a dip in popularity between 2005 and 2009. This
expanded chart also demonstrates how easy it is to misrepresent the truth intentionally or unintentionally with data
visualizations.

Cite Sources

When Playfair first published his Commercial and Political Atlas, one of the biggest biases he had to battle was the
inherent distrust his peers had of charts to accurately represent data. He tried to overcome this by including data
tables in the first two editions of the book.

Similarly, we should always include our sources when distributing our charts so that our audience can go back
and independently verify the data if they want to. This is important because we are trying to share information, not
hoard it, and we should encourage others to inspect the data for themselves and be excited about the results.

Be Aware of Visual Cues

A side effect of using charts to function as visual shorthand is that we bring our own perspective and context to play
when we view charts. We are used to certain things, such as the color red being used to signify danger or flagging for
attention, or the color green signifying safety. These color connotations are part of a branch of color theory called
color harmony, and it’s worth at least being aware of what your color choices could be implying.

When in doubt, get a second opinion. When creating our graphics, we can often get married to a certain layout
or chart choice. This is natural because we have spent time invested in analyzing and crafting the chart. A fresh,
objective set of eyes should point out unintentional meanings or overly complex designs, and make for a more crisp
visualization.

Summary

This chapter took a look at some introductory concepts about data visualization, from conducting data gathering
and exploration, to looking at the charts that make up the visual patterns that define how we communicate with data.
We looked a little at the history of data visualization, from the early beginnings with William Playfair and Florence
Nightingale to modern examples such as xkcd. com.

While we saw a little bit of code in this chapter, in the next chapter we start to dig in to the tactics of learning R
and getting our hands dirty reading in data, shaping data, and crafting our own visualizations.
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CHAPTER 2

R Language Primer

In the last chapter, we defined what data visualizations are, looked at a little bit of the history of the medium, and explored
the process for creating them. This chapter takes a deeper dive into one of the most important tools for creating data
visualizations: R.

When creating data visualizations, R is an integral tool for both analyzing data and creating visualizations. We will use
R extensively through the rest of this book, so we had better level set first.

Ris both an environment and a language to run statistical computations and produce data graphics. It was created
by Ross Thaka and Robert Gentleman in 1993 while at University of Auckland. The R environment is the runtime
environment that you develop and run R in. The R language is the programming language that you develop in.

Ris the successor to the S language, a statistical programming language that came out of Bell Labs in 1976.

Getting to Know the R Console

Let’s start by downloading and installing R. R is available from the R Foundation at http://waw.r-project.org/.
See Figure 2-1 for a screenshot of the R Foundation homepage.
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The R Project for Statistical Computing
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Figure 2-1. Homepage of the R Foundation

It is available as a precompiled binary from the Comprehensive R Archive Network (CRAN) website:
http://cran.r-project.org/ (see Figure 2-2). We just select our operating system and what version of R we want,
and we can begin to download.
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The Comprehensive R Archive Network

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of
these versions of R:

¢ Download R for Linux
o Download R for MacOS X
¢ Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.
Source Code for all Platforms

‘Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The
sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to do it!

o The latest release (2012-10-26, Trick or Treat): R-2.15.2 tar.gz, read what's new in the latest version.
o Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).

+ Daily snapshots of current patched and development versions are available here. Please read about new features and bug fixes
before filing corresponding feature requests or bug reports.

+ Source code of older versions of R is available here.

« Conuibuted extension packages

Questions About R

« If you have questions about R like how to download and install the software, or what the license terms are, please read our
answers (o frequently asked questions before you send an email.

Figure 2-2. The CRAN website

Once the download is complete, we can run through the installer. See Figure 2-3 for a screenshot of the R installer
for the Mac OS.
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Welmmew\lte R 2.15.2 for Mac OS5 X 10.5 or higher (Leopard build) Installer

This installer will guide you through the steps necessary to setup R 2.15.2
(2012-10-26) -- "Trick or Treat" for Mac OS5 X 10.5 (Leopard) or higher on your
machine.

License

® Destinati

,r. Go Back \ ( Continue)
4

Figure 2-3. R installation on a Mac

Once we finish the installation we can launch the R application, and we are presented with the R console,
as shown in Figure 2-4.

®00 R Console =

e ] (Q~ Help Search B

R version 2.15.2 (2012-18-26) -- "Trick or Treat™

Copyright {C) 2012 The R Foundation for Statistical Computing

ISEN 3-980951-87-2

Platform: 1386-apple-darwin9.8.8/1386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license(D' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with mony contributors.

Type ‘contributors()’ for more information and

‘citation()' on how to cite R or R packages in publications.

Type ‘demo()' for some demos, ‘help()' for on-line help, or

"help.start()' for an HTML browser interface to help.

Type 'q()" to quit R.

[R.app GUI 1.53 (6335) 1386-apple-darwind.8.8]

[History restored from /Users/tbarke®@d/.Rapp.history]

>

Figure 2-4. The R console
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The Command Line

The R console is where the magic happens! It is a command-line environment where we can run R expressions. The best
way to get up to speed in R is to script in the console, a piece at a time, generally to try out what you're trying to do, and
tweak it until you get the results that you want. When you finally have a working example, take the code that does what
you want and save it as an R script file.

R script files are just files that contain pure R and can be run in the console using the source command:

> source("someRfile.R")

Looking at the preceding code snippet, we assume that the R script lives in the current work directory. The way
we can see what the current work directory is to use the getwd() function:

getwd()
] "/Users/tomjbarker”

>
[1

We can also set the working directory by using the setwd() function. Note that changes made to the working
directory are not persisted across R sessions unless the session is saved.

> setwd("/Users/tomjbarker/Downloads")
> getwd()
[1] "/Users/tomjbarker/Downloads"

Command History

The R console stores commands that you enter and you can cycle through previous commands by pressing the up
arrow. Hit the escape button to return to the command prompt. We can see the history in a separate window pane
by clicking the Show/Hide Command History button at the top of the console. The Show/Hide Command History
button is the rectangle icon with alternating stripes of yellow and green. See Figure 2-5 for the R console with the
command history shown.
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>t
url. day. date. loadtime. bytes. httprequests. loadtime_repeatview resource_log . -
1 http://apress.com, Sun, 1 Jul ze12 14:91:28 +8808, 7842 ,956688, 73,3341 columNames <- c("resource_id", "dns_loo| |
2 http://apress.com, Sun, 1 Jul ze12 14:91:31 +0202,6932,892902,76,3428 resource_log <- read.table("temptext.txt"| )
3 ht{:p://uggss‘cum sun, 1 o ze12 14:01:33 +0000,4157, 594908, 38,1614 resource_log <- read table(*temptext.bct'[|| I
> colnames
[11 "url.” "day." "date. " "loadtime." resource_log vy
[5] "bytes.” "httprequests.” "loadtime_repeatview” resource_log <- read.table("temptext.txt" 3
: Delete entry Clear History.
> citation() Load History Save History
-

Figure 2-5. R console with command history shown

Accessing Documentation

To read the R documentation around a specific function or keyword, you simply type a question mark before the keyword:

> ?setwd

If you want to search the documentation for a specific word or phrase, you can type two question marks before

the search query:

> ??"working directory"”

This code launches a window that shows search results (see Figure 2-6). The search result window has a row for
each topic that contains the search phrase and has the name of the help topic, the package that the functionality that
the help topic talks about is in, and a short description for the help topic.
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CHAPTER 2
R Console
T = | i - ;
&) c@: lin] X | F — 0
Qv Help Search )
>
=
>
-
‘80 5 Help topics matching 'working directory’
Topic Package Description
getwd base Get ar Set Working Directory
>
>
> |
>
> ??"working directory"
>

Packages

Figure 2-6. Help search results window

To install a package, we simply type this:

install.packages([package name])

Speaking of packages, what are they, exactly? Packages are collections of functions, data sets, or objects that can
be imported into the current session or workspace to extend what we can do in R. Anyone can make a package
and distribute it.

For example, if we want to install the ggplot2 package—which is a widely used and very handy charting

package—we simply type this into the console:

> install.packages("ggplot2")

We are immediately prompted to choose the mirror location that we want to use, usually the one closest to our

current location. From there, the install begins. We can see the results in Figure 2-7.
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iy

9 O O R_Cons;ole

SRR e =N R = L

- (Qr Help s

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certoin conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is o collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()" on how to cite R or R packages in publicotions.

Type 'demo()' for some demos, 'help()' for on-line help, or
"help.start()' for an HTML browser interface to help.
Type 'q()" to quit R.

[R.opp GUI 1.53 (6335) i386-apple-darwind.§.8]

[History restored from /Users/tbarke®dd/.Rapp.history]

> install.packages({"ggplot2")

--- Please select o CRAN mirror for use in this session ---

also installing the dependency ‘scales’

trying URL "http://1lib.stat.cmu.edus/RACRAN/bin/macosx/leopard/contrib/2.15/scales_8.2.3.tgz’
Content type 'applications/x-gzip' length 169299 bytes (165 Kb)

opened URL

downloaded 165 Kb

trying URL 'http://1ib.stot.cmu.edu/R/CRAN/bin/macosx/leopard/contrib/2.15/ggplot2_2.9.3 . tgz’
Content type 'applicotion/x-gzip' length 2659255 bytes (2.5 Mb)

opened URL

downloaded 2.5 Mb

The downloaded binary packages are in
Avar/folders/2c/2cUFYYFeFe@molQRC3ueGVEE2ZNGS - Tmp-//RitmpaFVYJ2g/downloaded_packages

Figure 2-7. Installing the ggplot2 package

The zipped-up package is downloaded and exploded into our R installation.
If want to use a package that we have installed, we must first include it in our workspace. To do this we use the
library() function:

> library(ggplot2)

Alist of packages available at the CRAN can be found here: http://cran.r-project.org/web/packages/
available_packages by name.html.

To see a list of packages already installed, we can simply call the 1ibrary() function with no parameter
(depending on your install and your environment, your list of packages may vary):

> library()
Packages in library '/Library/Frameworks/R.framework/Versions/2.15/Resources/library":

barcode Barcode distribution plots

base The R Base Package

boot Bootstrap Functions (originally by Angelo Canty for S)
class Functions for Classification

cluster Cluster Analysis Extended Rousseeuw et al.
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codetools Code Analysis Tools for R

colorspace Color Space Manipulation

compiler The R Compiler Package

datasets The R Datasets Package

dichromat Color schemes for dichromats

digest Create cryptographic hash digests of R objects

foreign Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase,
ggplot2 An implementation of the Grammar of Graphics

gpairs gpairs: The Generalized Pairs Plot

graphics The R Graphics Package

grDevices The R Graphics Devices and Support for Colours and Fonts
grid The Grid Graphics Package

gtable Arrange grobs in tables.

KernSmooth Functions for kernel smoothing for Wand & Jones (1995)
labeling Axis Labeling

lattice Lattice Graphics

mapdata Extra Map Databases

mapproj Map Projections

maps Draw Geographical Maps

Importing Data

So now our environment is downloaded and installed, and we know how to install any packages that we may need.
Now we can begin using R.

The first thing we’ll normally want to do is import your data. There are several ways to import data, but the most
common way is to use the read() function, which has several flavors:

read.table("[file to read]")
read.csv(["file to read"])

To see this in action, let’s first create a text file named temptext.txt that is formatted like so:

134,432,435,313,11
403,200,500,404,33
77,321,90,2002,395

We can read this into a variable that we will name temptxt:
> temptxt <- read.table("temptext.txt")

Notice that as we are assigning value to this variable, we are not using an equal sign as the assignment operator.
We are instead using an arrow <-. That is R’s assignment operator, although it does also support the equal sign if you
are so inclined. But the standard is the arrow, and all examples that we will show in this book will use the arrow.

If we print out the temptxt variable, we see that it is structured as follows:

> temptxt

Vi
1 134,432,435,313,11
2 403,200,500,404,33
3 77,321,90,2002,395
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We see that our variable is a table-like structure called a data frame, and R has assigned a column name (V1) and
row IDs to our data structure. More on column names soon.

The read() function has a number of parameters that you can use to refine how the data is imported and
formatted once it is imported.

Using Headers

The header parameter tells R to treat the first line in the external file as containing header information. The first line
then becomes the column names of the data frame.
For example, suppose we have a log file structured like this:

url, day, date, loadtime, bytes, httprequests, loadtime repeatview

http://apress.com, Sun, 01 Jul 2012 14:01:28 +0000,7042,956680,73,3341
http://apress.com, Sun, 01 Jul 2012 14:01:31 +0000,6932,892902,76,3428
http://apress.com, Sun, 01 Jul 2012 14:01:33 +0000,4157,594908,38,1614

We can load it into a variable named wpo like so:

> wpo <- read.table("wpo.txt", header=TRUE)
> wpo

url day date loadtime bytes httprequests loadtime_repeatview
1 http://apress.com,Sun,1 Jul 2012 14:01:28 +0000,7042,955550,73,3191
2 http://apress.com,Sun,1 Jul 2012 14:01:31 +0000,6932,892442,76,3728
3 http://apress.com,Sun,1 Jul 2012 14:01:33 +0000,4157,614908,38,1514

When we call the colnames () function to see what the column names are for wpo, we see the following:

> colnames (wpo)
[1] "url" "day" "date" "loadtime"
[5] "bytes" "httprequests” "loadtime_repeatview"

Specifying a String Delimiter

The sep attribute tells the read() function what to use as the string delimiter for parsing the columns in the external
data file. In all the examples we've looked at so far, commas are our delimiters, but we could use instead pipes | or any
other character that we want.

Say, for example, that our previous temptxt example used pipes; we would just update the code to be as follows:

134]432]435(313]11
403|200|500|404 |33
77/321]90]2002|395

> temptxt <- read.table("temptext.txt", sep="|")
> temptxt
Vi V2 V3 V4 V5
1 134 432 435 313 11
2 403 200 500 404 33
3 77 321 90 2002 395

Oh, notice that? We actually got distinct column names this time (V1, V2, V3, V4, V5). Before, we didn’t specify a
delimiter, so R assumed that each row was one big blob of text and lumped it into a single column (V1).
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Specifying Row Identifiers

The row.names attribute allows us to specify identifiers for our rows. By default, as we've seen in the previous
examples, R uses incrementing numbers as row IDs. Keep in mind that the row names need to be unique for each row.

With that in mind, let’s take a look at importing some different log data, which has performance metrics for
unique URLs:

url, day, date, loadtime, bytes, httprequests, loadtime repeatview

http://apress.com, Sun, 01 Jul 2012 14:01:28 +0000,7042,956680,73,3341
http://google.com, Sun, 01 Jul 2012 14:01:31 +0000,6932,892902,76,3428
http://apple.com, Sun, 01 Jul 2012 14:01:33 +0000,4157,594908,38,1614

When we read it in, we’ll be sure to specify that the data in the url column should be used as the row name for the
data frame.

> wpo <- read.table("wpo.txt", header=TRUE, sep=",", row.names="url")

> wpo

day date loadtime bytes httprequests loadtime repeatview
http://apress.com Sun 01 Jul 2012 14:01:28 +0000 7042 956680 73 3341
http://google.com Sun 01 Jul 2012 14:01:31 +0000 6932 892902 76 3428
http://apple.com  Sun 01 Jul 2012 14:01:33 +0000 4157 594908 38 1614

Using Custom Column Names

And there we go. But what if we want to have column names, but the first line in our file is not header information?
We can use the col.names parameter to specify a vector that we can use as column names.
Let’s take a look. In this example, we’ll use the pipe separated text file used previously.

134|432(435(313 |11
403]200|500|40433
77|321|90] 2002|395
First, we'll create a vector named columnNames that will hold the strings that we will use as the column names:
> columnNames <- c("resource id", "dns lookup", "cache load", "file size", "server response")
Then we'll read in the data, passing in our vector to the col.names parameter.
> resource log <- read.table("temptext.txt", sep="|", col.names=columnNames)

> resource_log
resource_id dns_lookup cache load file size server response

1 134 432 435 313 11
403 200 500 404 33
3 77 321 90 2002 395

Data Structures and Data Types

In the previous examples, we touched on a lot of concepts; we created variables, including vectors and data frames;
but we didn’t talk much about what they are. Let’s take a step back and look at the data types that R supports and
how to use them.
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Data types in R are called modes, and can be the following:
e  numeric
e  character
e logical
e complex
e raw
o list

We can use the mode () function to check the mode of a variable.
Character and numeric modes correspond to string and number (both integer and float) data types. Logical
modes are Boolean values.

> n <- 122132

> mode(n)

[1] "numeric"

> € <- "test text"
> mode(c)

[1] "character"

> 1 <- TRUE

> mode(1)

[1] "logical"

We can perform string concatenation using the paste() function. We can use the substr () function to pull
characters out of strings. Let’s look at some examples in code.

Usually, I keep a list of directories that I either read data from or write charts to. Then when I want to reference
a new data file that exists in the data directory, I will just append the new file name to the data directory:

> dataDirectory <- "/Users/tomjbarker/org/data/"

> buglist <- paste(dataDirectory, "bugs.txt", sep="")
> buglist

[1] "/Users/tomjbarker/org/data/bugs.txt"

The paste() function takes N amount of strings and concatenates them together. It accepts an argument named
sep that allows us to specify a string that we can use to be a delimiter between joined strings. We don’t want anything
separating our joined strings that we pass in an empty string.

If we want to pull characters from a string, we use the substr () function. The substr() function takes a string to
parse, a starting location, and a stopping location. It returns all the character inclusively from the starting location up
to the ending location. (Remember that in R, lists are not 0-based like most other languages, but instead have
a starting index of 1.)

> substr("test", 1,2)
[1] lltell

In the preceding example, we pass in the string “test” and tell the substr () function to return the first and
second characters.
Complex mode is for complex numbers. The raw mode is to store raw byte data.
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List data types or modes can be one of three classes: vectors, matrices, or data frames. If we call mode () for vectors
or matrices, they return the mode of the data that they contain; class() returns the class. If we call mode () on a data
frame, it returns the type 1ist:

> v <- c(1:10)

> mode(v)

[1] "numeric"

> m <- matrix(c(1:10), byrow=TRUE)
> mode(m)

[1] "numeric"

> class(m)

[1] "matrix"

> d <- data.frame(c(1:10))
> mode(d)

[1] "list"

> class(d)

[1] "data.frame"

Note that we just typed 1:10 rather than the whole sequence of numbers between 1 and 10:
v <- c(1:10)

Vectors are single-dimensional arrays that can hold only values of a single mode at a time. It's when we get to
data frames and matrices that R really starts to get interesting. The next two sections cover those classes.

Data Frames

We saw at the beginning of this chapter that the read() function takes in external data and saves it as a data frame.
Data frames are like arrays in most other loosely typed languages: they are containers that hold different types of data,
referenced by index. The main thing to realize, though, is that data frames see the data that they contain as rows, columns,
and combinations of the two.

For example, think of a data frame as formatted as follows:

col col col col col
row [1][2][2][2][1]
row [1][21][2][2][1]
row [12][2][2][2][1]
row [2][2][2][2][1]

If we try to reference the first index in the preceding data frame as we traditionally would with an array, say
dataframe[1], Rwould instead return the first column of data, not the first item. So data frames are referenced by their
column and row. So dataframe[1] returns the first column and dataframe[, 2] returns the first row.

Let’s demonstrate this in code.

First let’s create some vectors using the combine function, c(). Remember that vectors are collections of data all
of the same type. The combine function takes a series of values and combines them into vectors.

> col1 <- c(1,2,3,4,5,6,7,8)
> col2 <- c(1,2,3,4,5,6,7,8)
> col3 <- c(1,2,3,4,5,6,7,8)
> col4 <- c(1,2,3,4,5,6,7,8)
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Then let’s combine these vectors into a data frame:
> df <- data.frame(col1,col2,co0l3,col4)

Now let’s print the data frame to see the contents and the structure of it:
> df

col1l col2 col3 col4g
1 1 1 1

coONOYUVT B WN B
co~N OV B W N
co~NOYUT B W N
coN OV B W N
co~N OV B~ WN

Notice that it took each vector and made each one a column. Also notice that each row has an ID; by default,
it is a number, but we can override that.
If we reference the first index, we see that the data frame returns the first column:

> df[1]
col1

OOV B WN R
coNN YU B~ W N

If we put a comma in front of that 1, we reference the first row:

1
23456738

So accessing contents of a data frame is done by specifying [ column, row].
Matrices work much the same way.

Matrices

Matrices are just like data frames in that they contain rows and columns and can be referenced by either. The core
difference between the two is that data frames can hold different data types but matrices can hold only one type of data.

This presents a philosophical difference. Usually you use data frames to hold data read in externally, like from a
flat file or a database because those are generally of mixed type. You normally store data in matrices that you want to
apply functions to (more on applying functions to lists in a little bit).
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To create a matrix, we must use the matrix() function, pass in a vector, and tell the function how to distribute
the vector:

e  The nrow parameter specifies how many rows the matrix should have
e  The ncol parameter specifies the number of columns.

e  The byrow parameter tells R that the contents of the vector should be distributed by iterating
across rows if TRUE or by columns if FALSE.

> content <- c(1,2,3,4,5,6,7,8,9,10)
> ml1 <- matrix(content, nrow=2, ncol=5, byrow=TRUE)
> ml
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
>

Notice that in the previous example that the m1 matrix is filled in horizontally, row by row. In the following
example, the m1 matrix is filled in vertically by column:

> content <- c(1,2,3,4,5,6,7,8,9,10)
> ml <- matrix(content, nrow=2, ncol=5, byrow=FALSE)
>ml

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

Remember that instead of manually typing out all the numbers in the previous content vector, if the numbers are
a sequence we can just type this:

content <- (1:10)

We reference the content in matrices with the square bracket, specifying the row and column, respectively.

We can convert a data frame to a matrix if the data frame contains only a single type of data. To do this we use the
as.matrix() function. Often times we will do this when passing a data frame to a plotting function to draw a chart.

> barplot(as.matrix(df))

Below we create a data frame called df. We populate the data frame with ten consecutive numbers. We then use
as.matrix() to convert df into a matrix and save the result into a new variable called m:

> df <- data.frame(1:10)

> df
X1.10
1 1
2 2
3 3
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4 4
5 5
6 6
7 7
8 8
9 9
10 10

> class(df)

[1] "data.frame"

> m <- as.matrix(df)
> class(m)

[1] "matrix"

Keep in mind that because they are all the same data type, matrices require less overhead and are intrinsically
more efficient than data frames. If we compare the size of our matrix m and our data frame df, we see that with just ten
items there is a size difference.

> object.size(m)
312 bytes
> object.size(df)
440 bytes

With that said, if we increase the scale of this, the increase in efficiency does not equally scale. Compare the following:

> big df <- data.frame(1:40000000)
> big m <- matrix(1:40000000)

> object.size(big m)

160000112 bytes

> object.size(big df)

160000400 bytes

We can see that the first example with the small data set showed that the matrix was 30 percent smaller in size
than the data frame, but at the larger scale in the second example the matrix was only .00018 percent smaller than
the data frame.

Adding Lists

When combining or adding to data frames or matrices, you generally add either by the row or the column using
rbind() or cbind().

To demonstrate this, let’s add a new row to our data frame df. We’'ll pass df into rbind() along with the new row
to add to df. The new row contains just one element, the number 11:

> df <- rbind(df, 11)
> df
X1.10

VT B WN R
AUV B WN R
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7 7
8 8
9 9
10 10
11 11

Now let’s add a new column to our matrix m. To do this, we simply pass minto cbind() as the first parameter;
the second parameter is a new matrix that will be appended to the new column.

> m <- rbind(m, 11)
> m <- cbind(m, matrix(c(50:60), byrow=FALSE))

>m
X1.10

[1,] 150
[2,] 2 51
[3,] 3 52
[4,] 4 53
[5,] 5 54
[6,] 6 55
[7,] 7 56
[8,] 8 57
[9,] 9 58
[10,] 10 59
[11,] 11 60

What about vectors, you may ask? Well, let’s look at adding to our content vector. We simply use the combine
function to combine the current vector with a new vector:

> content <- ¢(1,2,3,4,5,6,7,8,9,10)

> content <- c(content, c(11:20))

> content

[1] 2 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

Looping Through Lists

As developers who generally work in procedural languages, or at least came up the ranks using procedural languages
(though in recent years functional programming paradigms have become much more mainstream), we’'re most
likely used to looping through our arrays when we want to process the data within them. This is in contrast to purely
functional languages where we would instead apply a function to our lists, like the map () function. R supports both
paradigms. Let’s first look at how to loop through our lists.

The most useful loop that R supports is the for inloop. The basic structure of a for inloop can be seen here:.

or(i in 1:5){print(i)}

Ui WN R
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The variable i increments in value each step through the iteration. We can use the for inloop to step through
lists. We can specify a particular column to iterate through, like the following, in which we loop through the X1.10
column of the data frame df.

or(n in df$X1.10){ print(n)}

W oo~NOUT B WN PR

=
o

e e e e VY

PR RRPRPRRPRRRLRRLRRR

e e e e e e e =k

=
[N

Note that we are accessing the columns of data frames via the dollar sign operator. The general pattern is
[data frame]$[column name].

Applying Functions to Lists

But the way that R really wants to be used is to apply functions to the contents of lists (see Figure 2-8).

element

element

element

element

Figure 2-8. Apply a function to list elements

We do this in R with the apply() function.
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The apply() function takes several parameters:
e  Firstis our list.

e  Nextanumber vector to indicate how we apply the function through the list (1 is for rows, 2 is
for columns, and c[1,2] indicates both rows and columns).

e  Finally is the function to apply to the list:
apply([list], [how to apply function], [function to apply])
Let’s look at an example. Let’s make a new matrix that we’ll call m. The matrix m will have ten columns and four rows:

> m <- matrix(c(1:40), byrow=FALSE, ncol=10)

>m

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 5 9 13 17 21 25 29 33 37
[2,] 2 6 10 14 18 22 26 30 34 38
[3,] 3 7 11 15 19 23 27 31 35 39
[4,] 4 8 12 16 20 24 28 32 36 40

Now say we wanted to increment every number in the m matrix. We could simply use apply() as follows:

> apply(m, 2, function(x) x <- x + 1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
6 10 14 18 22 26 30 34 38
7 1 15 19 23 27 31 35 39
8 12 16 20 24 28 32 36 40
9 13 17 212 25 29 33 37 41

Ui b wN

Do you see what we did there? We passed in m, we specified that we wanted to apply the function across the
columns, and finally we passed in an anonymous function. The function accepts a parameter that we called x.
The parameter x is a reference to the current matrix element. From there, we just increment the value of x by 1.

