Language
Processing with
Perl and Prolog

Theories, Implementation, and
Application

Second Edition

N Springer

Cognitive Technologies

Managing Editors: D. M. Gabbay J. Siekmann

Editorial Board: A. Bundy J. G. Carbonell
M. Pinkal H. Uszkoreit M. Veloso W. Wahlster
M. J. Wooldridge

For further volumes:
http://www.springer.com/series/5216

http://www.springer.com/series/5216

Pierre M. Nugues

Language Processing
with Perl and Prolog

Theories, Implementation, and Application

Second Edition

@ Springer

Pierre M. Nugues

Department of Computer Science
Lund University

Lund, Sweden

Managing Editors

Dov M. Gabbay Jorg Siekmann

Augustus De Morgan Professor of Logic Forschungsbereich Deduktions- und
Department of Computer Science Multiagentensysteme

King’s College London DFKI

London, UK Saarbriicken, Germany

ISSN 1611-2482 Cognitive Technologies ISSN 2197-6635 (electronic)
ISBN 978-3-642-41463-3 ISBN 978-3-642-41464-0 (eBook)
DOI 10.1007/978-3-642-41464-0

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945101

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

A mes parents,
A Madeleine

Preface to the Second Edition

Eight years, from 2006 to 2014, is a very long time in computer science. The trends
I described in the preface of the first edition have not only been confirmed, but
accelerated. I tried to reflect this with a complete revision of the techniques exposed
in this book: I redesigned or updated all the chapters, I introduced two new ones,
and, most notably, I considerably expanded the sections using machine-learning
techniques. To make place for them, I removed a few algorithms of lesser interest.
This enabled me to keep the size of the book to ca. 700 pages. The programs and
companion slides are available from the book web site at http://ilppp.cs.Ith.se/.

This book corresponds to a course in natural language processing offered at Lund
University. I am grateful to all the students who took it and helped me write this new
edition through their comments and questions. Curious readers can visit the course
site at http://cs.Ith.se/EDAN20/ and see how we use this book in a teaching context.

I would like to thank the many readers of the first edition who gave me feedback
or reported errors, the anonymous copy editor of the first and second editions,
Richard Johansson and Michael Covington for their suggestions, as well as Peter
Exner, the PhD candidate I supervised during this period, for his enthusiasm. Special
thanks go to Ronan Nugent, my editor at Springer, for his thorough review and
copyediting along with his advice on style and content.

This preface would not be complete without a word to those who passed away,
my aunt, Madeleine, and my father, Pierre. There is never a day I do not think of you.

Lund, Sweden Pierre Nugues
April 2014

vii

http://ilppp.cs.lth.se/
http://cs.lth.se/EDAN20/

Preface

In the past 20 years, natural language processing and computational linguistics have
considerably matured. The move has mainly been driven by the massive increase of
textual and spoken data and the need to process them automatically. This dramatic
growth of available data spurred the design of new concepts and methods, or their
improvement, so that they could scale up from a few laboratory prototypes to proven
applications used by billions of people. Concurrently, the speed and capacity of
machines became an order of magnitude larger, enabling us to process gigabytes of
data and billions of words in a reasonable time, to train, test, retrain, and retest
algorithms like never before. Although systems entirely dedicated to language
processing remain scarce, there are now scores of applications that, to some extent,
embed language processing techniques.

The industry trend, as well as the user’s wishes, toward information systems able
to process textual data has made language processing a new requirement for many
computer science students. This has shifted the focus of textbooks from readers
being mostly researchers or graduate students to a larger public, from readings by
specialists to pragmatism and applied programming. Natural language processing
techniques are not completely stable, however. They consist of a mix that ranges
from well-mastered and routine to rapidly changing. This makes the existence of a
new book an opportunity as well as a challenge.

This book tries to take on this challenge and find the right balance. It adopts
a hands-on approach. It is a basic observation that many students have difficulties
going from an algorithm exposed using pseudocode to a runnable program. I did
my best to bridge the gap and provide the students with programs and ready-made
solutions. The book contains real code the reader can study, run, modify, and run
again. I chose to write examples in two languages to make the algorithms easy to
understand and encode: Perl and Prolog.

One of the major driving forces behind the recent improvements in natural
language processing is the increase of text resources and annotated data. The huge
amount of texts made available by the Internet and never-ending digitization led
many practitioners to evolve from theory-oriented, armchair linguists to frantic
empiricists. This books attempts as well as it can to pay attention to this trend and

ix

X Preface

stresses the importance of corpora, annotation, and annotated corpora. It also tries
to go beyond English only and expose examples in two other languages, namely
French and German.

The book was designed and written for a quarter or semester course. At Lund,
I used it when it was still in the form of lecture notes in the EDA171 course. It
comes with a companion web site where slides, programs, corrections, an additional
chapter, and Internet pointers are available: http://www.cs.lth.se/~pierre/ilppp/. All
the computer programs should run with Perl (available from www.perl.com) or
Prolog. Although I only tested the programs with SWI Prolog available from
www.swi-prolog.org, any Prolog compatible with the ISO reference should apply.

Many people helped me during the last 10 years when this book took shape,
step-by-step. I am deeply indebted to my colleagues and to my students in classes
at Caen, Nottingham, Stafford, Constance, and now in Lund. Without them, it could
never have existed. I would like most specifically to thank the PhD students I
supervised, in chronological order, Pierre-Olivier El Guedj, Christophe Godéreaux,
Dominique Dutoit, and Richard Johansson.

Finally, my acknowledgments would not be complete without the names of the
people I most cherish and who give meaning to my life: my wife, Charlotte, and my
children, Andreas and Louise.

Lund, Sweden Pierre Nugues
January 2006

http://www.cs.lth.se/~pierre/ilppp/
www.perl.com
www.swi-prolog.org

Contents

1 An Overview of Language Processing.....................coooeeiiin 1
1.1 Linguistics and Language Processing...........cccoovvveeeeeannn. 1
1.2 Applications of Language Processing..............oooeeeeiiiinnn.. 2
1.3 The Different Domains of Language Processing 4
1.4 PRhONELICS ...t 5
1.5 Lexicon and Morphology ... 6
1.6 1L PP 8

1.6.1 Syntax as Defined by Noam Chomsky.................. 8
1.6.2 Syntax as Relations and Dependencies 10
1.7 SEMANTICS . . e ettt ettt e 11
1.8 Discourse and Dialogueccceviviiiiiiiiiiiiiiiiiiian, 13
1.9 Why Speech and Language Processing Are Difficult............. 14
1.9.1 AMDIGUILY <. 15
1.9.2 Models and Their Implementation 16
1.10 An Example of Language Technology in Action:
The Persona Project........c.ooviiiiiiiiiiiiiiiiiiiiiiicee e 17
1.10.1 Overview of Persona.............ccocoviiiiiiiiiiiiinnn. 17
1.10.2 The Persona’s Modulescccoviiiiiiieiiiiinnnn. 18
1.11 Further Readingccooiiiiiiiiiiiiiiiiiiiii e 19
EXCICISES ..ttt ettt e e 21
2 Corpus Processing Tools ..., 23
2.1 L1073 0103 PP 23
2.1.1 Types of COrpora.......uveeieiiiiiiiiiiiiiiiiiieeieennnns 23
2.1.2 Corpora and Lexicon Building 25
2.1.3 Corpora as Knowledge Sources for the Linguist 27
2.2 Finite-State Automatacceeeiiiiiiiiieeiiiiiiiiieeenn. 28
2.2.1 A DeSCIiptionuvvviiiiiiiiiiiiiiieeeens 28
222 Mathematical Definition of Finite-State Automata..... 29
223 Finite-State Automata in Prolog 29
2.2.4 Deterministic and Nondeterministic Automata......... 31

xi

xii Contents
2.2.5 Building a Deterministic Automaton

from a Nondeterministic Onec.ooouuees 31

2.2.6 Searching a String with a Finite-State Automaton 32

2.2.7 Operations on Finite-State Automata 33

2.3 Regular EXPressionsooevvuiiieiiiiiiiiiiie i, 35

2.3.1 Repetition Metacharacters............ooovveeeeennnnnn... 37

232 The Dot Metacharacterc.ooiiiiiiiiiiiinnnn. 37

233 The Escape Character............cccoviiiiiiiieniiinnn. 37

234 The Longest Matchooooiiiiiiiiiiiiii, 38

2.3.5 Character Classesovuvuiieeeiiiiiiiieeeiniiiieee.. 39

2.3.6 Nonprintable Symbols or Positions 41

2.3.7 Union and Boolean Operators.............ccceevviunnne. 41

2.3.8 Operator Combination and Precedence.................. 42

24 Programming with Regular Expressions...............coceeevnn. 43

24.1 Perl o 43

24.2 Strings and Regular Expressions in Perl 44

243 Matchingoooiniiiiiiiiii 46

244 SUDSHItUONS . ..vvvveeeii e 47

24.5 Translating Characterscccoviiiiieennnnnnne. 47

24.6 String OPerators.oovvueueeieeeeiieeeiaieeeen. 48

24.7 Back Referencescooovviiiiiiiiiiiiiiiiiniii, 48

24.8 Predefined Variablesccciiiiiiiiiiiiiii. 50

2.5 Finding Concordanceso.ouveeiiiiiiiiiiieeiiiiiiieeennnn. 51

2.5.1 Concordances in Perl ..., 51

252 Concordances in Prologoooooiiiiiit. 55

2.6 Approximate String Matching...............oooooiiiiiiiiii. 57

2.6.1 Edit Operationscoovveuiieeeeiiiiiiieeeennnnnnns 57

2.6.2 Minimum Edit Distancecc.oooiiiiiiiiii 58

2.6.3 Computing the Minimum Edit Distance in Perl 59

2.6.4 Searching Edits in Prologcoool. 60

2.7 Further Readingcoooiiiiiiiiiiii i 62

EXEICISES ..ttt ettt et 64

3 Encoding and Annotation Schemes...........................oo 65

3.1 ENcoding TeXtS uuun e 65

3.2 Character SETSueeeeti ettt 66

3.2.1 Representing Characters..........covvvvvvviiiieinnnnnns 66

322 UNICOR. .. eeeet e 68

323 Unicode Character Propertiesccoevvvvivennn. 69

3.2.4 The Unicode Encoding Schemes........................ 73

33 Locales and Word Order...........ccoeviiiiiiiiiiiiiiiiiiieennn. 74
3.3.1 Presenting Time, Numerical Information,

and Ordered Wordsccooiiiiiiiiiiiiiiie... 74

332 The Unicode Collation Algorithm 76

Contents xiii
34 Markup Languages........coovvniiiiiiiiiiiiiiii i 77
34.1 A Brief Background ... 77

34.2 AnOutline of XML......oooiiiiiiiiiiiiiiiiiii s 78

343 Writing aDTD ... 80

344 Writing an XML Documentoooveeeeeiinnne. 83

345 NAMESPACES .« eneeeeeeeeea e e e e e 84

34.6 XML and Databaseseeeeiiiiiiiiiiiiininn. 85

3.5 Further Readingcooviiiiiiiiiii 85
EXEICISES .. vvtttttitt ettt et 86
4 Topics in Information Theory and Machine Learning 87
4.1 INtroductionc.euieiiiiii 87
4.2 Codes and Information Theory...........ccoooiiiiiiiiiiiiinn 87
4.2.1 ENtrOpY .o 87

422 Huffman Coding ... 89

423 Cross ENtropy «.vvvvviiiiiiiiiiiiiiiiiiiiiiiiiiieeens 93

424 Perplexity and Cross Perplexityccovvvuunnnn. 94

4.3 Entropy and Decision TIeesccooeviiiiiiiiiiiiiiiiiinnnnn. 94
4.3.1 Machine Learning..........ccovviiiiiiiiiiiininninnnnnns 94

43.2 Decision Treeseeevviiiiiiiiiiiiiiiiiiie s 95

433 Inducing Decision Trees Automatically 96

4.4 Classification Using Linear Methodscccoovviiiiinnnn 98
4.4.1 Linear Classiflersooouieiiiiiiiiiiieiinnnn. 98

442 ChoosingaDataSetccovvviiiiiiiiiiiiiiinnnn. 99

4.5 Linear Regressionu.iiiiiiiiiiiiiiiiiiiiiiiiias 99
4.5.1 Least SqUaresvvvviiiiiiiiiiiiiiiiees 100

452 The Gradient Descent...........cccevviiiiieenininnn. 103

453 The Gradient Descent and Linear Regression 104

4.6 Linear Classificationooouiieiiiiiiiiiiiiiiiiiiiiieeen. 107
4.6.1 AnExample ... 107

4.6.2 Classification in an N -Dimensional Space 109

4.6.3 Linear Separability...........ccoiiiiiiiiiiiiiiiiinnnn. 110

4.6.4 Classification vs. Regressionccocvvvvviivnnn. 110

4.7 PerCEPIION 111
4.7.1 The Heaviside Functionccoeeviiiiiiinnnn. 111

4.7.2 The Tteration..........cooviiiiiiiiii s 112

473 The Two-Dimensional Casecccevvvvvvviivnnnnn 112

4.7.4 Stop Conditions ...vvvviiiiiiiiiiiiiiiiiiiiiiieeens 113

4.8 Support Vector Machinesvvviiiiiiiiiiiiiiiiiinieinnennns 113
4.8.1 Maximizing the Marginccoevvviiviiininnnnnn 113

4.8.2 Lagrange Multiplierscccoviiiiiiiieiininn. 114

4.9 LogiStic REZIeSSIONt 115
4.9.1 Fitting the Weight Vector............ccoovviiiiiinnnnnn. 117

4.9.2 The Gradient ASCeNtcovviiiiiiiniiiieeinnnnnn. 118

Xiv

Contents

4.10 Encoding Symbolic Values as Numerical Features................ 119
411 Further Readingccooiiiiiiiiiiiiiiiiiii e 120
EXEICISES ..ttt ettt e e e 121
Counting Wordsooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 123
5.1 Counting Words and Word Sequencescoeeeeevinnnnnn. 123
5.2 Text Segmentationeeeieeeiieiiiiiiiiiiiiiaaas 124
5.2.1 What IsaWord? ... 124

52.2 Breaking a Text into Words and Sentences 126

5.3 Tokenizing WOrdSuue e 126
5.3.1 Using White Spacesooovvvieiiiiniiiiiiieeennnnnns 127

5.3.2 Using White Spaces and Punctuation................... 127

533 Defining Contents.........c.c.cvvviiiiiiiiiiieiiieeinnnnnns 129

534 Tokenizing Texts in Prologooocoeiiiiie 129

5.3.5 Tokenizing Using Classifiersccoevvvvviennnn. 130

5.4 Sentence SegMentationeeeeieeereeeeeiereeereeeeeeeeeeens 132
54.1 The Ambiguity of the Period Sign 132

54.2 Rules to Disambiguate the Period Sign................. 132

543 Using Regular EXpressions..........evvvvvivieieiennnnn 132

544 Improving the Tokenizer Using Lexicons 133

54.5 Sentence Detection Using Classifiers................... 134

5.5 N-GIamS oo 135
5.5.1 Some Definitions.......ooovviieiiiiiiiiiiii i 135

5.5.2 A Crash Program to Count Words with Unix 135

553 Counting Unigrams in Prologcoooonin 137

554 Counting Unigrams with Perl 138

5.5.5 Counting Bigrams with Perl..................oooooiit 139

5.6 Probabilistic Models of a Word Sequencecc.vvunn. 140
5.6.1 The Maximum Likelihood Estimation.................. 140

5.6.2 Using ML Estimates with Nineteen Eighty-Four....... 142

5.7 Smoothing N -Gram Probabilities.............ccoooeiiiiiiiiiin. 144
5.7.1 Sparse Data........oovviiiiiiiiiiiiiii e 144

5.7.2 Laplace’s Rulec.ccoviiiiiiiiiiiiiiiiiiiiiiiennnn 145

573 Good-Turing Estimationccoceiviiiiiinnnn.. 146

5.8 Using N-Grams of Variable Lengthoo... 148
5.8.1 Linear Interpolation............cooeviiiiiiiiiinninnnnnn 149

5.82 Back-Off ..o 150

5.83 Katz’s Back-Off Model ..o, 151

5.9 Industrial N-Grams.........cooviuuiieiiiiiiiiiieiiiiiiiieeennn. 152
5.10 Quality of a Language Model ... 153
5.10.1 Intuitive Presentationcccoviiiiiieiiiiinn. 153

5.10.2 Entropy Ratecoooiiiiiiiiiiiiiiiiiiiiiiiiies 153

5.10.3 Cross ENtropyvvvvviiiiiiiiiiiiiiiiiieeenns 154

5.10.4 PerpleXity......uuueiiiiiiiiiiii s 155

Contents

T 0 B 0 1 (o To7: 14 (o) s
5.11.1 Word Preference Measurements
5.11.2 Extracting Collocations with Perl
5.12 Application: Retrieval and Ranking of Documents
onthe Web ..o
5.12.1 Document Indexingccceeviiiiiiiiniiinn..
5.12.2 Representing Documents as Vectors
5.12.3 Vector Coordinates.........oouuueeeeeeiniiieeeennnnnnnns
5.12.4 Ranking Documentscccvviiiiiiiiiiiiiini.
5.12.5 Categorizing TexXtcoovviiiiiiiiiiiiiiiiienniiins
5.13 Further Readingccoooiiiiiiiiiiiiiiiiiiiiiiii s
EXEICISES .. vvtetttittt ettt e et
6 Words, Parts of Speech, and Morphologycooee
6.1 WOTdS e
6.1.1 Partsof Speech........cooiiiiiiiiiiiiiiiii
6.1.2 Grammatical Featuresooooieeiiiiiiie...
6.1.3 Two Significant Parts of Speech: The Noun
andthe Verb ..o
6.2 4 (e) o N
6.2.1 Encoding a Dictionaryccoevvviiiiiiiiinninnnnnns
6.2.2 Building a Trie in Prologccoooiiiiiiiiiiii.
6.2.3 FindingaWordinaTrie..........cccooiiiiiieiiiinn.
6.3 MOTPROLOZY ..
6.3.1 MOTPhEMES ...ttt eeeeeees
6.3.2 MOTPRS ettt
6.3.3 Inflection and Derivationooooveeiiiiiii.
6.3.4 Language Differencesccoeiiiiiiiiinnnn.
6.4 Morphological Parsing.cooooeiiiiiiiiiiiiiiiiiiiiiiiinnnn.
6.4.1 Two-Level Model of Morphologyccccvvvee.
6.4.2 Interpreting the Morphsccoviiiiiiiiiiinnnnnn
6.4.3 Finite-State Transducersccooiviiiieiiiinnn.
6.4.4 Conjugating a French Verbooooiiiiin
6.4.5 Prolog Implementationcccovvviiiiiiininnnnn.
6.4.6 Application to Romance Languages
6.4.7 AMDIGUILY <.
6.4.8 Operations on Finite-State Transducers.................
6.5 Morphological Rules.coooiiiiiiiiiiiiiiiiiiiiiiiiiiiian,
6.5.1 Two-Level Rulesccoooiiiiiiiiiiiiiiiiiiiiiii,
6.5.2 Rules and Finite-State Transducers
6.5.3 Rule Composition: An Example
with French Irregular Verbscooooiiin
6.6 The CONLL Format.......ccooviiiiiiiiiiiiiiiiiiiiiiiiiiee e,

XV

XVi

Contents
6.7 Application Examplesoooiiiiiiiiiiiiiiiiii 200
6.8 Further Readingcooviiiiiiiiiii i 201
EXEICISES ..ttt ettt e e 202
Part-of-Speech Tagging Using Rulesooooiin 205
7.1 Resolving Part-of-Speech Ambiguity...............ooooveeoinnn. 205
7.1.1 A Manual Method ... 205

7.1.2 Which Method to Use to Automatically
Assign Parts of Speech ..o 206
7.2 Baselinecoovmiiiiiiiiiii 207
7.3 Tagging with Rules ... 208
7.3.1 Brill’s Tag@er......ovvviiiiiiiiiiiiiiiiiiiiiieeeens 208
7.3.2 Implementation in Prologccooeviiinnnn. 209
7.3.3 Deriving Rules Automatically...................oouiee 212
7.3.4 Confusion Matricescccevviiiiieeiinninnee... 213
7.4 Unknown Wordsooeiiiiiiiiiiiiiiiiiiic e 214
7.5 Standardized Part-of-Speech Tagsetsccoevvvviviiiiiinnnn. 214
7.5.1 Multilingual Part-of-Speech Tagscccvvvvnnnn. 215
7.5.2 Parts of Speech for English...............oooooiiiiiit 217
753 An Annotation Scheme for Swedish.................... 220
7.6 Further Readingcoooiiiiiiiiiiiiiiiiiiiiiiiiiiie i 220
EXCICISES .. vvtetttttt et e et e 222
Part-of-Speech Tagging Using Statistical Techniques 223
8.1 Part-of-Speech Tagging with Linear Classifiers 223
8.2 The Noisy Channel Model............ccooiiiiiiiiiiiiiiiiiiiinnn. 225
8.2.1 Presentationccoiiiiiiiiiiiii i 225
8.2.2 The N-Gram ApproXimation...........cceevvvvviennnnn 226
8.2.3 Tagging a SENtencecvvvviviiiiiiiieiiineiennnnns 228
8.24 The Viterbi Algorithm: An Intuitive Presentation...... 229
8.3 Markov Modelsoeiiiiiiii i 230
8.3.1 Markov Chainscccovviiiiiiiiiiiiiiiii s 230
8.3.2 Trellis Representationcocvvviiiiiiiniinnnn. 231
8.3.3 Hidden Markov Modelscccooiiiiiiiiiiiinnn. 231

834 Three Fundamental Algorithms to Solve
Problems with HMMS ..o, 233
8.3.5 The Forward Procedure..................oooooeiiiit. 234
8.3.6 Viterbi Algorithmooooiiiiiiiiiiiiiiiiiiiiinn. 236
8.3.7 The Backward Procedure..............ooooeeeeiiiiininn. 237
8.3.8 The Forward—Backward Algorithm..................... 238
8.4 POS Tagging with the Perceptron...............ccoovviiiiiinnnn. 241
8.5 Tagging with Decision Treesccoovviiiiiiiiiiiiiiiiinnnn, 243
8.6 Unknown Wordsooiiiiiiiiiii e 244

8.7 An Application of the Noisy Channel Model: Spell
ChEeCKINg ...t 245

Contents

10

xvil
8.8 A Second Application: Language Models
for Machine Translationcoovviiiiiiiiiiiiiiiiienn. 246
8.8.1 Parallel Corpora........c.covvvuuiiiiiiiiiiiiieeninnnn. 246
8.8.2 ALGNMENT ..o 246
8.8.3 Translationo.ooiiiiiiiiiiii i 249
8.84 Evaluating Translation...............ooooiiiiiiiiiiin. 250
8.9 Further Readingcoooiiiiiiiiiii i 250
EXEICISES ..ttt ettt e 251
Phrase-Structure Grammars in Prolog 253
9.1 Using Prolog to Write Phrase-Structure Grammars 253
9.2 Representing Chomsky’s Syntactic Formalism in Prolog......... 254
9.2.1 (01071 1111 1<) 11 254
9.2.2 Tree StrucCturesoovvviiiiiieeiiiiiiiiie s 255
9.2.3 Phrase-Structure Rules ... 255
9.2.4 The Definite Clause Grammar (DCG) Notation........ 257
9.3 Parsing with DCGSuuui e 258
9.3.1 Translating DCGs into Prolog Clauses 258
9.3.2 Parsing and Generationc..uvvuuuuuunnnnnnnn. 260
9.33 Left-Recursive Rulesccooiiiiiiiiiiiiii, 261
9.4 Parsing AMDIZUILYuuune e 262
9.5 Using Variablesueiiiiiiiie i 264
9.5.1 Gender and Number Agreementcevvvveeenn 264
9.5.2 Obtaining the Syntactic Structureoovee. 266
9.6 Application: Tokenizing Texts Using DCG Rules................. 268
9.6.1 Word Breakingccoovviiiiiiiiiiiiiiiii s 268
9.6.2 Recognition of Sentence Boundaries 269
9.7 Semantic Representationeeeeveiiiiiiiiiiiieieeeeenens 270
9.7.1 A-Caleulus.....ooieii i 270
9.7.2 Embedding A-Expressions into DCG Rules............ 271
9.7.3 Semantic Composition of Verbs...................ooel 273
9.8 An Application of Phrase-Structure Grammars
and a Worked Example ...t 274
9.9 Further Readingoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiea 278
EXCICISES .. vvttttttttt et et e 278
Partial Parsing 281
10.1 Is Syntax NeCeSSary?uvveerrirtiiiiiiiiiiieeeeeeeeeeeees 281
10.2 Word Spotting and Template Matchingcoovvvien. 281
10.2.1 ELIZA .o 281
10.2.2 Word Spotting in Prolog..........ccooeiiiiiiiiiiiinnn. 282
10.3 Named Entities and Multiwords..............cccoviiiiiiiiiiinn 285
10.3.1 Named EntitieSvvveeeiiiiiiiiiiiiiiiiie s 285
10.3.2 Multiwords «....eeeiniieiie e 286

10.3.3 A Standard Named Entity Annotation 287

XVviii

11

Contents
10.4 Detecting Named Entities with Rules.......................oo.L. 288
10.4.1 The Longest Matchcoooiiiiiiiiiiiiieniiinn. 289
10.4.2 Running the Programccooiiiiiiiiiiin, 290
10.5 Noun Groups and Verb Groups........c.c.oovevuveeeeiiniiieeeennnn. 291
10.5.1 Groups Versus Recursive Phrases....................... 292
10.5.2 DCG Rules to Detect Noun Groups..................... 293
10.5.3 DCG Rules to Detect Verb Groups............cc... ... 294
10.5.4 Runningthe Rulesooooiiiiiiiiiiiiiii, 295
10.6 Group Annotation Using Tags........cccovvviiiiiiiiiiiiiiieenn. 298
10.6.1 Tagging Gaps «...ouuveieeeeiiiieeeiiiiiieeaaias 298
10.6.2 Tagging Wordsveeiiiiiiiiii i 299
10.6.3 Extending IOB to Two or More Groups 299

10.6.4 Annotation Examples from CoNLL 2000,
2002, and 2003 . ..ot 300
10.7 Machine Learning Methods to Detect Groups..................... 301
10.7.1 Group Detection Using Symbolic Rules................ 301
10.7.2 Group Detection Using Stochastic Tagging 303
10.7.3 Using Classifiersceeeviiiiiiieeiiiiiiieennins 304

10.7.4 Group Detection Performance and Feature
Engineeringcooiiiiiiiiiiiiiiiiiiiiii s 306
10.8 Cascading Partial Parsersccoovviiiiiiiiiiiiiiiiienn. 307
10.9 Elementary Analysis of Grammatical Functions 307
10.9.1 Main Functionsocooiiiiiiiiiiiiiiiiinn. 307
10.9.2 Extracting Other Groups..........cccoevviuiiieeeeinnnnnns 308
10.10 An Annotation Scheme for Groups in French..................... 311
10.11 Application: Information Extraction and the FASTUS System... 313
10.11.1 The Message Understanding Conferences.............. 313
10.11.2 The Syntactic Layers of the FASTUS System.......... 314
10.11.3 Evaluation of Information Extraction Systems.......... 315
10.12 Further Readingcoovviiiiiiiiiiiiiiiii e 316
EXEICISES ..ttt ittt 317
Syntactic Formalisms ... 321
11.1 0 Introductioneueieiiin e 321
11.2 Chomsky’s Grammar in Syntactic Structures 322
11.2.1 Constituency: A Formal Definition 323
11.2.2 Transformations..........coovvuueeeeeiiiiiieeeennnnnns 324
11.2.3 Transformations and Movements 326
11.24 Gap Threadingccoooiiiiiiiiiiiiiiiiiiiinns 327
11.2.5 Gap Threading to Parse Relative Clauses............... 329
11.3 Standardized Phrase Categories for English....................... 330
11.4 Unification-Based Grammarsooveeeeeiiiiiieeeennnn. 332
11.4.1 Features.........oooiiiiiiiiiiiiiiiii i 332
11.4.2 Representing Features in Prolog 333

11.4.3 A Formalism for Features and Rules.................... 335

Contents Xix
11.4.4 Features Organizationccceovvuiieeeennnnnnns 336
11.4.5 Features and Unification...............coovveeeennnn 338
11.4.6 A Unification Algorithm for Feature Structures........ 339
11.5 Dependency Grammarso.uueeeeernuiiieeeeennnnneeeeennn. 341
1151 Presentationc..eeeeeiiiiiiieeeiiiiieeennnnnns 341
11.5.2 Properties of a Dependency Graph...................... 344
11.6 Differences Between Tesniere’s Model and Current
Conventions in Dependency Analysisooooeeeiiiiiinnn. 345
11.6.1 Prepositions and Auxiliaries.................ccceviinnnee 346
11.6.2 Coordination and Apposition..............coeeeeeennn 349
117 Valence «..oveeeiiiie i 350
11.8 Dependencies and Functionsooooieiiiiiiiiiiienn. 353
11.9 Corpus Annotation for Dependencies................oooeeeeeennn. 355
11.9.1 Dependency Annotation Using XML 356
11.9.2 The CoNLL Annotationccceevveuueeeeennnnnnns 357
11.10 Projectivizationceeevieuuieeeemmiiiiiieeeenniiiiieeeannn. 359
11.10.1 A Prolog Program to Identify Nonprojective Arcs..... 360
11.10.2 A Method to Projectivize Linksoee 363
11.11 From Constituency to Dependencycccovvviiieeeeannn. 364
11.11.1 Transforming a Constituent Parse Tree into
Dependenciescoeviiiiiiii i 364
11.11.2 Trace Revisited.........ccovviiiiiiiiiiiiiiiii i, 365
11.12 Further Readingcoiiiiiiii e 367
EXEICISES - .ttt ettt e et 368
12 Constituent Parsing ... 371
12,1 Introductionooeeeeeeeiiii i 371
12.2 Bottom-Up Parsingccooviiiiiiiiiiiiiiiiiiiiiiiiiiiieens 372
12.2.1 The Shift-Reduce Algorithm............................ 372
12.2.2 Implementing Shift-Reduce Parsing in Prolog......... 373
12.2.3 Differences Between Bottom-Up
and Top-Down Parsingooooeeeiiiiiiio... 375
12.3 Chart Parsinguuuuii e 376
12.3.1 Backtracking and Efficiencycccoovvnnn. 376
12.3.2 Structureof aChartooooiiiiiiiiiiiiiiiiinn. 376
12.3.3 The Active Chart........c..coviiiiiiiiiiiniineen.. 378
12.3.4 Modules of an Earley Parsercccoovvunn. 379
12.3.5 The Earley Algorithm in Prolog......................... 382
12.3.6 The Earley Parser to Handle Left-Recursive
Rules and Empty Symbolsccoooeiiiiiii. 386
12.4 Probabilistic Parsing of Context-Free Grammars 388
12.5 A Description Of PCEGS........uuuiiiiiiiiiiiiiiiiiiiiiiiiia 389
12.5.1 The Bottom-Up Chartccoeviiiiinnnnnnn. 391

12.5.2 The Cocke—Younger—Kasami Algorithm in Prolog 393
12.5.3 Adding Probabilities to the CYK Parser................ 394

XX

13

14

Contents

12.6 Evaluation of Constituent Parsers.................coooiiiiiean. 395
12.6.1 MELIICS uvetiieeeia et 395
12.6.2 Performance of PCFG Parsingo..uee 396
12.7 Improving Probabilistic Context-Free Grammars 397
12.8 Lexicalized PCFG: Charniak’s Parserocoeena. 398
12.9 Further Readingccoviiiiiiiiiiiiiiiii e 400
EXEICISES ..ttt ettt e e 401
Dependency Parsing.............ccooiiiiiiiiiiiiiiiiiiiiiii 403
131 Introductionueeeiiiin i 403
13.2 Evaluation of Dependency Parsers..............cccoovviiiinnnnn. 403
133 NIVIE'S Parserooouiiiiiiiiiii i 404
13.3.1 Extending the Shift-Reduce Algorithm
to Parse Dependencies..........ccoevvviviiiiiiininnnnnn 404
13.3.2 Parsing an Annotated COrpuscooeuuuuunnnnn. 405
13.3.3 Nivre’s Parser in Prologccoooiiiiiiiiinn. 407
13.4 Guiding Nivre’s Parser..........ooovieiiiiiiiiiiiiiiiiiiiieennn. 411
13.4.1 Parsing with Dependency Rules 411
13.4.2 Using Machine-Learning Techniques................... 415
13.5 Finding Dependencies Using Constraints.......................... 419
13.6 Covington’s Parseruuuuiiiiiiiiiiiiiiiiiiiiaas 420
13.6.1 Covington’s Nonprojective Parser 421
13.6.2 Relations Between Nivre’s and Covington’s Parsers... 425
13.6.3 Covington’s Projective Parsercccoouvvnnn. 426
13.7 Eisner’s Parsercooiiiiiiiiiiiiiiiii i 427
13.7.1 Adapting the CYK Parser to Dependencies 428
13.7.2 A More Efficient Version...............oooeeeiiiiinnn. 431
13.7.3 Implementationccoeeeuuuunnnnnnnnnnnnnnnnnnnn. 432
13.7.4 Learning Graphs with the Perceptron................... 433
13.8 Further Readingccoouiiiiiiiiiiiiiiiiiiiiiiiiiiiies 435
EXCICISES .. vttetttttt et e et e e 436
Semantics and Predicate Logic...................ooooiiiiiiiiiiiiiiii 439
14.1 IntroduCtioneeeiiiiiniiii i 439
142 Language Meaning and Logic: An Illustrative Example.......... 440
14.3 Formal SemantiCsccouvuuuietetemmieeeiiiiiieeennnans 441
14.4 First-Order Predicate Calculus to Represent the State
Of Affairs ... oo 442
14.4.1 Variables and Constantsccoooveieeeeeinnnnn. 442
1442 PrediCates.....oovvnuuieetiiiii i 443
14.5 Querying the Universe of Discourseccoevvvviviinninnnns 444
14.6 Mapping Phrases onto Logical Formulas.......................... 445
14.6.1 Representing Nouns and Adjectivesoe... 446
14.6.2 Representing Noun Groups.........c.ceevvvvvieeeiiieennns 446

14.6.3 Representing Verbs and Prepositions 447

Contents XX
147 The Case of Determinersceeevviiiiieieiiniiieeeennnn. 448
14.7.1 Determiners and Logic Quantifiers 448
14.7.2 Translating Sentences Using Quantifiers 448
14.7.3 A General Representation of Sentences 449
14.8 Compositionality to Translate Phrases to Logical Forms 451
14.8.1 Translating the Noun Phraseoo. 452
14.8.2 Translating the Verb Phraseooooiie 453
149 Augmenting the Database and Answering Questions............. 454
14.9.1 Declarationseeeeeeiiiiiiiieeiiiiiiieeennias 454

14.9.2 Questions with Existential and Universal
QuantifierS.ooviiiiiie e 455
14.9.3 Prolog and Unknown Predicates 457
14.9.4 Other Determiners and Questions....................... 457
14.10 Application: The Spoken Language Translator.................... 458
14.10.1 Translating Spoken Sentences..............cceeevvunnnns 458
14.10.2 Compositional Semanticsc.oovvuueeeeeennnnns 459
14.10.3 Semantic Representation Transfer 461
14.11 RDF and SPARQL as Alternatives to Prolog...................... 462
14.11.1 RDFTIIPIES «eeoeiiieiii e 463
14.11.2 SPARQL.....coiiii e 464
14.11.3 DBpediaand Yagoccovviuuiiieiiiiiiiiiieeninnnnnns 465
14.12 Further Readingccooviiiiiiiiiiiiiiiii e 466
EXEICISES .. vvtettttttt ettt et e 467
15 Lexical Semantics. ..o 469
15.1 Beyond Formal SemanticS...........cooouuuuuuuuunnnnnnnnnnnnnnnnn. 469
15.1.1 Lalangueetlaparole...........ccoovvuuuunnnnnnnnnnnnnn. 469
15.1.2 Language and the Structure of the World............... 470
152 Lexical StruCturesveeeeiiiiiii et een 470
15.2.1 Some Basic Terms and Conceptsccouvvnnn. 470
15.2.2 Ontological Organization................cooeveuuuunnnnn. 471
15.2.3 Lexical Classes and Relations.....................o.uuee 472
15.2.4 Semantic Networkscoooiiiiiiiiiiiiinnninn. 473
153 Building a LeXiCon.......vvviiiiiiiiiiiiiiiiiiiiiiiiieeeens 474
15.3.1 The Lexicon and Word Sensesccceevvunnnes 475
1532 VerbModelS....ooouiiiiiiiiiiiiiiiiiiiiiiiiicc e 476
1533 Definitions. . ..oovvniniiieeiiiiii i 477
154 An Example of Exhaustive Lexical Organization: WordNet...... 478
1541 NOUNS. .ttt ettt 479
1542 AdJECtiVES ..oovnntiii i 480
1543 Verbs....oouiiiiiii i 481
15.5 Automatic Word Sense Disambiguationcoeuvuunn. 482
15.5.1 Senses as Tagsuuuuuuunnniiiiiiiiiiiiiiiiiiaas 482
15.5.2 Associating a Word with a Context 483

15.5.3 Guessing the TopiC........coovuuiiiiiiiiiiiiiiiiiinnn, 484

XXii

16

Contents
1554 Naive Bayes......oooviiiiiiiiiiiiiiiiiiiiiiiiii s 484
15.5.5 Using Constraints on Verbs...............oooeeiiiiii. 485
15.5.6 Using Dictionary Definitions................ooeeeeenn 486
15.5.7 An Unsupervised Algorithm to Tag Senses 487
15.5.8 Senses and Languagescccovviiiiiiieniiinnn. 488
15.6 Case Grammars «.......ueeeeeernnniiiteeeeaieeeeaaeeeenn. 489
15.6.1 CasesinLatin..........cccoviiiiiiiiiiiiiiiiiiiniiiin. 489
15.6.2 Cases and Thematic Roles...............oooeeiiiiiinie. 490
15.6.3 Parsing with Casesccovvuiiiiiiiiiiiiennnnnnn. 492
15.6.4 Semantic Grammarseeeeviiuiiieeeennnnnnns 493
15.7 Extending Case Grammarscceevviuuiiieeernnnnneeeeennn. 494
1571 FrameNet.......ooovuiiiiiiiiiiiiiii i 494
15.7.2 The Proposition Bank..............ccooiiiiiiiiiii. 495

15.7.3 Annotation of Syntactic and Semantic
Dependenciescovviiiiiiiiiiiii 497
15.7.4 A Statistical Method to Identify Semantic Roles....... 500
15.8 An Example of Case Grammar Application: EVAR 505
15.8.1 EVAR’s Ontology and Syntactic Classes 506
1582 CasesinEVAR........ccooiiiiiiiiiiii 506
159 Further Readingccooviiiiiiii e 506
EXEICISES ..ttt ettt e e et 508
DISCOUISE ..o 511
16,1 INtroductiono.eueeeeiiiiiii ettt 511
16.2 Discourse: A Minimalist Definition...................coociiiie 512
16.2.1 A Description of DiScOUrse.oooeevuuuuuunnnnnn. 512
16.2.2 Discourse Entities........ccoovviiiiiiiiiiiiiiiiiiinn. 512
16.3 References: An Application-Oriented Viewcovveee 513
16.3.1 References and Noun Phrases.....................ouuee 513
16.3.2 Names and Named Entities...............oooeeeiiiiinn. 514
16.3.3 Finding Names — Proper Nouns.................co.vue.. 515
16.3.4 Disambiguation of Named Entities 516
164 COreferencec..ueeeieiinii it 518
16.4.1 Anaphora..........cccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiias 518
16.4.2 Solving Coreferences in an Example 519
16.4.3 The MUC Coreference Annotation 519
16.4.4 The CoNLL Coreference Annotation 521
16.5 References: A More Formal Viewcccciiiiiiiiann. 524

16.5.1 Generating Discourse Entities:

The Existential Quantifier 524

16.5.2 Retrieving Discourse Entities: Definite
DeSCIIPONS .. vvvveititiiiiteeeeeens 524

16.5.3 Generating Discourse Entities:
The Universal Quantifierccooeeviiinn... 525

Contents

17

xxiii
16.6 Solving COreferencesoovvuuuieeeeeniiiiieeeiiiiieeeannn. 527

16.6.1 A Simplistic Method: Using Syntactic
and Semantic Compatibilityccooiiiioe... 527

16.6.2 Solving Coreferences with Shallow

Grammatical Information.....................oooeet. 528
16.6.3 Salience in a Multimodal Context....................... 529

16.6.4 Using a Machine-Learning Technique
to Resolve Coreferencesccoovvvuiieeiennnnnnnn.. 531
16.6.5 More Complex Phenomena: Ellipses 535
16.7 Centering: A Theory on Discourse Structure...................... 535
16.8 Discourse and Rhetoricooeeeiiiiiiiiiiiiiiiiiiee . 537
16.8.1 Ancient Rhetoric: An Outlineuee 537
16.8.2 Rhetorical Structure Theory ...t 538
16.8.3 Typesof Relationsoooviiiiiiiiiiiiiiiiiinn, 540
16.8.4 Implementing Rhetorical Structure Theory............. 540
169 Eventsand TImeovviiiiiiiiiiii e 543
16.9.1 EVENLS tuuvtiiiiiiii e 543
1692 Event TYPES «oeevvnniiiiiiiiiiii e 544
16.9.3 Temporal Representation of Events..................... 544
16.9.4 Events and Tenses........coovvuiiiiiiiiiiiiiennnnnn. 545
16.10 TimeML, an Annotation Scheme for Time and Events 548
16.11 Further Readingccooiiiiiiiiiiiiiiiiiiii i 549
EXEICISES ..ttt ettt e e 551
Dialogue ... 553
17.1 INtroductionooeeueeeeiiiii ettt e e 553
17.2 Why aDialogue?.uuuuei e 554
17.3 Architecture of a Dialogue System............ccoevviiiiiiininnnn. 554
17.4 Simple Dialogue SYStemSuuuuuuuununniiinnnns 555
17.4.1 Dialogue Systems Based on Automata 555
17.4.2 Dialogue Modelingccoovuuiiiiiiiinnnnnn. 556
17.5 Speech Acts: A Theory of Language Interaction.................. 558
17.6 Speech Acts and Human—Machine Dialogue...................... 560
17.6.1 Speech Acts as a Tagging Model........................ 560
17.6.2 Speech Acts Tags Used in the SUNDIAL Project...... 560
17.6.3 Dialogue Parsing..........ccooeviiiiiiiiiinnnnn. 561
17.6.4 Interpreting Speech ACtSccovviiiiinnnnnnn. 564

17.6.5 EVAR: A Dialogue Application Using
Speech ACES ..vvviiiiiii e 565
17.7 Taking Beliefs and Intentions into Account 567
17.7.1 Representing Mental Statesccoeevuunnnnnn. 568
17.7.2 The STRIPS Planning Algorithm 570
17.7.3 Causalityuuunni e 572
17.8 Further Readingcoouuiiiiiiiiiiiiiiiiiiiiiiiiiiiias 572

BRI CISES oottt ittt et e e e 573

XXiv Contents
A AnlIntroductiontoPrologLL 575
Al A Short Backgroundooooiiiiiiiiiiiiiiii 575
A.2 Basic Features of Prolog..........ccooviiiiiiiiiiiiiiiiiiiiiii, 576
A2.1 Facts «oeeee e 576
A22 TOIMIS ..ottt 577
A23 QUETIES vttt 578
A24 Logical Variablesccoiiiiiiiiiiiiiiiiiiian. 579
A25 Shared Variablesccooiiiiiiiiiiiiiiii... 580
A2.6 DataTypesinPrologooooiiiiiiiiiiiiiiia. 581
A2.7 RUIES. ..t 582
A3 Running a Program ... 583
A4 Unificationoovieeeiiieee i 585
A4l Substitution and Instances...............cccovviiiie... 585
A4.2 Terms and Unificationccoooiiiiiiiieiiiinn. 585
A43 The Herbrand Unification Algorithm 586
Add Example ..ot 587
A45 The Occurs-Checkoooiiiiiiiiiiiiiiii s 588
AS RESOIULION .. .eeeiet e 589
AS.1 Modus Ponensccooiiiiiiiiiiiiiiiiii 589
A.5.2 AResolution Algorithmooiiiiiiiia. 589
AS53 Derivation Trees and Backtracking 591
A.6 Tracing and Debugging............ccoeviiiiiiiiiiiiiiiiiiiininn, 592
A7 Cuts, Negation, and Related Predicates.................ccooouueee 594
A1 CULS oot 594
YN N \ [T 15 10 | N 595
A73 The once/1 Predicatecovvveiiiiiiiiinininnn.. 597
A8 57] 597
A9 Some List-Handling Predicatesccccoviiiiiiiiiiiinnn. 598
A9.1 The member/2 Predicate..........oooovvvvvinviniinn.. 598
A9.2 The append/3 Predicate...........coevvvvvviiiinnnn. 599
A93 The delete/3 Predicate.........coovvvviviiiininiinn.. 600
A94 The intersection/3 Predicate..................... 600
A9.5 The reverse/2 Predicatecovvviiiiiniinn.. 601
A9.6 The Mode of an Argumentcccovvviueeeeennnn. 602
A.10 Operators and ArithmetiC..........ccovvviiiiiiiiiiiiiiiiiinni. 602
AN O B €)1 ¢ 110) £ N 602
A.10.2 Arithmetic Operationsccceeeeviiiiueeeennnn. 603
A.10.3 Comparison Operators..........o.ueeeeeernunueeeeennnn. 604
A.10.4 Lists and Arithmetic: The length/2 Predicate 605

A.10.5 Lists and Comparison: The quicksort/2
Predicate.ooviniii i 606
A.11 Some Other Built-in Predicatesccooiiiiiiina. 606
A.11.1 TypePredicatescceeeiiviiiiiiiiiiiiiiiiieeennn. 606
A.11.2 Term Manipulation Predicates 608
A.12 Handling Run-Time Errors and Exceptions 609

Contents XXV
A.13 Dynamically Accessing and Updating the Database 610
A.13.1 Accessing a Clause: The clause/2 Predicate........ 610
A.13.2 Dynamic and Static Predicates 610
A.13.3 Adding a Clause: The asserta/1

and assertz/1 Predicatesoocovviiiininiinn. 611

A.13.4 Removing Clauses: The retract/1
and abolish/2 Predicatescovvvviiininniinn. 612
A.13.5 Handling Unknown Predicates 612
A.14 All-Solutions Predicatesccooviiiiiiiiiiiiiiii s 613
A.15 Fundamental Search Algorithms ..., 614
A.15.1 Representing the Graph...............ccooiiiiiiiia. 615
A.15.2 Depth-First Searchccooooiiiiiiiiiiiiii, 616
A.15.3 Breadth-First Search................ooooiiiiiiiiia, 617
A154 A*Searchooooiiiiiiiiiiii 618
A16 Input/OULPUL. ..ottt 618
A.16.1 Input/Output with Edinburgh Prolog.................... 619
A.16.2 Input/Output with Standard Prolog 621
A.16.3 Writing LoOPS..covvnniiiiii i 623
A.17 Developing Prolog Programs...............ccooiiiiiiiiiiiiii. 624
A.17.1 Presentation Style.........ccooviiiiiiiiiiiiiiiiiiinn. 624
A.17.2 Improving Programsoooeeeiiiiiiiiieann. 625
EXCICISES .. vvtettttt ettt e e 627
References.o 631
INdexo 651

Chapter 1
An Overview of Language Processing

Mv&bL osautdy
‘Know thyself’
Inscription at the entrance to Apollo’s Temple at Delphi

1.1 Linguistics and Language Processing

Linguistics is the study and the description of human languages. Linguistic theories
on grammar and meaning have developed since ancient times and the Middle Ages.
However, modern linguistics originated at the end of the nineteenth century and
the beginning of the twentieth century. Its founder and most prominent figure was
probably Ferdinand de Saussure (1916). Over time, modern linguistics has produced
an impressive set of descriptions and theories.

Computational linguistics is a subset of both linguistics and computer science.
Its goal is to design mathematical models of language structures enabling the
automation of language processing by a computer. From a linguist’s viewpoint, we
can consider computational linguistics as the formalization of linguistic theories
and models or their implementation in a machine. We can also view it as a means to
develop new linguistic theories with the aid of a computer.

From an applied and industrial viewpoint, language and speech processing,
which is sometimes referred to as natural language processing (NLP), natural
language understanding (NLU), or language technology, is the mechanization of
human language faculties. People use language every day in conversations by
listening and talking, or by reading and writing. It is probably our preferred mode
of communication and interaction. Ideally, automated language processing would
enable a computer to understand texts or speech and to interact accordingly with
human beings.

Understanding or translating texts automatically and talking to an artificial
conversational assistant are major challenges for the computer industry. Although
this final goal has not been reached yet, in spite of constant research, it is being

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 1
DOI 10.1007/978-3-642-41464-0__1, © Springer-Verlag Berlin Heidelberg 2014

2 1 An Overview of Language Processing

approached every day, step-by-step. Even if we have missed Stanley Kubrick’s
prediction of talking electronic creatures in the year 2001, language processing
and understanding techniques have already achieved results ranging from very
promising to near-perfect. The description of these techniques is the subject of this
book.

1.2 Applications of Language Processing

At first, language processing is probably easier understood by the description of a
result to be attained rather than by the analytical definition of techniques. Ideally,
language processing would enable a computer to analyze huge amounts of text
and to understand them; to communicate with us in a written or a spoken way; to
capture our words whatever the entry mode: through a keyboard or through a speech
recognition device; to parse our sentences; to understand our utterances, to answer
our questions, and possibly to have a discussion with us — the human beings.

Language processing has a history nearly as old as that of computers, and it
comprises a large body of work. However, many early attempts remained in the
stage of laboratory demonstrations or simply failed. Significant applications have
been slow to come, and they are still relatively scarce compared with the universal
deployment of some other technologies such as operating systems, databases,
and networks. Nevertheless, the number of commercial applications or significant
laboratory prototypes embedding language processing techniques is increasing.
Examples include:

Spelling and grammar checkers. These programs are now ubiquitous in text
processors, and hundred of millions of people use them every day. Spelling
checkers are based primarily on computerized dictionaries, and they remove most
misspellings that occur in documents. Grammar checkers, although not perfect,
have improved to a point that many users could not write a single e-mail without
them. Grammar checkers use rules to detect common grammar and style errors
(Jensen et al. 1993).

Text indexing and information retrieval from the Internet. These programs
are among the most popular of the Web. They are based on crawlers that visit
internet sites and that download texts they contain. Crawlers track the links
occurring on the pages and thus explore the Web. Many of these systems carry
out a full text indexing of the pages. Users ask questions and text retrieval
systems return the internet addresses of documents containing words of the
question. Using statistics on words or popularity measures, text retrieval systems
are able to rank the documents (Brin and Page 1998; Salton 1988).

Speech transcription. These systems are based on speech recognition. Instead of
typing using a keyboard, speech dictation systems allow a user to dictate reports
and transcribe them automatically into a written text. Systems like Microsoft’s
Windows Speech Recognition or Google’s Voice Search have high performance
and recognize English, French, German, Spanish, Italian, Japanese, Chinese, etc.

1.2 Applications of Language Processing 3

Some systems transcribe radio and TV broadcast news with a word-error rate
lower than 10 % (Nguyen et al. 2004).

Voice control of domestic devices such as videocassette recorders or disc chang-
ers (Ball et al. 1997). These systems are embedded in objects to provide them
with a friendlier interface. Many people find electronic devices complicated and
are unable to use them satisfactorily. A spoken interface would certainly be an
easier means to control them. Although there are commercial systems available,
few of them are fully usable. One challenge they still have to overcome is to
operate in noisy environments that impair speech recognition.

Interactive voice response applications. These systems deliver information
over the telephone using speech synthesis or prerecorded messages. In more
traditional systems, users interact with the application using touch-tone
telephones. More advanced servers have a speech recognition module that
enables them to understand spoken questions or commands from users. Early
examples of speech servers include travel information and reservation services
(Mast et al. 1994; Sorin et al. 1995). Although most servers are just interfaces
to existing databases and have limited reasoning capabilities, they have spurred
significant research on dialogue, speech recognition, and synthesis.

Machine translation. Research on machine translation is one of the oldest
domains of language processing. One of its outcomes is the venerable SYSTRAN
program that started with translations between English and Russian for the US
Department of Defense. Since then, machine translation has been extended to
many other languages and has become a mainstream NLP application: Google
Translate now supports more than 60 languages and is used by more than 200
million people every month (Och 2012). Another pioneer example is the Spoken
Language Translator that translated spoken English into spoken Swedish in a
restricted domain in real time (Agnis et al. 1994; Rayner et al. 2000).

Conversational agents. Conversational agents are elaborate dialogue systems
that have understanding faculties. An example is TRAINS that helps a user plan
a route and the assembling trains: boxcars and engines to ship oranges from
a warehouse to an orange juice factory (Allen et al. 1995). Ulysse is another
example that uses speech to navigate into virtual worlds (Godéreaux et al. 1996,
1998).

Question answering. Question answering systems reached a milestone in 2011
when IBM Watson outperformed all its human contestants in the Jeopardy! quiz
show (Ferrucci 2012). Watson answers questions in any domain posed in natural
language using knowledge extracted from Wikipedia and other textual sources,
encyclopedias, dictionaries, as well as databases such as WordNet, DBpedia, and
Yago (Fan et al. 2012).

Some of these applications are widespread, like spelling and grammar checkers.
Others are not yet ready for industrial exploitation or are still too expensive for
popular use. They generally have a much lower distribution. Unlike other computer
programs, results of language processing techniques rarely hit a 100 % success rate.
Speech recognition systems are a typical example. Their accuracy is assessed in
statistical terms. Language processing techniques become mature and usable when

4 1 An Overview of Language Processing

they operate above a certain precision and at an acceptable cost. However, common
to these techniques is that they are continuously improving and they are rapidly
changing our way of interacting with machines.

1.3 The Different Domains of Language Processing

Historically linguistics has been divided into disciplines or levels, which go from
sounds to meaning. Computational processing of each level involves different
techniques such as signal and speech processing, statistics and machine learning,
automaton theory, parsing, first-order logic, and automated reasoning.

A first discipline of linguistics is phonetics. It concerns the production and
perception of acoustic sounds that form the speech signal. In each language, sounds
can be classified into a finite set of phonemes. Traditionally, they include vowels:
a, e, i, 0; and consonants: p, f, r, m. Phonemes are assembled into syllables: pa, pi,
po, to build up the words.

A second level concerns the words. The word set of a language is called a
lexicon. Words can appear in several forms, for instance, the singular and the plural
forms. Morphology is the study of the structure and the forms of a word. Usually
a lexicon consists of root words. Morphological rules can modify or transform the
root words to produce the whole vocabulary.

Syntax is a third discipline in which the order of words in a sentence and their
relationships is studied. Syntax defines word categories and functions. Subject,
verb, object is a sequence of functions that corresponds to a common order in
many European languages including English and French. However, this order may
vary, and the verb is often located at the end of the sentence in German. Parsing
determines the structure of a sentence and assigns functions to words or groups of
words.

Semantics is a fourth domain of linguistics. It considers the meaning of words
and sentences. The concept of “meaning” or “signification” can be controversial.
Semantics is differently understood by researchers and is sometimes difficult to
describe and process. In a general context, semantics could be envisioned as
a medium of our thought. In applications, semantics often corresponds to the
determination of the sense of a word or the representation of a sentence in a logical
format.

Pragmatics is a fifth discipline. While semantics is related to universal defini-
tions and understandings, pragmatics restricts it — or complements it — by adding
a contextual interpretation. Pragmatics is the meaning of words and sentences in
specific situations.

The production of language consists of a stream of sentences that are linked
together to form a discourse. This discourse is usually aimed at other people who
can answer — it is to be hoped — through a dialogue. A dialogue is a set of linguistic
interactions that enables the exchange of information and sometimes eliminates
misunderstandings or ambiguities.

1.4 Phonetics 5

Fig. 1.2 A spectrogram corresponding to the word serious [siorios]

1.4 Phonetics

Sounds are produced through vibrations of the vocal cords. Several cavities and
organs modify vibrations: the vocal tract, the nose, the mouth, the tongue, and the
teeth. Sounds can be captured using a microphone. They result in signals such as
that in Fig. 1.1.

A speech signal can be sampled and digitized by an analog-to-digital converter.
It can then be processed and transformed by a Fourier analysis (FFT) in a moving
window, resulting in spectrograms (Figs. 1.2 and 1.3). Spectrograms represent the
distribution of speech power within a frequency domain ranging from 0 to 10,000 Hz
over time. This frequency domain corresponds roughly to the sound production
possibilities of human beings.

Phoneticians can “read” spectrograms, that is, split them into a sequence of
relatively regular — stationary — patterns. They can then annotate the corresponding
segments with phonemes by recognizing their typical patterns.

A descriptive classification of phonemes includes:

* Simple vowels such as /1/, /a/, and /¢/, and nasal vowels in French such as /a/
and /3/, which appear on the spectrogram as a horizontal bar — the fundamental
frequency — and several superimposed horizontal bars — the harmonics.

6 1 An Overview of Language Processing

10K

8K

l_.‘

<
5

6K N
> Tra R
aK .

Fig. 1.3 A spectrogram of the French phrase C’est par la [separla] ‘It is that way’

* Plosives such as /p/ and /b/ correspond to a stop in the airflow and then a very
short and brisk emission of air from the mouth. The air release appears as a
vertical bar from O to 5,000 Hz.

* Fricatives such as /s/ and /f/ that appear as white noise on the spectrogram, that
is, as a uniform gray distribution. Fricatives sound a bit like a loudspeaker with
an unplugged signal cable.

* Nasals and approximants such as /m/, /1/, and /r/ are more difficult to spot and
are subject to modifications according to their left and right neighbors.

The pronunciation of a word is basically carried out through its syllables,
phonetic segments formed of a vowel and one or more consonants. These syllables
are more or less stressed or emphasized, and are influenced by neighboring syllables.

The general rhythm of the sentence is the prosody. Prosody is quite different
from English to French and German and is an open subject of research. It is related
to the length and structure of sentences, to questions, and to the meaning of the
words.

Speech synthesis uses signal processing techniques, phoneme models, and letter-
to-phoneme rules to convert a text into speech and to read it in a loud voice. Speech
recognition does the reverse and transcribes speech into a computer-readable text.
It also uses signal processing and statistical techniques including hidden Markov
models (HMM) and language models.

1.5 Lexicon and Morphology

The set of available words in a given context makes up a lexicon. It varies from
language to language and within a language according to the context or genre:
fiction, news, scientific literature, jargon, slang, or gobbledygook. Every word can

1.5 Lexicon and Morphology 7
Table 1.1 Grammatical features that modify the form of a word
Features Values English French German
Number Singular a car une voiture ein Auto

Plural two cars deux voitures zwei Autos
Gender Masculine he il er

Feminine she elle sie

Neuter it es
Conjugation Infinitive to work travailler arbeiten
and Finite he works il travaille er arbeitet
tense Gerund working travaillant arbeitend
Table 1.2 Examples of word derivations

Words Derived words

English real/adjective really/adverb
French courage/noun courageux/adjective
German Der Mut/moun mutig/adjective

be classified through a lexical category or part of speech such as article, noun, verb,
adjective, adverb, conjunction, preposition, or pronoun. Most of the lexical entities
come from four categories: noun, verb, adjective, and adverb. Other categories such
as articles, pronouns, or conjunctions have a limited and stable number of elements.
Words in a sentence can be annotated — tagged — with their part of speech.

For instance, the simple sentences in English, French, and German:

The big cat ate the gray mouse
Le gros chat mange la souris grise
Die grofle Katze it die graue Maus

are annotated as:

Thelarticle big/adjective cat/noun ate/verb the/article gray/adjective

mouse/noun

Lel/article gros/adjectif chat/nom mange/verbe la/article souris/mom

grise/adjectif

DielArtikel grofie/ Adjektiv Katze/Substantiv ifit/Verb die/Artikel

grauelAdjektiv Maus/Substantiv

Morphology is the study of how root words and affixes — the morphemes —
are composed to form words. Morphology can be divided into inflection and

derivation:

 Inflection is the form variation of a word under certain grammatical conditions.
In European languages, these conditions consist notably of the number, gender,

conjugation, or tense (Table 1.1).

e Derivation combines affixes to an existing root or stem to form a new word.
Derivation is more irregular and complex than inflection. It often results in a
change in the part of speech for the derived word (Table 1.2).

Most of the inflectional morphology of words can be described through mor-
phological rules, possibly with a set of exceptions. According to these rules,

8 1 An Overview of Language Processing

Table 1.3 Decomposition of inflected words into a root and affixes

Words Roots and affixes Lemmas and grammatical interpretations
English worked work + ed work + verb + preterit
French travaillé travaill + é travailler + verb + past participle
German gearbeitet ge + arbeit + et arbeiten + verb + past participle

a morphological parser splits each word as it occurs in a text into morphemes — the
root word and the affixes. When affixes have a grammatical content, morphological
parsers generally deliver this content instead of the raw affixes (Table 1.3).

Morphological parsing operates on single words and does not consider the
surrounding words. Sometimes, the form of a word is ambiguous. For instance,
worked can be found in he worked (to work and preterit) or he has worked (to work
and past participle). Another processing stage is necessary to remove the ambiguity
and to assign (to annotate) each word with a single part-of-speech tag.

A lexicon may simply be a list of all the inflected word forms — a wordlist —
as they occur in running texts. However, keeping all the forms, for instance, work,
works, worked, generates a useless duplication. For this reason, many lexicons retain
only a list of canonical words: the lemmas. Lemmas correspond to the entries
of most ordinary dictionaries. Lexicons generally contain other features, such as
the phonetic transcription, part of speech, morphological type, and definition, to
facilitate additional processing. Lexicon building involves collecting most of the
words of a language or of a domain. Nonetheless, it is probably impossible to build
an exhaustive dictionary since new words are appearing every day.

Morphological rules enable us to generate all the word forms from a lexicon.
Morphological parsers do the reverse operation and retrieve the word root and
its affixes from its inflected or derived form in a text. Morphological parsers use
finite-state automaton techniques. Part-of-speech taggers disambiguate the possible
multiple readings of a word. They also use finite-state automata or statistical
techniques.

1.6 Syntax

Syntax governs the formation of a sentence from words. Syntax is sometimes
combined with morphology under the term morphosyntax. Syntax has been a central
point of interest of linguistics since the Middle Ages, but it probably reached an
apex in the 1970s, when it captured an overwhelming amount of attention in the
linguistics community.

1.6.1 Syntax as Defined by Noam Chomsky

Chomsky (1957) had a determining influence in the study of language, and his views
still fashion the way syntactic formalisms are taught and used today. Chomsky’s

1.6 Syntax 9

theory postulates that syntax is independent from semantics and can be expressed in
terms of logic grammars. These grammars consist of a set of rules that describe the
sentence structure of a language. In addition, grammar rules can generate the whole
sentence set — possibly infinite — of a definite language.

Generative grammars consist of syntactic rules that fractionate a phrase into
subphrases and hence describe a sentence composition in terms of phrase structure.
Such rules are called phrase-structure rules. An English sentence typically
comprises two main phrases: a first one built around a noun called the noun phrase,
and a second one around the main verb called the verb phrase. Noun and verb
phrases are rewritten into other phrases using other rules and by a set of terminal
symbols representing the words.

Formally, a grammar describing a very restricted subset of English, French, or
German phrases could be the following rule set:

* A sentence consists of a noun phrase and a verb phrase.
* A noun phrase consists of an article and a noun.
* A verb phrase consists of a verb and a noun phrase.

A very limited lexicon of the English, French, or German words could be made
of:

* Articles such as the, le, la, der, den
* Nouns such as boy, garcon, Knabe
* Verbs such as hit, frappe, trifft

This grammar generates sentences such as:

The boy hit the ball
Le garcon frappe la balle
Der Knabe trifft den Ball

but also incorrect or implausible sequences such as:

The ball hit the ball
*Le balle frappe la garcon
*Das Ball trifft den Knabe

Linguists use an asterisk (¥) to indicate an ill-formed grammatical construction
or a nonexistent word. In the French and German sentences, the articles must agree
with their nouns in gender, number, and case (for German). The correct sentences
are:

La balle frappe le garcon
Der Ball trifft den Knaben

Trees can represent the syntactic structure of sentences (Figs. 1.4—1.6) and reflect
the rules involved in sentence generation. Moreover, Chomsky’s formalism enables
some transformations: rules can be set to carry out the building of an interrogative
sentence from a declaration, or the building of a passive form from an active one.

Parsing is the reverse of generation, where a grammar, a set of phrase-structure
rules, accepts syntactically correct sentences and determines their structure. Parsing

10 1 An Overview of Language Processing

sentence
noun phrase verb phrase
e \ ~ ~
article noun verb nounphrase
/ \
article noun
The boy hit the ball
Fig. 1.4 Tree structure of The boy hit the ball
/ sentence \
noun phrase verb phrase
—~ \ / ~
article noun verb noun phrase
article noun
Le gargon frappe la balle
Fig. 1.5 Tree structure of Le garcon frappe la balle
sentence
noun phrase verb phrase
— \ ~ ~
article noun verb noun phrase
_— \
article noun
Der Knabe trifft den Ball

Fig. 1.6 Tree structure of Der Knabe trifft den Ball

requires a mechanism to search the rules that describe the sentence’s structure. This
mechanism can be applied from the sentence’s words up to a rule describing the
sentence’s structure. This is bottom-up parsing. Rules can also be searched from a
sentence structure rule down to the sentence’s words. This corresponds to top-down
parsing.

1.6.2 Syntax as Relations and Dependencies

Before Chomsky, pupils and students learned syntax (and still do so) mainly in
terms of functions and relations between the words. A sentence’s classical parsing
consists in annotating words using parts of speech and in identifying the main verb.
The main verb is the pivot of the sentence, and the principal grammatical functions

1.7 Semantics 11

Verb
Subject Object

Fig. 1.7 Grammatical relations in the sentence The boy hit the ball

boy from Liverpool hit the ball with furor

Fig. 1.8 Dependency relations in the sentence The big boy from Liverpool hit the ball with furor

are determined relative to it. Parsing consists then in grouping words to form the
subject and the object, which are the two most significant functions in addition to
the verb.

In the sentence The boy hit the ball, the main verb is hit, the subject of hit is the
boy, and its object is the ball (Fig. 1.7).

Other grammatical functions (or relations) involve notably articles, adjectives,
and adjuncts. We see this in the sentence

The big boy from Liverpool hit the ball with furor.

where the adjective big is related to the noun boy, and the adjuncts from Liverpool
and with furor are related respectively to boy and hit.

We can picture these relations as a dependency net, where each word is said to
modify exactly another word up to the main verb (Fig. 1.8). The main verb is the
head of the sentence and modifies no other word. Tesniere (1966) has extensively
described dependency theory.

Recently, dependency grammars have enjoyed a growing popularity as they
can efficiently handle multiple languages and have a good interface to the semantic
level. They provide a theoretical framework to many current parsing techniques and
have numerous applications.

1.7 Semantics

The semantic level is more difficult to capture, and there are numerous viewpoints
on how to define and to process it. A possible viewpoint is to oppose it to syntax:
there are sentences that are syntactically correct but that cannot make sense. Such
a description of semantics would encompass sentences that make sense. Classical
examples by Chomsky (1957) — sentences 1 and 2 — and Tesniere (1966) — sentence
3 —include:

12 1 An Overview of Language Processing

Table 1.4 Correspondence between sentences and logical forms

Sentences Logical forms (predicates)

Pierre wrote notes wrote (pierre, notes).
Pierre a écrit des notes a_écrit (pierre, notes).
Pierre schrieb Notizen schrieb (pierre, notizen).
1. Colorless green ideas sleep furiously.

2. *Furiously sleep ideas green colorless.

3. Le silence vertébral indispose la voile licite.
‘The vertebral silence embarrasses the licit sail.’

Sentences 1 and 3 and are syntactically correct but have no meaning, while sentence
2 is neither syntactically nor semantically correct.

In computational linguistics, semantics is often related to logic and to predicate
calculus. Determining the semantic representation of a sentence then involves
turning it into a predicate—argument structure, where the predicate is the main verb
and the arguments correspond to phrases accompanying the verb such as the subject
and the object. This type of logical representation is called a logical form. Table 1.4
shows examples of sentences together with their logical forms.

Representation is only one facet of semantics. Once sentence representations
have been built, they can be interpreted to check what they mean. Notes in the
sentence Pierre wrote notes can be linked to a dictionary definition. If we look
up notes in the Cambridge International Dictionary of English (Procter 1995), we
find as many as five possible senses for it (abridged from p. 963):

. note [WRITING], noun, a short piece of writing;

. note [SOUNDY], noun, a single sound at a particular level;
. note [MONEY], noun, a piece of paper money;

. note [NOTICE], verb, to take notice of;

. note [IMPORTANCE], noun, of note: of importance.

W AW =

So linking a word meaning to a definition is not straightforward because of
possible ambiguities. Among these definitions, the intended sense of notes is a
specialization of the first entry:

notes, plural noun, notes are written information.

Finally, we can interpret notes as what they refer to concretely, that is, a specific
object: a set of bound paper sheets with written text on them or a file on a computer
drive. The word notes is then the mention of an object of the real world, here a file on
a computer, and linking the mention and the object is called reference resolution.

The referent of the word notes, that is, the designated object or entity, could
be the path /users/pierre/language_processing.html in Unix parlance. As for the
definition of a word, the designated entity can be ambiguous. Let us suppose that a
database contains the locations of the lecture notes Pierre wrote. In Prolog, listing
its content could yield:

/users/pierre/language_processing.html

1.8 Discourse and Dialogue 13

1. Sentence 2. Logical representation
Pierre wrote notes wrote(pierre, notes)

3. Real world refers to refers to
Louis -

Pierre E E
Charlotte

operating language Prolog
systems processing programming

Fig. 1.9 Resolving references of Pierre wrote notes

notes ('’ /users/pierre/operating systems.html’) .
notes (' /users/pierre/language processing.html’) .
notes (' /users/pierre/prolog programming.html’) .

Here this would mean that finding the referent of notes consists in choosing a
document among three possible ones (Fig. 1.9).

Obtaining the semantic structure of a sentence has been discussed abundantly
in the literature. This is not surprising, given the uncertain nature of semantics.
Building a logical form sometimes calls on the composition of the semantic
representation of the phrases that constitute a sentence. To carry it out, we must
assume that sentences and phrases have an internal representation that can be
expressed in terms of a logical formula.

Once a representation has been built, a reasoning process is applied to resolve
references and to determine whether a sentence is true or not. It generally involves
rules of deduction, or inferences.

Pragmatics is semantics restricted to a specific context and relies on facts that
are external to the sentence. These facts contribute to the inference of a sentence’s
meaning or prove its truth or falsity. For instance, the pragmatics of

Methuselah lived to be 969 years old. (Genesis 5:27)

can make sense in the Bible but not elsewhere, given the current possibilities of
medicine.

1.8 Discourse and Dialogue

An interactive conversational agent cannot be envisioned without considering the
whole discourse of (human) users — or parts of it — and apart from a dialogue
between a user and the agent. Discourse refers to a sequence of sentences, to

14 1 An Overview of Language Processing

a sentence context in relation with other sentences, or with some background
situation. It is often linked with pragmatics.

Discourse study also enables us to resolve references that are not self-explainable
in single sentences. Pronouns are good examples of such missing information. In the
sentence

John took it

the pronoun it can probably be related to an entity mentioned in a previous sentence,
or is obvious given the context where this sentence was said. These references are
given the name of anaphors.

Dialogue provides a means of communication. It is the result of two intermingled
— and, we hope, interacting — discourses: one from the user and the other from the
machine. It enables a conversation between the two parties, the assertion of new
results, and the cooperative search for solutions.

Dialogue is also a tool to repair communication failures or to complete interac-
tively missing data. It may clarify information and mitigate misunderstandings that
impair communication. Through a dialogue a computer can respond and ask the
user:

I didn’t understand what you said! Can you repeat (rephrase)?

Dialogue easily replaces some hazardous guesses. When an agent has to find the
potential reference of a pronoun or to solve reference ambiguities, the best option is
simply to ask the user to clarify what s/he means:

Tracy? Do you mean James’ brother or your mother?

Discourse processing splits texts and sentences into segments. It then sets links
between segments to chain them rationally and to map them onto a sort of structure
of the text. Discourse studies often make use of rhetoric as a background model of
this structure.

Dialogue processing classifies the segments into what are called speech acts.
At a first level, speech acts comprise dialogue turns: the user turn and the system
turn. Then turns are split into sentences, and sentences into questions, declarations,
requests, answers, etc. Speech acts can be modeled using finite-state automata or
more elaborate schemes using intention and planning theories.

1.9 Why Speech and Language Processing Are Difficult

So far, for all the linguistic levels mentioned in the previous sections, we outlined
models and techniques to process speech and language. They often enable machines
to obtain excellent results compared to the performance of human beings. However,
for most levels, language processing rarely hits the ideal score of 100 %. Among the

1.9 Why Speech and Language Processing Are Difficult 15

hurdles that often prevent the machine from reaching this figure, two recur at any
level: ambiguity and the absence of a perfect model.

1.9.1 Ambiguity

Ambiguity is a major obstacle in language processing, and it may be the most
significant. Although as human beings we are not aware of it most of the time,
ambiguity is ubiquitous in language and plagues any stage of automated analysis.
We saw examples of ambiguous morphological analysis and part-of-speech anno-
tation, word senses, and references. Ambiguity also occurs in speech recognition,
parsing, anaphora solving, and dialogue.

McMahon and Smith (1996) illustrate strikingly ambiguity in speech recognition
with the sentence

The boys eat the sandwiches.

Speech recognition comprises generally two stages: first, a phoneme recognition,
and then a concatenation of phoneme substrings into words. Using the International
Phonetic Association (IPA) symbols, a perfect phonemic transcription of this
utterance would yield the transcription:

['dob'o1z'i:t'dos'@endwidz1z],
which shows eight other alternative readings at the word decoding stage:

*The boy seat the sandwiches.
*The boy seat this and which is.
*The boys eat this and which is.
The buoys eat the sandwiches.
*The buoys eat this and which is.
The boys eat the sand which is.
*The buoys seat this and which is.

This includes the strange sentence

The buoys eat the sand which is.

For syntactic and semantic layers, a broad classification occurs between lexical
and structural ambiguity. Lexical ambiguity refers to multiple senses of words, while
structural ambiguity describes a parsing alternative, as with the frequently quoted
sentence

I saw the boy with a telescope,

which can mean either that I used a telescope to see the boy or that I saw the boy
who had a telescope.

A way to resolve ambiguity is to use a conjunction of language processing
components and techniques. In the example given by McMahon and Smith, five

16 1 An Overview of Language Processing

out of eight possible interpretations are not grammatical. These are flagged with an
asterisk. A further syntactic analysis could discard them.

Probabilistic models of word sequences can also address disambiguation. Statis-
tics on word occurrences drawn from large quantities of texts — corpora — can
capture grammatical as well as semantic patterns. Improbable alternatives <boys
eat sand> and <buoys eat sand> are also highly unlikely in corpora and will not be
retained (McMahon and Smith 1996). In the same vein, probabilistic parsing is a
very powerful tool to rank alternative parse trees, that is, to retain the most probable
and reject the others.

In some applications, logical rules model the context, reflect common sense, and
discard impossible configurations. Knowing the physical context may help disam-
biguate some structures, as in the boy and the telescope, where both interpretations
of the isolated sentence are correct and reasonable. Finally, when a machine interacts
with a user, it can ask her/him to clarify an ambiguous utterance or situation.

1.9.2 Models and Their Implementation

Processing a linguistic phenomenon or layer starts with the choice or the devel-
opment of a formal model and its algorithmic implementation. In any scientific
discipline, good models are difficult to design. This is specifically the case with
language. Language is closely tied to human thought and understanding, and in
some instances models in computational linguistics also involve the study of the
human mind. This gives a measure of the complexity of the description and the
representation of language.

