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Preface to the Second Edition

Eight years, from 2006 to 2014, is a very long time in computer science. The trends
I described in the preface of the first edition have not only been confirmed, but
accelerated. I tried to reflect this with a complete revision of the techniques exposed
in this book: I redesigned or updated all the chapters, I introduced two new ones,
and, most notably, I considerably expanded the sections using machine-learning
techniques. To make place for them, I removed a few algorithms of lesser interest.
This enabled me to keep the size of the book to ca. 700 pages. The programs and
companion slides are available from the book web site at http://ilppp.cs.lth.se/.

This book corresponds to a course in natural language processing offered at Lund
University. I am grateful to all the students who took it and helped me write this new
edition through their comments and questions. Curious readers can visit the course
site at http://cs.lth.se/EDAN20/ and see how we use this book in a teaching context.

I would like to thank the many readers of the first edition who gave me feedback
or reported errors, the anonymous copy editor of the first and second editions,
Richard Johansson and Michael Covington for their suggestions, as well as Peter
Exner, the PhD candidate I supervised during this period, for his enthusiasm. Special
thanks go to Ronan Nugent, my editor at Springer, for his thorough review and
copyediting along with his advice on style and content.

This preface would not be complete without a word to those who passed away,
my aunt, Madeleine, and my father, Pierre. There is never a day I do not think of you.

Lund, Sweden Pierre Nugues
April 2014
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Preface

In the past 20 years, natural language processing and computational linguistics have
considerably matured. The move has mainly been driven by the massive increase of
textual and spoken data and the need to process them automatically. This dramatic
growth of available data spurred the design of new concepts and methods, or their
improvement, so that they could scale up from a few laboratory prototypes to proven
applications used by billions of people. Concurrently, the speed and capacity of
machines became an order of magnitude larger, enabling us to process gigabytes of
data and billions of words in a reasonable time, to train, test, retrain, and retest
algorithms like never before. Although systems entirely dedicated to language
processing remain scarce, there are now scores of applications that, to some extent,
embed language processing techniques.

The industry trend, as well as the user’s wishes, toward information systems able
to process textual data has made language processing a new requirement for many
computer science students. This has shifted the focus of textbooks from readers
being mostly researchers or graduate students to a larger public, from readings by
specialists to pragmatism and applied programming. Natural language processing
techniques are not completely stable, however. They consist of a mix that ranges
from well-mastered and routine to rapidly changing. This makes the existence of a
new book an opportunity as well as a challenge.

This book tries to take on this challenge and find the right balance. It adopts
a hands-on approach. It is a basic observation that many students have difficulties
going from an algorithm exposed using pseudocode to a runnable program. I did
my best to bridge the gap and provide the students with programs and ready-made
solutions. The book contains real code the reader can study, run, modify, and run
again. I chose to write examples in two languages to make the algorithms easy to
understand and encode: Perl and Prolog.

One of the major driving forces behind the recent improvements in natural
language processing is the increase of text resources and annotated data. The huge
amount of texts made available by the Internet and never-ending digitization led
many practitioners to evolve from theory-oriented, armchair linguists to frantic
empiricists. This books attempts as well as it can to pay attention to this trend and
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x Preface

stresses the importance of corpora, annotation, and annotated corpora. It also tries
to go beyond English only and expose examples in two other languages, namely
French and German.

The book was designed and written for a quarter or semester course. At Lund,
I used it when it was still in the form of lecture notes in the EDA171 course. It
comes with a companion web site where slides, programs, corrections, an additional
chapter, and Internet pointers are available: http://www.cs.lth.se/~pierre/ilppp/. All
the computer programs should run with Perl (available from www.perl.com) or
Prolog. Although I only tested the programs with SWI Prolog available from
www.swi-prolog.org, any Prolog compatible with the ISO reference should apply.

Many people helped me during the last 10 years when this book took shape,
step-by-step. I am deeply indebted to my colleagues and to my students in classes
at Caen, Nottingham, Stafford, Constance, and now in Lund. Without them, it could
never have existed. I would like most specifically to thank the PhD students I
supervised, in chronological order, Pierre-Olivier El Guedj, Christophe Godéreaux,
Dominique Dutoit, and Richard Johansson.

Finally, my acknowledgments would not be complete without the names of the
people I most cherish and who give meaning to my life: my wife, Charlotte, and my
children, Andreas and Louise.

Lund, Sweden Pierre Nugues
January 2006

http://www.cs.lth.se/~pierre/ilppp/
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Chapter 1
An Overview of Language Processing

Γνῶθι σεαυτόν
‘Know thyself’

Inscription at the entrance to Apollo’s Temple at Delphi

1.1 Linguistics and Language Processing

Linguistics is the study and the description of human languages. Linguistic theories
on grammar and meaning have developed since ancient times and the Middle Ages.
However, modern linguistics originated at the end of the nineteenth century and
the beginning of the twentieth century. Its founder and most prominent figure was
probably Ferdinand de Saussure (1916). Over time, modern linguistics has produced
an impressive set of descriptions and theories.

Computational linguistics is a subset of both linguistics and computer science.
Its goal is to design mathematical models of language structures enabling the
automation of language processing by a computer. From a linguist’s viewpoint, we
can consider computational linguistics as the formalization of linguistic theories
and models or their implementation in a machine. We can also view it as a means to
develop new linguistic theories with the aid of a computer.

From an applied and industrial viewpoint, language and speech processing,
which is sometimes referred to as natural language processing (NLP), natural
language understanding (NLU), or language technology, is the mechanization of
human language faculties. People use language every day in conversations by
listening and talking, or by reading and writing. It is probably our preferred mode
of communication and interaction. Ideally, automated language processing would
enable a computer to understand texts or speech and to interact accordingly with
human beings.

Understanding or translating texts automatically and talking to an artificial
conversational assistant are major challenges for the computer industry. Although
this final goal has not been reached yet, in spite of constant research, it is being
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2 1 An Overview of Language Processing

approached every day, step-by-step. Even if we have missed Stanley Kubrick’s
prediction of talking electronic creatures in the year 2001, language processing
and understanding techniques have already achieved results ranging from very
promising to near-perfect. The description of these techniques is the subject of this
book.

1.2 Applications of Language Processing

At first, language processing is probably easier understood by the description of a
result to be attained rather than by the analytical definition of techniques. Ideally,
language processing would enable a computer to analyze huge amounts of text
and to understand them; to communicate with us in a written or a spoken way; to
capture our words whatever the entry mode: through a keyboard or through a speech
recognition device; to parse our sentences; to understand our utterances, to answer
our questions, and possibly to have a discussion with us – the human beings.

Language processing has a history nearly as old as that of computers, and it
comprises a large body of work. However, many early attempts remained in the
stage of laboratory demonstrations or simply failed. Significant applications have
been slow to come, and they are still relatively scarce compared with the universal
deployment of some other technologies such as operating systems, databases,
and networks. Nevertheless, the number of commercial applications or significant
laboratory prototypes embedding language processing techniques is increasing.
Examples include:

Spelling and grammar checkers. These programs are now ubiquitous in text
processors, and hundred of millions of people use them every day. Spelling
checkers are based primarily on computerized dictionaries, and they remove most
misspellings that occur in documents. Grammar checkers, although not perfect,
have improved to a point that many users could not write a single e-mail without
them. Grammar checkers use rules to detect common grammar and style errors
(Jensen et al. 1993).

Text indexing and information retrieval from the Internet. These programs
are among the most popular of the Web. They are based on crawlers that visit
internet sites and that download texts they contain. Crawlers track the links
occurring on the pages and thus explore the Web. Many of these systems carry
out a full text indexing of the pages. Users ask questions and text retrieval
systems return the internet addresses of documents containing words of the
question. Using statistics on words or popularity measures, text retrieval systems
are able to rank the documents (Brin and Page 1998; Salton 1988).

Speech transcription. These systems are based on speech recognition. Instead of
typing using a keyboard, speech dictation systems allow a user to dictate reports
and transcribe them automatically into a written text. Systems like Microsoft’s
Windows Speech Recognition or Google’s Voice Search have high performance
and recognize English, French, German, Spanish, Italian, Japanese, Chinese, etc.
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Some systems transcribe radio and TV broadcast news with a word-error rate
lower than 10 % (Nguyen et al. 2004).

Voice control of domestic devices such as videocassette recorders or disc chang-
ers (Ball et al. 1997). These systems are embedded in objects to provide them
with a friendlier interface. Many people find electronic devices complicated and
are unable to use them satisfactorily. A spoken interface would certainly be an
easier means to control them. Although there are commercial systems available,
few of them are fully usable. One challenge they still have to overcome is to
operate in noisy environments that impair speech recognition.

Interactive voice response applications. These systems deliver information
over the telephone using speech synthesis or prerecorded messages. In more
traditional systems, users interact with the application using touch-tone
telephones. More advanced servers have a speech recognition module that
enables them to understand spoken questions or commands from users. Early
examples of speech servers include travel information and reservation services
(Mast et al. 1994; Sorin et al. 1995). Although most servers are just interfaces
to existing databases and have limited reasoning capabilities, they have spurred
significant research on dialogue, speech recognition, and synthesis.

Machine translation. Research on machine translation is one of the oldest
domains of language processing. One of its outcomes is the venerable SYSTRAN
program that started with translations between English and Russian for the US
Department of Defense. Since then, machine translation has been extended to
many other languages and has become a mainstream NLP application: Google
Translate now supports more than 60 languages and is used by more than 200
million people every month (Och 2012). Another pioneer example is the Spoken
Language Translator that translated spoken English into spoken Swedish in a
restricted domain in real time (Agnäs et al. 1994; Rayner et al. 2000).

Conversational agents. Conversational agents are elaborate dialogue systems
that have understanding faculties. An example is TRAINS that helps a user plan
a route and the assembling trains: boxcars and engines to ship oranges from
a warehouse to an orange juice factory (Allen et al. 1995). Ulysse is another
example that uses speech to navigate into virtual worlds (Godéreaux et al. 1996,
1998).

Question answering. Question answering systems reached a milestone in 2011
when IBM Watson outperformed all its human contestants in the Jeopardy! quiz
show (Ferrucci 2012). Watson answers questions in any domain posed in natural
language using knowledge extracted from Wikipedia and other textual sources,
encyclopedias, dictionaries, as well as databases such as WordNet, DBpedia, and
Yago (Fan et al. 2012).

Some of these applications are widespread, like spelling and grammar checkers.
Others are not yet ready for industrial exploitation or are still too expensive for
popular use. They generally have a much lower distribution. Unlike other computer
programs, results of language processing techniques rarely hit a 100 % success rate.
Speech recognition systems are a typical example. Their accuracy is assessed in
statistical terms. Language processing techniques become mature and usable when
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they operate above a certain precision and at an acceptable cost. However, common
to these techniques is that they are continuously improving and they are rapidly
changing our way of interacting with machines.

1.3 The Different Domains of Language Processing

Historically linguistics has been divided into disciplines or levels, which go from
sounds to meaning. Computational processing of each level involves different
techniques such as signal and speech processing, statistics and machine learning,
automaton theory, parsing, first-order logic, and automated reasoning.

A first discipline of linguistics is phonetics. It concerns the production and
perception of acoustic sounds that form the speech signal. In each language, sounds
can be classified into a finite set of phonemes. Traditionally, they include vowels:
a, e, i, o; and consonants: p, f, r, m. Phonemes are assembled into syllables: pa, pi,
po, to build up the words.

A second level concerns the words. The word set of a language is called a
lexicon. Words can appear in several forms, for instance, the singular and the plural
forms. Morphology is the study of the structure and the forms of a word. Usually
a lexicon consists of root words. Morphological rules can modify or transform the
root words to produce the whole vocabulary.

Syntax is a third discipline in which the order of words in a sentence and their
relationships is studied. Syntax defines word categories and functions. Subject,
verb, object is a sequence of functions that corresponds to a common order in
many European languages including English and French. However, this order may
vary, and the verb is often located at the end of the sentence in German. Parsing
determines the structure of a sentence and assigns functions to words or groups of
words.

Semantics is a fourth domain of linguistics. It considers the meaning of words
and sentences. The concept of “meaning” or “signification” can be controversial.
Semantics is differently understood by researchers and is sometimes difficult to
describe and process. In a general context, semantics could be envisioned as
a medium of our thought. In applications, semantics often corresponds to the
determination of the sense of a word or the representation of a sentence in a logical
format.

Pragmatics is a fifth discipline. While semantics is related to universal defini-
tions and understandings, pragmatics restricts it – or complements it – by adding
a contextual interpretation. Pragmatics is the meaning of words and sentences in
specific situations.

The production of language consists of a stream of sentences that are linked
together to form a discourse. This discourse is usually aimed at other people who
can answer – it is to be hoped – through a dialogue. A dialogue is a set of linguistic
interactions that enables the exchange of information and sometimes eliminates
misunderstandings or ambiguities.
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Fig. 1.1 A speech signal corresponding to This is [DIs Iz]

Fig. 1.2 A spectrogram corresponding to the word serious [sI@ri@s]

1.4 Phonetics

Sounds are produced through vibrations of the vocal cords. Several cavities and
organs modify vibrations: the vocal tract, the nose, the mouth, the tongue, and the
teeth. Sounds can be captured using a microphone. They result in signals such as
that in Fig. 1.1.

A speech signal can be sampled and digitized by an analog-to-digital converter.
It can then be processed and transformed by a Fourier analysis (FFT) in a moving
window, resulting in spectrograms (Figs. 1.2 and 1.3). Spectrograms represent the
distribution of speech power within a frequency domain ranging from 0 to 10,000 Hz
over time. This frequency domain corresponds roughly to the sound production
possibilities of human beings.

Phoneticians can “read” spectrograms, that is, split them into a sequence of
relatively regular – stationary – patterns. They can then annotate the corresponding
segments with phonemes by recognizing their typical patterns.

A descriptive classification of phonemes includes:

• Simple vowels such as /I/, /a/, and /E/, and nasal vowels in French such as /Ã/
and /Õ/, which appear on the spectrogram as a horizontal bar – the fundamental
frequency – and several superimposed horizontal bars – the harmonics.
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Fig. 1.3 A spectrogram of the French phrase C’est par là [separla] ‘It is that way’

• Plosives such as /p/ and /b/ correspond to a stop in the airflow and then a very
short and brisk emission of air from the mouth. The air release appears as a
vertical bar from 0 to 5,000 Hz.

• Fricatives such as /s/ and /f/ that appear as white noise on the spectrogram, that
is, as a uniform gray distribution. Fricatives sound a bit like a loudspeaker with
an unplugged signal cable.

• Nasals and approximants such as /m/, /l/, and /r/ are more difficult to spot and
are subject to modifications according to their left and right neighbors.

The pronunciation of a word is basically carried out through its syllables,
phonetic segments formed of a vowel and one or more consonants. These syllables
are more or less stressed or emphasized, and are influenced by neighboring syllables.

The general rhythm of the sentence is the prosody. Prosody is quite different
from English to French and German and is an open subject of research. It is related
to the length and structure of sentences, to questions, and to the meaning of the
words.

Speech synthesis uses signal processing techniques, phoneme models, and letter-
to-phoneme rules to convert a text into speech and to read it in a loud voice. Speech
recognition does the reverse and transcribes speech into a computer-readable text.
It also uses signal processing and statistical techniques including hidden Markov
models (HMM) and language models.

1.5 Lexicon and Morphology

The set of available words in a given context makes up a lexicon. It varies from
language to language and within a language according to the context or genre:
fiction, news, scientific literature, jargon, slang, or gobbledygook. Every word can
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Table 1.1 Grammatical features that modify the form of a word

Features Values English French German

Number Singular a car une voiture ein Auto
Plural two cars deux voitures zwei Autos

Gender Masculine he il er
Feminine she elle sie
Neuter it es

Conjugation Infinitive to work travailler arbeiten
and Finite he works il travaille er arbeitet
tense Gerund working travaillant arbeitend

Table 1.2 Examples of word derivations

Words Derived words

English real/adjective really/adverb
French courage/noun courageux/adjective
German Der Mut/noun mutig/adjective

be classified through a lexical category or part of speech such as article, noun, verb,
adjective, adverb, conjunction, preposition, or pronoun. Most of the lexical entities
come from four categories: noun, verb, adjective, and adverb. Other categories such
as articles, pronouns, or conjunctions have a limited and stable number of elements.
Words in a sentence can be annotated – tagged – with their part of speech.

For instance, the simple sentences in English, French, and German:

The big cat ate the gray mouse
Le gros chat mange la souris grise
Die große Katze ißt die graue Maus

are annotated as:

The/article big/adjective cat/noun ate/verb the/article gray/adjective
mouse/noun
Le/article gros/adjectif chat/nom mange/verbe la/article souris/nom
grise/adjectif
Die/Artikel große/Adjektiv Katze/Substantiv ißt/Verb die/Artikel
graue/Adjektiv Maus/Substantiv

Morphology is the study of how root words and affixes – the morphemes –
are composed to form words. Morphology can be divided into inflection and
derivation:

• Inflection is the form variation of a word under certain grammatical conditions.
In European languages, these conditions consist notably of the number, gender,
conjugation, or tense (Table 1.1).

• Derivation combines affixes to an existing root or stem to form a new word.
Derivation is more irregular and complex than inflection. It often results in a
change in the part of speech for the derived word (Table 1.2).

Most of the inflectional morphology of words can be described through mor-
phological rules, possibly with a set of exceptions. According to these rules,
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Table 1.3 Decomposition of inflected words into a root and affixes

Words Roots and affixes Lemmas and grammatical interpretations

English worked work + ed work + verb + preterit
French travaillé travaill + é travailler + verb + past participle
German gearbeitet ge + arbeit + et arbeiten + verb + past participle

a morphological parser splits each word as it occurs in a text into morphemes – the
root word and the affixes. When affixes have a grammatical content, morphological
parsers generally deliver this content instead of the raw affixes (Table 1.3).

Morphological parsing operates on single words and does not consider the
surrounding words. Sometimes, the form of a word is ambiguous. For instance,
worked can be found in he worked (to work and preterit) or he has worked (to work
and past participle). Another processing stage is necessary to remove the ambiguity
and to assign (to annotate) each word with a single part-of-speech tag.

A lexicon may simply be a list of all the inflected word forms – a wordlist –
as they occur in running texts. However, keeping all the forms, for instance, work,
works, worked, generates a useless duplication. For this reason, many lexicons retain
only a list of canonical words: the lemmas. Lemmas correspond to the entries
of most ordinary dictionaries. Lexicons generally contain other features, such as
the phonetic transcription, part of speech, morphological type, and definition, to
facilitate additional processing. Lexicon building involves collecting most of the
words of a language or of a domain. Nonetheless, it is probably impossible to build
an exhaustive dictionary since new words are appearing every day.

Morphological rules enable us to generate all the word forms from a lexicon.
Morphological parsers do the reverse operation and retrieve the word root and
its affixes from its inflected or derived form in a text. Morphological parsers use
finite-state automaton techniques. Part-of-speech taggers disambiguate the possible
multiple readings of a word. They also use finite-state automata or statistical
techniques.

1.6 Syntax

Syntax governs the formation of a sentence from words. Syntax is sometimes
combined with morphology under the term morphosyntax. Syntax has been a central
point of interest of linguistics since the Middle Ages, but it probably reached an
apex in the 1970s, when it captured an overwhelming amount of attention in the
linguistics community.

1.6.1 Syntax as Defined by Noam Chomsky

Chomsky (1957) had a determining influence in the study of language, and his views
still fashion the way syntactic formalisms are taught and used today. Chomsky’s
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theory postulates that syntax is independent from semantics and can be expressed in
terms of logic grammars. These grammars consist of a set of rules that describe the
sentence structure of a language. In addition, grammar rules can generate the whole
sentence set – possibly infinite – of a definite language.

Generative grammars consist of syntactic rules that fractionate a phrase into
subphrases and hence describe a sentence composition in terms of phrase structure.
Such rules are called phrase-structure rules. An English sentence typically
comprises two main phrases: a first one built around a noun called the noun phrase,
and a second one around the main verb called the verb phrase. Noun and verb
phrases are rewritten into other phrases using other rules and by a set of terminal
symbols representing the words.

Formally, a grammar describing a very restricted subset of English, French, or
German phrases could be the following rule set:

• A sentence consists of a noun phrase and a verb phrase.
• A noun phrase consists of an article and a noun.
• A verb phrase consists of a verb and a noun phrase.

A very limited lexicon of the English, French, or German words could be made
of:

• Articles such as the, le, la, der, den
• Nouns such as boy, garçon, Knabe
• Verbs such as hit, frappe, trifft

This grammar generates sentences such as:

The boy hit the ball
Le garçon frappe la balle
Der Knabe trifft den Ball

but also incorrect or implausible sequences such as:

The ball hit the ball
*Le balle frappe la garçon
*Das Ball trifft den Knabe

Linguists use an asterisk (*) to indicate an ill-formed grammatical construction
or a nonexistent word. In the French and German sentences, the articles must agree
with their nouns in gender, number, and case (for German). The correct sentences
are:

La balle frappe le garçon
Der Ball trifft den Knaben

Trees can represent the syntactic structure of sentences (Figs. 1.4–1.6) and reflect
the rules involved in sentence generation. Moreover, Chomsky’s formalism enables
some transformations: rules can be set to carry out the building of an interrogative
sentence from a declaration, or the building of a passive form from an active one.

Parsing is the reverse of generation, where a grammar, a set of phrase-structure
rules, accepts syntactically correct sentences and determines their structure. Parsing
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sentence

noun phrase verb phrase

article noun verb nounphrase

article noun

The boy hit the ball

Fig. 1.4 Tree structure of The boy hit the ball

verb phrase

sentence

article noun verb noun phrase

noun phrase

Le garçon frappe la balle

article noun

Fig. 1.5 Tree structure of Le garçon frappe la balle

verb phrase

sentence

article noun verb noun phrase

noun phrase

article noun

Der Knabe trifft den Ball

Fig. 1.6 Tree structure of Der Knabe trifft den Ball

requires a mechanism to search the rules that describe the sentence’s structure. This
mechanism can be applied from the sentence’s words up to a rule describing the
sentence’s structure. This is bottom-up parsing. Rules can also be searched from a
sentence structure rule down to the sentence’s words. This corresponds to top-down
parsing.

1.6.2 Syntax as Relations and Dependencies

Before Chomsky, pupils and students learned syntax (and still do so) mainly in
terms of functions and relations between the words. A sentence’s classical parsing
consists in annotating words using parts of speech and in identifying the main verb.
The main verb is the pivot of the sentence, and the principal grammatical functions



1.7 Semantics 11

The boy hit the ball

Verb
Subject Object

Fig. 1.7 Grammatical relations in the sentence The boy hit the ball

The big boy from Liverpool hit the ball with furor

Fig. 1.8 Dependency relations in the sentence The big boy from Liverpool hit the ball with furor

are determined relative to it. Parsing consists then in grouping words to form the
subject and the object, which are the two most significant functions in addition to
the verb.

In the sentence The boy hit the ball, the main verb is hit, the subject of hit is the
boy, and its object is the ball (Fig. 1.7).

Other grammatical functions (or relations) involve notably articles, adjectives,
and adjuncts. We see this in the sentence

The big boy from Liverpool hit the ball with furor.

where the adjective big is related to the noun boy, and the adjuncts from Liverpool
and with furor are related respectively to boy and hit.

We can picture these relations as a dependency net, where each word is said to
modify exactly another word up to the main verb (Fig. 1.8). The main verb is the
head of the sentence and modifies no other word. Tesnière (1966) has extensively
described dependency theory.

Recently, dependency grammars have enjoyed a growing popularity as they
can efficiently handle multiple languages and have a good interface to the semantic
level. They provide a theoretical framework to many current parsing techniques and
have numerous applications.

1.7 Semantics

The semantic level is more difficult to capture, and there are numerous viewpoints
on how to define and to process it. A possible viewpoint is to oppose it to syntax:
there are sentences that are syntactically correct but that cannot make sense. Such
a description of semantics would encompass sentences that make sense. Classical
examples by Chomsky (1957) – sentences 1 and 2 – and Tesnière (1966) – sentence
3 – include:
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Table 1.4 Correspondence between sentences and logical forms

Sentences Logical forms (predicates)

Pierre wrote notes wrote(pierre, notes).
Pierre a écrit des notes a_écrit(pierre, notes).
Pierre schrieb Notizen schrieb(pierre, notizen).

1. Colorless green ideas sleep furiously.
2. *Furiously sleep ideas green colorless.
3. Le silence vertébral indispose la voile licite.

‘The vertebral silence embarrasses the licit sail.’

Sentences 1 and 3 and are syntactically correct but have no meaning, while sentence
2 is neither syntactically nor semantically correct.

In computational linguistics, semantics is often related to logic and to predicate
calculus. Determining the semantic representation of a sentence then involves
turning it into a predicate–argument structure, where the predicate is the main verb
and the arguments correspond to phrases accompanying the verb such as the subject
and the object. This type of logical representation is called a logical form. Table 1.4
shows examples of sentences together with their logical forms.

Representation is only one facet of semantics. Once sentence representations
have been built, they can be interpreted to check what they mean. Notes in the
sentence Pierre wrote notes can be linked to a dictionary definition. If we look
up notes in the Cambridge International Dictionary of English (Procter 1995), we
find as many as five possible senses for it (abridged from p. 963):

1. note [WRITING], noun, a short piece of writing;
2. note [SOUND], noun, a single sound at a particular level;
3. note [MONEY], noun, a piece of paper money;
4. note [NOTICE], verb, to take notice of;
5. note [IMPORTANCE], noun, of note: of importance.

So linking a word meaning to a definition is not straightforward because of
possible ambiguities. Among these definitions, the intended sense of notes is a
specialization of the first entry:

notes, plural noun, notes are written information.

Finally, we can interpret notes as what they refer to concretely, that is, a specific
object: a set of bound paper sheets with written text on them or a file on a computer
drive. The word notes is then the mention of an object of the real world, here a file on
a computer, and linking the mention and the object is called reference resolution.

The referent of the word notes, that is, the designated object or entity, could
be the path /users/pierre/language_processing.html in Unix parlance. As for the
definition of a word, the designated entity can be ambiguous. Let us suppose that a
database contains the locations of the lecture notes Pierre wrote. In Prolog, listing
its content could yield:

/users/pierre/language_processing.html
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Pierre wrote notes

Pierre

Louis

Charlotte
operating
systems

language
processing

Prolog
programming

1. Sentence 2. Logical representation

3. Real world refers to refers to

Fig. 1.9 Resolving references of Pierre wrote notes

notes(’/users/pierre/operating_systems.html’).
notes(’/users/pierre/language_processing.html’).
notes(’/users/pierre/prolog_programming.html’).

Here this would mean that finding the referent of notes consists in choosing a
document among three possible ones (Fig. 1.9).

Obtaining the semantic structure of a sentence has been discussed abundantly
in the literature. This is not surprising, given the uncertain nature of semantics.
Building a logical form sometimes calls on the composition of the semantic
representation of the phrases that constitute a sentence. To carry it out, we must
assume that sentences and phrases have an internal representation that can be
expressed in terms of a logical formula.

Once a representation has been built, a reasoning process is applied to resolve
references and to determine whether a sentence is true or not. It generally involves
rules of deduction, or inferences.

Pragmatics is semantics restricted to a specific context and relies on facts that
are external to the sentence. These facts contribute to the inference of a sentence’s
meaning or prove its truth or falsity. For instance, the pragmatics of

Methuselah lived to be 969 years old. (Genesis 5:27)

can make sense in the Bible but not elsewhere, given the current possibilities of
medicine.

1.8 Discourse and Dialogue

An interactive conversational agent cannot be envisioned without considering the
whole discourse of (human) users – or parts of it – and apart from a dialogue
between a user and the agent. Discourse refers to a sequence of sentences, to



14 1 An Overview of Language Processing

a sentence context in relation with other sentences, or with some background
situation. It is often linked with pragmatics.

Discourse study also enables us to resolve references that are not self-explainable
in single sentences. Pronouns are good examples of such missing information. In the
sentence

John took it

the pronoun it can probably be related to an entity mentioned in a previous sentence,
or is obvious given the context where this sentence was said. These references are
given the name of anaphors.

Dialogue provides a means of communication. It is the result of two intermingled
– and, we hope, interacting – discourses: one from the user and the other from the
machine. It enables a conversation between the two parties, the assertion of new
results, and the cooperative search for solutions.

Dialogue is also a tool to repair communication failures or to complete interac-
tively missing data. It may clarify information and mitigate misunderstandings that
impair communication. Through a dialogue a computer can respond and ask the
user:

I didn’t understand what you said! Can you repeat (rephrase)?

Dialogue easily replaces some hazardous guesses. When an agent has to find the
potential reference of a pronoun or to solve reference ambiguities, the best option is
simply to ask the user to clarify what s/he means:

Tracy? Do you mean James’ brother or your mother?

Discourse processing splits texts and sentences into segments. It then sets links
between segments to chain them rationally and to map them onto a sort of structure
of the text. Discourse studies often make use of rhetoric as a background model of
this structure.

Dialogue processing classifies the segments into what are called speech acts.
At a first level, speech acts comprise dialogue turns: the user turn and the system
turn. Then turns are split into sentences, and sentences into questions, declarations,
requests, answers, etc. Speech acts can be modeled using finite-state automata or
more elaborate schemes using intention and planning theories.

1.9 Why Speech and Language Processing Are Difficult

So far, for all the linguistic levels mentioned in the previous sections, we outlined
models and techniques to process speech and language. They often enable machines
to obtain excellent results compared to the performance of human beings. However,
for most levels, language processing rarely hits the ideal score of 100 %. Among the
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hurdles that often prevent the machine from reaching this figure, two recur at any
level: ambiguity and the absence of a perfect model.

1.9.1 Ambiguity

Ambiguity is a major obstacle in language processing, and it may be the most
significant. Although as human beings we are not aware of it most of the time,
ambiguity is ubiquitous in language and plagues any stage of automated analysis.
We saw examples of ambiguous morphological analysis and part-of-speech anno-
tation, word senses, and references. Ambiguity also occurs in speech recognition,
parsing, anaphora solving, and dialogue.

McMahon and Smith (1996) illustrate strikingly ambiguity in speech recognition
with the sentence

The boys eat the sandwiches.

Speech recognition comprises generally two stages: first, a phoneme recognition,
and then a concatenation of phoneme substrings into words. Using the International
Phonetic Association (IPA) symbols, a perfect phonemic transcription of this
utterance would yield the transcription:

["D@b"oIz"i:t"D@s"ændwIdZIz],

which shows eight other alternative readings at the word decoding stage:

*The boy seat the sandwiches.
*The boy seat this and which is.
*The boys eat this and which is.
The buoys eat the sandwiches.
*The buoys eat this and which is.
The boys eat the sand which is.
*The buoys seat this and which is.

This includes the strange sentence

The buoys eat the sand which is.

For syntactic and semantic layers, a broad classification occurs between lexical
and structural ambiguity. Lexical ambiguity refers to multiple senses of words, while
structural ambiguity describes a parsing alternative, as with the frequently quoted
sentence

I saw the boy with a telescope,

which can mean either that I used a telescope to see the boy or that I saw the boy
who had a telescope.

A way to resolve ambiguity is to use a conjunction of language processing
components and techniques. In the example given by McMahon and Smith, five
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out of eight possible interpretations are not grammatical. These are flagged with an
asterisk. A further syntactic analysis could discard them.

Probabilistic models of word sequences can also address disambiguation. Statis-
tics on word occurrences drawn from large quantities of texts – corpora – can
capture grammatical as well as semantic patterns. Improbable alternatives <boys
eat sand> and <buoys eat sand> are also highly unlikely in corpora and will not be
retained (McMahon and Smith 1996). In the same vein, probabilistic parsing is a
very powerful tool to rank alternative parse trees, that is, to retain the most probable
and reject the others.

In some applications, logical rules model the context, reflect common sense, and
discard impossible configurations. Knowing the physical context may help disam-
biguate some structures, as in the boy and the telescope, where both interpretations
of the isolated sentence are correct and reasonable. Finally, when a machine interacts
with a user, it can ask her/him to clarify an ambiguous utterance or situation.

1.9.2 Models and Their Implementation

Processing a linguistic phenomenon or layer starts with the choice or the devel-
opment of a formal model and its algorithmic implementation. In any scientific
discipline, good models are difficult to design. This is specifically the case with
language. Language is closely tied to human thought and understanding, and in
some instances models in computational linguistics also involve the study of the
human mind. This gives a measure of the complexity of the description and the
representation of language.

As noted in the introduction, linguists have produced many theories and models.
Unfortunately, few of them have been elaborate enough to encompass and describe
language effectively. Some models have also been misleading. This explains
somewhat the failures of early attempts in language processing. In addition, many
of the potential theories require massive computing power. Processors and storage
able to support the implementation of complex models with substantial dictionaries,
corpora, and parsers were not widely available until recently.

However, in the last decade models have matured, and computing power has
become inexpensive. Although models and implementations are rarely (never?)
perfect, they now enable us to obtain exploitable results. Most use a limited set of
techniques that we will consider throughout this book, namely finite-state automata,
logic grammars, and first-order logic. These tools are easily implemented in Prolog.
Another set of tools pertains to the theory of probability, statistics, and machine
learning. The combination of logic, statistics and machine-learning techniques now
enables us to parse running-text sentences in multiple languages with an accuracy
rate of more than 90 %, a figure that would have been unimaginable 15 years ago.
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Table 1.5 An excerpt of a Persona dialogue (After Ball et al. (1997))

Turns Utterances

[Peedy is asleep on his perch]
User: Good morning, Peedy.

[Peedy rouses]
Peedy: Good morning.
User: Let’s do a demo.

[Peedy stands up, smiles]
Peedy: Your wish is my command, what would you like to hear?
User: What have you got by Bonnie Raitt?

[Peedy waves in a stream of notes, and grabs one as they rush by.]
Peedy: I have “The Bonnie Raitt Collection” from 1990.
User: Pick something from that.
Peedy: How about “Angel from Montgomery”?
User: Sounds good.

[Peedy drops note on pile]
Peedy: OK.
User: Play some rock after that.

[Peedy scans the notes again, selects one]
Peedy: How about “Fools in Love”?
User: Who wrote that?

[Peedy cups one wing to his ‘ear’]
Peedy: Huh?
User: Who wrote that?

[Peedy looks up, scrunches his brow]
Peedy: Joe Jackson
User: Fine.

[Drops note on pile]
Peedy: OK.

1.10 An Example of Language Technology in Action:
The Persona Project

1.10.1 Overview of Persona

The Persona prototype from Microsoft Research (Ball et al. 1997) illustrates a user
interface that is based on a variety of language processing techniques. Persona is a
conversational agent that helps a user select songs and music tracks from a record
database. Peedy, an animated cartoonlike parrot, embodies the agent that interacts
with the user. It contains speech recognition, parsing, and semantic analysis modules
to listen and to respond to the user and to play the songs. Table 1.5 shows an example
of a dialogue with Peedy.

Certain interactive talking assistants consider a limited set of the linguistic levels
we have presented before. Simple systems bypass syntax, for example, and have
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Fig. 1.10 Architecture of the Persona conversational assistant (After Ball et al. (1997))

only a speech recognition device to detect a couple of key words. In contrast,
Persona has components to process more layers. They are organized in modules
carrying out speech recognition, speech synthesis, parsing, semantics analysis, and
dialogue. In addition, Persona has components specific to the application such as
a name substitution module to find proper nouns like Madonna or Debussy and an
animation module to play the Peedy character.

Persona’s architecture organizes its modules into a pipeline processing flow
(Fig. 1.10). Many other instances of dialogue systems adopt a similar architecture.

1.10.2 The Persona’s Modules

Persona’s first component is the Whisper speech recognition module (Huang et al.
1995). Whisper uses signal processing techniques to compare phoneme models
to the acoustic waves, and it assembles the recognized phonemes into words. It
also uses a grammar to constrain the recognition possibilities. Whisper transcribes
continuous speech into a stream of words in real time. It is a speaker-independent
system. This means that it operates with any speaker without training.



1.11 Further Reading 19

The user’s orders to select music often contain names: artists, titles of songs,
or titles of albums. The Names module extracts them from the text before they
are passed on to further analysis. Names uses a pattern matcher that attempts to
substitute all the names and titles contained in the input sentence with placeholders.
The utterance Play before you accuse me by Clapton is transformed into Play
track1 by artist1.

The NLP module parses the input in which names have been substituted. It uses
a grammar with rules similar to that of Sect. 1.6.1 and produces a tree structure. It
creates a logical form whose predicate is the verb, and the arguments are the subject
and the object: verb(subject, object). The sentence I would like to hear
something is transformed into the form like(i, hear(i, something)).

The logical forms are converted into a task graph representing the utterance
in terms of actions the agent can do and objects of the task domain. It uses an
application-dependent notation to map English words to symbols. It also reverses the
viewpoint from the user to the agent. The logical form of I would like to hear some-
thing is transformed into the task graph: verbPlay(you, objectTrack) –
You play (verbPlay) a track (objectTrack).

Each possible request Peedy understands has possible variations – paraphrases.
The mapping of logical forms to task graphs uses transformation rules to reduce
them to a limited set of 17 canonical requests. The transformation rules deal with
synonyms, syntactic variation, and colloquialisms. The forms corresponding to

I’d like to hear some Madonna.
I want to hear some Madonna.
It would be nice to hear some Madonna.

are transformed into a form equivalent to

Let me hear some Madonna.

The resulting graph is matched against actions templates the jukebox can carry out.
The dialogue module controls Peedy’s answers and reactions. It consists of

a state machine that models a sequence of interactions. Depending on the state
of the conversation and an input event – what the user says – Peedy will react:
trigger an animation, utter a spoken sentence or play music, and move to another
conversational state.

1.11 Further Reading

Introductory textbooks on linguistics include An Introduction to Language (Fromkin
et al. 2010) and Linguistics: An Introduction to Linguistics Theory (Fromkin 2000).
The Nouveau dictionnaire encyclopédique des sciences du langage (Ducrot and
Schaeffer 1995) is an encyclopedic presentation of linguistics in French, and
Studienbuch Linguistik (Linke et al. 2004) is an introduction in German. Fondamenti
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di linguistica (Simone 2007) is an outstandingly clear and concise work in Italian
that describes most fundamental concepts of linguistics.

Concepts and theories in linguistics evolved continuously from their origins to
the present time. Historical perspectives are useful to understand the development
of central issues. A Short History of Linguistics (Robins 1997) is a very readable
introduction to linguistics history. Histoire de la linguistique de Sumer à Saussure
(Malmberg 1991) and Analyse du langage au XXe siècle (Malmberg 1983) are
comprehensive and accessible books that review linguistic theories from the ancient
Near East to the end of the twentieth century. Landmarks in Linguistic Thought, The
Western Tradition from Socrates to Saussure (Harris and Taylor 1997) are extracts
of founding classical texts followed by a commentary.

Available books on natural language processing include (in English): Natural
Language Processing in Prolog (Gazdar and Mellish 1989), Prolog for Natural
Language Analysis (Gal et al. 1991), Natural Language Processing for Prolog
Programmers (Covington 1994b), Natural Language Understanding (Allen 1994),
Foundations of Statistical Natural Language Processing (Manning and Schütze
1999), Speech and Language Processing: An Introduction to Natural Language Pro-
cessing, Computational Linguistics, and Speech Recognition (Jurafsky and Martin
2008), Foundations of Computational Linguistics: Human–Computer Communi-
cation in Natural Language (Hausser 2014). Available books in French include:
Prolog pour l’analyse du langage naturel (Gal et al. 1989), L’intelligence artificielle
et le langage (Sabah 1990). And in German Grundlagen der Computerlinguistik.
Mensch-Maschine-Kommunikation in natürlicher Sprache (Hausser 2000).

The Internet offers a wealth of resources: digital libraries, general references,
corpus, lexical, and software resources, together with registries and portals. A
starting point is the official home page of the Association for Computational
Linguistics (ACL), which provides many links (http://www.aclweb.org/). The ACL
anthology (http://www.aclweb.org/anthology/) is an extremely valuable anthology
of research papers (journal and conferences) published under the auspices of the
ACL. The French journal Traitement automatique des langues is also a source of
interesting papers. It is published by the Association de traitement automatique
des langues (http://www.atala.org/). Wikipedia (http://www.wikipedia.org/) is a free
encyclopedia that contains definitions and general articles on concepts and theories
used in computational linguistics and natural language processing.

Many source programs are available for download, either for free or under a
license. They include speech synthesis and recognition, morphological analysis,
parsing, and so on. The Natural Language Toolkit (NLTK) is an example that
features a comprehensive suite of open source Python programs, data sets, and
tutorials (http://nltk.org/). It has a companion book: Natural Language Processing
with Python by Bird et al. (2009). The German Institute for Artificial Intelligence
Research maintains a list of available software and related resources at the Natural
Language Software Registry (http://registry.dfki.de/).

Lexical and corpus resources are now available in many languages. Valuable
sites include the Linguistic Data Consortium of the University of Pennsylvania

http://www.aclweb.org/
http://www.aclweb.org/anthology/
http://www.atala.org/
http://www.wikipedia.org/
http://nltk.org/
http://registry.dfki.de/
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(http://www.ldc.upenn.edu/) and the European Language Resources Association
(http://www.elra.info/).

There are nice interactive online demonstrations covering speech synthesis,
parsing, translation, and so on. Since sites are sometimes transient, we do not list
them here. A good way to find them is to use search engines or directories like
Google, Bing, or Yahoo.

Finally, some companies and laboratories are very active in language processing
research. They include major software powerhouses like Google, IBM, Microsoft,
Yahoo, and Xerox. The paper describing the Peedy animated character can be found
at the Microsoft Research website (http://www.research.microsoft.com/).

Exercises

1.1. List some computer applications that are relevant to the domain of language
processing.

1.2. Tag the following sentences using parts of speech you know:

The cat caught the mouse.
Le chat attrape la souris.
Die Katze fängt die Maus.

1.3. Give the morpheme list of: sings, sung, chante, chantiez, singt, sang. List all
the possible ambiguities.

1.4. Give the morpheme list of: unpleasant, déplaisant, unangenehm.

1.5. Draw the tree structures of the sentences:

The cat caught the mouse.
Le chat attrape la souris.
Die Katze fängt die Maus.

1.6. Identify the main functions of these sentences and draw the corresponding
dependency graph linking the words:

The cat caught the mouse.
Le chat attrape la souris.
Die Katze fängt die Maus.

1.7. Draw the dependency graphs of the sentences:

The mean cat caught the gray mouse on the table.
Le chat méchant attrape la souris grise sur la table.
Die böse Katze fängt die graue Maus auf dem Tisch.

1.8. Give examples of sentences that are:

• Syntactically incorrect
• Syntactically correct
• Syntactically and semantically correct

http://www.ldc.upenn.edu/
http://www.elra.info/
http://www.research.microsoft.com/
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1.9. Give the logical forms of these sentences:

The cat catches the mouse.
Le chat attrape la souris.
Die Katze fängt die Maus.

1.10. List the components you think necessary to build a spoken dialogue system.



Chapter 2
Corpus Processing Tools

A. a. a. Je. I.a. [A, a, a,] domine deus, ecce nescio loqui.
XIIII.b. [A, a, a, domine deus,] prophete dicunt eis.

Eze. IIII.d. [A, a, a,] domine deus ecce anima mea non est
XXI.a. [A, a, a,] domine deus.

Joel I.c. [A, a, a,] diei.
Aaron exo. IIII.c [Aaron. . . ] egredietur in occursum

VII.a. [Aaron frater tuus] erit propheta tuus.
XVII.d. [Aaron autem et] Hur sustentabant manus.
XXIIII.d. habetis Aaron et Hur vobiscum.

. . .
First lines from the third concordance to the Vulgate.

Abbreviations are spelled out for clarity.
Bibliothèque nationale de France. Manuscrit latin 515. Thirteenth century.

2.1 Corpora

A corpus, plural corpora, is a collection of texts or speech stored in an electronic
machine-readable format. A few years ago, large electronic corpora of more than
a million of words were rare, expensive, or simply not available. At present, huge
quantities of texts are accessible in many languages of the world. They can easily
be collected from a variety of sources, most notably the Internet, where corpora of
hundreds of millions of words are within the reach of most computational linguists.

2.1.1 Types of Corpora

Some corpora focus on specific genres: law, science, novels, news broadcasts,
electronic correspondence, or transcriptions of telephone calls or conversations.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__2, © Springer-Verlag Berlin Heidelberg 2014
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Table 2.1 List of the most frequent words in present texts and in the book of Genesis (After
Crystal (1997))

English French German

Most frequent words in a collection the de der
of contemporary running texts of le (article) die

to la (article) und
in et in
and les des

Most frequent words in Genesis and et und
the de die
of la der
his à da
he il er

Others try to gather a wider variety of running texts. Texts collected from a unique
source, say from scientific magazines, will probably be slanted toward some specific
words that do not appear in everyday life. Table 2.1 compares the most frequent
words in the book of Genesis and in a collection of contemporary running texts. It
gives an example of such a discrepancy. The choice of documents to include in a
corpus must then be varied to survey comprehensively and accurately a language
usage. This process is referred to as balancing a corpus.

Balancing a corpus is a difficult and costly task. It requires collecting data from
a wide range of sources: fiction, newspapers, technical, and popular literature.
Balanced corpora extend to spoken data. The Linguistic Data Consortium (LDC)
from the University of Pennsylvania and the European Language Resources Asso-
ciation (ELRA), among other organizations, distribute written and spoken corpus
collections. They feature samples of magazines, laws, parallel texts in English,
French, German, Spanish, Chinese, Arabic, telephone calls, radio broadcasts, etc.

In addition to raw texts, some corpora are annotated. Each of their words is
labeled with a linguistic tag such as a part of speech or a semantic category. The
annotation is done either manually or semiautomatically. Spoken corpora contain
the transcription of spoken conversations. This transcription may be aligned with
the speech signal and sometimes includes prosodic annotation: pause, stress, etc.
Annotation tags, paragraph and sentence boundaries, parts of speech, syntactic
or semantic categories follow a variety of standards, which are called markup
languages.

Among annotated corpora, treebanks deserve a specific mention. They are
collections of parse trees or more generally syntactic structures of sentences. The
production of a treebank generally requires a team of linguists to parenthesize the
constituents of a corpus or to arrange them in a dependency structure. Annotated
corpora require a fair amount of handwork and are therefore more expensive than
raw texts. Treebanks involve even more clerical work and are relatively rare. The
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Penn Treebank (Marcus et al. 1993) from the University of Pennsylvania is a widely
cited example for English.

A last word on annotated corpora: in tests, we will benchmark automatic methods
against manual annotation, which is often called the gold standard. We will assume
the hand annotation perfect, although this is not true in practice. Some errors slip
into hand-annotated corpora, even in those of the best quality, and the annotators
may not agree between them. The scope of agreement varies depending on the
annotation task. The inter-annotator agreement is generally high for parts of speech
that are relatively well defined. It is lower when determining the sense of a word, for
which annotators may have different interpretations. This inter-annotator agreement
defines then a sort of upper bound of the human performance. It is a useful figure to
conduct a reasonable assessment of results obtained by automatic methods as well
as their potential for improvements.

2.1.2 Corpora and Lexicon Building

Lexicons and dictionaries are intended to give word lists, to provide a reader with
word senses and meanings, and to outline their usage. Dictionaries’ main purpose
is related to lexical semantics. Lexicography is the science of building lexicons and
writing dictionaries. It uses electronic corpora extensively.

The basic data of a dictionary is a word list. Such lists can be drawn manually
or automatically from corpora. Then, lexicographers write the word definitions and
choose citations illustrating the words. Since most of the time, current meanings
are obvious to the reader, meticulous lexicographers tended to collect examples –
citations – reflecting a rare usage. Computerized corpora can help lexicographers
avoid this pitfall by extracting all the citations that exemplify a word. An expe-
rienced lexicographer will then select the most representative examples that reflect
the language with more relevance. S/he will prefer and describe more frequent usage
and possibly set aside others.

Finding a citation involves sampling a fragment of text surrounding a given
word. In addition, the context of a word can be more precisely measured by finding
recurrent pairs of words, or most-frequent neighbors. The first process results in
concordance tables, and the second one in collocations.

A concordance is an alphabetical index of all the words in a text, or the most
significant ones, where each word is related to a comprehensive list of passages
where the word is present. Passages may start with the word or be centered on it and
surrounded by a limited number of words before and after it (Table 2.2 and incipit
of this chapter). Furthermore, concordances feature a system of reference to connect
each passage to the book, chapter, page, paragraph, or verse, where it occurs.

Concordance tables were first produced for antiquity and religious studies. Hugh
of St-Cher is known to have directed the first concordance to the scriptures in
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Table 2.2 Concordance of miracle in the Gospel of John. English text: King James version;
French text: Augustin Crampon; German text: Luther’s Bible

Language Concordances

English l now. This beginning of miracles did Jesus in Cana of Ga

name, when they saw the miracles which he did. But Jesus

for no man can do these miracles that thou doest, except

This is again the second miracle that Jesus did, when he

im, because they saw his miracles which he did on them th

French Galilée, le premier des miracles que fit Jésus, et il ma

que, beaucoup voyant les miracles qu’il faisait, crurent

nne ne saurait faire les miracles que vous faites, si Die

maison. Ce fut le second miracle que fit Jésus en revenan

parce qu’elle voyait les miracles qu’il opérait sur ceux

German alten. Das ist das erste Zeichen, das Jesus tat, geschehe

as zeigst du uns für ein Zeichen, daß du dies tun darfst?

seinen Namen, da sie die Zeichen sahen, die er tat. Aber

n; denn niemand kann die Zeichen tun, die du tust, es sei

h zu ihm: Wenn ihr nicht Zeichen und Wunder seht, so glau

Table 2.3 Comparing strong and powerful. The German words eng and schmal ‘narrow’ are near-
synonyms, but have different collocates

English French German

You say Strong tea Thé fort Schmales Gesicht
Powerful computer Ordinateur puissant Enge Kleidung

You don’t say Strong computer Thé puissant Schmale Kleidung
Powerful tea Ordinateur fort Enges Gesicht

the thirteenth century. It comprised about 11,800 words ranging from A, a, a. to
Zorobabel and 130,000 references (Rouse and Rouse 1974). Other more elaborate
concordances take word morphology into account or group words together into
semantic themes. Sœur Jeanne d’Arc (1970) produced an example of such a
concordance for Bible studies.

Concordancing is a powerful tool to study usage patterns and to write definitions.
It also provides evidence on certain preferences between verbs and prepositions,
adjectives and nouns, recurring expressions, or common syntactic forms. These
couples are referred to as collocations. Church and Mercer (1993) cite a striking
example of idiosyncratic collocations of strong and powerful. While strong and
powerful have similar definitions, they occur in different contexts, as shown in
Table 2.3.

Table 2.4 shows additional collocations of strong and powerful. These word
preferences cannot be explained using rational definitions, but can be observed in
corpora. A variety of statistical tests can measure the strength of pairs, and we can
extract them automatically from a corpus.
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Table 2.4 Word preferences of strong and powerful collected from the Associated Press corpus.
Numbers in columns indicate the number of collocation occurrences with word w (After Church
and Mercer (1993))

Preference for strong over powerful Preference for powerful over strong

strong w powerful w w strong w powerful w w

161 0 showing 1 32 than
175 2 support 1 32 figure
106 0 defense 3 31 minority
. . .

2.1.3 Corpora as Knowledge Sources for the Linguist

In the early 1990s, computer-based corpus analysis completely renewed empirical
methods in linguistics. It helped design and implement many of the techniques
presented in this book. As we saw with dictionaries, corpus analysis helps lexicog-
raphers acquire lexical knowledge and describe language usage. More generally,
corpora enable us to experiment with tools and to confront theories and models on
real data. For most language analysis programs, collecting relevant corpora of texts
is then a necessary step to define specifications and measure performances. Let us
take the examples of part-of-speech taggers, parsers, and dialogue systems.

Annotated corpora are essential tools to develop part-of-speech taggers or
parsers. A first purpose is to measure the tagging or parsing performance. The tagger
or parser is run on texts and their result is compared to hand annotation, which
serves as a reference. A linguist or an engineer can then determine the accuracy,
the robustness of an algorithm or a parsing model and see how well it scales up by
applying it to a variety of texts.

A second purpose of annotated corpora is to be a knowledge source to refine
tagging techniques and improve grammars. While developing a grammar, a linguist
can see if changing a rule improves or deteriorates results. The tool tuning is then
done manually. Using statistical or machine-learning techniques, annotated corpora
also enable researchers to create models, and identify parameters automatically or
semiautomatically to tag or parse a text. We will see this in Chap. 8.

A dialogue corpus between a user and a machine is also critical to develop an
interactive spoken system. The corpus is usually collected through fake dialogues
between a real user and a person simulating the machine answers. Repeating
such experiments with a reasonable number of users enables us to acquire a text
set covering what the machine can expect from potential users. It is then easier
to determine the vocabulary of an application, to have a precise idea of word
frequencies, and to know the average length of sentences. In addition, the dialogue
corpus enables the analyst to understand what the user expects from the machine
and how s/he interacts with it.
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q0 q1 q2

a c

bFig. 2.1 A finite-state
automaton

2.2 Finite-State Automata

2.2.1 A Description

The most frequent operation we do with corpora consists in searching for words or
phrases. To be convenient, search must extend beyond fixed strings. We may want
to search for a word or its plural form, strings consisting of uppercase or lowercase
letters, expressions containing numbers, etc. This is made possible using finite-state
automata (FSA), which we introduce now. FSA are flexible tools to process texts
and are one of the most adequate ways to search strings.

FSA theory was designed in the beginning of computer science as a model of
abstract computing machines. It forms a well-defined formalism that has been tested
and used by generations of programmers. FSA stem from a simple idea. These are
devices that accept – recognize – or reject an input stream of characters. FSA are
very efficient in terms of speed and memory occupation and are easy to implement
in Prolog. In addition to text searching, they have many other applications:
morphological parsing, part-of-speech annotation, and speech processing.

Figure 2.1 shows an automaton with three states numbered from 0 to 2, where
state q0 is called the start state, and q2, the final state. An automaton has a single
start state and any number of final states, indicated by double circles. Arcs between
states designate the possible transitions. Each arc is annotated by a label, which
means that the transition accepts or generates the corresponding character.

An automaton accepts an input string in the following way: it starts in the initial
state, follows a transition where the arc character matches the first character of the
string, consumes the corresponding string character, and reaches the destination
state. It then makes a second transition with the second character of the string,
and continues in this way until it ends up in one of the final states and there is
no character left. The automaton in Fig. 2.1 accepts or generates strings such as: ac,
abc, abbc, abbbc, abbbbbbbbbbbbc, etc. If the automaton fails to reach a final
state, either because it has no more characters in the input string or because it is
trapped in a nonfinal state, it rejects the string.

As an example, let us see how the automaton accepts string abbc and rejects
abbcb. The input abbc is presented to the start state q0. The first character of
the string matches that of the outgoing arc. The automaton consumes character a
and moves to state q1. The remaining string is bbc. Then, the automaton loops
twice on state q1 and consumes bb. The resulting string is character c. Finally, the
automaton consumes c and reaches state q2, which is the final state. On the contrary,
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q0 q1 q2

a c

bFig. 2.2 A finite-state
automaton with an
"-transition

Table 2.5 A state-transition
table where ; denotes
nonexistent or impossible
transitions

StatenInput a b c

q0 q1 ; ;
q1 ; q1 q2
q2 ; ; ;

the automaton does not accept string abbcb. It moves to states q0, q1, and q2, and
consumes abbc. The remaining string is letter b. Since there is no outgoing arc with
a matching symbol, the automaton is stuck in state q2 and rejects the string.

Automata may contain "-transitions from one state to another. In this case, the
automaton makes a transition without consuming any character of the input string.
The automaton in Fig. 2.2 accepts strings a, ab, abb, etc., as well as ac, abc,
abbc, etc.

2.2.2 Mathematical Definition of Finite-State Automata

FSA have a formal definition. An FSA consists of five components .Q;˙; q0; F; ı/,
where:

1. Q is a finite set of states.
2. ˙ is a finite set of symbols or characters: the input alphabet.
3. q0 is the start state, q0 2 Q.
4. F is the set of final states, F � Q.
5. ı is the transition function Q � ˙ ! Q, where ı.q; i/ returns the state where

the automaton moves when it is in state q and consumes the input symbol i .

The quintuple defining the automaton in Fig. 2.1 is Q D fq0; q1; q2g, ˙ D
fa; b; cg, F D fq2g, and ı D fı.q0; a/ D q1; ı.q1; b/ D q1; ı.q1; c/ D q2g. The
state-transition table in Table 2.5 is an alternate representation of the ı function.

2.2.3 Finite-State Automata in Prolog

A finite-state automaton has a straightforward implementation in Prolog. It is merely
the transcription of the quintuplet definition. The following code describes the
transitions, the start, and the final states of the automaton in Fig. 2.1:
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% The start state
start(q0).

% The final states
final(q2).