OK, say we wanted to do something slightly more interesting, such as zeroing out all the even numbers in the
matrix. We could do the following:

> apply(m,c(1,2),function(x){if((x %% 2) == 0) x <- 0 else x <- x})
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 5 9 13 17 21 25 29 33 37

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 3 7 11 15 19 23 27 31 35 39

[4,] 0 0 0 0 0 0 0 0 0 0

For the sake of clarity let’s break out that function that we are applying. We simply check to see whether the
current element is even by checking to see whether it has a remainder when divided by two. If it is, we set it to zero;
if it isn’t, we set it to itself:

function(x){
if((x %% 2) == 0)
X <- 0
else
X <- X
}
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Functions

Speaking of functions, the syntax for creating functions in R is much like most other languages. We use the function
keyword, give the function a name, have open and closed parentheses where we specify arguments, and wrap the
body of the function in curly braces:

function [function name]([argument])

[body of function]

Something interesting that R allows is the . . . argument (sometimes called the dots argument). This allows us to
pass in a variable number of parameters into a function. Within the function, we can convert the . .. argument into a list
and iterate over the list to retrieve the values within:

> offset <- function (...){
for(i in list(...)){

print(i)
}
}
> offset(23,11)
[1] 23
[1] 12

We can even store values of different data types (modes) in the . . . argument:

> offset("test value", 12, 100, "19ANM")
[1] "test value"

[1] 12

[1] 100

[1] "19ANM"

R uses lexical scoping. This means that when we call a function and try to reference variables that are not defined
inside the local scope of the function, the R interpreter looks for those variables in the workspace or scope in which the
function was created. If the R interpreter cannot find those variables in that scope, it looks in the parent of that scope.

If we create a function A within function B, the creation scope of function A is function B. For example, see the
following code snippet:

> X <- 10
> wrapper <- function(y){
X <- 99
c<- function(y){
print(x + y)

return(c)
}
> t <- wrapper()
> t(1)
[1] 200
> X
[1] 10
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We created a variable x in the global space and gave it a value of 10. We created a function, named it wrapper,
and had it accept an argument named y. Within the wrapper () function, we created another variable named x and gave
it a value of 99. We also created a function named c. The function wrapper () passes the argument y into the function
(), and the c() function outputs the value of x added to y. Finally, the wrapper () function returns the c() function.

We created a variable t and set it to the returned value of the wrapper () function, which is the function c().
When we run the t() function and pass in a value of 1, we see that it outputs 100 because it is referencing the variable
x from the function wrapper ().

Being able to reach into the scope of a function that has executed is called a closure.

But, you may ask, how can we be sure that we are executing the returned function and not re-running wrapper ()
each time? R has a very nice feature where if you type in the name of a function without the parentheses, the
interpreter will output the body of the function.

When we do this, we are in fact referencing the returned function and using a closure to reference the x variable:

>t
function(y){
print(x + y)

<environment: 0x17f1d4c4>

Summary

In this chapter, we downloaded and installed R. We explored the command line, went over data types, and got up and
running importing into the R environment data for analysis. We looked at lists, how to create them, add to them, loop
through them, and to apply functions to elements in a list.

We looked at functions, talked about lexical scope, and saw how to create closures in R.

Next chapter we’ll take a deeper dive into R, look at objects, get our feet wet with statistical analysis in R,
and explore creating R markdown documents for distribution over the web.
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A Deeper Dive into R

The last chapter explored some introductory concepts in R, from using the console to importing data. We installed
packages and discussed data types, including different list types. We finished up by talking about functions and
creating closures.

This chapter will look at object-oriented concepts in R, explore concepts in statistical analysis, and finally see
how R can be incorporated into R Markdown for real time distribution.

Object-Oriented Programming in R

R supports two different systems for creating objects: the S3 and S4 methods. S3 is the default way that objects are
handled in R. We've been using and making S3 objects with everything that we’ve done so far. S4 is a newer way to
create objects in R that has more built-in validation, but more overhead. Let’s take a look at both methods.

Okay, so traditional, class-based, object-oriented design is characterized by creating classes that are the blueprint
for instantiated objects (see Figure 3-1).

class

matrix

AN

object object

mi

Figure 3-1. The matrix class is used to create the variables m1 and m2, both matrices

At a very high level, in traditional object-oriented languages, classes can extend other classes to inherit the parent
class’ behavior, and classes can also implement interfaces, which are contracts defining what the public signature of
the object should be. See Figure 3-2 for an example of this, in which we create an IUser interface that describes what
the public interface should be for any user type class, and a BaseUser class that implements the interface and provides
a base functionality. In some languages, we might make BaseUser an abstract class, a class that can be extended but
not directly instantiated. The User and SuperUser classes extend BaseClass and customize the existing functionality
for their own purposes.
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BaseUser 1User
login) = f--------- »| login()
createPlaylist createPlaylist()

<<implements>>

<<extends>> <<extends>>
User SuperUser
login() login()
createPlaylist() createPlaylist()
editPermissions()

Figure 3-2. An IUser interface implemented by a superclass BaseUser that the subclasses User and SuperUser extend

There also exists the concept of polymorphism, in which we can change functionality via the inheritance chain.
Specifically, we would inherit a function from a base class but override it, keep the signature (the function name, the
type and amount of parameters it accepts, and the type of data that it returns) the same, but change what the function
does. Compare overriding a function to the contrasting concept of overloading a function, in which the function
would have the same name but a different signature and functionality.

S3 Classes

S3, so called because it was first implemented in version 3 of the S language, uses a concept called generic functions.
Everything in R is an object, and each object has a string property called class that signifies what the object is. There
is no validation around it, and we can overwrite the class property ad hoc. That’s the main problem with S3—the
lack of validation. If you ever had an esoteric error message returned when trying to use a function, you probably
experienced the repercussions of this lack of validation firsthand. The error message was probably generated not from
R detecting that an incorrect type had been passed in, but from the function trying to execute with what was passed in
and failing at some step along the way.

See the following code, in which we create a matrix and change its class to be a vector:

> m <- matrix(c(1:10), nrow=2)

>m

[,1] [,2] [,3] [,4] [,5]
[1,] 13 5 7 9
[2,] 2 4 6 8 10
> class(m) <- "vector"
>m

(1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4
attr(,"class")
[1] "vector"
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Generic functions are objects that check the class property of objects passed into them and exhibit different
behavior based on that attribute. It’s a nice way to implement polymorphism. We can see the methods that a generic
function uses by passing the generic function to the methods () function. The following code shows the methods of the
plot() generic function:

> methods(plot)

[1] plot.acf* plot.data.frame* plot.decomposed.ts* plot.default plot.dendrogram*
[6] plot.density plot.ecdf plot.factor* plot.formula* plot.function
[11] plot.hclust* plot.histogram* plot.HoltWinters* plot.isoreg* plot.1lm

[16] plot.medpolish* plot.mlm plot.ppr* plot.prcomp* plot.princomp*
[21] plot.profile.nls*  plot.spec plot.stepfun plot.stl* plot.table*
[26] plot.ts plot.tskernel* plot.TukeyHSD

Non-visible functions are asterisked

Notice that within the generic plot() function is a myriad of methods to handle all the different types of data
that could be passed to it, such as plot.data.frame for when we pass a data frame to plot(); or if we want to plot
a TukeyHSD object plot (), plot.TukeyHSD is ready for us.

Note Type ?TukeyHSD for more information on this object.

Now that you know how S3 object-oriented concepts work in R, let’s see how to create our own custom S3 objects
and generic functions.

An S3 class is a list of properties and functions with an attribute named class. The class attribute tells generic
functions how to treat objects that implement a particular class. Let’s create an example using the UserClass idea
from Figure 3-2:

> tom <- list(userid = "tbarker", password = "passwordi23", playlist=c(12,332,45))
> class(tom) <- "user"

We can inspect our new object by using the attributes() function, which tells us the properties that the object
has as well as its class:

> attributes(tom)

$names

[1] "userid"  "password" "playlist"
$class

[1] "user"

Now to create generic functions that we can use with our new class. Start by creating a function that will handle only
our user object; then generalize it so any class can use it. It will be the createPlaylist() function and it will accept the
user on which to perform the operation and a playlist to set. The syntax for this is [ function name].[class name].

Note that we access the properties of S3 objects using the dollar sign:

>createPlaylist.user <- function(user, playlist=NULL){

user$playlist <- playlist
return(user)
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Note that while you type directly into the console, R enables you to span several lines without executing your
input until you complete an expression. After your expression is complete, it will be interpreted. If you want to execute
several expressions at once, you can copy and paste into the command line.

Let’s test it to make sure it works as desired. It should set the playlist property of the passed-in object to the
vector that is passed in:

> tom <- createPlaylist.user(tom, c(11,12))
> tom

$userid

[1] "tbarker"

$password
[1] "password123"

$playlist
[1] 11 12

attr(,"class")
[1] "user"

Excellent! Now let’s generalize the createPlaylist() function to be a generic function. To do this, we just create
afunction named createPlaylist and have it accept an object and a value. Within our function, we use the UseMethod ()
function to delegate functionality to our class-specific createPlaylist() function: createPlaylist.user.

The UseMethod() function is the core of generic functions: it evaluates the object, determines its class, and
dispatches to the correct class-specific function:

> createPlaylist <- function(object, value)

{
}

UseMethod("createPlaylist", object)

Now let’s try it out to see whether it worked:
> tom <- createPlaylist(tom, c(21,31))
> tom
$userid
[1] "tbarker"

$password
[1] "password123"

$playlist
[1] 21 31

attr(,"class")
[1] "user"

Excellent!
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S4 Classes

Let’s look at S4 objects. Remember that the main complaint about S3 is the lack of validation. S4 addresses this lack by
having overhead built into the class structure. Let’s take a look.
First we'll create the user class. We do this with the setClass() function.

e  The first parameter in the setClass() function is a string that signifies the name of the class
that we are creating.

e The next parameter is called representation and it is a list of named properties.

setClass("user",

representation(userid="character",
password="character",
playlist="vector"

)
)

We can test it by creating a new object from this class. We use the new() function to create a new instance of
the class:

> lynn <- new("user", userid="lynn", password="test", playlist=c(1,2))
> lynn

An object of class "user"

Slot "userid":

[1] "lynn"

Slot "password":
[1] "test"

Slot "playlist":
[1] 1 2

Very nice. Note that for S4 objects, we use the @ symbol to reference properties of objects:

> lynn@playlist
[1] 1 2

> class(1lynn)
[1] "user"
attr(, "package")
[1] ".GlobalEnv

Let’s create a generic function for this class by using the setMethod() function. We simply pass in the function
name, the class name, and then an anonymous function that will serve as the generic function:

> setMethod("createPlaylist", "user", function(object, value){
object@playlist <- value
return(object)
b))
Creating a generic function from function 'createPlaylist' in the global environment
[1] "createPlaylist"”
>

51



CHAPTER 3 * A DEEPER DIVE INTO R

Let’s try it out:

> lynn <- createPlaylist(lynn, c(1001, 400))
> lynn

An object of class "user"

Slot "userid":

[1] "lynn"

Slot "password":
[1] "test"

Slot "playlist":
[1] 2001 400

Excellent!

Although some prefer the simplicity and flexibility of the S3 way, some prefer the structure of the S4 method;
the choice of S3 or S4 objects is purely one of personal preference. My own preference is for the simplicity of S3,
and that is what we will be using for the remainder of the book. Google, in its R Style Guide available at
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html, mirrors my own feelings about S3,
saying “Use S3 objects and methods unless there is a strong reason to use S4 objects or methods.”

Statistical Analysis with Descriptive Metrics in R

Now let’s take a look at some concepts in statistical analysis and how to implement them in R. You might remember
most of the concepts covered in this chapter from an introductory statistics class from college; they are the base
concepts needed to begin to think about and discuss your data.

First, let’s get some data on which we’ll perform statistical analysis. R comes preloaded with a number of data sets
that we can use as sample data. To see a list of available data sets with your install simply type data() at the console.
You'll be presented with the screen that you see in Figure 3-3.
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Q- Help search

Functions Search

Data sets in pockage ‘datosets’:

AirPassengers
Blsales
Blsales.lead (Blsales)
BOD

coz
ChickWeight
DNase
EuStockMarkets
Formaldehyde
HairEyeColor
HarmanZ3. cor
Harman?4. cor
Indometh
InsectSprays
Johnsonlohnson
LakeHuron
LifeCycleSavings
Loblolly

Nile

Orange
OrchardSprays
PlantGrowth
Puromycin
Seatbelts
Theoph

Titanic
ToothGrowth
UCBAdmissions
UKDriverDeaths
UKgas
USAccheaths
USArrests
USJudgeRatings
USPersonalExpenditure
VADeaths
Wihusage
WorldPhones
ability.cov
airmiles
airquality
anscombe
attenu
attitude

Monthly Airline Passenger Numbers 1949-1968

Sales Data with Leading Indicator

Sales Data with Leading Indicator

Biochemical Oxygen Demand

Carbon Dioxide Uptoke in Grass Plants

Weight wversus oge of chicks on different diets

Elisa assay of DNase

Daily Closing Prices of Major European Stock Indices, 1991-1998
Determination of Formaldehyde

Hair and Eye Color of Stotistics Students

Harman Example 2.3

Harman Example 7.4

Pharmacokinetics of Indomethacin

Effectiveness of Insect Sprays

Quarterly Earnings per Johnson & Johnson Share

Level of Loke Huron 1875-1972

Intercountry Life-Cycle Savings Data

Growth of Loblolly pine trees

Flow of the River Nile

Growth of Orange Trees

Potency of Orchard Sprays

Results from an Experiment on Plant Growth

Reaction Velocity of an Enzymotic Reaction

Road Casualties in Great Britain 1969-84
Pharmacokinetics of Theophylline

Survival of passengers on the Titanic

The Effect of Vitamin C on Tooth Growth in Guinea Pigs
Student Admissions at UC Berkeley

Rood Cosualties in Greot Britoin 1963-84

UK Quarterly Gos Consumption

Accidental Deaths in the US 1973-1978

Viclent Crime Rates by US State

Lawyers' Rotings of State Judges in the US Superior Court
Personal Expenditure Dota

Death Rates in Virginia (194@)

Internet Usage per Minute

The World's Telephones

Ability and Intelligence Tests

Passenger Miles on Commercial US Airlines, 1937-1968
New York Air Quality Measurements

Anscombe's Quartet of 'Identicaol’ 5imple Linear Regressions
The Joyner-Boore Attenuation Data

The Chatterjee-Price Attitude Data

Figure 3-3. Available data sets in R

To see the contents of a data set, you can call it by name in the console. Let’s take a look at the USArrests data set,

which we’ll use for the next few topics.

> USArrests

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
Florida
Georgia
Hawaii
Idaho

Murder Assault

UrbanPop Rape

13.2 236 58 21.2
10.0 263 48 44.5
8.1 294 80 31.0
8.8 190 50 19.5
9.0 276 91 40.6
7.9 204 78 38.7
3.3 110 77 11.1
5.9 238 72 15.8
15.4 335 80 31.9
17.4 211 60 25.8
5.3 46 83 20.2
2.6 120 54 14.2
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I1linois 10.4 249 83 24.0
Indiana 7.2 113 65 21.0
Towa 2.2 56 57 11.3
Kansas 6.0 115 66 18.0
Kentucky 9.7 109 52 16.3
Louisiana 15.4 249 66 22.2
Maine 2.1 83 51 7.8
Maryland 11.3 300 67 27.8
Massachusetts 4.4 149 85 16.3
Michigan 12.1 255 74 35.1
Minnesota 2.7 72 66 14.9
Mississippi 16.1 259 44 17.1
Missouri 9.0 178 70 28.2
Montana 6.0 109 53 16.4
Nebraska 4.3 102 62 16.5
Nevada 12.2 252 81 46.0
New Hampshire 2.1 57 56 9.5
New Jersey 7.4 159 89 18.8
New Mexico 11.4 285 70 32.1
New York 11.1 254 86 26.1
North Carolina 13.0 337 45 16.1
North Dakota 0.8 45 44 7.3
Ohio 7.3 120 75 21.4
Oklahoma 6.6 151 68 20.0
Oregon 4.9 159 67 29.3
Pennsylvania 6.3 106 72 14.9
Rhode Island 3.4 174 87 8.3
South Carolina 14.4 279 48 22.5
South Dakota 3.8 86 45 12.8
Tennessee 13.2 188 59 26.9
Texas 12.7 201 80 25.5
Utah 3.2 120 80 22.9
Vermont 2.2 48 32 11.2
Virginia 8.5 156 63 20.7
Washington 4.0 145 73 26.2
West Virginia 5.7 81 39 9.3
Wisconsin 2.6 53 66 10.8
Wyoming 6.8 161 60 15.6

>

The first function in R that we'll look at is the summary () function, which accepts an object and returns the
following key descriptive metrics, grouped by column:

e  minimum value

e  maximum value

¢ median for numbers and frequency for strings
e mean

e first quartile

e  third quartile
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Let’s run the USArrests data set through the summary() function:

> summary(USArrests)
Murder Assault UrbanPop Rape

Min. : 0.800 Min. : 45.0 Min. :32.00 Min. 1 7.30
1st Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07
Median : 7.250 Median :159.0 Median :66.00 Median :20.10
Mean : 7.788  Mean :170.8  Mean :65.54 Mean :21.23
3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18
Max. :17.400  Max. :337.0  Max. :91.00 Max. :46.00

Let’s look at each of these metrics in detail, as well as the standard deviation.

Median and Mean

Note that the median is the number that is the middle value in a data set, quite literally the number that has the same
amount of numbers greater and less than itself in the data set. If our data set looks like the following, the median is 3:

1, 2, 3, 4, 5

But notice that it’s easy to find the median when there are an odd number of items in a data set. Suppose that
there is an even number of items in a data set, as follows:

1) 2) 3) 4) 5) 6

In this case we take the middle pair, 3 and 4, and get the average of those two numbers. The median is 3.5.

Why does the median matter? When you look at a data set, there are usually outliers at either end of the
spectrum, values that are much higher or much lower than the rest of the data set. Gathering the median value
excludes these outliers, giving a much more realistic view of the average values.

Contrast this idea with the mean, which is simply the sum of the values in a data set divided by the number of
items. The values include the outliers, so the mean can be skewed by having significant outliers and really represent
the full data set.

For example, look at the following data set:

1, 2, 3, 4, 30
The median is still 3 for this data set, but the mean is 8, because of this:
median = [1,2] 3 [4,30]

mean = 1 + 2 + 3 + 4 + 30 =40
40 / 5 =8

Quartiles

The median is the center of the data set, which means that the median is the second quartile. Quartiles are the points
that divide a data set into four even sections. We can use the quantile() function to pull just the quartiles from our
data set.
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> quantile(USArrests$Murder)
0% 25% 50% 75%  100%
0.800 4.075 7.250 11.250 17.400

The summary () function simply returns the quartiles, as well as the minimum, maximum, and mean values.
Here are the summary () results for comparison, with the previous quartiles highlighted:

> summary(USArrests)
Murder Assault UrbanPop Rape

Min. : 0.800 Min. : 45.0  Min. :32.00  Min. : 7.30
ist Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07
Median : 7.250 Median :159.0 Median :66.00 Median :20.10
Mean : 7.788 Mean :170.8 Mean :65.54 Mean @ :21.23
3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18
Max. :17.400 Max. :337.0 Max. :91.00 Max. :46.00

Standard Deviation

Speaking of the idea of the mean, there is also the idea that data has a normal distribution, or that data is
normally densely clustered around the mean with lighter groupings above and below the mean. This is usually
demonstrated with a bell curve, in which the mean is the top of the curve, and the outliers are distributed on
either end of it (see Figure 3-4).

0.4

0.3

0.2

0.1

0.0

Figure 3-4. The bell curve of a normal distribution
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Standard deviation is a unit of measurement that describes the average of how far apart the data is distributed
from the mean, so we can detail how far each data point is from the mean in terms of standard deviations.

In R, we can determine the standard deviation using the sd() function. The sd() function expects a vector of
numeric values:

> sd(USArrests$Murder)
[1] 4.35551

If we want to gather the standard deviation for a matrix we can use the apply() function to apply the sd()
function, like so:

> apply(USArrests, sd)
Murder Assault  UrbanPop Rape murderRank
4.355510 83.337661 14.474763  9.366385 14.574930

RStudio IDE

If you prefer to develop in an integrated development environment (IDE) instead of at the command line, you can
use a free product called RStudio IDE. The RStudio IDE is made by the RStudio company, and is much more than just
an IDE (as you will soon see). The RStudio company was founded by JJ Allaire, creator of ColdFusion. RStudio IDE is
available for download at http://www.rstudio.com/ide/ (see Figure 3-5 for a screen shot of the download page).

g Studio Home RStudioIDE  Shiny Training Projects About Blog

RStUdio IDE About  Screenshots  Download  Documentation  Support  Development

Take control of your R code

RStudio is a free and open source integrated development environment
for R. You can run it on your desktop (Windows, Mac, or Linux) or even over
the web using RStudio Server.

" forWindews, Maz or Linux
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Figure 3-5. RStudio IDE homepage

Note You should install the RStudio IDE now because you will use it in the remainder of this chapter.
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After installation, the IDE is split into four panes (see Figure 3-6).
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Figure 3-6. Caption

The upper-left pane is the R script file in which we edit our R source code. The bottom-left pane is the
R command line. The upper-right side pane holds the command history as well as all the objects in our current

workspace. The bottom-right pane is split into tabs that can show the following:
e  Contents of the file system for the current working directory
e  Plots or charts that have been generated
e  Current packages installed

¢  Rhelp pages

Although it is great to have everything that you need in one place, here is where things become really interesting.

R Markdown

In version 0.96 of RStudio, the team announced support for R Markdown using the knitr package. We can now embed
R code into markdown documents that can get interpreted by knitr into HTML. But it gets even better.
The RStudio company also makes a product called RPubs that allows users to create accounts and host their R

markdown files for distribution over the Web.

Note Markdown is a plain text markup language created by John Gruber and Aaron Swartz. In markdown, you can
use simple and lightweight text encodings to signify formatting. The markdown document is read and interpreted and an

HTML file is output.
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A quick overview of markdown syntax follows:

header 1

#it#theader 3
#it#itheader 4

*italic*
**bold**

[link text]([URL])
I[alt text]([path to image])

The great thing about R Markdown is that we can embed R code within our markdown document. We embed
R using three tick marks and the letter r in curly braces:

T {r}
[R code]

We need three things to begin creating R Markdown (. rmd) documents:
e R
e R Studio IDE version 0.96 or higher

e  The knitr package

The knitr package is used to reformat R into several different output formats, including HTML, markdown, or
even plain text.

Note Information about the knitr package is available at http://yihui.name/knitr/.

Because you already have R and RStudio IDE installed, you will first install knitr. R Studio IDE has a nice interface
to install packages: simply go to the Tools file menu and click Install Packages. You should see the popup that shown
in Figure 3-7, in which you can specify the package name (R Studio IDE has a nice type ahead here for package
discovery) and what library to install to.
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Install Packages

Install from: ? Configuring Repositories

-

| Repository (CRAN) =

Packages (separate multiple with space or comma): Del

knitr lata

Install to Library:

[ /Library/Frameworks/R.framework /Versions/2.15/Resa s ] lis

E Install dependencies

| Install | Cancel

&l

Figure 3-7. Installing the knitr package

After knitr is installed, you need to close and relaunch RStudio IDE. You then go to the File menu and choose
File » New, in which you should see a number of options, including R Markdown. If you choose R Markdown, you get

a new file with the template shown in Figure 3-8.

Bl EAt ode Yew Pgin Semon preest Buld Jos bep
Q- - &) Project: (None) -
] Unbitiedt O Workspace  History -
#Run | 3% @ Chunka || (F [ | Import Dataset- | o

i =] | o it HTHL
1 Title

4 ¥his 15 an & Markdown document. warkdown 15 a simple formatting syntax for authoring

web pages (elick the ==mp** toolbar button for help on Markdown).

& when you click the "=knit HTML™ button a web page will be generated that includes both
content as well as the cutput of any esbedded R code chunks within the document. You
can embed an ® code churk lke this:

9 sumeary{cars

10

11

12 vou can also esbed plots, for example: Files Plots  Packages Nelp =
13

14- "7 {r Fig.width=7, Fig, height-6} Qi Hew Folder | @ Delete | /Asname @ Hore-

15 ploticars I £ Home

16 ** Sue <
17

18

volandesciption.gdf K

41 M (Top Level am

Consale =
package ‘evaluate” successfully unpacked and MDS sums checked
package 'digest’ successfully unpacked and woS sums checked

package ‘formatR’' successfully urpacked and MDS sums checked

package 'stringr’ suecessfully unpacked and MDS sums chacked
package ‘knitr' successfully unpacked and MDS sums checked

the dosnlaaded binary packages are in
C:\pocumerts and Settings'adminfstrator Local Settings' Temp' Rtmpadba' downloaded_packages

|

Figure 3-8. RStudio IDE
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The R Markdown template has the following code:

This is an R Markdown document. Markdown is a simple formatting syntax for authoring web pages
(click the **MD** toolbar button for help on Markdown).

When you click the **Knit HTML** button a web page will be generated that includes both content as
well as the output of any embedded R code chunks within the document. You can embed an R code chunk
like this:

)

summary(cars)

You can also embed plots, for example:

U {r fig.width=7, fig.height=6}
plot(cars)

This is the template, and when you click the Knit HTML button you will see the output shown in Figure 3-9.

Preview: & Log | [ Save As | WA Publish

Title

This is an R Markdown decument. Markdown is a simple formatting syntax for autharing web pages (click the MD toolbar butten for help on Markdown).

When you click the Knit HTML button a web page will be generated that includes both content as well as the output of any embedded R code chunks within
the document. You can embed an R code chunk like this:

summary (cars)

= . speed . dist

& Min. £ 4.0  Min. 2
#& 1st Qu.:12.0 1st Qu.: 26
## Median :15.0 Median : 36
## Mean :15.4  Mean s 43
## 3rd Qu.:19.0  3rd Qu.: 56
2# Max. t25.0  Max. 120

You can also embed plots, for example:

plot (cars)

=
g -
o
s
]
. °
2 o
.
a
=]
= o
. >
o | .
o W o a
a o =]
>
=] 0D
= 5 oo ©
° °
° ° o o o -
8 ® 2. 0o
o o
- : °
g °
=]
- o
o °
°
I

Figure 3-9. HTML output of RMarkdown template
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Did you notice the Publish button at the top of Figure 3-9? That is how we push our R Markdown file to RPubs for
hosting and distribution over the Web.

RPubs

RPubs is a free web publishing platform for R Markdown files, provided by RStudio (the company). You can create
a free account by visiting http://www.rpubs. com. Figure 3-10 shows a screen shot of the RPubs homepage.

PUbS brought to you by RStudio Signin  Register

Easy web publishing from R

Write R Markdown documents in RStudio.

Share them here on RPubs. (It's free, and couldn't be simpler!)

Recently Published

Figure 3-10. RPubs homepage

Just click the Register button and fill out the form to create your free account. RPubs is fantastic; it’s a platform in
which we can post our R Markdown documents for distribution.

Caution Be aware that every file you put up on RPubs is publicly available, so be sure not to put any sensitive or
proprietary information in it. If you don’t want to put your R Markdown files where they are available for the whole world
to see, you can instead click the Save As button right next to the Publish button to save the file as regular HTML.

After you click the Publish button, you are prompted to log in with your RPubs account. After logging in, you will
be directed to the Document Details page, as seen in Figure 3-11.
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Pubs .