As noted in the introduction, linguists have produced many theories and models.
Unfortunately, few of them have been elaborate enough to encompass and describe
language effectively. Some models have also been misleading. This explains
somewhat the failures of early attempts in language processing. In addition, many
of the potential theories require massive computing power. Processors and storage
able to support the implementation of complex models with substantial dictionaries,
corpora, and parsers were not widely available until recently.

However, in the last decade models have matured, and computing power has
become inexpensive. Although models and implementations are rarely (never?)
perfect, they now enable us to obtain exploitable results. Most use a limited set of
techniques that we will consider throughout this book, namely finite-state automata,
logic grammars, and first-order logic. These tools are easily implemented in Prolog.
Another set of tools pertains to the theory of probability, statistics, and machine
learning. The combination of logic, statistics and machine-learning techniques now
enables us to parse running-text sentences in multiple languages with an accuracy
rate of more than 90 %, a figure that would have been unimaginable 15 years ago.

1.10 An Example of Language Technology in Action: The Persona Project 17

Table 1.5 An excerpt of a Persona dialogue (After Ball et al. (1997))

Turns Utterances

[Peedy is asleep on his perch]

User: Good morning, Peedy.
[Peedy rouses]
Peedy: Good morning.
User: Let’s do a demo.
[Peedy stands up, smiles]
Peedy: Your wish is my command, what would you like to hear?
User: ‘What have you got by Bonnie Raitt?
[Peedy waves in a stream of notes, and grabs one as they rush by.]
Peedy: I have “The Bonnie Raitt Collection” from 1990.
User: Pick something from that.
Peedy: How about “Angel from Montgomery”’?
User: Sounds good.
[Peedy drops note on pile]
Peedy: OK.
User: Play some rock after that.
[Peedy scans the notes again, selects one]
Peedy: How about “Fools in Love”?
User: Who wrote that?
[Peedy cups one wing to his ‘ear’]
Peedy: Huh?
User: Who wrote that?
[Peedy looks up, scrunches his brow]
Peedy: Joe Jackson
User: Fine.
[Drops note on pile]
Peedy: OK.

1.10 An Example of Language Technology in Action:
The Persona Project

1.10.1 Overview of Persona

The Persona prototype from Microsoft Research (Ball et al. 1997) illustrates a user
interface that is based on a variety of language processing techniques. Persona is a
conversational agent that helps a user select songs and music tracks from a record
database. Peedy, an animated cartoonlike parrot, embodies the agent that interacts
with the user. It contains speech recognition, parsing, and semantic analysis modules
to listen and to respond to the user and to play the songs. Table 1.5 shows an example
of a dialogue with Peedy.

Certain interactive talking assistants consider a limited set of the linguistic levels
we have presented before. Simple systems bypass syntax, for example, and have

18 1 An Overview of Language Processing

Whisper Names NLP
Speech Proper noun L
recognition substitution analysis

o Semantics) D
P Template matching datab
atabase Object description atabase

Action
templates
database

Player/Reactor
Animation engine
- Dialogue

Video output Speech and
. L Context and

Animated parrot animation database .

conversation state

Dialogue rules
database

Sound output Speech
controller

Application
CD changer

Fig. 1.10 Architecture of the Persona conversational assistant (After Ball et al. (1997))

only a speech recognition device to detect a couple of key words. In contrast,
Persona has components to process more layers. They are organized in modules
carrying out speech recognition, speech synthesis, parsing, semantics analysis, and
dialogue. In addition, Persona has components specific to the application such as
a name substitution module to find proper nouns like Madonna or Debussy and an
animation module to play the Peedy character.

Persona’s architecture organizes its modules into a pipeline processing flow
(Fig. 1.10). Many other instances of dialogue systems adopt a similar architecture.

1.10.2 The Persona’s Modules

Persona’s first component is the Whisper speech recognition module (Huang et al.
1995). Whisper uses signal processing techniques to compare phoneme models
to the acoustic waves, and it assembles the recognized phonemes into words. It
also uses a grammar to constrain the recognition possibilities. Whisper transcribes
continuous speech into a stream of words in real time. It is a speaker-independent
system. This means that it operates with any speaker without training.

1.11 Further Reading 19

The user’s orders to select music often contain names: artists, titles of songs,
or titles of albums. The Names module extracts them from the text before they
are passed on to further analysis. Names uses a pattern matcher that attempts to
substitute all the names and titles contained in the input sentence with placeholders.
The utterance Play before you accuse me by Clapton is transformed into Play
trackl byartistl.

The NLP module parses the input in which names have been substituted. It uses
a grammar with rules similar to that of Sect. 1.6.1 and produces a tree structure. It
creates a logical form whose predicate is the verb, and the arguments are the subject
and the object: verb (subject, object). The sentence I would like to hear
something is transformed into the form 1ike (i, hear (i, something)).

The logical forms are converted into a task graph representing the utterance
in terms of actions the agent can do and objects of the task domain. It uses an
application-dependent notation to map English words to symbols. It also reverses the
viewpoint from the user to the agent. The logical form of I would like to hear some-
thing is transformed into the task graph: verbPlay (you, objectTrack) —
You play (verbPlay) a track (objectTrack).

Each possible request Peedy understands has possible variations — paraphrases.
The mapping of logical forms to task graphs uses transformation rules to reduce
them to a limited set of 17 canonical requests. The transformation rules deal with
synonyms, syntactic variation, and colloquialisms. The forms corresponding to

I’d like to hear some Madonna.
I want to hear some Madonna.
It would be nice to hear some Madonna.

are transformed into a form equivalent to

Let me hear some Madonna.

The resulting graph is matched against actions templates the jukebox can carry out.

The dialogue module controls Peedy’s answers and reactions. It consists of
a state machine that models a sequence of interactions. Depending on the state
of the conversation and an input event — what the user says — Peedy will react:
trigger an animation, utter a spoken sentence or play music, and move to another
conversational state.

1.11 Further Reading

Introductory textbooks on linguistics include An Introduction to Language (Fromkin
et al. 2010) and Linguistics: An Introduction to Linguistics Theory (Fromkin 2000).
The Nouveau dictionnaire encyclopédique des sciences du langage (Ducrot and
Schaeffer 1995) is an encyclopedic presentation of linguistics in French, and
Studienbuch Linguistik (Linke et al. 2004) is an introduction in German. Fondamenti

20 1 An Overview of Language Processing

di linguistica (Simone 2007) is an outstandingly clear and concise work in Italian
that describes most fundamental concepts of linguistics.

Concepts and theories in linguistics evolved continuously from their origins to
the present time. Historical perspectives are useful to understand the development
of central issues. A Short History of Linguistics (Robins 1997) is a very readable
introduction to linguistics history. Histoire de la linguistique de Sumer a Saussure
(Malmberg 1991) and Analyse du langage au XX°¢ siecle (Malmberg 1983) are
comprehensive and accessible books that review linguistic theories from the ancient
Near East to the end of the twentieth century. Landmarks in Linguistic Thought, The
Western Tradition from Socrates to Saussure (Harris and Taylor 1997) are extracts
of founding classical texts followed by a commentary.

Available books on natural language processing include (in English): Natural
Language Processing in Prolog (Gazdar and Mellish 1989), Prolog for Natural
Language Analysis (Gal et al. 1991), Natural Language Processing for Prolog
Programmers (Covington 1994b), Natural Language Understanding (Allen 1994),
Foundations of Statistical Natural Language Processing (Manning and Schiitze
1999), Speech and Language Processing: An Introduction to Natural Language Pro-
cessing, Computational Linguistics, and Speech Recognition (Jurafsky and Martin
2008), Foundations of Computational Linguistics: Human—Computer Communi-
cation in Natural Language (Hausser 2014). Available books in French include:
Prolog pour I’analyse du langage naturel (Gal et al. 1989), L’intelligence artificielle
et le langage (Sabah 1990). And in German Grundlagen der Computerlinguistik.
Mensch-Maschine-Kommunikation in natiirlicher Sprache (Hausser 2000).

The Internet offers a wealth of resources: digital libraries, general references,
corpus, lexical, and software resources, together with registries and portals. A
starting point is the official home page of the Association for Computational
Linguistics (ACL), which provides many links (http://www.aclweb.org/). The ACL
anthology (http://www.aclweb.org/anthology/) is an extremely valuable anthology
of research papers (journal and conferences) published under the auspices of the
ACL. The French journal Traitement automatique des langues is also a source of
interesting papers. It is published by the Association de traitement automatique
des langues (http://www.atala.org/). Wikipedia (http://www.wikipedia.org/) is a free
encyclopedia that contains definitions and general articles on concepts and theories
used in computational linguistics and natural language processing.

Many source programs are available for download, either for free or under a
license. They include speech synthesis and recognition, morphological analysis,
parsing, and so on. The Natural Language Toolkit (NLTK) is an example that
features a comprehensive suite of open source Python programs, data sets, and
tutorials (http://nltk.org/). It has a companion book: Natural Language Processing
with Python by Bird et al. (2009). The German Institute for Artificial Intelligence
Research maintains a list of available software and related resources at the Natural
Language Software Registry (http://registry.dfki.de/).

Lexical and corpus resources are now available in many languages. Valuable
sites include the Linguistic Data Consortium of the University of Pennsylvania

http://www.aclweb.org/
http://www.aclweb.org/anthology/
http://www.atala.org/
http://www.wikipedia.org/
http://nltk.org/
http://registry.dfki.de/

Exercises 21

(http://www.ldc.upenn.edu/) and the European Language Resources Association
(http://www.elra.info/).

There are nice interactive online demonstrations covering speech synthesis,
parsing, translation, and so on. Since sites are sometimes transient, we do not list
them here. A good way to find them is to use search engines or directories like
Google, Bing, or Yahoo.

Finally, some companies and laboratories are very active in language processing
research. They include major software powerhouses like Google, IBM, Microsoft,
Yahoo, and Xerox. The paper describing the Peedy animated character can be found
at the Microsoft Research website (http://www.research.microsoft.com/).

Exercises

1.1. List some computer applications that are relevant to the domain of language
processing.

1.2. Tag the following sentences using parts of speech you know:

The cat caught the mouse.
Le chat attrape la souris.
Die Katze fangt die Maus.

1.3. Give the morpheme list of: sings, sung, chante, chantiez, singt, sang. List all
the possible ambiguities.

1.4. Give the morpheme list of: unpleasant, déplaisant, unangenehm.

1.5. Draw the tree structures of the sentences:

The cat caught the mouse.
Le chat attrape la souris.
Die Katze fangt die Maus.

1.6. Identify the main functions of these sentences and draw the corresponding
dependency graph linking the words:
The cat caught the mouse.

Le chat attrape la souris.
Die Katze fingt die Maus.

1.7. Draw the dependency graphs of the sentences:

The mean cat caught the gray mouse on the table.
Le chat méchant attrape la souris grise sur la table.
Die bose Katze fangt die graue Maus auf dem Tisch.

1.8. Give examples of sentences that are:

* Syntactically incorrect
* Syntactically correct
* Syntactically and semantically correct

http://www.ldc.upenn.edu/
http://www.elra.info/
http://www.research.microsoft.com/

22 1 An Overview of Language Processing

1.9. Give the logical forms of these sentences:

The cat catches the mouse.
Le chat attrape la souris.
Die Katze fangt die Maus.

1.10. List the components you think necessary to build a spoken dialogue system.

Chapter 2
Corpus Processing Tools

A.a.a. Je. La. [A, a, a,] domine deus, ecce nescio loqui.
XIIILb. [A, a, a, domine deus,] prophete dicunt eis.
Eze. 1III.d. [A, a, a,] domine deus ecce anima mea non est
XXl.a. [A, a, a,] domine deus.
Joel lc. [A, a, a,] diei.
Aaron exo. Ill.c [Aaron. ..] egredietur in occursum
VIlLa. [Aaron frater tuus] erit propheta tuus.
XVILd. [Aaron autem et] Hur sustentabant manus.

XXIIII.d. habetis Aaron et Hur vobiscum.

First lines from the third concordance to the Vulgate.
Abbreviations are spelled out for clarity.
Bibliotheque nationale de France. Manuscrit latin 515. Thirteenth century.

2.1 Corpora

A corpus, plural corpora, is a collection of texts or speech stored in an electronic
machine-readable format. A few years ago, large electronic corpora of more than
a million of words were rare, expensive, or simply not available. At present, huge
quantities of texts are accessible in many languages of the world. They can easily
be collected from a variety of sources, most notably the Internet, where corpora of
hundreds of millions of words are within the reach of most computational linguists.

2.1.1 Types of Corpora

Some corpora focus on specific genres: law, science, novels, news broadcasts,
electronic correspondence, or transcriptions of telephone calls or conversations.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 23
DOI 10.1007/978-3-642-41464-0_2, © Springer-Verlag Berlin Heidelberg 2014

24 2 Corpus Processing Tools

Table 2.1 List of the most frequent words in present texts and in the book of Genesis (After
Crystal (1997))

English French German
Most frequent words in a collection the de der
of contemporary running texts of le (article) die
to la (article) und
in et in
and les des
Most frequent words in Genesis and et und
the de die
of la der
his a da
he il er

Others try to gather a wider variety of running texts. Texts collected from a unique
source, say from scientific magazines, will probably be slanted toward some specific
words that do not appear in everyday life. Table 2.1 compares the most frequent
words in the book of Genesis and in a collection of contemporary running texts. It
gives an example of such a discrepancy. The choice of documents to include in a
corpus must then be varied to survey comprehensively and accurately a language
usage. This process is referred to as balancing a corpus.

Balancing a corpus is a difficult and costly task. It requires collecting data from
a wide range of sources: fiction, newspapers, technical, and popular literature.
Balanced corpora extend to spoken data. The Linguistic Data Consortium (LDC)
from the University of Pennsylvania and the European Language Resources Asso-
ciation (ELRA), among other organizations, distribute written and spoken corpus
collections. They feature samples of magazines, laws, parallel texts in English,
French, German, Spanish, Chinese, Arabic, telephone calls, radio broadcasts, etc.

In addition to raw texts, some corpora are annotated. Each of their words is
labeled with a linguistic tag such as a part of speech or a semantic category. The
annotation is done either manually or semiautomatically. Spoken corpora contain
the transcription of spoken conversations. This transcription may be aligned with
the speech signal and sometimes includes prosodic annotation: pause, stress, etc.
Annotation tags, paragraph and sentence boundaries, parts of speech, syntactic
or semantic categories follow a variety of standards, which are called markup
languages.

Among annotated corpora, treebanks deserve a specific mention. They are
collections of parse trees or more generally syntactic structures of sentences. The
production of a treebank generally requires a team of linguists to parenthesize the
constituents of a corpus or to arrange them in a dependency structure. Annotated
corpora require a fair amount of handwork and are therefore more expensive than
raw texts. Treebanks involve even more clerical work and are relatively rare. The

2.1 Corpora 25

Penn Treebank (Marcus et al. 1993) from the University of Pennsylvania is a widely
cited example for English.

A last word on annotated corpora: in tests, we will benchmark automatic methods
against manual annotation, which is often called the gold standard. We will assume
the hand annotation perfect, although this is not true in practice. Some errors slip
into hand-annotated corpora, even in those of the best quality, and the annotators
may not agree between them. The scope of agreement varies depending on the
annotation task. The inter-annotator agreement is generally high for parts of speech
that are relatively well defined. It is lower when determining the sense of a word, for
which annotators may have different interpretations. This inter-annotator agreement
defines then a sort of upper bound of the human performance. It is a useful figure to
conduct a reasonable assessment of results obtained by automatic methods as well
as their potential for improvements.

2.1.2 Corpora and Lexicon Building

Lexicons and dictionaries are intended to give word lists, to provide a reader with
word senses and meanings, and to outline their usage. Dictionaries’ main purpose
is related to lexical semantics. Lexicography is the science of building lexicons and
writing dictionaries. It uses electronic corpora extensively.

The basic data of a dictionary is a word list. Such lists can be drawn manually
or automatically from corpora. Then, lexicographers write the word definitions and
choose citations illustrating the words. Since most of the time, current meanings
are obvious to the reader, meticulous lexicographers tended to collect examples —
citations — reflecting a rare usage. Computerized corpora can help lexicographers
avoid this pitfall by extracting all the citations that exemplify a word. An expe-
rienced lexicographer will then select the most representative examples that reflect
the language with more relevance. S/he will prefer and describe more frequent usage
and possibly set aside others.

Finding a citation involves sampling a fragment of text surrounding a given
word. In addition, the context of a word can be more precisely measured by finding
recurrent pairs of words, or most-frequent neighbors. The first process results in
concordance tables, and the second one in collocations.

A concordance is an alphabetical index of all the words in a text, or the most
significant ones, where each word is related to a comprehensive list of passages
where the word is present. Passages may start with the word or be centered on it and
surrounded by a limited number of words before and after it (Table 2.2 and incipit
of this chapter). Furthermore, concordances feature a system of reference to connect
each passage to the book, chapter, page, paragraph, or verse, where it occurs.

Concordance tables were first produced for antiquity and religious studies. Hugh
of St-Cher is known to have directed the first concordance to the scriptures in

26 2 Corpus Processing Tools

Table 2.2 Concordance of miracle in the Gospel of John. English text: King James version;
French text: Augustin Crampon; German text: Luther’s Bible

Language Concordances

English 1 now. This beginning of miracles did Jesus in Cana of Ga
name, when they saw the miracles which he did. But Jesus
for no man can do these miracles that thou doest, except

This is again the second miracle that Jesus did, when he
im, because they saw his miracles which he did on them th
French Galilée, le premier des miracles que fit Jésus, et il ma
que, beaucoup voyant les miracles qu’il faisait, crurent
nne ne saurait faire les miracles que vous faites, si Die
maison. Ce fut le second miracle que fit Jésus en revenan
parce qu’elle voyait les miracles qu’il opérait sur ceux
German alten. Das ist das erste Zeichen, das Jesus tat, geschehe
as zeigst du uns fur ein Zeichen, daf du dies tun darfst?
seinen Namen, da sie die Zeichen sahen, die er tat. Aber
n; denn niemand kann die Zeichen tun, die du tust, es sei
h zu ihm: Wenn ihr nicht Zeichen und Wunder seht, so glau

Table 2.3 Comparing strong and powerful. The German words eng and schmal ‘narrow’ are near-
synonyms, but have different collocates

English French German
You say Strong tea Thé fort Schmales Gesicht
Powerful computer Ordinateur puissant Enge Kleidung
You don’t say Strong computer Thé puissant Schmale Kleidung
Powerful tea Ordinateur fort Enges Gesicht

the thirteenth century. It comprised about 11,800 words ranging from A, a, a. to
Zorobabel and 130,000 references (Rouse and Rouse 1974). Other more elaborate
concordances take word morphology into account or group words together into
semantic themes. Sceur Jeanne d’Arc (1970) produced an example of such a
concordance for Bible studies.

Concordancing is a powerful tool to study usage patterns and to write definitions.
It also provides evidence on certain preferences between verbs and prepositions,
adjectives and nouns, recurring expressions, or common syntactic forms. These
couples are referred to as collocations. Church and Mercer (1993) cite a striking
example of idiosyncratic collocations of strong and powerful. While strong and
powerful have similar definitions, they occur in different contexts, as shown in
Table 2.3.

Table 2.4 shows additional collocations of strong and powerful. These word
preferences cannot be explained using rational definitions, but can be observed in
corpora. A variety of statistical tests can measure the strength of pairs, and we can
extract them automatically from a corpus.

2.1 Corpora 27

Table 2.4 Word preferences of strong and powerful collected from the Associated Press corpus.
Numbers in columns indicate the number of collocation occurrences with word w (After Church
and Mercer (1993))

Preference for strong over powerful Preference for powerful over strong

strong w powerful w w strong w powerful w w

161 0 showing 1 32 than

175 2 support 1 32 figure
106 0 defense 3 31 minority

2.1.3 Corpora as Knowledge Sources for the Linguist

In the early 1990s, computer-based corpus analysis completely renewed empirical
methods in linguistics. It helped design and implement many of the techniques
presented in this book. As we saw with dictionaries, corpus analysis helps lexicog-
raphers acquire lexical knowledge and describe language usage. More generally,
corpora enable us to experiment with tools and to confront theories and models on
real data. For most language analysis programs, collecting relevant corpora of texts
is then a necessary step to define specifications and measure performances. Let us
take the examples of part-of-speech taggers, parsers, and dialogue systems.

Annotated corpora are essential tools to develop part-of-speech taggers or
parsers. A first purpose is to measure the tagging or parsing performance. The tagger
or parser is run on texts and their result is compared to hand annotation, which
serves as a reference. A linguist or an engineer can then determine the accuracy,
the robustness of an algorithm or a parsing model and see how well it scales up by
applying it to a variety of texts.

A second purpose of annotated corpora is to be a knowledge source to refine
tagging techniques and improve grammars. While developing a grammar, a linguist
can see if changing a rule improves or deteriorates results. The tool tuning is then
done manually. Using statistical or machine-learning techniques, annotated corpora
also enable researchers to create models, and identify parameters automatically or
semiautomatically to tag or parse a text. We will see this in Chap. 8.

A dialogue corpus between a user and a machine is also critical to develop an
interactive spoken system. The corpus is usually collected through fake dialogues
between a real user and a person simulating the machine answers. Repeating
such experiments with a reasonable number of users enables us to acquire a text
set covering what the machine can expect from potential users. It is then easier
to determine the vocabulary of an application, to have a precise idea of word
frequencies, and to know the average length of sentences. In addition, the dialogue
corpus enables the analyst to understand what the user expects from the machine
and how s/he interacts with it.

28 2 Corpus Processing Tools

Fig. 2.1 A finite-state b
automaton

2.2 Finite-State Automata

2.2.1 A Description

The most frequent operation we do with corpora consists in searching for words or
phrases. To be convenient, search must extend beyond fixed strings. We may want
to search for a word or its plural form, strings consisting of uppercase or lowercase
letters, expressions containing numbers, etc. This is made possible using finite-state
automata (FSA), which we introduce now. FSA are flexible tools to process texts
and are one of the most adequate ways to search strings.

FSA theory was designed in the beginning of computer science as a model of
abstract computing machines. It forms a well-defined formalism that has been tested
and used by generations of programmers. FSA stem from a simple idea. These are
devices that accept — recognize — or reject an input stream of characters. FSA are
very efficient in terms of speed and memory occupation and are easy to implement
in Prolog. In addition to text searching, they have many other applications:
morphological parsing, part-of-speech annotation, and speech processing.

Figure 2.1 shows an automaton with three states numbered from O to 2, where
state g is called the start state, and ¢, the final state. An automaton has a single
start state and any number of final states, indicated by double circles. Arcs between
states designate the possible transitions. Each arc is annotated by a label, which
means that the transition accepts or generates the corresponding character.

An automaton accepts an input string in the following way: it starts in the initial
state, follows a transition where the arc character matches the first character of the
string, consumes the corresponding string character, and reaches the destination
state. It then makes a second transition with the second character of the string,
and continues in this way until it ends up in one of the final states and there is
no character left. The automaton in Fig. 2.1 accepts or generates strings such as: ac,
abc, abbc, abbbc, abbbbbbbbbbbbc, etc. If the automaton fails to reach a final
state, either because it has no more characters in the input string or because it is
trapped in a nonfinal state, it rejects the string.

As an example, let us see how the automaton accepts string abbc and rejects
abbcb. The input abbc is presented to the start state go. The first character of
the string matches that of the outgoing arc. The automaton consumes character a
and moves to state ¢;. The remaining string is bbc. Then, the automaton loops
twice on state g; and consumes bb. The resulting string is character c¢. Finally, the
automaton consumes ¢ and reaches state ¢,, which is the final state. On the contrary,

2.2 Finite-State Automata 29

Fig. 2.2 A finite-state b
automaton with an
g-transition

Table 2.5 A state-transition
table where ¥ denotes

nonexistent or impossible 9o a 9 0
transitions q1 2 a @
492 9 0 9

the automaton does not accept string abbcb. It moves to states ¢, g1, and ¢,, and
consumes abbc. The remaining string is letter b. Since there is no outgoing arc with
a matching symbol, the automaton is stuck in state g, and rejects the string.

Automata may contain e-transitions from one state to another. In this case, the
automaton makes a transition without consuming any character of the input string.
The automaton in Fig.2.2 accepts strings a, ab, abb, etc., as well as ac, abc,
abbc, etc.

2.2.2 Mathematical Definition of Finite-State Automata

FSA have a formal definition. An FSA consists of five components (Q, X, qo, F, §),
where:

. Q is afinite set of states.

. X is a finite set of symbols or characters: the input alphabet.

. qo is the start state, go € Q.

. F is the set of final states, F € Q.

. 8 is the transition function Q x ¥ — Q, where 6(¢, 1) returns the state where
the automaton moves when it is in state g and consumes the input symbol ;.

[SO T S

The quintuple defining the automaton in Fig.2.1 is Q = {qo,q1,¢2}, ¥ =

la.b.c}, F = {g2}, and § = {8(q0.a) = q1.8(q1.b) = q1,8(q1.¢) = g2}. The
state-transition table in Table 2.5 is an alternate representation of the § function.

2.2.3 Finite-State Automata in Prolog

A finite-state automaton has a straightforward implementation in Prolog. It is merely
the transcription of the quintuplet definition. The following code describes the
transitions, the start, and the final states of the automaton in Fig. 2.1:

30

2 Corpus Processing Tools

% The start state
start (gO0) .

% The final states
final (g2) .

The transitions

transition (SourceState, Symbol, DestinationState)
transition(g0, a, gl).

transition(gl, b, gl).

transition(gl, c, g2).

)
<
)

<

The predicate accept /1 selects the start state and runs the automaton using

accept/2. The predicate accept /2 is recursive. It succeeds when it reaches
a final state, or consumes a symbol of the input string and makes a transition
otherwise.

accept (Symbols) :-
start (StartState),
accept (Symbols, StartState).

% accept (+Symbols, +State)

accept ([], State) :-
final (State) .

accept ([Symbol | Symbols], State) :-
transition(State, Symbol, NextState),
accept (Symbols, NextState) .

accept/1 either accepts an input symbol string or fails:

?- accept([a, b, b, cl).
true

?- accept([a, b, b, ¢, bl).
false

The automaton in Fig.2.2 contains e-transitions. They are introduced in the

database as facts:

epsilon(gl, g2).

To take them into account, the accept /2 predicate should be modified so that
there are two possible sorts of transitions. A first rule consumes a character and a
second one, corresponding to an e-transition, passes the string unchanged to the next
state:

accept ([]1, State) :-
final (State) .

accept ([Symbol | Symbols], State) :-
transition(State, Symbol, NextState),
accept (Symbolg, NextState).

2.2 Finite-State Automata 31

Fig. 2.3 A nondeterministic b
automaton

accept (Symbols, State) :-
epsilon(State, NextState),
accept (Symbolg, NextState).

2.2.4 Deterministic and Nondeterministic Automata

The automaton in Fig. 2.1 is said to be deterministic (DFSA) because given a state
and an input, there is one single possible destination state. On the contrary, a
nondeterministic automaton (NFSA) has states where it has a choice: the path is
not determined in advance.

Figure 2.3 shows an example of an NFSA that accepts the strings ab, abb, abbb,
abbbb, etc. Taking abb as input, the automaton reaches the state ¢; consuming the
letter a. Then, it has a choice between two states. The automaton can either move
to state g, or stay in state g;. If it first moves to state ¢,, there will be one character
left, and the automaton will fail. The right path is to loop onto ¢; and then to move
to g,. e-transitions also cause automata to be nondeterministic as in Fig. 2.2, where
any string that has reached state g; can also reach state g.

A possible strategy to deal with nondeterminism is to use backtracking. When
an automaton has the choice between two or more states, it selects one of them and
remembers the state where it made the decision: the choice point. If it subsequently
fails, the automaton backtracks to the choice point and selects another state to go to.
In our example in Fig. 2.3, if the automaton moves first to state g, with the string
bb, it will end up in a state without outgoing transition. It will have to backtrack and
select state ;. Backtracking is precisely the strategy that Prolog uses automatically.

2.2.5 Building a Deterministic Automaton
Jrom a Nondeterministic One

Although surprising, it is possible to convert any nondeterministic automaton into
an equivalent deterministic automaton. We outline here an informal description of
the determinization algorithm. See Hopcroft et al. (2007) for a complete description
of this algorithm.

The algorithm starts from an NFSA (Qn, X, qo, Fn,8y) and builds an equiva-
lent DFSA (Qp, ¥, {qo0}, Fp,dp), where:

32 2 Corpus Processing Tools

Table 2.6 The

State\ Input b
state-transition table of the ate\\Inpu a

nondeterministic automaton 90 g 9
shown in Fig. 2.3 q1 @ q1, 92
q> [/
Table 2.7 The
state-transition table of the State\Input _a b
determinized automaton in 0 0 0
Fig.2.3 {qo} {a:} 0@
{q:1} @ {q1, g2}
{q2} 9 @
{40, q1} (a1} {91, 92}
{40, 42} (a1} O
{q1, 42} @ {q1, g2}

{90,912} {1} {q1, 92}

e Qp is the set of all the possible state subsets of Q . It is called the power set. The
set of states of the automaton in Fig. 2.3 is Oy = {qo, 41, ¢2}- The corresponding
set of sets is Op = {0.{q0}. {91} {92}.{90. 01} {90. 42}. {q1. 42} {q0. 41. 42} }-
If Qy has n states, Q p will have 2" states. In general, many of these states will
be inaccessible and will be discarded.

e Fp is the set of sets that include at least one final state of Qp. In our example,
Fp = {{92}.4490. 92}, {q1. 42}, {90, 91. 42}}-)

N (s,a
* For each set S C Qy and for each input symbol a, §p(S,a) = |J . The

SES
state-transition table in Table 2.6 represents the automaton in Fig. 2.3. Table 2.7

represents the determinized version of it.

2.2.6 Searching a String with a Finite-State Automaton

Searching the occurrences of a string in a text corresponds to recognizing them
with an automaton, where the string characters label the sequence of transitions.
However, the automaton must skip chunks in the beginning, between the occur-
rences, and at the end of the text. The automaton consists then of a core accepting
the searched string and of loops to process the remaining pieces. Consider again the
automaton in Fig. 2.1 and modify it to search strings ac, abc, abbc, abbbc, etc., in
a text. We add two loops: one in the beginning and the other to come back and start
the search again (Fig.2.4).

In doing this, we have built an NFSA that it is preferable to convert into a DFSA.
Hopcroft et al. (2007) describe the mathematical properties of such automata and
an algorithm to automatically build an automaton for a given set of patterns to
search. They notably report that resulting DFSA have exactly the same number of

2.2 Finite-State Automata 33

Fig. 2.4 Searching strings
ac,abc, abbce, abbbe, etc.

Fig. 2.5 An automaton to
search strings ac, abc, abbc,
abbbc, etc., in a text

states as the corresponding NFSA. We present an informal solution to determine the
transitions of the automaton in Fig. 2.4.

If the input text does not begin with an a, the automaton must consume the
beginning characters and loop on the start state until it finds one. Figure 2.5
expresses this with an outgoing transition from state O to state 1 labeled with an
a and a loop for the rest of the characters. X' — a denotes the finite set of symbols
except a. From state 1, the automaton proceeds if the text continues with either a
b or a c. If it is an a, the preceding a is not the beginning of the string, but there
is still a chance because it can start again. This corresponds to the second loop on
state 1. Otherwise, if the next character falls in the set X' — {a, b, c}, the automaton
goes back to state 0. The automaton successfully recognizes the string if it reaches
state 2. Then it goes back to state 0 and starts the search again, except if the next
character is an a, for which it can go directly to state 1.

2.2.7 Operations on Finite-State Automata

FSA can be combined using a set of operations. The most useful are the union, the
concatenation, and the closure.

The union or sum of two automata 4 and B accepts or generates all the strings
of A and all the strings of B. It is denoted A U B. We obtain it by adding a new
initial state that we link to the initial states of A and B (Fig. 2.6) using e-transitions
(Fig.2.7).

The concatenation or product of A and B accepts all the strings that are
concatenations of two strings, the first one being accepted by A and the second
one by B. It is denoted A.B. We obtain the resulting automaton by connecting all
the final states of A to the initial state of B using e-transitions (Fig. 2.8).

34 2 Corpus Processing Tools

Fig. 2.8 The concatenation of two automata: A.B

The iteration or Kleene closure of an automaton A accepts the concatenations
of any number of its strings and the empty string. It is denoted A*, where A* =
{efUAUA.AUAAAUAAA.AU....We obtain the resulting automaton by
linking the final states of A to its initial state using e-transitions and adding a new
initial state, as shown in Fig. 2.9. The new initial state enables us to obtain the empty
string.

The notation X'* designates the infinite set of all possible strings generated from
the alphabet X'. Other significant operations are:

¢ The intersection of two automata A N B that accepts all the strings accepted both
by Aand by B.If A = (X, Q1,q1, F1,61) and B = (X, 02,¢>, F>,63), the
resulting automaton is obtained from the Cartesian product of states (¥, Q; x
01,{q1,q2) , F1 x F3,83) with the transition function §3({s1, 52} ,1) = {{t1, 12} |
IS 81(5‘1, l) Nl € 52(S2, l)}

2.3 Regular Expressions 35

Fig. 2.9 The closure of A

* The difference of two automata A — B that accepts all the strings accepted by 4
but not by B.

e The complementation of the automaton A in X* that accepts all the strings that
are not accepted by A. It is denoted A, where A = X* — A.

* The reversal of the automaton A that accepts all the reversed strings accepted by
A.

Two automata are said to be equivalent when they accept or generate exactly the
same set of strings. Useful equivalence transformations optimize computation speed
or memory requirements. They include:

* g-removal, which transforms an initial automaton into an equivalent one without
e-transitions;

e Determinization, which transforms a nondeterministic automaton into a deter-
ministic one;

* Minimization, which determines among equivalent automata the one that has the
smallest number of states.

Optimization algorithms are outside the scope of this book. Hopcroft et al. (2007)
as well as Roche and Schabes (1997) describe them in detail.

2.3 Regular Expressions

The automaton in Fig. 2.1 generates or accepts strings composed of one a, zero or
more b’s, and one ¢. We can represent this set of strings using a compact notation:
abxc, where the star symbol means any number of the preceding character. Such
a notation is called a regular expression or regex. Regular expressions are very
powerful devices to describe patterns to search in a text. Although their notation is
different, regular expressions can always be implemented in the form of automata,
and vice versa. However, regular expressions are generally easier to use.

36 2 Corpus Processing Tools

Table 2.8 Examples of

Pattern Strin;
simple patterns and matching g

regular “A section on regular expressions”

results
Prolog “The Prolog language”
the “The book of the life”

Regular expressions are composed of literal characters, that is, ordinary text
characters, like abc, and of metacharacters, like *, that have a special meaning.
The simplest form of regular expressions is a sequence of literal characters: letters,
numbers, spaces, or punctuation signs. The regexes regular and Prolog match,
respectively, the strings regular or Prolog contained in a text. Table 2.8 shows
examples of pattern matching with literal characters. Regular expressions are case-
sensitive and match the first instance of the string or all its instances in a text,
depending on the regex language that is used.

There are currently a dozen major regular expression dialects freely available.
Their common ancestor is grep, which stands for global/regular expression/print.
grep, together with egrep, a modern version of it, is a standard Unix tool that
prints out all the lines of a file that contain a given pattern. The grep user interface
conforms to the Unix command-line style. It consists of the command name, here
grep, options, and the arguments. The first argument is the regular expression
delimited by single straight quotes. The next arguments are the files where to search
the pattern:

grep ‘regular expression’ filel file2 ... filen
The Unix command:
grep ’'abc’ myFile
prints all the lines of file myFile containing the string abc and
grep ’'abxc’ myFilel myFile2

prints all the lines of file myFilel and myFile?2 containing the strings ac, abc,
abbc, abbbc, etc.

grep had a considerable influence, and most programming languages, including
Perl, Python, Java, and C#, have now some support for regexes. All the regex
variants — or flavors — adhere to an analog syntax, with some differences, however,
that hinder a universal compatibility.

In the following sections, we will use the syntax defined by Perl. Because of its
built-in support for regexes and its simplicity, Perl was immediately recognized as
a real innovation in the world of scripting languages and was adopted by millions
of programmers. It is probably Perl that made regular expressions a mainstream
programming technique and, in return, it explains why the Perl regex syntax became
a sort of de facto standard that inspires most modern regex flavors.

2.3 Regular Expressions

Table 2.9 Repetition metacharacters (quantifiers)

37

Metachar Description

Example

*

Matches any number of occurrences of
the previous character — zero or more

Matches at most one occurrence of the
previous character — zero or one

Matches one or more occurrences of the
previous character

ac+e matches strings ae, ace,acce,
accce, etc. as in “The aerial
acceleration alerted the ace pilot”

ac?e matches ae and ace as in “The
aerial acceleration alerted the ace
pilot”

ac+e matches ace, acce, accce, etc.
as in as in “The aerial acceleration
alerted the ace pilot”

{n} Matches exactly n occurrences of the ac{2}e matches acce as in “The
previous character aerial acceleration alerted the ace
pilot”
{n,} Matches n or more occurrences of the ac{2, }e matches acce, accce, etc.
previous character
{n,m} Matches from n to m occurrences of the ac{2, 4 }e matches acce, accce, and

previous character

acccce.

2.3.1 Repetition Metacharacters

We saw that the metacharacter = expressed a repetition of zero or more characters,
as in abxc. Other characters that describe repetitions are the question mark, ?, the
plus, +, and the range quantifiers {n, m} matching a specified range of occurrences
(Table 2.9). The star symbol is also called the closure operator or the Kleene star.

2.3.2 The Dot Metacharacter

The dot . is also a metacharacter that matches one occurrence of any character of
the alphabet except a new line. For example, a . e matches the strings ale and ace in
the sentence:

The aerial acceleration alerted the ace pilot

as well as age, ape, are, ate, awe, axe, or aae, aAe, abe, aBe, ale, etc. We can
combine the dot and the star in the expression . * to match any string of characters
until we encounter a new line.

2.3.3 The Escape Character

If the pattern to search contains a character that is also a metacharacter, for instance,
“?”’, we need to indicate it to the regex engine using a backslash \ before it. We saw
that abc? matches ab and abc. The expression abe\ ? matches the string abc?. In
the same vein, abc\ . matches the string abc., and a\ *bc matches a*bc.

38 2 Corpus Processing Tools

We call the backslash an escape character. It transforms a metacharacter into a
literal symbol. We can also say that we “quote” a metacharacter with a backslash.
In Perl, we must use a backslash escape with the 14 following characters:

s+ 2 N ()1 {} s

to search them literally.

As a matter of fact, the backslash is not always necessary as sometimes Perl can
guess from the context that a character has a literal meaning. This is the case for
the braces, for instance, that Perl interprets as literals outside the expressions, {n},
{n,}, and {n,m}. Anyway, it is always safer to use a backslash escape to avoid
ambiguities.

2.3.4 The Longest Match

The description of repetition metacharacters in Table 2.9 sometimes makes string
matching ambiguous, as with the string aabbc and the regex a+b+, which could
have six possible matches: a, aa, ab, aab, abb, and aabb. In fact, matching
algorithms use two rules that are common to all the regex languages:

1. They match as early as they can in a string.
2. They match as many characters as they can.

Hence, a+b+* matches aabb, which is the longest possible match. The matching
strategy of repetition metacharacters is said to be greedy.
In some cases, the greedy strategy is not appropriate. To display the sentence

They match as early and as many characters as they can.

in a web page with two phrases set in bold, we need specific tags that we will insert
in the source file. Using HTML, the language of the web, the sentence will probably
be annotated as

They match <bs>as early and <bs>as many characters as
they can.

where and mark respectively the beginning and the end of a phrase set
in bold. (We will see annotation frameworks in more detail in Chap. 3.)
A regular expression to search and extract phrases in bold could be:

.x

Unfortunately, applying this regex to the sentence will match one single string:

as early and as many

which is not what we wanted. In fact, this is not a surprise. As we saw, the regex
engine matches as early as it can, i.e., from the first and as many characters as
it can up to the second .

2.3 Regular Expressions 39

Table 2.10 Lazy metacharacters

Metachar Description

*? Matches any number of occurrences of the previous character — zero or more
?2? Matches at most one occurrence of the previous character — zero or one

+? Matches one or more occurrences of the previous character

{n}> Matches exactly n occurrences of the previous character

{n,}? Matches n or more occurrences of the previous character

{n,m}? Matches from n to m occurrences of the previous character

A possible solution is to modify the behavior of repetition metacharacters and
make them “lazy.” They will then consume as few characters as possible. We create
the lazy variant of a repetition metacharacter by appending a question mark to it
(Table 2.10). The regex

.x?

will then match the two intended strings,

as earlyand as many.

2.3.5 Character Classes

We saw that the dot, ., represented any character of the alphabet. It is possible
to define smaller subsets or classes. A list of characters between square brackets
[...] matches any character contained in the list. The expression [abc] means
one occurrence of either a, b, or ¢; [ABCDEFGHIJKLMNOPQRSTUVWXYZ]
means one uppercase unaccented letter; and [0123456789] means one digit. We
can concatenate character classes, literal characters, and metacharacters, as in the
expressions [0123456789] +and [0123456789]+\.[0123456789] +, that
match, respectively, integers and decimal numbers.

Character classes are useful to search patterns with spelling differences, such as
[Cclomputer [Ss]cience, which matches four different strings:

Computer Science

Computer science

computer Science
computer science

Negated Character Classes

We can define the complement of a character class, that is, the characters of the
alphabet that are not member of the class, using the caret symbol, *, as the first
symbol inside the square brackets. For example:

40 2 Corpus Processing Tools

» The expression [*a] means any character that is not an a;
e [70123456789] means any character that is not a digit;
e ["ABCD] + means any string that does not contain A, B, C, or D.

Such classes are also called negated character classes.

Range of Characters

Inside square brackets, we can also specify ranges using the hyphen character: -.
For example:

e The expression [1-4] means any of the digits /, 2, 3, or 4, and a[1-41Db
matches alb, a2b, a3c, and a4b.

e The expression [a-zad88xgé&ééliddeRulnty] matches any lowercase ac-
cented or unaccented letter of French and German.

Metacharacters

Inside a character class, the hyphen is a metacharacter describing a range. If we want
to search it like an ordinary character and include it in a class, we need to quote it
with a backslash like this: \ -. The expression [1\-4] means any of the characters
1,-,0r4.

In addition to the hyphen, the other metacharacters used in character classes
are: the closing square bracket, 1, the backslash, \, the caret, *, and the dollar
sign, $. As for carets, they need to be quoted to be treated as normal characters in
a character class. However, when they are in an unambiguous position, Perl will
interpret them correctly even without the escape sign. For instance, if the caret is
not the first character after the opening bracket, Perl will recognize it as a normal
character. The expression [a”b] matches either a, *, or b.

Predefined Character Classes

Most regex flavors have predefined classes. Table 2.11 lists some useful ones in Perl.
Some classes are adopted by all the flavors, while some others are specific to Perl.
In case of doubt, refer to the appropriate documentation. Perl also defines classes
as properties using the \p{class} construct that matches the symbols in class
and \P{class} that matches symbols not in class. To name the properties or
classes, Perl uses its own categories as well as those defined by the Unicode standard
that we will review in Chap. 3. This enables the programmer to handle non-Latin
scripts more easily.

2.3 Regular Expressions 41
Table 2.11 Predefined character classes in Perl (After Wall et al. (2000))
Expression Description Equivalent \p{...} equiv.
\d Any digit [0-9] \p{IsDigit}
\D Any nondigit [*0-9] \P{IsDigit}
\s Any whitespace character: space, [\t\n\r\f] \p{IsSpace}
tabulation, new line, carriage
return, or form feed
\S Any nonwhitespace character [*\s] \P{IsSpace}
\w Any word character: letter, digit, or [a-zA-20-9_ 1 \p{IsWord}
underscore
\W Any nonword character [*\w] \P{IsWord}
\p{IsAlpha} Any alphabetic character. It
includes accented characters
\p{IsAlnum} Any alphanumeric character. It [\p{IsAlpha}
includes accented characters \p{IsDigit}]
\p{IsPunct} Any punctuation sign
\p{IsLower} Any lowercase character. It
includes accented characters
\p{IsUpper} Any uppercase character. It

includes accented characters

2.3.6 Nonprintable Symbols or Positions

Some metacharacters match positions and nonprintable symbols. Positions or
anchors enable one to search a pattern with a specific location in a text. They encode
the start and end of a line using, respectively, the caret, *, and the dollar symbol, $.

The expression “Chapter matches lines beginning with Chapter and
[0-9]1+$ matches lines ending with a number. We can combine both in
“Chapter [0-9]+$, which matches lines consisting only of the Chapter word
and a number as Chapter 3, for example.

The command line

egrep '*[aeioul+$’ myFile

matches the lines of myFile containing only vowels.

Similarly, in Perl, the anchor \b matches word boundaries. The expression
\bace matches aces and acetylene but not place. Conversely, ace\b matches
place but neither aces nor acetylene. The expression \bact\b matches exactly
the word act and not react or acted. Table 2.12 summarizes anchors and some
nonprintable characters.

2.3.7 Union and Boolean Operators

We reviewed the basic constructs to write regular expressions. A powerful feature
is that we can also combine expressions with operators, as with automata. Using a

42 2 Corpus Processing Tools

Table 2.12 Some metacharacters matching nonprintable characters in Perl

Metachar Description Example

A

Matches the start of a line “ab+c matches ac, abc, abbe, abbbc, etc., when
they are located at the beginning of a new line

S Matches the end of a line ab?c$ matches ac and abc when they are located
at the end of a line
\b Matches word boundaries \babc matches abcd but not dabc

bed\ b matches abed but not abede

mathematical term, we say that they define an algebra. Using a simpler analogy, this
means that we can arrange regular expressions just like arithmetic expressions. This
means, for instance, that it will be possible to apply the repetition metacharacters
or + not only to the previous character, but to a previous regular expression. This
greatly eases the design of complex expressions and makes them very versatile.

Regex languages use three main operators. Two of them are already familiar
to us. The first one is the Kleene star or closure, denoted *. The second one
is the concatenation, which is usually not represented. It is implicit in strings
like abc, which is the concatenation of characters a, b, and ¢. To concatenate
the word computer, a space symbol, and science, we just write them in a row:
computer science.

The third operation is the union and is denoted “|”. The expression a | b means
either a or b. We saw that the regular expression [Cc]omputer [Ss]cience
could match four strings. We can rewrite an equivalent expression using the union
operator: Computer Science|Computer science|computer Scie-
nce | computerscience. A union is also called an alternation because the
corresponding expression can match any of the alternatives, here four.

2.3.8 Operator Combination and Precedence

Regular expressions and operators are grouped using parentheses. If we omit them,
expressions are governed by rules of precedence and associativity. The expression
a|bc matches the strings a and bc because the concatenation operator takes
precedence over the union. In other words, the concatenation binds the characters
stronger than the union. If we want an expression that matches the strings ac and
be, we need parentheses (a|b) c.

Let us examine another example of precedence. We rewrote the expression
[Cclomputer [Ss]cience using a union of four strings. Since the dif-
ference between expressions lies in the first letters only, we can try to revise
this union into something more compact. The character class [Cc] is equiva-
lent to the alternation C|c, which matches either C or ¢. A tentative expres-
sion could then be C|computer S|science. But it would not match the

2.4 Programming with Regular Expressions 43

desired strings; it would find occurrences of either C, computer S, or science
because of the operator precedence. We need parentheses to group the alternations
(C|c)omputer (S|s)cience and thus match the four intended strings.

The order of precedence of the three main operators union, concatenation, and
closure is as follows:

1. Closure and other repetition operator (highest);
2. Concatenation, line and word boundaries;
3. Union (lowest).

This entails that abc* describes the set ab, abc, abec, abcecec, etc. To repeat the
pattern abc, we need parentheses; and the expression (abc) % corresponds to abc,
abcabc, abcabcabce, etc.

2.4 Programming with Regular Expressions

We saw that regular expressions were devices to define and search patterns in texts.
If we want to use them for more elaborate text processing such as translating char-
acters, substituting words, or counting them, we need a full-fledged programming
language, for example, Perl, Python, C#, or Java with its java.util.regex
package. They enable the design of powerful regexes and at the same time, they are
complete programming languages.

This section, as well as the next chapter, discusses features of Perl. This intends
to give you a glimpse of Perl programming. Further references include Christiansen
et al. (2012) and Schwartz et al. (2011).

2.4.1 Perl

Perl has constructs similar to those of the C language. It has analogous control flow
statements and the assignment operator is denoted =. However, variables begin with
an initial symbol, which is the $ character for an individual number or string. Such
variables are called scalars in Perl and are not typed. Comments start with the #
symbol. The short program

A first program

Sinteger = 30;

Spattern = "My string";

print $integer, " ", Spattern, "\n";
prints the line

30 My string

44 2 Corpus Processing Tools

We run it with the command:
perl -w program.pl

where the option -w asks Perl to check syntax errors.

2.4.2 Strings and Regular Expressions in Perl

Perl represents strings as sequences of characters or symbols enclosed within single
or double quotes as, respectively, 'my string’ and "my string". There isno
limit to the length of strings; we can use them to store a whole corpus, provided that
our machine has enough memory.

Single-Quoted Strings

Strings delimited by single quotes are interpreted literally by Perl, except the
single quotes themselves and backslashes. To create strings containing these two
characters, Perl defines two escape sequences: \' to represent a single quote and
\\ to represent a backslash as in:

$Spattern = ‘Perl\’s strings’;

This instruction assigns the string Perl’s strings to Spattern; the backslash
escape character tells Perl to read the quote literally instead of interpreting it as an
end-of-string delimiter.

The sequences consisting of a backslash and any other character, like \n or \t,
are not escape sequences in single-quoted strings. They are literal parts of a string.

Double-Quoted Strings

As opposed to single quotes, double quotes tell Perl to interpolate the string when
it contains variables or certain backslashed sequences. For example, like in Java or
C, \n is interpreted as a new line and \ t as a tabulation. Table 2.13 shows a list of
escape sequences that have an altered meaning in double-quoted strings.

The right column in Table 2.13 lists the numerical representations of characters
using the ASCII and Unicode standards. The \N{name} and \x{hexcode}
sequences enable us to designate any character, like O and (E, by its Unicode name,
respectively, \N{LATIN CAPITAL LETTER O WITH DIAERESIS} and
\N{LATIN CAPITAL LIGATURE OE}, or its code point, \x{00D6} and
\x{0152}. We will review both the ASCII and Unicode schemes in Chap. 3.

2.4 Programming with Regular Expressions 45

Table 2.13 Escape sequences in double quoted strings

Sequence Description Sequence Description

\t Tabulation \100 Octal ASCII, three digits, here @

\n New line \x40 Hexadecimal ASCII, two digits, here @
\r Carriage return \x{0152} Unicode code point, here (B

\f Form feed \N{COMMERCIAL AT} Unicode name, here @

\e Escape

\b Backspace

\a Bell

To use Unicode escape sequences, we must include this directive at the beginning
of the Perl program:

use charnames ‘:full’;
Perl also interpolates variables inside double quotes as in

Sbegin = "my";
$pattern = "${begin} string";

where it replaces ${begin} with my and assigns $pattern with my string.
We surround the Sbegin variable with braces to tell Perl what the variable name
exactly is and avoid ambiguities. Braces are not always necessary, but it is always
safer to use them.

As \ and $ are special characters inside double quotes, as well as @, as we will
see in Sect.2.5.1, we need to use the escape sequences \\, \$, and \@ to insert
these signs literally in strings.

Regular Expressions and Strings

Regular expressions and double-quoted strings are very similar constructs in Perl.
We already examined the syntax of regex literals and their metacharacters in
Sect.2.3. In addition, as in double-quoted strings, regexes can use the escape
sequences defined in Table 2.13 to match nonprintable or numerically-encoded
characters as well as interpolate variables.

For example, Perl replaces the variables

Spattern = "my string";
Swidth = 20;

with their values in the regex literal
(.{0,swidth}s$pattern. {0, swidth})
to produce
(.{0,20}my string.{0,20})
that matches the pattern my string with 0 to 20 characters to the left and to the right.

46 2 Corpus Processing Tools

From Tables 2.12 and 2.13, you may have noted that the metacharacter
\b was used with two different meanings: word boundary or backspace. In fact,
its interpretation depends on the context: it is a backspace in character classes;
otherwise, it matches word boundaries.

2.4.3 Matching

Perl’s regex engine is supported by the language itself, and the matching operation
has a dedicated construct to denote a regular expression: m/regex/. The next
program reads the input line and searches the expression abxc. If it finds the
expression, it prints the line:

while ($line = <>) {
if ($line =~ m/abxc/) {
print $line;
}

}

The program uses repeat and conditional statements. The symbol <> designates
the standard input, and the instruction $1ine = <> assigns the current line from
the input to the $1ine variable. The while instruction reads all the lines until it
encounters an end of file. The m/ . . . / instruction delimits the regular expression
to match, and the =~ operator instructs Perl to search it in the $1ine variable. If
the expression matches a string in $1ine, the =~ operator returns true, or false
otherwise. The if instruction tells the program to print the input when it contains
the pattern. We run the program to search the file £ile name with the command:

perl -w program.pl file name

The match operator supports a set of options also called modifiers. Their syntax
ism/regex/modifiers. Useful modifiers are:

¢ Case insensitive: i. The instruction m/regex/1i searches regex in the target
string regardless of its case.

* Multiple lines: m. By default, the anchors * and $ match the start and the end
of the input string. The instruction m/regex/m considers the input string as
multiple lines separated by new line characters, where the anchors * and $ match
the start and the end of any line in the string.

* Single line: s. Normally, a dot symbol “.” does not match new line characters.
The /s modifier makes a dot in the instruction m/regex/s match any
character, including new lines.

Modifiers can be grouped in any order as in m/regex/im, for instance, or
m/regex/sm, where a dot in regex matches any character and the anchors *
and $ match just after and before new line characters.

2.4 Programming with Regular Expressions 47
2.4.4 Substitutions

One of the powerful features of Perl is pattern substitution. It uses a construct similar
to the match instruction: s/regex/replacement/. The instruction:

$line =~ s/regex/replacement/

matches the first occurrence of regex and replaces it by the replacement string
in the $1ine variable. If we want to replace all the occurrences of a pattern, we use
the g modifier, where g stands for globally:

$line =~ s/regex/replacement/g

We shall write a program to replace the occurrences of ab+c by ABC in a file
and print them. We read all the lines of the input. We use the instruction m/abxc/
to check whether they match the regular expression abxc. We then print the old
line and we substitute the matched pattern using the construct s/ab+c/ABC/:

while ($line = <>) {
if ($line =~ m/abxc/) {
print "Old: ", S$line;
$line =~ s/abxc/ABC/g;
print "New: ", S$line;
1
}

2.4.5 Translating Characters

The transliteration instruction tr/search list/replacement list/
replaces all the occurrences of the characters in search list by the
corresponding character in

replacement 1list. The instruction tr/ABC/abc/ replaces the occurrences
of A, B, and C by a, b, and c, respectively. The string

AbCAEfGhIjK1MnOpQrStUVWxYzES
results in
abcdEfGhIjKIMnOpQrStUVWXYZES
The hyphen specifies a character range, as in the instruction
$line =~ tr/A-Z/a-z/;

which converts the uppercase characters to their lowercase equivalents. The instruc-
tion tr has useful modifiers:

48 2 Corpus Processing Tools

* d deletes any characters of the search list that are not found in the replacement
list.

» ¢ translates characters that belong to the complement of the search list.

e s reduces — squeezes, squashes — sequences of characters translated to an
identical character to a single instance.

The instruction

$line =~ tr/AEIOUaeiou//d;
deletes all the vowels in $1ine and

$line =~ tr/AEIOUaeiou/$/cs;

replaces all nonvowel characters by a $ sign. The contiguous sequences of translated
dollar signs are reduced to a single sign.

2.4.6 String Operators

Perl operators are similar to those of the C and Java languages. They are summarized
in Table 2.14. The string operators are notable differences. They enable us to
concatenate and compare strings.

The Boolean operators eq (equal) and ne (not equal) compare two strings. The
dot is the concatenation operator:

S$stringl = "abc";

S$string 2 = "def";

$string3 = $stringl . S$string2;
print $string3;

#prints abcdef

As with the C and Java operators, the shorthand notation $varl .= S$var2
is equivalent to Svarl = $varl . $var2. The following program reads the
content of the input line by line, concatenates it in the $text variable, and prints
it:

while ($line = <>) {

Stext .= $line;

}

print Stext;

2.4.7 Back References

It is sometimes useful to keep a reference to matched patterns or parts of them.
Let us imagine that we want to find a sequence of three identical characters, which
corresponds to matching a character and checking if the next two characters are

2.4 Programming with Regular Expressions 49

Table 2.14 Summary of the main Perl operators

Unary operators
! Logical not
+and - Arithmetic plus sign and negation
Binding operators
=~ Returns true in case of match success
I~ Returns false in case of match success
Arithmetic operators
* and / Multiplication and division
+and - Addition and subtraction
String operator
. String concatenation
Arithmetic comparison operators

> and < Greater than and less than
>=and <= Greater than or equal and less than or equal
==and != Equal and not equal
String comparison operators
geand le Greater than or equal and less than or equal
gtand 1t Greater than and less than
eqg and ne Equal and not equal
Logical operators
&& Logical and
|| Logical or

identical to the first character. To do this, we first tell Perl to remember the matched
pattern and we put parentheses around it. This creates a buffer to hold the pattern
and we refer back to it by the sequence \ 1. The instruction

$line =~ s/ (.)\1\1/x%%/g;

matches sequences of three identical characters and replaces them by three stars in
Sline.

Perl can create as many buffers as we need. It allocates a new one when it
encounters a left parenthesis and refers back to it by references \1, \2, \ 3, etc.
The first pair of parentheses corresponds to \ 1, the second pair to \ 2, the third to
\ 3, etc.

Outside the regular expression, the \<digit> reference is denoted by
S<digits>: $1, $2, $3, etc. As an example, the next instruction matches the
decimal amounts of money expressed with the dollar sign and substitutes them with
the words dollars and cents in clear in the replacement string:

$line =~ s/\$ % ([0-91+)\.?([0-9]%) /31 dollars and $2 cents/g;

Perl will keep these references until the next pattern matching instruction. The
program below uses them in a separate instruction and prints the dollars and cents
of money amount occurring in $1ine:

50 2 Corpus Processing Tools

while ($line = <>) {
while ($line =~ m/\$ *([0-91+)\.?2([0-9]1%)/qg) {
print "Dollars: ", $1, " Cents: ", $2, "\n";

}
}

In the inner loop, the combination of while and the /g modifier enables the
m/ .../ instruction to match a pattern and to start a new search from its current
position — where the previous match ended. When m/ . . . /g fails to match, the
start position is reset to the beginning of the string and we exit the loop. Without
this /g modifier, we would have looped onto the first occurrence of the pattern and
printed it infinitely.

2.4.8 Predefined Variables

Perl has a large set of predefined variables, which are assigned without the need for
us to do it explicitly. The most frequently used is default input variable: $. When
writing an input instruction in a program, we can omit the variable that would store
the input as well as the = operator. Perl will automatically assign it to $_. In the
same way, you can also leave out the left value of the pattern matching operations
m//,s///,and tx///, as well as their =~ operator or the variable of some one-
place functions (unary functions). Perl will use $_ without us having to specify it in
the program:

while (<>) {
if (m/abxc/) |
print;
}
}

which is equivalent to:

while ($_ = <>) {
if ($_ =~ m/abxc/) {
print $;

}
}

The triple $*, $&, and $’ is another set of useful predefined variables, whose
values are assigned by a successful match:

e S$&is automatically assigned to the string that last matched a regular expression
as in this program:

$line = "Tell me, O muse, of that ingenious hero
who travelled far and wide after he had sacked

2.5 Finding Concordances 51

the famous town of Troy.";
$line =~ m/, .x,/;
print $&, "\n";

which prints
, O muse,

e $'and $’ contain, respectively, the strings before and after the matched pattern
and the program:

$line = "Tell me, O muse, of that ingenious hero
who travelled far and wide after he had sacked
the famous town of Troy.";

$line =~ m/, .*,/;

print "Before: ", $', "\n";
print "After: ", $’', "\n";
prints

Before: Tell me

After: of that ingenious hero
who travelled far and wide after he had sacked
the famous town of Troy.

There are a couple of other predefined variables. The complete reference on them
is the perlvar section of the Perl manual. A word of caution, however: many people
consider the predefined variables dangerous, especially $. It is a good practice, at
least for beginners, to try to avoid them. They make programs hard to read and may
introduce bugs.

2.5 Finding Concordances

Concordances of a word, an expression, or more generally any string in a corpus are
easy to obtain with Perl or Prolog. In our programs, we will represent the corpus
as one single big string, and concordancing will simply consist in matching the
pattern we are searching as a substring of the whole list. There will be no need
then to consider the corpus structure, that is, whether it is made of blanks, words,
sentences, or paragraphs.

2.5.1 Concordances in Perl

To have a convenient input of the concordance parameters — the file name, the pattern
to search, and the span size of the concordance — we will design the Perl program
so that it can read them from the command line as in

perl -w concordance.pl corpus.txt pattern to search 15

52 2 Corpus Processing Tools

These arguments are passed to Perl by the operating system in the form of an
array. Before writing the program, we introduce this data type now.

Arrays in Perl

Arrays in Perl are data structures that can hold any number of elements of any type.
Their name begins with an at sign, @, for example, @array. Each element has a
position where the programmer can store and read data using the position index.

An array grows or shrinks automatically when elements are appended, inserted,
or deleted. Perl manages the memory without any intervention from the program-
mer. Here are some examples of arrays:

@arrayl = (); # The empty array
@array2 = (1, 2, 3); # Array containing 1, 2, and 3

Svarl = 3.14;

Svar2 = "my string";

@array3 = (1, $varl, "Prolog", $var2);

Array containing four elements of different type

@array4 = (@array2,@array3l3) ;
#Same as (1, 2, 3, 1, 3.14, "Prolog", "my string")

Reading or assigning a value to a position of the array is done using its index
between square brackets starting from 0:

print Sarray2[l]; # prints 2

If an element is assigned to a position that did not exist before, Perl grows the
array to store it. The positions in-between are not initialized. They hold the value
undef:

Sarray4 [10] = 10;

print Sarray4[10]; # prints 10

print Sarray4[9];

prints a message telling it is undefined

The existence of a variable can be tested using the defined Boolean function
as in:

if (defined($array4([9])) {

print "yes", u\nu;
} else {
print "no" , n\nn ;

}

If an undef value is used as a number, it is considered to be a zero. The next
two lines print 1.

2.5 Finding Concordances 53

Sarray4 [9] ++;
print Sarray4[9];

The variable S#array is the index of the last element of the array. It can be
assigned to grow or shrink the array:

Slengthd4 = sS#arrayéd;

print $length4; # prints 10
print S#array2; # prints 2
S#array4 = 5; # shrinks the array to 6 elements.

Other elements are lost.

print Sarray4[10];

prints a message telling it is undefined

S#array2 = 10; # extends the array to 11 elements.
Indices 3..10 are undefined.

You can also assign a complete array to an array and an array to a list of variables
as in:

@array5 = @array2;
($vl, $v2, $Vv3) = @array?2;

where @array5 contains a copy of @array2, and $v1, $v2, $Sv3 contain,
respectively, 1, 2, and 3.

Printing Concordances in Perl

Now let us write a concordance program modified from Cooper (1999). We use
three arguments in the command line: the file name, the pattern to search, and the
span size. Peal reads them and stores them in an array with the reserved name:
@ARGV. We assign these arguments, respectively, to $file name, $Spattern,
and Swidth.

We open the file using the open function, which assigns the stream to the FILE
identifier. If open fails, the program exits using die and prints a message to inform
us that it could not open the file. The notation <FILE> designates the input stream,
which is assigned to the $1ine variable. We read all the text and we assign it to the
Stext variable.

In addition to single words, we may want to search concordances of a phrase
such as the Achaeans. Depending on the text formatting, the phrase’s words can be
on the same line or spread on two lines of text as in:

I see that the Achaeans are subject to you in great
multitudes.

the banks of the river Sangarius; I was their ally,
and with them when the Amazons, peers of men, came up
against them, but even they were not so many as the
Achaeans."

54 2 Corpus Processing Tools

The Perl string the Achaeans matches the first occurrence of the phrase in the
text, but not the second one as the two words are separated by a line break.
There are two ways to cope with that:

* We can modify Spattern, the phrase to search, so that it matches across
sequences of line breaks, tabulations, or spaces. To do this, we replace the
sequences of spaces in Spattern with the generic white space character class:
S$pattern =~ s/ +/\\s+/g;

* The second possibility is to normalize the text, Stext, so that the line breaks
and all kinds white spaces in the text are replaced with a standard space:

Stext =~ s/\s+/ /9g;

Both solutions can deal with the multiple conventions to mark line breaks, the
two most common ones being \n and \r\n adopted, respectively, by Unix
and Windows. Moreover, the text normalization makes it easier to format the
concordance output and print the results. In our program, we will keep both
instructions, although they are somewhat redundant.

Finally, we use a while loop to match the pattern with Swidth characters to
the left and to the right. We create a back reference by setting parentheses around
the regular expression and we print its value stored in $1. We do this for all the
occurrences of the pattern in Stext using the combination of while and the g
modifier as we saw in Sect. 2.4.7.

(sfile name, S$pattern, $width) = @ARGV;
open(FILE, "$file name") ||
die "Could not open file $file name.";
while ($line = <FILE>) ({
Stext .= S$line;
}
$pattern =~ s/ +/\\s+/g;
spaces match tabs and new lines
$text =~ s/\s+/ /g;
line breaks and blank sequences are replaced
by spaces
while (Stext =~ m/(.{0,$%width}$pattern.{0,$width})/g) {
matches the pattern with 0..width
to the right and left
print "$1\n"; #$1 contains the match

1
Now let us run the command:

perl -w concordance.pl odyssey.txt Penelope 25

he suitors of his mother Penelope, who persist in eating u
ace dying out yet, while Penelope has such a fine son as y
laid upon the Achaeans. Penelope, daughter of Icarius, he
blood of Ulysses and of Penelope in your veins I see no 1
his long-suffering wife Penelope, and his son Telemachus,

2.5 Finding Concordances 55

ngs. It was not long ere Penelope came to know what the su
he threshold of her room Penelope said: "Medon, what have

2.5.2 Concordances in Prolog

Writing a basic concordance program is also relatively easy in Prolog. Before
conducting the search, and just as in the Perl program, it is preferable to normalize
all kinds of white spaces in the text.

Normalizing White Spaces

The normalization of white spaces corresponds to the substitution of the \s+
expression with a blank space. We implement it with the normalize/2 predicate
that replaces sequences of contiguous white spaces with one single blank space. We
use memberchk/2, a faster, nonbacktracking version of member /2, to determine
whether a character is a white space.

% normalize (+List, -NormalizedList)
% replaces contiguous white spaces with one blank

normalize([C1, Cc2 | L1], [* ’ | L2]) :-
memberchk (C1, [’ ’, '\t’, ‘\n’, ‘\r’, '\f’l),
memberchk (c2, [’, '\t’, ‘\n’, '\r’, '\f’l),
|
normalize([C2 | L1]l, [’ ' | L2]).
normalize([C1 | L1], [’ * | L2]) :-
memberchk (C1, [’ 7, "\t’, ‘\n’, "\r’, '\f’'l),

!I
normalize (L1, L2).
normalize([C1 | L1], [Cl | L2]) :-
\+ memberchk (c1, [’ ', ’"\t’, ‘\n’, "\r’, "\f’1),
!,

normalize (L1, L2).
normalize ([], []1).

Searching the Pattern

We implement the concordance search with two auxiliary predicates:
prefix (+List, +Span, -Prefix)

that extracts the prefix of a list with up to Span characters, and
prepend (+List, +Span, -PrependedList)

that adds Span variables onto the beginning of a list.

56 2 Corpus Processing Tools

The top-level predicate, concordance/4, finds Pattern in List and
returns the first Line where it occurs. Span is the window size, for example, 25
characters to the left and to the right, within which Pattern will be displayed. We
first prepend Pattern with Span variables before it to match the pattern and its
right context. We find it with a combination of two append/3 calls; then we use
prefix/3 to extract up to Span characters after it.

o©

concordance (+Pattern, +List, +Span, -Line)
finds Pattern in List and displays the Line
where it appears within Span characters surrounding it.

o oe

concordance (Pattern, List, Span, Line) :-
atom chars (Pattern, LPattern),
prepend (LPattern, Span, LeftPattern),
append(_, Rest, List),
append (LeftPattern, End, Rest),
prefix (End, Span, Suffix),
append (LeftPattern, Suffix, LLine),
atom chars (Line, LLine).

prefix(+List, +Span, -Prefix) extracts the prefix
of List with up to Span characters.

The second rule is to check the case where there
are less than Span character in List.

o° o° o° o

prefix(List, Span, Prefix) :-
append (Prefix, , List),
length (Prefix, Span),
|

prefix (Prefix, Span, Prefix) :-
length (Prefix, L),
L < Span.

% prepend (+List, +Span, -Prefix) adds Span variables
% to the beginning of List.

prepend (Pattern, Span, List) :-
prepend (Pattern, Span, Pattern, List).

prepend(, 0, List, List) :- !.
prepend (Pattern, Span, List, FList) :-
Spanl is Span - 1,
prepend (Pattern, Spanl, [X | List], FList).

Let us apply this program to retrieve the concordances of Helen in the Iliad.
We use read_file/2 defined in Sect. A.16.2, and we make concordance/4
backtrack until all the occurrences have been found:

2.6 Approximate String Matching 57

?- read file(’iliad.txt’, L), normalize(L, L2),
concordance ('Helen’, L2, 25, C), write(C), nl, fail.

e glory of still keeping Helen, for whose sake so many
e glory of still keeping Helen, for whose sake so many
suffered for the sake of Helen. Nevertheless, if any ma
suffered for the sake of Helen. The men of Pylos and Ar
fight in their midst for Helen and all her wealth. Let
in the midst of you for Helen and all her wealth. Let
Meanwhile Iris went to Helen in the form of her siste
s spoke the goddess, and Helen'’s heart yearned after he
in a wood. When they saw Helen coming towards the tower
a king." "Sir," answered Helen, "father of my husband,

No

Because the pattern is prepended with exactly Span variables, the concordance
program will not examine the first Span characters of the file. This means that it will
not find a possible pattern in this sublist. In our example above, the program finds all

the occurrences of Helen except the ones that could occur in the first 25 characters
of the text. This is easily corrected in the program and is left as an exercise.

2.6 Approximate String Matching

So far, we have used regular expressions to match exact patterns. However, in many
applications, such as in spell checkers, we need to extend the match span to search
a set of related patterns or strings. In this section, we review techniques to carry out
approximate or inexact string matching.

2.6.1 Edit Operations

A common method to create a set of related strings is to apply a sequence of edit
operations that transforms a source string s into a target string . The operations are
carried out from left to right using two pointers that mark the position of the next
character to edit in both strings:

e The copy operation is the simplest. It copies the current character of the source
string to the target string. Evidently, the repetition of copy operations produces
equal source and target strings.

» Substitution replaces one character from the source string by a new character
in the target string. The pointers are incremented by one in both the source and
target strings.

58 2 Corpus Processing Tools

Table 2.15 Typographical errors (typos) and corrections. Strings differ by one operation. The
correction is the source and the fypo is the target. Unless specified, other operations are just copies
(After Kernighan et al. (1990))

Typo Correction Source Target Position Operation
acress actress - t 2 Deletion
acress cress a - 0 Insertion
acress caress ac ca 0 Transposition
acress access r c 2 Substitution
acress across e) 3 Substitution
acress acres s - 4 Insertion
acress acres S - 5 Insertion

» Insertion inserts a new character in the target string. The pointer in the target
string is incremented by one, but the pointer in the source string is not.

e Deletion deletes the current character in the target string, i.e., the current
character is not copied in the target string. The pointer in the source string is
incremented by one, but the pointer in the target string is not.

* Reversal (or transposition) copies two adjacent characters of the source string
and transposes them in the target string. The pointers are incremented by two
characters.

Kernighan et al. (1990) illustrate these operations with the misspelled word acress
and its possible corrections (Table 2.15).

If we allow only one edit operation on a source string of length n, and if
we consider an alphabet of 26 unaccented letters, the deletion will generate n
new strings; the insertion, (n 4+ 1) x 26 strings; the substitution, n x 25; and the
transposition, n — 1 new strings.

2.6.2 Minimum Edit Distance

Complementary to edit operations, edit distances measure the similarity between
strings. They assign a cost to each edit operation, usually 0 to copies and 1 to
deletions and insertions. Substitutions and transpositions correspond both to an
insertion and a deletion. We can derive from this that they each have a cost of 2. Edit
distances tell how far a source string is from a target string: the lower the distance,
the closer the strings.

Given a set of edit operations, the minimum edit distance is the operation
sequence that has the minimal cost needed to transform the source string into the
target string. If we restrict the operations to copy/substitute, insert, and delete,
we can represent the edit operations using a table, where the distance at a
certain position in the table is derived from distances in adjacent positions already
computed. This is expressed by the formula:

2.6 Approximate String Matching 59

Fig. 2.10 Edit operations delete
i=l j————————i,j
replace
insert
i—1,7—1 i,j—1

edit_distance(i — 1, j) + del_cost
edit_distance(i, j) = min | edit_distance(i — 1, j — 1) + subst_cost
edit_distance(i, j — 1) + ins_cost

The boundary conditions for the first row and the first column correspond to a
sequence of deletions and of insertions. They are defined as edit_distance(i,0) = i
and edit_distance(0, j) = .

We compute the cell values as a walk through the table from the beginning of
the strings at the bottom left corner, and we proceed upward and rightward to fill
adjacent cells from those where the value is already known. Arrows in Fig.2.10
represent the three edit operations, and Table 2.16 shows the distances to transform
language into lineage. The value of the minimum edit distance is 5 and is shown at
the upper right corner of the table.

The minimum edit distance algorithm is part of the dynamic programming
techniques. Their principles are relatively simple. They use a table to represent data,
and they solve a problem at a certain point by combining solutions to subproblems.
Dynamic programming is a generic term that covers a set of widely used methods
in optimization.

2.6.3 Computing the Minimum Edit Distance in Perl

To implement the minimum edit distance in Perl, we use the 1ength built-in func-
tion to compute the length of the source and target, and split (//, $string)
to convert a string into an array of characters. The instruction

@array = split(regex, $string)

breaks up the $string variable as many times as regex matches in Sstring.
The regex expression acts as a separator, and the string pieces are assigned
sequentially to @array. In the minimum edit distance program, regex is reduced
to nothing and assigns all the characters Sstring as elements of @array.

($source, Starget) = @ARGV;
$length s = length($source) ;
$length t = length(Starget) ;
Initialize first row and column

60

Table 2.16 Distances between language and lineage

2 Corpus Processing Tools

e 7 6 5 6 5 6 7 6 5
g 6 5 4 5 4 5 6 5 6
a 5 4 3 4 5 6 5 6 7
e 4 3 4 3 4 5 6 7 6
n 3 2 3 2 3 4 5 6 7
i 2 1 2 3 4 5 6 7 8
1 1 0 1 2 3 4 5 6 7
Start 0 1 2 3 4 5 6 7 8
- Start 1 a n g u a g e
for (31 = 0; $i <= $length s; $i++)
Stable[$1i] [0] = $1i;
!
for ($j = 0; $j <= $length_t; $j++) {
Stable[0] [$3] = $3;
!
Get the characters. Start index is 0
@source = split(//, S$Ssource);
@target = split(//, Starget);
Fills the table.
Start index of rows and columns is 1
for ($1i = 1; $i <= $length s; S$i++) {
for ($j = 1; $j <= $length t; $j++) {
Is it a copy or a substitution?
Scost = ($source[$i-1] eq Starget[$j-1]1) 2 0: 2;

Computes the minimum

$min = S$table[$i-1]1[$j-1] + Scost;

if (Smin > $table[$i] [$3-11 + 1) {
$min = Stable[$il [$3-11 + 1;

}

if ($min > S$table([$i-1110$31 + 1) {
$min = Stable[$i-1]1[$3] + 1;
}

Stable[$i] [$j] = Smin;
}
}

print "Minimum distance: ",
Stable[$length s] [$length t], "\n";

2.6.4 Searching Edits in Prolog

Once we have filled the table, we can search the operation sequences that correspond

to the minimum edit distance. Such a sequence is also called an alignment.

