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Chapter 1

Background

There is a new concept emerging in the field of web development: using data visualizations as communication tools. 
This concept is something that is already well established in other fields and departments. At the company where 
you work, your finance department probably uses data visualizations to represent fiscal information both internally 
and externally; just take a look at the quarterly earnings reports for almost any publicly traded company. They are 
full of charts to show revenue by quarter, or year over year earnings, or a plethora of other historic financial data. 
All are designed to show lots and lots of data points, potentially pages and pages of data points, in a single easily 
digestible graphic.

Compare the bar chart in Google’s quarterly earnings report from back in 2007 (see Figure 1-1) to a subset of the 
data it is based on in tabular format (see Figure 1-2).

Figure 1-1.  Google Q4 2007 quarterly revenue shown in a bar chart
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The bar chart is imminently more readable. We can clearly see by the shape of it that earnings are up and 
have been steadily going up each quarter. By the color-coding, we can see the sources of the earnings; and with the 
annotations, we can see both the precise numbers that those color-coding represent and what the year over year 
percentages are.

With the tabular data, you have to read labels on the left, line up the data on the right with those labels, do your 
own aggregation and comparison, and draw your own conclusions. There is a lot more upfront work needed to take  
in the tabular data, and there exists the very real possibility of your audience either not understanding the data  
(thus creating their own incorrect story around the data) or tuning out completely because of the sheer amount of 
work needed to take in the information.

It’s not just the Finance department that uses visualizations to communicate dense amounts of data. Maybe your 
Operations department uses charts to communicate server uptime, or your Customer Support department uses graphs 
to show call volume. Whatever the case, it’s about time Engineering and Web Development got on board with this.

As a department, group, and industry we have a huge amount of relevant data that is important for us to first be 
aware of so that we can refine and improve what we do; but also to communicate out to our stakeholders,  
to demonstrate our successes or validate resource needs, or to plan tactical roadmaps for the coming year.

Before we can do this, we need to understand what we are doing. We need to understand what data visualizations 
are, a general idea of their history, when to use them, and how to use them both technically and ethically.

What Is Data Visualization?
OK, so what exactly is data visualization? Data visualization is the art and practice of gathering, analyzing, and 
graphically representing empirical information. They are sometimes called information graphics, or even just 
charts and graphs. Whatever you call it, the goal of visualizing data is to tell the story in the data. Telling the story is 
predicated on understanding the data at a very deep level, and gathering insight from comparisons of data points in 
the numbers.

There exists syntax for crafting data visualizations, patterns in the form of charts that have an immediately known 
context. We devote a chapter to each of the significant chart types later in the book.

Time Series Charts
Time series charts show changes over time. See Figure 1-3 for a time series chart that shows the weighted popularity 
of the keyword “Data Visualization” from Google Trends (http://www.google.com/trends/). 

Figure 1-2.  Similar earnings data in tabular form

http://www.google.com/trends/
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Note that the vertical y axis shows a sequence of numbers that increment by 20 up to 100. These numbers represent 
the weighted search volume, where 100 is the peak search volume for our term. On the horizontal x axis, we see years 
going from 2007 to 2012. The line in the chart represents both axes, the given search volume for each date.

From just this small sample size, we can see that the term has more than tripled in popularity, from a low of 29 
in the beginning of 2007 up to the ceiling of 100 by the end of 2012.

Bar Charts
Bar charts show comparisons of data points. See Figure 1-4 for a bar chart that demonstrates the search volume by 
country for the keyword “Data Visualization,” the data for which is also sourced from Google Trends.

Figure 1-3.  Time series of weighted trend for the keyword “Data Visualization” from Google Trends
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Figure 1-4.  Google Trends breakdown of search volume by region for keyword “Data Visualization”
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We can see the names of the countries on the y axis and the normalized search volume, from 0 to 100, on the  
x axis. Notice, though, that no time measure is given. Does this chart represent data for a day, a month, or a year?

Also note that we have no context for what the unit of measure is. I highlight these points not to answer them  
but to demonstrate the limitations and pitfalls of this particular chart type. We must always be aware that our 
audience does not bring the same experience and context that we bring, so we must strive to make the stories  
in our visualizations as self evident as possible.

Histograms
Histograms are a type of bar chart used to show the distribution of data or how often groups of information appear 
in the data. See Figure 1-5 for a histogram that shows how many articles the New York Times published each year, 
from 1980 to 2012, that related in some way to the subject of data visualization. We can see from the chart that the 
subject has been ramping up in frequency since 2009.
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Figure 1-5.  Histogram showing distribution of NY Times articles about data visualization
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In this example, the states with the darker shades indicate a greater interest in the search term. (This data also  
is derived from Google Trends, for which interest is demonstrated by how frequently the term “Data Visualization”  
is searched for on Google.)

Scatter Plots
Like bar charts, scatter plots are used to compare data, but specifically to suggest correlations in the data, or where  
the data may be dependent or related in some way. See Figure 1-7, in which we use data from Google Correlate, 
(http://www.google.com/trends/correlate), to look for a relationship between search volume for the keyword 
“What is Data Visualization” and the keyword “How to Create Data Visualization.”

Figure 1-6.  Data map of U.S. states by interest in “Data Visualization” (data from Google Trends)

Data Maps
Data maps are used to show the distribution of information over a spatial region. Figure 1-6 shows a data map used 
to demonstrate the interest in the search term “Data Visualization” broken out by U.S. states.

http://www.google.com/trends/correlate
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This chart suggests a positive correlation in the data, meaning that as one term rises in popularity the other also 
rises. So what this chart suggests is that as more people find out about data visualization, more people want to learn 
how to create data visualizations.

The important thing to remember about correlation is that it does not suggest a direct cause—correlation is not 
causation.

History
If we’re talking about the history of data visualization, the modern conception of data visualization largely started with 
William Playfair. William Playfair was, among other things, an engineer, an accountant, a banker, and an all-around 
Renaissance man who single handedly created the time series chart, the bar chart, and the bubble chart. Playfair’s 
charts were published in the late eighteenth century into the early nineteenth century. He was very aware that his 
innovations were the first of their kind, at least in the realm of communicating statistical information, and he spent a 
good amount of space in his books describing how to make the mental leap to seeing bars and lines as representing 
physical things like money.

Playfair is best known for two of his books: the Commercial and Political Atlas and the Statistical Breviary. The 
Commercial and Political Atlas was published in 1786 and focused on different aspects of economic data from national 
debt, to trade figures, and even military spending. It also featured the first printed time series graph and bar chart.

Figure 1-7.  Scatter plot examining the correlation between search volume for terms related to “Data Visualization”, 
“How to Create” and “What is”
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His Statistical Breviary focused on statistical information around the resources of the major European countries 
of the time and introduced the bubble chart.

Playfair had several goals with his charts, among them perhaps stirring controversy, commenting on the 
diminishing spending power of the working class, and even demonstrating the balance of favor in the import and 
export figures of the British Empire, but ultimately his most wide-reaching goal was to communicate complex 
statistical information in an easily digested, universally understood format.

Note■■   Both books are back in print relatively recently, thanks to Howard Wainer, Ian Spence, and Cambridge  
University Press.

Playfair had several contemporaries, including Dr. John Snow, who made my personal favorite chart: the cholera 
map. The cholera map is everything an informational graphic should be: it was simple to read; it was informative;  
and, most importantly, it solved a real problem.

The cholera map is a data map that outlined the location of all the diagnosed cases of cholera in the outbreak  
of London 1854 (see Figure 1-8). The shaded areas are recorded deaths from cholera, and the shaded circles on the 
map are water pumps. From careful inspection, the recorded deaths seemed to radiate out from the water pump on 
Broad Street.

Figure 1-8.  John Snow’s cholera map



Chapter 1 ■ Background

8

Dr. Snow had the Broad Street water pump closed, and the outbreak ended.
Beautiful, concise, and logical.
Another historically significant information graphic is the Diagram of the Causes of Mortality in the Army in the 

East, by Florence Nightingale and William Farr. This chart is shown in Figure 1-9.

Figure 1-9.  Florence Nightingale and William Farr’s Diagram of the Causes of Mortality in the Army in the East

Nightingale and Farr created this chart in 1856 to demonstrate the relative number of preventable deaths and, 
at a higher level, to improve the sanitary conditions of military installations. Note that the Nightingale and Farr 
visualization is a stylized pie chart. Pie charts are generally a circle representing the entirety of a given data set with 
slices of the circle representing percentages of a whole. The usefulness of pie charts is sometimes debated because it 
can be argued that it is harder to discern the difference in value between angles than it is to determine the length of 
a bar or the placement of a line against Cartesian coordinates. Nightingale seemingly avoids this pitfall by having not 
just the angle of the wedge hold value but by also altering the relative size of the slices so they eschew the confines of 
the containing circle and represent relative value.

All the above examples had specific goals or problems that they were trying to solve.

Note■■  A  rich comprehensive history is beyond the scope of this book, but if you are interested in a thoughtful,  
incredibly researched analysis, be sure to read Edward Tufte’s The Visual Display of Quantitative Information.

Modern Landscape
Data visualization is in the midst of a modern revitalization due in large part to the proliferation of cheap storage 
space to store logs, and free and open source tools to analyze and chart the information in these logs.
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From a consumption and appreciation perspective, there are websites that are dedicated to studying and talking 
about information graphics. There are generalized sites such as FlowingData that both aggregate and discuss data 
visualizations from around the web, from astrophysics timelines to mock visualizations used on the floor of Congress.

The mission statement from the FlowingData About page (http://flowingdata.com/about/) is appropriately 
the following: “FlowingData explores how designers, statisticians, and computer scientists use data to understand 
ourselves better—mainly through data visualization.”

There are more specialized sites such as quantifiedself.com that are focused on gathering and visualizing 
information about oneself. There are even web comics about data visualization, the quintessential one being  
xkcd.com, run by Randall Munroe. One of the most famous and topical visualizations that Randall has created thus far 
is the Radiation Dose Chart. We can see the Radiation Dose Chart in Figure 1-10 (it is available in high resolution here: 
http://xkcd.com/radiation/). 

Figure 1-10. Radiation Dose Chart, by Randall Munroe. Note that the range in scale being represented in this 
visualization as a single block in one chart is exploded to show an entirely new microcosm of context and information. 
This pattern is repeated over and over again to show an incredible depth of information

4

http://flowingdata.com/about/
http://quantifiedself.com/
http://xkcd.com/
http://xkcd.com/radiation/
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This chart was created in response to the Fukushima Daiichi nuclear disaster of 2011, and sought to clear up 
misinformation and misunderstanding of comparisons being made around the disaster. It did this by demonstrating the 
differences in scale for the amount of radiation from sources such as other people or a banana, up to what a fatal dose of 
radiation ultimately would be—how all that compared to spending just ten minutes near the Chernobyl meltdown.

Over the last quarter of a century, Edward Tufte, author and professor emeritus at Yale University, has been 
working to raise the bar of information graphics. He published groundbreaking books detailing the history of data 
visualization, tracing its roots even further back than Playfair, to the beginnings of cartography. Among his principles 
is the idea to maximize the amount of information included in each graphic—both by increasing the amount of 
variables or data points in a chart and by eliminating the use of what he has coined chartjunk. Chartjunk, according to 
Tufte, is anything included in a graph that is not information, including ornamentation or thick, gaudy arrows.

Tufte also invented the sparkline, a time series chart with all axes removed and only the trendline remaining to 
show historic variations of a data point without concern for exact context. Sparklines are intended to be small enough 
to place in line with a body of text, similar in size to the surrounding characters, and to show the recent or historic 
trend of whatever the context of the text is.

Why Data Visualization?
In William Playfair’s introduction to the Commercial and Political Atlas, he rationalizes that just as algebra is the 
abbreviated shorthand for arithmetic, so are charts a way to “abbreviate and facilitate the modes of conveying 
information from one person to another.” Almost 300 years later, this principle remains the same.

Data visualizations are a universal way to present complex and varied amounts of information, as we saw in our 
opening example with the quarterly earnings report. They are also powerful ways to tell a story with data.

Imagine you have your Apache logs in front of you, with thousands of lines all resembling the following:
 
127.0.0.1 - - [10/Dec/2012:10:39:11 +0300] "GET / HTTP/1.1" 200 468 "-" "Mozilla/5.0 (X11; U;  
Linux i686; en-US; rv:1.8.1.3) Gecko/20061201 Firefox/2.0.0.3 (Ubuntu-feisty)"
127.0.0.1 - - [10/Dec/2012:10:39:11 +0300] "GET /favicon.ico HTTP/1.1" 200 766 "-" "Mozilla/5.0 
(X11; U; Linux i686; en-US; rv:1.8.1.3) Gecko/20061201 Firefox/2.0.0.3 (Ubuntu-feisty)"
 

Among other things, we see IP address, date, requested resource, and client user agent. Now imagine this 
repeated thousands of times—so many times that your eyes kind of glaze over because each line so closely resembles 
the ones around it that it’s hard to discern where each line ends, let alone what cumulative trends exist within.

By using some analysis and visualization tools such as R, or even a commercial product such as Splunk, we can 
artfully pull out all kinds of meaningful and interesting stories out of this log, from how often certain HTTP errors occur 
and for which resources, to what our most widely used URLs are, to what the geographic distribution of our user base is.

This is just our Apache access log. Imagine casting a wider net, pulling in release information, bugs and 
production incidents. What insights we could gather about what we do: from how our velocity impacts our defect 
density to how our bugs are distributed across our feature sets. And what better way to communicate those findings 
and tell those stories than through a universally digestible medium, like data visualizations?

The point of this book is to explore how we as developers can leverage this practice and medium as part of 
continual improvement—both to identify and quantify our successes and opportunities for improvements, and more 
effectively communicate our learning and our progress.

Tools
There are a number of excellent tools, environments, and libraries that we can use both to analyze and visualize our 
data. The next two sections describe them.
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Languages, Environments, and Libraries
The tools that are most relevant to web developers are Splunk, R, and the D3 JavaScript library. See Figure 1-11 for a 
comparison of interest over time for them (from Google Trends).

Figure 1-11.  Google Trends analysis of interest over time in Splunk, R, and D3

From the figure we can see that R has had a steady consistent amount of interest since 200; Splunk had an 
introduction to the chart around 2005, had a spike of interest around 2006, and had steady growth since then.  
As for D3, we see it just start to peak around 2011 when it was introduced and its predecessor Protovis was sunsetted.

Let’s start with the tool of choice for many developers, scientists, and statisticians: the R language. We have a 
deep dive into the R environment and language in the next chapter, but for now it’s enough to know that it is an open 
source environment and language used for statistical analysis and graphical display. It is powerful, fun to use, and, 
best of all, it is free.

Splunk has seen a tremendous steady growth in interest over the last few years—and for good reason. It is easy to 
use once it’s set up, scales wonderfully, supports multiple concurrent users, and puts data reporting at the fingertips of 
everyone. You simply set it up to consume your log files; then you can go into the Splunk dashboard and run reports on 
key values within those logs. Splunk creates visualizations as part of its reporting capabilities, as well as alerting. While 
Splunk is a commercial product, it also offers a free version, available here: http://www.splunk.com/download.

D3 is a JavaScript library that allows us to craft interactive visualizations. It is the official follow-up to Protovis. 
Protovis was a JavaScript library created in 2009 by Stanford University’s Stanford Visualization Group. Protovis was 
sunsetted in 2011, and the creators unveiled D3. We explore the D3 library at length in Chapter 4.

Analysis Tools
Aside from the previously mentioned languages and environments, there are a number of analysis tools available 
online.

A great hosted tool for analysis and research is Google Trends. Google Trends allows you to compare trends on 
search terms. It provides all kinds of great statistical information around those trends, including comparing their 
relative search volume (see Figure 1-12), the geographic area those trends are coming from (see Figure 1-13), and 
related keywords.

http://www.splunk.com/download
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Figure 1-13.  Google Trends data map showing geographic location where interest in the key words is originating

Figure 1-12.  Google Trends for the terms “data scientist” and “computer scientist” over time; note the interest in the 
term “data scientist” growing rapidly from 2011 on to match the interest in the term “computer scientist”
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Another great tool for analysis is Wolfram|Alpha (http://wolframalpha.com). See Figure 1-14 for a screenshot of 
the Wolfram|Alpha homepage.

Figure 1-14.  Home page for Wolfram|Alpha

Wolfram|Alpha is not a search engine. Search engines spider and index content. Wolfram|Alpha is instead a 
Question Answering (QA) engine that parses human readable sentences with natural language processing and 
responds with computed results. Say, for example, you want to search for the speed of light. You might go to the 
Wolfram|Alpha site and type in “What is the speed of light?” Remember that it uses natural language processing to 
parse your search query, not the keyword lookup.

The results of this query can be seen in Figure 1-15. Wolfram|Alpha essentially looks up all the data it has 
around the speed of light and presents it in a structured, categorized fashion. You can also export the raw data for 
each result.

http://wolframalpha.com/
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Figure 1-15.  Wolfram|Alpha results for query What is the speed of light

Process Overview
So we understand what data visualization is, have a high-level understanding of the history of it and an idea of 
the current landscape. We’re beginning to get an inkling about how we can start to use this in our world. We know 
some of the tools that are available to us to facilitate the analysis and creation of our charts. Now let’s look at the 
process involved.
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Creating data visualizations involves four core steps:

	 1.	 Identify a problem.

	 2.	 Gather the data.

	 3.	 Analyze the data.

	 4.	 Visualize the data.

Let’s walk through each step in the process and re-create one of the previous charts to demonstrate the process.

Identify a Problem
The very first step is to identify a problem we want to solve. This can be almost anything—from something as 
profound and wide-reaching as figuring out why your bug backlog doesn’t seem to go down and stay down, to seeing 
what feature releases over a given period in time caused the most production incidents, and why.

For our example, let’s re-create Figure 1-5 and try to quantify the interest in data visualization over time as 
represented by the number of New York Times articles on the subject.

Gather Data
We have an idea of what we want to investigate, so let’s dig in. If you are trying to solve a problem or tell a story around 
your own product, you would of course start with your own data—maybe your Apache logs, maybe your bug backlog, 
maybe exports from your project tracking software. 

Note■■   If you are focusing on gathering metrics around your product and you don’t already have data handy, you need to 
invest in instrumentation. There are many ways to do this, usually by putting logging in your code. At the very least, you want to 
log error states and monitor those, but you may want to expand the scope of what you track to include for debugging purposes 
while still respecting both your user’s privacy and your company’s privacy policy. In my book, Pro JavaScript Performance: 
Monitoring and Visualization, I explore ways to track and visualize web and runtime performance.

One important aspect of data gathering is deciding which format your data should be in (if you're lucky) or discovering 
which format your data is available in. We’ll next be looking at some of the common data formats in use today.

JSON is an acronym that stands for JavaScript Object Notation. As you probably know, it is essentially a way to 
send data as serialized JavaScript objects. We format JSON as follows:
 
[object]{
    [attribute]: [value],
    [method] : function(){},
    [array]: [item, item]
}
 

Another way to transfer data is in XML format. XML has an expected syntax, in which elements can have attributes, 
which have values, values are always in quotes, and every element must have a closing element. XML looks like this:
 
<parent attribute="value">
    <child attribute="value">node data</child>
</parent>
 

Generally we can expect APIs to return XML or JSON to us, and our preference is usually JSON because as we can 
see it is a much more lightweight option just in sheer amount of characters used.
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But if we are exporting data from an application, it most likely will be in the form of a comma separated value file, 
or CSV. A CSV is exactly what it sounds like: values separated by commas or some other sort of delimiter:
 
value1,value2,value3
value4,value5,value6
 

For our example, we’ll use the New York Times API Tool, available at http://prototype.nytimes.com/gst/ 
apitool/index.html. The API Tool exposes all the APIs that the New York Times makes available, including the Article 
Search API, the Campaign Finance API, and the Movie Review API. All we need to do is select the Article Search API 
from the drop-down menu, type in our search query or the phrase that we want to search for, and click “Make Request”.

This queries the API and returns the data to us, formatted as JSON. We can see the results in Figure 1-16.

Figure 1-16.  The NY Times API Tool

We can then copy and paste the returned JSON data to our own file or we could go the extra step to get an API 
key so that we can query the API from our own applications.

For the sake of our example, we will save the JSON data to a file that we will name jsNYTimesData. The contents 
of the file will be structured like so:
 
{
 "offset": "0",
 "results": [
   {
     "body": "BODY COPY",

http://prototype.nytimes.com/gst/apitool/index.html
http://prototype.nytimes.com/gst/apitool/index.html
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     "byline": "By AUTHOR",
     "date": "20121011",
     "title": "TITLE",
     "url": "http:\/\/www.nytimes.com\/foo.html"
   }, {
     "body": "BODY COPY",
     "byline": "By AUTHOR",
     "date": "20121021",
     "title": "TITLE",
     "url": "http:\/\/www.nytimes.com\/bar.html"
   }
     ],
 "tokens": [
   "JavaScript"
 ],
 "total": 2
}
 

Looking at the high-level JSON structure, we see an attribute named offset, an array named results, an array 
named tokens, and another attribute named total. The offset variable is for pagination (what page full of results 
we are starting with). The total variable is just what it sounds like: the number of results that are returned for our 
query. It’s the results array that we really care about; it is an array of objects, each of which corresponds to an article.

The article objects have attributes named body, byline, date, title, and url.
We now have data that we can begin to look at. That takes us to our next step in the process, analyzing our data.

DATA SCRUBBING

There is often a hidden step here, one that anyone who’s dealt with data knows about: scrubbing the data. Often 
the data is either not formatted exactly as we need it or, in even worse cases, it is dirty or incomplete.

In the best-case scenario in which your data just needs to be reformatted or even concatenated, go ahead and do 
that, but be sure to not lose the integrity of the data.

Dirty data has fields out of order, fields with obviously bad information in them—think strings in ZIP codes—or 
gaps in the data. If your data is dirty, you have several choices:

You could drop the rows in question, but that can harm the integrity of the data—a good example •	
is if you are creating a histogram removing rows could change the distribution and change what 
your results will be.

The better alternative is to reach out to whoever administers the source of your data and try and •	
get a better version if it exists.

Whatever the case, if data is dirty or it just needs to be reformatted to be able to be imported into R, expect to 
have to scrub your data at some point before you begin your analysis.

Analyze Data
Having data is great, but what does it mean? We determine it through analysis.

Analysis is the most crucial piece of creating data visualizations. It’s only through analysis that we can understand 
our data, and it is only through understanding it that we can craft our story to share with others.

http://www.nytimes.com\/foo.html
http://www.nytimes.com\/bar.html
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To begin analysis, let’s import our data into R. Don’t worry if you aren’t completely fluent in R; we do a deep 
dive into the language in the next chapter. If you aren’t familiar with R yet, don’t worry about coding along with the 
following examples: just follow along to get an idea of what is happening and return to these examples after reading 
Chapters 3 and 4.

Because our data is JSON, let’s use an R package called rjson. This will allow us to read in and parse JSON with 
the fromJSON() function:
 
library(rjson)
json_data <- fromJSON(paste(readLines("jsNYTimesData.txt"), collapse=""))
 

This is great, except the data is read in as pure text, including the date information. We can’t extract information 
from text because obviously text has no contextual meaning outside of being raw characters. So we need to iterate 
through the data and parse it to more meaningful types.

Let's create a data frame (an array-like data type specific to R that we talk about next chapter), loop through our 
json_data object; and parse year, month, and day parts out of the date attribute. Let’s also parse the author name out 
of the byline, and check to make sure that if the author’s name isn’t present we substitute the empty value with the 
string “unknown”.
 
df <- data.frame()
for(n in json_data$results){
        year <-substr(n$date, 0, 4)
        month <- substr(n$date, 5, 6)
        day <- substr(n$date, 7, 8)
        author <- substr(n$byline, 4, 30)
        title <- n$title
        if(length(author) < 1){
                author <- "unknown"
        }
 

Next, we can reassemble the date into a MM/DD/YYYY formatted string and convert it to a date object:
 
      datestamp <-paste(month, "/", day, "/", year, sep="")
      datestamp <- as.Date(datestamp,"%m/%d/%Y")
 

And finally before we leave the loop, we should add this newly parsed author and date information to a 
temporary row and add that row to our new data frame.
 
      newrow <- data.frame(datestamp, author, title, stringsAsFactors=FALSE, check.rows=FALSE)
      df <- rbind(df, newrow)
}
rownames(df) <- df$datestamp
 

Our complete loop should look like the following:
 
df <- data.frame()
for(n in json_data$results){
      year <-substr(n$date, 0, 4)
      month <- substr(n$date, 5, 6)
      day <- substr(n$date, 7, 8)
      author <- substr(n$byline, 4, 30)
      title <- n$title
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      if(length(author) < 1){
            author <- "unknown"
      }
      datestamp <-paste(month, "/", day, "/", year, sep="")
      datestamp <- as.Date(datestamp,"%m/%d/%Y")
      newrow <- data.frame(datestamp, author, title, stringsAsFactors=FALSE, check.rows=FALSE)
      df <- rbind(df, newrow)
}
rownames(df) <- df$datestamp

Note that our example assumes that the data set returned has unique date values. If you get errors with this, you 
may need to scrub your returned data set to purge any duplicate rows.

Once our data frame is populated, we can start to do some analysis on the data. Let’s start out by pulling just the 
year from every entry, and quickly making a stem and leaf plot to see the shape of the data.

Note   John tukey created the stem and leaf plot in his seminal work, Exploratory Data Analysis. Stem and leaf plots 
are quick, high-level ways to see the shape of data, much like a histogram. In the stem and leaf plot, we construct the 
“stem” column on the left and the “leaf” column on the right. the stem consists of the most significant unique elements 
in a result set. the leaf consists of the remainder of the values associated with each stem. In our stem and leaf plot below, 
the years are our stem and r shows zeroes for each row associated with a given year. Something else to note is that 
often alternating sequential rows are combined into a single row, in the interest of having a more concise visualization.

First, we will create a new variable to hold the year information:

yearlist <- as.POSIXlt(df$datestamp)$year+1900

If we inspect this variable, we see that it looks something like this:

> yearlist
 [1] 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2011 2011 2011 2011 2011 2011 
2011 2011 2011 2011 2011 2011 2011 2011 2011 2011
[30] 2011 2011 2011 2011 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2009 2009 2009 2009 2009 
2009 2009 2008 2008 2008 2007 2007 2007 2007 2006
[59] 2006 2006 2006 2005 2005 2005 2005 2005 2005 2004 2003 2003 2003 2002 2002 2002 2002 2001 2001 
2000 2000 2000 2000 2000 2000 1999 1999 1999 1999
[88] 1999 1999 1998 1998 1998 1997 1997 1996 1996 1995 1995 1995 1993 1993 1993 1993 1992 1991 1991 
1991 1990 1990 1990 1990 1989 1989 1989 1988 1988
[117] 1988 1986 1985 1985 1985 1984 1982 1982 1981

That’s great, that’s exactly what we want: a year to represent every article returned. Next let’s create the stem and 
leaf plot:

> stem(yearlist)
 1980 | 0
 1982 | 00
 1984 | 0000
 1986 | 0
 1988 | 000000
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 1990 | 0000000
 1992 | 00000
 1994 | 000
 1996 | 0000
 1998 | 000000000
 2000 | 00000000
 2002 | 0000000
 2004 | 0000000
 2006 | 00000000
 2008 | 0000000000
 2010 | 000000000000000000000000000000
 2012 | 0000000000000
 

Very interesting. We see a gradual build with some dips in the mid-1990s, another gradual build with another dip 
in the mid-2000s and a strong explosion since 2010 (the stem and leaf plot groups years together in twos).

Looking at that, my mind starts to envision a story building about a subject growing in popularity. But what 
about the authors of these articles? Maybe they are the result of one or two very interested authors that have quite 
a bit to say on the subject.

Let’s explore that idea and take a look at the author data that we parsed out. Let’s look at just the unique authors 
from our data frame:
 
> length(unique(df$author))
[1] 81
 

We see that there are 81 unique authors or combination of authors for these articles! Just out of curiosity, let’s take 
a look at the breakdown by author for each article. Let’s quickly create a bar chart to see the overall shape of the data 
(the bar chart is shown in Figure 1-17):
 
plot(table(df$author), axes=FALSE)
 

Figure 1-17.  Bar chart of number of articles by author to quickly visualize
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We remove the x and y axes to allow ourselves to focus just on the shape of the data without worrying too much 
about the granular details. From the shape, we can see a large number of bars with the same value; these are authors 
who have written a single article. The higher bars are authors who have written multiple articles. Essentially each 
bar is a unique author, and the height of the bar indicates the number of articles they have written. We can see that 
although there are roughly five standout contributors, most authors have average one article.

Note that we just created several visualizations as part of our analysis. The two steps aren’t mutually exclusive; 
we often times create quick visualizations to facilitate our own understanding of the data. It’s the intention with which 
they are created that make them part of the analysis phase. These visualizations are intended to improve our own 
understanding of the data so that we can accurately tell the story in the data.

What we’ve seen in this particular data set tells a story of a subject growing in popularity, demonstrated by the 
increasing number of articles by a variety of authors. Let’s now prepare it for mass consumption.

Note■■   We are not fabricating or inventing this story. Like information archaeologists, we are sifting through the raw 
data to uncover the story.

Visualize Data
Once we’ve analyzed the data and understand it (and I mean really understand the data to the point where we are 
conversant in all the granular details around it), and once we’ve seen the story that the data has within, it is time to 
share that story.

For the current example, we’ve already crafted a stem and leaf plot as well as a bar chart as part of our analysis. 
However, stem and leaf plots are great for analyzing data, but not so great for messaging out about the findings. It is 
not immediately obvious what the context of the numbers in a stem and leaf plot represents. And the bar chart we 
created supported the main thesis of the story instead of communicating that thesis.

Since we want to demonstrate the distribution of articles by year, let’s instead use a histogram to tell the story:
 
hist(yearlist)
 

See Figure 1-18 for what this call to the hist() function generates.
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This is a good start, but let’s refine this further. Let’s color in the bars, give the chart a meaningful title, and strictly 
define the range of years.
 
hist(yearlist, breaks=(1981:2012), freq=TRUE, col="#CCCCCC", main="Distribution of Articles about 
Data Visualization\nby the NY Times", xlab = "Year")
 

This produces the histogram that we see in Figure 1-5.

Ethics of Data Visualization
Remember Figure 1-3 from the beginning of this chapter where we looked at the weighted popularity of the search 
term “Data Visualization”? By constraining the data to 2006 to 2012, we told a story of a keyword growing in 
popularity, almost doubling in popularity over a six-year period. But what if we included more data points in our 
sample and extended our view to include 2004? See Figure 1-19 for this expanded time series chart.
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Figure 1-18.  Histogram of yearlist
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This expanded chart tells a different story: one that describes a dip in popularity between 2005 and 2009. This 
expanded chart also demonstrates how easy it is to misrepresent the truth intentionally or unintentionally with data 
visualizations.

Cite Sources
When Playfair first published his Commercial and Political Atlas, one of the biggest biases he had to battle was the 
inherent distrust his peers had of charts to accurately represent data. He tried to overcome this by including data 
tables in the first two editions of the book. 

Similarly, we should always include our sources when distributing our charts so that our audience can go back 
and independently verify the data if they want to. This is important because we are trying to share information, not 
hoard it, and we should encourage others to inspect the data for themselves and be excited about the results.

Be Aware of Visual Cues
A side effect of using charts to function as visual shorthand is that we bring our own perspective and context to play 
when we view charts. We are used to certain things, such as the color red being used to signify danger or flagging for 
attention, or the color green signifying safety. These color connotations are part of a branch of color theory called 
color harmony, and it’s worth at least being aware of what your color choices could be implying.

When in doubt, get a second opinion. When creating our graphics, we can often get married to a certain layout 
or chart choice. This is natural because we have spent time invested in analyzing and crafting the chart. A fresh, 
objective set of eyes should point out unintentional meanings or overly complex designs, and make for a more crisp 
visualization.

Summary
This chapter took a look at some introductory concepts about data visualization, from conducting data gathering 
and exploration, to looking at the charts that make up the visual patterns that define how we communicate with data. 
We looked a little at the history of data visualization, from the early beginnings with William Playfair and Florence 
Nightingale to modern examples such as xkcd.com.

While we saw a little bit of code in this chapter, in the next chapter we start to dig in to the tactics of learning R 
and getting our hands dirty reading in data, shaping data, and crafting our own visualizations.

Figure 1-19.  Google Trends time series chart with expanded time range. Note that the additional data points give  
a greater context and tell a different story

http://xkcd.com/
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Chapter 2

R Language Primer

In the last chapter, we defined what data visualizations are, looked at a little bit of the history of the medium, and explored 
the process for creating them. This chapter takes a deeper dive into one of the most important tools for creating data 
visualizations: R.

When creating data visualizations, R is an integral tool for both analyzing data and creating visualizations. We will use 
R extensively through the rest of this book, so we had better level set first.

R is both an environment and a language to run statistical computations and produce data graphics. It was created 
by Ross Ihaka and Robert Gentleman in 1993 while at University of Auckland. The R environment is the runtime 
environment that you develop and run R in. The R language is the programming language that you develop in.

R is the successor to the S language, a statistical programming language that came out of Bell Labs in 1976.