A
tomjbarker

Document Details — Step 2 of 2

Title Chapter 3 example

Description his is the R Markdown template from RStudio IDE

Slug http:/irpubs.com/tomjbarker/

Figure 3-11. Publishing to RPubs

After filling out the document details, a title for your document, and a description, you will be directed to your
document hosted in RPubs. See Figure 3-12 for the template from Figure 3-9 hosted in RPubs and available publicly
here: http://www.rpubs.com/tomjbarker/3370.

Title

This is an R Markdown document. Markdown is a simple formatting syntax for authoring web pages (click the MD toolbar button for help on Markdown).

‘When you click the Knit HTML button a web page will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like
1his;

summary(cars)

P speed dist
#2 Min. i 4.0 Min. H

#  1st Qu.:12.0 1st Qu.: 26
#2 Median :15.0 Median : 36

#2 Mean  :15.4  Mean : 43
## 3rd Qu.:19.0  3rd Qu.: 56
## Max.  :25.0 Max.  :120

You can also embed plots, for example:

plot (cars)

120
o

Edit Details Delete Chapter 3 example by Tom Barker ast ed 2 minutes ago _ _ Hide Toolbars

Figure 3-12. RMarkdown template published to RPubs

63


http://www.rpubs.com/tomjbarker/3370

CHAPTER 3 * A DEEPER DIVE INTO R

This is a powerful distribution method for R documents and for communicating data visualizations. In the
coming chapters, we will put all the completed R charts up on RPubs for public consumption.

Summary

This chapter explored some deeper concepts in R, from the different models of object-oriented design available, to
how to do statistical analysis with R. We even looked at how to use RMarkdown and RPubs to make data visualizations
in R available for public distribution.

In the next chapter, we will look at D3, a JavaScript library that enables us to analyze and visualize data within the
browser and add interactivity to visualizations.
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CHAPTER 4

Data Visualization with D3

Thus far when we have been talking about technologies used to create data visualizations we’ve been talking about
R. We've spent the last two chapters exploring the R environment and learning about the command line. We covered
introductory topics in the R language, ranging from data types, functions, and object-oriented programming. We even
talked about how to publish our R documents to the Web using RPubs.

This chapter we will look at a JavaScript library called D3 that is used to create interactive data visualizations.
First is a very quick primer on HTML, CSS, and JavaScript, the supporting languages of D3, to level set. Then we’ll dig
into D3 and explore how to make some of the more commonly used charts in D3.

Preliminary Concepts

D3 is a JavaScript library. Specifically, that means it is written in JavaScript and embedded in an HTML page. We can
reference the objects and functions in D3 in our own JavaScript code. So let’s start at the beginning. The purpose of
the next section is not to take a deep dive into HTML CSS and JavaScript; there are plenty of other resources for that,
including Foundation Website Creation that I helped to co-write. The purpose is to have a very high-level recap of
concepts that we will deal with directly with D3. If you are already familiar with HTML, CSS, and JavaScript, you can
skip down to the “History of D3” section of this chapter.

HTML

HTML is a markup language; in fact, it stands for HyperText Markup Language. It is a presentation language, made up
of elements that signify formatting and layout. Elements contain attributes that have values that specify details about
the element, tags, and content. To explain, let’s look at our basic HTML skeletal structure that we will use for most of
our examples this chapter.

<!DOCTYPE html>
<html>
<head></head>
<body></body>
</html>

Let’s start at the first line. That is the doctype that tells the browser’s render engine what rule set to use. Browsers
can support multiple versions of HTML, and each version has a slightly different rule set. The doctype are specified
here is the HTML5 doctype. Another example of a doctype is this:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.0rg/TR/xhtm111/DTD/xhtml11.dtd">
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This is the doctype for XHTML 1.1. Notice that it specifies the URL of the document type definition (.dtd). If we were
to read the plain text at the URL, we would see that it is a specification for how to parse HTML tags. The W3C maintains a
list of doctypes here: http://www.w3.0rg/QA/2002/04/valid-dtd-1ist.html.

MODERN BROWSER ARCHITECTURE

Modern browsers are composed of modular pieces that encapsulate very specific functionality. These modules
can also be licensed out and embedded in other applications:

e They have a Ul layer that handles drawing the user interface of the browser, like the window,
the status bar, and the back button.

e They render engines to parse, tokenize, and paint the HTML.

e They have a network layer to handle the network operations involved in retrieving the HTML
and all the assets on the page.

e They have a JavaScript engine to interpret and execute the JavaScript in the page.

See Figure 4-1 for a representation of this architecture.

Ul Layer

Rendering Engine

Network JavaScript
Layer Interpreter

Figure 4-1. Modern Browser Architecture

Back to the skeletal HTML structure. The next line is the <html> tag, this is the root level tag for the document, and
holds every other HTML element that we will use. Notice that there is a closing tag on the last line of the document.
Next is the <head> tag, which is a container that generally holds information that is not displayed on the page
(for example, the title and meta information). After the <head> tag is the <body> tag, which is a container that holds all
the HTML elements that will be displayed on the page; for example, paragraphs:
<p> this is a paragraph </p>

or links:

<a href="[URL]">link text or image here</a>
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or images:
<img src="[URL]"/>

When it comes to D3, most of the JavaScript that we will be writing will be in the body section, and most of the CSS
will be in the head section.

CSS

CSS stands for Cascading Style Sheets, and is what is used to style the HTML elements on a web page. Style sheets
are either contained in <style> tags or linked to externally via <1ink> tags, and are comprised of style rules and
selectors. Selectors target the element on the web page to style, and the style rule defines what styles to apply.
Let’s look at an example:

<style>
p{

}
</style>

color: #AAAAAA;

In the preceding code snippet, the style sheet is in a style tag. The p is the selector that tells the browser to target
every paragraph tag on the web page. The style rule is wrapped in curly braces and is made up of properties and values.
This case sets the color of the text in all the paragraphs to #AAAAAA which is the hexadecimal value of a light grey.

Selectors are where the real nuance of CSS is. This is relevant to us because D3 also uses CSS selectors to target
elements. We can get very specific with selectors and target elements by class or id, or we can use pseudo-classes
to target abstract concepts such as when an element is hovered over. We can target ancestors and descendants of
elements, up and down the DOM.

Note The DOM stands for the Document Object Model and is the application programming interface (API) that allows
JavaScript to interact with the HTML elements that are on a web page.

.classname{

/* style sheet for a class*/
}

#id{

/*stye sheet for an id*/

}

element:pseudo-class{

}
SVG

The next introductory concept for D3 is SVG, which stands for Scalable Vector Graphics. SVG, which is a standardized
way to create vector graphics in the browser, is what D3 uses to create data visualizations. The core functionality that
we are concerned about in SVG is the capability to draw shapes and text and integrate them into the DOM so that our
shapes can be scripted via JavaScript.
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Note Vector graphics are graphics that are created using points and lines that are mathematically calculated and displayed
by the rendering engine. Contrast this idea with bitmap or raster graphics in which the pixel display is prerendered.

SVG is essentially its own markup language with its own doctype. We can write SVG in external . svg files or
include the SVG tags directly in our HTML. Writing the SVG tags in our HTML page allows us to interact with our
shapes via JavaScript.

SVG has support for predefined shapes as well as the capability to draw lines. The predefined shapes in SVG
are these:

e <rect> to draw rectangles

e <circle> to draw circles

e <ellipse> to draw ellipses

e <line> to drawlines; also <polyline> and <polygon> to draw lines with multiple points

Let’s look at some code examples. If we will write our SVG into an HTML document, we use the <svg> tag to wrap our
shapes. The <svg> takes the xmlns and version attributes. The xmlns attribute should be the path to the SVG namespace,
and the version is obviously the version of SVG:

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1">
</svg>

If we are writing standalone . svg files, we include the full doctype and xml tags to the page file:

<?xml version="1.0" standalone="no"?>

<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgil.dtd">
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1">
</svg>

Either way, we create our shapes within the <svg> tag. Let’s create some sample shapes in our <svg> tag:

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<rect x="10" y="10" width="10" height="100" stroke="#000000" fill="#AAAAAA" />
<circle cx="70" cy="50" r="40" stroke="#000000" fill="#AAAAAA" />
<ellipse cx="230" cy="60" rx="100" ry="50" stroke="#000000" fill="#AAAAAA" />
</svg>

This code produces the shapes shown in Figure 4-2.

Figure 4-2. A rectangle, circle, and ellipse drawn in SVG
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Notice that we assign x and y coordinates for all the shapes—in the case of the circle and ellipse cx and cy
coordinates—as well as fill color and stroke colors. This is just the smallest taste; we can also create gradients and
filters and then apply them to our shapes. We can also create text to use in our SVG drawings using the <text> tag.

Let’s take a look. We’ll update the preceding SVG code to add text labels for each shape:

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<rect x="80" y="20" width="10" height="100" stroke="#000000" fill="#AAAAAA" />
<text x="55" y="145" fill="#000000">rectangle</text>
<circle cx="170" cy="60" r="40" stroke="#000000" fill="#AAAAAA" />
<text x="150" y="145" fill="#000000">circle</text>
<ellipse cx="330" cy="70" rx="100" ry="50" stroke="#000000" fill="#AAAAAA" />
<text x="295" y="145" fill="#000000">ellipse</text>

</svg>

This code creates the drawing shown in Figure 4-3.

oa

rectangle circle ellipse

Figure 4-3. SVG shapes with text labels

Now we can start to see the possibilities of creating data visualizations with just these fundamental building blocks.
Because D3 is a JavaScript library, and most of the work we will be doing with D3 will be in JavaScript, let’s next take a
high-level look at JavaScript before we delve into D3.

JavaScript

JavaScript is the scripting language of the Web. JavaScript can be included in an HTML document either by placing
script tags inline in the document or by linking to an external JavaScript document:

<script>
//javascript goes here
</script>

<script src="pathto.js"></script>

JavaScript can be used to process information, react to events, and interact with the DOM. In JavaScript,
we create variables using the var keyword.

var foo = "bar";
Note that if we do not use the var keyword, the variable that we create is assigned to the global scope. We don't
want to do this because our globally scoped variable could then be overwritten by any other code on our web page.

JavaScript looks much like other C-based languages in that each expression ends in a semicolon, and blocks of
code such as function and conditional bodies are wrapped in curly braces.
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Conditional statements are generally if else statements formatted as follows:

if([condition]){
[code to execute]
telse{
[code to execute]
}

Functions are formatted like so:
function [function name] ([arguments]){

[code to execute]
}

We access DOM elements in JavaScript usually by referencing the element by its id attribute. We do this like using
the getElementById() function:
var header = document.getElementById("header");

The preceding code stores a reference to the element on the web page that has an ID of header. We can then update
properties of this element, including adding new elements or removing the element altogether.

Objects in JavaScript are generally object literals, meaning that we craft them at runtime, composed of properties
and methods. We create object literals like so:

var myObj = {
myProp: 20,
myfunc: function(){
}

}

We reference properties and methods of objects using the dot operator:
myObj.myprop = 10;

See, that was fast and painless. Okay, on to D3!

History of D3

D3 stands for Data-Driven Documents and is a JavaScript library used to create interactive data visualizations.
The seed of the idea that would become D3 started in 2009 as Protovis, created by Mike Bostock, Vadim Ogievetsky,
and Jeff Heer while they were with the Stamford Visualization Group.

Note Information on the Stamford Visualization group can be found at its website: http://vis.stanford.edu/.
The original whitepaper for Protovis can be found at http://vis.stanford.edu/papers/protovis.

Protovis was a JavaScript library that provided an interface for creating different types of visualizations. The root
namespace was pv and it provided an API for creating bars and dots and areas, among other things. Like D3,
Protovis used SVG to create these shapes; but unlike D3, it wrapped the SVG calls in its own proprietary nomenclature.
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Protovis was abandoned in 2011, so its creators could take their learning and instead create and focus on D3.
There is a difference in philosophy between Protovis and D3. Where Protovis aimed to provide wrapped functionality
for creating data visualizations, D3 instead facilitates and streamlines the creation of data visualization by working
with existing web standards and nomenclature. In D3, we create rectangles and circles in SVG, just facilitated by the
syntactic sugar of D3.

Using D3

The first thing we need to do to get working with D3 is to go to the D3 website, http://d3js.org/, and download the
latest version (see Figure 4-4).

Overview Examples Documentation Source

Data-Driven Documents

s
J— gm&: . i
e AL\

= ¢

D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to See more examples.
life using HTML, SVG and CSS. D3’s emphasis on web standards gives you the full capabilities of

moderm browsers without tying yourself to a proprietary framework, combining powerful visualization

components and a data-driven approach to DOM manipulation.

Download the latest version here:

* d3.v3zip

Figure 4-4. D3 homepage
After that is installed, you can set up a project.

Setting Up a Project

We can include the . js file directly on our page, like so:
<script src="d3.v3.js"></script>

The root namespace is d3; all the commands that we issue from D3 will be using the d3 object.
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Using D3
We use the select () function to target specific elements or the selectAll() function to target all of a specific element type.

var body = d3.select("body");

The previous line selects the body tag and stores it in a variable named body. We can then change attributes of
the body if we want to or add new elements to the body:

var allParagraphs = d3.select("body").selectAll("p");

The previous line selects the body tag and then selects all the paragraph tags within the body.

Notice that we chained the two actions together on the second line? We selected the body and then selected all
the paragraphs, both actions chained together. Also note that we used the CSS selector to specify the element to target.

Okay, once we have selected an element that is now considered our selection and we can perform actions on that
selection. We can select elements within our selection as we did in the previous example.

We can update attributes of the selection with the attr () function. The attr() function accepts two parameters:
the first is the name of the attribute, and the second is the value to set the attribute to. Suppose we want to change the
background color of the current document. We can just select the body and set the bgcolor attribute:

<script>
d3.select("body")
.attr("bgcolor", "#000000");
</script>

Notice in the previous code snippet that we have brought the chained attribute function call to the next line.
We have done this for readability.

The really fun thing with this is that because we’re talking about JavaScript, and functions are first class objects
in JavaScript, we can pass in a function as the value of an attribute so that whatever it evaluates to becomes the
value that is set:

<script>
d3.select("body")
.attr("bgcolor”, function(){
return "#000000";

1

</script>

We can also add elements to our selection using the append() function. The append() function accepts a tag
name as the first parameter. It will create a new element of the type specified and return that new element as the
current selection:

<script>

var svg = d3.select("body")
.append("svg");

</script>

The preceding code creates a new SVG tag in the body of the page and stores that selection in the variable svg.
Next let’s re-create the shapes in Figure 4-3 using what we've just learned about D3:

<script>
var svg = d3.select("body")
.append("svg")
.attr("width", 800);
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var r = svg.append("rect")
.attr("x", 80)
.attr("y", 20)
.attr("height", 100)
.attr("width", 10)
.attr("stroke", "#000000")
.attr("Fill", "#AAAAAA");

var ¢ = svg.append("circle")
.attr("cx", 170)
.attr("cy", 60)
.attr("r", 40)
.attr("stroke", "#000000")
.attr("Fill", "HAAAAAA");

var e = svg.append("ellipse")
.attr("cx", 330)
.attr("cy", 70)
.attr("rx", 100)
.attr("ry", 50)
.attr("stroke", "#000000")
.attr("Fill", "#AAAAAA");
</script>

For each shape we append a new element to the SVG element and update the attributes.

If we compare the two methods, we can see that we just create the SVG element in D3, just as we do in straight
markup. We then create a SVG rectangle, circle, and ellipse inside the SVG element along with the same attributes that
we specified in the SVG markup. But our D3 example has one very important difference: We now have references to
each element on the page that we can interact with.

Let’s take a look at interactions in D3.

Binding Data

For data visualizations, the most important interaction we have with our SVG shapes is to bind data to them.
This allows us to then reflect that data in the properties of the shapes.
To bind data, we simply call the data() method of a selection:

<script>

var rect = svg
.append("rect")
.data([1,2,3]);

</script>

That's fairly straightforward. We can then reference that bound data via anonymous functions that we pass to our
attr() function calls. Let’s take a look at an example.

First let’s create an array that we will call dataSet. To start to envision how this will correlate to creating a data
visualization, you can think of dataSet as a list of nonsequential values, maybe test scores for a class or total rainfall
for a set of regions:

<script>

var dataSet = [ 84,62,40,109];
</script>
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Next we will create an SVG element on the page. To do that, we'll select the body and append an SVG element with
a width of 800 pixels. We'll keep a reference to this SVG element in a variable called svg:

<script>

var svg = d3
.select("body")
.append("svg")
.attr("width", 800);

</script>

Here is where being able to bind data changes things. We will chain together a series of commands that will create
placeholder rectangles in the SVG element based on how many elements exist in our data array.

We will first use selectAl1() to return a reference to all rectangles in the SVG element. There are none yet, but
there will be by the time the chain finishes executing. Next in the chain, we bind our dataSet variable and call enter().
The enter () function creates placeholder objects from the bound data. Finally, we call append() to create a rectangle at
each placeholder that enter () created:

<script>

bars = svg
.selectAll("rect")
.data(dataSet)
.enter()
.append("rect");

</script>

If we looked at our work so far in a browser we would see a blank page, but if we looked at the HTML in a web
inspector such as Firebug, we would see the SVG element along with the rectangles created, but with no styling or
attributes specified yet, similar to Figure 4-5.

# ' € » | =|v cConsole | HTML~ | CS5 Script DOM Net Cookies YSlow
¢ | Edit | body < html
¥ <html=

P cheads

"
P escripts
¥ covg width="800"x
<rects>
<rect>
=rect>
zrect>
a/svgs
</body=
</html=

Figure 4-5. Caption
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Next, let’s style the rectangles that we just made. We have a reference to all the rectangles in the variable bars,
so let’s chain together a bunch of attr () calls to style the rectangles. While we're at it, let’s use our bound data to size
the height of the bars:

<script>

bars
.attr("width", 15 )
.attr("height", function(x){return x;})
.attr("x", function(x){return x + 40;})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");

</script>
The full source code looks like the following and makes the shapes that we see in Figure 4-6:

<script>
var dataSet = [84,62,40,109];

var svg = d3
.select("body")
.append("svg")
.attr("width", 800);

bars = svg
.selectAll("rect")
.data(dataSet)
.enter()
.append("rect");

bars
.attr("width", 15 )
.attr("height", function(x){return x;})
.attr("x", function(x){return x + 40;})
.attr("Fill", "#AAAAAA")
.attr("stroke", "#000000");

</script>

Figure 4-6. Styled rectangles for bar chart
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Now look in Firebug again; you can see the generated markup, as shown in Figure 4-7.

@ € = |v| console |HTML* | C55 Script DOM Net Cookies YSlow
% | Edit | body < himl
¥ chtmls

P chead>

"
P escript>
¥ <svg width="800">
<rect width="15" height="84" x="124" fill="#AAMAAA" stroke="#GDQB28">
<rect width="15" height="62" x="182" fill="#AAAAAA" stroke="#GD0028">
<rect width="15" height="4@" x="8@" fill="#AAAMAA" stroke="#3E30B3">
<rect width="15" height="169" x="149" fill="#AAMAAA" stroke="#30B283"-
«/svg=
c!’bod}b
</html=

Figure 4-7. Rectangles shown as SVG source code in Firebug

Now you can really see the beginnings of how we can start to make data visualizations with D3 by binding data to
SVG shapes. Let’s take this concept another step forward.

Creating a Bar Chart

Our example so far looks a lot like the start of a bar chart in that we have a number of bars whose heights represent
data. Let’s give it some structure.

First, let’s give our SVG container a more concrete width and height. This is important because the size of the
SVG container is what determines the scale we use to normalize the rest of the chart. And because we will reference
this sizing throughout our code, let’s make sure we abstract these values into their own variables.

We will define a height and width for our SVG container. We’ll also create variables that will hold the minimum
and maximum values that we will use on our axes: 0 and 109, respectively. We'll also define an offset value so we can
draw the SVG container slightly larger than our chart to give the chart margins around it:

<script>

var chartHeight = 460,
chartWidth = 400,
chartMin = o,
chartMax = 109,
offset = 60

var svg = d3
.select("body")
.append("svg")
.attr("width", chartWidth)
.attr("height", chartHeight + offset);
</script>

We next need to fix the orientation of our bars. As shown in Figure 4-6, the bars are drawn from the top down,
so that although their heights are accurate, they appear to be facing down because SVG draws and positions shapes
from the top left. So to get them correctly oriented so the bars look like they are coming up from the bottom of the
chart, let’s add a y attribute to our bars.
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The y attribute should be a function that references the data; this function should subtract the bar height value
from the chart height. The returned value from this function is the value used in the y coordinate:

<script>
bars
.attr("width", 15 )
.attr("height", function(x){return x;})
.attr("y", function(x){return (chartHeight - x);})
.attr("x", function(x){return x;})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");
</script>

This flips the bars to the bottom of the SVG element. We can see the results in Figure 4-8.

Figure 4-8. Rectangles in bar chart no longer inverted

Now let’s scale the bars to fit the height of the SVG element. To do this, we'll use a D3 scale() function. The scale()
function is used to take a number within a range and transform it to the equivalent of that number in a different range
of numbers, essentially to scale values to equivalent values.

In this case, we have a number range that signifies the range of values in our dataSet array, which signify the heights
of the bars, and we want to transform these numbers to equivalent values:

<script>

var yscale = d3.scale.linear()
.domain([chartMin, chartMax])
.range([0, (chartHeight)]);

</script>

We then just update the height and y attributes of the bars to use the yscale() function:

<script>

bars
.attr("width", 15 )
.attr("height", function(x){ return yscale(x);})
.attx("y", function(x){return (chartHeight - yscale(x));})
.attr("x", function(x){return x;})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");

</script>
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This produces the graphic shown in Figure 4-9.

Figure 4-9. Rectangles for bar chart properly scaled

Very nice! But so far, we've just been placing the bars based on their height instead of where they lie in the array.
Let’s change that to make their array location more meaningful, so the bars are displayed in the correct order.

To do that, we just update the x value of the bars. We've seen already that we can pass in an anonymous function to the
value parameter of the attr () function. The first parameter in our anonymous function is the value of the current element
of our array. If we specify a second parameter in our anonymous function, it will hold the current index number.

We can then reference that value and offset it to place each bar:

<script>

bars
.attr("width", 15 )
.attr("height", function(x){ return yscale(x);})
.attr("y", function(x){return (chartHeight - yscale(x));})
.attr("x", function(x, i){return (i * 20);})
.attr("fill", "HAAAAAA")
.attr("stroke", "#000000");

</script>

This gives us the ordering of the bars shown in Figure 4-10. Just by eyeballing it, we can tell that the bars are now
closer representations of the data in the array—not just the height but also the height in the order specified in the array.
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Now let’s add text labels so that we can better see what values the heights of the bars are signifying.

We do that by creating SVG text elements in much the same way as creating the bars. We create text placeholders
for every element in our data array and then style the text elements. You'll notice that the anonymous function that
we pass into the x and y attribute calls is almost the same for the text elements as it was for the bars, only offset so

that the text is above and to the center of each bar:

<script>

svg.selectAll("text")
.data(dataSet)

.enter()

.append("text")

.attr("x", function(d) { return (d * 20); })

.attr("y", function(x){return (chartHeight - yscale(x)) ;})
.attr("dx", -15/2)

.attr("dy", "1.2em")

.attr("text-anchor", "middle")
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.text(function(d) { return d;})
.attr("fill", "black");

</script>

This code produces the chart shown in Figure 4-11.

109

Figure 4-11. Bar chart with text labels

See the following complete source code:

<html>

<head>

<title></title>

<script src="d3.v3.js"></script>
</head>

80



CHAPTER 4 * DATA VISUALIZATION WITH D3

<body>
<script>
var dataSet = [84,62,40,109];

var chartHeight = 460,
chartWidth = 400,
chartMin = o,
chartMax = 115,
offset = 60;

var yscale = d3.scale.linear()
.domain([chartMin,chartMax])
.range([0, (chartHeight)]);

var svg = d3
.select("body")
.append("svg")
.attr("width", chartWidth)
.attr("height", chartHeight + offset);

bars = svg
.selectAll("rect")
.data(dataSet)
.enter()
.append("rect");

bars
.attr("width", 15 )
.attr("height", function(x){ return yscale(x);})
.attr("y", function(x){return (chartHeight - yscale(x));})
.attr("x", function(x, i){return (i * 20);})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");

svg.selectAll("text")
.data(dataSet)
.enter()
.append("text")
.attr("x", function(d) { return (d * 20); })
.attr("y", function(x){return (chartHeight - yscale(x)) ;})
.attr("dx", -15/2)
.attr("dy", "1.2em")
.attr("text-anchor", "middle")
.text(function(d) { return d;})
.attr("fill", "black");

</script>
</body>
</html>

And finally let’s read in our data from external files instead of hard-coding it in the page.
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Loading External Data

First, we'll take the array out of our file and put it in its own external file: sampleData. csv. The contents of
sampleData.csv are simply the following:

84,62,40,109

Next we will use the d3. text () function to load in sampleData.csv. The way d3. text () works is that it takes a path to
an external file as the first parameter, and as the second parameter it takes a function. The function receives a parameter
that is the contents of the external file:

<script>
d3.text("sampleData.csv", function(data) {});
</script>

The catch is that we need the contents of our external file before we can begin doing any charting on the data.
So within the callback function, we will parse up the file and then wrap all our existing functionality, like so:

<html>

<head>

<title></title>

<script src="d3.v3.js"></script>
</head>

<body>

<script>

d3.text("sampleData.csv", function(data) {
var dataSet = data.split(",");

var chartHeight = 460,
chartWidth = 400,
chartMin = 0,
chartMax = 115,
offset = 60;

var yscale = d3.scale.linear()
.domain([chartMin,chartMax])
.range([0, (chartHeight)]);

var svg = d3
.select("body")
.append("svg")
.attr("width", chartWidth)
.attr("height", chartHeight + offset);

bars = svg
.selectAl1("rect")
.data(dataSet)
.enter()
.append("rect");
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bars
.attr("width", 15 )
.attr("height", function(x){ return yscale(x);})
.attr("y", function(x){return (chartHeight - yscale(x));})
.attr("x", function(x, i){return (i * 20);})
.attr("fill", "#AAAAAA")
.attr("stroke", "#000000");

svg.selectAll("text")
.data(dataSet)
.enter()
.append("svg:text")
.attr("x", function(d, i) { return (i * 20) })
.attr("y", function(x){return (chartHeight - yscale(x));})
.attr("dx", -15/2)
.attr("dy", "1.2em")
.attr("text-anchor", "middle")
.text(function(d) { return d;})
.attr("fill", "black");

H

</script>
</body>
</html>

And CSV files aren’t the only format we can read in. In fact, d3.text() is only syntactic sugar—a convenience
method or a type-specific wrapper for D3’s implementation of the XMLHttpRequest object d3.xhr ().