% The transitions
% transition(SourceState, Symbol, DestinationState)
transition(q0, a, q1).
transition(q1, b, q1).
transition(q1, c, q2).

The predicate accept/1 selects the start state and runs the automaton using
accept/2. The predicate accept/2 is recursive. It succeeds when it reaches
a final state, or consumes a symbol of the input string and makes a transition
otherwise.

accept(Symbols) :-
start(StartState),
accept(Symbols, StartState).

% accept(+Symbols, +State)
accept([], State) :-
final(State).

accept([Symbol | Symbols], State) :-
transition(State, Symbol, NextState),
accept(Symbols, NextState).

accept/1 either accepts an input symbol string or fails:

?- accept([a, b, b, c]).
true

?- accept([a, b, b, c, b]).
false

The automaton in Fig. 2.2 contains "-transitions. They are introduced in the
database as facts:

epsilon(q1, q2).

To take them into account, the accept/2 predicate should be modified so that
there are two possible sorts of transitions. A first rule consumes a character and a
second one, corresponding to an "-transition, passes the string unchanged to the next
state:

accept([], State) :-
final(State).

accept([Symbol | Symbols], State) :-
transition(State, Symbol, NextState),
accept(Symbols, NextState).
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q0 q1 q2

a b

bFig. 2.3 A nondeterministic
automaton

accept(Symbols, State) :-
epsilon(State, NextState),
accept(Symbols, NextState).

2.2.4 Deterministic and Nondeterministic Automata

The automaton in Fig. 2.1 is said to be deterministic (DFSA) because given a state
and an input, there is one single possible destination state. On the contrary, a
nondeterministic automaton (NFSA) has states where it has a choice: the path is
not determined in advance.

Figure 2.3 shows an example of an NFSA that accepts the strings ab, abb, abbb,
abbbb, etc. Taking abb as input, the automaton reaches the state q1 consuming the
letter a. Then, it has a choice between two states. The automaton can either move
to state q2 or stay in state q1. If it first moves to state q2, there will be one character
left, and the automaton will fail. The right path is to loop onto q1 and then to move
to q2. "-transitions also cause automata to be nondeterministic as in Fig. 2.2, where
any string that has reached state q1 can also reach state q2.

A possible strategy to deal with nondeterminism is to use backtracking. When
an automaton has the choice between two or more states, it selects one of them and
remembers the state where it made the decision: the choice point. If it subsequently
fails, the automaton backtracks to the choice point and selects another state to go to.
In our example in Fig. 2.3, if the automaton moves first to state q2 with the string
bb, it will end up in a state without outgoing transition. It will have to backtrack and
select state q1. Backtracking is precisely the strategy that Prolog uses automatically.

2.2.5 Building a Deterministic Automaton
from a Nondeterministic One

Although surprising, it is possible to convert any nondeterministic automaton into
an equivalent deterministic automaton. We outline here an informal description of
the determinization algorithm. See Hopcroft et al. (2007) for a complete description
of this algorithm.

The algorithm starts from an NFSA .QN ;˙; q0; FN ; ıN / and builds an equiva-
lent DFSA .QD;˙; fq0g; FD; ıD/, where:
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Table 2.6 The
state-transition table of the
nondeterministic automaton
shown in Fig. 2.3

StatenInput a b

q0 q1 ;
q1 ; q1, q2
q2 ; ;

Table 2.7 The
state-transition table of the
determinized automaton in
Fig. 2.3

StatenInput a b

; ; ;
{q0} {q1} ;
{q1} ; {q1, q2}
{q2} ; ;
{q0, q1} {q1} {q1, q2}
{q0, q2} {q1} ;
{q1, q2} ; {q1, q2}
{q0, q1, q2} {q1} {q1, q2}

• QD is the set of all the possible state subsets ofQN . It is called the power set. The
set of states of the automaton in Fig. 2.3 isQN D fq0; q1; q2g. The corresponding
set of sets is QD D f;; fq0g; fq1g; fq2g; fq0; q1g; fq0; q2g; fq1; q2g; fq0; q1; q2gg.
If QN has n states, QD will have 2n states. In general, many of these states will
be inaccessible and will be discarded.

• FD is the set of sets that include at least one final state of QD . In our example,
FD D ffq2g; fq0; q2g; fq1; q2g; fq0; q1; q2gg.

• For each set S � QN and for each input symbol a, ıD.S; a/ D
ıN .s;a/S

s2S
. The

state-transition table in Table 2.6 represents the automaton in Fig. 2.3. Table 2.7
represents the determinized version of it.

2.2.6 Searching a String with a Finite-State Automaton

Searching the occurrences of a string in a text corresponds to recognizing them
with an automaton, where the string characters label the sequence of transitions.
However, the automaton must skip chunks in the beginning, between the occur-
rences, and at the end of the text. The automaton consists then of a core accepting
the searched string and of loops to process the remaining pieces. Consider again the
automaton in Fig. 2.1 and modify it to search strings ac, abc, abbc, abbbc, etc., in
a text. We add two loops: one in the beginning and the other to come back and start
the search again (Fig. 2.4).

In doing this, we have built an NFSA that it is preferable to convert into a DFSA.
Hopcroft et al. (2007) describe the mathematical properties of such automata and
an algorithm to automatically build an automaton for a given set of patterns to
search. They notably report that resulting DFSA have exactly the same number of
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q0 q1 q2

a c

bFig. 2.4 Searching strings
ac, abc, abbc, abbbc, etc.

Fig. 2.5 An automaton to
search strings ac, abc, abbc,
abbbc, etc., in a text

states as the corresponding NFSA. We present an informal solution to determine the
transitions of the automaton in Fig. 2.4.

If the input text does not begin with an a, the automaton must consume the
beginning characters and loop on the start state until it finds one. Figure 2.5
expresses this with an outgoing transition from state 0 to state 1 labeled with an
a and a loop for the rest of the characters. ˙ � a denotes the finite set of symbols
except a. From state 1, the automaton proceeds if the text continues with either a
b or a c. If it is an a, the preceding a is not the beginning of the string, but there
is still a chance because it can start again. This corresponds to the second loop on
state 1. Otherwise, if the next character falls in the set ˙ � fa; b; cg, the automaton
goes back to state 0. The automaton successfully recognizes the string if it reaches
state 2. Then it goes back to state 0 and starts the search again, except if the next
character is an a, for which it can go directly to state 1.

2.2.7 Operations on Finite-State Automata

FSA can be combined using a set of operations. The most useful are the union, the
concatenation, and the closure.

The union or sum of two automata A and B accepts or generates all the strings
of A and all the strings of B . It is denoted A [ B . We obtain it by adding a new
initial state that we link to the initial states of A and B (Fig. 2.6) using "-transitions
(Fig. 2.7).

The concatenation or product of A and B accepts all the strings that are
concatenations of two strings, the first one being accepted by A and the second
one by B . It is denoted A:B . We obtain the resulting automaton by connecting all
the final states of A to the initial state of B using "-transitions (Fig. 2.8).
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Fig. 2.6 Automata A (left) and B (right)
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Fig. 2.7 The union of two automata: A[ B
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Fig. 2.8 The concatenation of two automata: A:B

The iteration or Kleene closure of an automaton A accepts the concatenations
of any number of its strings and the empty string. It is denoted A�, where A� D
f"g [ A [ A:A [ A:A:A [ A:A:A:A [ : : :. We obtain the resulting automaton by
linking the final states of A to its initial state using "-transitions and adding a new
initial state, as shown in Fig. 2.9. The new initial state enables us to obtain the empty
string.

The notation ˙� designates the infinite set of all possible strings generated from
the alphabet ˙ . Other significant operations are:

• The intersection of two automata A\B that accepts all the strings accepted both
by A and by B . If A D .˙;Q1; q1; F1; ı1/ and B D .˙;Q2; q2; F2; ı2/, the
resulting automaton is obtained from the Cartesian product of states .˙;Q1 �
Q2; hq1; q2i ; F1 � F2; ı3/ with the transition function ı3.hs1; s2i ; i / D fht1; t2i j
t1 2 ı1.s1; i/ ^ t2 2 ı2.s2; i/g.
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Fig. 2.9 The closure of A

• The difference of two automata A � B that accepts all the strings accepted by A
but not by B .

• The complementation of the automaton A in ˙� that accepts all the strings that
are not accepted by A. It is denoted NA, where NA D ˙� � A.

• The reversal of the automaton A that accepts all the reversed strings accepted by
A.

Two automata are said to be equivalent when they accept or generate exactly the
same set of strings. Useful equivalence transformations optimize computation speed
or memory requirements. They include:

• "-removal, which transforms an initial automaton into an equivalent one without
"-transitions;

• Determinization, which transforms a nondeterministic automaton into a deter-
ministic one;

• Minimization, which determines among equivalent automata the one that has the
smallest number of states.

Optimization algorithms are outside the scope of this book. Hopcroft et al. (2007)
as well as Roche and Schabes (1997) describe them in detail.

2.3 Regular Expressions

The automaton in Fig. 2.1 generates or accepts strings composed of one a, zero or
more b’s, and one c. We can represent this set of strings using a compact notation:
ab*c, where the star symbol means any number of the preceding character. Such
a notation is called a regular expression or regex. Regular expressions are very
powerful devices to describe patterns to search in a text. Although their notation is
different, regular expressions can always be implemented in the form of automata,
and vice versa. However, regular expressions are generally easier to use.



36 2 Corpus Processing Tools

Table 2.8 Examples of
simple patterns and matching
results

Pattern String

regular “A section on regular expressions”
Prolog “The Prolog language”
the “The book of the life”

Regular expressions are composed of literal characters, that is, ordinary text
characters, like abc, and of metacharacters, like *, that have a special meaning.
The simplest form of regular expressions is a sequence of literal characters: letters,
numbers, spaces, or punctuation signs. The regexes regular and Prolog match,
respectively, the strings regular or Prolog contained in a text. Table 2.8 shows
examples of pattern matching with literal characters. Regular expressions are case-
sensitive and match the first instance of the string or all its instances in a text,
depending on the regex language that is used.

There are currently a dozen major regular expression dialects freely available.
Their common ancestor is grep, which stands for global/regular expression/print.
grep, together with egrep, a modern version of it, is a standard Unix tool that
prints out all the lines of a file that contain a given pattern. The grep user interface
conforms to the Unix command-line style. It consists of the command name, here
grep, options, and the arguments. The first argument is the regular expression
delimited by single straight quotes. The next arguments are the files where to search
the pattern:

grep ’regular expression’ file1 file2 ... filen

The Unix command:

grep ’abc’ myFile

prints all the lines of file myFile containing the string abc and

grep ’ab*c’ myFile1 myFile2

prints all the lines of file myFile1 and myFile2 containing the strings ac, abc,
abbc, abbbc, etc.

grep had a considerable influence, and most programming languages, including
Perl, Python, Java, and C#, have now some support for regexes. All the regex
variants – or flavors – adhere to an analog syntax, with some differences, however,
that hinder a universal compatibility.

In the following sections, we will use the syntax defined by Perl. Because of its
built-in support for regexes and its simplicity, Perl was immediately recognized as
a real innovation in the world of scripting languages and was adopted by millions
of programmers. It is probably Perl that made regular expressions a mainstream
programming technique and, in return, it explains why the Perl regex syntax became
a sort of de facto standard that inspires most modern regex flavors.
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Table 2.9 Repetition metacharacters (quantifiers)

Metachar Description Example

* Matches any number of occurrences of
the previous character – zero or more

ac*e matches strings ae, ace,acce,
accce, etc. as in “The aerial
acceleration alerted the ace pilot”

? Matches at most one occurrence of the
previous character – zero or one

ac?e matches ae and ace as in “The
aerial acceleration alerted the ace
pilot”

+ Matches one or more occurrences of the
previous character

ac+e matches ace, acce, accce, etc.
as in as in “The aerial acceleration
alerted the ace pilot”

{n} Matches exactly n occurrences of the
previous character

ac{2}e matches acce as in “The
aerial acceleration alerted the ace
pilot”

{n,} Matches n or more occurrences of the
previous character

ac{2,}e matches acce, accce, etc.

{n,m} Matches from n to m occurrences of the
previous character

ac{2,4}e matches acce, accce, and
acccce.

2.3.1 Repetition Metacharacters

We saw that the metacharacter * expressed a repetition of zero or more characters,
as in ab*c. Other characters that describe repetitions are the question mark, ?, the
plus, +, and the range quantifiers {n,m} matching a specified range of occurrences
(Table 2.9). The star symbol is also called the closure operator or the Kleene star.

2.3.2 The Dot Metacharacter

The dot . is also a metacharacter that matches one occurrence of any character of
the alphabet except a new line. For example, a.e matches the strings ale and ace in
the sentence:

The aerial acceleration alerted the ace pilot

as well as age, ape, are, ate, awe, axe, or aae, aAe, abe, aBe, a1e, etc. We can
combine the dot and the star in the expression .* to match any string of characters
until we encounter a new line.

2.3.3 The Escape Character

If the pattern to search contains a character that is also a metacharacter, for instance,
“?”, we need to indicate it to the regex engine using a backslash \ before it. We saw
that abc? matches ab and abc. The expression abc\? matches the string abc‹. In
the same vein, abc\. matches the string abc:, and a\*bc matches a*bc.
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We call the backslash an escape character. It transforms a metacharacter into a
literal symbol. We can also say that we “quote” a metacharacter with a backslash.
In Perl, we must use a backslash escape with the 14 following characters:

* + ? . \ | ( ) [ ] { } ^ $

to search them literally.
As a matter of fact, the backslash is not always necessary as sometimes Perl can

guess from the context that a character has a literal meaning. This is the case for
the braces, for instance, that Perl interprets as literals outside the expressions, {n},
{n,}, and {n,m}. Anyway, it is always safer to use a backslash escape to avoid
ambiguities.

2.3.4 The Longest Match

The description of repetition metacharacters in Table 2.9 sometimes makes string
matching ambiguous, as with the string aabbc and the regex a+b*, which could
have six possible matches: a, aa, ab, aab, abb, and aabb. In fact, matching
algorithms use two rules that are common to all the regex languages:

1. They match as early as they can in a string.
2. They match as many characters as they can.

Hence, a+b* matches aabb, which is the longest possible match. The matching
strategy of repetition metacharacters is said to be greedy.

In some cases, the greedy strategy is not appropriate. To display the sentence

They match as early and as many characters as they can.

in a web page with two phrases set in bold, we need specific tags that we will insert
in the source file. Using HTML, the language of the web, the sentence will probably
be annotated as

They match <b>as early</b> and <b>as many</b> characters as
they can.

where <b> and </b> mark respectively the beginning and the end of a phrase set
in bold. (We will see annotation frameworks in more detail in Chap. 3.)

A regular expression to search and extract phrases in bold could be:

<b>.*</b>

Unfortunately, applying this regex to the sentence will match one single string:

<b>as early</b> and <b>as many</b>

which is not what we wanted. In fact, this is not a surprise. As we saw, the regex
engine matches as early as it can, i.e., from the first <b> and as many characters as
it can up to the second </b>.
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Table 2.10 Lazy metacharacters

Metachar Description

*? Matches any number of occurrences of the previous character – zero or more
?? Matches at most one occurrence of the previous character – zero or one
+? Matches one or more occurrences of the previous character
{n}? Matches exactly n occurrences of the previous character
{n,}? Matches n or more occurrences of the previous character
{n,m}? Matches from n to m occurrences of the previous character

A possible solution is to modify the behavior of repetition metacharacters and
make them “lazy.” They will then consume as few characters as possible. We create
the lazy variant of a repetition metacharacter by appending a question mark to it
(Table 2.10). The regex

<b>.*?</b>

will then match the two intended strings,

<b>as early</b> and <b>as many</b>.

2.3.5 Character Classes

We saw that the dot, ., represented any character of the alphabet. It is possible
to define smaller subsets or classes. A list of characters between square brackets
[...] matches any character contained in the list. The expression [abc] means
one occurrence of either a, b, or c; [ABCDEFGHIJKLMNOPQRSTUVWXYZ]
means one uppercase unaccented letter; and [0123456789] means one digit. We
can concatenate character classes, literal characters, and metacharacters, as in the
expressions [0123456789]+ and [0123456789]+\.[0123456789]+, that
match, respectively, integers and decimal numbers.

Character classes are useful to search patterns with spelling differences, such as
[Cc]omputer [Ss]cience, which matches four different strings:

Computer Science
Computer science
computer Science
computer science

Negated Character Classes

We can define the complement of a character class, that is, the characters of the
alphabet that are not member of the class, using the caret symbol, ^, as the first
symbol inside the square brackets. For example:
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• The expression [^a] means any character that is not an a;
• [^0123456789] means any character that is not a digit;
• [^ABCD]+ means any string that does not contain A, B, C, or D.

Such classes are also called negated character classes.

Range of Characters

Inside square brackets, we can also specify ranges using the hyphen character: -.
For example:

• The expression [1-4] means any of the digits 1, 2, 3, or 4, and a[1-4]b
matches a1b, a2b, a3c, and a4b.

• The expression [a-zàâäæçéèêëîïôöœßùûüÿ] matches any lowercase ac-
cented or unaccented letter of French and German.

Metacharacters

Inside a character class, the hyphen is a metacharacter describing a range. If we want
to search it like an ordinary character and include it in a class, we need to quote it
with a backslash like this: \-. The expression [1\-4] means any of the characters
1, -, or 4.

In addition to the hyphen, the other metacharacters used in character classes
are: the closing square bracket, ], the backslash, \, the caret, ^, and the dollar
sign, $. As for carets, they need to be quoted to be treated as normal characters in
a character class. However, when they are in an unambiguous position, Perl will
interpret them correctly even without the escape sign. For instance, if the caret is
not the first character after the opening bracket, Perl will recognize it as a normal
character. The expression [a^b] matches either a, ˆ, or b.

Predefined Character Classes

Most regex flavors have predefined classes. Table 2.11 lists some useful ones in Perl.
Some classes are adopted by all the flavors, while some others are specific to Perl.
In case of doubt, refer to the appropriate documentation. Perl also defines classes
as properties using the \p{class} construct that matches the symbols in class
and \P{class} that matches symbols not in class. To name the properties or
classes, Perl uses its own categories as well as those defined by the Unicode standard
that we will review in Chap. 3. This enables the programmer to handle non-Latin
scripts more easily.
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Table 2.11 Predefined character classes in Perl (After Wall et al. (2000))

Expression Description Equivalent \p{...} equiv.

\d Any digit [0-9] \p{IsDigit}
\D Any nondigit [^0-9] \P{IsDigit}
\s Any whitespace character: space,

tabulation, new line, carriage
return, or form feed

[ \t\n\r\f] \p{IsSpace}

\S Any nonwhitespace character [^\s] \P{IsSpace}
\w Any word character: letter, digit, or

underscore
[a-zA-Z0-9_] \p{IsWord}

\W Any nonword character [^\w] \P{IsWord}
\p{IsAlpha} Any alphabetic character. It

includes accented characters
\p{IsAlnum} Any alphanumeric character. It

includes accented characters
[\p{IsAlpha}
\p{IsDigit}]

\p{IsPunct} Any punctuation sign
\p{IsLower} Any lowercase character. It

includes accented characters
\p{IsUpper} Any uppercase character. It

includes accented characters

2.3.6 Nonprintable Symbols or Positions

Some metacharacters match positions and nonprintable symbols. Positions or
anchors enable one to search a pattern with a specific location in a text. They encode
the start and end of a line using, respectively, the caret, ^, and the dollar symbol, $.

The expression ^Chapter matches lines beginning with Chapter and
[0-9]+$ matches lines ending with a number. We can combine both in
^Chapter [0-9]+$, which matches lines consisting only of the Chapter word
and a number as Chapter 3, for example.

The command line

egrep ’^[aeiou]+$’ myFile

matches the lines of myFile containing only vowels.
Similarly, in Perl, the anchor \b matches word boundaries. The expression

\bace matches aces and acetylene but not place. Conversely, ace\b matches
place but neither aces nor acetylene. The expression \bact\b matches exactly
the word act and not react or acted. Table 2.12 summarizes anchors and some
nonprintable characters.

2.3.7 Union and Boolean Operators

We reviewed the basic constructs to write regular expressions. A powerful feature
is that we can also combine expressions with operators, as with automata. Using a
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Table 2.12 Some metacharacters matching nonprintable characters in Perl

Metachar Description Example

^ Matches the start of a line ^ab*c matches ac, abc, abbc, abbbc, etc., when
they are located at the beginning of a new line

$ Matches the end of a line ab?c$ matches ac and abc when they are located
at the end of a line

\b Matches word boundaries \babc matches abcd but not dabc
bcd\b matches abcd but not abcde

mathematical term, we say that they define an algebra. Using a simpler analogy, this
means that we can arrange regular expressions just like arithmetic expressions. This
means, for instance, that it will be possible to apply the repetition metacharacters *
or + not only to the previous character, but to a previous regular expression. This
greatly eases the design of complex expressions and makes them very versatile.

Regex languages use three main operators. Two of them are already familiar
to us. The first one is the Kleene star or closure, denoted *. The second one
is the concatenation, which is usually not represented. It is implicit in strings
like abc, which is the concatenation of characters a, b, and c. To concatenate
the word computer, a space symbol, and science, we just write them in a row:
computer science.

The third operation is the union and is denoted “|”. The expression a|b means
either a or b. We saw that the regular expression [Cc]omputer [Ss]cience
could match four strings. We can rewrite an equivalent expression using the union
operator: Computer Science|Computer science|computer Scie-
nce|computerscience. A union is also called an alternation because the
corresponding expression can match any of the alternatives, here four.

2.3.8 Operator Combination and Precedence

Regular expressions and operators are grouped using parentheses. If we omit them,
expressions are governed by rules of precedence and associativity. The expression
a|bc matches the strings a and bc because the concatenation operator takes
precedence over the union. In other words, the concatenation binds the characters
stronger than the union. If we want an expression that matches the strings ac and
bc, we need parentheses (a|b)c.

Let us examine another example of precedence. We rewrote the expression
[Cc]omputer [Ss]cience using a union of four strings. Since the dif-
ference between expressions lies in the first letters only, we can try to revise
this union into something more compact. The character class [Cc] is equiva-
lent to the alternation C|c, which matches either C or c. A tentative expres-
sion could then be C|computer S|science. But it would not match the
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desired strings; it would find occurrences of either C , computer S, or science
because of the operator precedence. We need parentheses to group the alternations
(C|c)omputer (S|s)cience and thus match the four intended strings.

The order of precedence of the three main operators union, concatenation, and
closure is as follows:

1. Closure and other repetition operator (highest);
2. Concatenation, line and word boundaries;
3. Union (lowest).

This entails that abc* describes the set ab, abc, abcc, abccc, etc. To repeat the
pattern abc, we need parentheses; and the expression (abc)* corresponds to abc,
abcabc, abcabcabc, etc.

2.4 Programming with Regular Expressions

We saw that regular expressions were devices to define and search patterns in texts.
If we want to use them for more elaborate text processing such as translating char-
acters, substituting words, or counting them, we need a full-fledged programming
language, for example, Perl, Python, C#, or Java with its java.util.regex
package. They enable the design of powerful regexes and at the same time, they are
complete programming languages.

This section, as well as the next chapter, discusses features of Perl. This intends
to give you a glimpse of Perl programming. Further references include Christiansen
et al. (2012) and Schwartz et al. (2011).

2.4.1 Perl

Perl has constructs similar to those of the C language. It has analogous control flow
statements and the assignment operator is denoted =. However, variables begin with
an initial symbol, which is the $ character for an individual number or string. Such
variables are called scalars in Perl and are not typed. Comments start with the #
symbol. The short program

# A first program
$integer = 30;
$pattern = "My string";
print $integer, " ", $pattern, "\n";

prints the line

30 My string
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We run it with the command:

perl -w program.pl

where the option -w asks Perl to check syntax errors.

2.4.2 Strings and Regular Expressions in Perl

Perl represents strings as sequences of characters or symbols enclosed within single
or double quotes as, respectively, ’my string’ and "my string". There is no
limit to the length of strings; we can use them to store a whole corpus, provided that
our machine has enough memory.

Single-Quoted Strings

Strings delimited by single quotes are interpreted literally by Perl, except the
single quotes themselves and backslashes. To create strings containing these two
characters, Perl defines two escape sequences: \’ to represent a single quote and
\\ to represent a backslash as in:

$pattern = ’Perl\’s strings’;

This instruction assigns the string Perl’s strings to $pattern; the backslash
escape character tells Perl to read the quote literally instead of interpreting it as an
end-of-string delimiter.

The sequences consisting of a backslash and any other character, like \n or \t,
are not escape sequences in single-quoted strings. They are literal parts of a string.

Double-Quoted Strings

As opposed to single quotes, double quotes tell Perl to interpolate the string when
it contains variables or certain backslashed sequences. For example, like in Java or
C, \n is interpreted as a new line and \t as a tabulation. Table 2.13 shows a list of
escape sequences that have an altered meaning in double-quoted strings.

The right column in Table 2.13 lists the numerical representations of characters
using the ASCII and Unicode standards. The \N{name} and \x{hexcode}
sequences enable us to designate any character, like Ö and Œ, by its Unicode name,
respectively, \N{LATIN CAPITAL LETTER O WITH DIAERESIS} and
\N{LATIN CAPITAL LIGATURE OE}, or its code point, \x{00D6} and
\x{0152}. We will review both the ASCII and Unicode schemes in Chap. 3.
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Table 2.13 Escape sequences in double quoted strings

Sequence Description Sequence Description

\t Tabulation \100 Octal ASCII, three digits, here @
\n New line \x40 Hexadecimal ASCII, two digits, here @
\r Carriage return \x{0152} Unicode code point, here Œ
\f Form feed \N{COMMERCIAL AT} Unicode name, here @
\e Escape
\b Backspace
\a Bell

To use Unicode escape sequences, we must include this directive at the beginning
of the Perl program:

use charnames ’:full’;

Perl also interpolates variables inside double quotes as in

$begin = "my";
$pattern = "${begin} string";

where it replaces ${begin} with my and assigns $pattern with my string.
We surround the $begin variable with braces to tell Perl what the variable name
exactly is and avoid ambiguities. Braces are not always necessary, but it is always
safer to use them.

As \ and $ are special characters inside double quotes, as well as @, as we will
see in Sect. 2.5.1, we need to use the escape sequences \\, \$, and \@ to insert
these signs literally in strings.

Regular Expressions and Strings

Regular expressions and double-quoted strings are very similar constructs in Perl.
We already examined the syntax of regex literals and their metacharacters in
Sect. 2.3. In addition, as in double-quoted strings, regexes can use the escape
sequences defined in Table 2.13 to match nonprintable or numerically-encoded
characters as well as interpolate variables.

For example, Perl replaces the variables

$pattern = "my string";
$width = 20;

with their values in the regex literal

(.{0,$width}$pattern.{0,$width})

to produce

(.{0,20}my string.{0,20})

that matches the pattern my string with 0 to 20 characters to the left and to the right.
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From Tables 2.12 and 2.13, you may have noted that the metacharacter
\b was used with two different meanings: word boundary or backspace. In fact,
its interpretation depends on the context: it is a backspace in character classes;
otherwise, it matches word boundaries.

2.4.3 Matching

Perl’s regex engine is supported by the language itself, and the matching operation
has a dedicated construct to denote a regular expression: m/regex/. The next
program reads the input line and searches the expression ab*c. If it finds the
expression, it prints the line:

while ($line = <>) {
if ($line =~ m/ab*c/) {
print $line;

}
}

The program uses repeat and conditional statements. The symbol <> designates
the standard input, and the instruction $line = <> assigns the current line from
the input to the $line variable. The while instruction reads all the lines until it
encounters an end of file. The m/.../ instruction delimits the regular expression
to match, and the =~ operator instructs Perl to search it in the $line variable. If
the expression matches a string in $line, the =~ operator returns true, or false
otherwise. The if instruction tells the program to print the input when it contains
the pattern. We run the program to search the file file_name with the command:

perl -w program.pl file_name

The match operator supports a set of options also called modifiers. Their syntax
is m/regex/modifiers. Useful modifiers are:

• Case insensitive: i. The instruction m/regex/i searches regex in the target
string regardless of its case.

• Multiple lines: m. By default, the anchors ^ and $ match the start and the end
of the input string. The instruction m/regex/m considers the input string as
multiple lines separated by new line characters, where the anchors ^ and $ match
the start and the end of any line in the string.

• Single line: s. Normally, a dot symbol “.” does not match new line characters.
The /s modifier makes a dot in the instruction m/regex/s match any
character, including new lines.

Modifiers can be grouped in any order as in m/regex/im, for instance, or
m/regex/sm, where a dot in regex matches any character and the anchors ^
and $ match just after and before new line characters.
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2.4.4 Substitutions

One of the powerful features of Perl is pattern substitution. It uses a construct similar
to the match instruction: s/regex/replacement/. The instruction:

$line =~ s/regex/replacement/

matches the first occurrence of regex and replaces it by the replacement string
in the $line variable. If we want to replace all the occurrences of a pattern, we use
the g modifier, where g stands for globally:

$line =~ s/regex/replacement/g

We shall write a program to replace the occurrences of ab*c by ABC in a file
and print them. We read all the lines of the input. We use the instruction m/ab*c/
to check whether they match the regular expression ab*c. We then print the old
line and we substitute the matched pattern using the construct s/ab*c/ABC/:

while ($line = <>) {
if ($line =~ m/ab*c/) {
print "Old: ", $line;
$line =~ s/ab*c/ABC/g;
print "New: ", $line;

}
}

2.4.5 Translating Characters

The transliteration instruction tr/search_list/replacement_list/
replaces all the occurrences of the characters in search_list by the
corresponding character in
replacement_list. The instruction tr/ABC/abc/ replaces the occurrences
of A, B, and C by a, b, and c, respectively. The string

AbCdEfGhIjKlMnOpQrStUvWxYzÉö

results in

abcdEfGhIjKlMnOpQrStUvWxYzÉö

The hyphen specifies a character range, as in the instruction

$line =~ tr/A-Z/a-z/;

which converts the uppercase characters to their lowercase equivalents. The instruc-
tion tr has useful modifiers:
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• d deletes any characters of the search list that are not found in the replacement
list.

• c translates characters that belong to the complement of the search list.
• s reduces – squeezes, squashes – sequences of characters translated to an

identical character to a single instance.

The instruction

$line =~ tr/AEIOUaeiou//d;

deletes all the vowels in $line and

$line =~ tr/AEIOUaeiou/$/cs;

replaces all nonvowel characters by a $ sign. The contiguous sequences of translated
dollar signs are reduced to a single sign.

2.4.6 String Operators

Perl operators are similar to those of the C and Java languages. They are summarized
in Table 2.14. The string operators are notable differences. They enable us to
concatenate and compare strings.

The Boolean operators eq (equal) and ne (not equal) compare two strings. The
dot is the concatenation operator:

$string1 = "abc";
$string 2 = "def";
$string3 = $string1 . $string2;
print $string3;
#prints abcdef

As with the C and Java operators, the shorthand notation $var1 .= $var2
is equivalent to $var1 = $var1 . $var2. The following program reads the
content of the input line by line, concatenates it in the $text variable, and prints
it:

while ($line = <>) {
$text .= $line;

}
print $text;

2.4.7 Back References

It is sometimes useful to keep a reference to matched patterns or parts of them.
Let us imagine that we want to find a sequence of three identical characters, which
corresponds to matching a character and checking if the next two characters are
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Table 2.14 Summary of the main Perl operators

Unary operators
! Logical not
+ and - Arithmetic plus sign and negation

Binding operators
=~ Returns true in case of match success
!~ Returns false in case of match success

Arithmetic operators

* and / Multiplication and division
+ and - Addition and subtraction

String operator
. String concatenation

Arithmetic comparison operators
> and < Greater than and less than
>= and <= Greater than or equal and less than or equal
== and != Equal and not equal

String comparison operators
ge and le Greater than or equal and less than or equal
gt and lt Greater than and less than
eq and ne Equal and not equal

Logical operators
&& Logical and
|| Logical or

identical to the first character. To do this, we first tell Perl to remember the matched
pattern and we put parentheses around it. This creates a buffer to hold the pattern
and we refer back to it by the sequence \1. The instruction

$line =~ s/(.)\1\1/***/g;

matches sequences of three identical characters and replaces them by three stars in
$line.

Perl can create as many buffers as we need. It allocates a new one when it
encounters a left parenthesis and refers back to it by references \1, \2, \3, etc.
The first pair of parentheses corresponds to \1, the second pair to \2, the third to
\3, etc.

Outside the regular expression, the \<digit> reference is denoted by
$<digit>: $1, $2, $3, etc. As an example, the next instruction matches the
decimal amounts of money expressed with the dollar sign and substitutes them with
the words dollars and cents in clear in the replacement string:

$line =~ s/\$ *([0-9]+)\.?([0-9]*)/$1 dollars and $2 cents/g;

Perl will keep these references until the next pattern matching instruction. The
program below uses them in a separate instruction and prints the dollars and cents
of money amount occurring in $line:
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while ($line = <>) {
while ($line =~ m/\$ *([0-9]+)\.?([0-9]*)/g) {
print "Dollars: ", $1, " Cents: ", $2, "\n";

}
}

In the inner loop, the combination of while and the /g modifier enables the
m/.../ instruction to match a pattern and to start a new search from its current
position – where the previous match ended. When m/.../g fails to match, the
start position is reset to the beginning of the string and we exit the loop. Without
this /g modifier, we would have looped onto the first occurrence of the pattern and
printed it infinitely.

2.4.8 Predefined Variables

Perl has a large set of predefined variables, which are assigned without the need for
us to do it explicitly. The most frequently used is default input variable: $_. When
writing an input instruction in a program, we can omit the variable that would store
the input as well as the = operator. Perl will automatically assign it to $_. In the
same way, you can also leave out the left value of the pattern matching operations
m//, s///, and tr///, as well as their =~ operator or the variable of some one-
place functions (unary functions). Perl will use $_ without us having to specify it in
the program:

while (<>) {
if (m/ab*c/) {
print;

}
}

which is equivalent to:

while ($_ = <>) {
if ($_ =~ m/ab*c/) {
print $_;

}
}

The triple $‘, $&, and $’ is another set of useful predefined variables, whose
values are assigned by a successful match:

• $& is automatically assigned to the string that last matched a regular expression
as in this program:

$line = "Tell me, O muse, of that ingenious hero
who travelled far and wide after he had sacked
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the famous town of Troy.";
$line =~ m/,.*,/;
print $&, "\n";

which prints

, O muse,

• $‘ and $’ contain, respectively, the strings before and after the matched pattern
and the program:

$line = "Tell me, O muse, of that ingenious hero
who travelled far and wide after he had sacked
the famous town of Troy.";

$line =~ m/,.*,/;
print "Before: ", $‘, "\n";
print "After: ", $’, "\n";

prints

Before: Tell me
After: of that ingenious hero

who travelled far and wide after he had sacked
the famous town of Troy.

There are a couple of other predefined variables. The complete reference on them
is the perlvar section of the Perl manual. A word of caution, however: many people
consider the predefined variables dangerous, especially $_. It is a good practice, at
least for beginners, to try to avoid them. They make programs hard to read and may
introduce bugs.

2.5 Finding Concordances

Concordances of a word, an expression, or more generally any string in a corpus are
easy to obtain with Perl or Prolog. In our programs, we will represent the corpus
as one single big string, and concordancing will simply consist in matching the
pattern we are searching as a substring of the whole list. There will be no need
then to consider the corpus structure, that is, whether it is made of blanks, words,
sentences, or paragraphs.

2.5.1 Concordances in Perl

To have a convenient input of the concordance parameters – the file name, the pattern
to search, and the span size of the concordance – we will design the Perl program
so that it can read them from the command line as in

perl -w concordance.pl corpus.txt pattern_to_search 15
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These arguments are passed to Perl by the operating system in the form of an
array. Before writing the program, we introduce this data type now.

Arrays in Perl

Arrays in Perl are data structures that can hold any number of elements of any type.
Their name begins with an at sign, @, for example, @array. Each element has a
position where the programmer can store and read data using the position index.

An array grows or shrinks automatically when elements are appended, inserted,
or deleted. Perl manages the memory without any intervention from the program-
mer. Here are some examples of arrays:

@array1 = (); # The empty array
@array2 = (1, 2, 3); # Array containing 1, 2, and 3

$var1 = 3.14;
$var2 = "my string";
@array3 = (1, $var1, "Prolog", $var2);
# Array containing four elements of different type

@array4 = (@array2,@array3);
#Same as (1, 2, 3, 1, 3.14, "Prolog", "my string")

Reading or assigning a value to a position of the array is done using its index
between square brackets starting from 0:

print $array2[1]; # prints 2

If an element is assigned to a position that did not exist before, Perl grows the
array to store it. The positions in-between are not initialized. They hold the value
undef:

$array4[10] = 10;
print $array4[10]; # prints 10
print $array4[9];
# prints a message telling it is undefined

The existence of a variable can be tested using the defined Boolean function
as in:

if (defined($array4[9])) {
print "yes", "\n";

} else {
print "no", "\n";

}

If an undef value is used as a number, it is considered to be a zero. The next
two lines print 1.
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$array4[9]++;
print $array4[9];

The variable $#array is the index of the last element of the array. It can be
assigned to grow or shrink the array:

$length4 = $#array4;
print $length4; # prints 10
print $#array2; # prints 2
$#array4 = 5; # shrinks the array to 6 elements.

# Other elements are lost.
print $array4[10];
# prints a message telling it is undefined
$#array2 = 10; # extends the array to 11 elements.

# Indices 3..10 are undefined.

You can also assign a complete array to an array and an array to a list of variables
as in:

@array5 = @array2;
($v1, $v2, $v3) = @array2;

where @array5 contains a copy of @array2, and $v1, $v2, $v3 contain,
respectively, 1, 2, and 3.

Printing Concordances in Perl

Now let us write a concordance program modified from Cooper (1999). We use
three arguments in the command line: the file name, the pattern to search, and the
span size. Peal reads them and stores them in an array with the reserved name:
@ARGV. We assign these arguments, respectively, to $file_name, $pattern,
and $width.

We open the file using the open function, which assigns the stream to the FILE
identifier. If open fails, the program exits using die and prints a message to inform
us that it could not open the file. The notation <FILE> designates the input stream,
which is assigned to the $line variable. We read all the text and we assign it to the
$text variable.

In addition to single words, we may want to search concordances of a phrase
such as the Achaeans. Depending on the text formatting, the phrase’s words can be
on the same line or spread on two lines of text as in:

I see that the Achaeans are subject to you in great
multitudes.
...
the banks of the river Sangarius; I was their ally,
and with them when the Amazons, peers of men, came up
against them, but even they were not so many as the
Achaeans."
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The Perl string the Achaeans matches the first occurrence of the phrase in the
text, but not the second one as the two words are separated by a line break.

There are two ways to cope with that:

• We can modify $pattern, the phrase to search, so that it matches across
sequences of line breaks, tabulations, or spaces. To do this, we replace the
sequences of spaces in $pattern with the generic white space character class:
$pattern =~ s/ +/\\s+/g;

• The second possibility is to normalize the text, $text, so that the line breaks
and all kinds white spaces in the text are replaced with a standard space:
$text =~ s/\s+/ /g;

Both solutions can deal with the multiple conventions to mark line breaks, the
two most common ones being \n and \r\n adopted, respectively, by Unix
and Windows. Moreover, the text normalization makes it easier to format the
concordance output and print the results. In our program, we will keep both
instructions, although they are somewhat redundant.

Finally, we use a while loop to match the pattern with $width characters to
the left and to the right. We create a back reference by setting parentheses around
the regular expression and we print its value stored in $1. We do this for all the
occurrences of the pattern in $text using the combination of while and the g
modifier as we saw in Sect. 2.4.7.

($file_name, $pattern, $width) = @ARGV;
open(FILE, "$file_name") ||

die "Could not open file $file_name.";
while ($line = <FILE>) {
$text .= $line;

}
$pattern =~ s/ +/\\s+/g;

# spaces match tabs and new lines
$text =~ s/\s+/ /g;

# line breaks and blank sequences are replaced
# by spaces

while ($text =~ m/(.{0,$width}$pattern.{0,$width})/g) {
# matches the pattern with 0..width
# to the right and left

print "$1\n"; #$1 contains the match
}

Now let us run the command:

perl -w concordance.pl odyssey.txt Penelope 25

he suitors of his mother Penelope, who persist in eating u
ace dying out yet, while Penelope has such a fine son as y
laid upon the Achaeans. Penelope, daughter of Icarius, he
blood of Ulysses and of Penelope in your veins I see no l
his long-suffering wife Penelope, and his son Telemachus,
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ngs. It was not long ere Penelope came to know what the su
he threshold of her room Penelope said: "Medon, what have

2.5.2 Concordances in Prolog

Writing a basic concordance program is also relatively easy in Prolog. Before
conducting the search, and just as in the Perl program, it is preferable to normalize
all kinds of white spaces in the text.

Normalizing White Spaces

The normalization of white spaces corresponds to the substitution of the \s+
expression with a blank space. We implement it with the normalize/2 predicate
that replaces sequences of contiguous white spaces with one single blank space. We
use memberchk/2, a faster, nonbacktracking version of member/2, to determine
whether a character is a white space.

% normalize(+List, -NormalizedList)
% replaces contiguous white spaces with one blank

normalize([C1, C2 | L1], [’ ’ | L2]) :-
memberchk(C1, [’ ’, ’\t’, ’\n’, ’\r’, ’\f’]),
memberchk(C2, [’ ’, ’\t’, ’\n’, ’\r’, ’\f’]),
!,
normalize([C2 | L1], [’ ’ | L2]).

normalize([C1 | L1], [’ ’ | L2]) :-
memberchk(C1, [’ ’, ’\t’, ’\n’, ’\r’, ’\f’]),
!,
normalize(L1, L2).

normalize([C1 | L1], [C1 | L2]) :-
\+ memberchk(C1, [’ ’, ’\t’, ’\n’, ’\r’, ’\f’]),
!,
normalize(L1, L2).

normalize([], []).

Searching the Pattern

We implement the concordance search with two auxiliary predicates:

prefix(+List, +Span, -Prefix)

that extracts the prefix of a list with up to Span characters, and

prepend(+List, +Span, -PrependedList)

that adds Span variables onto the beginning of a list.
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The top-level predicate, concordance/4, finds Pattern in List and
returns the first Line where it occurs. Span is the window size, for example, 25
characters to the left and to the right, within which Pattern will be displayed. We
first prepend Pattern with Span variables before it to match the pattern and its
right context. We find it with a combination of two append/3 calls; then we use
prefix/3 to extract up to Span characters after it.

% concordance(+Pattern, +List, +Span, -Line)
% finds Pattern in List and displays the Line
% where it appears within Span characters surrounding it.

concordance(Pattern, List, Span, Line) :-
atom_chars(Pattern, LPattern),
prepend(LPattern, Span, LeftPattern),
append(_, Rest, List),
append(LeftPattern, End, Rest),
prefix(End, Span, Suffix),
append(LeftPattern, Suffix, LLine),
atom_chars(Line, LLine).

% prefix(+List, +Span, -Prefix) extracts the prefix
% of List with up to Span characters.
% The second rule is to check the case where there
% are less than Span character in List.

prefix(List, Span, Prefix) :-
append(Prefix, _, List),
length(Prefix, Span),
!.

prefix(Prefix, Span, Prefix) :-
length(Prefix, L),
L < Span.

% prepend(+List, +Span, -Prefix) adds Span variables
% to the beginning of List.

prepend(Pattern, Span, List) :-
prepend(Pattern, Span, Pattern, List).

prepend(_, 0, List, List) :- !.
prepend(Pattern, Span, List, FList) :-
Span1 is Span - 1,
prepend(Pattern, Span1, [X | List], FList).

Let us apply this program to retrieve the concordances of Helen in the Iliad.
We use read_file/2 defined in Sect. A.16.2, and we make concordance/4
backtrack until all the occurrences have been found:
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?- read_file(’iliad.txt’, L), normalize(L, L2),
concordance(’Helen’, L2, 25, C), write(C), nl, fail.

e glory of still keeping Helen, for whose sake so many
e glory of still keeping Helen, for whose sake so many
suffered for the sake of Helen. Nevertheless, if any ma
suffered for the sake of Helen. The men of Pylos and Ar
fight in their midst for Helen and all her wealth. Let
in the midst of you for Helen and all her wealth. Let
. Meanwhile Iris went to Helen in the form of her siste
s spoke the goddess, and Helen’s heart yearned after he
in a wood. When they saw Helen coming towards the tower
a king." "Sir," answered Helen, "father of my husband,
...
No

Because the pattern is prepended with exactly Span variables, the concordance
program will not examine the first Span characters of the file. This means that it will
not find a possible pattern in this sublist. In our example above, the program finds all
the occurrences of Helen except the ones that could occur in the first 25 characters
of the text. This is easily corrected in the program and is left as an exercise.

2.6 Approximate String Matching

So far, we have used regular expressions to match exact patterns. However, in many
applications, such as in spell checkers, we need to extend the match span to search
a set of related patterns or strings. In this section, we review techniques to carry out
approximate or inexact string matching.

2.6.1 Edit Operations

A common method to create a set of related strings is to apply a sequence of edit
operations that transforms a source string s into a target string t . The operations are
carried out from left to right using two pointers that mark the position of the next
character to edit in both strings:

• The copy operation is the simplest. It copies the current character of the source
string to the target string. Evidently, the repetition of copy operations produces
equal source and target strings.

• Substitution replaces one character from the source string by a new character
in the target string. The pointers are incremented by one in both the source and
target strings.
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Table 2.15 Typographical errors (typos) and corrections. Strings differ by one operation. The
correction is the source and the typo is the target. Unless specified, other operations are just copies
(After Kernighan et al. (1990))

Typo Correction Source Target Position Operation

acress actress – t 2 Deletion
acress cress a – 0 Insertion
acress caress ac ca 0 Transposition
acress access r c 2 Substitution
acress across e o 3 Substitution
acress acres s – 4 Insertion
acress acres s – 5 Insertion

• Insertion inserts a new character in the target string. The pointer in the target
string is incremented by one, but the pointer in the source string is not.

• Deletion deletes the current character in the target string, i.e., the current
character is not copied in the target string. The pointer in the source string is
incremented by one, but the pointer in the target string is not.

• Reversal (or transposition) copies two adjacent characters of the source string
and transposes them in the target string. The pointers are incremented by two
characters.

Kernighan et al. (1990) illustrate these operations with the misspelled word acress
and its possible corrections (Table 2.15).

If we allow only one edit operation on a source string of length n, and if
we consider an alphabet of 26 unaccented letters, the deletion will generate n
new strings; the insertion, .n C 1/ � 26 strings; the substitution, n � 25; and the
transposition, n � 1 new strings.

2.6.2 Minimum Edit Distance

Complementary to edit operations, edit distances measure the similarity between
strings. They assign a cost to each edit operation, usually 0 to copies and 1 to
deletions and insertions. Substitutions and transpositions correspond both to an
insertion and a deletion. We can derive from this that they each have a cost of 2. Edit
distances tell how far a source string is from a target string: the lower the distance,
the closer the strings.

Given a set of edit operations, the minimum edit distance is the operation
sequence that has the minimal cost needed to transform the source string into the
target string. If we restrict the operations to copy/substitute, insert, and delete,
we can represent the edit operations using a table, where the distance at a
certain position in the table is derived from distances in adjacent positions already
computed. This is expressed by the formula:
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i−1 j i j

i−1 j −1 i j −1

delete

replace
insert

Fig. 2.10 Edit operations

edit_distance.i; j / D min

0

@
edit_distance.i � 1; j /C del_cost
edit_distance.i � 1; j � 1/C subst_cost
edit_distance.i; j � 1/C ins_cost

1

A :

The boundary conditions for the first row and the first column correspond to a
sequence of deletions and of insertions. They are defined as edit_distance.i; 0/ D i
and edit_distance.0; j / D j .

We compute the cell values as a walk through the table from the beginning of
the strings at the bottom left corner, and we proceed upward and rightward to fill
adjacent cells from those where the value is already known. Arrows in Fig. 2.10
represent the three edit operations, and Table 2.16 shows the distances to transform
language into lineage. The value of the minimum edit distance is 5 and is shown at
the upper right corner of the table.

The minimum edit distance algorithm is part of the dynamic programming
techniques. Their principles are relatively simple. They use a table to represent data,
and they solve a problem at a certain point by combining solutions to subproblems.
Dynamic programming is a generic term that covers a set of widely used methods
in optimization.

2.6.3 Computing the Minimum Edit Distance in Perl

To implement the minimum edit distance in Perl, we use the length built-in func-
tion to compute the length of the source and target, and split(//, $string)
to convert a string into an array of characters. The instruction

@array = split(regex, $string)

breaks up the $string variable as many times as regex matches in $string.
The regex expression acts as a separator, and the string pieces are assigned
sequentially to @array. In the minimum edit distance program, regex is reduced
to nothing and assigns all the characters $string as elements of @array.

($source, $target) = @ARGV;
$length_s = length($source);
$length_t = length($target);
# Initialize first row and column
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Table 2.16 Distances between language and lineage

e 7 6 5 6 5 6 7 6 5
g 6 5 4 5 4 5 6 5 6
a 5 4 3 4 5 6 5 6 7
e 4 3 4 3 4 5 6 7 6
n 3 2 3 2 3 4 5 6 7
i 2 1 2 3 4 5 6 7 8
l 1 0 1 2 3 4 5 6 7
Start 0 1 2 3 4 5 6 7 8
– Start l a n g u a g e

for ($i = 0; $i <= $length_s; $i++) {
$table[$i][0] = $i;

}
for ($j = 0; $j <= $length_t; $j++) {
$table[0][$j] = $j;

}
# Get the characters. Start index is 0
@source = split(//, $source);
@target = split(//, $target);
# Fills the table.
# Start index of rows and columns is 1
for ($i = 1; $i <= $length_s; $i++) {
for ($j = 1; $j <= $length_t; $j++) {
# Is it a copy or a substitution?
$cost = ($source[$i-1] eq $target[$j-1]) ? 0: 2;
# Computes the minimum
$min = $table[$i-1][$j-1] + $cost;
if ($min > $table[$i][$j-1] + 1) {
$min = $table[$i][$j-1] + 1;

}
if ($min > $table[$i-1][$j] + 1) {
$min = $table[$i-1][$j] + 1;

}
$table[$i][$j] = $min;

}
}
print "Minimum distance: ",
$table[$length_s][$length_t], "\n";

2.6.4 Searching Edits in Prolog

Once we have filled the table, we can search the operation sequences that correspond
to the minimum edit distance. Such a sequence is also called an alignment.
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The depth-first strategy is an economical way to traverse a search space. It is
easy to implement in Prolog and has low memory requirements. The problem with
it is that it blindly selects the paths to follow and can explore very deep nodes while
ignoring shallow ones. To avoid this, we apply a variation of the depth-first search
where we fix the depth in advance to the minimum edit distance. We assign it to the
call parameter Cost of edit_distance/4.

The code of the depth-limited search is similar to the depth-first program (see
Appendix A, Sect. A.15.2). We add a counter in the recursive case that represents the
current search depth and we increment it until we have reached the depth limit. We
compute each individual edit operation and its cost with the edit_operation/6
predicate.

% edit_distance(+Source, +Target, -Edits, +Cost).
edit_distance(Source, Target, Edits, Cost) :-
edit_distance(Source, Target, Edits, 0, Cost).

edit_distance([], [], [], Cost, Cost).
edit_distance(Source, Target, [EditOp | Edits], Cost,

FinalCost) :-
edit_operation(Source, Target, NewSource, NewTarget,

EditOp, CostOp),
Cost1 is Cost + CostOp,
edit_distance(NewSource, NewTarget, Edits, Cost1,

FinalCost).

% edit_operation carries out one edit operation
% between a source string and a target string.
edit_operation([Char | Source], [Char | Target], Source,

Target, ident, 0).
edit_operation([SChar | Source], [TChar | Target], Source,

Target, sub(SChar,TChar), 2) :-
SChar \= TChar.

edit_operation([SChar | Source], Target, Source, Target,
del(SChar), 1).

edit_operation(Source, [TChar | Target], Source, Target,
ins(TChar), 1).

Using backtracking, Prolog finds all the alignments. We obtain with the minimum
distance of 5:

?- edit_distance([l,a,n,g,u,a,g,e], [l,i,n,e,a,g,e], E, 5).

E = [ident, sub(a, i), ident, sub(g, e), del(u), ident,
ident, ident] ;

E = [ident, sub(a, i), ident, del(g), sub(u, e), ident,
ident, ident] ;
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Fig. 2.11 Alignments of lineage and language. The figure contains two possible representations
of them. In the upper row, the deletions in the source string are in italics, as are the insertions in the
target string. The lower row shows a synchronized alignment, where deletions in the source string
as well as the insertions in the target string are aligned with epsilon symbols (null symbols)

E = [ident, sub(a, i), ident, del(g), del(u), ins(e), ident,
ident, ident]

...

with 15 possible alignments in total. Figure 2.11 shows the first and third ones.
We can apply this Prolog search program alone to find the edit distance. We

avoid going down an infinite path with an iterative deepening. We start with an edit
distance of 0 (the Cost parameter) and we increment it – 1, 2, 3, 4 – until we find
the minimum edit distance. The first searches will fail, and the first one that succeeds
corresponds to the minimum distance.

We can also compute these alignments in Perl. A frequently used technique is to
consider each cell in Table 2.16 and to store the coordinates of all the adjacent cells
that enabled us to fill it. For instance, the program filled the last cell of coordinates
.8; 7/, containing 5 ($table[8][7]), using the content of cell .7; 6/. The storage
can be a parallel table, where each cell contains the coordinates of the immediately
preceding positions (the backpointers). Starting from the last cell down to the bottom
left cell, .0; 0/, we traverse the table from adjacent cell to adjacent cell to recover
all the alignments. This program is left as an exercise (Exercise 2.9).

2.7 Further Reading

Corpora are now easy to obtain. Organizations such as the Linguistic Data Con-
sortium and ELRA collect and distribute texts in many languages. Although not
widely cited, Busa (1974, 1996) is the author of the first large computerized
corpus, the Index Thomisticus, a complete edition of the works of Saint Thomas
Aquinas. The corpus, which is entirely lemmatized, is available online (http://www.
corpusthomisticum.org/). FranText is also a notable early corpus of more than 100
million words. It helped write the Trésor de la langue française (Imbs and Quemada
1971–1994), a comprehensive French dictionary. Other early corpora include the

http://www.corpusthomisticum.org/
http://www.corpusthomisticum.org/
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Bank of English, which contributed to the Collins COBUILD Dictionary (Sinclair
1987).

Concordancing plays a role today that goes well beyond lexicography. Google,
Bing, and other web search engines can be considered as modern avatars of
concordancers as they return a small passage – a snippet – of a document, where
a phrase or words are cited. The Dominicans who created the first concordances in
the thirteenth century surely did not forecast the future of their brainchild and the
billions of searches per day it would entail. For a history of early concordances to
the scriptures, see Rouse and Rouse (1974).

The code examples in these chapter enabled us to search strings and patterns in a
corpus. For large volumes of text, a more realistic application would first index all
the words before a user can search them. Manning et al. (2008) is a good review of
indexing techniques. Lucene (http://lucene.apache.org/) is a widely used system to
carry out text indexing and search.

Text and corpus analysis are an active focus of research in computational
linguistics. Kaeding (1897) and Estoup (1912), the latter cited in Petruszewycz
(1973), were among the pioneers in this field, at the turn of the twentieth century,
when they used corpora to carry out systematic studies on letter and word fre-
quencies for stenography. Paradoxically, natural language processing conducted by
computer scientists largely ignored corpora until the 1990s, when they rediscovered
techniques routinely used in the humanities. For a short history, see Zampolli (2003)
and Busa (2009).

Roche and Schabes (1997, Chap. 1) is a concise and clear introduction to
automata theory. It makes extensive use of mathematical notations, however.
Hopcroft et al. (2007) is a standard and comprehensive textbook on automata and
regular expressions. Friedl (2006) is a thorough presentation of regular expressions
oriented toward programming techniques and applications.

Although the idea of automata underlies some mathematical theories of the
nineteenth century (such as those of Markov, Gödel, or Turing), Kleene (1956) was
the first to give a formal definition. He also proved the equivalence between regular
expressions and FSA. Thompson (1968) was the first to implement a widely used
editor embedding a regular expression tool: Global/Regular Expression/Print, better
known as grep.