Getting to Know the R Console
Let’s start by downloading and installing R. R is available from the R Foundation at http://www.r-project.org/.  
See Figure 2-1 for a screenshot of the R Foundation homepage.

http://www.r-project.org/


Chapter 2 ■ R Language Primer

26

It is available as a precompiled binary from the Comprehensive R Archive Network (CRAN) website:  
http://cran.r-project.org/ (see Figure 2-2). We just select our operating system and what version of R we want, 
and we can begin to download.

Figure 2-1.  Homepage of the R Foundation

http://cran.r-project.org/
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Once the download is complete, we can run through the installer. See Figure 2-3 for a screenshot of the R installer 
for the Mac OS.

Figure 2-2.  The CRAN website
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Once we finish the installation we can launch the R application, and we are presented with the R console,  
as shown in Figure 2-4.

Figure 2-3.  R installation on a Mac

Figure 2-4.  The R console
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The Command Line
The R console is where the magic happens! It is a command-line environment where we can run R expressions. The best 
way to get up to speed in R is to script in the console, a piece at a time, generally to try out what you’re trying to do, and 
tweak it until you get the results that you want. When you finally have a working example, take the code that does what 
you want and save it as an R script file.

R script files are just files that contain pure R and can be run in the console using the source command:
 
> source("someRfile.R")
 

Looking at the preceding code snippet, we assume that the R script lives in the current work directory. The way 
we can see what the current work directory is to use the getwd() function:
 
> getwd()
[1] "/Users/tomjbarker"
 

We can also set the working directory by using the setwd() function. Note that changes made to the working 
directory are not persisted across R sessions unless the session is saved.
 
> setwd("/Users/tomjbarker/Downloads")
> getwd()
[1] "/Users/tomjbarker/Downloads"

Command History
The R console stores commands that you enter and you can cycle through previous commands by pressing the up 
arrow. Hit the escape button to return to the command prompt. We can see the history in a separate window pane 
by clicking the Show/Hide Command History button at the top of the console. The Show/Hide Command History 
button is the rectangle icon with alternating stripes of yellow and green. See Figure 2-5 for the R console with the 
command history shown.
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Accessing Documentation
To read the R documentation around a specific function or keyword, you simply type a question mark before the keyword:

> ?setwd

If you want to search the documentation for a specific word or phrase, you can type two question marks before 
the search query:

> ??"working directory"

This code launches a window that shows search results (see Figure 2-6). The search result window has a row for 
each topic that contains the search phrase and has the name of the help topic, the package that the functionality that 
the help topic talks about is in, and a short description for the help topic.

Figure 2-5. R console with command history shown
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Packages
Speaking of packages, what are they, exactly? Packages are collections of functions, data sets, or objects that can 
be imported into the current session or workspace to extend what we can do in R. Anyone can make a package 
and distribute it. 

To install a package, we simply type this:
 
install.packages([package name])
 

For example, if we want to install the ggplot2 package—which is a widely used and very handy charting 
package—we simply type this into the console:
 
> install.packages("ggplot2")
 

We are immediately prompted to choose the mirror location that we want to use, usually the one closest to our 
current location. From there, the install begins. We can see the results in Figure 2-7.

Figure 2-6.  Help search results window
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The zipped-up package is downloaded and exploded into our R installation.
If want to use a package that we have installed, we must first include it in our workspace. To do this we use the 

library() function:
 
> library(ggplot2)
 

A list of packages available at the CRAN can be found here: http://cran.r-project.org/web/packages/
available_packages_by_name.html.

To see a list of packages already installed, we can simply call the library() function with no parameter 
(depending on your install and your environment, your list of packages may vary):
 
> library()
Packages in library '/Library/Frameworks/R.framework/Versions/2.15/Resources/library':
barcode                         Barcode distribution plots
base                            The R Base Package
boot                            Bootstrap Functions (originally by Angelo Canty for S)
class                           Functions for Classification
cluster                         Cluster Analysis Extended Rousseeuw et al.

Figure 2-7.  Installing the ggplot2 package

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
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codetools                       Code Analysis Tools for R
colorspace                      Color Space Manipulation
compiler                        The R Compiler Package
datasets                        The R Datasets Package
dichromat                       Color schemes for dichromats
digest                          Create cryptographic hash digests of R objects
foreign                         Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase,
                               ...
ggplot2                         An implementation of the Grammar of Graphics
gpairs                          gpairs: The Generalized Pairs Plot
graphics                        The R Graphics Package
grDevices                       The R Graphics Devices and Support for Colours and Fonts
grid                            The Grid Graphics Package
gtable                          Arrange grobs in tables.
KernSmooth                      Functions for kernel smoothing for Wand & Jones (1995)
labeling                        Axis Labeling
lattice                         Lattice Graphics
mapdata                         Extra Map Databases
mapproj                         Map Projections
maps                            Draw Geographical Maps

Importing Data
So now our environment is downloaded and installed, and we know how to install any packages that we may need. 
Now we can begin using R.

The first thing we’ll normally want to do is import your data. There are several ways to import data, but the most 
common way is to use the read() function, which has several flavors:
 
read.table("[file to read]")
read.csv(["file to read"])
 

To see this in action, let’s first create a text file named temptext.txt that is formatted like so:
 
134,432,435,313,11
403,200,500,404,33
77,321,90,2002,395
 

We can read this into a variable that we will name temptxt:
 
> temptxt <- read.table("temptext.txt")
 

Notice that as we are assigning value to this variable, we are not using an equal sign as the assignment operator. 
We are instead using an arrow <-. That is R’s assignment operator, although it does also support the equal sign if you 
are so inclined. But the standard is the arrow, and all examples that we will show in this book will use the arrow.

If we print out the temptxt variable, we see that it is structured as follows:
 
> temptxt
                 V1
1 134,432,435,313,11
2 403,200,500,404,33
3 77,321,90,2002,395
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We see that our variable is a table-like structure called a data frame, and R has assigned a column name (V1) and 
row IDs to our data structure. More on column names soon.

The read() function has a number of parameters that you can use to refine how the data is imported and 
formatted once it is imported.

Using Headers
The header parameter tells R to treat the first line in the external file as containing header information. The first line 
then becomes the column names of the data frame.

For example, suppose we have a log file structured like this:
 
url, day, date, loadtime, bytes, httprequests, loadtime_repeatview
http://apress.com, Sun, 01 Jul 2012 14:01:28 +0000,7042,956680,73,3341
http://apress.com, Sun, 01 Jul 2012 14:01:31 +0000,6932,892902,76,3428
http://apress.com, Sun, 01 Jul 2012 14:01:33 +0000,4157,594908,38,1614
 

We can load it into a variable named wpo like so:
 
> wpo <- read.table("wpo.txt", header=TRUE)
> wpo
  url  day date loadtime bytes httprequests loadtime_repeatview
1 http://apress.com,Sun,1 Jul 2012 14:01:28 +0000,7042,955550,73,3191
2 http://apress.com,Sun,1 Jul 2012 14:01:31 +0000,6932,892442,76,3728
3 http://apress.com,Sun,1 Jul 2012 14:01:33 +0000,4157,614908,38,1514
 

When we call the colnames() function to see what the column names are for wpo, we see the following:
 
> colnames(wpo)
[1] "url"     "day"     "date"     "loadtime"
[5] "bytes"     "httprequests"     "loadtime_repeatview"

Specifying a String Delimiter
The sep attribute tells the read() function what to use as the string delimiter for parsing the columns in the external 
data file. In all the examples we’ve looked at so far, commas are our delimiters, but we could use instead pipes | or any 
other character that we want.

Say, for example, that our previous temptxt example used pipes; we would just update the code to be as follows:
 
134|432|435|313|11
403|200|500|404|33
77|321|90|2002|395
 
> temptxt <- read.table("temptext.txt", sep="|")
> temptxt
  V1  V2  V3   V4  V5
1 134 432 435  313  11
2 403 200 500  404  33
3  77 321  90 2002 395
 

Oh, notice that? We actually got distinct column names this time (V1, V2, V3, V4, V5). Before, we didn’t specify a 
delimiter, so R assumed that each row was one big blob of text and lumped it into a single column (V1).

http://apress.com/
http://apress.com/
http://apress.com/
http://apress.com,Sun,1
http://apress.com,Sun,1
http://apress.com,Sun,1
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Specifying Row Identifiers
The row.names attribute allows us to specify identifiers for our rows. By default, as we’ve seen in the previous 
examples, R uses incrementing numbers as row IDs. Keep in mind that the row names need to be unique for each row.

With that in mind, let’s take a look at importing some different log data, which has performance metrics for 
unique URLs:
 
url, day, date, loadtime, bytes, httprequests, loadtime_repeatview
http://apress.com, Sun, 01 Jul 2012 14:01:28 +0000,7042,956680,73,3341
http://google.com, Sun, 01 Jul 2012 14:01:31 +0000,6932,892902,76,3428
http://apple.com, Sun, 01 Jul 2012 14:01:33 +0000,4157,594908,38,1614
 

When we read it in, we’ll be sure to specify that the data in the url column should be used as the row name for the 
data frame.
 
> wpo <- read.table("wpo.txt", header=TRUE, sep=",", row.names="url")
> wpo
                  day                        date loadtime  bytes httprequests loadtime_repeatview
http://apress.com  Sun  01 Jul 2012 14:01:28 +0000     7042 956680           73                3341
http://google.com  Sun  01 Jul 2012 14:01:31 +0000     6932 892902           76                3428
http://apple.com   Sun  01 Jul 2012 14:01:33 +0000     4157 594908           38                1614

Using Custom Column Names
And there we go. But what if we want to have column names, but the first line in our file is not header information? 
We can use the col.names parameter to specify a vector that we can use as column names. 

Let’s take a look. In this example, we’ll use the pipe separated text file used previously.
 
134|432|435|313|11
403|200|500|404|33
77|321|90|2002|395
 

First, we’ll create a vector named columnNames that will hold the strings that we will use as the column names:
 
> columnNames <- c("resource_id", "dns_lookup", "cache_load", "file_size", "server_response")
 

Then we’ll read in the data, passing in our vector to the col.names parameter.
 
> resource_log <- read.table("temptext.txt", sep="|", col.names=columnNames)
> resource_log
 resource_id dns_lookup cache_load file_size server_response
1         134        432        435       313              11
2         403        200        500       404              33
3          77        321         90      2002             395

Data Structures and Data Types
In the previous examples, we touched on a lot of concepts; we created variables, including vectors and data frames; 
but we didn’t talk much about what they are. Let’s take a step back and look at the data types that R supports and 
how to use them.

http://apress.com/
http://google.com/
http://apple.com/
http://apress.com/
http://google.com/
http://apple.com/
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Data types in R are called modes, and can be the following: 

numeric•	

character•	

logical•	

complex•	

raw•	

list•	

We can use the mode() function to check the mode of a variable.
Character and numeric modes correspond to string and number (both integer and float) data types. Logical 

modes are Boolean values.
 
> n <- 122132
> mode(n)
[1] "numeric"
> c <- "test text"
> mode(c)
[1] "character"
> l <- TRUE
> mode(l)
[1] "logical"
 

We can perform string concatenation using the paste() function. We can use the substr() function to pull 
characters out of strings. Let’s look at some examples in code.

Usually, I keep a list of directories that I either read data from or write charts to. Then when I want to reference 
a new data file that exists in the data directory, I will just append the new file name to the data directory:
 
> dataDirectory <- "/Users/tomjbarker/org/data/"
> buglist <- paste(dataDirectory, "bugs.txt", sep="")
> buglist
[1] "/Users/tomjbarker/org/data/bugs.txt"
 

The paste() function takes N amount of strings and concatenates them together. It accepts an argument named 
sep that allows us to specify a string that we can use to be a delimiter between joined strings. We don’t want anything 
separating our joined strings that we pass in an empty string.

If we want to pull characters from a string, we use the substr() function. The substr() function takes a string to 
parse, a starting location, and a stopping location. It returns all the character inclusively from the starting location up 
to the ending location. (Remember that in R, lists are not 0-based like most other languages, but instead have  
a starting index of 1.)
 
> substr("test", 1,2)
[1] "te"
 

In the preceding example, we pass in the string “test” and tell the substr() function to return the first and 
second characters.

Complex mode is for complex numbers. The raw mode is to store raw byte data.
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List data types or modes can be one of three classes: vectors, matrices, or data frames. If we call mode() for vectors 
or matrices, they return the mode of the data that they contain; class() returns the class. If we call mode() on a data 
frame, it returns the type list:
 
> v <- c(1:10)
> mode(v)
[1] "numeric"
> m <- matrix(c(1:10), byrow=TRUE)
> mode(m)
[1] "numeric"
> class(m)
[1] "matrix"
> d <- data.frame(c(1:10))
> mode(d)
[1] "list"
> class(d)
[1] "data.frame"
 

Note that we just typed 1:10 rather than the whole sequence of numbers between 1 and 10:
 
v <- c(1:10)
 

Vectors are single-dimensional arrays that can hold only values of a single mode at a time. It’s when we get to 
data frames and matrices that R really starts to get interesting. The next two sections cover those classes.

Data Frames
We saw at the beginning of this chapter that the read() function takes in external data and saves it as a data frame. 
Data frames are like arrays in most other loosely typed languages: they are containers that hold different types of data, 
referenced by index. The main thing to realize, though, is that data frames see the data that they contain as rows, columns, 
and combinations of the two.

For example, think of a data frame as formatted as follows:
 
      col  col  col  col  col
row [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ]
row [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ]
row [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ]
row [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ]
 

If we try to reference the first index in the preceding data frame as we traditionally would with an array, say 
dataframe[1], R would instead return the first column of data, not the first item. So data frames are referenced by their 
column and row. So dataframe[1] returns the first column and dataframe[,2] returns the first row.

Let’s demonstrate this in code.
First let’s create some vectors using the combine function, c(). Remember that vectors are collections of data all 

of the same type. The combine function takes a series of values and combines them into vectors.
 
> col1 <- c(1,2,3,4,5,6,7,8)
> col2 <- c(1,2,3,4,5,6,7,8)
> col3 <- c(1,2,3,4,5,6,7,8)
> col4 <- c(1,2,3,4,5,6,7,8)
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Then let’s combine these vectors into a data frame:
 
> df <- data.frame(col1,col2,col3,col4)
 

Now let’s print the data frame to see the contents and the structure of it:
 
> df
    col1 col2 col3 col4
1    1    1    1    1
2    2    2    2    2
3    3    3    3    3
4    4    4    4    4
5    5    5    5    5
6    6    6    6    6
7    7    7    7    7
8    8    8    8    8
 

Notice that it took each vector and made each one a column. Also notice that each row has an ID; by default, 
it is a number, but we can override that.

If we reference the first index, we see that the data frame returns the first column:
 
> df[1]
 col1
1    1
2    2
3    3
4    4
5    5
6    6
7    7
8    8
 

If we put a comma in front of that 1, we reference the first row:
 
> df[,1]
[1] 1 2 3 4 5 6 7 8
 

So accessing contents of a data frame is done by specifying [column, row].
Matrices work much the same way.

Matrices
Matrices are just like data frames in that they contain rows and columns and can be referenced by either. The core 
difference between the two is that data frames can hold different data types but matrices can hold only one type of data. 

This presents a philosophical difference. Usually you use data frames to hold data read in externally, like from a 
flat file or a database because those are generally of mixed type. You normally store data in matrices that you want to 
apply functions to (more on applying functions to lists in a little bit).
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To create a matrix, we must use the matrix() function, pass in a vector, and tell the function how to distribute 
the vector:

The •	 nrow parameter specifies how many rows the matrix should have

The •	 ncol parameter specifies the number of columns.

The •	 byrow parameter tells R that the contents of the vector should be distributed by iterating 
across rows if TRUE or by columns if FALSE.

 
> content <- c(1,2,3,4,5,6,7,8,9,10)
> m1 <- matrix(content, nrow=2, ncol=5, byrow=TRUE)
> m1
    [,1] [,2] [,3] [,4] [,5]
[1,]    1    2    3    4    5
[2,]    6    7    8    9   10
>
 

Notice that in the previous example that the m1 matrix is filled in horizontally, row by row. In the following 
example, the m1 matrix is filled in vertically by column:
 
> content <- c(1,2,3,4,5,6,7,8,9,10)
> m1 <- matrix(content, nrow=2, ncol=5, byrow=FALSE)
> m1
    [,1] [,2] [,3] [,4] [,5]
[1,]    1    3    5    7    9
[2,]    2    4    6    8   10
 

Remember that instead of manually typing out all the numbers in the previous content vector, if the numbers are 
a sequence we can just type this:
 
content <- (1:10)
 

We reference the content in matrices with the square bracket, specifying the row and column, respectively.
 
> m1[1,4]
[1] 7
 

We can convert a data frame to a matrix if the data frame contains only a single type of data. To do this we use the 
as.matrix() function. Often times we will do this when passing a data frame to a plotting function to draw a chart.
 
> barplot(as.matrix(df))
 

Below we create a data frame called df. We populate the data frame with ten consecutive numbers. We then use 
as.matrix() to convert df into a matrix and save the result into a new variable called m:
 
> df <- data.frame(1:10)
> df
  X1.10
1      1
2      2
3      3
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4      4
5      5
6      6
7      7
8      8
9      9
10    10
> class(df)
[1] "data.frame"
> m <- as.matrix(df)
> class(m)
[1] "matrix"

Keep in mind that because they are all the same data type, matrices require less overhead and are intrinsically 
more efficient than data frames. If we compare the size of our matrix m and our data frame df, we see that with just ten 
items there is a size difference.

> object.size(m)
312 bytes
> object.size(df)
440 bytes

With that said, if we increase the scale of this, the increase in efficiency does not equally scale. Compare the following:

> big_df <- data.frame(1:40000000)
> big_m <- matrix(1:40000000)
> object.size(big_m)
160000112 bytes
> object.size(big_df)
160000400 bytes

We can see that the first example with the small data set showed that the matrix was 30 percent smaller in size 
than the data frame, but at the larger scale in the second example the matrix was only .00018 percent smaller than 
the data frame.

Adding Lists
When combining or adding to data frames or matrices, you generally add either by the row or the column using 
rbind() or cbind().

To demonstrate this, let’s add a new row to our data frame df. We’ll pass df into rbind() along with the new row 
to add to df. The new row contains just one element, the number 11:

> df <- rbind(df, 11)
> df
  X1.10
1      1
2      2
3      3
4      4
5      5
6      6
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7      7
8      8
9      9
10    10
11    11
 

Now let’s add a new column to our matrix m. To do this, we simply pass m into cbind() as the first parameter; 
the second parameter is a new matrix that will be appended to the new column.
 
> m <- rbind(m, 11)
> m <- cbind(m, matrix(c(50:60), byrow=FALSE))
> m
     X1.10
[1,]     1 50
[2,]     2 51
[3,]     3 52
[4,]     4 53
[5,]     5 54
[6,]     6 55
[7,]     7 56
[8,]     8 57
[9,]     9 58
[10,]    10 59
[11,]    11 60
 

What about vectors, you may ask? Well, let’s look at adding to our content vector. We simply use the combine 
function to combine the current vector with a new vector:
 
> content <- c(1,2,3,4,5,6,7,8,9,10)
> content <- c(content, c(11:20))
> content
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

Looping Through Lists
As developers who generally work in procedural languages, or at least came up the ranks using procedural languages 
(though in recent years functional programming paradigms have become much more mainstream), we’re most 
likely used to looping through our arrays when we want to process the data within them. This is in contrast to purely 
functional languages where we would instead apply a function to our lists, like the map() function. R supports both 
paradigms. Let’s first look at how to loop through our lists.

The most useful loop that R supports is the for in loop. The basic structure of a for in loop can be seen here:.
 
> for(i in 1:5){print(i)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
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The variable i increments in value each step through the iteration. We can use the for in loop to step through 
lists. We can specify a particular column to iterate through, like the following, in which we loop through the X1.10 
column of the data frame df.
 
> for(n in df$X1.10){ print(n)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
 

Note that we are accessing the columns of data frames via the dollar sign operator. The general pattern is 
[data frame]$[column name].

Applying Functions to Lists
But the way that R really wants to be used is to apply functions to the contents of lists (see Figure 2-8).

function

element

element

element

element

Figure 2-8.  Apply a function to list elements

We do this in R with the apply() function.
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The apply() function takes several parameters:

First is our list.•	

Next a number vector to indicate how we apply the function through the list (•	 1 is for rows, 2 is 
for columns, and c[1,2] indicates both rows and columns).

Finally is the function to apply to the list:•	
 
apply([list], [how to apply function], [function to apply])
 

Let’s look at an example. Let’s make a new matrix that we’ll call m. The matrix m will have ten columns and four rows:
 
> m <- matrix(c(1:40), byrow=FALSE, ncol=10)
> m
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    5    9   13   17   21   25   29   33    37
[2,]    2    6   10   14   18   22   26   30   34    38
[3,]    3    7   11   15   19   23   27   31   35    39
[4,]    4    8   12   16   20   24   28   32   36    40
 

Now say we wanted to increment every number in the m matrix. We could simply use apply() as follows:
 
> apply(m, 2, function(x) x <- x + 1)
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    2    6   10   14   18   22   26   30   34    38
[2,]    3    7   11   15   19   23   27   31   35    39
[3,]    4    8   12   16   20   24   28   32   36    40
[4,]    5    9   13   17   21   25   29   33   37    41
 

Do you see what we did there? We passed in m, we specified that we wanted to apply the function across the 
columns, and finally we passed in an anonymous function. The function accepts a parameter that we called x.  
The parameter x is a reference to the current matrix element. From there, we just increment the value of x by 1.

OK, say we wanted to do something slightly more interesting, such as zeroing out all the even numbers in the 
matrix. We could do the following:
 
> apply(m,c(1,2),function(x){if((x %% 2) == 0) x <- 0 else x <- x})
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    5    9   13   17   21   25   29   33    37
[2,]    0    0    0    0    0    0    0    0    0     0
[3,]    3    7   11   15   19   23   27   31   35    39
[4,]    0    0    0    0    0    0    0    0    0     0
 

For the sake of clarity let’s break out that function that we are applying. We simply check to see whether the 
current element is even by checking to see whether it has a remainder when divided by two. If it is, we set it to zero; 
if it isn’t, we set it to itself:
 
function(x){
    if((x %% 2) == 0)
         x <- 0
    else
         x <- x
}
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Functions
Speaking of functions, the syntax for creating functions in R is much like most other languages. We use the function 
keyword, give the function a name, have open and closed parentheses where we specify arguments, and wrap the 
body of the function in curly braces:
 
function [function name]([argument])
{
    [body of function]
}
 

Something interesting that R allows is the ... argument (sometimes called the dots argument). This allows us to 
pass in a variable number of parameters into a function. Within the function, we can convert the ... argument into a list 
and iterate over the list to retrieve the values within:
 
> offset <- function (...){
    for(i in list(...)){
         print(i)
    }
}
> offset(23,11)
[1] 23
[1] 11
 

We can even store values of different data types (modes) in the ... argument:
 
> offset("test value", 12, 100, "19ANM")
[1] "test value"
[1] 12
[1] 100
[1] "19ANM"
 

R uses lexical scoping. This means that when we call a function and try to reference variables that are not defined 
inside the local scope of the function, the R interpreter looks for those variables in the workspace or scope in which the 
function was created. If the R interpreter cannot find those variables in that scope, it looks in the parent of that scope.

If we create a function A within function B, the creation scope of function A is function B. For example, see the 
following code snippet:
 
> x <- 10
> wrapper <- function(y){
     x <- 99
     c<- function(y){
          print(x + y)
     }
     return(c)
}
> t <- wrapper()
> t(1)
[1] 100
> x
[1] 10
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We created a variable x in the global space and gave it a value of 10. We created a function, named it wrapper, 
and had it accept an argument named y. Within the wrapper() function, we created another variable named x and gave 
it a value of 99. We also created a function named c. The function wrapper() passes the argument y into the function 
c(), and the c() function outputs the value of x added to y. Finally, the wrapper() function returns the c() function.

We created a variable t and set it to the returned value of the wrapper() function, which is the function c(). 
When we run the t() function and pass in a value of 1, we see that it outputs 100 because it is referencing the variable 
x from the function wrapper().

Being able to reach into the scope of a function that has executed is called a closure.
But, you may ask, how can we be sure that we are executing the returned function and not re-running wrapper() 

each time? R has a very nice feature where if you type in the name of a function without the parentheses, the 
interpreter will output the body of the function.

When we do this, we are in fact referencing the returned function and using a closure to reference the x variable:
 
> t
function(y){
         print(x + y)
    }
<environment: 0x17f1d4c4>

Summary
In this chapter, we downloaded and installed R. We explored the command line, went over data types, and got up and 
running importing into the R environment data for analysis. We looked at lists, how to create them, add to them, loop 
through them, and to apply functions to elements in a list.

We looked at functions, talked about lexical scope, and saw how to create closures in R.
Next chapter we’ll take a deeper dive into R, look at objects, get our feet wet with statistical analysis in R,  

and explore creating R markdown documents for distribution over the web.
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Chapter 3

A Deeper Dive into R

The last chapter explored some introductory concepts in R, from using the console to importing data. We installed 
packages and discussed data types, including different list types. We finished up by talking about functions and 
creating closures.

This chapter will look at object-oriented concepts in R, explore concepts in statistical analysis, and finally see 
how R can be incorporated into R Markdown for real time distribution.

Object-Oriented Programming in R
R supports two different systems for creating objects: the S3 and S4 methods. S3 is the default way that objects are 
handled in R. We’ve been using and making S3 objects with everything that we’ve done so far. S4 is a newer way to 
create objects in R that has more built-in validation, but more overhead. Let’s take a look at both methods.

Okay, so traditional, class-based, object-oriented design is characterized by creating classes that are the blueprint 
for instantiated objects (see Figure 3-1).

class

matrix

m1 m2

objectobject

Figure 3-1.  The matrix class is used to create the variables m1 and m2, both matrices

At a very high level, in traditional object-oriented languages, classes can extend other classes to inherit the parent 
class’ behavior, and classes can also implement interfaces, which are contracts defining what the public signature of 
the object should be. See Figure 3-2 for an example of this, in which we create an IUser interface that describes what 
the public interface should be for any user type class, and a BaseUser class that implements the interface and provides 
a base functionality. In some languages, we might make BaseUser an abstract class, a class that can be extended but 
not directly instantiated. The User and SuperUser classes extend BaseClass and customize the existing functionality 
for their own purposes.
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There also exists the concept of polymorphism, in which we can change functionality via the inheritance chain. 
Specifically, we would inherit a function from a base class but override it, keep the signature (the function name, the 
type and amount of parameters it accepts, and the type of data that it returns) the same, but change what the function 
does. Compare overriding a function to the contrasting concept of overloading a function, in which the function 
would have the same name but a different signature and functionality.

S3 Classes
S3, so called because it was first implemented in version 3 of the S language, uses a concept called generic functions. 
Everything in R is an object, and each object has a string property called class that signifies what the object is. There 
is no validation around it, and we can overwrite the class property ad hoc. That’s the main problem with S3—the 
lack of validation. If you ever had an esoteric error message returned when trying to use a function, you probably 
experienced the repercussions of this lack of validation firsthand. The error message was probably generated not from 
R detecting that an incorrect type had been passed in, but from the function trying to execute with what was passed in 
and failing at some step along the way.

See the following code, in which we create a matrix and change its class to be a vector:
 
> m <- matrix(c(1:10), nrow=2)
> m
   [,1] [,2] [,3] [,4] [,5]
[1,]    1    3    5    7    9
[2,]    2    4    6    8   10
> class(m) <- "vector"
> m
   [,1] [,2] [,3] [,4] [,5]
[1,]    1    3    5    7    9
[2,]    2    4    6    8   10
attr(,"class")
[1] "vector"
 

BaseUser
login( )
createPlaylist

<<extends>> <<extends>>

<<implements>>

User
login( )
createPlaylist( )

SuperUser
login( )
createPlaylist( )
editPermissions( )

IUser
login( )
createPlaylist( )

Figure 3-2.  An IUser interface implemented by a superclass BaseUser that the subclasses User and SuperUser extend
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Generic functions are objects that check the class property of objects passed into them and exhibit different 
behavior based on that attribute. It’s a nice way to implement polymorphism. We can see the methods that a generic 
function uses by passing the generic function to the methods() function. The following code shows the methods of the 
plot() generic function:
 
> methods(plot)
[1] plot.acf*           plot.data.frame*    plot.decomposed.ts* plot.default        plot.dendrogram*
[6] plot.density        plot.ecdf           plot.factor*        plot.formula*       plot.function
[11] plot.hclust*        plot.histogram*     plot.HoltWinters*   plot.isoreg*        plot.lm
[16] plot.medpolish*     plot.mlm            plot.ppr*           plot.prcomp*        plot.princomp*
[21] plot.profile.nls*   plot.spec           plot.stepfun        plot.stl*           plot.table*
[26] plot.ts             plot.tskernel*      plot.TukeyHSD
Non-visible functions are asterisked
 

Notice that within the generic plot() function is a myriad of methods to handle all the different types of data  
that could be passed to it, such as plot.data.frame for when we pass a data frame to plot(); or if we want to plot  
a TukeyHSD object plot(), plot.TukeyHSD is ready for us.

Note■■  T ype ?TukeyHSD for more information on this object.

Now that you know how S3 object-oriented concepts work in R, let’s see how to create our own custom S3 objects 
and generic functions.

An S3 class is a list of properties and functions with an attribute named class. The class attribute tells generic 
functions how to treat objects that implement a particular class. Let’s create an example using the UserClass idea 
from Figure 3-2:
 
> tom <- list(userid = "tbarker", password = "password123", playlist=c(12,332,45))
> class(tom) <- "user"
 

We can inspect our new object by using the attributes() function, which tells us the properties that the object 
has as well as its class:
 
> attributes(tom)
$names
[1] "userid"   "password" "playlist"
$class
[1] "user"
 

Now to create generic functions that we can use with our new class. Start by creating a function that will handle only 
our user object; then generalize it so any class can use it. It will be the createPlaylist() function and it will accept the 
user on which to perform the operation and a playlist to set. The syntax for this is [function name].[class name].  
Note that we access the properties of S3 objects using the dollar sign:
 
>createPlaylist.user <- function(user, playlist=NULL){
    user$playlist <- playlist
    return(user)
}
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Note that while you type directly into the console, R enables you to span several lines without executing your 
input until you complete an expression. After your expression is complete, it will be interpreted. If you want to execute 
several expressions at once, you can copy and paste into the command line.

Let’s test it to make sure it works as desired. It should set the playlist property of the passed-in object to the 
vector that is passed in:
 
> tom <- createPlaylist.user(tom, c(11,12))
> tom
$userid
[1] "tbarker"
 
$password
[1] "password123"
 
$playlist
[1] 11 12
 
attr(,"class")
[1] "user"
 

Excellent! Now let’s generalize the createPlaylist() function to be a generic function. To do this, we just create  
a function named createPlaylist and have it accept an object and a value. Within our function, we use the UseMethod() 
function to delegate functionality to our class-specific createPlaylist() function: createPlaylist.user.

The UseMethod() function is the core of generic functions: it evaluates the object, determines its class, and 
dispatches to the correct class-specific function:
 
> createPlaylist <- function(object, value)
{
      UseMethod("createPlaylist", object)
}
 

Now let’s try it out to see whether it worked:
 
> tom <- createPlaylist(tom, c(21,31))
> tom
$userid
[1] "tbarker"
 
$password
[1] "password123"
 
$playlist
[1] 21 31
 
attr(,"class")
[1] "user"
 

Excellent!
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S4 Classes
Let’s look at S4 objects. Remember that the main complaint about S3 is the lack of validation. S4 addresses this lack by 
having overhead built into the class structure. Let’s take a look.

First we’ll create the user class. We do this with the setClass() function.

The first parameter in the •	 setClass() function is a string that signifies the name of the class 
that we are creating.

The next parameter is called representation and it is a list of named properties.•	

setClass("user",
representation(userid="character",
    password="character",
    playlist="vector"
)
)

We can test it by creating a new object from this class. We use the new() function to create a new instance of  
the class:

> lynn <- new("user", userid="lynn", password="test", playlist=c(1,2))
> lynn
An object of class "user"
Slot "userid":
[1] "lynn"

Slot "password":
[1] "test"

Slot "playlist":
[1] 1 2

Very nice. Note that for S4 objects, we use the @ symbol to reference properties of objects:

> lynn@playlist
[1] 1 2
> class(lynn)
[1] "user"
attr(,"package")
[1] ".GlobalEnv

Let’s create a generic function for this class by using the setMethod() function. We simply pass in the function 
name, the class name, and then an anonymous function that will serve as the generic function:

> setMethod("createPlaylist", "user", function(object, value){
      object@playlist <- value
      return(object)
 })
Creating a generic function from function 'createPlaylist' in the global environment
[1] "createPlaylist"
>
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Let’s try it out:
 
> lynn <- createPlaylist(lynn, c(1001, 400))
> lynn
An object of class "user"
Slot "userid":
[1] "lynn"
 
Slot "password":
[1] "test"
 
Slot "playlist":
[1] 1001  400
 

Excellent!
Although some prefer the simplicity and flexibility of the S3 way, some prefer the structure of the S4 method;  

the choice of S3 or S4 objects is purely one of personal preference. My own preference is for the simplicity of S3,  
and that is what we will be using for the remainder of the book. Google, in its R Style Guide available at  
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html, mirrors my own feelings about S3, 
saying “Use S3 objects and methods unless there is a strong reason to use S4 objects or methods.”