For reference, the XMLHttpRequest object is what is used in AJAX transactions to load content asynchronously
from the client side without refreshing the page. In pure JavaScript, we instantiate the XHR object, pass in an URL to
aresource, and the method to retrieve the resource (GET or POST). We also specify a callback function that will get
invoked when the XHR object is updated. In this function, we can parse up the data and begin using it. See Figure 4-12
for a high-level diagram of this process.
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Figure 4-12. Sequence diagram of XHR transaction

In D3 is the d3.xhr () function that is D3’s wrapper for the XMLHttpRequest object. It works much the same way
that we just saw d3.text () work, where we pass in a URL to a resource and a callback function to execute.
The other type-specific convenience functions that D3 has are d3.csv(), d3.json(), d3.xm1(), and d3.htm1().

Summary

This chapter explored D3. We started out covering the introductory concepts of HTML, CSS, SVG and JavaScript,
at least the points that are pertinent to implementing D3. From there we delved into D3, looking at introductory
concepts like creating our first SVG shapes to expanding on that idea by making those shapes into a bar graph.

D3 is a fantastic library for crafting data visualizations. To see the full API documentation,
see https://github.com/mbostock/d3/wiki/API-Reference.

We will return to D3, but first we will explore some data visualizations that we can create that have practical
application in the world of web development. The first one we will look at is something that you may have seen in your
Google analytics dashboard or something similar: a data map based on user visits.
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CHAPTER 5

Visualizing Spatial Data from
Access Logs

In the last chapter, we talked about D3 and looked at concepts from making simple shapes to creating a bar chart
out those shapes. In the previous two chapters, we took a deep dive into R. Now that you are familiar with the core
technologies that we will be using, let’s begin looking at examples of how, as web developers, we can create data
visualizations that communicate useful information around our domain.

The first one that we will look at is creating a data map out of our access logs.

What Are Data Maps?

First, let’s level set and make sure that we clearly define a data map. A data map is a representation of information
over a spatial field, a marriage of statistics with cartography. Data maps are some of the most easily understood and
widely used data visualizations there are because their data is couched in something that we are all familiar with and
use anyway: maps.

Recall the discussion in Chapter 1 of the Cholera map created by Jon Snow in 1854. This is considered one of the
earliest examples of a data map, though there are several notable contemporaries, including several by Charles Minard,
an engineer in nineteenth-century France. He is most widely remembered for his data visualization of Napoleon’s
invasion of Russia in 1812.

Minard also created several prominent data maps. Two of his most famous data maps include the data map
demonstrating the source region and percentage of total cattle consumed in France (see Figure 5-1), and the data map
demonstrating the wine export path and destination from France (see Figure 5-2).
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Figure 5-1. Early data map from Charles Minard demonstrating source region and cattle consumption in France
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Figure 5-2. Data map from Minard demonstrating wine export path and destination

Today we see data maps everywhere. They can be informative and artistic expressions, like the wind map project
from Fernanda Viegas and Martin Wattenberg (see Figure 5-3). Available at http://hint.fm/wind, the wind project
demonstrates the path and force of wind currents over the United States.
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Figure 5-3. Wind map, showing wind speeds by region for the touchdown of Hurricane Sandy (used with permission
of Fernanda Viegas and Martin Wattenberg)

Data maps can be profound, such as those available at energy.gov that demonstrate concepts such as energy
consumption by state (see Figure 5-4), or even renewable energy production by state.
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Figure 5-4. Data map depicting energy consumption by state, from enexgy. gov, (available at
http://energy.gov/maps/2009-energy-consumption-person)

You've now seen historical and contemporary examples of data maps. In this chapter, you will look at creating
your own data map from web server access logs.

Access Logs

Access logs are records that a web server keeps to track what resources were requested. Whenever a web page, an
image, or any other kind of file is requested from a server, the server makes a log entry for the request. Each request
has certain data points associated with it, usually information about the requestor of the resource (for example, IP
address and user agent) and general information such as time of day and what resource was requested.

Let’s look at an access log. A sample entry looks like this:

msnbot-157-55-17-199.search.msn.com - - [18/Jan/2013:13:32:15 -0400] "GET /robots.txt HTTP/1.1"
404 208 "-" "Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)"

This is a snippet from a sample Apache access log. Apache access logs follow the combined log format, which is
an extension of the common log format standard of the World Wide Web Consortium (W3C). Documentation for the

common log format can be found here:

http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
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The common log format defines the following fields, separated by tabs:
e [P address or DNS name of remote host
e Logname of the remote user
e Username of the remote user
e  Datestamp
e  Therequest; usually includes the request method and the path to the resource requested
e  HTTP status code returned for the request
e  Total file size of the resource requested
The combined log format adds the referrer and user agent fields. The Apache documentation for the combined
log format can be found here:
http://httpd.apache.org/docs/current/logs.html#combined
Note that fields that are not available are represented by a single dash -.
Let’s dissect the previous log entry.

e  The first field is msnbot-157-55-17-199.search.msn.com. This is a DNS name that just
happens to have the IP address built into it. We can’t count on parsing the IP address out of
this domain, so for now just ignore the IP address. When we get to programmatically parsing
the logs we will use the native PHP function gethostbyname () to look up the IP addresses for
given domain names.

e  The next two fields, the logname and the user, are empty.
e  Nextis the datestamp: [18/Jan/2013:13:32:15 -0400].

e  After the datestamp is the request: "GET /robots.txt HTTP/1.1".If you hadn’t already
guessed from the DNS name, this is a bot, specifically Microsoft’s msnbot replacement: the
bingbot. In this record, the bingbot is requesting the robots. txt file.

e Nextis the HTTP status of the request: 404. Clearly there was no robots. txt file available.
e Nextis the total payload of the request. Apparently the 404 cost 208 bytes.
e Nextis a dash to signify that the referrer was empty.

e  Finallyis the useragent: "Mozilla/5.0 (compatible; bingbot/2.0;
+http://www.bing.com/bingbot.htm)", which tells us definitively that it is indeed a bot.

Now that you have the access log and understand what is in it, you can parse it to use each field in it
programmatically.

Parsing the Access Log

The process of parsing the access log is the following:
1. Readin the access log.
Parse it and gather geographic data based on the stored IP address.

Output the fields that we are interested in for our visualization.

>« n

Read in this output and visualize.
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We'll use PHP for the first three steps and R for the last step. Note that you will need to be running PHP 5.4.10 or
higher to successfully run the following PHP code.

Read in the Access Log

Create a new PHP document called parselogs . php, within which you will first create a function to read in a file.
Call this function parselLog() and have it accept the path to the file:

function parselog($file){

}

Within this function, you will write some code that will open the passed in file for reading and iterate through
each line of the file until it reaches the end of the file. Each step in the iteration stores the line that is read in, in the
variable $1ine:

$logArray = array();
$file_handle = fopen($file, "1r");
while (!feof($file handle)) {

$line = fgets($file handle);
}

fclose($file handle);

Fairly standard file I/O functionality in PHP so far. Within the loop, you will stub out a function call to a function
that you will call parseLoglLine() and another function that you will call getLocationbyIP().In parselLoglLine(),
you will split up the line and store the values in an array. In getLocationbyIP(), you will use the IP address to get
geographic information. You will then store this returned array in a larger array that called $1ogArray.

$lineArr = parselogline($line);
$lineArr = getlLocationbyIP($lineArr);
$logArray[count($logArray)] = $lineArr;

Don't forget to create the $1logArray variable at the top of the function.
The finished function should look like so:

function parselog($file){

$logArray = array();

$file handle = fopen($file, "r");

while (!feof($file handle)) {
$line = fgets($file_handle);
$lineArr = parselogline($line);
$lineArr = getlocationbyIP($lineArr);
$logArray[count($logArray)] = $lineArr;

}

fclose($file handle);

return $logArray;

}
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Parse the Log File

Next you'll flesh out the parseLoglLine() function. First you'll create the empty function:

function parselogline($loglLine){

}

The function will expect a single line of the access log.

Remember that each line of the access log is made up of sections of information separated by whitespace.
Your first instinct might be to just split the line at each instance of a whitespace, but this would result in breaking up
the user agent string (and potentially other fields) in unexpected ways.

For our purposes, a much cleaner way to parse the line is to use a regular expression. Regular expressions,
called regex for short, are patterns that enable you to do quick and efficient string matching.

Regular expressions use special characters to define these patterns: individual characters, character literals, or
sets of characters. A deep dive on regular expressions is outside of the scope of this chapter, but a great reference to
read about the different regular expression patterns is the Microsoft regular expression Quick Reference, available
here: http://msdn.microsoft.com/en-us/library/az24scfc.aspx.

Grant Skinner also provides a great tool for creating and debugging regular expressions (see Figure 5-5),
which is available here: http://gskinner.com/RegExx/.

Match Replace Samples My Saved Community
AQE) (\8+) (46+) \L(LA )40 (e g+ 1e+) (D140 VIOS+) (27) (18400 (6+) (\6+) (VA7) (V58 [ show al B
|| global |_| ignoreCase | | extended | | dotall | | multiline Share Link =
\w =
208.115.113.85 - - [18/Mar/2012:05:16:11 -0400] “GET /robots.txt HTTP/1.1" 404 208 *-" "Mozilla/5.0 (compatible; Ezooms/1.0; ezooms.bot@gmail.com)” o
\D
\s

[ac7A.7 1 Il

RegExp: /~(\S+) (\S+) (\S+) \[([
pattern: ~(\S+) (\S+) (\S+) \[([*
flags:
13 capturing groups:

group 1: (\5+)

group 2: (\5+)

group 3: (\5+)

0.3.15 bullt by gskinner.com About RegExr  Desktop Version

Figure 5-5. Grant Skinner’s regex tool

Let’s define our regular expression pattern and store it in a variable that we will call $pattern.
If you aren’t proficient with regex, you can create them fairly easily using Grant Skinner’s tool (refer to Figure 5-5).
Using this tool, you can come up with the following pattern:

$pattern = "/~(\S+) (\S+) (\S+) \[([*:1+):(\d+:\d+:\d+) ([A\T14)NT N"(AS+) (.*2) (ASH)\" (\S+) (\S+)
(\"F\") (\".*1\")$/";

Within the tool, you can see how it breaks up the strings into the following groups (see Figure 5-6).
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match: 208.115.113.85 - -« [1B/Mar,/2012:05:16:11 -0400]

"GET frobots.txt HTTR/1.1" 404 208 *-" "Mazills/5.0
[compatible; Ezooms/1.0; ezooms. bot@gmail.cam}”

index: 0

length: 147

groups: 13
group 1: 208.115.113.85
group 2: -
group 3: -
group 4: 18/Marf2012
group 5: 05:16:11
group b: -0400
group 7: GET
group 8: frobots.txt
group 9: HTTR/1.1
group 10: 404
group 11: 208
group 12: "-"

group 13: "Mozilla/5.0 {compatible; Ezooms,S1.0;

ezooms. botEgrmail.ocom)®

Figure 5-6. Log file line split into groups
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You now have a regular expression to use. Let’s use PHP’s preg_match() function. This takes as parameters a
regular expression, a string to match it against, and an array to populate as the output of the pattern matching:

preg_match($pattern,$logline,$logs);

From there, we can just create an associative array with named indexes to hold our parsed up line:

$logArray = array();

$logArray[ 'ip'] = gethostbyname($logs[1]);

$logArray[ 'identity'] = $logs[2];
$logArray[ 'user'] = $logs[2];
$logArray[ 'date'] = $logs[4];
$logArray[ 'time'] = $logs[5];
$logArray[ 'timezone'] = $logs[6];

$logArray[ 'method'] = $logs[7];
$logArray[ 'path'] = $logs[8];
$logArray[ 'protocol'] = $logs[9];
$logArray[ 'status'] = $logs[10];
$logArray[ 'bytes'] = $logs[11];
$logArray[ 'referer'] = $logs[12];
$logArray[ 'useragent'] = $logs[13];
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Our complete parselogline() function should now look like this:

function parselogline($loglLine){
$pattern = "/*(\S+) (\S+) (\S+) \[([*:]4):(\d+:\d+:\d+) ([M\]]N] \'(\S+) (L*2) (\S+)\”
(\$) (1) (VAT (VS

preg match($pattern,$logline,$logs);

$logArray = array();

$logArray[ 'ip'] = gethostbyname($logs[1]);
$logArray[ 'identity'] = $logs[2];
$logArray[ 'user'] = $logs[2];

$logArray[ 'date'] = $logs[4];

$logArray[ 'time'] = $logs[5];

$logArray[ 'timezone'] = $logs[6];

$logArray[ 'method'] = $logs[7];
$logArray[ 'path'] = $logs[8];
$logArray[ 'protocol'] = $logs[9];
$logArray[ 'status'] = $logs[10];
$logArray[ 'bytes'] = $logs[11];
$logArray[ 'referer'] = $logs[12];
$logArray[ 'useragent'] = $logs[13];

return $logArray;

Next you will create the functionality for the getLocationbyIP() function.

Geolocation by IP

In the getLocationbyIP() function, you can take the array that you made by parsing a line of the access log and use
the IP field to get the geographic location. There are many ways to get geographic location by IP address; most involve
either calling a third-party API or downloading a third-party database with the IP location information prepopulated.
Some of these third parties are freely available; some have a cost associated with them.

For our purposes, you can use the free API available at hostip.info. Figure 5-7 shows the hostip.info home page.
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Figure 5-7. hostip.info home page
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The hostip.info service aggregates geotargeting information from ISPs as well as direct feedback from users.
It exposes an API as well as a database available for download.

The APl is available at http://api.hostip.info/.If no parameters are provided, the API returns the geo location

of the client. By default, the API returns XML. The return value looks like this:

<?xml version="1.0" encoding="IS0-8859-1" ?>
<HostipLookupResultSet version="1.0.1" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://www.hostip.info/api/hostip-1.0.1.xsd">
<gml:description>This is the Hostip Lookup Service</gml:description>
<gml:name>hostip</gml:name>

<gml:boundedBy>

<gml:Null>inapplicable</gml:Null>
</gml:boundedBy>
<gml:featureMember>
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<Hostip>
<ip>71.225.152.145¢/ip>
<gml:name>Chalfont, PA</gml:name>
<countryName>UNITED STATES</countryName>
<countryAbbrev>US</countryAbbrev>
<!-- Co-ordinates are available as lng,lat -->
<iplLocation>
<gml:pointProperty>
<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:coordinates>-75.2097,40.2889</gml:coordinates>
</gml:Point>
</gml:pointProperty>
</iplocation>
</Hostip>
</gml:featureMember>
</HostipLookupResultSet>

You can refine the API calls. If you want only country information, you can call
http://api.hostip.info/country.php. It returns a string with a country code. If JSON is preferred over XML, you
can call http://api.hostip.info/get json.php and get the following result:

{"country name":"UNITED STATES","country code":"US","city":"Chalfont, PA","ip":"71.225.152.145"}
To specify an IP address, add the parameter ?ip=xxxXx, like so:
http://api.hostip.info/get json.php?ip=100.43.83.146

OK, let’s code the function!
We'll stub out the function and have it accept an array. We'll pull the IP address from the array, store it in a
variable, and concatenate the variable to a string that contains the path to the hostip.info API:

function getlLocationbyIP($arr){
$IPAddress = $arr['ip'];
$IPCheckURL = "http://api.hostip.info/get json.php?ip=$IPAddress";

You'll pass this string to the native PHP function file get contents() and store the return value, the results of
the API call, in a variable that you'll name jsonResponse. You'll use the PHP json_decode() function to convert the
returned JSON data into a native PHP object:

$jsonResponse = file get contents($IPCheckURL);
$geoInfo = json_decode($jsonResponse);

You next pull the geolocation data from the object and add it to the array that you passed into the function.
The city and state information is a single string separated by a comma and a space (“Philadelphia, PA”), so you'll need
to split at the comma and save each field separately in the array.

$arr['country'] = $geoInfo->{"country_code"};

$arr['city'] = explode(",",$geoInfo->{"city"})[0];
$arr['state'] = explode(",",$geoInfo->{"city"})[1];
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Next let’s do a little bit of error checking that will make things easier later on in the process. You'll check to see
whether the state string has any value; if it doesn’t, set it to “XX". This will be helpful once you begin parsing data in R.
And finally you'll return the updated array:

if(count($arr['state']) < 1)
$arr['state’'] = "XX";
return $arr;

The full function should look like this:

function getlLocationbyIP($arr){
$IPAddress = $arr['ip'];
$IPCheckURL = "http://api.hostip.info/get_json.php?ip=$IPAddress";

$jsonResponse = file get contents($IPCheckURL);
$geoInfo = json_decode($jsonResponse);
$arr[ 'country'] = $geoInfo->{"country code"};
$arr['city'] = explode(",",$geoInfo->{"city"})[0];
$arr[ 'state'] = explode(",",$geoInfo->{"city"})[1];
if(count($arr['state']) < 1)

$arr[ 'state'] = "XX";

return $arr;

Finally, let’s create a function to write processed data out to a file.

Output the Fields

You'll create a function named writeRLog() that accepts two parameters: the array populated with decorated log
data and the path to a file:

function writeRLog($arr, $file){
}

You need to create a variable called writeFlag that will be the flag to tell PHP to either write or append data to
the file. You check to see whether the file exists; if it does, you append content instead of overwrite. After the check,
open the file:
writeFlag = "w";
if(file_exists($file)){

$writeFlag = "a";

}
$th = fopen($file, $writeFlag) or die("can't open file");

97


http://api.hostip.info/get_json.php?ip=$IPAddress

CHAPTER 5 ' VISUALIZING SPATIAL DATA FROM ACCESS LOGS

You then loop through the passed-in array; construct a string containing the IP address, date, HTTP status,
country code, state, and city of each log entry; and write that string to the file. Once you've finished iterating through
the array, you close the file:

for($x = 0; $x < count($arr); $x++){
if($arr[$x][ 'country'] != "XX"){
$data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," . $arr[$x]['status'] . "," .
$arr[$x]['country'] . "," . $arr[$x]['state’] . "," . $arr[$x]['city'];
}
fwrite($fh, $data . "\n");

Our completed writeRLog() function should look like this:

function writeRLog($arr, $file){
$writeFlag = "w";
if(file exists($file)){

$writeFlag = "a";

$th = fopen($file, $writeFlag) or die("can't open file");
for($x = 0; $x < count($arr); $x++){
if($arr[$x][ " 'country'] != "XX"){
$data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," . $arr[$x]['status'] . "," .
$arr[$x]['country'] . "," . $arr[$x]['state’'] . "," . $arr[$x]['city'];
}
fwrite($fh, $data . "\n");

}
fclose($fh);
echo "log created";
}
Adding Control Logic

Finally you'll create some control logic to invoke all these functions that you just created. You'll declare the path to the
access log and the path to our output flat file, call parseLog() and send the output to writeRLog():

$logfile = "access_log";
$chartingData = "accesslLogData.txt";
$logArr = parselog($logfile);
writeRLog($logArr, $chartingData);

Our completed PHP code should look like the following:

<html>

<head></head>

<body>

<?php

$logfile = "access_log";
$chartingData = "accesslLogData.txt";
$logArr = parselog($logfile);
writeRLog($logArr, $chartingData);
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function parselog($file){

$logArray = array();

$file handle = fopen($file, "1r");

while (!feof($file handle)) {
$line = fgets($file_handle);
$lineArr = parselogline($line);
$lineArr = getlocationbyIP($lineArr);
$logArray[count($logArray)] = $lineArr;

}
fclose($file handle);
return $logArray;

}

function parselogline($loglLine){
$pattern = "/A(\S+) (\S+) (\S+) \[([*:]+):(Nd+:\d+:\d+) ([ANITHN] \"(AS+) (L*2) (A\S+)\"
(\S+) (\S+) (\".*2\") (\".*N\")$/";

preg_match($pattern,$logline,$logs);

$logArray = array();

$logArray[ 'ip'] = gethostbyname($logs[1]);
$logArray[ 'identity'] = $logs[2];
$logArray[ 'user'] = $logs[2];

$logArray[ 'date'] = $logs[4];

$logArray[ 'time'] = $logs[5];

$logArray[ 'timezone'] = $logs[6];

$logArray[ 'method'] = $logs[7];
$logArray[ 'path'] = $logs[8];
$logArray[ 'protocol’'] = $logs[9];
$logArray[ 'status'] = $logs[10];
$logArray[ 'bytes'] = $logs[11];
$logArray[ 'referer'] = $logs[12];
$logArray[ 'useragent'] = $logs[13];

return $logArray;

}

function getlocationbyIP($arr){
$IPAddress = $arr['ip'];
$IPCheckURL = "http://api.hostip.info/get_json.php?ip=$IPAddress";

$jsonResponse = file get contents($IPCheckURL);
$geoInfo = json_decode($jsonResponse);
$arr['country'] = $geoInfo->{"country code"};
$arr['city'] = explode(",",$geoInfo->{"city"})[0];
$arr['state'] = explode(",",$geoInfo->{"city"})[1];

return $arr;
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function writeRLog($arr, $file){

$writeFlag = "w";
if(file exists($file)){

$writeFlag = "a";
}
$th = fopen($file, $writeFlag) or die("can't open file");
for($x = 0; $x < count($arr); $x++){
if($arr[$x]['country'] = "XX"){
$data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," .
$arr[$x]['status'] . "," . $arr[$x]['country'] . "," . $arr[$x]['state’] . "," . $arr[$x]['city'];

}
fwrite($fh, $data . "\n");

}
fclose($fh);
echo "log created";
}
>
</body>
</html>

And it should produce a flat file that looks like so:

157.55.32.94,25/Jan/2013,404,US, WA,Redmond
180.76.6.26,25/Jan/2013,200,CN, ,Beijing
213.174.154.106,25/Jan/2013,301,UA, , (Unknown city)

We have made a sample access log available here: http://tom-barker.com/data/access_log.

Creating a Data Map in R

So far, you parsed the access log, scrubbed the data, decorated it with location information, and created a flat file that
has a subset of information. The next step is to visualize this data.
Because you are making a map, you need to install the map package. Open up R; from the console, type the following:

> install.packages('maps")
> install.packages('mapproj")

Now we can begin! To reference the map package in the R script, you need to load it into memory by calling the
library() function:

library(maps)
library(mapproj)

You next create several variables—one to point to our formatted access log data; another is a list of column
names. You create a third variable, logData, to hold the data frame created when you read in the flat file:

logDataFile <- '/Applications/MAMP/htdocs/accesslogData.txt’
logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

If you type logData in the console, you see the data frame formatted like this:
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> logData

Ip date HTTPstatus country state city
1 100.43.83.146 25/Jan/2013 404 us NV Las Vegas
2 100.43.83.146 25/Jan/2013 301 us NV Las Vegas
3 64.29.151.221 25/Jan/2013 200 us XX (Unknown city)
4 180.76.6.26 25/Jan/2013 200 CN XX Beijing

Clearly you could start to track several different data points here. Let’s first look at mapping out what countries
the traffic is coming from.

Mapping Geographic Data

You can begin by pulling the unique country names from logData. You'll store this in a variable named country:
> country <- unique(logData$country)
If you type country in the console, the data looks like the following:

> country
[1] US CN CA SE UA
Levels: CA CN SE UA US

These are the country codes that you get back from iphost.info. R has a different set of country codes that it uses,
so you'll need to convert the iphost country codes to R country codes. You can do this by applying a function to the
country list.

You'll use sapply() to apply an anonymous function of your own design to the list of country codes. In the
anonymous function, you'll trim any whitespace and do a direct replacement of country codes. You will use the gsub()
function to do a replacement of all instances of the passed-in parameter:

country <- sapply(country, function(countryCode){
#trim whitespaces from the country code
countryCode <- gsub("(* +)|( +$)", "", countryCode)
if(countryCode == "US"){
countryCode<- "USA"
telse if(countryCode == "CN"){
countryCode<- "China"
telse if(countryCode == "CA"){
countryCode<- "Canada"
telse if(countryCode == "SE"){
countryCode<- "Sweden"
telse if(countryCode == "UA"){
countryCode<- "USSR"
}
b))
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There are a couple of things to notice about the preceding source code. First is that you are hard-coding every
country code that you have. This is, of course, bad form, and you’ll approach this problem a very different way once
you dig into state data. The second thing to notice is that you have the country code “UA’; which is for the Ukraine, and
you need to convert that to “USSR”. Apparently that aspect of the map package hasn’t been updated since the fall of
the Soviet Union in 1991.

If you type country into the console again, you'll now see the following:

> country
[1] "usA" "China" "Canada" "Sweden" "USSR"

You next use the match.map() function to match the countries with the map package’s list of countries. The
match.map() function creates a numeric vector in which each element corresponds to a country on the world map. The
elements of intersection (where countries in the country list match countries in the world map) have values assigned to
them—specifically, the index number from the original country list. So the element that corresponds to USA has a 1, the
element that corresponds to Canada has a 2, and so on. Where there is no intersection, the element has the value NA.

countryMatch <- match.map("world2", country)

Let’s next use the countryMatch list to create a color-coded country match. To do this, simply apply a function
that checks each element. If it is not NA, assign the color #C6DBEF to the element, which is a nice light blue. If the
element is NA, set the element to white or #FFFFFE. You will save the result of this in a new list that you will call
colorCountry.

colorCountry <- sapply(countryMatch, function(c){
if(!is.na(c)) c <- "#C6DBEF"
else c <- "#FFFFFF"

1

Now let’s create our first visualization with the map () function! The map() function accepts several parameters:

e The first is the name of the database to use. The database name can be either world, usa
state or county; each contains data points that correlate to geographic areas that the map ()
function will draw.

e Ifyou only want to draw a subset of the larger geographic database you can specify an optional
parameter named region that lists the areas to draw.

*  You can also specify the map projection to use. A map projection is basically a way to represent
a three-dimensional curved space on a flat surface. There are a number of predefined
projections, and the mapproj package in R supports a number of these. For the world map that
you'll be making, you will use an equal area projection, the identifier of which is “azequalarea”
For more about map projections, see http://xkcd.com/977/.

e  You also can specify the center point of our map, in latitude and longitude, using the
orientation parameter.

e  Finally you'll pass the colorCountry list that you just made to the col parameter.
map('world', proj='azequalarea', orient=c(41,-74,0), boundary=TRUE, col=colorCountry, fill=TRUE)

This code produces the map that you can see in Figure 5-8.
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Figure 5-8. Data map using a world map

From this map we can see that the countries from our unique list are shaded blue and the rest of the countries are
colored white. This is good, but we can make it better.