2.6 Approximate String Matching 61

The depth-first strategy is an economical way to traverse a search space. It is
easy to implement in Prolog and has low memory requirements. The problem with
it is that it blindly selects the paths to follow and can explore very deep nodes while
ignoring shallow ones. To avoid this, we apply a variation of the depth-first search
where we fix the depth in advance to the minimum edit distance. We assign it to the
call parameter Cost of edit distance/4.

The code of the depth-limited search is similar to the depth-first program (see
Appendix A, Sect. A.15.2). We add a counter in the recursive case that represents the
current search depth and we increment it until we have reached the depth limit. We
compute each individual edit operation and its cost with the edit operation/6
predicate.

% edit distance (+Source, +Target, -Edits, +Cost).

edit distance(Source, Target, Edits, Cost) :-
edit distance(Source, Target, Edits, 0, Cost).

edit distance([], [1, []l, Cost, Cost).
edit distance(Source, Target, [EditOp | Edits], Cost,
FinalCost) :-

edit operation(Source, Target, NewSource, NewTarget,
EditOp, CostOp),

Costl is Cost + CostOp,

edit distance (NewSource, NewTarget, Edits, Costl,
FinalCost) .

% edit operation carries out one edit operation

% between a source string and a target string.

edit operation([Char | Source], [Char | Target], Source,
Target, ident, 0).

edit operation([SChar | Sourcel, [TChar | Target], Source,
Target, sub(SChar,TChar), 2) :-

SChar \= TChar.

edit operation([SChar | Source], Target, Source, Target,
del (SChar), 1).

edit operation(Source, [TChar | Target], Source, Target,
ins (TChar), 1).

Using backtracking, Prolog finds all the alignments. We obtain with the minimum
distance of 5:

?- edit distance([l,a,n,g,u,a,g,el, [1,i,n,e,a,g,el, E, 5).

E = [ident, sub(a, i), ident, sub(g, e), del(u), ident,
ident, ident] ;

E = [ident, sub(a, 1), ident, del(g), sub(u, e), ident,
ident, ident] ;

62 2 Corpus Processing Tools

First alignment Third alignment
language languuage
Without epsilon symbols | | | | / / / |]] Yavava
lineage lineage
language langmut¢€age
With epsilon symbols [| [| [[[[| [[| [[[]]
linee€age 1lineée€e¢€eage

Fig. 2.11 Alignments of lineage and language. The figure contains two possible representations
of them. In the upper row, the deletions in the source string are in italics, as are the insertions in the
target string. The lower row shows a synchronized alignment, where deletions in the source string
as well as the insertions in the target string are aligned with epsilon symbols (null symbols)

E = [ident, sub(a, i), ident, del(g), del(u), ins(e), ident,
ident, ident]

with 15 possible alignments in total. Figure 2.11 shows the first and third ones.

We can apply this Prolog search program alone to find the edit distance. We
avoid going down an infinite path with an iterative deepening. We start with an edit
distance of 0 (the Cost parameter) and we increment it — 1, 2, 3, 4 — until we find
the minimum edit distance. The first searches will fail, and the first one that succeeds
corresponds to the minimum distance.

We can also compute these alignments in Perl. A frequently used technique is to
consider each cell in Table 2.16 and to store the coordinates of all the adjacent cells
that enabled us to fill it. For instance, the program filled the last cell of coordinates
(8,7), containing 5 ($table [8] [7]), using the content of cell (7, 6). The storage
can be a parallel table, where each cell contains the coordinates of the immediately
preceding positions (the backpointers). Starting from the last cell down to the bottom
left cell, (0,0), we traverse the table from adjacent cell to adjacent cell to recover
all the alignments. This program is left as an exercise (Exercise 2.9).

2.7 Further Reading

Corpora are now easy to obtain. Organizations such as the Linguistic Data Con-
sortium and ELRA collect and distribute texts in many languages. Although not
widely cited, Busa (1974, 1996) is the author of the first large computerized
corpus, the Index Thomisticus, a complete edition of the works of Saint Thomas
Aquinas. The corpus, which is entirely lemmatized, is available online (http://www.
corpusthomisticum.org/). FranText is also a notable early corpus of more than 100
million words. It helped write the Trésor de la langue frangaise (Imbs and Quemada
1971-1994), a comprehensive French dictionary. Other early corpora include the

http://www.corpusthomisticum.org/
http://www.corpusthomisticum.org/

2.7 Further Reading 63

Bank of English, which contributed to the Collins COBUILD Dictionary (Sinclair
1987).

Concordancing plays a role today that goes well beyond lexicography. Google,
Bing, and other web search engines can be considered as modern avatars of
concordancers as they return a small passage — a snippet — of a document, where
a phrase or words are cited. The Dominicans who created the first concordances in
the thirteenth century surely did not forecast the future of their brainchild and the
billions of searches per day it would entail. For a history of early concordances to
the scriptures, see Rouse and Rouse (1974).

The code examples in these chapter enabled us to search strings and patterns in a
corpus. For large volumes of text, a more realistic application would first index all
the words before a user can search them. Manning et al. (2008) is a good review of
indexing techniques. Lucene (http://lucene.apache.org/) is a widely used system to
carry out text indexing and search.

Text and corpus analysis are an active focus of research in computational
linguistics. Kaeding (1897) and Estoup (1912), the latter cited in Petruszewycz
(1973), were among the pioneers in this field, at the turn of the twentieth century,
when they used corpora to carry out systematic studies on letter and word fre-
quencies for stenography. Paradoxically, natural language processing conducted by
computer scientists largely ignored corpora until the 1990s, when they rediscovered
techniques routinely used in the humanities. For a short history, see Zampolli (2003)
and Busa (2009).

Roche and Schabes (1997, Chap. 1) is a concise and clear introduction to
automata theory. It makes extensive use of mathematical notations, however.
Hopcroft et al. (2007) is a standard and comprehensive textbook on automata and
regular expressions. Friedl (2006) is a thorough presentation of regular expressions
oriented toward programming techniques and applications.

Although the idea of automata underlies some mathematical theories of the
nineteenth century (such as those of Markov, Godel, or Turing), Kleene (1956) was
the first to give a formal definition. He also proved the equivalence between regular
expressions and FSA. Thompson (1968) was the first to implement a widely used
editor embedding a regular expression tool: Global/Regular Expression/Print, better
known as grep.

There are several FSA toolkits available from the Internet. The Perl Compatible
Regular Expressions (PCRE) library is an open-source set of functions that imple-
ments the Perl regex syntax. It is written in C by Philip Hazel (http://www.pcre.
org/). The FSA utilities (van Noord and Gerdemann 2001) is a Prolog package
to manipulate regular expressions, automata, and transducers (http://odur.let.rug.
nl/~vannoord/Fsa/). The OpenFst library (Allauzen et al. 2007; Mohri et al. 2000)
is another set of tools (http://www.openfst.org/). Both include rational operations
— union, concatenation, closure, reversal — and equivalence transformation — &-
elimination, determinization, and minimization.

http://lucene.apache.org/
http://www.pcre.org/
http://www.pcre.org/
http://odur.let.rug.nl/~vannoord/Fsa/
http://odur.let.rug.nl/~vannoord/Fsa/
http://www.openfst.org/

64 2 Corpus Processing Tools
Exercises

2.1. Implement the automaton in Fig. 2.5.

2.2. Implement a Prolog program to automatically construct an automaton to search
a given input string.

2.3. Write a regular expression that finds occurrences of honour and honor in a

text.

2.4. Write a regular expression that finds lines containing all the vowels q, e, i, o,
u, in that order.

2.5. Write a regular expression that finds lines consisting only of letters a, b, or c.
2.6. List the strings generated by the expressions:

(ab)
(a.)
(a | b) *

albx| (a|b) *xa
a|bcxd

*C
*C

2.7. Complement the Prolog concordance program to sort the lines according to
words appearing on the right of the string to search.

2.8. Write the iterative deepening search in Prolog to find the minimum edit
distance.

2.9. Extend the Perl program in Sect.2.6.3 to find the alignments. See the last
paragraph of Sect. 2.6.4 for an idea of the algorithm.

Chapter 3
Encoding and Annotation Schemes

‘EAN&SL pwvievTta kol Euppova d@pa kouilwv
YA®oong Spyava tebgev 6pdbpoa, cuppuéoc 8¢
Appoving otoixndov é¢ &luya ouluya pigoc
YPOATTOV &AOLYHTOLO TUTIOV TOPVOOTATO OLyfig,
TétpLa Oeomeoing dedanuévog dpyral TéXVNG,

Nonnus Panopolitanus, Dionysiaca, Book IV, verses 261-265. Fifth century.

But Cadmos [from Sidon in Phoenicial brought gifts of voice
and thought for all Hellas; he fashioned tools to echo the
sounds of the tongue, he mingled sonant and consonant in one
order of connected harmony. So he rounded off a graven model
of speaking silence; for he had learnt the secrets of his country’s
sublime art.

Translation W. H. D. Rouse. Loeb Classical Library.

3.1 Encoding Texts

At the most basic level, computers only understand binary digits and numbers.
Corpora as well as any computerized texts have to be converted into a digital format
to be read by machines. From their American early history, computers inherited
encoding formats designed for the English language. The most famous one is the
American Standard Code for Information Interchange (ASCII). Although well
established for English, the adaptation of ASCII to other languages led to clunky
evolutions and many variants. It ended (temporarily?) with Unicode, a universal
scheme compatible with ASCII and intended to cover all the scripts of the world.
We saw in Chap.2 that some corpora include linguistic information to
complement raw texts. This information is conveyed through annotations that

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 65
DOI 10.1007/978-3-642-41464-0__3, © Springer-Verlag Berlin Heidelberg 2014

66 3 Encoding and Annotation Schemes

describe quantities of structures. They range from text organization, such as
titles, paragraphs, and sentences, to semantic information including grammatical
data, part-of-speech labels, or syntactic structures, etc. In contrast to character
encoding, no annotation scheme has yet reached a level where it can claim to be
a standard. However, the Extensible Markup Language (XML), a language to
define annotations, is well underway to unify them under a shared markup syntax.
XML in itself is not an annotation language. It is a scheme that enables users to
define annotations within a specific framework.

In this chapter, we will introduce the most useful character encoding schemes
and review the basics of XML. We will examine related topics of standardized
presentation of time and date, and how to sort words in different languages. We
will then outline two significant theoretical concepts behind codes — entropy and
perplexity — and how they can help design efficient codes. Entropy is a very versatile
measure with many applications. We will use it to learn automatically decision trees
from data and build classifiers. This will enable us to review our first machine-
learning algorithm. Machine learning is now instrumental in most areas of natural
language processing and we will conclude this chapter with the description of three
other linear classifiers that are among the most widely used.

3.2 Character Sets

3.2.1 Representing Characters

Words, at least in European languages, consist of characters. Prior to any further
digital processing, it is necessary to build an encoding scheme that maps the
character or symbol repertoire of a language to numeric values — integers. The
Baudot code is one of the oldest electric codes. It uses 5 bits and hence has the
capacity to represent 2° = 32 characters: the Latin alphabet and some control
commands like the carriage return and the bell. The ASCII code uses 7 bits. It
can represent 27 = 128 symbols with positive integer values ranging from 0 to
127. The characters use the contiguous positions from 32 to 126. The values in the
range [0..31] and 127 correspond to controls used, for instance, in data transmission
(Table 3.1).

ASCII was created originally for English. It cannot handle other European
languages that have accented letters, such as ¢, a, or other diacritics like ¢ and d, not
to mention languages that do not use the Latin alphabet. Table 3.2 shows characters
used in French and German that are ignored by ASCII. Most computers used to
represent characters on octets — words of 8 bits — and ASCII was extended with the
eighth unoccupied bit to the values in the range [128..255] (28 = 256). Unfortunately,
these extensions were not standardized and depended on the operating system. The
same character, for instance, é, could have a different encoding in the Windows,
Macintosh, and Unix operating systems.

3.2 Character Sets 67

Table 3.1 The ASCII character set arranged in a table consisting of 6 rows and 16 columns. We
obtain the ASCII code of a character by adding the first number of its row and the number of the
column. For instance, A has the decimal code 64 4+ 1 = 65, and e has the code 96 + 5 =101

0 1 2 4 3 5 6 7 8 9 10 11 12 13 14 15
32 ! " # S % & C) + , - . /
48 0 1 2 3 4 5 6 1 8 9 ; < = > ?
64 @ A B C D E F G H 1 K L M N (0]
g0 P Q R S T U V W X Y Z |] - _
96 N a b ¢ d e f g h i] k 1 m o
112 p q r s t u Vv W X Yy z { | } -
Table 3.2 Characters specific to French and German

French German

Lowercase adargéeéeeilidentuy aouR
Uppercase ARAREGCGEEEEIIOeUOUY AdU

Table 3.3 The ISO Latin 1 character set (ISO-8859-1) covering most characters from Western
European languages

0 1 2 4 3 5 6 7 8 9 10 11 12 13 14 15
160 i ¢ £ ¥ i § © *? « - - ® -
176 ° * 2 3 - 44 oqQ@ . , 1t 0 » Y Y% %
192 A A A A A A E£ ¢ E E E E 1 i i i
208 P N 0 6 6 6 6 x ¢ U U U U Y p B
224 a a a a i a ® ¢ e é é é i i 1 i
240 8 A o 6 6 & 6 <+ ¢ w G a4 @ ¥y p 9

Table 3.4 The ISO Latin 9 character set (ISO-8859-15) that replaces rare symbols from Latin 1
with the characters ce, &, 3, S, 7, Z, Y, and €. The table only shows rows that differ from Latin 1

0 1 2 4 3 5 6 8 9 10 11 12 13 14 15
160 P ¢ £ € ¥ § § % a « - - ® -
176 ° £ 2 3 7 u q 7 1 ° » E e Y

The ISO Latin 1 character set (ISO-8859-1) is a standard that tried to reconcile
Western European character encodings (Table 3.3). Unfortunately, Latin 1 was
ill-designed and forgot characters such as the French (£, @, the German quote ,, or
the Dutch ij, 1J. Operating systems such as Windows and Mac OS used a variation
of it that they had to complement with the missing characters. Later, ISO Latin 9
(ISO-8859-15) updated Latin 1 (Table 3.4). It restored forgotten French and Finnish
characters and added the euro currency sign, €.

68 3 Encoding and Annotation Schemes
3.2.2 Unicode

While ASCII has been very popular, its 128 positions could not support the
characters of many languages in the world. Therefore a group of companies
formed a consortium to create a new, universal coding scheme: Unicode. Unicode
has quickly replaced older encoding schemes, and Windows, Mac OS, and Java
platforms have now adopted it while sometimes ensuring backward compatibility.

The initial goal of Unicode was to define a superset of all other character sets,
ASCII, Latin 1, and others, to represent all the languages of the world. The Unicode
consortium has produced character tables of most alphabets and scripts of European,
Asian, African, and Near Eastern languages, and assigned numeric values to the
characters. Unicode started with a 16-bit code that could represent up to 65,000
characters. The code was subsequently extended to 32 bits with values ranging
from O to 10FFFF in hexadecimal. This Unicode code space has then a capacity
of 1,114,112 characters.

The standardized set of Unicode characters is called the universal character set
(UCS). It is divided into several planes, where the basic multilingual plane (BMP)
contains all the common characters, with the exception of some Chinese ideograms.
Characters in the BMP fit on a 2-octet code (UCS-2). The 4-octet code (UCS-4)
can represent, as we saw, more than a million characters. It covers all the UCS-2
characters and rare characters: historic scripts, some mathematical symbols, private
characters, etc.

Unicode groups characters or symbols by script — Latin, Greek, Cyrillic, Hebrew,
Arabic, Indic, Japanese, Chinese — and identifies each character by a single
hexadecimal number, called a code point, and a name as

U+0041 LATIN CAPITAL LETTER A
U+0042 LATIN CAPITAL LETTER B
U+0043 LATIN CAPITAL LETTER C

U+0391 GREEK CAPITAL LETTER ALPHA
U+0392 GREEK CAPITAL LETTER BETA
U+0393 GREEK CAPITAL LETTER GAMMA

The U+ symbol means that the number after it corresponds to a Unicode position.

Unicode allows the composition of accented characters from a base character and
one or more diacritics. That is the case for the French E or the Scandinavian A. Both
characters have a single code point:

U+00CA LATIN CAPITAL LETTER E WITH CIRCUMFLEX
U+00C5 LATIN CAPITAL LETTER A WITH RING ABOVE

They can also be defined as a sequence of two keys: E + "~ and A + °,
corresponding to respectively to

U+0045 LATIN CAPITAL LETTER E

3.2 Character Sets 69

U+0302 COMBINING CIRCUMFLEX ACCENT
and

U+0041 LATIN CAPITAL LETTER A
U+030A COMBINING RING ABOVE

The resulting graphical symbol is called a grapheme. A grapheme is a “natural”
character or a symbol. It may correspond to a single code point as E or A, or result
from a composition as E or A.

Unicode allocates contiguous blocks of code to scripts from U+0000. They
start with alphabetic scripts: Latin, Greek, Cyrillic, Hebrew, Arabic, etc., then the
symbols area, and Asian ideograms or alphabets. Ideograms used by the Chinese,
Japanese, and Korean (CJK) languages are unified to avoid duplication. Table 3.5
shows the script allocation. The space devoted to Asian scripts occupies most of the
table.

3.2.3 Unicode Character Properties

Unicode associates a list of properties to each code point. This list is defined in
the Unicode character database and includes the name of the code point (character
name), its so-called general category — whether it is a letter, digit, punctuation,
symbol, mark, or other — the name of its script, for instance Latin or Arabic, and
its code block (The Unicode Consortium 2012).

Each property has a set of possible values. Table 3.6 shows this set for the general
category, where each value consists of one or two letters. The first letter is a major
class and the second one, a subclass of it. For instance, L corresponds to a letter, Lu
to an uppercase letter; L1, to a lowercase letter, while N corresponds to a number
and Nd, to a number, decimal digit.

We can use these Unicode properties in Perl regular expressions to search
characters, categories, blocks, and scripts by their names. We match a specific code
point with the \N{name} construct, where name is the name of the code point, or
with its hexadecimal \x{hexcode} code as:

* \N{LATIN CAPITAL LETTER E WITH CIRCUMFLEX} and \x{CA}
that match E and
* \N{GREEK CAPITAL LETTER GAMMA} and \x{393} that match vy.

We match code points in blocks, categories, and scripts with the \p{property}
construct introduced in Sect.2.3.5, or its complement \P{property} to match
code points without the property:

For a block, we build a Perl regex by replacing property with the block name
in Table 3.5. Perl also requires an In prefix and that white spaces are replaced
with underscores as InBasic_Latinor InLatin Extended-A.

70

3 Encoding and Annotation Schemes

Table 3.5 Unicode subrange allocation of the universal character set (simplified)

Code Name Code Name

0000 Basic Latin 1400 Unified Canadian Aboriginal Syllabics
0080 Latin-1 Supplement 1680 Ogham

0100 Latin Extended-A 16A0 Runic

0180 Latin Extended-B 1780 Khmer

0250 IPA Extensions 1800 Mongolian

02B0 Spacing Modifier Letters 1E00 Latin Extended Additional

0300 Combining Diacritical Marks 1F00 Greek Extended

0370 Greek and Coptic 2000 General Punctuation

0400 Cyrillic 2800 Braille Patterns

0500 Cyrillic Supplement 2E80 CJK Radicals Supplement

0530 Armenian 2F00 Kangxi Radicals

0590 Hebrew 3000 CJK Symbols and Punctuation
0600 Arabic 3040 Hiragana

0700 Syriac 30A0 Katakana

0750 Arabic Supplement 3100 Bopomofo

0780 Thaana 3130 Hangul Compatibility Jamo

07C0 NKo 3190 Kanbun

0800 Samaritan 31A0 Bopomofo Extended

0900 Devanagari 3200 Enclosed CJK Letters and Months
0980 Bengali 3300 CJK Compatibility

0A00 Gurmukhi 3400 CJK Unified Ideographs Extension A
0A80 Gujarati 4E00 CJK Unified Ideographs

0B0O Oriya A000 Yi Syllables

0B80 Tamil A490 Yi Radicals

0Co00 Telugu AC00 Hangul Syllables

0C80 Kannada D800 High Surrogates

0D00 Malayalam E000 Private Use Area

0D80 Sinhala F900 CJK Compatibility Ideographs
0EO00 Thai 10000 Linear B Syllabary

0E80 Lao 10140 Ancient Greek Numbers

0F00 Tibetan 10190 Ancient Symbols

1000 Myanmar 10300 Old Italic

10A0 Georgian 10900 Phoenician

1100 Hangul Jamo 10920 Lydian

1200 Ethiopic 12000 Cuneiform

13A0 Cherokee 100000 Supplementary Private Use Area-B

For example, \p{InGreek and Coptic} matches code points in the Greek
and Coptic block whose Unicode range is [0370..03FF]. This roughly
corresponds to the Greek characters. However, some of the code points in this
block are not assigned and some others are Coptic characters.

For a general category,

we use either the short or long names in Table 3.6 as

Letter or Lu. For example, \p{Currency Symbol} matches currency

symbols and \P{L} all nonletters.

3.2 Character Sets

71

Table 3.6 Values of the general category with their short and long names. The left column lists to
the major classes, and the right one the subclasses (After The Unicode Consortium (2012))

Major classes Subclasses
Short Long Short Long
L Letter
Lu Uppercase_Letter
L1 Lowercase_Letter
Lt Titlecase_Letter
Lm Modifier_Letter
Lo Other_Letter
M Mark
Mn Nonspacing_Mark
Mc Spacing_Mark
Me Enclosing_Mark
N Number
Nd Decimal_Number
N1 Letter_Number
No Other_Number
P Punctuation
Pc Connector_Punctuation
Pd Dash_Punctuation
Ps Open_Punctuation
Pe Close_Punctuation
Pi Initial_Punctuation
Pf Final_Punctuation
Po Other_Punctuation
S Symbol
Sm Math_Symbol
Sc Currency_Symbol
Sk Modifier_Symbol
So Other_Symbol
Z Separator
Zs Space_Separator
71 Line_Separator
Zp Paragraph_Separator
C Control
Cc Control
Cf Format
Cs Surrogate
Co Private_Use
Cn Unassigned

For a script, we use its name in Table 3.7. The regex will match all the code
points belonging to this script, even if they are scattered in different blocks.
For example, the regex \p{Greek} matches the Greek characters in the Greek
and Coptic, Greek Extended, and Ancient Greek Numbers blocks, respectively

72 3 Encoding and Annotation Schemes

Table 3.7 Unicode script names

Arabic Armenian Avestan Balinese Bamum Bengali Bopomofo Braille Buginese Buhid
Canadian_Aboriginal Carian Cham Cherokee Common Coptic Cuneiform Cypriot Cyrillic
Deseret Devanagari Egyptian_Hieroglyphs Ethiopic Georgian Glagolitic Gothic Greek
Gujarati Gurmukhi Han Hangul Hanunoo Hebrew Hiragana Imperial_Aramaic Inherited
Inscriptional_Pahlavi Inscriptional_Parthian Javanese Kaithi Kannada Katakana Kayah_Li
Kharoshthi Khmer Lao Latin Lepcha Limbu Linear_B Lisu Lycian Lydian Malayalam
Meetei_Mayek Mongolian Myanmar New_Tai_LLue Nko Ogham Ol_Chiki Old_Italic
Old_Persian Old_South_Arabian Old_Turkic Oriya Osmanya Phags_Pa Phoenician Rejang
Runic Samaritan Saurashtra Shavian Sinhala Sundanese Syloti_Nagri Syriac Tagalog
Tagbanwa Tai_Le Tai_Tham Tai_Viet Tamil Telugu Thaana Thai Tibetan Tifinagh Ugaritic
Vai Yi

[0370..03FF], [1F00..1FFF], and [10140..1018F], ignoring the
unassigned code points of these blocks and characters that may belong to another
script, here Coptic.

Practically, the three instructions below match lines consisting respectively of
ASCII characters, of characters in the Greek and Coptic block, and of Greek
characters:

$line =~ m/"\p{ISASCII}+$/;
$line =~ m/"\p{InGreek and Coptic}+$/;
$line =~ m/"\p{Greek}+$/;

The Perl program must include the pragma:
use charnames ' :full’;
to use Unicode names such as:
$line =~ m/\N{GREEK SMALL LETTER ALPHA}/) ;

It must also include use utf8; to use UTF-8 characters in the program such as
in the instruction:

$line =~ m/a/;

Finally, to tell Perl of UTF-8 input and output, the command must be run with the
option -CS as:

perl -CS command.pl <input file

Moreover, Perl maintains a list of classes that corresponds to synonyms of
Unicode properties or to composite properties. Table 2.11 in Chap. 2 showed some
of these classes using the \p{\1dots} syntax. For example,

e \p{IsASCII} isequivalentto \p{InBasic Latin} and to the range
[\x00-\x7£];

e \p{IsDigit} isequivalentto [\p{Nd}];

* \p{IsAlpha} isequivalentto [\p{L1}\p{Lu}\p{Lt}\p{Lo}];

3.2 Character Sets 73

Table 3.8 Mapping of 32-bit character code points to 8-bit units according to UTF-8. The xxx
corresponds to the rightmost bit values used in the character code points

Range Encoding

U-0000 — U-007F OXXXXXXX

U-0080 — U-07FF 110xxxxx 10XXXXXX

U-0800 — U-FFFF 1110xxxx 10xxxxXX 10XXXXXX
U-010000 — U-10FFFF 11110xxx 10xxxxxx 10xxxxxX 10XXXXXX

e \p{IsAlnum} isequivalentto [\p{L1}\p{Lu}\p{Lt}\p{Lo}\p{Nd}].

Perl created such composite properties to provide equivalent classes available in
other regular expression languages, like the POSIX regular expressions.

3.2.4 The Unicode Encoding Schemes

Unicode offers three major different encoding schemes: UTF-8, UTF-16, and UTF-
32. The UTF schemes — Unicode transformation format — encode the same data by
units of 8, 16, or 32 bits and can be converted from one to another without loss.

UTF-16 was the original encoding scheme when Unicode started with 16 bits. It
uses fixed units of 16 bits — 2 bytes — to encode directly most characters. The code
units correspond to the sequence of their code points using precomposed characters,
such as £ in FETE

0046 O0OCA 0054 0045
or composing it as with E+” in FE"TE
0046 0045 0302 0054 0045

Depending on the operating system, 16-bit codes like U+00CA can be stored with
highest byte first — 00CA — or last — CA00. To identify how an operating system
orders the bytes of a file, it is a possible to insert a byte order mark (BOM), a
dummy character tag, at the start of the file. UTF-16 uses the code point U+FEFF
to tell whether the storage uses the big-endian convention, where the “big” part of
the code is stored first, (FEFF) or the little-endian one: (FFFE).

UTF-8 is a variable-length encoding. It maps the ASCII code characters U+0000
to U+007F to their byte values 00 to 7F. It then takes on the legacy of ASCII. All
the other characters in the range U+007F to U+FFFF are encoded as a sequence of
two or more bytes. Table 3.8 shows the mapping principles of the 32-bit character
code points to 8-bit units.

Let us encode FETE in UTF-8. The letters F, T, and E are in the range U-
00000000 — U-0000007F. Their numeric code values are exactly the same in ASCII
and UTF-8. The code point of £ is U+00CA and is in the range U-00000080 — U-
000007FF. Its binary representation is 0000 0000 1100 1010. UTF-8 uses the 11
rightmost bits of 00CA. The first five underlined bits together with the prefix 110

74 3 Encoding and Annotation Schemes

form the octet 1100 0011 that corresponds to C3 in hexadecimal. The seven next
boldface bits with the prefix 10 form the octet 1000 1010 or 8A in hexadecimal.
The letter E is then encoded as 1100 0011 1000 1010 or 3 8A in UTF-8. Hence,
the word FETE and the code points U+0046 U+00CA U+0054 U+0045 are
encoded as

46 C3 8A 54 45

UTEF-32 represents exactly the codes points by their code values. One question
remains: how does UTF-16 represent the code points above U+FFFF? The answer
is: it uses two surrogate positions consisting of a high surrogate in the range
U+DCO00 .. U+DFFF and a low surrogate in the range U+D800 .. U+DBFF. This is
made possible because the Unicode consortium does not expect to assign characters
beyond the code point U+10FFFF. Using the two surrogates, characters between
U+10000 and U+10FFFF can be converted from UTF-32 to UTF-16, and vice versa.

Finally, the storage requirements of the Unicode encoding schemes are, of
course, different and depend on the language. A text in English will have approxi-
mately the same size in ASCII and in UTF-8. The size of the text will be doubled in
UTEF-16 and four times its original size in UTF-32, because all characters take four
bytes.

A text in a Western European language will be larger in UTF-8 than in ASCII
because of the accented characters: a nonaccented character takes one octet, and
an accented one takes two. The exact size will thus depend on the proportion of
accented characters. The text size will be twice its ASCII size in UTF-16. Characters
in the surrogate space take 4 bytes, but they are very rare and should not increase the
storage requirements. UTF-8 is then more compact for most European languages.
This is not the case with other languages. A Chinese or Indic character takes, on
average, three bytes in UTF-8 and only two in UTF-16.

3.3 Locales and Word Order

3.3.1 Presenting Time, Numerical Information, and Ordered
Words

In addition to using different sets of characters, languages often have specific
presentations for times, dates, numbers, or telephone numbers, even when they are
restricted to digits. Most European languages outside English would write w7 =
3, 14159 instead of w = 3.14159. Inside a same language, different communities
may have different presentation conventions. The US English date February 24,
2003, would be written 24 February 2003 or February 24th, 2003, in England.
It would be abridged 2/24/03 in the United States, 24/02/2003 in Britain, and
2003/02/24 in Sweden. Some communities may be restricted to an administration

3.3 Locales and Word Order 75

Table 3.9 Examples of locales

Locale Language Region Variant
English (United States) en usS
English (United Kingdom) en GB
French (France) fr FR
French (Canada) fr CA
German (Germany) de DE
German (Austria) de AT
Table 3.10 Sorting. with the ASCII order Dictionary order
ASCII code comparison and
the dictionary order ABC abe
Abc Abc
Def ABC
aBf aBf
abc def
def Def

or a company, for instance, the military in the US, which writes times and dates
differently than the rest of society.

The International Organization for Standardization (ISO) has standardized the
identification of languages and communities under the name of locales. Each locale
uses a set of rules that defines the format of dates, times, numbers, currency, and how
to collate — sort — strings of characters. A locale is defined by three parameters: the
language, the region, and the variant that corresponds to more specific conventions
used by a restricted community. Table 3.9 shows some locales for English, French,
and German.

One of the most significant features of a locale is the collation component that
defines how to compare and order strings of characters. In effect, elementary sorting
algorithms consider the ASCII or Unicode values with a predefined comparison
operator such as the inequality predicate @</ 2 in Prolog. They determine the lexical
order using the numerical ranking of the characters.

These basic sorting procedures do not arrange the words in the classical
dictionary order. In ASCII as well as in Unicode, lowercase letters have a greater
code value than uppercase ones. A basic algorithm would then sort above after
Zambia, which would be quite misleading for most users.

Current dictionaries in English, French, and German use a different convention.
The lowercase letters precede their uppercase equivalents when the strings are equal
except for the case. Table 3.10 shows the collation results for some strings.

A basic sorting algorithm may suffice for some applications. However, most
of the time it would be unacceptable when the ordered words are presented to a
user. The result would be even more confusing with accented characters, since their
location is completely random in the extended ASCII tables.

In addition, the lexicographic ordering of words varies from language to lan-
guage. French and English dictionaries sort accented letters as nonaccented ones,

76 3 Encoding and Annotation Schemes

except when two strings are equal except for the accents. Swedish dictionaries treat
the letters A, A, and O as distinct symbols of the alphabet and sort them after Z.
German dictionaries have two sorting standards. They process accented letters either
as single characters or as couples of nonaccented letters. In the latter case, A, 0, U,
and /3 are considered respectively as AE, OF, UE, and ss.

3.3.2 The Unicode Collation Algorithm

The Unicode consortium has defined a collation algorithm (Davis and Whistler
2009) that takes into account the different practices and cultures in lexical ordering.
It can be parameterized to cover most languages and conventions. It uses three levels
of difference to compare strings. We outline their features for European languages
and Latin scripts:

e The primary level considers differences between base characters, for instance,
between A and B.

e If there are no differences at the first level, the secondary level considers the
accents on the characters.

¢ And finally, the third level considers the case differences between the characters.

These level features are general, but not universal. Accents are a secondary
difference in many languages, but we saw that Swedish sorts accented letters as
individual ones and hence sets a primary difference between A and A, or o and O.
Depending on the language, the levels may have other features.

To deal with the first level, the Unicode collation algorithm defines classes of
letters that gather upper- and lowercase variants, accented and unaccented forms.
Hence, we have the ordered sets: {a, A, 4, A A A, etc.} <{b,B} <{c,C,¢, C, ¢, C,
¢.C,etc.}<{e E éE¢&E&E&E.et)<...

The second level considers the accented letters if two strings are equal at the
first level. Accented letters are ranked after their nonaccented counterparts. The first
accent is the acute one ("), then come the grave accent (*), the circumflex (*), and
the umlaut (). So, instances of letter £ with accents, in lower- and uppercase have
the order: {e, E} << {é, E} << {&, E} << {&, B} << {&, E}, where << denotes a
difference at the second level. The comparison at the second level is done from the
left to the right of a word in English and most languages. It is carried out from the
right to the left in French, i.e., from the end of a word to its beginning.

Similarly, the third level considers the case of letters when there are no
differences at the first and second levels. Lowercase letters are before uppercase
ones, that is, {a} <<< {A}, where <<< denotes a difference at the third level.

Table 3.11 shows the lexical order of pécher ‘peach tree’ and Péché ‘sin’,
together with various conjugated forms of the verbs pécher ‘to sin’ and pécher ‘to
fish’ in French and English. The order takes the three levels into account and the
reversed direction of comparison in French for the second level. German adopts the
English sorting rules for these accents.

3.4 Markup Languages 77

Table 3.11 Lexical order of

words with accents. Note the English French

reversed order of the second P éfhé 3 peche

level comparison in French PECHE péche
peche Péche
péche Péché
Péche PECHE
péché péché
Péché Péché
pécher pécher
pécher pécher

Some characters are expanded or contracted before the comparison. In French,
the letters (and £ are considered as pairs of two distinct letters: OF and AE.
In traditional German used in telephone directories, A, O, U, and J3 are expanded
into AE, OE, UE, and ss and are then sorted as an accent difference with the
corresponding letter pairs. In traditional Spanish, Ch is contracted into a single letter
that sorts between Cz and D.

The implementation of the collation algorithm (Davis and Whistler 2009, Sect.
4) first maps the characters onto collation elements that have three numerical fields
to express the three different levels of comparison. Each character has constant
numerical fields that are defined in a collation element table. The mapping may
require a preliminary expansion, as for @ and e into ae and oe or a contraction.
The algorithm then forms for each string the sequence of the collation elements of
its characters. It creates a sort key by rearranging the elements of the string and
concatenating the fields according to the levels: the first fields of the string, then
second fields, and third ones together. Finally, the algorithm compares two sort keys
using a binary comparison that applies to the first level, to the second level in case
of equality, and finally to the third level if levels 1 and 2 show no differences.

3.4 Markup Languages

3.4.1 A Brief Background

Corpus annotation uses sets of labels, also called markup languages. Corpus markup
languages are comparable to those of standard word processors such as Microsoft
Word or LaTeX. They consist of tags inserted in the text that request, for instance,
to start a new paragraph, or to set a phrase in italics or in bold characters. The
Rich Text Format (RTF) from Microsoft (2004) and the (La)TeX format designed
by Knuth (1986) are widely used markup languages (Table 3.12).

While RTF and LaTeX are used by communities of million of persons, they are
not acknowledged as standards. The standard generalized markup language (SGML)
takes this place. SGML could have failed and remained a forgotten international

78 3 Encoding and Annotation Schemes

Table 3.12 Some formatting tags in RTF, LaTeX, and HTML

Language Text in italics New paragraph Accented letter é
RTF {\i text in italics} \par \’e9

LaTeX {\it text in italics} \cr \"{e}

HTML <is>text in italics</i>
 é

initiative. But the Internet and the World Wide Web, which use hypertext markup
language (HTML), a specific implementation of SGML, have ensured its posterity.
In the next sections, we introduce the extensible markup language (XML), which
builds on the simplicity of HTML that has secured its success, and extends it to
handle any kind of data.

3.4.2 An Outline of XML

XML is a coding framework: a language to define ways of structuring documents.
XML can incorporate logical and presentation markups. Logical markups describe
the document structure and organization such as, for instance, the title, the sections,
and inside the sections, the paragraphs. Presentation markups describe the text
appearance and enable users to set a sentence in italic or bold type, or to insert a
page break. Contrary to other markup languages, like HTML, XML does not have a
predefined set of tags. The programmer defines them together with their meaning.

XML separates the definition of structure instructions from the content — the
data. Structure instructions are described in a document type definition (DTD) that
models a class of XML documents. DTDs correspond to specific tagsets that enable
users to mark up texts. A DTD lists the legal tags and their relationships with other
tags, for instance, to define what is a chapter and to verify that it contains a title.
Among coding schemes defined by DTDs, there are:

¢ The extensible hypertext markup language (XHTML), a clean XML implemen-
tation of HTML that models the Internet Web pages;

e The Text Encoding Initiative (TEI), which is used by some academic projects to
encode texts, in particular, literary works;

* DocBook, which is used by publishers and open-source projects to produce books
and technical documents.

A DTD is composed of three kinds of components called elements, attributes,
and entities. Comments of DTDs and XML documents are enclosed between the
<!--and - - > tags.

Elements

Elements are the logical units of an XML document. They are delimited by
surrounding tags. A start tag enclosed between angle brackets precedes the element

3.4 Markup Languages 79

content, and an end tag terminates it. End tags are the same as start tags with a /
prefix. XML tags must be balanced, which means that an end tag must follow each
start tag. Here is a simple example of an XML document inspired by the DocBook
specification:

<!-- My first XML document -->

<book>
<titles>Language Processing Cookbook</titles>
<author>Pierre Cagné</author>

<!-- Image to show on the cover -->

<text>Here comes the text!</texts>
</book>

where <book> and </book> are legal tags indicating, respectively, the start and
the end of the book, and <title> and </title> the beginning and the end of
the title. Empty elements, such as the image , can be abridged as
. Unlike HTML, XML tags are case sensitive: <TITLE> and <title>
define different elements.

Attributes

An element can have attributes, i.e., a set of properties attached to the element. Let
us complement our book example so that the <title> element has an alignment
whose possible values are flush left, right, or center, and a character style taken from
underlined, bold, or italics. Let us also indicate where finds the image file.
The DTD specifies the possible attributes of these elements and the value list among
which the actual attribute value will be selected. The actual attributes of an element
are supplied as name—value pairs in the element start tag.

Let us name the alignment and style attributes align and style and set them
in boldface characters and centered, and let us store the image file name of the img
element in the src attribute. The markup in the XML document will look like:

<title align="center" style="bold"s>
Language Processing Cookbook

</title>

<author>Pierre Cagné</authors>

Entities
Finally, entities correspond to data stored somewhere in a computer. They can

be accented characters, symbols, strings as well as text or image files. The
programmer declares or defines variables referring to entities in a DTD and uses

80 3 Encoding and Annotation Schemes

Table 3.13 The predefined

entities of XML Symbol Entity encoding Meaning
< < Less than
> > ; Greater than
& Ampersand
" " ; Quotation mark
’ ' Apostrophe

them subsequently in XML documents. There are two types of entities: general and
parameter. General entities, or simply entities, are declared in a DTD and used in
XML document contents. Parameter entities are only used in DTDs. The two types
of entities correspond to two different contexts. They are declared and referred to
differently. We set aside the parameter entities here; we will examine them in the
next section.

An entity is referred to within an XML document by enclosing its name between
the start delimiter “&” and the end delimiter “;”, such as &EntityName;. The
XML parser will substitute the reference with the content of Ent i tyName when it
is encountered.

XML recognizes a set of predefined or implicitly defined entities that do not
need to be declared in a DTD. These entities are used to encode special or accented
characters. They can be divided into two groups. The first group consists of five
predefined entities (Table 3.13). They correspond to characters used by the XML
standard, which cannot be used as is in a document. The second group, called
numeric character entities, is used to insert non-ASCII symbols or characters.
Character references consist of a Unicode hexadecimal number delimited by “&#x”
and “;”, such as É for E and © for ©.

3.4.3 Writing a DTD

The DTD specifies the formal structure of a document type. It enables an XML
parser to determine whether a document is valid. The DTD file contains the
description of all the legal elements, attributes, and entities.

Elements

The description of the elements is enclosed between the start and end delimiters
< !ELEMENT and >. It contains the element name and the content model in terms of
other elements or reserved keywords (Table 3.14). The content model specifies how
the elements appear, their order, and their number of occurrences (Table 3.15). For
example:

<!ELEMENT book (title, (author | editor)?, img, chapter+) s
<!ELEMENT title (#PCDATA) >

3.4 Markup Languages 81

Table 3.14 Character types

Character type Description

PCDATA Parsed character data. This data will be parsed and must only be text,
punctuation, and special characters; no embedded elements

ANY PCDATA or any DTD element

EMPTY No content — just a placeholder

Table 3.15 List separators and occurrence indicators

List notation Description

Elements must all appear and be ordered as listed
Only one element must appear (exclusive or)
Compulsory element (one or more)

Optional element (zero or one)

Optional element (zero or more)

o+ — ~

*

Table 3.16 Some XML attribute types

Attribute types Description

CDATA The string type: any character except <, >, &, ', and "

ID An identifier of the element unique in the document; ID must begin
with a letter, an underscore, or a colon

IDREF A reference to an identifier

NMTOKEN String of letters, digits, periods, underscores, hyphens, and colons. It is

more restrictive than CDATA,; for instance, spaces are not allowed

states that a book consists of a title, a possible author or editor, an image
img, and one or more chapters. The title consists of PCDATA, that is, only
text with no other embedded elements.

Attributes

Attributes are the possible properties of the elements. Attribute lists are usually
defined after the element they refer to. Their description is enclosed between the
delimiters < | ATTLIST and >. An attribute list contains:

* The element the attribute refers to

* The attribute name

e The kind of value the attribute may take: a predefined type (Table 3.16) or an
enumerated list of values between brackets and separated by vertical bars

e The default value between quotes or a predefined keyword (Table 3.17)

For example:

<!ATTLIST title
style (underlined | bold | italics) "bold"
align (left | center | right) "left"s

82 3 Encoding and Annotation Schemes

Table 3.17 Some default value keywords

Predefined default values Description

#REQUIRED A value must be supplied
#FIXED The attribute value is constant and must be equal to the default value
#IMPLIED If no value is supplied, the processing system will define the value

<!ATTLIST author
style (underlined | bold | italics) #REQUIRED>

says that tit1le has two attributes, style and align. The style attribute can
have three possible values and, if not specified in the XML document, the default
value will be bold; author has one style attribute that must be specified in the
document.

Entities

Entities enable users to define variables in a DTD. Their declaration is enclosed
between the delimiters < ! ENTITY and >. It contains the entity name and the entity
content (possibly a sequence):

<!ENTITY myEntity "Introduction"s

This entity can then be used in an XML document with the reference &myEntity;.
The XML parser will replace all the references it encounters with the value Intro-
duction.

Parameter entities are only used in DTDs. They have a “%” sign before the entity
name, as in

<!ENTITY % myParEntity "<!ELEMENT textbody (para)+>">

Further references to parameter entities in a DTD use “%” and “;” as delimiters,
such as $myParEntity;.

A DTD Example

Let us now suppose that we want to publish cookbooks. We define a document
type, and we declare the rules that will form its DTD: a book will consist of
a title, a possible author or editor, an image, one or more chapters, and one or
more paragraphs in these chapters. Let us then suppose that the main title and the
chapter titles can be in bold, in italics, or underlined. Let us finally suppose that the
chapter titles can be numbered in Roman or Arabic notation. The DTD elements
and attributes are

<!ELEMENT book (title, (author | editor)?, img, chapter+)s
<!ELEMENT title (#PCDATA) >

3.4 Markup Languages 83

<!ATTLIST title style (u | b | i) "b">
<!ELEMENT author (#PCDATA) >

<!ATTLIST author style (u | b | 1) "i">
<!ELEMENT editor (#PCDATA) >

<!ATTLIST editor style (u | b | 1) "i">
<!ELEMENT img EMPTY>

<!ATTLIST img src CDATA #REQUIRED>
<!ELEMENT chapter (subtitle, para+) >
<!ATTLIST chapter number ID #REQUIRED>
<!ATTLIST chapter numberStyle (Arabic | Roman) "Roman">
<!ELEMENT subtitle (#PCDATA) >

< !ELEMENT para (#PCDATA) >

The name of the document type corresponds to the root element, here book,
which must be unique.

XML Schema

You probably noticed that the DTD syntax does not fit very well with that of XML.
This bothered some people, who tried to make it more compliant. This gave birth
to XML Schema, a document definition standard using the XML style. As of today,
DTD is still “king,” however, XML Schema is gaining popularity. Specifications are
available from the Web consortium at http://www.w3.org/XML/Schema.

3.4.4 Writing an XML Document

We shall now write a document conforming to the book document type. A complete
XML document begins with a prologue, a declaration like this one:

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

describing the XML version, the encoding used, and whether the document is self-
contained or not (standalone). In our example, if we have an external DTD, we must
set standalone to no. This prologue is mandatory from version 1.1 of XML. If
not specified, the default encoding is UTF-8.

The document can contain any Unicode character. The encoding refers to how the
characters are stored in the file. This has no significance if you only use unaccented
characters in the basic Latin set from position 0 to 127. If you type accented
characters, the editor will have to save them as UTF-8 codes. In the document above,
Cagné must be stored as 43 61 67 6E C3 A9, where ¢ is corresponds to C3 A9.

If your text editor does not support UTF-8, you will have to enter the accented
characters as entities with their Unicode code point, for instance, É for E, or
é for é. You may also type the characters E or é and use your machine’s
default encoding, such as Latin 1 (ISO-8859-1), Windows-1252, or MacRoman, to

http://www.w3.org/XML/Schema

84 3 Encoding and Annotation Schemes

save the XML file. You will have then to declare the corresponding encoding, for
instance, encoding="IS0-8859-1".

Then, the document declares the DTD it uses. The DTD can be inside the
XML document and enclosed between the delimiters < ! DOCTYPE [and] >, for
instance:

<!DOCTYPE book [
<!ELEMENT book (title, (author | editor)?, img, chapter+) s>
<!ELEMENT title (#PCDATA) >

1>

Or the DTD can be external to the document, for instance, in a file called
book definition.dtd. In this case, DOCTYPE indicates its location on the
computer using the keyword SYSTEM:

<!DOCTYPE book SYSTEM "/home/pierre/xml/book definition.dtd">

Finally, we can write the document content. Let us use the XML tags to sketch a
very short book. It could look like this:

<book>
<title style="i"sLanguage Processing Cookbook</title>
<author style="b">Pierre Cagné</author>

<chapter number="cl">
<subtitlesIntroduction</subtitle>
<paras>Let's start doing simple things:
Collect texts.
</paras>
<para>First, choose an author you like.</paras>
</chapters
</book>

Once, we have written an XML document, we must check that is well formed,
which means that it has no syntax errors: the brackets are balanced, the encoding is
correct, etc. We must also validate it, i.e., check that it conforms to the DTD. This
can be done with a variety of parsers available from the Internet, for instance the
W3C markup validation service (http://validator.w3.org/). Another easy way to do
it is to use the embedded XML parser of any a modern web browser.

3.4.5 Namespaces

In our examples, we used element names that can be part of other DTDs. The string
title, forinstance, is used by XHTML. The XML namespaces is a device to avoid
collisions. It is a naming scheme that enables us to define groups of elements and
attributes in the same document and prevent name conflicts.

http://validator.w3.org/

3.5 Further Reading 85

We declare a namespace using the predefined xmlns attribute as
<my-element xmlns:prefix="URI">

It starts a namespace inside my-element and its descendants, where prefix
defines a group of names. Names members of this namespace are preceded by the
prefix, as in prefix:title. URT has the syntax of a web address. However, it is
just a unique name; it is never accessed.

Declaring two namespaces in book, we can reuse t it 1e for different purposes:

<book
xmlns:pierre="http://www.cs.lth.se/~pierre"
xmlns:raymond="http://www.grandecuisine.com">

<pierre:title style="i"sLanguage Processing Cookbook
</pierre:title>

<raymond:title style="i">A French Cookbook
</raymond:title>
</book>

3.4.6 XML and Databases

Although we introduced XML to annotate corpora and narrative documents, many
applications use it to store and exchange structured data like records, databases, or
configuration files. In fact, creating tabular data in the form of collections of property
names and values is easy with XML: we just need to define elements to mark the
names (or keys) and the values. Such structures are called dictionaries, like this one:

<dict>
<key>language</key> <value>German</value>
<keys>currency</key> <valueseuro</value>
</dict>

As soon as it was created, XML gained a large popularity among program
developers for this purpose. People found it easier to use XML rather than creating
their own solution because of its simplicity, its portability, and the wide availability
of parsers.

3.5 Further Reading

Many operating systems such as Windows, Mac OS X, and Unix, or programming
languages such as Java have adopted Unicode and take the language parameter of a
computer into account. Basic lexical methods such as date and currency formatting,

86 3 Encoding and Annotation Schemes

word ordering, and indexing are now supported at the operating system level.
Operating systems or programming languages offer toolboxes and routines that you
can use in applications.

The Unicode Consortium publishes books, specifications, and technical reports
that describe the various aspects of the standard. The Unicode Standard (The
Unicode Consortium 2012) is the most comprehensive document, while Davis and
Whistler (2009) describe in detail the Unicode collation algorithm. Both documents
are available in electronic format from the Unicode web site: http://www.unicode.
org/. The Unicode Consortium also maintains a public and up-to-date version of
the character database (http://www.unicode.org/ucd/). IBM implemented a large
library of Unicode components in Java and C++, which are available as open-source
software (http://site.icu-project.org/).

HTML and XML markup standards are continuously evolving. Their
specifications are available from the World Wide Web consortium (http://www.
w3.org/). Finally, a good reference on XML is Learning XML (Ray 2003).

Exercises

3.1. Implement UTF-8 that transforms a sequence of code points in a sequence of
octets in Prolog.

3.2. Implement a word collation algorithm for English, French, German, or
Swedish.

3.3. Modify the DTD in Sect. 3.4.4 so that the cookbook consists of meals instead
of chapters, and each meal has an ingredient and a recipe section.

3.4. Modify the DTD in Sect. 3.4.4 to declare the general and parameter entities:

<!ENTITY myEntity "Introduction"s>
<!ENTITY %myEntity "<!ELEMENT textbody (para)+>">

Use these entities in the DTD and the document.
3.5. Write a Prolog program that removes the tags from a text encoded in HTML.

3.6. Write a Prolog program that processes a text encoded in HTML.: it retains
headers (Hn tags) and discards the rest.

http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/ucd/
http://site.icu-project.org/
http://www.w3.org/
http://www.w3.org/

Chapter 4
Topics in Information Theory and Machine
Learning

4.1 Introduction

Information theory underlies the design of codes. Claude Shannon probably started
the field with a seminal article (1948), in which he defined a measure of information:
the entropy. In this chapter, we introduce essential concepts in information theory:
entropy, optimal coding, cross entropy, and perplexity. Entropy is a very versatile
measure of the average information content of symbol sequences and we will
explore how it can help us design efficient encodings.

In natural language processing, we often need to determine the category of an
object or an observation, such as the part of speech of a word. We will show how we
can use entropy to learn decision trees from data sets. This will enable us to build
a simple and essential machine-learning algorithm: ID3. We will apply the decision
trees we derive from the data sets as classifiers, i.e., devices to classify new data or
new objects.

Machine-learning techniques are now instrumental in most areas of natural
language processing, and we will use them throughout this book. We will conclude
this chapter with the description of three other linear classifiers from among the
most popular ones.

4.2 Codes and Information Theory

4.2.1 Entropy

Information theory models a text as a sequence of symbols. Let x, x5,...,xy bea
discrete set of N symbols representing the characters. The information content of
a symbol is defined as

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 87
DOI 10.1007/978-3-642-41464-0_4, © Springer-Verlag Berlin Heidelberg 2014

88 4 Topics in Information Theory and Machine Learning

1
I(x;) = —log, p(x;) = log, —,
2 2 p(x)
and it is measured in bits. When the symbols have equal probabilities, they are said
to be equiprobable and

p(x1) = p(x2) = ... = plxy) =

N
The information content of x; is then /(x;) = log, N.

The information content corresponds to the number of bits that are necessary to
encode the set of symbols. The information content of the alphabet, assuming that it
consists of 26 unaccented equiprobable characters and the space, is log,(26 + 1) =
4.75, which means that 5 bits are necessary to encode it. If we add 16 accented
characters, the uppercase letters, 11 punctuation signs, [, .;: ?!" — () ’], and the
space, we need (26 4+ 16) x 2 4+ 12 = 96 symbols. Their information content is
log, 96 = 6.58, and they can be encoded on 7 bits.

The information content assumes that the symbols have an equal probability.
This is rarely the case in reality. Therefore this measure can be improved using the
concept of entropy, the average information content, which is defined as:

H(X) == p(x)log, p(x).

x€X

where X is a random variable over a discrete set of variables, p(x) = P(X =
x),x € X, with the convention 0log, 0 = 0. When the symbols are equiprobable,
H(X) = log, N. This also corresponds to the upper bound on the entropy value,
and for any random variable, we have the inequality H(X) <log, N.

To evaluate the entropy of printed French, we computed the frequency of the
printable French characters in Gustave Flaubert’s novel Salammbé. Table 4.1 shows
the frequency of 26 unaccented letters, the 16 accented or specific letters, and the
blanks (spaces).

The entropy of the text restricted to the characters in Table 4.1 is defined as:

H(X) =—) p(x)log, p(x).

xeX

—p(A)log, p(A) — p(B)log, p(B) — p(C)log, p(C) — ...
—p(Z)log, p(Z) — p(A)log, p(A) — p(A)log, p(A) — ...
—p(U)log, p(U) — p(Y)log, p(Y) — p(blanks) log, p(blanks).

If we distinguish between upper- and lowercase letters and if we include the
punctuation signs, the digits, and all the other printable characters — ASCII > 32
— the entropy of Gustave Flaubert’s Salammbé in French is H(X) = 4.376.

4.2 Codes and Information Theory 89

Table 4.1 Letter frequencies in the French novel Salammbé by Gustave Flaubert. The text has
been normalized in uppercase letters. The table does not show the frequencies of the punctuation
signs or digits

Letter Frequency Letter Frequency Letter Frequency Letter Frequency

A 42,439 L 30,960 w 1 E 6
B 5,757 M 13,090 X 2,206 i 277
C 14,202 N 32,911 Y 1,232 I 66
D 18,907 0 22,647 V4 413 0 397
E 71,186 P 13,161 A 1,884 E 96
F 4,993 0 3,964 A 605 U 179
G 5,148 R 33,555 E 9 U 213
H 5,293 N 46,753 c 452 U 0
I 33,627 T 35,084 E 7,709 Y 0
J 1,220 U 29,268 E 2,002 Blanks 103,481
K 92 1% 6,916 E 898 Total: 593,299
Table 4.2 Frequency counts of the symbols
A B C D E F G H
Freq 42,439 5,757 14,202 18,907 71,186 4,993 5,148 5,293
Prob 0.25 0.03 0.08 0.11 0.42 0.03 0.03 0.03
Table 4.3 A possible encoding of the symbols on 3 bits
A B C D E F G H
000 001 010 011 100 101 110 111

4.2.2 Huffman Coding

The information content of the French character set is less than the 7 bits required
by equiprobable symbols. Although it gives no clue about an encoding algorithm, it
indicates that a more efficient code is theoretically possible. This is what we examine
now with Huffman coding, which is a general and simple method to build such a
code.

Huffman coding uses variable-length code units. Let us simplify the problem and
use only the eight symbols 4, B, C, D, E, F, G, and H with the count frequencies
in Table 4.2.

The information content of equiprobable symbols is log, 8 = 3 bits. Table 4.3
shows a possible code with constant-length units.

The idea of Huffman coding is to encode frequent symbols using short code
values and rare ones using longer units. This was also the idea of the Morse code,
which assigns a single signal to letter E: ., and four signals to letter X: - . . -.

This first step builds a Huffman tree using the frequency counts. The symbols and
their frequencies are the leaves of the tree. We grow the tree recursively from the
leaves to the root. We merge the two symbols with the lowest frequencies into a new
node that we annotate with the sum of their frequencies. In Fig. 4.1, this new node

90 4 Topics in Information Theory and Machine Learning

CRONORONORONONO
A B € D E F G H

Fig. 4.1 The symbols and their frequencies

@
A B € D E F G H

Fig. 4.2 Merging the symbols with the lowest frequencies

A C D E B H G F

Fig. 4.3 The second iteration

CECHECRORONONON®
A C D E B H G F

Fig. 4.4 The third iteration

corresponds to the letters F' and G with a combined frequency of 4,993 4 5,148 =
10,141 (Fig.4.2). The second iteration merges B and H (Fig.4.3); the third one,
(F,G) and (B, H) (Fig.4.4), and so on (Figs. 4.5-4.8).

The second step of the algorithm generates the Huffman code by assigning a 0 to
the left branches and a 1 to the right branches (Table 4.4).

4.2 Codes and Information Theory 91

A C D E B H G F

Fig. 4.5 The fourth iteration

Fig. 4.6 The fifth iteration

Fig. 4.7 The sixth iteration

92 4 Topics in Information Theory and Machine Learning

Fig. 4.8 The final Huffman tree

Table 4.4 The Huffman code

A B C D E F G H
10 11100 1100 1101 0 11111 11110 11101

The average number of bits is the weighted length of a symbol. If we compute it
for the data in Table 4.2, it corresponds to:

0.25 x 2 bit 4+ 0.03 x 5 bit 4 0.08 x 4 bit 4+ 0.11 x 4 bit + 0.42 x 1 bit
+0.03 x 5 bit 4+ 0.03 x 5 bit + 0.03 x 5 bit = 2.35

We can compute the entropy from the counts in Table 4.2. It is defined by the
expression:

42,439 42,439 5,757 5,757 14,202 14,202
- 0g, 0g, + 0g,
167,925 167,925 167,925 167,925 167,925 167,925

18.907 18.907 71186 71186 | 4.993 4993
(0] (0] (0]
167.925 “22767.925 ' 167.925 22167.925 @ 167.925 £2167.925

5,148 5,148 5,293 5,293
0g, 0g, =2.3l1
167,925 167,925 = 167,925 167,925

4.2 Codes and Information Theory 93

Table 4.5 The entropy is measured on the file itself and the cross entropy is measured with
Chapters 1-14 of Gustave Flaubert’s Salammbé taken as the model

Entropy Cross entropy Difference
Salammbéd, chapters 1-14, training set 4.37745 4.37745 0.0
Salammbé, chapter 15, test set 4.31793 4.33003 0.01210
Notre Dame de Paris, test set 4.43696 4.45590 0.01894
Nineteen Eighty-Four, test set 4.35922 4.80767 0.44845

We can see that although the Huffman code reduces the average number of bits
from 3 to 2.35, it does not reach the limit defined by entropy, which is, in our
example, 2.31.

4.2.3 Cross Entropy

Let us now compare the letter frequencies between two parts of Salammbo,
then between Salammbé and another text in French or in English. The symbol
probabilities will certainly be different. Intuitively, the distributions of two parts
of the same novel are likely to be close, further apart between Salammbo and
another French text from the twenty-first century, and even further apart with a
text in English. This is the idea of cross entropy, which compares two probability
distributions.

In the cross entropy formula, one distribution is referred to as the model. It
corresponds to data on which the probabilities have been trained. Let us name
it m with the distribution m(x;),m(x,),...,m(xy). The other distribution, p,
corresponds to the test data: p(x;), p(x2), ..., p(xy). The cross entropy of m on p
is defined as:

H(p,m) == p(x)log, m(x).

x€X

Cross entropy quantifies the average surprise of the distribution when exposed to the
model. We have the inequality H(p) < H(p, m) for any other distribution m with
equality if and only if m(x;) = p(x;) for all i. The difference H(p,m) — H(p) is
a measure of the relevance of the model: the closer the cross entropy, the better the
model.

To see how the probability distribution of Flaubert’s novel could fare on other
texts, we trained a model on the first 14 chapters of Salammbé, and we applied it
to the last chapter of Salammbé (Chap. 15), to Victor Hugo’s Notre Dame de Paris,
both in French, and to Nineteen Eighty-Four by George Orwell in English. The data
in Table 4.5 conform to our intuition. They show that the first chapters of Salammbéo
are a better model of the last chapter of Salammbdé than of Notre Dame de Paris, and
even better than of Nineteen Eighty-Four.

94 4 Topics in Information Theory and Machine Learning

Table 4.6 The perplexity and cross perplexity of texts measured with Chapters 1-14 of Gustave
Flaubert’s Salammbdé taken as the model

Perplexity Cross perplexity
Salammbéd, chapters 1-14, training set 20.78 20.78
Salammbé, chapter 15, test set 19.94 20.11
Notre Dame de Paris, test set 21.66 21.95
Nineteen Eighty-Four, test set 20.52 28.01

4.2.4 Perplexity and Cross Perplexity

Perplexity is an alternate measure of information that is mainly used by the speech
processing community. Perplexity is simply defined as 2(X). The cross perplexity
is defined similarly as 277

Although perplexity does not bring anything new to entropy, it presents the
information differently. Perplexity reflects the averaged number of choices of a
random variable. It is equivalent to the size of an imaginary set of equiprobable
symbols, which is probably easier to understand.

Table 4.6 shows the perplexity and cross perplexity of the same texts measured
with Chaps. 1-14 of Gustave Flaubert’s Salammbé taken as the model.

4.3 Entropy and Decision Trees

Decision trees are useful devices to classify objects into a set of classes. In this
section, we describe what they are and see how entropy can help us learn — or induce
— automatically decision trees from a set of data. The algorithm, which resembles a
reverse Huffman encoding, is one of the simplest machine-learning techniques.

4.3.1 Machine Learning

Machine learning considers collections of objects or observations, where each object
is defined by a set of attributes, SA. Each attribute has a set of possible values called
the attribute domain. Table 4.7 from Quinlan (1986) shows a collection of objects,
where:

SA = {Outlook, Temperature, Humidity, Windy},

with the following respective domains:

e dom(Outlook) = {sunny, overcast, rain},
e dom(Temperature) = {hot, mild, cool},

4.3 Entropy and Decision Trees 95

Table 4.7 A set of object members of two classes: N and P. Here the objects are weather
observations (After Quinlan (1986))

Attributes
Object Outlook Temperature Humidity Windy Class
1 Sunny Hot High False N
2 Sunny Hot High True N
3 Overcast Hot High False P
4 Rain Mild High False P
5 Rain Cool Normal False P
6 Rain Cool Normal True N
7 Overcast Cool Normal True P
8 Sunny Mild High False N
9 Sunny Cool Normal False P
10 Rain Mild Normal False P
11 Sunny Mild Normal True P
12 Overcast Mild High True P
13 Overcast Hot Normal False P
14 Rain Mild High True N

o dom(Humidity) = {normal, high},
o dom(Windy) = {true, false}.

Each object is member of a class, N or P in this data set.

Machine-learning algorithms can be categorized along two main lines: super-
vised and unsupervised classification. In supervised machine-learning, each object
belongs to a predefined class, here P and N. This is the technique we will use in the
induction of decision trees, where we will automatically create a tree from a training
set, here the examples in Fig. 4.7. Once the tree is induced, it will be able to predict
the class of examples taken outside the training set.

Machine-learning techniques make it possible to build programs that organize
and classify data, like annotated corpora, without the chore of manually explicating
the rules behind this organization or classification. Because of the availability of
massive volumes of data, they have become extremely popular in all the fields
of language processing. They are now instrumental in many NLP applications
and tasks, including part-of-speech tagging, parsing, semantic role labeling, or
coreference solving, that we will describe in the next chapters of this book.

4.3.2 Decision Trees

A decision tree is a tool to classify objects such as those in Table 4.7. The nodes
of a tree represent conditions on the attributes of an object, and a node has as many
branches as its corresponding attribute has values. An object is presented at the root
of the tree, and the values of its attributes are tested by the tree nodes from the root

96 4 Topics in Information Theory and Machine Learning

Outlook
P:9,N:5
sunny overcast rain
Humidity 3 Windy
P:2,N:3 EI P:3,N:2
high normal true false

Fig. 4.9 A decision tree classifying the objects in Table 4.7. Each node represents an attribute
with the number of objects in the classes P and N. At the start of the process, the collection has
nine objects in class P and five in class N. The classification is done by testing the attribute values
of each object in the nodes until a leaf is reached, where all the objects belong to one class, P or
N (After Quinlan (1986))

down to a leaf. The leaves return a decision, which is the object class or probabilities
to be the member of a class.

Figure 4.9 shows a decision tree that correctly classifies all the objects in the set
shown in Table 4.7 (Quinlan 1986).

4.3.3 Inducing Decision Trees Automatically

It is possible to design many trees that classify successfully the objects in Table 4.7.
The tree in Fig. 4.9 is interesting because it is efficient: a decision can be made with
a minimal number of tests.

An efficient decision tree can be induced from a set of examples, members
of mutually exclusive classes, using an entropy measure. We will describe the
induction algorithm using two classes of p positive and n negative examples,
although it can be generalized to any number of classes. As we saw earlier, each
example is defined by a finite set of attributes, SA.

At the root of the tree, the condition, and hence the attribute, must be the most
discriminating, that is, have branches gathering most positive examples while others
gather negative examples. A perfect attribute for the root would create a partition
with subsets containing only positive or negative examples. The decision would
then be made with one single test. The ID3 (Quinlan 1986) algorithm uses this idea
and the entropy to select the best attribute to be this root. Once we have the root, the
initial set is split into subsets according to the branching conditions that correspond

4.3 Entropy and Decision Trees 97

Fig. 4.10 The binary entropy A
function:
—xlog, x—(1—x) log,(1—x)

(U N TN AT N T N T M N T N T T T
>

to the values of the root attribute. Then, the algorithm determines recursively the
next attributes of the resulting nodes.

ID3 defines the information gain of an attribute as the difference of entropy
before and after the decision. It measures its separating power: the more the gain, the
better the attribute. At the root, the entropy of the collection is constant. As defined
previously, for a two-class set of p positive and n negative examples, it is:

V4 n

p
lo - lo .
ptn B ot ptn B2pi,

I(p,n) = -

Figure 4.10 shows this binary entropy function with x =

P .
, for x ranging
n

from O to 1. The function attains its maximum of 1 at x = 0].75, when p = n and
there are as many positive as negative examples in the set, and its minimum of O at
x =0and x = 1, when p = 0 or n = 0 and the examples in the set are either all
positive or all negative.

An attribute A with v possible values {4}, 4>, ..., A,} creates a partition of the
collection into v subsets, where each subset corresponds to one value of A and
contains p; positive and n; negative examples. The entropy of a subset is I(p;,n;)
and the weighted average of entropies of the partition created by A is:

. pi+ni1 Pi n;

E(A) = ;)-
p+n pi+n pi+n;

i=1

The information gain is defined as Gain(A) = I(p,n) — E(A) (or lpefore —
Lyser). We would reach the maximum possible gain with an attribute that creates
subsets containing examples that are either all positive or all negative. In this case,
the entropy of the nodes below the root would be 0.

For the tree in Fig. 4.9, let us compute the information gain of attribute Outlook.
The entropy of the complete data set is:

5

9 5
I(p,n) =——1lo 2 log, = 0.940.

1408273 7 1

98 4 Topics in Information Theory and Machine Learning

Outlook has three values: sunny, overcast, and rain. The entropies of the respective
subsets created by these values are:

[(p)————1g - —=1 —3 =0.971
sunny : ,n (0] og . .
Y b 5 2 5 5 2 5

overcast . l(pz,nz) =0.

3 3 2 2
rain : I(p3,n3) = —3 log, 373 log, 3= 0.971.

Thus
E(Outlook) = 1(@7 n) + 1({7 n) + I(p n) = 0.694
1 I 1’ l 1 I 27 2 l I 35 3 M M

Gain(Outlook) is then 0.940 — 0.694 = 0.246, which is the highest for the four
attributes. Gain(Temperature), Gain(Humidity), and Gain(Windy) are computed
similarly.

The algorithm to build the decision tree is simple. The information gain is
computed on the data set for all attributes, and the attribute with the highest gain:

A =argmax I(n, p) — E(a).
a€SA

is selected to be the root of the tree. The data set is then split into v subsets
{Ny,..., N,}, where the value of A for the objects in N; is A;, and for each subset,
a corresponding node is created below the root. This process is repeated recursively
for each node of the tree with the subset it contains until all the objects of the node
are either positive or negative. For a training set of N instances each having M
attributes, Quinlan (1986) showed that ID3’s complexity to generate a decision tree
is O(NM).

4.4 Classification Using Linear Methods

4.4.1 Linear Classifiers

Decision trees are simple and efficient devices to design classifiers. Together with
the information gain, they enabled us to induce optimal trees from a set of examples
and to deal with symbolic values such as sunny, hot, and high.

Linear classifiers are another set of techniques that have the same purpose. As
with decision trees, they produce a function splitting a set of objects into two
or more classes. This time, however, the objects will be represented by a vector
of numerical parameters. Such parameters are often called features. In the next
sections, we examine linear classification methods in an n-dimensional space, where
the dimension of the vector space is equal to the number of features used to
characterize the objects.

4.5 Linear Regression 99

Table 4.8 The frequency of A in the chapters of Salammbdé in English and French. Letters have
been normalized in uppercase and duplicate spaces removed

French English

Chapter # Characters #A # Characters #A
Chapter 1 36,961 2,503 35,680 2,217
Chapter 2 43,621 2,992 42,514 2,761
Chapter 3 15,694 1,042 15,162 990
Chapter 4 36,231 2,487 35,298 2,274
Chapter 5 29,945 2,014 29,800 1,865
Chapter 6 40,588 2,805 40,255 2,606
Chapter 7 75,255 5,062 74,532 4,805
Chapter 8 37,709 2,643 37,464 2,396
Chapter 9 30,899 2,126 31,030 1,993
Chapter 10 25,486 1,784 24,843 1,627
Chapter 11 37,497 2,641 36,172 2,375
Chapter 12 40,398 2,766 39,552 2,560
Chapter 13 74,105 5,047 72,545 4,597
Chapter 14 76,725 5,312 75,352 4,871
Chapter 15 18,317 1,215 18,031 1,119
Total 619,431 42,439 608,230 39,056

4.4.2 Choosing a Data Set

To illustrate linear classification in a two-dimensional space, we will use Salammbo
again in its original French version and in an English translation, and we will try
to predict automatically the language of the version. As features, we will use the
letter counts in each chapter: how many A, B, C, etc. The distribution of letters is
different across both languages, for instance, W is quite frequent in English and
rare in French. This makes it possible to use distribution models as an elementary
method to identify the language of a text.

Although a more realistic language guesser would use all the letters of the
alphabet, we will restrict it to A. We will count the total number of characters and
the frequency of As in each of the 15 chapters and try to derive a model from the
data. Table 4.8 shows these counts in French and in English.

4.5 Linear Regression

Before we try to discriminate between French and English, let us examine how we
can model the distribution of the letters in one language.

Figure 4.11 shows the plot of data in Table 4.8, where each point represents the
letter counts in one of the 15 chapters. The x-axis corresponds to the total count of
letters in the chapter, and the y-axis, the count of As. We can see from the figure that

100 4 Topics in Information Theory and Machine Learning

5500 T T T T T T
"salammbo_a_fr.tsv" A4

0.06830159*x +8.7253232

5000 |- "salammbo_a_en.tsv" 4 1

0.06430126%x - 3.5972026 &

4500 |- - g

4000 -

3500 -

3000 | A i
A'm
A
L - i
2500 f“.
A
2000 | Am 4
o
1500 | " 4
i
1000 - o i
500 1 1 1 1 1 1
10000 20000 30000 40000 50000 60000 70000 80000

Fig. 4.11 Plot of the frequencies of A, y, versus the total character counts, x, in the 15 chapters of
Salammbé. Squares correspond to the English version and triangles to the French original

the points in both languages can be fitted quite precisely to two straight lines. This
fitting process is called a linear regression, where a line equation is given by:

y =mx +b.

To determine the m and b coefficients, we will minimize a fitting error between
the point distribution given by the set of g observations: {(x;, y;)}7_, and a perfect
linear alignment given by the set {(x;, f(x;))}/_,, where f(x;) = mx; + b. In
our data set, we have 15 observations from each chapter in Salammbd, and hence
q = 15.

4.5.1 Least Squares

The least squares method is probably the most common technique used to model the
fitting error and estimate m and b. This error is defined as the sum of the squared
errors (SSE) over all the ¢ points (Legendre 1805):

q
SSE(m.b) =Y (yi — f(xi))*,

i=1

q
= > (i — (mx; +b))".

i=1

Ideally, all the points would be aligned and this sum would be zero. This is rarely
the case in practice, and we fall back to an approximation that minimizes it.

4.5 Linear Regression 101

SSE(x.)

SSE(m,b)

1000

0.1 -500
012 1900 b

Fig. 4.12 Plot of SSE(m, b) applied to the 15 chapters of the English version of Salammbéo

Figure 4.12 shows the plot of SSE(m,b) applied to the 15 chapters of the
English version of Salammbé. Using a logarithmic scale, the surface shows a visible
minimum somewhere between 0.6 and 0.8 for m and close to 0 for b. Let us now
compute precisely these values.

We know from differential calculus that we reach the minimum of SSE(m, b)
when its partial derivatives over m and b are zero:

dSSE(m, b)
om

q 9 4
=D 5 Oi = (mx +0))” = =23 xi(yi — (mx; + b)) = 0.
i=1 =

0SSE(m.b) _ i

i=1
a q
- o i = (mxi +))? =—2§(yi—(mx,-+b>) =0.

i=1
We obtain then:

q

Y xiyi—qxy

m=l=}1— and b =y —mX,

D xi—ax

i=1
with

N N
x=52xi and yzzli;y,-.

i=l1

102 4 Topics in Information Theory and Machine Learning

Using these formulas, we find the two regression lines for French and English:

French: y = 0.0683x + 8.7253
English: y = 0.0643x — 3.5972

Least Absolute Deviation

An alternative to the least squares is to minimize the sum of the absolute errors
(SAE) (Boscovich 1770, Livre V, note):

q
SAE(m.b) = |y — f(x;)].

i=1

The corresponding minimum value is called the least absolute deviation (LAD).
Solving methods to find this minimum use linear programming. Their description
falls outside the scope of this book.

Notations in an n-Dimensional Space

Up to now, we have formulated the regression problem with two parameters: the
letter count and the count of As. In most practical cases, we will have a much larger
set. To describe algorithms applicable to any number of parameters, we need to
extend our notation to a general n-dimensional space. Let us introduce it now.

In an n-dimensional space, it is probably easier to describe linear regression as a
prediction technique: given input parameters in the form of a feature vector, predict
the output value. In the Salammbd example, the input would be the number of letters
in a chapter, and the output, the number of As.

In a typical data set such as the one shown in Table 4.8, we have:

The input parameters: These parameters describe the observations we will use
to predict an output. They are also called feature vectors, and we denote them
(1, x1, x2, . .., x,—1) or x. The first parameter is set to 1 to make the computation
easier. In the Salammbé example, this corresponds to the letter count in a chapter,
for example: (1,36,961) in Chapter 1 in French.

The output value: Each output represents the answer to a feature vector, and we
denote it y, when we observe it, or y, when we predict it using the regression
line. In Salammbd, in French, the count of As is y = 2,503 in Chapter 1, and the
predicted value using the regression line is y = 0.0683 x 36,961 + 8.7253 =
2,533.22.