There are several FSA toolkits available from the Internet. The Perl Compatible
Regular Expressions (PCRE) library is an open-source set of functions that imple-
ments the Perl regex syntax. It is written in C by Philip Hazel (http://www.pcre.
org/). The FSA utilities (van Noord and Gerdemann 2001) is a Prolog package
to manipulate regular expressions, automata, and transducers (http://odur.let.rug.
nl/~vannoord/Fsa/). The OpenFst library (Allauzen et al. 2007; Mohri et al. 2000)
is another set of tools (http://www.openfst.org/). Both include rational operations
– union, concatenation, closure, reversal – and equivalence transformation – "-
elimination, determinization, and minimization.

http://lucene.apache.org/
http://www.pcre.org/
http://www.pcre.org/
http://odur.let.rug.nl/~vannoord/Fsa/
http://odur.let.rug.nl/~vannoord/Fsa/
http://www.openfst.org/
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Exercises

2.1. Implement the automaton in Fig. 2.5.

2.2. Implement a Prolog program to automatically construct an automaton to search
a given input string.

2.3. Write a regular expression that finds occurrences of honour and honor in a
text.

2.4. Write a regular expression that finds lines containing all the vowels a, e, i, o,
u, in that order.

2.5. Write a regular expression that finds lines consisting only of letters a, b, or c.

2.6. List the strings generated by the expressions:

(ab)*c
(a.)*c
(a|b)*
a|b*|(a|b)*a
a|bc*d

2.7. Complement the Prolog concordance program to sort the lines according to
words appearing on the right of the string to search.

2.8. Write the iterative deepening search in Prolog to find the minimum edit
distance.

2.9. Extend the Perl program in Sect. 2.6.3 to find the alignments. See the last
paragraph of Sect. 2.6.4 for an idea of the algorithm.



Chapter 3
Encoding and Annotation Schemes

῾Ελλάδι φωνήεντα καὶ ἔμφρονα δῶρα κομίζων
γλώσσης ὄργανα τεῦξεν ὁμόθροα, συμφυέος δὲ
ἁρμονίης στοιχηδὸν ἐς ἄζυγα σύζυγα μίξας
γραπτὸν ἀσιγήτοιο τύπον τορνώσατο σιγῆς,
πάτρια θεσπεσίης δεδαημένος ὄργια τέχνης,

Nonnus Panopolitanus, Dionysiaca, Book IV, verses 261–265. Fifth century.

But Cadmos [from Sidon in Phoenicia] brought gifts of voice
and thought for all Hellas; he fashioned tools to echo the
sounds of the tongue, he mingled sonant and consonant in one
order of connected harmony. So he rounded off a graven model
of speaking silence; for he had learnt the secrets of his country’s
sublime art.

Translation W. H. D. Rouse. Loeb Classical Library.

3.1 Encoding Texts

At the most basic level, computers only understand binary digits and numbers.
Corpora as well as any computerized texts have to be converted into a digital format
to be read by machines. From their American early history, computers inherited
encoding formats designed for the English language. The most famous one is the
American Standard Code for Information Interchange (ASCII). Although well
established for English, the adaptation of ASCII to other languages led to clunky
evolutions and many variants. It ended (temporarily?) with Unicode, a universal
scheme compatible with ASCII and intended to cover all the scripts of the world.

We saw in Chap. 2 that some corpora include linguistic information to
complement raw texts. This information is conveyed through annotations that

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__3, © Springer-Verlag Berlin Heidelberg 2014

65



66 3 Encoding and Annotation Schemes

describe quantities of structures. They range from text organization, such as
titles, paragraphs, and sentences, to semantic information including grammatical
data, part-of-speech labels, or syntactic structures, etc. In contrast to character
encoding, no annotation scheme has yet reached a level where it can claim to be
a standard. However, the Extensible Markup Language (XML), a language to
define annotations, is well underway to unify them under a shared markup syntax.
XML in itself is not an annotation language. It is a scheme that enables users to
define annotations within a specific framework.

In this chapter, we will introduce the most useful character encoding schemes
and review the basics of XML. We will examine related topics of standardized
presentation of time and date, and how to sort words in different languages. We
will then outline two significant theoretical concepts behind codes – entropy and
perplexity – and how they can help design efficient codes. Entropy is a very versatile
measure with many applications. We will use it to learn automatically decision trees
from data and build classifiers. This will enable us to review our first machine-
learning algorithm. Machine learning is now instrumental in most areas of natural
language processing and we will conclude this chapter with the description of three
other linear classifiers that are among the most widely used.

3.2 Character Sets

3.2.1 Representing Characters

Words, at least in European languages, consist of characters. Prior to any further
digital processing, it is necessary to build an encoding scheme that maps the
character or symbol repertoire of a language to numeric values – integers. The
Baudot code is one of the oldest electric codes. It uses 5 bits and hence has the
capacity to represent 25 D 32 characters: the Latin alphabet and some control
commands like the carriage return and the bell. The ASCII code uses 7 bits. It
can represent 27 D 128 symbols with positive integer values ranging from 0 to
127. The characters use the contiguous positions from 32 to 126. The values in the
range [0..31] and 127 correspond to controls used, for instance, in data transmission
(Table 3.1).

ASCII was created originally for English. It cannot handle other European
languages that have accented letters, such as é, à, or other diacritics like ø and ä, not
to mention languages that do not use the Latin alphabet. Table 3.2 shows characters
used in French and German that are ignored by ASCII. Most computers used to
represent characters on octets – words of 8 bits – and ASCII was extended with the
eighth unoccupied bit to the values in the range [128..255] (28 = 256). Unfortunately,
these extensions were not standardized and depended on the operating system. The
same character, for instance, ê, could have a different encoding in the Windows,
Macintosh, and Unix operating systems.
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Table 3.1 The ASCII character set arranged in a table consisting of 6 rows and 16 columns. We
obtain the ASCII code of a character by adding the first number of its row and the number of the
column. For instance, A has the decimal code 64C 1D 65, and e has the code 96C 5D 101

0 1 2 4 3 5 6 7 8 9 10 11 12 13 14 15

32 ! " # $ % & ’ ( ) * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [ n ] ˆ _
96 ` a b c d e f g h i j k l m n o
112 p q r s t u v w x y z { | } ˜

Table 3.2 Characters specific to French and German

French German

Lowercase à â æ ç é è ê ë î ï ô œ ù û ü ÿ ä ö ü ß
Uppercase À Â Æ Ç É È Ê Ë Î Ï Ô Œ Ù Û Ü Ÿ Ä Ö Ü

Table 3.3 The ISO Latin 1 character set (ISO-8859-1) covering most characters from Western
European languages

0 1 2 4 3 5 6 7 8 9 10 11 12 13 14 15

160 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « : - ® ¯
176 ° ˙ ² ³ ´ � ¶ � ¸ ¹ º » ¼ ½ ¾ ¿
192 À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
208 Ð Ñ Ò Ó Ô Õ Ö � Ø Ù Ú Û Ü Ý Þ ß
224 à á â ã ä å æ ç è é ê ë ì í î ï
240 ð ñ ò ó ô õ ö � ø ù ú û ü ý þ ÿ

Table 3.4 The ISO Latin 9 character set (ISO-8859-15) that replaces rare symbols from Latin 1
with the characters œ, Œ, š, Š, ž, Ž, Ÿ, and e. The table only shows rows that differ from Latin 1

0 1 2 4 3 5 6 7 8 9 10 11 12 13 14 15

160 ¡ ¢ £ e ¥ Š § š © ª « : - ® ¯
176 ° ˙ ² ³ Ž � ¶ � ž ¹ º » Œ œ Ÿ ¿

The ISO Latin 1 character set (ISO-8859-1) is a standard that tried to reconcile
Western European character encodings (Table 3.3). Unfortunately, Latin 1 was
ill-designed and forgot characters such as the French Œ, œ, the German quote „ or
the Dutch ij, IJ. Operating systems such as Windows and Mac OS used a variation
of it that they had to complement with the missing characters. Later, ISO Latin 9
(ISO-8859-15) updated Latin 1 (Table 3.4). It restored forgotten French and Finnish
characters and added the euro currency sign, e.
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3.2.2 Unicode

While ASCII has been very popular, its 128 positions could not support the
characters of many languages in the world. Therefore a group of companies
formed a consortium to create a new, universal coding scheme: Unicode. Unicode
has quickly replaced older encoding schemes, and Windows, Mac OS, and Java
platforms have now adopted it while sometimes ensuring backward compatibility.

The initial goal of Unicode was to define a superset of all other character sets,
ASCII, Latin 1, and others, to represent all the languages of the world. The Unicode
consortium has produced character tables of most alphabets and scripts of European,
Asian, African, and Near Eastern languages, and assigned numeric values to the
characters. Unicode started with a 16-bit code that could represent up to 65,000
characters. The code was subsequently extended to 32 bits with values ranging
from 0 to 10FFFF in hexadecimal. This Unicode code space has then a capacity
of 1,114,112 characters.

The standardized set of Unicode characters is called the universal character set
(UCS). It is divided into several planes, where the basic multilingual plane (BMP)
contains all the common characters, with the exception of some Chinese ideograms.
Characters in the BMP fit on a 2-octet code (UCS-2). The 4-octet code (UCS-4)
can represent, as we saw, more than a million characters. It covers all the UCS-2
characters and rare characters: historic scripts, some mathematical symbols, private
characters, etc.

Unicode groups characters or symbols by script – Latin, Greek, Cyrillic, Hebrew,
Arabic, Indic, Japanese, Chinese – and identifies each character by a single
hexadecimal number, called a code point, and a name as

U+0041 LATIN CAPITAL LETTER A
U+0042 LATIN CAPITAL LETTER B
U+0043 LATIN CAPITAL LETTER C

. . .

U+0391 GREEK CAPITAL LETTER ALPHA
U+0392 GREEK CAPITAL LETTER BETA
U+0393 GREEK CAPITAL LETTER GAMMA

The U+ symbol means that the number after it corresponds to a Unicode position.
Unicode allows the composition of accented characters from a base character and

one or more diacritics. That is the case for the French Ê or the Scandinavian Å. Both
characters have a single code point:

U+00CA LATIN CAPITAL LETTER E WITH CIRCUMFLEX
U+00C5 LATIN CAPITAL LETTER A WITH RING ABOVE

They can also be defined as a sequence of two keys: E + ˆ and A + ˚,
corresponding to respectively to

U+0045 LATIN CAPITAL LETTER E
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U+0302 COMBINING CIRCUMFLEX ACCENT

and

U+0041 LATIN CAPITAL LETTER A
U+030A COMBINING RING ABOVE

The resulting graphical symbol is called a grapheme. A grapheme is a “natural”
character or a symbol. It may correspond to a single code point as E or A, or result
from a composition as Ê or Å.

Unicode allocates contiguous blocks of code to scripts from U+0000. They
start with alphabetic scripts: Latin, Greek, Cyrillic, Hebrew, Arabic, etc., then the
symbols area, and Asian ideograms or alphabets. Ideograms used by the Chinese,
Japanese, and Korean (CJK) languages are unified to avoid duplication. Table 3.5
shows the script allocation. The space devoted to Asian scripts occupies most of the
table.

3.2.3 Unicode Character Properties

Unicode associates a list of properties to each code point. This list is defined in
the Unicode character database and includes the name of the code point (character
name), its so-called general category – whether it is a letter, digit, punctuation,
symbol, mark, or other – the name of its script, for instance Latin or Arabic, and
its code block (The Unicode Consortium 2012).

Each property has a set of possible values. Table 3.6 shows this set for the general
category, where each value consists of one or two letters. The first letter is a major
class and the second one, a subclass of it. For instance, L corresponds to a letter, Lu
to an uppercase letter; Ll, to a lowercase letter, while N corresponds to a number
and Nd, to a number, decimal digit.

We can use these Unicode properties in Perl regular expressions to search
characters, categories, blocks, and scripts by their names. We match a specific code
point with the \N{name} construct, where name is the name of the code point, or
with its hexadecimal \x{hexcode} code as:

• \N{LATIN CAPITAL LETTER E WITH CIRCUMFLEX} and \x{CA}
that match Ê and

• \N{GREEK CAPITAL LETTER GAMMA} and \x{393} that match γ.

We match code points in blocks, categories, and scripts with the \p{property}
construct introduced in Sect. 2.3.5, or its complement \P{property} to match
code points without the property:

For a block, we build a Perl regex by replacing property with the block name
in Table 3.5. Perl also requires an In prefix and that white spaces are replaced
with underscores as InBasic_Latin or InLatin_Extended-A.
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Table 3.5 Unicode subrange allocation of the universal character set (simplified)

Code Name Code Name

0000 Basic Latin 1400 Unified Canadian Aboriginal Syllabics
0080 Latin-1 Supplement 1680 Ogham
0100 Latin Extended-A 16A0 Runic
0180 Latin Extended-B 1780 Khmer
0250 IPA Extensions 1800 Mongolian
02B0 Spacing Modifier Letters 1E00 Latin Extended Additional
0300 Combining Diacritical Marks 1F00 Greek Extended
0370 Greek and Coptic 2000 General Punctuation
0400 Cyrillic 2800 Braille Patterns
0500 Cyrillic Supplement 2E80 CJK Radicals Supplement
0530 Armenian 2F00 Kangxi Radicals
0590 Hebrew 3000 CJK Symbols and Punctuation
0600 Arabic 3040 Hiragana
0700 Syriac 30A0 Katakana
0750 Arabic Supplement 3100 Bopomofo
0780 Thaana 3130 Hangul Compatibility Jamo
07C0 NKo 3190 Kanbun
0800 Samaritan 31A0 Bopomofo Extended
0900 Devanagari 3200 Enclosed CJK Letters and Months
0980 Bengali 3300 CJK Compatibility
0A00 Gurmukhi 3400 CJK Unified Ideographs Extension A
0A80 Gujarati 4E00 CJK Unified Ideographs
0B00 Oriya A000 Yi Syllables
0B80 Tamil A490 Yi Radicals
0C00 Telugu AC00 Hangul Syllables
0C80 Kannada D800 High Surrogates
0D00 Malayalam E000 Private Use Area
0D80 Sinhala F900 CJK Compatibility Ideographs
0E00 Thai 10000 Linear B Syllabary
0E80 Lao 10140 Ancient Greek Numbers
0F00 Tibetan 10190 Ancient Symbols
1000 Myanmar 10300 Old Italic
10A0 Georgian 10900 Phoenician
1100 Hangul Jamo 10920 Lydian
1200 Ethiopic 12000 Cuneiform
13A0 Cherokee 100000 Supplementary Private Use Area-B

For example, \p{InGreek_and_Coptic} matches code points in the Greek
and Coptic block whose Unicode range is [0370..03FF]. This roughly
corresponds to the Greek characters. However, some of the code points in this
block are not assigned and some others are Coptic characters.

For a general category, we use either the short or long names in Table 3.6 as
Letter or Lu. For example, \p{Currency_Symbol} matches currency
symbols and \P{L} all nonletters.
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Table 3.6 Values of the general category with their short and long names. The left column lists to
the major classes, and the right one the subclasses (After The Unicode Consortium (2012))

Major classes Subclasses

Short Long Short Long

L Letter
Lu Uppercase_Letter
Ll Lowercase_Letter
Lt Titlecase_Letter
Lm Modifier_Letter
Lo Other_Letter

M Mark
Mn Nonspacing_Mark
Mc Spacing_Mark
Me Enclosing_Mark

N Number
Nd Decimal_Number
Nl Letter_Number
No Other_Number

P Punctuation
Pc Connector_Punctuation
Pd Dash_Punctuation
Ps Open_Punctuation
Pe Close_Punctuation
Pi Initial_Punctuation
Pf Final_Punctuation
Po Other_Punctuation

S Symbol
Sm Math_Symbol
Sc Currency_Symbol
Sk Modifier_Symbol
So Other_Symbol

Z Separator
Zs Space_Separator
Zl Line_Separator
Zp Paragraph_Separator

C Control
Cc Control
Cf Format
Cs Surrogate
Co Private_Use
Cn Unassigned

For a script, we use its name in Table 3.7. The regex will match all the code
points belonging to this script, even if they are scattered in different blocks.
For example, the regex \p{Greek} matches the Greek characters in the Greek
and Coptic, Greek Extended, and Ancient Greek Numbers blocks, respectively
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Table 3.7 Unicode script names

Arabic Armenian Avestan Balinese Bamum Bengali Bopomofo Braille Buginese Buhid
Canadian_Aboriginal Carian Cham Cherokee Common Coptic Cuneiform Cypriot Cyrillic
Deseret Devanagari Egyptian_Hieroglyphs Ethiopic Georgian Glagolitic Gothic Greek
Gujarati Gurmukhi Han Hangul Hanunoo Hebrew Hiragana Imperial_Aramaic Inherited
Inscriptional_Pahlavi Inscriptional_Parthian Javanese Kaithi Kannada Katakana Kayah_Li
Kharoshthi Khmer Lao Latin Lepcha Limbu Linear_B Lisu Lycian Lydian Malayalam
Meetei_Mayek Mongolian Myanmar New_Tai_Lue Nko Ogham Ol_Chiki Old_Italic
Old_Persian Old_South_Arabian Old_Turkic Oriya Osmanya Phags_Pa Phoenician Rejang
Runic Samaritan Saurashtra Shavian Sinhala Sundanese Syloti_Nagri Syriac Tagalog
Tagbanwa Tai_Le Tai_Tham Tai_Viet Tamil Telugu Thaana Thai Tibetan Tifinagh Ugaritic
Vai Yi

[0370..03FF], [1F00..1FFF], and [10140..1018F], ignoring the
unassigned code points of these blocks and characters that may belong to another
script, here Coptic.

Practically, the three instructions below match lines consisting respectively of
ASCII characters, of characters in the Greek and Coptic block, and of Greek
characters:

$line =~ m/^\p{IsASCII}+$/;
$line =~ m/^\p{InGreek_and_Coptic}+$/;
$line =~ m/^\p{Greek}+$/;

The Perl program must include the pragma:

use charnames ’:full’;

to use Unicode names such as:

$line =~ m/\N{GREEK SMALL LETTER ALPHA}/);

It must also include use utf8; to use UTF-8 characters in the program such as
in the instruction:

$line =~ m/˛/;

Finally, to tell Perl of UTF-8 input and output, the command must be run with the
option -CS as:

perl -CS command.pl <input_file

Moreover, Perl maintains a list of classes that corresponds to synonyms of
Unicode properties or to composite properties. Table 2.11 in Chap. 2 showed some
of these classes using the \p{\ldots} syntax. For example,

• \p{IsASCII} is equivalent to \p{InBasic_Latin} and to the range
[\x00-\x7f];

• \p{IsDigit} is equivalent to [\p{Nd}];
• \p{IsAlpha} is equivalent to [\p{Ll}\p{Lu}\p{Lt}\p{Lo}];
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Table 3.8 Mapping of 32-bit character code points to 8-bit units according to UTF-8. The xxx
corresponds to the rightmost bit values used in the character code points

Range Encoding

U-0000 – U-007F 0xxxxxxx
U-0080 – U-07FF 110xxxxx 10xxxxxx
U-0800 – U-FFFF 1110xxxx 10xxxxxx 10xxxxxx
U-010000 – U-10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

• \p{IsAlnum} is equivalent to [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}].

Perl created such composite properties to provide equivalent classes available in
other regular expression languages, like the POSIX regular expressions.

3.2.4 The Unicode Encoding Schemes

Unicode offers three major different encoding schemes: UTF-8, UTF-16, and UTF-
32. The UTF schemes – Unicode transformation format – encode the same data by
units of 8, 16, or 32 bits and can be converted from one to another without loss.

UTF-16 was the original encoding scheme when Unicode started with 16 bits. It
uses fixed units of 16 bits – 2 bytes – to encode directly most characters. The code
units correspond to the sequence of their code points using precomposed characters,
such as Ê in FÊTE

0046 00CA 0054 0045

or composing it as with E+ˆ in FEˆTE

0046 0045 0302 0054 0045

Depending on the operating system, 16-bit codes like U+00CA can be stored with
highest byte first – 00CA – or last – CA00. To identify how an operating system
orders the bytes of a file, it is a possible to insert a byte order mark (BOM), a
dummy character tag, at the start of the file. UTF-16 uses the code point U+FEFF
to tell whether the storage uses the big-endian convention, where the “big” part of
the code is stored first, (FEFF) or the little-endian one: (FFFE).

UTF-8 is a variable-length encoding. It maps the ASCII code characters U+0000
to U+007F to their byte values 00 to 7F. It then takes on the legacy of ASCII. All
the other characters in the range U+007F to U+FFFF are encoded as a sequence of
two or more bytes. Table 3.8 shows the mapping principles of the 32-bit character
code points to 8-bit units.

Let us encode FÊTE in UTF-8. The letters F, T, and E are in the range U-
00000000 – U-0000007F. Their numeric code values are exactly the same in ASCII
and UTF-8. The code point of Ê is U+00CA and is in the range U-00000080 – U-
000007FF. Its binary representation is 0000 0000 1100 1010. UTF-8 uses the 11
rightmost bits of 00CA. The first five underlined bits together with the prefix 110
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form the octet 1100 0011 that corresponds to C3 in hexadecimal. The seven next
boldface bits with the prefix 10 form the octet 1000 1010 or 8A in hexadecimal.
The letter Ê is then encoded as 1100 0011 1000 1010 or C3 8A in UTF-8. Hence,
the word FÊTE and the code points U+0046 U+00CA U+0054 U+0045 are
encoded as

46 C3 8A 54 45

UTF-32 represents exactly the codes points by their code values. One question
remains: how does UTF-16 represent the code points above U+FFFF? The answer
is: it uses two surrogate positions consisting of a high surrogate in the range
U+DC00 .. U+DFFF and a low surrogate in the range U+D800 .. U+DBFF. This is
made possible because the Unicode consortium does not expect to assign characters
beyond the code point U+10FFFF. Using the two surrogates, characters between
U+10000 and U+10FFFF can be converted from UTF-32 to UTF-16, and vice versa.

Finally, the storage requirements of the Unicode encoding schemes are, of
course, different and depend on the language. A text in English will have approxi-
mately the same size in ASCII and in UTF-8. The size of the text will be doubled in
UTF-16 and four times its original size in UTF-32, because all characters take four
bytes.

A text in a Western European language will be larger in UTF-8 than in ASCII
because of the accented characters: a nonaccented character takes one octet, and
an accented one takes two. The exact size will thus depend on the proportion of
accented characters. The text size will be twice its ASCII size in UTF-16. Characters
in the surrogate space take 4 bytes, but they are very rare and should not increase the
storage requirements. UTF-8 is then more compact for most European languages.
This is not the case with other languages. A Chinese or Indic character takes, on
average, three bytes in UTF-8 and only two in UTF-16.

3.3 Locales and Word Order

3.3.1 Presenting Time, Numerical Information, and Ordered
Words

In addition to using different sets of characters, languages often have specific
presentations for times, dates, numbers, or telephone numbers, even when they are
restricted to digits. Most European languages outside English would write � D
3; 14159 instead of � D 3:14159. Inside a same language, different communities
may have different presentation conventions. The US English date February 24,
2003, would be written 24 February 2003 or February 24th, 2003, in England.
It would be abridged 2/24/03 in the United States, 24/02/2003 in Britain, and
2003/02/24 in Sweden. Some communities may be restricted to an administration
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Table 3.9 Examples of locales

Locale Language Region Variant

English (United States) en US
English (United Kingdom) en GB
French (France) fr FR
French (Canada) fr CA
German (Germany) de DE
German (Austria) de AT

Table 3.10 Sorting with the
ASCII code comparison and
the dictionary order

ASCII order Dictionary order

ABC abc
Abc Abc
Def ABC
aBf aBf
abc def
def Def

or a company, for instance, the military in the US, which writes times and dates
differently than the rest of society.

The International Organization for Standardization (ISO) has standardized the
identification of languages and communities under the name of locales. Each locale
uses a set of rules that defines the format of dates, times, numbers, currency, and how
to collate – sort – strings of characters. A locale is defined by three parameters: the
language, the region, and the variant that corresponds to more specific conventions
used by a restricted community. Table 3.9 shows some locales for English, French,
and German.

One of the most significant features of a locale is the collation component that
defines how to compare and order strings of characters. In effect, elementary sorting
algorithms consider the ASCII or Unicode values with a predefined comparison
operator such as the inequality predicate @</2 in Prolog. They determine the lexical
order using the numerical ranking of the characters.

These basic sorting procedures do not arrange the words in the classical
dictionary order. In ASCII as well as in Unicode, lowercase letters have a greater
code value than uppercase ones. A basic algorithm would then sort above after
Zambia, which would be quite misleading for most users.

Current dictionaries in English, French, and German use a different convention.
The lowercase letters precede their uppercase equivalents when the strings are equal
except for the case. Table 3.10 shows the collation results for some strings.

A basic sorting algorithm may suffice for some applications. However, most
of the time it would be unacceptable when the ordered words are presented to a
user. The result would be even more confusing with accented characters, since their
location is completely random in the extended ASCII tables.

In addition, the lexicographic ordering of words varies from language to lan-
guage. French and English dictionaries sort accented letters as nonaccented ones,
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except when two strings are equal except for the accents. Swedish dictionaries treat
the letters Å, Ä, and Ö as distinct symbols of the alphabet and sort them after Z.
German dictionaries have two sorting standards. They process accented letters either
as single characters or as couples of nonaccented letters. In the latter case, Ä, Ö, Ü,
and ß are considered respectively as AE, OE, UE, and ss.

3.3.2 The Unicode Collation Algorithm

The Unicode consortium has defined a collation algorithm (Davis and Whistler
2009) that takes into account the different practices and cultures in lexical ordering.
It can be parameterized to cover most languages and conventions. It uses three levels
of difference to compare strings. We outline their features for European languages
and Latin scripts:

• The primary level considers differences between base characters, for instance,
between A and B.

• If there are no differences at the first level, the secondary level considers the
accents on the characters.

• And finally, the third level considers the case differences between the characters.

These level features are general, but not universal. Accents are a secondary
difference in many languages, but we saw that Swedish sorts accented letters as
individual ones and hence sets a primary difference between A and Å, or o and Ö.
Depending on the language, the levels may have other features.

To deal with the first level, the Unicode collation algorithm defines classes of
letters that gather upper- and lowercase variants, accented and unaccented forms.
Hence, we have the ordered sets: {a, A, á, Á, à, À, etc.} < {b, B} < {c, C, ć, Ć, ĉ, Ĉ,
ç, Ç, etc.} < {e, E, é, É, è, È, ê, Ê, ë, Ë, etc.} < . . . .

The second level considers the accented letters if two strings are equal at the
first level. Accented letters are ranked after their nonaccented counterparts. The first
accent is the acute one (´), then come the grave accent (`), the circumflex (ˆ), and
the umlaut (¨). So, instances of letter E with accents, in lower- and uppercase have
the order: {e, E} << {é, É} << {è, È} << {ê, Ê} << {ë, Ë}, where << denotes a
difference at the second level. The comparison at the second level is done from the
left to the right of a word in English and most languages. It is carried out from the
right to the left in French, i.e., from the end of a word to its beginning.

Similarly, the third level considers the case of letters when there are no
differences at the first and second levels. Lowercase letters are before uppercase
ones, that is, {a} <<< {A}, where <<< denotes a difference at the third level.

Table 3.11 shows the lexical order of pêcher ‘peach tree’ and Péché ‘sin’,
together with various conjugated forms of the verbs pécher ‘to sin’ and pêcher ‘to
fish’ in French and English. The order takes the three levels into account and the
reversed direction of comparison in French for the second level. German adopts the
English sorting rules for these accents.
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Table 3.11 Lexical order of
words with accents. Note the
reversed order of the second
level comparison in French

English French

Péché pèche
PÉCHÉ pêche
pèche Pêche
pêche Péché
Pêche PÉCHÉ
pêché pêché
Pêché Pêché
pécher pécher
pêcher pêcher

Some characters are expanded or contracted before the comparison. In French,
the letters Œ and Æ are considered as pairs of two distinct letters: OE and AE.
In traditional German used in telephone directories, Ä, Ö, Ü, and ß are expanded
into AE, OE, UE, and ss and are then sorted as an accent difference with the
corresponding letter pairs. In traditional Spanish, Ch is contracted into a single letter
that sorts between Cz and D.

The implementation of the collation algorithm (Davis and Whistler 2009, Sect.
4) first maps the characters onto collation elements that have three numerical fields
to express the three different levels of comparison. Each character has constant
numerical fields that are defined in a collation element table. The mapping may
require a preliminary expansion, as for æ and œ into ae and oe or a contraction.
The algorithm then forms for each string the sequence of the collation elements of
its characters. It creates a sort key by rearranging the elements of the string and
concatenating the fields according to the levels: the first fields of the string, then
second fields, and third ones together. Finally, the algorithm compares two sort keys
using a binary comparison that applies to the first level, to the second level in case
of equality, and finally to the third level if levels 1 and 2 show no differences.

3.4 Markup Languages

3.4.1 A Brief Background

Corpus annotation uses sets of labels, also called markup languages. Corpus markup
languages are comparable to those of standard word processors such as Microsoft
Word or LaTeX. They consist of tags inserted in the text that request, for instance,
to start a new paragraph, or to set a phrase in italics or in bold characters. The
Rich Text Format (RTF) from Microsoft (2004) and the (La)TeX format designed
by Knuth (1986) are widely used markup languages (Table 3.12).

While RTF and LaTeX are used by communities of million of persons, they are
not acknowledged as standards. The standard generalized markup language (SGML)
takes this place. SGML could have failed and remained a forgotten international
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Table 3.12 Some formatting tags in RTF, LaTeX, and HTML

Language Text in italics New paragraph Accented letter é

RTF {\i text in italics} \par \’e9
LaTeX {\it text in italics} \cr \’{e}
HTML <i>text in italics</i> <br/> &eacute;

initiative. But the Internet and the World Wide Web, which use hypertext markup
language (HTML), a specific implementation of SGML, have ensured its posterity.
In the next sections, we introduce the extensible markup language (XML), which
builds on the simplicity of HTML that has secured its success, and extends it to
handle any kind of data.

3.4.2 An Outline of XML

XML is a coding framework: a language to define ways of structuring documents.
XML can incorporate logical and presentation markups. Logical markups describe
the document structure and organization such as, for instance, the title, the sections,
and inside the sections, the paragraphs. Presentation markups describe the text
appearance and enable users to set a sentence in italic or bold type, or to insert a
page break. Contrary to other markup languages, like HTML, XML does not have a
predefined set of tags. The programmer defines them together with their meaning.

XML separates the definition of structure instructions from the content – the
data. Structure instructions are described in a document type definition (DTD) that
models a class of XML documents. DTDs correspond to specific tagsets that enable
users to mark up texts. A DTD lists the legal tags and their relationships with other
tags, for instance, to define what is a chapter and to verify that it contains a title.
Among coding schemes defined by DTDs, there are:

• The extensible hypertext markup language (XHTML), a clean XML implemen-
tation of HTML that models the Internet Web pages;

• The Text Encoding Initiative (TEI), which is used by some academic projects to
encode texts, in particular, literary works;

• DocBook, which is used by publishers and open-source projects to produce books
and technical documents.

A DTD is composed of three kinds of components called elements, attributes,
and entities. Comments of DTDs and XML documents are enclosed between the
<!-- and --> tags.

Elements

Elements are the logical units of an XML document. They are delimited by
surrounding tags. A start tag enclosed between angle brackets precedes the element



3.4 Markup Languages 79

content, and an end tag terminates it. End tags are the same as start tags with a /
prefix. XML tags must be balanced, which means that an end tag must follow each
start tag. Here is a simple example of an XML document inspired by the DocBook
specification:

<!-- My first XML document -->
<book>
<title>Language Processing Cookbook</title>
<author>Pierre Cagné</author>
<!-- Image to show on the cover -->
<img></img>
<text>Here comes the text!</text>

</book>

where <book> and </book> are legal tags indicating, respectively, the start and
the end of the book, and <title> and </title> the beginning and the end of
the title. Empty elements, such as the image <img></img>, can be abridged as
<img/>. Unlike HTML, XML tags are case sensitive: <TITLE> and <title>
define different elements.

Attributes

An element can have attributes, i.e., a set of properties attached to the element. Let
us complement our book example so that the <title> element has an alignment
whose possible values are flush left, right, or center, and a character style taken from
underlined, bold, or italics. Let us also indicate where <img> finds the image file.
The DTD specifies the possible attributes of these elements and the value list among
which the actual attribute value will be selected. The actual attributes of an element
are supplied as name–value pairs in the element start tag.

Let us name the alignment and style attributes align and style and set them
in boldface characters and centered, and let us store the image file name of the img
element in the src attribute. The markup in the XML document will look like:

<title align="center" style="bold">
Language Processing Cookbook

</title>
<author>Pierre Cagné</author>
<img src="pierre.jpg"/>

Entities

Finally, entities correspond to data stored somewhere in a computer. They can
be accented characters, symbols, strings as well as text or image files. The
programmer declares or defines variables referring to entities in a DTD and uses
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Table 3.13 The predefined
entities of XML

Symbol Entity encoding Meaning

< &lt; Less than
> &gt; Greater than
& &amp; Ampersand
" &quot; Quotation mark
’ &apos; Apostrophe

them subsequently in XML documents. There are two types of entities: general and
parameter. General entities, or simply entities, are declared in a DTD and used in
XML document contents. Parameter entities are only used in DTDs. The two types
of entities correspond to two different contexts. They are declared and referred to
differently. We set aside the parameter entities here; we will examine them in the
next section.

An entity is referred to within an XML document by enclosing its name between
the start delimiter “&” and the end delimiter “;”, such as &EntityName;. The
XML parser will substitute the reference with the content of EntityName when it
is encountered.

XML recognizes a set of predefined or implicitly defined entities that do not
need to be declared in a DTD. These entities are used to encode special or accented
characters. They can be divided into two groups. The first group consists of five
predefined entities (Table 3.13). They correspond to characters used by the XML
standard, which cannot be used as is in a document. The second group, called
numeric character entities, is used to insert non-ASCII symbols or characters.
Character references consist of a Unicode hexadecimal number delimited by “&#x”
and “;”, such as &#xc9; for É and &#xA9; for ©.

3.4.3 Writing a DTD

The DTD specifies the formal structure of a document type. It enables an XML
parser to determine whether a document is valid. The DTD file contains the
description of all the legal elements, attributes, and entities.

Elements

The description of the elements is enclosed between the start and end delimiters
<!ELEMENT and >. It contains the element name and the content model in terms of
other elements or reserved keywords (Table 3.14). The content model specifies how
the elements appear, their order, and their number of occurrences (Table 3.15). For
example:

<!ELEMENT book (title, (author | editor)?, img, chapter+)>
<!ELEMENT title (#PCDATA)>



3.4 Markup Languages 81

Table 3.14 Character types

Character type Description

PCDATA Parsed character data. This data will be parsed and must only be text,
punctuation, and special characters; no embedded elements

ANY PCDATA or any DTD element
EMPTY No content – just a placeholder

Table 3.15 List separators and occurrence indicators

List notation Description

, Elements must all appear and be ordered as listed
| Only one element must appear (exclusive or)
+ Compulsory element (one or more)
? Optional element (zero or one)

* Optional element (zero or more)

Table 3.16 Some XML attribute types

Attribute types Description

CDATA The string type: any character except <, >, &, ’, and "
ID An identifier of the element unique in the document; ID must begin

with a letter, an underscore, or a colon
IDREF A reference to an identifier
NMTOKEN String of letters, digits, periods, underscores, hyphens, and colons. It is

more restrictive than CDATA; for instance, spaces are not allowed

states that a book consists of a title, a possible author or editor, an image
img, and one or more chapters. The title consists of PCDATA, that is, only
text with no other embedded elements.

Attributes

Attributes are the possible properties of the elements. Attribute lists are usually
defined after the element they refer to. Their description is enclosed between the
delimiters <!ATTLIST and >. An attribute list contains:

• The element the attribute refers to
• The attribute name
• The kind of value the attribute may take: a predefined type (Table 3.16) or an

enumerated list of values between brackets and separated by vertical bars
• The default value between quotes or a predefined keyword (Table 3.17)

For example:

<!ATTLIST title
style (underlined | bold | italics) "bold"
align (left | center | right) "left">
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Table 3.17 Some default value keywords

Predefined default values Description

#REQUIRED A value must be supplied
#FIXED The attribute value is constant and must be equal to the default value
#IMPLIED If no value is supplied, the processing system will define the value

<!ATTLIST author
style (underlined | bold | italics) #REQUIRED>

says that title has two attributes, style and align. The style attribute can
have three possible values and, if not specified in the XML document, the default
value will be bold; author has one style attribute that must be specified in the
document.

Entities

Entities enable users to define variables in a DTD. Their declaration is enclosed
between the delimiters <!ENTITY and >. It contains the entity name and the entity
content (possibly a sequence):

<!ENTITY myEntity "Introduction">

This entity can then be used in an XML document with the reference &myEntity;.
The XML parser will replace all the references it encounters with the value Intro-
duction.

Parameter entities are only used in DTDs. They have a “%” sign before the entity
name, as in

<!ENTITY % myParEntity "<!ELEMENT textbody (para)+>">

Further references to parameter entities in a DTD use “%” and “;” as delimiters,
such as %myParEntity;.

A DTD Example

Let us now suppose that we want to publish cookbooks. We define a document
type, and we declare the rules that will form its DTD: a book will consist of
a title, a possible author or editor, an image, one or more chapters, and one or
more paragraphs in these chapters. Let us then suppose that the main title and the
chapter titles can be in bold, in italics, or underlined. Let us finally suppose that the
chapter titles can be numbered in Roman or Arabic notation. The DTD elements
and attributes are

<!ELEMENT book (title, (author | editor)?, img, chapter+)>
<!ELEMENT title (#PCDATA)>
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<!ATTLIST title style (u | b | i) "b">
<!ELEMENT author (#PCDATA)>
<!ATTLIST author style (u | b | i) "i">
<!ELEMENT editor (#PCDATA)>
<!ATTLIST editor style (u | b | i) "i">
<!ELEMENT img EMPTY>
<!ATTLIST img src CDATA #REQUIRED>
<!ELEMENT chapter (subtitle, para+)>
<!ATTLIST chapter number ID #REQUIRED>
<!ATTLIST chapter numberStyle (Arabic | Roman) "Roman">
<!ELEMENT subtitle (#PCDATA)>
<!ELEMENT para (#PCDATA)>

The name of the document type corresponds to the root element, here book,
which must be unique.

XML Schema

You probably noticed that the DTD syntax does not fit very well with that of XML.
This bothered some people, who tried to make it more compliant. This gave birth
to XML Schema, a document definition standard using the XML style. As of today,
DTD is still “king,” however, XML Schema is gaining popularity. Specifications are
available from the Web consortium at http://www.w3.org/XML/Schema.

3.4.4 Writing an XML Document

We shall now write a document conforming to the book document type. A complete
XML document begins with a prologue, a declaration like this one:

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

describing the XML version, the encoding used, and whether the document is self-
contained or not (standalone). In our example, if we have an external DTD, we must
set standalone to no. This prologue is mandatory from version 1.1 of XML. If
not specified, the default encoding is UTF-8.

The document can contain any Unicode character. The encoding refers to how the
characters are stored in the file. This has no significance if you only use unaccented
characters in the basic Latin set from position 0 to 127. If you type accented
characters, the editor will have to save them as UTF-8 codes. In the document above,
Cagné must be stored as 43 61 67 6E C3 A9, where é is corresponds to C3 A9.

If your text editor does not support UTF-8, you will have to enter the accented
characters as entities with their Unicode code point, for instance, &#xC9; for É, or
&#xE9; for é. You may also type the characters É or é and use your machine’s
default encoding, such as Latin 1 (ISO-8859-1), Windows-1252, or MacRoman, to

http://www.w3.org/XML/Schema
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save the XML file. You will have then to declare the corresponding encoding, for
instance, encoding="ISO-8859-1".

Then, the document declares the DTD it uses. The DTD can be inside the
XML document and enclosed between the delimiters <!DOCTYPE [ and ]>, for
instance:

<!DOCTYPE book [
<!ELEMENT book (title, (author | editor)?, img, chapter+)>
<!ELEMENT title (#PCDATA)>
...
]>

Or the DTD can be external to the document, for instance, in a file called
book_definition.dtd. In this case, DOCTYPE indicates its location on the
computer using the keyword SYSTEM:

<!DOCTYPE book SYSTEM "/home/pierre/xml/book_definition.dtd">

Finally, we can write the document content. Let us use the XML tags to sketch a
very short book. It could look like this:

<book>
<title style="i">Language Processing Cookbook</title>
<author style="b">Pierre Cagné</author>
<img src="pierre.jpg"/>
<chapter number="c1">
<subtitle>Introduction</subtitle>
<para>Let&apos;s start doing simple things:

Collect texts.
</para>
<para>First, choose an author you like.</para>

</chapter>
</book>

Once, we have written an XML document, we must check that is well formed,
which means that it has no syntax errors: the brackets are balanced, the encoding is
correct, etc. We must also validate it, i.e., check that it conforms to the DTD. This
can be done with a variety of parsers available from the Internet, for instance the
W3C markup validation service (http://validator.w3.org/). Another easy way to do
it is to use the embedded XML parser of any a modern web browser.

3.4.5 Namespaces

In our examples, we used element names that can be part of other DTDs. The string
title, for instance, is used by XHTML. The XML namespaces is a device to avoid
collisions. It is a naming scheme that enables us to define groups of elements and
attributes in the same document and prevent name conflicts.

http://validator.w3.org/
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We declare a namespace using the predefined xmlns attribute as

<my-element xmlns:prefix="URI">

It starts a namespace inside my-element and its descendants, where prefix
defines a group of names. Names members of this namespace are preceded by the
prefix, as in prefix:title. URI has the syntax of a web address. However, it is
just a unique name; it is never accessed.

Declaring two namespaces in book, we can reuse title for different purposes:

<book
xmlns:pierre="http://www.cs.lth.se/~pierre"
xmlns:raymond="http://www.grandecuisine.com">

<pierre:title style="i">Language Processing Cookbook
</pierre:title>

<raymond:title style="i">A French Cookbook
</raymond:title>

</book>

3.4.6 XML and Databases

Although we introduced XML to annotate corpora and narrative documents, many
applications use it to store and exchange structured data like records, databases, or
configuration files. In fact, creating tabular data in the form of collections of property
names and values is easy with XML: we just need to define elements to mark the
names (or keys) and the values. Such structures are called dictionaries, like this one:

<dict>
<key>language</key> <value>German</value>
<key>currency</key> <value>euro</value>

</dict>

As soon as it was created, XML gained a large popularity among program
developers for this purpose. People found it easier to use XML rather than creating
their own solution because of its simplicity, its portability, and the wide availability
of parsers.

3.5 Further Reading

Many operating systems such as Windows, Mac OS X, and Unix, or programming
languages such as Java have adopted Unicode and take the language parameter of a
computer into account. Basic lexical methods such as date and currency formatting,
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word ordering, and indexing are now supported at the operating system level.
Operating systems or programming languages offer toolboxes and routines that you
can use in applications.

The Unicode Consortium publishes books, specifications, and technical reports
that describe the various aspects of the standard. The Unicode Standard (The
Unicode Consortium 2012) is the most comprehensive document, while Davis and
Whistler (2009) describe in detail the Unicode collation algorithm. Both documents
are available in electronic format from the Unicode web site: http://www.unicode.
org/. The Unicode Consortium also maintains a public and up-to-date version of
the character database (http://www.unicode.org/ucd/). IBM implemented a large
library of Unicode components in Java and C++, which are available as open-source
software (http://site.icu-project.org/).

HTML and XML markup standards are continuously evolving. Their
specifications are available from the World Wide Web consortium (http://www.
w3.org/). Finally, a good reference on XML is Learning XML (Ray 2003).

Exercises

3.1. Implement UTF-8 that transforms a sequence of code points in a sequence of
octets in Prolog.

3.2. Implement a word collation algorithm for English, French, German, or
Swedish.

3.3. Modify the DTD in Sect. 3.4.4 so that the cookbook consists of meals instead
of chapters, and each meal has an ingredient and a recipe section.

3.4. Modify the DTD in Sect. 3.4.4 to declare the general and parameter entities:

<!ENTITY myEntity "Introduction">
<!ENTITY %myEntity "<!ELEMENT textbody (para)+>">

Use these entities in the DTD and the document.

3.5. Write a Prolog program that removes the tags from a text encoded in HTML.

3.6. Write a Prolog program that processes a text encoded in HTML: it retains
headers (Hn tags) and discards the rest.

http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/ucd/
http://site.icu-project.org/
http://www.w3.org/
http://www.w3.org/


Chapter 4
Topics in Information Theory and Machine
Learning

4.1 Introduction

Information theory underlies the design of codes. Claude Shannon probably started
the field with a seminal article (1948), in which he defined a measure of information:
the entropy. In this chapter, we introduce essential concepts in information theory:
entropy, optimal coding, cross entropy, and perplexity. Entropy is a very versatile
measure of the average information content of symbol sequences and we will
explore how it can help us design efficient encodings.

In natural language processing, we often need to determine the category of an
object or an observation, such as the part of speech of a word. We will show how we
can use entropy to learn decision trees from data sets. This will enable us to build
a simple and essential machine-learning algorithm: ID3. We will apply the decision
trees we derive from the data sets as classifiers, i.e., devices to classify new data or
new objects.

Machine-learning techniques are now instrumental in most areas of natural
language processing, and we will use them throughout this book. We will conclude
this chapter with the description of three other linear classifiers from among the
most popular ones.

4.2 Codes and Information Theory

4.2.1 Entropy

Information theory models a text as a sequence of symbols. Let x1; x2; : : : ; xN be a
discrete set of N symbols representing the characters. The information content of
a symbol is defined as

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__4, © Springer-Verlag Berlin Heidelberg 2014
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I.xi / D � log2 p.xi / D log2
1

p.xi /
;

and it is measured in bits. When the symbols have equal probabilities, they are said
to be equiprobable and

p.x1/ D p.x2/ D : : : D p.xN / D 1

N
:

The information content of xi is then I.xi / D log2 N .
The information content corresponds to the number of bits that are necessary to

encode the set of symbols. The information content of the alphabet, assuming that it
consists of 26 unaccented equiprobable characters and the space, is log2.26C 1/ D
4:75, which means that 5 bits are necessary to encode it. If we add 16 accented
characters, the uppercase letters, 11 punctuation signs, [, . ; : ? ! " – ( ) ’], and the
space, we need .26 C 16/ � 2 C 12 D 96 symbols. Their information content is
log2 96 D 6:58, and they can be encoded on 7 bits.

The information content assumes that the symbols have an equal probability.
This is rarely the case in reality. Therefore this measure can be improved using the
concept of entropy, the average information content, which is defined as:

H.X/ D �
X

x2X
p.x/ log2 p.x/;

where X is a random variable over a discrete set of variables, p.x/ D P.X D
x/; x 2 X , with the convention 0 log2 0 D 0. When the symbols are equiprobable,
H.X/ D log2 N . This also corresponds to the upper bound on the entropy value,
and for any random variable, we have the inequality H.X/ � log2 N .

To evaluate the entropy of printed French, we computed the frequency of the
printable French characters in Gustave Flaubert’s novel Salammbô. Table 4.1 shows
the frequency of 26 unaccented letters, the 16 accented or specific letters, and the
blanks (spaces).

The entropy of the text restricted to the characters in Table 4.1 is defined as:

H.X/ D � P

x2X
p.x/ log2 p.x/:

D �p.A/ log2 p.A/ � p.B/ log2 p.B/ � p.C / log2 p.C / � : : :
�p.Z/ log2 p.Z/ � p. JA/ log2 p. JA/ � p. OA/ log2 p. OA/ � : : :
�p. RU / log2 p. RU/ � p. RY / log2 p. RY / � p.blanks/ log2 p.blanks/:

If we distinguish between upper- and lowercase letters and if we include the
punctuation signs, the digits, and all the other printable characters – ASCII � 32
– the entropy of Gustave Flaubert’s Salammbô in French is H.X/ D 4:376.
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Table 4.1 Letter frequencies in the French novel Salammbô by Gustave Flaubert. The text has
been normalized in uppercase letters. The table does not show the frequencies of the punctuation
signs or digits

Letter Frequency Letter Frequency Letter Frequency Letter Frequency

A 42; 439 L 30,960 W 1 Ë 6

B 5; 757 M 13,090 X 2;206 Î 277

C 14; 202 N 32,911 Y 1;232 Ï 66

D 18; 907 O 22,647 Z 413 Ô 397

E 71; 186 P 13,161 À 1;884 Œ 96

F 4; 993 Q 3,964 Â 605 Ù 179

G 5; 148 R 33,555 Æ 9 Û 213

H 5; 293 S 46,753 Ç 452 Ü 0

I 33; 627 T 35,084 É 7;709 Ÿ 0

J 1; 220 U 29,268 È 2;002 Blanks 103;481
K 92 V 6,916 Ê 898 Total: 593;299

Table 4.2 Frequency counts of the symbols

A B C D E F G H

Freq 42,439 5,757 14,202 18,907 71,186 4,993 5,148 5,293
Prob 0.25 0.03 0.08 0.11 0.42 0.03 0.03 0.03

Table 4.3 A possible encoding of the symbols on 3 bits

A B C D E F G H
000 001 010 011 100 101 110 111

4.2.2 Huffman Coding

The information content of the French character set is less than the 7 bits required
by equiprobable symbols. Although it gives no clue about an encoding algorithm, it
indicates that a more efficient code is theoretically possible. This is what we examine
now with Huffman coding, which is a general and simple method to build such a
code.

Huffman coding uses variable-length code units. Let us simplify the problem and
use only the eight symbols A, B , C ,D, E, F , G, andH with the count frequencies
in Table 4.2.

The information content of equiprobable symbols is log2 8 D 3 bits. Table 4.3
shows a possible code with constant-length units.

The idea of Huffman coding is to encode frequent symbols using short code
values and rare ones using longer units. This was also the idea of the Morse code,
which assigns a single signal to letter E: ., and four signals to letter X : -..-.

This first step builds a Huffman tree using the frequency counts. The symbols and
their frequencies are the leaves of the tree. We grow the tree recursively from the
leaves to the root. We merge the two symbols with the lowest frequencies into a new
node that we annotate with the sum of their frequencies. In Fig. 4.1, this new node
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42439 5757 14202 18907 71186 4993 5148 5293

A B C D E F G H

Fig. 4.1 The symbols and their frequencies

10141

42439 5757 14202 18907 71186 4993 5148 5293

B D E F HA C G

Fig. 4.2 Merging the symbols with the lowest frequencies

11050 10141

42439 14202 18907 71186 5757 5293 5148 4993

A C D E B H G F

Fig. 4.3 The second iteration

21191

11050 10141

42439 14202 18907 71186 5757 5293 5148 4993

G FA C D E B H

Fig. 4.4 The third iteration

corresponds to the letters F and G with a combined frequency of 4;993C 5;148 D
10;141 (Fig. 4.2). The second iteration merges B and H (Fig. 4.3); the third one,
.F;G/ and .B;H/ (Fig. 4.4), and so on (Figs. 4.5–4.8).

The second step of the algorithm generates the Huffman code by assigning a 0 to
the left branches and a 1 to the right branches (Table 4.4).
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Fig. 4.5 The fourth iteration
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Fig. 4.6 The fifth iteration
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Fig. 4.7 The sixth iteration



92 4 Topics in Information Theory and Machine Learning

167925

96739

54300

33109

71186

42439

14226 18912

21191

11050 10141

5757 5293 5148 4993

E

A

C D

B H G F

Fig. 4.8 The final Huffman tree

Table 4.4 The Huffman code

A B C D E F G H
10 11100 1100 1101 0 11111 11110 11101

The average number of bits is the weighted length of a symbol. If we compute it
for the data in Table 4.2, it corresponds to:

0:25 � 2 bitC 0:03 � 5 bitC 0:08 � 4 bitC 0:11 � 4 bitC 0:42 � 1 bit
C0:03 � 5 bitC 0:03 � 5 bitC 0:03 � 5 bit D 2:35

We can compute the entropy from the counts in Table 4.2. It is defined by the
expression:

�
�
42;439

167;925
log2

42;439

167;925
C 5;757

167;925
log2

5;757

167;925
C 14;202

167;925
log2

14;202

167;925
C

18;907

167;925
log2

18;907

167;925
C 71;186

167;925
log2

71;186

167;925
C 4;993

167;925
log2

4;993

167;925
C

5;148

167;925
log2

5;148

167;925
C 5;293

167;925
log2

5;293

167;925

�

D 2:31
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Table 4.5 The entropy is measured on the file itself and the cross entropy is measured with
Chapters 1–14 of Gustave Flaubert’s Salammbô taken as the model

Entropy Cross entropy Difference

Salammbô, chapters 1–14, training set 4.37745 4.37745 0.0
Salammbô, chapter 15, test set 4.31793 4.33003 0.01210
Notre Dame de Paris, test set 4.43696 4.45590 0.01894
Nineteen Eighty-Four, test set 4.35922 4.80767 0.44845

We can see that although the Huffman code reduces the average number of bits
from 3 to 2.35, it does not reach the limit defined by entropy, which is, in our
example, 2.31.

4.2.3 Cross Entropy

Let us now compare the letter frequencies between two parts of Salammbô,
then between Salammbô and another text in French or in English. The symbol
probabilities will certainly be different. Intuitively, the distributions of two parts
of the same novel are likely to be close, further apart between Salammbô and
another French text from the twenty-first century, and even further apart with a
text in English. This is the idea of cross entropy, which compares two probability
distributions.

In the cross entropy formula, one distribution is referred to as the model. It
corresponds to data on which the probabilities have been trained. Let us name
it m with the distribution m.x1/;m.x2/; : : : ; m.xN /. The other distribution, p,
corresponds to the test data: p.x1/; p.x2/; : : : ; p.xN /. The cross entropy of m on p
is defined as:

H.p;m/ D �
X

x2X
p.x/ log2 m.x/:

Cross entropy quantifies the average surprise of the distribution when exposed to the
model. We have the inequality H.p/ � H.p;m/ for any other distribution m with
equality if and only if m.xi / D p.xi / for all i . The difference H.p;m/ �H.p/ is
a measure of the relevance of the model: the closer the cross entropy, the better the
model.

To see how the probability distribution of Flaubert’s novel could fare on other
texts, we trained a model on the first 14 chapters of Salammbô, and we applied it
to the last chapter of Salammbô (Chap. 15), to Victor Hugo’s Notre Dame de Paris,
both in French, and to Nineteen Eighty-Four by George Orwell in English. The data
in Table 4.5 conform to our intuition. They show that the first chapters of Salammbô
are a better model of the last chapter of Salammbô than of Notre Dame de Paris, and
even better than of Nineteen Eighty-Four.
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Table 4.6 The perplexity and cross perplexity of texts measured with Chapters 1–14 of Gustave
Flaubert’s Salammbô taken as the model

Perplexity Cross perplexity

Salammbô, chapters 1–14, training set 20.78 20.78
Salammbô, chapter 15, test set 19.94 20.11
Notre Dame de Paris, test set 21.66 21.95
Nineteen Eighty-Four, test set 20.52 28.01

4.2.4 Perplexity and Cross Perplexity

Perplexity is an alternate measure of information that is mainly used by the speech
processing community. Perplexity is simply defined as 2H.X/. The cross perplexity
is defined similarly as 2H.p;m/.

Although perplexity does not bring anything new to entropy, it presents the
information differently. Perplexity reflects the averaged number of choices of a
random variable. It is equivalent to the size of an imaginary set of equiprobable
symbols, which is probably easier to understand.

Table 4.6 shows the perplexity and cross perplexity of the same texts measured
with Chaps. 1–14 of Gustave Flaubert’s Salammbô taken as the model.

4.3 Entropy and Decision Trees

Decision trees are useful devices to classify objects into a set of classes. In this
section, we describe what they are and see how entropy can help us learn – or induce
– automatically decision trees from a set of data. The algorithm, which resembles a
reverse Huffman encoding, is one of the simplest machine-learning techniques.

4.3.1 Machine Learning

Machine learning considers collections of objects or observations, where each object
is defined by a set of attributes, SA. Each attribute has a set of possible values called
the attribute domain. Table 4.7 from Quinlan (1986) shows a collection of objects,
where:

SA D fOutlook;Temperature;Humidity;Windyg;

with the following respective domains:

• dom.Outlook/ D fsunny; overcast; raing,
• dom.Temperature/ D fhot;mild; coolg,
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Table 4.7 A set of object members of two classes: N and P . Here the objects are weather
observations (After Quinlan (1986))

Attributes

Object Outlook Temperature Humidity Windy Class

1 Sunny Hot High False N

2 Sunny Hot High True N

3 Overcast Hot High False P

4 Rain Mild High False P

5 Rain Cool Normal False P

6 Rain Cool Normal True N

7 Overcast Cool Normal True P

8 Sunny Mild High False N

9 Sunny Cool Normal False P

10 Rain Mild Normal False P

11 Sunny Mild Normal True P

12 Overcast Mild High True P

13 Overcast Hot Normal False P

14 Rain Mild High True N

• dom.Humidity/ D fnormal; highg,
• dom.Windy/ D ftrue; falseg.
Each object is member of a class, N or P in this data set.

Machine-learning algorithms can be categorized along two main lines: super-
vised and unsupervised classification. In supervised machine-learning, each object
belongs to a predefined class, here P andN . This is the technique we will use in the
induction of decision trees, where we will automatically create a tree from a training
set, here the examples in Fig. 4.7. Once the tree is induced, it will be able to predict
the class of examples taken outside the training set.