Adding Latitude and Longitude

Let’s start by adding latitude and longitude lines, which will accentuate the curvature of the globe and give context to
where the poles are. To create latitude and longitude lines, we first create a new map object, but we will set plot to FALSE
so that the map is not drawn to the screen. We'll save this map object to a variable named m:

m <- map('world',plot=FALSE)

We'll next call map.grid() and pass in our stored map object:
map.grid(m, col="blue", label=FALSE, lty=2, pretty=TRUE)

Note that if you are running this code line by line in the command window, it’s important to keep the Quartz
graphic window open as you type the lines in so that R can update that chart. If you close the Quartz window while

typing it in line by line, you could get an error stating that plot.new has not been called. Or you could type each line
into a text file and copy them into the R command line all at once.
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While we're at it, let’s add a scale to the chart to show:
map.scale()
Our completed R code should now look like so:

library(maps)
library(mapproj)

logDataFile <- '/Applications/MAMP/htdocs/accesslLogData.txt’
logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

country <- unique(logData$country)
country <- sapply(country, function(countryCode){
#trim whitespaces from the country code
countryCode <- gsub("(* +)|( +$)", "", countryCode)
if(countryCode == "US"){
countryCode<- "USA"
telse if(countryCode == "CN"){
countryCode<- "China"
telse if(countryCode == "CA"){
countryCode<- "Canada"
telse if(countryCode == "SE"){
countryCode<- "Sweden"
telse if(countryCode == "UA"){
countryCode<- "USSR"
}
b))

countryMatch <- match.map("world", country)

#color code any states with visit data as light blue
colorCountry <- sapply(countryMatch, function(c){

if(!is.na(c)) c <- "#C6DBEF"

else c <- "#FFFFFF"

3]
m <- map('world',plot=FALSE)
map('world',proj="azequalarea',orient=c(41,-74,0), boundary=TRUE, col=colorCountry,fill=TRUE)
map.grid(m,col="blue", label=FALSE, 1lty=2, pretty=TRUE)
map.scale()

And this code outputs the world map shown in Figure 5-9.
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Figure 5-9. Globe data map with latitude and longitude lines as well as scale

Very nice! Next, let’s drill into a breakdown of visits by states in the United States.

Displaying Regional Data

Let’s start by isolating U.S. data; we can do this by selecting all rows in which the state does not equal “XX”" Remember
setting the value in the state column to “XX” when we were parsing the access log in PHP? This is why. Countries other
than the United States don’t have state data associated with them, so we can simply pull only the rows that have state data.

usData <- logData[logData$state != "XX", ]

We next need to replace the state abbreviations that we got from hostip.info with the full state names so that we
can create a match.map lookup list, much like we did with the preceding country data.

The upside with state data is that R has a data set that contains all 50 U.S. state names, abbreviations, and even
more esoteric information such as area of the state and named divisions (New England, Middle Atlantic, and so on).
For more information, type ?state.name at the R console.

We can use the information in this data set to match the state abbreviations with the full state names that the map
package needs. To do this, we use the apply() function to run an anonymous function that greps through the state.abb
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data set to find a match for the passed-in state abbreviation and then use that returned value as the index for retrieving
the full state name from the state.name data set:

usData$state <- apply(as.matrix(usData$state), 1, function(s){
#trim the abbreviation of whitespaces
s <= gsub("(* +)[( +$)", "", 5)
s <- state.name[grep(s, state.abb)]

H

We achieve the same functionality as the previous country match, but much more elegantly. If we were so inclined,
we could go back and create our own data set of country names for future use to have a similar elegant solution for the
country match.

Now that we have full state names to use, we can pull a unique list of state names and use that list to create a map
matched list (again, just as we did for countries):

states <- unique(usData$state)
stateMatch <- match.map("state", states)

With our state match list, we can again apply a function to it that will look for matches in our match list, elements
that do not have the value NA, and set the value for those elements to our nice light blue color while all elements that
do have the value of NA get set to white. We save this list in a variable that we name colorMatch:

#color code any states with visit data as light blue
colorMatch <- sapply(stateMatch, function(s){
if(!is.na(s)) s <- "#C6DBEF"
else s <- "H#FFFFFF"

1)

We can then use colorMatch in our call to the map() function:
map("state", resolution = 0,1ty = 0,projection = "azequalarea", col=colorMatch,fill=TRUE)

Hmm, but notice something? Only the colored areas are drawn to the stage, as shown in Figure 5-10.

Figure 5-10. Data map with only states that have data displayed
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We need to make a second map() call that will draw the remainder of the map. In this map() call, we will set the
add parameter to TRUE, which will cause the new map that we are drawing to be added to the current map. While we’re
atit, let’s create a scale for this map as well:

map("state", col = "black", fill=FALSE, add=TRUE, 1lty=1, lwd=1, projection="azequalarea")
map.scale()

This code produces the finished state map in Figure 5-11.

scale approx 1:300,000 ot
N S {
i} 5 10 km

Figure 5-11. Completed state data map

Distributing the Visualization

OK, now let’s put our R code in an R Markdown file for distribution. Let’s go into RStudio and click File » New » R
Markdown. Let’s add a header and make sure that our R code is wrapped in ~~ " {r} tags and that our charts have
heights and widths assigned to them. Our completed R Markdown file should look like this:

Visualizing Spatial Data from Access Logs

o {r}
library(maps)
library(mapproj)

logDataFile <- '/Applications/MAMP/htdocs/accesslogData.txt’
logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")

logData <- read.table(logDataFile, sep=",", col.names=logColumns)

" {r fig.width=15, fig.height=10}
#chart worldwide visit data

#unfortunately there is no state.name equivalent for countries so we must check
#the explicit country names. In the us states below we are able to accomplish this much
#more efficiently
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country <- unique(logData$country)
country <- sapply(country, function(countryCode){
#trim whitespaces from the country code
countryCode <- gsub("(* +)|( +$)", "", countryCode)
if(countryCode == "US"){
countryCode<- "USA"
telse if(countryCode == "CN"){
countryCode<- "China"
}else if(countryCode == "CA"){
countryCode<- "Canada"
telse if(countryCode == "SE"){
countryCode<- "Sweden"
telse if(countryCode == "UA"){
countryCode<- "USSR"
}
H

countryMatch <- match.map("world", country)

#color code any states with visit data as light blue
colorCountry <- sapply(countryMatch, function(c){
if(lis.na(c)) c <- "#C6DBEF"

else ¢ <- "#FFFFFF"

1)

m <- map('world',plot=FALSE)

map('world',proj="azequalarea',orient=c(41,-74,0), boundary=TRUE, col=colorCountry,fill=TRUE)
map.grid(m,col="blue", label=FALSE, 1lty=2, pretty=FALSE)

map.scale()

" {r fig.width=10, fig.height=7}

#isolate the US data, scrub any unknown states

usData <- logData[logData$state != "XX", ]

usData$state <- apply(as.matrix(usData$state), 1, function(s){
#trim the abbreviation of whitespaces
s <= gsub("(* +)[( +$)", "", )
s <- state.name[grep(s, state.abb)]

1)

s <- map('state’,plot=FALSE)
states <- unique(usData$state)
stateMatch <- match.map("state", states)

#color code any states with visit data as light blue
colorMatch <- sapply(stateMatch, function(s){
if(!is.na(s)) s <- "#C6DBEF"

else s <- "#FFFFFF"

b

map("state", resolution = 0,1ty = 0,projection = "azequalarea", col=colorMatch,fill=TRUE)
map("state", col = "black",fill=FALSE,add=TRUE,1lty=1,1lwd=1,projection="azequalarea")
map.scale()
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This code produces the output shown in Figure 5-12. I have also made this R script publicly available at the

following URL: http://rpubs.com/tomjbarker/3878.

Visualizing Spatial Data from Access Logs
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Figure 5-12. Data maps in RMarkdown
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Summary

This chapter discussed parsing access logs to produce data map visualizations. You looked at both global country
data in your maps as well as more localized state data. This is the first taste of how you can begin to bring usage data
to life.

The next chapter looks at bug backlog data in the context of time series charts.
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CHAPTER 6

Visualizing Data Over Time

The last chapter discussed using access logs to create data maps representing the geographic location of users. We
used the map and mapproj (for map projections) packages to create these visualizations.

This chapter explores creating time series charts, which are graphs that compare changes in values over time.
They are generally read left to right with the x-axis representing some measure of time, and the y-axis representing the
range of values. This chapter discusses visualizing defects over time.

Tracking defects over time allows us to identify not only spikes in issues but also larger patterns in workflows,
especially when we include more granular details such as bug criticality, and include cross-referencing data such
as dates for events like start and end of iteration. We begin to expose trends such as when during an iteration bugs
get opened, when most of the blocker bugs get opened, or what iterations produce the highest number of bugs. This
kind of self-evaluation and reflection are what allow us to identify and focus attention on blind spots or areas of
improvement. It also allows us to recognize victories in a larger scope that might be missed when viewing the daily
numbers without context.

A case in point: recently our organization set a larger group goal of achieving a certain bug number by the end
of the year, a percent of the total open bugs that we had open at the beginning of the year. With our peers and our
management staff, we coached all the developers, created process improvements, and won hearts and minds for this
goal. At the end of the year, the number of bugs we had remaining open was about the same as when we had started.
We were confused and concerned. But when we summed the daily numbers, we realized that we had achieved
something larger than we anticipated: we actually opened one-third fewer bugs overall year over year from the
previous year. This was huge and would easily have been missed if we weren’t looking at the data with a critical eye to
the larger picture.

Gathering Data

The first step of creating a defect time series chart is to decide on a time period that we want to look at and gather the
data. This means getting an export of all the bugs for a given time period.

This step is completely dependent on the bug tracing software that you may use. Maybe you use HP’s Quality
Center because it makes sense with the rest of your organization’s testing needs (such as being able to work with
LoadRunner). Maybe you use a hosted web-based solution such as Rally because you get defect management
bundled in with your user story and release tracking. Maybe you have your own installation of Bugzilla because it’s
open and free.

Whatever the case, all defect management software has a way to export your current bug list. Depending on the
defect-tracking software used, you can export to a flat file, such as a comma or tab-separated file. The software can
also allow access to its contents via an API so you can create a script that accesses the API and exposes the content.

Either way, there are two important main cases when looking at bugs over time:

e  Running total of bugs by date

e  New bugs by date
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For either of these cases, the minimum fields that we care about when we export from the bug tracking software
are the following:
e Date opened
e  Defectid
e  Defect status
e  Severity of defect
e  Description of the defect
The exported bug data should look something like this:
Date, ID, Severity, Status, Summary

01-08-2013, DE45095, Minor, Open, alignment of left nav off
01-08-2013, DE45269, Blocker, Open, videos not playing

Let’s process the data to be able to visualize it.

Data Analysis with R

The first thing is to read in and order the data. Assuming that data is exported to a flat file named allbugs.csv,
we can read in the data as follows (we have provided sample data for it at
http://www.tom-barker.com/data/allbugs.csv):

bugExport <- "/Applications/MAMP/htdocs/allbugs.csv"

bugs <- read.table(bugExport, header=TRUE, sep=",
Let’s order the data frame by date. To do this, we have to convert the Date column, which is read in as a string,

into a Date object using the as.Date() function. The as.Date() function accepts several symbols to signify how to
read and structure the date object, as shown in Table 6-1.

Table 6-1. as.Date() function symbols

Symbol Meaning

%m Numeric month

%b Month name as string, abbreviated
%B Full month name as string

%d Numeric day

%a Weekday as abbreviated string

%A Full weekday as string

%y Year as two-digit number

Y Year as four-digit number
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So for the date "04/01/2013", we pass in "%m/%d/%Y"; for "April 01, 13" we passin "%B %d, %Y".You can see
how the pattern matches up:

as.Date(bugs$Date, "%m-%d-%Y")

We'll use the converted date in the order () function, which returns a list of index numbers from the bugs data
frame, corresponding with the correct way to order the values in the data frame:

> order(as.Date(bugs$Date, "%m-%d-%Y"))
[1] 13 14 2 3 16 17 18 19 20 21 22 23 24 25 26 27 28 4 29 32 34 31 33 30 35 15 37 6 7 38 8 9 39 10
11 40 12 41 42 43 45 15 36 44 47 48 49 46 50 51 52 53 54

Finally we’ll use the results of the order () function as the indexes of the bugs data frame and pass the results
back into the bugs data frame:

bugs <- bugs[order(as.Date(bugs$Date, "%m-%d-%Y")), ]

This code reorders the bugs data frame based on the order of the indexes returned in the order () function. It will
be handy when we begin to slice up the data. The data frame should now be a chronologically ordered list of bugs,
which looks like the following:

> bugs
Date ID Severity Status Summary
13 01-04-2013 46250 Minor Open Data not showing
14 01-04-2013 46253 Minor Open Page unavailable
2 01-08-2013 45095 Minor Open Font color incorrect
3 01-08-2013 45269 Blocker Open Pixel alignment off

Let’s write this newly ordered list back out to a new file that we will reference later called allbugsOrdered.csv
(we have provided sample data for it at http://www.tom-barker.com/data/allbugsOrdered.csv):

write.table(bugs, col.names=TRUE, row.names=FALSE, file="/Applications/MAMP/htdocs/allbugsOrdered.csv",

quote = FALSE, sep = ",

This will come in handy later when we look at this data in D3.

Calculating the Bug Count
Next we will calculate the total bug count by date. This will show how many new bugs are opened by day.
To do this, we pass bugs$Date into the table() function, which builds a data structure of counts of each date in
the bugs data frame:
totalBugsByDate <- table(bugs$Date)
So the structure of totalBugsByDate looks like the following:

> totalBugsByDate

2013-01-04 2013-01-08 2013-01-09 2013-01-10 2013-01-14
24531
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Let’s plot this data out to get an idea of how many bugs are opened each day:
plot(totalBugsByDate, type="1", main="New Bugs by Date", col="red", ylab="Bugs")

This code creates the chart shown in Figure 6-1.

New Bugs by Date

Bugs

T 1T 1T 17T 1T 1T T T 1T 1T 1T T T T T T T T1
01-04-2013  01-14-2013  01-29-2013  02-06-2013  02-11-2013

Figure 6-1. Time series of new bugs by date

Now that we have a count of how many bugs are generated each day, we can get a cumulative sum by using the
cumsum() function. It takes the new bugs opened each day and creates a running sum of them, updating the total each
day. It allows us to generate a trend line for the cumulative count of bugs over time:

> runningTotalBugs <- cumsum(totalBugsByDate)

>

> runningTotalBugs

01-04-2013 01-08-2013 01-09-2013 01-10-2013 01-14-2013 01-16-2013 2 6 11 14 15 17

This is exactly what we need to now plot out the way the bug backlog grows or shrinks each day. To do that, let’s
pass runningTotalBugs to the plot() function. We set the type to "1" to signify that we are creating a line chart and
then name the chart Cumulative Defects Over Time. In the plot () function, we also turn the axes off so that we can
draw custom axes for this chart. We will want to draw custom axes so that we can specify the dates as the x-axis labels.
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To draw custom axes, we use the axis() function. The first parameter in the axis () function is a number that
tells R where to draw the axis:
e 1 corresponds to the x-axis at the bottom of the chart
e  2to theleft of the chart
e  3to the top of the chart

e  4to theright of the chart
plot(runningTotalBugs, type="1", xlab="", ylab=""
main="Cumulative Defects Over Time", axes=FALSE)
axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))
axis(2, las=1, at=10*0:max(runningTotalBugs))

, pch=15, 1ty=1, col="red",

This code creates the time series chart shown in Figure 6-2.

Cumulative Defects Over Time

50 —

10

(U [ T T T T I I T T I T I I T T T T I I 1
01-04-2013  01-14-2013  01-29-2013  02-06-2013  02-11-2013

Figure 6-2. Cumulative defects over time
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This shows the progressively increasing bug backlog, by date.
The complete R code so far is as follows:

bugExport <- "/Applications/MAMP/htdocs/allbugs.csv"

bugs <- read.table(bugExport, header=TRUE, sep=",
bugs <- bugs[order(as.Date(bugs$Date, "%m-%d-%Y")),]

sprintDates <- "/Applications/MAMP/htdocs/iterationdates.csv"
sprintInfo <- read.table(sprintDates, header=TRUE, sep=","

#output ordered list to new flat file

write.table(bugs, col.names=TRUE, row.names=FALSE, file="/Applications/MAMP/htdocs/allbugsOrdered.
csv", quote = FALSE, sep = ",")

totalBugsByDate <- table(factor(bugs$Date))

plot(totalBugsByDate, type="1", main="New Bugs by Date", col="red")

runningTotalBugs <- cumsum(totalBugsByDate)

plot(runningTotalBugs, type="1", xlab="", ylab="", pch=15, lty=1, col="red",

main="Cumulative Defects Over Time", axes=FALSE)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=10*0:max(runningTotalBugs))

write.table(totalBugsByDate, col.names=TRUE, row.names=FALSE, file="/Applications/MAMP/htdocs/
runningTotalBugs.csv", quote = FALSE, sep = ","

Let’s take a look at the criticality of the bugs, which shows not just when the bugs are opened but also when the
most severe (or non-severe) bugs are being opened.

Examining the Severity of the Bugs

Remember that when we exported the bug data we included the Severity field, which indicates the level of criticality of
each bug. Each team and organization might have their own classification of severity, but generally they include these:

e Blockers are bugs so severe that they prevent the launch of a body of work. They generally
have broken functionality or are missing sections of a widely used feature. They can also
be discrepancies with contractually or legally binding features such as closed captioning or
digital rights protection.

e  Criticals are bugs that are severe but not so damaging that they gate a release. They can have
broken functionality of less-used features. The scope of accessibility, or how widely used a
feature is, is usually a determining factor between making a bug a blocker or a critical.

e  Minors are bugs with very minimal if any impact and might not even be noticeable to an
end user.

To break out the bugs by severity, we simply call the table() function, just as we did to break out bugs out by
date, but this time add in the Severity column as well:

bugsBySeverity <- table(factor(bugs$Date),bugs$Severity)
This code creates a data structure that looks like so:

Blocker Critical Minor

01-04-2013 0 0 2

01-08-2013 1 0 3
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01-09-2013 3 0 2
01-10-2013 1 0 2
01-14-2013 0 0 1
01-16-2013 1 0 1
01-22-2013 10 1

We can then plot this data object. The way we do this is to use the plot() function to create a chart for one of the
columns and then use the 1ines() function to draw lines on the chart for the remaining columns:

plot(bugsBySeverity[,3], type="1", xlab="", ylab="", pch=15, lty=1, col="orange",
main="New Bugs by Severity and Date", axes=FALSE)

lines(bugsBySeverity[,1], type="1", col="red", 1lty=1)

lines(bugsBySeverity[,2], type="1", col="yellow", lty=1)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=0:max(bugsBySeverity[,3]))

legend("topleft", inset=.01, title="Legend", colnames(bugsBySeverity), lty=c(1,1,1),
col= c("red", "yellow", "orange"))

This code produces the chart shown in Figure 6-3.

New Bugs by Severity
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Figure 6-3. Our plot() and lines() functions drawing the chart of bugs by severity
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This is great, but what if we want to see the cumulative bugs by severity? We can simply use the preceding R code,
but instead of plotting out the columns, we can plot out the cumulative sum of each column:

plot(cumsum(bugsBySeverity[,3]), type="1", xlab="", ylab="", pch=15, lty=1, col="orange",
main="Running Total of Bugs by Severity", axes=FALSE)

lines(cumsum(bugsBySeverity[,1]), type="1", col="red", lty=1)
lines(cumsum(bugsBySeverity[,2]), type="1", col="yellow", 1lty=1)

axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))

axis(2, las=1, at=0:max(cumsum(bugsBySeverity[,3])))

legend("topleft", inset=.01, title="Legend", colnames(bugsBySeverity), lty=c(1,1,1),

col= c("red", "yellow", "orange"))

This code produces the chart shown in Figure 6-4.

Running Total of Bugs by Severity
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Figure 6-4. Running total of bugs by severity

We posted all the R code discussed so far on RPubs at http://rpubs.com/tomjbarker/4169.
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Adding Interactivity with D3

The previous example is a great way to visualize and disseminate information around the creation of defects. But what
if we could take it a step further and allow the consumers of our visualizations to dive deeper into the data points that
interest them? Say we wanted to allow the user to mouse over a particular point in a time series and see a list of all the
bugs that make up that data point. We can do just that with D3; let’s walk find out how.

First let’s create a new file with the base HTML skeletal structure with a reference to D3. js and save it as
timeseriesGranular.htm

<html>

<head></head>

<body>

<script src="d3.v3.js"></script>
</body>

</html>

Next we set some preliminary data in a new script tag. We create an object to hold margin data for the graphic,
as well as height and width. We also create a D3 time formatter to convert the dates that are read in from string to a
native Date object.

<script>
var margin = {top: 20, right: 20, bottom: 30, left: 50},
width = 960 - margin.left - margin.right,

height = 500 - margin.top - margin.bottom;
var parseDate = d3.time.format("%m-%d-%Y").parse;
</script>

Reading in the Data

We add in some code to read in the data (the allbugsOrdered.csv file that was output from R earlier). Recall that this
file contains the entire bug data ordered by date.
We use the d3.csv() function to read this file:

e  The first parameter is the path to the file.

e Thesecond parameter is the function to execute once the data is read in. It is in this
anonymous function that we add most of the functionality, or at least the functionality that is
dependent on having data to process.

The anonymous function accepts two parameters
e  The first catches any errors that may occur
e Thesecond is the contents of the file being read in
In the function, we first loop through the contents of the data and use the date formatter to convert all the values

in the Date column to a native JavaScript Date object:

d3.csv("allbugsOrdered.csv", function(error, data) {
data.forEach(function(d) {
d.Date = parseDate(d.Date);

D;

D;
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If we were to console. log() the data, it would be an array of objects that look like Figure 6-5.

window Object
Date Date { Fri Jan 04 2013 00:00:00 GMT-0800 (PST) }
1D "4625a"
Severity "Blocker”
Status "Open”
Summary "Left MNav Misaligned”

Figure 6-5. Our bug data object

Within the anonymous function but after the loop, we use the d3.nest() function to create a variable that holds
the bug data grouped by date. We name this variable nested_data:

nested data = d3.nest()
.key(function(d) { return d.Date; })
.entries(data);

The nested_data variable is now a tree structure—specifically a list that is indexed by date, and each index has a
list of bugs. If we were to console.log() nested_data, it would be an array of objects that look like Figure 6-6.

key "Fri Jan 84 2013 02:00:00 GMT-8862 (PST)"
¥ values [ Object { Date=Date, ID="46258", Severity="Critical™, more..}, Object { Date=Date, ID="46253", Severity=" Minor",
more.. } ]

Yo Object { Date=Date, ID="46258", Severity="Critical®, more.. }
Date Date { Fri Jan 04 2013 00:00:00 GMT-0800 (PST) }
D "46250"
Severity "Critical”
Status "Open”
Summary "Incerrect icon"

v Object { Date=Date, ID="46253", Severity=" Minor", more..}
Date Date { Fri Jan 04 2013 00:00:00 GMT-0800 (PST) }
D "4g253"
Severity " Minor"
Status " Deferred"
Summary "Homepage not loading”

Figure 6-6. The array containing our bug data objects

Drawing on the Page

We are ready to start drawing to the page. So let’s step out of the callback function and go to the root of the script tag
and write out the SVG tag to the page by using the margins, width, and height that defined previously:

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
-append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

This is the container in which we draw the axes and the trend lines.
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Still at the root level, we add a D3 scale object for both the x and y axes, using the width variable for the x-axis
range and the height variable for the y-axis range. We add the x and y axes at the root level, passing in their respective
scale objects, and orienting them at the bottom and left:

var xScale = d3.time.scale()
.range([0, width]);

var yScale= d3.scale.linear()
.range([height, 0]);

var xAxis = d3.svg.axis()
.scale(xScale)
.orient("bottom");

var yAxis = d3.svg.axis()
.scale(yScale)
.orient("left");

But they still aren’t showing on the page. We need to return to the anonymous function that we created in the
d3.csv() call and add the nested_data list that we created as the domain data for the newly created scales:

xScale.domain(d3.extent(nested data, function(d) { return new Date(d.key); }));
yScale.domain(d3.extent(nested data, function(d) { return d.values.length; }));

From here, we need to generate the axes. We do this by adding and selecting an SVG g element, used for generic
grouping, and adding this selection to the xAxis () and yAxis () D3 functions. This also goes in the anonymous
callback function that gets invoked when the data is loaded.

We also need to transform the x-axis by adding the height of the chart so that it is drawn at the bottom of
the graph.

svg.append("g")
.attr("transform", "translate(o," + height + ")")
.call(xAxis);

svg.append("g")
.call(yAxis)

This creates the start of the chart with meaningful axes shown in Figure 6-7.
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Figure 6-7. Time series beginning to form; x and y-axes but no line yet

The trend line needs to be added. Back at the root level, let’s create a variable named line to be an SVG line.
Assume for a minute that we have already set the data property for the line. We haven’t yet, but we will in a minute.
For the x value of the line, we will have a function that returns the date filtered through the xScale scale object.

For the y value of the line, we will create a function that returns the bug count values run through the yScale
scale object.

var line = d3.svg.line()
.X(function(d) { return xScale(new Date(d.key)); })
.y(function(d) { return yScale(d.values.length); });

Next, we return to the anonymous function that processes the data. Right below the added axes, we will append
an SVG path. We set the nested_data variable as the datum for the path and the newly created 1ine object as the d
attribute. For reference, the d attribute is where we specify path descriptions. See here for documentation around the
d attribute: https://developer.mozilla.org/en-US/docs/SVG/Attribute/d

svg.append("path")
.datum(nested_data)
.attr("d", line);

We can now start to see something in a browser. The code so far should look like so:
<!DOCTYPE html>
<head>

<meta charset="utf-8">
</head>
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<body>
<script src="d3.v3.js"></script>
<script>
var margin = {top: 20, right: 20, bottom: 30, left: 50},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom;

var parseDate = d3.time.format("%m-%d-%Y").parse;
var xScale = d3.time.scale()
.range([0, width]);

var yScale = d3.scale.linear()
.range([height, 0]);

var xAxis = d3.svg.axis()
.scale(xScale)
.orient("bottom");

var yAxis = d3.svg.axis()
.scale(yScale)
.orient("left");

var line = d3.svg.line()
.X(function(d) { return xScale(new Date(d.key)); })
.y(function(d) { return yScale(d.values.length); });

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("allbugsOrdered.csv", function(error, data) {
data.forEach(function(d) {
d.Date = parseDate(d.Date);
D;

nested data = d3.nest()
.key(function(d) { return d.Date; })
.entries(data);

xScale.domain(d3.extent(nested data, function(d) { return new Date(d.key); }));
yScale.domain(d3.extent(nested data, function(d) { return d.values.length; }));
svg.append("g")
.attr("transform", "translate(o," + height + ")")
.call(xAxis);

svg.append("g")

.call(yAxis);
svg.append("path")
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.datum(nested_data)
.attr("d", line);

1;
</script>
</body>
</html>

This code produces the graphic shown in Figure 6-8.