The squared error: The squared error is the squared difference between the
observed value and the prediction, (y — $)2. In Salammbé, the squared error
for Chapter 1 is (2,503 — 2,533.22)% = 30.22% = 913.26.

4.5 Linear Regression 103

As we have seen, to compute the regression line, the least-squares method
minimizes the sum of the squared errors for all the observations (here all the
chapters). It is defined by its coefficients m and b in a two-dimensional space. In
an n-dimensional space, we have:

The weight vector: The equivalent of a regression line when n > 2 is a
hyperplane with a coefficient vector denoted (wg, wy, wa, ..., w,—1) or w. These
coefficients are usually called the weights. They correspond to (b,m) when
n = 2. In Salammbo, the weight vector would be (8.7253, 0.0683) for French
and (—3.5972,0.0643) for English.

The intercept: This is the first weight wy of the weight vector. It corresponds to
b whenn = 2.

The hyperplane equation is given by the dot product of the weights by the feature
variables. It is defined as:

n—1
y=Ww-X= E wiXi,
i=0

where w = (wo, wi, W, ..., Wy—1), X = (X0, X1, X2,...,Xy—1), and xo = 1.

4.5.2 The Gradient Descent

Using partial derivatives, we have been able to find an analytical solution to the
regression line. We will now introduce the gradient descent, a generic optimization
method that uses a series of successive approximations instead. We will apply this
technique to solve the least squares as well as the classification problems we will
see in the next section.

The gradient descent (Cauchy 1847) is a numerical method to find a global or
local minimum of a function:

y = f(xo, X1, %2, ..., %),

= f(x),

even when there is no analytical solution.

As we can see on Fig.4.12, the sum of squared errors has a minimum. This
a general property of the least squares, and the idea of the gradient descent is to
derive successive approximations in the form of a sequence of points (x,) to find it.
At each iteration, the current point will move one step down to the minimum. For a
function f, this means that we will have the inequalities:

f(x1) > f(x2) >...> f(xx) > f(Xkt1) > ... > min.

104 4 Topics in Information Theory and Machine Learning

Now given a point X, how can we find the next point of the iteration? The
steps in the gradient descent are usually small and we can define the points in
the neighborhood of x by x + v, where v is a vector of R" and ||v]| is small. So
the problem of gradient descent can be reformulated as: given x, find v subject to
Sx) > f(x+v).

As ||v|| is small, we can approximate f(x + v) using a Taylor expansion limited
to the first derivatives:

Jx+v) = f(x)+v- Vi),
where the gradient defined as:

aof df 0 0
Vf(.X(),Xl,Xz,...,Xn)=(a—£),a—){;,a—i,...,a){‘

)

is a direction vector corresponding to the steepest slope.
We obtain the steepest descent (respectively, ascent) when we choose v collinear
to V f(x): v=—aV f(x) (respectively, v = oV f(x)) with & > 0. We have then:

fx—aVfX)~ fx) —al|V/®I
and thus the inequality:
J&) > f(x—aV f(x)).
This inequality enables us to write a recurrence relation between the steps:
Xk+1 = Xk — o V f (Xk)

and find a step sequence to the minimum, where ¢ is a small positive number called
the step size or learning rate. It can be constant over all the descent or change at each
step. The convergence stops when ||V f(x)|| is less than a predefined threshold. This
convergence is generally faster if the learning rate decreases over the iterations.

4.5.3 The Gradient Descent and Linear Regression

For a data set, DS, we find the minimum of the sum of squared errors and the
coefficients of the regression equation through a walk down the surface using the
recurrence relation above. Let us compute the gradient in a two-dimensional space
first and then generalize it to multidimensional space.

4.5 Linear Regression 105

In a Two-Dimensional Space

To make the generalization easier, let us rename the straight line coefficients (b, m)
in y = mx + b as (wp, wi). We want then to find the regression line:

A

Y = wo + wix;

given a data set DS of ¢ examples: DS = {(1, xlj,yf)|j : 1..q}, where the error is
defined as:

q
SSE(wo,w1) = Y (y/ — §7)?
j=1
q

= > () = (wo + wix)))™.
=1
The gradient of this two-dimensional equation VSSE(w) is:

8 |
BssE o) _ 2Z(y = (wo + wix))

8SSE(W(),W1) i
8—w1 —2ZX1 X (y/ = (wo + wix{)).

From this gradient, we can now compute the iteration step. With ¢ examples and

. o . .
a learning rate of 37 inversely proportional to the number of examples, we have:
q

q
o . .
wo <= wo + 5'2()’] — (wo +wix7))

q
Wi < wy —l—a-Zx{ x (y! — (wo + wixy)).
j=

In the iteration above, we compute the gradient as a sum over all the examples
before we carry out one update of the weights. This technique is called the batch
gradient descent. An alternate technique is to go through DS and compute an
update with each example:

w0<—w0+a-(yf (W0+W1Xj))
wp <—w +o- x1 v/ - (w0+w1x1))

106 4 Topics in Information Theory and Machine Learning

The examples are usually selected randomly from DS. This is called the stochastic
gradient descent or online learning.

The duration of the descent is measured in epochs, where an epoch is the period
corresponding to one iteration over the complete data set: the ¢ examples. The
stochastic variant often has a faster convergence.

N -Dimensional Space
In an n-dimensional space, we want to find the regression hyperplane:

Y =wo+ wixp +waxp 4 ...+ wyxy,
given a data set DS of ¢ examples: DS = {(l,xlj,x'zj, e, x,{,yf)lj : 1..q}, where
the error is defined as:

q
SSE(wo, w1, ..., wa) = Y (y/ = §7)?
Jj=1

q
= Z 7/ — (wo + wix] +waxy + ...+ w,,x,{))z.
j=1

To simplify the computation of partial derivatives, we introduce the parameter
x{ = 1so that:

q
SSE(Wo, W1, ..., w,) = Z (v — (wox] +wix] +wax] + ... +wux)))2
=1
The gradient of SSE is:
0SSE

q
P =2 "x} x (37 = woxy + wix] +wax] + ..+ wax))).
1 i=1

In the batch version, the iteration step considers all the examples in DS:

q
wi = wi + = > x] - (y) = (wox] + wix{ +waxg + ..+ wax))).
Jj=1

In the stochastic version, we carry out the updates using one example at a time.

4.6 Linear Classification 107

4.6 Linear Classification

4.6.1 An Example

We will now use the data set in Table 4.8 to describe classification techniques that
split the texts into French or English. If we examine it closely, Fig.4.11 shows that
we can draw a straight line between the two regression lines to separate the two
classes. This is the idea of linear classification. From a data representation in a
Euclidian space, classification will consist in finding a line:

wo+wix +wyy =0

separating the plane into two half-planes defined by the inequalities:
wo +wix +wy >0

and
wo + wix + wry < 0.

These inequalities mean that the points belonging to one class of the data set are on
one side of the separating line and the others are on the other side.

In Table 4.8 and Fig.4.11, the chapters in French have a steeper slope that the
corresponding ones in English. The points representing the French chapters will
then be above the separating line. Let us write the inequalities that reflect this and
set wy to 1 to normalize them. The line we are looking for will have the property:

i > wo + wix; for the set of points: {(x;, y;)|(x;, ¥;) € French} and
yi <wo + wyx; for the set of points: {(x;, y;)|(x;, y;) € English},

where x is the total count of letters in a chapter and y, the count of As. In total, we
will have 30 inequalities, 15 for French and 15 for English shown in Table 4.9. Any
weight vector w = (wyg, w) that satisfies all of them will define a classifier correctly
separating the chapters into two classes: French or English.

Let us represent graphically the inequalities in Table 4.9 and solve the system
in the two-dimensional space defined by wy and w;. Figure 4.13 shows a plot
with the two first chapters, where w; is the abscissa and wy, the ordinate. Each
inequality defines a half-plane that restricts the set of possible weight values. The
four inequalities delimit the solution region in white, where the two upper lines are
constraints applied by the two chapters in French and the two below by their English
translations.

108

4 Topics in Information Theory and Machine Learning

Table 4.9 Inequalities derived from Table 4.8 for the 15 chapters in Salammbé in French and

English

Chapter French English

1 2,503 > wgy + 36,961w, 2,217 < wg + 35,680w,
2 2,992 > wg + 43,621w, 2,761 < wy + 42,514w,
3 1,042 > wy + 15,694w, 990 < wy + 15,162w,
4 2,487 > wy + 36,231w, 2,274 < wo + 35,298w,
5 2,014 > wy 4+ 29,945w, 1,865 < wy + 29,800w,
6 2,805 > wg + 40,588w, 2,606 < wgy + 40,255w,
7 5,062 > wgy + 75,255w, 4,805 < wo + 74,532w,
8 2,643 > Wo + 37,709W1 2,396 < WwWo + 37,464W1
9 2,126 > wgy + 30,899w, 1,993 < wy + 31,030w,
10 1,784 > wy + 25,486w, 1,627 < wy + 24,843w,
11 2,641 > wg + 37,497w, 2,375 < wg + 36,172w,
12 2,766 > wqy + 40,398w, 2,560 < wg + 39,552w,
13 5,047 > wy 4+ 74,105w, 4,597 < wo + 72,545w,
14 5,312 > wg + 76,725w, 4,871 < wy + 75,352w,
15 1,215 > wy + 18,317w, 1,119 < wy + 18,031w,

filx) — folx) — er(x) — ex(x) —

0.04

0.06 0.07

w1

1000

500

wo

-500

-1000

Fig. 4.13 A graphical representation of the inequality system restricted to the two first chapters in
French, f] and f, and in English, e; and e,. We can use any point coordinates in the white region
as parameters of the line to separate these two chapters

Figure 4.14 shows the plot for all the chapters. The remaining inequalities
shrink even more the polygonal region of possible values. The point coordinates
(w1, wp) in this region, as, for example, (0.066, 0) or (0.067, —20), will satisfy all the
inequalities and correctly separate the 30 observations into two classes: 15 chapters
in French and 15 in English.

4.6 Linear Classification 109

30

20

-20

-30

-40

-50
0.065 0.0655 0.066 0.0665 0.067 0.0675 0.068

w1

Fig. 4.14 A graphical representation of the inequality system with all the chapters. The point
coordinates in the white polygonal region correspond to weights vectors (wi,wp) defining a
separating line for all the chapters

4.6.2 Classification in an N -Dimensional Space

In the example above, we used a set of two-dimensional points, (x;, y;) to represent
our observations. This process can be generalized to vectors in a space of dimension
n. The separator will then be a hyperplane of dimension n — 1. In a space of
dimension 2, a hyperplane is a line; in dimension 3, a hyperplane is a plane of
dimension 2, etc. In an n-dimensional space, the inequalities defining the two classes
will be:

wo + wixi +waxo + ...+ wyx, >0
and

wo +wixy +waxo + ...+ wux, <0,
where each observation is described by a feature vector x.

The sums in the inequalities correspond to the dot product of the weight vector,
w, by the the feature vector, x, defined as

n
W -X = E Wi Xi,
i=0

where w = (wg, wi, wa, ..., Wy), X = (X0, X1, X2,...,X,), and xo = 1.

110 4 Topics in Information Theory and Machine Learning

1800

1800 - - T T T =
1700 ol 1700
1600 | 4 1600 -
1500 | - g 1500 F
1400 g 1 1400
1300 | } . 1 1300
1200 | | 1200
oo e g oo

1000 g 4 1000

900 - - - - - 900
14000 16000 18000 20000 22000 24000 26000 14000 16000 18000 20000 22000 24000 26000

Fig. 4.15 Left part: A thin line can separate the three chapters into French and English text. The
two classes are linearly separable. Right part: We cannot draw a line between the two classes. They
are not linearly separable

The purpose of the classification algorithms is to find lines or hyperplanes
separating most accurately a set of data represented by numerical vectors into two
classes. As with the decision trees, these separators will be approximated from
training sets and evaluated on distinct test sets. We will review the vocabulary used
with machine learning methods in more detail in Sect. 5.6.2.

4.6.3 Linear Separability

It is not always the case that a line can perfectly separate the two classes of a data
set. Let us return to our data set in Table 4.8 and restrict ourselves to the three
shortest chapters: the 3rd, 10th, and 15th. Figure 4.15, left, shows the plot of these
three chapters from the counts collected in the actual texts. A thin line can divide the
chapters into two classes. Now let us imagine that in another data set, Chapter 10
in French has 18,317 letters and 1,115 As instead of 18,317 and 1,215, respectively.
Figure 4.15, right, shows this plot. This time, no line can pass between the two
classes, and the data set is said to be not linearly separable.

Although we cannot draw a line that divides the two classes, there are
workarounds to cope with not linearly separable data that we will explain in the
next section.

4.6.4 Classification vs. Regression

Regression and classification use a similar formalism, and at this point, it is
important to understand their differences. Given an input, regression computes a
continuous numerical output. For instance, regression will enable us to compute the
number of As occurring in a text in French from the total number of characters.

4.7 Perceptron 111

Having 75,255 characters in Chapter 7, the regression line will predict 5,149
occurrences of As (there are 5,062 in reality).

The output of a classification is a finite set of values. When there are two values,
we have a binary classification. Given the number of characters and the number of
As in a text, classification will predict the language: French or English. For instance,
having the pair (75255, 5062), the classifier will predict French.

This means that given a data set, the dimensions of the feature space will be
different. Regression predicts the value of one of the features given the value of
n — 1 features. Classification predicts the class given the values of n features.
Compared to regression in our example, the dimension of the vector space used
for the classification is n 4 1: the n features and the class.

In the next sections, we will examine three categories of linear classifiers from
among the most popular and efficient ones: perceptrons, logistic regression, and
support vector machines. For the sake of simplicity, we will restrict our presentation
to a binary classification with two classes. However, linear classifiers can generalize
to handle a multinomial classification, i.e. three classes or more, which is the most
frequent case in practice. This generalization is outside the scope of this book; see
Sect. 4.11 for further references on this topic.

4.7 Perceptron

Given a data set like the one in Table 4.8, where each object is characterized by the
feature vector x and a class, P or N, the perceptron algorithm (Rosenblatt 1958) is
a simple method to find a hyperplane splitting the space into positive and negative
half-spaces separating the objects. The perceptron uses a sort of gradient descent to
iteratively adjust weights (wg, wi, wa, ..., w,) representing the hyperplane until all
the objects belonging to P have the property w - x > 0, while those belonging to N
have a negative dot product.

4.7.1 The Heaviside Function

As we represent the examples using numerical vectors, it is more convenient in the
computations to associate the negative and positive classes, N and P, to a discrete
set of two numerical values: {0, 1}. To carry this out, we pass the result of the dot
product to the Heaviside step function (a variant of the signum function):

1 ifw-x>0
H(w-x) = nwex=
0 otherwise

112 4 Topics in Information Theory and Machine Learning

Using the Heaviside function H, we can reformulate classification. Given a data

set: DS = {(1,x{,xJ,.... x5, y))|j : 1..q} of ¢ examples, where y/ € {0, 1}, we
have:

yx)=Hw-x), _ '
= H(wo—i—wlx{ —i—wzxé + o wex)).

We use xé = 1 to simplify the equations, and the range of y, {0, 1}, corresponds to
the classes {English, French} in Table 4.8.

4.7.2 The Iteration

Let us denote w; the weight vector at step k, and w;), the value of its weight
coordinate w;. The perceptron algorithm starts the iteration with a weight vector wy
chosen randomly or set to 0 and then applies the dot product wy - X/ one object at a
time for all the members of the data set, j : 1..g:

» If the object is correctly classified, the perceptron algorithm keeps the weights
unchanged;

» If the object is misclassified, the algorithm attempts to correct the error by
adjusting wy using a gradient descent:

g
Wi (k+1) < Wi (k) -I-OtZX,-] x (y/ =y7)
=

until all the objects are correctly classified.

For a misclassified object, we have y/ — $/ equals to either 1 —0 or 0 — 1. The
update value is then is - x; or —« - x;, where « is the learning rate. For an object that
is correctly classified, we have y/ — §/ = 0, corresponding to either 0 — 0 or 1 — 1,
and there is no weight update. The learning rate is generally set to 1 as a division of
the weight vector by a constant does not affect the update rule.

4.7.3 The Two-Dimensional Case

Let us spell out the update rules in a two-dimensional space. We have the feature
vectors and weight vectors defined as: x = (1, xq, xp) and w = (wg, wy, wa). With
the stochastic gradient descent, we carry out the updates using the relations:

4.8 Support Vector Machines 113

i

wo < wo + y/ — p/
wi < wi +x{ - (y/ = 37)
wz<—wz+xé -(y) =),

where y/ — 7 is either, 0, —1, or 1.

4.7.4 Stop Conditions

To find a hyperplane, the objects (i.e., the points) must be separable. This is rarely
the case in practice, and we often need to refine the stop conditions. We will stop the
learning procedure when the number of misclassified examples is below a certain
threshold or we have exceeded a fixed number of iterations.

The perceptron will converge faster if, for each iteration, we select the objects
randomly from the data set.

4.8 Support Vector Machines

When a data set is linearly separable, the perceptron algorithm finds a separating
hyperplane with a weight vector corresponding to a point in the solution region.
Referring back to Fig. 4.14, it can be any point in the white region.

Support vector machines (Boser et al. 1992) are another type of linear classifiers
that aim at finding a unique solution in the form of an optimal hyperplane. This
optimal hyperplane is defined as the one that maximizes the margins between the
two classes. It will be positioned at equal distance between the closest points of
each class and will create the largest possible corridor with no points from either
classes inside. These closest points are on the border of the corridor and are called
the support vectors. In this section, we introduce the mathematical concepts behind
support vector machines.

4.8.1 Maximizing the Margin

We know from geometry and vector analysis that the distance from a point x/ =
(x{,x3,...,x) to ahyperplane Hyp defined by the equation:

wo +wix; +waxo + ...+ wyx, = 0

114 4 Topics in Information Theory and Machine Learning
is given by the formula:

lwo + wix] 4+ waxy + ...+ wyxi |

d(x/,Hyp) =

\/w%+w§+...+w,21
_ lwo + W - x|

)

[Iwl|

where w is the weight vector (wy, wy, ... wy).

The optimal hyperplane is the one that maximizes this distance for all the points
in the data set, DS = {(x{ , x'zl, X, yj)|j : 1..g}. It is easier to associate the
negative and positive classes, N and P, to the two numerical values: {—1, 1} instead
of {0, 1} as in the perceptron. We can then remove the absolute value and fit the
weight vector so that it maximizes the margin M :

max M
wo,W)
. Cowo+ X -w .
subjectto y/ - O||—|| =>M,j: 1.4,
w

where y/ € {—1,1}.

The weight vector (wg, w) is defined within a constant factor, and we can set ||w||
so that ||w|| - M = 1. Using this scaling operation, maximizing M is equivalent to
minimizing the norm ||w||. We have then

min ||w]|
wo,W

subjectto y/(wo +x/ -w) =1,/ :1.q.

4.8.2 Lagrange Multipliers

The margin maximization can be recast using a Lagrangian (a Lagrange function)
(Boser et al. 1992):

1 a4 A A
L(w.wo.@) = - ||w|* —;aj(yww() +x/ W) = 1),
subjecttoa; =0, j : 1..q,

and is then equivalent to finding a minimum of L(w, wy, &) with respect to w and a
maximum with respect to «. The o are called Lagrange multipliers.

The maximal margin is reached when the partial derivatives with respect to w
and wy are 0. Computing the derivatives, we find:

4.9 Logistic Regression 115

q .
iyl =w.
E a;jylx; =w
—
q
Sy —
E a;y =0
j=1

We plug these values back into the Lagrangian, and we obtain:

q q 9
1 . .
L(a) = Zaj — EZZajaky/ykaxk,
j=lk=I

Jj=1

that we maximize with respect to .

We can find a solution to this optimization problem using quadratic programming
techniques. Their description is beyond the scope of this book, however. There
are many toolkits that we can use to solve practical problems. They include the
LIBSVM (Chang and Lin 2011) and LIBLINEAR (Fan et al. 2008) toolkits.

Applying LIBLINEAR to the data in Table 4.8, we find a hyperplane equation
separating the two classes so that ||w||- M = 1:

—0.006090937 4 0.008155714x — 0.123790484y = 0
and when normalizing the coefficients with respect to y we have:
0.049203592 — 0.065883207x +y =0

This corresponds to unique point (wy, wy) = (0.065883207, —0.049203592) in the
weight space in Fig. 4.14.

Support vector machines can also handle not linearly separable examples using
kernels or through the soft margin method. See the original papers by Boser et al.
(1992) and Cortes and Vapnik (1995) for a presentation.

4.9 Logistic Regression

In their elementary formulation, the perceptron and support vector machines use
hyperplanes as absolute, unmitigated boundaries between the classes. In many
data sets, however, there are no such clear-cut thresholds to separate the points.
Figure 4.15 is an example of this that shows regions where the nonlinearly separable
classes have points with overlapping feature values.

Logistic regression is an attempt to define a smoother transition between the
classes. Instead of a rigid boundary in the form of a step function, logistic regression
uses the logistic curve (Verhulst 1838, 1845) to model the probability of a point x

116 4 Topics in Information Theory and Machine Learning

1

Fig. 4.16 The logistic curve: f(x) = TF o
e X

(an observation) to belong to a class. Figure 4.16 shows this curve, whose equation
is given by:

f0) = =

Logistic regression was first introduced by Berkson (1944) in an attempt to
model the percentage of individuals killed by the intake of a lethal drug. Berkson
observed that the higher the dosage of the drug, the higher the mortality, but as
some individuals are more resilient than others, there was no threshold value under
which all the individuals would have survived and above which all would have died.
Intuitively, this fits very well the shape of the logistic curve in Fig. 4.16, where the
mortality rate is close to O for lower values of x (the drug dosage), then increases,
and reaches a mortality rate of 1 for higher values of x.

Berkson used one feature, the dosage x, to estimate the mortality rate, and he
derived the probability model:

1

P(y:1|x):m,

where y denotes the class, either survival or death, with the respective labels 0 and
1, and (wg, w;) are weight coefficients that are fit using the maximum likelihood
method.

Using this assumption, we can write a general probability model for feature
vectors x of any dimension:

Po=1M =1 ==

where w is a weight vector.
As we have two classes and the sum of their probabilities is 1, we have:
—W'X
P(y =0x) = ———.
(=00 = ;=

These probabilities are extremely useful in practice.

4.9 Logistic Regression 117

The logit transformation corresponding to the logarithm of the odds ratio:

PO=1M _ PO=10 _
PO=0x) 1-P(=1}

is also frequently used to fit the data to a straight line or a hyperplane.

4.9.1 Fitting the Weight Vector

To build a functional classifier, we need now to fit the weight vector w; the
maximum likelihood is a classical way to do this. Given a data set, DS =
{(1,x{,x5,...,x5,¥7)|j : 1..q}, containing a partition in two classes, P (y = 1)
and N (y = 0), and a weight vector w, the likelihood to have the classification

observed in this data set is:

Lw = [[PO/ =1¥)x [] PO/ =0I¥),

x/ep x/ EN

[1P07 =1x)x [-PO/ =11x)).

x/ €P x/ EN

We can rewrite the product using y/ as powers of the probabilities as y/ = 0, when
x/ e N andyj =1, whenx’/ € P:

Lw = [T PO/ =1 x [T a=Po7 =1,

x/ €P x/ EN

= [] PO/ =1y x(-Pu/ =1x)".

(xJ ,y))eDs

Maximizing the Likelihood

We fit w, and train a model by maximizing the likelihood of the observed
classification:

w=argmax [[PO/ = 1x/)" x (1- P(y/ = 1]x/)! .
v x/ €DS

To maximize this term, it is more convenient to work with sums rather than with
products, and we take the logarithm of it (log-likelihood):

W = arg max Z y/InP(y/ =1|x/)+ (1 —y/)In(l = P(y/ = 1|x/)).

(x/,y/)eDS

118 4 Topics in Information Theory and Machine Learning

Using the logistic curves to express the probabilities, we have:

—

1 .
—— +(1-y)In
apm—— 1=y

W = arg max Z y/ In ;

L 14+ e W’
(x/,y))eDS +

In contrast to linear regression that uses least mean squares, here we fit a logistic
curve so that it maximizes the likelihood of the classification — partition — observed
in the training set.

4.9.2 The Gradient Ascent

We can use the gradient ascent to compute this maximum. This method is analogous
to the gradient descent that we reviewed in Sect. 4.5.2; we move upward instead. A
Taylor expansion of the log-likelihood gives us: £(w+v) = £(w) +v-VL(w) +...
When w is collinear with the gradient, we have:

Lw 4+ aVL(W)) ~ L(w) + a||[VEW)|]%.
The inequality:
L(w) < (W + aVE(W))

enables us to find a sequence of increasing values of the log-likekihood. We use the
iteration:

Wit = Wi + aVE(W)

to carry this out until we reach a maximum.

Computing the Gradient
We compute the partial derivatives of the log-likelihood to find the gradient:

Y,)) J ,—wx/
(W) — Z y] (1 +e—w.x/) Xx; e

— 4
. —w-x/)2
ow; (x/,y/)eDs (I+e)

—wx/ i —wx/ —wex/ i —wx/ —w.x/
1 + e WX _xi/,eWX(l_’_ewx)_i_Xi/,ew.x.ew.x

_ v/ .
(1 y) e_w_xj (1 +e_w.xj)2

)

4.10 Encoding Symbolic Values as Numerical Features 119

+ 1=y

_ Z] e ; —xij -(1 —i—e‘w"") +xl-j cemwX
- y e T L —wx 1+ e—w-x-/

(x/,y/)eDs

)

oy Qe 1
= Z X: -

i —w-x/
(x/,y/)eDS T4 e
; . 1
= 2 =)
(x/,y/)eDS
Weight Updates

Using the gradient values, we can now compute the weight updates at each step of
the iteration. As with linear regression, we can use a stochastic or a batch method.
For DS = {(1,x{,x3,...,xn,¥/)|j : 1..q}, the updates of w = (wo, wi, ..., w,)
are:

* With the stochastic gradient ascent:

:) 1
Wi (e1) < Wi + o xi - (3 — W);
* With the batch gradient ascent:
O 1
.) Z. Sy —
Wi (k+1) <= Wi (k) + q le O 1+ e~ Wk)-

j=1

As with the gradient descent, the convergence stops when ||V£(w)]| is less than a
predefined threshold.

4.10 Encoding Symbolic Values as Numerical Features

Along with this overview of numerical classification methods, a practical question
comes to mind: how can we apply them to symbolic — or nominal — attributes like
the ones in Table 4.7?

The answer is that we need to convert the symbolic attributes into numerical
vectors before we can use the linear classifiers. The classical way to do this is
to represent each attribute domain — the set of the allowed or observed values of
an attribute — as a vector of binary digits. Let us exemplify this with the Outlook
attribute in Table 4.7:

120 4 Topics in Information Theory and Machine Learning

Table 4.10 A representation of the symbolic values in Table 4.7 as numerical vectors

Attributes

Outlook Temperature Humidity Windy
Object Sunny Overcast Rain Hot Mild Cool High Normal True False Class
1 1 0 0 1 0 0 1 0 0 1 N
2 1 0 0 1 0 0 1 0 1 0 N
3 0 1 0 1 0 0 1 0 0 1 P
4 0 0 1 0 1 0 1 0 0 1 P
5 0 0 1 0 0 1 0 1 0 1 P
6 0 0 1 0 0 1 0 1 1 0 N
7 0 1 0 0 0 1 0 1 1 0 P
8 1 0 0 0 1 0 1 0 0 1 N
9 1 0 0 0 0 1 0 1 0 1 P
10 0 0 1 0 1 0 0 1 0 1 P
11 1 0 0 0 1 0 0 1 1 0 P
12 0 1 0 0 1 0 1 0 1 0 P
13 0 1 0 1 0 0 0 1 0 1 P
14 0 0 1 0 1 0 1 0 1 0 N

e Outlook has three possible values: {sunny, overcast, rain}. Its numerical repre-
sentation is then a three-dimensional vector, (x1, X, x3), whose axes are tied
respectively to sunny, overcast, and rain.

* To reflect the value of the attribute, we set the corresponding coordinate to
1 and the others to 0. Using the examples in Table 4.7, the name—value pair
[Outlook = sunny] will be encoded as (1, 0, 0), [Outlook = overcast] as (0, 1, 0),
and [Outlook = rain] as (0,0, 1).

For a given attribute, the dimension of the vector will then be defined by the
number of its possible values, and each vector coordinate will be tied to one of the
possible values of the attribute.

So far, we have one vector for each attribute. To represent a complete object, we
will finally concatenate all these vectors into a larger one characterizing this object.
Table 4.10 shows the complete conversion of the data set using vectors of binary
values.

If an attribute has from the beginning a numerical value, it does not need to be
converted. It is, however, a common practice to scale it so that the observed values
in the training set range from O to 1 or from —1 to 41.

4.11 Further Reading

Information theory is covered by many books, many of them requiring a good math-
ematical background. The text by Manning and Schiitze (1999, Chap. 2) provides a
short and readable introduction oriented toward natural language processing.

Exercises 121

Machine-learning techniques are now ubiquitous in all the fields of natural
language processing. ID3 outputs classifiers in the form of decision trees that
are easy to understand. It is a simple and robust algorithm. Logistic regression,
perceptrons, and support vector machines are other popular classifiers. Which one to
choose has no easy answer as they may have different performances on different data
sets. My preferences are leaning toward ID3 and logistic repression, although this
does not exclude the others. Supervised machine-learning is a large and evolving
domain. In this chapter, we set aside many details and techniques. Hastie et al.
(2009), Saporta (2011), Murphy (2012), and James et al. (2013) are mathematical
references on classification and statistical learning in general that can complement
this chapter. Scholkopf and Smola (2002) is a more focused reference on support
vector machines.

We used regression to introduce linear classification techniques. This line-fitting
process has a somehow enigmatic name. It is due to Galton (1886) who modeled the
transmission of stature from parents to children. He gathered a data set of the heights
of children and parents and observed that taller-than-average parents tended to have
children shorter than they, and that shorter parents tended to have taller children than
they. Galton called this a regression towards mediocrity.

A number of machine-learning toolkits are available from the Internet. R is
a set of statistical and machine-learning functions with a script language (http://
www.r-project.org/). Weka (Hall et al. 2009; Witten and Frank 2005) is a collec-
tion of data mining algorithms written in Java (http://www.cs.waikato.ac.nz/ml/
weka/). LIBLINEAR (Fan et al. 2008) and LIBSVM (Chang and Lin 2011) are
efficient implementations of logistic regression and support vector machines in
C (http://www.csie.ntu.edu.tw/~cjlin/liblinear/, http://www.csie.ntu.edu.tw/~cjlin/
libsvm/). C4.5 (Quinlan 1993), ID3’s successor, is available from its creator’s web
page (http://www.rulequest.com/Personal/).

Exercises

4.1. Implement the ID3 algorithm in Prolog, Perl, or another language. Test it on
the data set in Table 4.7.

4.2. Implement linear regression using the gradient descent. Test it on the data set
in Table 4.8 with, respectively, English and French.

4.3. Implement the perceptron algorithm. Test it on the data set in Table 4.8.

4.4. Implement logistic regression. Test it on the data set in Table 4.8.

http://www.r-project.org/
http://www.r-project.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.rulequest.com/Personal/

Chapter 5
Counting Words

On trouve ainsi qu’un événement étant arrivé de suite, un nombre
quelconque de fois, la probabilité qu’il arrivera encore la fois
suivante, est égale a ce nombre augmenté de 1’unité, divisé par le
méme nombre augmenté de deux unités. En faisant, par exemple,
remonter la plus ancienne époque de I’histoire, a cinq mille ans,
ou a 1826213 jours, et le Soleil s’étant levé constamment, dans cet
intervalle, a chaque révolution de vingt-quatre heures, il y a 1826214
a parier contre un qu’il se Ievera encore demain.

Pierre-Simon Laplace. Essai philosophique sur les probabilités. 1840.
See explanations in Sect. 5.7.2.

5.1 Counting Words and Word Sequences

We saw in Chap.2 that words have specific contexts of use. Pairs of words like
strong and tea or powerful and computer are not random associations but the result
of a preference. A native speaker will use them naturally, while a learner will have to
learn them from books — dictionaries — where they are explicitly listed. Similarly, the
words rider and writer sound much alike in American English, but they are likely
to occur with different surrounding words. Hence, hearing an ambiguous phonetic
sequence, a listener will discard the improbable rider of books or writer of horses
and prefer writer of books or rider of horses (Church and Mercer 1993).

In lexicography, extracting recurrent pairs of words — collocations — is critical to
finding the possible contexts of a word and citing real examples of its use. In speech
recognition, the statistical estimate of a word sequence — also called a language
model — is a key part of the recognition process. The language model component
of a speech recognition system enables the system to predict the next word given a

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 123
DOI 10.1007/978-3-642-41464-0_5, © Springer-Verlag Berlin Heidelberg 2014

124 5 Counting Words

sequence of previous words: the writer of books, novels, poetry, etc., rather than of
the writer of hooks, nobles, poultry.

Knowing the frequency of words and sequences of words is crucial in many
fields of language processing. In addition to speech recognition and lexicography,
they include parsing, semantic interpretation, and translation. In this chapter, we
introduce techniques to obtain word frequencies from a corpus and to build language
models. We also describe a set of related concepts that are essential to understand
them.

5.2 Text Segmentation

Most language processing techniques, such as language modeling and morpholog-
ical and syntactic parsing, consider words and sentences. When the input data is a
stream of characters, we must first segment it, i.e., identify the words and sentences
in it, before we can apply any further operation to the text. We call this step text
segmentation or tokenization. A tokenizer can also remove formatting instructions,
such as XML tags, if any.

Originally, early European scripts had no symbols to mark segment boundaries
inside a text. Ancient Greeks and Romans wrote their inscriptions as continuous
strings of characters flowing from left to right and right to left without punctuation
or spaces. The lapis niger, one of the oldest remains of the Latin language, is an
example of this writing style, also called boustrophedon (Fig. 5.1).

As the absence of segmentation marks made texts difficult to read, especially
when engraved on a stone, Romans inserted dots to delimit the words and thus
improve their legibility. This process created the graphic word as we know it: a
sequence of letters between two specific signs. Later white spaces replaced the dots
as word boundaries and Middle Ages scholars introduced a set of punctuation signs:
commas, full stops, question and exclamation marks, colons, and semicolons, to
delimit phrases and sentences.

5.2.1 What Is a Word?

The definition of what a word is, although apparently obvious, is in fact surprisingly
difficult. A naive description could start from its historical origin: a sequence of
alphabetic characters delimited by two white spaces. This is an approximation. In
addition to white spaces, words can end with commas, question marks, periods, etc.
Words can also include dashes and apostrophes that, depending on the context, have
a different meaning.

Word boundaries vary according to the language and orthographic conven-
tions. Compare these different spellings: news stand, news-stand, and newsstand.
Although the latter one is considered more correct, the two other forms are

5.2 Text Segmentation 125

Fig. 5.1 Latin inscriptions
on the lapis niger. Corpus
inscriptionum latinarum, CIL
I, 1 (Picture from Wikipedia)

also frequent. Compare also the convention in German to bind together adjacent
nouns as in Gesundheitsreform, as opposed to English that would more often
separate them, as in health reform. Compare finally the ambiguity of punctuation
marks, as in the French word aujourd’hui, ‘today’, which forms a single word, and
Uarticle, ‘the article’, where the sequence of an article and a noun must be separated
before any further processing.

In corpus processing, text elements are generally called tokens. Tokens include
words and also punctuation, numbers, abbreviations, or any other similar type of
string. Tokens may mix characters and symbols as:

* Numbers: 9,812.345 (English and French from the eighteenth to nineteenth
century century), 9 812,345 (current French and German) 9.812,345 (French
from the nineteenth to early twentieth century);

e Dates: 01/02/2003 (French and British English), 02/01/2003 (US English),
2003/02/01 (Swedish);

* Abbreviations and acronyms: km/h, m.p.h., S.N.C.F,;

* Nomenclatures: A1-B45, /home/pierre/book.tex;

¢ Destinations: Paris—New York, Las Palmas—Stockholm, Rio de Janeiro—Frankfurt
am Main,;

* Telephone numbers: (0046) 46 222 96 40;

e Tables;

o Formulas: E = mc?.

As for the words, the definition of what is a sentence is also tricky. A naive
definition would be a sequence of words ended by a period. Unfortunately, periods
are also ambiguous. They occur in numbers and terminate abbreviations, as in efc.
or Mr., which makes sentence isolation equally complex. In the next sections, we
examine techniques to break a text into words and sentences, and to count the
words.

126 5 Counting Words

5.2.2 Breaking a Text into Words and Sentences

Tokenization breaks a character stream, that is, a text file or a keyboard input, into
tokens — separated words — and sentences. In Prolog, it results in a list of atoms. For

this paragraph, such a list looks like:

[['Tokenization’, breaks, a, character, stream, ¢(,),

that, 1is, (,), a, text, file, or, a, keyboard, input,
(,), into, tokens, -, separated, words, -, and,
sentences, ’.’], ['In’, ’'Prolog’, it, results, in,

a, list, of, atoms, ’.’], ['For’, this, paragraph,

(,), such, a, list, looks, like, :1]

An basic format to output or store tokenized texts is to print one word per line

and have a blank line to separate sentences as in:

In
Prolog
it
results
in

a

list

of
atoms

For

this
paragraph
such

a

list
looks
like

5.3 Tokenizing Words

We now introduce tokenization techniques using two complementary approaches.
The first one considers the unit boundaries, and the second one their content. We will
then merge them into a more elaborate program in Perl. We will also provide with

5.3 Tokenizing Words 127

an implementation in Prolog. Perl is generally faster and is well suited to process
large quantities of text.

5.3.1 Using White Spaces

Tokenizing texts using white spaces as word delimiters is the most elementary
technique. It is straightforward in Perl, as shown in the program below: we just
replace sequences of white spaces in the text with a new line, and we consider what
is between two white spaces to be a word. In the program, we use the \ s character
class to represent the white space:

Stext = <>;
while ($line = <>) {
Stext .= $line;

}
S$text =~ s/\s+/\n/g;
print Stext;

However, this does not work perfectly, and as with the first lines of the Odyssey:

Tell me, O muse, of that ingenious hero who travelled far and wide after he had sacked the
famous town of Troy.

where the commas are not segmented from the words:

Tell

me,

O

muse,

of

that
ingenious
hero

5.3.2 Using White Spaces and Punctuation

The previous program failed to tokenize the punctuation. We improve it with a few
regular expressions to separate the punctuation signs from the words and insert
white spaces around them. The punctuation we process corresponds to:

1. The dot: .
2. Other boundary signs: , ; : ? 1 #3%&-/\
3. Brackets: " () []1{}<>,and

128 5 Counting Words

4. Quotes: ** v 11,

We then tokenize the text according to white spaces as in the previous section:

Stext = <>;

while ($line = <>) {
Stext .= S$line;

}

Stext =~ s/\./ . /g9;

Stext =~ s/ ([,;:?1#3%&\-\/\\1)/ $1 /g;
stext =~ s/ (["\(\D)\NI\I{}\<\>1)/ s1 /g;
Stext =~ s/ ("M [|1)/ $1 /g;

Remove leading spaces

Stext =~ s/" x//9;

Stext =~ s/\s+/\n/g;

print Stext;

Applying it to our small text results in:

Tell

me

(0]

muse

of

that
ingenious
hero

who
travelled
far

This second program produces a better result than our first one, although not
perfect. Decimal numbers, for example, would not be properly processed. The
program would match the point of decimal numbers such as 3.14 and insert new
lines between 3 and 14. The apostrophe inside words is another ambiguous sign.
The tokenization of auxiliary and negation contractions in English is unpredictable
without a morphological analysis. It requires a dictionary with all the forms
(Table 5.1).

In French, apostrophes corresponding to the elided e have a regular behavior as in

Sij'aime et d’aventure — si j' aime et d’ aventure

but there are words like aujourd’hui, ‘today’, that correspond to a single entity and
are not tokenized.

5.3 Tokenizing Words 129

Table 5.1 Apostrophe tokenization in English

Contracted form Example Tokenization Expanded form
‘m I'm I 'm Iam

’d we'd we 'd we had or we would
1 we’ll we 11 we will

re you're you 're you are

ve I've I 've 1 have

n’t can’t can n't cannot

’s she’s she 's she has or she is

’s Pierre’s book Pierre ’'s book Possessive marking

5.3.3 Defining Contents

Alternatively, we can explicitly define the content of words. We consider then that
contiguous sequences of alphanumeric characters, including the dash and the quote,
are words, and we isolate them on a single line. We isolate the punctuation symbols
on a single line as well. All the other symbols will mark a separation.

We use the tr operator now and formulate tokenization as:

e If a character is not a letter or a punctuation sign, then replace it by a new
line. Note that the dash character in tr as well as in character classes means
an interval and that we have to quote it to process it in a text.

e If it is a punctuation sign, then have it on a single line (insert it between two new
lines).

 Finally, reduce contiguous sequences of new lines to a single occurrence.

Stext = <
while ($line = <>) {
Stext .= S$line;
Stext =~ tr/a-zAa333xcé&8871188eu0uyRA-ZAARARCEREEET IOOGUOUY

(O\-,.?!:;/\n/cs;
Stext =~ s/([,.?2!:; 0 "\-1)/\nS1\n/g;
Stext =~ s/\n+/\n/g;
print S$text;

5.3.4 Tokenizing Texts in Prolog

We can define a Prolog tokenizer with a grammar, where tokens are sequences of
characters of the same class:

* A token is a sequence of alphabetic characters or digits.
e Other characters mark the token termination and consist of carriage returns,
blanks, tabulations, punctuation signs, or other ASCII symbols or commands.

130 5 Counting Words

The tokenization program tokenize/2 takes a list of character codes as input
and returns a list of tokens. The predicate char type/2 determines the type of a
character code: alphanumerical, blank, or other. It is a built-in SWI Prolog predicate
compatible with the UTF-8 character set (charset). The first tokenize/2 rule
corresponds to the termination condition. The second tokenize/2 rule tests the
type of the head of the list. It skips the blanks. When it reaches an alphanumerical
character in the third rule, it calls make word/4, which builds a word out of next
letters or digits in the list. When tokenize/2 encounters another symbol in the
fourth rule, it makes a single token out of it.

You can use the read file/2 predicate from Appendix A, “An Introduction
to Prolog,” to read the character codes from a file.

% tokenize (+CharCodes, -Tokens)
% breaks a list of character codes into a list of tokens.
tokenize ([], []).
tokenize ([CharCode \ RestCodes], Tokens) :- % a blank
char type (CharCode, space),
|
tokenize (RestCodes, Tokens) .
tokenize ([CharCode | CharCodes], [Word | Tokens]) :-
char type(CharCode, alnum), % an alphanumical
!
make_word ([CharCode | CharCodes], alnum, WordCodes, RestCodes),
name (Word, WordCodes),
tokenize (RestCodes, Tokens) .
tokenize ([CharCode | CharCodes], [Char | Tokens]) :- % other
|

name (Char, [CharCode]),
tokenize (CharCodes, Tokens) .

% make word (+CharCodes, +Type, -WordCodes, -RestCodes)
make word ([CharCodel, CharCode2 | CharCodes], alnum,
[CharCodel | WordCodes], RestCodes) :-
char type (CharCode2, alnum),
|
make_ word ([CharCode2 | CharCodes], alnum, WordCodes,
RestCodes) .
make_ word ([CharCode | RestCodes], alnum, [CharCode],

RestCodes) .

5.3.5 Tokenizing Using Classifiers

So far, we have carried out tokenization using rules that we have explicitly defined
and implemented using regular expressions or Prolog. A second option is to use
classifiers such as logistic regression (Sect.4.9) and to train a tokenizer from a
corpus. Given an input queue of characters, we then formulate tokenization as
a binary classification: is the current character the end of a token or not? If the
classifier predicts a token end, we insert a new line.

5.3 Tokenizing Words 131

Table 5.2 The features extracted from the second n in Pierre Vinken, the d in old, and the dot in
Nov.. The two classes to learn are inside token and token end

Context Current char. Previous pair Next char. Next pair Class Action
Vinken, n en) e Token end New line
old, d ld , e Token end New line
Nov. v ov . " Inside token Nothing

Before we can train our classifier, we need a corpus and an annotation to mark
the token boundaries. Let us use the OpenNLP format as an example. The Apache
OpenNLP library is an open-source toolkit for natural language processing. It
features a classifier-based tokenizer and has defined an annotation for it (Apache
OpenNLP Development Community 2012). A training corpus consists of a list of
sentences with one sentence per line, where the white spaces are unambiguous token
boundaries. The other token boundaries are marked with the <SPLIT> tag, as in
these two sentences:

Pierre Vinken<SPLIT>, 61 years o0ld<SPLIT>, will join the
board as a nonexecutive director Nov. 29<SPLIT>.

Mr. Vinken is chairman of Elsevier N.V.<SPLIT>, the Dutch
publishing group<SPLIT>.

Note that in the example above, the sentence lengths are too long to fit the size
of the book and we inserted two additional breaks and leading spaces to denote
a continuing sentence. In the corpus file, every new line corresponds to a new
sentence.

Once we have an annotation, we need to define the features we will use for the
classifier. We already used features in Sect. 4.4 in the form of letter frequencies to
classify the language of a text. For the tokenization, we will follow Reynar (1998,
pp. 69-70), who describes a simple feature set consisting of four features:

¢ The current character,

¢ The pair formed of the previous and current characters,
e The next character,

¢ The pair formed of the two next characters.

As examples, Table 5.2 shows the features extracted from three characters in the
sentences above: the second n in Pierre Vinken, the d in old, and the dot in Nov.
From these features, the classifier will a create model and discriminate between the
two classes: inside token and token end.

Before we can learn the classifiers, we need a corpus annotated with the
<SPLIT> tags. We can create one by tokenizing a large text manually — a tedious
task — or by reconstructing a nontokenized text from an already tokenized text. See,
for example, the Penn Treebank (Marcus et al. 1993) for English.

We extract a training data set from the corpus by reading all the characters and
extracting for each character their four features and their class. We then train the

132 5 Counting Words

classifier, for instance, using logistic regression, to create a model. Finally, given a
nontokenized text, we apply the classifier and the model to each character of the text
to decide if it is inside a token or if it is a token end.

5.4 Sentence Segmentation

5.4.1 The Ambiguity of the Period Sign

Sentences usually end with a period, and we will use this sign to recognize
boundaries. However, this is an ambiguous symbol that can also be a decimal point
or appear in abbreviations or ellipses. To disambiguate it, we introduce now two
main lines of techniques identical to those we used for tokenization: rules and
classifiers.

Although in this chapter, we describe sentence segmentation after tokenization,
most practical systems use them in a sequence, where sentence segmentation is the
first step followed by tokenization.

5.4.2 Rules to Disambiguate the Period Sign

We will consider that a period sign either corresponds to a sentence end, a decimal
point, or a dot in an abbreviation. Most of the time, we can recognize these three
cases by examining a limited number of characters to the right and to the left of the
sign. The objective of disambiguation rules is then to describe for each case what
can be the left and right context of a period.

The disambiguation is easier to implement as a two-pass search: the first pass
recognizes decimal numbers or abbreviations and annotates them with a special
marking. The second one runs the detector on the resulting text. In this second pass,
we also include the question and exclamation marks as sentence boundary markers.

We can generalize this strategy to improve the sentence segmentation with
specific rules recognizing dates, percentages, or nomenclatures that can be run as
different processing stages. However, there will remain cases where the program
fails, notably with abbreviations.

5.4.3 Using Regular Expressions

Starting from the most simple rule to identity sentence boundaries, a period
corresponds to a full stop, Grefenstette and Tapanainen (1994) experimented on

5.4 Sentence Segmentation 133

Table 5.3 Recognizing

numbers (After Grefenstette gractlotns, dates ([(E_i] ;’)(z/[(EO;]9] JE)\+> o (0-9] v
and Tapanainen (1994)) ercen +\-1)2[0-91+(\.)?[0-9]x%
Decimal numbers ~ ([0-9]+,?)+(\.[0-9]+]| [0-9]+) *

Table 5.4 Regular expressions to recognize abbreviations and performance breakdown. The
Correct column indicates the number of correctly recognized instances, Errors indicates the
number of errors introduced by the regular expression, and Full stop indicates abbreviations ending
a sentence where the period is a full stop at the same time (After Grefenstette and Tapanainen
(1994))

Regex Correct Errors Full stop
[A-Za-z]\. 1,327 52 14
[A-Za-z]\. ([A-Za-2z0-9]\.)+ 570 0 66
[A-Z] [becdfghj-np-tvxz] +\. 1,938 44 26
Totals 3,835 96 106

a set of increasingly complex regular expressions to carry out segmentation. They
evaluated them on the Brown corpus (Francis and Kucera 1982).

About 7% of the sentences in the Brown corpus contain at least one period,
which is not a full stop. Using their first rule, Grefenstette and Tapanainen could
correctly recognize 93.20 % of the sentences. As a second step, they designed the
set of regular expressions in Table 5.3 to recognize numbers and remove decimal
points from the list of full stops. They raised to 93.78 % the number of correctly
segmented sentences.

Regular expressions in Table 5.3 are designed for English text. French and
German decimal numbers would have a different form as they use a comma as
decimal point and a period or a space as a thousand separator:

([0-91+ (.|)?)*[0-9]1(, [0-9]1+)

Finally, Grefenstette and Tapanainen added regular expressions to recognize
abbreviations. They used three types of patterns:

* A single capital followed by a period as A., B., C.
* A sequence of letters and periods as in U.S., i.e., m.p.h.,
* A capital letter followed by a sequence of consonants as in Mr., St., Ms.

Table 5.4 shows the corresponding regular expressions as well as the number of
abbreviations they recognize and the errors they introduce. Using them together with
the regular expressions to recognize decimal numbers, Grefenstette and Tapanainen
could increase the correct segmentation rate to 97.66 %.

5.4.4 Improving the Tokenizer Using Lexicons

Grefenstette and Tapanainen (1994) further improved their tokenizer by automat-
ically building an abbreviation lexicon from their corpus. To identify potential

134 5 Counting Words

Table 5.5 The features extracted from Nov. and 29. in the example sentences in Sect.5.3.5. The
two classes to learn are inside sentence and end of sentence

Context Prefix Suffix Previous word Nextword Prefix abbrev. Class

Nov. Nov nil director 29. Yes Inside sentence
29. 29 nil Now. M. No End of sentence

abbreviations, they used the following idea: a word ending with a period that is
followed by either a comma, a semicolon, a question mark, or a lowercase letter is
a likely abbreviation. Grefenstette and Tapanainen (1994) applied this idea to their
corpus; however, as they gathered many words that were not abbreviations, they
removed all the strings in the list that appeared without a trailing period somewhere
else in the corpus. They then reached 98.35 %.

Finally, using a lexicon of words and common abbreviations, Mr., Sen., Rep.,
Oct., Fig., pp., etc., they could recognize 99.07 % of the sentences. Mikheev (2002)
describes another efficient method that learns tokenization rules from the set of
ambiguous tokens distributed in a document. While most published experiments
have been conducted on English, Kiss and Strunk (2006) present a multilingual
statistical method that can be trained on unannotated corpora.

5.4.5 Sentence Detection Using Classifiers

As for tokenization, we can use classifiers, such as decision trees or logistic
regression, to segment sentences. The idea is simple: given a period in a text (or
a question or an exclamation mark), classify it as the end of a sentence or not. The
implementation is identical to that in Sect.5.3.5 and we can use the same corpus:
we just ignore the <SPLIT> tags.

Practically, we need to collect a data set and define the features to associate to
the periods. Reynar and Ratnaparkhi (1997) proposed a method that we describe
here. As corpus, they used the Penn Treebank (Marcus et al. 1993), from which they
extracted all the strings separated by white spaces and containing a period. They
used a compact set of eight features:

. The characters in the string to the left of the period (the prefix);

. The character to the right of the period (the suffix);

. The word to the left of the string;

. The word to the right of the string;

. Whether the prefix (resp. suffix) is on a list of abbreviations;

. Whether the word to the left (resp. to the right) is on a list of abbreviations.

SN LB WN =

Table 5.5 shows the features for the periods in Nov. and 29. in the example
sentences in Sect.5.3.5. The first four features are straightforward to extract. We
need a list of abbreviations for the rest. We can build this list automatically using
the method described in Sect. 5.4.4.

5.5 N-Grams 135

Reynar and Ratnaparkhi (1997) used logistic regression to train their classifica-
tion models and discriminate between the two classes: inside sentence and end of
sentence.

5.5 N-Grams

5.5.1 Some Definitions

The first step of lexical statistics consists in extracting the list of word types or
types, i.e., the distinct words, from a corpus, along with their frequencies. Within
the context of lexical statistics, word types are opposed to word tokens, the sequence
of running words of the corpus. The excerpt from George Orwell’s Nineteen Eighty-
Four:

War is peace
Freedom is slavery
Ignorance is strength

has nine tokens and seven types. The type-to-token ratio is often used as an
elementary measure of a text’s density.

Collocations and language models also use the frequency of pairs of adjacent
words: bigrams, for example, how many of the there are in this text; of word triples:
trigrams; and more generally of fixed sequences of n words: n-grams. In lexical
statistics, single words are called unigrams.

Jelinek (1990) exemplified corpus statistics and trigrams with the sentence

We need to resolve all of the important issues within the next two days

selected from a 90-million-word corpus of IBM office correspondences. Table 5.6
shows each word of this sentence, its rank in the corpus, and other words ranking
before it according to a linear combination of trigram, bigram, and unigram
probabilities. In this corpus, We is the ninth most probable word to begin a sentence.
More likely words are The, This, etc. Following We, need is the seventh most
probable word. More likely bigrams are We are, We will, We the, We would. ...
Knowing that the words We need have been written, fo is the most likely word to
come after them. Similarly, the is the most probable word to follow all of.

5.5.2 A Crash Program to Count Words with Unix

In his famous column, Programming Pearls, Bentley et al. (1986) posed the
following problem:

Given a text file and an integer k, print the k most common words in the file (and the number
of their occurrences) in decreasing frequency.

136 5 Counting Words
Table 5.'6 Ranking .and Word Rank More likely alternatives
generating words using
trigrams (After Jelinek We 9 The This One Two A Three Please In
(1990)) need 7 are will the would also do

to 1

resolve 85 have know do. ..

all 9 the this these problems. ..

of 2 the

the 1

important 657 document question first. ..

issues 14 thing point to. ..

within 74 to of and in that. . .

the 1

next 2 company

two 5 page exhibit meeting day

days 5 weeks years pages months

This problem is especially interesting to us now as it is exactly the output of the

first row in Table 5.6.

Bentley received two solutions for it: one from Donald Knuth, the prestigious

inventor of TgX, and the second in the form of a comment from Doug Mcllroy,
the developer of Unix pipelines. While Knuth sent an 8-page program, Mcllroy
proposed a compelling Unix shell script of six lines. We reproduce it here (slightly
modified):

1.

tr -cs 'A-Za-z’' ‘\n’ <input file |

Tokenize the text in input file using the Unix tr command. The Unix tr
behaves like the Perl tr operator that we described in Sects.2.4.5 and 5.3.3.
There will be one word per line, and the output is passed to the next command.

.tr 'A-Z' 'a-z' |

Translate the uppercase characters into lowercase letters and pass the output to
the next command.

. sort |
Sort the words. The identical words will be grouped together in adjacent lines.
.uniqg -c |

Remove repeated lines. The identical adjacent lines will replaced with one single
line. Each unique line in the output will be preceded by the count of its duplicates
in the input file (-c).

. sort -rn |

Sort in the reverse (-r) numeric (-n) order. The most frequent words will be
sorted first.

. head -5

Print the five first lines of the file (the five most frequent words).

The two first tr commands do not take into account possible accented charac-

ters. To correct it, we just need to modify the character list and include accents.

5.5 N-Grams 137

Nonetheless, we can apply the script as it is to English texts. On the novel Nineteen
Eighty-Four (Orwell 1949), the output is:

6518 the
3491 of
2576 a
2442 and
2348 to

In addition, it is easy to extend the counts to bigrams. We need first to create a
file, where each line contains a bigram: the words at index i and i + 1 on the same
line separated with a blank. We use the Unix commands:

l. tr -cs 'A-Za-z' ’'\n’ <input file | tr 'A-Za-z’' > tok-
en_file Tokenize the input and create a file with the unigrams.

2. tail +2 < token file > next token file
Create a second unigram file starting at the second word of the first tokenized file
(+2).

3. paste token file next token file |
Merge the lines (the tokens) pairwise. Each line contains the words at index 7 and
i + 1 separated with a tabulation.

4. And we count the bigrams as in the previous script.

5.5.3 Counting Unigrams in Prolog

As with Unix, counting unigrams in Prolog consists simply in tokenizing a text,
sorting the words, and counting the number of times a type occurs in the corpus.
We will not use the Prolog predefined sort /2 predicate because it removes the
duplicates. Instead, we can use a predicate implementing the quicksort algorithm or
msort/2 in some Prologs.

The predicate count _duplicates/2 counts the duplicates. It takes a sorted
list of words as input and returns a list of pairs with the frequency of each word
[N, Word] in the output list:

count duplicates (OrderedList, CountedList) :-
count_duplicates (OrderedList, 1, [], CountedListRev),
reverse (CountedListRev, CountedList).

count duplicates([X, X | Ordered], N, Counting, Counted) :-

N1l is N + 1,

|
L

count_duplicates ([X | Ordered], N1, Counting, Counted).
count duplicates([X | Ordered], N, Counting, Counted) :-
L,

count duplicates(Ordered, 1, [I[N, X] | Counting], Counted).
count duplicates([], _, L, L).

138 5 Counting Words

We get the unigrams with their counts with:

?- read file(myFile, CharacterList),
tokenize (CharacterList, TokenList),
msort (TokenList, OrderedTokens),
count duplicates (OrderedTokens, UnigramList) .

5.5.4 Counting Unigrams with Perl

Counting unigrams is straightforward and very fast with Perl. We can obtain them
with the following algorithm:

1. Tokenize the text file.

2. Count the words using a hash table.

3. Possibly, sort the words according to their alphabetical order and numerical
ranking.

For the first step, we apply any tokenizer from Sect. 5.3 and produce a tokenized
file as output. We use the split function to assign each word of the text to the
elements of an array. As we saw in Chap. 2, split takes two arguments: a regular
expression, which describes a delimiter, and a string, which is split everywhere the
delimiter matches. The resulting fragments are assigned sequentially to an array.
Let Stext be a big string containing the whole text with one word per line. The
instruction:

@words = split(/\n/, Stext);

assigns the first line and hence the first word to $words [0], the second word to
Swords [1], and so on. A useful generalization of this instruction is

@words = split(/\s+/, S$Stext);

which splits the text at each sequence of white space characters.

Then, we use a hash table or associative array. Instead of being indexed by
consecutive numbers, as in classical arrays, hash tables are indexed by strings. The
next three lines

$wordcount{"a"} = 21;
$wordcount{"And"} = 10;
$wordcount {"the"} 18;

create the hash table Swordcount with three indices called the keys: a, And, the,
whose values are 21, 10, and 18. Hash keys can be numbers as well as strings. We
refer to the whole array using the notation $wordcount. The instruction keys
returns the keys of the array as in

keys %wordcount

5.5 N-Grams

A hash entry is created when a value is assigned to it. Its existence can be tested

using the exists Boolean function.

The counting program scans the @words array and increments the frequency of
the words as they occur. We finally introduce two new instructions and functions.
The instruction foreach item (list) iterates over the items of an array, and

sort (array) returns a sorted array. The complete program is:

Stext = <>;

while ($line = <>) {
Stext .= $line;

}

S$text =~ s/\n+/\n/g;
@words = split(/\n/, Stext);
for (31 = 0; $i <= S$#words; Si++) |
if (lexists ($frequency{$words([$il})) {
$frequency{$words[$i]l} = 1;
} else {
$frequency{$words [$i] }++;
}

}

foreach $word (sort keys $frequency) {
print "$frequency{sword} $word\n";

}

5.5.5 Counting Bigrams with Perl

We count bigrams and n-grams just as we did with unigrams. The only difference is
that we create an array of bigrams by concatenating the adjacent words. The input

is a tokenized file, and the following Perl program enables us to obtain them:

Stext = <>;
while ($line = <>) {
Stext .= $line;
}
Stext =~ s/\n+/\n/g;
@words = split(/\n/, Stext);
for (31 = 0; $i < S$#words; $i++) |

Sbigrams [$i] = $words[$i] . "™ " . sSwords[$i + 1];
}
for ($i = 0; $i < S$t#tbigrams; $i++) {

if (lexists($Sfrequency bigrams{$bigrams[$i]}))

$frequency bigrams{$bigrams[$il} = 1;
} else {

140 5 Counting Words

$frequency bigrams{$bigrams[$i] }++;
}
}

foreach $bigram (sort keys %frequency bigrams)
print "$frequency bigrams{$bigram} $bigram \n";

}

5.6 Probabilistic Models of a Word Sequence

5.6.1 The Maximum Likelihood Estimation

We observed in Table 5.6 that some word sequences are more likely than others.
Using a statistical model, we can quantify these observations. The model will enable
us to assign a probability to a word sequence as well as to predict the next word to
follow the sequence.

Let S = wi,wyp,...,w;,...,w, be a word sequence. Given a training corpus,
an intuitive estimate of the probability of the sequence, P(S), is the relative
frequency of the string wi, wo, ..., w;, ..., w, in the corpus. This estimate is called

the maximum likelihood estimate (MLE):

Cwi,...,wy)
Pvie(S) = ~ ,
where C(wy, ..., w,) is the frequency or count of the string wy, wa, ..., Wi, ..., Wy,
in the corpus, and N is the total number of strings of length n.

Most of the time, however, it is impossible to obtain this estimate. Even when
corpora reach billions of words, they have a limited size, and it is unlikely that we
can always find the exact sequence we are searching. We can try to simplify the
computation and decompose P (S) a step further using the chain rule as:

P(S) = P(wy,...,w,),
= P(w)P(walwi) P(wslwi,wa) ... P(Wylwi,...,wu_1),

= l_[P(Wl'|W1,...,Wi_1).
i=1

The probability P (It,was, a, bright, cold, day, in, April) from Nineteen Eighty-
Four by George Orwell corresponds then to the probability of having If to begin
the sentence, then was knowing that we have It before, then a knowing that we
have It was before, and so on, until the end of the sentence. It yields the product of
conditional probabilities:

P(S) = P(It) x P(was|It) x P(a|lt,was) x P(bright|lt,was,a) x ...
X P(April|lt,was, a, bright, . .., in).

5.6 Probabilistic Models of a Word Sequence 141

To estimate P(S), we need to know unigram, bigram, trigram, so far, so good,
but also 4-gram, 5-gram, and even 8-gram statistics. Of course, no corpus is big
enough to produce them. A practical solution is then to limit the n-gram length to 2
or 3, and thus to approximate them to bigrams:

P(wilwi,wa,...,wi—1) & P(wilwi_),
or trigrams:
Pwilwy,wa, ... ,wi—1) & P(wi|wi—a, wi—1).
Using a trigram language model, P(S) is approximated as:

P(S) ~ P(It) x P(Pwas|lt) x P(a|lt,was) x P(bright|lwas,a) x ...
x P (April|day, in).

Using a bigram grammar, the general case of a sentence probability is:
n
P(S) ~ P(w) [[Pwilwi-y).
i=2
with the estimate

Cwi—1.w;j) C(wi—1,w;)
ZC(Wi—laW) B C(W,'_l)

Pyre(wilwi—y) =

Similarly, the trigram maximum likelihood estimate is:

C(Wi—z, Wi—1, Wi)

Pye(wilwi—a, wi—1) =

C(wi—2,wi—1)
And the general case of n-gram estimation is:
C(W,'_H, ey W,’+n)
PvieWign Wi ts oo s Win—1) = ,
ZC(WiH, e Widn—1, W)
w
N C(W,‘.H, e ,W,‘+n)

C(W,'_H, ey Wi+n—1)

As the probabilities we obtain are usually very low, it is safer to represent them
as a sum of logarithms in practical applications. We will then use:

log P(S) A log P(w1) +) _log P(wi|wi-1).
i=2

142 5 Counting Words

instead of P(S). Nonetheless, in the following sections, as our example corpus is
very small, we will compute the probabilities using products.

5.6.2 Using ML Estimates with Nineteen Eighty-Four

Training and Testing the Language Model

Before computing the probability of a word sequence, we must train the language
model. The corpus used to derive the n-gram frequencies is classically called the
training set, and the corpus on which we apply the model, the test set. Both sets
should be distinct. If we apply a language model to a word sequence, which is part of
the training corpus, its probability will be biased to a higher value, and thus will be
inaccurate. The training and test sets can be balanced or not, depending on whether
we want them to be specific of a task or more general.

For some models, we need to optimize parameters in order to obtain the best
results. Again, it would bias the results if at the same time, we carry out the
optimization on the test set and run the evaluation on it. For this reason some models
need a separate development set to fine-tune their parameters.

In some cases, especially with small corpora, a specific division between training
and test sets may have a strong influence on the results. It is then preferable to
apply the training and testing procedure several times with different sets and average
the results. The method is to randomly divide the corpus into two sets. We learn
the parameters from the training set, apply the model to the test set, and repeat
the process with a new random division, for instance, ten times. This method is
called cross-validation, or ten-fold cross-validation if we repeat it ten times. Cross-
validation smoothes the impact of a specific partition of the corpus.

Marking up the Corpus

Most corpora use some sort of markup language. The most common markers of N -
gram models are the sentence delimiters <s> to mark the start of a sentence and
</ s> atits end. For example:

<s> It was a bright cold day in April </ s>

Depending on the application, both symbols can be counted in the n-gram
frequencies just as the other tokens or can be considered as context cues. Context
cues are vocabulary items that appear in the condition part of the probability but
are never predicted — they never occur in the right part. In many models, <s> is a
context cue and </ s> is part of the vocabulary. We will adopt this convention in the
next examples.

5.6 Probabilistic Models of a Word Sequence 143

The Vocabulary

We have defined language models that use a predetermined and finite set of
words. This is never the case in reality, and the models will have to handle out-
of-vocabulary (OOV) words. Training corpora are typically of millions, or even
billions, of words. However, whatever the size of a corpus, it will never have a
complete coverage of the vocabulary. Some words that are unseen in the training
corpus are likely to occur in the test set. In addition, frequencies of rare words will
not be reliable.
There are two main types of methods to deal with OOV words:

* The first method assumes a closed vocabulary. All the words both in the training
and the test sets are known in advance. Depending on the language model
settings, any word outside the vocabulary will be discarded or cause an error.
This method is used in some applications, like voice control of devices.

* The open vocabulary makes provisions for new words to occur with a specific
symbol, <UNK>, called the unknown token. All the OOV words are mapped to
<UNK>, both in the training and test sets.

The vocabulary itself can come from an external dictionary. It can also be
extracted directly from the training set. In this case, it is common to exclude the
rare words, notably those seen only once — the hapax legomena. The vocabulary
will then consist of the most frequent types of the corpus, for example, the 20,000
most frequent types. The other words, unseen or with a frequency lower than a cutoff
value, 1, 2, or up to 5, will be mapped to <UNK>.

Computing a Sentence Probability

We trained a bigram language model on a very small corpus consisting of the
three chapters of Nineteen Eighty-Four. We kept the appendix, “The Principles of
Newspeak,” as the test set and we selected this sentence from it:

<s> A good deal of the literature of the past was, indeed, already being transformed in this
way </s>

We first normalized the text: we created a file with one sentence per line. We
inserted automatically the delimiters <s> and </s>. We removed the punctuation,
parentheses, quotes, stars, dashes, tabulations, and double white spaces. We set all
the words in lowercase letters. We counted the words, and we produced a file with
the unigram and bigram counts.

The training corpus has 115,212 words; 8,635 types, including 3,928 hapax
legomena; and 49,524 bigrams, where 37,365 bigrams have a frequency of 1.
Table 5.7 shows the unigram and bigram frequencies for the words of the test
sentence.

All the words of the sentence have been seen in the training corpus, and we can
compute a probability estimate of it using the unigram relative frequencies:

144 5 Counting Words

Table 5.7 Frequencies of unigrams and bigrams. We excluded the <s> symbols from the word
counts

Puie Wi—1, Py
Wi C(wi) words (wi) Wi Cwi—1,wi) Cwi—1) (wilwi—1)
<s> 7,072 - - - -
a 2,482 108,140 0.023 <s>a 133 7,072 0.019
good 53 108,140 0.00049 a good 14 2,482 0.006
deal 5 108,140 4.62 X 10~ good deal 0 53 0.0
of 3,310 108,140 0.031 deal of 1 5 0.2
the 6,248 108,140 0.058 of the 742 3,310 0.224
literature 7 108,140 6.47 X 10~ the literature 1 6,248 0.00016
of 3,310 108,140 0.031 literature of 3 7 0.429
the 6,248 108,140 0.058 of the 742 3,310 0.224
past 99 108,140 0.00092 the past 70 6,248 0.011
was 2,211 108,140 0.020 past was 4 99 0.040
indeed 17 108,140 0.00016 was indeed 0 2,211 0.0
already 64 108,140 0.00059 indeed already 0 17 0.0
being 80 108,140 0.00074 already being 0 64 0.0
transformed 1 108,140 9.25 x 10™° being transformed 0 80 0.0
in 1,759 108,140 0.016 transformed in 0 1 0.0
this 264 108,140 0.0024 in this 14 1,759 0.008
way 122 108,140 0.0011 this way 3 264 0.011
</s> 7,072 108,140 0.065 way </s> 18 122 0.148

P(S) ~ P(a) x P(good) x ...x P(way) x P(</s>),

~ 3.67 x 107,
As P(<s>) is a constant that would scale all the sentences by the same factor,
whether we use unigrams or bigrams, we excluded it from the P(S) computation.
The bigram estimate is defined as:
P(S) ~ P(a|<s>) x P(good|a) x ... x P(way|this) x P(</s>|way).
and has a zero probability. This is due to sparse data: the fact that the corpus is not

big enough to have all the bigrams covered with a realistic estimate. We shall see in
the next section how to handle them.

5.7 Smoothing N -Gram Probabilities

5.7.1 Sparse Data

The approach using the maximum likelihood estimation has an obvious disad-
vantage because of the unavoidably limited size of the training corpora. Given

5.7 Smoothing N -Gram Probabilities 145

a vocabulary of 20,000 types, the potential number of bigrams is 20,0002 =
400,000,000, and with trigrams, it amounts to the astronomic figure of 20,000° =
8,000,000,000,000. No corpus yet has the size to cover the corresponding word
combinations.

Among the set of potential n-grams, some are almost impossible, except as
random sequences generated by machines; others are simply unseen in the corpus.
This phenomenon is referred to as sparse data, and the maximum likelihood
estimator gives no hint on how to estimate their probability.

In this section, we introduce smoothing techniques to estimate probabilities of
unseen n-grams. As the sum of probabilities of all the n-grams of a given length
is 1, smoothing techniques also have to rearrange the probabilities of the observed
n-grams. Smoothing allocates a part of the probability mass to the unseen n-grams
that, as a counterpart, it shifts — or discounts — from the other n-grams.

5.7.2 Laplace’s Rule

Laplace’s rule (Laplace 1820, p. 17) is probably the oldest published method to cope
with sparse data. It just consists in adding one to all the counts. For this reason, some
authors also call it the add-one method.

Laplace wanted to estimate the probability of the sun to rise tomorrow and he
imagined this rule: he set both event counts, rise and not rise, arbitrarily to one, and
he incremented them with the corresponding observations. From the beginning of
time, humans had seen the sun rise every day. Laplace derived the frequency of this
event from what he believed to be the oldest epoch of history: five thousand years
or 1,826,213 days. As nobody observed the sun not rising, he obtained the chance
for the sun to rise tomorrow of 1,826,214 to 1.

Laplace’s rule states that the frequency of unseen n-grams is equal to 1 and the
general estimate of a bigram probability is:

C(Wl'_l, W,’) +1 _ C(W,‘_1, Wl‘) +1
Y (Cwi—.w) +1) — C(wi—y) + Card(V)’

PLaplace (w |Wi—l) =

where Card(V) is the number of word types. The denominator correction is
necessary to have the probability sum equal to 1.

With Laplace’s rule, we can use bigrams to compute the sentence probability
(Table 5.8):

Prapiace(S) &~ P(a|<s>) x P(good|a) x ... x P(</s>|way),
~ 4.62 x 1077,

Laplace’s method is easy to understand and implement. It has an obvious
drawback however: it shifts an enormous mass of probabilities to the unseen

146 5 Counting Words

Table 5.8 Frequencies of bigrams using Laplace’s rule

Wi—1, Wi Cwi—y,w;i) + 1 C(wi—1) + Card(V) Prap(wilwi—1)
<s>a 133+ 1 7,072 + 8,635 0.0085

a good 14+1 2,482 + 8,635 0.0013
good deal 0+1 53 + 8,635 0.00012
deal of 1+1 5+ 8,635 0.00023
of the 742 + 1 3,310 + 8,635 0.062

the literature 1+1 6,248 + 8,635 0.00013
literature of 3+1 7 + 8,635 0.00046
of the 742 + 1 3,310 + 8,635 0.062

the past 70 + 1 6,248 + 8,635 0.0048
past was 4+1 99 + 8,635 0.00057
was indeed 0+1 2,211 + 8,635 0.000092
indeed already 0+1 17 + 8,635 0.00012
already being 0+1 64 + 8,635 0.00011
being transformed 0+1 80 + 8,635 0.00011
transformed in 0+1 1+ 8,635 0.00012
in this 14+1 1,759 + 8,635 0.0014
this way 3+1 264 + 8,635 0.00045
way </s> 18 +1 122 + 8,635 0.0022

n-grams and gives them a considerable importance. The frequency of the unlikely
bigram the of will be 1, a quarter of the much more common this way.

The discount value is the ratio between the smoothed frequencies and their actual
counts in the corpus. The bigram this way has been discounted by 0.011/0.00045 =
24 .4 to make place for the unseen bigrams. This is unrealistic and shows the major
drawback of this method. For this small corpus, Laplace’s rule applied to bigrams
has a result opposite to what we wished. It has not improved the sentence probability
over the unigrams. This would mean that a bigram language model is worse than
words occurring randomly in the sentence.

If adding 1 is too much, why not try less, for instance, 0.5? This is the idea of
Lidstone’s rule. This value is denoted A. The new formula is then:

Cwi—1,w;) + 4
C(wi—1) + ACard(V)’

PLidstone (Wi |Wi—1) =

which, however, is not a big improvement.

5.7.3 Good-Turing Estimation

The Good-Turing estimation (Good 1953) is one of the most efficient smoothing
methods. As with Laplace’s rule, it reestimates the counts of the n-grams observed
in the corpus by discounting them, and it shifts the probability mass it has shaved

5.7 Smoothing N -Gram Probabilities 147

to the unseen bigrams. The discount factor is variable, however, and depends on
the number of times a n-gram has occurred in the corpus. There will be a specific
discount value to n-grams seen once, another one to bigrams seen twice, a third one
to those seen three times, and so on.

Let us denote N, the number of n-grams that occurred exactly ¢ times in the
corpus. Ny is the number of unseen n-grams, N; the number of n-grams seen once,
N, the number of n-grams seen twice, and so on. If we consider bigrams, the value
Ny is Card(V)? minus all the bigrams we have seen.

The Good-Turing method reestimates the frequency of n-grams occurring ¢
times using the formula:

E(Nc+1)

c*=(+1) END

where E(x) denotes the expectation of the random variable x. This formula is
usually approximated as:

NC-H

= 1 .
=+ DT

To understand how this formula was designed, let us take the example of the
unseen bigrams with ¢ = 0. Let us suppose that we draw a sequence of bigrams to
build our training corpus, and the last bigram we have drawn was unseen before.
From this moment, there is one occurrence of it in the training corpus and the
count of bigrams in the same case is N;. Using the maximum likelihood estimation,
the probability to draw such an unseen bigram is then the count of bigrams seen
once divided by the total count of the bigrams seen so far: N;/N. We obtain the
probability to draw one specific unseen bigram by dividing this term by the count of
unseen bigrams:

I N
N Ny
. . - N
Hence, the Good-Turing reestimated count of an unseen n-gram is ¢* = N
0

2N
Similarly, we would have ¢* = TZ for an n-gram seen once in the training corpus.