Machine-learning techniques make it possible to build programs that organize
and classify data, like annotated corpora, without the chore of manually explicating
the rules behind this organization or classification. Because of the availability of
massive volumes of data, they have become extremely popular in all the fields
of language processing. They are now instrumental in many NLP applications
and tasks, including part-of-speech tagging, parsing, semantic role labeling, or
coreference solving, that we will describe in the next chapters of this book.

4.3.2 Decision Trees

A decision tree is a tool to classify objects such as those in Table 4.7. The nodes
of a tree represent conditions on the attributes of an object, and a node has as many
branches as its corresponding attribute has values. An object is presented at the root
of the tree, and the values of its attributes are tested by the tree nodes from the root
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Outlook

P: 9, N : 5

Humidity

P: 2 , N : 3
P: 4

Windy

P: 3, N : 2

N : 3 P: 2 N : 2 P: 3

rainsunny overcast

high normal true false

Fig. 4.9 A decision tree classifying the objects in Table 4.7. Each node represents an attribute
with the number of objects in the classes P and N . At the start of the process, the collection has
nine objects in class P and five in classN . The classification is done by testing the attribute values
of each object in the nodes until a leaf is reached, where all the objects belong to one class, P or
N (After Quinlan (1986))

down to a leaf. The leaves return a decision, which is the object class or probabilities
to be the member of a class.

Figure 4.9 shows a decision tree that correctly classifies all the objects in the set
shown in Table 4.7 (Quinlan 1986).

4.3.3 Inducing Decision Trees Automatically

It is possible to design many trees that classify successfully the objects in Table 4.7.
The tree in Fig. 4.9 is interesting because it is efficient: a decision can be made with
a minimal number of tests.

An efficient decision tree can be induced from a set of examples, members
of mutually exclusive classes, using an entropy measure. We will describe the
induction algorithm using two classes of p positive and n negative examples,
although it can be generalized to any number of classes. As we saw earlier, each
example is defined by a finite set of attributes, SA.

At the root of the tree, the condition, and hence the attribute, must be the most
discriminating, that is, have branches gathering most positive examples while others
gather negative examples. A perfect attribute for the root would create a partition
with subsets containing only positive or negative examples. The decision would
then be made with one single test. The ID3 (Quinlan 1986) algorithm uses this idea
and the entropy to select the best attribute to be this root. Once we have the root, the
initial set is split into subsets according to the branching conditions that correspond
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Fig. 4.10 The binary entropy
function:
�x log2 x�.1�x/ log2.1�x/

to the values of the root attribute. Then, the algorithm determines recursively the
next attributes of the resulting nodes.

ID3 defines the information gain of an attribute as the difference of entropy
before and after the decision. It measures its separating power: the more the gain, the
better the attribute. At the root, the entropy of the collection is constant. As defined
previously, for a two-class set of p positive and n negative examples, it is:

I.p; n/ D � p

p C n log2
p

p C n �
n

p C n log2
n

p C n:

Figure 4.10 shows this binary entropy function with x D p

p C n , for x ranging

from 0 to 1. The function attains its maximum of 1 at x D 0:5, when p D n and
there are as many positive as negative examples in the set, and its minimum of 0 at
x D 0 and x D 1, when p D 0 or n D 0 and the examples in the set are either all
positive or all negative.

An attribute A with v possible values fA1;A2; : : : ; Avg creates a partition of the
collection into v subsets, where each subset corresponds to one value of A and
contains pi positive and ni negative examples. The entropy of a subset is I.pi ; ni /
and the weighted average of entropies of the partition created by A is:

E.A/ D
vX

iD1

pi C ni
p C n I.

pi

pi C ni ;
ni

pi C ni /:

The information gain is defined as Gain.A/ D I.p; n/ � E.A/ (or Ibefore �
Iafter). We would reach the maximum possible gain with an attribute that creates
subsets containing examples that are either all positive or all negative. In this case,
the entropy of the nodes below the root would be 0.

For the tree in Fig. 4.9, let us compute the information gain of attribute Outlook.
The entropy of the complete data set is:

I.p; n/ D � 9
14

log2
9

14
� 5

14
log2

5

14
D 0:940:
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Outlook has three values: sunny, overcast, and rain. The entropies of the respective
subsets created by these values are:

sunny W I.p1; n1/ D �2
5

log2
2

5
� 3
5

log2
3

5
D 0:971:

overcast W I.p2; n2/ D 0:
rain W I.p3; n3/ D �3

5
log2

3

5
� 2
5

log2
2

5
D 0:971:

Thus

E.Outlook/ D 5

14
I.p1; n1/C 4

14
I.p2; n2/C 5

14
I.p3; n3/ D 0:694:

Gain.Outlook/ is then 0.940 – 0.694 = 0.246, which is the highest for the four
attributes. Gain.Temperature/, Gain.Humidity/, and Gain.Windy/ are computed
similarly.

The algorithm to build the decision tree is simple. The information gain is
computed on the data set for all attributes, and the attribute with the highest gain:

A D arg max
a2SA

I.n; p/ �E.a/:

is selected to be the root of the tree. The data set is then split into v subsets
fN1; : : : ; Nvg, where the value of A for the objects in Ni is Ai , and for each subset,
a corresponding node is created below the root. This process is repeated recursively
for each node of the tree with the subset it contains until all the objects of the node
are either positive or negative. For a training set of N instances each having M
attributes, Quinlan (1986) showed that ID3’s complexity to generate a decision tree
is O.NM/.

4.4 Classification Using Linear Methods

4.4.1 Linear Classifiers

Decision trees are simple and efficient devices to design classifiers. Together with
the information gain, they enabled us to induce optimal trees from a set of examples
and to deal with symbolic values such as sunny, hot, and high.

Linear classifiers are another set of techniques that have the same purpose. As
with decision trees, they produce a function splitting a set of objects into two
or more classes. This time, however, the objects will be represented by a vector
of numerical parameters. Such parameters are often called features. In the next
sections, we examine linear classification methods in an n-dimensional space, where
the dimension of the vector space is equal to the number of features used to
characterize the objects.
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Table 4.8 The frequency of A in the chapters of Salammbô in English and French. Letters have
been normalized in uppercase and duplicate spaces removed

French English

Chapter # Characters # A # Characters # A

Chapter 1 36,961 2,503 35,680 2,217
Chapter 2 43,621 2,992 42,514 2,761
Chapter 3 15,694 1,042 15,162 990
Chapter 4 36,231 2,487 35,298 2,274
Chapter 5 29,945 2,014 29,800 1,865
Chapter 6 40,588 2,805 40,255 2,606
Chapter 7 75,255 5,062 74,532 4,805
Chapter 8 37,709 2,643 37,464 2,396
Chapter 9 30,899 2,126 31,030 1,993
Chapter 10 25,486 1,784 24,843 1,627
Chapter 11 37,497 2,641 36,172 2,375
Chapter 12 40,398 2,766 39,552 2,560
Chapter 13 74,105 5,047 72,545 4,597
Chapter 14 76,725 5,312 75,352 4,871
Chapter 15 18,317 1,215 18,031 1,119
Total 619,431 42,439 608,230 39,056

4.4.2 Choosing a Data Set

To illustrate linear classification in a two-dimensional space, we will use Salammbô
again in its original French version and in an English translation, and we will try
to predict automatically the language of the version. As features, we will use the
letter counts in each chapter: how many A, B, C, etc. The distribution of letters is
different across both languages, for instance, W is quite frequent in English and
rare in French. This makes it possible to use distribution models as an elementary
method to identify the language of a text.

Although a more realistic language guesser would use all the letters of the
alphabet, we will restrict it to A. We will count the total number of characters and
the frequency of As in each of the 15 chapters and try to derive a model from the
data. Table 4.8 shows these counts in French and in English.

4.5 Linear Regression

Before we try to discriminate between French and English, let us examine how we
can model the distribution of the letters in one language.

Figure 4.11 shows the plot of data in Table 4.8, where each point represents the
letter counts in one of the 15 chapters. The x-axis corresponds to the total count of
letters in the chapter, and the y-axis, the count of As. We can see from the figure that
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Fig. 4.11 Plot of the frequencies of A, y, versus the total character counts, x, in the 15 chapters of
Salammbô. Squares correspond to the English version and triangles to the French original

the points in both languages can be fitted quite precisely to two straight lines. This
fitting process is called a linear regression, where a line equation is given by:

y D mx C b:
To determine the m and b coefficients, we will minimize a fitting error between
the point distribution given by the set of q observations: f.xi ; yi /gqiD1 and a perfect
linear alignment given by the set f.xi ; f .xi //gqiD1, where f .xi / D mxi C b. In
our data set, we have 15 observations from each chapter in Salammbô, and hence
q D 15.

4.5.1 Least Squares

The least squares method is probably the most common technique used to model the
fitting error and estimate m and b. This error is defined as the sum of the squared
errors (SSE) over all the q points (Legendre 1805):

SSE.m; b/ D
qX

iD1
.yi � f .xi //2;

D
qX

iD1
.yi � .mxi C b//2:

Ideally, all the points would be aligned and this sum would be zero. This is rarely
the case in practice, and we fall back to an approximation that minimizes it.
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Fig. 4.12 Plot of SSE.m; b/ applied to the 15 chapters of the English version of Salammbô

Figure 4.12 shows the plot of SSE.m; b/ applied to the 15 chapters of the
English version of Salammbô. Using a logarithmic scale, the surface shows a visible
minimum somewhere between 0.6 and 0.8 for m and close to 0 for b. Let us now
compute precisely these values.

We know from differential calculus that we reach the minimum of SSE.m; b/
when its partial derivatives over m and b are zero:

@SSE.m; b/

@m
D

qX

iD1

@

@m
.yi � .mxi C b//2 D �2

qX

iD1
xi .yi � .mxi C b// D 0:

@SSE.m; b/

@b
D

qX

iD1

@

@b
.yi � .mxi C b//2 D �2

qX

iD1
.yi � .mxi C b// D 0:

We obtain then:

m D

qX

iD1
xiyi � qxy

qX

iD1
x2i � qx2

and b D y �mx;

with

x D 1

q

qX

iD1
xi and y D 1

q

qX

iD1
yi :
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Using these formulas, we find the two regression lines for French and English:

French: y D 0:0683x C 8:7253
English: y D 0:0643x � 3:5972

Least Absolute Deviation

An alternative to the least squares is to minimize the sum of the absolute errors
(SAE) (Boscovich 1770, Livre V, note):

SAE.m; b/ D
qX

iD1
jyi � f .xi /j:

The corresponding minimum value is called the least absolute deviation (LAD).
Solving methods to find this minimum use linear programming. Their description
falls outside the scope of this book.

Notations in an n-Dimensional Space

Up to now, we have formulated the regression problem with two parameters: the
letter count and the count of As. In most practical cases, we will have a much larger
set. To describe algorithms applicable to any number of parameters, we need to
extend our notation to a general n-dimensional space. Let us introduce it now.

In an n-dimensional space, it is probably easier to describe linear regression as a
prediction technique: given input parameters in the form of a feature vector, predict
the output value. In the Salammbô example, the input would be the number of letters
in a chapter, and the output, the number of As.

In a typical data set such as the one shown in Table 4.8, we have:

The input parameters: These parameters describe the observations we will use
to predict an output. They are also called feature vectors, and we denote them
.1; x1; x2; : : : ; xn�1/ or x. The first parameter is set to 1 to make the computation
easier. In the Salammbô example, this corresponds to the letter count in a chapter,
for example: (1,36,961) in Chapter 1 in French.

The output value: Each output represents the answer to a feature vector, and we
denote it y, when we observe it, or Oy, when we predict it using the regression
line. In Salammbô, in French, the count of As is y D 2; 503 in Chapter 1, and the
predicted value using the regression line is Oy D 0:0683 � 36;961 C 8:7253 D
2;533:22.

The squared error: The squared error is the squared difference between the
observed value and the prediction, .y � Oy/2. In Salammbô, the squared error
for Chapter 1 is .2;503 � 2;533:22/2 D 30:222 D 913:26.
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As we have seen, to compute the regression line, the least-squares method
minimizes the sum of the squared errors for all the observations (here all the
chapters). It is defined by its coefficients m and b in a two-dimensional space. In
an n-dimensional space, we have:

The weight vector: The equivalent of a regression line when n > 2 is a
hyperplane with a coefficient vector denoted .w0;w1;w2; : : : ;wn�1/ or w. These
coefficients are usually called the weights. They correspond to .b;m/ when
n D 2. In Salammbô, the weight vector would be .8:7253; 0:0683/ for French
and .�3:5972; 0:0643/ for English.

The intercept: This is the first weight w0 of the weight vector. It corresponds to
b when n D 2.

The hyperplane equation is given by the dot product of the weights by the feature
variables. It is defined as:

y D w � x D
n�1X

iD0
wi xi ;

where w D .w0;w1;w2; : : : ;wn�1/, x D .x0; x1; x2; : : : ; xn�1/, and x0 D 1.

4.5.2 The Gradient Descent

Using partial derivatives, we have been able to find an analytical solution to the
regression line. We will now introduce the gradient descent, a generic optimization
method that uses a series of successive approximations instead. We will apply this
technique to solve the least squares as well as the classification problems we will
see in the next section.

The gradient descent (Cauchy 1847) is a numerical method to find a global or
local minimum of a function:

y D f .x0; x1; x2; : : : ; xn/;
D f .x/;

even when there is no analytical solution.
As we can see on Fig. 4.12, the sum of squared errors has a minimum. This

a general property of the least squares, and the idea of the gradient descent is to
derive successive approximations in the form of a sequence of points .xp/ to find it.
At each iteration, the current point will move one step down to the minimum. For a
function f , this means that we will have the inequalities:

f .x1/ > f .x2/ > : : : > f .xk/ > f .xkC1/ > : : : > min:



104 4 Topics in Information Theory and Machine Learning

Now given a point x, how can we find the next point of the iteration? The
steps in the gradient descent are usually small and we can define the points in
the neighborhood of x by x C v, where v is a vector of Rn and jjvjj is small. So
the problem of gradient descent can be reformulated as: given x, find v subject to
f .x/ > f .xC v/.

As jjvjj is small, we can approximate f .xC v/ using a Taylor expansion limited
to the first derivatives:

f .xC v/ 	 f .x/C v � rf .x/;

where the gradient defined as:

rf .x0; x1; x2; : : : ; xn/ D . @f
@x0

;
@f

@x1
;
@f

@x2
; : : : ;

@f

@xn
/

is a direction vector corresponding to the steepest slope.
We obtain the steepest descent (respectively, ascent) when we choose v collinear

to rf .x/: v D �˛rf .x/ (respectively, v D ˛rf .x/) with ˛ > 0. We have then:

f .x � ˛rf .x// 	 f .x/ � ˛jjrf .x/jj2;

and thus the inequality:

f .x/ > f .x � ˛rf .x//:

This inequality enables us to write a recurrence relation between the steps:

xkC1 D xk � ˛krf .xk/

and find a step sequence to the minimum, where ˛k is a small positive number called
the step size or learning rate. It can be constant over all the descent or change at each
step. The convergence stops when jjrf .x/jj is less than a predefined threshold. This
convergence is generally faster if the learning rate decreases over the iterations.

4.5.3 The Gradient Descent and Linear Regression

For a data set, DS, we find the minimum of the sum of squared errors and the
coefficients of the regression equation through a walk down the surface using the
recurrence relation above. Let us compute the gradient in a two-dimensional space
first and then generalize it to multidimensional space.
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In a Two-Dimensional Space

To make the generalization easier, let us rename the straight line coefficients .b;m/
in y D mxC b as .w0;w1/. We want then to find the regression line:

Oy D w0 C w1x1

given a data set DS of q examples: DS D f.1; xj1 ; yj /jj W 1::qg, where the error is
defined as:

SSE.w0;w1/ D
qX

jD1
.yj � Oyj /2

D
qX

jD1
.yj � .w0 C w1x

j
1 //

2:

The gradient of this two-dimensional equation rSSE.w/ is:

@SSE.w0;w1/

@w0
D �2

qX

jD1
.yj � .w0 C w1x

j
1 //

@SSE.w0;w1/

@w1
D �2

qX

jD1
x
j
1 � .yj � .w0 C w1x

j
1 //:

From this gradient, we can now compute the iteration step. With q examples and

a learning rate of
˛

2q
, inversely proportional to the number of examples, we have:

w0  w0 C ˛

q
�
qX

jD1
.yj � .w0 C w1x

j
1 //

w1  w1 C ˛

q
�
qX

jD1
x
j
1 � .yj � .w0 C w1x

j
1 //:

In the iteration above, we compute the gradient as a sum over all the examples
before we carry out one update of the weights. This technique is called the batch
gradient descent. An alternate technique is to go through DS and compute an
update with each example:

w0  w0 C ˛ � .yj � .w0 C w1x
j
1 //

w1  w1 C ˛ � xj1 � .yj � .w0 C w1x
j
1 //:
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The examples are usually selected randomly from DS. This is called the stochastic
gradient descent or online learning.

The duration of the descent is measured in epochs, where an epoch is the period
corresponding to one iteration over the complete data set: the q examples. The
stochastic variant often has a faster convergence.

N -Dimensional Space

In an n-dimensional space, we want to find the regression hyperplane:

Oy D w0 C w1x1 C w2x2 C : : :C wnxn;

given a data set DS of q examples: DS D f.1; xj1 ; xj2 ; : : : ; xjn ; yj /jj W 1::qg, where
the error is defined as:

SSE.w0;w1; : : : ;wn/ D
qX

jD1
.yj � Oyj /2

D
qX

jD1
.yj � .w0 C w1x

j
1 C w2x

j
2 C : : :C wnx

j
n //

2:

To simplify the computation of partial derivatives, we introduce the parameter
x
j
0 D 1 so that:

SSE.w0;w1; : : : ;wn/ D
qX

jD1
.yj � .w0xj0 C w1x

j
1 C w2x

j
2 C : : :C wnx

j
n //

2:

The gradient of SSE is:

@SSE

@wi
D �2

qX

jD1
x
j
i � .yj � .w0xj0 C w1x

j
1 C w2x

j
2 C : : :C wnx

j
n //:

In the batch version, the iteration step considers all the examples in DS:

wi  wi C ˛

q
�
qX

jD1
x
j
i � .yj � .w0xj0 C w1x

j
1 C w2x

j
2 C : : :C wnx

j
n //:

In the stochastic version, we carry out the updates using one example at a time.
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4.6 Linear Classification

4.6.1 An Example

We will now use the data set in Table 4.8 to describe classification techniques that
split the texts into French or English. If we examine it closely, Fig. 4.11 shows that
we can draw a straight line between the two regression lines to separate the two
classes. This is the idea of linear classification. From a data representation in a
Euclidian space, classification will consist in finding a line:

w0 C w1x C w2y D 0

separating the plane into two half-planes defined by the inequalities:

w0 C w1x C w2y > 0

and

w0 C w1x C w2y < 0:

These inequalities mean that the points belonging to one class of the data set are on
one side of the separating line and the others are on the other side.

In Table 4.8 and Fig. 4.11, the chapters in French have a steeper slope that the
corresponding ones in English. The points representing the French chapters will
then be above the separating line. Let us write the inequalities that reflect this and
set w2 to 1 to normalize them. The line we are looking for will have the property:

yi > w0 C w1xi for the set of points: f.xi ; yi /j.xi ; yi / 2 Frenchg and
yi < w0 C w1xi for the set of points: f.xi ; yi /j.xi ; yi / 2 Englishg;

where x is the total count of letters in a chapter and y, the count of As. In total, we
will have 30 inequalities, 15 for French and 15 for English shown in Table 4.9. Any
weight vector w D .w0;w1/ that satisfies all of them will define a classifier correctly
separating the chapters into two classes: French or English.

Let us represent graphically the inequalities in Table 4.9 and solve the system
in the two-dimensional space defined by w0 and w1. Figure 4.13 shows a plot
with the two first chapters, where w1 is the abscissa and w0, the ordinate. Each
inequality defines a half-plane that restricts the set of possible weight values. The
four inequalities delimit the solution region in white, where the two upper lines are
constraints applied by the two chapters in French and the two below by their English
translations.
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Table 4.9 Inequalities derived from Table 4.8 for the 15 chapters in Salammbô in French and
English

Chapter French English

1 2;503 > w0 C 36;961w1 2;217 < w0 C 35;680w1
2 2;992 > w0 C 43;621w1 2;761 < w0 C 42;514w1
3 1;042 > w0 C 15;694w1 990 < w0 C 15;162w1
4 2;487 > w0 C 36;231w1 2;274 < w0 C 35;298w1
5 2;014 > w0 C 29;945w1 1;865 < w0 C 29;800w1
6 2;805 > w0 C 40;588w1 2;606 < w0 C 40;255w1
7 5;062 > w0 C 75;255w1 4;805 < w0 C 74;532w1
8 2;643 > w0 C 37;709w1 2;396 < w0 C 37;464w1
9 2;126 > w0 C 30;899w1 1;993 < w0 C 31;030w1
10 1;784 > w0 C 25;486w1 1;627 < w0 C 24;843w1
11 2;641 > w0 C 37;497w1 2;375 < w0 C 36;172w1
12 2;766 > w0 C 40;398w1 2;560 < w0 C 39;552w1
13 5;047 > w0 C 74;105w1 4;597 < w0 C 72;545w1
14 5;312 > w0 C 76;725w1 4;871 < w0 C 75;352w1
15 1;215 > w0 C 18;317w1 1;119 < w0 C 18;031w1

0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1500

-1000

-500

0

500

1000

w1

w0

f1(x) f2(x) e1(x) e2(x)

Fig. 4.13 A graphical representation of the inequality system restricted to the two first chapters in
French, f1 and f2, and in English, e1 and e2. We can use any point coordinates in the white region
as parameters of the line to separate these two chapters

Figure 4.14 shows the plot for all the chapters. The remaining inequalities
shrink even more the polygonal region of possible values. The point coordinates
.w1;w0/ in this region, as, for example, .0:066; 0/ or .0:067;�20/, will satisfy all the
inequalities and correctly separate the 30 observations into two classes: 15 chapters
in French and 15 in English.
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Fig. 4.14 A graphical representation of the inequality system with all the chapters. The point
coordinates in the white polygonal region correspond to weights vectors .w1;w0/ defining a
separating line for all the chapters

4.6.2 Classification in an N -Dimensional Space

In the example above, we used a set of two-dimensional points, .xi ; yi / to represent
our observations. This process can be generalized to vectors in a space of dimension
n. The separator will then be a hyperplane of dimension n � 1. In a space of
dimension 2, a hyperplane is a line; in dimension 3, a hyperplane is a plane of
dimension 2, etc. In an n-dimensional space, the inequalities defining the two classes
will be:

w0 C w1x1 C w2x2 C : : :C wnxn > 0

and

w0 C w1x1 C w2x2 C : : :C wnxn < 0;

where each observation is described by a feature vector x.
The sums in the inequalities correspond to the dot product of the weight vector,

w, by the the feature vector, x, defined as

w � x D
nX

iD0
wi xi ;

where w D .w0;w1;w2; : : : ;wn/, x D .x0; x1; x2; : : : ; xn/, and x0 D 1.
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Fig. 4.15 Left part: A thin line can separate the three chapters into French and English text. The
two classes are linearly separable. Right part: We cannot draw a line between the two classes. They
are not linearly separable

The purpose of the classification algorithms is to find lines or hyperplanes
separating most accurately a set of data represented by numerical vectors into two
classes. As with the decision trees, these separators will be approximated from
training sets and evaluated on distinct test sets. We will review the vocabulary used
with machine learning methods in more detail in Sect. 5.6.2.

4.6.3 Linear Separability

It is not always the case that a line can perfectly separate the two classes of a data
set. Let us return to our data set in Table 4.8 and restrict ourselves to the three
shortest chapters: the 3rd, 10th, and 15th. Figure 4.15, left, shows the plot of these
three chapters from the counts collected in the actual texts. A thin line can divide the
chapters into two classes. Now let us imagine that in another data set, Chapter 10
in French has 18,317 letters and 1,115 As instead of 18,317 and 1,215, respectively.
Figure 4.15, right, shows this plot. This time, no line can pass between the two
classes, and the data set is said to be not linearly separable.

Although we cannot draw a line that divides the two classes, there are
workarounds to cope with not linearly separable data that we will explain in the
next section.

4.6.4 Classification vs. Regression

Regression and classification use a similar formalism, and at this point, it is
important to understand their differences. Given an input, regression computes a
continuous numerical output. For instance, regression will enable us to compute the
number of As occurring in a text in French from the total number of characters.
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Having 75,255 characters in Chapter 7, the regression line will predict 5,149
occurrences of As (there are 5,062 in reality).

The output of a classification is a finite set of values. When there are two values,
we have a binary classification. Given the number of characters and the number of
As in a text, classification will predict the language: French or English. For instance,
having the pair (75255, 5062), the classifier will predict French.

This means that given a data set, the dimensions of the feature space will be
different. Regression predicts the value of one of the features given the value of
n � 1 features. Classification predicts the class given the values of n features.
Compared to regression in our example, the dimension of the vector space used
for the classification is nC 1: the n features and the class.

In the next sections, we will examine three categories of linear classifiers from
among the most popular and efficient ones: perceptrons, logistic regression, and
support vector machines. For the sake of simplicity, we will restrict our presentation
to a binary classification with two classes. However, linear classifiers can generalize
to handle a multinomial classification, i.e. three classes or more, which is the most
frequent case in practice. This generalization is outside the scope of this book; see
Sect. 4.11 for further references on this topic.

4.7 Perceptron

Given a data set like the one in Table 4.8, where each object is characterized by the
feature vector x and a class, P or N , the perceptron algorithm (Rosenblatt 1958) is
a simple method to find a hyperplane splitting the space into positive and negative
half-spaces separating the objects. The perceptron uses a sort of gradient descent to
iteratively adjust weights .w0;w1;w2; : : : ;wn/ representing the hyperplane until all
the objects belonging to P have the property w � x � 0, while those belonging to N
have a negative dot product.

4.7.1 The Heaviside Function

As we represent the examples using numerical vectors, it is more convenient in the
computations to associate the negative and positive classes, N and P , to a discrete
set of two numerical values: f0; 1g. To carry this out, we pass the result of the dot
product to the Heaviside step function (a variant of the signum function):

H.w � x/ D
(
1 if w � x � 0
0 otherwise
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Using the Heaviside function H , we can reformulate classification. Given a data
set: DS D f.1; xj1 ; xj2 ; : : : ; xjn ; yj /jj W 1::qg of q examples, where yj 2 f0; 1g, we
have:

Oy.xj / D H.w � xj /;
D H.w0 C w1x

j
1 C w2x

j
2 C : : :C wnx

j
n /:

We use xj0 D 1 to simplify the equations, and the range of y, f0; 1g, corresponds to
the classes {English, French} in Table 4.8.

4.7.2 The Iteration

Let us denote wk the weight vector at step k, and wi .k/, the value of its weight
coordinate wi . The perceptron algorithm starts the iteration with a weight vector w0

chosen randomly or set to 0 and then applies the dot product wk � xj one object at a
time for all the members of the data set, j W 1::q:

• If the object is correctly classified, the perceptron algorithm keeps the weights
unchanged;

• If the object is misclassified, the algorithm attempts to correct the error by
adjusting wk using a gradient descent:

wi .kC1/  wi .k/ C ˛
qX

jD1
x
j
i � .yj � Oyj /

until all the objects are correctly classified.
For a misclassified object, we have yj � Oyj equals to either 1 � 0 or 0 � 1. The

update value is then is ˛ �xi or�˛ �xi , where ˛ is the learning rate. For an object that
is correctly classified, we have yj � Oyj D 0, corresponding to either 0� 0 or 1� 1,
and there is no weight update. The learning rate is generally set to 1 as a division of
the weight vector by a constant does not affect the update rule.

4.7.3 The Two-Dimensional Case

Let us spell out the update rules in a two-dimensional space. We have the feature
vectors and weight vectors defined as: x D .1; x1; x2/ and w D .w0;w1;w2/. With
the stochastic gradient descent, we carry out the updates using the relations:
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w0  w0 C yj � Oyj
w1  w1 C xj1 � .yj � Oyj /
w2  w2 C xj2 � .yj � Oyj /;

where yj � Oyj is either, 0, �1, or 1.

4.7.4 Stop Conditions

To find a hyperplane, the objects (i.e., the points) must be separable. This is rarely
the case in practice, and we often need to refine the stop conditions. We will stop the
learning procedure when the number of misclassified examples is below a certain
threshold or we have exceeded a fixed number of iterations.

The perceptron will converge faster if, for each iteration, we select the objects
randomly from the data set.

4.8 Support Vector Machines

When a data set is linearly separable, the perceptron algorithm finds a separating
hyperplane with a weight vector corresponding to a point in the solution region.
Referring back to Fig. 4.14, it can be any point in the white region.

Support vector machines (Boser et al. 1992) are another type of linear classifiers
that aim at finding a unique solution in the form of an optimal hyperplane. This
optimal hyperplane is defined as the one that maximizes the margins between the
two classes. It will be positioned at equal distance between the closest points of
each class and will create the largest possible corridor with no points from either
classes inside. These closest points are on the border of the corridor and are called
the support vectors. In this section, we introduce the mathematical concepts behind
support vector machines.

4.8.1 Maximizing the Margin

We know from geometry and vector analysis that the distance from a point xj D
.x
j
1 ; x

j
2 ; : : : ; x

j
n / to a hyperplane Hyp defined by the equation:

w0 C w1x1 C w2x2 C : : :C wnxn D 0
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is given by the formula:

d.xj ;Hyp/ D jw0 C w1x
j
1 C w2x

j
2 C : : :C wnx

j
n j

q
w21 C w22 C : : :C w2n

D jw0 C w � xj j
jjwjj ;

where w is the weight vector .w1;w2; : : :wn/.
The optimal hyperplane is the one that maximizes this distance for all the points

in the data set, DS D f.xj1 ; xj2 ; : : : ; xjn ; yj /jj W 1::qg. It is easier to associate the
negative and positive classes,N and P , to the two numerical values: f�1; 1g instead
of f0; 1g as in the perceptron. We can then remove the absolute value and fit the
weight vector so that it maximizes the margin M :

max
w0;w

M

subject to yj � w0 C xj � w
jjwjj > M; j W 1::q;

where yj 2 f�1; 1g.
The weight vector .w0;w/ is defined within a constant factor, and we can set jjwjj

so that jjwjj �M D 1. Using this scaling operation, maximizing M is equivalent to
minimizing the norm jjwjj. We have then

min
w0;w

jjwjj
subject to yj .w0 C xj � w/ > 1; j W 1::q:

4.8.2 Lagrange Multipliers

The margin maximization can be recast using a Lagrangian (a Lagrange function)
(Boser et al. 1992):

L.w;w0;˛/ D 1

2
jjwjj2 �

qX

jD1
˛j .y

j .w0 C xj � w/ � 1/;

subject to ˛j > 0; j W 1::q;

and is then equivalent to finding a minimum of L.w;w0;˛/ with respect to w and a
maximum with respect to ˛. The ˛ are called Lagrange multipliers.

The maximal margin is reached when the partial derivatives with respect to w
and w0 are 0. Computing the derivatives, we find:
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8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

qX

jD1
˛j y

j x
j
i D wi

qX

jD1
˛j y

j D 0

We plug these values back into the Lagrangian, and we obtain:

L.˛/ D
qX

jD1
˛j � 1

2

qX

jD1

qX

kD1
˛j ˛ky

j ykxj xk;

that we maximize with respect to ˛.
We can find a solution to this optimization problem using quadratic programming

techniques. Their description is beyond the scope of this book, however. There
are many toolkits that we can use to solve practical problems. They include the
LIBSVM (Chang and Lin 2011) and LIBLINEAR (Fan et al. 2008) toolkits.

Applying LIBLINEAR to the data in Table 4.8, we find a hyperplane equation
separating the two classes so that jjwjj �M D 1:

�0:006090937C 0:008155714x � 0:123790484y D 0

and when normalizing the coefficients with respect to y we have:

0:049203592 � 0:065883207x C y D 0

This corresponds to unique point .w1;w0/ D .0:065883207;�0:049203592/ in the
weight space in Fig. 4.14.

Support vector machines can also handle not linearly separable examples using
kernels or through the soft margin method. See the original papers by Boser et al.
(1992) and Cortes and Vapnik (1995) for a presentation.

4.9 Logistic Regression

In their elementary formulation, the perceptron and support vector machines use
hyperplanes as absolute, unmitigated boundaries between the classes. In many
data sets, however, there are no such clear-cut thresholds to separate the points.
Figure 4.15 is an example of this that shows regions where the nonlinearly separable
classes have points with overlapping feature values.

Logistic regression is an attempt to define a smoother transition between the
classes. Instead of a rigid boundary in the form of a step function, logistic regression
uses the logistic curve (Verhulst 1838, 1845) to model the probability of a point x
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Fig. 4.16 The logistic curve: f .x/ D 1

1C e�x

(an observation) to belong to a class. Figure 4.16 shows this curve, whose equation
is given by:

f .x/ D 1

1C e�x :

Logistic regression was first introduced by Berkson (1944) in an attempt to
model the percentage of individuals killed by the intake of a lethal drug. Berkson
observed that the higher the dosage of the drug, the higher the mortality, but as
some individuals are more resilient than others, there was no threshold value under
which all the individuals would have survived and above which all would have died.
Intuitively, this fits very well the shape of the logistic curve in Fig. 4.16, where the
mortality rate is close to 0 for lower values of x (the drug dosage), then increases,
and reaches a mortality rate of 1 for higher values of x.

Berkson used one feature, the dosage x, to estimate the mortality rate, and he
derived the probability model:

P.y D 1jx/ D 1

1C e�w0�w1x
;

where y denotes the class, either survival or death, with the respective labels 0 and
1, and .w0;w1/ are weight coefficients that are fit using the maximum likelihood
method.

Using this assumption, we can write a general probability model for feature
vectors x of any dimension:

P.y D 1jx/ D 1

1C e�w�x ;

where w is a weight vector.
As we have two classes and the sum of their probabilities is 1, we have:

P.y D 0jx/ D e�w�x

1C e�w�x :

These probabilities are extremely useful in practice.
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The logit transformation corresponding to the logarithm of the odds ratio:

ln
P.y D 1jx/
P.y D 0jx/ D ln

P.y D 1jx/
1 � P.y D 1jx/ D w � x

is also frequently used to fit the data to a straight line or a hyperplane.

4.9.1 Fitting the Weight Vector

To build a functional classifier, we need now to fit the weight vector w; the
maximum likelihood is a classical way to do this. Given a data set, DS D
f.1; xj1 ; xj2 ; : : : ; xjn ; yj /jj W 1::qg, containing a partition in two classes, P (y D 1)
and N (y D 0), and a weight vector w, the likelihood to have the classification
observed in this data set is:

L.w/ D
Y

xj2P
P.yj D 1jxj / �

Y

xj2N
P.yj D 0jxj /;

D
Y

xj2P
P.yj D 1jxj / �

Y

xj2N
.1 � P.yj D 1jxj //:

We can rewrite the product using yj as powers of the probabilities as yj D 0, when
xj 2 N and yj D 1, when xj 2 P :

L.w/ D
Y

xj2P
P.yj D 1jxj /yj �

Y

xj2N
.1 � P.yj D 1jxj //1�yj ;

D
Y

.xj ;yj /2DS

P.yj D 1jxj /yj � .1 � P.yj D 1jxj //1�yj :

Maximizing the Likelihood

We fit w, and train a model by maximizing the likelihood of the observed
classification:

Ow D arg max
w

Y

xj2DS

P.yj D 1jxj /yj � .1 � P.yj D 1jxj //1�yj :

To maximize this term, it is more convenient to work with sums rather than with
products, and we take the logarithm of it (log-likelihood):

Ow D arg max
w

X

.xj ;yj /2DS

yj lnP.yj D 1jxj /C .1 � yj / ln.1 � P.yj D 1jxj //:
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Using the logistic curves to express the probabilities, we have:

Ow D arg max
w

X

.xj ;yj /2DS

yj ln
1

1C e�w�xj C .1 � yj / ln
e�w�xj

1C e�w�xj :

In contrast to linear regression that uses least mean squares, here we fit a logistic
curve so that it maximizes the likelihood of the classification – partition – observed
in the training set.

4.9.2 The Gradient Ascent

We can use the gradient ascent to compute this maximum. This method is analogous
to the gradient descent that we reviewed in Sect. 4.5.2; we move upward instead. A
Taylor expansion of the log-likelihood gives us: `.wCv/ D `.w/Cv �r`.w/C : : :
When w is collinear with the gradient, we have:

`.wC ˛r`.w// 	 `.w/C ˛jjr`.w/jj2:

The inequality:

`.w/ < `.wC ˛r`.w//

enables us to find a sequence of increasing values of the log-likekihood. We use the
iteration:

wkC1 D wk C ˛r`.wk/

to carry this out until we reach a maximum.

Computing the Gradient

We compute the partial derivatives of the log-likelihood to find the gradient:

@`.w/
@wi

D
X

.xj ;yj /2DS

yj .1C e�w:xj /
x
j
i e
�w:xj

.1C e�w�xj /2
C

.1 � yj /1C e
�w:xj

e�w:xj
� �x

j
i � e�w�xj .1C e�w�xj /C xji � e�w:xj � e�w:xj

.1C e�w�xj /2
;
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D
X

.xj ;yj /2DS

yj
x
j
i e
�w:xj

1C e�w�xj C .1 � yj / �
�xji � .1C e�w�xj /C xji � e�w:xj

1C e�w�xj ;

D
X

.xj ;yj /2DS

x
j
i �
yj � .1C e�w:xj / � 1

1C e�w�xj ;

D
X

.xj ;yj /2DS

x
j
i � .yj �

1

1C e�w�xj /:

Weight Updates

Using the gradient values, we can now compute the weight updates at each step of
the iteration. As with linear regression, we can use a stochastic or a batch method.
For DS D f.1; xj1 ; xj2 ; : : : ; xjn ; yj /jj W 1::qg, the updates of w D .w0;w1; : : : ;wn/
are:

• With the stochastic gradient ascent:

wi .kC1/  wi .k/ C ˛ � xji � .yj �
1

1C e�wk �xj /I

• With the batch gradient ascent:

wi .kC1/  wi .k/ C ˛

q
�
qX

jD1
x
j
i � .yj �

1

1C e�wk �xj /:

As with the gradient descent, the convergence stops when jjr`.w/jj is less than a
predefined threshold.

4.10 Encoding Symbolic Values as Numerical Features

Along with this overview of numerical classification methods, a practical question
comes to mind: how can we apply them to symbolic – or nominal – attributes like
the ones in Table 4.7?

The answer is that we need to convert the symbolic attributes into numerical
vectors before we can use the linear classifiers. The classical way to do this is
to represent each attribute domain – the set of the allowed or observed values of
an attribute – as a vector of binary digits. Let us exemplify this with the Outlook
attribute in Table 4.7:



120 4 Topics in Information Theory and Machine Learning

Table 4.10 A representation of the symbolic values in Table 4.7 as numerical vectors

Attributes

Outlook Temperature Humidity Windy

Object Sunny Overcast Rain Hot Mild Cool High Normal True False Class

1 1 0 0 1 0 0 1 0 0 1 N

2 1 0 0 1 0 0 1 0 1 0 N

3 0 1 0 1 0 0 1 0 0 1 P

4 0 0 1 0 1 0 1 0 0 1 P

5 0 0 1 0 0 1 0 1 0 1 P

6 0 0 1 0 0 1 0 1 1 0 N

7 0 1 0 0 0 1 0 1 1 0 P

8 1 0 0 0 1 0 1 0 0 1 N

9 1 0 0 0 0 1 0 1 0 1 P

10 0 0 1 0 1 0 0 1 0 1 P

11 1 0 0 0 1 0 0 1 1 0 P

12 0 1 0 0 1 0 1 0 1 0 P

13 0 1 0 1 0 0 0 1 0 1 P

14 0 0 1 0 1 0 1 0 1 0 N

• Outlook has three possible values: fsunny; overcast; raing. Its numerical repre-
sentation is then a three-dimensional vector, .x1; x2; x3/, whose axes are tied
respectively to sunny, overcast, and rain.

• To reflect the value of the attribute, we set the corresponding coordinate to
1 and the others to 0. Using the examples in Table 4.7, the name–value pair
ŒOutlook D sunny� will be encoded as .1; 0; 0/, ŒOutlook D overcast� as .0; 1; 0/,
and ŒOutlook D rain� as .0; 0; 1/.

For a given attribute, the dimension of the vector will then be defined by the
number of its possible values, and each vector coordinate will be tied to one of the
possible values of the attribute.

So far, we have one vector for each attribute. To represent a complete object, we
will finally concatenate all these vectors into a larger one characterizing this object.
Table 4.10 shows the complete conversion of the data set using vectors of binary
values.

If an attribute has from the beginning a numerical value, it does not need to be
converted. It is, however, a common practice to scale it so that the observed values
in the training set range from 0 to 1 or from �1 toC1.

4.11 Further Reading

Information theory is covered by many books, many of them requiring a good math-
ematical background. The text by Manning and Schütze (1999, Chap. 2) provides a
short and readable introduction oriented toward natural language processing.
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Machine-learning techniques are now ubiquitous in all the fields of natural
language processing. ID3 outputs classifiers in the form of decision trees that
are easy to understand. It is a simple and robust algorithm. Logistic regression,
perceptrons, and support vector machines are other popular classifiers. Which one to
choose has no easy answer as they may have different performances on different data
sets. My preferences are leaning toward ID3 and logistic repression, although this
does not exclude the others. Supervised machine-learning is a large and evolving
domain. In this chapter, we set aside many details and techniques. Hastie et al.
(2009), Saporta (2011), Murphy (2012), and James et al. (2013) are mathematical
references on classification and statistical learning in general that can complement
this chapter. Schölkopf and Smola (2002) is a more focused reference on support
vector machines.

We used regression to introduce linear classification techniques. This line-fitting
process has a somehow enigmatic name. It is due to Galton (1886) who modeled the
transmission of stature from parents to children. He gathered a data set of the heights
of children and parents and observed that taller-than-average parents tended to have
children shorter than they, and that shorter parents tended to have taller children than
they. Galton called this a regression towards mediocrity.

A number of machine-learning toolkits are available from the Internet. R is
a set of statistical and machine-learning functions with a script language (http://
www.r-project.org/). Weka (Hall et al. 2009; Witten and Frank 2005) is a collec-
tion of data mining algorithms written in Java (http://www.cs.waikato.ac.nz/ml/
weka/). LIBLINEAR (Fan et al. 2008) and LIBSVM (Chang and Lin 2011) are
efficient implementations of logistic regression and support vector machines in
C (http://www.csie.ntu.edu.tw/~cjlin/liblinear/, http://www.csie.ntu.edu.tw/~cjlin/
libsvm/). C4.5 (Quinlan 1993), ID3’s successor, is available from its creator’s web
page (http://www.rulequest.com/Personal/).

Exercises

4.1. Implement the ID3 algorithm in Prolog, Perl, or another language. Test it on
the data set in Table 4.7.

4.2. Implement linear regression using the gradient descent. Test it on the data set
in Table 4.8 with, respectively, English and French.

4.3. Implement the perceptron algorithm. Test it on the data set in Table 4.8.

4.4. Implement logistic regression. Test it on the data set in Table 4.8.

http://www.r-project.org/
http://www.r-project.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.rulequest.com/Personal/


Chapter 5
Counting Words

On trouve ainsi qu’un événement étant arrivé de suite, un nombre
quelconque de fois, la probabilité qu’il arrivera encore la fois
suivante, est égale à ce nombre augmenté de l’unité, divisé par le
même nombre augmenté de deux unités. En faisant, par exemple,
remonter la plus ancienne époque de l’histoire, à cinq mille ans,
ou à 1826213 jours, et le Soleil s’étant levé constamment, dans cet
intervalle, à chaque révolution de vingt-quatre heures, il y a 1826214
à parier contre un qu’il se lèvera encore demain.

Pierre-Simon Laplace. Essai philosophique sur les probabilités. 1840.
See explanations in Sect. 5.7.2.

5.1 Counting Words and Word Sequences

We saw in Chap. 2 that words have specific contexts of use. Pairs of words like
strong and tea or powerful and computer are not random associations but the result
of a preference. A native speaker will use them naturally, while a learner will have to
learn them from books – dictionaries – where they are explicitly listed. Similarly, the
words rider and writer sound much alike in American English, but they are likely
to occur with different surrounding words. Hence, hearing an ambiguous phonetic
sequence, a listener will discard the improbable rider of books or writer of horses
and prefer writer of books or rider of horses (Church and Mercer 1993).

In lexicography, extracting recurrent pairs of words – collocations – is critical to
finding the possible contexts of a word and citing real examples of its use. In speech
recognition, the statistical estimate of a word sequence – also called a language
model – is a key part of the recognition process. The language model component
of a speech recognition system enables the system to predict the next word given a

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__5, © Springer-Verlag Berlin Heidelberg 2014

123



124 5 Counting Words

sequence of previous words: the writer of books, novels, poetry, etc., rather than of
the writer of hooks, nobles, poultry.

Knowing the frequency of words and sequences of words is crucial in many
fields of language processing. In addition to speech recognition and lexicography,
they include parsing, semantic interpretation, and translation. In this chapter, we
introduce techniques to obtain word frequencies from a corpus and to build language
models. We also describe a set of related concepts that are essential to understand
them.

5.2 Text Segmentation

Most language processing techniques, such as language modeling and morpholog-
ical and syntactic parsing, consider words and sentences. When the input data is a
stream of characters, we must first segment it, i.e., identify the words and sentences
in it, before we can apply any further operation to the text. We call this step text
segmentation or tokenization. A tokenizer can also remove formatting instructions,
such as XML tags, if any.

Originally, early European scripts had no symbols to mark segment boundaries
inside a text. Ancient Greeks and Romans wrote their inscriptions as continuous
strings of characters flowing from left to right and right to left without punctuation
or spaces. The lapis niger, one of the oldest remains of the Latin language, is an
example of this writing style, also called boustrophedon (Fig. 5.1).

As the absence of segmentation marks made texts difficult to read, especially
when engraved on a stone, Romans inserted dots to delimit the words and thus
improve their legibility. This process created the graphic word as we know it: a
sequence of letters between two specific signs. Later white spaces replaced the dots
as word boundaries and Middle Ages scholars introduced a set of punctuation signs:
commas, full stops, question and exclamation marks, colons, and semicolons, to
delimit phrases and sentences.

5.2.1 What Is a Word?

The definition of what a word is, although apparently obvious, is in fact surprisingly
difficult. A naïve description could start from its historical origin: a sequence of
alphabetic characters delimited by two white spaces. This is an approximation. In
addition to white spaces, words can end with commas, question marks, periods, etc.
Words can also include dashes and apostrophes that, depending on the context, have
a different meaning.

Word boundaries vary according to the language and orthographic conven-
tions. Compare these different spellings: news stand, news-stand, and newsstand.
Although the latter one is considered more correct, the two other forms are
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Fig. 5.1 Latin inscriptions
on the lapis niger. Corpus
inscriptionum latinarum, CIL
I, 1 (Picture from Wikipedia)

also frequent. Compare also the convention in German to bind together adjacent
nouns as in Gesundheitsreform, as opposed to English that would more often
separate them, as in health reform. Compare finally the ambiguity of punctuation
marks, as in the French word aujourd’hui, ‘today’, which forms a single word, and
l’article, ‘the article’, where the sequence of an article and a noun must be separated
before any further processing.

In corpus processing, text elements are generally called tokens. Tokens include
words and also punctuation, numbers, abbreviations, or any other similar type of
string. Tokens may mix characters and symbols as:

• Numbers: 9,812.345 (English and French from the eighteenth to nineteenth
century century), 9 812,345 (current French and German) 9.812,345 (French
from the nineteenth to early twentieth century);

• Dates: 01/02/2003 (French and British English), 02/01/2003 (US English),
2003/02/01 (Swedish);

• Abbreviations and acronyms: km/h, m.p.h., S.N.C.F.;
• Nomenclatures: A1-B45, /home/pierre/book.tex;
• Destinations: Paris–New York, Las Palmas–Stockholm, Rio de Janeiro–Frankfurt

am Main;
• Telephone numbers: (0046) 46 222 96 40;
• Tables;
• Formulas: E = mc2.

As for the words, the definition of what is a sentence is also tricky. A naïve
definition would be a sequence of words ended by a period. Unfortunately, periods
are also ambiguous. They occur in numbers and terminate abbreviations, as in etc.
or Mr., which makes sentence isolation equally complex. In the next sections, we
examine techniques to break a text into words and sentences, and to count the
words.
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5.2.2 Breaking a Text into Words and Sentences

Tokenization breaks a character stream, that is, a text file or a keyboard input, into
tokens – separated words – and sentences. In Prolog, it results in a list of atoms. For
this paragraph, such a list looks like:

[[’Tokenization’, breaks, a, character, stream, (,),
that, is, (,), a, text, file, or, a, keyboard, input,
(,), into, tokens, -, separated, words, -, and,
sentences, ’.’], [’In’, ’Prolog’, it, results, in,
a, list, of, atoms, ’.’], [’For’, this, paragraph,
(,), such, a, list, looks, like, :]]

An basic format to output or store tokenized texts is to print one word per line
and have a blank line to separate sentences as in:

In
Prolog
,
it
results
in
a
list
of
atoms
.

For
this
paragraph
,
such
a
list
looks
like
:

5.3 Tokenizing Words

We now introduce tokenization techniques using two complementary approaches.
The first one considers the unit boundaries, and the second one their content. We will
then merge them into a more elaborate program in Perl. We will also provide with
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an implementation in Prolog. Perl is generally faster and is well suited to process
large quantities of text.

5.3.1 Using White Spaces

Tokenizing texts using white spaces as word delimiters is the most elementary
technique. It is straightforward in Perl, as shown in the program below: we just
replace sequences of white spaces in the text with a new line, and we consider what
is between two white spaces to be a word. In the program, we use the \s character
class to represent the white space:

$text = <>;
while ($line = <>) {
$text .= $line;

}
$text =~ s/\s+/\n/g;
print $text;

However, this does not work perfectly, and as with the first lines of the Odyssey:

Tell me, O muse, of that ingenious hero who travelled far and wide after he had sacked the
famous town of Troy.

where the commas are not segmented from the words:

Tell
me,
O
muse,
of
that
ingenious
hero
...

5.3.2 Using White Spaces and Punctuation

The previous program failed to tokenize the punctuation. We improve it with a few
regular expressions to separate the punctuation signs from the words and insert
white spaces around them. The punctuation we process corresponds to:

1. The dot: .
2. Other boundary signs: ,;:?!#$%&-/\
3. Brackets: "()[]{}<>, and
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4. Quotes: ‘‘ ‘ ’’ ’.

We then tokenize the text according to white spaces as in the previous section:

$text = <>;
while ($line = <>) {
$text .= $line;

}
$text =~ s/\./ . /g;
$text =~ s/([,;:?!#$%&\-\/\\])/ $1 /g;
$text =~ s/(["\(\)\[\]{}\<\>])/ $1 /g;
$text =~ s/(‘‘|‘|’’|’)/ $1 /g;
# Remove leading spaces
$text =~ s/^ *//g;
$text =~ s/\s+/\n/g;
print $text;

Applying it to our small text results in:

Tell
me
,
O
muse
,
of
that
ingenious
hero
who
travelled
far
...

This second program produces a better result than our first one, although not
perfect. Decimal numbers, for example, would not be properly processed. The
program would match the point of decimal numbers such as 3.14 and insert new
lines between 3 and 14. The apostrophe inside words is another ambiguous sign.
The tokenization of auxiliary and negation contractions in English is unpredictable
without a morphological analysis. It requires a dictionary with all the forms
(Table 5.1).

In French, apostrophes corresponding to the elided e have a regular behavior as in

Si j’aime et d’aventure! si j’ aime et d’ aventure

but there are words like aujourd’hui, ‘today’, that correspond to a single entity and
are not tokenized.
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Table 5.1 Apostrophe tokenization in English

Contracted form Example Tokenization Expanded form

’m I’m I ’m I am
’d we’d we ’d we had or we would
’ll we’ll we ’ll we will
’re you’re you ’re you are
’ve I’ve I ’ve I have
n’t can’t can n’t cannot
’s she’s she ’s she has or she is
’s Pierre’s book Pierre ’s book Possessive marking

5.3.3 Defining Contents

Alternatively, we can explicitly define the content of words. We consider then that
contiguous sequences of alphanumeric characters, including the dash and the quote,
are words, and we isolate them on a single line. We isolate the punctuation symbols
on a single line as well. All the other symbols will mark a separation.

We use the tr operator now and formulate tokenization as:

• If a character is not a letter or a punctuation sign, then replace it by a new
line. Note that the dash character in tr as well as in character classes means
an interval and that we have to quote it to process it in a text.

• If it is a punctuation sign, then have it on a single line (insert it between two new
lines).

• Finally, reduce contiguous sequences of new lines to a single occurrence.

$text = <>;
while ($line = <>) {
$text .= $line;

}
$text =~ tr/a-zåàâäæçéèêëîïôöœùûüÿßA-ZÅÀÂÄÆÇÉÈÊËÎÏÔÖŒÙÛÜŸ’
()\-,.?!:;/\n/cs;

$text =~ s/([,.?!:;()’\-])/\n$1\n/g;
$text =~ s/\n+/\n/g;
print $text;

5.3.4 Tokenizing Texts in Prolog

We can define a Prolog tokenizer with a grammar, where tokens are sequences of
characters of the same class:

• A token is a sequence of alphabetic characters or digits.
• Other characters mark the token termination and consist of carriage returns,

blanks, tabulations, punctuation signs, or other ASCII symbols or commands.



130 5 Counting Words

The tokenization program tokenize/2 takes a list of character codes as input
and returns a list of tokens. The predicate char_type/2 determines the type of a
character code: alphanumerical, blank, or other. It is a built-in SWI Prolog predicate
compatible with the UTF-8 character set (charset). The first tokenize/2 rule
corresponds to the termination condition. The second tokenize/2 rule tests the
type of the head of the list. It skips the blanks. When it reaches an alphanumerical
character in the third rule, it calls make_word/4, which builds a word out of next
letters or digits in the list. When tokenize/2 encounters another symbol in the
fourth rule, it makes a single token out of it.

You can use the read_file/2 predicate from Appendix A, “An Introduction
to Prolog,” to read the character codes from a file.

% tokenize(+CharCodes, -Tokens)
% breaks a list of character codes into a list of tokens.
tokenize([], []).
tokenize([CharCode | RestCodes], Tokens) :- % a blank
char_type(CharCode, space),
!,
tokenize(RestCodes, Tokens).

tokenize([CharCode | CharCodes], [Word | Tokens]) :-
char_type(CharCode, alnum), % an alphanumical
!,
make_word([CharCode | CharCodes], alnum, WordCodes, RestCodes),
name(Word, WordCodes),
tokenize(RestCodes, Tokens).

tokenize([CharCode | CharCodes], [Char | Tokens]) :- % other
!,
name(Char, [CharCode]),
tokenize(CharCodes, Tokens).

% make_word(+CharCodes, +Type, -WordCodes, -RestCodes)
make_word([CharCode1, CharCode2 | CharCodes], alnum,

[CharCode1 | WordCodes], RestCodes) :-
char_type(CharCode2, alnum),
!,
make_word([CharCode2 | CharCodes], alnum, WordCodes,
RestCodes).

make_word([CharCode | RestCodes], alnum, [CharCode],
RestCodes).

5.3.5 Tokenizing Using Classifiers

So far, we have carried out tokenization using rules that we have explicitly defined
and implemented using regular expressions or Prolog. A second option is to use
classifiers such as logistic regression (Sect. 4.9) and to train a tokenizer from a
corpus. Given an input queue of characters, we then formulate tokenization as
a binary classification: is the current character the end of a token or not? If the
classifier predicts a token end, we insert a new line.
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Table 5.2 The features extracted from the second n in Pierre Vinken, the d in old, and the dot in
Nov.. The two classes to learn are inside token and token end

Context Current char. Previous pair Next char. Next pair Class Action

Vinken, n en , , Token end New line
old, d ld , , Token end New line
Nov. v ov . . Inside token Nothing

Before we can train our classifier, we need a corpus and an annotation to mark
the token boundaries. Let us use the OpenNLP format as an example. The Apache
OpenNLP library is an open-source toolkit for natural language processing. It
features a classifier-based tokenizer and has defined an annotation for it (Apache
OpenNLP Development Community 2012). A training corpus consists of a list of
sentences with one sentence per line, where the white spaces are unambiguous token
boundaries. The other token boundaries are marked with the <SPLIT> tag, as in
these two sentences:

Pierre Vinken<SPLIT>, 61 years old<SPLIT>, will join the
board as a nonexecutive director Nov. 29<SPLIT>.

Mr. Vinken is chairman of Elsevier N.V.<SPLIT>, the Dutch
publishing group<SPLIT>.