Statistical Analysis with Descriptive Metrics in R
Now let’s take a look at some concepts in statistical analysis and how to implement them in R. You might remember 
most of the concepts covered in this chapter from an introductory statistics class from college; they are the base 
concepts needed to begin to think about and discuss your data.

First, let’s get some data on which we’ll perform statistical analysis. R comes preloaded with a number of data sets 
that we can use as sample data. To see a list of available data sets with your install simply type data() at the console. 
You’ll be presented with the screen that you see in Figure 3-3.

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
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To see the contents of a data set, you can call it by name in the console. Let’s take a look at the USArrests data set, 
which we’ll use for the next few topics.
 
> USArrests
                Murder  Assault   UrbanPop Rape
Alabama          13.2    236       58      21.2
Alaska           10.0    263       48      44.5
Arizona           8.1    294       80      31.0
Arkansas          8.8    190       50      19.5
California        9.0     276       91     40.6
Colorado          7.9     204       78     38.7
Connecticut       3.3     110       77     11.1
Delaware          5.9     238       72     15.8
Florida          15.4     335       80     31.9
Georgia          17.4     211       60     25.8
Hawaii            5.3      46       83     20.2
Idaho             2.6     120       54     14.2

Figure 3-3.  Available data sets in R
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Illinois         10.4     249       83     24.0
Indiana           7.2     113       65     21.0
Iowa              2.2      56       57     11.3
Kansas            6.0     115       66     18.0
Kentucky          9.7     109       52     16.3
Louisiana        15.4     249       66     22.2
Maine             2.1      83       51      7.8
Maryland         11.3     300       67     27.8
Massachusetts     4.4     149       85     16.3
Michigan         12.1     255       74     35.1
Minnesota         2.7      72       66     14.9
Mississippi      16.1     259       44     17.1
Missouri          9.0     178       70     28.2
Montana           6.0     109       53     16.4
Nebraska          4.3     102       62     16.5
Nevada           12.2     252       81     46.0
New Hampshire     2.1      57       56      9.5
New Jersey        7.4     159       89     18.8
New Mexico       11.4     285       70     32.1
New York         11.1     254       86     26.1
North Carolina   13.0     337       45     16.1
North Dakota      0.8      45       44      7.3
Ohio              7.3     120       75     21.4
Oklahoma          6.6     151       68     20.0
Oregon            4.9     159       67     29.3
Pennsylvania      6.3     106       72     14.9
Rhode Island      3.4     174       87      8.3
South Carolina   14.4     279       48     22.5
South Dakota      3.8      86       45     12.8
Tennessee        13.2     188       59     26.9
Texas            12.7     201       80     25.5
Utah              3.2     120       80     22.9
Vermont           2.2      48       32     11.2
Virginia          8.5     156       63     20.7
Washington        4.0     145       73     26.2
West Virginia     5.7      81       39      9.3
Wisconsin         2.6      53       66     10.8
Wyoming           6.8     161       60     15.6
>
 

The first function in R that we’ll look at is the summary() function, which accepts an object and returns the 
following key descriptive metrics, grouped by column:

minimum value•	

maximum value•	

median for numbers and frequency for strings•	

mean•	

first quartile•	

third quartile•	
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Let’s run the USArrests data set through the summary() function:
 
> summary(USArrests)
   Murder          Assault         UrbanPop          Rape
Min.   : 0.800   Min.   : 45.0   Min.   :32.00   Min.   : 7.30
1st Qu.: 4.075   1st Qu.:109.0   1st Qu.:54.50   1st Qu.:15.07
Median : 7.250   Median :159.0   Median :66.00   Median :20.10
Mean   : 7.788   Mean   :170.8   Mean   :65.54   Mean   :21.23
3rd Qu.:11.250   3rd Qu.:249.0   3rd Qu.:77.75   3rd Qu.:26.18
Max.   :17.400   Max.   :337.0   Max.   :91.00   Max.   :46.00
 

Let’s look at each of these metrics in detail, as well as the standard deviation.

Median and Mean
Note that the median is the number that is the middle value in a data set, quite literally the number that has the same 
amount of numbers greater and less than itself in the data set. If our data set looks like the following, the median is 3:
 
1, 2, 3, 4, 5
 

But notice that it’s easy to find the median when there are an odd number of items in a data set. Suppose that 
there is an even number of items in a data set, as follows:
 
1, 2, 3, 4, 5, 6
 

In this case we take the middle pair, 3 and 4, and get the average of those two numbers. The median is 3.5.
Why does the median matter? When you look at a data set, there are usually outliers at either end of the 

spectrum, values that are much higher or much lower than the rest of the data set. Gathering the median value 
excludes these outliers, giving a much more realistic view of the average values.

Contrast this idea with the mean, which is simply the sum of the values in a data set divided by the number of 
items. The values include the outliers, so the mean can be skewed by having significant outliers and really represent 
the full data set.

For example, look at the following data set:
 
1, 2, 3, 4, 30
 

The median is still 3 for this data set, but the mean is 8, because of this:
 
median = [1,2] 3 [4,30]
mean =  1 + 2 + 3 + 4 + 30 = 40
    40 / 5 = 8

Quartiles
The median is the center of the data set, which means that the median is the second quartile. Quartiles are the points 
that divide a data set into four even sections. We can use the quantile() function to pull just the quartiles from our 
data set.
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> quantile(USArrests$Murder)
  0%    25%    50%    75%   100%
0.800  4.075  7.250 11.250 17.400
 

The summary() function simply returns the quartiles, as well as the minimum, maximum, and mean values.  
Here are the summary() results for comparison, with the previous quartiles highlighted:
 
> summary(USArrests)
   Murder          Assault         UrbanPop          Rape
Min.   : 0.800   Min.   : 45.0   Min.   :32.00   Min.   : 7.30
1st Qu.: 4.075   1st Qu.:109.0   1st Qu.:54.50   1st Qu.:15.07
Median : 7.250   Median :159.0   Median :66.00   Median :20.10
Mean   : 7.788   Mean   :170.8   Mean   :65.54   Mean   :21.23
3rd Qu.:11.250   3rd Qu.:249.0   3rd Qu.:77.75   3rd Qu.:26.18
Max.   :17.400   Max.   :337.0   Max.   :91.00   Max.   :46.00

Standard Deviation
Speaking of the idea of the mean, there is also the idea that data has a normal distribution, or that data is 
normally densely clustered around the mean with lighter groupings above and below the mean. This is usually 
demonstrated with a bell curve, in which the mean is the top of the curve, and the outliers are distributed on 
either end of it (see Figure 3-4).

0.0
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Figure 3-4.  The bell curve of a normal distribution
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Standard deviation is a unit of measurement that describes the average of how far apart the data is distributed 
from the mean, so we can detail how far each data point is from the mean in terms of standard deviations.

In R, we can determine the standard deviation using the sd() function. The sd() function expects a vector of 
numeric values:
 
> sd(USArrests$Murder)
[1] 4.35551
 

If we want to gather the standard deviation for a matrix we can use the apply() function to apply the sd() 
function, like so:
 
> apply(USArrests, sd)
  Murder    Assault   UrbanPop       Rape murderRank
4.355510  83.337661  14.474763   9.366385  14.574930

RStudio IDE
If you prefer to develop in an integrated development environment (IDE) instead of at the command line, you can 
use a free product called RStudio IDE. The RStudio IDE is made by the RStudio company, and is much more than just 
an IDE (as you will soon see). The RStudio company was founded by JJ Allaire, creator of ColdFusion. RStudio IDE is 
available for download at http://www.rstudio.com/ide/ (see Figure 3-5 for a screen shot of the download page).

Figure 3-5.  RStudio IDE homepage

Note■■   You should install the RStudio IDE now because you will use it in the remainder of this chapter.

http://www.rstudio.com/ide/
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Figure 3-6.  Caption

The upper-left pane is the R script file in which we edit our R source code. The bottom-left pane is the  
R command line. The upper-right side pane holds the command history as well as all the objects in our current 
workspace. The bottom-right pane is split into tabs that can show the following:

Contents of the file system for the current working directory•	

Plots or charts that have been generated•	

Current packages installed•	

R help pages•	

Although it is great to have everything that you need in one place, here is where things become really interesting.

R Markdown
In version 0.96 of RStudio, the team announced support for R Markdown using the knitr package. We can now embed 
R code into markdown documents that can get interpreted by knitr into HTML. But it gets even better.

The RStudio company also makes a product called RPubs that allows users to create accounts and host their R 
markdown files for distribution over the Web.

Note■■   Markdown is a plain text markup language created by John Gruber and Aaron Swartz. In markdown, you can 
use simple and lightweight text encodings to signify formatting. The markdown document is read and interpreted and an 
HTML file is output.

After installation, the IDE is split into four panes (see Figure 3-6).
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A quick overview of markdown syntax follows:
 
header 1
=========
 
header 2
--------------
 
###header 3
 
####header 4
 
*italic*
**bold**
 
[link text]([URL])
 
![alt text]([path to image])
 

The great thing about R Markdown is that we can embed R code within our markdown document. We embed  
R using three tick marks and the letter r in curly braces:
 
```{r}
[R code]
```
 

We need three things to begin creating R Markdown (.rmd) documents:

R•	

R Studio IDE version 0.96 or higher•	

The knitr package•	

The knitr package is used to reformat R into several different output formats, including HTML, markdown, or 
even plain text.

Note■■  I nformation about the knitr package is available at http://yihui.name/knitr/.

Because you already have R and RStudio IDE installed, you will first install knitr. R Studio IDE has a nice interface 
to install packages: simply go to the Tools file menu and click Install Packages. You should see the popup that shown 
in Figure 3-7, in which you can specify the package name (R Studio IDE has a nice type ahead here for package 
discovery) and what library to install to.

http://yihui.name/knitr/
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After knitr is installed, you need to close and relaunch RStudio IDE. You then go to the File menu and choose  
File ➤ New, in which you should see a number of options, including R Markdown. If you choose R Markdown, you get 
a new file with the template shown in Figure 3-8.

Figure 3-8.  RStudio IDE

Figure 3-7.  Installing the knitr package
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The R Markdown template has the following code:

Title
========================================================
This is an R Markdown document. Markdown is a simple formatting syntax for authoring web pages 
(click the **MD** toolbar button for help on Markdown).
When you click the **Knit HTML** button a web page will be generated that includes both content as 
well as the output of any embedded R code chunks within the document. You can embed an R code chunk 
like this:
```{r}
summary(cars)
```

You can also embed plots, for example:

```{r fig.width=7, fig.height=6}
plot(cars)
```

This is the template, and when you click the Knit HTML button you will see the output shown in Figure 3-9.

Figure 3-9. HTML output of RMarkdown template
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Did you notice the Publish button at the top of Figure 3-9? That is how we push our R Markdown file to RPubs for 
hosting and distribution over the Web.

RPubs
RPubs is a free web publishing platform for R Markdown files, provided by RStudio (the company). You can create  
a free account by visiting http://www.rpubs.com. Figure 3-10 shows a screen shot of the RPubs homepage.

Figure 3-10.  RPubs homepage

Just click the Register button and fill out the form to create your free account. RPubs is fantastic; it’s a platform in 
which we can post our R Markdown documents for distribution.

Caution■■   Be aware that every file you put up on RPubs is publicly available, so be sure not to put any sensitive or 
proprietary information in it. If you don’t want to put your R Markdown files where they are available for the whole world 
to see, you can instead click the Save As button right next to the Publish button to save the file as regular HTML.

After you click the Publish button, you are prompted to log in with your RPubs account. After logging in, you will 
be directed to the Document Details page, as seen in Figure 3-11.

http://www.rpubs.com/
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After filling out the document details, a title for your document, and a description, you will be directed to your 
document hosted in RPubs. See Figure 3-12 for the template from Figure 3-9 hosted in RPubs and available publicly 
here: http://www.rpubs.com/tomjbarker/3370.

Figure 3-11.  Publishing to RPubs

Figure 3-12.  RMarkdown template published to RPubs

http://www.rpubs.com/tomjbarker/3370
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This is a powerful distribution method for R documents and for communicating data visualizations. In the 
coming chapters, we will put all the completed R charts up on RPubs for public consumption.

Summary
This chapter explored some deeper concepts in R, from the different models of object-oriented design available, to 
how to do statistical analysis with R. We even looked at how to use RMarkdown and RPubs to make data visualizations 
in R available for public distribution.

In the next chapter, we will look at D3, a JavaScript library that enables us to analyze and visualize data within the 
browser and add interactivity to visualizations.
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Chapter 4

Data Visualization with D3

Thus far when we have been talking about technologies used to create data visualizations we’ve been talking about 
R. We’ve spent the last two chapters exploring the R environment and learning about the command line. We covered 
introductory topics in the R language, ranging from data types, functions, and object-oriented programming. We even 
talked about how to publish our R documents to the Web using RPubs.

This chapter we will look at a JavaScript library called D3 that is used to create interactive data visualizations. 
First is a very quick primer on HTML, CSS, and JavaScript, the supporting languages of D3, to level set. Then we’ll dig 
into D3 and explore how to make some of the more commonly used charts in D3.

Preliminary Concepts
D3 is a JavaScript library. Specifically, that means it is written in JavaScript and embedded in an HTML page. We can 
reference the objects and functions in D3 in our own JavaScript code. So let’s start at the beginning. The purpose of 
the next section is not to take a deep dive into HTML CSS and JavaScript; there are plenty of other resources for that, 
including Foundation Website Creation that I helped to co-write. The purpose is to have a very high-level recap of 
concepts that we will deal with directly with D3. If you are already familiar with HTML, CSS, and JavaScript, you can 
skip down to the “History of D3” section of this chapter.

HTML
HTML is a markup language; in fact, it stands for HyperText Markup Language. It is a presentation language, made up 
of elements that signify formatting and layout. Elements contain attributes that have values that specify details about 
the element, tags, and content. To explain, let’s look at our basic HTML skeletal structure that we will use for most of 
our examples this chapter.
 
<!DOCTYPE html>
<html>
<head></head>
<body></body>
</html>
 

Let’s start at the first line. That is the doctype that tells the browser’s render engine what rule set to use. Browsers 
can support multiple versions of HTML, and each version has a slightly different rule set. The doctype are specified 
here is the HTML5 doctype. Another example of a doctype is this:
 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
 

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
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This is the doctype for XHTML 1.1. Notice that it specifies the URL of the document type definition (.dtd). If we were 
to read the plain text at the URL, we would see that it is a specification for how to parse HTML tags. The W3C maintains a 
list of doctypes here: http://www.w3.org/QA/2002/04/valid-dtd-list.html.

MODERN BROWSER ARCHITECTURE

Modern browsers are composed of modular pieces that encapsulate very specific functionality. These modules 
can also be licensed out and embedded in other applications:

They have a UI layer that handles drawing the user interface of the browser, like the window,  •	
the status bar, and the back button.

They render engines to parse, tokenize, and paint the HTML.•	

They have a network layer to handle the network operations involved in retrieving the HTML  •	
and all the assets on the page.

They have a JavaScript engine to interpret and execute the JavaScript in the page.•	

See Figure 4-1 for a representation of this architecture.

UI Layer

Rendering Engine

Network
Layer

JavaScript
Interpreter

Figure 4-1.  Modern Browser Architecture

Back to the skeletal HTML structure. The next line is the <html> tag, this is the root level tag for the document, and 
holds every other HTML element that we will use. Notice that there is a closing tag on the last line of the document.

Next is the <head> tag, which is a container that generally holds information that is not displayed on the page 
(for example, the title and meta information). After the <head> tag is the <body> tag, which is a container that holds all 
the HTML elements that will be displayed on the page; for example, paragraphs:
 
<p> this is a paragraph </p>
 

or links:
 
<a href="[URL]">link text or image here</a>
 

http://www.w3.org/QA/2002/04/valid-dtd-list.html
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or images:
 
<img src="[URL]"/>
 

When it comes to D3, most of the JavaScript that we will be writing will be in the body section, and most of the CSS 
will be in the head section.

CSS
CSS stands for Cascading Style Sheets, and is what is used to style the HTML elements on a web page. Style sheets 
are either contained in <style> tags or linked to externally via <link> tags, and are comprised of style rules and 
selectors. Selectors target the element on the web page to style, and the style rule defines what styles to apply.  
Let’s look at an example:
 
<style>
p{
    color: #AAAAAA;
}
</style>
 

In the preceding code snippet, the style sheet is in a style tag. The p is the selector that tells the browser to target 
every paragraph tag on the web page. The style rule is wrapped in curly braces and is made up of properties and values. 
This case sets the color of the text in all the paragraphs to #AAAAAA which is the hexadecimal value of a light grey.

Selectors are where the real nuance of CSS is. This is relevant to us because D3 also uses CSS selectors to target 
elements. We can get very specific with selectors and target elements by class or id, or we can use pseudo-classes 
to target abstract concepts such as when an element is hovered over. We can target ancestors and descendants of 
elements, up and down the DOM.

Note■■  T he DOM stands for the Document Object Model and is the application programming interface (API) that allows 
JavaScript to interact with the HTML elements that are on a web page. 

.classname{
/* style sheet for a class*/
}
 
#id{
/*stye sheet for an id*/
}
 
element:pseudo-class{
 
} 

SVG
The next introductory concept for D3 is SVG, which stands for Scalable Vector Graphics. SVG, which is a standardized 
way to create vector graphics in the browser, is what D3 uses to create data visualizations. The core functionality that 
we are concerned about in SVG is the capability to draw shapes and text and integrate them into the DOM so that our 
shapes can be scripted via JavaScript.
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Note■■   Vector graphics are graphics that are created using points and lines that are mathematically calculated and displayed 
by the rendering engine. Contrast this idea with bitmap or raster graphics in which the pixel display is prerendered.

SVG is essentially its own markup language with its own doctype. We can write SVG in external .svg files or 
include the SVG tags directly in our HTML. Writing the SVG tags in our HTML page allows us to interact with our 
shapes via JavaScript.

SVG has support for predefined shapes as well as the capability to draw lines. The predefined shapes in SVG 
are these:

•	 <rect> to draw rectangles

•	 <circle> to draw circles

•	 <ellipse> to draw ellipses

•	 <line> to draw lines; also <polyline> and <polygon> to draw lines with multiple points

Let’s look at some code examples. If we will write our SVG into an HTML document, we use the <svg> tag to wrap our 
shapes. The <svg> takes the xmlns and version attributes. The xmlns attribute should be the path to the SVG namespace, 
and the version is obviously the version of SVG:
 
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
</svg>
 

If we are writing standalone .svg files, we include the full doctype and xml tags to the page file:
 
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"  
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
</svg>
 

Either way, we create our shapes within the <svg> tag. Let’s create some sample shapes in our <svg> tag:
 
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
    <rect x="10" y="10" width="10" height="100" stroke="#000000" fill="#AAAAAA" />
    <circle cx="70" cy="50" r="40" stroke="#000000" fill="#AAAAAA" />
    <ellipse cx="230" cy="60" rx="100" ry="50" stroke="#000000" fill="#AAAAAA" />
</svg>
 

This code produces the shapes shown in Figure 4-2.

Figure 4-2.  A rectangle, circle, and ellipse drawn in SVG

http://www.w3.org/2000/svg
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd
http://www.w3.org/2000/svg
http://www.w3.org/2000/svg
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Notice that we assign x and y coordinates for all the shapes—in the case of the circle and ellipse cx and cy 
coordinates—as well as fill color and stroke colors. This is just the smallest taste; we can also create gradients and 
filters and then apply them to our shapes. We can also create text to use in our SVG drawings using the <text> tag.

Let’s take a look. We’ll update the preceding SVG code to add text labels for each shape:
 
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
    <rect x="80" y="20" width="10" height="100" stroke="#000000" fill="#AAAAAA" />
    <text x="55" y="145" fill="#000000">rectangle</text>
    <circle cx="170" cy="60" r="40" stroke="#000000" fill="#AAAAAA" />
    <text x="150" y="145" fill="#000000">circle</text>
    <ellipse cx="330" cy="70" rx="100" ry="50" stroke="#000000" fill="#AAAAAA" />
    <text x="295" y="145" fill="#000000">ellipse</text>
</svg>
 

This code creates the drawing shown in Figure 4-3.

rectangle circle ellipse

Figure 4-3.  SVG shapes with text labels

Now we can start to see the possibilities of creating data visualizations with just these fundamental building blocks. 
Because D3 is a JavaScript library, and most of the work we will be doing with D3 will be in JavaScript, let’s next take a 
high-level look at JavaScript before we delve into D3.

JavaScript
JavaScript is the scripting language of the Web. JavaScript can be included in an HTML document either by placing 
script tags inline in the document or by linking to an external JavaScript document:
 
<script>
//javascript goes here
</script>
 
<script src="pathto.js"></script>
 

JavaScript can be used to process information, react to events, and interact with the DOM. In JavaScript,  
we create variables using the var keyword.
 
var foo = "bar";
 

Note that if we do not use the var keyword, the variable that we create is assigned to the global scope. We don’t 
want to do this because our globally scoped variable could then be overwritten by any other code on our web page.

JavaScript looks much like other C-based languages in that each expression ends in a semicolon, and blocks of 
code such as function and conditional bodies are wrapped in curly braces.

http://www.w3.org/2000/svg
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Conditional statements are generally if else statements formatted as follows:
 
if([condition]){
    [code to execute]
}else{
    [code to execute]
}
 

Functions are formatted like so:
 
function [function name] ([arguments]){
    [code to execute]
}
 

We access DOM elements in JavaScript usually by referencing the element by its id attribute. We do this like using 
the getElementById() function:
 
var header = document.getElementById("header");
 

The preceding code stores a reference to the element on the web page that has an ID of header. We can then update 
properties of this element, including adding new elements or removing the element altogether.

Objects in JavaScript are generally object literals, meaning that we craft them at runtime, composed of properties 
and methods. We create object literals like so:
 
var myObj = {
    myProp: 20,
    myfunc: function(){
     
    }
}
 

We reference properties and methods of objects using the dot operator:
 
myObj.myprop = 10;
 

See, that was fast and painless. Okay, on to D3!

History of D3
D3 stands for Data-Driven Documents and is a JavaScript library used to create interactive data visualizations.  
The seed of the idea that would become D3 started in 2009 as Protovis, created by Mike Bostock, Vadim Ogievetsky, 
and Jeff Heer while they were with the Stamford Visualization Group. 

Note■■  I nformation on the Stamford Visualization group can be found at its website: http://vis.stanford.edu/. 
The original whitepaper for Protovis can be found at http://vis.stanford.edu/papers/protovis.

Protovis was a JavaScript library that provided an interface for creating different types of visualizations. The root 
namespace was pv and it provided an API for creating bars and dots and areas, among other things. Like D3,  
Protovis used SVG to create these shapes; but unlike D3, it wrapped the SVG calls in its own proprietary nomenclature.

http://vis.stanford.edu/
http://vis.stanford.edu/papers/protovis


Chapter 4 ■ Data Visualization with D3

71

Protovis was abandoned in 2011, so its creators could take their learning and instead create and focus on D3. 
There is a difference in philosophy between Protovis and D3. Where Protovis aimed to provide wrapped functionality 
for creating data visualizations, D3 instead facilitates and streamlines the creation of data visualization by working 
with existing web standards and nomenclature. In D3, we create rectangles and circles in SVG, just facilitated by the 
syntactic sugar of D3.

Using D3
The first thing we need to do to get working with D3 is to go to the D3 website, http://d3js.org/, and download the 
latest version (see Figure 4-4).

Figure 4-4. D3 homepage

After that is installed, you can set up a project.

Setting Up a Project
We can include the .js file directly on our page, like so:

<script src="d3.v3.js"></script>

The root namespace is d3; all the commands that we issue from D3 will be using the d3 object.

http://d3js.org/
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Using D3
We use the select() function to target specific elements or the selectAll() function to target all of a specific element type.
 
var body = d3.select("body");
 

The previous line selects the body tag and stores it in a variable named body. We can then change attributes of 
the body if we want to or add new elements to the body:
 
var allParagraphs = d3.select("body").selectAll("p");
 

The previous line selects the body tag and then selects all the paragraph tags within the body.
Notice that we chained the two actions together on the second line? We selected the body and then selected all 

the paragraphs, both actions chained together. Also note that we used the CSS selector to specify the element to target.
Okay, once we have selected an element that is now considered our selection and we can perform actions on that 

selection. We can select elements within our selection as we did in the previous example.
We can update attributes of the selection with the attr() function. The attr() function accepts two parameters: 

the first is the name of the attribute, and the second is the value to set the attribute to. Suppose we want to change the 
background color of the current document. We can just select the body and set the bgcolor attribute:
 
<script>
    d3.select("body")
         .attr("bgcolor", "#000000");
</script>
 

Notice in the previous code snippet that we have brought the chained attribute function call to the next line.  
We have done this for readability.

The really fun thing with this is that because we’re talking about JavaScript, and functions are first class objects 
in JavaScript, we can pass in a function as the value of an attribute so that whatever it evaluates to becomes the 
value that is set:
 
<script>
    d3.select("body")
         .attr("bgcolor", function(){
         return "#000000";
});
</script>
 

We can also add elements to our selection using the append() function. The append() function accepts a tag 
name as the first parameter. It will create a new element of the type specified and return that new element as the 
current selection:
 
<script>
var svg = d3.select("body")
         .append("svg");
</script>
 

The preceding code creates a new SVG tag in the body of the page and stores that selection in the variable svg.
Next let’s re-create the shapes in Figure 4-3 using what we’ve just learned about D3:

 
<script>
    var svg = d3.select("body")
         .append("svg")
         .attr("width", 800);
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    var r = svg.append("rect")
         .attr("x", 80)
         .attr("y", 20)
         .attr("height", 100)
         .attr("width", 10)
         .attr("stroke", "#000000")
         .attr("fill", "#AAAAAA");
 
    var c = svg.append("circle")
         .attr("cx", 170)
         .attr("cy", 60)
         .attr("r", 40)
         .attr("stroke", "#000000")
         .attr("fill", "#AAAAAA");
 
    var e = svg.append("ellipse")
         .attr("cx", 330)
         .attr("cy", 70)
         .attr("rx", 100)
         .attr("ry", 50)
         .attr("stroke", "#000000")
         .attr("fill", "#AAAAAA");
</script>
 

For each shape we append a new element to the SVG element and update the attributes.
If we compare the two methods, we can see that we just create the SVG element in D3, just as we do in straight 

markup. We then create a SVG rectangle, circle, and ellipse inside the SVG element along with the same attributes that 
we specified in the SVG markup. But our D3 example has one very important difference: We now have references to 
each element on the page that we can interact with.

Let’s take a look at interactions in D3.

Binding Data
For data visualizations, the most important interaction we have with our SVG shapes is to bind data to them.  
This allows us to then reflect that data in the properties of the shapes.

To bind data, we simply call the data() method of a selection:
 
<script>
var rect = svg
    .append("rect")
    .data([1,2,3]);
</script>
 

That’s fairly straightforward. We can then reference that bound data via anonymous functions that we pass to our 
attr() function calls. Let’s take a look at an example.

First let’s create an array that we will call dataSet. To start to envision how this will correlate to creating a data 
visualization, you can think of dataSet as a list of nonsequential values, maybe test scores for a class or total rainfall 
for a set of regions:
 
<script>
var dataSet = [ 84,62,40,109];
</script>
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Next we will create an SVG element on the page. To do that, we’ll select the body and append an SVG element with 
a width of 800 pixels. We’ll keep a reference to this SVG element in a variable called svg:
 
<script>
var svg = d3
    .select("body")
    .append("svg")
    .attr("width", 800);
</script>
 

Here is where being able to bind data changes things. We will chain together a series of commands that will create 
placeholder rectangles in the SVG element based on how many elements exist in our data array.

We will first use selectAll() to return a reference to all rectangles in the SVG element. There are none yet, but 
there will be by the time the chain finishes executing. Next in the chain, we bind our dataSet variable and call enter(). 
The enter() function creates placeholder objects from the bound data. Finally, we call append() to create a rectangle at 
each placeholder that enter() created:
 
<script>
bars = svg
    .selectAll("rect")
    .data(dataSet)
    .enter()
    .append("rect");
</script>
 

If we looked at our work so far in a browser we would see a blank page, but if we looked at the HTML in a web 
inspector such as Firebug, we would see the SVG element along with the rectangles created, but with no styling or 
attributes specified yet, similar to Figure 4-5.

Figure 4-5.  Caption
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Next, let’s style the rectangles that we just made. We have a reference to all the rectangles in the variable bars,  
so let’s chain together a bunch of attr() calls to style the rectangles. While we’re at it, let’s use our bound data to size 
the height of the bars:
 
<script>
 
bars
    .attr("width", 15 )
    .attr("height", function(x){return x;})
    .attr("x", function(x){return x + 40;})
    .attr("fill", "#AAAAAA")
    .attr("stroke", "#000000");
 
</script>
 

The full source code looks like the following and makes the shapes that we see in Figure 4-6:
 
<script>
var dataSet = [84,62,40,109];
 
var svg = d3
    .select("body")
    .append("svg")
    .attr("width", 800);
     
bars = svg
    .selectAll("rect")
    .data(dataSet)
    .enter()
    .append("rect");
 
bars
    .attr("width", 15 )
    .attr("height", function(x){return x;})
    .attr("x", function(x){return x + 40;})
    .attr("fill", "#AAAAAA")
    .attr("stroke", "#000000");
 
</script> 

Figure 4-6.  Styled rectangles for bar chart
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Figure 4-7.  Rectangles shown as SVG source code in Firebug

Now look in Firebug again; you can see the generated markup, as shown in Figure 4-7.

Now you can really see the beginnings of how we can start to make data visualizations with D3 by binding data to 
SVG shapes. Let’s take this concept another step forward.

Creating a Bar Chart
Our example so far looks a lot like the start of a bar chart in that we have a number of bars whose heights represent 
data. Let’s give it some structure.

First, let’s give our SVG container a more concrete width and height. This is important because the size of the 
SVG container is what determines the scale we use to normalize the rest of the chart. And because we will reference 
this sizing throughout our code, let’s make sure we abstract these values into their own variables.

We will define a height and width for our SVG container. We’ll also create variables that will hold the minimum 
and maximum values that we will use on our axes: 0 and 109, respectively. We’ll also define an offset value so we can 
draw the SVG container slightly larger than our chart to give the chart margins around it:
 
<script>
var chartHeight = 460,
    chartWidth = 400,
    chartMin = 0,
    chartMax = 109,
    offset = 60
 
var svg = d3
    .select("body")
    .append("svg")
    .attr("width", chartWidth)
    .attr("height", chartHeight + offset);
</script>
 

We next need to fix the orientation of our bars. As shown in Figure 4-6, the bars are drawn from the top down,  
so that although their heights are accurate, they appear to be facing down because SVG draws and positions shapes 
from the top left. So to get them correctly oriented so the bars look like they are coming up from the bottom of the 
chart, let’s add a y attribute to our bars.
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The y attribute should be a function that references the data; this function should subtract the bar height value 
from the chart height. The returned value from this function is the value used in the y coordinate:
 
<script>
bars
    .attr("width", 15 )
    .attr("height", function(x){return x;})
    .attr("y", function(x){return (chartHeight - x);})
    .attr("x", function(x){return x;})
    .attr("fill", "#AAAAAA")
    .attr("stroke", "#000000");
</script>
 

This flips the bars to the bottom of the SVG element. We can see the results in Figure 4-8.

Figure 4-8.  Rectangles in bar chart no longer inverted

Now let’s scale the bars to fit the height of the SVG element. To do this, we’ll use a D3 scale() function. The scale() 
function is used to take a number within a range and transform it to the equivalent of that number in a different range  
of numbers, essentially to scale values to equivalent values.

In this case, we have a number range that signifies the range of values in our dataSet array, which signify the heights 
of the bars, and we want to transform these numbers to equivalent values:
 
<script>
var yscale = d3.scale.linear()
    .domain([chartMin,chartMax])
    .range([0,(chartHeight)]);
</script>
 

We then just update the height and y attributes of the bars to use the yscale() function:
 
<script>
bars
    .attr("width", 15 )
    .attr("height", function(x){ return yscale(x);})
    .attr("y", function(x){return (chartHeight - yscale(x));})
    .attr("x", function(x){return x;})
    .attr("fill", "#AAAAAA")
    .attr("stroke", "#000000");
</script>
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This produces the graphic shown in Figure 4-9.

Figure 4-9.  Rectangles for bar chart properly scaled

Very nice! But so far, we’ve just been placing the bars based on their height instead of where they lie in the array. 
Let’s change that to make their array location more meaningful, so the bars are displayed in the correct order.

To do that, we just update the x value of the bars. We’ve seen already that we can pass in an anonymous function to the 
value parameter of the attr() function. The first parameter in our anonymous function is the value of the current element 
of our array. If we specify a second parameter in our anonymous function, it will hold the current index number.