The three chapters in Nineteen 1Eighty-Four contain 37,365 unique bigrams and
5,820 bigrams seen twice. Its vocabulary of 8,635 words generates 8,6352 =
74,563,225 bigrams, of which 74,513,701 are unseen. The Good-Turing method
reestimates the frequency of each unseen bigram to 37,365/74,513,701 = 0.0005,
and unique bigrams to 2 x (5,820/37,365) = 0.31. Table 5.9 shows the complete
the reestimated frequencies for the n-grams up to 9.

In practice, only high values of N, are reliable, which correspond to low values
of c. In addition, above a certain threshold, most frequencies of frequency will be

148 5 Counting Words

Table 5.9 The reestimated

Lk
frequencies of the bigrams Frequency of occurrence Ne <
0 74.513.701 0.0005
1 37,365 0.31
2 5,820 1.09
3 2,111 2.02
4 1,067 3.37
5 719 3.91
6 468 4.94
7 330 6.06
8 250 6.44
9 179 8.94

equal to zero. Therefore, the Good-Turing estimation is applied for ¢ < k, where k
is a constant setto 5, 6, ..., or 10. Other counts are not reestimated. See Katz (1987)
for the details.

The probability of a n-gram is given by the formula:

cFwi, ..., wy)
Por(wi,....wy) = — N
where ¢* is the reestimated count of wy ... w,, and N the original count of n-grams
in the corpus. The conditional frequency is

c*wy, ..., wy)

Por(Walwi, ... wp—y) = ——— 22200
" § C(Wl,. .. ,Wn_l)

Table 5.10 shows the conditional probabilities, where only frequencies less than 10
have been reestimated. The sentence probability using bigrams is 2.56 x 10~°°, This
is better than with Laplace’s rule, but as the corpus is very small, still greater than
the unigram probability.

5.8 Using N-Grams of Variable Length

In the previous section, we used smoothing techniques to reestimate the probability
of n-grams of constant length, whether they occurred in the training corpus or not.
A property of these techniques is that they assign the same probability to all the
unseen 71-grams.

Another strategy is to rely on the frequency of observed sequences but of lesser
length: n—1, n—2, and so on. As opposed to smoothing, the estimate of each unseen
n-gram will be specific to the words it contains. In this section, we introduce two
techniques: the linear interpolation and Katz’s back-off model.

5.8 Using N-Grams of Variable Length 149

Table 5.10 The conditional frequencies using the Good-Turing method. We have not reestimated
the frequencies when they are greater than 9

Wi—1, Wi C(wi—1,w;) c* (Wi—i, w;) C(wi—1) Por(wi|wi—1)
<s>a 133 133 7,072 0.019

a good 14 14 2,482 0.006

good deal 0 0.0005 53 9.46 X 10™°
deal of 1 0.31 5 0.062

of the 742 742 3,310 0.224

the literature 1 0.31 6,248 4.99 x 102
literature of 3 2.02 7 0.29

of the 742 742 3,310 0.224

the past 70 70 6,248 0.011

past was 4 3.37 99 0.034

was indeed 0 0.0005 2,211 2.27 x 1077
indeed already 0 0.0005 17 2.95% 107
already being 0 0.0005 64 7.84 x 107
being transformed 0 0.0005 80 6.27 x 107
transformed in 0 0.0005 1 0.00050

in this 14 14 1,759 0.008

this way 3 2.02 264 0.0077

way </s> 18 18 122 0.148

5.8.1 Linear Interpolation

Linear interpolation, also called deleted interpolation (Jelinek and Mercer 1980),
combines linearly the maximum likelihood estimates from length 1 to n. For
trigrams, it corresponds to:

PInterpolation(Wn |Wn—2, Wn—l) = A3 PMLE(Wn |Wn—2, Wn—l)+
A2 PrLe(Wn [Wn—1) + A1 Pyie(Wa),

3
where0 < A; <land > A; = 1.
i=1

The values can be constant and set by hand, for instance, A; = 0.6, A, = 0.3,
and A; = 0.1. They can also be trained and optimized from a corpus (Jelinek 1997).

Table 5.11 shows the interpolated probabilities of bigrams with A, = 0.7 and
A1 = 0.3. The sentence probability using these interpolations is 9.46 x 1074

We can now understand why bigram we the is ranked so high in Table 5.6 after we
are and we will. Although it can occur in English, as in the American constitution,
We the people..., it is not a very frequent combination. In fact, the estimation
has been obtained with an interpolation where the term A Py g(the) boosted the
bigram to the top because of the high frequency of the.

150 5 Counting Words

Table 5.11 Interpolated probabilities of bigrams using the formula A Pyg(w;|wi—1) +
A1 PvmLe(wi), A2 = 0.7, and A1 = 0.3. The total number of words is 108,140

Wi—1, Wi Cwi—i,wi) Cwi—1) Pwiewilwi—1) Pwew;) Proerp (Wi [wi—1)
<s>a 133 7,072 0.019 0.023 0.020

a good 14 2,482 0.006 0.00049 0.0041
good deal 0 53 0.0 4.62x107° 1.38x107°
deal of 1 5 0.2 0.031 0.149

of the 742 3,310 0.224 0.058 0.174

the literature 1 6,248 0.00016 6.47 x 107> 0.000131
literature of 3 7 0.429 0.031 0.309

of the 742 3,310 0.224 0.058 0.174

the past 70 6,248 0.011 0.00092 0.00812
past was 4 99 0.040 0.020 0.0344

was indeed 0 2,211 0.0 0.00016 471 X107
indeed already 0 17 0.0 0.00059 0.000177
already being 0 64 0.0 0.00074 0.000222
being transformed 0 80 0.0 9.25x107¢ 2.77x107°
transformed in 0 1 0.0 0.016 0.00488

in this 14 1,759 0.008 0.0024 0.0063

this way 3 264 0.011 0.0011 0.00829
way </s> 18 122 0.148 0.065 0.123

5.8.2 Back-Off

The idea of the back-off model is to use the frequency of the longest available 7-
grams, and if no n-gram is available to back off to the (n — 1)-grams, and then to
(n—2)-grams, and so on. If n equals 3, we first try trigrams, then bigrams, and finally
unigrams. For a bigram language model, the back-off probability can be expressed
as:

Pwilwi-1), if C(wj—1,w;) # 0,

Prackoft (Wi [wi—1) = .
aP(w;), otherwise.
So far, this model does not tell us how to estimate the n-gram probabilities to the
right of the formula. A first idea would be to use the maximum likelihood estimate
for bigrams and unigrams. With o = 1, this corresponds to:

Cwi_1,w; .
Pyvie(wilwi—y) = %, it C(wj—1,w;) #0,
PBackoff(Wi |Wi—l) = C(W Wi—1
Pvie(wi) = — otherwise.
#words

and Table 5.12 shows the probability estimates we can derive from our small corpus.
They yield a sentence probability of 2.11 x 10™%° for our example.

5.8 Using N-Grams of Variable Length 151

Table 5.12 Probability estimates using an elementary backoff technique

Wi—1, Wi C(wi—1,wi) C(w;) Packott (Wi [Wi—1)
<s> 7,072 —

<s>a 133 2,482 0.019

a good 14 53 0.006

good deal 0 backoff 5 4.62x 107
deal of 1 3,310 0.2

of the 742 6,248 0.224

the literature 1 7 0.00016
literature of 3 3,310 0.429

of the 742 6,248 0.224

the past 70 99 0.011

past was 4 2,211 0.040

was indeed 0 backoff 17 0.00016
indeed already 0 backoff 64 0.00059
already being 0 backoff 80 0.00074
being transformed 0 backoff 1 9.25x 107
transformed in 0 backoff 1,759 0.016

in this 14 264 0.008

this way 3 122 0.011

way </s> 18 7,072 0.148

This back-off technique is relatively easy to implement and Brants et al. (2007)
applied it to 5-grams on a corpus of three trillion tokens with a back-off factor
o = 0.4. They used the recursive definition:

PackottWi [Wi—ks - ., Wi—1)
. PyveWi Wik, .o, wizt), if C(Wi—g,...,w;) #0,
aPgackott(Wi |Wi—k+1,-..,wi—1), otherwise.

However, the result is not a probability as the sum of all the probabilities,
Zwl_ P(w;|wi—), can be greater than 1. In the next section, we describe Katz’s
(1987) back-off model that provides an efficient and elegant solution to this problem.

5.8.3 Katz’s Back-Off Model

As with linear interpolation in Sect. 5.8.1, back-off combines n-grams of variable
length while keeping a probability sum of 1. This means that for a bigram language
model, we need to discount the bigram estimates to make room for the unigrams
and then weight these unigrams to ensure that the sum of probabilities is equal to 1.

152 5 Counting Words

This is precisely the definition of Katz’s model, where Katz (1987) replaced the
maximum likelihood estimates for bigrams with Good-Turing’s estimates:

N Pwilwin), if Cwimi,wy) #0,
PKatz(Wi|Wi—1) - .
aP(w;), otherwise.

We first use the Good—Turing estimates to discount the observed bigrams,

c*(wii, wi)

P(wilwi—1) = Cony)

for instance, with the values in Tables 5.9 and 5.10 for our sentence. We then assign
the remaining probability mass to the unigrams.

To compute o, we add the two terms of Katz’s back-off model, the discounted
probabilities of the observed bigrams, and, for the unseen bigrams, the weighted
unigram probabilities:

Do Prwvilwim) = > Pwlwio)+e) Pue(w),

wi wi ,C(wi—1,w;)>0 wi,C(wi—1,w;)=0

= 1.
We know that this sum equals 1, and we derive « from it:

1 — Z ﬁ(W,‘|Wl'_1)

wi ,C(wi—1,w;)>0

Z Py (Wi)

wi,C(wi—1,w;)=0

a=awi-) =
For trigrams or n-grams of higher order, we apply Katz’s model recursively:
Pyae (Wi [Wi—2, wi—1)

P (wi|wi —2,wi—1), it C(wi—p, wi—1,w;) #0,

a(wi—2, wi—1) Pka(Wi|wi—1), otherwise.

5.9 Industrial N-Grams

The Internet made it possible to put together collections of n-gram of a size
unimaginable a few years ago. Examples of such collections include the Google
n-grams (Franz and Brants 2006) and Microsoft Web n-gram service (Huang et al.
2010; Wang et al. 2010).

5.10 Quality of a Language Model 153

The Google n-grams were extracted from a corpus of one trillion words and
include unigram, bigram, trigram, 4-gram, and 5-gram counts. The excerpt below
shows an example of trigram counts:

ceramics collectables collectibles 55
ceramics collectables fine 130
ceramics collected by 52

ceramics collectible pottery 50
ceramics collectibles cooking 45
ceramics collection , 144

ceramics collection . 247

ceramics collection </S> 120

ceramics collection and 43

Both companies, Google and Microsoft, use these n-grams in a number of
applications and made them available to the public as well.

5.10 Quality of a Language Model

5.10.1 Intuitive Presentation

We can compute the probability of sequences of any length or of whole texts. As
each word in the sequence corresponds to a conditional probability less than 1, the
product will naturally decrease with the length of the sequence. To make sense, we
normally average it by the number of words in the sequence and extract its nth root.
This measure, which is a sort of a per-word probability of a sequence L, is easier to
compute using a logarithm:

1
H(L) = _; 10g2 P(Wl’ ce 7WI1)'

We have seen that trigrams are better predictors than bigrams, which are better
than unigrams. This means that the probability of a very long sequence computed
with a bigram model will normally be higher than with a unigram one. The log
measure will then be lower.

Intuitively, this means that the H(L) measure will be a quality marker for
a language model where lower numbers will correspond to better models. This
intuition has mathematical foundations, as we will see in the two next sections.

5.10.2 Entropy Rate

We used entropy with characters in Chap. 3. We can use it with any symbols such
as words, bigrams, trigrams, or any n-grams. When we normalize it by the length of
the word sequence, we define the entropy rate:

154 5 Counting Words

1
H(L) = — Z pWwi,...,wy)log, p(wi, ..., wy),

where L is the set of all possible sequences of length n.
It has been proven that when n — oo or n is very large and under certain
conditions, we have

_ 1
H(L) = lim — Z pWi,...,wy)log, p(wi, ..., w,),

n—>00

1
= lim ——1log, p(wi,..., w,),
n—od n
which means that we can compute H (L) from a very long sequence, ideally infinite,
instead of summing of all the sequences of a definite length.

5.10.3 Cross Entropy

We can also use cross entropy, which is measured between a text, called the language
and governed by an unknown probability p, and a language model m. Using the
same definitions as in Chap. 3, the cross entropy of m on p is given by:

1
H(p,m) = - Z pwi,...,wy)log, m(wy, ..., wy).
As for the entropy rate, it has been proven that, under certain conditions

, 1
H(p,m) = lim —— Z pWi,...,wy)logy, m(wi,...,w,),

n—o00 n

= lim —l log, m(wi, ..., wy).
n—»oo n

In applications, we generally compute the cross entropy on the complete word
sequence of a test set, governed by p, using a bigram or trigram model, m, derived
from a training set.

In Chap. 3, we saw the inequality H(p) < H(p,m). This means that the cross
entropy will always be an upper bound of H(p). As the objective of a language
model is to be as close as possible to p, the best model will be the one yielding
the lowest possible value. This forms the mathematical background of the intuitive
presentation in Sect. 5.10.1.

5.11 Collocations 155
5.10.4 Perplexity

The perplexity of a language model is defined as:
PP(p,m) = 2H(m,

Perplexity is interpreted as the average branching factor of a word: the statisti-
cally weighted number of words that follow a given word. Perplexity is equivalent
to entropy. The only advantage of perplexity is that it results in numbers more
comprehensible for human beings. It is therefore more popular to measure the
quality of language models. As is the case for entropy, the objective is to minimize
it: the better the language model, the lower the perplexity.

5.11 Collocations

Collocations are recurrent combinations of words. Palmer (1933), one of the first to
study them comprehensively, defined them as:

succession[s] of two or more words that must be learnt as an integral whole and not pieced
together from its component parts

or as comings-together-of-words. Collocations are ubiquitous and arbitrary in
English, French, German, and other languages. Simplest collocations are fixed
n-grams such as The White House and Le Président de la République. Other
collocations involve some morphological or syntactic variation such as the one
linking make and decision in American English: to make a decision, decisions to
be made, make an important decision.

Collocations underlie word preferences that most of the time cannot easily be
explained by a syntactic or semantic reasoning: they are merely resorting to usage.
As a teacher of English in Japan, Palmer (1933) noted their importance for language
learners. Collocations are in the mind of a native speaker. S/he can recognize them
as valid. On the contrary, nonnative speakers may make mistakes when they are
not aware of them or try to produce word-for-word translations. For this reason,
many second language learners’ dictionaries describe most frequent associations.
In English, the Oxford Advanced Learner’s Dictionary, The Longman Dictionary
of Contemporary English, and The Collins COBUILD carefully list verbs and
prepositions or particles commonly associated such as phrasal verbs set up, set off,
and set out.

Lexicographers used to identify collocations by introspection and by observing
corpora, at the risk of forgetting some of them. Statistical tests can automatically
extract associated words or “sticky” pairs from raw corpora. We introduce three of
these tests in this section together with programs in Perl to compute them.

156 5 Counting Words

Table 5.13 Collocates of surgery extracted from the Bank of English using the mutual informa-
tion test. Note the misspelled word pioneeing

Word Frequency Bigram word + surgery Mutual information
arthroscopic 3 3 11.822
pioneeing 3 3 11.822
reconstructive 14 11 11.474
refractive 6 4 11.237
rhinoplasty 5 3 11.085

5.11.1 Word Preference Measurements

Mutual Information

Mutual information (Church and Hanks 1990; Fano 1961) is a statistical measure
that is widely used to quantify the strength of word associations.! Mutual informa-
tion for the bigram w;, w; is defined as:

P(w;i,w;
I(Wiij) = logzP("f}‘tl‘})—P‘/z‘:})j)

Using the maximum likelihood estimate, this corresponds to:

N - C(Wi , W j)
o) =08 e)

where C(w;) and C(w;) are, respectively, the frequencies of word w; and word
w; in the corpus, C(w;,w;) is the frequency of bigram w;,w;, and N is the total
number of words in the corpus.

Instead of just bigrams, where j = i + 1, we can count the number of times
the two words w; and w; occur together sufficiently close, but not necessarily
adjacently. C(w;,w;) is then the number of times the word w; is followed of
preceded by w; in a window of k words, where k typically ranges from 1 to 10,
or within a sentence.

Table 5.13 shows collocates of the word surgery. High mutual information tends
to show pairs of words occurring together but generally with a lower frequency, such
as technical terms.

'Some authors now use the term pointwise mutual information to mean mutual information.
Neither Fano (1961) nor Church and Hanks (1990) used this term and we kept the original one.

5.11 Collocations 157

Table 5.14 Collocates of set

extracted from Bank of Word Frequency Bigram set + word t-score
English using the ¢-score up 134,382 5,512 67.980
a 1,228,514 7,296 35.839
to 1,375,856 7,688 33.592
off 52,036 888 23.780
out 12,3831 1,252 23.320

t-Scores

Given two words, the 7-score (Church and Mercer 1993) compares the hypothesis
that the words form a collocation with the null hypothesis that posits that the
cooccurrence is only governed by chance, thatis P(w;, w;) = P(w;) x P(w;).

The t-score computes the difference between the two hypotheses, respectively,
mean(P(w;,w;)) and mean(P (w;))mean(P(w;)), and divides it by the variances.
It is defined by the formula:

mean(P (w;,w;)) —mean(P (w;))mean(P(w;))
VAP w)) + o2 (Pw)P(w;)

twi,wj) =

C(wi,w;

The hypothesis that w; and w; are a collocation gives us a mean of %;
C(w; C(w;

with the null hypothesis, the mean product is 5:;1) X (]:]V]) ; and using a binomial

. : . . C(wi,w))
assumption, the denominator is approximated to Nz We have then:

1
C(wi,wj) — NC(Wi)C(Wj)
,/C(W,‘,Wj) .

Table 5.14 shows collocates of ser extracted from the Bank of English using the
t-score. High f-scores show recurrent combinations of grammatical or very frequent
words such as of the, and the, etc. Church and Mercer (1993) hint at the threshold
value of 2 or more.

twi,wj) =

Likelihood Ratio

Dunning (1993) criticized the ¢-score test and proposed an alternative measure based
on binomial distributions and likelihood ratios. Assuming that the words have a
binomial distribution, we can express the probability of having k counts of a word
w in a sequence of N words knowing that w’s probability is p as:

fk;N, p) = (IZ) pra-p"N

158 5 Counting Words

where

Ny _ N!
(k) kNN = k)

The formula reflects the probability of having k counts of a word w, pX, and N — k
counts of not having w, (1 — p)¥ . The binomial coefficient (IZ) corresponds

to the number of different ways of distributing k occurrences of the word w in a
sequence of N words.

In the case of collocations, rather than measuring the distribution of single words,
we want to evaluate the likelihood of the w;w; bigram distribution. To do this, we
can reformulate the binomial formula considering the word preceding w;, which
can either be w; or a different word that we denote —w;.

Let n; be the count of w; and ki, the count of the bigram w;w; in the word
sequence (the corpus). Let n, be the count of —w;, and k;, the count of the bigram
—w;w;, where —w;w; denotes a bigram in which the first word is not w; and
the second word is w;. Let p; be the probability of w; knowing that we have w;
preceding it, and p, be the probability of w; knowing that we have —w; before it.
The binomial distribution of observing the pairs w;w; and —w;w; in our sequence
is:

n

fkisny, pr) flkaina, po) = (’;j) Py —pynTh (kj) PR = pyrhe,

The basic idea to evaluate the collocation strength of a bigram w;w; is to test two
hypotheses:

* The two words w; and w; are part of a collocation. In this case, we will have
p1 = P(wj|w;) # p» = P(w;|—w;) (Dependence hypothesis, Hy.p).

* The two words w; and w; occur independently. In this case, we will have
p1 = P(wjlw;) = po = P(w;|-w;) = P(w;) = p (Independence hypothesis,
Hina).

The logarithm of the hypothesis ratio corresponds to:

H
—2logA = 2log Hdep,

S n1. p) fesi na, p2)

flky:ny, p) f(kaing, p)

= 2(log f(ki;n1, p1) + log f(ka;na, pa) —log f(ki;ny, p)
—log f(ka;ns, p)).

= 2log

where ki = C(w;,wj), n1 = C(w;), ko = C(w;) — C(wi,wj), ny = N — C(w;),
and log f(k; N, p) =klogp + (N —k)log(l — p).

5.11 Collocations 159

Table 5.15 A contingency table containing bigram counts, where —w;w; represents bigrams in
which the first word is not w; and the second word is w;. N is the number of words in the corpus

Wi =W;
W C(wi,wj) C(—w;,w;) = C(w;) — C(wi,w;)
—W;j C(W;,_'W/')=C(W,')—C(Wi,wj') C(_'W,',_'W/')=N—C(W,',Wj)

Using the counts in Table 5.15 and the maximum likelihood estimate, we have

p = P(wj) = m
Clw, w;
pr = POw;wi) ZC(CW(—V?:;])c’?nd |
wi)—C(wi,wi
p2 = P(w;j|=w;) =]jv —Com) L,

where N is the number of words in the corpus.

5.11.2 Extracting Collocations with Perl

Both programs use unigram and bigram statistics. To compute them, we must first
tokenize the text, and count words and bigrams using the tools we have described
before:

Stext = <>;
while ($line = <>) {
Stext .= $line;

}
S$text =~ s/\n+/\n/g;
@words = split(/\n/, Stext);
for ($i = 0; $i < S#Hwords; S$i++) {
Sbigrams [$i] = $Swords[$i] . "™ " . sSwords[$i + 1];
}

for ($i = 0; $i <= SHwords; S$i++) {
$frequency{Swords [$1] }++;
}

for ($i = 0; $i < S#Hwords; S$i++) {
$frequency bigrams{$bigrams[$i] }++;
}

Finally, we must know the number of words in the corpus. This corresponds to
the size of the word array: S#word.

160 5 Counting Words

Mutual Information

The Perl program iterates over the word array and applies the mutual information
formula. The program is not optimal and computes the same value several times:

for (31 = 0; %1 < $#words; $i++) |
$mutual info{sSbigrams[$il} = log(($#words + 1) =
$frequency bigrams{$bigrams[$i]}/
($frequency{$words [$i]} =
$frequency{$words[$i + 11}))/log(2) ;

}

foreach $bigram (keys %$mutual info) {
@bigram array = split(/ /, Sbigram);

print $mutual info{$bigram}, " ", $bigram, "\t",
$frequency bigrams{sbigram}, "\t",
$frequency{$bigram array[0]}, "\t",
$frequency{$bigram array[1]}, "\n";

t-Scores

The program is similar to the previous one except the formula:

for ($i = 0; $i < SHwords; S$i++) {
$t_scores{$bigrams[$i]} =
($frequency bigrams{$bigrams([$i]} -
$frequency{Swords [$i]} =
$frequency{sSwords[$i + 1]}/ ($#words + 1))
/sqrt($frequency_bigrams{$bigrams[$i]});

}

foreach $bigram (keys %t scores) {
@bigram array = split(/ /, $bigram);
print $t_scores{$bigram}, "o, Sbigram, "\t",
$frequency_bigrams{$bigram}, "\t",
$frequency{$bigram array[0]}, "\t",
$frequency{$bigram array[1]}, "\n";

Log Likelihood Ratio

The program is similar to the previous one except the formula:

5.12 Application: Retrieval and Ranking of Documents on the Web 161

for ($i = 0; %1 < $#words; $i++) |
$p = $frequency{sSwords[$i + 1]}/S$#words;
$pl = $frequency bigrams{$bigrams[$i]}/
$frequency{$words[$i] };
$p2 = ($frequency{$words[si + 1]} -
$frequency bigrams{$bigrams[$il})/
($#words - $frequency{S$words([$i]});
if (($pl !'= 1) && ($p2 != 0)) {
$likelihood ratio{sbigrams[$i]} = 2= (
$frequency bigrams{$bigrams[$i]l} x log($pl) +
($frequency{S$words [$i]} -
$frequency bigrams{sbigrams[$i]l}) % log(l - $pl)
+ (Sfrequency{$words[$i + 1]} -
$frequency bigrams{$bigrams[$il}) x log($p2) +
($#words - $frequency{$words([$i]l} -
$frequency{$words [$i + 11} +
$frequency bigrams{sbigrams[$il}) % log(l - $p2)
- S$frequency bigrams{$bigrams([$i]} = log(Sp) +
($frequency{$words [$i]} -
$frequency bigrams{$bigrams[$i]l}) x log(l - $p)
- ($frequency{$words[s$i + 1]} -
$frequency bigrams{$bigrams[$il}) x log($p) +
($#words - $frequency{$words([$i]l} -
$frequency{$words [$i + 11} +
$frequency bigrams{$bigrams[$il}) =
log(1l - s$p));
}
}

foreach $bigram (keys %likelihood ratio) {
@bigram array = split(/ /, Sbigram);
print $likelihood ratio{$bigram}, " ", Sbigram,
"\t", $frequency bigrams{s$bigram}, "\t",
$frequency{$bigram array[0]}, "\t",
$frequency{$bigram array[1]}, "\n";

5.12 Application: Retrieval and Ranking of Documents
on the Web

The advent of the Web in the mid-1990s made it possible to retrieve automatically
billions of documents at a very modest cost. Companies providing such a service
are among the most popular sites of the Internet. Google and Bing are among the
most notable ones.

162 5 Counting Words

Table 5.16 An inverted index. Each word in the dictionary is linked to a posting list that gives
all the documents in the collection where this word occurs and its positions in a document. Here,
the position is the word index in the document. In the examples, a word occurs at most once in a
document. This can be easily generalized to multiple occurrences

Words Posting lists
America (D1, 7)

Chrysler (D1, 1) > (D2, 1)
in (D1, 5) — (D2,5)
investments (D1,4) — (D2, 4)
Latin (D1, 6)

major (D2, 3)

Mexico (D2, 6)

new (D1, 3)

plans (D1,2) = (D2,2)

Web search systems or engines are based on “spiders” or “crawlers” that visit
internet addresses, follow links they encounter, and collect all the pages they
traverse. Crawlers can amass billions of pages every month.

5.12.1 Document Indexing

All the pages the crawlers download are tokenized and undergo a full text indexing.
To carry out this first step, an indexer extracts all the words of the documents in the
collection and builds a dictionary. It then links each word in the dictionary to the list
of documents where this word occurs in. Such a list is called a posting list, where
each posting in the list contains a document identifier and the word’s positions in
the corresponding document. The resulting data structure is called an inverted index
and Table 5.16 shows an example of it with the two documents:

DI1: Chrysler plans new investments in Latin America.
D2: Chrysler plans major investments in Mexico.

An inverted index is pretty much like a book index except that it considers all
the words. When a user asks for a specific word, the search system answers with the
pages that contain it. See Baeza-Yates and Ribeiro-Neto (2011) and Manning et al.
(2008) for more complete descriptions.

5.12.2 Representing Documents as Vectors

Once indexed, search engines compare, categorize, and rank documents using
statistical or popularity models. The vector space model (Salton 1988) is a widely
used representation to carry this out. The idea is to represent the documents in a

5.12 Application: Retrieval and Ranking of Documents on the Web 163

Table 5.17 The vectors representing the two documents in Sect.5.12.1. The words have been
normalized in lowercase letters

D#\ Words america chrysler in investments latin major mexico new plans

1 1 1 11 1 0 0 1 1
2 0 1 1 1 0 1 1 0 1

Table 5.18 The word by document matrix. Each cell (w;, D;) contains the frequency of w; in
document D

D#\ Words wy Wo w3 Win

D, C(w1, Dy) C(wa, Dy) C(ws, Dy) C(wWm, D1)
Dz C(Wl, Dz) C(Wz, Dz) C(W3, Dz) . C(Wm, Dz)
Dn C(Wls Dln) C(W2’ Dn) C(W3, Dn) C(me Dn)

vector space whose axes are the words. Documents are then vectors in a space of
words. As the word order plays no role in the representation, it is often called a
bag-of-word model.

Let us first suppose that the document coordinates are the occurrence counts of
each word. A document would be represented as: d = (C(wy), C(w), C(w3),...,
C(wy)). Table 5.17 shows the document vectors representing the examples in
Sect.5.12.1, and Table 5.18 shows a general matrix representing a collection of
documents, where each cell (w;, D j) contains the frequency of w; in document D ;.

Using the vector space model, we can measure the similarity between two
documents by the angle they form in the vector space. It is easier to compute the
cosine of the angle, which is formulated as:

cos(q,d) =

5.12.3 Vector Coordinates

In fact, most of the time, the rough word counts that are used as coordinates in the
vectors are replaced by a more elaborate term: the term frequency times the inverted
document frequency, better known as #f x idf (Salton 1988). To examine how it
works, let us take the phrase internet in Somalia as an example.

A document that contains many internet words is probably more relevant than
a document that has only one. The frequency of a term i in a document j reflects
this. It is a kind of a “mass” relevance. For each vector, the term frequencies if; j
are often normalized by the sum of the frequencies of all the terms in the document
and defined as:

164 5 Counting Words

t; j
l:f" .= i R
DY
i
or as the Euclidean norm:
ll,]
ifi; = —F—.

1/21;1‘1%/'

where 1; ; is the frequency of term i in document j — the number of occurrences of
term 7 in document ;.

Instead of a sum, we can also use the maximum count over all the terms as
normalization factor. The term frequency of the term i in document j is then
defined as:
lij

tfi.j =

max/; j ’
i

However, since infernet is a very common word, it is not specific. The number of
documents that contain it must downplay its importance. This is the role of

N
idf; =log(—),
n;

where N is the total number of documents in the collection — the total number of
pages the crawler has collected — divided by the number of pages n;, where a term
i occurs at least once. Somalia probably appears in fewer documents than internet
and idf; will give it a chance. The weight of a term i in document j is finally defined
as

N
i % 10g(;).

In this section, we gave one definition of #f x idf. In fact, this formula can vary
depending on the application. Salton and Buckley (1987) reported 287 variants of it
and compared their respective merits. BM25 and BM25F (Zaragoza et al. 2004) are
extensions of #f x idf that take into account the document length.

5.12.4 Ranking Documents

The user may query a search engine with a couple of words or a phrase. Most
systems will then answer with the pages that contain all the words and any of
the words of the question. Some questions return hundreds or even thousands of

5.12 Application: Retrieval and Ranking of Documents on the Web 165

valid documents. Ranking a document consists in projecting the space to that of
the question words using the cosine. With this model, higher cosines will indicate
better relevance. In addition to #f X idf, search systems may employ heuristics such
as giving more weight to the words in the title of a page (Mauldin and Leavitt 1994).

Google’s PageRank algorithm (Brin and Page 1998) uses a different technique
that takes into account the page popularity. PageRank considers the “backlinks”, the
links pointing to a page. The idea is that a page with many backlinks is likely to be a
page of interest. Each backlink has a specific weight, which corresponds to the rank
of the page it comes from. The page rank is simply defined as the sum of the ranks
of all its backlinks. The importance of a page is spread through its forward links and
contributes to the popularity of the pages it points to. The weight of each of these
forward links is the page rank divided by the count of the outgoing links. The ranks
are propagated in a document collection until they converge.

5.12.5 Categorizing Text

Text categorization (or classification) is a task related to ranking, but instead of
associating documents to queries, we assign one or more classes to a text. The text
size can range from a few words to entire books. In sentiment analysis (or opinion
mining), the goal is to classify judgments or emotions expressed, for instance,
in product reviews collected from consumer forums, into three base categories:
positive, negative, or neutral; in spam detection, the categorizer classifies electronic
messages into two classes: spam or no spam.

The Reuters corpus of newswire articles provides another example of a text
collection that also serves as a standardized benchmark for categorization algo-
rithms (Lewis et al. 2004). This corpus consists of 800,000 economic newswires in
English and about 500,000 in 13 other languages, where each newswire is manually
annotated with one or more topics selected from a set of 103 predefined categories,
such as:

Cl11: STRATEGY/PLANS,
C12: LEGAL/JUDICIAL,

C13: REGULATION/POLICY,
Cl14: SHARE LISTINGS

etc.

Using manually-categorized corpora, like the Reuters corpus, and the vector
space model, we can apply supervised machine-learning techniques to train clas-
sifiers (see Sect.4.4). The training procedure uses a bag-of-word representation of
the documents, either with Boolean features, term frequencies, or #f x idf, and
their classes as input. Support vector machines and logistic regression are two
efficient techniques to carry out text classification. Joachims (2002) describes a
state-of-the-art classifier based on support vector machines, while LibShortText

166 5 Counting Words

(Yu et al. 2013) is an open source library consisting of support vector machine
and logistic regression algorithms, and different types of preprocessing and feature
representations.

5.13 Further Reading

Language models and statistical techniques were applied first to speech recognition,
lexicography, and later to other domains of linguistics. Their use had been a matter
of debate because they opposed Chomsky’s competence model. For a supporting
review and a historical turning point, see the special issues of Computational
Linguistics (1993, 1 and 2).

Interested readers will find additional details on language modeling techniques
in Chen and Goodman (1998), and on x> tests and likelihood ratios to improve
collocation detection in Dunning (1993). Manning and Schiitze (1999, Chapter 5) is
a good reference on collocations, while Brown et al. (1992) describe other methods
to create semantic clusters.

There are several toolkits available from the Internet to carry out tokenization,
sentence detection, and language modeling:

1. Apache OpenNLP is a complete suite of logistic regression-based modules that
includes, inter alia, a sentence detector, a tokenizer, and a document categorizer
(http://opennlp.apache.org/).

2. The SRI Language Modeling collection (Stolcke 2002) is a C++ package to
create and experiment with language models (http://www.speech.sri.com/).

3. The CMU-Cambridge Statistical Language Modeling Toolkit (Clarkson and
Rosenfeld 1997) is another set of tools (http://svr-www.eng.cam.ac.uk/~prc14/
toolkit.html).

Retrieval and ranking of documents have experienced a phenomenal growth since
the beginning of the Web, making search sites the most popular services of the
Internet. For complete reviews of techniques on information retrieval, see Manning
et al. (2008) or Baeza-Yates and Ribeiro-Neto (2011).

Lucene is a popular open-source library for information retrieval. It is used in
scores of web sites such as Twitter and Wikipedia to carry out document indexing
and search (http://lucene.apache.org/).

Exercises

5.1. Write a sentence detector and a tokenizer using logistic regression.

5.2. Retrieve a text you like on the Internet. Give the five most frequent words.

http://opennlp.apache.org/
http://www.speech.sri.com/
http://svr-www.eng.cam.ac.uk/~prc14/toolkit.html
http://svr-www.eng.cam.ac.uk/~prc14/toolkit.html
http://lucene.apache.org/

Exercises 167

5.3. Write a Prolog program that connects to a web site, and explore hypertext web
links using a breadth-first strategy.

5.4. Implement a Prolog program to obtain bigrams and their statistics.
5.5. Implement a Prolog program to obtain trigrams and their statistics.

5.6. Retrieve a text you like on the Internet. Give the five most frequent bigrams
and trigrams.

5.7. Retrieve a text you like on the Internet. Divide it into a training set and a test
set. Implement the Laplace rule either in Perl or in Prolog. Learn the probabilities
on the training set and compute the perplexity of the test set.

5.8. Retrieve a text you like on the Internet. Divide it into a training set and a test
set. Implement the Good-Turing estimation either in Perl or in Prolog. Learn the
probabilities on the training set and compute the perplexity of the test set.

5.9. Implement the mutual information test in Prolog.
5.10. Implement the ¢-score in Prolog.
5.11. Implement the likelihood ratio in Prolog.

5.12. Implement the mutual information test with a window of five words to the
left and to the right of the word.

Chapter 6
Words, Parts of Speech, and Morphology

Partes orationis quot sunt? Octo. Quae? Nomen, pronomen, verbum,
adverbium, participium, coniunctio, praepositio, interiectio.

Aelius Donatus, Ars grammatica. Ars minor, Fourth century.

6.1 Words

6.1.1 Parts of Speech

We can divide the lexicon into parts of speech (POS), that is, classes whose words
share common grammatical properties. The concept of part of speech dates back to
the classical antiquity philosophy and teaching. Plato made a distinction between
the verb and the noun. After him, the word classification further evolved, and parts
of speech grew in number until Dionysius Thrax fixed and formulated them in a
form that we still use today. Aelius Donatus popularized the list of the eight parts
of speech: noun, pronoun, verb, adverb, participle, conjunction, preposition, and
interjection, in his work Ars grammatica, a reference reading in the Middle Ages.

The word parsing comes from the Latin phrase partes orationis ‘parts of speech’.
It corresponds to the identification of the words’ parts of speech in a sentence. In
natural language processing, POS tagging is the automatic annotation of words with
grammatical categories, also called POS tags. Parts of speech are also sometimes
called lexical categories.

Most European languages have inherited the Greek and Latin part-of-speech
classification with a few adaptations. The word categories as they are taught today
roughly coincide in English, French, and German in spite of some inconsistencies.
This is not new. To manage the nonexistence of articles in Latin, Latin grammarians
tried to get the Greek article into the Latin pronoun category.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 169
DOI 10.1007/978-3-642-41464-0__6, © Springer-Verlag Berlin Heidelberg 2014

170 6 Words, Parts of Speech, and Morphology

Table 6.1 Closed class categories

Part of speech English French German
Determiners the, several, my le, plusieurs, mon der, mehrere, mein
Pronouns he, she, it il, elle, lui er, sie, ihm
Prepositions to, of vers, de nach, von
Conjunctions and, or et, ou und, oder
Auxiliaries and modals be, have, will, would étre, avoir, pouvoir sein, haben, konnen

Table 6.2 Open class categories

Part of speech English French German

Nouns name, Frank nom, Frangois Name, Franz
Adjectives big, good grand, bon grof3, gut

Verbs to swim nager schwimmen

Adverbs rather, very, only plutot, tres, uniquement fast, nur, sehr, endlich

The definition of the parts of speech is sometimes arbitrary and has been
a matter of debate. From Dionysius Thrax, tradition has defined the parts of
speech using morphological and grammatical properties. We shall adopt essentially
this viewpoint here. However, words of a certain part of speech share semantic
properties, and some grammars contain statements like a noun denotes a thing and
a verb an action.

Parts of speech can be clustered into two main classes: the closed class and the
open class. Closed class words are relatively stable over time and have a functional
role. They include words such as articles, like English the, French /e, or German
der, which change very slowly. Among the closed class, there are the determiners,
the pronouns, the prepositions, the conjunctions, and the auxiliary and modal verbs
(Table 6.1).

Open class words form the bulk of a vocabulary. They appear or disappear with
the evolution of the language. If a new word is created, say a hedgedog, a cross
between a hedgehog and a Yorkshire terrier, it will belong to an open class category:
here a noun. The main categories of the open class are the nouns, the adjectives, the
verbs, and the adverbs (Table 6.2). We can add interjection to this list. Interjections
are words such as ouch, ha, oh, and so on, that express sudden surprise, pain, or
pleasure.

6.1.2 Grammatical Features

Basic categories can be further refined, that is subcategorized. Nouns, for instance,
can be split into singular nouns and plural nouns. In French and German, nouns
can also be split according to their gender: masculine and feminine for French, and
masculine, feminine, and neuter for German.

6.1 Words 171

Table 6.3 Features of common nouns

Features\Values English French German
Number singular, plural singular, plural singular, plural
waiter/waiters, serveur/serveurs, Buch/Biicher
book/books livre/livres
Gender masculine, feminine masculine, feminine, neuter
serveur/table Ober/Gabel/Tuch
Case nominative, accusative,

genitive, dative
Junge/Jungen/Jungen/Jungen

Genders do not correspond in these languages and can shape different visions of
the world. Sun is a masculine entity in French — /e soleil — and a feminine one in
German — die Sonne. In contrast, moon is a feminine entity in French — la lune —
and a masculine one in German — der Mond.

Additional properties that can further specify main categories are often called the
grammatical features. Grammatical features vary among European languages and
include notably the number, gender, person, case, and tense. Each feature has a set
of possible values; for instance, the number can be singular or plural.

Grammatical features are different according to their parts of speech. In English,
a verb has a tense, a noun has a number, and an adjective has neither tense nor
number. In French and German, adjectives have a number but no tense. The feature
list of a word defines its part of speech together with its role in the sentence.

6.1.3 Two Significant Parts of Speech: The Noun and the Verb

The Noun

Nouns are divided into proper and common nouns. Proper nouns are names of
persons, people, countries, companies, and trademarks, such as England, Robert,
Citroén. Common nouns are the rest of the nouns. Common nouns are often used to
qualify persons, things, and ideas.

A noun definition referring to semantics is a disputable approximation, however.
More surely, nouns have certain syntactic features, namely the number, gender, and
case (Table 6.3). A noun group is marked with these features, and other words of
the group, that is, determiners, adjectives, must agree with the features they share.

While number and gender are probably obvious, case might be a bit obscure for
non-German speakers. Case is a function marker that inflects words such as nouns
or adjectives. In German, there are four cases: nominative, accusative, genitive, and
dative. The nominative case corresponds to the subject function, the accusative case
to the direct object function, and the dative case to the indirect object function.

172

Table 6.4 Auxiliary verbs

6 Words, Parts of Speech, and Morphology

English

French

German

to be: am, are, is, was, were
to have: has, have, had
to do: does, did, done

étre: suis, es, est, sommes,
sont, étais, était

avoir: ai, as, a, avons, ont,

avais, avait, avions

sein: bin, bist, ist, war, waren
haben: habe, hast, hat, haben,
habt

werden: werde, wirst, wird,

wurde
Table 6.5 Modal verbs
English French (semiauxiliaries) German
can, could, pouvoir: peux, peut, pOUVons, pourrai, konnen: kann, konnen, konnte
must, may, might, pourrais diirfen: darf, diirfen, diirfte
shall, should devoir: dois, doit, devons, devrai, mogen: mag, mogen, mochte
devrais miissen: muf3, miissen, mufite
vouloir: veux, veut, voulons, voudrai, sollen: soll, sollen, sollte
voudrais

Genitive denotes a possession relation. These cases are still marked in English and
French for pronouns.

In addition to these features, the English language makes a distinction between
nouns that can have a plural: count nouns, and nouns that cannot: mass nouns. Milk,
water, air are examples of mass nouns.

Verbs

Semantically, verbs often describe an action, an event, a state, etc. More positively,
and as for the nouns, verbs in European languages are marked by their morphology.
This morphology is quite elaborate in a language like French, notably due to the
tense system. Verbs can be basically classified into three main types: auxiliaries,
modals, and main verbs.

Aucxiliaries are helper verbs such as be and have that enable us to build some
of the main verb tenses (Table 6.4). Modal verbs are verbs immediately followed
by another verb in the infinitive. They usually indicate a modality, a possibility
(Table 6.5). Modal verbs are more specific to English and German. In French,
semiauxiliaries correspond to a similar category.

Main verbs are all the other verbs. Traditionally, main verbs are categorized
according to their complement’s function (Table 6.6):

e Copula or link verb — verbs linking a subject to an (adjective) complement.
Copulas include verbs of being such as be, étre, sein when not used as
auxiliaries, and other verbs such as seem, sembler, scheinen.

 Intransitive — verbs taking no object.

6.1 Words

Table 6.6 Verb types

173

English French German
Copulas Man is mortal L’homme est mortel Der Mensch ist
She seems intelligent Elle parait intelligente sterblich
Sie scheint intelligent
Intransitive verbs Frank sleeps Francois dort Franz schlift

Transitive verbs

Charlotte rennt
Du nimmst das Buch
Susan liest den Artikel

Charlotte court
Tu prends le livre
Suzanne lit I’article

Charlotte runs
You take the book
Susan reads the paper

Ditransitive verbs I give my neighbors Je donne les notes a Ich gebe die Notizen
the notes mon voisin meinem Nachbarn
Table 6.7 Features common to verbs and nouns
Features\ Values English French German
Person 1,2,and 3 1,2,and 3 1,2,and 3
Iam Jje suis ich bin
you are tu es du bist
she is elle est sie ist
Number singular, plural singular, plural singular, plural
I am/we are Jje suis/nous sommes ich bin/wir sind
She eats/they eat elle mange/elles mangent sie if3t/sie essen
Gender masculine, feminine

- il est mangé/elle est mangée -

Transitive — verbs taking an object.
Ditransitive — verbs taking two objects.

Verbs have more features than other parts of speech. First, the verb group

shares certain features of the noun (Table 6.7). These features must agree with
corresponding ones of the verb’s subject.

Verbs have also specific features, namely the tense, the mode, and the voice:

Tense locates the verb, and the sentence, in time. Tense systems are elaborate
in English, French, and German, and do not correspond. Tenses are constructed
using form variations (Table 6.8) or auxiliaries (Table 6.9). Tenses are a source
of significant form variation in French.

Mood enables the speaker to present or to conceive of the action in various ways
(Table 6.10).

Voice characterizes the sequence of syntactic groups. Active voice corresponds
to the “subject, verb, object” sequence. The reverse sequence corresponds
to the passive voice. This voice is possible only for transitive verbs. Some
constructions in French and German use a reflexive pronoun. They correspond
to the pronominal voice.

174

Table 6.8 Tenses constructed using inflection

6 Words, Parts of Speech, and Morphology

English French German
Base 1 like to sing J’aime chanter Ich singe gern
Present I sing every day Je chante tous les jours Ich singe alltags
Preterit (Simple past) [sang in my youth Je chantai dans ma Ich sang in meiner
Jjeunesse Jugend
Imperfect - Je chantais dans ma -
Jeunesse
Future - Je chanterai plus tard -
Present participle I am singing En chantant tous les jours Singend
Past participle I have sung before J’ai chanté Ich habe gesungen

Table 6.9 Some tenses constructed using auxiliaries. Values do not correspond across languages

English French German
Present progressive I am singing - -
Future 1 shall (will) sing - Ich werde singen
Present perfect I have sung J’ai chanté Ich habe gesungen
Pluperfect I had sung J’avais chanté Ich hatte gesungen
Passé antérieur - J’eus chanté -
Future perfect I will have sung J’aurai chanté Ich werde gesungen

Futur antérieur

Past progressive

Future progressive
Present perfect progres-
sive

Future perfect progres-
sive

Past perfect progressive

I would have sung
I was singing

I will be singing

I have been singing

I will have been singing

I had been singing

J’aurais chanté

haben

Ich wiirde gesungen
haben

Table 6.10 Moods (Present only)

English French German
Indicative I am singing Je chante Ich singe
Imperative sing chante singe
Conditional 1 should (would) sing Je chanterais Ich wiirde singen
Subjunctive Rare, it appears in expressions such 1l faut que je chante Ich singe

as: God save the Queen

6.2 Lexicons

A lexicon is a list of words, and in this context, lexical entries are also called
the lexemes. Lexicons often cover a particular domain. Some focus on a whole
language, like English, French, or German, while some specialize in specific areas
such as proper names, technology, science, and finance. In some applications,

6.2 Lexicons 175

Table 6.11 Word ambiguity

English French German
Part of speech can modal le article der article

can noun le pronoun der pronoun
Semantic great big grand big grof3 big

great notable grand notable grof; notable

lexicons try to be as exhaustive as is humanly possible. This is the case of internet
crawlers, which index all the words of all the web pages they can find. Computerized
lexicons are now embedded in many popular applications such as in spelling
checkers, thesauruses, or definition dictionaries of word processors. They are also
the first building block of most language processing programs.

Several options can be taken when building a computerized lexicon. They range
from a collection of words — a word list — to words carefully annotated with their
pronunciation, morphology, and syntactic and semantic labels. Words can also be
related together using semantic relationships and definitions.

A key point in lexicon building is that many words are ambiguous both
syntactically and semantically. Therefore, each word may have as many entries
as it has syntactic or semantic readings. Table 6.11 shows words that have two or
more parts of speech and senses. In this chapter, we only examine the syntactic part.
Chapter 15 will cover semantic issues.

Many computerized lexicons are now available from industry and from sources
on the Internet. English sources are the most numerous at present, but the situation
is rapidly changing for other languages. Most notable ones in English include word
lists derived from the Longman Dictionary of Contemporary English (Procter 1978)
and the Oxford Advanced Learner’s Dictionary (Hornby 1974). Table 6.12 shows
the first lines of letter A of an electronic version of the OALD.

BDLex — standing for Base de Données Lexicale — is an example of a simple
French lexicon (Pérennou and de Calmes 1987). BDLex features a list of words in a
lemmatized form together with their part of speech and a syntactic type (Table 6.13).

6.2.1 Encoding a Dictionary

Letter trees (de la Briandais 1959) or tries (pronounce try ees) are a useful data
structures to store large lexicons and to search words quickly. The idea behind a trie
is to store the words as trees of characters and to share branches as far as the letters
of two words are identical. Tries can be seen as finite-state automata, and Fig. 6.1
shows a graphical representation of a trie encoding the words bin, dark, dawn, tab,
table, tables, and tablet.

In Prolog, we can represent this trie as embedded lists, where each branch is a
list. The first element of a branch is the root letter: the first letter of all the subwords
that correspond to the branch. The leaves of the trie are the lexical entries, here the

176

Table 6.12 The first lines of the Oxford Advanced Learner’s Dictionary

6 Words, Parts of Speech, and Morphology

Syllable count or verb

Word Pronunciation Syntactic tag pattern (for verbs)
a @ S-* 1

a EI Ki$ 1

a fortiori el ,fOtI’Oral Pu$ 5

a posteriori el ,pOsterl’Oral OAS$,Pu$ 6

a priori el ,pral’Oral OAS, Pu$ 4

a’s Eiz Kj$ 1

ab initio &b I'nISI@U Pu$ 5
abaci ’&b@sal Kj$ 3
aback @’b&k Pu% 2
abacus '&b@k@s K7% 3
abacuses '&b@k@slz Kj% 4

abaft @’bAft Pu$,T-$ 2
abandon @’b&nd@n HO0%,L@ % 36A,14
abandoned @’b&nd@nd Hc%,Hd%,0A % 36A,14
abandoning @’b&nd@nIN Hb% 46A,14
abandonment @’b&nd@nm@nt L@% 4
abandons @’b&nd@nz Ha% 36A,14
abase @’bels H2% 26B
abased @’belst Hc% ,Hd% 26B
abasement @’belsm@nt L@% 3

words themselves that we represent as atoms. Of course, these entries could contain
more information, such as the part of speech, the pronunciation, etc.

[

(b, [i,
[(a, I[a,
[(t, I[a,

6.2.2 Building a Trie in Prolog

[n, binl]]
[r, [k, darkll,
[w, [n, dawnl]l]l
[b, tab,
[1, [e, table,
[s, tables],
[t, tablet]111111]

The make trie/2 predicate builds a trie from a lexicon represented as an ordered

list of atoms.

[)

% make trie(+WordList,

-Trie)
make trie([Word | WordList], Trie)

6.2 Lexicons 177

Table 6.13 An excerpt from BDLex. Digits encode accents on letters. The syntactical tags of the
verbs correspond to their conjugation type taken from the Bescherelle reference

Entry Part of speech Lemma Syntactic tag

a2 Prep a2 Prep_00_00;
abaisser Verbe abaisser Verbe_01_060_**;
abandon Nom abandon Nom_Mn_01;
abandonner Verbe abandonner Verbe_01_060_%**;
abattre Verbe abattre Verbe_01_550_%*%*;
abbel Nom abbel Nom_gn_90;
abdiquer Verbe abdiquer Verbe_01_060_%**;
abeille Nom abeille Nom_Fn_81;
abi3mer Verbe abi3mer Verbe_01_060_*%*;
abolition Nom abolition Nom_Fn_81;
abondance Nom abondance Nom_Fn_81;
abondant Adj abondant Adj_gn_01;
abonnement Nom abonnement Nom_Mn_01;
abord Nom abord Nom_Mn_01;
aborder Verbe aborder Verbe_01_060_*%*;
aboutir Verbe aboutir Verbe_00_190_**;
aboyer Verbe aboyer Verbe_01_170_**;
abrelger Verbe abrelger Verbe_01_140_%*%*;
abrelviation Nom abrelviation Nom_Fn_81;

abri Nom abri Nom_Mn_01;
abriter Verbe abriter Verbe_01_060_%**;

make trielist (Word, Word, WordTrie),
make trie(WordList, [WordTrie], Trie).

% make trie(+WordList, -Trie, -FinalTrie)

make trie([], T, T) :- !.

make trie([Word | WordList], Trie, FinalTrie) :-
insert word in trie(Word, Word, Trie, NewTrie),
make trie(WordList, NewTrie, FinalTrie).

The make trie/2 predicate uses make trielist/3 to transform an atom
into a trie representing a single word. The make trielist/3 predicate takes the
word and the lexical entry as an input:

?- make trielist(tab, noun, TL).
TL = [t, [a, [b, nounl]]

make trielist (+Word, +Leave, -WordTtrie)
Creates the trie for a single word.
Leaf contains the type of the word.
make trielist (Word, Leaf, WordTrie) :-
atom_chars (Word, CharList),

o° o° o

178 6 Words, Parts of Speech, and Morphology

Fig. 6.1 A letter tree encoding the words tab, table, tablet, and tables

make trielist aux(CharList, Leaf, WordTrie).

make trielist aux([X], Leaf, [X, Leaf]) :- !.
make trielist aux([X | L], Leaf, [X | [LS]]) :-
make trielist aux(L, Leaf, LS).

Finally, make trie/2 inserts a word trie into the lexicon trie using
insert word in trie/4:

$Inserts a word in a trie.
$The Leaf argument contains the type of the word
%insert word in trie(+Word, +Leaf, +Trie, -NewTrie)
insert word in trie(Word, Leaf, Trie, NewTrie) :-
make trielist (Word, Leaf, WordTrie),
insert wordtrie in trie(WordTrie, Trie, NewTrie).

$Inserts a word trie in a trie

%insert wordtrie in trie(+WordTrie, +Trie, -NewTrie)
insert wordtrie in trie([H | [T]],

[[H, Leaf | BT] | LT], [[H, Leaf | NB] | LT]) :-
atom (Leaf),

!
L

insert wordtrie in trie(T, BT, NB).

Traverses a segment shared between the trie and
the word and encounters a leaf.

It assumes that the leaf is an atom.

o° o o°

insert wordtrie in trie([H | [T]1], [[H | BT] | LTI,

6.3 Morphology 179

[[H | NB] | LT]) :-
|
insert wordtrie in trie(T, BT, NB).
Traverses a segment shared between the trie and

the word.

o° o

insert wordtrie in trie([H | T], [[HT | BT] | LTI,
[[HT | BT] | NB]) :-
! 1]

insert wordtrie in trie([H | T], LT, NB).
% Traverses a nonshared segment

insert wordtrie in trie(RW, RT, NB) :-
append (RT, [RW], NB),
|

[)

% Appends the remaining part of the word to the trie.

6.2.3 Finding a Word in a Trie

The rules to find a word in a trie are easier to write. A first rule compares the first
letter of the word to the trie and unifies with the branch starting with this letter.
It continues recursively with the remaining characters of the word. A second rule
extracts the lexical entries that we assume to be atoms.

Checks if a word is in a trie
is_word in trie(+WordChars, +Trie, -Lex)
is word in trie([H | T], Trie, Lex) :-
member ([H | Branches], Trie),
is_word_in_trie(T, Branches, Lex).

o oe

is_word in trie([], Trie, LexList) :-
findall (Lex, (member (Lex, Trie), atom(Lex)), LexList),
LexList \= [].

)

% We assume that the word lexical entry is an atom

6.3 Morphology

6.3.1 Morphemes

From a morphological viewpoint, a language is a set of morphemes divided into
lexical and grammatical morphemes. Lexical morphemes correspond to the word
stems and form the bulk of the vocabulary. Grammatical morphemes include

180 6 Words, Parts of Speech, and Morphology

Table 6.14 Morpheme decomposition. We replaced the stems with the corresponding lemmas

Word Morpheme decomposition
English disentangling dis+en+tangle+ing
rewritten retwrite+en
French désembrouillé dé+em+brouiller+¢
récrite re+écrire+te
German entwirrend ent+wirren-+end
wiedergeschrieben wieder+ge+schreiben+en
Prefixes Stem Suffixes

Fig. 6.2 Concatenative morphology where prefixes and suffixes are concatenated to the stem

Grammatical morpheme Grammatical morpheme
Preterit 2nd person singular

s a ng st

Lexical morpheme
singen

Fig. 6.3 Embedding of the stem into the grammatical morphemes in the German verb sangst
(second-person preterit of singen) (After Simone (2007, p. 144))

grammatical words and the affixes. In European languages, words are made of one
or more morphemes (Table 6.14). The affixes are concatenated to the stem (bold):
before it — the prefixes (underlined) — and after it — the suffixes (double underlined).
When a prefix and a suffix surrounding the stem are bound together, it is called a
circumfix, as in the German part participle (wavy underlines).

Affixing grammatical morphemes to the stem is general property of most
European languages, which is concatenative morphology (Fig.6.2). Although
there are numerous exceptions, it enables us to analyze the structure of most words.

Concatenative morphology is not universal, however. The Semitic languages, like
Arabic or Hebrew, for instance, have a templatic morphology that interweaves the
grammatical morphemes to the stem. There are also examples of nonconcatenative
patterns in European languages like in irregular verbs of German. The verb singen
‘sing’ has the forms sangst ‘you sang’ and gesungen ‘sung’ where the stem [s—ng]
is embedded into the grammatical morphemes [—a—st] for the second-person preterit
(Fig. 6.3) and [ge—u—en] for the past participle (Fig. 6.4).

6.3 Morphology 181

Fig. 6.4 Embedding of the -
. . Grammatical morphemes
stem into the grammatical

morphemes in the German Past participle
verb gesungen (past participle
of singen) (After Simone ge
(2007, p. 144))

s u ng en

Lexical morpheme
singen

Table 6.15 Plural morphs Plural of nouns Morpheme decomposition

English hedgehogs hedgehog+s
churches church+es
sheep sheep+0

French hérissons hérisson+s
chevaux cheval+ux

German Griinde Grund+(")e
Hiinde Hand+(")e
Igel Igel+0

6.3.2 Morphs

Grammatical morphemes represent syntactic or semantic functions whose re-
alizations in words are called morphs. Using an object-oriented terminology,
morphemes would be the classes, while morphs would be the objects. The allo-
morphs correspond to the set of all the morphs in a morpheme class.

The plural morpheme of English and French nouns is generally realized with an s
suffix — an s added at the end of the noun. It can also be es or nothing (4) in English
and ux in French. In German, the plural morpheme can take several shapes, such as
suffixes e, en , er, s, or an umlaut on the first vowel of the word (Table 6.15):

* In English, suffixes -s, -es, etc.
e In French, -s, -ux, etc.
e In German, an umlaut on the first vowel and the -e suffix, or simply the -e suffix.

Plurals also offer exceptions. Many of the exceptions, such as mouse and mice,
are not predictable and have to be listed in the lexicon.

6.3.3 Inflection and Derivation

Some Definitions

We saw in Chap. 1 that morphology can be classified into inflection, the form
variation of a word according to syntactic features such as gender, number, person,
tense, etc., and derivation, the creation of a new word — a new meaning — by

182 6 Words, Parts of Speech, and Morphology

Table 6.16 Verb inflection with past participle

English French German
Base form work travailler, chanter arbeiten

sing paraitre singen
Past participle (regular) worked travaillé, chanté gearbeitet
Past participle (exception) sung paru gesungen

concatenating a word with a specific affix. A last form of construction is the
composition (compounding) of two words to give a new one, for instance, part
of speech, can opener, pomme de terre. Composition is more obvious in German,
where such new words are not separated with a space, for example, Fiihrerschein.
In English and French, some words are formed in this way, such as bedroom, or
are separated with a hyphen, centre-ville. However, the exact determination of other
compounded words — separated with a space — can be quite tricky.

Inflection

Inflection corresponds to the application of a grammatical feature to a word, such as
putting a noun into the plural or a verb into the past participle (Table 6.16). It is also
governed by its context in the sentence; for instance, the word is bound to agree in
number with some of its neighbors.

Inflection is relatively predictable — regular — depending on the language. Given
a lemma, its part of speech, and a set of grammatical features, it is possible to
construct a word form using rules, for instance, gender, plural, or conjugation rules.
The past participle of regular English, French, and German verbs can be respectively
formed with an ed suffix, an ¢ suffix, and the ge prefix and the ¢ suffix. Morphology
also includes frequent exceptions that can sometimes also be described by rules.

Inflectional systems are similar in European languages but show differences
according to the syntactic features. In English, French, and German, nouns are
inflected with plurals and are consequently decorated with a specific suffix. How-
ever, in French and other Romance languages, verbs are inflected with future. Verb
chanterons is made of two morphs: chant ‘sing’ and -erons. The first one is the stem
(root) of chanter, and the second one is a suffix indicating the future tense, the first
person, and the plural number. In English and German, this tense is rendered with
an auxiliary: we shall sing or wir werden singen.

Derivation

Derivation is linked to lexical semantics and involves another set of affixes
(Table 6.17). Most affixes can only be attached to a specific lexical category (part of
speech) of words: some to nouns, others to verbs, etc. Some affixes leave the derived
word in the same category, while some others entail a change of category. For

6.3 Morphology 183

Table 6.17 Derivational affixes

English French German
Prefixes foresee, unpleasant prévoir, déplaisant vorhersehen, unangenehm
Suffixes manageable, rigorous gérable, rigoureux vorsichtich, streitbar

Table 6.18 Derivation related to part of speech

Adjectives Adverbs Nouns Adjectives Verbs Nouns
English recent recently air aerial compute computation
frank frankly base basic
French récent récemment lune lunaire calculer calcul
franc franchement air aérien
German gliicklich gliicklicherweise Luft luftig rechnen ~ Rechnung
moglich maoglicherweise Grund griindlich

Table 6.19 Word derivation

Word Contrary Possibility
English pleasant do unpleasant undo *pleasable doable
French plaisant faire déplaisant défaire *plaisable faisable
German angenehm tun unangenehm *untun *angenehmbar tunlichst

instance, some affixes transform adjectives into adverbs, nouns into adjectives, and
verbs into nouns (Table 6.18). Derivation rules can be combined and are sometimes
complex. For instance, the word disentangling features two prefixes: dis- and en-,
and a suffix -ing.

Some semantic features of words, such as the contrary or the possibility, can
be roughly associated to affixes, and so word meaning can be altered using them
(Table 6.19). However, derivation is very irregular. Many words cannot be generated
as simply, because the word does not exist or sounds weird. In addition, some affixes
cannot be mapped to clear semantic features.

Compounding is a feature of German, Dutch, and the Scandinavian languages.
It resembles the English noun sequences with the difference that nouns are not
separated with a white space. English open compounds (e.g., word processor) are.

Morphological Processing

Morphological processing includes parsing and generation (Table 6.20). Parsing
consists in splitting an inflected, derived, or compounded word into morphemes;
this process is also called a lemmatization. Lemmatization refers to transforming a
word into its canonical dictionary form, for example, retrieving into retrieve, recher-
chant into rechercher, or suchend into suchen. Stemming consists of removing the
suffix from the rest of the word. Taking the previous examples, this yields retriev,

184 6 Words, Parts of Speech, and Morphology

Table 6.20 Morphological generation and parsing

Generation —

English French German

dog+s dogs chien+s chiens Hund+e Hunde
work+ing working travailler+ant travaillant arbeiten+end arbeitend
un+do undo dé+faire défaire

<« Parsing

Table 6.21 Open class word morphology, where * denotes zero or more elements and ? denotes
an optional element

English and French prefix* stem suffixx inflection?
German inflection? prefixs stemx suffix+ inflection?

recherch, and such. Lemmatization and stemming are often mistaken. Conversely,
generation consists of producing a word — a lexical form — from a set of morphemes.

In French, English, and German, derivation operates on open class words. In
English and French, a word of this class consists of a stem preceded by zero or
more derivational prefixes and followed by zero or more derivational suffixes. An
inflectional suffix can be appended to the word. In German, a word consists of one
or more stems preceded by zero or more derivational prefixes and followed zero
or more derivational suffixes. An inflectional prefix and an inflectional suffix can
be appended to the word (Table 6.21). As we saw earlier, these rules are general
principles of concatenative morphology that have exceptions.

Ambiguity

Word lemmatization is often ambiguous. An isolated word can lead to several
readings: several bases and morphemes, and in consequence several categories and
features as exemplified in Table 6.22.

Lemmatization ambiguities are generally resolved using the word context in
the sentence. Usually only one reading is syntactically or semantically possible,
and others are not. The correct reading of a word’s part of speech is determined
considering the word’s relations with the surrounding words and with the rest of
the sentence. From a human perspective, this corresponds to determining the word’s
function in the sentence. As we saw in the introduction, this process has been done
by generations of pupils dating as far back as the schools of ancient Greece and the
Roman Empire.

6.3 Morphology 185

Table 6.22 Lemmatization ambiguities

Words Words in context Lemmatization
English Run

—_

1. A run in the forest . run: noun singular
. Sportsmen run every day 2. run: verb present third person plural

N

French Marche

1. Une marche dans la forét 1. marche: noun singular feminine
2. Il marche dans la cour 2. marcher: verb present third person
singular
German Lauf
1. Der Lauf der Zeit 1. Der Lauf: noun, sing, masc
2. Lauf schnell! 2. laufen: verb, imperative, singular

6.3.4 Language Differences

Paper lexicons do not include all the words of a language but only lemmas. Each
lemma is fitted with a morphological class to relate it to a model of inflection
or possible exceptions. A French verb will be given a class of conjugation or its
exception pattern — one among a hundred. English or German verbs will be marked
as regular or strong and in this latter case will be given their irregular forms. Then,
a reader can apply morphological rules to produce all the lexical forms of the
language.

Automatic morphological processing tries to mimic this human behavior. Never-
theless, it has not been so widely implemented in English as in other languages.
Programmers have often preferred to pack all the English words into a single
dictionary instead of implementing a parser to do the job. This strategy is possible
for European languages because morphology is finite: there is a finite number of
noun forms, adjective forms, or verb forms. It is clumsy, however, to extend it to
languages other than English because it considerably inflates the size of dictionaries.

Statistics from Xerox (Table 6.23) show that techniques available for storing
English words are very costly for many other languages. It is not a surprise that the
most widespread morphological parser —- KIMMO — was originally built for Finnish,
one of the most inflection-rich languages. In addition, while English inflection is
tractable by means of storing all the forms in a lexicon, it is often necessary to
resort to a morphological parser to deal with forms such as: computer, computerize,
computerization, recomputerize (Antworth 1994), which cannot all be foreseen by
lexicographers.

186 6 Words, Parts of Speech, and Morphology

Table 6.23 Some language statistics from a Xerox promotional flyer

Language Number of stems Number of inflected forms Lexicon size (kb)
English 55,000 240,000 200-300
French 50,000 5,700,000 200-300
German 50,000 350,000 or 450
Infinite (compounding)
Japanese 130,000 200 suffixes 500
20,000,000 word forms 500
Spanish 40,000 3,000,000 200-300

Table 6.24 Surface and lexical forms

Generation: Lexical to surface form —

English dis+en+tangle+ed disentangled
happy+er happier
move+ed moved

French dés+em+brouiller+é désembrouillé
dé+chanter+erons déchanterons

German ent+wirren+end entwirrend
wieder+ge+schreiben+en wiedergeschrieben

Parsing: <— Surface to lexical form

6.4 Morphological Parsing

6.4.1 Two-Level Model of Morphology

Using a memory expensive method, lemmatization can be accomplished with a
lexicon containing all the words with all their possible inflections. A dictionary
lookup then yields the lemma of each word in a text. Although it has often been
used for English, this method is not very efficient for many other languages. We now
introduce the two-level model of Kimmo Koskenniemi (1983), which is universal
and has been adopted by many morphological parsers.

The two-level morphology model enables us to link the surface form of a word —
the word as it is actually in a text — to its lexical or underlying form — its sequence
of morphemes. Karttunen (1983) did the first implementation of this model, which
he named KIMMO. A later implementation — PC-KIMMO 2 — was carried out by
Antworth (1995) in C. PC-KIMMO 2 is available from the Summer Institute of
Linguistics through the Internet.

Table 6.24 shows examples of correspondence between surface forms and lexical
forms. Morpheme boundaries in lexical forms are denoted by +-.

In the two-level model, the mapping between the surface and lexical forms is
synchronous. Both strings need to be aligned with a letter-for-letter correspondence.
That is, the first letter of the first form is mapped to the first letter of the second form,
and so on. To maintain the alignment, possible null symbols are inserted in either

6.4 Morphological Parsing 187

Table 6.25 Correspondence between lexical and surface forms

English dis+en+tangle+ed happy+er move+ed
$?... $3... 3.
disOenOtangl0OOed happiOer movO00ed

French dé+chanter+erons cheval+ux cheviller+é
$?... $3... 3.
déOchant000erons cheva0Oux chevill000é

German singen+st Grund+“e Igel+@
$e... $3... 3.
singe00st Grind00e Igel0O0

form and are denoted ¢ or O, if the Greek letters are not available. They reflect a
letter deletion or insertion. Table 6.25 shows aligned surface and lexical forms.

6.4.2 Interpreting the Morphs

Considering inflection only, it is easier to interpret the morphological informa-
tion using grammatical features rather than morphs. Most morphological parsers
represent the lexical form as a concatenation of the stem and its features instead
of morphs. For example, the Xerox parser output for disentangled, happier, and
Griinde is:

disentangle+Verb+PastBoth+123SP
happy+Adj+Comp
Grund+Noun+Masc+Pl+NomAccGen

where the feature +Verb denotes a verb, +PastBoth, either past tense or past
participle, and +123SP any person, singular or plural; +Adj denotes an adjective
and +Comp, a comparative; +Noun denotes a noun, +Masc masculine, +P1, plural,
and +NomAccGen either nominative, accusative, or genitive. (All these forms are
ambiguous, and the Xerox parser shows more than one interpretation per form.)

Given these new lexical forms, the parser has to align the feature symbols with
letters or null symbols. The principles do not change, however (Fig. 6.5).

6.4.3 Finite-State Transducers

The two-level model is commonly implemented using finite-state transducers (FST).
Transducers are automata that accept, translate, or generate pairs of strings. The arcs
are labeled with two symbols: the first symbol is the input and the second is the
output. The input symbol is transduced into the output symbol as a transition occurs

188 6 Words, Parts of Speech, and Morphology

Lexica: d i s e n t a n g 1 e +Verb +PastBoth +123sp
Surface: d i s en t anglO O e d
Lexica: h a p p y +Adj +Comp

Surface: h a p p i e r

Lexica: G r u n d +Noun +Masc +P1 +NomAccGen

Surface: G r 4 n d 0 0 0 e

Fig. 6.5 Alignments with features

Fig. 6.6 A transducer

on the arc. For instance, the transducer in Fig. 6.6 accepts or generates the string
abbbc and translates into zyyyx.

Finite-state transducers have a formal definition, which is similar to that of finite-
state automata. A FST consists of five components (Q, X, g, F, §), where:

1. Q is a finite set of states.

2. X is a finite set of symbol or character pairs i : o, where i is a symbol of the
input alphabet and o of the output alphabet. As we saw, both alphabets may
include epsilon transitions.

. qo 1s the start state, gg € Q.

. F is the set of final states, F' € Q.

5. § is the transition function Q x ¥ — Q, where §(q, i, 0) returns the state where

the automaton moves when it is in state ¢ and consumes the input symbol pair
i:o.

W

The quintuple, which defines the automaton in Fig. 6.6 is Q = {qo, q1, 42}, X =

ta:z,b:y,c:x}, 8§ = {8qo.a:2) =q1.8(q1.b:y) =q1.6(q1,c:x) = qa},
and F = {g»}.

6.4 Morphological Parsing 189

Table 6.26 Future tense of French verb chanter

Number\Person First Second Third
singular chanterai chanteras chantera
plural chanterons chanterez chanteront

Table 6.27 Aligned lexical and surface forms

Number \ Pers. First Second Third

singular chanter+erai chanter+eras chanter+era
chant000erai chant00Oeras chant000era

plural chanter+erons chanter+erez chanter+eront
chant000erons chant00Oerez chant000Oeront

Fig. 6.7 A finite-state transducer describing the future tense of chanter

6.4.4 Conjugating a French Verb

Morphological FSTs encode the lexicon and express all the legal transitions. Arcs
are labeled with pairs of symbols representing letters of the surface form — the word
— and the lexical form — the set of morphs.

Table 6.26 shows the future tense of regular French verb chanter ‘sing’, where
suffixes are specific to each person and number, but are shared by all the verbs of the
so-called first group. The first group accounts for the large majority of French verbs.
Table 6.27 shows the aligned forms and Fig. 6.7 the corresponding transducer. The
arcs are annotated by the input/output pairs, where the left symbol corresponds to
the lexical form and the right one to the surface form. When the lexical and surface
characters are equal, as in ¢ : ¢, we just use a single symbol in the arc.

This transducer can be generalized to any regular French verb of the first group
by removing the stem part and inserting a self-looping transition on the first state
(Fig. 6.8).

The transducer in Fig. 6.8 also parses and generates forms that do not exist.
For instance, we can forge an imaginary French verb *palimoter that still can be
conjugated by the transducer. Conversely, the transducer will successfully parse the

190 6 Words, Parts of Speech, and Morphology

Fig. 6.8 A finite-state transducer describing the future tense of French verbs of the first group

improbable *palimoterons. This process is called overgeneration (both in parsing
and generation).

Overgeneration is not that harmful, provided that inputs are well formed. How-
ever, it can lead to some wrong parses. Consider English and German comparatives
that are formed with -er suffix. Raw implementation of a comparative transducer
would rightly parse greater as great+er but could also parse better or reader.
Overgeneration is reduced by a lexical lookup, where the parse result is searched
in a dictionary. This eliminates nonexistent words. It can also be limited by a set of
constraints on affixes restricting the part of speech of the word to which they can be
appended — here adjectives.

6.4.5 Prolog Implementation

Finite-state transducers can easily be implemented in Prolog. In this section, we
implement the future tense of regular French verbs corresponding to Fig. 6.8, and
we remove null symbols by inserting a mute transition in the surface form. The
transducer has four parameters: the start state, normally 1, a final state, together
with a lexical form and a surface one:

transduce (+Start, ?Final, ?Lexical, ?Surface).

The transducer parses surface forms:

A

?- transduce(l, Final, Lexical, [r, &, v, e, r, al).
Final = 7,
Lexical = [r, &, v, e, ¥, +, e, r, al

It also generates surface forms from lexical ones:

?- transduce(l, Final,
[r, &, v, e, ¥, +, e, ¥, e, z], Surface).
Final = 11,

6.4 Morphological Parsing 191

Surface = [r, &, v, e, r, e, z]

Finally, the transducer conjugates verbs (generates the verbal forms):

?- transduce(1, 11, [r, &, v, e, T | L], Surface).
L = [+l e, r, €, Z] ’
Surface = [r, &, v, e, r, e, zl]

Here is the Prolog code:

% arc(Start, End, LexicalChar, SurfaceChar)
% describes the automaton

arc(l, 1, C, C) :- letter(C).

arc(l, 2, e, 0). arc(2, 3, r, 0). arc(3, 4, +, 0).
arc(4, 5, e, e). arc(5, 6, r, r). arc(é6, 7, a, a).
arc(7, 8, i, 1i). arc(7, 9, s, s).

arc(6, 10, e, e). arc(lo, 11, =z, z).

arc(6, 12, o, o). arc(l2, 13, n, n).

arc(13, 14, s, s). arc(13, 15, t, t).

final state(S)
gives the stop condition

o o

final state(7). final state(8). final state(9).
final state(11). final state(14). final state(15).
letter (+L)

o
3
o

3

describes the French lower-case letters
letter (L) :-
name (L, [Code]),
97 =< Code, Code =< 122, !.
letter (L) :-
member (L,

A

[&a, &, &, ¢, &, &, &, &, 1, i, 6, 6, u, 4, 4, 'e'1),

transduce (+Start, ?Final, ?LexicalString, ?SurfaceString)
describes the transducer. The first and second rules
include mute transitions and enable to remove Os

o° o o°

transduce (Start, Final, [U | LexicalStringl, SurfaceString)
arc (Start, Next, U, 0),
transduce (Next, Final,LexicalString, SurfaceString).
transduce (Start, Final, LexicalString,
[S | SurfaceStringl) :-
arc(Start, Next, 0, S),
transduce (Next, Final,LexicalString, SurfaceString) .