Jan 06 Jan 13 Jan 20 Feb 03 Feb 10

Figure 6-8. Time series with line data but incorrect fill

But this isn’t quite right. The shading of the path is based on the browser’s best guess of intent, shading what it
perceives to be the closed areas. Let’s use CSS to explicitly turn off shading and instead set the color and width of the
path line:

<style>

.trendLine {

fill: none;

stroke: #CC0000;
stroke-width: 1.5px;
}
</style>
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We created a style rule for any element on the page with the class trendLine. Let’s next add the class to the SVG
path in the same block of code in which we create the path:

Svg.append("path")
.datum(nested_data)
.attr("d", line)
.attr("class", "trendLine");

This code produces the chart shown in Figure 6-9.
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Figure 6-9. Time series with corrected line but unstyled axes

Looking much better! There are some minor things we should change, such as adding text labels to the y-axis and
trimming the width of the axis lines to make them neater:

.axis path{

fill: none;

stroke: #000;
shape-rendering: crispEdges;

}

This will give us tighter-looking axes. We just need to apply the style to the axes when we create them:

svg.append("g")
.attr("transform", "translate(o," + height + ")")
.call(xAxis)
.attr("class", "axis");
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svg.append("g")
.call(yAxis)
.attr("class", "axis");

The results can be seen in Figure 6-10.
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Figure 6-10. Time series upated with styled axes

This is great so far, but it shows no real benefit from doing this in R. In fact, we wrote quite a bit of additional code
just to get parity and didn’t even do any data cleaning that we did in R.
The real benefit of using D3 is adding interactivity.

Adding Interactivity

Say we have this time series of new bugs, and we were curious what the bugs were in that large spike in mid-February.
By taking advantage of the fact that we are working in HTML and JavaScript, we can extend this functionality by
adding in a tooltip box that lists the bugs for each date.

To do this, we first should create obvious areas in which users can mouse over, such as red circles at each data
point or discrete date. To do that, we simply need to create SVG circles right below where we added in the path, in
the anonymous function that is fired when the external data is read in. We set the nested_data variable as the data
attribute of the circles, make them red with a radius of 3.5, and set their x and y attributes to be tied to the date and
bug totals, respectively:

svg.selectAll("circle")

.data(nested data)

.enter().append("circle")
.attr("r", 3.5)
.attr("fill", "red")
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.attr("cx", function(d) { return xScale(new Date(d.key)); })
.attr("cy", function(d) { return yScale(d.values.length);})

This code updates the existing time series so it looks like Figure 6-11. These red circles are now areas of focus in
which users can mouse over and see additional information.
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Figure 6-11. Circles added to each data point on the line

Let’s next code up a div to act as the tooltip that we will show with relevant bug data. To do this we will create
anew div, right below where we created the line variable at the root of the script tag. We do this in D3 once again
by selecting the body tag and appending a div to it, giving it a class and id of tooltip - both so that we can have
the tooltip style apply to it (which we will create in just a minute) and so we can interact with it by ID later on in
the chapter. We will have it be hidden by default. We will store a reference to this div in a variable that we will call
tooltip:

var tooltip = d3.select("body")
.append("div")
.attr("class", "tooltip")
.attr("id", "tooltip")
.style("position", "absolute")
.style("z-index", "10")
.style("visibility", "hidden");
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We next need to style this div using CSS. We adjust the opacity to be only 75 percent visible, so that when the
tooltip shows up over a trend line we can see the trend line behind it. We align the text, set the font size, make the div
have a white background, and give it rounded corners:

.tooltip{
opacity: .75;
text-align:center;
font-size:12px;
width:100px;
padding:5px;
border:1px solid #a8b6ba;
background-color:#fff;
margin-bottom:5px;
border-radius: 19px;
-moz-border-radius: 19px;
-webkit-border-radius: 19px;

We next have to add a mouseover event handler to the circles to populate the tooltip with information and unhide
the tooltip. To do this, we return to the block of code in which we created the circles and add in a mousemove event
handler that fires off an anonymous function.

Inside the anonymous function, we overwrite the innerHTML of the tooltip to display the date of the current red
circle and how many bugs are associated with that date. We then loop through that list of bugs and write out the ID of
each bug.

svg.selectAll("circle")

.data(nested_data)

.enter().append("circle")

.attr("r", 3.5)

.attr("fill", "red")

.attr("cx", function(d) { return xScale(new Date(d.key)); })

.attr("cy", function(d) { return yScale(d.values.length);})
.on("mouseover", function(d){
document.getElementById("tooltip").innerHTML = d.key + " " + d.values.length + " bugs<br/>";
for(x=0;x<d.values.length;x++){
document.getElementById("tooltip").innerHTML += d.values[x].ID + "<br/>";

tooltip.style("visibility", "visible");
b))

If we want to take this even further, we can create links for each bug ID that link back to the bug tracking software;
list descriptions of each bug; and if the bug tracking software has an API to interface with, we can even have form
fields that could let us update bug information right from this tooltip. Only our imagination and the tools available to
us limit the possibilities of how far we can extend this concept.

Finally, we add a mousemove event handler to the red circles so that we can reposition the tooltip contextually
whenever the users mouse over a red circle. To do this, we use the d3.mouse object to get the current mouse
coordinates. We use these coordinates to simply reposition the tooltip with CSS. So we don’t cover the red circle with
the tooltip, we offset the top property by 25 pixels and the left property by 75 pixels.

svg.selectAll("circle")
.data(nested data)
.enter().append("circle")
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.attr("r", 3.5)

.attr("fill", "red")

.attr("cx", function(d) { return xScale(new Date(d.key)); })
.attr("cy", function(d) { return yScale(d.values.length);})
.on("mouseover", function(d){
document.getElementById("tooltip").innerHTML = d.key +
for(x=0;x<d.values.length;x++){
document.getElementById("tooltip").innerHTML += d.values[x].ID + "<br/>";
}

tooltip.style("visibility", "visible");

)

.on("mousemove", function(){

return tooltip.style("top", (d3.mouse(this)[1] + 25)+"px").style("left",
(d3.mouse(this)[0] + 70)+"px");

D;

+ d.values.length + " bugs<br/>";

A tooltip should display when the mouse hovers over one of the red circles (see Figure 6-12).
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Figure 6-12. Completed time series with rollover shown

The complete source code should now look like this:

<!DOCTYPE html>

<html>

<meta charset="utf-8">
<head>

<style>

body {

font: 15px sans-serif;

}

129



CHAPTER 6 ' VISUALIZING DATA OVER TIME

.trendLine {

fill: none;

stroke: #CC0000;
stroke-width: 1.5px;

}

.axis path{

fill: none;

stroke: #000;
shape-rendering: crispEdges;

}
.tooltip{
opacity: .75;
text-align:center;
font-size:12px;
width:100px;
padding:5px;
border:1px solid #a8b6ba;
background-color:#fff;
margin-bottom:5px;
border-radius: 19px;
-moz-border-radius: 19px;
-webkit-border-radius: 19px;
}
</style>
</head>
<body>
<script src="d3.v3.js"></script>
<script>

var margin = {top: 20, right: 20, bottom: 30, left: 50},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom;

var parseDate = d3.time.format("%m-%d-%Y").parse;
var xScale = d3.time.scale()
.range([0, width]);
var yScale = d3.scale.linear()
.range([height, 0]);
var xAxis = d3.svg.axis()
.scale(xScale)
.orient("bottom");
var yAxis = d3.svg.axis()
.scale(yScale)
.orient("left");
var line = d3.svg.line()
.x(function(d) { return xScale(new Date(d.key)); })
.y(function(d) { return yScale(d.values.length); });
var tooltip = d3.select("body")
.append("div")
.attr("class", "tooltip")
.attr("id", "tooltip")
.style("position", "absolute")
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.style("z-index", "10")
.style("visibility", "hidden");

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("allbugsOrdered.csv", function(error, data) {
data.forEach(function(d) {
d.Date = parseDate(d.Date);
D;

nested data = d3.nest()
.key(function(d) { return d.Date; })
.entries(data);

xScale.domain(d3.extent(nested data, function(d) { return new Date(d.key); }));
yScale.domain(d3.extent(nested data, function(d) { return d.values.length; }));
svg.append("g")

.attr("transform", "translate(o," + height + ")")

.call(xAxis)

.attr("class", "axis");

svg.append("g")
.call(yAxis)
.attr("class", "axis");
svg.append("path")
.datum(nested_data)
.attr("d", line)
.attr("class", "trendLine");
svg.selectAll("circle")
.data(nested data)
.enter().append("circle")
.attr("r", 3.5)
Jattr("fill", "red")
.attr("cx", function(d) { return xScale(new Date(d.key)); })
.attr("cy", function(d) { return yScale(d.values.length);})
.on("mouseover", function(d){
document.getElementById("tooltip").innerHTML = d.key + " " +
d.values.length + " bugs<br/>";
for(x=0;x<d.values.length;x++){
document.getElementById("tooltip").innerHTML +=
d.values[x].ID + "<bxr/>";
}
tooltip.style("visibility", "visible");
1))
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.on("mousemove", function(){
return tooltip.style("top", (d3.mouse(this)[1] + 25)+"px").
style("left", (d3.mouse(this)[0] + 70)+"px");
D;
D;

</script>
</body>
</html>

Summary

This chapter explored time series plots, both philosophically and in the context of using them to track bug creation
over time. We exported the raw bug data from the bug tracking software of choice and imported it into R to scrub
and analyze.

Within R we looked at different ways we could model and visualize the data, looking at both aggregate and
granular details such as how the new bugs contribute to a running total over time or when new bugs are introduced
over time. This is especially valuable when we can put context to the dates we are looking at.

We then read the data into D3 and created an interactive time series that allowed us to drill down from the
high-level trend data into very granular details around each bug created.

The next chapter explores creating bar charts and how to use them to identify areas of focus and improvement.
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Bar Charts

Chapter 6 explored using time series charts to look at defect data over time, and this chapter looks at bar charts, which
display ordinal or ranked data relative to a specific data set. They usually consist of an x- and y-axis, and have bars or
colored rectangles to indicate values of categories.

William Playfair created the bar chart in the first edition of The Commercial and Political Atlas in 1786 to show
Scotland’s import and export data to and from different parts of the world (see Figure 7-1). He created it out of
necessity; the other charts in the atlas were time series charts demonstrating hundreds of years’ worth of trade data,
but for Scotland there was only 1 years’ worth of data. While using the time series chart, Playfair saw it as an inferior
visualization; a compromise with resources on hand because it “does not comprehend any portion of time, and it is
much inferior in utility to those that do” (Playfair, 1786, p. 101).
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Figure 7-1. William Playfair’s bar chart showing Scotland’s import and export data
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Playfair initially thought so little of his invention that he didn’t bother to include it in the subsequent second and
third editions of the atlas. He went on to envision a different way to show parts of a whole; in doing so, he invented the
pie chart for his Statistical Breviary published in 1801.

The bar chart is a great way to demonstrate ranked data not only because bars are a clear way to show differences
in value but the pattern can also be extended to include more data points by using different types of bar charts such as
stacked bar charts and grouped bar charts.

Standard Bar Chart

Let’s take data that you are already familiar with: the bugsBySeverity data from the last chapter:

> bugsBySeverity

Blocker Critical Minor

01-04-2013 0 0 2
01-08-2013 1 0 3
01-09-2013 3 0 2

You can create a new list with a sum of each bug type and visualize the totals in a bar chart like so:
totalBugsBySeverity <- c(sum(bugsBySeverity[,1]), sum(bugsBySeverity[,2]), sum(bugsBySeverity[,3]))

barplot(totalBugsBySeverity, main="Total Bugs by Severity")
axis(1, at=1: length(totalBugsBySeverity), lab=c("Blocker", "Critical", "Minor"))

This code produces the chart shown in Figure 7-2.

Total Bugs by Severity

20

15

10
1

5 I |
Blocker Critical Minor

Figure 7-2. Bar chart of bugs by severity
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Stacked Bar Chart

Stacked bar charts allow us to show subsections or segments within categories. Suppose you use the bugsBySeverity
time series data and want to look at the breakdown of the criticality of the new bugs opened each day:

> t(bugsBySeverity)
01-04-2013 01-08-2013 01-09-2013 01-10-2013

Blocker 0 1 3 1
Critical 0 0 0 0
Minor 2 3 2 2

You can represent the following data with a stacked bar chart, as shown in Figure 7-3:

barplot(t(bugsBySeverity), col=c("#CCCCCC", "#666666", "#AAAAAA"))
legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals", "Minors"),
fill=c("#CCCCCC", "#666666", "#AAAAAA"))
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Figure 7-3. Stacked bar chart of bugs by severity and date

The total bugs are represented by the full height of the bar, and the colored segments of each bar represent the
criticality of the bugs. On January 4th, there are two minor bugs; but the very next date has one blocker bug and three
minor bugs, for a total of four bugs for that date. Stacked bar charts allow us to show nuance in our data.
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Grouped Bar Chart

Grouped bar charts allow us to show the same nuance as stacked bar charts, but instead of placing the segments on
top of each other, we split them into side-by-side groupings. Figure 7-4 shows that each date on the x-axis has three
bars associated with it, one for each criticality category:

barplot(t(bugsBySeverity), beside=TRUE, col=c("#CCCCCC", "#666666", "#AAAAAA"))
legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals", "Minors"),
Fill=c("#CCCCCC", "#666666", "H#AAAAAA"))
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Figure 7-4. Grouped bar chart of bugs by severity and date

Visualizing and Analyzing Production Incidents

If you work on a product that gets used by someone—an end user, a consuming service, or even an internal
customer—you most likely have experienced a production incident. Production incidents occur when some part of
an application misbehaves for a user in production. It is very much like a bug, but it is a bug that is experienced and
reported by your customer.
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Just like bugs, production incidents are normal and expected results of software development. There are three
main things to think about when talking about incidents:

e  Severity, or how impactful is the error being reported: There is a big difference between a
site outage and a small layout error.

¢ Frequency, or how often incidents are occurring or recurring: If your web app is riddled with
issues, your customer experience, your brand, and your regular flow of work are all affected.

e  Duration, or how long individual incidents linger: The longer they linger, the more
customers are affected, and the worse the impact on your brand.

Handling production incidents is a big part of operationalizing your products and maturing your organization.
Depending on how severe the incidents are, they can be disruptive to your regular body of work; the team might need
to stop everything and work on a fix for the issue. Lesser-priority items can be queued and introduced to the regular
body of work alongside regular feature work.

Just as important as handling production incidents is being able to analyze trends in production incidents to
identify problem areas. Problem areas are usually features or sections that have frequent issues in production. Once
we have identified problem areas, we can do root cause analysis and potentially start to build proactive scaffolding
around these areas.

Note Proactive scaffolding is a term | have coined that describes building fail-overs or additional safety rails to
prevent issues in problem areas from recurring. Proactive scaffolding can be anything from detecting when users are
close to capacity limits (such as the browser cookie limit, or application heap size and correcting before an issue
happens), to noting performance issues with third-party assets and intercepting and optimizing them before they are
presented to a client.

Another interesting way to handle production incidents is how Heroku handles them: putting them up on
a timeline along with a visualization of month-over-month uptime and making it publicly available. Heroku’s
production incident timeline is available at https://status.heroku.com/; see Figure 7-5.

137


https://status.heroku.com/

CHAPTER 7 © BAR CHARTS

A' Bubscribe to Notifications

heroku status
current status and incident report

Production Development

Figure 7-5. Heroku status page
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Github also has a great status page that visualizes key metrics around their performance and uptime (see Figure 7-6).

github:

UPDATED LESS THAN A MINUTE AGO

11:11 UTC Access to downloadable source code archives and More Status History »
uploaded files is temporarily down. We're working to restore it asap.

‘What is this site?

We continuously monitor the status of github.com and all its related services. If there are any

interruptions in service, a note will be posted here. If you are experiencing problems connecting to
GitHub and do not see a notice posted, please email support@github.com.

GitHub.com Availability
Storage Availability
GitHub Pages Availability
API Availability

Code Downloads

‘What are these graphs?
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These graphs are sampled periodically from our own internal metrics about the performance and
availability of GitHub services. They're accurate to within a few minutes.
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Figure 7-6. Github status page

® 2013 GitHub Inc. All rights reserved.
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For our purposes, this chapter uses bar charts to look at production incidents by feature to start to identify
problem areas within our own products.

Plotting Data on a Bar Chart with R

If we want to plot out our production incidents, we must first get an export of the data, just as we needed to do for
bugs. Because production incidents are generally single-hit items, companies usually use a range of methods to track
them, from ticketing systems such as Jira (http://www.atlassian.com/software/jira/overview) to maintaininga
spreadsheet of items. Whatever works—as long as we can retrieve the raw data. (Tom has made sample data available
here: http://tom-barker.com/data/productionIncidents.txt.)

Once we have the raw data, it probably looks something like the following: a comma separated flat list with
columns for an ID, a date stamp, and a description. There also should be a column that lists the feature or section of
the application in which the incident occurred.

ID,DateOpened,DateClosed,Description,Feature,Severity
502,2013-03-09,2013-03-09,Site Down,Site,1
501,2013-03-07,2013-03-09,Videos Not Playing,Video,2

Let’s read the raw data into R and store it in a variable called prodData:

prodIncidentsFile <- '/Applications/MAMP/htdocs/productionIncidents.txt’

prodData <- read.table(prodIncidentsFile, sep=",", header=TRUE)

prodData
ID DateOpened DateClosed Description Feature Severity
1 502 2013-03-09 2013-03-09 Site Down Site 1

2 501 2013-03-07 2013-03-09 Videos Not Playing Video 2

We want to group them by the Feature column so that we can chart feature totals. To do this, we use the
aggregate() function in R. The aggregate() function takes an R object, a list to use as grouping elements, and a
function to apply to the grouping elements. So suppose we call the aggregate() function, pass in the ID column as
the R object, have it grouped by the Feature column, and have R get the length for each feature grouping:

prodIncidentByFeature <- aggregate(prodData$ID, by=1list(Feature=prodData$Feature), FUN=length)
This code creates an object that looks like the following:

> prodIncidentByFeature
Feature x
1 Cart
3 Logging
5 Site
2 Heap
4  Login
6 Video

U ww Rk Rk R

We can then pass this object into the barplot() function to get the chart shown in Figure 7-7.

barplot(prodIncidentByFeature$x)
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0 —
Figure 7-7. Beginning a bar chart

This is a nice start and does tell a story, but it’s not very descriptive. Besides the fact that the x-axis isn’t labeled,
the problem areas are obscured by not ordering the results.

Ordering Results

Let’s use the order () function to order the results by the total count of each incident by feature:
prodIncidentByFeature <- prodIncidentByFeature[order(prodIncidentByFeature$x), ]

We can then format the bar chart to highlight this ordering by layering the bars horizontally and rotating the text
90 degrees.

To rotate the text, we must change our graphical parameters using the par () function. Updating the graphical
parameters has global implications, meaning that any chart that we create after updating inherits the changes, so we
need to preserve the current settings and reset them after we create our bar chart. We store our current settings in a
variable that we call opar:

opar <- par(no.readonly=TRUE)

Note If you are following along in an R command line, the previous line by itself does not generate anything; it just
sets graphical parameters.

We then pass new parameters into the par() call. We can use the 1as parameter to format the axis. The las
parameter accepts the following values:

par(las=1)
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e  0isthe default behavior where the text is parallel to the axis
e 1 explicitly makes the text horizontal
e 2 makes the text perpendicular to the axis
e  3explicitly makes the text vertical
We then call barplot() again, but this time pass in the parameter horiz=TRUE, to have R draw the bars

horizontally instead of vertically:

barplot(prodIncidentByFeature$x, xlab="Number of Incidents", names.arg=prodIncidentByFeature$
Feature, horiz=TRUE, space=1, cex.axis=0.6, cex.names=0.8, main="Production Incidents by Feature",
col= "#CCCCCC)

And finally we restore the saved settings so that future charts don’t inherit this charts settings.

> par(opar)
This code produces the visualization shown in Figure 7-8.
Production Incidents by Feature
Video | |
Login | |
Heap | |
Site |:|
Logging |:|
Cart |:|

Number of Incidents

Figure 7-8. Bar chart of production incidents by feature

From this chart, you can see that the biggest problem area is video playback, followed by login and memory
usage issues.
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Creating a Stacked Bar Chart

How severe are the issues around these features? Let’s next create a stacked bar chart to see the breakdown of severity
for each production incident. To do that, we must create a table in which we break down our production incidents by
feature and by severity. We can use the table() function for this, as we did for bugs in the last chapter:

prodIncidentByFeatureBySeverity <- table(factor(prodData$Feature),prodData$Severity)

This code creates a variable formatted as shown in Figure 7-9, with rows representing each feature and columns
representing each level of severity:

> prodIncidentByFeatureBySeverity

1234
Cart 1000
Heap 0300
Logging 0 0 0 1
Login 0300
Site 1000
Video 0131

opar <- par(no.readonly=TRUE)

par(las=1, mar=c(10,10,10,10))

barplot(t(prodIncidentByFeatureBySeverity), xlab="Number of Incidents", names.arg=rownames
(prodIncidentByFeatureBySeverity), horiz=TRUE, space=1, cex.axis=0.6, cex.names=0.8,
main="Production Incidents by Feature", col=c("#CCCCCC", "#666666", "#AAAAAA", "#333333"))
legend("bottomright", inset=.01, title="Legend", c("Sevi", "Sev2", "Sev3", "Sev4"),
fill=c("#CCCCCC", "#666666", "#AAAAAA", "#333333"))

par (opar)

Production Incidents by Feature

Video

Site

[ 1
[

oo [
]
|
[

Logging L r
egen
O Sevi
H
eap Bl Sev2
O Sev3
Cart B Sev4
[ T T T T 1
o 1 2 3 4 5

Number of Incidents
Figure 7-9. Stacked bar chart of production incidents by feature and by severity

143



CHAPTER 7 © BAR CHARTS

Interesting! We lost our ordering, but that’s because we have a number of new data points to choose from.
High-level aggregates are less relevant for this chart; more important is the breakdown of severity.

From this chart, you can see that although the video feature has the most number of production incidents, there
also seems to be serious recurring issues with login and heap usage because they have the highest number of high
severity production incidents—both have three Severity 2 incidents each. Site and login both had one Severity 1 issue
each, but because they don’t seem to be recurring, there doesn’t look to be a problem area there, at least not that we
can determine yet with the current sample size.

Bar Charts in D3

So now you know the benefits of having bar charts to aggregate data at a high level and of getting the granular
breakdown that stacked bar charts can expose. Let’s switch gears and use D3 to see how to create a high-level bar
chart that allows us to drill into each bar to see a granular representation of the data at runtime.

We start by creating a bar chart in D3 and then create a stacked bar chart. When our users mouse over the bar
chart, we will overlay the stacked bar chart to show how the data is broken down in real time.

Creating a Vertical Bar Chart

Because we made a horizontal bar chart in D3 back in Chapter 4, we will now make a vertical bar chart. Following the
same pattern that we established in previous chapters, we first create a base HTML skeletal structure that includes

a link to the D3 library. We use the same base style rules that we used in the last chapter for body text and axis path,
and an additional rule to color all elements within a bar class a dark grey:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<titlex</title>
<script src="d3.v3.js"></script>
<style type="text/css">
body {
font: 15px sans-serif;

}
.axis path{
fill: none;
stroke: #000;
shape-rendering: crispEdges;
}
.bar {
fill: #666666;
}
</style>
</head>
<body></body>
</html>
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Next, we create the script tag to hold all the charting code and the initial set of variables to hold the sizing
information: the base height and width, D3 scale objects for the x- and y-coordinate information, an object to hold the
margin information, and an adjusted height value that takes the top and bottom margins out of the total height:

<script>

var w = 960,
h = 500,
x = d3.scale.ordinal().rangeRoundBands ([0, w]),
y = d3.scale.linear().range([0, h]),

z = d3.scale.ordinal().range(["lightpink", "darkgray", "lightblue"])
margin = {top: 20, right: 20, bottom: 30, left: 40},
adjustedHeight = 500 - margin.top - margin.bottom;

</script>

We next create the x-axis object. Remember from previous chapters that the axis is not yet drawn, so we need to
call it later within the Scalable Vector Graphics (SVG) tag that we will create to draw the axis:

var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");

Let’s draw the SVG container to the page. This will be the parent container for everything else that we will draw to
the page.

var svg = d3.select("body").append("svg")
.attr("width", w)
.attr("height", h)
.append("g")

The next step is to read in the data. We will use the same data source as our R example: the flat file
productionIncidents.txt. We can read this in using the d3.csv() function to read in and parse the file. Once the
contents of the file are read in, they are stored in the variable data, but if any error occurs, we will store the error
details in a variable that we call error.

d3.csv("productionIncidents.txt", function(error, data) {

Within the scope of this d3.csv() function is where we will put the majority of our remaining functionality
because that functionality depends on having the data proceed.

Let’s aggregate the data by feature. To do this, we use the d3.nest() function and set the key to the Feature
column:

nested data = d3.nest()
.key(function(d) { return d.Feature; })
.entries(data);

This code creates an array of objects that looks like the following:
>>> nested_data
[Object {key="Site", values=[1]},
Object { key="Video", values=[5]},
Object { key="Cart", values=[1]},
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Object { key="Logging", values=[1]},

[1
Object { key="Login", values=[3]},
Object { key="Heap", values=[3]}

Within this array, each object has a key that lists the feature and an array of objects that list each production
incident. The objects should look like Figure 7-10.

key "Site"

¥ values [ Object { ID="5@2", DateOpened="2813-83-89, DateClosed="2813-83-89", more.. } ]
Yo Object { ID="582", DateOpened="2013-83-89", DateClosed="2013-83-89", more.. }
DateClosed "2013-03-89"
DateOpened "2013-83-09"
Description "6 Down"”

Feature
D

Severity

Figure 7-10. Inspecting the object in Firebug

We use this data structure to create the core bar chart. We make a function to do this:

function barchart(){
}

In this function, we set the transform attribute of the svg element, which sets the coordinates to contain the
image that will be drawn. In this case, we constrain it to the margin left and top values:

svg.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

We also create scale objects for the x- and y-axes. For bar charts, we generally use ordinal scales for the x-axis
because they are used for discrete values such as categories. More information about ordinal scales in D3 can be
found in the documentation at https://github.com/mbostock/d3/wiki/Ordinal-Scales.

We also create scale objects to map the data to the bounds of the chart:

var xScale = d3.scale.ordinal()
.rangeRoundBands ([0, w], .1);
var yScale = d3.scale.linear()
.range([h, 0]);
xScale.domain(data.map(function(d) { return d.key; }));
yScale.domain([0, d3.max(nested data, function(d) { return d.values.length; })1);

We next need to draw the bars. We create a selection based on the Cascading Style Sheets (CSS) class that we
assign to the bars. We bind the nested_data to the bars, create SVG rectangles for each key value in nested_data, and
assign the bar class to each rectangle; we'll define the class style rule soon. We set the x coordinate of each bar to the
ordinal scale, and set both the y coordinate and the height attribute to the linear scale.