We can then reference that value and offset it to place each bar:
 
<script>
bars
    .attr("width", 15 )
    .attr("height", function(x){ return yscale(x);})
    .attr("y", function(x){return (chartHeight - yscale(x));})
    .attr("x", function(x, i){return (i * 20);})
    .attr("fill", "#AAAAAA")
    .attr("stroke", "#000000");
</script>
 

This gives us the ordering of the bars shown in Figure 4-10. Just by eyeballing it, we can tell that the bars are now 
closer representations of the data in the array—not just the height but also the height in the order specified in the array.
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Figure 4-10.  Rectangles in bar chart ordered to follow the ordering in our data

Now let’s add text labels so that we can better see what values the heights of the bars are signifying.
We do that by creating SVG text elements in much the same way as creating the bars. We create text placeholders 

for every element in our data array and then style the text elements. You’ll notice that the anonymous function that 
we pass into the x and y attribute calls is almost the same for the text elements as it was for the bars, only offset so 
that the text is above and to the center of each bar:
 
<script>
svg.selectAll("text")
    .data(dataSet)
    .enter()
    .append("text")
    .attr("x", function(d) { return (d * 20); })
    .attr("y", function(x){return (chartHeight - yscale(x)) ;})
    .attr("dx", -15/2)
    .attr("dy", "1.2em")
    .attr("text-anchor", "middle")
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    .text(function(d) { return d;})
    .attr("fill", "black");
         
</script>
 

This code produces the chart shown in Figure 4-11.

84

62

40

109

Figure 4-11.  Bar chart with text labels

See the following complete source code:
 
<html>
<head>
<title></title>
<script src="d3.v3.js"></script>
</head>
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<body>
<script>
var dataSet = [84,62,40,109];

var chartHeight = 460,
    chartWidth = 400,
    chartMin = 0,
    chartMax = 115,
    offset = 60;
         
var yscale = d3.scale.linear()
    .domain([chartMin,chartMax])
    .range([0,(chartHeight)]);
                
var svg = d3
    .select("body")
    .append("svg")
    .attr("width", chartWidth)
    .attr("height", chartHeight + offset);
                    
bars = svg
    .selectAll("rect")
    .data(dataSet)
    .enter()
    .append("rect");

bars
    .attr("width", 15 )
    .attr("height", function(x){ return yscale(x);})
    .attr("y", function(x){return (chartHeight - yscale(x));})
    .attr("x", function(x, i){return (i * 20);})
    .attr("fill", "#AAAAAA")
    .attr("stroke", "#000000");

svg.selectAll("text")
    .data(dataSet)
    .enter()
    .append("text")
    .attr("x", function(d) { return (d * 20); })
    .attr("y", function(x){return (chartHeight - yscale(x)) ;})
    .attr("dx", -15/2)
    .attr("dy", "1.2em")
    .attr("text-anchor", "middle")
    .text(function(d) { return d;})
    .attr("fill", "black");
         
</script>
</body>
</html>

And finally let’s read in our data from external files instead of hard-coding it in the page.
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Loading External Data
First, we’ll take the array out of our file and put it in its own external file: sampleData.csv. The contents of 
sampleData.csv are simply the following:
 
84,62,40,109
 

Next we will use the d3.text() function to load in sampleData.csv. The way d3.text() works is that it takes a path to 
an external file as the first parameter, and as the second parameter it takes a function. The function receives a parameter 
that is the contents of the external file:
 
<script>
d3.text("sampleData.csv", function(data) {});
</script>

The catch is that we need the contents of our external file before we can begin doing any charting on the data. 
So within the callback function, we will parse up the file and then wrap all our existing functionality, like so:

<html>
<head>
<title></title>
<script src="d3.v3.js"></script>
</head>
<body>
<script>
 
d3.text("sampleData.csv", function(data) {
var dataSet = data.split(",");
         
var chartHeight = 460,
    chartWidth = 400,
    chartMin = 0,
    chartMax = 115,
    offset = 60;
         
var yscale = d3.scale.linear()
    .domain([chartMin,chartMax])
    .range([0,(chartHeight)]);
                
var svg = d3
    .select("body")
    .append("svg")
    .attr("width", chartWidth)
    .attr("height", chartHeight + offset);
                    
bars = svg
    .selectAll("rect")
    .data(dataSet)
    .enter()
    .append("rect");
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bars
    .attr("width", 15 )
    .attr("height", function(x){ return yscale(x);})
    .attr("y", function(x){return (chartHeight - yscale(x));})
    .attr("x", function(x, i){return (i * 20);})
    .attr("fill", "#AAAAAA")
    .attr("stroke", "#000000");
 
svg.selectAll("text")
    .data(dataSet)
    .enter()
    .append("svg:text")
    .attr("x", function(d, i) { return (i * 20) })
    .attr("y", function(x){return (chartHeight - yscale(x));})
    .attr("dx", -15/2)
    .attr("dy", "1.2em")
    .attr("text-anchor", "middle")
    .text(function(d) { return d;})
    .attr("fill", "black");
         
})
 
</script>
</body>
</html>
 

And CSV files aren’t the only format we can read in. In fact, d3.text() is only syntactic sugar—a convenience 
method or a type-specific wrapper for D3’s implementation of the XMLHttpRequest object d3.xhr().

For reference, the XMLHttpRequest object is what is used in AJAX transactions to load content asynchronously 
from the client side without refreshing the page. In pure JavaScript, we instantiate the XHR object, pass in an URL to 
a resource, and the method to retrieve the resource (GET or POST). We also specify a callback function that will get 
invoked when the XHR object is updated. In this function, we can parse up the data and begin using it. See Figure 4-12 
for a high-level diagram of this process.
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In D3 is the d3.xhr() function that is D3’s wrapper for the XMLHttpRequest object. It works much the same way 
that we just saw d3.text() work, where we pass in a URL to a resource and a callback function to execute.

The other type-specific convenience functions that D3 has are d3.csv(), d3.json(), d3.xml(), and d3.html().

Summary
This chapter explored D3. We started out covering the introductory concepts of HTML, CSS, SVG and JavaScript, 
at least the points that are pertinent to implementing D3. From there we delved into D3, looking at introductory 
concepts like creating our first SVG shapes to expanding on that idea by making those shapes into a bar graph.

D3 is a fantastic library for crafting data visualizations. To see the full API documentation,  
see https://github.com/mbostock/d3/wiki/API-Reference.

We will return to D3, but first we will explore some data visualizations that we can create that have practical 
application in the world of web development. The first one we will look at is something that you may have seen in your 
Google analytics dashboard or something similar: a data map based on user visits.

JavaScript External Data
Source

XHR

Callback

Parse and process
returned data

HTTP
resonse

HTTP
get/post

create
call back

Instantiate
 XHR

Figure 4-12.  Sequence diagram of XHR transaction

https://github.com/mbostock/d3/wiki/API-Reference
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Chapter 5

Visualizing Spatial Data from  
Access Logs

In the last chapter, we talked about D3 and looked at concepts from making simple shapes to creating a bar chart 
out those shapes. In the previous two chapters, we took a deep dive into R. Now that you are familiar with the core 
technologies that we will be using, let’s begin looking at examples of how, as web developers, we can create data 
visualizations that communicate useful information around our domain.

The first one that we will look at is creating a data map out of our access logs.

What Are Data Maps?
First, let’s level set and make sure that we clearly define a data map. A data map is a representation of information 
over a spatial field, a marriage of statistics with cartography. Data maps are some of the most easily understood and 
widely used data visualizations there are because their data is couched in something that we are all familiar with and 
use anyway: maps.

Recall the discussion in Chapter 1 of the Cholera map created by Jon Snow in 1854. This is considered one of the 
earliest examples of a data map, though there are several notable contemporaries, including several by Charles Minard, 
an engineer in nineteenth-century France. He is most widely remembered for his data visualization of Napoleon’s 
invasion of Russia in 1812.

Minard also created several prominent data maps. Two of his most famous data maps include the data map 
demonstrating the source region and percentage of total cattle consumed in France (see Figure 5-1), and the data map 
demonstrating the wine export path and destination from France (see Figure 5-2).
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Figure 5-1.  Early data map from Charles Minard demonstrating source region and cattle consumption in France 
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Today we see data maps everywhere. They can be informative and artistic expressions, like the wind map project 
from Fernanda Viegas and Martin Wattenberg (see Figure 5-3). Available at http://hint.fm/wind, the wind project 
demonstrates the path and force of wind currents over the United States.

Figure 5-2.  Data map from Minard demonstrating wine export path and destination 

http://hint.fm/wind
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Data maps can be profound, such as those available at energy.gov that demonstrate concepts such as energy 
consumption by state (see Figure 5-4), or even renewable energy production by state.

Figure 5-3.  Wind map, showing wind speeds by region for the touchdown of Hurricane Sandy (used with permission 
of Fernanda Viegas and Martin Wattenberg)
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You’ve now seen historical and contemporary examples of data maps. In this chapter, you will look at creating 
your own data map from web server access logs.

Access Logs
Access logs are records that a web server keeps to track what resources were requested. Whenever a web page, an 
image, or any other kind of file is requested from a server, the server makes a log entry for the request. Each request 
has certain data points associated with it, usually information about the requestor of the resource (for example, IP 
address and user agent) and general information such as time of day and what resource was requested.

Let’s look at an access log. A sample entry looks like this:
 
msnbot-157-55-17-199.search.msn.com - - [18/Jan/2013:13:32:15 -0400] "GET /robots.txt HTTP/1.1"  
404 208 "-" "Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)"
 

This is a snippet from a sample Apache access log. Apache access logs follow the combined log format, which is 
an extension of the common log format standard of the World Wide Web Consortium (W3C). Documentation for the 
common log format can be found here:
 
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
 

Figure 5-4.  Data map depicting energy consumption by state, from energy.gov, (available at  
http://energy.gov/maps/2009-energy-consumption-person)

http://www.bing.com/bingbot.htm
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
http://energy.gov/maps/2009-energy-consumption-person
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The common log format defines the following fields, separated by tabs:

IP address or DNS name of remote host•	

Logname of the remote user•	

Username of the remote user•	

Datestamp•	

The request; usually includes the request method and the path to the resource requested•	

HTTP status code returned for the request•	

Total file size of the resource requested•	

The combined log format adds the referrer and user agent fields. The Apache documentation for the combined 
log format can be found here:
 
http://httpd.apache.org/docs/current/logs.html#combined
 

Note that fields that are not available are represented by a single dash -.
Let’s dissect the previous log entry.

The first field is •	 msnbot-157-55-17-199.search.msn.com. This is a DNS name that just 
happens to have the IP address built into it. We can’t count on parsing the IP address out of 
this domain, so for now just ignore the IP address. When we get to programmatically parsing 
the logs we will use the native PHP function gethostbyname() to look up the IP addresses for 
given domain names.

The next two fields, the logname and the user, are empty.•	

Next is the datestamp: •	 [18/Jan/2013:13:32:15 -0400].

After the datestamp is the request: •	 "GET /robots.txt HTTP/1.1". If you hadn’t already 
guessed from the DNS name, this is a bot, specifically Microsoft’s msnbot replacement: the 
bingbot. In this record, the bingbot is requesting the robots.txt file.

Next is the HTTP status of the request: •	 404. Clearly there was no robots.txt file available.

Next is the total payload of the request. Apparently the 404 cost 208 bytes.•	

Next is a dash to signify that the referrer was empty.•	

Finally is the useragent: •	 "Mozilla/5.0 (compatible; bingbot/2.0;  
+http://www.bing.com/bingbot.htm)", which tells us definitively that it is indeed a bot.

Now that you have the access log and understand what is in it, you can parse it to use each field in it 
programmatically.

Parsing the Access Log
The process of parsing the access log is the following:

	 1.	 Read in the access log.

	 2.	 Parse it and gather geographic data based on the stored IP address.

	 3.	 Output the fields that we are interested in for our visualization.

	 4.	 Read in this output and visualize.

http://httpd.apache.org/docs/current/logs.html#combined
http://www.bing.com/bingbot.htm
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We’ll use PHP for the first three steps and R for the last step. Note that you will need to be running PHP 5.4.10 or 
higher to successfully run the following PHP code.

Read in the Access Log
Create a new PHP document called parseLogs.php, within which you will first create a function to read in a file.  
Call this function parseLog() and have it accept the path to the file:

function parseLog($file){

}

Within this function, you will write some code that will open the passed in file for reading and iterate through 
each line of the file until it reaches the end of the file. Each step in the iteration stores the line that is read in, in the 
variable $line:

$logArray = array();
$file_handle = fopen($file, "r");
while (!feof($file_handle)) {
     $line = fgets($file_handle);
}
fclose($file_handle);

Fairly standard file I/O functionality in PHP so far. Within the loop, you will stub out a function call to a function 
that you will call parseLogLine() and another function that you will call getLocationbyIP(). In parseLogLine(), 
you will split up the line and store the values in an array. In getLocationbyIP(), you will use the IP address to get 
geographic information. You will then store this returned array in a larger array that called $logArray.

$lineArr = parseLogLine($line);
$lineArr = getLocationbyIP($lineArr);
$logArray[count($logArray)] = $lineArr;

Don’t forget to create the $logArray variable at the top of the function.
The finished function should look like so:

function parseLog($file){
$logArray = array();
$file_handle = fopen($file, "r");
while (!feof($file_handle)) {
     $line = fgets($file_handle);
     $lineArr = parseLogLine($line);
     $lineArr = getLocationbyIP($lineArr);
     $logArray[count($logArray)] = $lineArr;
}
fclose($file_handle);
return $logArray;
}



Chapter 5 ■ Visualizing Spatial Data from Access Logs 

92

Parse the Log File
Next you’ll flesh out the parseLogLine() function. First you’ll create the empty function:
 
function parseLogLine($logLine){
}
 

The function will expect a single line of the access log.
Remember that each line of the access log is made up of sections of information separated by whitespace.  

Your first instinct might be to just split the line at each instance of a whitespace, but this would result in breaking up 
the user agent string (and potentially other fields) in unexpected ways.

For our purposes, a much cleaner way to parse the line is to use a regular expression. Regular expressions,  
called regex for short, are patterns that enable you to do quick and efficient string matching. 

Regular expressions use special characters to define these patterns: individual characters, character literals, or 
sets of characters. A deep dive on regular expressions is outside of the scope of this chapter, but a great reference to 
read about the different regular expression patterns is the Microsoft regular expression Quick Reference, available 
here: http://msdn.microsoft.com/en-us/library/az24scfc.aspx.

Grant Skinner also provides a great tool for creating and debugging regular expressions (see Figure 5-5),  
which is available here: http://gskinner.com/RegExr/.

Figure 5-5.  Grant Skinner’s regex tool

Let’s define our regular expression pattern and store it in a variable that we will call $pattern.
If you aren’t proficient with regex, you can create them fairly easily using Grant Skinner’s tool (refer to Figure 5-5). 

Using this tool, you can come up with the following pattern:
 
$pattern = "/^(\S+) (\S+) (\S+) \[([^:]+):(\d+:\d+:\d+) ([^\]]+)\] \"(\S+) (.*?) (\S+)\" (\S+) (\S+) 
(\".*?\") (\".*?\")$/";
 

Within the tool, you can see how it breaks up the strings into the following groups (see Figure 5-6).

http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://gskinner.com/RegExr/
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You now have a regular expression to use. Let’s use PHP’s preg_match() function. This takes as parameters a 
regular expression, a string to match it against, and an array to populate as the output of the pattern matching:
 
preg_match($pattern,$logLine,$logs);
 

From there, we can just create an associative array with named indexes to hold our parsed up line:
 
$logArray = array();
$logArray['ip'] = gethostbyname($logs[1]);
$logArray['identity'] = $logs[2];
$logArray['user'] = $logs[2];
$logArray['date'] = $logs[4];
$logArray['time'] = $logs[5];
$logArray['timezone'] = $logs[6];
$logArray['method'] = $logs[7];
$logArray['path'] = $logs[8];
$logArray['protocol'] = $logs[9];
$logArray['status'] = $logs[10];
$logArray['bytes'] = $logs[11];
$logArray['referer'] = $logs[12];
$logArray['useragent'] = $logs[13];
 

Figure 5-6.  Log file line split into groups
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Our complete parseLogLine() function should now look like this:
 
function parseLogLine($logLine){
        $pattern = "/^(\S+) (\S+) (\S+) \[([^:]+):(\d+:\d+:\d+) ([^\]]+)\] \"(\S+) (.*?) (\S+)\"  
(\S+) (\S+) (\".*?\") (\".*?\")$/";
 
        preg_match($pattern,$logLine,$logs);
 
        $logArray = array();
        $logArray['ip'] = gethostbyname($logs[1]);
        $logArray['identity'] = $logs[2];
        $logArray['user'] = $logs[2];
        $logArray['date'] = $logs[4];
        $logArray['time'] = $logs[5];
        $logArray['timezone'] = $logs[6];
        $logArray['method'] = $logs[7];
        $logArray['path'] = $logs[8];
        $logArray['protocol'] = $logs[9];
        $logArray['status'] = $logs[10];
        $logArray['bytes'] = $logs[11];
        $logArray['referer'] = $logs[12];
        $logArray['useragent'] = $logs[13];
         
        return $logArray;
         
}
 

Next you will create the functionality for the getLocationbyIP() function.

Geolocation by IP
In the getLocationbyIP() function, you can take the array that you made by parsing a line of the access log and use 
the IP field to get the geographic location. There are many ways to get geographic location by IP address; most involve 
either calling a third-party API or downloading a third-party database with the IP location information prepopulated. 
Some of these third parties are freely available; some have a cost associated with them.

For our purposes, you can use the free API available at hostip.info. Figure 5-7 shows the hostip.info home page.

t
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The hostip.info service aggregates geotargeting information from ISPs as well as direct feedback from users.  
It exposes an API as well as a database available for download.

The API is available at http://api.hostip.info/. If no parameters are provided, the API returns the geo location 
of the client. By default, the API returns XML. The return value looks like this:
 
<?xml version="1.0" encoding="ISO-8859-1" ?>
<HostipLookupResultSet version="1.0.1" xmlns:gml="http://www.opengis.net/gml"  
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
xsi:noNamespaceSchemaLocation="http://www.hostip.info/api/hostip-1.0.1.xsd">
 <gml:description>This is the Hostip Lookup Service</gml:description>
 <gml:name>hostip</gml:name>
 <gml:boundedBy>
  <gml:Null>inapplicable</gml:Null>
 </gml:boundedBy>
 <gml:featureMember>

Figure 5-7.  hostip.info home page

http://api.hostip.info/
http://www.opengis.net/gml
http://www.w3.org/2001/XMLSchema-instance
http://www.hostip.info/api/hostip-1.0.1.xsd
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  <Hostip>
   <ip>71.225.152.145</ip>
   <gml:name>Chalfont, PA</gml:name>
   <countryName>UNITED STATES</countryName>
   <countryAbbrev>US</countryAbbrev>
   <!-- Co-ordinates are available as lng,lat -->
   <ipLocation>
    <gml:pointProperty>
     <gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
      <gml:coordinates>-75.2097,40.2889</gml:coordinates>
     </gml:Point>
    </gml:pointProperty>
   </ipLocation>
  </Hostip>
 </gml:featureMember>
</HostipLookupResultSet>
 

You can refine the API calls. If you want only country information, you can call  
http://api.hostip.info/country.php. It returns a string with a country code. If JSON is preferred over XML, you 
can call http://api.hostip.info/get_json.php and get the following result:
 
{"country_name":"UNITED STATES","country_code":"US","city":"Chalfont, PA","ip":"71.225.152.145"}
 

To specify an IP address, add the parameter ?ip=xxxx, like so:
 
http://api.hostip.info/get_json.php?ip=100.43.83.146
 

OK, let’s code the function!
We’ll stub out the function and have it accept an array. We’ll pull the IP address from the array, store it in a 

variable, and concatenate the variable to a string that contains the path to the hostip.info API:
 
function getLocationbyIP($arr){
     $IPAddress = $arr['ip'];
     $IPCheckURL = "http://api.hostip.info/get_json.php?ip=$IPAddress";
}
 

You’ll pass this string to the native PHP function file get_contents() and store the return value, the results of 
the API call, in a variable that you’ll name jsonResponse. You’ll use the PHP json_decode() function to convert the 
returned JSON data into a native PHP object:
 
$jsonResponse =  file_get_contents($IPCheckURL);
$geoInfo = json_decode($jsonResponse);
 

You next pull the geolocation data from the object and add it to the array that you passed into the function.  
The city and state information is a single string separated by a comma and a space (“Philadelphia, PA”), so you’ll need 
to split at the comma and save each field separately in the array.
 
$arr['country'] = $geoInfo->{"country_code"};
$arr['city'] = explode(",",$geoInfo->{"city"})[0];
$arr['state'] = explode(",",$geoInfo->{"city"})[1];
 

http://www.opengis.net/gml/srs/epsg.xml#4326
http://api.hostip.info/country.php
http://api.hostip.info/country.php
http://api.hostip.info/get_json.php
http://api.hostip.info/get_json.php?ip=100.43.83.146
http://api.hostip.info/get_json.php?ip=$IPAddress
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Next let’s do a little bit of error checking that will make things easier later on in the process. You’ll check to see 
whether the state string has any value; if it doesn’t, set it to “XX”. This will be helpful once you begin parsing data in R. 
And finally you’ll return the updated array:
 
if(count($arr['state']) < 1)
     $arr['state'] = "XX";
return $arr;
 

The full function should look like this:
 
function getLocationbyIP($arr){
     $IPAddress = $arr['ip'];
     $IPCheckURL = "http://api.hostip.info/get_json.php?ip=$IPAddress";
 
     $jsonResponse =  file_get_contents($IPCheckURL);
     $geoInfo = json_decode($jsonResponse);
     $arr['country'] = $geoInfo->{"country_code"};
     $arr['city'] = explode(",",$geoInfo->{"city"})[0];
     $arr['state'] = explode(",",$geoInfo->{"city"})[1];
     if(count($arr['state']) < 1)
          $arr['state'] = "XX";
     return $arr;
}
 

Finally, let’s create a function to write processed data out to a file.

Output the Fields
You’ll create a function named writeRLog() that accepts two parameters: the array populated with decorated log 
data and the path to a file: 
 
function writeRLog($arr, $file){
}
 

You need to create a variable called writeFlag that will be the flag to tell PHP to either write or append data to 
the file. You check to see whether the file exists; if it does, you append content instead of overwrite. After the check, 
open the file:
 
writeFlag = "w";
if(file_exists($file)){
     $writeFlag = "a";
}
$fh = fopen($file, $writeFlag) or die("can't open file");
 

http://api.hostip.info/get_json.php?ip=$IPAddress


Chapter 5 ■ Visualizing Spatial Data from Access Logs 

98

You then loop through the passed-in array; construct a string containing the IP address, date, HTTP status, 
country code, state, and city of each log entry; and write that string to the file. Once you’ve finished iterating through 
the array, you close the file:
 
for($x = 0; $x < count($arr); $x++){
     if($arr[$x]['country'] != "XX"){
          $data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," . $arr[$x]['status'] . "," . 
$arr[$x]['country'] . "," . $arr[$x]['state'] . "," . $arr[$x]['city'];
      }
      fwrite($fh, $data . "\n");
 }
 

Our completed writeRLog() function should look like this:
 
function writeRLog($arr, $file){
     $writeFlag = "w";
     if(file_exists($file)){
          $writeFlag = "a";
          }
          $fh = fopen($file, $writeFlag) or die("can't open file");
          for($x = 0; $x < count($arr); $x++){
               if($arr[$x]['country'] != "XX"){
                    $data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," . $arr[$x]['status'] . "," . 
$arr[$x]['country'] . "," . $arr[$x]['state'] . "," . $arr[$x]['city'];
               }
               fwrite($fh, $data . "\n");
          }
     fclose($fh);
     echo "log created";
}

Adding Control Logic
Finally you’ll create some control logic to invoke all these functions that you just created. You’ll declare the path to the 
access log and the path to our output flat file, call parseLog() and send the output to writeRLog():
 
$logfile = "access_log";
$chartingData = "accessLogData.txt";
$logArr = parseLog($logfile);
writeRLog($logArr, $chartingData);
 

Our completed PHP code should look like the following:
 
<html>
<head></head>
<body>
<?php
$logfile = "access_log";
$chartingData = "accessLogData.txt";
$logArr = parseLog($logfile);
writeRLog($logArr, $chartingData);
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function parseLog($file){
        $logArray = array();
        $file_handle = fopen($file, "r");
        while (!feof($file_handle)) {
           $line = fgets($file_handle);
           $lineArr = parseLogLine($line);
           $lineArr = getLocationbyIP($lineArr);
           $logArray[count($logArray)] = $lineArr;
        }
        fclose($file_handle);
        return $logArray;
}
 
function parseLogLine($logLine){
        $pattern = "/^(\S+) (\S+) (\S+) \[([^:]+):(\d+:\d+:\d+) ([^\]]+)\] \"(\S+) (.*?) (\S+)\"  
(\S+) (\S+) (\".*?\") (\".*?\")$/";
  
        preg_match($pattern,$logLine,$logs);
 
        $logArray = array();
        $logArray['ip'] = gethostbyname($logs[1]);
        $logArray['identity'] = $logs[2];
        $logArray['user'] = $logs[2];
        $logArray['date'] = $logs[4];
        $logArray['time'] = $logs[5];
        $logArray['timezone'] = $logs[6];
        $logArray['method'] = $logs[7];
        $logArray['path'] = $logs[8];
        $logArray['protocol'] = $logs[9];
        $logArray['status'] = $logs[10];
        $logArray['bytes'] = $logs[11];
        $logArray['referer'] = $logs[12];
        $logArray['useragent'] = $logs[13];
         
        return $logArray;
         
}
 
function getLocationbyIP($arr){
        $IPAddress = $arr['ip'];
        $IPCheckURL = "http://api.hostip.info/get_json.php?ip=$IPAddress";
 
        $jsonResponse =  file_get_contents($IPCheckURL);
        $geoInfo = json_decode($jsonResponse);
        $arr['country'] = $geoInfo->{"country_code"};
        $arr['city'] = explode(",",$geoInfo->{"city"})[0];
        $arr['state'] = explode(",",$geoInfo->{"city"})[1];
         
        return $arr;
}
 

http://api.hostip.info/get_json.php?ip=$IPAddress
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function writeRLog($arr, $file){
        $writeFlag = "w";
        if(file_exists($file)){
                $writeFlag = "a";
        }
        $fh = fopen($file, $writeFlag) or die("can't open file");
        for($x = 0; $x < count($arr); $x++){
                if($arr[$x]['country'] != "XX"){
                        $data = $arr[$x]['ip'] . "," . $arr[$x]['date'] . "," .  
$arr[$x]['status'] . "," . $arr[$x]['country'] . "," . $arr[$x]['state'] . "," . $arr[$x]['city'];
                }
                fwrite($fh, $data . "\n");
        }
        fclose($fh);
        echo "log created";
}
?>
</body>
</html>
 

And it should produce a flat file that looks like so:
 
157.55.32.94,25/Jan/2013,404,US, WA,Redmond
180.76.6.26,25/Jan/2013,200,CN,,Beijing
213.174.154.106,25/Jan/2013,301,UA,,(Unknown city)
 

We have made a sample access log available here: http://tom-barker.com/data/access_log.

Creating a Data Map in R
So far, you parsed the access log, scrubbed the data, decorated it with location information, and created a flat file that 
has a subset of information. The next step is to visualize this data.

Because you are making a map, you need to install the map package. Open up R; from the console, type the following:
 
> install.packages('maps')
> install.packages('mapproj')
 

Now we can begin! To reference the map package in the R script, you need to load it into memory by calling the 
library() function:
 
library(maps)
library(mapproj)
 

You next create several variables—one to point to our formatted access log data; another is a list of column 
names. You create a third variable, logData, to hold the data frame created when you read in the flat file:
 
logDataFile <- '/Applications/MAMP/htdocs/accessLogData.txt'
logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")
logData <- read.table(logDataFile, sep=",", col.names=logColumns)
 

If you type logData in the console, you see the data frame formatted like this:

http://tom-barker.com/data/access_log
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> logData
                            IP        date HTTPstatus country state           city
1                100.43.83.146 25/Jan/2013        404      US    NV      Las Vegas
2                100.43.83.146 25/Jan/2013        301      US    NV      Las Vegas
3                64.29.151.221 25/Jan/2013        200      US    XX (Unknown city)
4                  180.76.6.26 25/Jan/2013        200      CN    XX        Beijing

Clearly you could start to track several different data points here. Let’s first look at mapping out what countries 
the traffic is coming from.

Mapping Geographic Data
You can begin by pulling the unique country names from logData. You’ll store this in a variable named country:

> country <- unique(logData$country)

If you type country in the console, the data looks like the following:

> country
[1] US CN CA SE UA
Levels: CA CN SE UA US

These are the country codes that you get back from iphost.info. R has a different set of country codes that it uses, 
so you’ll need to convert the iphost country codes to R country codes. You can do this by applying a function to the 
country list.

You’ll use sapply() to apply an anonymous function of your own design to the list of country codes. In the 
anonymous function, you’ll trim any whitespace and do a direct replacement of country codes. You will use the gsub()
function to do a replacement of all instances of the passed-in parameter:

country <- sapply(country, function(countryCode){
  #trim whitespaces from the country code
  countryCode <- gsub("(^ +)|( +$)", "", countryCode)
  if(countryCode == "US"){
    countryCode<- "USA"
  }else if(countryCode == "CN"){
    countryCode<- "China"
  }else if(countryCode == "CA"){
    countryCode<- "Canada"
  }else if(countryCode == "SE"){
    countryCode<- "Sweden"
  }else if(countryCode == "UA"){
    countryCode<- "USSR"
  }
})
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There are a couple of things to notice about the preceding source code. First is that you are hard-coding every 
country code that you have. This is, of course, bad form, and you’ll approach this problem a very different way once 
you dig into state data. The second thing to notice is that you have the country code “UA”, which is for the Ukraine, and 
you need to convert that to “USSR”. Apparently that aspect of the map package hasn’t been updated since the fall of 
the Soviet Union in 1991.

If you type country into the console again, you’ll now see the following:
 
> country
[1] "USA"    "China"  "Canada" "Sweden" "USSR"
 

You next use the match.map() function to match the countries with the map package’s list of countries. The  
match.map() function creates a numeric vector in which each element corresponds to a country on the world map. The 
elements of intersection (where countries in the country list match countries in the world map) have values assigned to 
them—specifically, the index number from the original country list. So the element that corresponds to USA has a 1, the 
element that corresponds to Canada has a 2, and so on. Where there is no intersection, the element has the value NA.
 
countryMatch <-  match.map("world2", country)
 

Let’s next use the countryMatch list to create a color-coded country match. To do this, simply apply a function 
that checks each element. If it is not NA, assign the color #C6DBEF to the element, which is a nice light blue. If the 
element is NA, set the element to white or #FFFFFF. You will save the result of this in a new list that you will call 
colorCountry.
 
colorCountry <- sapply(countryMatch, function(c){
 if(!is.na(c)) c <- "#C6DBEF"
 else c <- "#FFFFFF"
})
 

Now let’s create our first visualization with the map() function! The map() function accepts several parameters:

The first is the name of the database to use. The database name can be either •	 world, usa 
state or county; each contains data points that correlate to geographic areas that the map() 
function will draw.

If you only want to draw a subset of the larger geographic database you can specify an optional •	
parameter named region that lists the areas to draw.

You can also specify the map projection to use. A •	 map projection is basically a way to represent 
a three-dimensional curved space on a flat surface. There are a number of predefined 
projections, and the mapproj package in R supports a number of these. For the world map that 
you’ll be making, you will use an equal area projection, the identifier of which is “azequalarea”. 
For more about map projections, see http://xkcd.com/977/.

You also can specify the center point of our map, in latitude and longitude, using the •	
orientation parameter.

Finally you’ll pass the •	 colorCountry list that you just made to the col parameter.
 
map('world', proj='azequalarea', orient=c(41,-74,0), boundary=TRUE, col=colorCountry, fill=TRUE)
 

This code produces the map that you can see in Figure 5-8.

http://xkcd.com/977/
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From this map we can see that the countries from our unique list are shaded blue and the rest of the countries are 
colored white. This is good, but we can make it better.

Adding Latitude and Longitude
Let’s start by adding latitude and longitude lines, which will accentuate the curvature of the globe and give context to 
where the poles are. To create latitude and longitude lines, we first create a new map object, but we will set plot to FALSE 
so that the map is not drawn to the screen. We’ll save this map object to a variable named m:
 
m <- map('world',plot=FALSE)
 

We’ll next call map.grid() and pass in our stored map object:
 
map.grid(m, col="blue", label=FALSE, lty=2, pretty=TRUE)
 

Note that if you are running this code line by line in the command window, it’s important to keep the Quartz 
graphic window open as you type the lines in so that R can update that chart. If you close the Quartz window while 
typing it in line by line, you could get an error stating that plot.new has not been called. Or you could type each line 
into a text file and copy them into the R command line all at once.

Figure 5-8.  Data map using a world map
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While we’re at it, let’s add a scale to the chart to show:
 
map.scale()
 

Our completed R code should now look like so:
 
library(maps)
library(mapproj)
 
logDataFile <- '/Applications/MAMP/htdocs/accessLogData.txt'
logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")
logData <- read.table(logDataFile, sep=",", col.names=logColumns)
 
country <- unique(logData$country)
country <- sapply(country, function(countryCode){
  #trim whitespaces from the country code
  countryCode <- gsub("(^ +)|( +$)", "", countryCode)
  if(countryCode == "US"){
    countryCode<- "USA"
  }else if(countryCode == "CN"){
    countryCode<- "China"
  }else if(countryCode == "CA"){
    countryCode<- "Canada"
  }else if(countryCode == "SE"){
    countryCode<- "Sweden"
  }else if(countryCode == "UA"){
    countryCode<- "USSR"
  }
})
              
countryMatch <-  match.map("world", country)
  
#color code any states with visit data as light blue
colorCountry <- sapply(countryMatch, function(c){
 if(!is.na(c)) c <- "#C6DBEF"
 else c <- "#FFFFFF"
})
  
m <- map('world',plot=FALSE)
map('world',proj='azequalarea',orient=c(41,-74,0), boundary=TRUE, col=colorCountry,fill=TRUE)
map.grid(m,col="blue", label=FALSE, lty=2, pretty=TRUE)
map.scale()
 

And this code outputs the world map shown in Figure 5-9.
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Very nice! Next, let’s drill into a breakdown of visits by states in the United States.