192 6 Words, Parts of Speech, and Morphology

Table 6.28 Future tense of Italian verb cantare and Spanish and Portuguese verbs cantar, ‘sing’

Language Number\Person First Second Third
Italian
singular cantero canterai cantera
plural canteremo canterete canteranno
Spanish
singular cantaré cantards cantard
plural cantaremos cantaréis cantardn
Portuguese
singular cantarei cantards cantard
plural cantaremos cantareis cantardo

transduce (Start, Final, [U | LexicalString],
[S | SurfaceString]) :-

arc(Start, Next, U, S),

U \== 0,

S \== 0,

transduce (Next, Final,LexicalString, SurfaceString) .
transduce (Final, Final, [], []) :-

final state(Final).

We can associate a final state to a part of speech. For instance, state 11
corresponds to the second-person plural of the future.

6.4.6 Application to Romance Languages

The transducer we created for the conjugation of French verbs can be easily
transposed to other Romance languages such as Italian, Spanish, or Portuguese, as
shown in Table 6.28.

6.4.7 Ambiguity

In the transducer for future tense, there is no ambiguity. That is, a surface form has
only one lexical form with a unique final state. This is not the case with the present
tense (Table 6.29), and

(je) chante ‘1 sing’
(il) chante ‘he sings’

have the same surface form but correspond, respectively, to the first- and third-
person singular.

This corresponds to the transducer in Fig. 6.9, where final states 5 and 7 are
the same. The implementation in Prolog is similar to that of the future tense.

6.4 Morphological Parsing 193

Table 6.29 Present tense of

Number\Person First Second Third
French verb chanter -

singular chante chantes chante

plural chantons chantez chantent

Fig. 6.9 A finite-state transducer encoding the present tense of verbs of the first group

Using backtracking, the transducer can yield all the final states reflecting the
morphological ambiguity.

6.4.8 Operations on Finite-State Transducers

Finite-state transducers have mathematical properties similar to those of finite-state
automata. In addition, they can be inverted and composed:

+ Let T be a transducer. The inversion 7! reverses the input and output symbols
of the transition function. The transition function of the transducer in Fig. 6.6 is
then § = {8(qo,z: a) = q1,8(q1,y : b) = q1,8(q1,x : ¢) = qa}.

e Let 77 and 73 be two transducers. The composition 7 o T is a transducer, where
the output of 77 acts as the input of 75.

Both the inversion and composition operations result in new transducers. This is
obvious for the inversion. The proof is slightly more complex for the composition.
Let Ty = (X, Q1.q1, F1,61) and T, = (X, O3, ¢>, F>, §>) be two transducers. The
composition 75 = T} o T, is defined by (X, Q1 x Q2,(q1,42), F1 X F3,83). The
transition function &3 is built using the transition functions §; and §,, and generating
all the pairs where they interact (Kaplan and Kay 1994):

83({s1,82) ,i,0) = {{t1.2)|Fc € X U e, 1) € §i(s1,i,¢) N1y € 83(52,¢,0)}.

194 6 Words, Parts of Speech, and Morphology

The inversion property enables transducers to operate in generating or parsing
mode. They accept both surface and lexical strings. Each symbol of the first string is
mapped to the symbol of the second string. So you can walk through the automaton
and retrieve the lexical form from the surface form, or conversely, as we saw with
the Prolog example.

Composition enables us to break down morphological phenomena. It is some-
times easier to formulate a solution then using intermediate forms between the
surface and lexical forms. The correspondence between the word form and the
sequence of morphemes is not direct but is obtained as a cascade of transductions.
Composition enables us to compact the cascade and to replace the transducers
involved in it by a single one (Karttunen et al. 1992). We will see an example of
it with French irregular verbs in Sect. 6.5.3.

6.5 Morphological Rules

6.5.1 Two-Level Rules

Originally, Koskenniemi (1983) used declarative rules to describe morphology.
These two-level rules enumerate the correspondences between lexical characters
and surface ones and the context where they occur. Context corresponds to left
and right characters of the current character and can often be expressed in terms
of vowels (V) or consonants (C).

In the two-level formalism, a rule is made of a correspondence pair (lexical:
surface), a rule operator, and the immediate left and right context. Operators can
be =, <, &, or /<, and mean, respectively, only in that context, always in that
context, always and only, and never in that context. Left and right contexts where
the rule applies are separated by the symbol __ (Table 6.30).

In English, the comparative happier is decomposed into two morphemes happy +
er, where the lexical y corresponds to a surface i (Table 6.31). This correspondence
occurs more generally when y is preceded by a consonant and followed by -er, -ed,
or -s. This can be expressed by three rules, where C represents any consonant:

l.y:1 & C:C __ +:0 e:e r:xr
2.y:1 & C:C __ +:e s:8
3.y:1 & C:C __ +:0 e:e d:d

Once written, all the rules are applied in parallel. This parallel application is the
main distinctive feature of the two-level morphology compared with other, older
models. This means that when processing a string, every rule must be successfully
applied to the current pair of characters 1exical : surface before moving to the
next pair (Fig. 6.10).

6.5 Morphological Rules 195

Table 6.30 Two-level rules

Rules Description
a:b = lc rc aistransduced as b only when it has 1c to the left and rc to the
o right
a:b <« lc _ rc aisalways transduced as b when it has 1c to the left and rc to
the right
a:bh < lc _ rc ais transduced as b always and only when it has 1c to the left
and rc to the right
a:b /< 1lc __ rc aisnever transduced as b when it has 1c to the left and rc to
the right
Table 6'3,1 They:1 Examples happy+er party+s marry+ed
transduction rules . . \
happiOer parties marriOed
Rules Cy+er Cy+s Cy+ed
CioOer Cies CioOed
Fig. 6.10 Applying the rules | | | | |h|a|p|p|y|+|e|r| | | |

in parallel

| |
[Rule 1| |[Rule2 |
| |

[[[[[r[a]p[p]i[ofe[[]]]

The left and right contexts of a rule can use a wildcard, the ANY symbol @,
which stands for any alphabetical character, as in

Y:iX <& _ @:c

This rule means that a lexical y corresponds to a surface x when it is before a
surface c. The corresponding lexical character in the right context is not specified in
the rule, however, the unspecified character represented by the ANY symbol must
be compatible with the correspondence rule that can apply to it. The ANY symbol
is not, strictly speaking, any character then, but any character so that it forms a
“feasible pair”, here with c.

6.5.2 Rules and Finite-State Transducers

It has been demonstrated that any two-level rule can be compiled into an equivalent
transducer (Johnson 1972; Kaplan and Kay 1994). Rule 1, for instance, corresponds
to the automaton in Fig. 6.11, where the pair @ : @ denotes any pair that cannot pass
the other transitions.

196 6 Words, Parts of Speech, and Morphology

Fig. 6.11 A transducer to parse the y : 1 correspondence

Lexical forms Lexical forms

1 i

Intersection .
[Rule 1] [Rule 2] [Rule n| —> Single FST
Surface forms Surface forms

Fig. 6.12 A set of two-level rules intersected into a single FST (After Karttunen et al. (1992))

In practice, morphological phenomena are easier to describe and to understand
using individual rules rather than writing a complex transducer. For this reason,
the development of parsers based on the two-level method uses this strategy
(Karttunen 1994). It consists in writing a collection of rules to model a language’s
morphology and compiling them into as many transducers. The parallel transducers
are then combined into a single one using the transducer intersection (Fig. 6.12).

However, while the intersection of two finite automata defines a finite-state
automaton, it is not always the case for finite-state transducers. Kaplan and Kay
(1994) demonstrated that when surface and lexical pairs have the same length —
without ¢ — the intersection is a transducer. This property is sufficient to intersect the
rules in practical applications. In fact, transducers obtained from two-level rules are
intersected by treating the ¢ symbol as an ordinary symbol (Beesley and Karttunen
2003, p. 55). Parallel application of rules or the transducer intersection removes
one of their major harmful side effects: their application outside of their intended
context.

Originally, rules were compiled by hand. However, this problem can quickly
become intractable, especially when it comes to managing conflicting rules or when
rule contexts interfere with transduced symbols. To solve it, we can use a compiler
that creates transducers automatically from two-level rules. The Xerox XFST is
one such compiler. It is a publicly available tool, and to date it is the only serious
implementation of a morphological rule compiler.

6.5 Morphological Rules 197

Table 6.32 Conjugation of irregular French verbs, present tense. Courir has regular suffixes in
underlined bold characters. In the other verbs, irregular infections are shown in bold characters

Infinitive courir dormir battre peindre écrire
First person singular cours dors bats peins écris
Second person singular cours dors bats peins écris
Third person singular court dort bat peint écrit
First person plural courons dormons battons peignons écrivons
Second person plural courez dormez battez peignez écrivez
Third person plural courent dorment battent peignent écrivent

6.5.3 Rule Composition: An Example with French Irregular
Verbs

When developing a complete morphological parser, it is often convenient to
introduce intermediate levels between the lexical and surface strings. This is
especially true when the lexical and surface forms are distant and involve complex
morphological relations. Intermediate levels enable us then to decompose the
morphological system into smaller parts that are easier to treat.

Chanod (1994) gives an example of decomposition with the notoriously difficult
morphology of French irregular verbs (Bescherelle 1980). The French verb system
has about 100 models of inflection — paradigms. Two of them are said to be regular,
the first and second group, and gather the vast majority of the verbs. The third group
is made of irregular verbs and gathers the rest. The irregular group contains the most
frequent verbs: faire ‘do’, savoir ‘know’, connaitre ‘know’, dormir ‘sleep’, courir
‘run’, battre ‘beat’, écrire ‘write’, etc.

Table 6.32 shows the conjugation of some irregular verbs. We can see that there
is a set of regular suffixes: s, s, t, ons, ez, and ent, and that most irregularities, also
called alternations, occur at the junction of the stem and the suffix. The stem and
suffix can be directly concatenated, as in courir, but not in dormir, peindre, or battre.

Although apparently complex, general rules can model these alternations using
local contexts corresponding to specific substrings. In the case of dormir, a general
principle in French makes it impossible to have an m followed by an s or ¢ It
then must be deleted in the three singular persons. For battre, the pairs #¢ or dt
do not occur in the end of a word or before a final s. Such rules are not tied to one
specific verb but can be applied across a variety of inflection paradigms and persons.
Figure 6.13 shows the rule sequence that produces the correct surface form of dors.

The verbs peindre and écrire are more complex cases because their conjugation
uses two stems: pein and peign — écri and écriv. Chanod (1994) solves these difficul-
ties using a transduction between the infinitive and a first intermediate form that will
then be regular. Then peindre+IndP+SG+P1 is associated to peign+IndP+SG+P1,
and écrire+IndP+SG+P1 to écriv+IndP+SG+P1. The second intermediate form uses
two-level rules to obtain the correct surface forms: v or gn must be followed by a
vowel or deleted (Fig. 6.14). The rule that Chanod uses is, in fact:

198

6 Words, Parts of Speech, and Morphology

Lexical form: stem dormir +IndP +SG +P1
Intermediate form: inflection dorm +IndP +SG +P1
Intermediate form: deletion of m followed by s dorm S

S

Surface form: dor

Fig. 6.13 Sequence of rules applied to dormir (After Chanod (1994))

Lexical form: stem peindre +IndP +SG +P1
l
Intermediate form: inflection peign +IndP +SG +P1
!
Intermediate form: Depalatalisation of gn peign S
!
Surface form: pein s

Fig. 6.14 Sequence of rules applied to peindre (After Chanod (1994))

Lexical forms Lexical forms Lexical forms

ﬁTﬁ) Composition ———————

Intersection
[Rule 1] [Rule 2] [Rule n]| ——> FST 1
Single FST
i Compositign
Intermediate forms Intermediate forms -
Intersection
[Rule 1] [Rule2] [Rule n] ———> FST2

! !

Surface forms Surface forms Surface forms

Fig. 6.15 Intersection and composition of finite-state transducers (After Karttunen (1994))

n:0 & g __ [s|t]

The FST resulting from the surface, lexical, and intermediate levels are ultimately
combined with the lexicon and composed into a single transducer (Fig. 6.15).

6.6 The CoNLL Format 199

6.6 The CoNLL Format

The Conference on Natural Language Learning (CoNLL) is an annual conference
dedicated to statistical and machine-learning techniques in language analysis. In
addition to the classical contributions in the form of articles found in scientific
conferences, CoNLL organizes a ‘“shared task” to evaluate language processing
systems on a specific problem. As hinted by the conference name, the competing
systems should use machine-learning techniques, essentially supervised learning.
The participants are given a training set to train their models and are evaluated on a
test set. CoONLL makes these data sets available in a column-based format as shown
in Tables 6.33 and 6.34.

The CoNLL format has become very popular to share annotated corpora. It
can be used to represent any layer of a linguistic analysis: part-of-speech tagging,
morphological parsing, dependency parsing, semantic parsing, coreference, etc.
Although the number of columns may vary depending on the task, this format shows
a common structure across the years. In this section, we introduce it and we focus
on the morphological and part-of-speech layers. We will review additional columns
in the next chapters of this book.

Table 6.33 exemplifies the CoNLL format with the Spanish sentence La reestruc-
turacion de los otros bancos checos se estd acompaiiando por la reduccion del
personal ‘The restructuring of Czech banks is accompanied by the reduction of
personnel’ (Palomar et al. 2004). One of the main characteristics of the CoNLL
format is that it has one word per line with the word properties and annotation
shown on the same line in separate columns:

e The FORM column corresponds to the word;

e The LEMMA column contains the lemma and the phrase los otros bancos
starting at index 4 is lemmatized as el otro banco;

* The CPOS and POS columns correspond to a coarse version of the part of speech
and a more detailed one: los is a determiner (d) as well as otros; bancos is a noun
(n); the POS codes are specific to this Spanish corpus, the Cast3LB treebank, and
described in Civit Torruella (2002);

* Finally, the FEATS column corresponds to the grammatical features that are
listed as an unordered set separated by vertical bars. The word bancos ‘banks’
has a masculine gender (gen =m) and a plural number (num =p).

The columns are delimited by a tabulation character, and the sentences by a blank
line.

Table 6.34 shows a similar annotation with a sentence from a French corpus
(Abeillé and Clément 2003; Abeillé et al. 2003) converted to the CoNLL format by
Candito et al. (2009).

200 6 Words, Parts of Speech, and Morphology

Table 6.33 Annotation of the Spanish sentence: La reestructuracion de los otros bancos checos
se estd acompariiando por la reduccion del personal ‘The restructuring of Czech banks is
accompanied by the reduction of personnel’ (Palomar et al. 2004) using the CoNLL 2006 format

ID FORM LEMMA CPOS POS FEATS

1 La el d da nums=slgen=f

2 reestructuracion reestructuracion n nc num=slgen=f

3 de de s sp for=s

4 los el d da gen=mlnum=p

5 otros otro d di gen=mlnum=p

6 bancos banco n nc gen=mlnum=p

7 checos checo a aq gen=mlnum=p

8 se se p pO _

9 estd estar v vm nums=slper=3Imod=iltmp=p
10 acompafiando acompanar v vm mod=g

11 por por S sp for=s

12 la el d da num=slgen=f

13 reduccién reduccion n nc nums=slgen=f

14 del del S sp gen=mlnum=slfor=c
15 personal personal n nc gen=mlnum=s

16 F Fp _

Table 6.34 Annotation of the French sentence: A cette époque, on avait dénombré cent quarante
candidats ‘At that time, we had counted one hundred and forty candidates’ (Abeillé and Clément
2003; Abeillé et al. 2003) following the CoNLL 2006 format

Index Form Lemma CPOS POS Features

1 A a P P _

2 cette ce D DET g=fln=sls=dem

3 époque époque N NC g=fln=sls=c

4 R , PONCT PONCT S=w

5 on on CL CLS g=mln=slp=3Is=suj

6 avait avoir \% \Y% m=indIn=slp=3lt=impft
7 dénombré dénombrer v VPP g=mlm=partin=slt=past
8 cent_quarante cent_quarante D DET g=mln=pls=card

9 candidats candidat N NC g=mln=pls=c

10 PONCT PONCT S=s

6.7 Application Examples

The Xerox language tools give a good example of what morphological parsers
and part-of-speech taggers can do. These parsers are available for demonstration
on the Internet using a web browser. Xerox tools let you enter English, French,
German, Italian, Portuguese, and Spanish words, and the server returns the context-
free morphological analysis for each term (Tables 6.35—6.37). You can also type
in phrases or sentences and Xerox taggers will disambiguate their part of speech.

6.8 Further Reading

Table 6.35 Xerox morphological parsing in English

201

Input Term(s): works

Input Term(s): round

Input Term(s): this

work+Vsg3
work+Npl

round+Vb
round+Prep
round+Adv
round+Adj
round+Nsg

this+Psg
this+Dsg
this+Adv

Table 6.36 Xerox
morphological parsing in
French

Input Term(s): étions

Input Term(s): porte

étre+IndI+PL+P1+Verb

porter+SubjP+SG+P1+Verb
porter+SubjP+SG+P3+Verb
porter+Imp+SG+P2+Verb
porter+IndP+SG+P1+Verb
porter+IndP+SG+P3+Verb
porte+Fem+SG+Noun

Table 6.37 Xerox morphological parsing in German

Input Term(s): arbeite

Input Term(s): die

arbeiten+V+IMP+PRAS+SG2
arbeiten+V+IND+PRAS+SG1
arbeiten+V+KONJ+PRAS+SG1
arbeiten+V+KONJ+PRAS+SG3

die+ART+DEF+PL+NOM
die+ART+DEF+SG+AKK+FEM
die+ART+DEF+SG+NOM+FEM
die+ART+DEF+PL+AKK
die+PRON+DEM+PL+AKK
die+PRON+DEM+PL+NOM
die+PRON+DEM+SG+AKK+FEM
die+PRON+DEM+SG+NOM+FEM
die+PRON+RELAT+PL+AKK
die+PRON+RELAT+PL+NOM
die+PRON+RELAT+SG+AKK+FEM
die+PRON+RELAT+SG+NOM+FEM

In addition to demonstrations, Xerox lists examples of industrial applications that

make use of its tools.

6.8 Further Reading

Dionysius Thrax fixed the parts of speech for Greek in the second century BCE.
They have not changed since and his grammar is still interesting to read, see Lallot
(1998). A short and readable introduction in French to the history of parts of speech

is Ducrot and Schaeffer (1995).

Accounts on finite-state morphology can be found in Sproat (1992) and Ritchie
et al. (1992). Roche and Schabes (1997) is a useful book that describes fundamental
algorithms and applications of finite-state machines in language processing, espe-

202 6 Words, Parts of Speech, and Morphology

cially for French. Kornai (1999) covers other aspects and languages. Kiraz (2001)
on the morphology of Semitic languages: Syriac, Arabic, and Hebrew. Beesley and
Karttunen (2003) is an extensive description of the two-level model in relation with
the Xerox tools. It contains a CD-ROM with the Xerox rule compiler.

Antworth (1995) provides a free implementation of KIMMO named PC-
KIMMO 2 with source and executable programs. The system is available from
the Internet (http://www.sil.org/). It comes with an English lexicon and English
morphological rules. It is open to extensions and modifications. General-purpose
finite-state transducers toolkits are also available. They include the FSA utilities
(van Noord and Gerdemann 2001), the FSM library (Mohri et al. 1998) and its
follower, OpenFst (http://www.openfst.org/), the Helsinki Finite-State Transducer
Technology (https:/kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstHome), and Unitex
(http://www-igm.univ-mlv.fr/~unitex/) (Paumier 2006).

Although most lemmatizers use transducers and rules, it is possible to formulate
lemmatization with classifiers that we can train on annotated corpora. See Chrupata
(2006) for an interesting account on these techniques and Bjorkelund et al. (2010)
for an implementation.

Exercises

6.1. Find a dictionary on the Web in English, French, German, or another language
you would like to study and extract all the articles, conjunctions, prepositions, and
pronouns.

6.2. Implement a morphological parser to analyze regular plurals of nouns in
English or French.

6.3. Add alexical look-up to Exercise 6.2.

6.4. Implement a morphological parser to analyze plurals of nouns in English or
French, taking a list of exceptions into account.

6.5. Implement a morphological parser to analyze regular preterits of verbs in
English or German.

6.6. Implement a morphological parser to conjugate French verbs of first group in
the imperfect tense.

6.7. Implement a morphological parser to conjugate regular German verbs in the
present tense.

6.8. Build a morphological parser implementing regular English verb inflection: -s,
-ed, -ing.

6.9. Some verbs have their final -e deleted, for instance, chase (chase+ed,
chase+ing). In the KIMMO formalism, the -e deletion rule is expressed as e:0

http://www.sil.org/
http://www.openfst.org/
https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstHome
http://www-igm.univ-mlv.fr/~unitex/

Exercises 203

& C:C __ 0:+ V:V. Draw the corresponding transducer and write the Prolog rules
that will parse these verbs.

6.10. Break the following words into morphemes: computer: computers, comput-
erize, computerization, recomputerize.

6.11. Build a morphological parser that will parse words derived from computer:
computers, computerize, computerization, recomputerize.

6.12. Break the following words into morphemes: chanter: enchanter, rechanter,
déchanter, désenchanter.

6.13. Build a morphological parser that will parse words derived from chanter:
enchanter, rechanter, déchanter, and désenchanter.

Chapter 7
Part-of-Speech Tagging Using Rules

7.1 Resolving Part-of-Speech Ambiguity

7.1.1 A Manual Method

We saw that looking up a word in a lexicon or carrying out a morphological analysis
on a word can leave it with an ambiguous part of speech. The word chair, which
can be assigned two tags, noun or verb, is an example of ambiguity. It is a noun
in the phrase a chair, and a verb in fo chair a session. Ambiguity resolution, that
is, retaining only one part of speech (POS) and discarding the others, is generally
referred to as POS tagging or POS annotation.

As children, we learned to carry out a manual disambiguation by considering the
grammatical context of the word. In the first phrase, chair is preceded by an article
and therefore is part of a noun phrase. Since there is no other word here, chair is
a noun. In the second phrase, chair is preceded by fo, which would not precede a
noun, and therefore chair is a verb.

Voutilainen and Jarvinen (1995) describe a more complex example with the
sentence

That round table might collapse.
While the correct part-of-speech tagging is:
That/determiner round/adjective table/noun might/modal verb collapse/verb.

a simple dictionary lookup or a morphological analysis produces many ambiguities,
as shown in Table 7.1.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 205
DOI 10.1007/978-3-642-41464-0_7, © Springer-Verlag Berlin Heidelberg 2014

206 7 Part-of-Speech Tagging Using Rules

Table 7.1 Ambiguities in part-of-speech annotation with the sentence: That round table might
collapse

Words Possible tags Example of use
that Subordinating conjunction That he can swim is good
Determiner That white table
Adverb 1t is not that easy
Pronoun That is the table
Relative pronoun The table that collapsed
round Verb Round up the usual suspects
Preposition Turn round the corner
Noun A big round
Adjective A round box
Adverb He went round
table Noun That white table
Verb 1 table that
might Noun The might of the wind
Modal verb She might come
collapse Noun The collapse of the empire
Verb The empire can collapse

7.1.2 Which Method to Use to Automatically Assign Parts
of Speech

Grammatical constraints are not always sufficient to resolve ambiguous tags. Church
and Mercer (1993) exemplify this with the phrase / see a bird, which can be
annotated as

I/noun see/noun a/noun bird/moun

This tagging corresponds to: I/letter of alphabet, see/noun as in Holy See, a/letter
of alphabet, bird/noun. Although this tag sequence makes no sense here, it cannot
be ruled out as syntactically ill formed, because the parser must accept sequences
of four nouns in other situations, as in city school committee meeting. The proper
tagging is, of course, I/pronoun see/verb a/article bird/noun.

Semantic rules could implement common-sense reasoning and prevent inconsis-
tencies. However, this method is no longer favored. It would imply writing many
rules that could operate in very specific applications, and not on unrestricted texts.

Instead of using general grammar rules, we can consider word preferences.
Most words taken from a dictionary have only one part of speech or have a
strong preference for only one of them, although frequent words tend to be more
ambiguous. From text statistics based on different corpora, in English and in French,
Merialdo (1994) and Vergne (1999) report that 50 to 60 % of words have a unique
possible tag, and 15 to 25 % have only two tags. In both languages, tagging a word
with its most common part of speech yields a success rate of more than 75 %.
Charniak (1993) reports a score of more than 90 % for English. This figure is called

7.2 Baseline 207

the baseline. It corresponds to the accuracy obtained with a minimal algorithm, here
the word annotation with its most frequent tag.

Two efficient methods applied locally have emerged to improve this figure and to
solve reasonably well POS tagging. The first one uses rule-based constraints. Rules
consider the left and right context of the word to disambiguate, that is, either discard
or replace a wrong part of speech. Rules are symbolic and can be designed by hand
or derived automatically from hand-annotated corpora.

The second method is based on statistics. Sequence statistics are automatically
learned from hand-annotated corpora, and probabilistic models are applied that
assign the most likely tags to words of a sentence. Both methods enable us to
successfully tag more than 95 % of the words of a text. We will describe the first
one in this chapter and the second one in the next chapter.

7.2 Baseline

Before we start writing elaborate tagging algorithms, we describe first a baseline
technique that requires extremely limited efforts. The baseline term is widely used
in natural language processing to refer to a starting point that is usually easy
to implement. We use then the results obtained from the baseline to assess the
improvements brought by more elaborate algorithms.

In part-of-speech tagging, the baseline is to tag each word with its most frequent
part of speech. We can derive the frequencies from a part-of-speech annotated
corpus, such as the Penn Treebank for English. Surdeanu et al. (2008) converted
it to the CoNLL format that we described in Sect. 6.6. Using Unix commands such
as those in Sect. 5.5 makes the task very easy. In CoNLL 2008, the word forms and
their parts of speech are respectively in column 2 and 5. We extract them with the
cut -£f2,5 command and then we sort and count the lines. This can be done with
the command line:

cut -£2,5 <conll corpus file | sort | unig -c¢

The next lines show an excerpt of the results where the first column is the
frequency, the second one, the word, and the third one, the part-of-speech code.
The complete tagset is shown in Table 7.12:

6 campus NN
2 campuses NNS
908 can MD
3 can NN
5 canal NN
1 canals NNS
13 cancel VB

7 canceled VBD
26 canceled VBN
3 cancellation NN

208 7 Part-of-Speech Tagging Using Rules

Table 7.2 Initial step of Brill’s algorithm

Likely tags yielding a correct tagging Likely tags yielding a wrong tagging

English I/pro can/modal see/verb a/art bird/noun The/art can/modal rusted/verb

French Je/pro donnel/verb le/art cadeau/noun Jelpro le/art fais/verb demain/adv

German Der/art Mann/noun kommt/verb Wer/pro ist/verb der/art Mann/noun
der/art kommt/verb ?

From these frequencies, the baseline algorithm will tag can as a modal (MD) and
not as a noun (NN) and canceled as a verb past participle (VBN) and not as a verb
preterit (VBD).

7.3 Tagging with Rules

Part-of-speech tagging with rules is relatively old (Klein and Simmons 1963). In
the beginning, rules were hand-coded and yielded good results at the expense of
thoroughly and painfully crafting the rules (Voutilainen et al. 1992). The field has
been completely renewed by Brill (1995), who proposed a very simple scheme to
tag a text with rules and an algorithm to automatically learn the rules from annotated
corpora. A good deal of the current work on part-of-speech tagging with rules is now
inspired by his foundational work.

7.3.1 Brill’s Tagger

Brill’s tagger uses a dictionary and assumes that it contains all the words to tag.
Each word in the dictionary is labeled with its most likely (frequent) part of speech
and includes the list of its other legal — possible — parts of speech. Part-of-speech
distributions and statistics for each word can be derived from annotated corpora and
by using methods described in Chaps. 2 and 5.

The tagger first assigns each word with its most likely part of speech as with the
baseline. It does not depend on a morphological parser, although it could use one as
a preprocessor. It also features a module to tag unknown words that we will examine
in Sect. 7.4. Examples of likely tags assigned to words are given in Table 7.2.

The tagger then applies a list of transformations to alter the initial tagging.
Transformations are contextual rules that rewrite a word tag into a new one. The
transformation is performed only if the new tag of the word is legal — is in the
dictionary. If so, the word is assigned the new tag. Transformations are executed
sequentially and each transformation is applied to the text from left to right.
Examples of transformations are:

1. In English: Change the tag from modal to noun if the previous word is an article.
2. In French: Change the tag from article to pronoun if the previous word is a
pronoun.

7.3 Tagging with Rules

209

Table 7.3 Contextual rule templates, where A, B, C, and D denotes parts of speech, members of

the POS tagset

Rules Explanation

alter (A, B, prevtag(C)) Change A to B if preceding tag is C

alter (A, B, nexttag(C)) Change A to B if the following tag is C
alter (A, B, prev2tag(C)) Change A to B if tag two before is C

alter (A, B, next2tag(C)) Change A to B if tag two after is C

alter (A, B, prevlor2tag(C)) Change A to B if one of the two preceding tags

alter (A, B, nextlor2tag(C))

alter (A, B, prevlor2or3tag(C))

alter (A, B, nextlor2or3tag(C))

alter (A, B, surroundingtag(C,
D))

alter (A, B, nextbigram(C, D))
alter (A, B, prevbigram(C, D))

isC

Change A to B if one of the two following tags
isC

Change A to B if one of the three preceding
tagsis C

Change A to B if one of the three following
tags is C

Change A to B if surrounding tags are C and D

Change A to B if next bigram tag is C D
Change A to B if previous bigram tag is C D

3. In German: Change the tag from article to pronoun if the previous word is a noun

(or a comma.)

These rules applied to the sentences in Table 7.2 yield:

1. In English: The/art can/noun rusted/verb

2. In French: Je/pro le/pro fais/verb demain/adv
3. In German: Wer/pro ist/verb der/art Mann/noun , der/pro kommt/verb ?

Rules conform to a limited number of transformation types, called templates. For

example, the rule

Change the tag from modal to noun if the previous word is an article.

corresponds to template:

Change the tag from X to Y if the previous tag is Z.

The tagger uses in total 11 templates shown in Table 7.3. Brill reports that less
than 500 rules — instantiated templates — are needed in English to obtain an accuracy

of 97 %.

7.3.2 Implementation in Prolog

We will exemplify the tagging algorithm with an implementation of two rule

templates:

alter (A, B, prevtag(C))

alter (A, B, prevlor2tag(C))

210 7 Part-of-Speech Tagging Using Rules

These rules being instantiated in the form of:

alter (verb, noun, prevtag(art)).
alter (verb, noun, prevlor2tag(art)).

The first rule changes the tag from verb to noun if the previous word is an
article, and the second changes the tag from verb to noun if one of the two
previous words is an article. The second rule is more general than the first one.
We give the code of the first one because it is easier to start with it.

The tag predicate enables us to alter an initially tagged text:

?- tag([the/art, holy/adj, see/verbl, L).
= [the/art, holy/adj, see/noun]

=

o°

tag(+InitialTaggedText, -TaggedText)
Implementation of Brill’s algorithm

o°

tag(InitialTaggedText, TaggedText) :-
bagof (alter (FromPOS, ToPOS, Condition),
alter (FromPOS, ToPOS, Condition), Rules),
forall (Rules, InitialTaggedText, TaggedText) .

[)

% Collect all the rules and apply them sequentially

forall ([Rule | Rules], Text, TaggedText) :-
apply (Rule, Text, AlteredText),
forall (Rules, AlteredText, TaggedText) .
forall ([], TaggedText, TaggedText) .

%Apply prevtag template
apply (alter (FromPOS, ToPOS, prevtag(POS)),
[Previlord/POS, Word/FromPOS | RemainingText],

[PreviWord/POS, Word/ToPOS | RemainingTextl]) :-
L,
apply(alter (FromPOS, ToPOS, prevtag(POS)),
[Word/ToPOS | RemainingText],
[Word/ToPOS | RemainingTextl]).

apply (alter (FromPOS, ToPOS, prevtag(POS)),

[X, Y| RemainingText], [X, Y| RemainingTextl]) :-
apply(alter (FromPOS, ToPOS, prevtag(POS)),
[Y| RemainingText], [Y | RemainingTextl]).
apply(alter(, _, prevtag()), [X], [X]).

o°

Apply prevlor2tag template
The first two rules take into account that the rule
can apply to the second word of the text

o°

o°

7.3 Tagging with Rules 211

apply (alter (FromPOS, ToPOS, prevlor2tag(POS)),
[FirstWord/POS, Word/FromPOS | RemainingText],
[FirstWord/POS, Word/ToPOS | RemainingTextl]) :-
apply_aux(alter (FromPOS, ToPOS, prevlor2tag(POS)),
[FirstWord/POS, Word/ToPOS | RemainingText],
[FirstWord/POS, Word/ToPOS | RemainingTextl]).
apply (alter (FromPOS, ToPOS, prevlor2tag(POS)),

[X, Y| RemainingText], [X, Y| RemainingTextl]) :-
apply_ aux(alter (FromPOS, ToPOS, prevlor2tag(POS)),
[X, Y| RemainingText], [X, Y| RemainingTextl]).

apply aux(alter (FromPOS, ToPOS, prevlor2tag(POS)),
[Prev2Word/POS, PrevlWord/POS1l, Word/FromPOS |
RemainingText],
[Prev2Word/POS, PrevlWord/POS1l, Word/ToPOS |

RemainingTextl]) :-

|

apply aux(alter (FromPOS, ToPOS, prevlor2tag(POS)),
[PrevliWord/POS1l, Word/ToPOS | RemainingText],
[PrevliWord/POS1l, Word/ToPOS | RemainingTextl]).

apply aux(alter (FromPOS, ToPOS, prevlor2tag(POS)),
[Prev2Word/POS2, PrevlWord/POS, Word/FromPOS |
RemainingText], [Prev2Word/POS2, PrevlWord/POS,

Word/ToPOS | RemainingTextl]) :-
|

apply_ aux(alter (FromPOS, ToPOS, prevlor2tag(POS)),
[PrevliWord/POS, Word/ToPOS | RemainingText],
[PrevliWord/POS, Word/ToPOS | RemainingTextl]).
apply aux(alter (FromPOS, ToPOS, prevlor2tag(POS)),
[X, Y, Z | RemainingText],
[X, Y, Z| RemainingTextl]) :-
apply_ aux(alter (FromPOS, ToPOS, prevlor2tag(POS)),
[Y, Z| RemainingText], [Y, Z | RemainingTextl]).
apply aux(alter (FromPOS, ToPOS, prevlor2tag(POS)),
[PrevWord/POS, Word/FromPOS],
[PrevWord/POS, Word/ToPOS]).
apply aux(alter(, _, prevlor2tag()), I[X,Y], [X,Y]).

%$The ordered contextual rules
alter (verb, noun, prevtag(art)).
alter (verb, noun, prevlor2tag(art)).

212 7 Part-of-Speech Tagging Using Rules

Table 7.4 Brill’s learning algorithm

St. Operation Input Output

1. Annotate each word of the corpus withits Corpus AnnotatedCorpus(1)
most likely part of speech

2. Compare pairwise the part of speech of AnnotationReference List of errors

each word of the AnnotationReference ~ AnnotatedCorpus(i)
and AnnotatedCorpus(i)

3. For each error, instantiate the rule List of errors List of tentative rules
templates to correct the error

4. For each instantiated rule, compute AnnotatedCorpus(i) Scored tentative rules
on AnnotatedCorpus(i) the number Tentative rules

of good transformations minus the
number of bad transformations the rule
yields
S. Select the rule that has the greatest error Tentative rules Rule(i)
reduction and append it to the ordered
list of transformations

6. Apply Rule(i) to AnnotatedCorpus(i) AnnotatedCorpus(i) AnnotatedCorpus(i+1)
Rule(i)
7. If number of errors is under predefined - List of rules
threshold, end the algorithm else go to
step 2.

7.3.3 Deriving Rules Automatically

One of the most interesting features of Brill’s rules is that they can be learned
automatically from a hand-annotated corpus. This type of algorithm is called
transformation-based learning (TBL). Let us denote Corpus this corpus and An-
notationReference its hand-annotation. In the context, the hand-annotation is often
called the Gold Standard.

The TBL algorithm first assigns the most likely (frequent) tag to each word.
It produces errors, and all rules templates are instantiated for each tagging error
measured against AnnotationReference. The rule that yields the greatest error
reduction is selected and applied to alter the Corpus tagging. This process is iterated
as long as the annotation results are not close enough to AnnotationReference.

Table 7.4 shows the steps of the algorithm. Corpus annotated at iteration i of the
process is denoted AnnotatedCorpus(i). Each iteration enables us to derive a new
rule, which is denoted Rule(i).

As hand-annotated corpus, Brill (1995) used the Penn Treebank (Marcus et al.
1993). Table 7.5 lists the five most productive rules that the algorithm learned from
The Wall Street Journal annotated section of the corpus (Brill 1995).

7.3 Tagging with Rules 213

Table 7.5 The five first transformations learned from The Wall Street Journal corpus (Brill 1995),
where NN is a singular noun; VB is a verb, base form; TO is the word fo; VBP is a verb, non-third
person singular present; MD is a modal; DT is a determiner; VBD is a verb, past tense; and VBZ is
a verb, third-person singular present. These tags are defined by the Penn Treebank, and Sect. 7.5.2
details the complete tagset

Change
From To Condition
1 NN VB Previous tag is TO
2 VBP VB One of the previous three tags is MD
3 NN VB One of the previous two tags is MD
4 VB NN One of the previous two tags is DT
5 VBD VBN One of the previous three tags is VBZ

Table 7.6 A confusion matrix. The first column corresponds to the correct tags, and for each tag,
the rows give the assigned tags. Excerpt from Franz (1996, p. 124). IN is a preposition, RB is an
adverb, JJ is an adjective, RP is a particle, VBG is a verb, gerund (complete tagset in Sect. 7.5.2)

Tagger —
JCorrect DT IN 1 NN RB RP VB VBD VBG VBN
DT 994 0.3 - - 0.3 - - - - -
IN 0.4 97.5 - - 1.5 0.5 - - - -
1) - 0.1 93.9 1.8 0.9 - 0.1 0.1 0.4 1.5
NN - - 2.2 955 - - 0.2 - 0.4 -
RB 0.2 2.4 2.2 0.6 932 1.2 - - - -
RP - 247 - 1.1 126 615 - - - -
VB - - 0.3 1.4 - - 96.0 - - 0.2
VBD - - 0.3 - - - - 94.6 - 4.8
VBG - - 2.5 4.4 - - - - 93.0 -
VBN - - 4.6 - - - - 4.3 - 90.6

7.3.4 Confusion Matrices

At each iteration of TBL algorithm, we can derive a confusion matrix that shows
for each tag how many times a word has been wrongly labeled. Table 7.6 shows
an example of it (Franz 1996), which enables us to understand and track errors.
Again, parts of speech use the Penn Treebank tagset described in Sect.7.5.2. The
diagonal shows the breakdown of the tags correctly assigned, for example, 99.4 %
for determiners (DT). The rest of the table shows the tags wrongly assigned, i.e.,
for determiners: 0.3 % to prepositions (IN) and 0.3 % to adverbs (RB). This table is
only an excerpt, therefore the sum of rows is not equal to 100.

214 7 Part-of-Speech Tagging Using Rules

Table 7.7 The first five transformations for unknown words (Brill 1995), where NN is a noun,
singular; NNS a noun, plural; CD cardinal number; JJ an adjective; VBN a verb, past participle;
VBG a verb, gerund (complete tagset in Sect. 7.5.2)

Change
From To Condition
1 NN NNS Has suffix s
2 NN CD Has character .
3 NN 1 Has character -
4 NN VBN Has suffix ed
5 NN VBG Has suffix ing

7.4 Unknown Words

We have made the assumption of a finite vocabulary. This is never the case in
practice. Many words will likely be absent from the dictionary: proper and common
nouns, verbs, adjectives, or adverbs.

There is no standard technique to deal with the unknown words. The baseline
is to tag unknown words as nouns since it is the most frequent part of speech.
Another technique is to use suffixes. Brill (1995) proposes a combination of both
to extend the transformation-based algorithm. The initial step tags unknown words
as proper nouns for capitalized words and as common nouns for the rest. Then it
applies transformations from a set of predefined templates: change the tag of an
unknown word from X to Y if:

1. Deleting the prefix (suffix) x, |x| < 4, results in a word (x is any string of length
1to 4).

. The first (last) (1, 2, 3, 4) characters of the word are x.

. Adding the character string x as a prefix (suffix) results in a word.

. Word w ever appears immediately to the left (right) of the word.

. Character z appears in the word.

W A~ W N

These templates are specific to English, but they can easily be modified to ac-
commodate other European languages. Table 7.7 shows the first five transformations
learned from The Wall Street Journal corpus.

7.5 Standardized Part-of-Speech Tagsets

While basic parts of speech are relatively well defined: determiners, nouns, pro-
nouns, adjectives, verbs, auxiliaries, adverbs, conjunctions, and prepositions, there
is a debate on how to standardize them for a computational analysis. One issue
is the level of detail. Some tagsets feature a dozen tags, some over a hundred.
Another issue that is linked to the latter is that of subcategories. How many classes

7.5 Standardized Part-of-Speech Tagsets 215

Table 7.8 Parts of speech and grammatical features

Main parts of speech Features (subcategories)
Adjective, noun, pronoun Regular base comparative superlative interrogative person num-
ber case
Adverb Regular base comparative superlative interrogative
Atrticle, determiner, Person case number
preposition
Verb Tense voice mood person number case

for verbs? Only one, or should we create auxiliaries, modal, gerund, intransitive,
transitive verbs, etc.?

The debate becomes even more complicated when we consider multiple lan-
guages. In French and German, the main parts of speech can be divided into
subclasses depending on their gender, case, and number. In English, these divisions
are useless. Although it is sometimes possible to map tagsets from one language to
another, there is no universal scheme, even within the same language.

A few years ago, many computational linguists had a personal tagset. There are
now standards, but the discussion is not over. We will examine here two multilingual
part-of-speech schemes, a widely accepted tagset for English (the Penn Treebank),
and a tagset for Swedish.

7.5.1 Multilingual Part-of-Speech Tags

Building a multilingual tagset imposes the condition of having a set of common
classes, which enables a comparison between languages. These classes correspond
to traditional parts of speech and gather a relatively large consensus among
European languages. However, they are not sufficiently accurate for any language in
particular. Dermatas and Kokkinakis (1995) retained the traditional parts of speech
to tag texts in seven European languages using statistical methods. They also added
features (subcategories) specific to each language (Table 7.8).

MULTEXT (Ide and Véronis 1995; Monachini and Calzolari 1996), is a multina-
tional initiative that aims at providing an annotation scheme for all the Western
and Eastern European languages. For the parts of speech, MULTEXT merely
perpetuates the traditional categories and assigns them a code. The universal part-of-
speech tagset (Petrov et al. 2012) is more recent and almost identical, but includes
a mapping with other tagsets used in annotated corpora of 22 different languages.
Table 7.9 shows both tag sets.

MULTEXT complements the parts of speech with a set of grammatical features,
which they call attributes. Attributes enable us to subcategorize words and reconcile
specific features of different European languages. Attributes for nouns and verbs are
shown in Tables 7.10 and 7.11.

216 7 Part-of-Speech Tagging Using Rules

Table 7.9 Part-of-speech codes from MULTEXT and the universal POS tagset

Part of speech MULTEXT Universal POS tagset
Nouns N NOUN
Verbs \'% VERB
Adjectives A ADJ
Pronouns P PRON
Determiners and articles D DET
Adverbs R ADV
Adposition (Prepositions and postpositions) S ADP
Conjunctions C CONJ
Numerals M NumMm
Interjections 1 -
Residuals (abbreviations, foreign words, etc.) X X
Particles - PrT

Punctuation marks

Tab!e 7-10 Features Position Attribute Value Code
(attributes) and values for

nouns

1 Type Common c
Proper p
2 Gender Masculine m
Feminine f
Neuter n
3 Number Singular s
Plural p
4 Case Nominative n
Genitive g
Dative d
Accusative a

MULTEXT attributes concern only the morpho-syntactic layer and represent a
superset of what is needed by all the languages. Some attributes may not be relevant
for a specific language. For instance, English nouns have no gender, and French ones
have no case. In addition, applications may not make use of some of the attributes
even if they are part of the language. Tense, for instance, may be useless for some
applications.

A part-of-speech tag is a string where the first character is the main class of
the word to annotate and then a sequence of attribute values. Attribute positions
correspond to their rank in the table, such as those defined in Tables 7.10 and 7.11
for nouns and verbs. When an attribute is not applicable, it is replaced by a dash (-).
An English noun could receive the tag:

N [type=common number=singular] Nc-s-
a French one:

N [type=common gender=masculine number=singular] Ncms-

7.5 Standardized Part-of-Speech Tagsets 217

Table 7.11 Attributes

Positi Attribut Val Cod
(features) and values for verbs ostion rowte aue ode

1 Type Main

Auxiliary
Modal

2 Mood/form Indicative
Subjunctive
Imperative
Conditional
Infinitive
Participle
Gerund
Supine

3 Tense Base
Present
Imperfect
Future
Past

4 Person First
Second
Third

5 Number Singular
Plural

6 Gender Masculine
Feminine
Neuter

B gm0 Y W= h g o‘wmﬁ'-on—-omg

and a German one:

N [type=common gender=neuter number=singular
case=nominative] Ncnsn

A user can extend the coding scheme and add attributes if the application requires
it. A noun could be tagged with some semantic features such as country names,
currencies, etc.

Finally, although they are not encoded the same way, the parts of speech
and grammatical features in Tables 6.33 and 6.34 are roughly equivalent to the
MULTEXT annotation.

7.5.2 Parts of Speech for English

The Penn Treebank is a large corpus of texts annotated with part-of-speech and
syntactic tags (Marcus et al. 1993). Table 7.12 shows its part-of-speech tagset
consisting of 48 tags and Table 7.13 shows an annotation example with the sentence:

218

Table 7.12 The Penn Treebank tagset

7 Part-of-Speech Tagging Using Rules

1. CcC
2. CD
3. DT
4. EX
5. Fw
6. IN

7. 1

8 JIR
9. AN
10. LS
11. MD
12. NN
13. NNS
14. NNP
15. NNPS
16. PDT
17. POS
18. PRP
19. PRP$
20. RB
21. RBR
22. RBS
23. RP
24, SYM

Coordinating conjunction
Cardinal number
Determiner

Existential there
Foreign word
Preposition/sub. conjunction
Adjective

Adjective, comparative
Adjective, superlative
List item marker
Modal

Noun, singular or mass
Noun, plural

Proper noun, singular
Proper noun, plural
Predeterminer
Possessive ending
Personal pronoun
Possessive pronoun
Adverb

Adverb, comparative
Adverb, superlative
Particle

Symbol

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

TO
UH
VB
VBD
VBG
VBN
VBP
VBZ
WDT
WP
WPS$
WRB

to

Interjection

Verb, base form

Verb, past tense

Verb, gerund/present participle
Verb, past participle

Verb, non-third pers. sing. pres.
Verb, third pers. sing. present
wh-determiner

wh-pronoun

Possessive wh-pronoun
wh-adverb

Pound sign

Dollar sign

Sentence final punctuation
Comma

Colon, semicolon

Left bracket character

Right bracket character
Straight double quote

Left open single quote

Left open double quote
Right close single quote
Right close double quote

Battle-tested Japanese industrial managers here always buck up nervous newcomers with
the tale of the first of their countrymen to visit Mexico, a boatload of samurai warriors
blown ashore 375 years ago.

Unlike MULTEXT and the universal part-of-speech tagset, the Penn Treebank
tagset concerns only English and shows little possibility of being adapted to another
language. However, it is now widely established in the North American language
processing community and in industry.

The Penn Treebank team proceeded in two steps to annotate their corpus. They
first tagged the texts with an automatic stochastic tagger. They then reviewed and
manually corrected the annotation. Table 7.13 follows the CoNLL 2008 and 2009
format (Surdeanu et al. 2008), which is slightly different from the CoNLL 2006
format presented in Sect. 6.6:

e The lemmas in the LEMMA and PLEMMA columns are generated automatically
from a dictionary lookup with the WordNet lexical database. We will describe
this database in Chap. 15.

e The POS column corresponds to the parts of speech manually assigned by the
Penn Treebank team, while the PPOS tags — the predicted parts of speech — are
generated automatically by a POS tagger (Giménez and Marquez 2004). In the
table, we can see that the tagger made only one mistake in the annotation of buck.

7.5 Standardized Part-of-Speech Tagsets

219

Table 7.13 Sample of annotated text from the Penn Treebank using the CoNLL 2008 format

(After Marcus et al. (1993) and Surdeanu et al. (2008))

D FORM LEMMA PLEMMA POS PPOS FEAT PFEAT
1 Battle battle battle NN NN _ _
2 - - - HYPH HYPH _
3 tested tested tested NN NN _ _
4 Japanese japanese japanese 1 1 _ _
5 industrial industrial industrial 1 1 _ _
6 managers manager manager NNS NNS _ _
7 here here here RB RB _ _
8 always always always RB RB _ _
9 buck buck buck VBP VB _ _
10 up up up RP RP _ _
11 nervous nervous nervous 1) 1) _ _
12 newcomers newcomer newcomer NNS NNS _ _
13 with with with IN IN _ _
14 the the the DT DT _ _
15 tale tale tale NN NN _ _
16 of of of IN IN _ _
17 the the the DT DT _ _
18 first first first JJ JI _ _
19 of of of IN IN _ _
20 their their their PRP$ PRP$ _ _
21 countrymen countryman countryman NNS NNS _ _
22 to to to TO TO _ _
23 visit visit visit VB VB _ _
24 Mexico mexico mexico NNP NNP _ _
25 s s s s s _ _
26 a a a DT DT _ _
27 boatload boatload boatload NN NN _ _
28 of of of IN IN _ _
29 samurai samurai samurai NN NN _ _
30 warriors warrior warrior NNS NNS _ _
31 blown blow blow VBN VBN _ _
32 ashore ashore ashore RB RB _ _
33 375 375 375 CD CD _ _
34 years years years NNS NNS _ _
35 ago ago ago RB RB _ _
36

* FEAT is the set of grammatical features as in Sect. 6.6, while PFEAT is
automatically predicted. The Penn Treebank team did not annotate these features;
they are replaced with an underscore in the table.

220 7 Part-of-Speech Tagging Using Rules

Fig. 7.1 Token annotation, <tokens>

where the identifier 1d <token id="1">Bilen</token>

corresponds to the word <token id="2">framfér</token>

position <token id="3">justitieministern</token>

<token id="4">svéngde</token>
<token id="5">fram</token>
<token id="6">och</token>
<token id="7">tillbaka</token>
<token id="8">6ver</token>
<token id="9">vigen</token>
<token id="10">s&</token>
<token id="11">att</token>
<token id="12">hon</token>
<token id="13">blev</token>
<token id="14">radd</token>
<token id="15">.</token>
</tokens>

7.5.3 An Annotation Scheme for Swedish

Current annotation schemes often use XML to encode data. This enables a stricter
definition of codes through a DTD and makes it easier to use and share data.
The annotation is often split into levels that reflect the processing stages. We
describe here an example drawn from the Granska and CrossCheck projects to
process Swedish (Carlberger et al. 2004) from the Kungliga Tekniska Hogskolan
in Stockholm. The annotation scheme uses the reference tagset for Swedish defined
by the Stockholm—Umea Corpus (Ejerhed et al. 1992).

The annotation has four levels, and we will describe two of them. The first one
corresponds to tokenization. Figure 7.1 shows the token annotation of sentence:

Bilen framfor justitieministern svdngde fram och tillbaka 6ver viigen sa att hon blev ridd.
“The car in front of the Justice Minister swung back and forth and she was frightened.’

The second level contains the part-of-speech information, either with lemmas
(Fig. 7.2) or without (Fig. 7.3). In both annotations, the tokens have been replaced
by their positions. The tag attribute gives the part of speech and its features as a list
separated by dots. The first item of the list the main category; for example, nn is a
noun. The rest describes the features: utr is the utrum gender, sin is the singular
number, def means definite, and nom is the nominative case.

7.6 Further Reading

Part-of-speech tagging has a long history in language processing, although many
researchers in computational linguistics neglected it in the beginning. Early works
include Harris (1962) and Klein and Simmons (1963). Harris’ TDAP system was
reconstructed and described by Joshi and Hopely (1999).

7.6 Further Reading 221

<taglemmas>
<taglemma id="1" tag="nn.utr.sin.def.nom" lemma="bil"/>
<taglemma id="2" tag="pp" lemma="framfor"/>
<taglemma id="3" tag="nn.utr.sin.def.nom" lemma=

"justitieminister"/>

<taglemma id="4" tag="vb.prt.akt" lemma="svénga'"/>
<taglemma id="5" tag="ab" lemma="fram"/>
<taglemma id="6" tag="kn" lemma="och"/>
<taglemma id="7" tag="ab" lemma="tillbaka"/>
<taglemma id="8" tag="pp" lemma="&Jver"/>
<taglemma id="9" tag="nn.utr.sin.def.nom" lemma="v&g"/>
<taglemma id="10" tag="ab" lemma="s&"/>
<taglemma id="11" tag="sn" lemma="att"/>
<taglemma id="12" tag="pn.utr.sin.def.sub" lemma="hon"/>
<taglemma id="13" tag="vb.prt.akt.kop" lemma="bli"/>
<taglemma id="14" tag="jj.pos.utr.sin.ind.nom" lemma="r&dd"/>
<taglemma id="15" tag="mad" lemma="."/>

</taglemmas>

Fig. 7.2 Tokens annotated with their part of speech and lemma. Tokens are indicated by their
position. The tag specifies the part of speech and its features

<tags>
<tag id="1" name="nn.utr.sin.def.nom"/>
<tag id="2" name="pp"/>
<tag id="3" name="nn.utr.sin.def.nom"/>
<tag id="4" name="vb.prt.akt"/>
<tag id="5" name="ab"/>
<tag id="6" name="kn"/>
<tag id="7" name="ab"/>
<tag id="8" name="pp"/>
<tag id="9" name="nn.utr.sin.def.nom"/>
<tag id="10" name="ab"/>
<tag id="11" name="sn"/>
<tag id="12" name="pn.utr.sin.def.sub"/>
<tag id="13" name="vb.prt.akt.kop"/>
<tag id="14" name="jj.pos.utr.sin.ind.nom"/>
<tag id="15" name="mad"/>

</tags>

Fig. 7.3 Tokens annotated with their part of speech only. Tokens are indicated by their position

Brill’s tagging program marked a breakthrough in tagging with symbolic tech-
niques. It is available from the Internet for English. Roche and Schabes (1995)
proposed a dramatic optimization of it that proved ten times faster than and one
third the size of stochastic methods. Constant (1991) and Vergne (1998, 1999) give
examples of efficient symbolic taggers that use manually crafted rules.

222 7 Part-of-Speech Tagging Using Rules
Exercises

7.1. Complement Brill’s tagging algorithm in Prolog with rules alter (A, B,
nexttag(C)) andalter (A, B, surroundingtag(C, D)).

7.2. Implement Brill’s learning algorithm in Prolog or Perl with all the rule
templates.

Chapter 8
Part-of-Speech Tagging Using Statistical
Techniques

Like transformation-based tagging, statistical part-of-speech (POS) tagging assumes
that each word is known and has a finite set of possible tags. These tags can be
drawn from a dictionary or a morphological analysis. Statistical methods enable
us to determine a sequence of part-of-speech tags T = ti,1,13,...,1,, given a
sequence of words W = wy, wy, ws, ..., w,. They use an annotated corpus to train
a model and predict the correct tag when a word has more than one possible tag.

8.1 Part-of-Speech Tagging with Linear Classifiers

Linear classifiers, such as logistic regression, perceptrons, or support vector ma-
chines, which we saw in Sect. 4.4, are an efficient set of numerical techniques we
can use to carry out part-of-speech tagging. As input, the tagger reads the sentence’s
words sequentially from left to right and, using a model it has trained beforehand,
predicts the part of speech of the current word.

To train and apply the model, the tagger extracts a set of features from the
surrounding words, typically a sliding window spanning five words and centered
on the current word. Core features are the lexical values of the words inside this
window, called the context, as well as the parts of speech to the left of the current
word:

1. The lexical values are the input data to the tagger. They are produced by a
tokenizer, possibly followed by a morphological parser.

2. The parts of speech are assigned from left to right by the tagger. They are reused
by the tagger to predict the POS of the current word. The part-of-speech features
are often called dynamic because they are created at run-time.

We then associate the feature vector (w;—», wWi—1, Wi, Wi 41, Wi42, ti—2, ti—1) with
the part-of-speech tag #; at index i. Using the sentence in Table 7.13, Fig. 8.1 shows
an example of it centered on the word visit.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 223
DOI 10.1007/978-3-642-41464-0__8, © Springer-Verlag Berlin Heidelberg 2014

224 8 Part-of-Speech Tagging Using Statistical Techniques

Fig. 8.1 Extracting features ID FORM PPOS

from the Penn Treebank BOS BOS Padding
(Marcus et al. 1993) to BOS BOS

predict a part of speech. The 1 Battle NN

features are extracted from a 2 HYPH

window of five words

. .. 3 tested NN
surrounding the word visit:
the five lex1.ca1 values and the 7 the DT
two preceding POS tags
18 first 1
19 of IN
20 their PRP$
21 countrymen NNS Input features
22 to TO
23 visit VB Predicted tag
24 Mexico l
25 1,
26 a
27 boatload
34 years
35 ago
36 .
EOS Padding
EOS

* The part of speech to predict is 7,3 = VB;

e The surrounding words are w,; = countrymen, wy, = to, wp3 = Visit, Wyy =
Mexico, and wyps = ,;

* The preceding parts of speech are ;; = NNS and #,, = TO.

Table 8.1 shows more feature vectors from this sentence. They are used first to
train a model. This model is then applied sequentially to assign the tags. If we
use logistic regression, the tagger outputs a probability, P (¢;|wi—2, Wi—1, Wi, Wi 41,
Wiy, ti—2, ti—1), that we can associate with each tag of the sequence.

At the beginning and end of the sentence, the window will extend beyond the
sentence boundaries. A practical way to get rid of this is to pad the sentence —
the words and parts of speech — with dummy symbols such as BOS (beginning of
sentence) and EOS (end of sentence) or <s> and </ s>. If the window has a size of
five, we will pad the sentence with two BOS symbols in the beginning and two EOS
symbols in the end.

We extract the features from POS-annotated corpora, and we can train the models
using machine-learning libraries such as LIBLINEAR (Fan et al. 2008) for logistic
regression or LIBSVM (Chang and Lin 2011) for support vector machines. Real
systems would use more features than those from the core feature set such as the
word prefixes and suffixes, part-of-speech bigrams, word bigrams, etc. It is thus
easy to extend the set we presented.

Linear classifiers are efficient tools to implement a POS tagger. Giménez and
Marquez (2004) describe a tagger using support vector machines as well as a

8.2 The Noisy Channel Model 225

Table 8.1 The feature vectors and the parts of speech to predict

Feature vectors

ID Wi—2 Wi— wi W[_A,_] W,'+2 l‘,'_z t,'_l PPOS
1 BOS BOS Battle - tested BOS BOS NN

2 BOS Battle - tested Japanese BOS NN HYPH
3 Battle - tested Japanese industrial NN HYPH I

19 the first of their countrymen DT JJ IN

20 first of their countrymen to 1 IN PRPS$
21 of their countrymen to visit IN PRP$ NNS
22 their countrymen to visit Mexico PRP$ NNS TO

23 countrymen to visit Mexico s NNS TO VB

24 to visit Mexico s a TO VB NNP
25 visit Mexico) a boatload VB NNP |

34 ashore 375 years ago . RB CD NNS
35 375 years ago . EOS CD NNS RB

36 years ago . EOS EOS NNS RB

complete feature set. Ratnaparkhi (1996) is an early example with logistic regres-
sion. In addition to the local classification introduced in this section, Ratnaparkhi
optimized the complete part-of-speech sequence. He multiplied the output probabil-
ities from each tagging operation and searched the tag sequence so that the product:

n
T = argmax [| P(tiwi—a.wi—1. i Wit wiga. lia. li).
1,12,13,...,ty i=1
reaches a maximum. Ratnaparkhi applied a beam search to find this optimal
sequence. The Viterbi algorithm is an alternative solution to this problem that we
will study in Sect. 8.3.6.

8.2 The Noisy Channel Model

8.2.1 Presentation

The noisy channel is a second technique to find an optimal part-of-speech sequence.
It refers to Shannon’s (1948) model, where a sequence of symbols is transmitted
over a noisy channel and received in the form of a sequence of signals. Here, we
suppose that part-of-speech tags are transmitted and come out in the form of words:

t,t,t3,...,t, — noisy channel — wy, wy, ws, ..., wy.

226 8 Part-of-Speech Tagging Using Statistical Techniques

The optimal part-of-speech sequence knowing the word sequence corresponds to
the maximization of the conditional probability:

T = argmax P(t1, 62,13, ..., L|wi,wa, w3, ..., wy),
11,02,03,..,In

where we use the function argmax f(x) to denote the value of x for which f(x)
X
reaches its maximum value.
Bayes’ theorem on conditional probabilities of events A and B states that:

P(A|B)P(B) = P(B|A)P(A).

We denote P(W) = P(wy,wy,ws,...,w,) and P(T) = P(t1,t2,13,...,1).
Using Bayes’ theorem, the most probable estimate of the part-of-speech sequence
is given by:

N P(T)P(W|T)
T =argmax ———————
T P(W)
For a given word sequence, wy, wa, ws,...,w,, P(W) is constant and we can

leave it out. We can rewrite the formula as:

A

T = argmax P(T)P(W|T).
T

Such a model is called a generative model. It means that to find the most likely
part-of-speech sequence, we need to generate all the possible sequences and search
the one with the maximal probability.

However, using this brute-force technique yields an astronomic number of
sequences. In most cases, it is intractable unless we reduce the sequences to n-gram
approximations and implement an efficient search called the Viterbi algorithm.

8.2.2 The N-Gram Approximation

Statistics on sequences of any length are impossible to obtain, and at this point we
need to make some approximations on P(7") and P(W|T) to make the estimation
tractable. A product of trigrams usually approximates the complete part-of-speech
sequence:

n
P(T)=P(ti.tr,t3,... . 1)) ~ P(fl)P(f2|fl)l_[P(fiVi—z,fi—l)-
i=3

8.2 The Noisy Channel Model 227

If we use a start-of-sentence delimiter <s>, the two first terms of the
product, P(t1) P(t;|t), are rewritten as P(<s>)P(t;|<s>)P(tz|<s>,t;), where
P(<s>) = 1.

We estimate the probabilities with the maximum likelihood, Py g:

Clti—a, ti—1.1;)
Pyie(ti |ti—a, ti—1) Clatin)

Probabilities on trigrams P (¢;|t;—2, t;—1) require an estimate for any sequence of
three parts-of-speech tags. This is obtained from hand-annotated corpora. If N, is
the number of the different parts-of-speech tags, there are N, x N, x N, values to
estimate. Most of the time, annotated data is not sufficient and some sequences are
missing. Few corpora are likely to contain a reliable number of the article—article—
article sequence, for instance. We already encountered this problem of sparse data
in Chap. 5. We can solve it using a back-off strategy or a linear interpolation.

If data are missing, we can back-off to bigrams:

P(T) = P(ti.ta.13..... 1) = P(t)) [[P(tilti).
i=2

We can further approximate the part-of-speech sequence as the product of part-
of-speech probabilities:

n
P(T) = P(I],lz,l3,...,tn) % HP(I,)
i=1

And finally, we can combine linearly these approximations:
Prineartnter (£ |1i—2, ti—1) = A1 P(ti|ti—2, ti—1) + A2 P(ti]t;i-1) + A3 P (1),

with A; + A, + A3 = 1, for example, A; = 0.6, 1, = 0.3, A3 = 0.1.
Using the maximum likelihood estimate, this yields:

C(tiza, ti—1, ;) C(ti—1, ;)

PLinearInter(ti |ti—29 ti—l) == A1 C(li_z, ll‘_[) + Az

C()
C(ti-1) s N

where N is the count of words in the corpus.

We can obtain optimal A values by using a development set: a part of the hand-
annotated corpus distinct from the training set and the test set dedicated to the fine-
tuning of parameters. After learning the probabilities from the training set, we will
run the part-of-speech tagger on the development set. We will vary the A values until
we find the triple that yields the best accuracy. We will finally apply the POS tagger
to the test set to know its real accuracy.

228 8 Part-of-Speech Tagging Using Statistical Techniques

nne/ VERB
le/PROnne/N OUN

The complete word sequence knowing the part-of-speech sequence is usually
approximated as:

Fig. 8.2 Possible sequences
of part-of-speech tags, where
PRO denotes a pronoun,
ART, an article, NOUN, a
noun, and VERB, a verb

P(W|T) = P(wi.wa.ws.....walti. 2. 15, ... 1y) = [[POwilt).

i=1

Like the previous probabilities, P(w;|t;) is estimated from hand-annotated
corpora using the maximum likelihood:

Pyvie(wilt) = %

For N,, different words, there are N, x N,, values to obtain. Many of the estimates
will be 0, however. This can reflect the true parts of speech of a word; nonetheless,
it is very likely that many words will not appear with all their parts of speech in
the training corpus. To get more accurate estimates, we can smooth them with a
dictionary (Church 1988). We then extract of all the possible parts of speech of the
words in the corpus and use Laplace’s rule to smooth the values (Sect. 5.7.2).

8.2.3 Tagging a Sentence

We will now give an example of sentence tagging in French with Je le donne ‘I give
it’. Word Je is an unambiguous pronoun. Word /e is either an article or a pronoun,
and donne can be a noun (deal) or a verb (donner). Probabilistic tagging consists in
finding the optimal path from the four possible in Fig. 8.2.

Using the formulas given before, we associate each transition with a probability
product: P(w;|t;) x P(t;|ti—2,t;—1). We compute the estimate of part-of-speech
sequences along the four paths by multiplying the probabilities. The optimal tagging
corresponds to the maximum of these four values:

1. P(PRO|<s>) x P(ART|<s>,PRO) x P(VERB|PRO, ART) x P (je|PRO) x
P(le]ART) x P(donne|VERB)

2. P(PRO|<s>) x P(ART|<s>,PR0O) x P(NOUN|PRO, ART) x P(je|[PRO) x
P(le|]ART) x P(donne]NOUN)

8.2 The Noisy Channel Model 229

le/ART ' donne/VERB
JelPRO emain/ADV

dans/PRE9 Qnatinée/N OUID
donne/NOUN

Fig. 8.3 The search space, where ADV denotes an adverb and PREP, a preposition; the other tags
are as given in Fig. 8.2

\
\

\‘/l 7 /PROk
\e J

3. P(PRO|<s>) x P(PRO|<s>,PRO) x P(VERB|PRO, PRO) x P(je|[PRO) x
P(le|PRO) x P(donne|VERB)

4. P(PRO|<s>) x P(PRO|<s>,PRO) x P(NOUN|PRO,PRO) x P(je|PRO) x
P (le|PRO) x P(donne[NOUN)

This method is very simple. However, it is very costly for long sequences. The
computation with a sentence of n words and a tagset of N, tags will have an upper
bound complexity of ()", which means it is exponential.

8.2.4 The Viterbi Algorithm: An Intuitive Presentation

Using the noisy channel model as we described it is not efficient in terms of speed
and memory. This is because the algorithm has to maintain nonoptimal paths for all
the intermediate nodes in the automaton. The Viterbi algorithm is a common way to
optimize the search.

In the naive implementation, we traversed all the paths and we computed the
most probable POS sequence at the final node of the automaton, i.e., at the final
word of the sentence. The Viterbi algorithm (1967) determines the optimal subpaths
for each node in the automaton while it traverses the automaton and discards the
others. We shall extend the example of the previous section to

Je le donne demain dans la matinée.
‘I give it tomorrow morning.’

and let us consider bigrams instead of trigrams to simplify the presentation.
Figure 8.3 shows the possible POS tags and the number of possible paths, which
is 1 x2x2x1x1x2x1=8.Letus traverse the automaton from Je to dans.
The words demain and dans are not ambiguous, and we saw in the last section
that there are four possible paths at this point. Up to demain, the most likely
sequence will correspond to the most probable path out of the four we saw before:

1. P(PRO|<s>) x P(ART|PRO) x P(VERB|ART) x P(ADV|VERB) P (je|PRO)
X P(le|ART) x P(donne|VERB) x P(demain|ADV)

2. P(PROJ<s>)x P(ART|PRO) x P(NOUN|ART) x P(ADV|NOUN) P (je|PRO)
x P(le|ART) x P(donne|[NOUN) x P (demain|ADV)

230 8 Part-of-Speech Tagging Using Statistical Techniques

3. P(PRO|<s>) x P(PRO|PRO) x P(VERB|PRO) x P(ADV|VERB) P (je|PRO)
x P(le|PRO) x P(donne|VERB) x P (demain|ADV)

4. P(PRO|<s>)x P(PRO|PRO) x P(NOUN|PRO) x P(ADV|NOUN) P (je|PRO)
x P(le|PRO) x P(donne|NOUN) x P(demain|ADV)

Demain has still the memory of the ambiguity of donne: P(ADV|VERB) and
P(ADVINOUN). This is no longer the case with dans. According to the noisy
channel model and the bigram assumption, the term brought by the word dans is
P (dans|PREP) x P(PREP|ADV). It does not show the ambiguity of le and donne.
The subsequent terms will ignore it as well.

This means that the optimal POS tag sequence of words before dans is already
determined even if we have not yet reached the end of the sentence. It corresponds
to the highest value of the four paths. It is then sufficient to keep it with the
corresponding path. We can forget the others. This is the idea of the Viterbi
optimization. We will describe the algorithm rigorously in the next section.

8.3 Markov Models

When we tagged words with a stochastic technique, we assumed that the current
word’s part of speech depended only on a couple of words before it. This limited
history is a frequent property of many linguistic phenomena. It has been studied
extensively since the end of the nineteenth century, starting with Andrei Markov.
Markov processes form the theoretical background to stochastic tagging and can be
applied to many problems. We introduce them now.

8.3.1 Markov Chains

A Markov chain or process is a sequence {Xi, X»,..., X,}, where X, denotes
a random variable at time ¢. Variables have their values in a finite set of states
{q1, . ..,qu}, called the state space. Following Rabiner (1989), processes are
Markovian if they have the following properties:

* A limited history. The current state depends only on a constant number of pre-
vious states: one in first-order processes, P(X;, = ¢;|X1,..., X;—1) = P(X, =
q;|X,~1), and two in second-order processes P(X; = ¢;|Xi,...,X;—1) =
P(X: = qj|Xi—2, Xi—1).

* Independent of time ¢. For first-order processes, this means that they can be
represented as a transition matrix with coefficients P(X, = q;|X;—1 = ¢;) = ay;,

N
1 <i,j < N, with ordinary probability constraints zpjl aj=1,and a; > 0.
j=
Markov chains define random transitions from one state to another one. We can
represent them as probabilistic or weighted automata. We just need to augment
transitions of automata we used in Chap.2 with a probability. Unlike ordinary

8.3 Markov Models 231

Fig. 8.4 A Markov chain
representing bigram
probabilities as
part-of-speech transitions
(numbers are fictitious and
transitions are not complete).
It uses the universal POS
tagset (Petrov et al. 2012)
shown in Table 7.9

automata, the initial state can be any state in the set and will be modeled by a
probability at time 1. The probability of initial states is 7; = P(X; = ¢;), with

Np
Z]T,’ =1.

l lIn the case of natural language processing, “time sequence” is not the most
relevant term to describe the chain. More appropriately, the sequence corresponds
to the word flow from left to right and ¢ to the word position in the sequence. It
is easy then to see that first-order processes reflect part-of-speech bigrams, while
second-order processes correspond to trigrams. Figure 8.4 shows partial bigram
probabilities using a Markov chain (numbers are fictitious and transitions are not
complete). For part-of-speech tagging, a;; coefficients correspond to probabilities of
part-of-speech bigrams computed over the tagset.

8.3.2 Trellis Representation

Instead of using an automaton, we can represent a Markov process as a trellis, where
states are a function of the time (the word’s indexes, here). In part-of-speech tagging,
the vertical axis corresponds to the different part-of-speech values (the states) and
the horizontal axis corresponds to the part-of-speech sequence (Fig.8.5). All the
possible bigram combinations are represented as arrows from states at time ¢ — 1 to
states at time ¢ and » is the sentence length.

A trellis is a compact graphical representation of all the possible paths of length
n with all the possible POS sequences. The bold lines on Fig. 8.5 is one of these
paths that corresponds to the sequence: DET, ADV, ADJ, NOUN.

8.3.3 Hidden Markov Models

Markov chains provide a model to the part-of-speech sequence. However, this
sequence is not directly accessible since we usually only have the word sequence.

232 8 Part-of-Speech Tagging Using Statistical Techniques

NOUN
VERB
ADJ
ADV
PRON
DET @
ADP
NumMm
CONJ
PRrT
x

14 In

w1 wo w3 w4 Wn

Fig. 8.5 A trellis that represents the states as the vertical axis and the time as the horizontal axis.
The states g1, q», ... q12 represent the possible part-of-speech values, here from the universal POS
tagset (Petrov et al. 2012). The discrete time values are the indices in the part-of-speech sequence:
t, ty, t3, ..., t, corresponding to the word sequence wy, wa, ws, ..., w,, where n is the sentence
length. The bold lines correspond to the part-of-speech sequence: DET, ADV, ADJ, NOUN

Hidden Markov models (HMM) are an extension to the Markov chains that make
it possible to include the words in the form of observed symbols. Each state of an
HMM emits a symbol taken from an output set along with an emission probability.
HMMs are then a stochastic representation of an observable output generated by
a hidden sequence of states. They enable us to compute the probability of a state
sequence (the parts of speech) given an output or observation sequence (the words).

We saw that part-of-speech tagging uses a stochastic formula that comprises two
terms: P(T) and P(W|T). The first one, P(T), corresponds to a Markov chain
where transition probabilities between states represent the part-of-speech bigrams.

8.3 Markov Models 233

Fig. 8.6 Each state in the
trellis is augmented with
word emission probabilities,
here for a given tag, where
N, is the total number of
different words in the
vocabulary

Table 8.2 The hidden Markov model notation and its application to part-of-speech tagging

HMM notation Application to POS tagging

S =1{41.92. 93qn,} is a finite set of The set of parts of speech.
states.

V = {vi,v2,v3,...,vp,} i an output The set of words, the vocabulary.
alphabet: a finite set of symbols.

O = {01,0,,03,...,0,} is the output or Each part of speech emits one word taken in the
observation sequence, with 0; € V vocabulary. This is what we observe.
obtained from a sequence of states.

A = {ay} is a state transition matrix. The bigram probabilities P(ty = q;|tx—1 = g;).

B = {b; (vk)} are the emission probabilities The conditional probability to observe a word
of symbol vy in state j. given a part of speech P (wyt;).

IT = {m;} are the initial state probabilities. The probability of the first part of speech.

The second term, P(W|T), is an HMM superimposed on the chain. It augments
each state with the capacity to emit a word using a probability function P (w;|t;)
that measures the association between the parts of speech and the words (Fig. 8.6).
Although a state — a part of speech — can emit any word in the model, most
probabilities will be 0 in reality. This is because words have a finite number of
possible parts of speech, most of the time, as we saw, only one or two.

The formal definition of HMMs is based on the Markov chains where we add
the emission properties. Table 8.2 shows the notation and its application in part-of-
speech tagging.