Note that in the example above, the sentence lengths are too long to fit the size
of the book and we inserted two additional breaks and leading spaces to denote
a continuing sentence. In the corpus file, every new line corresponds to a new
sentence.

Once we have an annotation, we need to define the features we will use for the
classifier. We already used features in Sect. 4.4 in the form of letter frequencies to
classify the language of a text. For the tokenization, we will follow Reynar (1998,
pp. 69–70), who describes a simple feature set consisting of four features:

• The current character,
• The pair formed of the previous and current characters,
• The next character,
• The pair formed of the two next characters.

As examples, Table 5.2 shows the features extracted from three characters in the
sentences above: the second n in Pierre Vinken, the d in old, and the dot in Nov.
From these features, the classifier will a create model and discriminate between the
two classes: inside token and token end.

Before we can learn the classifiers, we need a corpus annotated with the
<SPLIT> tags. We can create one by tokenizing a large text manually – a tedious
task – or by reconstructing a nontokenized text from an already tokenized text. See,
for example, the Penn Treebank (Marcus et al. 1993) for English.

We extract a training data set from the corpus by reading all the characters and
extracting for each character their four features and their class. We then train the
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classifier, for instance, using logistic regression, to create a model. Finally, given a
nontokenized text, we apply the classifier and the model to each character of the text
to decide if it is inside a token or if it is a token end.

5.4 Sentence Segmentation

5.4.1 The Ambiguity of the Period Sign

Sentences usually end with a period, and we will use this sign to recognize
boundaries. However, this is an ambiguous symbol that can also be a decimal point
or appear in abbreviations or ellipses. To disambiguate it, we introduce now two
main lines of techniques identical to those we used for tokenization: rules and
classifiers.

Although in this chapter, we describe sentence segmentation after tokenization,
most practical systems use them in a sequence, where sentence segmentation is the
first step followed by tokenization.

5.4.2 Rules to Disambiguate the Period Sign

We will consider that a period sign either corresponds to a sentence end, a decimal
point, or a dot in an abbreviation. Most of the time, we can recognize these three
cases by examining a limited number of characters to the right and to the left of the
sign. The objective of disambiguation rules is then to describe for each case what
can be the left and right context of a period.

The disambiguation is easier to implement as a two-pass search: the first pass
recognizes decimal numbers or abbreviations and annotates them with a special
marking. The second one runs the detector on the resulting text. In this second pass,
we also include the question and exclamation marks as sentence boundary markers.

We can generalize this strategy to improve the sentence segmentation with
specific rules recognizing dates, percentages, or nomenclatures that can be run as
different processing stages. However, there will remain cases where the program
fails, notably with abbreviations.

5.4.3 Using Regular Expressions

Starting from the most simple rule to identity sentence boundaries, a period
corresponds to a full stop, Grefenstette and Tapanainen (1994) experimented on
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Table 5.3 Recognizing
numbers (After Grefenstette
and Tapanainen (1994))

Fractions, dates [0-9]+(\/[0-9]+)+
Percent ([+\-])?[0-9]+(\.)?[0-9]*%
Decimal numbers ([0-9]+,?)+(\.[0-9]+|[0-9]+)*

Table 5.4 Regular expressions to recognize abbreviations and performance breakdown. The
Correct column indicates the number of correctly recognized instances, Errors indicates the
number of errors introduced by the regular expression, and Full stop indicates abbreviations ending
a sentence where the period is a full stop at the same time (After Grefenstette and Tapanainen
(1994))

Regex Correct Errors Full stop

[A-Za-z]\. 1,327 52 14
[A-Za-z]\.([A-Za-z0-9]\.)+ 570 0 66
[A-Z][bcdfghj-np-tvxz]+\. 1,938 44 26

Totals 3,835 96 106

a set of increasingly complex regular expressions to carry out segmentation. They
evaluated them on the Brown corpus (Francis and Kucera 1982).

About 7 % of the sentences in the Brown corpus contain at least one period,
which is not a full stop. Using their first rule, Grefenstette and Tapanainen could
correctly recognize 93.20 % of the sentences. As a second step, they designed the
set of regular expressions in Table 5.3 to recognize numbers and remove decimal
points from the list of full stops. They raised to 93.78 % the number of correctly
segmented sentences.

Regular expressions in Table 5.3 are designed for English text. French and
German decimal numbers would have a different form as they use a comma as
decimal point and a period or a space as a thousand separator:

([0-9]+(.| )?)*[0-9](,[0-9]+)

Finally, Grefenstette and Tapanainen added regular expressions to recognize
abbreviations. They used three types of patterns:

• A single capital followed by a period as A., B., C.
• A sequence of letters and periods as in U.S., i.e., m.p.h.,
• A capital letter followed by a sequence of consonants as in Mr., St., Ms.

Table 5.4 shows the corresponding regular expressions as well as the number of
abbreviations they recognize and the errors they introduce. Using them together with
the regular expressions to recognize decimal numbers, Grefenstette and Tapanainen
could increase the correct segmentation rate to 97.66 %.

5.4.4 Improving the Tokenizer Using Lexicons

Grefenstette and Tapanainen (1994) further improved their tokenizer by automat-
ically building an abbreviation lexicon from their corpus. To identify potential
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Table 5.5 The features extracted from Nov. and 29. in the example sentences in Sect. 5.3.5. The
two classes to learn are inside sentence and end of sentence

Context Prefix Suffix Previous word Next word Prefix abbrev. Class

Nov. Nov nil director 29. Yes Inside sentence
29. 29 nil Nov. Mr. No End of sentence

abbreviations, they used the following idea: a word ending with a period that is
followed by either a comma, a semicolon, a question mark, or a lowercase letter is
a likely abbreviation. Grefenstette and Tapanainen (1994) applied this idea to their
corpus; however, as they gathered many words that were not abbreviations, they
removed all the strings in the list that appeared without a trailing period somewhere
else in the corpus. They then reached 98.35 %.

Finally, using a lexicon of words and common abbreviations, Mr., Sen., Rep.,
Oct., Fig., pp., etc., they could recognize 99.07 % of the sentences. Mikheev (2002)
describes another efficient method that learns tokenization rules from the set of
ambiguous tokens distributed in a document. While most published experiments
have been conducted on English, Kiss and Strunk (2006) present a multilingual
statistical method that can be trained on unannotated corpora.

5.4.5 Sentence Detection Using Classifiers

As for tokenization, we can use classifiers, such as decision trees or logistic
regression, to segment sentences. The idea is simple: given a period in a text (or
a question or an exclamation mark), classify it as the end of a sentence or not. The
implementation is identical to that in Sect. 5.3.5 and we can use the same corpus:
we just ignore the <SPLIT> tags.

Practically, we need to collect a data set and define the features to associate to
the periods. Reynar and Ratnaparkhi (1997) proposed a method that we describe
here. As corpus, they used the Penn Treebank (Marcus et al. 1993), from which they
extracted all the strings separated by white spaces and containing a period. They
used a compact set of eight features:

1. The characters in the string to the left of the period (the prefix);
2. The character to the right of the period (the suffix);
3. The word to the left of the string;
4. The word to the right of the string;
5. Whether the prefix (resp. suffix) is on a list of abbreviations;
6. Whether the word to the left (resp. to the right) is on a list of abbreviations.

Table 5.5 shows the features for the periods in Nov. and 29. in the example
sentences in Sect. 5.3.5. The first four features are straightforward to extract. We
need a list of abbreviations for the rest. We can build this list automatically using
the method described in Sect. 5.4.4.
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Reynar and Ratnaparkhi (1997) used logistic regression to train their classifica-
tion models and discriminate between the two classes: inside sentence and end of
sentence.

5.5 N -Grams

5.5.1 Some Definitions

The first step of lexical statistics consists in extracting the list of word types or
types, i.e., the distinct words, from a corpus, along with their frequencies. Within
the context of lexical statistics, word types are opposed to word tokens, the sequence
of running words of the corpus. The excerpt from George Orwell’s Nineteen Eighty-
Four:

War is peace
Freedom is slavery
Ignorance is strength

has nine tokens and seven types. The type-to-token ratio is often used as an
elementary measure of a text’s density.

Collocations and language models also use the frequency of pairs of adjacent
words: bigrams, for example, how many of the there are in this text; of word triples:
trigrams; and more generally of fixed sequences of n words: n-grams. In lexical
statistics, single words are called unigrams.

Jelinek (1990) exemplified corpus statistics and trigrams with the sentence

We need to resolve all of the important issues within the next two days

selected from a 90-million-word corpus of IBM office correspondences. Table 5.6
shows each word of this sentence, its rank in the corpus, and other words ranking
before it according to a linear combination of trigram, bigram, and unigram
probabilities. In this corpus, We is the ninth most probable word to begin a sentence.
More likely words are The, This, etc. Following We, need is the seventh most
probable word. More likely bigrams are We are, We will, We the, We would. . . .
Knowing that the words We need have been written, to is the most likely word to
come after them. Similarly, the is the most probable word to follow all of.

5.5.2 A Crash Program to Count Words with Unix

In his famous column, Programming Pearls, Bentley et al. (1986) posed the
following problem:

Given a text file and an integer k, print the k most common words in the file (and the number
of their occurrences) in decreasing frequency.
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Table 5.6 Ranking and
generating words using
trigrams (After Jelinek
(1990))

Word Rank More likely alternatives

We 9 The This One Two A Three Please In
need 7 are will the would also do
to 1
resolve 85 have know do. . .
all 9 the this these problems. . .
of 2 the
the 1
important 657 document question first. . .
issues 14 thing point to. . .
within 74 to of and in that. . .
the 1
next 2 company
two 5 page exhibit meeting day
days 5 weeks years pages months

This problem is especially interesting to us now as it is exactly the output of the
first row in Table 5.6.

Bentley received two solutions for it: one from Donald Knuth, the prestigious
inventor of TEX, and the second in the form of a comment from Doug McIlroy,
the developer of Unix pipelines. While Knuth sent an 8-page program, McIlroy
proposed a compelling Unix shell script of six lines. We reproduce it here (slightly
modified):

1. tr -cs ’A-Za-z’ ’\n’ <input_file |
Tokenize the text in input_file using the Unix tr command. The Unix tr
behaves like the Perl tr operator that we described in Sects. 2.4.5 and 5.3.3.
There will be one word per line, and the output is passed to the next command.

2. tr ’A-Z’ ’a-z’ |
Translate the uppercase characters into lowercase letters and pass the output to
the next command.

3. sort |
Sort the words. The identical words will be grouped together in adjacent lines.

4. uniq -c |
Remove repeated lines. The identical adjacent lines will replaced with one single
line. Each unique line in the output will be preceded by the count of its duplicates
in the input file (-c).

5. sort -rn |
Sort in the reverse (-r) numeric (-n) order. The most frequent words will be
sorted first.

6. head -5
Print the five first lines of the file (the five most frequent words).

The two first tr commands do not take into account possible accented charac-
ters. To correct it, we just need to modify the character list and include accents.
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Nonetheless, we can apply the script as it is to English texts. On the novel Nineteen
Eighty-Four (Orwell 1949), the output is:

6518 the
3491 of
2576 a
2442 and
2348 to

In addition, it is easy to extend the counts to bigrams. We need first to create a
file, where each line contains a bigram: the words at index i and i C 1 on the same
line separated with a blank. We use the Unix commands:

1. tr -cs ’A-Za-z’ ’\n’ <input_file | tr ’A-Za-z’ > tok-
en_file Tokenize the input and create a file with the unigrams.

2. tail +2 < token_file > next_token_file
Create a second unigram file starting at the second word of the first tokenized file
(+2).

3. paste token_file next_token_file |
Merge the lines (the tokens) pairwise. Each line contains the words at index i and
i C 1 separated with a tabulation.

4. And we count the bigrams as in the previous script.

5.5.3 Counting Unigrams in Prolog

As with Unix, counting unigrams in Prolog consists simply in tokenizing a text,
sorting the words, and counting the number of times a type occurs in the corpus.
We will not use the Prolog predefined sort/2 predicate because it removes the
duplicates. Instead, we can use a predicate implementing the quicksort algorithm or
msort/2 in some Prologs.

The predicate count_duplicates/2 counts the duplicates. It takes a sorted
list of words as input and returns a list of pairs with the frequency of each word
[N, Word] in the output list:

count_duplicates(OrderedList, CountedList) :-
count_duplicates(OrderedList, 1, [], CountedListRev),
reverse(CountedListRev, CountedList).

count_duplicates([X, X | Ordered], N, Counting, Counted) :-
N1 is N + 1,
!,
count_duplicates([X | Ordered], N1, Counting, Counted).

count_duplicates([X | Ordered], N, Counting, Counted) :-
!,
count_duplicates(Ordered, 1, [[N, X] | Counting], Counted).

count_duplicates([], _, L, L).
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We get the unigrams with their counts with:

?- read_file(myFile, CharacterList),
tokenize(CharacterList, TokenList),
msort(TokenList, OrderedTokens),
count_duplicates(OrderedTokens, UnigramList).

5.5.4 Counting Unigrams with Perl

Counting unigrams is straightforward and very fast with Perl. We can obtain them
with the following algorithm:

1. Tokenize the text file.
2. Count the words using a hash table.
3. Possibly, sort the words according to their alphabetical order and numerical

ranking.

For the first step, we apply any tokenizer from Sect. 5.3 and produce a tokenized
file as output. We use the split function to assign each word of the text to the
elements of an array. As we saw in Chap. 2, split takes two arguments: a regular
expression, which describes a delimiter, and a string, which is split everywhere the
delimiter matches. The resulting fragments are assigned sequentially to an array.
Let $text be a big string containing the whole text with one word per line. The
instruction:

@words = split(/\n/, $text);

assigns the first line and hence the first word to $words[0], the second word to
$words[1], and so on. A useful generalization of this instruction is

@words = split(/\s+/, $text);

which splits the text at each sequence of white space characters.
Then, we use a hash table or associative array. Instead of being indexed by

consecutive numbers, as in classical arrays, hash tables are indexed by strings. The
next three lines

$wordcount{"a"} = 21;
$wordcount{"And"} = 10;
$wordcount{"the"} = 18;

create the hash table $wordcountwith three indices called the keys: a, And, the,
whose values are 21, 10, and 18. Hash keys can be numbers as well as strings. We
refer to the whole array using the notation %wordcount. The instruction keys
returns the keys of the array as in

keys %wordcount
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A hash entry is created when a value is assigned to it. Its existence can be tested
using the exists Boolean function.

The counting program scans the @words array and increments the frequency of
the words as they occur. We finally introduce two new instructions and functions.
The instruction foreach item (list) iterates over the items of an array, and
sort(array) returns a sorted array. The complete program is:

$text = <>;
while ($line = <>) {
$text .= $line;

}
$text =~ s/\n+/\n/g;
@words = split(/\n/, $text);
for ($i = 0; $i <= $#words; $i++) {
if (!exists($frequency{$words[$i]})) {
$frequency{$words[$i]} = 1;

} else {
$frequency{$words[$i]}++;

}
}
foreach $word (sort keys %frequency){
print "$frequency{$word} $word\n";

}

5.5.5 Counting Bigrams with Perl

We count bigrams and n-grams just as we did with unigrams. The only difference is
that we create an array of bigrams by concatenating the adjacent words. The input
is a tokenized file, and the following Perl program enables us to obtain them:

$text = <>;
while ($line = <>) {
$text .= $line;

}
$text =~ s/\n+/\n/g;
@words = split(/\n/, $text);
for ($i = 0; $i < $#words; $i++) {
$bigrams[$i] = $words[$i] . " " . $words[$i + 1];

}
for ($i = 0; $i < $#bigrams; $i++) {
if (!exists($frequency_bigrams{$bigrams[$i]})) {
$frequency_bigrams{$bigrams[$i]} = 1;

} else {
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$frequency_bigrams{$bigrams[$i]}++;
}

}
foreach $bigram (sort keys %frequency_bigrams) {
print "$frequency_bigrams{$bigram} $bigram \n";

}

5.6 Probabilistic Models of a Word Sequence

5.6.1 The Maximum Likelihood Estimation

We observed in Table 5.6 that some word sequences are more likely than others.
Using a statistical model, we can quantify these observations. The model will enable
us to assign a probability to a word sequence as well as to predict the next word to
follow the sequence.

Let S D w1;w2; : : : ;wi ; : : : ;wn be a word sequence. Given a training corpus,
an intuitive estimate of the probability of the sequence, P.S/, is the relative
frequency of the string w1;w2; : : : ;wi ; : : : ;wn in the corpus. This estimate is called
the maximum likelihood estimate (MLE):

PMLE.S/ D C.w1; : : : ;wn/

N
;

where C.w1; : : : ;wn/ is the frequency or count of the string w1;w2; : : : ;wi ; : : : ;wn
in the corpus, and N is the total number of strings of length n.

Most of the time, however, it is impossible to obtain this estimate. Even when
corpora reach billions of words, they have a limited size, and it is unlikely that we
can always find the exact sequence we are searching. We can try to simplify the
computation and decompose P.S/ a step further using the chain rule as:

P.S/ D P.w1; : : : ;wn/;
D P.w1/P.w2jw1/P.w3jw1;w2/ : : : P.wnjw1; : : : ;wn�1/;
D

nQ

iD1
P.wi jw1; : : : ;wi�1/:

The probability P.It;was; a; bright; cold; day; in;April/ from Nineteen Eighty-
Four by George Orwell corresponds then to the probability of having It to begin
the sentence, then was knowing that we have It before, then a knowing that we
have It was before, and so on, until the end of the sentence. It yields the product of
conditional probabilities:

P.S/ D P.It/ � P.wasjI t/ � P.ajI t;was/ � P.brightjIt;was; a/ � : : :
�P.ApriljIt;was; a; bright; : : : ; in/:
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To estimate P.S/, we need to know unigram, bigram, trigram, so far, so good,
but also 4-gram, 5-gram, and even 8-gram statistics. Of course, no corpus is big
enough to produce them. A practical solution is then to limit the n-gram length to 2
or 3, and thus to approximate them to bigrams:

P.wi jw1;w2; : : : ;wi�1/ 	 P.wi jwi�1/;

or trigrams:

P.wi jw1;w2; : : : ;wi�1/ 	 P.wi jwi�2;wi�1/:

Using a trigram language model, P.S/ is approximated as:

P.S/ 	 P.It/ � P.PwasjIt/ � P.ajIt;was/ � P.brightjwas; a/ � : : :
�P.Apriljday; in/:

Using a bigram grammar, the general case of a sentence probability is:

P.S/ 	 P.w1/
nY

iD2
P.wi jwi�1/;

with the estimate

PMLE.wi jwi�1/ D C.wi�1;wi /
P

w
C.wi�1;w/

D C.wi�1;wi /
C.wi�1/

:

Similarly, the trigram maximum likelihood estimate is:

PMLE.wi jwi�2;wi�1/ D C.wi�2;wi�1;wi /
C.wi�2;wi�1/

:

And the general case of n-gram estimation is:

PMLE.wiCnjwiC1; : : : ;wiCn�1/ D C.wiC1; : : : ;wiCn/
P

w
C.wiC1; : : : ;wiCn�1;w/

;

D C.wiC1; : : : ;wiCn/
C.wiC1; : : : ;wiCn�1/

:

As the probabilities we obtain are usually very low, it is safer to represent them
as a sum of logarithms in practical applications. We will then use:

logP.S/ 	 logP.w1/C
nX

iD2
logP.wi jwi�1/;
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instead of P.S/. Nonetheless, in the following sections, as our example corpus is
very small, we will compute the probabilities using products.

5.6.2 Using ML Estimates with Nineteen Eighty-Four

Training and Testing the Language Model

Before computing the probability of a word sequence, we must train the language
model. The corpus used to derive the n-gram frequencies is classically called the
training set, and the corpus on which we apply the model, the test set. Both sets
should be distinct. If we apply a language model to a word sequence, which is part of
the training corpus, its probability will be biased to a higher value, and thus will be
inaccurate. The training and test sets can be balanced or not, depending on whether
we want them to be specific of a task or more general.

For some models, we need to optimize parameters in order to obtain the best
results. Again, it would bias the results if at the same time, we carry out the
optimization on the test set and run the evaluation on it. For this reason some models
need a separate development set to fine-tune their parameters.

In some cases, especially with small corpora, a specific division between training
and test sets may have a strong influence on the results. It is then preferable to
apply the training and testing procedure several times with different sets and average
the results. The method is to randomly divide the corpus into two sets. We learn
the parameters from the training set, apply the model to the test set, and repeat
the process with a new random division, for instance, ten times. This method is
called cross-validation, or ten-fold cross-validation if we repeat it ten times. Cross-
validation smoothes the impact of a specific partition of the corpus.

Marking up the Corpus

Most corpora use some sort of markup language. The most common markers of N -
gram models are the sentence delimiters <s> to mark the start of a sentence and
</s> at its end. For example:

<s> It was a bright cold day in April </s>

Depending on the application, both symbols can be counted in the n-gram
frequencies just as the other tokens or can be considered as context cues. Context
cues are vocabulary items that appear in the condition part of the probability but
are never predicted – they never occur in the right part. In many models, <s> is a
context cue and </s> is part of the vocabulary. We will adopt this convention in the
next examples.
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The Vocabulary

We have defined language models that use a predetermined and finite set of
words. This is never the case in reality, and the models will have to handle out-
of-vocabulary (OOV) words. Training corpora are typically of millions, or even
billions, of words. However, whatever the size of a corpus, it will never have a
complete coverage of the vocabulary. Some words that are unseen in the training
corpus are likely to occur in the test set. In addition, frequencies of rare words will
not be reliable.

There are two main types of methods to deal with OOV words:

• The first method assumes a closed vocabulary. All the words both in the training
and the test sets are known in advance. Depending on the language model
settings, any word outside the vocabulary will be discarded or cause an error.
This method is used in some applications, like voice control of devices.

• The open vocabulary makes provisions for new words to occur with a specific
symbol, <UNK>, called the unknown token. All the OOV words are mapped to
<UNK>, both in the training and test sets.

The vocabulary itself can come from an external dictionary. It can also be
extracted directly from the training set. In this case, it is common to exclude the
rare words, notably those seen only once – the hapax legomena. The vocabulary
will then consist of the most frequent types of the corpus, for example, the 20,000
most frequent types. The other words, unseen or with a frequency lower than a cutoff
value, 1, 2, or up to 5, will be mapped to <UNK>.

Computing a Sentence Probability

We trained a bigram language model on a very small corpus consisting of the
three chapters of Nineteen Eighty-Four. We kept the appendix, “The Principles of
Newspeak,” as the test set and we selected this sentence from it:

<s> A good deal of the literature of the past was, indeed, already being transformed in this
way </s>

We first normalized the text: we created a file with one sentence per line. We
inserted automatically the delimiters <s> and </s>. We removed the punctuation,
parentheses, quotes, stars, dashes, tabulations, and double white spaces. We set all
the words in lowercase letters. We counted the words, and we produced a file with
the unigram and bigram counts.

The training corpus has 115,212 words; 8,635 types, including 3,928 hapax
legomena; and 49,524 bigrams, where 37,365 bigrams have a frequency of 1.
Table 5.7 shows the unigram and bigram frequencies for the words of the test
sentence.

All the words of the sentence have been seen in the training corpus, and we can
compute a probability estimate of it using the unigram relative frequencies:
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Table 5.7 Frequencies of unigrams and bigrams. We excluded the <s> symbols from the word
counts

# PMLE wi�1; PMLE

wi C.wi / words .wi / wi C.wi�1;wi / C.wi�1/ .wi jwi�1/
<s> 7;072 – – – –
a 2;482 108,140 0.023 <s> a 133 7;072 0.019
good 53 108,140 0.00049 a good 14 2;482 0.006
deal 5 108,140 4:62� 10�5 good deal 0 53 0.0
of 3;310 108,140 0.031 deal of 1 5 0.2
the 6;248 108,140 0.058 of the 742 3;310 0.224
literature 7 108,140 6:47� 10�5 the literature 1 6;248 0.00016
of 3;310 108,140 0.031 literature of 3 7 0.429
the 6;248 108,140 0.058 of the 742 3;310 0.224
past 99 108,140 0.00092 the past 70 6;248 0.011
was 2;211 108,140 0.020 past was 4 99 0.040
indeed 17 108,140 0.00016 was indeed 0 2;211 0.0
already 64 108,140 0.00059 indeed already 0 17 0.0
being 80 108,140 0.00074 already being 0 64 0.0
transformed 1 108,140 9:25� 10�6 being transformed 0 80 0.0
in 1;759 108,140 0.016 transformed in 0 1 0.0
this 264 108,140 0.0024 in this 14 1;759 0.008
way 122 108,140 0.0011 this way 3 264 0.011
</s> 7;072 108,140 0.065 way </s> 18 122 0.148

P.S/ 	 P.a/ � P.good/ � : : : � P.way/ � P.<=s>/;
	 3:67 � 10�48:

As P.<s>/ is a constant that would scale all the sentences by the same factor,
whether we use unigrams or bigrams, we excluded it from the P.S/ computation.

The bigram estimate is defined as:

P.S/ 	 P.aj<s>/ � P.goodja/ � : : : � P.wayjthis/ � P.<=s>jway/:

and has a zero probability. This is due to sparse data: the fact that the corpus is not
big enough to have all the bigrams covered with a realistic estimate. We shall see in
the next section how to handle them.

5.7 Smoothing N -Gram Probabilities

5.7.1 Sparse Data

The approach using the maximum likelihood estimation has an obvious disad-
vantage because of the unavoidably limited size of the training corpora. Given



5.7 Smoothing N -Gram Probabilities 145

a vocabulary of 20,000 types, the potential number of bigrams is 20;0002 D
400;000;000, and with trigrams, it amounts to the astronomic figure of 20;0003 D
8;000;000;000;000. No corpus yet has the size to cover the corresponding word
combinations.

Among the set of potential n-grams, some are almost impossible, except as
random sequences generated by machines; others are simply unseen in the corpus.
This phenomenon is referred to as sparse data, and the maximum likelihood
estimator gives no hint on how to estimate their probability.

In this section, we introduce smoothing techniques to estimate probabilities of
unseen n-grams. As the sum of probabilities of all the n-grams of a given length
is 1, smoothing techniques also have to rearrange the probabilities of the observed
n-grams. Smoothing allocates a part of the probability mass to the unseen n-grams
that, as a counterpart, it shifts – or discounts – from the other n-grams.

5.7.2 Laplace’s Rule

Laplace’s rule (Laplace 1820, p. 17) is probably the oldest published method to cope
with sparse data. It just consists in adding one to all the counts. For this reason, some
authors also call it the add-one method.

Laplace wanted to estimate the probability of the sun to rise tomorrow and he
imagined this rule: he set both event counts, rise and not rise, arbitrarily to one, and
he incremented them with the corresponding observations. From the beginning of
time, humans had seen the sun rise every day. Laplace derived the frequency of this
event from what he believed to be the oldest epoch of history: five thousand years
or 1,826,213 days. As nobody observed the sun not rising, he obtained the chance
for the sun to rise tomorrow of 1,826,214 to 1.

Laplace’s rule states that the frequency of unseen n-grams is equal to 1 and the
general estimate of a bigram probability is:

PLaplace.wi jwi�1/ D C.wi�1;wi /C 1
P

w
.C.wi�1;w/C 1/ D

C.wi�1;wi /C 1
C.wi�1/C Card.V /

;

where Card.V / is the number of word types. The denominator correction is
necessary to have the probability sum equal to 1.

With Laplace’s rule, we can use bigrams to compute the sentence probability
(Table 5.8):

PLaplace.S/ 	 P.aj<s>/ � P.goodja/ � : : : � P.<=s>jway/;
	 4:62 � 10�57:

Laplace’s method is easy to understand and implement. It has an obvious
drawback however: it shifts an enormous mass of probabilities to the unseen
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Table 5.8 Frequencies of bigrams using Laplace’s rule

wi�1;wi C.wi�1;wi /C 1 C.wi�1/C Card.V / PLap.wi jwi�1/
<s> a 133 + 1 7,072 + 8,635 0.0085
a good 14 + 1 2,482 + 8,635 0.0013
good deal 0 + 1 53 + 8,635 0.00012
deal of 1 + 1 5 + 8,635 0.00023
of the 742 + 1 3,310 + 8,635 0.062
the literature 1 + 1 6,248 + 8,635 0.00013
literature of 3 + 1 7 + 8,635 0.00046
of the 742 + 1 3,310 + 8,635 0.062
the past 70 + 1 6,248 + 8,635 0.0048
past was 4 + 1 99 + 8,635 0.00057
was indeed 0 + 1 2,211 + 8,635 0.000092
indeed already 0 + 1 17 + 8,635 0.00012
already being 0 + 1 64 + 8,635 0.00011
being transformed 0 + 1 80 + 8,635 0.00011
transformed in 0 + 1 1 + 8,635 0.00012
in this 14 + 1 1,759 + 8,635 0.0014
this way 3 + 1 264 + 8,635 0.00045
way </s> 18 + 1 122 + 8,635 0.0022

n-grams and gives them a considerable importance. The frequency of the unlikely
bigram the of will be 1, a quarter of the much more common this way.

The discount value is the ratio between the smoothed frequencies and their actual
counts in the corpus. The bigram this way has been discounted by 0:011=0:00045 D
24:4 to make place for the unseen bigrams. This is unrealistic and shows the major
drawback of this method. For this small corpus, Laplace’s rule applied to bigrams
has a result opposite to what we wished. It has not improved the sentence probability
over the unigrams. This would mean that a bigram language model is worse than
words occurring randomly in the sentence.

If adding 1 is too much, why not try less, for instance, 0.5? This is the idea of
Lidstone’s rule. This value is denoted �. The new formula is then:

PLidstone.wi jwi�1/ D C.wi�1;wi /C �
C.wi�1/C �Card.V /

;

which, however, is not a big improvement.

5.7.3 Good–Turing Estimation

The Good–Turing estimation (Good 1953) is one of the most efficient smoothing
methods. As with Laplace’s rule, it reestimates the counts of the n-grams observed
in the corpus by discounting them, and it shifts the probability mass it has shaved
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to the unseen bigrams. The discount factor is variable, however, and depends on
the number of times a n-gram has occurred in the corpus. There will be a specific
discount value to n-grams seen once, another one to bigrams seen twice, a third one
to those seen three times, and so on.

Let us denote Nc the number of n-grams that occurred exactly c times in the
corpus. N0 is the number of unseen n-grams, N1 the number of n-grams seen once,
N2 the number of n-grams seen twice, and so on. If we consider bigrams, the value
N0 is Card.V /2 minus all the bigrams we have seen.

The Good–Turing method reestimates the frequency of n-grams occurring c
times using the formula:

c� D .c C 1/E.NcC1/
E.Nc/

;

where E.x/ denotes the expectation of the random variable x. This formula is
usually approximated as:

c� D .c C 1/NcC1
Nc

:

To understand how this formula was designed, let us take the example of the
unseen bigrams with c D 0. Let us suppose that we draw a sequence of bigrams to
build our training corpus, and the last bigram we have drawn was unseen before.
From this moment, there is one occurrence of it in the training corpus and the
count of bigrams in the same case is N1. Using the maximum likelihood estimation,
the probability to draw such an unseen bigram is then the count of bigrams seen
once divided by the total count of the bigrams seen so far: N1=N . We obtain the
probability to draw one specific unseen bigram by dividing this term by the count of
unseen bigrams:

1

N
� N1
N0
:

Hence, the Good–Turing reestimated count of an unseen n-gram is c� D N1

N0
.

Similarly, we would have c� D 2N2

N1
for an n-gram seen once in the training corpus.

The three chapters in Nineteen Eighty-Four contain 37,365 unique bigrams and
5,820 bigrams seen twice. Its vocabulary of 8,635 words generates 8;6352 D
74,563,225 bigrams, of which 74,513,701 are unseen. The Good–Turing method
reestimates the frequency of each unseen bigram to 37;365=74;513;701 D 0:0005,
and unique bigrams to 2 � .5;820=37;365/ D 0:31. Table 5.9 shows the complete
the reestimated frequencies for the n-grams up to 9.

In practice, only high values of Nc are reliable, which correspond to low values
of c. In addition, above a certain threshold, most frequencies of frequency will be
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Table 5.9 The reestimated
frequencies of the bigrams

Frequency of occurrence Nc c�

0 74;513;701 0:0005

1 37;365 0:31

2 5;820 1:09

3 2;111 2:02

4 1;067 3:37

5 719 3:91

6 468 4:94

7 330 6:06

8 250 6:44

9 179 8:94

equal to zero. Therefore, the Good–Turing estimation is applied for c < k, where k
is a constant set to 5, 6, . . . , or 10. Other counts are not reestimated. See Katz (1987)
for the details.

The probability of a n-gram is given by the formula:

PGT.w1; : : : ;wn/ D c�.w1; : : : ;wn/
N

;

where c� is the reestimated count of w1 : : :wn, and N the original count of n-grams
in the corpus. The conditional frequency is

PGT.wnjw1; : : : ;wn�1/ D c�.w1; : : : ;wn/
C.w1; : : : ;wn�1/

:

Table 5.10 shows the conditional probabilities, where only frequencies less than 10
have been reestimated. The sentence probability using bigrams is 2:56�10�50. This
is better than with Laplace’s rule, but as the corpus is very small, still greater than
the unigram probability.

5.8 Using N -Grams of Variable Length

In the previous section, we used smoothing techniques to reestimate the probability
of n-grams of constant length, whether they occurred in the training corpus or not.
A property of these techniques is that they assign the same probability to all the
unseen n-grams.

Another strategy is to rely on the frequency of observed sequences but of lesser
length: n�1, n�2, and so on. As opposed to smoothing, the estimate of each unseen
n-gram will be specific to the words it contains. In this section, we introduce two
techniques: the linear interpolation and Katz’s back-off model.
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Table 5.10 The conditional frequencies using the Good–Turing method. We have not reestimated
the frequencies when they are greater than 9

wi�1;wi C.wi�1;wi / c�.wi�1;wi / C.wi�1/ PGT.wi jwi�1/
<s> a 133 133 7;072 0.019
a good 14 14 2;482 0.006
good deal 0 0.0005 53 9:46� 10�6

deal of 1 0.31 5 0.062
of the 742 742 3;310 0.224
the literature 1 0.31 6;248 4:99� 10�5

literature of 3 2.02 7 0.29
of the 742 742 3;310 0.224
the past 70 70 6;248 0.011
past was 4 3.37 99 0.034
was indeed 0 0.0005 2;211 2:27� 10�7

indeed already 0 0.0005 17 2:95� 10�5

already being 0 0.0005 64 7:84� 10�6

being transformed 0 0.0005 80 6:27� 10�6

transformed in 0 0.0005 1 0.00050
in this 14 14 1;759 0.008
this way 3 2.02 264 0.0077
way </s> 18 18 122 0.148

5.8.1 Linear Interpolation

Linear interpolation, also called deleted interpolation (Jelinek and Mercer 1980),
combines linearly the maximum likelihood estimates from length 1 to n. For
trigrams, it corresponds to:

PInterpolation.wnjwn�2;wn�1/ D �3PMLE.wnjwn�2;wn�1/C
�2PMLE.wnjwn�1/C �1PMLE.wn/;

where 0 � �i � 1 and
3P

iD1
�i D 1.

The values can be constant and set by hand, for instance, �3 D 0:6, �2 D 0:3,
and �1 D 0:1. They can also be trained and optimized from a corpus (Jelinek 1997).

Table 5.11 shows the interpolated probabilities of bigrams with �2 D 0:7 and
�1 D 0:3. The sentence probability using these interpolations is 9:46 � 10�45.

We can now understand why bigram we the is ranked so high in Table 5.6 after we
are and we will. Although it can occur in English, as in the American constitution,
We the people. . . , it is not a very frequent combination. In fact, the estimation
has been obtained with an interpolation where the term �1PMLE.the/ boosted the
bigram to the top because of the high frequency of the.
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Table 5.11 Interpolated probabilities of bigrams using the formula �2PMLE.wi jwi�1/ C
�1PMLE.wi /, �2 D 0:7, and �1 D 0:3. The total number of words is 108,140

wi�1;wi C.wi�1;wi / C.wi�1/ PMLE.wi jwi�1/ PMLE.wi / PInterp.wi jwi�1/
<s> a 133 7;072 0.019 0.023 0.020
a good 14 2;482 0.006 0.00049 0.0041
good deal 0 53 0.0 4:62� 10�5 1:38� 10�5

deal of 1 5 0.2 0.031 0.149
of the 742 3;310 0.224 0.058 0.174
the literature 1 6;248 0.00016 6:47� 10�5 0.000131
literature of 3 7 0.429 0.031 0.309
of the 742 3;310 0.224 0.058 0.174
the past 70 6;248 0.011 0.00092 0.00812
past was 4 99 0.040 0.020 0.0344
was indeed 0 2;211 0.0 0.00016 4:71� 10�5

indeed already 0 17 0.0 0.00059 0.000177
already being 0 64 0.0 0.00074 0.000222
being transformed 0 80 0.0 9:25� 10�6 2:77� 10�6

transformed in 0 1 0.0 0.016 0.00488
in this 14 1;759 0.008 0.0024 0.0063
this way 3 264 0.011 0.0011 0.00829
way </s> 18 122 0.148 0.065 0.123

5.8.2 Back-Off

The idea of the back-off model is to use the frequency of the longest available n-
grams, and if no n-gram is available to back off to the (n � 1)-grams, and then to
(n�2)-grams, and so on. If n equals 3, we first try trigrams, then bigrams, and finally
unigrams. For a bigram language model, the back-off probability can be expressed
as:

PBackoff.wi jwi�1/ D
(
P.wi jwi�1/; if C.wi�1;wi / ¤ 0;
˛P.wi /; otherwise:

So far, this model does not tell us how to estimate the n-gram probabilities to the
right of the formula. A first idea would be to use the maximum likelihood estimate
for bigrams and unigrams. With ˛ D 1, this corresponds to:

PBackoff.wi jwi�1/ D

8
<̂

:̂

PMLE.wi jwi�1/ D C.wi�1;wi /
C.wi�1/

; if C.wi�1;wi / ¤ 0;

PMLE.wi / D C.wi /

#words
; otherwise:

and Table 5.12 shows the probability estimates we can derive from our small corpus.
They yield a sentence probability of 2:11 � 10�40 for our example.
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Table 5.12 Probability estimates using an elementary backoff technique

wi�1;wi C.wi�1;wi / C.wi / PBackoff.wi jwi�1/
<s> 7;072 —
<s> a 133 2;482 0.019
a good 14 53 0.006
good deal 0 backoff 5 4:62� 10�5

deal of 1 3;310 0.2
of the 742 6;248 0.224
the literature 1 7 0.00016
literature of 3 3;310 0.429
of the 742 6;248 0.224
the past 70 99 0.011
past was 4 2;211 0.040
was indeed 0 backoff 17 0.00016
indeed already 0 backoff 64 0.00059
already being 0 backoff 80 0.00074
being transformed 0 backoff 1 9:25� 10�6

transformed in 0 backoff 1;759 0.016
in this 14 264 0.008
this way 3 122 0.011
way </s> 18 7;072 0.148

This back-off technique is relatively easy to implement and Brants et al. (2007)
applied it to 5-grams on a corpus of three trillion tokens with a back-off factor
˛ D 0:4. They used the recursive definition:

PBackoff.wi jwi�k; : : : ;wi�1/

D
(
PMLE.wi jwi�k; : : : ;wi�1/; if C.wi�k; : : : ;wi / ¤ 0;
˛PBackoff.wi jwi�kC1; : : : ;wi�1/; otherwise:

However, the result is not a probability as the sum of all the probabilities,P
wi
P .wi jwi�1/, can be greater than 1. In the next section, we describe Katz’s

(1987) back-off model that provides an efficient and elegant solution to this problem.

5.8.3 Katz’s Back-Off Model

As with linear interpolation in Sect. 5.8.1, back-off combines n-grams of variable
length while keeping a probability sum of 1. This means that for a bigram language
model, we need to discount the bigram estimates to make room for the unigrams
and then weight these unigrams to ensure that the sum of probabilities is equal to 1.
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This is precisely the definition of Katz’s model, where Katz (1987) replaced the
maximum likelihood estimates for bigrams with Good–Turing’s estimates:

PKatz.wi jwi�1/ D
( QP .wi jwi�1/; if C.wi�1;wi / ¤ 0;
˛P.wi /; otherwise:

We first use the Good–Turing estimates to discount the observed bigrams,

QP .wi jwi�1/ D c�.wi�1;wi /
C.wi�1/

;

for instance, with the values in Tables 5.9 and 5.10 for our sentence. We then assign
the remaining probability mass to the unigrams.

To compute ˛, we add the two terms of Katz’s back-off model, the discounted
probabilities of the observed bigrams, and, for the unseen bigrams, the weighted
unigram probabilities:

X

wi

PKatz.wi jwi�1/ D
X

wi ;C.wi�1;wi />0

QP .wi jwi�1/C ˛
X

wi ;C.wi�1;wi /D0
PMLE.wi /;

D 1:

We know that this sum equals 1, and we derive ˛ from it:

˛ D ˛.wi�1/ D
1 � P

wi ;C.wi�1;wi />0

QP .wi jwi�1/
P

wi ;C.wi�1;wi /D0
PMLE.wi /

:

For trigrams or n-grams of higher order, we apply Katz’s model recursively:

PKatz.wi jwi�2;wi�1/

D
( QP .wi jwi � 2;wi� 1/; if C.wi�2;wi�1;wi / ¤ 0;
˛.wi�2;wi�1/PKatz.wi jwi�1/; otherwise:

5.9 Industrial N -Grams

The Internet made it possible to put together collections of n-gram of a size
unimaginable a few years ago. Examples of such collections include the Google
n-grams (Franz and Brants 2006) and Microsoft Web n-gram service (Huang et al.
2010; Wang et al. 2010).
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The Google n-grams were extracted from a corpus of one trillion words and
include unigram, bigram, trigram, 4-gram, and 5-gram counts. The excerpt below
shows an example of trigram counts:

ceramics collectables collectibles 55
ceramics collectables fine 130
ceramics collected by 52
ceramics collectible pottery 50
ceramics collectibles cooking 45
ceramics collection , 144
ceramics collection . 247
ceramics collection </S> 120
ceramics collection and 43

Both companies, Google and Microsoft, use these n-grams in a number of
applications and made them available to the public as well.

5.10 Quality of a Language Model

5.10.1 Intuitive Presentation

We can compute the probability of sequences of any length or of whole texts. As
each word in the sequence corresponds to a conditional probability less than 1, the
product will naturally decrease with the length of the sequence. To make sense, we
normally average it by the number of words in the sequence and extract its nth root.
This measure, which is a sort of a per-word probability of a sequence L, is easier to
compute using a logarithm:

H.L/ D �1
n

log2 P.w1; : : : ;wn/:

We have seen that trigrams are better predictors than bigrams, which are better
than unigrams. This means that the probability of a very long sequence computed
with a bigram model will normally be higher than with a unigram one. The log
measure will then be lower.

Intuitively, this means that the H.L/ measure will be a quality marker for
a language model where lower numbers will correspond to better models. This
intuition has mathematical foundations, as we will see in the two next sections.

5.10.2 Entropy Rate

We used entropy with characters in Chap. 3. We can use it with any symbols such
as words, bigrams, trigrams, or any n-grams. When we normalize it by the length of
the word sequence, we define the entropy rate:
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H.L/ D �1
n

X

w1;:::;wn2L
p.w1; : : : ;wn/ log2 p.w1; : : : ;wn/;

where L is the set of all possible sequences of length n.
It has been proven that when n ! 1 or n is very large and under certain

conditions, we have

H.L/ D lim
n!1�

1

n

X

w1;:::;wn2L
p.w1; : : : ;wn/ log2 p.w1; : : : ;wn/;

D lim
n!1�

1

n
log2 p.w1; : : : ;wn/;

which means that we can computeH.L/ from a very long sequence, ideally infinite,
instead of summing of all the sequences of a definite length.

5.10.3 Cross Entropy

We can also use cross entropy, which is measured between a text, called the language
and governed by an unknown probability p, and a language model m. Using the
same definitions as in Chap. 3, the cross entropy of m on p is given by:

H.p;m/ D �1
n

X

w1;:::;wn2L
p.w1; : : : ;wn/ log2 m.w1; : : : ;wn/:

As for the entropy rate, it has been proven that, under certain conditions

H.p;m/ D lim
n!1�

1

n

X

w1;:::;wn2L
p.w1; : : : ;wn/ log2 m.w1; : : : ;wn/;

D lim
n!1�

1

n
log2 m.w1; : : : ;wn/:

In applications, we generally compute the cross entropy on the complete word
sequence of a test set, governed by p, using a bigram or trigram model, m, derived
from a training set.

In Chap. 3, we saw the inequality H.p/ � H.p;m/. This means that the cross
entropy will always be an upper bound of H.p/. As the objective of a language
model is to be as close as possible to p, the best model will be the one yielding
the lowest possible value. This forms the mathematical background of the intuitive
presentation in Sect. 5.10.1.
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5.10.4 Perplexity

The perplexity of a language model is defined as:

PP.p;m/ D 2H.p;m/:

Perplexity is interpreted as the average branching factor of a word: the statisti-
cally weighted number of words that follow a given word. Perplexity is equivalent
to entropy. The only advantage of perplexity is that it results in numbers more
comprehensible for human beings. It is therefore more popular to measure the
quality of language models. As is the case for entropy, the objective is to minimize
it: the better the language model, the lower the perplexity.

5.11 Collocations

Collocations are recurrent combinations of words. Palmer (1933), one of the first to
study them comprehensively, defined them as:

succession[s] of two or more words that must be learnt as an integral whole and not pieced
together from its component parts

or as comings-together-of-words. Collocations are ubiquitous and arbitrary in
English, French, German, and other languages. Simplest collocations are fixed
n-grams such as The White House and Le Président de la République. Other
collocations involve some morphological or syntactic variation such as the one
linking make and decision in American English: to make a decision, decisions to
be made, make an important decision.

Collocations underlie word preferences that most of the time cannot easily be
explained by a syntactic or semantic reasoning: they are merely resorting to usage.
As a teacher of English in Japan, Palmer (1933) noted their importance for language
learners. Collocations are in the mind of a native speaker. S/he can recognize them
as valid. On the contrary, nonnative speakers may make mistakes when they are
not aware of them or try to produce word-for-word translations. For this reason,
many second language learners’ dictionaries describe most frequent associations.
In English, the Oxford Advanced Learner’s Dictionary, The Longman Dictionary
of Contemporary English, and The Collins COBUILD carefully list verbs and
prepositions or particles commonly associated such as phrasal verbs set up, set off,
and set out.

Lexicographers used to identify collocations by introspection and by observing
corpora, at the risk of forgetting some of them. Statistical tests can automatically
extract associated words or “sticky” pairs from raw corpora. We introduce three of
these tests in this section together with programs in Perl to compute them.
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Table 5.13 Collocates of surgery extracted from the Bank of English using the mutual informa-
tion test. Note the misspelled word pioneeing

Word Frequency Bigram word + surgery Mutual information

arthroscopic 3 3 11.822
pioneeing 3 3 11.822
reconstructive 14 11 11.474
refractive 6 4 11.237
rhinoplasty 5 3 11.085

5.11.1 Word Preference Measurements

Mutual Information

Mutual information (Church and Hanks 1990; Fano 1961) is a statistical measure
that is widely used to quantify the strength of word associations.1 Mutual informa-
tion for the bigram wi ;wj is defined as:

I.wi ;wj / D log2
P.wi ;wj /

P.wi /P.wj /
:

Using the maximum likelihood estimate, this corresponds to:

I.wi ;wj / D log2
N � C.wi ;wj /
C.wi /C.wj /

;

where C.wi / and C.wj / are, respectively, the frequencies of word wi and word
wj in the corpus, C.wi ;wj / is the frequency of bigram wi ;wj , and N is the total
number of words in the corpus.

Instead of just bigrams, where j D i C 1, we can count the number of times
the two words wi and wj occur together sufficiently close, but not necessarily
adjacently. C.wi ;wj / is then the number of times the word wi is followed of
preceded by wj in a window of k words, where k typically ranges from 1 to 10,
or within a sentence.

Table 5.13 shows collocates of the word surgery. High mutual information tends
to show pairs of words occurring together but generally with a lower frequency, such
as technical terms.

1Some authors now use the term pointwise mutual information to mean mutual information.
Neither Fano (1961) nor Church and Hanks (1990) used this term and we kept the original one.
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Table 5.14 Collocates of set
extracted from Bank of
English using the t -score

Word Frequency Bigram set + word t -score

up 134,882 5,512 67.980
a 1,228,514 7,296 35.839
to 1,375,856 7,688 33.592
off 52,036 888 23.780
out 12,3831 1,252 23.320

t-Scores

Given two words, the t -score (Church and Mercer 1993) compares the hypothesis
that the words form a collocation with the null hypothesis that posits that the
cooccurrence is only governed by chance, that is P.wi ;wj / D P.wi / � P.wj /.

The t -score computes the difference between the two hypotheses, respectively,
mean.P.wi ;wj // and mean.P.wi //mean.P.wj //, and divides it by the variances.
It is defined by the formula:

t .wi ;wj / D mean.P.wi ;wj // � mean.P.wi //mean.P.wj //
p
�2.P.wi ;wj //C �2.P.wi /P.wj //

:

The hypothesis that wi and wj are a collocation gives us a mean of
C.wi ;wj /

N
;

with the null hypothesis, the mean product is
C.wi /

N
� C.wj /

N
; and using a binomial

assumption, the denominator is approximated to

r
C.wi ;wj /

N 2
. We have then:

t .wi ;wj / D
C.wi ;wj / � 1

N
C.wi /C.wj /

p
C.wi ;wj /

:

Table 5.14 shows collocates of set extracted from the Bank of English using the
t -score. High t -scores show recurrent combinations of grammatical or very frequent
words such as of the, and the, etc. Church and Mercer (1993) hint at the threshold
value of 2 or more.

Likelihood Ratio

Dunning (1993) criticized the t -score test and proposed an alternative measure based
on binomial distributions and likelihood ratios. Assuming that the words have a
binomial distribution, we can express the probability of having k counts of a word
w in a sequence of N words knowing that w’s probability is p as:

f .kIN;p/ D
�
N

k

�

pk.1 � p/N�k;
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where

�
N

k

�

D NŠ

kŠ.N � k/Š :

The formula reflects the probability of having k counts of a word w, pk , and N � k
counts of not having w, .1 � p/N�k . The binomial coefficient

�
N

k

�

corresponds

to the number of different ways of distributing k occurrences of the word w in a
sequence of N words.

In the case of collocations, rather than measuring the distribution of single words,
we want to evaluate the likelihood of the wiwj bigram distribution. To do this, we
can reformulate the binomial formula considering the word preceding wj , which
can either be wi or a different word that we denote :wi .

Let n1 be the count of wi and k1, the count of the bigram wiwj in the word
sequence (the corpus). Let n2 be the count of :wi , and k2, the count of the bigram
:wiwj , where :wiwj denotes a bigram in which the first word is not wi and
the second word is wj . Let p1 be the probability of wj knowing that we have wi
preceding it, and p2 be the probability of wj knowing that we have :wi before it.
The binomial distribution of observing the pairs wiwj and :wiwj in our sequence
is:

f .k1In1; p1/f .k2In2; p2/ D
�
n1
k1

�

p
k1
1 .1 � p1/n1�k1

�
n2
k2

�

p
k2
2 .1 � p2/n2�k2 :

The basic idea to evaluate the collocation strength of a bigram wiwj is to test two
hypotheses:

• The two words wi and wj are part of a collocation. In this case, we will have
p1 D P.wj jwi / ¤ p2 D P.wj j:wi / (Dependence hypothesis, Hdep).

• The two words wi and wj occur independently. In this case, we will have
p1 D P.wj jwi / D p2 D P.wj j:wi / D P.wj / D p (Independence hypothesis,
Hind ).

The logarithm of the hypothesis ratio corresponds to:

�2 log� D 2 log
Hdep

Hind

;

D 2 log
f .k1In1; p1/f .k2In2; p2/
f .k1In1; p/f .k2In2; p/ ;

D 2.log f .k1In1; p1/C log f .k2In2; p2/ � logf .k1In1; p/
� log f .k2In2; p//;

where k1 D C.wi ;wj /, n1 D C.wi /, k2 D C.wj / � C.wi ;wj /, n2 D N � C.wi /,
and log f .kIN;p/ D k logp C .N � k/ log.1 � p/.
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Table 5.15 A contingency table containing bigram counts, where :wiwj represents bigrams in
which the first word is not wi and the second word is wj . N is the number of words in the corpus

wi :wi

wj C.wi ;wj / C.:wi ;wj / D C.wj /� C.wi ;wj /
:wj C.wi ;:wj / D C.wi /� C.wi ;wj / C.:wi ;:wj / D N � C.wi ;wj /

Using the counts in Table 5.15 and the maximum likelihood estimate, we have

p D P.wj / D C.wj /

N
;

p1 D P.wj jwi / D C.wi ;wj /

C.wi /
; and

p2 D P.wj j:wi / D C.wj / � C.wi ;wj /
N � C.wi / ;

where N is the number of words in the corpus.

5.11.2 Extracting Collocations with Perl

Both programs use unigram and bigram statistics. To compute them, we must first
tokenize the text, and count words and bigrams using the tools we have described
before:

$text = <>;
while ($line = <>) {
$text .= $line;

}
$text =~ s/\n+/\n/g;
@words = split(/\n/, $text);
for ($i = 0; $i < $#words; $i++) {
$bigrams[$i] = $words[$i] . " " . $words[$i + 1];

}
for ($i = 0; $i <= $#words; $i++) {
$frequency{$words[$i]}++;

}
for ($i = 0; $i < $#words; $i++) {
$frequency_bigrams{$bigrams[$i]}++;

}

Finally, we must know the number of words in the corpus. This corresponds to
the size of the word array: $#word.
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Mutual Information

The Perl program iterates over the word array and applies the mutual information
formula. The program is not optimal and computes the same value several times:

for ($i = 0; $i < $#words; $i++) {
$mutual_info{$bigrams[$i]} = log(($#words + 1) *
$frequency_bigrams{$bigrams[$i]}/

($frequency{$words[$i]} *
$frequency{$words[$i + 1]}))/log(2);

}

foreach $bigram (keys %mutual_info){
@bigram_array = split(/ /, $bigram);
print $mutual_info{$bigram}, " ", $bigram, "\t",
$frequency_bigrams{$bigram}, "\t",
$frequency{$bigram_array[0]}, "\t",
$frequency{$bigram_array[1]}, "\n";

}

t-Scores

The program is similar to the previous one except the formula:

for ($i = 0; $i < $#words; $i++) {
$t_scores{$bigrams[$i]} =
($frequency_bigrams{$bigrams[$i]} -

$frequency{$words[$i]} *
$frequency{$words[$i + 1]}/($#words + 1))
/sqrt($frequency_bigrams{$bigrams[$i]});

}

foreach $bigram (keys %t_scores ){
@bigram_array = split(/ /, $bigram);
print $t_scores{$bigram}, " ", $bigram, "\t",
$frequency_bigrams{$bigram}, "\t",
$frequency{$bigram_array[0]}, "\t",
$frequency{$bigram_array[1]}, "\n";

}

Log Likelihood Ratio

The program is similar to the previous one except the formula:
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for ($i = 0; $i < $#words; $i++) {
$p = $frequency{$words[$i + 1]}/$#words;
$p1 = $frequency_bigrams{$bigrams[$i]}/
$frequency{$words[$i]};

$p2 = ($frequency{$words[$i + 1]} -
$frequency_bigrams{$bigrams[$i]})/

($#words - $frequency{$words[$i]});
if (($p1 != 1) && ($p2 != 0)) {
$likelihood_ratio{$bigrams[$i]} = 2*(

$frequency_bigrams{$bigrams[$i]} * log($p1) +
($frequency{$words[$i]} -
$frequency_bigrams{$bigrams[$i]}) * log(1 - $p1)
+ ($frequency{$words[$i + 1]} -
$frequency_bigrams{$bigrams[$i]}) * log($p2) +
($#words - $frequency{$words[$i]} -
$frequency{$words[$i + 1]} +
$frequency_bigrams{$bigrams[$i]}) * log(1 - $p2)
- $frequency_bigrams{$bigrams[$i]} * log($p) +

($frequency{$words[$i]} -
$frequency_bigrams{$bigrams[$i]}) * log(1 - $p)
- ($frequency{$words[$i + 1]} -
$frequency_bigrams{$bigrams[$i]}) * log($p) +
($#words - $frequency{$words[$i]} -
$frequency{$words[$i + 1]} +
$frequency_bigrams{$bigrams[$i]}) *
log(1 - $p));

}
}

foreach $bigram (keys %likelihood_ratio ){
@bigram_array = split(/ /, $bigram);
print $likelihood_ratio{$bigram}, " ", $bigram,
"\t", $frequency_bigrams{$bigram}, "\t",
$frequency{$bigram_array[0]}, "\t",
$frequency{$bigram_array[1]}, "\n";

}

5.12 Application: Retrieval and Ranking of Documents
on the Web

The advent of the Web in the mid-1990s made it possible to retrieve automatically
billions of documents at a very modest cost. Companies providing such a service
are among the most popular sites of the Internet. Google and Bing are among the
most notable ones.
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Table 5.16 An inverted index. Each word in the dictionary is linked to a posting list that gives
all the documents in the collection where this word occurs and its positions in a document. Here,
the position is the word index in the document. In the examples, a word occurs at most once in a
document. This can be easily generalized to multiple occurrences

Words Posting lists

America (D1, 7)
Chrysler (D1, 1)! (D2, 1)
in (D1, 5)! (D2, 5)
investments (D1, 4)! (D2, 4)
Latin (D1, 6)
major (D2, 3)
Mexico (D2, 6)
new (D1, 3)
plans (D1, 2)! (D2, 2)

Web search systems or engines are based on “spiders” or “crawlers” that visit
internet addresses, follow links they encounter, and collect all the pages they
traverse. Crawlers can amass billions of pages every month.