Displaying Regional Data
Let’s start by isolating U.S. data; we can do this by selecting all rows in which the state does not equal “XX”. Remember 
setting the value in the state column to “XX” when we were parsing the access log in PHP? This is why. Countries other 
than the United States don’t have state data associated with them, so we can simply pull only the rows that have state data.
 
usData <- logData[logData$state != "XX", ]
 

We next need to replace the state abbreviations that we got from hostip.info with the full state names so that we 
can create a match.map lookup list, much like we did with the preceding country data.

The upside with state data is that R has a data set that contains all 50 U.S. state names, abbreviations, and even 
more esoteric information such as area of the state and named divisions (New England, Middle Atlantic, and so on). 
For more information, type ?state.name at the R console.

We can use the information in this data set to match the state abbreviations with the full state names that the map 
package needs. To do this, we use the apply() function to run an anonymous function that greps through the state.abb 

Figure 5-9.  Globe data map with latitude and longitude lines as well as scale
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data set to find a match for the passed-in state abbreviation and then use that returned value as the index for retrieving 
the full state name from the state.name data set:
 
usData$state <- apply(as.matrix(usData$state), 1, function(s){
  #trim the abbreviation of whitespaces
  s <- gsub("(^ +)|( +$)", "", s)
  s <- state.name[grep(s, state.abb)]
})
 

We achieve the same functionality as the previous country match, but much more elegantly. If we were so inclined, 
we could go back and create our own data set of country names for future use to have a similar elegant solution for the 
country match.

Now that we have full state names to use, we can pull a unique list of state names and use that list to create a map 
matched list (again, just as we did for countries):
 
states <- unique(usData$state)
stateMatch <- match.map("state", states)
 

With our state match list, we can again apply a function to it that will look for matches in our match list, elements 
that do not have the value NA, and set the value for those elements to our nice light blue color while all elements that 
do have the value of NA get set to white. We save this list in a variable that we name colorMatch:
 
#color code any states with visit data as light blue
colorMatch <- sapply(stateMatch, function(s){
 if(!is.na(s)) s <- "#C6DBEF"
 else s <- "#FFFFFF"
})
 

We can then use colorMatch in our call to the map() function:
 
map("state", resolution = 0,lty = 0,projection = "azequalarea", col=colorMatch,fill=TRUE)
 

Hmm, but notice something? Only the colored areas are drawn to the stage, as shown in Figure 5-10.

Figure 5-10.  Data map with only states that have data displayed
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We need to make a second map() call that will draw the remainder of the map. In this map() call, we will set the 
add parameter to TRUE, which will cause the new map that we are drawing to be added to the current map. While we’re 
at it, let’s create a scale for this map as well:
 
map("state", col = "black", fill=FALSE, add=TRUE, lty=1, lwd=1, projection="azequalarea")
map.scale()
 

This code produces the finished state map in Figure 5-11.

Figure 5-11.  Completed state data map

Distributing the Visualization
OK, now let’s put our R code in an R Markdown file for distribution. Let’s go into RStudio and click File ➤ New ➤ R 
Markdown. Let’s add a header and make sure that our R code is wrapped in ```{r} tags and that our charts have 
heights and widths assigned to them. Our completed R Markdown file should look like this:
 
Visualizing Spatial Data from Access Logs
========================================================
  
```{r}
library(maps)
library(mapproj)
 
logDataFile <- '/Applications/MAMP/htdocs/accessLogData.txt'
logColumns <- c("IP", "date", "HTTPstatus", "country", "state", "city")
logData <- read.table(logDataFile, sep=",", col.names=logColumns)
 
```
  
```{r fig.width=15, fig.height=10}
#chart worldwide visit data
  
#unfortunately there is no state.name equivalent for countries so we must check
#the explicit country names. In the us states below we are able to accomplish this much
#more efficiently
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country <- unique(logData$country)
country <- sapply(country, function(countryCode){
  #trim whitespaces from the country code
  countryCode <- gsub("(^ +)|( +$)", "", countryCode)
  if(countryCode == "US"){
    countryCode<- "USA"
  }else if(countryCode == "CN"){
    countryCode<- "China"
  }else if(countryCode == "CA"){
    countryCode<- "Canada"
  }else if(countryCode == "SE"){
    countryCode<- "Sweden"
  }else if(countryCode == "UA"){
    countryCode<- "USSR"
  }
})
              
countryMatch <-  match.map("world", country)
 
#color code any states with visit data as light blue
colorCountry <- sapply(countryMatch, function(c){
 if(!is.na(c)) c <- "#C6DBEF"
 else c <- "#FFFFFF"
})
 
m <- map('world',plot=FALSE)
map('world',proj='azequalarea',orient=c(41,-74,0), boundary=TRUE, col=colorCountry,fill=TRUE)
map.grid(m,col="blue", label=FALSE, lty=2, pretty=FALSE)
map.scale()
 
```
   
```{r fig.width=10, fig.height=7}
#isolate the US data, scrub any unknown states
usData <- logData[logData$state != "XX", ]
usData$state <- apply(as.matrix(usData$state), 1, function(s){
  #trim the abbreviation of whitespaces
  s <- gsub("(^ +)|( +$)", "", s)
  s <- state.name[grep(s, state.abb)]
})
 
s <- map('state',plot=FALSE)
states <- unique(usData$state)
stateMatch <- match.map("state", states)
 
#color code any states with visit data as light blue
colorMatch <- sapply(stateMatch, function(s){
 if(!is.na(s)) s <- "#C6DBEF"
 else s <- "#FFFFFF"
})
  
map("state", resolution = 0,lty = 0,projection = "azequalarea", col=colorMatch,fill=TRUE)
map("state", col = "black",fill=FALSE,add=TRUE,lty=1,lwd=1,projection="azequalarea")
map.scale()
``` 
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This code produces the output shown in Figure 5-12. I have also made this R script publicly available at the 
following URL: http://rpubs.com/tomjbarker/3878.

Figure 5-12.  Data maps in RMarkdown

http://rpubs.com/tomjbarker/3878
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Summary
This chapter discussed parsing access logs to produce data map visualizations. You looked at both global country 
data in your maps as well as more localized state data. This is the first taste of how you can begin to bring usage data 
to life.

The next chapter looks at bug backlog data in the context of time series charts.
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Chapter 6

Visualizing Data Over Time

The last chapter discussed using access logs to create data maps representing the geographic location of users. We 
used the map and mapproj (for map projections) packages to create these visualizations.

This chapter explores creating time series charts, which are graphs that compare changes in values over time. 
They are generally read left to right with the x-axis representing some measure of time, and the y-axis representing the 
range of values. This chapter discusses visualizing defects over time.

Tracking defects over time allows us to identify not only spikes in issues but also larger patterns in workflows, 
especially when we include more granular details such as bug criticality, and include cross-referencing data such 
as dates for events like start and end of iteration. We begin to expose trends such as when during an iteration bugs 
get opened, when most of the blocker bugs get opened, or what iterations produce the highest number of bugs. This 
kind of self-evaluation and reflection are what allow us to identify and focus attention on blind spots or areas of 
improvement. It also allows us to recognize victories in a larger scope that might be missed when viewing the daily 
numbers without context.

A case in point: recently our organization set a larger group goal of achieving a certain bug number by the end 
of the year, a percent of the total open bugs that we had open at the beginning of the year. With our peers and our 
management staff, we coached all the developers, created process improvements, and won hearts and minds for this 
goal. At the end of the year, the number of bugs we had remaining open was about the same as when we had started. 
We were confused and concerned. But when we summed the daily numbers, we realized that we had achieved 
something larger than we anticipated: we actually opened one-third fewer bugs overall year over year from the 
previous year. This was huge and would easily have been missed if we weren’t looking at the data with a critical eye to 
the larger picture.

Gathering Data
The first step of creating a defect time series chart is to decide on a time period that we want to look at and gather the 
data. This means getting an export of all the bugs for a given time period.

This step is completely dependent on the bug tracing software that you may use. Maybe you use HP’s Quality 
Center because it makes sense with the rest of your organization’s testing needs (such as being able to work with 
LoadRunner). Maybe you use a hosted web-based solution such as Rally because you get defect management 
bundled in with your user story and release tracking. Maybe you have your own installation of Bugzilla because it’s 
open and free.

Whatever the case, all defect management software has a way to export your current bug list. Depending on the 
defect-tracking software used, you can export to a flat file, such as a comma or tab-separated file. The software can 
also allow access to its contents via an API so you can create a script that accesses the API and exposes the content.

Either way, there are two important main cases when looking at bugs over time:

Running total of bugs by date•	

New bugs by date•	

i
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For either of these cases, the minimum fields that we care about when we export from the bug tracking software 
are the following:

Date opened•	

Defect id•	

Defect status•	

Severity of defect•	

Description of the defect•	

The exported bug data should look something like this:
 
Date, ID, Severity, Status, Summary
01-08-2013, DE45095, Minor, Open, alignment of left nav off
01-08-2013, DE45269, Blocker, Open, videos not playing
 

Let’s process the data to be able to visualize it.

Data Analysis with R
The first thing is to read in and order the data. Assuming that data is exported to a flat file named allbugs.csv,  
we can read in the data as follows (we have provided sample data for it at  
http://www.tom-barker.com/data/allbugs.csv):
 
bugExport <- "/Applications/MAMP/htdocs/allbugs.csv"
bugs <- read.table(bugExport, header=TRUE, sep=",")
 

Let’s order the data frame by date. To do this, we have to convert the Date column, which is read in as a string, 
into a Date object using the as.Date() function. The as.Date() function accepts several symbols to signify how to 
read and structure the date object, as shown in Table 6-1.

Table 6-1.  as.Date() function symbols

Symbol Meaning

%m Numeric month

%b Month name as string, abbreviated

%B Full month name as string

%d Numeric day

%a Weekday as abbreviated string

%A Full weekday as string

%y Year as two-digit number

%Y Year as four-digit number

http://www.tom-barker.com/data/allbugs.csv
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So for the date "04/01/2013", we pass in "%m/%d/%Y"; for "April 01, 13" we pass in "%B %d, %Y". You can see 
how the pattern matches up:
 
as.Date(bugs$Date,"%m-%d-%Y")
 

We’ll use the converted date in the order() function, which returns a list of index numbers from the bugs data 
frame, corresponding with the correct way to order the values in the data frame:
 
> order(as.Date(bugs$Date,"%m-%d-%Y"))
 [1] 13 14 2 3 16 17 18 19 20 21 22 23 24 25 26 27 28 4 29 32 34 31 33 30 35 15 37 6 7 38 8 9 39 10 
11 40 12 41 42 43 45 15 36 44 47 48 49 46 50 51 52 53 54
 

Finally we’ll use the results of the order() function as the indexes of the bugs data frame and pass the results 
back into the bugs data frame:
 
bugs <- bugs[order(as.Date(bugs$Date,"%m-%d-%Y")),]
 

This code reorders the bugs data frame based on the order of the indexes returned in the order() function. It will 
be handy when we begin to slice up the data. The data frame should now be a chronologically ordered list of bugs, 
which looks like the following:
 
> bugs
 Date ID Severity Status Summary
13 01-04-2013 46250 Minor Open Data not showing
14 01-04-2013 46253 Minor Open Page unavailable
2 01-08-2013 45095 Minor Open Font color incorrect
3 01-08-2013 45269 Blocker Open Pixel alignment off
 

Let’s write this newly ordered list back out to a new file that we will reference later called allbugsOrdered.csv 
(we have provided sample data for it at http://www.tom-barker.com/data/allbugsOrdered.csv):
 
write.table(bugs, col.names=TRUE, row.names=FALSE, file="/Applications/MAMP/htdocs/allbugsOrdered.csv", 
quote = FALSE, sep = ",")
 

This will come in handy later when we look at this data in D3.

Calculating the Bug Count
Next we will calculate the total bug count by date. This will show how many new bugs are opened by day.

To do this, we pass bugs$Date into the table() function, which builds a data structure of counts of each date in 
the bugs data frame:
 
totalBugsByDate <- table(bugs$Date)
 

So the structure of totalBugsByDate looks like the following:
 
> totalBugsByDate
 
2013-01-04 2013-01-08 2013-01-09 2013-01-10 2013-01-14
 2 4 5 3 1
 

http://www.tom-barker.com/data/allbugsOrdered.csv
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Let’s plot this data out to get an idea of how many bugs are opened each day:
 
plot(totalBugsByDate, type="l", main="New Bugs by Date", col="red", ylab="Bugs")
 

This code creates the chart shown in Figure 6-1.

Now that we have a count of how many bugs are generated each day, we can get a cumulative sum by using the 
cumsum() function. It takes the new bugs opened each day and creates a running sum of them, updating the total each 
day. It allows us to generate a trend line for the cumulative count of bugs over time:
 
> runningTotalBugs <- cumsum(totalBugsByDate)
>
> runningTotalBugs
01-04-2013 01-08-2013 01-09-2013 01-10-2013 01-14-2013 01-16-2013 2 6 11 14 15 17
 

This is exactly what we need to now plot out the way the bug backlog grows or shrinks each day. To do that, let’s 
pass runningTotalBugs to the plot() function. We set the type to "l" to signify that we are creating a line chart and 
then name the chart Cumulative Defects Over Time. In the plot() function, we also turn the axes off so that we can 
draw custom axes for this chart. We will want to draw custom axes so that we can specify the dates as the x-axis labels.

Figure 6-1.  Time series of new bugs by date
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To draw custom axes, we use the axis() function. The first parameter in the axis() function is a number that 
tells R where to draw the axis:

•	 1 corresponds to the x-axis at the bottom of the chart

•	 2 to the left of the chart

•	 3 to the top of the chart

•	 4 to the right of the chart
 
plot(runningTotalBugs, type="l", xlab="", ylab="", pch=15, lty=1, col="red",  
main="Cumulative Defects Over Time", axes=FALSE)
axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))
axis(2, las=1, at=10*0:max(runningTotalBugs))
 

This code creates the time series chart shown in Figure 6-2.

Figure 6-2.  Cumulative defects over time
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This shows the progressively increasing bug backlog, by date.
The complete R code so far is as follows:

 
bugExport <- "/Applications/MAMP/htdocs/allbugs.csv"
bugs <- read.table(bugExport, header=TRUE, sep=",")
bugs <- bugs[order(as.Date(bugs$Date,"%m-%d-%Y")),]
 
sprintDates <- "/Applications/MAMP/htdocs/iterationdates.csv"
sprintInfo <- read.table(sprintDates, header=TRUE, sep=",")
#output ordered list to new flat file
write.table(bugs, col.names=TRUE, row.names=FALSE, file="/Applications/MAMP/htdocs/allbugsOrdered.
csv", quote = FALSE, sep = ",")
totalBugsByDate <- table(factor(bugs$Date))
plot(totalBugsByDate, type="l", main="New Bugs by Date", col="red")
runningTotalBugs <- cumsum(totalBugsByDate)
plot(runningTotalBugs, type="l", xlab="", ylab="", pch=15, lty=1, col="red",  
main="Cumulative Defects Over Time", axes=FALSE)
axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))
axis(2, las=1, at=10*0:max(runningTotalBugs))
 
write.table(totalBugsByDate, col.names=TRUE, row.names=FALSE, file="/Applications/MAMP/htdocs/
runningTotalBugs.csv", quote = FALSE, sep = ",")
 

Let’s take a look at the criticality of the bugs, which shows not just when the bugs are opened but also when the 
most severe (or non-severe) bugs are being opened.

Examining the Severity of the Bugs
Remember that when we exported the bug data we included the Severity field, which indicates the level of criticality of 
each bug. Each team and organization might have their own classification of severity, but generally they include these:

•	 Blockers are bugs so severe that they prevent the launch of a body of work. They generally 
have broken functionality or are missing sections of a widely used feature. They can also 
be discrepancies with contractually or legally binding features such as closed captioning or 
digital rights protection.

•	 Criticals are bugs that are severe but not so damaging that they gate a release. They can have 
broken functionality of less-used features. The scope of accessibility, or how widely used a 
feature is, is usually a determining factor between making a bug a blocker or a critical.

•	 Minors are bugs with very minimal if any impact and might not even be noticeable to an  
end user.

To break out the bugs by severity, we simply call the table() function, just as we did to break out bugs out by 
date, but this time add in the Severity column as well:
 
bugsBySeverity <- table(factor(bugs$Date),bugs$Severity)
 

This code creates a data structure that looks like so:
 
 Blocker Critical Minor
 01-04-2013 0 0 2
 01-08-2013 1 0 3
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 01-09-2013 3 0 2
 01-10-2013 1 0 2
 01-14-2013 0 0 1
 01-16-2013 1 0 1
 01-22-2013 1 0 1
 

We can then plot this data object. The way we do this is to use the plot() function to create a chart for one of the 
columns and then use the lines() function to draw lines on the chart for the remaining columns:
 
plot(bugsBySeverity[,3], type="l", xlab="", ylab="", pch=15, lty=1, col="orange",  
main="New Bugs by Severity and Date", axes=FALSE)
lines(bugsBySeverity[,1], type="l", col="red", lty=1)
lines(bugsBySeverity[,2], type="l", col="yellow", lty=1)
axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))
axis(2, las=1, at=0:max(bugsBySeverity[,3]))
legend("topleft", inset=.01, title="Legend", colnames(bugsBySeverity), lty=c(1,1,1),  
col= c("red", "yellow", "orange"))
 

This code produces the chart shown in Figure 6-3.

Figure 6-3.  Our plot() and lines() functions drawing the chart of bugs by severity
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This is great, but what if we want to see the cumulative bugs by severity? We can simply use the preceding R code, 
but instead of plotting out the columns, we can plot out the cumulative sum of each column:
 
plot(cumsum(bugsBySeverity[,3]), type="l", xlab="", ylab="", pch=15, lty=1, col="orange", 
main="Running Total of Bugs by Severity", axes=FALSE)
lines(cumsum(bugsBySeverity[,1]), type="l", col="red", lty=1)
lines(cumsum(bugsBySeverity[,2]), type="l", col="yellow", lty=1)
axis(1, at=1: length(runningTotalBugs), lab= row.names(totalBugsByDate))
axis(2, las=1, at=0:max(cumsum(bugsBySeverity[,3])))
legend("topleft", inset=.01, title="Legend", colnames(bugsBySeverity), lty=c(1,1,1),  
col= c("red", "yellow", "orange"))
 

This code produces the chart shown in Figure 6-4.

We posted all the R code discussed so far on RPubs at http://rpubs.com/tomjbarker/4169.

Figure 6-4.  Running total of bugs by severity

http://rpubs.com/tomjbarker/4169
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Adding Interactivity with D3
The previous example is a great way to visualize and disseminate information around the creation of defects. But what 
if we could take it a step further and allow the consumers of our visualizations to dive deeper into the data points that 
interest them? Say we wanted to allow the user to mouse over a particular point in a time series and see a list of all the 
bugs that make up that data point. We can do just that with D3; let’s walk find out how.

First let’s create a new file with the base HTML skeletal structure with a reference to D3.js and save it as 
timeseriesGranular.htm.
 
<html>
<head></head>
<body>
<script src="d3.v3.js"></script>
</body>
</html>
 

Next we set some preliminary data in a new script tag. We create an object to hold margin data for the graphic, 
as well as height and width. We also create a D3 time formatter to convert the dates that are read in from string to a 
native Date object.
 
<script>
var margin = {top: 20, right: 20, bottom: 30, left: 50},
 width = 960 - margin.left - margin.right,
 height = 500 - margin.top - margin.bottom;
var parseDate = d3.time.format("%m-%d-%Y").parse;
</script>

Reading in the Data
We add in some code to read in the data (the allbugsOrdered.csv file that was output from R earlier). Recall that this 
file contains the entire bug data ordered by date.

We use the d3.csv() function to read this file: 

The first parameter is the path to the file.•	

The second parameter is the function to execute once the data is read in. It is in this •	
anonymous function that we add most of the functionality, or at least the functionality that is 
dependent on having data to process.

The anonymous function accepts two parameters

The first catches any errors that may occur•	

The second is the contents of the file being read in•	

In the function, we first loop through the contents of the data and use the date formatter to convert all the values 
in the Date column to a native JavaScript Date object:
 
d3.csv("allbugsOrdered.csv", function(error, data) {
        data.forEach(function(d) {
        d.Date = parseDate(d.Date);
});
});
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If we were to console.log() the data, it would be an array of objects that look like Figure 6-5.

Within the anonymous function but after the loop, we use the d3.nest() function to create a variable that holds 
the bug data grouped by date. We name this variable nested_data:
 
nested_data = d3.nest()
.key(function(d) { return d.Date; })
.entries(data);
 

The nested_data variable is now a tree structure—specifically a list that is indexed by date, and each index has a 
list of bugs. If we were to console.log() nested_data, it would be an array of objects that look like Figure 6-6.

Drawing on the Page
We are ready to start drawing to the page. So let’s step out of the callback function and go to the root of the script tag 
and write out the SVG tag to the page by using the margins, width, and height that defined previously:
 
var svg = d3.select("body").append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
        .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
 

This is the container in which we draw the axes and the trend lines.

Figure 6-6.  The array containing our bug data objects

Figure 6-5.  Our bug data object
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Still at the root level, we add a D3 scale object for both the x and y axes, using the width variable for the x-axis 
range and the height variable for the y-axis range. We add the x and y axes at the root level, passing in their respective 
scale objects, and orienting them at the bottom and left:

var xScale = d3.time.scale()
 .range([0, width]);
var yScale= d3.scale.linear()
 .range([height, 0]);
var xAxis = d3.svg.axis()
 .scale(xScale)
 .orient("bottom");
var yAxis = d3.svg.axis()
 .scale(yScale)
 .orient("left");

But they still aren’t showing on the page. We need to return to the anonymous function that we created in the  
d3.csv() call and add the nested_data list that we created as the domain data for the newly created scales:

xScale.domain(d3.extent(nested_data, function(d) { return new Date(d.key); }));
yScale.domain(d3.extent(nested_data, function(d) { return d.values.length; }));

From here, we need to generate the axes. We do this by adding and selecting an SVG g element, used for generic 
grouping, and adding this selection to the xAxis() and yAxis() D3 functions. This also goes in the anonymous 
callback function that gets invoked when the data is loaded.

We also need to transform the x-axis by adding the height of the chart so that it is drawn at the bottom of  
the graph.

svg.append("g")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis);

svg.append("g")
 .call(yAxis)

This creates the start of the chart with meaningful axes shown in Figure 6-7.
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The trend line needs to be added. Back at the root level, let’s create a variable named line to be an SVG line. 
Assume for a minute that we have already set the data property for the line. We haven’t yet, but we will in a minute. 
For the x value of the line, we will have a function that returns the date filtered through the xScale scale object.  
For the y value of the line, we will create a function that returns the bug count values run through the yScale  
scale object.
 
var line = d3.svg.line()
 .x(function(d) { return xScale(new Date(d.key)); })
 .y(function(d) { return yScale(d.values.length); });
 

Next, we return to the anonymous function that processes the data. Right below the added axes, we will append 
an SVG path. We set the nested_data variable as the datum for the path and the newly created line object as the d 
attribute. For reference, the d attribute is where we specify path descriptions. See here for documentation around the 
d attribute: https://developer.mozilla.org/en-US/docs/SVG/Attribute/d.
 
svg.append("path")
 .datum(nested_data)
 .attr("d", line);
 

We can now start to see something in a browser. The code so far should look like so:
 
<!DOCTYPE html>
<head>
<meta charset="utf-8">
</head>

Figure 6-7.  Time series beginning to form; x and y-axes but no line yet

https://developer.mozilla.org/en-US/docs/SVG/Attribute/d
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<body>
        <script src="d3.v3.js"></script>
<script>
var margin = {top: 20, right: 20, bottom: 30, left: 50},
 width = 960 - margin.left - margin.right,
 height = 500 - margin.top - margin.bottom;
 
var parseDate = d3.time.format("%m-%d-%Y").parse;
var xScale = d3.time.scale()
 .range([0, width]);
 
var yScale = d3.scale.linear()
 .range([height, 0]);
 
var xAxis = d3.svg.axis()
         .scale(xScale)
         .orient("bottom");
 
var yAxis = d3.svg.axis()
         .scale(yScale)
         .orient("left");
 
var line = d3.svg.line()
 .x(function(d) { return xScale(new Date(d.key)); })
        .y(function(d) { return yScale(d.values.length); });
 
var svg = d3.select("body").append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
        .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
 
d3.csv("allbugsOrdered.csv", function(error, data) {
        data.forEach(function(d) {
                d.Date = parseDate(d.Date);
        });
 
 nested_data = d3.nest()
                .key(function(d) { return d.Date; })
                .entries(data);
 
         xScale.domain(d3.extent(nested_data, function(d) { return new Date(d.key); }));
         yScale.domain(d3.extent(nested_data, function(d) { return d.values.length; }));
         svg.append("g")
         .attr("transform", "translate(0," + height + ")")
         .call(xAxis);
                svg.append("g")
                 .call(yAxis);
                svg.append("path")
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                 .datum(nested_data)
                 .attr("d", line);
 
});
 
</script>
</body>
</html>
 

This code produces the graphic shown in Figure 6-8.

But this isn’t quite right. The shading of the path is based on the browser’s best guess of intent, shading what it 
perceives to be the closed areas. Let’s use CSS to explicitly turn off shading and instead set the color and width of the 
path line:
 
<style>
.trendLine {
 fill: none;
 stroke: #CC0000;
 stroke-width: 1.5px;
}
</style>
 

Figure 6-8.  Time series with line data but incorrect fill
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We created a style rule for any element on the page with the class trendLine. Let’s next add the class to the SVG 
path in the same block of code in which we create the path:
 
Svg.append("path")
 .datum(nested_data)
 .attr("d", line)
 .attr("class", "trendLine");
 

This code produces the chart shown in Figure 6-9.

Looking much better! There are some minor things we should change, such as adding text labels to the y-axis and 
trimming the width of the axis lines to make them neater:
 
.axis path{
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
 

This will give us tighter-looking axes. We just need to apply the style to the axes when we create them:
 
svg.append("g")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis)
 .attr("class", "axis");

Figure 6-9.  Time series with corrected line but unstyled axes
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svg.append("g")
 .call(yAxis)
 .attr("class", "axis");
 

The results can be seen in Figure 6-10.

Figure 6-10.  Time series upated with styled axes

This is great so far, but it shows no real benefit from doing this in R. In fact, we wrote quite a bit of additional code 
just to get parity and didn’t even do any data cleaning that we did in R.

The real benefit of using D3 is adding interactivity.

Adding Interactivity
Say we have this time series of new bugs, and we were curious what the bugs were in that large spike in mid-February. 
By taking advantage of the fact that we are working in HTML and JavaScript, we can extend this functionality by 
adding in a tooltip box that lists the bugs for each date.

To do this, we first should create obvious areas in which users can mouse over, such as red circles at each data 
point or discrete date. To do that, we simply need to create SVG circles right below where we added in the path, in 
the anonymous function that is fired when the external data is read in. We set the nested_data variable as the data 
attribute of the circles, make them red with a radius of 3.5, and set their x and y attributes to be tied to the date and 
bug totals, respectively:
 
svg.selectAll("circle")
.data(nested_data)
.enter().append("circle")
        .attr("r", 3.5)
        .attr("fill", "red")
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        .attr("cx", function(d) { return xScale(new Date(d.key)); })
        .attr("cy", function(d) { return yScale(d.values.length);})
 

This code updates the existing time series so it looks like Figure 6-11. These red circles are now areas of focus in 
which users can mouse over and see additional information.

Figure 6-11.  Circles added to each data point on the line

Let’s next code up a div to act as the tooltip that we will show with relevant bug data. To do this we will create 
a new div, right below where we created the line variable at the root of the script tag. We do this in D3 once again 
by selecting the body tag and appending a div to it, giving it a class and id of tooltip – both so that we can have 
the tooltip style apply to it (which we will create in just a minute) and so we can interact with it by ID later on in 
the chapter. We will have it be hidden by default. We will store a reference to this div in a variable that we will call 
tooltip:
 
var tooltip = d3.select("body")
 .append("div")
 .attr("class", "tooltip")
 .attr("id", "tooltip")
 .style("position", "absolute")
 .style("z-index", "10")
 .style("visibility", "hidden");
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We next need to style this div using CSS. We adjust the opacity to be only 75 percent visible, so that when the 
tooltip shows up over a trend line we can see the trend line behind it. We align the text, set the font size, make the div 
have a white background, and give it rounded corners:
 
.tooltip{
        opacity: .75;
        text-align:center;
        font-size:12px;
        width:100px;
        padding:5px;
        border:1px solid #a8b6ba;
        background-color:#fff;
        margin-bottom:5px;
        border-radius: 19px;
        -moz-border-radius: 19px;
        -webkit-border-radius: 19px;
}
 

We next have to add a mouseover event handler to the circles to populate the tooltip with information and unhide 
the tooltip. To do this, we return to the block of code in which we created the circles and add in a mousemove event 
handler that fires off an anonymous function.

Inside the anonymous function, we overwrite the innerHTML of the tooltip to display the date of the current red 
circle and how many bugs are associated with that date. We then loop through that list of bugs and write out the ID of 
each bug.
 
svg.selectAll("circle")
 .data(nested_data)
 .enter().append("circle")
 .attr("r", 3.5)
 .attr("fill", "red")
 .attr("cx", function(d) { return xScale(new Date(d.key)); })
 .attr("cy", function(d) { return yScale(d.values.length);})
 .on("mouseover", function(d){
 document.getElementById("tooltip").innerHTML = d.key + " " + d.values.length + " bugs<br/>";
 for(x=0;x<d.values.length;x++){
 document.getElementById("tooltip").innerHTML += d.values[x].ID + "<br/>";
 }
 tooltip.style("visibility", "visible");
 })
 

If we want to take this even further, we can create links for each bug ID that link back to the bug tracking software; 
list descriptions of each bug; and if the bug tracking software has an API to interface with, we can even have form 
fields that could let us update bug information right from this tooltip. Only our imagination and the tools available to 
us limit the possibilities of how far we can extend this concept.

Finally, we add a mousemove event handler to the red circles so that we can reposition the tooltip contextually 
whenever the users mouse over a red circle. To do this, we use the d3.mouse object to get the current mouse 
coordinates. We use these coordinates to simply reposition the tooltip with CSS. So we don’t cover the red circle with 
the tooltip, we offset the top property by 25 pixels and the left property by 75 pixels.
 
svg.selectAll("circle")
 .data(nested_data)
 .enter().append("circle")

r
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 .attr("r", 3.5)
 .attr("fill", "red")
 .attr("cx", function(d) { return xScale(new Date(d.key)); })
 .attr("cy", function(d) { return yScale(d.values.length);})
 .on("mouseover", function(d){
 document.getElementById("tooltip").innerHTML = d.key + " " + d.values.length + " bugs<br/>";
 for(x=0;x<d.values.length;x++){
 document.getElementById("tooltip").innerHTML += d.values[x].ID + "<br/>";
 }
 tooltip.style("visibility", "visible");
 })
 .on("mousemove", function(){
 return tooltip.style("top", (d3.mouse(this)[1] + 25)+"px").style("left",  
(d3.mouse(this)[0] + 70)+"px");
 });
 

A tooltip should display when the mouse hovers over one of the red circles (see Figure 6-12).