8.3.4 Three Fundamental Algorithms to Solve Problems
with HMMs

Hidden Markov models are able to represent associations between word and parts-
of-speech sequences. However, they do not tell how to solve the annotation problem.
We need complementary algorithms for them to be useful. More generally, problems

234 8 Part-of-Speech Tagging Using Statistical Techniques

to solve fall into three categories that correspond to three fundamental algorithms
(Rabiner 1989):

» Estimate the probability of an observed sequence. This corresponds to the sum of
all the paths producing the observation. It is solved using the forward procedure.
In the specific case of POS tagging, it will determine the probability of the word
sequence. Although the forward procedure is not of primary importance here, it
is fundamental and has many other applications.

e Determine the most likely path of an observed sequence. This is a decoding
problem that is solved using the Viterbi algorithm.

* Determine (learn) the parameters given a set of observations. This algorithm is
used to build models when we do not know the parameters. It is solved using the
forward-backward algorithm.

We now present the algorithms where we follow Rabiner (1989).

8.3.5 The Forward Procedure

The first problem to solve is to compute the probability of an observation sequence
O = {01,02,03,...,0,}, givena HMM model A = (A4, B, 7).

Let us start with only one sequence of states Q = {s1, 52, 53,...,8,}, withs; € S.
The observation probability is the probability of the state sequence we consider:

PQR) = 7, [T Plslsi-).

= 5 Ug15,0s5553 « - - A, 15,5

multiplied by the product of each observation probability given the state it is emitted
from in the sequence:

P(010.1) = [T Plorlsi.2).
= by, (01)bs,(02)by;(03) . . . by, (0y).

In HMMs, any sequence of states can produce the observation. This means that
the observation probability is the sum of observation probabilities for all the possible
state combinations:

> P(O|Q, M) P(QIN),
AlIQ
= Z ”slbsl (Ol)aslszbsz (Oz)asz.§3b53 (03) ceels, s, b(on)-

Allsy,s2,...,5,

PO}

8.3 Markov Models 235

Fig. 8.7 Transitions from
states 41, 42,43,qn, at
time 7 to state ¢; at time
t+ 1. Wehave o, (j) =

N,

bj(0i41) X - ar(iday

i=

o (i) (i=1.n,) &% 11(J)

This method, however, is intractable for long sequences because of its complexity,
(N

The forward procedure simplifies the brute-force method by factoring all paths
incoming into a state at time ¢. This means that at each instant of time of the
observation sequence, we maintain exactly N, paths: the number of different states.

Let us denote «, (j) the probability of an observation 0y, 07, 03, ..., 0;, with the
condition that we are in state g; at time 7: P(01,02,03,...,0;,8 = ¢j|A). We
compute o,1(j) by induction with transitions from all states at time ¢ to state i
at time ¢ + 1. Figure 8.7 shows how «; (i) values with i ranging from 1 to N, are
summed to obtain o, 1(J).

We can compute an observation probability with a matrix reproducing the
structure of the trellis in Fig. 8.5. The algorithm iteratively fills the trellis columns
from left to right. Each column is an array of length N, corresponding to the number
of states where we store the probabilities of the observation so far. The element of
index i in the #th column contains the « (i) value at time 7.

The first step of the algorithm fills the first column with the initial probabilities.
The induction loop updates the values from 7 to # 4+ 1 by summing all the incoming
transitions for each element in the (¢ + 1)th column from the ¢th column (Table 8.3).
Finally, we obtain the observation probability by summing all the elements of the
last column in the matrix. The complexity of this algorithm is O((N,)? - n).

236 8 Part-of-Speech Tagging Using Statistical Techniques

Table 8.3 The forward procedure: N, is the number of states and 7 is the length of the sequence

Steps Operations
1. Initialization ai(i) = mibi(01),1<i <N,
NI’
2. Induction a1(j) =bj(0r41) X D oy(i)aj, 1 < j <Npandl1 <t <n-—1
N, i=1
3. Termination POIN) = > a,(i)

i=l1

Table 8.4 The Viterbi algorithm: N, is the number of states and 7 is the length of the sequence

Steps Operations
1. Initialization 81(i) = mibi(01),1 <i <N,

Yi1(i) = null
2. Induction 8i+1(j) =bj(0141) X ! ma;;, 8,()aj,1 < j<Np,andl <t <n-—1

=i=Np
Vip1(j) = arg max & (i)ay
I<i<N,
3. Termination Px = max §,()
1<i<N,

Sp* = arg max_ §,(i)
I<i<N,

The optimal path sequence is given by the backtracking:
Sy S = U (8))s Sy = Yn—a (S).

8.3.6 Viterbi Algorithm

The Viterbi algorithm is an efficient method to find the optimal sequence of states
given an observation. As with the forward procedure, it iterates from¢ = 1tot =n
and searches the optimal path leading to each state in the trellis at time .

Let us denote &;(j) the maximal probability of an observation 01, 05,03, ..., 0;
with the condition that we are in state g ; at time {:

max P(s1,82,...,8-1,01,02,03,...,0:, 8 = qj|A),
81,5208t —1

and ¥, (j) the corresponding optimal path.

The Viterbi algorithm resembles the forward procedure. It moves from left to
right iteratively to fill the columns in the trellis. Each column element contains the
most probable path, ¥ (), to reach this element and its probability §(;). In fact,
¥ (j) just needs to store the preceding state in the optimal path.

The first step of the algorithm fills the first column with the initial probabilities.
The induction loop updates the values from ¢ to ¢ 4 1 by taking the maximum of
all the incoming transitions for each element in the (¢ + 1)th column and the node
that led to it. Finally, we determine the most probable path from the maximum of
all the elements of the last column in the matrix. We backtrack in the matrix to find
the state sequence that led to it, for instance, using back pointers (Table 8.4).

8.3 Markov Models 237

i\O) 0o 83 04 O5 O 07 Og
PREP 0 4
ADV 0 /1~
PRO 0 /// _%
VERB [0 V /s
NOUN [0 1/ »
ART 0 7
<s> 1.0 0 0 0 0 0 0 0
<s> Je le donne | demain | dans la matinée

Fig. 8.8 The Viterbi algorithm applied to the sentence <s> Je le donne demain dans la matinée

The Viterbi algorithm is a dynamic programming technique comparable to
the computation of the min-edit distance. Its implementation also uses a table.
Figure 8.8 shows how to fill the three first columns with the sentence <s> Je le
donne demain dans la matinée.

We start the sentence with §;(<s>) = 1.0 and §;(i) = O for the rest of the
indicesi # <s>. This means that in the first column, all the cells equal 0, except for
one. The computation of the second column is easy. Each cell i is filled with the term
P(i|<s>) x P(Jeli), with i € {PREP, ADV, PRO, VERB, NOUN, ART, <s>}.
The algorithm really starts with the third column. For each cell j, we compute

max P(jli) x P(le|j) x 8(i).
1
The pronoun cell, for instance, is filled with

max P(PROIi) x P(le|PRO) x 8,(i).

This process is iterated for each column to the end of the matrix.

8.3.7 The Backward Procedure

We have computed the estimation of an observation from left to right. Although less
natural, we can also compute it from right to left. We now present this backward
procedure to introduce the forward—backward algorithm in the next section.

The backward variable B,(j) = P(0/41,0i42,0i43,...,04|5; = qj,A) is the
probability of an observation 0,41, 042, 0;+3, - - . , 0, With the condition that we are
in state ¢; at time . We compute 3, (i) by induction with transitions from state i at
time ¢ to all states at time ¢ + 1. Figure 8.9 shows how f;41(i) values are summed
to obtain f;, and Table 8.5 shows the procedure.

238 8 Part-of-Speech Tagging Using Statistical Techniques

Fig. 8.9 Transitions from
state ¢; at time ¢ to states

41,492,493,4N, at time
t + 1. We have 8,(i) =

Np
L ;@41 ()
=

B: (i) Br1(/)(j=1.n,)

Table 8.5 The backward procedure: N, is the number of states and 7 is the length of the sequence

Steps Operations
1. Initialization Bu(iy=1,1<i <N,
Nﬂ
2. Induction B:(i) = > ajbj(0r+1)Bi41(),1 < j < Np,andfort =n—1tot = 1.
=1
J v,
3. Termination P(O|N) = Y mibi(01)B1(i)
i=1

8.3.8 The Forward-Backward Algorithm

The forward-backward algorithm will enable us to derive the a; and b;(o;)
coefficients, here P(w;|t;) and P(#|t;—;), from raw, unannotated texts. Although
this yields results inferior to those obtained from a hand-annotated corpus, it makes
it possible to build a part-of-speech tagger when no annotation is available.

The forward-backward algorithm is referred to as an unsupervised learning
method, because no additional information is available except the text. This is
opposed to supervised learning, when the algorithm has access to some sort of
reference annotation.

8.3 Markov Models 239

Table 8.6 Iterative estimation of P (f;|¢;—;) (figures are fictitious)

Estimates used to tag the Estimates derived from the
Steps corpus tagged corpus
Initial estimates P(PRO|PRO) = 0.2

P(ART|PRO) = 0.2

P(VERB|PRO) = 0.6
We tag the corpus and we derive P(PRO|PRO) = 0.15

new estimates P(ART|PRO) = 0.05
P(VERB|PRO) = 0.8

Second estimates P(PRO|PRO) = 0.15
P(ART|PRO) = 0.05
P(VERB|PRO) = 0.8
We retag the corpus and we derive P(PRO|PRO) = 0.18
estimates P(ART|PRO) = 0.02
P(VERB|PRO) = 0.9
Third estimates P(PRO|PRO) = 0.18
P(ART|PRO) = 0.02
P(VERB|PRO) = 0.9

Informal Presentation

The idea of the forward-backward algorithm is to guess initial estimates to
P(t;]t;—1) and P(w;|t;) and tag the corpus. Once we have a tagged corpus, we can
derive new estimates of P (w;|t;) and P (¢;|t;—) that we will use to retag the corpus.
We repeat the process until it converges (Table 8.6).

However, we have no guarantee that the algorithm converges, and when it
converges, we can also hit a local maximum. In the latter case, the learning
procedure will stop without finding correct figures. This is the drawback of this
method. For this reason, some quantity of hand-annotated data is always preferable
to a raw corpus (Merialdo 1994).

The Algorithm

In the presentation above, we had to tag the text before we could derive new
estimates of probabilities P (#;|¢;—1) and P (w;|t;), or more generally a;; and b; (o).
In fact, we can avoid the tagging stage. The coefficients can be computed directly
using the forward procedure. We will reestimate a;; at step k of the estimation
process from estimates a;; at step k — 1.

The algorithm idea is to consider one observation — one word — and then to
average it on all the other observations — the whole sentence. For one specific
observation b; (0;41) at time ¢ + 1, corresponding here to the word of index ¢ + 1,
the transition probability from state s, = g; to state 5,41 = ¢; corresponds to

240 8 Part-of-Speech Tagging Using Statistical Techniques

Fig. 8.10 Transition from
state g; at time ¢ to state ¢; at

time ¢ + 1 with observation
0,41 (After Rabiner (1989)) @

t—1 t t+1 t+2

D— Bror(f)——

Et(l’j) P(stzqi’st+1=qj|0?k)’

_ P(si=qi, 541 =4;,0[})
P(0l4)
P(s; = qi, 5141 = q;, O|})
> > P(St:%»st-i-l:qj’ou)‘

1<i<N, 1<j<N,

’

We can use the forward and backward probabilities to determine the estimate.
Figure 8.10 shows how to introduce them in the equation.
We have:
60)) = ~ Ollvt(i)aijbj(01+1)ﬂt+l(j)
4 P
2:] Z] o (D)aib;(0r+1)Bi+1(J)
i=1j=

NP
We denote y,(i) = Y & (i, j) the probability to be in state ¢; at time ¢.
j=1
To consider all the observations, we sum & (i, j) fromt = 1 tot = n — 1.
n—1

The expected number of transitions from state ¢; to state ¢; is) & (i, j), and
=1

8.4 POS Tagging with the Perceptron 241

n—1

the expected number of transitions from state ¢; is Y ¥,(i). The last sum also
=1

corresponds to the number of times we are in state ¢;. We derive:

* The new estimate of a;;:

~ _ expected number of transitions from state ¢; to state g,
v expected number of transitions from state ¢; ’

n—1
t;é(i,j)

n—1

Z + (i)
¢ The initial state estimates 7; = y;(i).
¢ The observation estimates:

b () = expected number of times in state ¢; and observing symbol %
k expected number of times in state ¢;

n
or=ved<t<t Y Vi(i)

t=1

3 i)

t=1

8.4 POS Tagging with the Perceptron

Hidden Markov models use maximum likelihood estimates of P (w;|t;) and
P(t|ti—>,t;—1) to find the optimal part-of-speech sequence. Instead of computing
these values from a corpus, Collins (2002) applied the perceptron algorithm to
derive equivalent parameters iteratively. This method yields state-of-the-art results
and we describe it here. For a description of the perceptron, see Sect. 4.7.

Let us rewrite the optimal part-of-speech sequence from Sect. 8.2 using a trigram
approximation and logarithms. We have:

T = argmax (log P(T') + log P(W|T)),
T

n
= arg max (log P(t;) +log P(t2]t1) + >_ log P(t;|ti—2, ti—1)
T

i=3

+ 2": log P(Wi|fi)) .

i=1

242 8 Part-of-Speech Tagging Using Statistical Techniques

Let us denote oy, _,,_,, and o, ,, the parameters equivalent to P(t; |ti—2,ti—1)
and P (w;|t;), respectively. The optimal sequence corresponds to the maximal score:

“ n n
T = argmax (Z O oty T Z ali.Wi) ’
i=l1

T i=1

where 7_, and 7_ are start-of-sentence symbols.
The idea in Collins (2002) is simple. We first create o parameters for each
possible trigram sequence x, y, z and tag-word pair ¢, w and we initialize them:

* Oyyx < Oand o, < 0.

We then apply the perceptron to learn these o parameters. For each sentence of
the training corpus, we compute the maximal score using the Viterbi algorithm and
we assign the corresponding POS tags to the sentence words. We then update the
o parameters with the number of tagging errors in this sentence. Given a sentence
of the corpus wy, ..., w,, its hand-annotated part-of-speech sequence 1, . . ., f,,, and
the tagger output #{, . . . 7, , the update rules are:

* Oyyx < Oyyx + €1 — ¢z, Where ¢ and ¢, are the respective counts of x, y,z
trigrams in the 1, ..., 7, and #{, . .. 7, sequences.

* o, < o4, + €] — ¢y, where ¢ and ¢, are the respective counts of w, ¢ pairs in
thet;,....t, and t{, .. .1, sequences.

We repeat this procedure N times over the training corpus, N being the number of
epochs.

Let us exemplify the update rule with a slightly modified sequence from Collins
(2002). If the training corpus has the sentence:

the/DT boy/NN hit/VBD the/DT ball/NN

and the tagger outputs:
the/DT boy/NN hit/NN the/DT ball/NN

The update rule will add one to the parameters:

QDT.NN,VBDs NN,VBD,DT> ¥VBD,DT.NN andaVBD,hit

and subtract one to:

O/DT,NN,NNs ONN,NN, DT> &NN,DT,NN» andoenN pi; -

In his original perceptron, Collins (2002) used more features than the POS
trigrams and tag-word pairs described here. For the complete list of features, see
Ratnaparkhi (1996).

8.5 Tagging with Decision Trees 243

Fig. 8.11 A decision tree to
estimate POS frequencies
where NN is a noun, DET, a
determiner, and ADJ, an
adjective (After Schmid
(1994))

yes

NN 70%
ADJ 10%

8.5 Tagging with Decision Trees

As another alternative to hidden Markov models, we can replace the maximum
likelihood with decision trees induced from an annotated corpus. The tagging
performance could be superior when the training set is small.

TreeTagger (Schmid 1994, 1995) is a stochastic tagger that replaces the max-
imum likelihood estimate with a binary decision tree to estimate P(f;|t;—>,t;—1).
Figure 8.11 shows an example of an imaginary tree where the conditional probabil-
ity P(NN|DET, ADJ) is read from the tree by examining #_; and 7_,, here ADJ and
DET, respectively. The probability estimate is 0.70.

The decision tree is built from a training set of POS trigrams 7_,, f_, ty extracted
from an annotated corpus. The condition set is z—; = v, withi € {I,2} andv € S,
where S is the tagset.

The idea is to use the entropy of the POS trigams where the random variable is
to. The entropy is then defined as:

— " P(t9) log, P(1y).

tHHES

If the total number of tokens is N, the entropy is estimated as:

C C
Z 1(\?0) log,](\;0)

1ES

The decision tree minimizes the information it needs to identify the third tag,
to, given the two preceding tags, 7_, and 7_;. This reflects the minimal amount of
information brought by the third tag of a trigram.

244 8 Part-of-Speech Tagging Using Statistical Techniques

To find the root node, the algorithm creates all the possible partitions of the
training set according to the values of 7_, and 7_;. It computes the weighted average
of the entropy of the positive and negative examples. The root condition corresponds
to the values i and v with i € {1,2} and v € S that minimize

p C(to,1—i =) C(to,t—; = V) n C(to, 1—i #v)
- log, - Z
p+n p p+n n

tHHES HES

C(to. t—i #V)
2

x log

where p is the count of the trigrams that pass the test to be the root condition, and
n is the count of trigrams that do not pass the test. C(¢y,7—; = v) is the count of
trigrams ¢_,, f_1, to that pass the test and where the third tag is #, and C(¢o, 7—; # v)
the count of trigrams that do not pass the test and where the third tag is 7.

The algorithm stops expanding the tree and creates a leaf when the next node
would gather a number of positive or negative trigrams below a certain threshold, 2,
for example.

8.6 Unknown Words

For stochastic taggers, the main issue to tag unknown words is to estimate P (w|t).
Carlberger and Kann (1999) proposed to use suffixes or, more precisely, word
endings to compute the estimate. They counted the number of word types with
common word endings of length i, C(wu4—;, t), for each tag ¢ in the tagset, with i
ranging from O to L. The estimate P (w|t) for an unknown word is then

C(Wend—i s t)

retagset € Wena—i. 7).

L
Pest(w|[) = o
2y

where «; are parameters optimized on the training set. They tried their formula with
increasing values of L, and they found that tagging accuracy did not improve for
L >5.

If L =0, Pgu(wlt) = % corresponds to the proportion of part of

speech ¢ among the word types.

We can also use word prefixes and suffixes, this time in the form of features,
with taggers based on linear classifiers (Sect. 8.1) or Collins’ perceptron (Sect. 8.4).
Ratnaparkhi (1996), for example, used prefixes and suffixes ranging from 1 to 4
letters, to represent rare or unknown words.

8.7 An Application of the Noisy Channel Model: Spell Checking 245

8.7 An Application of the Noisy Channel Model:
Spell Checking

An interesting application of the noisy channel model is to help a spell-checker rank
candidate corrections (Kernighan et al. 1990). In this case, the source sequence is a
correct string ¢ that produces an incorrect one called the typo ¢ through the noisy
channel. The most likely correction is modeled as

¢ = argmax P(c) P(t|c).

Possible typos are deletion, insertion, substitutions, and transpositions. In their
original paper, Kernighan et al. (1990) allowed only one typo per word. Typo
frequencies are estimated from a corpus where:

¢ del(xy) is the number of times the characters xy in the correct word were typed x
in the training set.

¢ ins(xy) is the number of times x was typed as xy in the training set.

e sub(xy) is the number of times the character y was typed as x.

* trans(xy) is the number of times xy was typed as yx in the training set.

P(t|c) is estimated as:

dellCci1.¢) it jetetion,

C(ci-1.¢i)

. i1, L .

msécl—ll) if insertion,

P(le) = (ci—1)

sub(ti, ¢;) if substitution,
C(C,‘)

1 i i 1 iti

frans(€i. Ci+1) ¢ anposition.
C(ci,civ1)

where ¢; is the ith character of ¢, and ¢; the ith of ¢.

The algorithm needs four confusion matrices, of size 26 x 26 for English, that
contain the frequencies of deletions, insertions, substitutions, and transpositions.
The del matrix will give the counts del(xy), how many times y was deleted after x
for all the letter pairs, for instance, del(ab).

The matrices can be obtained through hand-annotation or automatically. Hand-
annotation is expensive, and Kernighan et al. (1990) described an algorithm to
automatically train the matrices. It resembles the forward—backward procedure
introduced in Sect. 8.3.8.

The training phase initializes the matrices with equal values and applies the
spelling algorithm to generate a correct word for each typo in the text. The pairs
typo/corrected word are used to update the matrices. The algorithm is repeated on
the original text to obtain new pairs and is iterated until the matrices converge.

246 8 Part-of-Speech Tagging Using Statistical Techniques

8.8 A Second Application: Language Models for Machine
Translation

Natural language processing was born with machine translation, which was one of
its first applications. Facing competition from Russia after the Second World War,
the government of the United States decided to fund large-scale translation programs
to have quick access to documents written in Russian. It started the field and resulted
in programs like SYSTRAN, which are still in use today.

Given the relatively long history of machine translation, a variety of methods
have been experimented on and applied. In this section, we outline how language
models and statistical techniques can be used to translate a text from one language
into another one. IBM teams pioneered statistical models for machine translation in
the early 1990s (Brown et al. 1993). Their work is still the standard reference.

8.8.1 Parallel Corpora

Parallel corpora are the main resource of statistical language translation. Admin-
istrative or parliamentary texts of multilingual countries are widely used because
they are easy to obtain and are often free. The Canadian Hansard or the European
Parliament proceedings are examples of them. Table 8.7 shows an excerpt of the
Swiss federal law in German, French, and Italian on the quality of milk production.

The idea of machine translation with parallel texts is simple: given a sentence,
a phrase, or a word in a source language, find its equivalent in the target
language. The translation procedure splits the text to translate into fragments, finds
a correspondence for each source fragment in the parallel corpora, and composes
the resulting target pieces to form a translated text. Using the titles in Table 8.7, we
can build pairs from the phrases transport du lait ‘milk transportation’ in French,
Milchtransport in German, and trasporto del latte in Italian.

The idea of translating with the help of parallel texts is not new and has been
applied by many people. A notable example is the Egyptologist and linguist Jean-
Frangois Champollion, who used the famous Rosetta Stone, an early parallel text,
to decipher Egyptian hieroglyphs from Greek.

8.8.2 Alignment

The parallel texts must be aligned before using them in machine translation.
This corresponds to a preliminary segmentation and mark-up that determines the
corresponding paragraphs, sentences, phrases, and words across the texts. Inside
sentences, aligned fragments are called beads. Alignment of texts in Table 8.7
is made easier because paragraphs are numbered and have the same number of

8.8 A Second Application: Language Models for Machine Translation 247

Table 8.7 Parallel texts from the Swiss federal law on milk transportation

German

French

Italian

Art. 35 Milchtransport

Art. 35 Transport du lait

Art. 35 Trasporto del latte

1 Die Milch ist schonend und
hygienisch in den
Verarbeitungsbetrieb zu
transportieren. Das
Transportfahrzeug ist stets
sauber zu halten. Zusammen
mit der Milch diirfen keine
Tiere und milchfremde
Gegenstinde transportiert
werden, welche die Qualitit
der Milch beeintriachtigen
konnen.

2 Wird Milch ausserhalb des
Hofes zum Abtransport
bereitgestellt, so ist sie zu
beaufsichtigen.

3 Milchpipelines sind nach
den Anweisungen des
Herstellers zu reinigen und
zu unterhalten.

1 Le lait doit étre transporté
jusqu’a I’entreprise de
transformation avec
ménagement et
conformément aux normes
d’hygiéne. Le véhicule de
transport doit étre toujours
propre. Il ne doit
transporter avec le lait
aucun animal ou objet
susceptible d’en altérer la
qualité.

2 Si le lait destiné a étre
transporté est déposé hors
de la ferme, il doit étre
placé sous surveillance.

3 Les lactoducs des
exploitations d’estivage
doivent étre nettoyés et
entretenus conformément
aux instructions du
fabricant.

1 1l latte va trasportato verso
I’azienda di trasformazione
in modo accurato e
igienico. Il veicolo adibito
al trasporto va mantenuto
pulito. Con il latte non
possono essere trasportati
animali e oggetti estranei,
che potrebbero
pregiudicarne la qualita.

2 Se viene collocato fuori
dall’azienda in vista del
trasporto, il latte deve
essere sorvegliato.

3 Ilattodotti vanno puliti e
sottoposti a manutenzione
secondo le indicazioni del
fabbricante.

sentences in each language. This is not always the case, however, and some texts
show a significantly different sentence structure.
Gale and Church (1993) describe a simple and effective method based on the

idea that

longer sentences in one language tend to be translated into longer sentences in the other
language, and that shorter sentences tend to be translated into shorter sentences.

Their method generates pairs of sentences from the target and source texts, assigns
them a score, which corresponds to the difference of lengths in characters of the
aligned pairs, and uses dynamic programming to find the maximum likelihood
alignment of sentences.

The sentences in the source language are denoted s;,1 < i < [, and the
sentences in the target language #;,1 < i < J. D(i, j) is the minimum distance
between sentences s§y,52,...,s; and t,%,...,t;, and d(source, target,; source,
target,) is the distance function between sentences. The algorithm identifies six
possible cases of alignment through insertion, deletion, substitution, expansion,
contraction, or merger. They are expressed by the formula below:

248 8 Part-of-Speech Tagging Using Statistical Techniques

| And, | the, Iprogram3 I hasy | beens | implementedg I

| Le lprogrammez | a3 I étéy | miss | eng | application; |

Fig. 8.12 Alignment (After Brown et al. (1993))

The; | poor, | don’ts | have, anys moneyg

Les; pauvres, l sonty I démunisy |

Fig. 8.13 A general alignment (After Brown et al. (1993))

D(i,j —1)+d(0,1;;0,0)

D(i —1,j)+d(s;,0,0,0)

D@ —1,j —1)+d(s:,1;;0,0)
D@i—1,j—2)+d(s;.t;:0,t;1)
DG —2,j—1) +d(si.tj;5-1,0)
DG —2,j—=2)4+d(si,t;:si—1,tj—1)

D(i, j) = min

The distance function is defined as — log P (alignment|§), with § = (I, — l;¢)/
\/117 , and where [, and [, are the lengths of the sentences under consideration, c the
average number of characters in the source language L, per character in the target
language L, and s? its variance. Gale and Church (1993) found a value of ¢ of 1.06
for the pair French—English and 1.1 for German—English. This means that French
and German texts are longer than their English counterparts: 6 % longer for French
and 10 % for German. They found s> = 7.3 for German—English and s> = 5.6 for
French—English.

Using Bayes’ theorem, we can derive a new distance function:

—log P (8|alignment) — log P (alignment).

Gale and Church (1993) estimated the probability P (alignment) of their six possible
alignments with these figures: substitution 1-1: 0.89, deletion and substitution 0—
1 or 1-0: 0.0099, expansion and contraction 2—1 or 1-2: 0.089, and merger 2-2:
0.011. They rewrote P (8|alignment) as 2(1 — P(|§])), which can be computed from
statistical tables. See Gale and Church’s original article.

Alignment of words and phrases uses similar techniques, however, it is more
complex. Figures 8.12 and 8.13 show examples of alignment from Brown et al.
(1993).

8.8 A Second Application: Language Models for Machine Translation 249
8.8.3 Translation

Using a statistical formulation, given a source text, S, the most probable
target text, T, corresponds to argmax P(7T|S), which can be rewritten as
T

argmax P(T)P(S|T). The first term, P(T), is a language model, for instance,
T

a trigram model, and the second one, P(S|T), is the translation model. In their
original article, Brown et al. (1993) used French as the source language and
English as the target language with the notations F and E. They modeled the
correspondence between a French string f = f, f5, ..., f,» and an English string,
e = €e1,67,...,¢€].

The first step is to rewrite the translation model as

P(fle) =) P(f.ale),

where a is the alignment between the source and target sentences and where each
source word has one single corresponding target word. The target word can be the
empty string. The alignment is represented by the string a = ay,as, ..., a,, where
a; is the position of the corresponding word in the English string as a; = i, which
denotes that word j in the French string is connected to word i in the English string.
When there is no connection a; = 0. In the example of Fig.8.12, we have the
alignmenta = (2,3,4,5,6,6,6).

Brown et al. (1993) proposed five models ranging from relatively simple to
pretty elaborate to work out concretely the formula. In their simplest model 1, they
introduce the simplification:

P(f.ale) = ﬁ [T¢(flea)).
j=l1

where 7(fjles;) is the translation probability of f; given e,; and ¢ a small, fixed
number.
Using the example in Fig. 8.12, the product in

P (Le programme a été mis en application, @|And the program has been implemented)
fora = (2,3,4,5,6, 6, 6) corresponds to the terms:

t (Le|the) x t (programme|program) X ¢ (a|has) x f(été|been)x
t (mis|implemented) x ¢ (en|implemented) X ¢ (application|implemented)

where ¢ values are derived from aligned corpora. Summing over all the possible
alignments, we obtain the probability of the translation of Le programme a été mis
en application into And the program has been implemented.

250 8 Part-of-Speech Tagging Using Statistical Techniques
8.8.4 Evaluating Translation

The results of automatic translation are most frequently evaluated using the bilingual
evaluation understudy (BLEU) algorithm (Papineni et al. 2002).

BLEU compares the machine translation of a text with corresponding human
translations. It uses a test set, where each sentence is translated by one or more
human beings, and computes a score for each sentence and an average on the test set.
The most basic score is a word-for-word comparison. It corresponds to the number
of machine-translated words that appear in the human translations divided by the
total number of words in the machine-translated sentence. The final score on the
test set ranges from O to 1.

Papineni et al. noted that sequences of repeated words, such as articles, could
reach high scores even if they made no sense. They modified their first algorithm
in consequence by setting a maximal count for each word. This maximal count is
computed from the human translations.

BLEU extends the word-for-word comparison to n-grams with the counts of
machine-translated n-grams matching the human translations and divided by the
total number of n-grams in the machine-translated sentence.

8.9 Further Reading

There are plenty of techniques to carry out part-of-speech tagging. We reviewed the
most popular ones in this chapter. Carlberger and Kann (1999) is a very readable
and complete text to implement a HMM tagger, while HunPos (Hal4csy et al. 2007)
is a modern, compact, and open-source implementation (http://code.google.com/
p/hunpos/).

Ratnaparkhi (1996) proposed a method similar to hidden Markov models, but
he used probability estimates from logistic regression instead of the maximum
likelihood. For a given word, the probability is conditioned on the sentence words
and the parts of speech already assigned: Progreg(fi[Wi.n,21..j) With j < i. Usually,
the sequence is limited to a window of five words.

Conditional random fields (Lafferty et al. 2001) are an extension of Ratnaparkhi’s
method that is conditioned on the complete word and tag sequences except the
current tag: Progreg(fi|Wi.n.tii—1,+1.~). In practice, the sequence is a limited
window too. Although appealing and very frequently cited, conditional random
fields did not outperform other methods until now. They are also more difficult to
train and to apply.

We briefly introduced machine translation in this chapter. Brown et al. (1993)
started the field on statistical translation models. The original article is worth read-
ing. Koehn (2010) is a recent and comprehensive overview. Statistical techniques
have tremendously improved translation quality over the 10 last years. Google
Translate is the most notable example of this trend. As notable software resources,

http://code.google.com/p/hunpos/

Exercises 251

GIZA++ (Och and Ney 2003) is a program to train alignment models available from:
http://code.google.com/p/giza-pp/ and Moses is a complete statistical machine
translation system http://www.statmt.org/moses/.

Exercises

8.1. Implement a part-of-speech tagger using logistic regression or support vector
machines. You can use LIBLINEAR or LIBSVM.

8.2. Implement the HMM part-of-speech tagging algorithm in Prolog or Perl using
unigrams.

8.3. Implement the HMM part-of-speech tagging algorithm in Prolog or Perl using
bigrams without the Viterbi algorithm.

8.4. Complement the previous program with the Viterbi search.

8.5. Implement a spell-checker in Prolog or Perl.

http://code.google.com/p/giza-pp/
http://www.statmt.org/moses/

Chapter 9
Phrase-Structure Grammars in Prolog

gotow TAoo katdyaolc 1 ¢ dOvéuatog kal prpatoc fi &E
&oplotou 6véuaTog Kol PUALTOG.
‘Every affirmation, then, and every denial, will consist of a noun
and a verb, either definite or indefinite.’

Aristotle, De Interpretatione, Chap. 10. Translated by E. M.
Edghill.

Simplicium vero enuntiationum partes sunt subjectum atque
praedicatum.

‘The parts of a simple proposition are the subject and the
predicate.’

Boethius (470-525), Introductio ad syllogismos categoricos,
In Patrologica Latina, 64, page 768 C.

Sentence — NP + VP
Chomsky (1957, Chap. 4)

Three inventions, and teachings, in their time.

9.1 Using Prolog to Write Phrase-Structure Grammars

This chapter introduces parsing using phrase-structure rules and grammars. It uses
the Definite Clause Grammar (DCG) notation (Pereira and Warren 1980), which is
a feature of virtually all Prologs. The DCG notation enables us to transcribe a set of
phrase-structure rules directly into a Prolog program.

Prolog was designed from the very beginning for language processing. It
has built-in search and unification mechanisms that make it naturally suited to
implement formal models of linguistics with elegance and concision. Parsing with
DCG rules comes down to a search in Prolog. Prolog recognizes the rules at load

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 253
DOI 10.1007/978-3-642-41464-0_9, © Springer-Verlag Berlin Heidelberg 2014

254 9 Phrase-Structure Grammars in Prolog

Fig. 9.1 The constituent

structure of The waiter -
brought the meal to the table The waiter ||| brought | the meal | t0| the table |

Fig. 9.2 The constituent
structure of The waiter

brought the meal of the day The waiter ||| brought ||| the meal || of | the day

time and translates them into clauses. Its engine automatically carries out the parse
without the need for additional programming.

Many natural language processing systems, both in academia and in industry,
have been written in Prolog. Other languages like Perl, Python, Java, or C++ are now
widely used in language engineering applications. However, much programming is
often necessary to implement an idea or a linguistic theory. Prolog gets to the heart
of the problem in sometimes only a few lines of code. It thus enables us to capture
fundamental concepts while setting aside coding chores.

9.2 Representing Chomsky’s Syntactic Formalism in Prolog

9.2.1 Constituents

Chomsky’s syntactic formalism (1957) is based on the concept of constituents.
Constituents can be defined as groups of words that fit together and act as relatively
independent syntactic units. We shall illustrate this idea with the sentences:

The waiter brought the meal.
The waiter brought the meal to the table.
The waiter brought the meal of the day.

Phrases such as the waiter, the meal, of the day, or brought the meal of the day
are constituents because they sound natural. On the contrary, the groups of words
meal to or meal of the sound odd or not complete and therefore are not constituents.

The set of constituents in a sentence includes all the phrases that meet this
description. Simplest constituents are the sentence’s words that combine with their
neighbors to form larger constituents. Constituents combine again and extend up to
the sentence itself. Constituents can be pictured by boxed groups of sentence chunks
(Figs.9.1 and 9.2).

In Fig. 9.2, the phrase the meal of the day fits in a box, while in Fig. 9.1, the meal
and to the table are separated. The reason is semantic. The meal of the day can be
considered as a single entity, and so of the day is attached to the meal. Both can
merge in a single constituent and hence fit in the same box. 7o the table is related
to the sentence verb rather than to the meal: this phrase specifies where the waiter

9.2 Representing Chomsky’s Syntactic Formalism in Prolog 255

S
/\
NP VP
P N
Dmun Verb NP PP
Dmun Prep/\NP
Det Noun
The waiter brought the meal to the table

Fig. 9.3 Tree structure of The waiter brought the meal to the table

brought something. That is why the next enclosing box frames the phrase brought
the meal to the table and not the meal to the table.

Constituents are organized around a headword that usually has the most signif-
icant semantic content. The constituent category takes its name from the headword
part of speech. So, the waiter, the meal, the day, and the meal of the day are noun
phrases (NPs), and brought the meal of the day is a verb phrase (VP). Prepositional
phrases (PPs) are noun phrases beginning with prepositions such as to the table and
of the day.

9.2.2 Tree Structures

Tree structures are an alternate representation to boxes where constituent names
annotate the tree nodes. The symbol S denotes the whole sentence and corresponds
to the top node. This node divides into two branches that lead to the NP and VP
nodes, and so on. Figure 9.3 shows the structure of The waiter brought the meal to
the table, and Fig. 9.4 the structure of The waiter brought the meal of the day.

9.2.3 Phrase-Structure Rules

Phrase-structure rules (PS rules) are a device to model constituent structures. PS
rules rewrite the sentence or phrases into a sequence of simpler phrases that describe
the composition of the tree nodes. More precisely, a PS rule has a left-hand side
that is the parent symbol and a right-hand side made of one, two, or more symbols
labeling the downward-connected nodes. For instance, rule

S — NP VP

256 9 Phrase-Structure Grammars in Prolog

S
/\
NP VP
/\
Dmun Verb NP
/\
NP PP
Dmun Prep/\NP
Det Noun
The waiter brought the meal of the day

Fig. 9.4 Tree structure of The waiter brought the meal of the day

Table 9.1 A phrase-structure grammar

Phrases Lexicon

S — NP VP Determiner — the Noun — day

NP — Determiner Noun Noun — waiter Verb — brought
NP — NP PP Noun — meal Preposition — to
VP — Verb NP Noun — table Preposition — of
VP — Verb NP PP

PP — Preposition NP

describes the root node of the tree: a sentence can consist of a noun phrase and a
verb phrase.

A phrase-structure grammar is a set of PS rules that can decompose sentences
and phrases down to the words and describe complete trees. The phrase categories
occurring in Figs. 9.3 and 9.4 are sentence, noun phrase, verb phrase, and prepo-
sitional phrase. In the phrase-structure formalism, these categories are called the
nonterminal symbols. Parts of speech or lexical categories here are determiners
(or articles), nouns, verbs, and prepositions. PS rules link up categories to rewrite
the sentence and the phrases until they reach the words — the terminal symbols.
Table 9.1 shows a grammar to parse the sentences in Figs. 9.1 and 9.2.

The first rule in Table 9.1 means that the sentence consists of a noun phrase
followed by a verb phrase. The second and third rules mean that a noun phrase
can consist either of a determiner and a noun, or a noun phrase followed by a
prepositional phrase, and so on. The left constituent is called the mother of the
rule, and the right constituents are its expansion or its daughters. The sequence
of grammar rules applied from the sentence node to get to the words is called a
derivation.

9.2 Representing Chomsky’s Syntactic Formalism in Prolog 257
9.2.4 The Definite Clause Grammar (DCG) Notation

The translation of PS rules into DCG rules is straightforward. The DCG notation
uses the -->/2 built-in operator to denote that a constituent can consist of a
sequence of simpler constituents. DCG rules look like ordinary Prolog clauses
except that the operator - - >/ 2 separates the head and body instead of : - /2. Letus
use the symbols s, np, vp, and pp to represent phrases. The grammar in Table 9.1
corresponds to DCG rules:

S --> np, vVp.
np --> det, noun.
np --> np, pp.

vp --> verb, np.

vp --> verb, np, pp.
pp --> prep, np.
DCG rules encode the vocabulary similarly. The left-hand side of the rule is

the part of speech, and the right-hand side is the word put inside a list — enclosed
between brackets:

det --> [thel.
det --> [a].

noun --> [waiter].
noun --> [meall].
noun --> [table].
noun --> [day].

verb --> [brought].
prep --> [to].
prep --> [of].

The Prolog search mechanism checks whether a fact is true or generates all the
solutions. Applied to parsing, the search checks whether a sentence is acceptable to
the grammar or generates all the sentences accepted by this grammar.

Once the Prolog interpreter has consulted the DCG rules, we can query it using
the input word list as a first parameter and the empty list as a second. Both queries:

?- s([the, waiter, brought, the, meal, to, the,
table], []). true

?- s([the, waiter, brought, the, meal, of, the, dayl,
[1). true

succeed because the grammar accepts the sentences.
In addition to accepting sentences, the interpreter finds all the sentences gener-
ated by the grammar. It corresponds to the so-called syntactically correct sentences:

?-s(L, [1).
L = [the, waiter, brought, the, waiter] ;

258 9 Phrase-Structure Grammars in Prolog

L = [the, waiter, brought, the, meall] ;
L = [the, waiter, brought, the, table] ;

In the grammar above, the two first lexical rules mean that a determiner can be
either the or a. This rule could have been compacted in a single one using Prolog’s
disjunction operator ; /2 as:

det --> [the] ; [a].

However, like for Prolog programs, using the semicolon operator sometimes
impairs the readability and is not advisable.

In our grammar, nonterminal symbols of lexical rules are limited to a single word.
They can also be a list of two or more words as in:

prep --> [in, front, of].

which means that the word sequence in front of corresponds to a preposition.
DCG rules can mix terminal and nonterminal symbols in their expansion as in:

np --> noun, [and], noun.

Moreover, Prolog programs can mix Prolog clauses with DCG rules, and DCG
rules can include Prolog goals in the expansion. These goals are enclosed in braces:

np --> noun, [and], noun, {prolog code}.
as, for example:

np -->
noun, [and], noun,
{write('I found two nouns’), nl}.

9.3 Parsing with DCGs

9.3.1 Translating DCGs into Prolog Clauses

Prolog translates DCG rules into Prolog clauses when the file is consulted. The
translation is nearly a mapping because DCG rules are merely a notational variant
of Prolog rules and facts. In this section, we will first consider a naive conversion
method. We will then outline how most common interpreters adhering to Edinburgh
Prolog (Pereira 1984) tradition carry out the translation.

A tentative translation of DCG rules in Prolog clauses would add a variable to
each predicate. The rule

s --> np, vp.

9.3 Parsing with DCGs 259

would then be converted into the clause
s(L) :- np(Ll), vp(L2)

so that each variable unifies with the word list corresponding to the predicate name.
With this kind of translation and the input sentence The waiter brought the meal,
variable

* L would match the input list [the, waiter, brought, the, meall;
* L1 would match the noun phrase list [the, waiter];and
* L2 would match the verb phrase [brought, the, meall.

To be complete, the Prolog clause requires an append/3 predicate at the end to
link L1 and L2 to L:

s(L) :- np(Ll), vp(L2), append(Ll, L2, L).

Although this clause might seem easy to understand, it would not gracefully scale
up. If there were three daughters, the rule would require two appends, and if there
were four daughters, the rule would then need three appends, and so on.

In most Prologs, the translation predicate adds two variables to each DCG symbol
to the left-hand side and the right-hand side of the rule. The DCG rule

S --> np, vp.
is actually translated into the Prolog clause
s(Ll, L) :- np(Ll, L2), vp(L2, L).

where L1, L2, and L are lists of words. As with the naive translation, the clause
expresses that a constituent matching the head of the rule is split into subconstituents
matching the goals in the body. However, constituent values correspond to the
difference of each pair of arguments.

o The waiter brought the meal corresponds to the s symbol and unifies with L1\L,
where L1\ L denotes L1 minus L.

¢ The waiter corresponds to the np symbol and unifies with L1\L2.

e brought the meal corresponds to the vp symbol and unifies with L2\ L.

In terms of lists, L1\L corresponds to [the, waiter, brought, the,
meall; L1\2 corresponds to the first noun phrase [the, waiter];and L2\L
corresponds to the verb phrase and [brought, the, meall].

L1 is generally set to the input sentence and L to the empty list, [], when
querying the Prolog interpreter, as in:

?- s([the, waiter, brought, the, meall, I[1).
true

So the variables L1l and L2 unify respectively with [the, waiter,
brought, the, meal] and [brought, the, meall.
The lexical rules are translated the same way. The rule

det --> [thel.

260 9 Phrase-Structure Grammars in Prolog

is mapped onto the fact:
det ([the | L], L).

Sometimes, terminal symbols are rewritten using the ’ C’ /3 (connects) built-in
predicate. In this case, the previous rule could be rewritten into:

det (L1, L) :- 'C’ (L1, the, L).

The ' C’ /3 predicate links L1 and L so that the second parameter is the head of L. 1
and L, its tail. ' C’ /3 is defined as:

Cr (X | Yl, X, Y).

In many Prologs, the translation of DCG rules into Prolog clauses is carried out by
a predicate named expand term/2.

9.3.2 Parsing and Generation

DCG parsing corresponds to Prolog’s top-down search that starts from the start
symbol, s. Prolog’s search mechanism rewrites s into subgoals, here np and vp.
Then it rewrites the leftmost symbols starting with np and goes down until it
matches the words of the input list with the words of the vocabulary. If Prolog finds
no solution with a set of rules, it backtracks and tries other rules.

Let us illustrate a search tracing the parser with the sentence The waiter brought
the meal in Table 9.2. The interpreter is launched with the query

?- s([the, waiter, brought, the, meall, I[1).
The Prolog clause
s(L1, L) :- np(L1, L2), vp(L2, L).

is called first (Table 9.2, line 1). The leftmost predicate of the body of the rule, np,
is then tried. Rules are examined in the order they occur in the file, and

np(Ll, L) :- det(Ll, L2), noun(L2, L).

is then called (line 2). The search continues with det (line 3) that leads to the
terminal rules. It succeeds with the fact

det ([the | L], L).

and unifies L with [waiter, brought, the, meall] (line 4). The search
skips from det /2 to noun/2 in the rule

np(Ll, L) :- det(Ll, L2), noun(L2, L).

noun/?2 is searched the same way (lines 5 and 6). np succeeds and returns with L
unified with [brought, the, meall] (line 7). The rule

s(L1, L) :- np(L1, L2), vp(L2, L).

proceeds with vp (line 8) until s succeeds (line 18). The search is pictured in
Fig.9.5.

9.3 Parsing with DCGs 261

Table 9.2 Trace of The waiter brought the meal

1 Call: s([the, waiter, brought, the, meall, [])

2 Call: np([the, waiter, brought, the, meal]l, _2)

3 Call: det ([the, waiter, brought, the, meall, 6)

4 Exit: det ([the, waiter, brought, the, meal], [waiter,
brought, the, meall])

5 Call: noun ([waiter, brought, the, meall, _2)

6 Exit: noun ([waiter, brought, the, meal], [brought, the,
meall)

7 Exit: np ([the, waiter, brought, the, meal], [brought, the,
meall)

8 Call: vp ([brought, the, meall, [])

9 Call: verb ([brought, the, meal], _10)

10 Exit: verb ([brought], [the, meall)

11 Call: np([the, meall, I[1])

12 Call: det ([the, meal], _11)

13 Exit: det ([the, meal], [meal])

14 Call: noun ([meall, [1)

15 Exit: noun ([meal], [])

16 Exit: np([the, meall, I[1])

17 Exit: vp ([brought, the, meall, [])

18 Exit: s([the, waiter, brought, the, meall, [])

Fig. 9.5 The DCG parsing S
process 1i:::::::::://~\\\\\\\\\\\\\\\\
P A
Det Noun Verb NP

Det Noun

The waiter brought the meal

9.3.3 Left-Recursive Rules

We saw that the DCG grammar in Table 9.1 accepts and generates correct sentences,
but what about incorrect ones? A first guess is that the grammar should reject them.
In fact, querying this grammar with The brought the meal (*) never returns or even
crashes Prolog. This is due to the left-recursive rule

np --> np, pp.

Incorrect strings, such as:

The brought the meal (*)

262 9 Phrase-Structure Grammars in Prolog

trap the parser into an infinite loop. Prolog first tries to match The brought to
np --> det, noun.

Since brought is not a noun, it fails and tries the next rule

np --> np, pp.

Prolog calls np again, and the first np rule is tried anew. The parser loops
hopelessly.

The classical method to get rid of the left-recursion is to use an auxiliary rule
with an auxiliary symbol (ngroup), which is not left-recursive, and to rewrite the
noun phrase rules as:

ngroup --> det, noun.
np --> ngroup.
np --> ngroup, pPp.

When a grammar does not contain left-recursive rules, or once left-recursion has
been removed, any sentence not accepted by the grammar makes Prolog fail:

?- s([the, brought, the, meal, to, the, tablel, I[1).
false

9.4 Parsing Ambiguity

The tree structure of a sentence reflects the search path that Prolog is traversing.
With the rule set we used, verb phrases containing a prepositional phrase can be
parsed along to two different paths. The rules

vp --> verb, np.
np --> np, pp.

give a first possible path. Another path corresponds to the rule
vp --> verb, np, pp.

This alternative corresponds to a syntactic ambiguity.
Two parse trees reflect the result of a different syntactic analysis for each
sentence. Parsing

The waiter brought the meal to the table
corresponds to the trees in Figs. 9.3 and 9.6. Parsing
The waiter brought the meal of the day

corresponds to the trees in Figs. 9.4 and 9.7.
In fact, only Figs. 9.3 and 9.4 can be viewed as correct because the prepositional
phrases attach differently in the two sentences. In

The waiter brought the meal to the table

9.4 Parsing Ambiguity 263

S
/\
NP VP
Dmun Verb NP
/\
NP PP
Det/\N()un Prep/\NP
Det Noun
The waiter brought the meal to the table

Fig. 9.6 A possible parse tree for The waiter brought the meal to the table

S
/\
NP VP
P N
Dmun Verb NP PP
Dmun Prep/\NP
Det Noun
The waiter brought the meal of the day

Fig. 9.7 A possible parse tree for The waiter brought the meal of the day

the object is the meal that the waiter brings to a specific location, the table. These
are two distinct entities. In consequence, the phrase fo the table is a verb adjunct
and must be attached to the verb phrase node.

In the sentence

The waiter brought the meal of the day

the verb object is the meal of the day, which is an entity in itself. The phrase of the
day is a postmodifier of the noun meal and must be attached to the noun phrase
node.

When we hear such ambiguous sentences, we unconsciously retain the one that
is acceptable from a pragmatic viewpoint. Prolog does not have this faculty, and the
parser must be hinted. It can be resolved by considering verb, preposition, and noun

264 9 Phrase-Structure Grammars in Prolog

types using logical constraints or statistical methods. It naturally requires adding
some more Prolog code. In addition, sentences such as

I saw a man with a telescope

remain ambiguous, even for humans.

9.5 Using Variables

Like Prolog, DCG symbols can have variables. These variables can be used to
implement a set of constraints that may act on words in a phrase. Such constraints
govern, for instance, the number and gender agreement, the case, and the verb
transitivity. Variables can also be used to get the result from a parse. They enable us
to build the parse tree and the logical form while parsing a sentence.

DCG variables will be kept in their Prolog predicate counterpart after consulting.
Variables of a DCG symbol appear in front of the two list variables that are added
by expand term/2 while building the Prolog predicate. That is, the DCG rule

np(X, Y, Z) --> det(Y), noun(Z).
is translated into the Prolog clause

np(X, Y, Z2, L1, L) :-
det (Y, L1, L2),
noun(Z, L2, L).

9.5.1 Gender and Number Agreement

French and German nouns have a gender and a number that must agree with that
of the determiner and the adjective. Genders in French are masculine and feminine.
German also has a neuter gender. Number is singular or plural. Let us use variables
Gender and Number to represent them in the noun phrase rule and to impose the
agreement:

np (Gender, Number) -->
det (Gender, Number), noun (Gender, Number) .

To keep the consistency along with all the rules of the grammar, lexical rules
must also describe the gender and number of words (Table 9.3).

A Prolog query on np with the French vocabulary loaded generates two noun
phrases whose determiner and noun agree in gender:

?- np(Gender, Number, L, []).

Gender = masc, Number = sing, L = [le, garcon];
Gender = fem, Number = sing, L = [la, serveuse];
No

9.5 Using Variables 265

Table 9.3 A vocabulary with gender and number

French German

det (masc, sing) --> [le]. det (masc, sing) --> [der].

det (fem, sing) --> [la]. det (fem, sing) --> [die].

det (_, plur) --> [les]. det (neut, sing) --> [das].

noun (masc, sing) --> [garcgon]. det (_, plur) --> [die].

noun (fem, sing) --> [serveuse]. noun (masc,) --> ['Ober’].
noun (fem, sing) --> [’Speise’].

In addition to number and gender, German nouns are marked with four cases:
nominative, dative, genitive, and accusative. The determiner case must agree with
that of the adjective and the noun. To implement the case agreement, let us mark the
noun phrase rule with an extra variable Case.

np (Gender, Number, Case) -->
det (Gender, Number, Case)
adj (Gender, Number, Case)
noun (Gender, Number, Case

).

Let us also write a small vocabulary:

det (masc, sing, nominative) --> [der].
det (masc, sing, dative) --> [dem].
det (masc, sing, genitive) --> [des].
det (masc, sing, accusative) --> [den].
adj (masc, sing, nominative) --> [freundliche].
adj (masc, sing, dative) --> [freundlichen].
adj (masc, sing, genitive) --> [freundlichen].
adj (masc, sing, accusative) --> [freundlichen].
noun (masc, _, Case) -->

["Ober’],

{case \= genitive}.
noun (masc, _, genitive) --> ['Obers’].

Querying np with the German vocabulary
?- np(G, N, C, L, []).

generates four noun phrases whose determiner, adjective, and noun agree in gender
and case:

G masc, N = sing, C = nominative,
= [der, freundliche, ’'Ober’];
masc, N = sing, C = dative,

= [dem, freundlichen, ’'Ober’];

masc, N = sing, C = genitive,

o

G

(0]
e

266 9 Phrase-Structure Grammars in Prolog

L = [des, freundlichen, ’'Obers’];
G = masc, N = sing, C = accusative,

L = [den, freundlichen, ’'Ober’];
No

So far, we have seen agreement within the noun phrase. It can also be applied to
categorize verbs. Some verbs such as sleep, appear, or rushed are never followed
by a noun phrase. These verbs are called intransitive (1v). Transitive verbs such as
bring require a noun phrase after them: the object (tv). We can rewrite two verb
phrase rules to mark transitivity:

vp --> verb(iv).
vp --> verb(tv), np.

verb (tv) --> [brought].
verb (iv) --> [rushed].

9.5.2 Obtaining the Syntactic Structure

We used variables to implement constraints. Variables can also return the parse
tree of a sentence. The idea is to unify variables with the syntactic structure of a
constituent while it is being parsed. To exemplify this, let us use a simplified version
of our grammar:

S --> np, vVp.
np --> det, noun.
vp --> verb, np.

The parse tree of

The waiter brought the meal
is reflected by the Prolog term

T = s(np(det(the), noun(waiter)),
vp (verb (brought), np(det (the), noun(meal))))

To get this result, the idea is to attach an argument to all the symbols of rules,
where each argument represents the partial parse tree of its corresponding symbol.
Each right-hand-side symbol will have a variable that corresponds to the structure it
matches, and the argument of the left-hand-side symbol will unify with the structure
it has parsed. Each rule carries out a part of the tree construction when it is involved
in the derivation. Let us consider the rule:

S --> np, vp.

We add two variables to np and vp, respectively NP and VP, that reflect the
partial structure they map. When the whole sentence has been parsed, NP and VP
should be

9.5 Using Variables 267

NP =
and

VP =

np (det (the), noun(waiter))

vp (verb (brought) , np(det (the), noun(meal)))

When NP and VP are unified, s combines them into a term to form the final

structure

. This termis s (NP, VP). We obtain the construction of the parse tree by

changing rule

S R
into

s (s (

> np, vVp

NP, VP)) --> np(NP), vp(VP).

The rest of the rules are modified in the same way:

np(np(D, N)) --> det (D), noun(N).

vp(vp(V, NP)) --> verb(V), np(NP).

det (det (the)) --> [the].

det (det (a)) --> [a].

noun (noun (waiter)) --> [waiter].

noun (noun (meal)) --> [meall].

noun (noun (table)) --> [table].

noun (noun (tray)) --> [tray].

verb (verb (bring)) --> [brought].
The query:

?- s(Structure, L, []).

generates all the sentences together with their syntactic structure:

Structure = s(np(det (the), noun(waiter)),
vp (verb (brought) , np(det (the), noun(waiter)))),

L = [the, waiter, brought, the, waiter] ;
Structure = s(np(det (the), noun(waiter)),

vp (verb (brought) , np(det (the), noun(meal)))),
L = [the, waiter, brought, the, meall ;
Structure = s(np(det (the), noun(waiter)),

vp (verb (brought) , np(det (the), noun(table)))),
L = [the, waiter, brought, the, tablel

268 9 Phrase-Structure Grammars in Prolog
9.6 Application: Tokenizing Texts Using DCG Rules

We can use DCG rules for many applications other than sentence parsing, which we
exemplify here with a tokenization grammar.

9.6.1 Word Breaking

The first part of a tokenizer takes a character list as an input and breaks it into
tokens. Let us implement this with a DCG grammar. We start with rules describing
a sequence of tokens (tokens) separated by blanks. Blank characters (blank)
are white spaces, carriage returns, tabulations, or control codes. A token (token)
is a sequence of alphanumeric characters (alphanumerics) or another symbol
(other). Finally, alphanumerics are digits, uppercase letters, lowercase letters, or
accented letters:

tokens (Tokens) --> blank, {!}, tokens(Tokens).
tokens ([FirstT | Tokens]) -->

token (FirstT), {!}, tokens(Tokens).
tokens ([]) --> [].
% A blank is a white space or a control character
blank --> [B], {B =< 32, !}.

A token is a sequence of alphanumeric characters
or another symbol

)
S
)

<

token (Word) --> alphanumerics(List), {name (Word,
List), !}.

token (Symbol) --> other (CSymbol), {name (Symbol,
[CSymbol]l), !}.

A sequence of alphanumerics is an alphanumeric
character followed by other alphanumerics
or a single alphanumeric character.

o° o o

alphanumerics ([L | LS]) --»>

alphanumeric (L), alphanumerics (LS) .
alphanumerics([L]) --> alphanumeric(L).
% Here comes the definition of alphanumeric
characters:
digits, uppercase letters without accent, lowercase
letters without accent, and accented characters.

)
°
)

S

9.6 Application: Tokenizing Texts Using DCG Rules 269

% Here we only consider letters common in French,
German,

[)

% and Swedish

% digits

alphanumeric (D) --> [D], { 48 =< D, D =< 57, !}.

% uppercase letters without accent

alphanumeric (L) --> [L], {65 =< L, L =< 90, !}.

% lowercase letters without accent

alphanumeric (L) --> [L], {97 =< L, L =< 122, !}.

% accented characters

alphanumeric (L) --> [L], {name(A, [LL]), accented(d),

1},

accented (L) :-

member (L,
(ra’, 'a', 'a', 'a', 'a&', '¢', 'é", &, &, ré&r,
rgr, rir, 1o, 1o ‘e, 'ua’, 'ar, 'a, 'y,
g0, i, 000, 1O, @, O, G0, 00, Y0

% All other symbols come here
other (Symbol) --> [Symbol]l, {!}.

Before applying the tokens rules, we need to read the file to tokenize and to
build a character list. We do it with the read file/2 predicate. We launch the
complete word-breaking program with

?- read file(myFile, CharlList),
tokens (TokenList, CharList, []).

9.6.2 Recognition of Sentence Boundaries

The second role of tokenization is to delimit sentences. The corresponding grammar
takes the token list as an input. The sentence list (sentences) is a list of
words making a sentence (words_of a sentence) followed by the rest of the
sentences. The last sentence can be a punctuated sentence or a string of words with
no final punctuation (words_without punctuation). We define a sentence
as tokens terminated by an end punctuation: a period, a colon, a semicolon, an
exclamation point, or a question mark.

270 9 Phrase-Structure Grammars in Prolog

sentences ([S | RS]) --> words of a sentence(S),
sentences (RS) .
% The last sentence (punctuated)

sentences ([S]) --> words _of a sentence(S).
% Last sentence (no final punctuation)
sentences ([S]) --> words without punctuation(S).
words of a sentence([P]) --> end punctuation(P).
words of a sentence([W | RS]) --»>

word (W) ,

words of a sentence (RS) .

words without punctuation([W | RS]) -->
word (W) ,
words without punctuation (RS) .
words without punctuation([W]) --> [W].
word (W) --> [W].
end punctuation(P) --> [P], {end punctuation(P), !}.
end_punctuation(P) :- member (P, ['.’, ';’', ':', '?',

i ! I]) .
We launch the whole tokenization program with

?- read file(myFile, CharacterList),
tokens (TokenList, CharacterList, [1),
sentences (SentencelList, TokenList, [1).

9.7 Semantic Representation

9.7.1 A-Calculus

One of the goals of semantics is to map sentences onto logical forms. In many
applications, this is a convenient way to represent meaning. It is also a preliminary
step to further processing such as determining whether the meaning of a sentence is
true or not.

In some cases, the logical form can be obtained simultaneously while parsing.
This technique is based on the principle of compositionality, which states that it is
possible to compose the meaning of a sentence from the meaning of its parts. We
shall explain this with the sentence

Bill is a waiter

9.7 Semantic Representation 271

and its corresponding logical form
waiter ('Bill’).

If Pierre replaces Bill as the waiter, the semantic representation of the sentence
is
waiter (’Pierre’) .

This means that the constituent is a waifer retains the same meaning indepen-
dently of the value of the subject. It acts as a property or a function that is applied to
other constituents. This is the idea of compositional analysis: combine independent
constituents to build the logical form of the sentence.

The A-calculus (Church 1941) is a mathematical device that enables us to
represent intermediate constituents and to compose them gracefully. It is a widely
used tool in compositional semantics. The A-calculus maps constituents onto
abstract properties or functions, called A-expressions. Using a A-expression, the
property is a waiter is represented as

Ax.waiter(x)

where A is a right-associative operator. The transformation of a phrase into a
property is called a A-abstraction. The reverse operation is called a B-reduction.
It is carried out by applying the property to a value and is denoted

Ax.waiter(x)(Bill)
which yields
waiter(Bill)

Since there is no A character on most computer keyboards, the infix oper-
ator ™ classically replaces it in Prolog programs. So Ax.waiter(x) is denoted
X*waiter (X). A-expressions are also valid for adjectives, and is fast is mapped
onto X*fast (X). A combination of nouns and adjectives, such as is a fast waiter,
is represented as: X* (fast (X), waiter (X)).

While compositionality is an elegant tool, there are also many sentences where it
does not apply. Kick is a frequently cited example. It shows compositional properties
in kick the ball or kick the box. A counter example is the idiom kick the bucket, which
means to die, and where kick is not analyzable alone.

9.7.2 Embedding A-Expressions into DCG Rules

It is possible to use DCG rules to carry out a compositional analysis. The idea is to
embed A-expressions into the rules. Each rule features a A-expression corresponding

272 9 Phrase-Structure Grammars in Prolog

to the constituent it can parse. Parsing maps A-expressions onto constituents rule-
by-rule and builds the semantic representation of the sentence incrementally.

The sentence we have considered applies the property of being a waiter to a
name: Pierre or Bill. In this sentence, the verb is, as other verbs of being, only
links a name to the predicate waiter (X). So the constituent is a waiter is
roughly equivalent to waiter. Then, the semantic representation of common nouns
or adjectives is that of a property: Ax.waiter(x). Nouns incorporate their semantic
representation as an argument in DCG rules, as in:

noun (X*waiter (X)) --> [waiter].

As we saw, verbs of being have no real semantic content. If we only consider
these verbs, verb phrase rules only pass the semantics of the complement to the
sentence. Therefore, the semantics of the verb phrase is simply that of its noun
phrase:

vp (Semantics) --> verb, np(Semantics).

The Semantics variable is unified to X"waiter (X), where X is to represent
the sentence’s subject. Let us write this in the sentence rule that carries out the -
reduction

s (Predicate) --> np(Subject),
vp (Subject”Predicate) .

The semantic representation of a name is just this name:
np('Bill’) --> ['Bill’].
np('Mark’) --> ['Mark’].

We complement the grammar with an approximation: we consider that determin-
ers have no meaning. It is obviously untrue. We do it on purpose to keep the program
simple. We will get back to this later:

np(X) --> det, noun(X).
det --> [a].
verb --> [is].

Once the grammar is complete, querying it with a sentence results in a logical
form:

?- s(8, ['Mark’, is, a, waiter], []).
S = waiter ('Mark’).

The reverse operation generates a sentence from the logical form:

?- g(waiter(’Bill’), L, [1).
L = ['Bill, is, a, waiter].

9.7 Semantic Representation 273
9.7.3 Semantic Composition of Verbs

We saw that verbs of being played no role in the representation of a sentence. On
the contrary, other types of verbs, as in

Bill rushed
Mr. Schmidt called Bill

are the core of the sentence representation. They correspond to the principal functor
of the logical form:

rushed ('Bill’)
called('Mr. Schmidt’, ’'Bill’)

Their representation is mapped onto a A-expression that requires as many
arguments as there are nouns involved in the logical form. Rushed in the sentence
Bill rushed is intransitive. It has a subject and no object. It is represented as

X*rushed (X)

where X stands for the subject. This formula means that to be complete the
sentence must supply rushed (X) with X = ’'Bill’ so that it reduces to
rushed ('Bill’).

Called in the sentence Mr. Schmidt called Bill is transitive: it has a subject and
an object. We represent it as

Y*X*called (X, Y)

where X and Y stand, respectively, for the subject and the object. This expression
means that it is complete when X and Y are reduced.

Let us now examine how the parsing process builds the logical form. When the
parser considers the verb phrase

called Bill

it supplies an object to the verb’s A-expression. The A-expression reduces to one
argument, Ax.called(x, Bill), which is represented in Prolog by

X*called (X, ’'Bill’)
When the subject is supplied, the expression reduces to
called(’Mr. Schmidt’, ’'Bill’).

Figure 9.8 shows graphically the composition.

Let us now write a complete grammar accepting both sentences. We add a
variable or a constant to the left-hand-side symbol of each rule to represent the
constituent’s or the word’s semantics. The verb’s semantics is a A-expression as
described previously, and np’s value is a proper noun. The semantic representation
is built compositionally — at each step of the constituent parsing — by unifying the
argument of the left-hand-side symbol.

274 9 Phrase-Structure Grammars in Prolog

S Sem = called(Mr. Schmidt,Bill)

NP Sem = Mr. Schmidt VP Sem = Ax.called(x,Bill)
Verb Sem = Ay.Ax.called(x,y) NP Sem = Bill
Mr. Schmidt called Bill

Fig. 9.8 Parse tree with a semantic composition

s (Semantics) --> np(Subject),

vp (Subject”Semantics) .

vp (Subject”Semantics) --> verb(Subject”Semantics) .
vp (Subject”Semantics) -->

verb (Object*Subject”Semantics), np(Object) .
np (‘Bill’) --> [/Bill’].
np (‘Mr. Schmidt’) --> ['Mr. Schmidt’].

verb (X*rushed (X)) --> [rushed].
verb (Y*X*called (X, Y)) --> [called].

?- s(Semantics, ['Mr. Schmidt’, called, 'Bill’], [1).
Semantics = called(’'Mr. Schmidt’, ’'Bill’)

In this paragraph, proper nouns were the only noun phrases we considered.
We have set aside common nouns and determiners to simplify the presentation.
In addition, prepositions and prepositional phrases can also be mapped onto A-
expressions in the same way as verbs and verb phrases. We will examine the rest
of the semantics in more detail in Chap. 14.

9.8 An Application of Phrase-Structure Grammars
and a Worked Example

As we saw in Chap. 1, the Microsoft Persona agent uses a phrase-structure grammar
module to parse sentences and gets a logical form from them. Ball et al. (1997) give
an example of order:

I’d like to hear something composed by Mozart.
that Persona transforms in the logical form:

likel (+Modal +Past +Futr)
Dsub: il (+Persl +Sing)

9.8 An Application of Phrase-Structure Grammars and a Worked Example 275

Dobj: hearl
Dsub: il
Dobj: somethingl (+Indef +Exis +Pers3 +Sing)
Prop: composel
Dsub: mozartl (+Sing)
Dobj: somethingl

Although Persona uses a different method (Jensen et al. 1993), a small set of
DCG rules can parse this sentence and derive a logical form using compositional
techniques. To write the grammar, let us simplify the order and proceed incremen-
tally. The core of the sentence means that the user would like something or some
Mozart. It is easy to write a grammar to parse sentences such as:

I would like something
I would like some Mozart

The sentence and the noun phrase rules are close to those we saw earlier:
s(Sem) --> np(Sub), vp(Sub”Sem).

In anticipation of a possible left-recursion, we use an auxiliary npx symbol to
describe a nonrecursive noun phrase:

npx (SemNP) --> pro(SemNP) .
npx (SemNP) --> noun (SemNP) .
npx (SemNP) --> det, noun(SemNP) .

np (SemNP) --> npx(SemNP) .

The verb phrase is slightly different from those of the previous sections because
it contains an auxiliary verb. A possible expansion would consist of the auxiliary
and a recursive verb phrase:

vp --> aux, Vp.

Although some constituent grammars are written this way, the treatment of
auxiliary would is disputable. In some languages — notably in Romance languages —
the conditional auxiliary is rendered by the inflection of the main verb, as in French:
Jj’aimerais ‘1 would like’. A better modeling of the verb phrase uses a verb group
that corresponds either to a single verb or to a sequence, including an auxiliary to
the left and the main verb, here

verb group (SemVG) --> aux(SemAux), verb (SemVG) .
verb group (SemVG) --> verb (SemVG) .

vp (SemVP) --> verb group (SemVP) .

vp (SemVP) --> verb group (0Obj”*SemVP), np(Obj) .
The vocabulary is also similar to what we saw previously:

verb (Obj*Sub®like (Sub, Obj)) --> [like].

276 9 Phrase-Structure Grammars in Prolog

verb (Obj*Sub”hear (Sub, Obj)) --> [hear].
aux (would) --> [would].

pro('I’) --> ['I'].
pro (something) --> [something].

noun (N) --> proper noun(N) .
proper noun(’Mozart’) --> ['Mozart’].

det --> [some].
This grammar answers queries such as:

?- s(Sem, ['I’, would, like, some, ’'Mozart’]l, []).
Sem = like('I’, ’'Mozart’)

Now let us take a step further toward the original order, and let us add the
infinitive verb phrase to hear:

I would like to hear something
I would like to hear some Mozart

The infinitive phrase has a structure similar to that of a finite verb phrase except
that it is preceded by the infinitive marker fo:

vp_inf (SemVP) --> [to], vp(SemVP).

We must add a new verb phrase rule to the grammar to account for it. Its object
is the subordinate infinitive phrase:

vp (SemVP) --> verb group (Obj”*SemvVP), vp_ inf (Obj) .
The new grammar accepts queries such as:

?- s(Sem, ['I’', would, like, to, hear, some,
'Mozart’]l, [1).
Sem = like(’I’, X“hear (X, ’'Mozart’))

In the resulting logical form, the subject of hear is not reduced. In fact, this is
because it is not explicitly indicated in the sentence. This corresponds to an anaphora
within the sentence — an intrasentential anaphora — where both verbs like and hear
implicitly share the same subject.

To solve the anaphora and to understand how Prolog composes the logical forms,
instead of using the variable Ob7j, let us exhibit all the variables of the A-expressions
at the verb phrase level. The nonreduced A-expression for hear is

ObjectHear”SubjectHear"hear (SubjectHear, ObjectHear) .

When the infinitive verb phrase has been parsed, the ObjectHear is reduced and
the remaining expression is

9.8 An Application of Phrase-Structure Grammars and a Worked Example 277

SubjectHear“hear (SubjectHear, ’'Mozart’).
The original A-expression for /ike is
ObjectLike”SubjectLike”like (SubjectLike, ObjectLike)

where ObjectLike unifies with the A-expression representing hear. Since both
subjects are identical, A-expressions can be rewritten so that they share a same
variable in Subject”SemInf for hear and SemInf “Subject*SemVP for like.
The verb phrase is then:

vp (Subject”SemvP) -->
verb group (SemInf”Subject”SemvP),
vp_inf (Subject”SemInf) .

and the new grammar now solves the anaphora:

?- s(Sem, ['I’, would, like, to, hear, some,
'Mozart’]l, [1).
Sem = like(’'I’, hear(’'I’, ’'Mozart’))

Let us conclude with the complete order, where the track the user requests is
something composed by Mozart. This is a noun phrase, which has a passive verb
phrase after the main noun. We model it as:

np (SemNP) --> npx(SemVP"SemNP), vp passive (SemVP) .
We also need a model of the passive verb phrase:
vp_passive (SemVP) --> verb(Sub”SemVP), [by], np(Sub).
and of the verb:
verb (Sub”0Obj*compose (Sub, Obj)) --> [composed].
Finally, we need to modify the pronoun something so that it features a property:
pro(Modifier”something (Modifier)) --> [something].
Parsing the order with the grammar yields the logical form:

?- s(Sem, ['I’, would, like, to, hear, something,
composed, by, ’'Mozart’]l, []).

Sem = like(’'I’, hear('I’, X"something(compose
('Mozart’, X))))

which leaves variable X uninstantiated.! A postprocessor would then be necessary
to associate X with something and reduce it.

"Prolog probably names it _Gxxx using an internal numbering scheme.

278 9 Phrase-Structure Grammars in Prolog
9.9 Further Reading

Colmerauer (1970, 1978) created Prolog to write language processing applications
and, more specifically, parsers. Pereira and Warren (1980) designed the Definite
Clause Grammar notation, although it is merely a variation on the Prolog syntax.
Most Prolog environments now include a compiler that is based on the Warren
Abstract Machine (WAM) (Warren 1983). This WAM has made Prolog’s execution
very efficient.

Textbooks on Prolog and natural language processing delve mostly into syntax
and semantics. Pereira and Shieber (1987) provide a good description of phrase-
structure grammars, parsing, and formal semantics. Other valuable books include
Gazdar and Mellish (1989), Covington (1994b), and Gal et al. (1989).

SRI’s Core Language Engine (Alshawi 1992) is an example of a comprehensive
development environment based on Prolog. It is probably the most accomplished
industrial system in the domain of syntax and formal semantics. Using it, Agnis
et al. (1994) built the Spoken Language Translator (SLT) to translate spoken English
to spoken Swedish in the area of airplane reservations. The SLT has been adapted
to other language pairs.

Exercises

9.1. Translate the sentences of Sect.9.2.1 into French or German and write the
DCG grammar accepting them.

9.2. Underline constituents of the sentence The nice hedgehog ate the worm in its
nest.

9.3. Write a grammar accepting the sentence The nice hedgehog ate the worm in its
nest. Draw the corresponding tree. Do the same in French or German.

9.4. The previous grammar contains a left-recursive rule. Transform it as indicated
in this chapter.

9.5. Give a sentence generated by the previous grammar that is not semantically
correct.

9.6. Verbs of being can be followed by adjective phrases or noun phrases. Imagine
a new constituent category, adjp, describing adjective phrases. Write the corre-
sponding rules. Write rules accepting the sentences the waiter is tall, the waiter is
very tall, and Bill is a waiter.

9.7. How does Prolog translate the rule lex --> [in, front]?

9.8. How does Prolog translate the rule lex --> [in], {prolog code},
[front]?

Exercises 279

9.9. Write the expand_term/2 predicate that converts DCG rules into Prolog
clauses.

9.10. Write a grammar accepting the sentence The nice hedgehog ate the worm in
its nest with variables building the parse tree.

9.11. Replace all nouns of the previous sentence by personal pronouns, and write
the grammar.

9.12. Translate the sentence in Exercise 9.10 into French or German, and add
variables to the rules to check number, gender, and case agreement.

9.13. Calculate the p-reductions of expressions Ax.f(x)(y) and Ax.f(x)
Ay.f(y)-

9.14. Write a grammar that accepts the noun phrase the nice hedgehog and that
builds a syntactic representation of it.

9.15. Persona’s parser accepts orders like Play before you accuse me. Draw the
corresponding logical form. Write grammar rules that parse the order Play a song
and that build a logical form from it.

Chapter 10
Partial Parsing

10.1 Is Syntax Necessary?

The description of language in terms of layers — words, parts of speech, and
syntax — could suggest that a parse tree is a necessary step to obtain the semantic
representation of a sentence. Yet, many industrial applications do not rely on syntax
as we presented it before. The reason is that a syntactic parser can be expensive in
terms of resources and sometimes it is not worth the cost.

Some applications need only to detect key words, as in some telephone speech
servers. There, the speech recognition module spots meaningful words and sets
the others aside. It enables the system to deal with the noisy environment or the
fragmented nature of speech by telephone. Other applications rely on the detection
of word groups such as noun phrases. Although sentences are not fully parsed, the
result is sufficient to make use of it. Information retrieval and extraction are typical
applications relying on group detection techniques.