5.12.1 Document Indexing

All the pages the crawlers download are tokenized and undergo a full text indexing.
To carry out this first step, an indexer extracts all the words of the documents in the
collection and builds a dictionary. It then links each word in the dictionary to the list
of documents where this word occurs in. Such a list is called a posting list, where
each posting in the list contains a document identifier and the word’s positions in
the corresponding document. The resulting data structure is called an inverted index
and Table 5.16 shows an example of it with the two documents:

D1: Chrysler plans new investments in Latin America.
D2: Chrysler plans major investments in Mexico.

An inverted index is pretty much like a book index except that it considers all
the words. When a user asks for a specific word, the search system answers with the
pages that contain it. See Baeza-Yates and Ribeiro-Neto (2011) and Manning et al.
(2008) for more complete descriptions.

5.12.2 Representing Documents as Vectors

Once indexed, search engines compare, categorize, and rank documents using
statistical or popularity models. The vector space model (Salton 1988) is a widely
used representation to carry this out. The idea is to represent the documents in a
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Table 5.17 The vectors representing the two documents in Sect. 5.12.1. The words have been
normalized in lowercase letters

D#nWords america chrysler in investments latin major mexico new plans

1 1 1 1 1 1 0 0 1 1
2 0 1 1 1 0 1 1 0 1

Table 5.18 The word by document matrix. Each cell .wi ; Dj / contains the frequency of wi in
document Dj

D#nWords w1 w2 w3 : : : wm
D1 C.w1;D1/ C.w2;D1/ C.w3;D1/ : : : C.wm;D1/

D2 C.w1;D2/ C.w2;D2/ C.w3;D2/ : : : C.wm;D2/

: : :

Dn C.w1;D1n/ C.w2;Dn/ C.w3;Dn/ : : : C.wm;Dn/

vector space whose axes are the words. Documents are then vectors in a space of
words. As the word order plays no role in the representation, it is often called a
bag-of-word model.

Let us first suppose that the document coordinates are the occurrence counts of
each word. A document would be represented as: d D .C.w1/; C.w2/; C.w3/; : : : ;
C.wn//. Table 5.17 shows the document vectors representing the examples in
Sect. 5.12.1, and Table 5.18 shows a general matrix representing a collection of
documents, where each cell .wi ; Dj / contains the frequency of wi in documentDj .

Using the vector space model, we can measure the similarity between two
documents by the angle they form in the vector space. It is easier to compute the
cosine of the angle, which is formulated as:

cos.q;d/ D

nP

iD1
qidi

s
nP

iD1
q2i

s
nP

iD1
d 2i

:

5.12.3 Vector Coordinates

In fact, most of the time, the rough word counts that are used as coordinates in the
vectors are replaced by a more elaborate term: the term frequency times the inverted
document frequency, better known as tf � idf (Salton 1988). To examine how it
works, let us take the phrase internet in Somalia as an example.

A document that contains many internet words is probably more relevant than
a document that has only one. The frequency of a term i in a document j reflects
this. It is a kind of a “mass” relevance. For each vector, the term frequencies tf i;j
are often normalized by the sum of the frequencies of all the terms in the document
and defined as:
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tf i;j D
ti;j

P

i

ti;j
;

or as the Euclidean norm:

tf i;j D
ti;j

rP

i

t 2i;j

;

where ti;j is the frequency of term i in document j – the number of occurrences of
term i in document j .

Instead of a sum, we can also use the maximum count over all the terms as
normalization factor. The term frequency of the term i in document j is then
defined as:

tf i;j D
ti;j

max
i
ti;j
:

However, since internet is a very common word, it is not specific. The number of
documents that contain it must downplay its importance. This is the role of

idf i D log.
N

ni
/;

where N is the total number of documents in the collection – the total number of
pages the crawler has collected – divided by the number of pages ni , where a term
i occurs at least once. Somalia probably appears in fewer documents than internet
and idf i will give it a chance. The weight of a term i in document j is finally defined
as

tf i;j � log.
N

ni
/:

In this section, we gave one definition of tf � idf . In fact, this formula can vary
depending on the application. Salton and Buckley (1987) reported 287 variants of it
and compared their respective merits. BM25 and BM25F (Zaragoza et al. 2004) are
extensions of tf � idf that take into account the document length.

5.12.4 Ranking Documents

The user may query a search engine with a couple of words or a phrase. Most
systems will then answer with the pages that contain all the words and any of
the words of the question. Some questions return hundreds or even thousands of
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valid documents. Ranking a document consists in projecting the space to that of
the question words using the cosine. With this model, higher cosines will indicate
better relevance. In addition to tf � idf , search systems may employ heuristics such
as giving more weight to the words in the title of a page (Mauldin and Leavitt 1994).

Google’s PageRank algorithm (Brin and Page 1998) uses a different technique
that takes into account the page popularity. PageRank considers the “backlinks”, the
links pointing to a page. The idea is that a page with many backlinks is likely to be a
page of interest. Each backlink has a specific weight, which corresponds to the rank
of the page it comes from. The page rank is simply defined as the sum of the ranks
of all its backlinks. The importance of a page is spread through its forward links and
contributes to the popularity of the pages it points to. The weight of each of these
forward links is the page rank divided by the count of the outgoing links. The ranks
are propagated in a document collection until they converge.

5.12.5 Categorizing Text

Text categorization (or classification) is a task related to ranking, but instead of
associating documents to queries, we assign one or more classes to a text. The text
size can range from a few words to entire books. In sentiment analysis (or opinion
mining), the goal is to classify judgments or emotions expressed, for instance,
in product reviews collected from consumer forums, into three base categories:
positive, negative, or neutral; in spam detection, the categorizer classifies electronic
messages into two classes: spam or no spam.

The Reuters corpus of newswire articles provides another example of a text
collection that also serves as a standardized benchmark for categorization algo-
rithms (Lewis et al. 2004). This corpus consists of 800,000 economic newswires in
English and about 500,000 in 13 other languages, where each newswire is manually
annotated with one or more topics selected from a set of 103 predefined categories,
such as:

C11: STRATEGY/PLANS,
C12: LEGAL/JUDICIAL,
C13: REGULATION/POLICY,
C14: SHARE LISTINGS
etc.

Using manually-categorized corpora, like the Reuters corpus, and the vector
space model, we can apply supervised machine-learning techniques to train clas-
sifiers (see Sect. 4.4). The training procedure uses a bag-of-word representation of
the documents, either with Boolean features, term frequencies, or tf � idf , and
their classes as input. Support vector machines and logistic regression are two
efficient techniques to carry out text classification. Joachims (2002) describes a
state-of-the-art classifier based on support vector machines, while LibShortText



166 5 Counting Words

(Yu et al. 2013) is an open source library consisting of support vector machine
and logistic regression algorithms, and different types of preprocessing and feature
representations.

5.13 Further Reading

Language models and statistical techniques were applied first to speech recognition,
lexicography, and later to other domains of linguistics. Their use had been a matter
of debate because they opposed Chomsky’s competence model. For a supporting
review and a historical turning point, see the special issues of Computational
Linguistics (1993, 1 and 2).

Interested readers will find additional details on language modeling techniques
in Chen and Goodman (1998), and on �2 tests and likelihood ratios to improve
collocation detection in Dunning (1993). Manning and Schütze (1999, Chapter 5) is
a good reference on collocations, while Brown et al. (1992) describe other methods
to create semantic clusters.

There are several toolkits available from the Internet to carry out tokenization,
sentence detection, and language modeling:

1. Apache OpenNLP is a complete suite of logistic regression-based modules that
includes, inter alia, a sentence detector, a tokenizer, and a document categorizer
(http://opennlp.apache.org/).

2. The SRI Language Modeling collection (Stolcke 2002) is a C++ package to
create and experiment with language models (http://www.speech.sri.com/).

3. The CMU-Cambridge Statistical Language Modeling Toolkit (Clarkson and
Rosenfeld 1997) is another set of tools (http://svr-www.eng.cam.ac.uk/~prc14/
toolkit.html).

Retrieval and ranking of documents have experienced a phenomenal growth since
the beginning of the Web, making search sites the most popular services of the
Internet. For complete reviews of techniques on information retrieval, see Manning
et al. (2008) or Baeza-Yates and Ribeiro-Neto (2011).

Lucene is a popular open-source library for information retrieval. It is used in
scores of web sites such as Twitter and Wikipedia to carry out document indexing
and search (http://lucene.apache.org/).

Exercises

5.1. Write a sentence detector and a tokenizer using logistic regression.

5.2. Retrieve a text you like on the Internet. Give the five most frequent words.

http://opennlp.apache.org/
http://www.speech.sri.com/
http://svr-www.eng.cam.ac.uk/~prc14/toolkit.html
http://svr-www.eng.cam.ac.uk/~prc14/toolkit.html
http://lucene.apache.org/
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5.3. Write a Prolog program that connects to a web site, and explore hypertext web
links using a breadth-first strategy.

5.4. Implement a Prolog program to obtain bigrams and their statistics.

5.5. Implement a Prolog program to obtain trigrams and their statistics.

5.6. Retrieve a text you like on the Internet. Give the five most frequent bigrams
and trigrams.

5.7. Retrieve a text you like on the Internet. Divide it into a training set and a test
set. Implement the Laplace rule either in Perl or in Prolog. Learn the probabilities
on the training set and compute the perplexity of the test set.

5.8. Retrieve a text you like on the Internet. Divide it into a training set and a test
set. Implement the Good–Turing estimation either in Perl or in Prolog. Learn the
probabilities on the training set and compute the perplexity of the test set.

5.9. Implement the mutual information test in Prolog.

5.10. Implement the t -score in Prolog.

5.11. Implement the likelihood ratio in Prolog.

5.12. Implement the mutual information test with a window of five words to the
left and to the right of the word.



Chapter 6
Words, Parts of Speech, and Morphology

Partes orationis quot sunt? Octo. Quae? Nomen, pronomen, verbum,
adverbium, participium, coniunctio, praepositio, interiectio.

Aelius Donatus, Ars grammatica. Ars minor, Fourth century.

6.1 Words

6.1.1 Parts of Speech

We can divide the lexicon into parts of speech (POS), that is, classes whose words
share common grammatical properties. The concept of part of speech dates back to
the classical antiquity philosophy and teaching. Plato made a distinction between
the verb and the noun. After him, the word classification further evolved, and parts
of speech grew in number until Dionysius Thrax fixed and formulated them in a
form that we still use today. Aelius Donatus popularized the list of the eight parts
of speech: noun, pronoun, verb, adverb, participle, conjunction, preposition, and
interjection, in his work Ars grammatica, a reference reading in the Middle Ages.

The word parsing comes from the Latin phrase partes orationis ‘parts of speech’.
It corresponds to the identification of the words’ parts of speech in a sentence. In
natural language processing, POS tagging is the automatic annotation of words with
grammatical categories, also called POS tags. Parts of speech are also sometimes
called lexical categories.

Most European languages have inherited the Greek and Latin part-of-speech
classification with a few adaptations. The word categories as they are taught today
roughly coincide in English, French, and German in spite of some inconsistencies.
This is not new. To manage the nonexistence of articles in Latin, Latin grammarians
tried to get the Greek article into the Latin pronoun category.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__6, © Springer-Verlag Berlin Heidelberg 2014
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Table 6.1 Closed class categories

Part of speech English French German

Determiners the, several, my le, plusieurs, mon der, mehrere, mein
Pronouns he, she, it il, elle, lui er, sie, ihm
Prepositions to, of vers, de nach, von
Conjunctions and, or et, ou und, oder
Auxiliaries and modals be, have, will, would être, avoir, pouvoir sein, haben, können

Table 6.2 Open class categories

Part of speech English French German

Nouns name, Frank nom, François Name, Franz
Adjectives big, good grand, bon groß, gut
Verbs to swim nager schwimmen
Adverbs rather, very, only plutôt, très, uniquement fast, nur, sehr, endlich

The definition of the parts of speech is sometimes arbitrary and has been
a matter of debate. From Dionysius Thrax, tradition has defined the parts of
speech using morphological and grammatical properties. We shall adopt essentially
this viewpoint here. However, words of a certain part of speech share semantic
properties, and some grammars contain statements like a noun denotes a thing and
a verb an action.

Parts of speech can be clustered into two main classes: the closed class and the
open class. Closed class words are relatively stable over time and have a functional
role. They include words such as articles, like English the, French le, or German
der, which change very slowly. Among the closed class, there are the determiners,
the pronouns, the prepositions, the conjunctions, and the auxiliary and modal verbs
(Table 6.1).

Open class words form the bulk of a vocabulary. They appear or disappear with
the evolution of the language. If a new word is created, say a hedgedog, a cross
between a hedgehog and a Yorkshire terrier, it will belong to an open class category:
here a noun. The main categories of the open class are the nouns, the adjectives, the
verbs, and the adverbs (Table 6.2). We can add interjection to this list. Interjections
are words such as ouch, ha, oh, and so on, that express sudden surprise, pain, or
pleasure.

6.1.2 Grammatical Features

Basic categories can be further refined, that is subcategorized. Nouns, for instance,
can be split into singular nouns and plural nouns. In French and German, nouns
can also be split according to their gender: masculine and feminine for French, and
masculine, feminine, and neuter for German.
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Table 6.3 Features of common nouns

FeaturesnValues English French German

Number singular, plural singular, plural singular, plural
waiter/waiters,

book/books
serveur/serveurs,

livre/livres
Buch/Bücher

Gender masculine, feminine masculine, feminine, neuter
serveur/table Ober/Gabel/Tuch

Case nominative, accusative,
genitive, dative
Junge/Jungen/Jungen/Jungen

Genders do not correspond in these languages and can shape different visions of
the world. Sun is a masculine entity in French – le soleil – and a feminine one in
German – die Sonne. In contrast, moon is a feminine entity in French – la lune –
and a masculine one in German – der Mond.

Additional properties that can further specify main categories are often called the
grammatical features. Grammatical features vary among European languages and
include notably the number, gender, person, case, and tense. Each feature has a set
of possible values; for instance, the number can be singular or plural.

Grammatical features are different according to their parts of speech. In English,
a verb has a tense, a noun has a number, and an adjective has neither tense nor
number. In French and German, adjectives have a number but no tense. The feature
list of a word defines its part of speech together with its role in the sentence.

6.1.3 Two Significant Parts of Speech: The Noun and the Verb

The Noun

Nouns are divided into proper and common nouns. Proper nouns are names of
persons, people, countries, companies, and trademarks, such as England, Robert,
Citroën. Common nouns are the rest of the nouns. Common nouns are often used to
qualify persons, things, and ideas.

A noun definition referring to semantics is a disputable approximation, however.
More surely, nouns have certain syntactic features, namely the number, gender, and
case (Table 6.3). A noun group is marked with these features, and other words of
the group, that is, determiners, adjectives, must agree with the features they share.

While number and gender are probably obvious, case might be a bit obscure for
non-German speakers. Case is a function marker that inflects words such as nouns
or adjectives. In German, there are four cases: nominative, accusative, genitive, and
dative. The nominative case corresponds to the subject function, the accusative case
to the direct object function, and the dative case to the indirect object function.
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Table 6.4 Auxiliary verbs

English French German

to be: am, are, is, was, were
to have: has, have, had
to do: does, did, done

être: suis, es, est, sommes,
sont, étais, était

avoir: ai, as, a, avons, ont,
avais, avait, avions

sein: bin, bist, ist, war, waren
haben: habe, hast, hat, haben,
habt
werden: werde, wirst, wird,
wurde

Table 6.5 Modal verbs

English French (semiauxiliaries) German

can, could,
must, may, might,
shall, should

pouvoir: peux, peut, pouvons, pourrai,
pourrais

devoir: dois, doit, devons, devrai,
devrais
vouloir: veux, veut, voulons, voudrai,
voudrais

können: kann, können, konnte
dürfen: darf, dürfen, dürfte
mögen: mag, mögen, möchte
müssen: muß, müssen, mußte
sollen: soll, sollen, sollte

Genitive denotes a possession relation. These cases are still marked in English and
French for pronouns.

In addition to these features, the English language makes a distinction between
nouns that can have a plural: count nouns, and nouns that cannot: mass nouns. Milk,
water, air are examples of mass nouns.

Verbs

Semantically, verbs often describe an action, an event, a state, etc. More positively,
and as for the nouns, verbs in European languages are marked by their morphology.
This morphology is quite elaborate in a language like French, notably due to the
tense system. Verbs can be basically classified into three main types: auxiliaries,
modals, and main verbs.

Auxiliaries are helper verbs such as be and have that enable us to build some
of the main verb tenses (Table 6.4). Modal verbs are verbs immediately followed
by another verb in the infinitive. They usually indicate a modality, a possibility
(Table 6.5). Modal verbs are more specific to English and German. In French,
semiauxiliaries correspond to a similar category.

Main verbs are all the other verbs. Traditionally, main verbs are categorized
according to their complement’s function (Table 6.6):

• Copula or link verb – verbs linking a subject to an (adjective) complement.
Copulas include verbs of being such as be, être, sein when not used as
auxiliaries, and other verbs such as seem, sembler, scheinen.

• Intransitive – verbs taking no object.
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Table 6.6 Verb types

English French German

Copulas Man is mortal
She seems intelligent

L’homme est mortel
Elle paraît intelligente

Der Mensch ist
sterblich

Sie scheint intelligent
Intransitive verbs Frank sleeps

Charlotte runs
François dort
Charlotte court

Franz schläft
Charlotte rennt

Transitive verbs You take the book
Susan reads the paper

Tu prends le livre
Suzanne lit l’article

Du nimmst das Buch
Susan liest den Artikel

Ditransitive verbs I give my neighbors
the notes

Je donne les notes à
mon voisin

Ich gebe die Notizen
meinem Nachbarn

Table 6.7 Features common to verbs and nouns

FeaturesnValues English French German

Person 1, 2, and 3 1, 2, and 3 1, 2, and 3
I am je suis ich bin
you are tu es du bist
she is elle est sie ist

Number singular, plural singular, plural singular, plural
I am/we are je suis/nous sommes ich bin/wir sind
She eats/they eat elle mange/elles mangent sie ißt/sie essen

Gender masculine, feminine
– il est mangé/elle est mangée –

• Transitive – verbs taking an object.
• Ditransitive – verbs taking two objects.

Verbs have more features than other parts of speech. First, the verb group
shares certain features of the noun (Table 6.7). These features must agree with
corresponding ones of the verb’s subject.

Verbs have also specific features, namely the tense, the mode, and the voice:

• Tense locates the verb, and the sentence, in time. Tense systems are elaborate
in English, French, and German, and do not correspond. Tenses are constructed
using form variations (Table 6.8) or auxiliaries (Table 6.9). Tenses are a source
of significant form variation in French.

• Mood enables the speaker to present or to conceive of the action in various ways
(Table 6.10).

• Voice characterizes the sequence of syntactic groups. Active voice corresponds
to the “subject, verb, object” sequence. The reverse sequence corresponds
to the passive voice. This voice is possible only for transitive verbs. Some
constructions in French and German use a reflexive pronoun. They correspond
to the pronominal voice.
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Table 6.8 Tenses constructed using inflection

English French German

Base I like to sing j’aime chanter Ich singe gern
Present I sing every day Je chante tous les jours Ich singe alltags
Preterit (Simple past) I sang in my youth Je chantai dans ma

jeunesse
Ich sang in meiner

Jugend
Imperfect – Je chantais dans ma

jeunesse
–

Future – Je chanterai plus tard –
Present participle I am singing En chantant tous les jours Singend
Past participle I have sung before J’ai chanté Ich habe gesungen

Table 6.9 Some tenses constructed using auxiliaries. Values do not correspond across languages

English French German

Present progressive I am singing – –
Future I shall (will) sing – Ich werde singen
Present perfect I have sung J’ai chanté Ich habe gesungen
Pluperfect I had sung J’avais chanté Ich hatte gesungen
Passé antérieur – J’eus chanté –
Future perfect I will have sung J’aurai chanté Ich werde gesungen

haben
Futur antérieur I would have sung J’aurais chanté Ich würde gesungen

haben
Past progressive I was singing – –
Future progressive I will be singing – –
Present perfect progres-
sive

I have been singing – –

Future perfect progres-
sive

I will have been singing – –

Past perfect progressive I had been singing – –

Table 6.10 Moods (Present only)

English French German

Indicative I am singing Je chante Ich singe
Imperative sing chante singe
Conditional I should (would) sing Je chanterais Ich würde singen
Subjunctive Rare, it appears in expressions such

as: God save the Queen
Il faut que je chante Ich singe

6.2 Lexicons

A lexicon is a list of words, and in this context, lexical entries are also called
the lexemes. Lexicons often cover a particular domain. Some focus on a whole
language, like English, French, or German, while some specialize in specific areas
such as proper names, technology, science, and finance. In some applications,
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Table 6.11 Word ambiguity

English French German

Part of speech can modal le article der article
can noun le pronoun der pronoun

Semantic great big grand big groß big
great notable grand notable groß notable

lexicons try to be as exhaustive as is humanly possible. This is the case of internet
crawlers, which index all the words of all the web pages they can find. Computerized
lexicons are now embedded in many popular applications such as in spelling
checkers, thesauruses, or definition dictionaries of word processors. They are also
the first building block of most language processing programs.

Several options can be taken when building a computerized lexicon. They range
from a collection of words – a word list – to words carefully annotated with their
pronunciation, morphology, and syntactic and semantic labels. Words can also be
related together using semantic relationships and definitions.

A key point in lexicon building is that many words are ambiguous both
syntactically and semantically. Therefore, each word may have as many entries
as it has syntactic or semantic readings. Table 6.11 shows words that have two or
more parts of speech and senses. In this chapter, we only examine the syntactic part.
Chapter 15 will cover semantic issues.

Many computerized lexicons are now available from industry and from sources
on the Internet. English sources are the most numerous at present, but the situation
is rapidly changing for other languages. Most notable ones in English include word
lists derived from the Longman Dictionary of Contemporary English (Procter 1978)
and the Oxford Advanced Learner’s Dictionary (Hornby 1974). Table 6.12 shows
the first lines of letter A of an electronic version of the OALD.

BDLex – standing for Base de Données Lexicale – is an example of a simple
French lexicon (Pérennou and de Calmès 1987). BDLex features a list of words in a
lemmatized form together with their part of speech and a syntactic type (Table 6.13).

6.2.1 Encoding a Dictionary

Letter trees (de la Briandais 1959) or tries (pronounce try ees) are a useful data
structures to store large lexicons and to search words quickly. The idea behind a trie
is to store the words as trees of characters and to share branches as far as the letters
of two words are identical. Tries can be seen as finite-state automata, and Fig. 6.1
shows a graphical representation of a trie encoding the words bin, dark, dawn, tab,
table, tables, and tablet.

In Prolog, we can represent this trie as embedded lists, where each branch is a
list. The first element of a branch is the root letter: the first letter of all the subwords
that correspond to the branch. The leaves of the trie are the lexical entries, here the
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Table 6.12 The first lines of the Oxford Advanced Learner’s Dictionary

Syllable count or verb
Word Pronunciation Syntactic tag pattern (for verbs)

a @ S-* 1
a EI Ki$ 1
a fortiori eI ,fOtI’OraI Pu$ 5
a posteriori eI ,p0sterI’OraI OA$,Pu$ 6
a priori eI ,praI’OraI OA$, Pu$ 4
a’s Eiz Kj$ 1
ab initio &b I’nISI@U Pu$ 5
abaci ’&b@saI Kj$ 3
aback @’b&k Pu% 2
abacus ’&b@k@s K7% 3
abacuses ’&b@k@sIz Kj% 4
abaft @’bAft Pu$,T-$ 2
abandon @’b&nd@n H0%,L@% 36A,14
abandoned @’b&nd@nd Hc%,Hd%,OA% 36A,14
abandoning @’b&nd@nIN Hb% 46A,14
abandonment @’b&nd@nm@nt L@% 4
abandons @’b&nd@nz Ha% 36A,14
abase @’beIs H2% 26B
abased @’beIst Hc%,Hd% 26B
abasement @’beIsm@nt L@% 3

words themselves that we represent as atoms. Of course, these entries could contain
more information, such as the part of speech, the pronunciation, etc.

[
[b, [i, [n, bin]]]
[d, [a, [r, [k, dark]],

[w, [n, dawn]]]]
[t, [a, [b, tab,

[l, [e, table,
[s, tables],
[t, tablet]]]]]]]]

]

6.2.2 Building a Trie in Prolog

The make_trie/2 predicate builds a trie from a lexicon represented as an ordered
list of atoms.

% make_trie(+WordList, -Trie)
make_trie([Word | WordList], Trie) :-
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Table 6.13 An excerpt from BDLex. Digits encode accents on letters. The syntactical tags of the
verbs correspond to their conjugation type taken from the Bescherelle reference

Entry Part of speech Lemma Syntactic tag

a2 Prep a2 Prep_00_00;
abaisser Verbe abaisser Verbe_01_060_**;
abandon Nom abandon Nom_Mn_01;
abandonner Verbe abandonner Verbe_01_060_**;
abattre Verbe abattre Verbe_01_550_**;
abbe1 Nom abbe1 Nom_gn_90;
abdiquer Verbe abdiquer Verbe_01_060_**;
abeille Nom abeille Nom_Fn_81;
abi3mer Verbe abi3mer Verbe_01_060_**;
abolition Nom abolition Nom_Fn_81;
abondance Nom abondance Nom_Fn_81;
abondant Adj abondant Adj_gn_01;
abonnement Nom abonnement Nom_Mn_01;
abord Nom abord Nom_Mn_01;
aborder Verbe aborder Verbe_01_060_**;
aboutir Verbe aboutir Verbe_00_190_**;
aboyer Verbe aboyer Verbe_01_170_**;
abre1ger Verbe abre1ger Verbe_01_140_**;
abre1viation Nom abre1viation Nom_Fn_81;
abri Nom abri Nom_Mn_01;
abriter Verbe abriter Verbe_01_060_**;

make_trielist(Word, Word, WordTrie),
make_trie(WordList, [WordTrie], Trie).

% make_trie(+WordList, -Trie, -FinalTrie)
make_trie([], T, T) :- !.
make_trie([Word | WordList], Trie, FinalTrie) :-
insert_word_in_trie(Word, Word, Trie, NewTrie),
make_trie(WordList, NewTrie, FinalTrie).

The make_trie/2 predicate uses make_trielist/3 to transform an atom
into a trie representing a single word. The make_trielist/3 predicate takes the
word and the lexical entry as an input:

?- make_trielist(tab, noun, TL).
TL = [t, [a, [b, noun]]]

%make_trielist(+Word, +Leave, -WordTtrie)
% Creates the trie for a single word.
% Leaf contains the type of the word.
make_trielist(Word, Leaf, WordTrie) :-
atom_chars(Word, CharList),
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Fig. 6.1 A letter tree encoding the words tab, table, tablet, and tables

make_trielist_aux(CharList, Leaf, WordTrie).

make_trielist_aux([X], Leaf, [X, Leaf]) :- !.
make_trielist_aux([X | L], Leaf, [X | [LS]]) :-
make_trielist_aux(L, Leaf, LS).

Finally, make_trie/2 inserts a word trie into the lexicon trie using
insert_word_in_trie/4:

%Inserts a word in a trie.
%The Leaf argument contains the type of the word
%insert_word_in_trie(+Word, +Leaf, +Trie, -NewTrie)
insert_word_in_trie(Word, Leaf, Trie, NewTrie) :-
make_trielist(Word, Leaf, WordTrie),
insert_wordtrie_in_trie(WordTrie, Trie, NewTrie).

%Inserts a word trie in a trie
%insert_wordtrie_in_trie(+WordTrie, +Trie, -NewTrie)
insert_wordtrie_in_trie([H | [T]],

[[H, Leaf | BT] | LT], [[H, Leaf | NB] | LT]) :-
atom(Leaf),
!,
insert_wordtrie_in_trie(T, BT, NB).

% Traverses a segment shared between the trie and
% the word and encounters a leaf.
% It assumes that the leaf is an atom.

insert_wordtrie_in_trie([H | [T]], [[H | BT] | LT],
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[[H | NB] | LT]) :-
!,
insert_wordtrie_in_trie(T, BT, NB).

% Traverses a segment shared between the trie and
% the word.

insert_wordtrie_in_trie([H | T], [[HT | BT] | LT],
[[HT | BT] | NB]) :-

!,
insert_wordtrie_in_trie([H | T], LT, NB).

% Traverses a nonshared segment

insert_wordtrie_in_trie(RW, RT, NB) :-
append(RT, [RW], NB),
!.

% Appends the remaining part of the word to the trie.

6.2.3 Finding a Word in a Trie

The rules to find a word in a trie are easier to write. A first rule compares the first
letter of the word to the trie and unifies with the branch starting with this letter.
It continues recursively with the remaining characters of the word. A second rule
extracts the lexical entries that we assume to be atoms.

% Checks if a word is in a trie
% is_word_in_trie(+WordChars, +Trie, -Lex)
is_word_in_trie([H | T], Trie, Lex) :-

member([H | Branches], Trie),
is_word_in_trie(T, Branches, Lex).

is_word_in_trie([], Trie, LexList) :-
findall(Lex, (member(Lex, Trie), atom(Lex)), LexList),
LexList \= [].

% We assume that the word lexical entry is an atom

6.3 Morphology

6.3.1 Morphemes

From a morphological viewpoint, a language is a set of morphemes divided into
lexical and grammatical morphemes. Lexical morphemes correspond to the word
stems and form the bulk of the vocabulary. Grammatical morphemes include
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Table 6.14 Morpheme decomposition. We replaced the stems with the corresponding lemmas

Word Morpheme decomposition

English disentangling dis+en+tangle+ing
rewritten re+write+en

French désembrouillé dé+em+brouiller+é
récrite re+écrire+te

German entwirrend ent+wirren+end
wiedergeschrieben wieder+

��
ge+schreiben+

�
en

Prefixes Stem Suffixes

Fig. 6.2 Concatenative morphology where prefixes and suffixes are concatenated to the stem

Grammatical morpheme
Preterit

Grammatical morpheme
2nd person singular

ng st

Lexical morpheme
singen

s a

Fig. 6.3 Embedding of the stem into the grammatical morphemes in the German verb sangst
(second-person preterit of singen) (After Simone (2007, p. 144))

grammatical words and the affixes. In European languages, words are made of one
or more morphemes (Table 6.14). The affixes are concatenated to the stem (bold):
before it – the prefixes (underlined) – and after it – the suffixes (double underlined).
When a prefix and a suffix surrounding the stem are bound together, it is called a
circumfix, as in the German part participle (wavy underlines).

Affixing grammatical morphemes to the stem is general property of most
European languages, which is concatenative morphology (Fig. 6.2). Although
there are numerous exceptions, it enables us to analyze the structure of most words.

Concatenative morphology is not universal, however. The Semitic languages, like
Arabic or Hebrew, for instance, have a templatic morphology that interweaves the
grammatical morphemes to the stem. There are also examples of nonconcatenative
patterns in European languages like in irregular verbs of German. The verb singen
‘sing’ has the forms sangst ‘you sang’ and gesungen ‘sung’ where the stem [s–ng]
is embedded into the grammatical morphemes [–a–st] for the second-person preterit
(Fig. 6.3) and [ge–u–en] for the past participle (Fig. 6.4).
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Grammatical morphemes
Past participle

ge s u ng en

Lexical morpheme
singen

Fig. 6.4 Embedding of the
stem into the grammatical
morphemes in the German
verb gesungen (past participle
of singen) (After Simone
(2007, p. 144))

Table 6.15 Plural morphs Plural of nouns Morpheme decomposition

English hedgehogs hedgehog+s
churches church+es
sheep sheep+;

French hérissons hérisson+s
chevaux cheval+ux

German Gründe Grund+(¨)e
Hände Hand+(¨)e
Igel Igel+;

6.3.2 Morphs

Grammatical morphemes represent syntactic or semantic functions whose re-
alizations in words are called morphs. Using an object-oriented terminology,
morphemes would be the classes, while morphs would be the objects. The allo-
morphs correspond to the set of all the morphs in a morpheme class.

The plural morpheme of English and French nouns is generally realized with an s
suffix – an s added at the end of the noun. It can also be es or nothing (;) in English
and ux in French. In German, the plural morpheme can take several shapes, such as
suffixes e, en , er, s, or an umlaut on the first vowel of the word (Table 6.15):

• In English, suffixes -s, -es, etc.
• In French, -s, -ux, etc.
• In German, an umlaut on the first vowel and the -e suffix, or simply the -e suffix.

Plurals also offer exceptions. Many of the exceptions, such as mouse and mice,
are not predictable and have to be listed in the lexicon.

6.3.3 Inflection and Derivation

Some Definitions

We saw in Chap. 1 that morphology can be classified into inflection, the form
variation of a word according to syntactic features such as gender, number, person,
tense, etc., and derivation, the creation of a new word – a new meaning – by
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Table 6.16 Verb inflection with past participle

English French German

Base form work travailler, chanter arbeiten
sing paraître singen

Past participle (regular) worked travaillé, chanté gearbeitet
Past participle (exception) sung paru gesungen

concatenating a word with a specific affix. A last form of construction is the
composition (compounding) of two words to give a new one, for instance, part
of speech, can opener, pomme de terre. Composition is more obvious in German,
where such new words are not separated with a space, for example, Führerschein.
In English and French, some words are formed in this way, such as bedroom, or
are separated with a hyphen, centre-ville. However, the exact determination of other
compounded words – separated with a space – can be quite tricky.

Inflection

Inflection corresponds to the application of a grammatical feature to a word, such as
putting a noun into the plural or a verb into the past participle (Table 6.16). It is also
governed by its context in the sentence; for instance, the word is bound to agree in
number with some of its neighbors.

Inflection is relatively predictable – regular – depending on the language. Given
a lemma, its part of speech, and a set of grammatical features, it is possible to
construct a word form using rules, for instance, gender, plural, or conjugation rules.
The past participle of regular English, French, and German verbs can be respectively
formed with an ed suffix, an é suffix, and the ge prefix and the t suffix. Morphology
also includes frequent exceptions that can sometimes also be described by rules.

Inflectional systems are similar in European languages but show differences
according to the syntactic features. In English, French, and German, nouns are
inflected with plurals and are consequently decorated with a specific suffix. How-
ever, in French and other Romance languages, verbs are inflected with future. Verb
chanterons is made of two morphs: chant ‘sing’ and -erons. The first one is the stem
(root) of chanter, and the second one is a suffix indicating the future tense, the first
person, and the plural number. In English and German, this tense is rendered with
an auxiliary: we shall sing or wir werden singen.

Derivation

Derivation is linked to lexical semantics and involves another set of affixes
(Table 6.17). Most affixes can only be attached to a specific lexical category (part of
speech) of words: some to nouns, others to verbs, etc. Some affixes leave the derived
word in the same category, while some others entail a change of category. For
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Table 6.17 Derivational affixes

English French German

Prefixes foresee, unpleasant prévoir, déplaisant vorhersehen, unangenehm
Suffixes manageable, rigorous gérable, rigoureux vorsichtich, streitbar

Table 6.18 Derivation related to part of speech

Adjectives Adverbs Nouns Adjectives Verbs Nouns

English recent recently air aerial compute computation
frank frankly base basic

French récent récemment lune lunaire calculer calcul
franc franchement air aérien

German glücklich glücklicherweise Luft luftig rechnen Rechnung
möglich möglicherweise Grund gründlich

Table 6.19 Word derivation

Word Contrary Possibility

English pleasant do unpleasant undo *pleasable doable
French plaisant faire déplaisant défaire *plaisable faisable
German angenehm tun unangenehm *untun *angenehmbar tunlichst

instance, some affixes transform adjectives into adverbs, nouns into adjectives, and
verbs into nouns (Table 6.18). Derivation rules can be combined and are sometimes
complex. For instance, the word disentangling features two prefixes: dis- and en-,
and a suffix -ing.

Some semantic features of words, such as the contrary or the possibility, can
be roughly associated to affixes, and so word meaning can be altered using them
(Table 6.19). However, derivation is very irregular. Many words cannot be generated
as simply, because the word does not exist or sounds weird. In addition, some affixes
cannot be mapped to clear semantic features.

Compounding is a feature of German, Dutch, and the Scandinavian languages.
It resembles the English noun sequences with the difference that nouns are not
separated with a white space. English open compounds (e.g., word processor) are.

Morphological Processing

Morphological processing includes parsing and generation (Table 6.20). Parsing
consists in splitting an inflected, derived, or compounded word into morphemes;
this process is also called a lemmatization. Lemmatization refers to transforming a
word into its canonical dictionary form, for example, retrieving into retrieve, recher-
chant into rechercher, or suchend into suchen. Stemming consists of removing the
suffix from the rest of the word. Taking the previous examples, this yields retriev,
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Table 6.20 Morphological generation and parsing

Generation!
English French German

dog+s dogs chien+s chiens Hund+e Hunde
work+ing working travailler+ant travaillant arbeiten+end arbeitend
un+do undo dé+faire défaire

 Parsing

Table 6.21 Open class word morphology, where * denotes zero or more elements and ? denotes
an optional element

English and French prefix* stem suffix* inflection?
German inflection? prefix* stem* suffix* inflection?

recherch, and such. Lemmatization and stemming are often mistaken. Conversely,
generation consists of producing a word – a lexical form – from a set of morphemes.

In French, English, and German, derivation operates on open class words. In
English and French, a word of this class consists of a stem preceded by zero or
more derivational prefixes and followed by zero or more derivational suffixes. An
inflectional suffix can be appended to the word. In German, a word consists of one
or more stems preceded by zero or more derivational prefixes and followed zero
or more derivational suffixes. An inflectional prefix and an inflectional suffix can
be appended to the word (Table 6.21). As we saw earlier, these rules are general
principles of concatenative morphology that have exceptions.

Ambiguity

Word lemmatization is often ambiguous. An isolated word can lead to several
readings: several bases and morphemes, and in consequence several categories and
features as exemplified in Table 6.22.

Lemmatization ambiguities are generally resolved using the word context in
the sentence. Usually only one reading is syntactically or semantically possible,
and others are not. The correct reading of a word’s part of speech is determined
considering the word’s relations with the surrounding words and with the rest of
the sentence. From a human perspective, this corresponds to determining the word’s
function in the sentence. As we saw in the introduction, this process has been done
by generations of pupils dating as far back as the schools of ancient Greece and the
Roman Empire.
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Table 6.22 Lemmatization ambiguities

Words Words in context Lemmatization

English Run

1. A run in the forest
2. Sportsmen run every day

1. run: noun singular
2. run: verb present third person plural

French Marche

1. Une marche dans la forêt
2. Il marche dans la cour

1. marche: noun singular feminine
2. marcher: verb present third person

singular

German Lauf

1. Der Lauf der Zeit
2. Lauf schnell!

1. Der Lauf: noun, sing, masc
2. laufen: verb, imperative, singular

6.3.4 Language Differences

Paper lexicons do not include all the words of a language but only lemmas. Each
lemma is fitted with a morphological class to relate it to a model of inflection
or possible exceptions. A French verb will be given a class of conjugation or its
exception pattern – one among a hundred. English or German verbs will be marked
as regular or strong and in this latter case will be given their irregular forms. Then,
a reader can apply morphological rules to produce all the lexical forms of the
language.

Automatic morphological processing tries to mimic this human behavior. Never-
theless, it has not been so widely implemented in English as in other languages.
Programmers have often preferred to pack all the English words into a single
dictionary instead of implementing a parser to do the job. This strategy is possible
for European languages because morphology is finite: there is a finite number of
noun forms, adjective forms, or verb forms. It is clumsy, however, to extend it to
languages other than English because it considerably inflates the size of dictionaries.

Statistics from Xerox (Table 6.23) show that techniques available for storing
English words are very costly for many other languages. It is not a surprise that the
most widespread morphological parser – KIMMO – was originally built for Finnish,
one of the most inflection-rich languages. In addition, while English inflection is
tractable by means of storing all the forms in a lexicon, it is often necessary to
resort to a morphological parser to deal with forms such as: computer, computerize,
computerization, recomputerize (Antworth 1994), which cannot all be foreseen by
lexicographers.



186 6 Words, Parts of Speech, and Morphology

Table 6.23 Some language statistics from a Xerox promotional flyer

Language Number of stems Number of inflected forms Lexicon size (kb)

English 55,000 240,000 200–300
French 50,000 5,700,000 200–300
German 50,000 350,000 or 450

Infinite (compounding)
Japanese 130,000 200 suffixes 500

20,000,000 word forms 500
Spanish 40,000 3,000,000 200–300

Table 6.24 Surface and lexical forms

Generation: Lexical to surface form!
English dis+en+tangle+ed disentangled

happy+er happier
move+ed moved

French dés+em+brouiller+é désembrouillé
dé+chanter+erons déchanterons

German ent+wirren+end entwirrend
wieder+ge+schreiben+en wiedergeschrieben

Parsing: Surface to lexical form

6.4 Morphological Parsing

6.4.1 Two-Level Model of Morphology

Using a memory expensive method, lemmatization can be accomplished with a
lexicon containing all the words with all their possible inflections. A dictionary
lookup then yields the lemma of each word in a text. Although it has often been
used for English, this method is not very efficient for many other languages. We now
introduce the two-level model of Kimmo Koskenniemi (1983), which is universal
and has been adopted by many morphological parsers.

The two-level morphology model enables us to link the surface form of a word –
the word as it is actually in a text – to its lexical or underlying form – its sequence
of morphemes. Karttunen (1983) did the first implementation of this model, which
he named KIMMO. A later implementation – PC-KIMMO 2 – was carried out by
Antworth (1995) in C. PC-KIMMO 2 is available from the Summer Institute of
Linguistics through the Internet.

Table 6.24 shows examples of correspondence between surface forms and lexical
forms. Morpheme boundaries in lexical forms are denoted by C.

In the two-level model, the mapping between the surface and lexical forms is
synchronous. Both strings need to be aligned with a letter-for-letter correspondence.
That is, the first letter of the first form is mapped to the first letter of the second form,
and so on. To maintain the alignment, possible null symbols are inserted in either
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Table 6.25 Correspondence between lexical and surface forms

English dis+en+tangle+ed happy+er move+ed
ll . . . ll . . . ll . . .
dis0en0tangl00ed happi0er mov00ed

French dé+chanter+erons cheval+ux cheviller+é
ll . . . ll . . . ll . . .
dé0chant000erons cheva00ux chevill000é

German singen+st Grund+¨e Igel+Ø
ll . . . ll . . . ll . . .
singe00st Gründ00e Igel00

form and are denoted " or 0, if the Greek letters are not available. They reflect a
letter deletion or insertion. Table 6.25 shows aligned surface and lexical forms.

6.4.2 Interpreting the Morphs

Considering inflection only, it is easier to interpret the morphological informa-
tion using grammatical features rather than morphs. Most morphological parsers
represent the lexical form as a concatenation of the stem and its features instead
of morphs. For example, the Xerox parser output for disentangled, happier, and
Gründe is:

disentangle+Verb+PastBoth+123SP
happy+Adj+Comp
Grund+Noun+Masc+Pl+NomAccGen

where the feature +Verb denotes a verb, +PastBoth, either past tense or past
participle, and +123SP any person, singular or plural; +Adj denotes an adjective
and +Comp, a comparative; +Noun denotes a noun, +Mascmasculine, +Pl, plural,
and +NomAccGen either nominative, accusative, or genitive. (All these forms are
ambiguous, and the Xerox parser shows more than one interpretation per form.)

Given these new lexical forms, the parser has to align the feature symbols with
letters or null symbols. The principles do not change, however (Fig. 6.5).

6.4.3 Finite-State Transducers

The two-level model is commonly implemented using finite-state transducers (FST).
Transducers are automata that accept, translate, or generate pairs of strings. The arcs
are labeled with two symbols: the first symbol is the input and the second is the
output. The input symbol is transduced into the output symbol as a transition occurs
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Fig. 6.5 Alignments with features

q0 q1 q2

a : z c : x

b : y

Fig. 6.6 A transducer

on the arc. For instance, the transducer in Fig. 6.6 accepts or generates the string
abbbc and translates into zyyyx.

Finite-state transducers have a formal definition, which is similar to that of finite-
state automata. A FST consists of five components .Q;˙; q0; F; ı/, where:

1. Q is a finite set of states.
2. ˙ is a finite set of symbol or character pairs i W o, where i is a symbol of the

input alphabet and o of the output alphabet. As we saw, both alphabets may
include epsilon transitions.

3. q0 is the start state, q0 2 Q.
4. F is the set of final states, F � Q.
5. ı is the transition function Q �˙ ! Q, where ı.q; i; o/ returns the state where

the automaton moves when it is in state q and consumes the input symbol pair
i W o.

The quintuple, which defines the automaton in Fig. 6.6 isQ D fq0; q1; q2g,˙ D
fa W z; b W y; c W xg, ı D fı.q0; a W z/ D q1; ı.q1; b W y/ D q1; ı.q1; c W x/ D q2g,
and F D fq2g.
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Table 6.26 Future tense of French verb chanter

NumbernPerson First Second Third

singular chanterai chanteras chantera
plural chanterons chanterez chanteront

Table 6.27 Aligned lexical and surface forms

NumbernPers. First Second Third

singular chanter+erai chanter+eras chanter+era
chant000erai chant000eras chant000era

plural chanter+erons chanter+erez chanter+eront
chant000erons chant000erez chant000eront

Fig. 6.7 A finite-state transducer describing the future tense of chanter

6.4.4 Conjugating a French Verb

Morphological FSTs encode the lexicon and express all the legal transitions. Arcs
are labeled with pairs of symbols representing letters of the surface form – the word
– and the lexical form – the set of morphs.

Table 6.26 shows the future tense of regular French verb chanter ‘sing’, where
suffixes are specific to each person and number, but are shared by all the verbs of the
so-called first group. The first group accounts for the large majority of French verbs.
Table 6.27 shows the aligned forms and Fig. 6.7 the corresponding transducer. The
arcs are annotated by the input/output pairs, where the left symbol corresponds to
the lexical form and the right one to the surface form. When the lexical and surface
characters are equal, as in c:c, we just use a single symbol in the arc.

This transducer can be generalized to any regular French verb of the first group
by removing the stem part and inserting a self-looping transition on the first state
(Fig. 6.8).

The transducer in Fig. 6.8 also parses and generates forms that do not exist.
For instance, we can forge an imaginary French verb *palimoter that still can be
conjugated by the transducer. Conversely, the transducer will successfully parse the
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Fig. 6.8 A finite-state transducer describing the future tense of French verbs of the first group

improbable *palimoterons. This process is called overgeneration (both in parsing
and generation).

Overgeneration is not that harmful, provided that inputs are well formed. How-
ever, it can lead to some wrong parses. Consider English and German comparatives
that are formed with -er suffix. Raw implementation of a comparative transducer
would rightly parse greater as great+er but could also parse better or reader.
Overgeneration is reduced by a lexical lookup, where the parse result is searched
in a dictionary. This eliminates nonexistent words. It can also be limited by a set of
constraints on affixes restricting the part of speech of the word to which they can be
appended – here adjectives.

6.4.5 Prolog Implementation

Finite-state transducers can easily be implemented in Prolog. In this section, we
implement the future tense of regular French verbs corresponding to Fig. 6.8, and
we remove null symbols by inserting a mute transition in the surface form. The
transducer has four parameters: the start state, normally 1, a final state, together
with a lexical form and a surface one:

transduce(+Start, ?Final, ?Lexical, ?Surface).

The transducer parses surface forms:

?- transduce(1, Final, Lexical, [r, ê, v, e, r, a]).
Final = 7,
Lexical = [r, ê, v, e, r, +, e, r, a]

It also generates surface forms from lexical ones:

?- transduce(1, Final,
[r, ê, v, e, r, +, e, r, e, z], Surface).
Final = 11,
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Surface = [r, ê, v, e, r, e, z]

Finally, the transducer conjugates verbs (generates the verbal forms):

?- transduce(1, 11, [r, ê, v, e, r | L], Surface).
L = [+, e, r, e, z],
Surface = [r, ê, v, e, r, e, z]

Here is the Prolog code:

% arc(Start, End, LexicalChar, SurfaceChar)
% describes the automaton

arc(1, 1, C, C) :- letter(C).
arc(1, 2, e, 0). arc(2, 3, r, 0). arc(3, 4, +, 0).
arc(4, 5, e, e). arc(5, 6, r, r). arc(6, 7, a, a).
arc(7, 8, i, i). arc(7, 9, s, s).
arc(6, 10, e, e). arc(10, 11, z, z).
arc(6, 12, o, o). arc(12, 13, n, n).
arc(13, 14, s, s). arc(13, 15, t, t).

% final_state(S)
% gives the stop condition

final_state(7). final_state(8). final_state(9).
final_state(11). final_state(14). final_state(15).

% letter(+L)
% describes the French lower-case letters

letter(L) :-
name(L, [Code]),
97 =< Code, Code =< 122, !.

letter(L) :-
member(L,

[à, â, ä, ç, é, è, ê, ë, î, ï, ô, ö, ù, û, ü, ’œ’]),
!.

% transduce(+Start, ?Final, ?LexicalString, ?SurfaceString)
% describes the transducer. The first and second rules
% include mute transitions and enable to remove 0s

transduce(Start, Final, [U | LexicalString], SurfaceString) :-
arc(Start, Next, U, 0),
transduce(Next, Final,LexicalString,SurfaceString).

transduce(Start, Final, LexicalString,
[S | SurfaceString]) :-

arc(Start, Next, 0, S),
transduce(Next, Final,LexicalString,SurfaceString).
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Table 6.28 Future tense of Italian verb cantare and Spanish and Portuguese verbs cantar, ‘sing’

Language NumbernPerson First Second Third

Italian
singular canterò canterai canterà
plural canteremo canterete canteranno

Spanish
singular cantaré cantarás cantará
plural cantaremos cantaréis cantarán

Portuguese
singular cantarei cantarás cantará
plural cantaremos cantareis cantarão

transduce(Start, Final, [U | LexicalString],
[S | SurfaceString]) :-

arc(Start, Next, U, S),
U \== 0,
S \== 0,
transduce(Next, Final,LexicalString,SurfaceString).

transduce(Final, Final, [], []) :-
final_state(Final).

We can associate a final state to a part of speech. For instance, state 11
corresponds to the second-person plural of the future.

6.4.6 Application to Romance Languages

The transducer we created for the conjugation of French verbs can be easily
transposed to other Romance languages such as Italian, Spanish, or Portuguese, as
shown in Table 6.28.

6.4.7 Ambiguity

In the transducer for future tense, there is no ambiguity. That is, a surface form has
only one lexical form with a unique final state. This is not the case with the present
tense (Table 6.29), and

(je) chante ‘I sing’
(il) chante ‘he sings’

have the same surface form but correspond, respectively, to the first- and third-
person singular.

This corresponds to the transducer in Fig. 6.9, where final states 5 and 7 are
the same. The implementation in Prolog is similar to that of the future tense.
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Table 6.29 Present tense of
French verb chanter

NumbernPerson First Second Third

singular chante chantes chante
plural chantons chantez chantent

Fig. 6.9 A finite-state transducer encoding the present tense of verbs of the first group

Using backtracking, the transducer can yield all the final states reflecting the
morphological ambiguity.

6.4.8 Operations on Finite-State Transducers

Finite-state transducers have mathematical properties similar to those of finite-state
automata. In addition, they can be inverted and composed:

• Let T be a transducer. The inversion T �1 reverses the input and output symbols
of the transition function. The transition function of the transducer in Fig. 6.6 is
then ı D fı.q0; z W a/ D q1; ı.q1; y W b/ D q1; ı.q1; x W c/ D q2g.

• Let T1 and T2 be two transducers. The composition T1 ıT2 is a transducer, where
the output of T1 acts as the input of T2.

Both the inversion and composition operations result in new transducers. This is
obvious for the inversion. The proof is slightly more complex for the composition.
Let T1 D .˙;Q1; q1; F1; ı1/ and T2 D .˙;Q2; q2; F2; ı2/ be two transducers. The
composition T3 D T1 ı T2 is defined by .˙;Q1 � Q2; hq1; q2i ; F1 � F2; ı3/. The
transition function ı3 is built using the transition functions ı1 and ı2, and generating
all the pairs where they interact (Kaplan and Kay 1994):

ı3.hs1; s2i ; i; o/ D fht1; t2ij9c 2 ˙ [ "; t1 2 ı1.s1; i; c/ ^ t2 2 ı2.s2; c; o/g :
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The inversion property enables transducers to operate in generating or parsing
mode. They accept both surface and lexical strings. Each symbol of the first string is
mapped to the symbol of the second string. So you can walk through the automaton
and retrieve the lexical form from the surface form, or conversely, as we saw with
the Prolog example.

Composition enables us to break down morphological phenomena. It is some-
times easier to formulate a solution then using intermediate forms between the
surface and lexical forms. The correspondence between the word form and the
sequence of morphemes is not direct but is obtained as a cascade of transductions.
Composition enables us to compact the cascade and to replace the transducers
involved in it by a single one (Karttunen et al. 1992). We will see an example of
it with French irregular verbs in Sect. 6.5.3.

6.5 Morphological Rules

6.5.1 Two-Level Rules

Originally, Koskenniemi (1983) used declarative rules to describe morphology.
These two-level rules enumerate the correspondences between lexical characters
and surface ones and the context where they occur. Context corresponds to left
and right characters of the current character and can often be expressed in terms
of vowels (V) or consonants (C).

In the two-level formalism, a rule is made of a correspondence pair (lexical:
surface), a rule operator, and the immediate left and right context. Operators can
be),(,,, or /(, and mean, respectively, only in that context, always in that
context, always and only, and never in that context. Left and right contexts where
the rule applies are separated by the symbol __ (Table 6.30).

In English, the comparative happier is decomposed into two morphemes happy +
er, where the lexical y corresponds to a surface i (Table 6.31). This correspondence
occurs more generally when y is preceded by a consonant and followed by -er, -ed,
or -s. This can be expressed by three rules, where C represents any consonant:

1. y:i ( C:C __ +:0 e:e r:r
2. y:i ( C:C __ +:e s:s
3. y:i ( C:C __ +:0 e:e d:d

Once written, all the rules are applied in parallel. This parallel application is the
main distinctive feature of the two-level morphology compared with other, older
models. This means that when processing a string, every rule must be successfully
applied to the current pair of characters lexical:surface before moving to the
next pair (Fig. 6.10).
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Table 6.30 Two-level rules

Rules Description

a:b ) lc __ rc a is transduced as b only when it has lc to the left and rc to the
right

a:b ( lc __ rc a is always transduced as b when it has lc to the left and rc to
the right

a:b , lc __ rc a is transduced as b always and only when it has lc to the left
and rc to the right

a:b =( lc __ rc a is never transduced as b when it has lc to the left and rc to
the right

Table 6.31 The y:i
transduction rules

Examples happy+er party+s marry+ed
happi0er parties marri0ed

Rules Cy+er Cy+s Cy+ed
Ci0er Cies Ci0ed

Fig. 6.10 Applying the rules
in parallel

The left and right contexts of a rule can use a wildcard, the ANY symbol @,
which stands for any alphabetical character, as in

y:x ( __ @:c

This rule means that a lexical y corresponds to a surface x when it is before a
surface c. The corresponding lexical character in the right context is not specified in
the rule, however, the unspecified character represented by the ANY symbol must
be compatible with the correspondence rule that can apply to it. The ANY symbol
is not, strictly speaking, any character then, but any character so that it forms a
“feasible pair”, here with c.

6.5.2 Rules and Finite-State Transducers

It has been demonstrated that any two-level rule can be compiled into an equivalent
transducer (Johnson 1972; Kaplan and Kay 1994). Rule 1, for instance, corresponds
to the automaton in Fig. 6.11, where the pair @:@ denotes any pair that cannot pass
the other transitions.
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Fig. 6.11 A transducer to parse the y:i correspondence

Rule 1 Rule 2 Rule n

Lexical forms

Surface forms

Single FST

Lexical forms

Surface forms

Intersection

Fig. 6.12 A set of two-level rules intersected into a single FST (After Karttunen et al. (1992))

In practice, morphological phenomena are easier to describe and to understand
using individual rules rather than writing a complex transducer. For this reason,
the development of parsers based on the two-level method uses this strategy
(Karttunen 1994). It consists in writing a collection of rules to model a language’s
morphology and compiling them into as many transducers. The parallel transducers
are then combined into a single one using the transducer intersection (Fig. 6.12).