Figure 6-12.  Completed time series with rollover shown

The complete source code should now look like this:
 
<!DOCTYPE html>
<html>
<meta charset="utf-8">
<head>
<style>
body {
 font: 15px sans-serif;
}
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.trendLine {
 fill: none;
 stroke: #CC0000;
 stroke-width: 1.5px;
}
.axis path{
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}
.tooltip{
        opacity: .75;
        text-align:center;
        font-size:12px;
        width:100px;
        padding:5px;
        border:1px solid #a8b6ba;
        background-color:#fff;
        margin-bottom:5px;
        border-radius: 19px;
        -moz-border-radius: 19px;
        -webkit-border-radius: 19px;
}
</style>
</head>
<body>
        <script src="d3.v3.js"></script>
<script>
var margin = {top: 20, right: 20, bottom: 30, left: 50},
 width = 960 - margin.left - margin.right,
 height = 500 - margin.top - margin.bottom;
 
var parseDate = d3.time.format("%m-%d-%Y").parse;
var xScale = d3.time.scale()
 .range([0, width]);
var yScale = d3.scale.linear()
 .range([height, 0]);
var xAxis = d3.svg.axis()
         .scale(xScale)
         .orient("bottom");
var yAxis = d3.svg.axis()
         .scale(yScale)
         .orient("left");
var line = d3.svg.line()
 .x(function(d) { return xScale(new Date(d.key)); })
 .y(function(d) { return yScale(d.values.length); });
var tooltip = d3.select("body")
 .append("div")
 .attr("class", "tooltip")
 .attr("id", "tooltip")
 .style("position", "absolute")
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 .style("z-index", "10")
 .style("visibility", "hidden");

var svg = d3.select("body").append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
        .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

d3.csv("allbugsOrdered.csv", function(error, data) {
        data.forEach(function(d) {
                d.Date = parseDate(d.Date);
        });

 nested_data = d3.nest()
                .key(function(d) { return d.Date; })
                .entries(data);

         xScale.domain(d3.extent(nested_data, function(d) { return new Date(d.key); }));
         yScale.domain(d3.extent(nested_data, function(d) { return d.values.length; }));
         svg.append("g")
         .attr("transform", "translate(0," + height + ")")
         .call(xAxis)
         .attr("class", "axis");

                svg.append("g")
                 .call(yAxis)
         .attr("class", "axis");
                svg.append("path")
                 .datum(nested_data)
                 .attr("d", line)
         .attr("class", "trendLine");
                svg.selectAll("circle")
                 .data(nested_data)
                 .enter().append("circle")
                 .attr("r", 3.5)
                 .attr("fill", "red")
                 .attr("cx", function(d) { return xScale(new Date(d.key)); })
                 .attr("cy", function(d) { return yScale(d.values.length);})
                         .on("mouseover", function(d){
                                 document.getElementById("tooltip"). innerHTML = d.key + " " +  

d.values.length + " bugs<br/>";
                                 for(x=0;x<d.values.length;x++){
                                         document.getElementById("tooltip" ).innerHTML +=  

d.values[x].ID + "<br/>";
                               }
                                tooltip.style("visibility", "visible");
                })
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                        .on("mousemove", function(){
                                return tooltip.style("�top", (d3.mouse(this)[1] + 25)+"px").

style("left", (d3.mouse(this)[0] + 70)+"px");
 });
});
</script>
</body>
</html>

Summary
This chapter explored time series plots, both philosophically and in the context of using them to track bug creation 
over time. We exported the raw bug data from the bug tracking software of choice and imported it into R to scrub  
and analyze.

Within R we looked at different ways we could model and visualize the data, looking at both aggregate and 
granular details such as how the new bugs contribute to a running total over time or when new bugs are introduced 
over time. This is especially valuable when we can put context to the dates we are looking at.

We then read the data into D3 and created an interactive time series that allowed us to drill down from the  
high-level trend data into very granular details around each bug created.

The next chapter explores creating bar charts and how to use them to identify areas of focus and improvement.
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Chapter 7

Bar Charts

Chapter 6 explored using time series charts to look at defect data over time, and this chapter looks at bar charts, which 
display ordinal or ranked data relative to a specific data set. They usually consist of an x- and y-axis, and have bars or 
colored rectangles to indicate values of categories.

William Playfair created the bar chart in the first edition of The Commercial and Political Atlas in 1786 to show 
Scotland’s import and export data to and from different parts of the world (see Figure 7-1). He created it out of 
necessity; the other charts in the atlas were time series charts demonstrating hundreds of years’ worth of trade data, 
but for Scotland there was only 1 years’ worth of data. While using the time series chart, Playfair saw it as an inferior 
visualization; a compromise with resources on hand because it “does not comprehend any portion of time, and it is 
much inferior in utility to those that do” (Playfair, 1786, p. 101).

Figure 7-1.  William Playfair’s bar chart showing Scotland’s import and export data
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Playfair initially thought so little of his invention that he didn’t bother to include it in the subsequent second and 
third editions of the atlas. He went on to envision a different way to show parts of a whole; in doing so, he invented the 
pie chart for his Statistical Breviary published in 1801.

The bar chart is a great way to demonstrate ranked data not only because bars are a clear way to show differences 
in value but the pattern can also be extended to include more data points by using different types of bar charts such as 
stacked bar charts and grouped bar charts.

Standard Bar Chart
Let’s take data that you are already familiar with: the bugsBySeverity data from the last chapter:

> bugsBySeverity
           
              Blocker  Critical  Minor
  01-04-2013        0         0      2
  01-08-2013        1         0      3
  01-09-2013        3         0      2

You can create a new list with a sum of each bug type and visualize the totals in a bar chart like so:

totalBugsBySeverity <- c(sum(bugsBySeverity[,1]), sum(bugsBySeverity[,2]), sum(bugsBySeverity[,3]))

barplot(totalBugsBySeverity, main="Total Bugs by Severity")
axis(1, at=1: length(totalBugsBySeverity), lab=c("Blocker", "Critical", "Minor"))

This code produces the chart shown in Figure 7-2.

Figure 7-2.  Bar chart of bugs by severity
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Stacked Bar Chart
Stacked bar charts allow us to show subsections or segments within categories. Suppose you use the bugsBySeverity 
time series data and want to look at the breakdown of the criticality of the new bugs opened each day:
 
> t(bugsBySeverity)
            01-04-2013 01-08-2013 01-09-2013 01-10-2013
   Blocker           0          1          3          1
   Critical          0          0          0          0
   Minor             2          3          2          2
 

You can represent the following data with a stacked bar chart, as shown in Figure 7-3:

 barplot(t(bugsBySeverity), col=c("#CCCCCC", "#666666", "#AAAAAA"))
legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals", "Minors"),  
fill=c("#CCCCCC", "#666666", "#AAAAAA"))
 

Figure 7-3.  Stacked bar chart of bugs by severity and date

The total bugs are represented by the full height of the bar, and the colored segments of each bar represent the 
criticality of the bugs. On January 4th, there are two minor bugs; but the very next date has one blocker bug and three 
minor bugs, for a total of four bugs for that date. Stacked bar charts allow us to show nuance in our data.
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Grouped Bar Chart
Grouped bar charts allow us to show the same nuance as stacked bar charts, but instead of placing the segments on 
top of each other, we split them into side-by-side groupings. Figure 7-4 shows that each date on the x-axis has three 
bars associated with it, one for each criticality category:
 
barplot(t(bugsBySeverity), beside=TRUE, col=c("#CCCCCC", "#666666", "#AAAAAA"))
legend("topleft", inset=.01, title="Legend", c("Blocker", "Criticals", "Minors"),  
fill=c("#CCCCCC", "#666666", "#AAAAAA")) 

Figure 7-4.  Grouped bar chart of bugs by severity and date

Visualizing and Analyzing Production Incidents
If you work on a product that gets used by someone—an end user, a consuming service, or even an internal 
customer—you most likely have experienced a production incident. Production incidents occur when some part of 
an application misbehaves for a user in production. It is very much like a bug, but it is a bug that is experienced and 
reported by your customer.
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Just like bugs, production incidents are normal and expected results of software development. There are three 
main things to think about when talking about incidents:

•	 Severity, or how impactful is the error being reported: There is a big difference between a 
site outage and a small layout error.

•	 Frequency, or how often incidents are occurring or recurring: If your web app is riddled with 
issues, your customer experience, your brand, and your regular flow of work are all affected.

•	 Duration, or how long individual incidents linger: The longer they linger, the more 
customers are affected, and the worse the impact on your brand.

Handling production incidents is a big part of operationalizing your products and maturing your organization. 
Depending on how severe the incidents are, they can be disruptive to your regular body of work; the team might need 
to stop everything and work on a fix for the issue. Lesser-priority items can be queued and introduced to the regular 
body of work alongside regular feature work.

Just as important as handling production incidents is being able to analyze trends in production incidents to 
identify problem areas. Problem areas are usually features or sections that have frequent issues in production. Once 
we have identified problem areas, we can do root cause analysis and potentially start to build proactive scaffolding 
around these areas.

Note■■   Proactive scaffolding is a term I have coined that describes building fail-overs or additional safety rails to  
prevent issues in problem areas from recurring. Proactive scaffolding can be anything from detecting when users are 
close to capacity limits (such as the browser cookie limit, or application heap size and correcting before an issue  
happens), to noting performance issues with third-party assets and intercepting and optimizing them before they are 
presented to a client.

Another interesting way to handle production incidents is how Heroku handles them: putting them up on 
a timeline along with a visualization of month-over-month uptime and making it publicly available. Heroku’s 
production incident timeline is available at https://status.heroku.com/; see Figure 7-5.

https://status.heroku.com/
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Figure 7-5.  Heroku status page
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Figure 7-6.  Github status page

Github also has a great status page that visualizes key metrics around their performance and uptime (see Figure 7-6).
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For our purposes, this chapter uses bar charts to look at production incidents by feature to start to identify 
problem areas within our own products.

Plotting Data on a Bar Chart with R
If we want to plot out our production incidents, we must first get an export of the data, just as we needed to do for 
bugs. Because production incidents are generally single-hit items, companies usually use a range of methods to track 
them, from ticketing systems such as Jira (http://www.atlassian.com/software/jira/overview) to maintaining a 
spreadsheet of items. Whatever works—as long as we can retrieve the raw data. (Tom has made sample data available 
here: http://tom-barker.com/data/productionIncidents.txt.)

Once we have the raw data, it probably looks something like the following: a comma separated flat list with 
columns for an ID, a date stamp, and a description. There also should be a column that lists the feature or section of 
the application in which the incident occurred.
 
ID,DateOpened,DateClosed,Description,Feature,Severity
502,2013-03-09,2013-03-09,Site Down,Site,1
501,2013-03-07,2013-03-09,Videos Not Playing,Video,2
 

Let’s read the raw data into R and store it in a variable called prodData:
 
prodIncidentsFile <- '/Applications/MAMP/htdocs/productionIncidents.txt'
prodData <- read.table(prodIncidentsFile, sep=",", header=TRUE)
prodData
   ID DateOpened DateClosed  Description Feature Severity
1 502 2013-03-09 2013-03-09  Site Down    Site        1
2 501 2013-03-07 2013-03-09  Videos Not Playing Video 2
 

We want to group them by the Feature column so that we can chart feature totals. To do this, we use the 
aggregate() function in R. The aggregate() function takes an R object, a list to use as grouping elements, and a 
function to apply to the grouping elements. So suppose we call the aggregate() function, pass in the ID column as 
the R object, have it grouped by the Feature column, and have R get the length for each feature grouping:
 
prodIncidentByFeature <- aggregate(prodData$ID, by=list(Feature=prodData$Feature), FUN=length)
 

This code creates an object that looks like the following:
 
> prodIncidentByFeature
  Feature x
1    Cart 1
3 Logging 1
5    Site 1
2    Heap 3
4   Login 3
6   Video 5
 

We can then pass this object into the barplot() function to get the chart shown in Figure 7-7.

barplot(prodIncidentByFeature$x)

http://www.atlassian.com/software/jira/overview
http://tom-barker.com/data/productionIncidents.txt
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This is a nice start and does tell a story, but it’s not very descriptive. Besides the fact that the x-axis isn’t labeled, 
the problem areas are obscured by not ordering the results.

Ordering Results
Let’s use the order() function to order the results by the total count of each incident by feature:

prodIncidentByFeature <- prodIncidentByFeature[order(prodIncidentByFeature$x),]

We can then format the bar chart to highlight this ordering by layering the bars horizontally and rotating the text 
90 degrees.

To rotate the text, we must change our graphical parameters using the par() function. Updating the graphical 
parameters has global implications, meaning that any chart that we create after updating inherits the changes, so we 
need to preserve the current settings and reset them after we create our bar chart. We store our current settings in a 
variable that we call opar:

opar <- par(no.readonly=TRUE) 

Note   If you are following along in an r command line, the previous line by itself does not generate anything; it just 
sets graphical parameters.

We then pass new parameters into the par() call. We can use the las parameter to format the axis. The las
parameter accepts the following values:

par(las=1)

Figure 7-7. Beginning a bar chart
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0 is the default behavior where the text is parallel to the axis•	

1 explicitly makes the text horizontal•	

2 makes the text perpendicular to the axis•	

3 explicitly makes the text vertical•	

 We then call barplot() again, but this time pass in the parameter horiz=TRUE, to have R draw the bars 
horizontally instead of vertically:
 
barplot(prodIncidentByFeature$x, xlab="Number of Incidents", names.arg=prodIncidentByFeature$ 
Feature, horiz=TRUE, space=1, cex.axis=0.6, cex.names=0.8, main="Production Incidents by Feature", 
col= "#CCCCCC")
 

And finally we restore the saved settings so that future charts don’t inherit this charts settings.
 
> par(opar)
 

This code produces the visualization shown in Figure 7-8.

Figure 7-8.  Bar chart of production incidents by feature

From this chart, you can see that the biggest problem area is video playback, followed by login and memory 
usage issues.
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Creating a Stacked Bar Chart
How severe are the issues around these features? Let’s next create a stacked bar chart to see the breakdown of severity 
for each production incident. To do that, we must create a table in which we break down our production incidents by 
feature and by severity. We can use the table() function for this, as we did for bugs in the last chapter:
 
prodIncidentByFeatureBySeverity <- table(factor(prodData$Feature),prodData$Severity)
 

This code creates a variable formatted as shown in Figure 7-9, with rows representing each feature and columns 
representing each level of severity: 

> prodIncidentByFeatureBySeverity
          
          1 2 3 4
  Cart    1 0 0 0
  Heap    0 3 0 0
  Logging 0 0 0 1
  Login   0 3 0 0
  Site    1 0 0 0
  Video   0 1 3 1
  
opar <- par(no.readonly=TRUE)
par(las=1, mar=c(10,10,10,10))
barplot(t(prodIncidentByFeatureBySeverity), xlab="Number of Incidents", names.arg=rownames 
(prodIncidentByFeatureBySeverity), horiz=TRUE, space=1, cex.axis=0.6, cex.names=0.8, 
main="Production Incidents by Feature", col=c("#CCCCCC", "#666666", "#AAAAAA", "#333333"))
legend("bottomright", inset=.01, title="Legend", c("Sev1", "Sev2", "Sev3", "Sev4"), 
fill=c("#CCCCCC", "#666666", "#AAAAAA", "#333333"))
par(opar) 

Figure 7-9.  Stacked bar chart of production incidents by feature and by severity



Chapter 7 ■ Bar Charts

144

Interesting! We lost our ordering, but that’s because we have a number of new data points to choose from. 
High-level aggregates are less relevant for this chart; more important is the breakdown of severity.

From this chart, you can see that although the video feature has the most number of production incidents, there 
also seems to be serious recurring issues with login and heap usage because they have the highest number of high 
severity production incidents—both have three Severity 2 incidents each. Site and login both had one Severity 1 issue 
each, but because they don’t seem to be recurring, there doesn’t look to be a problem area there, at least not that we 
can determine yet with the current sample size.

Bar Charts in D3
So now you know the benefits of having bar charts to aggregate data at a high level and of getting the granular 
breakdown that stacked bar charts can expose. Let’s switch gears and use D3 to see how to create a high–level bar 
chart that allows us to drill into each bar to see a granular representation of the data at runtime.

We start by creating a bar chart in D3 and then create a stacked bar chart. When our users mouse over the bar 
chart, we will overlay the stacked bar chart to show how the data is broken down in real time.

Creating a Vertical Bar Chart
Because we made a horizontal bar chart in D3 back in Chapter 4, we will now make a vertical bar chart. Following the 
same pattern that we established in previous chapters, we first create a base HTML skeletal structure that includes  
a link to the D3 library. We use the same base style rules that we used in the last chapter for body text and axis path, 
and an additional rule to color all elements within a bar class a dark grey:
 
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title></title>
<script src="d3.v3.js"></script>
<style type="text/css">
     body {
          font: 15px sans-serif;
     }
     .axis path{
          fill: none;
          stroke: #000;
          shape-rendering: crispEdges;
     }
     .bar {
          fill: #666666;
     }
</style>
</head>
<body></body>
</html>
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Next, we create the script tag to hold all the charting code and the initial set of variables to hold the sizing 
information: the base height and width, D3 scale objects for the x- and y-coordinate information, an object to hold the 
margin information, and an adjusted height value that takes the top and bottom margins out of the total height:
 
<script>
var w = 960,
    h = 500,
    x = d3.scale.ordinal().rangeRoundBands([0, w]),
    y = d3.scale.linear().range([0, h]),
    z = d3.scale.ordinal().range(["lightpink", "darkgray", "lightblue"])
    margin = {top: 20, right: 20, bottom: 30, left: 40},
    adjustedHeight = 500 - margin.top - margin.bottom;
</script>
 

We next create the x-axis object. Remember from previous chapters that the axis is not yet drawn, so we need to 
call it later within the Scalable Vector Graphics (SVG) tag that we will create to draw the axis:
 
var xAxis = d3.svg.axis()
    .scale(x)
    .orient("bottom");
 

Let’s draw the SVG container to the page. This will be the parent container for everything else that we will draw to 
the page.
 
var svg = d3.select("body").append("svg")
    .attr("width", w)
    .attr("height", h)
  .append("g")
 

The next step is to read in the data. We will use the same data source as our R example: the flat file 
productionIncidents.txt. We can read this in using the d3.csv() function to read in and parse the file. Once the 
contents of the file are read in, they are stored in the variable data, but if any error occurs, we will store the error 
details in a variable that we call error. 
 
d3.csv("productionIncidents.txt", function(error, data) {
}
 

Within the scope of this d3.csv() function is where we will put the majority of our remaining functionality 
because that functionality depends on having the data proceed.

Let’s aggregate the data by feature. To do this, we use the d3.nest() function and set the key to the Feature 
column:
 
nested_data = d3.nest()
     .key(function(d) { return d.Feature; })
     .entries(data);
 

This code creates an array of objects that looks like the following:
 
>>> nested_data
[Object {key="Site",  values=[1]},
     Object { key="Video",  values=[5]},
     Object { key="Cart",  values=[1]},
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     Object { key="Logging",  values=[1]},
     Object { key="Login",  values=[3]},
     Object { key="Heap",  values=[3]}
]
 

Within this array, each object has a key that lists the feature and an array of objects that list each production 
incident. The objects should look like Figure 7-10.

Figure 7-10.  Inspecting the object in Firebug

We use this data structure to create the core bar chart. We make a function to do this:
 
function barchart(){
}
 

In this function, we set the transform attribute of the svg element, which sets the coordinates to contain the 
image that will be drawn. In this case, we constrain it to the margin left and top values:
 
svg.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
 

We also create scale objects for the x- and y-axes. For bar charts, we generally use ordinal scales for the x-axis 
because they are used for discrete values such as categories. More information about ordinal scales in D3 can be 
found in the documentation at https://github.com/mbostock/d3/wiki/Ordinal-Scales.

We also create scale objects to map the data to the bounds of the chart:
 
var xScale = d3.scale.ordinal()
     .rangeRoundBands([0, w], .1);
var yScale = d3.scale.linear()
     .range([h, 0]);
xScale.domain(data.map(function(d) { return d.key; }));
yScale.domain([0, d3.max(nested_data, function(d) { return d.values.length; })]);
 

We next need to draw the bars. We create a selection based on the Cascading Style Sheets (CSS) class that we 
assign to the bars. We bind the nested_data to the bars, create SVG rectangles for each key value in nested_data, and 
assign the bar class to each rectangle; we’ll define the class style rule soon. We set the x coordinate of each bar to the 
ordinal scale, and set both the y coordinate and the height attribute to the linear scale.

We also add a mouseover event handler and put a call to a function that we will soon create called 
transitionVisualization(). This function transitions the stacked bar chart that we will make over the bar chart 
when we mouse over one of the bars.
 

https://github.com/mbostock/d3/wiki/Ordinal-Scales
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svg.selectAll(".bar")
     .data(nested_data)
     .enter().append("rect")
     .attr("class", "bar")
     .attr("x", function(d) { return xScale(d.key); })
     .attr("width", xScale.rangeBand())
     .attr("y", function(d) { return yScale(d.values.length) - 50; })
     .attr("height", function(d) { return h - yScale(d.values.length); })
     .on("mouseover", function(d){
          transitionVisualization (1)
     })
 

Let’s also add in a call to a function that we will create called drawAxes():
 
drawAxes()
 

The complete barchart() function looks like this:
 
  function barchart(){
          svg.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
          var xScale = d3.scale.ordinal()
              .rangeRoundBands([0, w], .1);
          var yScale = d3.scale.linear()
              .range([h, 0]);
      xScale.domain(nested_data.map(function(d) { return d.key; }));
      yScale.domain([0, d3.max(nested_data, function(d) { return d.values.length; })]);
      svg.selectAll(".bar")
          .data(nested_data)
        .enter().append("rect")
          .attr("class", "bar")
          .attr("x", function(d) { return xScale(d.key); })
          .attr("width", xScale.rangeBand())
          .attr("y", function(d) { return yScale(d.values.length) - 50; })
          .attr("height", function(d) { return h - yScale(d.values.length); })
          .on("mouseover", function(d){
                           transitionVisualization (1)
          })
    drawAxes()
  }
 

If we put a call to barchart() at the bottom of the script tag and we run what we have so far in a browser, the bar 
chart is nearly complete, as shown in Figure 7-11.
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Figure 7-12.  Bar chart with x-axis

Figure 7-11.  Beginings of a bar chart in D3

Let’s create the drawAxes() function. We place this function outside the scope of the d3.csv() function, out at 
the root of the script tag.

For this chart, let’s go with a little more of a minimalist approach and draw only the x-axis. Just like the last 
chapter, we draw SVG g elements and call the xAxis object:
 
function drawAxes(){
     svg.append("g")
          .attr("class", "x axis")
          .attr("transform", "translate(0," + adjustedHeight + ")")
          .call(xAxis);
}
 

This draws the x-axis that gives the bar chart its category labels shown in Figure 7-12.
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Creating a Stacked Bar Chart
Now that we have a bar chart, let’s create a stacked bar chart. First, let’s shape the data. We want an array of objects in 
which each object represents a feature and has a count of total incidents for each level.

Let’s start with a new array called grouped_data:
 
var grouped_data = new Array();
 

Let’s iterate through nested_data because nested_data already has taken care of grouping by feature:
 
nested_data.forEach(function (d) {
}
 

Within each pass through nested_data, we create a temporary object and iterate through each incident within 
the values array:
 
tempObj = {"Feature": d.key, "Sev1":0, "Sev2":0, "Sev3":0, "Sev4":0};
     d.values.forEach(function(e){
     }
 

Within each iteration in the values array, we test the severity of the current incident and increment the 
appropriate property of the temporary object:
 
if(e.Severity == 1)
     tempObj.Sev1++;
else if(e.Severity == 2)
     tempObj.Sev2++
else if(e.Severity == 3)
     tempObj.Sev3++;
else if(e.Severity == 4)
     tempObj.Sev4++;
 

The complete code to create the grouped_data array looks like the following:
 
nested_data.forEach(function (d) {
     tempObj = {"Feature": d.key, "Sev1":0, "Sev2":0, "Sev3":0, "Sev4":0};
     d.values.forEach(function(e){
          if(e.Severity == 1)
               tempObj.Sev1++;
          else if(e.Severity == 2)
               tempObj.Sev2++
          else if(e.Severity == 3)
               tempObj.Sev3++;
          else if(e.Severity == 4)
               tempObj.Sev4++;
     })
     grouped_data[grouped_data.length] = tempObj
});
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This code produces an array of objects that are all formatted as follows with a Feature attribute and a count for 
each level of severity:

Feature "Video"

Sev1 0

Sev2 1

Sev3 3

Sev4 1

Perfect! Next we create a function in which we draw the stacked bar chart within the scope of the d3.csv() 
function:
 
function stackedBarChart(){
}
 

Here’s where it gets interesting. Using the d3.layout.stack() function, we transpose our data so that we have 
an array in which each index represents one of the levels of severity and contains an object for each feature that has a 
count of each incident for the respective level of severity:
 
var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].map(function(sevs)
     {
          return grouped_data.map(function(d) {
          return {x: d.Feature, y: +d[sevs]};
    });
  }));
 

The sevStatus array should look like the data structure shown in Figure 7-13.

Figure 7-13.  Inspecting the sevStatus array in Firebug
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We next use sevStatus to create domain maps for the x- and y- values of the bar segments that we will draw:

x.domain(sevStatus[0].map(function(d) { return d.x; }));
y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return d.y0 + d.y; })]);

Next we draw SVG g elements for each index in the sevStatus array. They serve as containers in which we draw 
the bars. We bind sevStatus to these grouping elements and set the fill attribute to return one of the colors from the 
array of colors:

var sevs = svg.selectAll("g.sevs")
     .data(sevStatus)
     .enter().append("g")
     .attr("class", "sevs")
     .style("fill", function(d, i) { return z(i); });

Finally, we draw the bars within the groupings that we just created. We bind a generic function to the data
attribute of the bars that just passes through whatever data is passed to it; this inherits from the SVG groupings.

We draw the bars with the opacity set to 0, so the bars are not initially visible. We also attach mouseover and 
mouseout event handlers, to call transitionVisualization() – passing 1 when the mouseover event is fired, and 0 
when the mouseout event is fired (we will flesh out the functionality of transitionVisualization() very soon):

var rect = sevs.selectAll("rect")
     .data(function(data){ return data; })
     .enter().append("svg:rect")
     .attr("x", function(d) { return x(d.x) + 13; })
     .attr("y", function(d) { return -y(d.y0) - y(d.y) + adjustedHeight; })
     .attr("class", "groupedBar")
     .attr("opacity", 0)
     .attr("height", function(d) { return y(d.y) ; })
     .attr("width", x.rangeBand() - 20)
     .on("mouseover", function(d){
          transitionVisualization (1)
     })
     .on("mouseout", function(d){
     transitionVisualization (0)
     });

The complete stacked bar chart code should look like the following; it produces the stacked bar chart shown  
in Figure 7-14.



Chapter 7 ■ Bar Charts

152

 function groupedBarChart(){
     var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].map(function(sevs)
     {
          return grouped_data.map(function(d) {
          return {x: d.Feature, y: +d[sevs]};
    });
  }));
     x.domain(sevStatus[0].map(function(d) { return d.x; }));
     y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return d.y0 + d.y; })]);
  // Add a group for each sev category.
     var sevs = svg.selectAll("g.sevs")
          .data(sevStatus)
          .enter().append("g")
          .attr("class", "sevs")
          .style("fill", function(d, i) { return z(i); })
          .style("stroke", function(d, i) { return d3.rgb(z(i)).darker(); });
     var rect = sevs.selectAll("rect")
          . data(function(data){ return data; })
          .enter().append("svg:rect")
          .attr("x", function(d) { return x(d.x) + 13; })
          .attr("y", function(d) { return -y(d.y0) - y(d.y) + adjustedHeight; })
           .attr("class", "groupedBar")
          .attr("opacity", 0)
          .attr("height", function(d) { return y(d.y) ; })
          .attr("width", x.rangeBand() - 20)
          .on("mouseover", function(d){
               transitionVisualization (1)
          })
          .on("mouseout", function(d){
          transitionVisualization (0)
          });
  }
 

Figure 7-14.  Stacked bar chart in D3
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Creating an Overlaid Visualization
But we’re not quite done yet. We’ve been referencing this transitionVisualization() function, but we haven’t yet 
defined it. Let’s take care of that right now. Remember how we’ve been using it: when a user mouses over a bar in our 
bar chart, we call transitionVisualization() and pass in a 1. When a user mouses over a bar in our stacked bar 
chart, we also call transitionVisualization() and pass in a 1. But when a user mouses off a bar in the stacked bar 
chart, we call transitionVisualization() and pass in a 0.

So the parameter that we pass in sets the opacity of our stacked bar chart. Because we initially draw the stacked 
bar chart with the opacity at 0, we only ever see it when a user rolls over a bar in the bar chart, and it gets hidden again 
when the user rolls off of the bar.

To create this effect, we use a D3 transition. Transitions are much like tweens in other languages such 
as ActionScript 3. We create a D3 selection (in this case, we can select all elements of class groupedBar), call 
transition(), and set the attributes of that selection that we want to change:
 
function transitionVisualization(vis){
     var rect = svg.selectAll(".groupedBar")
     .transition()
     .attr("opacity", vis)
}
 

The completed code looks like the following, and although it’s hard to demonstrate this functionality via a 
printed medium, you can see the working model on Tom’s web site (available at http://tom-barker.com/demo/ 
data_vis/chapter7/chapter7example.htm) or put the code onto a local web server and run it yourself:
 
<!DOCTYPE html>
<html>
  <head>
          <meta charset="utf-8">
    <title></title>
        <script src="d3.v3.js"></script>
        <style type="text/css">
        body {
          font: 15px sans-serif;
        }
        .axis path{
          fill: none;
          stroke: #000;
          shape-rendering: crispEdges;
        }
        .bar {
          fill: #666666;
        }
    </style>  </head>
  <body>
    <script type="text/javascript">
 
var w = 960,
    h = 500,
    x = d3.scale.ordinal().rangeRoundBands([0, w]),
    y = d3.scale.linear().range([0,h]),
    z = d3.scale.ordinal().range(["lightpink", "darkgray", "lightblue"])

http://tom-barker.com/demo/data_vis/chapter7/chapter7example.htm
http://tom-barker.com/demo/data_vis/chapter7/chapter7example.htm
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    margin = {top: 20, right: 20, bottom: 30, left: 40},
    adjustedHeight = 500 - margin.top - margin.bottom;
         
        var xAxis = d3.svg.axis()
            .scale(x)
            .orient("bottom");
         
        var svg = d3.select("body").append("svg")
            .attr("width", w)
            .attr("height", h)
          .append("g")
          
        function drawAxes(){
          svg.append("g")
              .attr("class", "x axis")
              .attr("transform", "translate(0," + adjustedHeight + ")")
              .call(xAxis);
           
         }
          
         function transitionVisuaization(vis){
                 var rect = svg.selectAll(".groupedBar")
                .transition()
                .attr("opacity", vis)
         }
         
        d3.csv("productionIncidents.txt", function(error, data) {
                 
            nested_data = d3.nest()
                         .key(function(d) { return d.Feature; })
                         .entries(data);
         
                var grouped_data = new Array();
                 
                //for stacked bar chart
                nested_data.forEach(function (d) {
                         tempObj = {"Feature": d.key, "Sev1":0, "Sev2":0, "Sev3":0, "Sev4":0};
                         d.values.forEach(function(e){
                                 if(e.Severity == 1)
                                 tempObj.Sev1++;
                                 else if(e.Severity == 2)
                                 tempObj.Sev2++
                                 else if(e.Severity == 3)
                                 tempObj.Sev3++;
                                 else if(e.Severity == 4)
                                 tempObj.Sev4++;
                         })
                         grouped_data[grouped_data.length] = tempObj
                });
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function stackedBarChart(){
  var sevStatus = d3.layout.stack()(["Sev1", "Sev2", "Sev3", "Sev4"].map(function(sevs) {
    return grouped_data.map(function(d) {
      return {x: d.Feature, y: +d[sevs]};
    });
  }));
   
  x.domain(sevStatus[0].map(function(d) { return d.x; }));
  y.domain([0, d3.max(sevStatus[sevStatus.length - 1], function(d) { return d.y0 + d.y; })]);
 
  // Add a group for each sev category.
  var sevs = svg.selectAll("g.sevs")
      .data(sevStatus)
    .enter().append("g")
      .attr("class", "sevs")
      .style("fill", function(d, i) { return z(i); });
 
  var rect = sevs.selectAll("rect")
      .data(function(data){ return data; })
    .enter().append("svg:rect")
      .attr("x", function(d) { return x(d.x) + 13; })
      .attr("y", function(d) { return -y(d.y0) - y(d.y) + adjustedHeight; })
          .attr("class", "groupedBar")
          .attr("opacity", 0)
      .attr("height", function(d) { return y(d.y) ; })
      .attr("width", x.rangeBand() - 20)
          .on("mouseover", function(d){
                  transitionVisuaization(1)
          })
          .on("mouseout", function(d){
                  transitionVisuaization(0)
          });
  }
   
  function barchart(){
          svg.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
 
          var xScale = d3.scale.ordinal()
              .rangeRoundBands([0, w], .1);
 
          var yScale = d3.scale.linear()
              .range([h, 0]);
                                                                     
      xScale.domain(nested_data.map(function(d) { return d.key; }));
      yScale.domain([0, d3.max(nested_data, function(d) { return d.values.length; })]);
 
      svg.selectAll(".bar")
          .data(nested_data)
        .enter().append("rect")
          .attr("class", "bar")
          .attr("x", function(d) { return xScale(d.key); })
          .attr("width", xScale.rangeBand())
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          .attr("y", function(d) { return yScale(d.values.length) - 50; })
          .attr("height", function(d) { return h - yScale(d.values.length); })
          .on("mouseover", function(d){
                           transitionVisuaization(1)
          })
         
        stackedBarChart()
    drawAxes()
         
  }
 
  barchart();
 
});
 
    </script>
  </body>
</html>
 

Summary
This chapter looked at using bar charts to display ranked data in the context of production incidents. Because 
production incidents are essentially direct feedback from your user base around how your product is misbehaving or 
failing, managing production incidents is a critical piece of any mature engineering organization.

Managing production incidents isn’t simply about responding to issues as they arise, however; it is also about 
analyzing the data around your incidents: what areas of your application are breaking frequently, what unexpected 
patterns of use you see in production that could cause these recurring issues, how to build proactive scaffolding to 
prevent these and future issues. All these are questions you can answer only by fully understanding your product and 
your data. In this chapter, you took your first step toward that greater understanding.
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Chapter 8

Correlation Analysis with  
Scatter Plots

In the last chapter, you looked at using bar charts to analyze production incidents. You saw that bar charts are great  
for displaying the differences in a ranked data set, and you used this idea to identify areas in which issues recurred. 
You also used stacked bar charts to see the granular breakdown in the severity of production incidents.