In this chapter, we will examine a collection of techniques to extract incomplete
syntactic representations. These techniques are generally referred to as partial or
shallow parsing and operate on groups of words, often called chunks. Some of
them just carry out the detection of key words or specific word patterns. Others
use phrase-structure rules describing groups such as noun groups or verb groups.
Finally, some techniques are an extension of part-of-speech tagging and resort to
similar methods.

10.2 Word Spotting and Template Matching

10.2.1 ELIZA

A first shallow technique consists in matching predefined templates. It appeared
in the popular ELIZA program that mimics a dialogue between a psychotherapist

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 281
DOI 10.1007/978-3-642-41464-0__10, © Springer-Verlag Berlin Heidelberg 2014

282 10 Partial Parsing

Table 10.1 Some ELIZA

User Psychotherapist
templates
o Alike X. .. Why do you like X?
AdamX. .. How long have you been X?
...father. .. Tell me more about your father

and his/her patient (Weizenbaum 1966). In fact, ELIZA understands nothing. She
“spots” a handful of words or patterns such as yes, no, why, I'm afraid of X, I
like X, etc., where X is a name or any group of words. When a template matches
the user’s sentence, ELIZA has a set of ready-made answers or questions mapped
onto it. When no template matches, ELIZA tries to guess whether the sentence
is a declaration, a negation, or an interrogation, and has repartees like in what
way, can you think of a specific example, go on, etc. It enables the machine
to follow the conversation with a semblance of realism. Table 10.1 shows some
user/psychotherapist templates.

ELIZA’s dialogue pays specific attention to words like mother and father.
Whenever one of these words occurs, ELIZA asks for more details. We remind the
reader that this program was created when Freudian theories were still influential.
Although the approach is now considered simplistic, at best, the psychoanalytical
settings secured ELIZA mainstream popularity.

10.2.2 Word Spotting in Prolog

A word spotting program can easily be written using DCG rules. Utterances are
modeled as phrase-structure rules consisting of a beginning, the word or pattern to
search, and an end. The translation into a DCG rule is straightforward:

utterance (U) --> beginning(B), [the word], end(E).

Each predicate has a variable that unifies with the part of the utterance it
represents. Variables B and E unify respectively with the beginning and the end of
the utterance. The variable U is used to build the system answer as in the templates
in Table 10.1.

Prolog translates the DCG rules into clauses when they are consulted. It adds two
arguments to each predicate, and the previous rule expands into:

utterance (U, L1, L) :-
beginning (B, L1, L2),
c (L2, the word, L3),
end(E, L3, L).

We saw in Chap.9 that each predicate in the rule covers a word sequence,
and that it corresponds to the difference of the two new arguments: L1 minus
L corresponds to utterance; L1 minus L2 corresponds to beginning; L3

10.2 Word Spotting and Template Matching 283

Utterance
| Beginning | [Theword | | End
L1
B L2

L3

Fig. 10.1 The composition of utterance

minus L corresponds to end. Figure 10.1 shows the composition of the utterance
with respect to the new lists.

To match B and E, the trick is to define beginning/3 and end/ 3 as append-
like predicates:

beginning (X, Y, Z) :- append(X, Z, Y).
end (X, Y, Z2) :- append(X, Z, Y).

ELIZA is then a loop that reads the user input, tries to find a matching utterance,
and answers with the corresponding template. It stops when the user writes the
word bye. The next program is a simplified version of ELIZA. It matches the
user/psychoanalyst pairs in Table 10.1.

A simplified version of ELIZA in Prolog

o o

)
o
)

o

The main loop reads the input and calls process/1
It stops when the input is the word bye.

o o

eliza :-
write(’Hello, I am ELIZA. How can I help you?’), nl,
repeat,
write(’'> '),
tokenize (In),
process (In) .

process/1 accepts the user’s utterance. It either
terminates or tries to find a template matching the
user’s utterance

o° o o°

process ([bye | 1) :-
write (ELIZA: bye’), nl, !.
process (In) :-

284 10 Partial Parsing

utterance (Out, In, []),

|
L

write ('ELIZA: '), write answer (Out),
fail.

% utterance is a set of DCG rules describing
templates

utterance([’'Why’, aren, '’'’’, t, you | Y]) -->
["T’, am, not], end(Y).

utterance(['How’, long, have, you, been | Yl) -->
['I’", am], end(Y).

utterance (['Why’, do, you, like | Y]) -->
["I’, like], end(Y).

utterance (['Do’, you, often, think, of | Yl) -->
beginning(), ['I’, remember], end(Y).

utterance([’'Please’, tell, me, more, about, your,
X, .1) -->

beginning(), [X], end(), {important (X)}.
utterance ([’'Why’, are, so, negative, '?']) -->
[no] .
utterance([’'Tell’, me, more, .]) -->
(1.
utterance([’Please’, go, on, .]) -->
beginning().

% The Prolog clauses beginning/3 and end/3
% link the pieces of the utterance
beginning (X, Y, Z) :- append(X, Z, Y).

end (X, Y, Z) :- append(X, Z, Y).

% The Freudian facts
important (father) .
important (mother) .
important (brother) .
important (sister) .

% write answer/1l prints the content of the list
% containing Eliza’s answer.
write answer ([Head | Tail]) :-
write (Head), write(’ '),
write answer (Tail) .
write answer([]) :- nl.

10.3 Named Entities and Multiwords 285

The next lines are a sample dialogue with ELIZA:

?- eliza.

Hello, I am ELIZA. How can I help you?
> yes

ELIZA: Tell me more

> I like apples

ELIZA: Why do you like apples

>I went out with my father

ELIZA: Please tell me more about your father
> no

ELIZA: Why are so negative ?

> I am cold

ELIZA: How long have you been cold

> bye

ELIZA: bye

true
?_

10.3 Named Entities and Multiwords

10.3.1 Named Entities

While ELIZA has no real application, the techniques we used in it can serve to
detect specific patterns in texts or in speech. The recognition of named entities is an
example of it. A named entity is an entity whose name in a text refers to a unique
person, place, object, etc., as William Shakespeare or Stratford-upon-Avon in the
phrase:

William Shakespeare was born and brought up in Stratford-upon-Avon.

This opposes to phrases referring to entities with no name as this person or a
street in:

meeting with this person in a street nearby,

and reflects overall the distinction between common and proper nouns; see Fig. 10.2.

Names of people or organizations are frequent in the press and the media, where
they surge and often disappear quickly. The first step to recognize them is to
identify the phrases corresponding to names of persons, organizations, or locations
(Table 10.2). Such phrases can be a single proper noun or a group of words.

Named entity recognition also commonly extends to temporal expressions
describing times and dates, and numerical and quantity expressions, even if these
are not entities.

286 10 Partial Parsing

Named entities

|William Shakespeare I was born and brought

up in | Stratford-upon-Avon L

Other entities

Meeting with | our guest]Tn | the landing | at
lunchtime.

Fig. 10.2 Named entities: entities that we can identify by their names (Portrait: credits Wikipedia.
Map: Samuel Lewis, Atlas to the topographical dictionaries of England and Wales, 1848, credits:
archive.org)

10.3.2 Multiwords

Although conceptually different, named entities are often associated with multi-
words — or multiword expressions (MWE) — i.e., sequences of two or more words
that act as a single lexical unit. Multiwords include complex prepositions, adverbs,
conjunctions, or phrasal verbs where each of the words taken separately cannot be

archive.org

10.3 Named Entities and Multiwords 287

Table 10.2 Named entities in English and French

Type English French
Company names British Gas plc. Compagnie générale d’électricité SA
Person names Mr. Smith M. Dupont
Titles The President of the United States Le président de la République
Tabl.e 10.3 Multiwords in Type English French
English and French —

Prepositions to the left-hand side a gauche de

Adverbs because of a cause de

Conjunctions

Verbs give up faire part ‘inform’

go off rendre visite ‘pay a visit’

clearly understood (Table 10.3). The concept of what a multiword is may seem
intuitive, but there are many tricky cases. In addition, people do not always agree on
their exact definition.

The identification of named entities and multiwords uses roughly the same
techniques.

10.3.3 A Standard Named Entity Annotation

In the 1990s, The US Department of Defense organized series of competitions
to measure the performance of commercial and academic systems on multiword
detection. It called them the Message Understanding Conferences (MUC). To help
benchmarking the various systems, MUC-6 and MUC-7 defined an annotation
scheme that was shared by all the participants. This annotation has subsequently
been adopted by commercial applications. The definition of the named entity
annotation can be read from the MUC-7 web page.!

The MUC annotation restricts the annotation to information useful for its main
funding source: the US military. It considers named entities (persons, organizations,
locations), time expressions, and quantities. The annotation scheme defines a cor-
responding XML element for each of these three classes: <ENAMEX>, <TIMEX>,
and <NUMEX> (Chinchor 1997), with which it brackets the relevant phrases in a
text. The phrases can consist of one, two, or more words.

The <ENAMEX > element identifies proper nouns and uses a TYPE attribute with
three values to categorize them: ORGANIZATION, PERSON, and LOCATION, as in

the <ENAMEX TYPE="PERSON" >Clinton</ENAMEX> government

<ENAMEX TYPE="ORGANIZATION" >Bridgestone Sports Co.</ENAMEX>
<ENAMEX TYPE="ORGANIZATION">European Community</ENAMEX>

Thttp://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.html

http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.html

288 10 Partial Parsing

<ENAMEX TYPE="ORGANIZATION">University of California</ENAMEX> in
<ENAMEX TYPE="LOCATION">Los Angeles</ENAMEX>

The <TIMEX> element identifies time expressions and uses a TYPE attribute to
distinguish between DATE and TIME, as in

<TIMEX TYPE="TIME">twelve o’clock noon</TIMEX>
<TIMEX TYPE="TIME">5 p-m. EST</TIMEX>
<TIMEX TYPE="DATE" >January 1990</TIMEX>

The <NUMEX > element is used to bracket quantities. It has also a TYPE attribute
to categorize MONEY and PERCENT, as in

<NUMEX TYPE="MONEY " >20 million New Pesos</NUMEX >

<NUMEX TYPE="MONEY">$42.1 million</NUMEX>

<NUMEX TYPE="MONEY " >million-dollar</NUMEX> conferences
<NUMEX TYPE="PERCENT">15 pct< /NUMEX >

10.4 Detecting Named Entities with Rules

The detection of named entities and multiwords with rules is an extension of word
spotting. Just as for word spotting, we represent them using DCG rules. We use
variables and Prolog code to extract them from the word stream and annotate them.

Compounded prepositions, conjunctions, and phrasal verbs are often listed
in dictionaries and can be encoded as Prolog constants. Named entities raise
more problems. Their identification generally requires specialized dictionaries of
surnames, companies, countries, and trademarks. Some of these dictionaries, called
gazetteers, are available on the Internet. They are built from the compilation of
lexical sources such as economic and legal newspapers, directories, or internet web
sites.

The extraction of named entities also relies on hints that vary according to the
type of entity to detect. Locations may include words such as Ocean, Range, River,
etc. Legal denominations will be followed by acronyms such as Ltd., Corp., SA,
and GmbH. Persons might be preceded by titles such as Mr., Mme, Herr, Dr., by
a surname, or have a capitalized initial. Currency phrases will include a sign such
as €, $, £, etc., and a number. Such techniques can be applied to any measuring
expression: length, time, etc.

Let us write rules to detect the phrasal verb give up, the French title M. XXXX,
such as M. Dupont, and the European money worth XXXX euros, such as 200 euros.
As a result, the detector appends the multiword parts using an underscore character:
give_up, or builds a list with surrounding XML tags [<ENAMEX>, 'M.’,
'Dupont’, </ENAMEX>], and [<NUMEX>, 200, euros, </NUMEX>].
The corresponding rules are:

multiword(give up) --> [give, up].
multiword ([’ <ENAMEX>', 'M.’, Name, ’'</ENAMEX>’]) -->

10.4 Detecting Named Entities with Rules 289

Table 10.4 Longer matches

English French
are preferred - - -
Competing multiwords in front of en face de
in front en face
Examples the car in front la voiture en face
in front of me en face de moi

['M.’], [Name],
name (Name, [Initial | 1),
Initial >= 65, % must be an upper-case letter
Initial =< 90
multiword ([’ <NUMEX>’, Value, euros, ’'</NUMEX>']) -->
[Valuel], [euros],

{
number (Value)

.

10.4.1 The Longest Match

Among the set of multiwords we want to detect, some may have a common suffix,
as for the phrases in front and in front of. This corresponds to the rules:

multiword(in front) --> [in, front].
multiword(in_ front of) --> [in, front, of].

With the sentence:

The car in front of the house

rules as they are ordered above yield two solutions. The first multiword to be
matched is in front, and if Prolog backtracks, it will find in front of. A backtracking
strategy is not acceptable in most cases. What we generally want is the longest
possible match (Table 10.4).

Prolog interpreters consider rules sequentially and downwards (from the be-
ginning to the end). We implement the longest match by ordering the DCG rules
properly. When several multiwords compete, i.e., have the same beginning, the
longest one must be searched first, as in the sequence:

multiword (in_ front of) --> [in, front, of].
multiword(in_ front) --> [in, front].

290 10 Partial Parsing
10.4.2 Running the Program

Now we will write a rule to embed the multiword description. If the word stream
contains a multiword, it should be modeled as a beginning, the multiword, and an
end, as in ELIZA. Its transcription into a DCG rule is straightforward:

word stream multiword(Beginning, Multiword, End) -->
beginning (Beginning),
multiword (Multiword),
end (End) .

Extracting the list of multiwords means that the whole word stream must be
matched against the rule set. The multiword detector scans the word stream from the
beginning, and once a multiword has been found, it starts again with the remaining
words.

multiword detector/2 is a Prolog predicate. It takes the word stream In
as the input and the multiword list Out as the output. It searches a multiword within
the word stream using the word_stream multiword DCG rule.

Each word stream multiword rule is translated into a Prolog predicate
when consulted and two new variables are added. Thus, word stream multi-
word is of arity 5 in the mult iword detector rule. The two last variables are
unified respectively to the input list and to the empty list.

When word stream multiword reaches a multiword, Beginning is
unified with the beginning of the word stream and End with the rest. The program
is called recursively with End as the new input value.

multiword detector (In, [Multiword | Outl]) :-
word_stream multiword(Beginning, Multiword, End,
In, [1),
multiword detector (End, Out).
multiword detector(, []).

Using the detector with the sentence M. Dupont was given 500 euros in front of
the casino results in [’ <ENAMEX>’, 'M.’, ’'Dupont’, '</ENAMEX>'],
['<NUMEX>', 500, euros, ’'</NUMEX>’],andin front of:

?- multiword detector([’'M.’, ’‘Dupont’, was, given,
500, euros, in, front, of, the, casino], Out).
Out = [[<ENAMEX>, M., Dupont, </ENAMEX>] ,

[<NUMEX>, 500, euros, </NUMEX>], in front of]

The result is a list containing sublists. The flatten/2 predicate can replace
recursively all the sublists by their elements and transform them into a flat list.

?- flatten([[’<ENAMEX>’, 'M. ', Dupont, ’'</ENAMEX>'],
[<NUMEX>’, 500, 'DM’, ’'</NUMEX>'], in front of], Out).
Out = [<ENAMEX>, M., Dupont, </ENAMEX>, <NUMEX>,

500, DM, </NUMEX>, in front of]

10.5 Noun Groups and Verb Groups 291

The multiword detector can be modified to output the whole stream. That is,
the multiwords are tagged and other words remain unchanged. In this program,
Beginning is appended to the multiword Multiword that has been detected
to form the Head of the word stream. The Head and the result of the recursive call
Rest form the Output. We must not forget the End in the termination fact.

multiword detector(In, Out) :-
word_stream multiword (Beginning, Multiword, End, In,
(1, t,
multiword detector (End, Rest),
append (Beginning, [Multiword], Head),
append (Head, Rest, Out).
multiword detector (End, End).

Let us now execute a query with this new detector with flatten/2:

?- multiword detector(['M.’, ’'Dupont’, was, given,
500, euros, in, front, of, the, casino], Res),
flatten(Res, Out).

Out = [<ENAMEX>, M., Dupont, </ENAMEX>, was, given,
<NUMEX>, 500, euros, </NUMEX>, in front of, the,
casinol]

10.5 Noun Groups and Verb Groups

The word detection techniques enabled us to search certain word segments, with
no consideration of their category or part of speech. The detection can extend to
syntactic patterns.

The two most interesting word groups are derived from the two major parts of
speech: the noun and the verb. They are often called noun groups and verb groups,
although noun chunks and verb chunks are also widely used. In a sentence, noun
groups (Table 10.5) and verb groups (Table 10.6) correspond to verbs and nouns and
their immediate depending words. This is often understood, although not always,
as words extending from the beginning of the constituent to the head noun or the
head verb. That is, the groups include the headword and its dependents to the left.
They exclude the postmodifiers. For the noun groups, this means that modifying
prepositional phrases or, in French, adjectives to the right of the nouns are not part
of the groups.

The principles we exposed above are very general, and exact definitions of
groups may vary in the literature. They reflect different linguistic viewpoints that
may coexist or compete. However, when designing a parser, precise definitions are
of primary importance. Like for part-of-speech tagging, hand-annotated corpora
will solve the problem. Most corpora come with annotation guidelines. They are

292 10 Partial Parsing

Table 10.5 Noun groups

English French German
The waiter is bringing the Le serveur apporte le trés Der Ober bringt die sehr
very big dish to the table grand plat sur la table grofie Speise an den Tisch
Charlotte has eaten the meal Charlotte a mangé le plat du Charlotte hat die
of the day Jjour Tagesspeise gegessen

Table 10.6 Verb groups

English French German
The waiter is bringing the Le serveur apporte le trés grand — Der Ober bringt die sehr
very big dish to the table plat sur la table grof3e Speise an den Tisch
Charlotte has eaten the meal Charlotte a mangé le plat du Charlotte hat die
of the day Jjour Tagesspeise gegessen

usually written before the hand-annotation process. As definitions are often difficult
to formulate the first time, they are frequently modified or complemented during
the annotation process. Guidelines normally contain definitions of groups and
examples of them. They should be precise enough to enable the annotators to
bracket consistently the groups. The guidelines will provide the grammar writer
with accurate definitions, or when using machine learning techniques, the annotated
texts will encapsulate the linguistic knowledge about groups and make it accessible
to the automatic analysis.

10.5.1 Groups Versus Recursive Phrases

The rationale behind word group detection is that a group structure is simpler and
more tractable than that of a sentence. Group detection uses a local strategy that
can accept errors without making subsequent analyses of the rest of the sentence
fail. It also leaves less room for ambiguity because it sets aside the attachment of
prepositional phrases. As a result, partial parsers are more precise. They can capture
roughly 90 % of the groups successfully (Abney 1996).

Like for complete sentences, phrase-structure rules can describe group patterns.
They are easier to write, however, because verb groups and noun groups have a
relatively rigid and well-defined structure. In addition, local rules usually do not
describe complex recursive linguistic structures. That is, there is no subgroup inside
a group and, for instance, the noun group is limited to a unique head noun. This
makes the parser very fast. Moreover, in addition to phrase-structure rules, finite-
state automata or regular expressions can also describe group structures.

10.5 Noun Groups and Verb Groups 293
10.5.2 DCG Rules to Detect Noun Groups

A noun group consists of an optional determiner the, a, or determiner phrase such
as all of the, one or more optional adjectives, and one or more nouns. It can also
consist of a pronoun or a proper noun — a name. This definition is valid in English.
In German, sequences of nouns usually form a single word through compounding.
In French, noun groups also include adjectives to the right of the head noun that we
set aside.

The core of the noun group is a sequence of nouns also called a nominal
expression. A first possibility would be to write as many rules as we expect nouns.
However, this would not be very elegant. A recursive definition is more concise:
a nominal is then either a noun or a noun and a nominal. Symbols noun and
nominal have variables that unify with the corresponding word. This corresponds
to the rules:

nominal ([NOUN | NOM]) --> noun (NOUN), nominal (NOM) .
nominal ([N]) --> noun(N).

Nouns usually divide into common and proper nouns although, depending on
applications, it can be sometimes preferable to ignore the difference between both
categories:

noun (N) --> common_ noun (N) .
noun (N) --> proper noun(N).

The simplest noun groups consist of a determiner and a nominal. The determiners
are the articles, the possessive pronouns, etc. They are sometimes more complex
phrases that we set aside here. Determiners are optional, and the group definition
must also represent their absence. A noun group can also be a single pronoun:

noun_group (-NounGroup)
detects a list of words making a noun group and
unifies NounGroup with it

o° o o

noun _group ([D | N]) --> det (D), nominal (N).
noun_group (N) --> nominal (N) .
noun_group ([PRO]) --> pronoun (PRO) .

The adjective group serves as an auxiliary in the description of noun group. It
can feature one or more adjectives and be preceded by an adverb. If we set aside the
commas, this corresponds to:

%adj group (-AdjGroup)
$detects a list of words making an adjective
$group and unifies AdjGroup with it

adj group x([RB, Al) --> adv(RB), adj(Ad).
adj group x([A]) --> adj(A).

294 10 Partial Parsing

adj group (AG) --> adj_group x(AG).
adj group (AG) -->
adj group x(AGX), adj_group (AGR),
{append (AGX, AGR, AG)}.

Past participles and gerunds can replace adjectives, as in A flying object or The
endangered species:

adj (A) --> past participle(a).
adj (A) --> gerund(A) .

We must be aware that these rules may conflict with a subsequent detection of
verb groups. Compare the ambiguous phrase detected words in the detected words
and The partial parser detected words.

Adjectives can precede the noun. Using the adjective group, we add two rules to
the noun group:

noun_group (NG) -->
adj group (AG), nominal (NOM),
{append (AG, NOM, NG)}.
noun_group (NG) -->
det (D), adj_group (AG), nominal (NOM),
{append ([D | AG], NOM, NG)}.

10.5.3 DCG Rules to Detect Verb Groups

Verb groups can be written in a similar way. In English, the simplest group consists
of a single tensed verb:

verb group([V]) --> tensed verb (V).
Verb groups also include adverbs that may come before the verb:
verb group([RB, V]) --> adv(RB), tensed verb (V).

Verb groups can combine auxiliary and past participles, or auxiliary and gerund,
or modal and infinitive, or fo and infinitive, or be simply an auxiliary:

verb group ([AUX, V]) --> aux(AUX),past participle (V).
verb group ([AUX, G]) --> aux(AUX), gerund(G).

verb group([MOD, I]) --> modal (MOD), infinitive(I).
verb group ([to, I]) --> [to], infinitive(I).

verb group ([AUX]) --> aux(AUX).

Verb groups can include adverbs and have more auxiliaries:

verb group ([AUX, RB, V]) -->
aux (AUX), adv(RB), past participle(V).

10.5 Noun Groups and Verb Groups 295

verb group ([AUX1, AUX2, V]) -->

aux (AUX1), aux(AUX2), past participle (V).
verb group ([MOD, AUX, V]) -->

modal (MOD) , aux(AUX), past participle (V).

Now let us write a rule that describes a group inside a word stream: word_ -
stream group. As for with the multiwords, such a stream consists of a begin-
ning, the group, and an end. Its transcription into a DCG rule is:

word_stream group (Beginning, Group, End) -->
beginning (Beginning),
group (Group) ,
end (End) .

Finally, a group can either be a noun group or a verb group. As for multiwords,
noun groups and verb groups are annotated using the XML tags <NG> and <VG>:

group (NG) -->

noun_group (Group) ,

{append ([’ <NG>’ | Group], ['</NG>'], NG)}.
group (VG) -->

verb_ group (Group) ,

{append ([’ <VG>’ | Groupl, ['</VG>']l, VG)}.

10.5.4 Running the Rules

Let us write a Prolog program using an approximation of the longest match
algorithm to run the rules. The program is similar to the multiword detector:

group_detector (In, Out) :-
word_stream group (Beginning, Group, End, In, []),
group_detector (End, Rest),
append (Beginning, [Group], Head),
append (Head, Rest, Out).

group_detector (End, End).

Since these rules match the longest segments first, they must be written from the
longest to the shortest.

Although the grammar is certainly not comprehensive, it can fare reasonably well
for a first step. We shall apply it to a text from the Los Angeles Times “Flying Blind
With the Titans”, December 17, 1996:

Critics question the ability of a relatively small group of big integrated prime contractors
to maintain the intellectual diversity that formerly provided the Pentagon with innovative
weapons. With fewer design staffs working on military problems, the solutions are likely to
be less varied.

296 10 Partial Parsing

We complement the grammar with the lexical rules to identify the part of speech
of each word:

[)

% Determiners
det (a) --> [a].
det (the) --> [the].

[)

% Common nouns

common_noun (ability) --> [ability].
common_noun(critics) --> [critics].
common_noun (contractors) --> [contractors].
common_noun (design) --> [design].
common _noun (diversity) --> [diversity].
common_noun (group) --> [group].

common_noun (problems) --> [problems].
common_noun (solutions) --> [solutions].
common_noun (staffs) --> [staffs].
common_noun (weapons) --> [weapons].

[)

% Proper nouns
proper noun (pentagon) --> [pentagon].

% Adverbs

adv (formerly) --> [formerlyl].
adv(less) --> [less].

adv(likely) --> [likely].

adv (relatively) --> [relatively].

[)

% Adjectives
adj (big) --> [big].

adj (fewer) --> [fewer].

adj (innovative) --> [innovative].

adj (intellectual) --> [intellectual].
adj (military) --> [military].

adj (prime) --> [prime].

adj (small) --> [smalll].

[)

% Infinitives

infinitive (be) --> [bel.

infinitive (maintain) --> [maintain].
% Tensed verbs

tensed verb (provided) --> [provided].
tensed verb(question) --> [question].

10.5 Noun Groups and Verb Groups 297

[)

% Past participles

past participle(integrated) --> [integrated].
past participle(varied) --> [varied].

% Auxiliaries

aux(are) --> [are].

And we run our detector, which results in:

?- group detector([critics, question, the, ability,
of, a, relatively, small, group, of, big, integrated,
prime, contractors, to, maintain, the, intellectual,
diversity, that, formerly, provided, the, pentagon,
with, innovative, weapons, with, fewer, design,
staffs, working, on, military, problems, the,
solutions, are, likely, to, be, less, varied], L),
flatten (L, Out).

Out = [<NG>, critics, </NG>, <VG>, question, </VG>,
<NG>, the, ability, </NG>, of, <NG>, a, relatively,
small, group, </NG>, of, <NG>, big, integrated, prime,
contractors, </NG>, <VG>, to, maintain, </VG>, <NG>,
the, intellectual, diversity, </NG>, that, <VG>,
formerly, provided, </VG>, <NG>, the, pentagon, </NG>,
with, <NG>, innovative, weapons, </NG>, with, <NG>,
fewer, design, staffs, </NG>, working, on, <NG>,
military, problems, </NG>, <NG>, the, solutions,
</NG>, <VG>, are, </VG>, likely, <VG>, to, be, </VG>,
less, varied]

Though the grammar misses groups, we realize that a limited effort has rapidly
produced results.

We must note that this example is slightly artificial because no word has an
ambiguous part of speech. A more realistic example would have to deal with this. A
way to solve it could be to write as many rules as there are possible parts of speech
for a word, for instance:

common_noun (question) --> [question].
tensed verb(question) --> [question].

Another way could be to use a part-of-speech tagger as a first processing step and
to apply the rules on the part-of-speech sequence.

298 10 Partial Parsing

Table 10.7 Tagset to annotate noun groups

No bracket No bracket
Beginning End Between (outside) (inside)
[nG NG ~nGl [ne Outside Inside

10.6 Group Annotation Using Tags

Group annotation results in bracketing a word sequence with opening and closing
annotations. This can be recast as a tagging problem. However, the annotation
inserts brackets between words instead of assigning tags to words. The most
intuitive annotation is then probably to tag intervals. We can then use algorithms
very similar to part-of-speech tagging to carry out the group detection. They give us
an alternate method to DCG rules describing verb groups and noun groups.

For the sake of simplicity, we first present annotation schemes for noun groups.
We will then generalize them to verb groups and other groups. We describe which
tags to use to annotate the intervals, and we will see that we can equivalently tag the
words instead of the gaps.

10.6.1 Tagging Gaps

Below are examples of noun group bracketing from Ramshaw and Marcus (1995).
They insert brackets between the words where appropriate.

[nc The government y¢] has [yg other agencies and instruments yg] for pursuing [y these
other objectives y¢].

Even [yg Mao Tse-tung yg] [ng ’s China y¢] began in [yg 1949 ng] with [y a partnership
NG| between [yg the communists yg] and [yg a number yg] of [y smaller, non-communists
parties ng].

If we only consider noun groups, the tagset must include opening and ending
brackets. There must also be a tag to indicate a separation between two contiguous
noun groups. The rest of the gaps are to be labeled with a “no bracket” tag.

As noun group detection usually considers nonrecursive sequences, we avoid
nested brackets, as in this sequence: [... [orin thisone:] ...]. To check
nesting while processing the stream, we must make a distinction between a
“no bracket” inside a group and “no bracket” outside a group. The tagger can
then prevent an inside “no bracket” to be followed by an opening bracket. We
complement the tagset with “no bracket” tags denoting either we are within a group
or outside (Table 10.7).

In addition to nested groups, other inconsistencies can occur, such as the
sequences:

10.6 Group Annotation Using Tags 299

¢ [Outside
e] Inside,or
e Qutside].

The tagger must keep track of the preceding bracket to refuse illegal tag pairs.

10.6.2 Tagging Words

Instead of tagging the gaps, we can equivalently tag the words. Ramshaw and
Marcus (1995) defined a tagset of three elements {I, O, B}, where I means that
the word is inside a noun group, O means that the word is outside, and B (between)
means that the word is at the beginning of a noun group that immediately follows
another noun group. Using this tagging scheme, an equivalent annotation of the
sentences in Sect. 10.6.1 is:

The/I government/I has/O other/I agencies/I and/I instruments/I for/O pursuing/O
these/I other/I objectives/I ./O

Even/O Mao/I Tse-tung/I ’s/B China/I began/O in/O 1949/ with/O a/I partnership/I
between/O the/I communists/I and/O a/I number/I of/O smaller/I ,/I non-communists/I
parties/I ./O

As in the case for gap tagging, some inconsistencies can occur, such as the
sequence: O B. The tagger can refuse such sequences, mapping them to a plausible
annotation. That is, in the example above, to change the B tag into an I tag.

10.6.3 Extending IOB to Two or More Groups

From its original definition, researchers modified the TOB scheme and extended it
to annotate two or more group categories. The most widespread variant of IOB is
called TOB2, where the first word in a group receives the B tag (begin), and the
following words the T tag. As for IOB, words outside the groups are annotated with
the O tag. Using TOB2, the two examples in Sect. 10.6.1 would be annotated as:

The/B government/I has/O other/B agencies/I and/I instruments/I for/O pursuing/O
these/B other/I objectives/I ./O

Even/O Mao/B Tse-tung/I ’s/B China/I began/O in/O 1949/B with/O a/B partnership/I
between/O the/B communists/I and/O a/B number/I of/O smaller/B ,/I non-communists/I
parties/I ./O

The IOB2 annotation scheme gained acceptance from the conferences on
Computational Natural Language Learning (CoNLL 2000, see Sect. 10.12) that
adopted it and went popular enough so that many people now use the term “IOB
scheme” when they actually mean IOB2.

300 10 Partial Parsing

Fig. 10.3 An annotation Words POS Groups
example of syntactic groups He PRP B-NP
using the CoNLL 2000 reckons VBZ B-VP

extended IOB scheme
(I0B2). The parts of speech
are predicted using Brill’s
tagger, while the groups are
extracted from the Penn

the DT B-NP
current JJ I-NP
account NN I-NP
deficit NN [-NP

Treebank. The noun groups will MD B-VP
and verb groups are o narrow VB I-VP
highlighted in light blue and to TO B-PP
light green, respectively only RB B-NP
(After data provided by Tjong “ # I-NP
Kim Sang and Buchholz 1.8 CD I-NP
(2000)) billion ~ CD I-NP

in IN B-PP

September NNP B-NP

(0]

Extending IOB to annotate two or more group categories is straightforward. We
just need to use tags with a type suffix as for instance the tagset {I-Typel,
B-Typel, I-Type2, B-Type2, O} to markup two different group types,
Typel and Type2. CoNLL 2000 (Tjong Kim Sang and Buchholz 2000) again is an
example such an annotation extension. The organizers used 11 different group types:
noun phrases (NP), verb phrases (VP), prepositional phrases (PP), adverb phrases
(ADVP), subordinated clause (SBAR), adjective phrases (ADJP), particles (PRT),
conjunction phrases (CONJ), interjections (INTJ), list markers (LST), and unlike
coordinated phrases (UPC).> The noun phrases, verb phrases, and prepositional
phrases making up more the 90 % of all the groups in the CoNLL 2000 corpus.

10.6.4 Annotation Examples from CoNLL 2000, 2002,
and 2003

As we saw, the CoNLL shared task in 2000 used the IOB2 tag set to annotate
syntactic groups. Figure 10.3 shows an example of it with the sentence:

He reckons the current account deficit will narrow to only £1.8 billion in September.
whose annotation is:

[nvc He ng] [vg reckons yg] [ve the current account deficit yg] [ve will narrow vg] [pg to
rc] [ng only £1.8 billion y¢] [pg in pg] [N September yg].

2We feel that the word “phrase” has a misleading sense here. Most people in the field would
understand it differently. The CoNLL 2000 phrases correspond to what we call group or chunk in
this book: nonrecursive syntactic groups.

10.7 Machine Learning Methods to Detect Groups 301

and where the prepositional groups are limited to the preposition to avoid recursive
groups. The corpus consists of three columns:

1. The first column contains the sentences with one word per line and a blank line
after each sentence.

2. The second column contains the parts of speech of the words. The CoNLL 2000
organizers used Brill’s tagger (Sect. 7.3) trained on the Penn Treebank to assign
these parts of speech (Tjong Kim Sang and Buchholz 2000). The tagset shown
in Table 7.12.

3. The third column contains the groups with the chunk annotation.

The topic of CoNLL 2002 and 2003 shared tasks was to annotate named entities.
These tasks reused the ideas laid down in CoNLL 2001 with the IOB2 and IOB tag
sets:

e The CoNLL 2002 annotation (Tjong Kim Sang 2002) consists two columns,
the first one for the words and the second one for the named entities with
four categories, persons (PER), organizations (ORG), locations (LOC), and
miscellaneous (MISC). CoNLL 2002 uses I0OB2. Figure 10.4, left part, shows
the annotation of the sentence:

[per WOILF pgprl, a journalist currently in [oc Argentina ;oc], played with [pggr Del
Bosque pgr] in the final years of the seventies in [prg Real Madrid ogg].

* The CoNLL 2003 annotation (Tjong Kim Sang and De Meulder 2003) has four
columns: the words, parts of speech, syntactic groups, and named entities. Both
the syntactic groups and named entities use the original IOB scheme. Figure 10.4,
right part, shows the annotation of the sentence:

[orc U.N. grc] official [pgr Ekeus pgg] heads for [Loc Baghdad ;oc].

10.7 Machine Learning Methods to Detect Groups

As with part-of-speech tagging, we can use either statistical or symbolic methods
to detect groups, where in both cases, statistical classifiers or rules are trained from
hand-annotated corpora. Group detection methods usually consider the words and
their part of speech in a window around the group tag to identify. This means that
group detection generally involves a part-of-speech tagging step before starting to
detect the groups.

10.7.1 Group Detection Using Symbolic Rules

The symbolic rules algorithm is very similar to that of Brill’s part-of-speech tagging
method. The initial tagging considers the part of speech of the word and assigns the

302 10 Partial Parsing

CoNLL 2002 CoNLL 2003
Words Named entities Words POS Groups Named entities
Wolff B-PER U.N. NNP I-NP I-ORG
, (0} official NN I-NP (¢}
currently O Ekeus NNP I-NP I-PER
a (0] heads VBZ 1-VP (0]
journalist O for IN I-PP (0]
in 0} Baghdad NNP I-NP I-LOC
Argentina B-LOC . . O (0]

, (0}
played O
with o
Del B-PER
Bosque I-PER
in (6]
the (6]
final (0]
years (@)
of (6]
the o
seventies O
in (0]
Real B-ORG
Madrid I-ORG

Fig. 10.4 Annotation examples of named entities using the CoNLL 2002 (left) and CoNLL 2003
(right) 10B schemes. CoNLL 2002 has two columns and uses I0B2. CoNLL 2003 has four
columns and uses IOB for the groups and named entities (After data provided by Tjong Kim Sang
(2002) and Tjong Kim Sang and De Meulder (2003))

group annotation tag that is most frequently associated with it, that is, I, O, or B.
Then, rules applied sequentially modify annotation tags.

Rules consider the immediate context of the tag to be modified, spanning a few
words to the left and a few words to the right of the current word. More precisely,
they take into account group annotation tags, parts-of-speech tags, and words around
the current word. When the context of the current word matches that of the rule being
applied, the current tag is altered.

Ramshaw and Marcus (1995) applied a set of 100 templates using a combination
of 10 word contexts and 10 part-of-speech contexts, 20 templates in total, and 5
group annotation tag contexts spanning up to 3 words to the left and to the right:

* Wo, W_;, W; being, respectively, the current word, the first word to the left, and
the first word to the right.

* Ty, T—;, T} being, respectively, the part of speech of the current word, of the first
word to the left, and of the first word to the right.

10.7 Machine Learning Methods to Detect Groups 303

Table 10.8 Patterns used in the templates

Word patterns Noun group patterns

Pattern Meaning Pattern Meaning

Wo Current word Go Current noun group tag

W_ First word to left G—_1, Go Tag bigram to left of current word
W) First word to right Go, Gi Tag bigram to right of current word
W_q, Wp Bigram to left of current word G—3,G—; Tagbigram to left of current word
Wo, Wy Bigram to right of current word Gy, G, Tag bigram to right

W_y, Wy Surrounding words

W_p, W— Bigram to left

Wi, Wy Bigram to right

W_i—>—3 Words 1 or2or 3 to left

Wi23 Words 1 or 2 or 3 to right

Table 10.9 The five first rules from Ramshaw and Marcus (1995)

Pass Old tag Context New tag
1 I G = 0, Tp = JJ 0
2 - G, =1, G, =1, Ty =DT B
3 - G =0, Gy = I, T = DT I
4 G_; = I, Top = WDT B
5 G_; = I, Tp = PRP B

* Gy, G_|, G| being, respectively, the group annotation tag of the current word, of
the first word to the left, and of the first word to the right.

Table 10.8 shows the complete set of templates. Word and part-of-speech
templates are the same.

After training the rules on the Penn Treebank using its part-of-speech tagset, they
could retrieve more than 90 % of the noun groups. The five most productive rules
are given in Table 10.9. The first rule means that an I tag is changed into an O
tag when the current part of speech is an adjective (JJ) and the following word is
tagged O. The second rule sets the tag to B if the two previous tags are I and the
current word’s part of speech is a determiner (DT).

10.7.2 Group Detection Using Stochastic Tagging

We can use the same methods as in Chap. 8 to determine a sequence of group tags.
The maximum likelihood estimator determines the optimal sequence of group tags
G =g1,8,83,---,8n, given a sequence of words W = wy, wy, w3, ..., w, and of
part-of-speech tags T = 1,1, t3, ..., ty.

As context of the current group tag g;, we can use a window of three words
wi—1, wi, and w; 4 centered on it as well the surrounding parts of speech: #;,_1, #;,

304 10 Partial Parsing

and f; 4. We estimate P(g;|wi—1, Wi, wit1,ti—1,1,1+1) using logistic regression,
for instance, and we maximize the equation:

n
P(G) = [| P(gilwir. wi.wig1 tim1. ti T). (10.1)

i=1

using the Viterbi algorithm (Sect. 8.2.4).

10.7.3 Using Classifiers

Other classifiers such decision trees, logistic regression, or support vector machines
are alternatives to stochastic tagging. As with symbolic rules in Sect. 10.7.1, the
baseline considers the current word’s part of speech and assigns the group annota-
tion tag that is most frequently associated with this part of speech. Considering a
larger window of one or two adjacent words to the left or to the right of the current
word improves the performance. For the sentence:

He/PRP reckons/VBZ the/DT current/JJ account/NN deficit/NN will/MD narrow/VB to/TO
only/RB £/# 1.8/CD billion/CD in/IN September/NNP ./.

the feature vector (¢,_1, t;, t;+1) associated with the word deficit has the value: (NN,
NN, MD).

In addition to the parts of speech, a classifier can also use the word values.
This corresponds to a lexicalization of the model, which usually improves the
performance. However, as the training set is always finite, after being trained, the
classifier will have to deal with unseen words, words that exist but are not present
in the training set. This can be a problem for some learning algorithms like decision
trees. A practical solution to this is to build a dictionary of the words seen in the
training corpus, where all the words with a frequency lower than a certain threshold
are mapped onto a unique token, OTHER _WORD. Once trained, instead of using the
word value, the group detector will take this symbol when it encounters a word that
is not in the dictionary.

The features consisting of parts of speech and word values are called static
because they are determined before the program runs. We can build classifiers that
use dynamic features or dynamic attributes that are computed at run time. In our
case and provided that the analysis is carried from left to right, the classifier can
use the group tag assigned to the word before the current word or to the two words
preceding the current word.

Kudoh and Matsumoto (2000) obtained the best results in CoNLL 2000 with a
feature set consisting of five words, five parts of speech centered on the current word
as well as the two preceding group tags:

(Wi, Wi 1, Wi, Wi 1, Wi, o, i1, G i1, L, 82, 8im 1)

10.7 Machine Learning Methods to Detect Groups 305

Fig. 10.5 Input features: Words POS Groups
(Wi—2, Wi, Wi, Wi, Wi, BOS BOS BOS Padding
li—o, li—1, b i1, L2, 8im2, §im1) BOS BOS BOS
used by Kudoh and He PRP B-NP
Matsumoto (2000) and the reckons VBZ B-VP
Yamcha system (After data the DT B-NP
provided by Tjong Kim Sang current 1 I-NP
and Buchholz (2000)) account NN L-NP
deficit NN I-NP Input features
will MD B-VP
narrow VB I-VP Predicted tag
to TO B-PP !
only RB B-NP
£ # I-NP
1.8 CD I-NP
billion CD I-NP
in IN B-PP
September NNP B-NP
. . (0}
EOS EOS EOS Padding
EOS EOS EOS

Table 10.10 Input feature vectors (w;—y, w;, Wi41,ti—1,t,ti+1, gi—1) extracted from the sen-
tence in Fig. 10.5. They are used by the classifier at index i to predict the group tag g;. We used
the padding symbols BOS, beginning of sentence, and EOS, end of sentence (After data provided
by Tjong Kim Sang and Buchholz (2000))

Input feature vectors Output
Wi—1 Wi Wit1 ti—1 ti lit1 gi—1 gi
BOS He reckons BOS PRP VBZ BOS B-NP
He reckons the PRP VBZ DT B-NP B-VP
reckons the current VBZ DT JJ B-VP B-NP
the current account DT JJ NN B-NP I-NP
current account deficit JJ NN NN I-NP I-NP
account deficit will NN NN MD I-NP I-NP
deficit will narrow NN MD VB I-NP B-VP
will narrow to MD VB TO B-VP I-VP
narrow to only VB TO RB I-VP B-PP
to only £ TO RB # B-PP B-NP
only £ 1.8 RB # CD B-NP I-NP
£ 1.8 billion # CD CD I-NP I-NP
1.8 billion in CD CD IN I-NP I-NP
billion in September CD IN NNP I-NP B-PP
in September . IN NNP . B-PP B-NP
September . EOS NNP . EOS B-NP O

Figure 10.5 shows this feature set graphically, and Table 10.10 shows the features
of a smaller set (w;—1, w;, w41, ti—1,t;, ti+1, &i—1) extracted for all the words in the
sentence.

306 10 Partial Parsing

Table 10.11 Group detection efficiency using different feature sets. The training data was
extracted from the CoNLL 2000 training set, and the decision trees were trained using the C4.5
implementation available from the Weka environment. They were then applied to the CoNLL 2000
test set. In the lexicalized models, we used words that had a frequency greater than 100 in the
training set. All the other words were mapped onto the OTHER WORD symbol. The evaluation
was carried out using the CoNLL 2000 script, which uses the F'-measure, see Sect. 10.11.3 for a
definition. The annotated data as well as the evaluation script are available from the CoNLL 2000
web page

Context Models

T_» T To T4 T4 POS POS POS POS
W_p W— Wo Wiy Wio - Words - Words
G2 G - - Groups Groups
- - ° - - 77.07 79.51 - -

- ° ° - - 81.88 85.88 83.03 86.68
° ° ° - - 82.84 86.48 83.11 86.75
- ° ° - 87.13 89.75 88.36 90.28
° ° ° ° 88.34 90.40 88.61 90.53

10.7.4 Group Detection Performance and Feature Engineering

The choice of a feature set is very significant for the performance of a classifier.
Table 10.11 shows examples of with the C4.5 decision tree classifier using different
sets. We used part-of-speech tags, lexical values, and group tags extracted from
contexts of different sizes. Choosing and tuning an optimal feature set is a delicate
operation that has to balance precision and computational requirements. It is often
referred to as feature engineering.

As a general rule, the larger the contexts, the better the results, however, the result
improvements are not proportional to the growth of the context size and tend quickly
to reach a plateau. Some feature sets of are more efficient too. The classifier using
features extracted from the two words surrounding the current word outperforms
the one using the two words preceding it by 4.29 for nonlexicalized models (87.13
vs. 82.84), although the number of features is equal. We can see that lexicalization
improves the figures by 2.88 on average. The gain brought by dynamic features —
group tags — is more modest, 0.58 on average.

The best figure obtained by the classifier is for a window of five words with 12
parameters, 1_y, 1, to, [41, L+2, W—p, W_1, W, W1, W42, &2, &—1, hot far off from
the figure of 93.48 obtained by Kudoh and Matsumoto (2000) and the Yamcha
system with support vector machines, a more efficient, but slower, machine learning
algorithm. The figures obtained with the lexicalized models in Table 10.11 use a
threshold value of 100, i.e., all the words with a frequency <100 in the training
corpus are mapped onto the OTHER WORD symbol.

10.9 Elementary Analysis of Grammatical Functions 307

Sentences

Tokenizer

Part-of-speech
tagging

Group detection
(or chunking)

Fig. 10.6 A cascade of partial parsers

10.8 Cascading Partial Parsers

We saw that partial phrase-structure rules or statistical taggers could detect mul-
tiwords and groups. We can combine both detectors into a multilevel parser and
add more layers. A tokenizer is necessary to read the text before it can be passed
to the parsers. The applications generally use a part-of-speech tagger before the
group detector (or chunker) and sometimes a morphological parser. The parser’s
structure is then a pipeline of analyzers, where each parsing level has a definite task
to achieve. This technique is referred to as cascaded parsing.

With this approach, the exact number and nature of levels of cascaded parsers
depends on the application and the expected result. In addition, some layers are
generic, like tokenization, while others may be more specific and depend on the
application goal. However, the principle is that one level uses the output of the lower
level and passes on the result to the next layer (Fig. 10.6). This corresponds precisely
to the format and organization of the CoNLL corpora.

10.9 Elementary Analysis of Grammatical Functions

10.9.1 Main Functions

In a previous section, we named groups according to the part of speech of their main
word, that is, noun groups and verb groups. We can also consider their grammatical

308 10 Partial Parsing

function in the sentence. We already saw that main functions (or relations) are
subject, direct object, and indirect object. An accurate detection of function is
difficult, but we can write a simplified one using cascaded parsing and phrase-
structure rules.

We can recognize grammatical functions using a layer above those we have
already described and thus complement the cascade structure. In English, the subject
is generally the first noun group of a sentence in the active voice. It is marked
with the nominative case in German, while case inflection is limited to pronouns
in English and French. The direct object is the noun group just after the verb if there
is no preposition in-between. It is marked with the accusative case in German.

We will now write a small set of DCG rules to encode this simplified description.
The structure of a simple sentence consists of a subject noun group, a verb group in
the active voice, and an object noun group. It corresponds to the rules:

sentence (S, VvV, 0) -->
subject (S), verb(V, active), object(0), ['.'].
subject (S) --> noun group(S) .

object (O) --> noun group (O) .

verb (V, active) --> verb group(V, active).

We must modify the description of verbs in the terminal symbols to add an
active/passive feature.

10.9.2 Extracting Other Groups

The subject—verb—object relation is the core of most sentences. However, before
extracting them, it is useful to skip some groups between them. Among the groups,
there are prepositional phrases and embedded clauses, as in the two sequences:
subject, prepositional groups, verb and subject, relative clause, verb.

A prepositional group can be defined as a preposition followed by a noun group.
Using a DCG rule, this translates into:

prep group ([P | [NG]]) --> prep(P), ng(NG).

The detection of prepositional groups is a new layer in the cascade structure. A
new rule describing ng as a terminal symbol is then necessary to be consistent with
the noun groups detected before:

ng([’'<NG>'| NG]) --> [['<NG>’| NGI].

Embedded clauses can be relative, infinitive, or subordinate. Here we will only
consider relative and infinitive clauses that may modify a noun.

10.9 Elementary Analysis of Grammatical Functions 309

A relative clause is an embedded sentence whose subject or object has been
replaced with a relative pronoun. The relative pronoun comes in front of the clause.
For simple clauses, this translates into two rules:

$Relative clause: The relative pronoun is the subject
relative clause(RC) -->

relative pronoun(R), vg(VG), ng(NG),

{append ([R | [VG]], [NG], RC)}.
% Relative clause: The relative pronoun is the object
relative clause(RC) -->

relative pronoun(R), ng(NG), vg(VG),

{append ([R | [NG]], [VG], RC)}.

An infinitive clause is simply a verb phrase set in the infinitive. For simple
examples, it translates into a verb group possibly followed by a noun group, where
the verb group begins with fo:

infinitive clause([[’'<VG>’, to | VG], NG]) -->
vg([’'<VG>', to | VG]), ng(NG).

infinitive clause([[’'<VG>', to | VG]]) -->
vg([’'<VG>', to | VG])

Like for noun groups, we must describe verb groups as a terminal symbol:
vg ([<VG>'’ | VG]) --> [['<VG>' | VG] 1.
Now let us write the rules to describe the modifiers and annotate them:

modifier (MOD) -->

prep group (PG) ,

{append ([’ <PG>" | PG], [’'</PG>’], MOD) }.
modifier (MOD) -->

relative clause (RC),

{append ([’'<RC>’ | RC], [’</RC>’], MOD) }.
modifier (MOD) -->

infinitive clause (IC),

{append ([’ <IC>’ | 1IC], [’</IC>’], MOD)}.

Finally, we write the detector to run the program:

modifier detector(In, Out) :-
word stream modifier (Beginning, Group, End, In, []),
modifier detector (End, Rest),
append (Beginning, [Group], Head),
append (Head, Rest, Out).
modifier detector (End, End).

word stream modifier (Beginning, Group, End) -->
beginning (Beginning) ,

310

modifier (Group),
end (End) .

10 Partial Parsing

Let us apply these rules on the first sentence of the Los Angeles Times excerpt.
We must add prepositions and a relative pronoun to the vocabulary:

prep (of) --> [of].

prep (with) --> [with].

relative pronoun(that) --> [that].

And the query yields:

?- modifier detector ([[<NG>, critics, </NG>], [<VG>,
question, </VG>], [<NG>, the, ability, </NG>], of,
[<NG>, a, relatively, small, group, </NG>], of, [<NG>,
big, integrated, prime, contractors, </NG>]1, [<VG>,
to, maintain, </VG>], [<NG>, the, intellectual,
diversity, </NG>]1, that, [<VG>, formerly, provided,
</VG>], [<NG>, the, pentagon, </NG>], with, [<NG>,
innovative, weapons, </NG>], with, [<NG>, fewer,
design, staffs, </NG>], working, on, [<NG>, military,
problems, </NG>], [<NG>, the, solutions, </NG>],
[<VG>, are, </VG>], likely, [<VG>, to, be, </VG>],
less, wvaried], O).

O = [[<NG>, critics, </NG>], [<VG>, question, </VG>],
[<NG>, the, ability, </NG>], [<PG>, of, [<NG>, a,
relatively, small, group, </NG>], </PG>], [<PG>, of,
[<NG>, big, integrated, prime, contractors, </NG>],
</PG>], [<IC>, [<VG>, to, maintain, </VG>], [<NG>,
the, intellectual, diversity, </NG>], </IC>], I[<RC>,
that, [<VG>, formerly, provided, </VG>], [<NG>, the,
pentagon, </NG>], </RC>], [<PG>, with, [<NG>,
innovative, weapons, </NG>], </PG>], [<PG>, with,
[<NG>, fewer, design, staffs, </NG>], </PG>], working,
on, [<NG>, military, problems, </NG>], [<NG>, the,
solutions, </NG>], [<VG>, are, </VG>], likely, I[<IC>,
[<VG>, to, be, </VG>], </IC>], less, varied]

Prepositional phrases and relative clauses
and <RC> tags. Remaining groups are
[<VG>,question, </VG>], and

[<NG>,

are labeled with <PG>, <IC>,
[<NG>, critics, </NG>],
the, ability, </NG>],

which correspond to heads of the subject, main verb, and the object of the sentence.

10.10 An Annotation Scheme for Groups in French 311
10.10 An Annotation Scheme for Groups in French

The PEAS initiative (Gendner et al. 2003) defines an XML annotation scheme
for syntactic groups (chunks) and functional relations for French. It was created
to reconcile different annotation practices and enable the evaluation of parsers.
We present here the chunk annotation that applies to continuous, nonrecursive
constituents.

The PEAS annotation identifies six types of chunks:

. Verb groups (noyau verbal): <NV></NV>

. Noun groups (groupe nominal): <GN></GN>

. Prepositional groups: <GP></GP>

. Adjective groups: <GA></GA>

. Adverb groups: <GR></GR>

. Verb groups starting with a preposition: <PV></PV>

AN WN =

The sentence En quelle année a-t-on vraiment construit la premiére automobile?
‘Which year the first automobile was really built?’ is bracketed as

<GP> En quelle année </GP> <NV> a —t-on </NV> <GR> vraiment </GR> <NV>
construit </NV> <GN> la premiére automobile</GN> ?

The annotation first identifies the sentence in the corpus:

<E id="2"> En quelle année a -t-on vraiment
construit la premiére automobile ? </E>

The second step tokenizes the words:

<DOCUMENT fichier="Guide.1l">
<E id="E2">
<F 1id="E2F1">En</F>
<F id="E2F2">quelle</F>
<F id="E2F3">année</F>
<F id="E2F4">a</F>
<F 1id="E2F5">-t-on</F>
<F id="E2F6">vraiment</F>
<F id="E2F7">construit</F>
<F id="E2F8">la</F>
<F id="E2F9">premiére</F>
<F i1id="E2F10">automobile</F>
<F 1id="E2F11">?</F>
</E>
</DOCUMENT >

using the DTD

< !ELEMENT DOCUMENT (E+) >
<!ATTLIST DOCUMENT fichier NMTOKEN #REQUIRED >
<!ELEMENT E (F)+>

312

<!ATTLIST E id NMTOKEN #REQUIRED >
<!ELEMENT F (#PCDATA) >
<!ATTLIST F id ID #REQUIRED >

The third step brackets the groups:

<DOCUMENT fichier="Guide.l.phl.IR.xml">
<E id="E2">
<Groupe type="GP" id="E2G1l">
<F 1d="E2F1">En</F>
<F id="E2F2">quelle</F>
<F 1d="E2F3">année</F>
</Groupe>
<Groupe type="NV" id="E2G2">
<F 1d="E2F4">a</F>
<F 1d="E2F5">-t-on</F>
</Groupe>
<Groupe type="GR" id="E2G3">
<F 1d="E2F6">vraiment</F>
</Groupe>
<Groupe type="NV" id="E2G4">
<F 1d="E2F7">construit</F>
</Groupe>
<Groupe type="GN" id="E2G5">
<F 1d="E2F8">la</F>
<F 1d="E2F9">premiére</F>
<F 1d="E2Fl0">automobile</F>
</Groupe>
<F 1d="E2F11">?</F>
</E>
</DOCUMENT >

using the DTD

< !ELEMENT DOCUMENT (E+) >

10

<!ATTLIST DOCUMENT fichier NMTOKEN #REQUIRED

<!ELEMENT E (F | Groupe)+>
<!ATTLIST E id NMTOKEN #REQUIRED >
< !ELEMENT Groupe (F+) >
<!ATTLIST Groupe id ID #REQUIRED >

Partial Parsing

<!ATTLIST Groupe type (GA | GN | GP | GR | NV |

PV) #REQUIRED >
<!ELEMENT F (#PCDATA) >
<!ATTLIST F id ID #REQUIRED >

10.11 Application: Information Extraction and the FASTUS System 313

10.11 Application: Information Extraction and the FASTUS
System

Quis, quid, quando, ubi, cur, quem ad modum, quibus adminiculis
‘Who, what, when, where, why, in what manner, by what means’
Hermagoras, De rhetorica, in K. Halm, Rhetores latini minores, p. 141.

10.11.1 The Message Understanding Conferences

The FASTUS system was designed at the Stanford Research Institute (SRI) to
extract information from free-running text (Appelt et al. 1993; Hobbs et al. 1997).
It was implemented within the course of the Message Understanding Conferences
(MUCs) that we introduced in Sect. 10.3.3. MUCs were organized to measure the
performance of news monitoring systems. They were held regularly until MUC-7 in
1997, under the auspices of DARPA, an agency of the US Department of Defense.
The performances improved dramatically in the beginning and then stabilized.
DARPA discontinued the competitions when it realized that the systems were no
longer improving.

MUC:s are divided into a set of tasks that have changed over time. The most basic
task is to extract people and company names. The most challenging one is referred
to as information extraction. It consists of the analysis of pieces of text ranging from
one to two pages, the identification of entities or events of a specified type and their
circumstances, and filling a predefined template with relevant information from the
text. Information extraction then transforms free texts into tabulated information.
Here is an example news wire cited by Hobbs et al. (1997) and its corresponding
filled template drawn from MUC-3 (Table 10.12):

San Salvador, 19 Apr 89 (ACAN-EFE) — [TEXT] Salvadoran President-elect Alfredo
Cristiani condemned the terrorist killing of Attorney General Roberto Garcia Alvarado and
accused the Farabundo Marti National Liberation Front (FMLN) of the crime.

Garcia Alvarado, 56, was killed when a bomb placed by urban guerrillas on his vehicle
exploded as it came to a halt at an intersection in downtown San Salvador.

Vice President-elect Francisco Merino said that when the attorney general’s car stopped at
a light on a street in downtown San Salvador, an individual placed a bomb on the roof of
the armored vehicle.

According to the police and Garcia Alvarado’s driver, who escaped unscathed, the attorney
general was traveling with two bodyguards. One of them was injured.

314 10 Partial Parsing

Table 10.12 A template derived from the previous text (After Hobbs et al. (1997))

Template slots Information extracted from the text

Incident: Date 19 Apr 89

Incident: Location El Salvador: San Salvador (city)

Incident: Type Bombing

Perpetrator: Individual ID urban guerrillas

Perpetrator: Organization ID FMLN

Perpetrator: Organization confidence Suspected or accused by authorities: FMLN

Physical target: Description vehicle

Physical target: Effect Some damage: vehicle

Human target: Name Roberto Garcia Alvarado

Human target: Description Attorney general: Roberto Garcia Alvarado
driver
bodyguards

Human target: Effect Death: Roberto Garcia Alvarado

No injury: driver
Injury: bodyguards

10.11.2 The Syntactic Layers of the FASTUS System

FASTUS uses partial parsers that are organized as a cascade of finite-state automata.
It includes a tokenizer, a multiword detector, and a group detector as first layers. The
detector uses a kind of longest match algorithm. Verb groups are tagged with active,
passive, gerund, and infinitive features. Then FASTUS combines some groups
into more complex phrases. Complex groups include notably the combination of
adjacent nouns groups (appositives):

The joint venture, Bridgestone Sports Taiwan Co.

First noun group Second noun group

of noun groups separated by prepositions of or for (noun postmodifiers):
The board of directors

and of noun group conjunctions:
a local concern and a Japanese trading house

Complex groups also include verb expressions such as:

plan to set up
announced a plan to form

Such complex groups can be found in French and German, where they have often a
one-word counterpart in another language:

mettre une lettre a la poste ‘mail a letter’
Jjemanden kennen lernen ‘know somebody’

10.11 Application: Information Extraction and the FASTUS System 315

Table 10.13 Documents in a Relevant documents Irrelevant documents
library returned from a

catalog query and split into Retrieve.d A B
relevant and irrelevant books Not retrieved C D

They merely reduce to a single semantic entity that is formed differently from
one language to another.

FASTUS’ upper layers then deal with grammatical functions and semantics.
FASTUS attempts to reduce sentences to a basic pattern consisting of a subject, a
verb, and an object. Finally, FASTUS assigns a sense to some groups by annotating
them with a semantic category such as company, product, joint venture, location,
and so on.

SRI first used a full parser called TACITUS, and FASTUS as a front-end to
offload it of some tasks. Seeing the excellent results and speed of FASTUS, SRI
completely replaced TACITUS with FASTUS. It had a considerable influence on
the present evolution of parsing techniques. FASTUS proved that the local and
cascade approach was more efficient and much faster than other global analyses
for information extraction. It had a considerable number of followers.

10.11.3 Evaluation of Information Extraction Systems

The MUCs introduced a metric to evaluate the performance of information extrac-
tion systems using three figures: recall, precision, and the F-measure. This latter
metric, originally borrowed from library science, proved very generic to summarize
the overall effectiveness of a system. It has been used in many other fields of
language processing since then.

To explain these figures, let us stay in our library and imagine we want to retrieve
all the documents on a specific topic, say morphological parsing. An automatic
system to query the library catalog will, we hope, return some of them, but possibly
not all. On the other hand, everyone who has searched a catalog knows that we will
get irrelevant documents: morphological pathology, cell morphology, and so on.
Table 10.13 summarizes the possible cases into which documents fall.

Recall measures how much relevant information the system has retrieved. It is
defined as the number of relevant documents retrieved by the system divided by
number of relevant documents in the library:

_ 14
Recall = ————.
|[AUC|

Precision is the accuracy of what has been returned. It measures how much of
the information is actually correct. It is defined as the number of correct documents
returned divided by the total number of documents returned.

316 10 Partial Parsing

4]

Precision = .
|AU B|

Recall and precision are combined into the F-measure, which is defined as the
harmonic mean of both numbers:

_ 2PR
T P+ R

The F-measure is a composite metric that reflects the general performance of a
system. It does not privilege precision at the expense of recall, or vice versa. An
arithmetic mean would have made it very easy to reach 50 % using, for example,
very selective rules with a precision of 100 and a low recall.

Using a B-coefficient, it is possible to give an extra weight to either precision,
B > 1, orrecall, B < 1, however:

Fo (B* + 1)PR
-~ B*P+R’

Finally, a fallout figure is also sometimes used that measures the proportion of
irrelevant documents that have been selected.

|B]

Fallout = ——.
|BU D]

10.12 Further Reading

The development of partial parsing has been mainly driven by applications without
concern for a specific linguistic framework. This is a notable difference from many
other areas of language processing, where theories abound. Due to the simplicity
of the methods involved, partial or shallow parsing attracted considerable interest in
the 1990s and renewed the field. Its successes in information extraction competitions
such as the MUCs, where it proved that it could outperform classical parsers, also
contributed to its popularity. See, for instance, MUC-5 (1993).

One of the first partial parsing systems is due to Ejerhed (1988). Church (1988)
first addressed group detection as a tagging problem and used statistical methods.
He tagged the gaps with brackets. Ramshaw and Marcus (1995) used a symbolic
strategy. They created the IOB tagset, and they adapted Brill’s (1995) algorithm
to learn rules to detect groups from annotated corpora. Kudoh and Matsumoto
(2000) applied classifiers based on support vector machines that are to date the
best-performing methods for group detection. Abney (1994) is a rather old but still
valuable survey of partial parsing with much detail that provides a comprehensive
bibliography of 200 papers! Roche and Schabes (1997) and Kornai (1999) are other

Exercises 317

sources for partial parsing techniques. On the application side, Appelt et al. (1993)
describe with eloquence the history and structure of the FASTUS system.

FASTUS started a long line of information extraction systems that are now
ubiquitous. Techniques to find the circumstances of an event have a long history.
Hermagoras of Temnos quoted in Sect. 10.11 is known to have formulated first the
seven fundamental elements to answer. These elements were used throughout the
Middle Ages by confessors for the examination of penitents, and they are now used
by search engines. For a review of the early history, see Robertson (1946).

Partial parsing was the topic of a series of conferences on Computational
Natural Language Learning (CoNLL). Each year, the CoNLL conference organizes
a “shared task” where it provides an annotated training set. Participants can train
their system on this set, evaluate it on a common test set, and report a description
of their algorithms and results in the proceedings. In 1999, the shared task was
dedicated to noun group chunking (http://www.cnts.ua.ac.be/conll99/npb/); in 2000
it was extended to other chunks (http://www.cnts.ua.ac.be/conl12000/chunking/); in
2001 the topic was the identification of clauses (http://www.cnts.ua.ac.be/conll2001/
clauses/); and in 2002 and 2003 the task was multilingual named entity recognition
(http://www.cnts.ua.ac.be/conll2002/ner/ and http://www.cnts.ua.ac.be/conll2003/
ner/). The CoNLL sites and proceedings are extremely valuable as they provide
data sets, annotation schemes, a good background literature, and an excellent idea
of the state of the art.

Exercises

10.1. Complement the ELIZA program and add possible templates and answers.

10.2. Implement a multiword detector to detect dates in formats such as in English,
04/04/1997 or April 4, 1997, and in French, 20/04/1997 or 20 avril 1997.

10.3. Complement the noun group grammar from Sect. 10.5.2 and write down the
vocabulary to recognize the noun groups of the text:

The big tobacco firms are fighting back in the way that served them well for 40 victorious
years, pouring their wealth into potent, relentless legal teams. But they are also starting to
talk of striking deals — anathema for those 40 years, and a sure sign that, this time, victory
is less certain.

The Economist, no. 8004, 1997.

10.4. See Exercise 10.3; do the same for verb groups.

10.5. Write a noun group grammar to parse the French text:

Les limites de la régulation de I’audiovisuel sont clairement définies aujourd’hui par la loi.
C’est le principal handicap du CSA: son champ d’action est extrémement limité. Alors que
la télévision numérique prend son essor, le CSA, dont les compétences s’ arrétent au céble et
a I’hertzien, n’a aucun pouvoir pour contrdler ou sanctionner la télévision de demain formée

http://www.cnts.ua.ac.be/conll99/npb/
http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2001/clauses/
http://www.cnts.ua.ac.be/conll2001/clauses/
http://www.cnts.ua.ac.be/conll2002/ner/
http://www.cnts.ua.ac.be/conll2003/ner/
http://www.cnts.ua.ac.be/conll2003/ner/

318 10 Partial Parsing

par les chaines satellitaires.
Le Monde, mercredi 3 septembre 1997.

10.6. See Exercise 10.5; do the same for verb groups.

10.7. Write a noun group grammar to parse the German text:

Die Freude iiber das neue grole Europa wird also nur von kurzer Dauer sein. Die
Probleme, die sich aus einer Union der 25 ergeben, diirften dagegen Regierungen und
Volker iiber Jahre hinweg in Atem halten. Zunéchst einmal wird es alles andere als leicht
sein, die 10 neuen Mitgliedsstaaten zu integrieren. Die Migrationswellen, die von ihnen
ausgehen, werden der ,,alten” EU reichlich Kopfschmerzen bereiten. Vor allem stellt sich
der Entscheidungsprozess innerhalb der Union kiinftig noch weitaus schwieriger dar.

Die Zeit, 30 April 2004.

10.8. See Exercise 10.7; do the same for verb groups.

10.9. Write a Prolog program to convert the IOB2 tagging scheme explained in
Sect. 10.6.2 into a bracketed notation such as the one described in Sect. 10.10. Apply
it to the CoNLL-2000 corpora available from this page: http://www.cnts.ua.ac.be/
conll2000/chunking/.

10.10. See Exercise 10.9 and write a reverse converter to translate a bracketed
notation into an IOB2 tagging scheme.

10.11. Download the annotated corpora available from the CoNLL-2000 shared
task as well as the evaluation script (http://www.cnts.ua.ac.be/conl12000/chunking/).
Apply the noun group rules from Sect. 10.5.2 to detect them in the corpora and
evaluate the rule efficiency using the CoNLL-2000 evaluation script. Use only the
part-of-speech information. Complement the rules so that you reach a figure of 80
for the noun groups.

10.12. See Exercise 10.11; do the same for the verb groups.

10.13. Adapt the Prolog code of Brill’s tagger from Chap. 7 so that it can detect
noun groups.

10.14. Download the group annotated corpora from the CoNLL-2000 web page
(http://www.cnts.ua.ac.be/conll2000/chunking/). From the training corpus, extract
the feature vectors corresponding to different feature sets shown in Fig. 10.5
and Table 10.10 as described in Sect. 10.7.3. You can start from the feature set
corresponding to the baseline — part of speech and group annotation tag of the
current word — and then try one or two more models. Train the corresponding
decision tree classifiers, apply them to bracket the test set, and evaluate the results
using the CoNLL-2000 evaluation script. To build the classifiers, you can use the
Weka implementation of C4.5 available from this site: http://www.cs.waikato.ac.nz/
ml/weka/.

http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

Exercises 319

10.15. Write rules that detect some complex noun groups:

* Adjacent noun groups linked by the prepositions of or for
* Noun group conjunctions

10.16. Find press wires on football matches on the Web and implement a program
to retrieve teams’ names and final scores. Use a base of football team names, and
adopt a cascaded architecture.

Chapter 11
Syntactic Formalisms

A word is said to govern another word, which depends upon it in the
sentence. Thus, when we say Charles loves study, the verb loves,
governs the noun, study. So when we say, [am going to the church,
the preposition fo, governs the noun, church. Agreement and
government are called Syntax.

Chauncey Allen Goodrich, Lessons in Latin Parsing, Durrie &
Peck, New Haven, 1838.

11.1 Introduction

Studies on syntax have been the core of linguistics for most of the twentieth century.
While the goals of traditional grammars had been mostly to prescribe what the
correct usage of a language is, the then-emerging syntactic theories aimed at an
impartial description of language structures. These ideas revolutionized the field.
Research activity was particularly intense in the years 1940-1970, and the focus
on syntax was so great that, for a time, it nearly eclipsed phonetics, morphology,
semantics, and other disciplines of linguistics.

Among all modern syntax researchers, Noam Chomsky has had a considerable
and indisputable influence. Chomsky’s seminal work, Syntactic Structures (1957),
is still considered by many as a key reading in linguistics. In his book (in Sect. 6.1),
Chomsky defined grammars as essentially a theory of [a language] that should be
(1) adequate: whose correctness should be measurable using corpora; (2) general:
extendible to a variety of languages; and, as far as possible, (3) simple. As goals, he
assigned grammatical rules to describe syntactic structures:

These rules express structural relations among the sentences of the corpus and the indefinite
number of sentences generated by the grammar beyond the corpus (predictions).

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies, 321
DOI 10.1007/978-3-642-41464-0__11, © Springer-Verlag Berlin Heidelberg 2014

322 11 Syntactic Formalisms

More specifically (in Sect.5.5), Chomsky outlined a formal model of syntax
under the form of grammars that was precise enough to be programmable and
verifiable.

Chomsky’s ideas appealed to the linguistics community because they featured
an underlying analogy between human languages and computer — or formal —
languages together with a mathematical formalism that was already used for
compilers. Chomsky came at a convergence point where advances in computer
technology, mathematical logic, and programming languages made his theory
possible and acceptable. Chomsky’s theories on syntactic structures have originated
much research in the domain and have an astounding number of followers, notably
in the United States. In addition, his theories spurred a debate that went well beyond
linguistic circles reaching psychology and philosophy.

In the meantime, linguists, mostly in Europe, developed other structural ap-
proaches and also tried to derive generic linguistic structures. But instead of using
the computer operation as a model or to posit cognition universals, as Chomsky
did, some of them tried to study and expose examples from a variety of languages
to prove their theories. The most prominent figure of the European school is Lucien
Tesniere. Although Tesniere’s work (1959, 2nd edn., 1966, both posthumous) is less
known, it is gaining recognition and it is used with success in implementations of
grammars and parsers for English, French, German, and many other languages.

Many computational models of syntactic structures inherited from Chomskyan
grammars use the notion of constituent — although Chomsky does not limit
grammars to a constituent decomposition. Traditional approaches are based on the
notion of connections between words, where each word of a sentence is linked to
another one under a relation of subordination or dependence. For this reason, these
syntactic models are also called dependency grammars. This chapter introduces both
structural approaches — constituency and dependency — and associated formalisms.

11.2 Chomsky’s Grammar in Syntactic Structures

Chomsky fractionates a grammar into three components. The first level consists
of phrase-structure (PS) rules expressing constituency. The second one is made
of transformation rules that complement PS rules. Transformations enable us to
derive automatically new constructions from a given structure: a declarative form
into an interrogative or a negative one; an active sentence into a passive one.
Transformation rules apply to constituent structures or trees and describe systematic
mappings onto new structures.

Initially, PS and transformation rules used a vocabulary made of morphemes,
roots, and affixes, as well as complete words. The inflection of a verb with the past
participle tense was denoted [en + verb] where en represented the past participle
affix, for example, [en + arrive]. A third morphophonemic component handled the
final word generation, mapping forms such as [en + arrive] onto arrived.

11.2 Chomsky’s Grammar in Syntactic Structures 323

Fig. 11.1 Generation of Sentence
sentences NP + VP
T+ N+ VP

T+ N + Verb + NP

the + N + Verb + NP

the + man + Verb + NP

the + man + hit + NP

the + man + hit + T + N
the + man + hit + the + N
the + man + hit + the + ball

O 01NN kAW~ O

11.2.1 Constituency: A Formal Definition

Constituency is usually associated with context-free grammars. Formally, such
grammars are defined by:

1. A set of designated start symbols, X', covering the sentences to parse. This set
can be reduced to a single symbol, such as sentence, or divided into more
symbols: declarative sentence, interrogative sentence.

2. A set of nonterminal symbols enabling the representation of the syntactic
categories. This set includes the sentence and phrase categories.

3. A set of terminal symbols representing the vocabulary: words of the lexicon,
possibly morphemes.

4. A set of rules, F, where the left-hand-side symbol of the rule is rewritten in the
sequence of symbols of the right-hand side.

Chomsky (1957) portrayed PS rules with an example generating the man hit the
ball. It has a straightforward equivalent in DCG:

sentence --> np, Vp.

np --> t, n.

vp -- verb, np.

t --> [the].

n --> [man] ; [ball] ; etc.
verb --> [hit] ; [took] ; etc.

A set of such PS rules can generate sentences. Chomsky illustrated it using a
mechanism that resembles the top-down algorithm of Prolog (Fig. 11.1).

Generation was the main goal of Chomsky’s grammars: to produce all potential
sentences — word and morpheme sequences — considered to be syntactically correct
or acceptable by native speakers. Chomsky introduced recursion in grammars to
give a finite set of rules an infinite capacity of generation.

From the initial goal of generation, computational linguists wrote and used
grammars to carry out recognition — or parsing — of syntactically correct sentences.
A sentence has then to be matched against the rules to check whether it falls within

324 11 Syntactic Formalisms

the generative scope of the grammar. Parsing results in a parse tree — the sequence
of grammar rules that were applied. The parsing process can be carried out using:

e A top-down mechanism, which starts from the initial symbol — the sentence —
down to the words of the sentence to be parsed

* A bottom-up mechanism, which starts from the words of the sentence to be
parsed up to the sentence symbol.

Some parsing algorithms run more efficiently with a restricted version of context-
free grammars called the Chomsky normal form (CNF). Rules in the CNF have
either two nonterminal symbols to their right-hand side or one nonempty terminal
symbol:

lhs --> rhsl, rhs2.
lhs --> [a].

Any grammar can be converted into an equivalent CNF grammar using auxiliary
symbols and rules as for

lhs --> rhsl, rhs2, rhs3.
which is equivalent to

lhs --> rhsl,