We also add a mouseover event handler and put a call to a function that we will soon create called
transitionVisualization(). This function transitions the stacked bar chart that we will make over the bar chart
when we mouse over one of the bars.
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svg.selectAll(".bar")
.data(nested data)
.enter().append("rect")
.attr("class", "bar")
.attr("x", function(d) { return xScale(d.key); })
.attr("width", xScale.rangeBand())
.attr("y", function(d) { return yScale(d.values.length) - 50; })
.attr("height", function(d) { return h - yScale(d.values.length); })
.on("mouseover", function(d){
transitionVisualization (1)
)

Let’s also add in a call to a function that we will create called drawAxes():
drawAxes ()
The complete barchart() function looks like this:

function barchart(){
svg.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
var xScale = d3.scale.ordinal()
.rangeRoundBands ([0, w], .1);
var yScale = d3.scale.linear()
-range([h, 0]);
xScale.domain(nested data.map(function(d) { return d.key; }));
yScale.domain([0, d3.max(nested data, function(d) { return d.values.length; })1);
svg.selectAll(".bar")
.data(nested_data)
.enter().append("rect")
.attr("class", "bar")
.attr("x", function(d) { return xScale(d.key); })
.attr("width", xScale.rangeBand())
.attr("y", function(d) { return yScale(d.values.length) - 50; })
.attr("height", function(d) { return h - yScale(d.values.length); })
.on("mouseover", function(d){
transitionVisualization (1)
)

drawAxes ()

}

BAR CHARTS

If we put a call to barchart() at the bottom of the script tag and we run what we have so far in a browser, the bar

chart is nearly complete, as shown in Figure 7-11.
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Figure 7-11. Beginings of a bar chartin D3

Let’s create the drawAxes () function. We place this function outside the scope of the d3.csv() function, out at
the root of the script tag.

For this chart, let’s go with a little more of a minimalist approach and draw only the x-axis. Just like the last
chapter, we draw SVG g elements and call the xAxis object:

function drawAxes(){
svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(o," + adjustedHeight + ")")
.call(xAxis);

This draws the x-axis that gives the bar chart its category labels shown in Figure 7-12.

Site Video

Figure 7-12. Bar chart with x-axis
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Creating a Stacked Bar Chart

Now that we have a bar chart, let’s create a stacked bar chart. First, let’s shape the data. We want an array of objects in
which each object represents a feature and has a count of total incidents for each level.
Let’s start with a new array called grouped_data:

var grouped _data = new Array();
Let’s iterate through nested_data because nested_data already has taken care of grouping by feature:

nested data.forEach(function (d) {
}

Within each pass through nested_data, we create a temporary object and iterate through each incident within
the values array:

tempObj = {"Feature": d.key, "Sevi":0, "Sev2":0, "Sev3":0, "Sev4":0};
d.values.forEach(function(e){

}

Within each iteration in the values array, we test the severity of the current incident and increment the
appropriate property of the temporary object:

if(e.Severity == 1)
tempObj.Sevi++;
else if(e.Severity == 2)
tempObj.Sev2++
else if(e.Severity == 3)
tempObj.Sev3++;
else if(e.Severity == 4)
tempObj.Seva++;

The complete code to create the grouped_data array looks like the following:

nested data.forEach(function (d) {
tempObj = {"Feature": d.key, "Sevi":0, "Sev2":0, "Sev3":0, "Sev4":0};
d.values.forEach(function(e){
if(e.Severity == 1)
tempObj.Sevi++;
else if(e.Severity == 2)
tempObj.Sev2++
else if(e.Severity == 3)
tempObj.Sev3++;
else if(e.Severity == 4)
tempObj.Sev4++;
)
grouped_data[grouped_data.length] = tempObj
D;
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This code produces an array of objects that are all formatted as follows with a Feature attribute and a count for
each level of severity:

Feature "Video"
Sevil 0
Sev2 1
Sev3 3
Sev4 1

Perfect! Next we create a function in which we draw the stacked bar chart within the scope of the d3.csv()
function:

function stackedBarChart(){
}

Here’s where it gets interesting. Using the d3. layout.stack() function, we transpose our data so that we have
an array in which each index represents one of the levels of severity and contains an object for each feature that has a
count of each incident for the respective level of severity:

var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].map(function(sevs)

{
return grouped data.map(function(d) {

return {x: d.Feature, y: +d[sevs]};

};
N);

The sevStatus array should look like the data structure shown in Figure 7-13.

¥ sevStatus L[ [ Object { x="Site", y=1, y0=0}, Object { x="Video", y=0
x="5ite", y=0, y0=1}, Object { x="Video", y=1, y0=0}, O
y0=1}, Object { x="Video™, y=3, y0=1}, Object { x="Cart”,
x="Video", y=1, y0=4}, Object { x="Cart", y=0, y0=13}, 3
[ Object { x="Site"”, y=1, y0=81}, Object { x="Video", y=8,

Object { x="51te", y=1, y0=01}

Object { x="Video", y=0, y0=0}

Object { x="Cart", y=1, y0=01}

Object { x="Logging”, y=8, y0=01}

Object { x="Login", y=0, y0=07}

Object { x="Heap"”, y=8, y0=8}

[ Object { x="Site", y=8, y0=11}, Object { x="Video", y=1,

Object { x="51te", y=08, y0=1}

Object { x="Video"™, y=1, y0=08}

Object { x="Cart", y=8, y0=11}

Object { x="Logging”, y=8, y0=01}

Object { x="Login", y=3, y0=0}

Object { x="Heap”, y=3, y0=81}

[ Object { x="Site", y=8, y0=11}, Object { x="Videeo", y=3,

0 Obiect { x="Site". v=8. v0=11

[T R S PT -]

¥~ Y Y Y YYY~FYYYYYTYC®
Vioh W N e S

Figure 7-13. Inspecting the sevStatus array in Firebug
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We next use sevStatus to create domain maps for the x- and y- values of the bar segments that we will draw:

x.domain(sevStatus[0].map(function(d) { return d.x; }));
y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return d.yo + d.y; })1);

Next we draw SVG g elements for each index in the sevStatus array. They serve as containers in which we draw
the bars. We bind sevStatus to these grouping elements and set the fill attribute to return one of the colors from the
array of colors:

var sevs = svg.selectAll("g.sevs")
.data(sevStatus)
.enter().append("g")
.attr("class", "sevs"
.style("fill", function(d, i) { return z(i); });

Finally, we draw the bars within the groupings that we just created. We bind a generic function to the data
attribute of the bars that just passes through whatever data is passed to it; this inherits from the SVG groupings.

We draw the bars with the opacity set to 0, so the bars are not initially visible. We also attach mouseover and
mouseout event handlers, to call transitionVisualization() - passing 1 when the mouseover event is fired, and 0
when the mouseout event is fired (we will flesh out the functionality of transitionVisualization() very soon):

var rect = sevs.selectAll("rect")
.data(function(data){ return data; })
.enter().append("svg:rect")
.attr("x", function(d) { return x(d.x) + 13; })
.attr("y", function(d) { return -y(d.yo) - y(d.y) + adjustedHeight; })
.attr("class", "groupedBar")
.attr("opacity", o)
.attr("height", function(d) { return y(d.y) ; })
.attr("width", x.rangeBand() - 20)
.on("mouseover", function(d){

transitionVisualization (1)

1))

.on("mouseout", function(d){
transitionVisualization (0)

s

The complete stacked bar chart code should look like the following; it produces the stacked bar chart shown
in Figure 7-14.
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ste Video can Logging
Figure 7-14. Stacked bar chartin D3

function groupedBarChart(){
var sevStatus = d3.layout.stack()(["Sev1i", "Sev2", "Sev3", "Sev4"].map(function(sevs)
{
return grouped data.map(function(d) {
return {x: d.Feature, y: +d[sevs]};
1s
s

x.domain(sevStatus[0].map(function(d) { return d.x; }));
y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return d.yo + d.y; })1);
// Add a group for each sev category.
var sevs = svg.selectAll("g.sevs")
.data(sevStatus)
.enter().append("g")
.attr("class", "sevs"
.style("fill", function(d, i) { return z(i); })
.style("stroke", function(d, i) { return d3.rgb(z(i)).darker(); });
var rect = sevs.selectAll("rect")
. data(function(data){ return data; })
.enter().append("svg:rect")
.attr("x", function(d) { return x(d.x) + 13; })
.attr("y", function(d) { return -y(d.yo) - y(d.y) + adjustedHeight; })
.attr("class", "groupedBar")
.attr("opacity”, o)
.attr("height", function(d) { return y(d.y) ; })
.attr("width", x.rangeBand() - 20)
.on("mouseover", function(d){
transitionVisualization (1)
b

.on("mouseout”, function(d){
transitionVisualization (0)

B;
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Creating an Overlaid Visualization

But we're not quite done yet. We've been referencing this transitionVisualization() function, but we haven’t yet
defined it. Let’s take care of that right now. Remember how we’ve been using it: when a user mouses over a bar in our
bar chart, we call transitionVisualization() and passin a 1. When a user mouses over a bar in our stacked bar
chart, we also call transitionVisualization() and pass in a 1. But when a user mouses off a bar in the stacked bar
chart, we call transitionVisualization() and passina 0.

So the parameter that we pass in sets the opacity of our stacked bar chart. Because we initially draw the stacked
bar chart with the opacity at 0, we only ever see it when a user rolls over a bar in the bar chart, and it gets hidden again
when the user rolls off of the bar.

To create this effect, we use a D3 transition. Transitions are much like tweens in other languages such
as ActionScript 3. We create a D3 selection (in this case, we can select all elements of class groupedBar), call
transition(), and set the attributes of that selection that we want to change:

function transitionVisualization(vis){
var rect = svg.selectAll(".groupedBar")
.transition()
.attr("opacity", vis)

The completed code looks like the following, and although it’s hard to demonstrate this functionality via a
printed medium, you can see the working model on Tom'’s web site (available at http://tom-barker.com/demo/
data_vis/chapter7/chapter7example.htm) or put the code onto a local web server and run it yourself:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title></title>
<script src="d3.v3.js"></script>
<style type="text/css">

body {

font: 15px sans-serif;
}
.axis path{

fill: none;

stroke: #000;
shape-rendering: crispEdges;

}
.bar {
fill: #666666;
}
</style> </head>
<body>
<script type="text/javascript">
var w = 960,
h = 500,
x = d3.scale.ordinal().rangeRoundBands ([0, w]),
y = d3.scale.linear().range([0,h]),
z = d3.scale.ordinal().range(["lightpink", "darkgray", "lightblue"])
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margin = {top: 20, right: 20, bottom: 30, left: 40},
adjustedHeight = 500 - margin.top - margin.bottom;

var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");

var svg = d3.select("body").append("svg")
.attr("width", w)
.attr("height", h)
-append("g")

function drawAxes(){
svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(o," + adjustedHeight + ")")
.call(xAxis);

}

function transitionVisuaization(vis){
var rect = svg.selectAll(".groupedBar")
.transition()
.attr("opacity", vis)

}

d3.csv("productionIncidents.txt", function(error, data) {

nested data = d3.nest()
.key(function(d) { return d.Feature; })
.entries(data);

var grouped data = new Array();

//for stacked bar chart
nested data.forEach(function (d) {
tempObj = {"Feature": d.key, "Sevi":0, "Sev2":0, "Sev3":0, "Sev4":0};
d.values.forEach(function(e){
if(e.Severity == 1)
tempObj.Sevi++;
else if(e.Severity == 2)
tempObj.Sev2++
else if(e.Severity == 3)
tempObj.Sev3++;
else if(e.Severity == 4)
tempObj.Sev4++;
)
grouped_data[grouped data.length] = tempObj
D;
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function stackedBarChart(){
var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].map(function(sevs) {
return grouped_data.map(function(d) {
return {x: d.Feature, y: +d[sevs]};

1
N

x.domain(sevStatus[0].map(function(d) { return d.x; }));
y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return d.yo + d.y; })1);

// Add a group for each sev category.
var sevs = svg.selectAll("g.sevs")
.data(sevStatus)
.enter().append("g")
.attr("class", "sevs"
.style("fill", function(d, i) { return z(i); });

var rect = sevs.selectAll("rect")
.data(function(data){ return data; })
.enter().append("svg:rect")

.attr("x", function(d) { return x(d.x) + 13; })

.attr("y", function(d) { return -y(d.yo) - y(d.y) + adjustedHeight; })
.attr("class", "groupedBar")
.attr("opacity”, o)

.attr("height", function(d) { return y(d.y) ; })

.attr("width", x.rangeBand() - 20)
.on("mouseover", function(d){

transitionVisuaization(1)

)

.on("mouseout", function(d){
transitionVisuaization(0)
bs
}

function barchart(){
svg.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

var xScale = d3.scale.ordinal()
.rangeRoundBands([0, w], .1);

var yScale = d3.scale.linear()
.range([h, 0]);

xScale.domain(nested data.map(function(d) { return d.key; }));
yScale.domain([0, d3.max(nested data, function(d) { return d.values.length; })1);

svg.selectAll(".bar")
.data(nested data)
.enter().append("rect")
.attr("class", "bar")
.attr("x", function(d) { return xScale(d.key); })
.attr("width", xScale.rangeBand())
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.attr("y", function(d) { return yScale(d.values.length) - 50; })
.attr("height", function(d) { return h - yScale(d.values.length); })
.on("mouseover", function(d){

transitionVisuaization(1)
)

stackedBarChart()
drawAxes ()

}

barchart();

B;

</script>
</body>
</html>

Summary

This chapter looked at using bar charts to display ranked data in the context of production incidents. Because
production incidents are essentially direct feedback from your user base around how your product is misbehaving or
failing, managing production incidents is a critical piece of any mature engineering organization.

Managing production incidents isn’t simply about responding to issues as they arise, however; it is also about
analyzing the data around your incidents: what areas of your application are breaking frequently, what unexpected
patterns of use you see in production that could cause these recurring issues, how to build proactive scaffolding to
prevent these and future issues. All these are questions you can answer only by fully understanding your product and
your data. In this chapter, you took your first step toward that greater understanding.
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CHAPTER 8

Correlation Analysis with
Scatter Plots

In the last chapter, you looked at using bar charts to analyze production incidents. You saw that bar charts are great
for displaying the differences in a ranked data set, and you used this idea to identify areas in which issues recurred.
You also used stacked bar charts to see the granular breakdown in the severity of production incidents.

This chapter looks at correlation analysis with scatter plots. Scatter plots are charts that plot two independent
data sets on their own axes, displayed as points on a Cartesian grid (x- and y coordinates). As you'll see, scatter plots
are used to try and identify relationships between the two data points.

Note Michael Friendly and Daniel Denis have published a thoughtful and thoroughly researched dissertation on the
history of scatter plots, originally published by the Journal of the History of the Behavioral Sciences, Vol. 41 in 2005,
and available on Friendly’s website at http://www.datavis.ca/papers/friendly-scat.pdf. This article is absolutely
recommended reading because it tries to trace back the very first recorded scatter plots and the first time a chart was
called a scatter plot, and very deftly delineates the difference between a scatter plot and a time series (a time series
always has time as one of the data points, but scatter plots can have any discrete values as data points).

Finding Relationships in Data

The pattern, or lack of a pattern, that the points form on a scatter plot indicates the relationship. At a very high level,
relationships can be:

e Positive correlation, in which one variable increases as the other increases. This is
demonstrated by the dots forming a line trending diagonally upward from left to right
(see Figure 8-1).
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Figure 8-1. Scatter plot showing positive correlation between total phones in
North America and Europe

e  Negative correlation, in which one variable increases as the other decreases. This is

demonstrated by the dots forming a line trending downward from left to right (see Figure 8-2).
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Figure 8-2. Scatter plot showing negative correlation between body weight and time
passing (for a person on a diet)
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e No correlation, demonstrated (or not) by a scatter plot that has no discernible trend line

(see Figure 8-3).
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Figure 8-3. Scatter plot showing no correlation between number of accidental deaths in the

United States over years

Of course, simply identifying correlation between two data points or data sets does not imply that there is direct
cause in the relationship—hence the convention that correlation does not imply causation. For example, see the
negative correlation chart in Figure 8-2. If we were to assume direct causation between the two axes—weight and
number of days—we would be assuming that the passing of time caused body weight to decrease.

Although scatter plots are great for analyzing the relationship between two sets of data, there is a related pattern
that can be used to introduce a third set of data as well. This visualization is called a bubble chart and it uses the
radius of the points in a scatter plot to expose the third dimension of data.

See Figure 8-4 for a bubble chart that shows the correlation in length of tooth growth in guinea pigs and doses
of vitamin C administered. The third data point is the method of delivery: either by vitamin supplement or by orange
juice. It is added as the radius of each point in the graphic; the larger circle is the vitamin supplement and the smaller

circle is orange juice.
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Figure 8-4. Correlation of tooth growth and doses of vitamin C in guinea pigs, both by vitamin supplement and by
orange juice

For our purposes in this chapter, we will use scatter plots and bubble charts to look at the implied relationship
that team velocity has with our other areas of focus, in effect doing correlation analysis on team dynamics. We will
compare things like team size and velocity, velocity and production incidents, and so on.

Introductory Concepts of Agile Development

Let’s start by introducing some preliminary concepts of Agile development. If you are already versed in Agile, this
section will be a bit of a review. There are many flavors of Agile development, but the high-level concepts that most
have in common are the ideas of time boxing a body of work. Time boxing enables the team to focus on one thing and
finish it, allowing the stakeholders to quickly give feedback on what was completed. This short feedback loop allows
for teams and stakeholders to pivot, or react and change direction as requirements and even industries change.

This span of time that the team works on the body of work—whether it is 1 week, 3 weeks, or what have you—is
called a sprint. At the end of a sprint, the team doing the work should have releasable code, though releasing after
each sprint is not a requirement.

Sprints begin with a planning session in which teams define the body of work, and sprints end with a review
session in which the team goes over the body of work completed. Periodically during a sprint, the team grooms
new work to complete; it defines the work in user stories that list acceptance criteria. It is these user stories that get
prioritized and committed to in the planning sessions held at the beginning of each sprint.

See Figure 8-5 for a high-level workflow of this process.
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Figure 8-5. High-level workflow for Agile development

User stories have story points associated with them. Story points are estimates of the level of complexity for the
story and are usually a numeric value. As teams complete sprints, they begin to form a consistent velocity. Velocity is
the average amount of story points that a team will complete in a sprint.

Velocity is important because you use it to estimate how much your team can complete at the start of each sprint
and to project out how much of your backlog of work the team may be able to complete from your roadmap over the
course of the year.

There are a number of tools available to manage Agile projects, such as Rally (http://www.rallydev.com/) or
Greenhopper from Atlassian (http://www.atlassian.com/software/greenhopper/overview), the same company
that makes Jira and Confluence. Whatever tool you use should provide the ability to export your data, including user
point counts for each sprint.

Correlation Analysis

To begin the analysis, let’s export a totaled sum of story points for each sprint along with the team name. We should
compile all these data points into a single file that we will name teamvelocity.txt. Our file should look something
like the following, which shows data for the 12.1 and 12.2 sprints for the teams named Red and Gold (arbitrary names
for teams that are working on the same product just with different bodies of work):

Sprint,TotalPoints,Team
12.1,25,Gold
12.1,63,Red

12.2,54,Red

Let’s add an additional column in there to represent the total team members on each team for each sprint.
The data should now look like so:

Sprint,TotalPoints,TotalDevs,Team
12.1,25,6,Gold

12.1,63,10,Red

12.2,54,9,Red

We have also made this sample data set available here: http://tom-barker.com/data/teamvelocity.txt.
Excellent, let’s now read this into R:

tvFile <- "/Applications/MAMP/htdocs/teamvelocity.txt"
teamvelocity <- read.table(tvFile, sep=",", header=TRUE)
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Creating a Scatter Plot

Now create a scatter plot using the plot () function to compare the total points that the teams completed in each
sprint against how many members were on the team for each sprint. We pass teamvelocity$TotalPoints and
teamvelocity$TotalDevs as the first two parameters, set the type to p, and give meaningful labels for the axes:
plot(teamvelocity$TotalPoints,teamvelocity$TotalDevs, type="p", ylab="Team Members",
xlab="Velocity", bg="#CCCCCC", pch=21)

This creates the scatter plot that we can see in Figure 8-6; we can see that as we add more members to a team,
the number of story points that they can complete in an iteration, or sprint, also increases.
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Figure 8-6. Correlation of team velocity and total team members

Creating a Bubble Chart

If we want a greater insight into the data that we have so far, for example, to show which points belong to which team,
we could visualize that information with a bubble chart. We can create bubble charts using the symbols () function.
We pass in TotalPoints and TotalDevs into symbols(), just as we did for plot (), but we also pass in the Team column
into a parameter named circles. This specifies the radius of the circle to draw on the chart. Because for our example
Team is a string, R converts it to a factor. We also set the color of the circle with the bg parameter and the stroke color
of the circle with the fg parameter.

symbols(teamvelocity$TotalPoints, teamvelocity$TotalDevs, circles=teamvelocity$Team, inches=0.35,
fg="#000000", bg="#CCCCCC", ylab="Team Members", xlab="Velocity")
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The previous R code should produce a bubble chart that looks like Figure 8-7.
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Figure 8-7. Correlation of team velocity, total team members, with size of bubble indicating team

Visualizing Bugs

The bubble chart shown in Figure 8-7 is of limited use, mainly because the team breakdown is not really a relevant
data point. Let’s take the teamvelocity.txt file and begin to layer in more information. We already discussed tracking
bug data back in Chapter 6; now let’s use our bug-tracking software and add in two new bug-related data points: the
total bugs in each team’s backlog at the end of each sprint and how many bugs were opened within each sprint. We'll
name the columns for these new data points BugBacklog and BugsOpened, respectively.

The updated file should look something like this:

Sprint,TotalPoints,TotalDevs, Team,BugBacklog,BugsOpened
12.1,25,6,Gold,125,10
12.2,42,8,Gold,135,30
12.3,45,8,Gold, 150,25

Let’s next create a scatter plot with this new data. We'll first compare velocity against bugs opened during
each iteration:

plot(teamvelocity$TotalPoints,teamvelocity$BugsOpened, type="p", xlab="Velocity", ylab="Bugs Opened
During Sprint", bg="#CCCCCC", pch=21)

This creates the scatter plot shown in Figure 8-8.
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Figure 8-8. Correlation of team velocity and bugs opened

Now this is very interesting. There a positive correlation between having more people on a team and getting more
done (or at least getting more complex work done), and the more story points that are completed, the more bugs are
generated. So an increase in complexity correlates to an increase in the number of bugs created in a given sprint.

At least that seems to be implied by my data.

Let’s reflect this new data point in the existing bubble chart; instead of sizing circles by team, we size them by

bugs opened:

symbols(teamvelocity$TotalPoints, teamvelocity$TotalDevs, circles=teamvelocity$BugsOpened,
inches=0.35, fg="#000000", bg="#CCCCCC", ylab="Team Members", xlab="Velocity", main = "Velocity by
Team Size by Bugs Opened")

This code produces the bubble chart shown in Figure 8-9; you see that the sizing of the bubbles follows the

existing pattern of positive correlation, in that the bubbles get larger as both the number of team members and the
team velocity increases.
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Velocity by Team Size by Bugs Opened
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Figure 8-9. Correlation of team velocity and team size, where circle size indicates bugs opened

Let’s next create a scatter plot to look at the total bug backlog after each sprint:

plot(teamvelocity$TotalPoints,teamvelocity$BugBacklog, type="p", xlab="Velocity", ylab="Total Bug
Backlog", bg="#CCCCCC", pch=21)

This code produces the chart shown in Figure 8-10.
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Figure 8-10. Correlation of team velocity by total bug backlog

This figure shows that no correlation exists. This could be because of any number of reasons: maybe the team has
been fixing bugs during the sprint or maybe they are closing all the bugs opened during the course of the iteration.
Determining the root cause is beyond the scope of the scatter plot, but we can tell that while the bugs being opened
and the level of complexity increases, the total bug backlog does not increase.

Visualizing Production Incidents

Let’s next layer in another data point into the file; we'll add a column for production incidents opened against
the work done during the sprint. To be very specific, when a body of work in a sprint is completed, it is released
to production, and a release number is generally associated with that release. This last data point we discuss is
concerned with tracking issues in production against the release for a given iteration. Not issues that came in during
the iteration; issues that came in once the work done in the iteration was pushed to production.

Now let’s add in the last column, named ProductionIncidents:

Sprint,TotalPoints,TotalDevs,Team,BugBacklog,BugsOpened,ProductionIncidents
12.1,25,6,Gold,125,10,1
12.2,42,8,Gold,135,30,3
12.3,45,8,Gold, 150,25,2
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Great, let’s next create a new bubble chart with this data, comparing total story points completed, bugs opened
each iteration, and production incidents per release:

symbols(teamvelocity$TotalPoints, teamvelocity$BugsOpened,
circles=teamvelocity$ProductionIncidents, inches=0.35, fg="#000000", bg="#CCCCCC", ylab="Bugs
Opened", xlab="Velocity", main = "Velocity by Bugs Opened by Production Incidents Opened")

This code creates the chart shown in Figure 8-11.
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Figure 8-11. Correlation of team velocity and bugs opened, where the size of the circle indicates the number of
production incidents

From this chart you can see that, at least according to our sample data, there exists a positive correlation between
total story points completed, bugs opened, and production incidents opened for a given sprint.

Finally, now that all the data is layered into the flat file, we can create a scatter plot matrix. This is a matrix of all
the columns compared with each other with scatter plots. We can use the scatter plot matrix to look at all the data at
once and quickly pick out any correlation patterns that may exist in the data set. We can create a scatter plot matrix
with just the plot () function or with the pairs() function in the graphics package:

plot(teamvelocity)
pairs(teamvelocity)

Either one produces the chart shown in Figure 8-12.
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Figure 8-12. Scatter plot matrix of our complete data set
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Figure 8-12, each row represents one of the columns in the data frame and each scatter plot represents the
intersection of those columns. When you scan over each scatter plot in the matrix, you can clearly see the correlation
patterns in the combinations already covered this chapter.
We made the R code from this chapter available on RPubs at this location: http://rpubs.com/tomjbarker/5461.
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Interactive Scatter Plots in D3

So far in this chapter, we've been creating different scatter plots to represent the data combinations that we wanted
to look at. But what if we want to create a scatter plot that allows us to select the data points on which the axes were
based? With D3 we can do just that!

Adding the Base HTML and JavaScript

Let’s start with the base HTML structure that has d3. js included as well as the base CSS:

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8">
<titlex</title>
<style>
body {
font: 15px sans-serif;
}
.axis path{
fill: none;
stroke: #000;
shape-rendering: crispEdges;
}
.dot {
stroke: #000;
}
</style>
</head>
<body>
<script src="d3.v3.js"></script>
</body>
</html>

Let’s next add in the script tag to hold the chart. Just like the previous D3 examples, include the starting
variables, margin, x and y range objects, and x and y axis objects:

<script>

var margin = {top: 20, right: 20, bottom: 30, left: 40},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom;

var x = d3.scale.linear()
.range([0, width]);
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var y = d3.scale.linear()
.range([height, 0]);

var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");

var yAxis = d3.svg.axis()
.scale(y)
.orient("left");
</script>

Let’s also create the SVG tag on the page as in the previous examples:

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

Loading the Data

Now we need to load in the data using the d3.csv() function. In all previous D3 examples, most of the work was done
in the scope of the callback function, but for this example we need to expose our functionality publicly so we can
change the data points via form select elements. Yet we still need to drive the initial functionality from the callback
function because that’s when we will have our data, so we will set up our callback function to call stubbed-out public
functions.