This chapter looks at correlation analysis with scatter plots. Scatter plots are charts that plot two independent 
data sets on their own axes, displayed as points on a Cartesian grid (x- and y coordinates). As you’ll see, scatter plots 
are used to try and identify relationships between the two data points.

Note■■   Michael Friendly and Daniel Denis have published a thoughtful and thoroughly researched dissertation on the 
history of scatter plots, originally published by the Journal of the History of the Behavioral Sciences, Vol. 41 in 2005,  
and available on Friendly’s website at http://www.datavis.ca/papers/friendly-scat.pdf. This article is absolutely 
recommended reading because it tries to trace back the very first recorded scatter plots and the first time a chart was 
called a scatter plot, and very deftly delineates the difference between a scatter plot and a time series (a time series 
always has time as one of the data points, but scatter plots can have any discrete values as data points).

Finding Relationships in Data
The pattern, or lack of a pattern, that the points form on a scatter plot indicates the relationship. At a very high level, 
relationships can be:

Positive correlation, in which one variable increases as the other increases. This is •	
demonstrated by the dots forming a line trending diagonally upward from left to right  
(see Figure 8-1).

http://www.datavis.ca/papers/friendly-scat.pdf
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Negative correlation, in which one variable increases as the other decreases. This is •	
demonstrated by the dots forming a line trending downward from left to right (see Figure 8-2).

Figure 8-1.  Scatter plot showing positive correlation between total phones in  
North America and Europe

Figure 8-2.  Scatter plot showing negative correlation between body weight and time  
passing (for a person on a diet)
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No correlation, demonstrated (or not) by a scatter plot that has no discernible trend line  •	
(see Figure 8-3).

Figure 8-3.  Scatter plot showing no correlation between number of accidental deaths in the  
United States over years

Of course, simply identifying correlation between two data points or data sets does not imply that there is direct 
cause in the relationship—hence the convention that correlation does not imply causation. For example, see the 
negative correlation chart in Figure 8-2. If we were to assume direct causation between the two axes—weight and 
number of days—we would be assuming that the passing of time caused body weight to decrease.

Although scatter plots are great for analyzing the relationship between two sets of data, there is a related pattern 
that can be used to introduce a third set of data as well. This visualization is called a bubble chart and it uses the 
radius of the points in a scatter plot to expose the third dimension of data.

See Figure 8-4 for a bubble chart that shows the correlation in length of tooth growth in guinea pigs and doses 
of vitamin C administered. The third data point is the method of delivery: either by vitamin supplement or by orange 
juice. It is added as the radius of each point in the graphic; the larger circle is the vitamin supplement and the smaller 
circle is orange juice.



Chapter 8 ■ Correlation Analysis with Scatter Plots 

160

For our purposes in this chapter, we will use scatter plots and bubble charts to look at the implied relationship 
that team velocity has with our other areas of focus, in effect doing correlation analysis on team dynamics. We will 
compare things like team size and velocity, velocity and production incidents, and so on.

Introductory Concepts of Agile Development
Let’s start by introducing some preliminary concepts of Agile development. If you are already versed in Agile, this 
section will be a bit of a review. There are many flavors of Agile development, but the high-level concepts that most 
have in common are the ideas of time boxing a body of work. Time boxing enables the team to focus on one thing and 
finish it, allowing the stakeholders to quickly give feedback on what was completed. This short feedback loop allows 
for teams and stakeholders to pivot, or react and change direction as requirements and even industries change.

This span of time that the team works on the body of work—whether it is 1 week, 3 weeks, or what have you—is 
called a sprint. At the end of a sprint, the team doing the work should have releasable code, though releasing after 
each sprint is not a requirement.

Sprints begin with a planning session in which teams define the body of work, and sprints end with a review 
session in which the team goes over the body of work completed. Periodically during a sprint, the team grooms 
new work to complete; it defines the work in user stories that list acceptance criteria. It is these user stories that get 
prioritized and committed to in the planning sessions held at the beginning of each sprint.

See Figure 8-5 for a high-level workflow of this process.

Figure 8-4.  Correlation of tooth growth and doses of vitamin C in guinea pigs, both by vitamin supplement and by 
orange juice
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User stories have story points associated with them. Story points are estimates of the level of complexity for the 
story and are usually a numeric value. As teams complete sprints, they begin to form a consistent velocity. Velocity is 
the average amount of story points that a team will complete in a sprint.

Velocity is important because you use it to estimate how much your team can complete at the start of each sprint 
and to project out how much of your backlog of work the team may be able to complete from your roadmap over the 
course of the year.

There are a number of tools available to manage Agile projects, such as Rally (http://www.rallydev.com/) or 
Greenhopper from Atlassian (http://www.atlassian.com/software/greenhopper/overview), the same company 
that makes Jira and Confluence. Whatever tool you use should provide the ability to export your data, including user 
point counts for each sprint.

Correlation Analysis
To begin the analysis, let’s export a totaled sum of story points for each sprint along with the team name. We should 
compile all these data points into a single file that we will name teamvelocity.txt. Our file should look something 
like the following, which shows data for the 12.1 and 12.2 sprints for the teams named Red and Gold (arbitrary names 
for teams that are working on the same product just with different bodies of work):

Sprint,TotalPoints,Team
12.1,25,Gold
12.1,63,Red
12.2,54,Red
...

Let’s add an additional column in there to represent the total team members on each team for each sprint.  
The data should now look like so:

Sprint,TotalPoints,TotalDevs,Team
12.1,25,6,Gold
12.1,63,10,Red
12.2,54,9,Red
...

We have also made this sample data set available here: http://tom-barker.com/data/teamvelocity.txt.
Excellent, let’s now read this into R:

tvFile <- "/Applications/MAMP/htdocs/teamvelocity.txt"
teamvelocity <- read.table(tvFile, sep=",", header=TRUE)

Grooming Planning Sprint Review

Figure 8-5. High-level workflow for Agile development

http://www.rallydev.com/
http://www.atlassian.com/software/greenhopper/overview
http://tom-barker.com/data/teamvelocity.txt
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Creating a Scatter Plot
Now create a scatter plot using the plot() function to compare the total points that the teams completed in each 
sprint against how many members were on the team for each sprint. We pass teamvelocity$TotalPoints and 
teamvelocity$TotalDevs as the first two parameters, set the type to p, and give meaningful labels for the axes:
 
plot(teamvelocity$TotalPoints,teamvelocity$TotalDevs, type="p", ylab="Team Members", 
xlab="Velocity", bg="#CCCCCC", pch=21)
 

This creates the scatter plot that we can see in Figure 8-6; we can see that as we add more members to a team,  
the number of story points that they can complete in an iteration, or sprint, also increases.

Figure 8-6.  Correlation of team velocity and total team members

Creating a Bubble Chart
If we want a greater insight into the data that we have so far, for example, to show which points belong to which team, 
we could visualize that information with a bubble chart. We can create bubble charts using the symbols() function. 
We pass in TotalPoints and TotalDevs into symbols(), just as we did for plot(), but we also pass in the Team column 
into a parameter named circles. This specifies the radius of the circle to draw on the chart. Because for our example 
Team is a string, R converts it to a factor. We also set the color of the circle with the bg parameter and the stroke color  
of the circle with the fg parameter.

symbols(teamvelocity$TotalPoints, teamvelocity$TotalDevs, circles=teamvelocity$Team, inches=0.35, 
fg="#000000", bg="#CCCCCC", ylab="Team Members", xlab="Velocity")
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The previous R code should produce a bubble chart that looks like Figure 8-7.

Visualizing Bugs
The bubble chart shown in Figure 8-7 is of limited use, mainly because the team breakdown is not really a relevant 
data point. Let’s take the teamvelocity.txt file and begin to layer in more information. We already discussed tracking 
bug data back in Chapter 6; now let’s use our bug-tracking software and add in two new bug–related data points: the 
total bugs in each team’s backlog at the end of each sprint and how many bugs were opened within each sprint. We’ll 
name the columns for these new data points BugBacklog and BugsOpened, respectively.

The updated file should look something like this:
 
Sprint,TotalPoints,TotalDevs,Team,BugBacklog,BugsOpened
12.1,25,6,Gold,125,10
12.2,42,8,Gold,135,30
12.3,45,8,Gold,150,25
 

Let’s next create a scatter plot with this new data. We’ll first compare velocity against bugs opened during  
each iteration:
 
plot(teamvelocity$TotalPoints,teamvelocity$BugsOpened, type="p", xlab="Velocity", ylab="Bugs Opened 
During Sprint", bg="#CCCCCC", pch=21)
 

This creates the scatter plot shown in Figure 8-8.

Figure 8-7.  Correlation of team velocity, total team members, with size of bubble indicating team
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Now this is very interesting. There a positive correlation between having more people on a team and getting more 
done (or at least getting more complex work done), and the more story points that are completed, the more bugs are 
generated. So an increase in complexity correlates to an increase in the number of bugs created in a given sprint.  
At least that seems to be implied by my data.

Let’s reflect this new data point in the existing bubble chart; instead of sizing circles by team, we size them by 
bugs opened:
 
symbols(teamvelocity$TotalPoints, teamvelocity$TotalDevs, circles=teamvelocity$BugsOpened, 
inches=0.35, fg="#000000", bg="#CCCCCC", ylab="Team Members", xlab="Velocity", main = "Velocity by 
Team Size by Bugs Opened")
 

This code produces the bubble chart shown in Figure 8-9; you see that the sizing of the bubbles follows the 
existing pattern of positive correlation, in that the bubbles get larger as both the number of team members and the 
team velocity increases.

Figure 8-8.  Correlation of team velocity and bugs opened
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Let’s next create a scatter plot to look at the total bug backlog after each sprint:
 
plot(teamvelocity$TotalPoints,teamvelocity$BugBacklog, type="p", xlab="Velocity", ylab="Total Bug 
Backlog", bg="#CCCCCC", pch=21)
 

This code produces the chart shown in Figure 8-10.

Figure 8-9.  Correlation of team velocity and team size, where circle size indicates bugs opened
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This figure shows that no correlation exists. This could be because of any number of reasons: maybe the team has 
been fixing bugs during the sprint or maybe they are closing all the bugs opened during the course of the iteration. 
Determining the root cause is beyond the scope of the scatter plot, but we can tell that while the bugs being opened 
and the level of complexity increases, the total bug backlog does not increase.

Visualizing Production Incidents
Let’s next layer in another data point into the file; we’ll add a column for production incidents opened against 
the work done during the sprint. To be very specific, when a body of work in a sprint is completed, it is released 
to production, and a release number is generally associated with that release. This last data point we discuss is 
concerned with tracking issues in production against the release for a given iteration. Not issues that came in during 
the iteration; issues that came in once the work done in the iteration was pushed to production.

Now let’s add in the last column, named ProductionIncidents:
 
Sprint,TotalPoints,TotalDevs,Team,BugBacklog,BugsOpened,ProductionIncidents
12.1,25,6,Gold,125,10,1
12.2,42,8,Gold,135,30,3
12.3,45,8,Gold,150,25,2
 

Figure 8-10.  Correlation of team velocity by total bug backlog
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Great, let’s next create a new bubble chart with this data, comparing total story points completed, bugs opened 
each iteration, and production incidents per release:
 
symbols(teamvelocity$TotalPoints, teamvelocity$BugsOpened,  
circles=teamvelocity$ProductionIncidents, inches=0.35, fg="#000000", bg="#CCCCCC", ylab="Bugs 
Opened", xlab="Velocity", main = "Velocity by Bugs Opened by Production Incidents Opened")
 

This code creates the chart shown in Figure 8-11.

Figure 8-11.  Correlation of team velocity and bugs opened, where the size of the circle indicates the number of 
production incidents

From this chart you can see that, at least according to our sample data, there exists a positive correlation between 
total story points completed, bugs opened, and production incidents opened for a given sprint.

Finally, now that all the data is layered into the flat file, we can create a scatter plot matrix. This is a matrix of all 
the columns compared with each other with scatter plots. We can use the scatter plot matrix to look at all the data at 
once and quickly pick out any correlation patterns that may exist in the data set. We can create a scatter plot matrix 
with just the plot() function or with the pairs() function in the graphics package:
 
plot(teamvelocity)
pairs(teamvelocity)
 

Either one produces the chart shown in Figure 8-12.
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Figure 8-12, each row represents one of the columns in the data frame and each scatter plot represents the 
intersection of those columns. When you scan over each scatter plot in the matrix, you can clearly see the correlation 
patterns in the combinations already covered this chapter.

We made the R code from this chapter available on RPubs at this location: http://rpubs.com/tomjbarker/5461.

Figure 8-12.  Scatter plot matrix of our complete data set

http://rpubs.com/tomjbarker/5461
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Interactive Scatter Plots in D3
So far in this chapter, we’ve been creating different scatter plots to represent the data combinations that we wanted 
to look at. But what if we want to create a scatter plot that allows us to select the data points on which the axes were 
based? With D3 we can do just that!

Adding the Base HTML and JavaScript
Let’s start with the base HTML structure that has d3.js included as well as the base CSS:
 
<!DOCTYPE html>
<html>
  <head>
          <meta charset="utf-8">
    <title></title>
<style>
 
body {
  font: 15px sans-serif;
}
 
.axis path{
  fill: none;
  stroke: #000;
  shape-rendering: crispEdges;
}
 
 
.dot {
  stroke: #000;
}
 
</style>
</head>
<body>
<script src="d3.v3.js"></script>
</body>
</html>
 

Let’s next add in the script tag to hold the chart. Just like the previous D3 examples, include the starting 
variables, margin, x and y range objects, and x and y axis objects:
 
<script>
var margin = {top: 20, right: 20, bottom: 30, left: 40},
    width = 960 - margin.left - margin.right,
    height = 500 - margin.top - margin.bottom;
 
var x = d3.scale.linear()
    .range([0, width]);
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var y = d3.scale.linear()
    .range([height, 0]);
 
var xAxis = d3.svg.axis()
    .scale(x)
    .orient("bottom");
 
var yAxis = d3.svg.axis()
    .scale(y)
    .orient("left");
</script>
 

Let’s also create the SVG tag on the page as in the previous examples:
 
var svg = d3.select("body").append("svg")
    .attr("width", width + margin.left + margin.right)
    .attr("height", height + margin.top + margin.bottom)
  .append("g")
    .attr("transform", "translate(" + margin.left + "," + margin.top + ")"); 

Loading the Data
Now we need to load in the data using the d3.csv() function. In all previous D3 examples, most of the work was done 
in the scope of the callback function, but for this example we need to expose our functionality publicly so we can 
change the data points via form select elements. Yet we still need to drive the initial functionality from the callback 
function because that’s when we will have our data, so we will set up our callback function to call stubbed-out public 
functions.

We set a public variable that we call chartData to the data returned from the flat file and call two functions called 
removeDots() and setChartDots():
 
d3.csv("teamvelocity.txt", function(error, data) {
          chartData = data;
          removeDots()
          setChartDots("TotalDevs", "TotalPoints")
});
 

Notice that we passed in "TotalDevs" and "TotalPoints" to the setChartDots() function. This is to prime the 
pump because they will be the initial data points we show when the page loads.

Adding Interactive Functionality
Now we need to actually create the things we stubbed out. First, let’s create the variable chartData at the root of the 
script tag where we set the other variables:
 
var margin = {top: 20, right: 20, bottom: 30, left: 40},
    width = 960 - margin.left - margin.right,
    height = 500 - margin.top - margin.bottom,
    chartData;
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Next, we create the removeDots() function, which selects any circles or axes on the page and removes them:

function removeDots(){
      svg.selectAll("circle")
           .transition()
               .duration(0)
               .remove()
      svg.selectAll(".axis")
             .transition()
             .duration(0)
             .remove()
}

And finally we create the setChartDots() functionality. The function accepts two parameters: xval and yval. 
Because we want to make sure that the D3 transitions are finished running and they have a 250-millisecond default 
runtime, even when we set the duration to 0, we will wrap the contents of the function in a setTimeout() call so we 
wait 300 milliseconds before starting to draw our chart. If we don’t do this, we could enter into a race condition in 
which we are drawing to screen as the transition is removing from the screen.

function setChartDots(xval, yval){
         setTimeout(function() {

         }, 300);
  }

Within the function, we set the domains of the x and y scale objects using the xval and yval parameters. These 
parameters correspond to the column names of the data points that we will be charting:

x.domain(d3.extent(chartData, function(d) { return d[xval];}));
y.domain(d3.extent(chartData, function(d) { return d[yval];}));

Next we draw the circles to the screen, using the global chartData variable to feed it and the passed-in columnal 
data as the x and y coordinates of the circles. We also grow the axes in this function, so that we redraw the values each 
time an axis is changed.

svg.selectAll(".dot")
     .data(chartData)
     .enter().append("circle")
     .attr("class", "dot")
     .attr("r", 3)
     .attr("cx", function(d) { return x(d[xval]);})
     .attr("cy", function(d) { return y(d[yval]);})
     .style("fill", "#CCCCCC");
               
svg.append("g")
     .attr("class", "axis")
     .attr("transform", "translate(0," + height + ")")
     .call(xAxis)

 svg.append("g")
     .attr("class", "axis")
     .call(yAxis)
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The complete function should look like the following:
 
function setChartDots(xval, yval){
       setTimeout(function() {
        x.domain(d3.extent(chartData, function(d) { return d[xval];}));
        y.domain(d3.extent(chartData, function(d) { return d[yval];}));
         
        svg.selectAll(".dot")
            .data(chartData)
          .enter().append("circle")
            .attr("class", "dot")
            .attr("r", 3)
            .attr("cx", function(d) { return x(d[xval]);})
            .attr("cy", function(d) { return y(d[yval]);})
            .style("fill", "#CCCCCC");
      
            svg.append("g")
                .attr("class", "axis")
                .attr("transform", "translate(0," + height + ")")
                .call(xAxis)
  
            svg.append("g")
                .attr("class", "axis")
                .call(yAxis)
                
       }, 300);
}
 

Excellent!

Adding Form Fields
Let’s next add in the form fields. We’ll add two select elements, where each option corresponds to a column in the 
flat file. The elements call a JavaScript function, getFormData(), that we will define shortly:
 
<form>
        Y-Axis:
        <select id="yval" onChange="getFormData()">
                 <option value="TotalPoints">Total Points</option>
                 <option value="TotalDevs">Total Devs</option>
                 <option value="Team">Team</option>
                 <option value="BugsOpened">Bugs Opened</option>
                 <option value="ProductionIncidents">Production Incidents</option>
        </select>
        X-Axis:
        <select id="xval" onChange="getFormData()">
                 <option value="TotalPoints">Total Points</option>
                 <option value="TotalDevs">Total Devs</option>
                 <option value="Team">Team</option>
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                 <option value="BugsOpened">Bugs Opened</option>
                 <option value="ProductionIncidents">Production Incidents</option>
        </select>
</form> 

Retrieving Form Data
The last bit of functionality left is to code the getFormData() function. This function pulls out the selected options 
from both select elements and use those values to pass in to setChartDots()—after calling removeDots(), of course.
 
function getFormData(){
       var xEl = document.getElementById("xval")
       var yEl = document.getElementById("yval")
       var x = xEl.options[xEl.selectedIndex].value
       var y = yEl.options[yEl.selectedIndex].value
       removeDots()
       setChartDots(x,y)
}
 

Great!

Using the Visualization
The complete source code should look like the following:
 
<!DOCTYPE html>
<html>
  <head>
          <meta charset="utf-8">
    <title></title>
<style>
 
body {
  font: 10px sans-serif;
}
 
.axis path,
.axis line {
  fill: none;
  stroke: #000;
  shape-rendering: crispEdges;
}
 
.dot {
  stroke: #000;
}
 
</style>
</head>
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<body>
        <form>
                Y-Axis:
                <select id="yval" onChange="getFormData()">
                         <option value="TotalPoints">Total Points</option>
                         <option value="TotalDevs">Total Devs</option>
                         <option value="Team">Team</option>
                         <option value="BugsOpened">Bugs Opened</option>
                         <option value="ProductionIncidents">Production Incidents</option>
                </select>
                X-Axis:
                <select id="xval" onChange="getFormData()">
                         <option value="TotalPoints">Total Points</option>
                         <option value="TotalDevs">Total Devs</option>
                         <option value="Team">Team</option>
                         <option value="BugsOpened">Bugs Opened</option>
                         <option value="ProductionIncidents">Production Incidents</option>
                </select>
        </form>
<script src="d3.v3.js"></script>
<script>
 
var margin = {top: 20, right: 20, bottom: 30, left: 40},
    width = 960 - margin.left - margin.right,
    height = 500 - margin.top - margin.bottom,
        chartData;
 
var x = d3.scale.linear()
    .range([0, width]);
 
var y = d3.scale.linear()
    .range([height, 0]);
 
var xAxis = d3.svg.axis()
    .scale(x)
    .orient("bottom");
 
var yAxis = d3.svg.axis()
    .scale(y)
    .orient("left");
 
var svg = d3.select("body").append("svg")
    .attr("width", width + margin.left + margin.right)
    .attr("height", height + margin.top + margin.bottom)
  .append("g")
    .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
         
    svg.append("g")
        .attr("class", "x axis")
        .attr("transform", "translate(0," + height + ")")
        .call(xAxis)
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    svg.append("g")
        .attr("class", "y axis")
        .call(yAxis)
 
   function getFormData(){
          var xEl = document.getElementById("xval")
          var yEl = document.getElementById("yval")
          var x = xEl.options[xEl.selectedIndex].value
          var y = yEl.options[yEl.selectedIndex].value
          removeDots()
          setChartDots(x,y)
   }
    
   function removeDots(){
         svg.selectAll("circle")
              .transition()
                  .duration(0)
                  .remove()
         svg.selectAll(".axis")
                 .transition()
                .duration(0)
                .remove()
   }
         
  function setChartDots(xval, yval){
         setTimeout(function() {
          x.domain(d3.extent(chartData, function(d) { return d[xval];}));
          y.domain(d3.extent(chartData, function(d) { return d[yval];}));
           
          svg.selectAll(".dot")
              .data(chartData)
            .enter().append("circle")
              .attr("class", "dot")
              .attr("r", 3)
              .attr("cx", function(d) { return x(d[xval]);})
              .attr("cy", function(d) { return y(d[yval]);})
              .style("fill", "#CCCCCC");
        
               svg.append("g")
                  .attr("class", "axis")
                  .attr("transform", "translate(0," + height + ")")
                  .call(xAxis)
  
              svg.append("g")
                  .attr("class", "axis")
                  .call(yAxis)
                  
         }, 300);
  }
         



Chapter 8 ■ Correlation Analysis with Scatter Plots 

176

d3.csv("teamvelocity.txt", function(error, data) {
          chartData = data;
          removeDots()
          setChartDots("TotalDevs", "TotalPoints")
});
</script>
</body>
</html>
 

And it should create the interactive visualization shown in Figure 8-13.
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Figure 8-13.  Interactive scatter plot with D3

Summary
This chapter looked at correlations between the speed at which a team moves and the opening of bugs and 
production issues. There is naturally a positive correlation between these data points: when we make new things,  
we create new opportunities for those new things and existing things to break.

Of course, that doesn’t mean that we should stop making new things, even if for some reason our business 
units and our very industries would allow it. It means that we need to find balance between making new things and 
nurturing and maintaining the things that we already have. This is exactly what we will look at in the next chapter.
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Chapter 9

Visualizing the Balance of Delivery  
and Quality with Parallel Coordinates

The last chapter looked at using scatter plots to identify relationships between sets of data. It discussed the different 
types of relationships that could exist between data sets, such as positive and negative correlation. We couched this 
idea in the premise of team dynamics: Do you see any correlation between the amount of people on a team and  
the amount of work that the team can complete, or between the amount of work completed and the number of 
defects generated?

In this chapter we tie together the key concepts that we have been talking about: visualizing, team feature work, 
defects, and production incidents. We will tie them together using a data visualization called parallel coordinates  
to show the balance between these efforts.

What Are Parallel Coordinate Charts?
Parallel coordinate charts are a visualization that consists of N amount of vertical axes, each representing a unique 
data set, with lines drawn across the axes. The lines show the relationship between the axes, much like scatter  
plots, and the patterns that the lines form indicate the relationship. We can also gather details about the 
relationships between the axes when we see a clustering of lines. Let’s take a look at this using the chart in  
Figure 9-1 as an example.
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I constructed the chart in Figure 9-1 from the data set Seatbelts that comes built into R. To see a breakdown of 
the data set, type ?Seatbelts at the R command line. I extracted a subset of the columns available to better highlight 
the relationships in the data:
 
cardeaths <- data.frame(Seatbelts[,1], Seatbelts[,5], Seatbelts[,6], Seatbelts[,8])
colnames(cardeaths) <- c("DriversKilled", "DistanceDriven", "PriceofGas", "SeatbeltLaw")
 

The data set represents the number of drivers killed in car accidents in Great Britain before and after it became 
compulsory to wear seat belts. The axes represent the number of drivers killed, the distance driven, the cost of gas at 
the time, and whether there was a seat belt law in place.

There are a number of useful ways to look at parallel coordinates. If we look at the lines between a single pair of 
axes, we can see the relationships between those data sets. For example, if we look at the relationship between the 
price of gas and the seat belt law, we can see that the price of gas is constrained pretty tightly for when the seat belt law 
was in place, but covered a large range of prices for when the seat belt law was not in place (that is, a lot of disparate 
lines converge on the point that represents the time before the law, and a narrow band of lines converge on the time 
after the law was passed). This relationship could imply many different things, but because I know the data, I know 
it’s because we just have a much smaller sample size for deaths after the law was put in place: 14 years’ worth of data 
before the seat belt law, but only 2 years’ worth of data after the seat belt law.

We can also trace lines across all the axes to see how each of the axes relates. This is difficult to do with all the 
lines the same color, but when we change the color and shading of the lines, we can more easily see the patterns 
across the chart. Let’s take the existing chart and assign colors to the lines; (the results display in Figure 9-2):
 
parcoord(cardeaths, col=rainbow(length(cardeaths[,1])), var.label=TRUE)
 

Figure 9-1.  Parallel coordinates for Seatbelts data set
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Note■■  Y ou need to import the MASS library to use the parcoord() function.

Figure 9-2 begins to show the patterns that exist in the data. The lines that have the lowest number of deaths also 
have the most distances driven and mainly fall into the point in time after the seat belt law was enacted. Again, note 
that we do have a much smaller sample size available for post–seat belt law than we do pre–seat belt law, but you can 
see how it becomes useful and telling to be able to trace the interconnectedness of these data points.

History of Parallel Coordinate Plots
The idea of using parallel coordinates on vertical axes was invented in 1885 by Maurice D’Ocagne when he created  
the nomograph and the field of nomography. Nomographs are tools to calculate values across mathematical 
rules. The classic example of a nomograph still in use today is the line on a thermometer that shows values in both 
Fahrenheit and Celsius. Or think of rulers that show values in inches on one side and centimeters on the other.

Note■■  R on Doerfler has written an extensive thesis on nomography available here:  
http://myreckonings.com/wordpress/2008/01/09/the-art-of-nomography-i-geometric-design/.  
Doerfler also hosts a site called Modern Nomograms, (http://www.myreckonings.com/modernnomograms/) that  
“offers eye-catching and useful graphical calculators uniquely designed for today's applications.”

Figure 9-2.  Parallel coordinates for Seatbelts data set, with each line a different shade of grey

http://myreckonings.com/wordpress/2008/01/09/the-art-of-nomography-i-geometric-design/
http://www.myreckonings.com/modernnomograms/
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You can see examples of modern nomograms, courtesy of Ron Doerfler, in Figures 9-3 and 9-4.

Figure 9-3.  Nomogram demonstrating the conversion of values between the functions S, P, R, and T
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Note T  the term parallel coordinates and the concept that it represents was popularized and rediscovered by alfred 
inselberg while studying at the university of illinois. Dr. inselberg is currently a professor at tel aviv university and a 
senior fellow at the san Diego supercomputing Center. Dr. inselberg has also published a book on the subject, Parallel 
Coordinates: Visual Multidimensional Geometry and Its Applications (springer, 2009). he has also published a dissertation 
on how to effectively read and use parallel coordinates, entitled the Multidimensional Detective, available from the ieee.

Finding Balance
We understand that parallel coordinates are used to visualize the relationship between multiple variables, but how does 
that apply to what we have been talking about so far this book? So far, we discussed quantifying and visualizing the defect 
backlog, the sources of the production incidents, and even the amount of work that our teams commit to. Arguably, 
balancing these aspects of product development can be one of the most challenging activities that a team does.

With each iteration, either formal or informal, team members have to decide how much effort they should put 
toward each of these concerns: working on new features, fixing bugs on existing features, and addressing production 
incidents from direct feedback from users. And these are just a sampling of the nuances that every product team must 
juggle; they also may have to factor in time to spend on technical debt or updating infrastructure.

We can use parallel coordinates to visualize this balance, both for documentation and as a tool for analysis when 
starting new sprints.

Figure 9-4. Curvel scale nomogram, courtesy of Ron Doerfler, Leif Roschier, and Joe Marasco
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Creating a Parallel Coordinate Chart
There are several different approaches to creating a parallel coordinate chart. Using the data from the previous 
chapter, we could look at the running totals per iteration. Recall that the data was a total of points committed to per 
iteration, as well as a snapshot of how many bugs and production incidents were in each team’s backlog, how many 
new bugs were opened during the iteration, and how many members there were on the team. The data looked much 
like this:
 
  Sprint TotalPoints TotalDevs Team BugBacklog BugsOpened ProductionIncidents
1   12.10          25         6 Gold        125         10                   1
2   12.20          42         8 Gold        135         30                   3
3   12.30          45         8 Gold        150         25                   2
4   12.40          43         8 Gold        149         23                   3
5   12.50          32         6 Gold        155         24                   1
6   12.60          43         8 Gold        140         22                   4
7   12.70          35         7 Gold        132          9                   1
 
...
 

To make use of this data, we can read it in to R, just as we did in the last chapter:
 
tvFile <- "/Applications/MAMP/htdocs/teamvelocity.txt"
teamvelocity <- read.table(tvFile, sep=",", header=TRUE)
 

We then can create a new data frame with all the columns from the teamvelocity variable except the Team 
column. That column is a string, and the R parcoord() function, which we use in this example, throws an error if  
we include strings in the object that we pass in to it. Team information wouldn’t make sense in this context, either. 
The lines that will be drawn in the chart will be representative of our teams:
 
t<- data.frame(teamvelocity$Sprint, teamvelocity$TotalPoints, teamvelocity$TotalDevs, 
teamvelocity$BugBacklog, teamvelocity$BugsOpened, teamvelocity$ProductionIncidents)
colnames(t) <- c("sprint", "points", "devs", "total bugs", "new bugs", "prod incidents")
 

We pass the new object into the parcoord() function. We also pass the rainbow() function into the color 
parameter, as well as set the var.label parameter to true, to make the upper and lower boundaries of each axis 
visible on the chart:
 
parcoord(t, col=rainbow(length(t[,1])), var.label=TRUE)
 

This code produces the visualization shown in Figure 9-5.
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Figure 9-5 presents some interesting stories for us. We can see that some teams in our data set create more bugs as they 
take on more points’ worth of work. Other teams have a large bug backlog while not creating a large number of new bugs 
during each iteration, which implies that they are not closing the bugs that they do open. Some teams are more consistent 
than others. All contain insights that the teams can use for reflection and continual improvement. But ultimately this chart 
is reactive and talks around the main issues. It tells us what the effects of each sprint are on our respective backlogs, both 
bugs and production incidents. It also tells us how many bugs were opened during each sprint.

What the figure doesn’t show is the amount of effort spent working against each backlog. To show that, we need 
to do a bit of prep work.

Adding in Effort
Past chapters I mentioned Greenhopper and Rally as ways to plan iterations, prioritize backlogs, and track progress 
on user stories. No matter the product you choose, it should provide some way to categorize or tag your user stories 
with metadata. Some very simple ways to accomplish this categorization without needing your software to support it 
include these:

Put tagging in the title of each user story (see Figure •	 9-6 for an example of what this could look 
like in Rally). With this method, you need to sum the level of effort for each category, either 
manually or programmatically.

Figure 9-5.  Parallel coordinate chart of different aspects of overall organizationa metrics, including points committed 
to per iteration, total developers by team, total bug backlog, new bugs open, and production incidents
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Nest subprojects for each delineation of effort.•	

However you go about creating these buckets, you should have a way to track the amount of effort spent during 
each sprint for your categories. To visualize this, just export it from your favorite tool into a flat file that resembles the 
structure shown here:
 
iteration,defect,prodincidents,features,techdebt,innovation
13.1,6,3,13,2,1
13.2,8,1,7,2,1
13.3,10,1,9,3,2
13.5,9,2,18,10,3
13.6,7,5,19,8,3
13.7,9,5,21,12,3
13.8,6,7,11,14,3
13.9,8,3,16,18,3
13.10,7,4,15,5,3
 

To begin using this data, we need to import the contents of the flat file into R. We store the data in a variable 
named teamEffort and pass teamEffort into the parcoord() function:
 
teFile <- "/Applications/MAMP/htdocs/teamEffort.txt"
teamEffort <- read.table(teFile, sep=",", header=TRUE)
parcoord(teamEffort, col=rainbow(length(teamEffort[,1])), var.label=TRUE, main="Level of Effort 
Spent")
 

This code produces the chart shown in Figure 9-7.