However, while the intersection of two finite automata defines a finite-state
automaton, it is not always the case for finite-state transducers. Kaplan and Kay
(1994) demonstrated that when surface and lexical pairs have the same length –
without " – the intersection is a transducer. This property is sufficient to intersect the
rules in practical applications. In fact, transducers obtained from two-level rules are
intersected by treating the " symbol as an ordinary symbol (Beesley and Karttunen
2003, p. 55). Parallel application of rules or the transducer intersection removes
one of their major harmful side effects: their application outside of their intended
context.

Originally, rules were compiled by hand. However, this problem can quickly
become intractable, especially when it comes to managing conflicting rules or when
rule contexts interfere with transduced symbols. To solve it, we can use a compiler
that creates transducers automatically from two-level rules. The Xerox XFST is
one such compiler. It is a publicly available tool, and to date it is the only serious
implementation of a morphological rule compiler.
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Table 6.32 Conjugation of irregular French verbs, present tense. Courir has regular suffixes in
underlined bold characters. In the other verbs, irregular infections are shown in bold characters

Infinitive courir dormir battre peindre écrire

First person singular cours dors bats peins écris
Second person singular cours dors bats peins écris
Third person singular court dort bat peint écrit
First person plural courons dormons battons peignons écrivons
Second person plural courez dormez battez peignez écrivez
Third person plural courent dorment battent peignent écrivent

6.5.3 Rule Composition: An Example with French Irregular
Verbs

When developing a complete morphological parser, it is often convenient to
introduce intermediate levels between the lexical and surface strings. This is
especially true when the lexical and surface forms are distant and involve complex
morphological relations. Intermediate levels enable us then to decompose the
morphological system into smaller parts that are easier to treat.

Chanod (1994) gives an example of decomposition with the notoriously difficult
morphology of French irregular verbs (Bescherelle 1980). The French verb system
has about 100 models of inflection – paradigms. Two of them are said to be regular,
the first and second group, and gather the vast majority of the verbs. The third group
is made of irregular verbs and gathers the rest. The irregular group contains the most
frequent verbs: faire ‘do’, savoir ‘know’, connaître ‘know’, dormir ‘sleep’, courir
‘run’, battre ‘beat’, écrire ‘write’, etc.

Table 6.32 shows the conjugation of some irregular verbs. We can see that there
is a set of regular suffixes: s, s, t, ons, ez, and ent, and that most irregularities, also
called alternations, occur at the junction of the stem and the suffix. The stem and
suffix can be directly concatenated, as in courir, but not in dormir, peindre, or battre.

Although apparently complex, general rules can model these alternations using
local contexts corresponding to specific substrings. In the case of dormir, a general
principle in French makes it impossible to have an m followed by an s or t. It
then must be deleted in the three singular persons. For battre, the pairs tt or dt
do not occur in the end of a word or before a final s. Such rules are not tied to one
specific verb but can be applied across a variety of inflection paradigms and persons.
Figure 6.13 shows the rule sequence that produces the correct surface form of dors.

The verbs peindre and écrire are more complex cases because their conjugation
uses two stems: pein and peign – écri and écriv. Chanod (1994) solves these difficul-
ties using a transduction between the infinitive and a first intermediate form that will
then be regular. Then peindre+IndP+SG+P1 is associated to peign+IndP+SG+P1,
and écrire+IndP+SG+P1 to écriv+IndP+SG+P1. The second intermediate form uses
two-level rules to obtain the correct surface forms: v or gn must be followed by a
vowel or deleted (Fig. 6.14). The rule that Chanod uses is, in fact:
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Lexical form: 1P+GS+PdnI+rimrodmets
⏐ ⏐

Intermediate form: inflection dorm +IndP +SG +P1
⏐ ⏐

Intermediate form: deletion of m followed by s dorm s
⏐ ⏐

Surface form: dor s

Fig. 6.13 Sequence of rules applied to dormir (After Chanod (1994))

Lexical form: ++mets

Intermediate form: inflection peign

peindre

+IndP

+IndP

+SG

SG

+P1

P1

Intermediate form: Depalatalisation of gn peign s

Surface form: pein s

Fig. 6.14 Sequence of rules applied to peindre (After Chanod (1994))

Rule 1 Rule 2 Rule n

Lexical forms

Intermediate forms

FST 1

Lexical forms

Intermediate forms

Intersection

Rule 1 Rule 2 Rule n

Surface forms

FST 2

Surface forms

Intersection

Lexicon

Single FST

Lexical forms

Surface forms

Composition

Composition

Lexicon

Fig. 6.15 Intersection and composition of finite-state transducers (After Karttunen (1994))

n:0 , g __ [sjt]
The FST resulting from the surface, lexical, and intermediate levels are ultimately

combined with the lexicon and composed into a single transducer (Fig. 6.15).
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6.6 The CoNLL Format

The Conference on Natural Language Learning (CoNLL) is an annual conference
dedicated to statistical and machine-learning techniques in language analysis. In
addition to the classical contributions in the form of articles found in scientific
conferences, CoNLL organizes a “shared task” to evaluate language processing
systems on a specific problem. As hinted by the conference name, the competing
systems should use machine-learning techniques, essentially supervised learning.
The participants are given a training set to train their models and are evaluated on a
test set. CoNLL makes these data sets available in a column-based format as shown
in Tables 6.33 and 6.34.

The CoNLL format has become very popular to share annotated corpora. It
can be used to represent any layer of a linguistic analysis: part-of-speech tagging,
morphological parsing, dependency parsing, semantic parsing, coreference, etc.
Although the number of columns may vary depending on the task, this format shows
a common structure across the years. In this section, we introduce it and we focus
on the morphological and part-of-speech layers. We will review additional columns
in the next chapters of this book.

Table 6.33 exemplifies the CoNLL format with the Spanish sentence La reestruc-
turación de los otros bancos checos se está acompañando por la reducción del
personal ‘The restructuring of Czech banks is accompanied by the reduction of
personnel’ (Palomar et al. 2004). One of the main characteristics of the CoNLL
format is that it has one word per line with the word properties and annotation
shown on the same line in separate columns:

• The FORM column corresponds to the word;
• The LEMMA column contains the lemma and the phrase los otros bancos

starting at index 4 is lemmatized as el otro banco;
• The CPOS and POS columns correspond to a coarse version of the part of speech

and a more detailed one: los is a determiner (d) as well as otros; bancos is a noun
(n); the POS codes are specific to this Spanish corpus, the Cast3LB treebank, and
described in Civit Torruella (2002);

• Finally, the FEATS column corresponds to the grammatical features that are
listed as an unordered set separated by vertical bars. The word bancos ‘banks’
has a masculine gender (gen = m) and a plural number (num = p).

The columns are delimited by a tabulation character, and the sentences by a blank
line.

Table 6.34 shows a similar annotation with a sentence from a French corpus
(Abeillé and Clément 2003; Abeillé et al. 2003) converted to the CoNLL format by
Candito et al. (2009).
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Table 6.33 Annotation of the Spanish sentence: La reestructuración de los otros bancos checos
se está acompañando por la reducción del personal ‘The restructuring of Czech banks is
accompanied by the reduction of personnel’ (Palomar et al. 2004) using the CoNLL 2006 format

ID FORM LEMMA CPOS POS FEATS

1 La el d da num=s|gen=f
2 reestructuración reestructuración n nc num=s|gen=f
3 de de s sp for=s
4 los el d da gen=m|num=p
5 otros otro d di gen=m|num=p
6 bancos banco n nc gen=m|num=p
7 checos checo a aq gen=m|num=p
8 se se p p0 _
9 está estar v vm num=s|per=3|mod=i|tmp=p
10 acompañando acompañar v vm mod=g
11 por por s sp for=s
12 la el d da num=s|gen=f
13 reducción reducción n nc num=s|gen=f
14 del del s sp gen=m|num=s|for=c
15 personal personal n nc gen=m|num=s
16 . . F Fp _

Table 6.34 Annotation of the French sentence: À cette époque, on avait dénombré cent quarante
candidats ‘At that time, we had counted one hundred and forty candidates’ (Abeillé and Clément
2003; Abeillé et al. 2003) following the CoNLL 2006 format

Index Form Lemma CPOS POS Features

1 À à P P _
2 cette ce D DET g=f|n=s|s=dem
3 époque époque N NC g=f|n=s|s=c
4 , , PONCT PONCT s=w
5 on on CL CLS g=m|n=s|p=3|s=suj
6 avait avoir V V m=ind|n=s|p=3|t=impft
7 dénombré dénombrer V VPP g=m|m=part|n=s|t=past
8 cent_quarante cent_quarante D DET g=m|n=p|s=card
9 candidats candidat N NC g=m|n=p|s=c
10 . . PONCT PONCT s=s

6.7 Application Examples

The Xerox language tools give a good example of what morphological parsers
and part-of-speech taggers can do. These parsers are available for demonstration
on the Internet using a web browser. Xerox tools let you enter English, French,
German, Italian, Portuguese, and Spanish words, and the server returns the context-
free morphological analysis for each term (Tables 6.35–6.37). You can also type
in phrases or sentences and Xerox taggers will disambiguate their part of speech.
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Table 6.35 Xerox morphological parsing in English

Input Term(s): works Input Term(s): round Input Term(s): this

work+Vsg3 round+Vb this+Psg
work+Npl round+Prep this+Dsg

round+Adv this+Adv
round+Adj
round+Nsg

Table 6.36 Xerox
morphological parsing in
French

Input Term(s): étions Input Term(s): porte

être+IndI+PL+P1+Verb porter+SubjP+SG+P1+Verb
porter+SubjP+SG+P3+Verb
porter+Imp+SG+P2+Verb
porter+IndP+SG+P1+Verb
porter+IndP+SG+P3+Verb
porte+Fem+SG+Noun

Table 6.37 Xerox morphological parsing in German

Input Term(s): arbeite Input Term(s): die

arbeiten+V+IMP+PRÄS+SG2 die+ART+DEF+PL+NOM
arbeiten+V+IND+PRÄS+SG1 die+ART+DEF+SG+AKK+FEM
arbeiten+V+KONJ+PRÄS+SG1 die+ART+DEF+SG+NOM+FEM
arbeiten+V+KONJ+PRÄS+SG3 die+ART+DEF+PL+AKK

die+PRON+DEM+PL+AKK
die+PRON+DEM+PL+NOM
die+PRON+DEM+SG+AKK+FEM
die+PRON+DEM+SG+NOM+FEM
die+PRON+RELAT+PL+AKK
die+PRON+RELAT+PL+NOM
die+PRON+RELAT+SG+AKK+FEM
die+PRON+RELAT+SG+NOM+FEM

In addition to demonstrations, Xerox lists examples of industrial applications that
make use of its tools.

6.8 Further Reading

Dionysius Thrax fixed the parts of speech for Greek in the second century BCE.
They have not changed since and his grammar is still interesting to read, see Lallot
(1998). A short and readable introduction in French to the history of parts of speech
is Ducrot and Schaeffer (1995).

Accounts on finite-state morphology can be found in Sproat (1992) and Ritchie
et al. (1992). Roche and Schabes (1997) is a useful book that describes fundamental
algorithms and applications of finite-state machines in language processing, espe-
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cially for French. Kornai (1999) covers other aspects and languages. Kiraz (2001)
on the morphology of Semitic languages: Syriac, Arabic, and Hebrew. Beesley and
Karttunen (2003) is an extensive description of the two-level model in relation with
the Xerox tools. It contains a CD-ROM with the Xerox rule compiler.

Antworth (1995) provides a free implementation of KIMMO named PC-
KIMMO 2 with source and executable programs. The system is available from
the Internet (http://www.sil.org/). It comes with an English lexicon and English
morphological rules. It is open to extensions and modifications. General-purpose
finite-state transducers toolkits are also available. They include the FSA utilities
(van Noord and Gerdemann 2001), the FSM library (Mohri et al. 1998) and its
follower, OpenFst (http://www.openfst.org/), the Helsinki Finite-State Transducer
Technology (https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstHome), and Unitex
(http://www-igm.univ-mlv.fr/~unitex/) (Paumier 2006).

Although most lemmatizers use transducers and rules, it is possible to formulate
lemmatization with classifiers that we can train on annotated corpora. See Chrupała
(2006) for an interesting account on these techniques and Björkelund et al. (2010)
for an implementation.

Exercises

6.1. Find a dictionary on the Web in English, French, German, or another language
you would like to study and extract all the articles, conjunctions, prepositions, and
pronouns.

6.2. Implement a morphological parser to analyze regular plurals of nouns in
English or French.

6.3. Add a lexical look-up to Exercise 6.2.

6.4. Implement a morphological parser to analyze plurals of nouns in English or
French, taking a list of exceptions into account.

6.5. Implement a morphological parser to analyze regular preterits of verbs in
English or German.

6.6. Implement a morphological parser to conjugate French verbs of first group in
the imperfect tense.

6.7. Implement a morphological parser to conjugate regular German verbs in the
present tense.

6.8. Build a morphological parser implementing regular English verb inflection: -s,
-ed, -ing.

6.9. Some verbs have their final -e deleted, for instance, chase (chase+ed,
chase+ing). In the KIMMO formalism, the -e deletion rule is expressed as e:0

http://www.sil.org/
http://www.openfst.org/
https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstHome
http://www-igm.univ-mlv.fr/~unitex/
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, C:C __ 0:+ V:V. Draw the corresponding transducer and write the Prolog rules
that will parse these verbs.

6.10. Break the following words into morphemes: computer: computers, comput-
erize, computerization, recomputerize.

6.11. Build a morphological parser that will parse words derived from computer:
computers, computerize, computerization, recomputerize.

6.12. Break the following words into morphemes: chanter: enchanter, rechanter,
déchanter, désenchanter.

6.13. Build a morphological parser that will parse words derived from chanter:
enchanter, rechanter, déchanter, and désenchanter.



Chapter 7
Part-of-Speech Tagging Using Rules

7.1 Resolving Part-of-Speech Ambiguity

7.1.1 A Manual Method

We saw that looking up a word in a lexicon or carrying out a morphological analysis
on a word can leave it with an ambiguous part of speech. The word chair, which
can be assigned two tags, noun or verb, is an example of ambiguity. It is a noun
in the phrase a chair, and a verb in to chair a session. Ambiguity resolution, that
is, retaining only one part of speech (POS) and discarding the others, is generally
referred to as POS tagging or POS annotation.

As children, we learned to carry out a manual disambiguation by considering the
grammatical context of the word. In the first phrase, chair is preceded by an article
and therefore is part of a noun phrase. Since there is no other word here, chair is
a noun. In the second phrase, chair is preceded by to, which would not precede a
noun, and therefore chair is a verb.

Voutilainen and Järvinen (1995) describe a more complex example with the
sentence

That round table might collapse.

While the correct part-of-speech tagging is:

That/determiner round/adjective table/noun might/modal verb collapse/verb.

a simple dictionary lookup or a morphological analysis produces many ambiguities,
as shown in Table 7.1.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__7, © Springer-Verlag Berlin Heidelberg 2014
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Table 7.1 Ambiguities in part-of-speech annotation with the sentence: That round table might
collapse

Words Possible tags Example of use

that Subordinating conjunction That he can swim is good
Determiner That white table
Adverb It is not that easy
Pronoun That is the table
Relative pronoun The table that collapsed

round Verb Round up the usual suspects
Preposition Turn round the corner
Noun A big round
Adjective A round box
Adverb He went round

table Noun That white table
Verb I table that

might Noun The might of the wind
Modal verb She might come

collapse Noun The collapse of the empire
Verb The empire can collapse

7.1.2 Which Method to Use to Automatically Assign Parts
of Speech

Grammatical constraints are not always sufficient to resolve ambiguous tags. Church
and Mercer (1993) exemplify this with the phrase I see a bird, which can be
annotated as

I/noun see/noun a/noun bird/noun

This tagging corresponds to: I/letter of alphabet, see/noun as in Holy See, a/letter
of alphabet, bird/noun. Although this tag sequence makes no sense here, it cannot
be ruled out as syntactically ill formed, because the parser must accept sequences
of four nouns in other situations, as in city school committee meeting. The proper
tagging is, of course, I/pronoun see/verb a/article bird/noun.

Semantic rules could implement common-sense reasoning and prevent inconsis-
tencies. However, this method is no longer favored. It would imply writing many
rules that could operate in very specific applications, and not on unrestricted texts.

Instead of using general grammar rules, we can consider word preferences.
Most words taken from a dictionary have only one part of speech or have a
strong preference for only one of them, although frequent words tend to be more
ambiguous. From text statistics based on different corpora, in English and in French,
Merialdo (1994) and Vergne (1999) report that 50 to 60 % of words have a unique
possible tag, and 15 to 25 % have only two tags. In both languages, tagging a word
with its most common part of speech yields a success rate of more than 75 %.
Charniak (1993) reports a score of more than 90 % for English. This figure is called
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the baseline. It corresponds to the accuracy obtained with a minimal algorithm, here
the word annotation with its most frequent tag.

Two efficient methods applied locally have emerged to improve this figure and to
solve reasonably well POS tagging. The first one uses rule-based constraints. Rules
consider the left and right context of the word to disambiguate, that is, either discard
or replace a wrong part of speech. Rules are symbolic and can be designed by hand
or derived automatically from hand-annotated corpora.

The second method is based on statistics. Sequence statistics are automatically
learned from hand-annotated corpora, and probabilistic models are applied that
assign the most likely tags to words of a sentence. Both methods enable us to
successfully tag more than 95 % of the words of a text. We will describe the first
one in this chapter and the second one in the next chapter.

7.2 Baseline

Before we start writing elaborate tagging algorithms, we describe first a baseline
technique that requires extremely limited efforts. The baseline term is widely used
in natural language processing to refer to a starting point that is usually easy
to implement. We use then the results obtained from the baseline to assess the
improvements brought by more elaborate algorithms.

In part-of-speech tagging, the baseline is to tag each word with its most frequent
part of speech. We can derive the frequencies from a part-of-speech annotated
corpus, such as the Penn Treebank for English. Surdeanu et al. (2008) converted
it to the CoNLL format that we described in Sect. 6.6. Using Unix commands such
as those in Sect. 5.5 makes the task very easy. In CoNLL 2008, the word forms and
their parts of speech are respectively in column 2 and 5. We extract them with the
cut -f2,5 command and then we sort and count the lines. This can be done with
the command line:

cut -f2,5 <conll_corpus_file | sort | uniq -c

The next lines show an excerpt of the results where the first column is the
frequency, the second one, the word, and the third one, the part-of-speech code.
The complete tagset is shown in Table 7.12:

6 campus NN
2 campuses NNS

908 can MD
3 can NN
5 canal NN
1 canals NNS
13 cancel VB
7 canceled VBD
26 canceled VBN
3 cancellation NN
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Table 7.2 Initial step of Brill’s algorithm

Likely tags yielding a correct tagging Likely tags yielding a wrong tagging

English I/pro can/modal see/verb a/art bird/noun The/art can/modal rusted/verb
French Je/pro donne/verb le/art cadeau/noun Je/pro le/art fais/verb demain/adv
German Der/art Mann/noun kommt/verb Wer/pro ist/verb der/art Mann/noun ,

der/art kommt/verb ?

From these frequencies, the baseline algorithm will tag can as a modal (MD) and
not as a noun (NN) and canceled as a verb past participle (VBN) and not as a verb
preterit (VBD).

7.3 Tagging with Rules

Part-of-speech tagging with rules is relatively old (Klein and Simmons 1963). In
the beginning, rules were hand-coded and yielded good results at the expense of
thoroughly and painfully crafting the rules (Voutilainen et al. 1992). The field has
been completely renewed by Brill (1995), who proposed a very simple scheme to
tag a text with rules and an algorithm to automatically learn the rules from annotated
corpora. A good deal of the current work on part-of-speech tagging with rules is now
inspired by his foundational work.

7.3.1 Brill’s Tagger

Brill’s tagger uses a dictionary and assumes that it contains all the words to tag.
Each word in the dictionary is labeled with its most likely (frequent) part of speech
and includes the list of its other legal – possible – parts of speech. Part-of-speech
distributions and statistics for each word can be derived from annotated corpora and
by using methods described in Chaps. 2 and 5.

The tagger first assigns each word with its most likely part of speech as with the
baseline. It does not depend on a morphological parser, although it could use one as
a preprocessor. It also features a module to tag unknown words that we will examine
in Sect. 7.4. Examples of likely tags assigned to words are given in Table 7.2.

The tagger then applies a list of transformations to alter the initial tagging.
Transformations are contextual rules that rewrite a word tag into a new one. The
transformation is performed only if the new tag of the word is legal – is in the
dictionary. If so, the word is assigned the new tag. Transformations are executed
sequentially and each transformation is applied to the text from left to right.
Examples of transformations are:

1. In English: Change the tag from modal to noun if the previous word is an article.
2. In French: Change the tag from article to pronoun if the previous word is a

pronoun.
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Table 7.3 Contextual rule templates, where A, B, C, and D denotes parts of speech, members of
the POS tagset

Rules Explanation

alter(A, B, prevtag(C)) Change A to B if preceding tag is C
alter(A, B, nexttag(C)) Change A to B if the following tag is C
alter(A, B, prev2tag(C)) Change A to B if tag two before is C
alter(A, B, next2tag(C)) Change A to B if tag two after is C
alter(A, B, prev1or2tag(C)) Change A to B if one of the two preceding tags

is C
alter(A, B, next1or2tag(C)) Change A to B if one of the two following tags

is C
alter(A, B, prev1or2or3tag(C)) Change A to B if one of the three preceding

tags is C
alter(A, B, next1or2or3tag(C)) Change A to B if one of the three following

tags is C
alter(A, B, surroundingtag(C,
D))

Change A to B if surrounding tags are C and D

alter(A, B, nextbigram(C, D)) Change A to B if next bigram tag is C D
alter(A, B, prevbigram(C, D)) Change A to B if previous bigram tag is C D

3. In German: Change the tag from article to pronoun if the previous word is a noun
(or a comma.)

These rules applied to the sentences in Table 7.2 yield:

1. In English: The/art can/noun rusted/verb
2. In French: Je/pro le/pro fais/verb demain/adv
3. In German: Wer/pro ist/verb der/art Mann/noun , der/pro kommt/verb ?

Rules conform to a limited number of transformation types, called templates. For
example, the rule

Change the tag from modal to noun if the previous word is an article.

corresponds to template:

Change the tag from X to Y if the previous tag is Z.

The tagger uses in total 11 templates shown in Table 7.3. Brill reports that less
than 500 rules – instantiated templates – are needed in English to obtain an accuracy
of 97 %.

7.3.2 Implementation in Prolog

We will exemplify the tagging algorithm with an implementation of two rule
templates:

alter(A, B, prevtag(C))
alter(A, B, prev1or2tag(C))



210 7 Part-of-Speech Tagging Using Rules

These rules being instantiated in the form of:

alter(verb, noun, prevtag(art)).
alter(verb, noun, prev1or2tag(art)).

The first rule changes the tag from verb to noun if the previous word is an
article, and the second changes the tag from verb to noun if one of the two
previous words is an article. The second rule is more general than the first one.
We give the code of the first one because it is easier to start with it.

The tag predicate enables us to alter an initially tagged text:

?- tag([the/art, holy/adj, see/verb], L).
L = [the/art, holy/adj, see/noun]

% tag(+InitialTaggedText, -TaggedText)
% Implementation of Brill’s algorithm

tag(InitialTaggedText, TaggedText) :-
bagof(alter(FromPOS, ToPOS, Condition),
alter(FromPOS, ToPOS, Condition), Rules),
forall(Rules, InitialTaggedText, TaggedText).

% Collect all the rules and apply them sequentially

forall([Rule | Rules], Text, TaggedText) :-
apply(Rule, Text, AlteredText),
forall(Rules, AlteredText, TaggedText).

forall([], TaggedText, TaggedText).

%Apply prevtag template
apply(alter(FromPOS, ToPOS, prevtag(POS)),
[PrevWord/POS, Word/FromPOS | RemainingText],
[PrevWord/POS, Word/ToPOS | RemainingText1] ) :-
!,
apply(alter(FromPOS, ToPOS, prevtag(POS)),
[Word/ToPOS | RemainingText],
[Word/ToPOS | RemainingText1] ).

apply(alter(FromPOS, ToPOS, prevtag(POS)),
[X, Y| RemainingText], [X, Y| RemainingText1] ) :-
apply(alter(FromPOS, ToPOS, prevtag(POS)),
[Y| RemainingText], [Y | RemainingText1] ).

apply(alter(_, _, prevtag(_)), [X], [X]).

% Apply prev1or2tag template
% The first two rules take into account that the rule
% can apply to the second word of the text
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apply(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[FirstWord/POS, Word/FromPOS | RemainingText],
[FirstWord/POS, Word/ToPOS | RemainingText1] ) :-
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[FirstWord/POS, Word/ToPOS | RemainingText],
[FirstWord/POS, Word/ToPOS | RemainingText1] ).

apply(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[X, Y| RemainingText], [X, Y| RemainingText1] ) :-
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[X, Y| RemainingText], [X, Y| RemainingText1] ).

apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[Prev2Word/POS, Prev1Word/POS1, Word/FromPOS |
RemainingText],
[Prev2Word/POS, Prev1Word/POS1, Word/ToPOS |
RemainingText1] ) :-
!,
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[Prev1Word/POS1, Word/ToPOS | RemainingText],
[Prev1Word/POS1, Word/ToPOS | RemainingText1] ).

apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[Prev2Word/POS2, Prev1Word/POS, Word/FromPOS |
RemainingText], [Prev2Word/POS2, Prev1Word/POS,
Word/ToPOS | RemainingText1] ) :-
!,
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[Prev1Word/POS, Word/ToPOS | RemainingText],
[Prev1Word/POS, Word/ToPOS | RemainingText1] ).

apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[X, Y, Z | RemainingText],
[X, Y, Z| RemainingText1] ) :-
apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[Y, Z| RemainingText], [Y, Z | RemainingText1] ).

apply_aux(alter(FromPOS, ToPOS, prev1or2tag(POS)),
[PrevWord/POS, Word/FromPOS],
[PrevWord/POS, Word/ToPOS]).

apply_aux(alter(_, _, prev1or2tag(_)), [X,Y], [X,Y]).

%The ordered contextual rules
alter(verb, noun, prevtag(art)).
alter(verb, noun, prev1or2tag(art)).
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Table 7.4 Brill’s learning algorithm

St. Operation Input Output

1. Annotate each word of the corpus with its
most likely part of speech

Corpus AnnotatedCorpus(1)

2. Compare pairwise the part of speech of
each word of the AnnotationReference
and AnnotatedCorpus(i)

AnnotationReference
AnnotatedCorpus(i)

List of errors

3. For each error, instantiate the rule
templates to correct the error

List of errors List of tentative rules

4. For each instantiated rule, compute
on AnnotatedCorpus(i) the number
of good transformations minus the
number of bad transformations the rule
yields

AnnotatedCorpus(i)
Tentative rules

Scored tentative rules

5. Select the rule that has the greatest error
reduction and append it to the ordered
list of transformations

Tentative rules Rule(i)

6. Apply Rule(i) to AnnotatedCorpus(i) AnnotatedCorpus(i)
Rule(i)

AnnotatedCorpus(i+1)

7. If number of errors is under predefined
threshold, end the algorithm else go to
step 2.

– List of rules

7.3.3 Deriving Rules Automatically

One of the most interesting features of Brill’s rules is that they can be learned
automatically from a hand-annotated corpus. This type of algorithm is called
transformation-based learning (TBL). Let us denote Corpus this corpus and An-
notationReference its hand-annotation. In the context, the hand-annotation is often
called the Gold Standard.

The TBL algorithm first assigns the most likely (frequent) tag to each word.
It produces errors, and all rules templates are instantiated for each tagging error
measured against AnnotationReference. The rule that yields the greatest error
reduction is selected and applied to alter the Corpus tagging. This process is iterated
as long as the annotation results are not close enough to AnnotationReference.

Table 7.4 shows the steps of the algorithm. Corpus annotated at iteration i of the
process is denoted AnnotatedCorpus(i). Each iteration enables us to derive a new
rule, which is denoted Rule(i).

As hand-annotated corpus, Brill (1995) used the Penn Treebank (Marcus et al.
1993). Table 7.5 lists the five most productive rules that the algorithm learned from
The Wall Street Journal annotated section of the corpus (Brill 1995).
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Table 7.5 The five first transformations learned from The Wall Street Journal corpus (Brill 1995),
where NN is a singular noun; VB is a verb, base form; TO is the word to; VBP is a verb, non-third
person singular present; MD is a modal; DT is a determiner; VBD is a verb, past tense; and VBZ is
a verb, third-person singular present. These tags are defined by the Penn Treebank, and Sect. 7.5.2
details the complete tagset

Change

# From To Condition

1 NN VB Previous tag is TO
2 VBP VB One of the previous three tags is MD
3 NN VB One of the previous two tags is MD
4 VB NN One of the previous two tags is DT
5 VBD VBN One of the previous three tags is VBZ

Table 7.6 A confusion matrix. The first column corresponds to the correct tags, and for each tag,
the rows give the assigned tags. Excerpt from Franz (1996, p. 124). IN is a preposition, RB is an
adverb, JJ is an adjective, RP is a particle, VBG is a verb, gerund (complete tagset in Sect. 7.5.2)

Tagger!
#Correct DT IN JJ NN RB RP VB VBD VBG VBN

DT 99.4 0.3 – – 0.3 – – – – –
IN 0.4 97.5 – – 1.5 0.5 – – – –
JJ – 0.1 93.9 1.8 0.9 – 0.1 0.1 0.4 1.5
NN – – 2.2 95.5 – – 0.2 – 0.4 –
RB 0.2 2.4 2.2 0.6 93.2 1.2 – – – –
RP – 24.7 – 1.1 12.6 61.5 – – – –
VB – – 0.3 1.4 – – 96.0 – – 0.2
VBD – – 0.3 – – – – 94.6 – 4.8
VBG – – 2.5 4.4 – – – – 93.0 –
VBN – – 4.6 – – – – 4.3 – 90.6

7.3.4 Confusion Matrices

At each iteration of TBL algorithm, we can derive a confusion matrix that shows
for each tag how many times a word has been wrongly labeled. Table 7.6 shows
an example of it (Franz 1996), which enables us to understand and track errors.
Again, parts of speech use the Penn Treebank tagset described in Sect. 7.5.2. The
diagonal shows the breakdown of the tags correctly assigned, for example, 99.4 %
for determiners (DT). The rest of the table shows the tags wrongly assigned, i.e.,
for determiners: 0.3 % to prepositions (IN) and 0.3 % to adverbs (RB). This table is
only an excerpt, therefore the sum of rows is not equal to 100.
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Table 7.7 The first five transformations for unknown words (Brill 1995), where NN is a noun,
singular; NNS a noun, plural; CD cardinal number; JJ an adjective; VBN a verb, past participle;
VBG a verb, gerund (complete tagset in Sect. 7.5.2)

Change

# From To Condition

1 NN NNS Has suffix s
2 NN CD Has character .
3 NN JJ Has character -
4 NN VBN Has suffix ed
5 NN VBG Has suffix ing

7.4 Unknown Words

We have made the assumption of a finite vocabulary. This is never the case in
practice. Many words will likely be absent from the dictionary: proper and common
nouns, verbs, adjectives, or adverbs.

There is no standard technique to deal with the unknown words. The baseline
is to tag unknown words as nouns since it is the most frequent part of speech.
Another technique is to use suffixes. Brill (1995) proposes a combination of both
to extend the transformation-based algorithm. The initial step tags unknown words
as proper nouns for capitalized words and as common nouns for the rest. Then it
applies transformations from a set of predefined templates: change the tag of an
unknown word from X to Y if:

1. Deleting the prefix (suffix) x, jxj � 4, results in a word (x is any string of length
1 to 4).

2. The first (last) (1, 2, 3, 4) characters of the word are x.
3. Adding the character string x as a prefix (suffix) results in a word.
4. Word w ever appears immediately to the left (right) of the word.
5. Character z appears in the word.

These templates are specific to English, but they can easily be modified to ac-
commodate other European languages. Table 7.7 shows the first five transformations
learned from The Wall Street Journal corpus.

7.5 Standardized Part-of-Speech Tagsets

While basic parts of speech are relatively well defined: determiners, nouns, pro-
nouns, adjectives, verbs, auxiliaries, adverbs, conjunctions, and prepositions, there
is a debate on how to standardize them for a computational analysis. One issue
is the level of detail. Some tagsets feature a dozen tags, some over a hundred.
Another issue that is linked to the latter is that of subcategories. How many classes
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Table 7.8 Parts of speech and grammatical features

Main parts of speech Features (subcategories)

Adjective, noun, pronoun Regular base comparative superlative interrogative person num-
ber case

Adverb Regular base comparative superlative interrogative
Article, determiner,

preposition
Person case number

Verb Tense voice mood person number case

for verbs? Only one, or should we create auxiliaries, modal, gerund, intransitive,
transitive verbs, etc.?

The debate becomes even more complicated when we consider multiple lan-
guages. In French and German, the main parts of speech can be divided into
subclasses depending on their gender, case, and number. In English, these divisions
are useless. Although it is sometimes possible to map tagsets from one language to
another, there is no universal scheme, even within the same language.

A few years ago, many computational linguists had a personal tagset. There are
now standards, but the discussion is not over. We will examine here two multilingual
part-of-speech schemes, a widely accepted tagset for English (the Penn Treebank),
and a tagset for Swedish.

7.5.1 Multilingual Part-of-Speech Tags

Building a multilingual tagset imposes the condition of having a set of common
classes, which enables a comparison between languages. These classes correspond
to traditional parts of speech and gather a relatively large consensus among
European languages. However, they are not sufficiently accurate for any language in
particular. Dermatas and Kokkinakis (1995) retained the traditional parts of speech
to tag texts in seven European languages using statistical methods. They also added
features (subcategories) specific to each language (Table 7.8).

MULTEXT (Ide and Véronis 1995; Monachini and Calzolari 1996), is a multina-
tional initiative that aims at providing an annotation scheme for all the Western
and Eastern European languages. For the parts of speech, MULTEXT merely
perpetuates the traditional categories and assigns them a code. The universal part-of-
speech tagset (Petrov et al. 2012) is more recent and almost identical, but includes
a mapping with other tagsets used in annotated corpora of 22 different languages.
Table 7.9 shows both tag sets.

MULTEXT complements the parts of speech with a set of grammatical features,
which they call attributes. Attributes enable us to subcategorize words and reconcile
specific features of different European languages. Attributes for nouns and verbs are
shown in Tables 7.10 and 7.11.



216 7 Part-of-Speech Tagging Using Rules

Table 7.9 Part-of-speech codes from MULTEXT and the universal POS tagset

Part of speech MULTEXT Universal POS tagset

Nouns N NOUN

Verbs V VERB

Adjectives A ADJ

Pronouns P PRON

Determiners and articles D DET

Adverbs R ADV

Adposition (Prepositions and postpositions) S ADP

Conjunctions C CONJ

Numerals M NUM

Interjections I –
Residuals (abbreviations, foreign words, etc.) X X
Particles – PRT

Punctuation marks – .

Table 7.10 Features
(attributes) and values for
nouns

Position Attribute Value Code

1 Type Common c
Proper p

2 Gender Masculine m
Feminine f
Neuter n

3 Number Singular s
Plural p

4 Case Nominative n
Genitive g
Dative d
Accusative a

MULTEXT attributes concern only the morpho-syntactic layer and represent a
superset of what is needed by all the languages. Some attributes may not be relevant
for a specific language. For instance, English nouns have no gender, and French ones
have no case. In addition, applications may not make use of some of the attributes
even if they are part of the language. Tense, for instance, may be useless for some
applications.

A part-of-speech tag is a string where the first character is the main class of
the word to annotate and then a sequence of attribute values. Attribute positions
correspond to their rank in the table, such as those defined in Tables 7.10 and 7.11
for nouns and verbs. When an attribute is not applicable, it is replaced by a dash (-).
An English noun could receive the tag:

N[type=common number=singular] Nc-s-

a French one:

N[type=common gender=masculine number=singular] Ncms-
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Table 7.11 Attributes
(features) and values for verbs

Position Attribute Value Code

1 Type Main m
Auxiliary a
Modal o

2 Mood/form Indicative i
Subjunctive s
Imperative m
Conditional c
Infinitive i
Participle p
Gerund g
Supine s

3 Tense Base b
Present p
Imperfect i
Future f
Past s

4 Person First 1
Second 2
Third 3

5 Number Singular s
Plural p

6 Gender Masculine m
Feminine f
Neuter n

and a German one:

N[type=common gender=neuter number=singular
case=nominative] Ncnsn

A user can extend the coding scheme and add attributes if the application requires
it. A noun could be tagged with some semantic features such as country names,
currencies, etc.

Finally, although they are not encoded the same way, the parts of speech
and grammatical features in Tables 6.33 and 6.34 are roughly equivalent to the
MULTEXT annotation.

7.5.2 Parts of Speech for English

The Penn Treebank is a large corpus of texts annotated with part-of-speech and
syntactic tags (Marcus et al. 1993). Table 7.12 shows its part-of-speech tagset
consisting of 48 tags and Table 7.13 shows an annotation example with the sentence:
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Table 7.12 The Penn Treebank tagset

1. CC Coordinating conjunction 25. TO to
2. CD Cardinal number 26. UH Interjection
3. DT Determiner 27. VB Verb, base form
4. EX Existential there 28. VBD Verb, past tense
5. FW Foreign word 29. VBG Verb, gerund/present participle
6. IN Preposition/sub. conjunction 30. VBN Verb, past participle
7. JJ Adjective 31. VBP Verb, non-third pers. sing. pres.
8 JJR Adjective, comparative 32. VBZ Verb, third pers. sing. present
9. JJS Adjective, superlative 33. WDT wh-determiner
10. LS List item marker 34. WP wh-pronoun
11. MD Modal 35. WP$ Possessive wh-pronoun
12. NN Noun, singular or mass 36. WRB wh-adverb
13. NNS Noun, plural 37. # Pound sign
14. NNP Proper noun, singular 38. $ Dollar sign
15. NNPS Proper noun, plural 39. . Sentence final punctuation
16. PDT Predeterminer 40. , Comma
17. POS Possessive ending 41. : Colon, semicolon
18. PRP Personal pronoun 42. ( Left bracket character
19. PRP$ Possessive pronoun 43. ) Right bracket character
20. RB Adverb 44. " Straight double quote
21. RBR Adverb, comparative 45. ‘ Left open single quote
22. RBS Adverb, superlative 46. “ Left open double quote
23. RP Particle 47. ’ Right close single quote
24. SYM Symbol 48. ” Right close double quote

Battle-tested Japanese industrial managers here always buck up nervous newcomers with
the tale of the first of their countrymen to visit Mexico, a boatload of samurai warriors
blown ashore 375 years ago.

Unlike MULTEXT and the universal part-of-speech tagset, the Penn Treebank
tagset concerns only English and shows little possibility of being adapted to another
language. However, it is now widely established in the North American language
processing community and in industry.

The Penn Treebank team proceeded in two steps to annotate their corpus. They
first tagged the texts with an automatic stochastic tagger. They then reviewed and
manually corrected the annotation. Table 7.13 follows the CoNLL 2008 and 2009
format (Surdeanu et al. 2008), which is slightly different from the CoNLL 2006
format presented in Sect. 6.6:

• The lemmas in the LEMMA and PLEMMA columns are generated automatically
from a dictionary lookup with the WordNet lexical database. We will describe
this database in Chap. 15.

• The POS column corresponds to the parts of speech manually assigned by the
Penn Treebank team, while the PPOS tags – the predicted parts of speech – are
generated automatically by a POS tagger (Giménez and Màrquez 2004). In the
table, we can see that the tagger made only one mistake in the annotation of buck.
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Table 7.13 Sample of annotated text from the Penn Treebank using the CoNLL 2008 format
(After Marcus et al. (1993) and Surdeanu et al. (2008))

ID FORM LEMMA PLEMMA POS PPOS FEAT PFEAT

1 Battle battle battle NN NN _ _
2 - - - HYPH HYPH _ _
3 tested tested tested NN NN _ _
4 Japanese japanese japanese JJ JJ _ _
5 industrial industrial industrial JJ JJ _ _
6 managers manager manager NNS NNS _ _
7 here here here RB RB _ _
8 always always always RB RB _ _
9 buck buck buck VBP VB _ _
10 up up up RP RP _ _
11 nervous nervous nervous JJ JJ _ _
12 newcomers newcomer newcomer NNS NNS _ _
13 with with with IN IN _ _
14 the the the DT DT _ _
15 tale tale tale NN NN _ _
16 of of of IN IN _ _
17 the the the DT DT _ _
18 first first first JJ JJ _ _
19 of of of IN IN _ _
20 their their their PRP$ PRP$ _ _
21 countrymen countryman countryman NNS NNS _ _
22 to to to TO TO _ _
23 visit visit visit VB VB _ _
24 Mexico mexico mexico NNP NNP _ _
25 , , , , , _ _
26 a a a DT DT _ _
27 boatload boatload boatload NN NN _ _
28 of of of IN IN _ _
29 samurai samurai samurai NN NN _ _
30 warriors warrior warrior NNS NNS _ _
31 blown blow blow VBN VBN _ _
32 ashore ashore ashore RB RB _ _
33 375 375 375 CD CD _ _
34 years years years NNS NNS _ _
35 ago ago ago RB RB _ _
36 . . . . . _ _

• FEAT is the set of grammatical features as in Sect. 6.6, while PFEAT is
automatically predicted. The Penn Treebank team did not annotate these features;
they are replaced with an underscore in the table.
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Fig. 7.1 Token annotation,
where the identifier id
corresponds to the word
position

7.5.3 An Annotation Scheme for Swedish

Current annotation schemes often use XML to encode data. This enables a stricter
definition of codes through a DTD and makes it easier to use and share data.
The annotation is often split into levels that reflect the processing stages. We
describe here an example drawn from the Granska and CrossCheck projects to
process Swedish (Carlberger et al. 2004) from the Kungliga Tekniska Högskolan
in Stockholm. The annotation scheme uses the reference tagset for Swedish defined
by the Stockholm–Umeå Corpus (Ejerhed et al. 1992).

The annotation has four levels, and we will describe two of them. The first one
corresponds to tokenization. Figure 7.1 shows the token annotation of sentence:

Bilen framför justitieministern svängde fram och tillbaka över vägen så att hon blev rädd.
‘The car in front of the Justice Minister swung back and forth and she was frightened.’

The second level contains the part-of-speech information, either with lemmas
(Fig. 7.2) or without (Fig. 7.3). In both annotations, the tokens have been replaced
by their positions. The tag attribute gives the part of speech and its features as a list
separated by dots. The first item of the list the main category; for example, nn is a
noun. The rest describes the features: utr is the utrum gender, sin is the singular
number, def means definite, and nom is the nominative case.

7.6 Further Reading

Part-of-speech tagging has a long history in language processing, although many
researchers in computational linguistics neglected it in the beginning. Early works
include Harris (1962) and Klein and Simmons (1963). Harris’ TDAP system was
reconstructed and described by Joshi and Hopely (1999).
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Fig. 7.2 Tokens annotated with their part of speech and lemma. Tokens are indicated by their
position. The tag specifies the part of speech and its features

Fig. 7.3 Tokens annotated with their part of speech only. Tokens are indicated by their position

Brill’s tagging program marked a breakthrough in tagging with symbolic tech-
niques. It is available from the Internet for English. Roche and Schabes (1995)
proposed a dramatic optimization of it that proved ten times faster than and one
third the size of stochastic methods. Constant (1991) and Vergne (1998, 1999) give
examples of efficient symbolic taggers that use manually crafted rules.
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Exercises

7.1. Complement Brill’s tagging algorithm in Prolog with rules alter(A, B,
nexttag(C)) and alter(A, B, surroundingtag(C, D)).

7.2. Implement Brill’s learning algorithm in Prolog or Perl with all the rule
templates.



Chapter 8
Part-of-Speech Tagging Using Statistical
Techniques

Like transformation-based tagging, statistical part-of-speech (POS) tagging assumes
that each word is known and has a finite set of possible tags. These tags can be
drawn from a dictionary or a morphological analysis. Statistical methods enable
us to determine a sequence of part-of-speech tags T D t1; t2; t3; : : : ; tn, given a
sequence of words W D w1;w2;w3; : : : ;wn. They use an annotated corpus to train
a model and predict the correct tag when a word has more than one possible tag.

8.1 Part-of-Speech Tagging with Linear Classifiers

Linear classifiers, such as logistic regression, perceptrons, or support vector ma-
chines, which we saw in Sect. 4.4, are an efficient set of numerical techniques we
can use to carry out part-of-speech tagging. As input, the tagger reads the sentence’s
words sequentially from left to right and, using a model it has trained beforehand,
predicts the part of speech of the current word.

To train and apply the model, the tagger extracts a set of features from the
surrounding words, typically a sliding window spanning five words and centered
on the current word. Core features are the lexical values of the words inside this
window, called the context, as well as the parts of speech to the left of the current
word:

1. The lexical values are the input data to the tagger. They are produced by a
tokenizer, possibly followed by a morphological parser.

2. The parts of speech are assigned from left to right by the tagger. They are reused
by the tagger to predict the POS of the current word. The part-of-speech features
are often called dynamic because they are created at run-time.

We then associate the feature vector .wi�2;wi�1;wi ;wiC1;wiC2; ti�2; ti�1/ with
the part-of-speech tag ti at index i . Using the sentence in Table 7.13, Fig. 8.1 shows
an example of it centered on the word visit.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__8, © Springer-Verlag Berlin Heidelberg 2014
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ID FORM PPOS

BOS BOS Padding
BOS BOS

1 Battle NN
2 - HYPH
3 tested NN
... ... ...
17 the DT
18 first JJ
19 of IN
20 their PRP$
21 countrymen NNS Input features
22 to TO
23 visit VB Predicted tag
24 Mexico ↓
25 ,
26 a
27 boatload
... ... ...
34 years
35 ago
36 .

EOS Padding
EOS

Fig. 8.1 Extracting features
from the Penn Treebank
(Marcus et al. 1993) to
predict a part of speech. The
features are extracted from a
window of five words
surrounding the word visit:
the five lexical values and the
two preceding POS tags

• The part of speech to predict is t23 D VB;
• The surrounding words are w21 D countrymen, w22 D to, w23 D visit, w24 D

Mexico, and w25 D ,;
• The preceding parts of speech are t21 D NNS and t22 D TO.

Table 8.1 shows more feature vectors from this sentence. They are used first to
train a model. This model is then applied sequentially to assign the tags. If we
use logistic regression, the tagger outputs a probability, P.ti jwi�2;wi�1;wi ;wiC1;
wiC2; ti�2; ti�1/, that we can associate with each tag of the sequence.

At the beginning and end of the sentence, the window will extend beyond the
sentence boundaries. A practical way to get rid of this is to pad the sentence –
the words and parts of speech – with dummy symbols such as BOS (beginning of
sentence) and EOS (end of sentence) or <s> and </s>. If the window has a size of
five, we will pad the sentence with two BOS symbols in the beginning and two EOS
symbols in the end.

We extract the features from POS-annotated corpora, and we can train the models
using machine-learning libraries such as LIBLINEAR (Fan et al. 2008) for logistic
regression or LIBSVM (Chang and Lin 2011) for support vector machines. Real
systems would use more features than those from the core feature set such as the
word prefixes and suffixes, part-of-speech bigrams, word bigrams, etc. It is thus
easy to extend the set we presented.

Linear classifiers are efficient tools to implement a POS tagger. Giménez and
Màrquez (2004) describe a tagger using support vector machines as well as a
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Table 8.1 The feature vectors and the parts of speech to predict

Feature vectors

ID wi�2 wi�1 wi wiC1 wiC2 ti�2 ti�1 PPOS

1 BOS BOS Battle – tested BOS BOS NN
2 BOS Battle – tested Japanese BOS NN HYPH
3 Battle – tested Japanese industrial NN HYPH JJ
. . . . . . . . . . . . . . . . . . . . . . . . . . .
19 the first of their countrymen DT JJ IN
20 first of their countrymen to JJ IN PRP$
21 of their countrymen to visit IN PRP$ NNS
22 their countrymen to visit Mexico PRP$ NNS TO
23 countrymen to visit Mexico , NNS TO VB
24 to visit Mexico , a TO VB NNP
25 visit Mexico , a boatload VB NNP ,
. . . . . . . . . . . . . . . . . . . . . . . . . . .
34 ashore 375 years ago . RB CD NNS
35 375 years ago . EOS CD NNS RB
36 years ago . EOS EOS NNS RB .

complete feature set. Ratnaparkhi (1996) is an early example with logistic regres-
sion. In addition to the local classification introduced in this section, Ratnaparkhi
optimized the complete part-of-speech sequence. He multiplied the output probabil-
ities from each tagging operation and searched the tag sequence so that the product:

OT D arg max
t1;t2;t3;:::;tn

nY

iD1
P.ti jwi�2;wi�1;wi ;wiC1;wiC2; ti�2; ti�1/:

reaches a maximum. Ratnaparkhi applied a beam search to find this optimal
sequence. The Viterbi algorithm is an alternative solution to this problem that we
will study in Sect. 8.3.6.

8.2 The Noisy Channel Model

8.2.1 Presentation

The noisy channel is a second technique to find an optimal part-of-speech sequence.
It refers to Shannon’s (1948) model, where a sequence of symbols is transmitted
over a noisy channel and received in the form of a sequence of signals. Here, we
suppose that part-of-speech tags are transmitted and come out in the form of words:

t1; t2; t3; : : : ; tn ! noisy channel! w1;w2;w3; : : : ;wn:
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The optimal part-of-speech sequence knowing the word sequence corresponds to
the maximization of the conditional probability:

OT D arg max
t1;t2;t3;:::;tn

P.t1; t2; t3; : : : ; tnjw1;w2;w3; : : : ;wn/;

where we use the function arg max
x

f .x/ to denote the value of x for which f .x/

reaches its maximum value.
Bayes’ theorem on conditional probabilities of events A and B states that:

P.AjB/P.B/ D P.BjA/P.A/:

We denote P.W / D P.w1;w2;w3; : : : ;wn/ and P.T / D P.t1; t2; t3; : : : ; tn/.
Using Bayes’ theorem, the most probable estimate of the part-of-speech sequence
is given by:

OT D arg max
T

P.T /P.W jT /
P.W /

:

For a given word sequence, w1;w2;w3; : : : ;wn, P.W / is constant and we can
leave it out. We can rewrite the formula as:

OT D arg max
T

P.T /P.W jT /:

Such a model is called a generative model. It means that to find the most likely
part-of-speech sequence, we need to generate all the possible sequences and search
the one with the maximal probability.

However, using this brute-force technique yields an astronomic number of
sequences. In most cases, it is intractable unless we reduce the sequences to n-gram
approximations and implement an efficient search called the Viterbi algorithm.

8.2.2 The N -Gram Approximation

Statistics on sequences of any length are impossible to obtain, and at this point we
need to make some approximations on P.T / and P.W jT / to make the estimation
tractable. A product of trigrams usually approximates the complete part-of-speech
sequence:

P.T / D P.t1; t2; t3; : : : ; tn/ 	 P.t1/P.t2jt1/
nY

iD3
P.ti jti�2; ti�1/:
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If we use a start-of-sentence delimiter <s>, the two first terms of the
product, P.t1/P.t2jt1/, are rewritten as P.<s>/P.t1j<s>/P.t2j<s>; t1/, where
P.<s>/ D 1.

We estimate the probabilities with the maximum likelihood, PMLE:

PMLE.ti jti�2; ti�1/ D C.ti�2; ti�1; ti /
C.ti�2; ti�1/

:

Probabilities on trigrams P.ti jti�2; ti�1/ require an estimate for any sequence of
three parts-of-speech tags. This is obtained from hand-annotated corpora. If Np is
the number of the different parts-of-speech tags, there are Np �Np �Np values to
estimate. Most of the time, annotated data is not sufficient and some sequences are
missing. Few corpora are likely to contain a reliable number of the article–article–
article sequence, for instance. We already encountered this problem of sparse data
in Chap. 5. We can solve it using a back-off strategy or a linear interpolation.

If data are missing, we can back-off to bigrams:

P.T / D P.t1; t2; t3; : : : ; tn/ 	 P.t1/
nY

iD2
P.ti jti�1/:

We can further approximate the part-of-speech sequence as the product of part-
of-speech probabilities:

P.T / D P.t1; t2; t3; : : : ; tn/ 	
nY

iD1
P.ti /:

And finally, we can combine linearly these approximations:

PLinearInter.ti jti�2; ti�1/ D �1P.ti jti�2; ti�1/C �2P.ti jti�1/C �3P.ti /;

with �1 C �2 C �3 D 1, for example, �1 D 0:6, �2 D 0:3, �3 D 0:1.
Using the maximum likelihood estimate, this yields:

PLinearInter.ti jti�2; ti�1/ D �1C.ti�2; ti�1; ti /
C.ti�2; ti�1/

C �2C.ti�1; ti /
C.ti�1/

C �3C.ti /
N

;

where N is the count of words in the corpus.
We can obtain optimal � values by using a development set: a part of the hand-

annotated corpus distinct from the training set and the test set dedicated to the fine-
tuning of parameters. After learning the probabilities from the training set, we will
run the part-of-speech tagger on the development set. We will vary the � values until
we find the triple that yields the best accuracy. We will finally apply the POS tagger
to the test set to know its real accuracy.
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je/PRO

le/ART

le/PRO

donne/VERB

donne/NOUN

Fig. 8.2 Possible sequences
of part-of-speech tags, where
PRO denotes a pronoun,
ART, an article, NOUN, a
noun, and VERB, a verb

The complete word sequence knowing the part-of-speech sequence is usually
approximated as:

P.W jT / D P.w1;w2;w3; : : : ;wnjt1; t2; t3; : : : ; tn/ 	
nY

iD1
P.wi jti /:

Like the previous probabilities, P.wi jti / is estimated from hand-annotated
corpora using the maximum likelihood:

PMLE.wi jti / D C.wi ; ti /

C.ti /
:

ForNw different words, there areNp�Nw values to obtain. Many of the estimates
will be 0, however. This can reflect the true parts of speech of a word; nonetheless,
it is very likely that many words will not appear with all their parts of speech in
the training corpus. To get more accurate estimates, we can smooth them with a
dictionary (Church 1988). We then extract of all the possible parts of speech of the
words in the corpus and use Laplace’s rule to smooth the values (Sect. 5.7.2).

8.2.3 Tagging a Sentence

We will now give an example of sentence tagging in French with Je le donne ‘I give
it’. Word Je is an unambiguous pronoun. Word le is either an article or a pronoun,
and donne can be a noun (deal) or a verb (donner). Probabilistic tagging consists in
finding the optimal path from the four possible in Fig. 8.2.

Using the formulas given before, we associate each transition with a probability
product: P.wi jti / � P.ti jti�2; ti�1/. We compute the estimate of part-of-speech
sequences along the four paths by multiplying the probabilities. The optimal tagging
corresponds to the maximum of these four values:

1. P.PROj<s>/ � P.ARTj<s>;PRO/ � P.VERBjPRO;ART/ � P.jejPRO/ �
P.lejART/ � P.donnejVERB/

2. P.PROj<s>/ � P.ARTj<s>;PRO/ � P.NOUNjPRO;ART/ � P.jejPRO/ �
P.lejART/ � P.donnejNOUN/
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je/PRO

le/ART

le/PRO

donne/VERB

donne/NOUN

demain/ADV dans/PREP

la/ART

la/PRO

matinée/NOUN

Fig. 8.3 The search space, where ADV denotes an adverb and PREP, a preposition; the other tags
are as given in Fig. 8.2

3. P.PROj<s>/ � P.PROj<s>;PRO/ � P.VERBjPRO;PRO/ � P.jejPRO/ �
P.lejPRO/ � P.donnejVERB/

4. P.PROj<s>/ � P.PROj<s>;PRO/ � P.NOUNjPRO;PRO/ � P.jejPRO/ �
P.lejPRO/ � P.donnejNOUN/

This method is very simple. However, it is very costly for long sequences. The
computation with a sentence of n words and a tagset of Np tags will have an upper
bound complexity of .Np/n, which means it is exponential.

8.2.4 The Viterbi Algorithm: An Intuitive Presentation

Using the noisy channel model as we described it is not efficient in terms of speed
and memory. This is because the algorithm has to maintain nonoptimal paths for all
the intermediate nodes in the automaton. The Viterbi algorithm is a common way to
optimize the search.