We set a public variable that we call chartData to the data returned from the flat file and call two functions called
removeDots () and setChartDots():

d3.csv("teamvelocity.txt", function(error, data) {
chartData = data;
removeDots ()
setChartDots("TotalDevs", "TotalPoints")

1

Notice that we passed in "TotalDevs" and "TotalPoints" to the setChartDots() function. This is to prime the
pump because they will be the initial data points we show when the page loads.

Adding Interactive Functionality

Now we need to actually create the things we stubbed out. First, let’s create the variable chartData at the root of the
script tag where we set the other variables:

var margin = {top: 20, right: 20, bottom: 30, left: 40},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom,
chartData;
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Next, we create the removeDots () function, which selects any circles or axes on the page and removes them:

function removeDots(){
svg.selectAll("circle")
.transition()
.duration(0)
.remove()
svg.selectAll(".axis"
.transition()
.duration(0)
.remove()

And finally we create the setChartDots () functionality. The function accepts two parameters: xval and yval.
Because we want to make sure that the D3 transitions are finished running and they have a 250-millisecond default
runtime, even when we set the duration to 0, we will wrap the contents of the function in a setTimeout () call so we
wait 300 milliseconds before starting to draw our chart. If we don’t do this, we could enter into a race condition in
which we are drawing to screen as the transition is removing from the screen.

function setChartDots(xval, yval){
setTimeout (function() {

}, 300);

Within the function, we set the domains of the x and y scale objects using the xval and yval parameters. These
parameters correspond to the column names of the data points that we will be charting:

x.domain(d3.extent(chartData, function(d) { return d[xvall;}));
y.domain(d3.extent(chartData, function(d) { return d[yvall;}));

Next we draw the circles to the screen, using the global chartData variable to feed it and the passed-in columnal
data as the x and y coordinates of the circles. We also grow the axes in this function, so that we redraw the values each
time an axis is changed.

svg.selectAll(".dot")
.data(chartData)
.enter().append("circle")
.attr("class", "dot")
.attr("r", 3)
.attr("cx", function(d) { return x(d[xvall);})
.attr("cy", function(d) { return y(d[yval]);})
.style("fill", "#CcCcccc");

svg.append("g")
.attr("class", "axis"
.attr("transform", "translate(o," + height + ")")
.call(xAxis)

svg.append("g")
.attr("class", "axis"
.call(yAxis)
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The complete function should look like the following:

function setChartDots(xval, yval){
setTimeout(function() {
x.domain(d3.extent(chartData, function(d) { return d[xvall];}));
y.domain(d3.extent(chartData, function(d) { return d[yvall;}));

svg.selectAll(".dot")
.data(chartData)
.enter().append("circle")
.attr("class", "dot")
.attr("r", 3)
.attr("cx", function(d) { return x(d[xvall);})
.attr("cy”, function(d) { return y(d[yvall);})
.style("fill", "#cccccc");

svg.append("g")
.attr("class", "axis"
.attr("transform", "translate(o," + height + ")")
.call(xAxis)

svg.append("g")
.attr("class", "axis"

.call(yAxis)
}, 300);
}
Excellent!
Adding Form Fields

Let’s next add in the form fields. We’'ll add two select elements, where each option corresponds to a column in the
flat file. The elements call a JavaScript function, getFormData(), that we will define shortly:

<form>

Y-Axis:

<select id="yval" onChange="getFormData()">
<option value="TotalPoints">Total Points</option>
<option value="TotalDevs">Total Devs</option>
<option value="Team">Team</option>
<option value="BugsOpened">Bugs Opened</option>
<option value="ProductionIncidents">Production Incidents</option>

</select>

X-Axis:

<select id="xval" onChange="getFormData()">
<option value="TotalPoints">Total Points</option>
<option value="TotalDevs">Total Devs</option>
<option value="Team">Team</option>
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<option value="BugsOpened">Bugs Opened</option>
<option value="ProductionIncidents">Production Incidents</option>

</select>
</form>

Retrieving Form Data

The last bit of functionality left is to code the getFormData() function. This function pulls out the selected options
from both select elements and use those values to pass in to setChartDots () —after calling removeDots (), of course.

function getFormData(){
var xEl = document.getElementById("xval")
var yE1 = document.getElementById("yval")
var x = xEl.options[xEl.selectedIndex].value
var y = yEl.options[yEl.selectedIndex].value
removeDots ()
setChartDots(x,y)

Great!

Using the Visualization

The complete source code should look like the following:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title></title>
<style>

body {
font: 10px sans-serif;

}

.axis path,

.axis line {
fill: none;
stroke: #000;
shape-rendering: crispEdges;

}
.dot {

stroke: #000;
}

</style>
</head>
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<body>
<form>
Y-Axis:

<select id="yval

<option

<option

<option

<option

<option
</select>
X-Axis:

<select id="xval

<option
<option
<option
<option
<option
</select>
</form>
<script src="d3.v3.js"></script>
<script>

" onChange="getFormData()">

value="TotalPoints">Total Points</option>
value="TotalDevs">Total Devs</option>
value="Team">Team</option>

value="BugsOpened">Bugs Opened</option>
value="ProductionIncidents">Production Incidents</option>

" onChange="getFormData()">

value="TotalPoints">Total Points</option>
value="TotalDevs">Total Devs</option>
value="Team">Team</option>

value="BugsOpened">Bugs Opened</option>
value="ProductionIncidents">Production Incidents</option>

var margin = {top: 20, right: 20, bottom: 30, left: 40},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom,

chartData;

var x = d3.scale.linear()
.range([0, width]);

var y = d3.scale.linear()
.range([height, 0]);

var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");

var yAxis = d3.svg.axis()
.scale(y)
.orient("left");

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

-append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

svg.append("g")
.attr("class", "x axis"

.attr("transform", "translate(o," + height + ")")

.call(xAxis)

174



CHAPTER 8 © CORRELATION ANALYSIS WITH SCATTER PLOTS

svg.append("g")
.attr("class", "y axis")
.call(yAxis)

function getFormData(){
var xEl = document.getElementById("xval")
var yE1 = document.getElementById("yval")
var x = xEl.options[xEl.selectedIndex].value
var y = yEl.options[yEl.selectedIndex].value
removeDots ()
setChartDots(x,y)

}

function removeDots(){
svg.selectAll("circle")
.transition()
.duration(0)
.remove()
svg.selectAll(".axis"
.transition()
.duration(0)
.remove()

}

function setChartDots(xval, yval){
setTimeout(function() {
x.domain(d3.extent(chartData, function(d) { return d[xvall;}));
y.domain(d3.extent(chartData, function(d) { return d[yvall;}));

svg.selectAll(".dot")
.data(chartData)
.enter().append("circle")
.attr("class", "dot")
Lattr("r", 3)
.attr("ex", function(d) { return x(d[xvall);})
.attr("cy", function(d) { return y(d[yvall);})
.style("fill", "#CCCCCC");

svg.append("g")
.attr("class", "axis"
.attr("transform", "translate(o," + height + ")")
.call(xAxis)

svg.append("g")
.attr("class", "axis"

.call(yAxis)

}, 300);
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d3.csv("teamvelocity.txt", function(error, data) {
chartData = data;
removeDots ()
setChartDots("TotalDevs", "TotalPoints")

1

</script>
</body>
</html>

And it should create the interactive visualization shown in Figure 8-13.
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Figure 8-13. Interactive scatter plot with D3

Summary

This chapter looked at correlations between the speed at which a team moves and the opening of bugs and
production issues. There is naturally a positive correlation between these data points: when we make new things,
we create new opportunities for those new things and existing things to break.

Of course, that doesn’t mean that we should stop making new things, even if for some reason our business
units and our very industries would allow it. It means that we need to find balance between making new things and
nurturing and maintaining the things that we already have. This is exactly what we will look at in the next chapter.
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CHAPTER 9

Visualizing the Balance of Delivery
and Quality with Parallel Coordinates/

The last chapter looked at using scatter plots to identify relationships between sets of data. It discussed the different
types of relationships that could exist between data sets, such as positive and negative correlation. We couched this
idea in the premise of team dynamics: Do you see any correlation between the amount of people on a team and
the amount of work that the team can complete, or between the amount of work completed and the number of
defects generated?

In this chapter we tie together the key concepts that we have been talking about: visualizing, team feature work,
defects, and production incidents. We will tie them together using a data visualization called parallel coordinates
to show the balance between these efforts.

What Are Parallel Coordinate Charts?

Parallel coordinate charts are a visualization that consists of N amount of vertical axes, each representing a unique
data set, with lines drawn across the axes. The lines show the relationship between the axes, much like scatter
plots, and the patterns that the lines form indicate the relationship. We can also gather details about the
relationships between the axes when we see a clustering of lines. Let’s take a look at this using the chart in

Figure 9-1 as an example.
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Figure 9-1. Parallel coordinates for Seatbelts data set

I constructed the chart in Figure 9-1 from the data set Seatbelts that comes built into R. To see a breakdown of
the data set, type ?Seatbelts at the R command line. I extracted a subset of the columns available to better highlight
the relationships in the data:

cardeaths <- data.frame(Seatbelts[,1], Seatbelts[,5], Seatbelts[,6], Seatbelts[,8])
colnames(cardeaths) <- c("DriversKilled", "DistanceDriven", "PriceofGas", "SeatbeltlLaw")

The data set represents the number of drivers killed in car accidents in Great Britain before and after it became
compulsory to wear seat belts. The axes represent the number of drivers killed, the distance driven, the cost of gas at
the time, and whether there was a seat belt law in place.

There are a number of useful ways to look at parallel coordinates. If we look at the lines between a single pair of
axes, we can see the relationships between those data sets. For example, if we look at the relationship between the
price of gas and the seat belt law, we can see that the price of gas is constrained pretty tightly for when the seat belt law
was in place, but covered a large range of prices for when the seat belt law was not in place (that is, a lot of disparate
lines converge on the point that represents the time before the law, and a narrow band of lines converge on the time
after the law was passed). This relationship could imply many different things, but because I know the data, [ know
it’s because we just have a much smaller sample size for deaths after the law was put in place: 14 years’ worth of data
before the seat belt law, but only 2 years’ worth of data after the seat belt law.

We can also trace lines across all the axes to see how each of the axes relates. This is difficult to do with all the
lines the same color, but when we change the color and shading of the lines, we can more easily see the patterns
across the chart. Let’s take the existing chart and assign colors to the lines; (the results display in Figure 9-2):

parcoord(cardeaths, col=rainbow(length(cardeaths[,1])), var.label=TRUE)
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Figure 9-2. Parallel coordinates for Seatbelts data set, with each line a different shade of grey

Note You need to import the MASS library to use the parcoord() function.

Figure 9-2 begins to show the patterns that exist in the data. The lines that have the lowest number of deaths also
have the most distances driven and mainly fall into the point in time after the seat belt law was enacted. Again, note
that we do have a much smaller sample size available for post-seat belt law than we do pre-seat belt law, but you can
see how it becomes useful and telling to be able to trace the interconnectedness of these data points.

History of Parallel Coordinate Plots

The idea of using parallel coordinates on vertical axes was invented in 1885 by Maurice D’Ocagne when he created
the nomograph and the field of nomography. Nomographs are tools to calculate values across mathematical

rules. The classic example of a nomograph still in use today is the line on a thermometer that shows values in both
Fahrenheit and Celsius. Or think of rulers that show values in inches on one side and centimeters on the other.

Note Ron Doerfler has written an extensive thesis on nomography available here:
http://myreckonings.com/wordpress/2008/01/09/the-art-of-nomography-i-geometric-design/.
Doerfler also hosts a site called Modern Nomograms, (http: //www.myreckonings.com/modernnomograms/) that
“offers eye-catching and useful graphical calculators uniquely designed for today's applications.”
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You can see examples of modern nomograms, courtesy of Ron Doerfler, in Figures 9-3 and 9-4.
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Figure 9-3. Nomogram demonstrating the conversion of values between the functions S, B R, and T
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Figure 9-4. Curvel scale nomogram, courtesy of Ron Doerfler, Leif Roschier, and Joe Marasco

Note The term parallel coordinates and the concept that it represents was popularized and rediscovered by Alfred
Inselberg while studying at the University of lllinois. Dr. Inselberg is currently a professor at Tel Aviv University and a
Senior Fellow at the San Diego Supercomputing Center. Dr. Inselberg has also published a book on the subject, Paralle/
Coordinates: Visual Multidimensional Geometry and Its Applications (Springer, 2009). He has also published a dissertation
on how to effectively read and use parallel coordinates, entitled The Multidimensional Detective, available from the IEEE.

Finding Balance

We understand that parallel coordinates are used to visualize the relationship between multiple variables, but how does
that apply to what we have been talking about so far this book? So far, we discussed quantifying and visualizing the defect
backlog, the sources of the production incidents, and even the amount of work that our teams commit to. Arguably,
balancing these aspects of product development can be one of the most challenging activities that a team does.

With each iteration, either formal or informal, team members have to decide how much effort they should put
toward each of these concerns: working on new features, fixing bugs on existing features, and addressing production
incidents from direct feedback from users. And these are just a sampling of the nuances that every product team must
juggle; they also may have to factor in time to spend on technical debt or updating infrastructure.

We can use parallel coordinates to visualize this balance, both for documentation and as a tool for analysis when
starting new sprints.
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Creating a Parallel Coordinate Chart

There are several different approaches to creating a parallel coordinate chart. Using the data from the previous
chapter, we could look at the running totals per iteration. Recall that the data was a total of points committed to per
iteration, as well as a snapshot of how many bugs and production incidents were in each team’s backlog, how many
new bugs were opened during the iteration, and how many members there were on the team. The data looked much
like this:

Sprint TotalPoints TotalDevs Team BugBacklog BugsOpened ProductionIncidents

1 12.10 25 6 Gold 125 10 1
2 12.20 42 8 Gold 135 30 3
3 12.30 45 8 Gold 150 25 2
4 12.40 43 8 Gold 149 23 3
5 12.50 32 6 Gold 155 24 1
6 12.60 43 8 Gold 140 22 4
7 12.70 35 7 Gold 132 9 1

To make use of this data, we can read it in to R, just as we did in the last chapter:

tvFile <- "/Applications/MAMP/htdocs/teamvelocity.txt"
teamvelocity <- read.table(tvFile, sep=",", header=TRUE)

We then can create a new data frame with all the columns from the teamvelocity variable except the Team
column. That column is a string, and the R parcoord() function, which we use in this example, throws an error if
we include strings in the object that we pass in to it. Team information wouldn’t make sense in this context, either.
The lines that will be drawn in the chart will be representative of our teams:

t<- data.frame(teamvelocity$Sprint, teamvelocity$TotalPoints, teamvelocity$TotalDevs,
teamvelocity$BugBacklog, teamvelocity$BugsOpened, teamvelocity$ProductionIncidents)
colnames(t) <- c("sprint", "points", "devs", "total bugs", "new bugs", "prod incidents")

We pass the new object into the parcoord() function. We also pass the rainbow() function into the color
parameter, as well as set the var.label parameter to true, to make the upper and lower boundaries of each axis
visible on the chart:

parcoord(t, col=rainbow(length(t[,1])), var.label=TRUE)

This code produces the visualization shown in Figure 9-5.
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13.2 63 10 162 36 4

sprint points devs total bugs new bugs prod incidents

Figure 9-5. Parallel coordinate chart of different aspects of overall organizationa metrics, including points committed
to per iteration, total developers by team, total bug backlog, new bugs open, and production incidents

Figure 9-5 presents some interesting stories for us. We can see that some teams in our data set create more bugs as they
take on more points’ worth of work. Other teams have a large bug backlog while not creating a large number of new bugs
during each iteration, which implies that they are not closing the bugs that they do open. Some teams are more consistent
than others. All contain insights that the teams can use for reflection and continual improvement. But ultimately this chart
isreactive and talks around the main issues. It tells us what the effects of each sprint are on our respective backlogs, both
bugs and production incidents. It also tells us how many bugs were opened during each sprint.

What the figure doesn’t show is the amount of effort spent working against each backlog. To show that, we need
to do a bit of prep work.

Adding in Effort

Past chapters I mentioned Greenhopper and Rally as ways to plan iterations, prioritize backlogs, and track progress
on user stories. No matter the product you choose, it should provide some way to categorize or tag your user stories
with metadata. Some very simple ways to accomplish this categorization without needing your software to support it
include these:

e  Puttagging in the title of each user story (see Figure 9-6 for an example of what this could look
like in Rally). With this method, you need to sum the level of effort for each category, either
manually or programmatically.
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Figure 9-6. User stories tagged by category, Defect, Feature, or Prod Incident (courtesy of Rally)

¢ Nestsubprojects for each delineation of effort.

However you go about creating these buckets, you should have a way to track the amount of effort spent during
each sprint for your categories. To visualize this, just export it from your favorite tool into a flat file that resembles the
structure shown here:

iteration,defect,prodincidents,features,techdebt,innovation
13.1,6,3,13,2,1

13.2,8,1,7,2,1

13.3,10,1,9,3,2

13.5,9

13.6,7
13.7,9,5,21,12,3
13.8,6

13.9,8,3,
13.10,7,4,

To begin using this data, we need to import the contents of the flat file into R. We store the data in a variable
named teamEffort and passteamEffort into the parcoord() function:

teFile <- "/Applications/MAMP/htdocs/teamEffort.txt"

teamEffort <- read.table(teFile, sep=",", header=TRUE)

parcoord(teamEffort, col=rainbow(length(teamEffort[,1])), var.label=TRUE, main="Level of Effort
Spent")

This code produces the chart shown in Figure 9-7.
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Figure 9-7. Parallel coordinate plot of level of effort spent toward each initiative

This chart is less about seeing relationships implied by data and more about seeing explicit levels of effort
committed to each sprint. In a vacuum, these data points are meaningless, but when you look at both charts and
compare the total bug backlog and total production incidents, compared with the level of effort spent addressing
either, you begin to see blind spots that the team would need to address. Blind spots might be where teams that have
high bug backlogs or production incident counts are not spending enough effort to address those backlogs.

Brushing Parallel Coordinate Charts with D3

The trick to reading dense parallel coordinate plots is to use a technique called brushing. Brushing fades the color or
opacity of all the lines on the chart, except for the lines you want to trace across the axes. We can achieve this level of
interactivity using D3.
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Creating the Base Structure

Let’s start by creating a new HTML file using our base HTML skeletal structure:

<!DOCTYPE html>
<html>

<head>

<meta charset="utf-8">
<title></title>

</head>
<body>
<script src="d3.v3.js"></script>
</body>
</html>

We then create a new script tag to hold the JavaScript for the chart. In this tag, we start by creating the variables
needed to set the height and width of the chart, an object to hold the margin values, an array of axes column names,
and the scale object for the x object.

We also create variables to reference the D3 SVG line object, a reference to the D3 axis, and a variable named
foreground to hold the groupings of all the paths that will be the lines drawn between axes in the chart:

<script>

var margin = {top: 80, right: 160, bottom: 200, left: 160},
width = 1280 - margin.left - margin.right,
height = 800 - margin.top - margin.bottom,

cols = ["iteration","defect”,"prodincidents”,"features”,"techdebt","innovation"]

var x = d3.scale.ordinal().domain(cols).rangePoints([0, width]),
y ={}

var line = d3.svg.line(),
axis = d3.svg.axis().orient("left"),

foreground;
</script>

We draw the SVG element to the page and store it in a variable that we name svg:
var svg = d3.select("body").append("svg")

.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

We use d3.csv to load in the teameffort.txt flat file:

d3.csv("teameffort.txt", function(error, data) {

}
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So far, we're following the same format as in previous chapters: lay out variables at the top, create the SVG
element, and load in the data; most of the data-dependent logic happens in the anonymous function that fires when
the data has been loaded.

For parallel coordinates, this process changes a bit right here because we need to create y-axes for each column
in our data.

Creating a y-axis for Each Column

To create a y-axis for each column, we have to loop through the array that holds the column names, convert the
contents of each column to explicitly be numbers, create an index in the y variable for each column, and create
a D3 scale object for each column:

cols.forEach(function(d) {
//convert to numbers
data.forEach(function(p) { p[d] = +p[d]; });

//create y scale for each column
y[d] = d3.scale.linear()
.domain(d3.extent(data, function(p) { return p[d]; }))
.range([height, 0]);
1

Drawing the Lines

We need to draw the lines that will traverse each axis, so we create an SVG grouping to aggregate and hold all the lines.
We assign the foreground class to the grouping (doing so is important because we will handle the brushing of the
lines via CSS):

foreground = svg.append("g")
.attr("class", "foreground")

We append SVG paths to this grouping. We attach the data to the paths, set the color of the paths to randomly
generated colors, and stub out mouseover and mouseout event handlers. We also set the d attribute of the paths to
a function that we will create called path().

We’ll come back to those event handlers in a minute.

foreground = svg.append("g")
.attr("class", "foreground")
.selectAll("path")
.data(data)
.enter().append("path")
.attr("stroke", function(){return "#" + Math.floor(Math.random()*16777215).
toString(16);})
.attx("d", path)
.attr("width", 16)
.on("mouseover", function(d){

N

.on("mouseout”, function(d){

b
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Let’s flesh out the path() function. In this function, we accept a parameter named d, which will be an index of the
data variable. The function returns a mapping of the path coordinates with the x and y scales:

function path(d) {
return line(cols.map(function(p) { return [x(p), ylpl(dlp])]; }));
}

The path() function returns data that looks much like the following—a multidimensional array with each index
and array consisting of two coordinate values:

[[0, 520]

, [192, 297.14285714285717], [384, 346.6666666666667], [576, 312], [768, 491.1111111111111],
[960, 520]]

Fading the Lines

Let’s take a step back for a second. To handle the brushing, we need to create a style rule to fade the opacity of the
lines. So let’s return to the head section of the page and create a style tag and some style rules.

We set path.fade as the selector and set the stroke-opacity to 40%. While we're at it, we also set body font styles
and path styles:

<style>

body {
font: 15px sans-serif;
font-weight:normal;

}

path{
fill: none;
shape-rendering: geometricPrecision;
stroke-width:1;

}
path.fade {
stroke: #000;
stroke-opacity: .04;
}
</style>

Let’s return to the stubbed out event handlers. D3 provides a function called classed() that allows us to add
classes to selections. In the mouseover handler, we use the classed() function to apply the fade style that we just
created to every path in the foreground. It fades out each line. We'll next target the current selection, using
d3.select(this) and use classed() to turn off the fade styling.

In the mouseout handler, we turn off the fade style:

foreground = svg.append("g")

.attr("class", "foreground")

.selectAll("path")
.data(data)

.enter().append("path")

.attr("stroke", function(){return "#" + Math.floor(Math.random()*16777215).toString(16);})

.attr("d", path)
.attr("width", 16)
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.on("mouseover", function(d){
foreground.classed("fade",true)
d3.select(this).classed("fade", false)

3]

.on("mouseout”, function(d){
foreground.classed("fade",false)

3]

Creating the Axes

Finally, we need to create the axes:

var g = svg.selectAll(".column")
.data(cols)
.enter().append("svg:g")
.attr("class", "column")
.attr("stroke", "#000000")
.attr("transform", function(d) { return "translate(" + x(d) + ")"; })

// Add an axis and title.
g-append("g")
.attr("class", "axis"
.each(function(d) { d3.select(this).call(axis.scale(y[d])); })
.append("svg:text")
.attr("text-anchor", "middle")
Lattr("y", -19)
.text(String);

Our complete code is as follows:

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8">
<titley</title>
<style>
body {

font: 15px sans-serif;
font-weight:normal;

}

path{
fill: none;
shape-rendering: geometricPrecision;
stroke-width:1;

}

path.fade {
stroke: #000;
stroke-opacity: .04;

}
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</style>

</head>

<body>

<script src="d3.v3.js"></script>
<script>

var margin = {top: 80, right: 160, bottom: 200, left: 160},
width = 1280 - margin.left - margin.right,
height = 800 - margin.top - margin.bottom,

cols = ["iteration","defect","prodincidents","features","techdebt","innovation"]

var x = d3.scale.ordinal().domain(cols).rangePoints([0, width]),

y = {}

var line = d3.svg.line(),
axis = d3.svg.axis().orient("left"),
foreground;

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("teameffort.txt", function(error, data) {
cols.forkach(function(d) {
//convert to numbers
data.forEach(function(p) { p[d] = +p[d]; });

y[d] = d3.scale.linear()
.domain(d3.extent(data, function(p) { return p[d]; }))
.range([height, 0]);
D;

foreground = svg.append("g")
.attr("class", "foreground")
.selectAll("path")
.data(data)
.enter().append("path")
.attr("stroke", function(){return "#" + Math.floor(Math.random()*16777215).
toString(16);})
.attr("d", path)
.attr("width", 16)

.on("mouseover", function(d){
foreground.classed("fade",true)
d3.select(this).classed("fade", false)

}

.on("mouseout”, function(d){

foreground.classed("fade",false)

)
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var g = svg.selectAll(".column")
.data(cols)
.enter().append("svg:g")
.attr("class", "column")
.attr("stroke", "#000000")
.attr("transform", function(d) { return "translate(" + x(d) + ")"; })

// Add an axis and title.
g-append("g")
.attr("class", "axis"
.each(function(d) { d3.select(this).call(axis.scale(y[d])); })
.append("svg:text")
.attr("text-anchor", "middle")
.attr("y", -19)
.text(String);

function path(d) {
return line(cols.map(function(p) { return [x(p), y[pl(dlp])]; }));
}

})s

</script>
</body>
</html>

This code produces the chart shown in Figure 9-8.
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Figure 9-8. Parallel coordinate chart created in D3
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If we roll over any of the lines, we see the brushing effect shown in Figure 9-9, in which the opacity of all the lines,
except the one currently moused over, is scaled back.
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Figure 9-9. Parallel coordinate chart with interactive brushing

Summary

This chapter looked at parallel coordinate charts. You got a taste of their history—how they came about originally in
the form of nomograms used to show value conversions. You looked at their practical application in the context of
visualizing how teams balance the different aspects of product development in the course of an iteration.

Parallel coordinates are the last visualization type covered in this book, but it is far from the last type of
visualization out there. And this book is far from the last word on the subject. Something that I tell my students at the
end of each semester is that I hope they will continue to use what they have learned in my class. Only by using the
language or subject that was covered, by continually playing with it, exploring it, and testing the boundaries of it will
students incorporate this new tool into their own skillset. Otherwise, if they leave the class (or, in this case, close the
book) and not think about the subject for a good while, they will probably forget much of what we went over.

If you are a developer or technical leader, I hope that you read this book and were inspired to begin tracking
your own data. This was just a small sampling of things that you can track. You can instrument your code to track
performance metrics, as covered in my book Pro JavaScript Performance: Monitoring and Visualization, or you can
use tools such as Splunk to create dashboards to visualize usage data and error rates. You can tap right into the source
code repository database to get such metrics as what times and days of the week have the most commit activity to
avoid scheduling meetings during those times.

The point of all this data tracking is self-improvement. To establish baselines of where you currently are and track
progress toward where you want to be, to constantly refine your craft, and excel at what you do.
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