Figure 9-6.  User stories tagged by category, Defect, Feature, or Prod Incident (courtesy of Rally)
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This chart is less about seeing relationships implied by data and more about seeing explicit levels of effort 
committed to each sprint. In a vacuum, these data points are meaningless, but when you look at both charts and 
compare the total bug backlog and total production incidents, compared with the level of effort spent addressing 
either, you begin to see blind spots that the team would need to address. Blind spots might be where teams that have 
high bug backlogs or production incident counts are not spending enough effort to address those backlogs.

Brushing Parallel Coordinate Charts with D3
The trick to reading dense parallel coordinate plots is to use a technique called brushing. Brushing fades the color or 
opacity of all the lines on the chart, except for the lines you want to trace across the axes. We can achieve this level of 
interactivity using D3.

Figure 9-7.  Parallel coordinate plot of level of effort spent toward each initiative
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Creating the Base Structure
Let’s start by creating a new HTML file using our base HTML skeletal structure:
 
<!DOCTYPE html>
<html>
  <head>
          <meta charset="utf-8">
    <title></title>
</head>
<body>
<script src="d3.v3.js"></script>
</body>
</html>
 

We then create a new script tag to hold the JavaScript for the chart. In this tag, we start by creating the variables 
needed to set the height and width of the chart, an object to hold the margin values, an array of axes column names, 
and the scale object for the x object.

We also create variables to reference the D3 SVG line object, a reference to the D3 axis, and a variable named 
foreground to hold the groupings of all the paths that will be the lines drawn between axes in the chart: 
 
<script>
 
var margin = {top: 80, right: 160, bottom: 200, left: 160},
     width = 1280 - margin.left - margin.right,
     height = 800 - margin.top - margin.bottom,
         cols = ["iteration","defect","prodincidents","features","techdebt","innovation"]
                 
var x = d3.scale.ordinal().domain(cols).rangePoints([0, width]),
    y = {};
 
var line = d3.svg.line(),
    axis = d3.svg.axis().orient("left"),
    foreground;
</script>
 

We draw the SVG element to the page and store it in a variable that we name svg:
 
var svg = d3.select("body").append("svg")
    .attr("width", width + margin.left + margin.right)
    .attr("height", height + margin.top + margin.bottom)
  .append("g")
    .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
 

We use d3.csv to load in the teameffort.txt flat file:
 
d3.csv("teameffort.txt", function(error, data) {
 
}
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So far, we’re following the same format as in previous chapters: lay out variables at the top, create the SVG 
element, and load in the data; most of the data-dependent logic happens in the anonymous function that fires when 
the data has been loaded.

For parallel coordinates, this process changes a bit right here because we need to create y-axes for each column 
in our data.

Creating a y-axis for Each Column
To create a y-axis for each column, we have to loop through the array that holds the column names, convert the 
contents of each column to explicitly be numbers, create an index in the y variable for each column, and create  
a D3 scale object for each column:
 
cols.forEach(function(d) {
        //convert to numbers
        data.forEach(function(p) { p[d] = +p[d]; });
         
        //create y scale for each column
        y[d] = d3.scale.linear()
                .domain(d3.extent(data, function(p) { return p[d]; }))
               .range([height, 0]);
}); 

Drawing the Lines
We need to draw the lines that will traverse each axis, so we create an SVG grouping to aggregate and hold all the lines. 
We assign the foreground class to the grouping (doing so is important because we will handle the brushing of the 
lines via CSS):
 
foreground = svg.append("g")
        .attr("class", "foreground")
 

We append SVG paths to this grouping. We attach the data to the paths, set the color of the paths to randomly 
generated colors, and stub out mouseover and mouseout event handlers. We also set the d attribute of the paths to  
a function that we will create called path().

We’ll come back to those event handlers in a minute.
 
           foreground = svg.append("g")
               .attr("class", "foreground")
             .selectAll("path")
               .data(data)
             .enter().append("path")
           .attr("stroke", function(){return "#" + Math.floor(Math.random()*16777215).
toString(16);})
               .attr("d", path)
               .attr("width", 16)
                   .on("mouseover", function(d){
 
                   })
                   .on("mouseout", function(d){
 
                   })
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Let’s flesh out the path() function. In this function, we accept a parameter named d, which will be an index of the 
data variable. The function returns a mapping of the path coordinates with the x and y scales:
 
function path(d) {
     return line(cols.map(function(p) { return [x(p), y[p](d[p])]; }));
}
 

The path() function returns data that looks much like the following—a multidimensional array with each index 
and array consisting of two coordinate values:
 
[[0, 520], [192, 297.14285714285717], [384, 346.6666666666667], [576, 312], [768, 491.1111111111111], 
[960, 520]] 

Fading the Lines
Let’s take a step back for a second. To handle the brushing, we need to create a style rule to fade the opacity of the 
lines. So let’s return to the head section of the page and create a style tag and some style rules.

We set path.fade as the selector and set the stroke-opacity to 40%. While we’re at it, we also set body font styles 
and path styles:
 
<style>
body {
  font: 15px sans-serif;
  font-weight:normal;
}
path{
  fill: none;
  shape-rendering: geometricPrecision;
  stroke-width:1;
}
path.fade {
  stroke: #000;
  stroke-opacity: .04;
}
</style>
 

Let’s return to the stubbed out event handlers. D3 provides a function called classed() that allows us to add 
classes to selections. In the mouseover handler, we use the classed() function to apply the fade style that we just 
created to every path in the foreground. It fades out each line. We’ll next target the current selection, using  
d3.select(this) and use classed() to turn off the fade styling.

In the mouseout handler, we turn off the fade style:
 
          foreground = svg.append("g")
               .attr("class", "foreground")
             .selectAll("path")
               .data(data)
             .enter().append("path")
           .attr("stroke", function(){return "#" + Math.floor(Math.random()*16777215).toString(16);})
               .attr("d", path)
               .attr("width", 16)

-
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                   .on("mouseover", function(d){
                           foreground.classed("fade",true)
                           d3.select(this).classed("fade", false)
                  })
                  .on("mouseout", function(d){
                           foreground.classed("fade",false)
                  }) 

Creating the Axes
Finally, we need to create the axes:
 
var g = svg.selectAll(".column")
               .data(cols)
             .enter().append("svg:g")
               .attr("class", "column")
                   .attr("stroke", "#000000")
               .attr("transform", function(d) { return "translate(" + x(d) + ")"; })
               
           // Add an axis and title.
           g.append("g")
               .attr("class", "axis")
               .each(function(d) { d3.select(this).call(axis.scale(y[d])); })
             .append("svg:text")
               .attr("text-anchor", "middle")
               .attr("y", -19)
               .text(String);
 

Our complete code is as follows:
 
<!DOCTYPE html>
<html>
  <head>
          <meta charset="utf-8">
    <title></title>
<style>
 
body {
  font: 15px sans-serif;
  font-weight:normal;
}
 
path{
  fill: none;
  shape-rendering: geometricPrecision;
  stroke-width:1;
}
 
path.fade {
  stroke: #000;
  stroke-opacity: .04;
}
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</style>
</head>
<body>
<script src="d3.v3.js"></script>
<script>
 
var margin = {top: 80, right: 160, bottom: 200, left: 160},
     width = 1280 - margin.left - margin.right,
     height = 800 - margin.top - margin.bottom,
         cols = ["iteration","defect","prodincidents","features","techdebt","innovation"]
                 
var x = d3.scale.ordinal().domain(cols).rangePoints([0, width]),
    y = {};
 
var line = d3.svg.line(),
    axis = d3.svg.axis().orient("left"),
    foreground;
 
var svg = d3.select("body").append("svg")
    .attr("width", width + margin.left + margin.right)
    .attr("height", height + margin.top + margin.bottom)
  .append("g")
    .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
         
d3.csv("teameffort.txt", function(error, data) {
        cols.forEach(function(d) {
                //convert to numbers
            data.forEach(function(p) { p[d] = +p[d]; });
 
            y[d] = d3.scale.linear()
                .domain(d3.extent(data, function(p) { return p[d]; }))
                .range([height, 0]);
                   });
                    
           foreground = svg.append("g")
               .attr("class", "foreground")
             .selectAll("path")
               .data(data)
             .enter().append("path")
           .attr("stroke", function(){return "#" + Math.floor(Math.random()*16777215).
toString(16);})
               .attr("d", path)
               .attr("width", 16)
                  .on("mouseover", function(d){
                          foreground.classed("fade",true)
                          d3.select(this).classed("fade", false)
                  })
                  .on("mouseout", function(d){
                           foreground.classed("fade",false)
                  })
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           var g = svg.selectAll(".column")
               .data(cols)
             .enter().append("svg:g")
               .attr("class", "column")
                   .attr("stroke", "#000000")
               .attr("transform", function(d) { return "translate(" + x(d) + ")"; })
               
           // Add an axis and title.
           g.append("g")
               .attr("class", "axis")
               .each(function(d) { d3.select(this).call(axis.scale(y[d])); })
             .append("svg:text")
               .attr("text-anchor", "middle")
               .attr("y", -19)
               .text(String);
                    
                function path(d) {
                     return line(cols.map(function(p) { return [x(p), y[p](d[p])]; }));
                 }
           
          });
</script>
</body>
</html>

This code produces the chart shown in Figure 9-8.

Figure 9-8. Parallel coordinate chart created in D3
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If we roll over any of the lines, we see the brushing effect shown in Figure 9-9, in which the opacity of all the lines, 
except the one currently moused over, is scaled back.

Summary
This chapter looked at parallel coordinate charts. You got a taste of their history—how they came about originally in 
the form of nomograms used to show value conversions. You looked at their practical application in the context of 
visualizing how teams balance the different aspects of product development in the course of an iteration.

Parallel coordinates are the last visualization type covered in this book, but it is far from the last type of 
visualization out there. And this book is far from the last word on the subject. Something that I tell my students at the 
end of each semester is that I hope they will continue to use what they have learned in my class. Only by using the 
language or subject that was covered, by continually playing with it, exploring it, and testing the boundaries of it will 
students incorporate this new tool into their own skillset. Otherwise, if they leave the class (or, in this case, close the 
book) and not think about the subject for a good while, they will probably forget much of what we went over.

If you are a developer or technical leader, I hope that you read this book and were inspired to begin tracking 
your own data. This was just a small sampling of things that you can track. You can instrument your code to track 
performance metrics, as covered in my book Pro JavaScript Performance: Monitoring and Visualization, or you can 
use tools such as Splunk to create dashboards to visualize usage data and error rates. You can tap right into the source 
code repository database to get such metrics as what times and days of the week have the most commit activity to 
avoid scheduling meetings during those times.

The point of all this data tracking is self-improvement. To establish baselines of where you currently are and track 
progress toward where you want to be, to constantly refine your craft, and excel at what you do.

Figure 9-9.  Parallel coordinate chart with interactive brushing



A�       �
Access logs, 89

combined log format, 90
common log format, 90
data map, R

adding lattitude and longitude lines, 103
library() function, 100
map() function, 101
in R Markdown, 107
state data isolation, 105

parsing process, 90
control logic, 98
getLocationbyIP() function, 94
$logArray, 91
parseLog() function, 91
parseLogLine() function, 92, 94
$pattern, 92
preg_match() function, 93
regex, 92
writeRLog() function, 97

B�       �
Bar charts, 133

in D3, 144
grouped, 136
overlaid visualization, D3, 153
plotting data, R, 140

order() function, 141
stacked bar chart, 143

production incidents, 137
Github status page, 139
Heroku status page, 137

stacked, 135
bar chart code, 152
d3.layout.stack() function, 150
grouped_data, 149
sevStatus array, 151

standard, 134
vertical, 144

barchart() function, 147
CSS class, 146
d3.csv() function, 145
drawAxes() function, 147–148
transitionVisualization(), 146

C�       �
Cascading Style Sheets (CSS), 67
Comprehensive R Archive Network (CRAN), 26
Correlation analysis, 157, 161

agile development, 160
high level workflow, 161
projects management, 161

bubble chart, 162
bug visualization, 163

backlog, 166
data points, 163
opened and team velocity, 164
positive correlation, 165

data relationships, 157
negative correlation, scatter plot, 158
positive correlation, scatter plot, 158
of tooth growth, correlation, 160
without relation, 159

ProductionIncidents, 166
data set, plot matrix, 168
number of, size, 167
pairs() function, 167
plot() function, 167

scatter plot creation, 162
members of a team, 162
plot() function, 162
team velocity, 162

scatter plots in D3, 169
chartData, 171
data loading, 170

Index

193



data points, parameter, 171
form data retrieval, 173
form fields, 172
HTML structure, CSS, 169
interactive functionality, 170
removeDots() function, 171
script tag, 169
setChartDots() function, 171
visualization, 173

D, E, F, G�       �
D3, 65

append() function, 72
attr() function, 72
bar chart, 76

scale() function, 77
SVG container, 76
with text labels, 80

CSS, 67
data binding, 73
history of, 70
HTML, 65
JavaScript, 69
load external file

d3.text() function, 82
XHR transaction, 83

modern browsers, 66
project setup, 71
select() function, 72
SVG, 67

D3 library, 11
Data Analysis, R, 112

as.Date() function, 112
bug count calculation

cumsum() function, 114
totalBugsByDate, 113

order() function, 113
severity of bugs

blockers, 116
criticals, 116
minors, 116
plot() and lines() functions, 117
running tool, 118

Data maps, 85
source region and cattle consumption, 86
wine export path and destination, 87

Data visualization, 1–2
analysis tools, 11
Chartjunk, 10

charts
bar charts, 3
histograms, 4
time series charts, 2

Commercial and Political Atlas, 10
data maps, 5
data scrubbing, 17
ethics of, 22

cite sources, 23
visual cues, 23

FlowingData, 9
history of, 6

cholera map, 7
Commercial and Political Atlas, 6
mortality, 8
Playfair charts, 7
Statistical Breviary, 7

modern lanscape, 8
process overview

data analysis, 17
gathering data, 15
problem identification, 15
visualize data, 21

Radiation Dose Chart, 9
scatter plots, 5
sparklines, 10
Splunk, 10
tools

environments, 11
languages, 11
libraries, 11

Descriptive metrics, R
data sets, 52
median and mean, 55
quartiles, 55
standard deviation, 56
statistical analysis, 52
summary() function, 54
USArrests data set, 53

H�       �
HyperText Markup Language (HTML), 65

I�       �
Information graphics, 2

J, K, L�       �
JavaScript, 69

■ index

194

Correlation analysis (cont.)



M, N�       �
Modern browsers, 66

O�       �
Object-oriented programming, R, 47

IUser interface, 47
S3 classes

createPlaylist() function, 49
generic functions, 48
plot() generic function, 49
UseMethod() function, 50

S4 classes
new() function, 51
setClass() function, 51
setMethod() function, 51

P, Q�       �
Parallel Coordinate

balance identification, 181
addition of effort, 183
chart creation, 182
efforts, initiatives, 185
parcoord(), 182
rainbow() function, 183
user stories, 184

brushing with D3, 185
axes creation, 189
base structure, 186
fading the lines, 188
lines, draw, 187
references, variables, 186
SVG element, 186
y-axis creation, 187

charts, 177
differentiation of, 179
seatbelts data set, 178

plots history, 179
curve scale nomogram, 181
nomogram, 180

Proactive scaffolding, 137
Protovis, 70

R�       �
R Language, 11, 25

adding lists, 40
functions, 42
looping, 41

column names, 35
command history, 29
command-line environment, 29
console, 28

CRAN website, 27
data frames, 37
data types, 36

character and numeric modes, 36
paste() function, 36
substr() function, 36

document access, 30
Foundation Homepage, 26
functions, 44

closure, 45
lexical scoping, 44
wrapper() function, 45

header parameter, 34
import data, 33
on Mac, 27
matrices, 38
packages, 31
row identifiers, 35
string delimiter, 34

RStudio IDE, R, 57
homepage, 57
knitr package install, 60
panes, 58
R Markdown, 58
RPubs, 62
template, 61

S�       �
Scalable Vector Graphics (SVG), 67, 145
Splunk, 11

T, U�       �
Time series charts, 111
Tracking defects over time, 111

V, W, X, Y, Z�       �
Visualizing defects over time, 111

with D3, 119
d3.csv() function, 119
d3.nest() function, 120
drawing on page, 120
interactive time series, 126
mousemove event handler, 128–129
nested_data variable, 120
scale objects, 121
time series, styled axes, 126
time series, unstyled axes, 125
tooltip style, 127
trendLine class, 125
xScale scale object, 122
yScale object, 122

time series charts (see Time series charts)

■ Index

195



Pro Data Visualization using 
R and JavaScript

Tom Barker



Pro Data Visualization using R and JavaScript

Copyright © 2013 by Tom Barker

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. 
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material 
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the 
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the 
Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from 
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are 
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5806-3

ISBN-13 (electronic): 978-1-4302-5807-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Matthew Canning
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, 

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,  
Matthew Moodie, Jeff Olson, Jeffrey Pepper,  Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, 
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Christine Ricketts
Copy Editor: Nancy Sixsmith
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit   
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + 
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation. 

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook 
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at   
www.apress.com. For detailed information about how to locate your book’s source code, go to   
www.apress.com/source-code/. 

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/


For my grandmother, Ann Biango, who passed away during the creation of this book. I was very lucky  
to have her in my life for as long as I did.

 



vii

Contents

About the Author����������������������������������������������������������������������������������������������������������������xiii

About the Technical Reviewer��������������������������������������������������������������������������������������������� xv

Acknowledgments������������������������������������������������������������������������������������������������������������� xvii

Chapter 1: Background■■ �������������������������������������������������������������������������������������������������������1

What Is Data Visualization?������������������������������������������������������������������������������������������������������������2

Time Series Charts������������������������������������������������������������������������������������������������������������������������������������������������� 2

Bar Charts��������������������������������������������������������������������������������������������������������������������������������������������������������������� 3

Histograms������������������������������������������������������������������������������������������������������������������������������������������������������������� 4

Data Maps�������������������������������������������������������������������������������������������������������������������������������������������������������������� 5

Scatter Plots����������������������������������������������������������������������������������������������������������������������������������������������������������� 5

History�������������������������������������������������������������������������������������������������������������������������������������������������������������������� 6

Modern Landscape������������������������������������������������������������������������������������������������������������������������������������������������� 8

Why Data Visualization?���������������������������������������������������������������������������������������������������������������10

Tools���������������������������������������������������������������������������������������������������������������������������������������������10

Languages, Environments, and Libraries�������������������������������������������������������������������������������������������������������������� 11

Analysis Tools������������������������������������������������������������������������������������������������������������������������������������������������������� 11

Process Overview�������������������������������������������������������������������������������������������������������������������������14

Identify a Problem������������������������������������������������������������������������������������������������������������������������������������������������ 15

Gather Data����������������������������������������������������������������������������������������������������������������������������������������������������������� 15

Analyze Data��������������������������������������������������������������������������������������������������������������������������������������������������������� 17

Visualize Data������������������������������������������������������������������������������������������������������������������������������������������������������� 21



■ Contents

viii

Ethics of Data Visualization����������������������������������������������������������������������������������������������������������22

Cite Sources��������������������������������������������������������������������������������������������������������������������������������������������������������� 23

Be Aware of Visual Cues��������������������������������������������������������������������������������������������������������������������������������������� 23

Summary��������������������������������������������������������������������������������������������������������������������������������������23

Chapter 2: R Language Primer■■ �����������������������������������������������������������������������������������������25

Getting to Know the R Console�����������������������������������������������������������������������������������������������������25

The Command Line����������������������������������������������������������������������������������������������������������������������������������������������� 29

Command History������������������������������������������������������������������������������������������������������������������������������������������������� 29

Accessing Documentation������������������������������������������������������������������������������������������������������������������������������������ 30

Packages�������������������������������������������������������������������������������������������������������������������������������������������������������������� 31

Importing Data������������������������������������������������������������������������������������������������������������������������������33

Using Headers������������������������������������������������������������������������������������������������������������������������������������������������������ 34

Specifying a String Delimiter�������������������������������������������������������������������������������������������������������������������������������� 34

Specifying Row Identifiers������������������������������������������������������������������������������������������������������������������������������������ 35

Using Custom Column Names������������������������������������������������������������������������������������������������������������������������������ 35

Data Structures and Data Types���������������������������������������������������������������������������������������������������35

Data Frames��������������������������������������������������������������������������������������������������������������������������������������������������������� 37

Matrices���������������������������������������������������������������������������������������������������������������������������������������������������������������� 38

Adding Lists���������������������������������������������������������������������������������������������������������������������������������������������������������� 40

Looping Through Lists������������������������������������������������������������������������������������������������������������������������������������������ 41

Applying Functions to Lists����������������������������������������������������������������������������������������������������������������������������������� 42

Functions�������������������������������������������������������������������������������������������������������������������������������������������������������������� 44

Summary��������������������������������������������������������������������������������������������������������������������������������������45

Chapter 3: A Deeper Dive into R■■ ���������������������������������������������������������������������������������������47

Object-Oriented Programming in R����������������������������������������������������������������������������������������������47

S3 Classes������������������������������������������������������������������������������������������������������������������������������������������������������������ 48

S4 Classes������������������������������������������������������������������������������������������������������������������������������������������������������������ 51

Statistical Analysis with Descriptive Metrics in R������������������������������������������������������������������������52
Median and Mean������������������������������������������������������������������������������������������������������������������������������������������������� 55

Quartiles��������������������������������������������������������������������������������������������������������������������������������������������������������������� 55

Standard Deviation����������������������������������������������������������������������������������������������������������������������������������������������� 56



�

�

+

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

■ Contents

ix

RStudio IDE ����������������������������������������������������������������������������������������������������������������������������������57

R Markdown �������������������������������������������������������������������������������������������������������������������������������������������������������� 58

RPubs ������������������������������������������������������������������������������������������������������������������������������������������������������������������ 62

Summary �������������������������������������������������������������������������������������������������������������������������������������64

Chapter 4: Data Visualization with D3 ■  �����������������������������������������������������������������������������65

Preliminary Concepts ������������������������������������������������������������������������������������������������������������������65

HTML ������������������������������������������������������������������������������������������������������������������������������������������������������������������� 65

CSS ���������������������������������������������������������������������������������������������������������������������������������������������������������������������� 67

SVG ���������������������������������������������������������������������������������������������������������������������������������������������������������������������� 67

JavaScript ������������������������������������������������������������������������������������������������������������������������������������������������������������ 69

History of D3 ��������������������������������������������������������������������������������������������������������������������������������70

Using D3 ��������������������������������������������������������������������������������������������������������������������������������������71

Setting Up a Project ��������������������������������������������������������������������������������������������������������������������������������������������� 71

Using D3 �������������������������������������������������������������������������������������������������������������������������������������������������������������� 72

Binding Data �������������������������������������������������������������������������������������������������������������������������������������������������������� 73

Creating a Bar Chart ��������������������������������������������������������������������������������������������������������������������76

Loading External Data �����������������������������������������������������������������������������������������������������������������82

Summary �������������������������������������������������������������������������������������������������������������������������������������84

Chapter 5: Visualizing Spatial Data from Access Logs ■  ����������������������������������������������������85

What Are Data Maps? ������������������������������������������������������������������������������������������������������������������85

Access Logs ��������������������������������������������������������������������������������������������������������������������������������89

Parsing the Access Log ���������������������������������������������������������������������������������������������������������������90

Read in the Access Log ��������������������������������������������������������������������������������������������������������������������������������������� 91

Parse the Log File ������������������������������������������������������������������������������������������������������������������������������������������������ 92

Geolocation by IP ������������������������������������������������������������������������������������������������������������������������������������������������� 94

Output the Fields ������������������������������������������������������������������������������������������������������������������������������������������������� 97

Adding Control Logic ������������������������������������������������������������������������������������������������������������������������������������������� 98

Creating a Data Map in R ����������������������������������������������������������������������������������������������������������������������������������� 100

Distributing the Visualization ����������������������������������������������������������������������������������������������������������������������������� 107

Summary �����������������������������������������������������������������������������������������������������������������������������������110



■ Contents

x

Chapter 6: Visualizing Data Over Time■■ ���������������������������������������������������������������������������111

Gathering Data���������������������������������������������������������������������������������������������������������������������������111

Data Analysis with R�������������������������������������������������������������������������������������������������������������������112

Calculating the Bug Count���������������������������������������������������������������������������������������������������������������������������������� 113

Examining the Severity of the Bugs�������������������������������������������������������������������������������������������������������������������� 116

Adding Interactivity with D3�������������������������������������������������������������������������������������������������������119

Reading in the Data�������������������������������������������������������������������������������������������������������������������������������������������� 119

Drawing on the Page������������������������������������������������������������������������������������������������������������������������������������������ 120

Adding Interactivity��������������������������������������������������������������������������������������������������������������������������������������������� 126

Summary������������������������������������������������������������������������������������������������������������������������������������132

Chapter 7: Bar Charts■■ �����������������������������������������������������������������������������������������������������133

Standard Bar Chart���������������������������������������������������������������������������������������������������������������������134

Stacked Bar Chart����������������������������������������������������������������������������������������������������������������������135

Grouped Bar Chart����������������������������������������������������������������������������������������������������������������������136

Visualizing and Analyzing Production Incidents�������������������������������������������������������������������������136

Plotting Data on a Bar Chart with R��������������������������������������������������������������������������������������������140

Ordering Results������������������������������������������������������������������������������������������������������������������������������������������������� 141

Creating a Stacked Bar Chart����������������������������������������������������������������������������������������������������������������������������� 143

Bar Charts in D3�������������������������������������������������������������������������������������������������������������������������144

Creating a Vertical Bar Chart������������������������������������������������������������������������������������������������������������������������������ 144

Creating a Stacked Bar Chart����������������������������������������������������������������������������������������������������������������������������� 149

Creating an Overlaid Visualization���������������������������������������������������������������������������������������������������������������������� 153

Summary������������������������������������������������������������������������������������������������������������������������������������156

Chapter 8: Correlation Analysis with Scatter Plots■■ ��������������������������������������������������������157

Finding Relationships in Data�����������������������������������������������������������������������������������������������������157

Introductory Concepts of Agile Development�����������������������������������������������������������������������������160

Correlation Analysis��������������������������������������������������������������������������������������������������������������������161

Creating a Scatter Plot���������������������������������������������������������������������������������������������������������������������������������������� 162

Creating a Bubble Chart������������������������������������������������������������������������������������������������������������������������������������� 162



■ Contents

xi

Visualizing Bugs�������������������������������������������������������������������������������������������������������������������������163

Visualizing Production Incidents������������������������������������������������������������������������������������������������166

Interactive Scatter Plots in D3����������������������������������������������������������������������������������������������������169

Adding the Base HTML and JavaScript��������������������������������������������������������������������������������������������������������������� 169

Loading the Data������������������������������������������������������������������������������������������������������������������������������������������������ 170

Adding Interactive Functionality������������������������������������������������������������������������������������������������������������������������� 170

Adding Form Fields��������������������������������������������������������������������������������������������������������������������������������������������� 172

Retrieving Form Data������������������������������������������������������������������������������������������������������������������������������������������ 173

Using the Visualization��������������������������������������������������������������������������������������������������������������������������������������� 173

Summary������������������������������������������������������������������������������������������������������������������������������������176

�Chapter 9: Visualizing the Balance of Delivery and Quality with  ■■
Parallel Coordinates�������������������������������������������������������������������������������������������������������177

What Are Parallel Coordinate Charts?����������������������������������������������������������������������������������������177

History of Parallel Coordinate Plots��������������������������������������������������������������������������������������������179

Finding Balance��������������������������������������������������������������������������������������������������������������������������181

Creating a Parallel Coordinate Chart������������������������������������������������������������������������������������������������������������������ 182

Adding in Effort��������������������������������������������������������������������������������������������������������������������������������������������������� 183

Brushing Parallel Coordinate Charts with D3�����������������������������������������������������������������������������185

Creating the Base Structure������������������������������������������������������������������������������������������������������������������������������� 186

Creating a y-axis for Each Column��������������������������������������������������������������������������������������������������������������������� 187

Drawing the Lines����������������������������������������������������������������������������������������������������������������������������������������������� 187

Fading the Lines������������������������������������������������������������������������������������������������������������������������������������������������� 188

Creating the Axes������������������������������������������������������������������������������������������������������������������������������������������������ 189

Summary������������������������������������������������������������������������������������������������������������������������������������192

Index����������������������������������������������������������������������������������������������������������������������������������193



xiii

About the Author

Tom Barker is the Senior Manager of Web Development at Comcast. He has 
authored Pro JavaScript Performance: Monitoring and Visualization and co-authored 
Foundation Website Creation with HTML5, CSS3, and JavaScript. Tom has also 
served as an adjunct professor at Philadelphia University for the last 10 years.  
He lives outside of Philadelphia with his wife and two children.



xv

About the Technical Reviewer

Matthew Canning is an author, speaker, and experienced technical leader who 
has served in engineering and management roles at some of the world’s largest 
companies. Aside from technology, he writes and presents on subjects such as 
memory, mental calculation, and productivity. He currently lives outside Philadelphia 
with his wife and daughter. 
Twitter: @MatthewCanning 
Web site: matthewcanning.com

http://@MatthewCanning
http://matthewcanning.com


xvii

Acknowledgments

I want to thank Ben Renow-Clarke for thinking of me for this great project. I want to thank Matthew Moodie and 
Christine Rickets and the rest of the team at Apress for their guidance and direction. I want to thank Matt Canning for 
helping me see the code with fresh eyes and for keeping me honest. 

I want to thank my team at Comcast: every one of you is amazing and I am made better by being a part of such  
an incredible team.

I want to thank my amazing wife Lynn and our beautiful children Lukas and Paloma for their patience and 
understanding while I would write every night until late in the night.


	Pro Data Visualization usingR and JavaScript
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Background
	What Is Data Visualization?
	Time Series Charts
	Bar Charts
	Histograms
	Data Maps
	Scatter Plots
	History
	Modern Landscape

	Why Data Visualization?
	Tools
	Languages, Environments, and Libraries
	Analysis Tools

	Process Overview
	Identify a Problem
	Gather Data
	Analyze Data
	Visualize Data

	Ethics of Data Visualization
	Cite Sources
	Be Aware of Visual Cues

	Summary

	Chapter 2: R Language Primer
	Getting to Know the R Console
	The Command Line
	Command History
	Accessing Documentation
	Packages

	Importing Data
	Using Headers
	Specifying a String Delimiter
	Specifying Row Identifiers
	Using Custom Column Names

	Data Structures and Data Types
	Data Frames
	Matrices
	Adding Lists
	Looping Through Lists
	Applying Functions to Lists
	Functions

	Summary

	Chapter 3: A Deeper Dive into R
	Object-Oriented Programming in R
	S3 Classes
	S4 Classes

	Statistical Analysis with Descriptive Metrics in R
	Median and Mean
	Quartiles
	Standard Deviation

	RStudio IDE
	R Markdown
	RPubs

	Summary

	Chapter 4: Data Visualization with D3
	Preliminary Concepts
	HTML
	CSS
	SVG
	JavaScript

	History of D3
	Using D3
	Setting Up a Project
	Using D3
	Binding Data

	Creating a Bar Chart
	Loading External Data
	Summary

	Chapter 5: Visualizing Spatial Data from Access Logs
	What Are Data Maps ?
	Access Logs
	Parsing the Access Log
	Read in the Access Log
	Parse the Log File
	Geolocation by IP
	Output the Fields
	Adding Control Logic
	Creating a Data Map in R
	Mapping Geographic Data
	Adding Latitude and Longitude
	Displaying Regional Data

	Distributing the Visualization

	Summary

	Chapter 6: Visualizing Data Over Time
	Gathering Data
	Data Analysis with R
	Calculating the Bug Count
	Examining the Severity of the Bugs

	Adding Interactivity with D3
	Reading in the Data
	Drawing on the Page
	Adding Interactivity

	Summary

	Chapter 7: Bar Charts
	Standard Bar Chart
	Stacked Bar Chart
	Grouped Bar Chart
	Visualizing and Analyzing Production Incidents
	Plotting Data on a Bar Chart with R
	Ordering Results
	Creating a Stacked Bar Chart

	Bar Charts in D3
	Creating a Vertical Bar Chart
	Creating a Stacked Bar Chart
	Creating an Overlaid Visualization

	Summary

	Chapter 8: Correlation Analysis with Scatter Plots
	Finding Relationships in Data
	Introductory Concepts of Agile Development
	Correlation Analysis
	Creating a Scatter Plot
	Creating a Bubble Chart

	Visualizing Bugs
	Visualizing Production Incidents
	Interactive Scatter Plots in D3
	Adding the Base HTML and JavaScript
	Loading the Data
	Adding Interactive Functionality
	Adding Form Fields
	Retrieving Form Data
	Using the Visualization

	Summary

	Chapter 9: Visualizing the Balance of Delivery and Quality with Parallel Coordinates
	What Are Parallel Coordinate Charts?
	History of Parallel Coordinate Plots
	Finding Balance
	Creating a Parallel Coordinate Chart
	Adding in Effort

	Brushing Parallel Coordinate Charts with D3
	Creating the Base Structure
	Creating a y-axis for Each Column
	Drawing the Lines
	Fading the Lines
	Creating the Axes

	Summary

	Index