In the naïve implementation, we traversed all the paths and we computed the
most probable POS sequence at the final node of the automaton, i.e., at the final
word of the sentence. The Viterbi algorithm (1967) determines the optimal subpaths
for each node in the automaton while it traverses the automaton and discards the
others. We shall extend the example of the previous section to

Je le donne demain dans la matinée.
‘I give it tomorrow morning.’

and let us consider bigrams instead of trigrams to simplify the presentation.
Figure 8.3 shows the possible POS tags and the number of possible paths, which

is 1 � 2 � 2 � 1 � 1 � 2 � 1 D 8. Let us traverse the automaton from Je to dans.
The words demain and dans are not ambiguous, and we saw in the last section

that there are four possible paths at this point. Up to demain, the most likely
sequence will correspond to the most probable path out of the four we saw before:

1. P.PROj<s>/�P.ARTjPRO/�P.VERBjART/�P.ADVjVERB/P.jejPRO/
� P.lejART/ � P.donnejVERB/ � P.demainjADV/

2. P.PROj<s>/�P.ARTjPRO/�P.NOUNjART/�P.ADVjNOUN/P.jejPRO/
� P.lejART/ � P.donnejNOUN/ � P.demainjADV/
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3. P.PROj<s>/�P.PROjPRO/�P.VERBjPRO/�P.ADVjVERB/P.jejPRO/
� P.lejPRO/ � P.donnejVERB/ � P.demainjADV/

4. P.PROj<s>/�P.PROjPRO/�P.NOUNjPRO/�P.ADVjNOUN/P.jejPRO/
� P.lejPRO/ � P.donnejNOUN/ � P.demainjADV/

Demain has still the memory of the ambiguity of donne: P.ADVjVERB/ and
P.ADVjNOUN/. This is no longer the case with dans. According to the noisy
channel model and the bigram assumption, the term brought by the word dans is
P.dansjPREP/ � P.PREPjADV/. It does not show the ambiguity of le and donne.
The subsequent terms will ignore it as well.

This means that the optimal POS tag sequence of words before dans is already
determined even if we have not yet reached the end of the sentence. It corresponds
to the highest value of the four paths. It is then sufficient to keep it with the
corresponding path. We can forget the others. This is the idea of the Viterbi
optimization. We will describe the algorithm rigorously in the next section.

8.3 Markov Models

When we tagged words with a stochastic technique, we assumed that the current
word’s part of speech depended only on a couple of words before it. This limited
history is a frequent property of many linguistic phenomena. It has been studied
extensively since the end of the nineteenth century, starting with Andrei Markov.
Markov processes form the theoretical background to stochastic tagging and can be
applied to many problems. We introduce them now.

8.3.1 Markov Chains

A Markov chain or process is a sequence fX1;X2; : : : ; Xng, where Xt denotes
a random variable at time t . Variables have their values in a finite set of states
fq1; : : : ; qNp g, called the state space. Following Rabiner (1989), processes are
Markovian if they have the following properties:

• A limited history. The current state depends only on a constant number of pre-
vious states: one in first-order processes, P.Xt D qj jX1; : : : ; Xt�1/ D P.Xt D
qj jXt�1/, and two in second-order processes P.Xt D qj jX1; : : : ; Xt�1/ D
P.Xt D qj jXt�2; Xt�1/.

• Independent of time t . For first-order processes, this means that they can be
represented as a transition matrix with coefficientsP.Xt D qj jXt�1 D qi / D aij,

1 � i; j � Np , with ordinary probability constraints
NpP

jD1
aij D 1, and aij � 0.

Markov chains define random transitions from one state to another one. We can
represent them as probabilistic or weighted automata. We just need to augment
transitions of automata we used in Chap. 2 with a probability. Unlike ordinary
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PRON DET

VERB

NOUN

ADV ADP

0.25 0.75

1.0

0.3

0.3
0.4

0.8

0.2

0.40.6

0.4

0.35

0.25

Fig. 8.4 A Markov chain
representing bigram
probabilities as
part-of-speech transitions
(numbers are fictitious and
transitions are not complete).
It uses the universal POS
tagset (Petrov et al. 2012)
shown in Table 7.9

automata, the initial state can be any state in the set and will be modeled by a
probability at time 1. The probability of initial states is �i D P.X1 D qi /, with
NpP

iD1
�i D 1.

In the case of natural language processing, “time sequence” is not the most
relevant term to describe the chain. More appropriately, the sequence corresponds
to the word flow from left to right and t to the word position in the sequence. It
is easy then to see that first-order processes reflect part-of-speech bigrams, while
second-order processes correspond to trigrams. Figure 8.4 shows partial bigram
probabilities using a Markov chain (numbers are fictitious and transitions are not
complete). For part-of-speech tagging, aij coefficients correspond to probabilities of
part-of-speech bigrams computed over the tagset.

8.3.2 Trellis Representation

Instead of using an automaton, we can represent a Markov process as a trellis, where
states are a function of the time (the word’s indexes, here). In part-of-speech tagging,
the vertical axis corresponds to the different part-of-speech values (the states) and
the horizontal axis corresponds to the part-of-speech sequence (Fig. 8.5). All the
possible bigram combinations are represented as arrows from states at time t � 1 to
states at time t and n is the sentence length.

A trellis is a compact graphical representation of all the possible paths of length
n with all the possible POS sequences. The bold lines on Fig. 8.5 is one of these
paths that corresponds to the sequence: DET, ADV, ADJ, NOUN.

8.3.3 Hidden Markov Models

Markov chains provide a model to the part-of-speech sequence. However, this
sequence is not directly accessible since we usually only have the word sequence.
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NOUN q12 q12 q12 q12 q12

VERB q11 q11 q11 q11 q11

ADJ q10 q10 q10 q10 q10

ADV q9 q9 q9 q9 q9

PRON q8 q8 q8 q8 q8

DET q7 q7 q7 q7 q7

ADP q6 q6 q6 q6 q6

NUM q5 q5 q5 q5 q5

CONJ q4 q4 q4 q4 q4

PRT q3 q3 q3 q3 q3

. q2 q2 q2 q2 q2

X q1 q1 q1 q1 q1

t1 t2 t3 t4 tn

w1 w2 w3 w4 wn

Fig. 8.5 A trellis that represents the states as the vertical axis and the time as the horizontal axis.
The states q1, q2, . . .q12 represent the possible part-of-speech values, here from the universal POS
tagset (Petrov et al. 2012). The discrete time values are the indices in the part-of-speech sequence:
t1, t2, t3, . . . , tn corresponding to the word sequence w1, w2, w3, . . . , wn, where n is the sentence
length. The bold lines correspond to the part-of-speech sequence: DET, ADV, ADJ, NOUN

Hidden Markov models (HMM) are an extension to the Markov chains that make
it possible to include the words in the form of observed symbols. Each state of an
HMM emits a symbol taken from an output set along with an emission probability.
HMMs are then a stochastic representation of an observable output generated by
a hidden sequence of states. They enable us to compute the probability of a state
sequence (the parts of speech) given an output or observation sequence (the words).

We saw that part-of-speech tagging uses a stochastic formula that comprises two
terms: P.T / and P.W jT /. The first one, P.T /, corresponds to a Markov chain
where transition probabilities between states represent the part-of-speech bigrams.
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tag

P(w1|tag)

P(w2|tag)

P(wNw |tag)Fig. 8.6 Each state in the
trellis is augmented with
word emission probabilities,
here for a given tag, where
Nw is the total number of
different words in the
vocabulary

Table 8.2 The hidden Markov model notation and its application to part-of-speech tagging

HMM notation Application to POS tagging

S D fq1; q2; q3; : : : ; qNp g is a finite set of
states.

The set of parts of speech.

V D fv1; v2; v3; : : : ; vNwg is an output
alphabet: a finite set of symbols.

The set of words, the vocabulary.

O D fo1; o2; o3; : : : ; ong is the output or
observation sequence, with oi 2 V
obtained from a sequence of states.

Each part of speech emits one word taken in the
vocabulary. This is what we observe.

A D faijg is a state transition matrix. The bigram probabilities P.tk D qj jtk�1 D qi /.
B D fbj .vk/g are the emission probabilities

of symbol vk in state j .
The conditional probability to observe a word

given a part of speech P.wk jtj /.
˘ D f�ig are the initial state probabilities. The probability of the first part of speech.

The second term, P.W jT /, is an HMM superimposed on the chain. It augments
each state with the capacity to emit a word using a probability function P.wi jti /
that measures the association between the parts of speech and the words (Fig. 8.6).
Although a state – a part of speech – can emit any word in the model, most
probabilities will be 0 in reality. This is because words have a finite number of
possible parts of speech, most of the time, as we saw, only one or two.

The formal definition of HMMs is based on the Markov chains where we add
the emission properties. Table 8.2 shows the notation and its application in part-of-
speech tagging.

8.3.4 Three Fundamental Algorithms to Solve Problems
with HMMs

Hidden Markov models are able to represent associations between word and parts-
of-speech sequences. However, they do not tell how to solve the annotation problem.
We need complementary algorithms for them to be useful. More generally, problems
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to solve fall into three categories that correspond to three fundamental algorithms
(Rabiner 1989):

• Estimate the probability of an observed sequence. This corresponds to the sum of
all the paths producing the observation. It is solved using the forward procedure.
In the specific case of POS tagging, it will determine the probability of the word
sequence. Although the forward procedure is not of primary importance here, it
is fundamental and has many other applications.

• Determine the most likely path of an observed sequence. This is a decoding
problem that is solved using the Viterbi algorithm.

• Determine (learn) the parameters given a set of observations. This algorithm is
used to build models when we do not know the parameters. It is solved using the
forward–backward algorithm.

We now present the algorithms where we follow Rabiner (1989).

8.3.5 The Forward Procedure

The first problem to solve is to compute the probability of an observation sequence
O D fo1; o2; o3; : : : ; ong, given a HMM model � D .A;B; �/.

Let us start with only one sequence of statesQ D fs1; s2; s3; : : : ; sng, with si 2 S .
The observation probability is the probability of the state sequence we consider:

P.Qj�/ D �s1
nQ

tD2
P.st jst�1/;

D �s1as1s2as2s3 : : : asn�1sn ;

multiplied by the product of each observation probability given the state it is emitted
from in the sequence:

P.OjQ;�/ D
nQ

tD1
P.ot jst ; �/;

D bs1.o1/bs2.o2/bs3.o3/ : : : bsn.on/:

In HMMs, any sequence of states can produce the observation. This means that
the observation probability is the sum of observation probabilities for all the possible
state combinations:

P.Oj�/ D P

AllQ
P.OjQ;�/P.Qj�/;

D P

Alls1;s2;:::;sn

�s1bs1.o1/as1s2bs2.o2/as2s3bs3.o3/ : : : asn�1snb.on/:
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Fig. 8.7 Transitions from
states q1; q2; q3; : : : ; qNp at
time t to state qj at time
t C 1. We have ˛tC1.j / D
bj .otC1/�

NpP

iD1

˛t .i/aij

This method, however, is intractable for long sequences because of its complexity,
.Np/

n.
The forward procedure simplifies the brute-force method by factoring all paths

incoming into a state at time t . This means that at each instant of time of the
observation sequence, we maintain exactly Np paths: the number of different states.

Let us denote ˛t .j / the probability of an observation o1; o2; o3; : : : ; ot , with the
condition that we are in state qj at time t : P.o1; o2; o3; : : : ; ot ; st D qj j�/. We
compute ˛tC1.j / by induction with transitions from all states at time t to state i
at time t C 1. Figure 8.7 shows how ˛t .i/ values with i ranging from 1 to Np are
summed to obtain ˛tC1.j /.

We can compute an observation probability with a matrix reproducing the
structure of the trellis in Fig. 8.5. The algorithm iteratively fills the trellis columns
from left to right. Each column is an array of lengthNp corresponding to the number
of states where we store the probabilities of the observation so far. The element of
index i in the t th column contains the ˛.i/ value at time t .

The first step of the algorithm fills the first column with the initial probabilities.
The induction loop updates the values from t to t C 1 by summing all the incoming
transitions for each element in the .tC1/th column from the t th column (Table 8.3).
Finally, we obtain the observation probability by summing all the elements of the
last column in the matrix. The complexity of this algorithm is O..Np/2 � n/.
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Table 8.3 The forward procedure: Np is the number of states and n is the length of the sequence

Steps Operations

1. Initialization ˛1.i/ D �ibi .o1/; 1 � i � Np
2. Induction ˛tC1.j / D bj .otC1/�

NpP

iD1

˛t .i/aij; 1 � j � Np , and 1 � t � n� 1

3. Termination P.Oj�/ D
NpP

iD1

˛n.i/

Table 8.4 The Viterbi algorithm: Np is the number of states and n is the length of the sequence

Steps Operations

1. Initialization ı1.i/ D �ibi .o1/; 1 � i � Np
 1.i/ D null

2. Induction ıtC1.j / D bj .otC1/� max
1�i�Np

ıt .i/aij; 1 � j � Np , and 1 � t � n� 1
 tC1.j / D arg max

1�i�Np
ıt .i/aij

3. Termination P� D max
1�i�Np

ın.i/

sn� D arg max
1�i�Np

ın.i/

The optimal path sequence is given by the backtracking:
s�

n ; s
�

n�1 D  n.s
�

n /; s
�

n�2 D  n�2.s
�

n�1/; : : :

8.3.6 Viterbi Algorithm

The Viterbi algorithm is an efficient method to find the optimal sequence of states
given an observation. As with the forward procedure, it iterates from t D 1 to t D n
and searches the optimal path leading to each state in the trellis at time t .

Let us denote ıt .j / the maximal probability of an observation o1; o2; o3; : : : ; ot
with the condition that we are in state qj at time t :

max
s1;s2;:::;st�1

P.s1; s2; : : : ; st�1; o1; o2; o3; : : : ; ot ; st D qj j�/;

and  t.j / the corresponding optimal path.
The Viterbi algorithm resembles the forward procedure. It moves from left to

right iteratively to fill the columns in the trellis. Each column element contains the
most probable path,  .j /, to reach this element and its probability ı.j /. In fact,
 .j / just needs to store the preceding state in the optimal path.

The first step of the algorithm fills the first column with the initial probabilities.
The induction loop updates the values from t to t C 1 by taking the maximum of
all the incoming transitions for each element in the .t C 1/th column and the node
that led to it. Finally, we determine the most probable path from the maximum of
all the elements of the last column in the matrix. We backtrack in the matrix to find
the state sequence that led to it, for instance, using back pointers (Table 8.4).
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Fig. 8.8 The Viterbi algorithm applied to the sentence <s> Je le donne demain dans la matinée

The Viterbi algorithm is a dynamic programming technique comparable to
the computation of the min-edit distance. Its implementation also uses a table.
Figure 8.8 shows how to fill the three first columns with the sentence <s> Je le
donne demain dans la matinée.

We start the sentence with ı1.<s>/ D 1:0 and ı1.i/ D 0 for the rest of the
indices i ¤ <s>. This means that in the first column, all the cells equal 0, except for
one. The computation of the second column is easy. Each cell i is filled with the term
P.i j<s>/ � P.Jeji/, with i 2 fPREP;ADV;PRO;VERB;NOUN;ART; <s>g.
The algorithm really starts with the third column. For each cell j , we compute

max
i

P.j ji/ � P.lejj / � ı2.i/:

The pronoun cell, for instance, is filled with

max
i

P.PROji/ � P.lejPRO/ � ı2.i/:

This process is iterated for each column to the end of the matrix.

8.3.7 The Backward Procedure

We have computed the estimation of an observation from left to right. Although less
natural, we can also compute it from right to left. We now present this backward
procedure to introduce the forward–backward algorithm in the next section.

The backward variable ˇt .j / D P.otC1; otC2; otC3; : : : ; onjst D qj ; �/ is the
probability of an observation otC1; otC2; otC3; : : : ; on with the condition that we are
in state qj at time t . We compute ˇt .i/ by induction with transitions from state i at
time t to all states at time t C 1. Figure 8.9 shows how ˇtC1.i/ values are summed
to obtain ˇt , and Table 8.5 shows the procedure.
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Fig. 8.9 Transitions from
state qi at time t to states
q1; q2; q3; : : : ; qNp at time
t C 1. We have ˇt .i/ D
NpP

jD1

aijbj .otC1/ˇtC1.i/

Table 8.5 The backward procedure:Np is the number of states and n is the length of the sequence

Steps Operations

1. Initialization ˇn.i/ D 1; 1 � i � Np
2. Induction ˇt .i/ D

NpP

jD1

aijbj .otC1/ˇtC1.i/; 1 � j � Np , and for t D n� 1 to t D 1.

3. Termination P.Oj�/ D
NpP

iD1

�i bi .o1/ˇ1.i/

8.3.8 The Forward–Backward Algorithm

The forward–backward algorithm will enable us to derive the aij and bj .ot /

coefficients, here P.wi jti / and P.ti jti�1/, from raw, unannotated texts. Although
this yields results inferior to those obtained from a hand-annotated corpus, it makes
it possible to build a part-of-speech tagger when no annotation is available.

The forward–backward algorithm is referred to as an unsupervised learning
method, because no additional information is available except the text. This is
opposed to supervised learning, when the algorithm has access to some sort of
reference annotation.
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Table 8.6 Iterative estimation of P.ti jti�1/ (figures are fictitious)

Steps
Estimates used to tag the
corpus

Estimates derived from the
tagged corpus

Initial estimates P.PROjPRO/ D 0:2

P.ARTjPRO/ D 0:2

P.VERBjPRO/ D 0:6

We tag the corpus and we derive
new estimates

P.PROjPRO/ D 0:15

P.ARTjPRO/ D 0:05

P.VERBjPRO/ D 0:8

Second estimates P.PROjPRO/ D 0:15

P.ARTjPRO/ D 0:05

P.VERBjPRO/ D 0:8

We retag the corpus and we derive
estimates

P.PROjPRO/ D 0:18

P.ARTjPRO/ D 0:02

P.VERBjPRO/ D 0:9

Third estimates P.PROjPRO/ D 0:18

P.ARTjPRO/ D 0:02

P.VERBjPRO/ D 0:9

Informal Presentation

The idea of the forward–backward algorithm is to guess initial estimates to
P.ti jti�1/ and P.wi jti / and tag the corpus. Once we have a tagged corpus, we can
derive new estimates of P.wi jti / and P.ti jti�1/ that we will use to retag the corpus.
We repeat the process until it converges (Table 8.6).

However, we have no guarantee that the algorithm converges, and when it
converges, we can also hit a local maximum. In the latter case, the learning
procedure will stop without finding correct figures. This is the drawback of this
method. For this reason, some quantity of hand-annotated data is always preferable
to a raw corpus (Merialdo 1994).

The Algorithm

In the presentation above, we had to tag the text before we could derive new
estimates of probabilities P.ti jti�1/ and P.wi jti /, or more generally aij and bj .ot /.
In fact, we can avoid the tagging stage. The coefficients can be computed directly
using the forward procedure. We will reestimate Oaij at step k of the estimation
process from estimates aij at step k � 1.

The algorithm idea is to consider one observation – one word – and then to
average it on all the other observations – the whole sentence. For one specific
observation bj .otC1/ at time t C 1, corresponding here to the word of index t C 1,
the transition probability from state st D qi to state stC1 D qj corresponds to
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qNp qNp

qk

qi q j

q2

q1 q1

t −1 t t +1 t +2

t t+1( j)

ai jb j(ot+1)

Fig. 8.10 Transition from
state qi at time t to state qj at
time t C 1 with observation
otC1 (After Rabiner (1989))

�t .i; j / D P.st D qi ; stC1 D qj jO;�/;

D P.st D qi ; stC1 D qj ;Oj�/
P.Oj�/ ;

D P.st D qi ; stC1 D qj ;Oj�/
P

1�i�Np

P

1�j�Np
P.st D qi ; stC1 D qj ;Oj�/ :

We can use the forward and backward probabilities to determine the estimate.
Figure 8.10 shows how to introduce them in the equation.

We have:

�t .i; j / D ˛t .i/aijbj .otC1/ˇtC1.j /
NpP

iD1

NpP

jD1
˛t .i/aijbj .otC1/ˇtC1.j /

:

We denote 	t .i/ D
NpP

jD1
�t .i; j / the probability to be in state qi at time t .

To consider all the observations, we sum �t .i; j / from t D 1 to t D n � 1.

The expected number of transitions from state qi to state qj is
n�1P

tD1
�t .i; j /, and
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the expected number of transitions from state qi is
n�1P

tD1
	t .i/. The last sum also

corresponds to the number of times we are in state qi . We derive:

• The new estimate of aij:

Oaij D expected number of transitions from state qi to state qj

expected number of transitions from state qi
;

D

n�1P

tD1
�t .i; j /

n�1P

tD1
	t .i/

:

• The initial state estimates �i D 	1.i/.
• The observation estimates:

Obi .vk/ D expected number of times in state qi and observing symbol vk
expected number of times in state qi

;

D
otDvk ;1�t�T

nP

tD1
	t .i/

nP

tD1
	t .i/

:

8.4 POS Tagging with the Perceptron

Hidden Markov models use maximum likelihood estimates of P.wi jti / and
P.ti jti�2; ti�1/ to find the optimal part-of-speech sequence. Instead of computing
these values from a corpus, Collins (2002) applied the perceptron algorithm to
derive equivalent parameters iteratively. This method yields state-of-the-art results
and we describe it here. For a description of the perceptron, see Sect. 4.7.

Let us rewrite the optimal part-of-speech sequence from Sect. 8.2 using a trigram
approximation and logarithms. We have:

OT D arg max
T

.logP.T /C logP.W jT // ;

D arg max
T

�

logP.t1/C logP.t2jt1/C
nP

iD3
logP.ti jti�2; ti�1/

C
nP

iD1
logP.wi jti /

�

:
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Let us denote ˛ti�2;tt�1;ti and ˛ti ;wi the parameters equivalent to P.ti jti�2; ti�1/
and P.wi jti /, respectively. The optimal sequence corresponds to the maximal score:

OT D arg max
T

�
nP

iD1
˛ti�2;tt�1;ti C

nP

iD1
˛ti ;wi

�

;

where t�2 and t�1 are start-of-sentence symbols.
The idea in Collins (2002) is simple. We first create ˛ parameters for each

possible trigram sequence x; y; z and tag-word pair t;w and we initialize them:

• ˛x;y;x  0 and ˛t;w  0.

We then apply the perceptron to learn these ˛ parameters. For each sentence of
the training corpus, we compute the maximal score using the Viterbi algorithm and
we assign the corresponding POS tags to the sentence words. We then update the
˛ parameters with the number of tagging errors in this sentence. Given a sentence
of the corpus w1; : : : ;wn, its hand-annotated part-of-speech sequence t1; : : : ; tn, and
the tagger output t 01; : : : t 0n, the update rules are:

• ˛x;y;x  ˛x;y;x C c1 � c2, where c1 and c2 are the respective counts of x; y; z
trigrams in the t1; : : : ; tn and t 01; : : : t 0n sequences.

• ˛t;w  ˛t;w C c1 � c2, where c1 and c2 are the respective counts of w; t pairs in
the t1; : : : ; tn and t 01; : : : t 0n sequences.

We repeat this procedure N times over the training corpus, N being the number of
epochs.

Let us exemplify the update rule with a slightly modified sequence from Collins
(2002). If the training corpus has the sentence:

the/DT boy/NN hit/VBD the/DT ball/NN

and the tagger outputs:

the/DT boy/NN hit/NN the/DT ball/NN

The update rule will add one to the parameters:

˛DT;NN;VBD; ˛NN;VBD;DT; ˛VBD;DT;NN; and˛VBD;hi t

and subtract one to:

˛DT;NN;NN; ˛NN;NN;DT; ˛NN;DT;NN; and˛NN;hi t :

In his original perceptron, Collins (2002) used more features than the POS
trigrams and tag-word pairs described here. For the complete list of features, see
Ratnaparkhi (1996).
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tag−1=ADJ

tag−1=NN tag−2=DET

tag−2=ADJ NN 70%
ADJ 10%

no

no yes

yes

no yes

no yes

Fig. 8.11 A decision tree to
estimate POS frequencies
where NN is a noun, DET, a
determiner, and ADJ, an
adjective (After Schmid
(1994))

8.5 Tagging with Decision Trees

As another alternative to hidden Markov models, we can replace the maximum
likelihood with decision trees induced from an annotated corpus. The tagging
performance could be superior when the training set is small.

TreeTagger (Schmid 1994, 1995) is a stochastic tagger that replaces the max-
imum likelihood estimate with a binary decision tree to estimate P.ti jti�2; ti�1/.
Figure 8.11 shows an example of an imaginary tree where the conditional probabil-
ity P.NNjDET;ADJ/ is read from the tree by examining t�1 and t�2, here ADJ and
DET, respectively. The probability estimate is 0.70.

The decision tree is built from a training set of POS trigrams t�2; t�1; t0 extracted
from an annotated corpus. The condition set is t�i D v, with i 2 f1; 2g and v 2 S ,
where S is the tagset.

The idea is to use the entropy of the POS trigams where the random variable is
t0. The entropy is then defined as:

�
X

t02S
P.t0/ log2 P.t0/:

If the total number of tokens is N , the entropy is estimated as:

�
X

t02S

C.t0/

N
log2

C.t0/

N
:

The decision tree minimizes the information it needs to identify the third tag,
t0, given the two preceding tags, t�2 and t�1. This reflects the minimal amount of
information brought by the third tag of a trigram.
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To find the root node, the algorithm creates all the possible partitions of the
training set according to the values of t�2 and t�1. It computes the weighted average
of the entropy of the positive and negative examples. The root condition corresponds
to the values i and v with i 2 f1; 2g and v 2 S that minimize

� p

p C n
X

t02S

C.t0; t�i D v/

p
log2

C.t0; t�i D v/

p
� n

p C n
X

t02S

C.t0; t�i ¤ v/

n

� log2
C.t0; t�i ¤ v/

n
;

where p is the count of the trigrams that pass the test to be the root condition, and
n is the count of trigrams that do not pass the test. C.t0; t�1 D v/ is the count of
trigrams t�2; t�1; t0 that pass the test and where the third tag is t0, and C.t0; t�1 ¤ v/
the count of trigrams that do not pass the test and where the third tag is t0.

The algorithm stops expanding the tree and creates a leaf when the next node
would gather a number of positive or negative trigrams below a certain threshold, 2,
for example.

8.6 Unknown Words

For stochastic taggers, the main issue to tag unknown words is to estimate P.wjt /.
Carlberger and Kann (1999) proposed to use suffixes or, more precisely, word
endings to compute the estimate. They counted the number of word types with
common word endings of length i , C.wend�i ; t /, for each tag t in the tagset, with i
ranging from 0 to L. The estimate P.wjt / for an unknown word is then

Pest.wjt / D
LX

iD0
˛i

C.wend�i ; t /
P


2tagset C.wend�i ; 
/
:

where ˛i are parameters optimized on the training set. They tried their formula with
increasing values of L, and they found that tagging accuracy did not improve for
L > 5.

If L D 0, Pest.wjt / D C.t/P

2tagset C.
/

corresponds to the proportion of part of

speech t among the word types.
We can also use word prefixes and suffixes, this time in the form of features,

with taggers based on linear classifiers (Sect. 8.1) or Collins’ perceptron (Sect. 8.4).
Ratnaparkhi (1996), for example, used prefixes and suffixes ranging from 1 to 4
letters, to represent rare or unknown words.
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8.7 An Application of the Noisy Channel Model:
Spell Checking

An interesting application of the noisy channel model is to help a spell-checker rank
candidate corrections (Kernighan et al. 1990). In this case, the source sequence is a
correct string c that produces an incorrect one called the typo t through the noisy
channel. The most likely correction is modeled as

Oc D arg maxP.c/P.t jc/:

Possible typos are deletion, insertion, substitutions, and transpositions. In their
original paper, Kernighan et al. (1990) allowed only one typo per word. Typo
frequencies are estimated from a corpus where:

• del.xy/ is the number of times the characters xy in the correct word were typed x
in the training set.

• ins.xy/ is the number of times x was typed as xy in the training set.
• sub.xy/ is the number of times the character y was typed as x.
• trans.xy/ is the number of times xy was typed as yx in the training set.

P.t jc/ is estimated as:

P.t jc/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

del.ci�1; ci /
C.ci�1; ci /

if deletion;

ins.ci�1; ti /
C.ci�1/

if insertion;

sub.ti ; ci /

C.ci /
if substitution;

trans.ci ; ciC1/
C.ci ; ciC1/

if transposition:

where ci is the i th character of c, and ti the i th of t .
The algorithm needs four confusion matrices, of size 26 � 26 for English, that

contain the frequencies of deletions, insertions, substitutions, and transpositions.
The del matrix will give the counts del.xy/, how many times y was deleted after x
for all the letter pairs, for instance, del.ab/.

The matrices can be obtained through hand-annotation or automatically. Hand-
annotation is expensive, and Kernighan et al. (1990) described an algorithm to
automatically train the matrices. It resembles the forward–backward procedure
introduced in Sect. 8.3.8.

The training phase initializes the matrices with equal values and applies the
spelling algorithm to generate a correct word for each typo in the text. The pairs
typo/corrected word are used to update the matrices. The algorithm is repeated on
the original text to obtain new pairs and is iterated until the matrices converge.
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8.8 A Second Application: Language Models for Machine
Translation

Natural language processing was born with machine translation, which was one of
its first applications. Facing competition from Russia after the Second World War,
the government of the United States decided to fund large-scale translation programs
to have quick access to documents written in Russian. It started the field and resulted
in programs like SYSTRAN, which are still in use today.

Given the relatively long history of machine translation, a variety of methods
have been experimented on and applied. In this section, we outline how language
models and statistical techniques can be used to translate a text from one language
into another one. IBM teams pioneered statistical models for machine translation in
the early 1990s (Brown et al. 1993). Their work is still the standard reference.

8.8.1 Parallel Corpora

Parallel corpora are the main resource of statistical language translation. Admin-
istrative or parliamentary texts of multilingual countries are widely used because
they are easy to obtain and are often free. The Canadian Hansard or the European
Parliament proceedings are examples of them. Table 8.7 shows an excerpt of the
Swiss federal law in German, French, and Italian on the quality of milk production.

The idea of machine translation with parallel texts is simple: given a sentence,
a phrase, or a word in a source language, find its equivalent in the target
language. The translation procedure splits the text to translate into fragments, finds
a correspondence for each source fragment in the parallel corpora, and composes
the resulting target pieces to form a translated text. Using the titles in Table 8.7, we
can build pairs from the phrases transport du lait ‘milk transportation’ in French,
Milchtransport in German, and trasporto del latte in Italian.

The idea of translating with the help of parallel texts is not new and has been
applied by many people. A notable example is the Egyptologist and linguist Jean-
François Champollion, who used the famous Rosetta Stone, an early parallel text,
to decipher Egyptian hieroglyphs from Greek.

8.8.2 Alignment

The parallel texts must be aligned before using them in machine translation.
This corresponds to a preliminary segmentation and mark-up that determines the
corresponding paragraphs, sentences, phrases, and words across the texts. Inside
sentences, aligned fragments are called beads. Alignment of texts in Table 8.7
is made easier because paragraphs are numbered and have the same number of
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Table 8.7 Parallel texts from the Swiss federal law on milk transportation

German French Italian

Art. 35 Milchtransport Art. 35 Transport du lait Art. 35 Trasporto del latte

1 Die Milch ist schonend und
hygienisch in den
Verarbeitungsbetrieb zu
transportieren. Das
Transportfahrzeug ist stets
sauber zu halten. Zusammen
mit der Milch dürfen keine
Tiere und milchfremde
Gegenstände transportiert
werden, welche die Qualität
der Milch beeinträchtigen
können.

1 Le lait doit être transporté
jusqu’à l’entreprise de
transformation avec
ménagement et
conformément aux normes
d’hygiène. Le véhicule de
transport doit être toujours
propre. Il ne doit
transporter avec le lait
aucun animal ou objet
susceptible d’en altérer la
qualité.

1 Il latte va trasportato verso
l’azienda di trasformazione
in modo accurato e
igienico. Il veicolo adibito
al trasporto va mantenuto
pulito. Con il latte non
possono essere trasportati
animali e oggetti estranei,
che potrebbero
pregiudicarne la qualità.

2 Wird Milch ausserhalb des
Hofes zum Abtransport
bereitgestellt, so ist sie zu
beaufsichtigen.

2 Si le lait destiné à être
transporté est déposé hors
de la ferme, il doit être
placé sous surveillance.

2 Se viene collocato fuori
dall’azienda in vista del
trasporto, il latte deve
essere sorvegliato.

3 Milchpipelines sind nach
den Anweisungen des
Herstellers zu reinigen und
zu unterhalten.

3 Les lactoducs des
exploitations d’estivage
doivent être nettoyés et
entretenus conformément
aux instructions du
fabricant.

3 I lattodotti vanno puliti e
sottoposti a manutenzione
secondo le indicazioni del
fabbricante.

sentences in each language. This is not always the case, however, and some texts
show a significantly different sentence structure.

Gale and Church (1993) describe a simple and effective method based on the
idea that

longer sentences in one language tend to be translated into longer sentences in the other
language, and that shorter sentences tend to be translated into shorter sentences.

Their method generates pairs of sentences from the target and source texts, assigns
them a score, which corresponds to the difference of lengths in characters of the
aligned pairs, and uses dynamic programming to find the maximum likelihood
alignment of sentences.

The sentences in the source language are denoted si ; 1 � i � I , and the
sentences in the target language ti ; 1 � i � J . D.i; j / is the minimum distance
between sentences s1; s2; : : : ; si and t1; t2; : : : ; tj , and d.source1; target1I source2;
target2/ is the distance function between sentences. The algorithm identifies six
possible cases of alignment through insertion, deletion, substitution, expansion,
contraction, or merger. They are expressed by the formula below:
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And1 the2 program3 has4 been5 implemented6

Le1 programme2 a3 été4 mis5 en6 application7

Fig. 8.12 Alignment (After Brown et al. (1993))

The1 poor2 don’t3 have4 any5 money6

Les1 pauvres2 sont2 démunis4

Fig. 8.13 A general alignment (After Brown et al. (1993))

D.i; j / D min

0

B
B
B
B
B
B
B
@

D.i; j � 1/C d.0; tj I 0; 0/
D.i � 1; j /C d.si ; 0I 0; 0/
D.i � 1; j � 1/C d.si ; tj I 0; 0/
D.i � 1; j � 2/C d.si ; tj I 0; tj�1/
D.i � 2; j � 1/C d.si ; tj I si�1; 0/
D.i � 2; j � 2/C d.si ; tj I si�1; tj�1/

1

C
C
C
C
C
C
C
A

:

The distance function is defined as � logP.alignmentjı/, with ı D .l2 � l1c/=p
l1s2, and where l1 and l2 are the lengths of the sentences under consideration, c the

average number of characters in the source language L2 per character in the target
language L1, and s2 its variance. Gale and Church (1993) found a value of c of 1.06
for the pair French–English and 1.1 for German–English. This means that French
and German texts are longer than their English counterparts: 6 % longer for French
and 10 % for German. They found s2 D 7:3 for German–English and s2 D 5:6 for
French–English.

Using Bayes’ theorem, we can derive a new distance function:

� logP.ıjalignment/ � logP.alignment/:

Gale and Church (1993) estimated the probabilityP.alignment/ of their six possible
alignments with these figures: substitution 1–1: 0.89, deletion and substitution 0–
1 or 1–0: 0.0099, expansion and contraction 2–1 or 1–2: 0.089, and merger 2–2:
0.011. They rewrote P.ıjalignment/ as 2.1�P.jıj//, which can be computed from
statistical tables. See Gale and Church’s original article.

Alignment of words and phrases uses similar techniques, however, it is more
complex. Figures 8.12 and 8.13 show examples of alignment from Brown et al.
(1993).
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8.8.3 Translation

Using a statistical formulation, given a source text, S , the most probable
target text, T , corresponds to arg max

T

P.T jS/, which can be rewritten as

arg max
T

P.T /P.S jT /. The first term, P.T /, is a language model, for instance,

a trigram model, and the second one, P.S jT /, is the translation model. In their
original article, Brown et al. (1993) used French as the source language and
English as the target language with the notations F and E. They modeled the
correspondence between a French string f D f1; f2; : : : ; fm and an English string,
e D e1; e2; : : : ; el .

The first step is to rewrite the translation model as

P.f je/ D
X

a

P.f; aje/;

where a is the alignment between the source and target sentences and where each
source word has one single corresponding target word. The target word can be the
empty string. The alignment is represented by the string a D a1; a2; : : : ; am, where
aj is the position of the corresponding word in the English string as aj D i , which
denotes that word j in the French string is connected to word i in the English string.
When there is no connection aj D 0. In the example of Fig. 8.12, we have the
alignment a D .2; 3; 4; 5; 6; 6; 6/.

Brown et al. (1993) proposed five models ranging from relatively simple to
pretty elaborate to work out concretely the formula. In their simplest model 1, they
introduce the simplification:

P.f; aje/ D "

.l C 1/m
mY

jD1
t.fj jeaj /;

where t .fj jeaj / is the translation probability of fj given eaj and " a small, fixed
number.

Using the example in Fig. 8.12, the product in

P.Le programme a été mis en application; ajAnd the program has been implemented/

for a D .2; 3; 4; 5; 6; 6; 6/ corresponds to the terms:

t .Lejthe/ � t .programmejprogram/ � t .ajhas/ � t .étéjbeen/�
t .misjimplemented/ � t .enjimplemented/ � t .applicationjimplemented/

where t values are derived from aligned corpora. Summing over all the possible
alignments, we obtain the probability of the translation of Le programme a été mis
en application into And the program has been implemented.
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8.8.4 Evaluating Translation

The results of automatic translation are most frequently evaluated using the bilingual
evaluation understudy (BLEU) algorithm (Papineni et al. 2002).

BLEU compares the machine translation of a text with corresponding human
translations. It uses a test set, where each sentence is translated by one or more
human beings, and computes a score for each sentence and an average on the test set.
The most basic score is a word-for-word comparison. It corresponds to the number
of machine-translated words that appear in the human translations divided by the
total number of words in the machine-translated sentence. The final score on the
test set ranges from 0 to 1.

Papineni et al. noted that sequences of repeated words, such as articles, could
reach high scores even if they made no sense. They modified their first algorithm
in consequence by setting a maximal count for each word. This maximal count is
computed from the human translations.

BLEU extends the word-for-word comparison to n-grams with the counts of
machine-translated n-grams matching the human translations and divided by the
total number of n-grams in the machine-translated sentence.

8.9 Further Reading

There are plenty of techniques to carry out part-of-speech tagging. We reviewed the
most popular ones in this chapter. Carlberger and Kann (1999) is a very readable
and complete text to implement a HMM tagger, while HunPos (Halácsy et al. 2007)
is a modern, compact, and open-source implementation (http://code.google.com/
p/hunpos/).

Ratnaparkhi (1996) proposed a method similar to hidden Markov models, but
he used probability estimates from logistic regression instead of the maximum
likelihood. For a given word, the probability is conditioned on the sentence words
and the parts of speech already assigned: PLogReg.ti jw1::N ; t1::j /with j < i . Usually,
the sequence is limited to a window of five words.

Conditional random fields (Lafferty et al. 2001) are an extension of Ratnaparkhi’s
method that is conditioned on the complete word and tag sequences except the
current tag: PLogReg.ti jw1::N ; t1::i�1;iC1::N /: In practice, the sequence is a limited
window too. Although appealing and very frequently cited, conditional random
fields did not outperform other methods until now. They are also more difficult to
train and to apply.

We briefly introduced machine translation in this chapter. Brown et al. (1993)
started the field on statistical translation models. The original article is worth read-
ing. Koehn (2010) is a recent and comprehensive overview. Statistical techniques
have tremendously improved translation quality over the 10 last years. Google
Translate is the most notable example of this trend. As notable software resources,

http://code.google.com/p/hunpos/
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GIZA++ (Och and Ney 2003) is a program to train alignment models available from:
http://code.google.com/p/giza-pp/ and Moses is a complete statistical machine
translation system http://www.statmt.org/moses/.

Exercises

8.1. Implement a part-of-speech tagger using logistic regression or support vector
machines. You can use LIBLINEAR or LIBSVM.

8.2. Implement the HMM part-of-speech tagging algorithm in Prolog or Perl using
unigrams.

8.3. Implement the HMM part-of-speech tagging algorithm in Prolog or Perl using
bigrams without the Viterbi algorithm.

8.4. Complement the previous program with the Viterbi search.

8.5. Implement a spell-checker in Prolog or Perl.

http://code.google.com/p/giza-pp/
http://www.statmt.org/moses/


Chapter 9
Phrase-Structure Grammars in Prolog

ἔσται πᾶσα κατάφασις ἢ ἐξ ὀνόματος καὶ ῥήματος ἢ ἐξ
ἀορίστου ὀνόματος καὶ ῥήματος.
‘Every affirmation, then, and every denial, will consist of a noun
and a verb, either definite or indefinite.’

Aristotle, De Interpretatione, Chap. 10. Translated by E. M.
Edghill.

Simplicium vero enuntiationum partes sunt subjectum atque
prædicatum.

‘The parts of a simple proposition are the subject and the
predicate.’

Boethius (470-525), Introductio ad syllogismos categoricos,
In Patrologica Latina, 64, page 768 C.

Sentence! NP C VP
Chomsky (1957, Chap. 4)

Three inventions, and teachings, in their time.

9.1 Using Prolog to Write Phrase-Structure Grammars

This chapter introduces parsing using phrase-structure rules and grammars. It uses
the Definite Clause Grammar (DCG) notation (Pereira and Warren 1980), which is
a feature of virtually all Prologs. The DCG notation enables us to transcribe a set of
phrase-structure rules directly into a Prolog program.

Prolog was designed from the very beginning for language processing. It
has built-in search and unification mechanisms that make it naturally suited to
implement formal models of linguistics with elegance and concision. Parsing with
DCG rules comes down to a search in Prolog. Prolog recognizes the rules at load

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__9, © Springer-Verlag Berlin Heidelberg 2014
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The waiter brought the meal to the table

Fig. 9.1 The constituent
structure of The waiter
brought the meal to the table

The waiter brought the meal of the day

Fig. 9.2 The constituent
structure of The waiter
brought the meal of the day

time and translates them into clauses. Its engine automatically carries out the parse
without the need for additional programming.

Many natural language processing systems, both in academia and in industry,
have been written in Prolog. Other languages like Perl, Python, Java, or C++ are now
widely used in language engineering applications. However, much programming is
often necessary to implement an idea or a linguistic theory. Prolog gets to the heart
of the problem in sometimes only a few lines of code. It thus enables us to capture
fundamental concepts while setting aside coding chores.

9.2 Representing Chomsky’s Syntactic Formalism in Prolog

9.2.1 Constituents

Chomsky’s syntactic formalism (1957) is based on the concept of constituents.
Constituents can be defined as groups of words that fit together and act as relatively
independent syntactic units. We shall illustrate this idea with the sentences:

The waiter brought the meal.
The waiter brought the meal to the table.
The waiter brought the meal of the day.

Phrases such as the waiter, the meal, of the day, or brought the meal of the day
are constituents because they sound natural. On the contrary, the groups of words
meal to or meal of the sound odd or not complete and therefore are not constituents.

The set of constituents in a sentence includes all the phrases that meet this
description. Simplest constituents are the sentence’s words that combine with their
neighbors to form larger constituents. Constituents combine again and extend up to
the sentence itself. Constituents can be pictured by boxed groups of sentence chunks
(Figs. 9.1 and 9.2).

In Fig. 9.2, the phrase the meal of the day fits in a box, while in Fig. 9.1, the meal
and to the table are separated. The reason is semantic. The meal of the day can be
considered as a single entity, and so of the day is attached to the meal. Both can
merge in a single constituent and hence fit in the same box. To the table is related
to the sentence verb rather than to the meal: this phrase specifies where the waiter
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S

NP VP

Det Noun Verb NP PP

Det Noun Prep NP

Det Noun

The waiter brought the meal to the table

Fig. 9.3 Tree structure of The waiter brought the meal to the table

brought something. That is why the next enclosing box frames the phrase brought
the meal to the table and not the meal to the table.

Constituents are organized around a headword that usually has the most signif-
icant semantic content. The constituent category takes its name from the headword
part of speech. So, the waiter, the meal, the day, and the meal of the day are noun
phrases (NPs), and brought the meal of the day is a verb phrase (VP). Prepositional
phrases (PPs) are noun phrases beginning with prepositions such as to the table and
of the day.

9.2.2 Tree Structures

Tree structures are an alternate representation to boxes where constituent names
annotate the tree nodes. The symbol S denotes the whole sentence and corresponds
to the top node. This node divides into two branches that lead to the NP and VP
nodes, and so on. Figure 9.3 shows the structure of The waiter brought the meal to
the table, and Fig. 9.4 the structure of The waiter brought the meal of the day.

9.2.3 Phrase-Structure Rules

Phrase-structure rules (PS rules) are a device to model constituent structures. PS
rules rewrite the sentence or phrases into a sequence of simpler phrases that describe
the composition of the tree nodes. More precisely, a PS rule has a left-hand side
that is the parent symbol and a right-hand side made of one, two, or more symbols
labeling the downward-connected nodes. For instance, rule

S! NP VP



256 9 Phrase-Structure Grammars in Prolog

S

NP VP

Det Noun Verb NP

NP PP

Det Noun Prep NP

Det Noun

The waiter brought the meal of the day

Fig. 9.4 Tree structure of The waiter brought the meal of the day

Table 9.1 A phrase-structure grammar

Phrases Lexicon

S! NP VP Determiner! the Noun! day
NP! Determiner Noun Noun! waiter Verb! brought
NP! NP PP Noun! meal Preposition! to
VP! Verb NP Noun! table Preposition! of
VP! Verb NP PP
PP! Preposition NP

describes the root node of the tree: a sentence can consist of a noun phrase and a
verb phrase.

A phrase-structure grammar is a set of PS rules that can decompose sentences
and phrases down to the words and describe complete trees. The phrase categories
occurring in Figs. 9.3 and 9.4 are sentence, noun phrase, verb phrase, and prepo-
sitional phrase. In the phrase-structure formalism, these categories are called the
nonterminal symbols. Parts of speech or lexical categories here are determiners
(or articles), nouns, verbs, and prepositions. PS rules link up categories to rewrite
the sentence and the phrases until they reach the words – the terminal symbols.
Table 9.1 shows a grammar to parse the sentences in Figs. 9.1 and 9.2.

The first rule in Table 9.1 means that the sentence consists of a noun phrase
followed by a verb phrase. The second and third rules mean that a noun phrase
can consist either of a determiner and a noun, or a noun phrase followed by a
prepositional phrase, and so on. The left constituent is called the mother of the
rule, and the right constituents are its expansion or its daughters. The sequence
of grammar rules applied from the sentence node to get to the words is called a
derivation.
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9.2.4 The Definite Clause Grammar (DCG) Notation

The translation of PS rules into DCG rules is straightforward. The DCG notation
uses the -->/2 built-in operator to denote that a constituent can consist of a
sequence of simpler constituents. DCG rules look like ordinary Prolog clauses
except that the operator -->/2 separates the head and body instead of :-/2. Let us
use the symbols s, np, vp, and pp to represent phrases. The grammar in Table 9.1
corresponds to DCG rules:

s --> np, vp.
np --> det, noun.
np --> np, pp.
vp --> verb, np.
vp --> verb, np, pp.
pp --> prep, np.

DCG rules encode the vocabulary similarly. The left-hand side of the rule is
the part of speech, and the right-hand side is the word put inside a list – enclosed
between brackets:

det --> [the].
det --> [a].
noun --> [waiter].
noun --> [meal].
noun --> [table].
noun --> [day].
verb --> [brought].
prep --> [to].
prep --> [of].

The Prolog search mechanism checks whether a fact is true or generates all the
solutions. Applied to parsing, the search checks whether a sentence is acceptable to
the grammar or generates all the sentences accepted by this grammar.

Once the Prolog interpreter has consulted the DCG rules, we can query it using
the input word list as a first parameter and the empty list as a second. Both queries:

?- s([the, waiter, brought, the, meal, to, the,
table], []). true

?- s([the, waiter, brought, the, meal, of, the, day],
[]). true

succeed because the grammar accepts the sentences.
In addition to accepting sentences, the interpreter finds all the sentences gener-

ated by the grammar. It corresponds to the so-called syntactically correct sentences:

?-s(L, []).
L = [the, waiter, brought, the, waiter] ;
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L = [the, waiter, brought, the, meal] ;
L = [the, waiter, brought, the, table] ;
...

In the grammar above, the two first lexical rules mean that a determiner can be
either the or a. This rule could have been compacted in a single one using Prolog’s
disjunction operator ;/2 as:

det --> [the] ; [a].

However, like for Prolog programs, using the semicolon operator sometimes
impairs the readability and is not advisable.

In our grammar, nonterminal symbols of lexical rules are limited to a single word.
They can also be a list of two or more words as in:

prep --> [in, front, of].

which means that the word sequence in front of corresponds to a preposition.
DCG rules can mix terminal and nonterminal symbols in their expansion as in:

np --> noun, [and], noun.

Moreover, Prolog programs can mix Prolog clauses with DCG rules, and DCG
rules can include Prolog goals in the expansion. These goals are enclosed in braces:

np --> noun, [and], noun, {prolog_code}.

as, for example:

np -->
noun, [and], noun,
{write(’I found two nouns’), nl}.

9.3 Parsing with DCGs

9.3.1 Translating DCGs into Prolog Clauses

Prolog translates DCG rules into Prolog clauses when the file is consulted. The
translation is nearly a mapping because DCG rules are merely a notational variant
of Prolog rules and facts. In this section, we will first consider a naïve conversion
method. We will then outline how most common interpreters adhering to Edinburgh
Prolog (Pereira 1984) tradition carry out the translation.

A tentative translation of DCG rules in Prolog clauses would add a variable to
each predicate. The rule

s --> np, vp.
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would then be converted into the clause

s(L) :- np(L1), vp(L2) ...

so that each variable unifies with the word list corresponding to the predicate name.
With this kind of translation and the input sentence The waiter brought the meal,
variable

• L would match the input list [the, waiter, brought, the, meal];
• L1 would match the noun phrase list [the, waiter]; and
• L2 would match the verb phrase [brought, the, meal].

To be complete, the Prolog clause requires an append/3 predicate at the end to
link L1 and L2 to L:

s(L) :- np(L1), vp(L2), append(L1, L2, L).

Although this clause might seem easy to understand, it would not gracefully scale
up. If there were three daughters, the rule would require two appends, and if there
were four daughters, the rule would then need three appends, and so on.

In most Prologs, the translation predicate adds two variables to each DCG symbol
to the left-hand side and the right-hand side of the rule. The DCG rule

s --> np, vp.

is actually translated into the Prolog clause

s(L1, L) :- np(L1, L2), vp(L2, L).

where L1, L2, and L are lists of words. As with the naïve translation, the clause
expresses that a constituent matching the head of the rule is split into subconstituents
matching the goals in the body. However, constituent values correspond to the
difference of each pair of arguments.

• The waiter brought the meal corresponds to the s symbol and unifies with L1\L,
where L1\L denotes L1 minus L.

• The waiter corresponds to the np symbol and unifies with L1\L2.
• brought the meal corresponds to the vp symbol and unifies with L2\L.

In terms of lists, L1\L corresponds to [the, waiter, brought, the,
meal]; L1\2 corresponds to the first noun phrase [the, waiter]; and L2\L
corresponds to the verb phrase and [brought, the, meal].

L1 is generally set to the input sentence and L to the empty list, [], when
querying the Prolog interpreter, as in:

?- s([the, waiter, brought, the, meal], []).
true

So the variables L1 and L2 unify respectively with [the, waiter,
brought, the, meal] and [brought, the, meal].

The lexical rules are translated the same way. The rule

det --> [the].
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is mapped onto the fact:

det([the | L], L).

Sometimes, terminal symbols are rewritten using the ’C’/3 (connects) built-in
predicate. In this case, the previous rule could be rewritten into:

det(L1, L) :- ’C’(L1, the, L).

The ’C’/3 predicate links L1 and L so that the second parameter is the head of L1
and L, its tail. ’C’/3 is defined as:

’C’([X | Y], X, Y).

In many Prologs, the translation of DCG rules into Prolog clauses is carried out by
a predicate named expand_term/2.

9.3.2 Parsing and Generation

DCG parsing corresponds to Prolog’s top-down search that starts from the start
symbol, s. Prolog’s search mechanism rewrites s into subgoals, here np and vp.
Then it rewrites the leftmost symbols starting with np and goes down until it
matches the words of the input list with the words of the vocabulary. If Prolog finds
no solution with a set of rules, it backtracks and tries other rules.

Let us illustrate a search tracing the parser with the sentence The waiter brought
the meal in Table 9.2. The interpreter is launched with the query

?- s([the, waiter, brought, the, meal], []).

The Prolog clause

s(L1, L) :- np(L1, L2), vp(L2, L).

is called first (Table 9.2, line 1). The leftmost predicate of the body of the rule, np,
is then tried. Rules are examined in the order they occur in the file, and

np(L1, L) :- det(L1, L2), noun(L2, L).

is then called (line 2). The search continues with det (line 3) that leads to the
terminal rules. It succeeds with the fact

det([the | L], L).

and unifies L with [waiter, brought, the, meal] (line 4). The search
skips from det/2 to noun/2 in the rule

np(L1, L) :- det(L1, L2), noun(L2, L).

noun/2 is searched the same way (lines 5 and 6). np succeeds and returns with L
unified with [brought, the, meal] (line 7). The rule

s(L1, L) :- np(L1, L2), vp(L2, L).

proceeds with vp (line 8) until s succeeds (line 18). The search is pictured in
Fig. 9.5.
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Table 9.2 Trace of The waiter brought the meal

1 Call: s([the, waiter, brought, the, meal], [])
2 Call: np([the, waiter, brought, the, meal], _2)
3 Call: det([the, waiter, brought, the, meal], _6)
4 Exit: det([the, waiter, brought, the, meal], [waiter,

brought, the, meal])
5 Call: noun([waiter, brought, the, meal], _2)
6 Exit: noun([waiter, brought, the, meal], [brought, the,

meal])
7 Exit: np([the, waiter, brought, the, meal], [brought, the,

meal])
8 Call: vp([brought, the, meal], [])
9 Call: verb([brought, the, meal], _10)
10 Exit: verb([brought], [the, meal])
11 Call: np([the, meal], [])
12 Call: det([the, meal], _11)
13 Exit: det([the, meal], [meal])
14 Call: noun([meal], [])
15 Exit: noun([meal], [])
16 Exit: np([the, meal], [])
17 Exit: vp([brought, the, meal], [])
18 Exit: s([the, waiter, brought, the, meal], [])

S

NP VP

Det Noun Verb NP

Det Noun

The waiter brought the meal

Fig. 9.5 The DCG parsing
process

9.3.3 Left-Recursive Rules

We saw that the DCG grammar in Table 9.1 accepts and generates correct sentences,
but what about incorrect ones? A first guess is that the grammar should reject them.
In fact, querying this grammar with The brought the meal (*) never returns or even
crashes Prolog. This is due to the left-recursive rule

np --> np, pp.

Incorrect strings, such as:

The brought the meal (*)
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trap the parser into an infinite loop. Prolog first tries to match The brought to

np --> det, noun.

Since brought is not a noun, it fails and tries the next rule

np --> np, pp.

Prolog calls np again, and the first np rule is tried anew. The parser loops
hopelessly.

The classical method to get rid of the left-recursion is to use an auxiliary rule
with an auxiliary symbol (ngroup), which is not left-recursive, and to rewrite the
noun phrase rules as:

ngroup --> det, noun.
np --> ngroup.
np --> ngroup, pp.

When a grammar does not contain left-recursive rules, or once left-recursion has
been removed, any sentence not accepted by the grammar makes Prolog fail:

?- s([the, brought, the, meal, to, the, table], []).
false

9.4 Parsing Ambiguity

The tree structure of a sentence reflects the search path that Prolog is traversing.
With the rule set we used, verb phrases containing a prepositional phrase can be
parsed along to two different paths. The rules

vp --> verb, np.
np --> np, pp.

give a first possible path. Another path corresponds to the rule

vp --> verb, np, pp.

This alternative corresponds to a syntactic ambiguity.
Two parse trees reflect the result of a different syntactic analysis for each

sentence. Parsing

The waiter brought the meal to the table

corresponds to the trees in Figs. 9.3 and 9.6. Parsing

The waiter brought the meal of the day

corresponds to the trees in Figs. 9.4 and 9.7.
In fact, only Figs. 9.3 and 9.4 can be viewed as correct because the prepositional

phrases attach differently in the two sentences. In

The waiter brought the meal to the table
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Det Noun

Det Noun Verb NP

NP PP

Det Noun Prep NP

The waiter brought the meal to the table

Fig. 9.6 A possible parse tree for The waiter brought the meal to the table
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Det Noun Verb NP PP
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Det Noun

The waiter brought the meal of the day

Fig. 9.7 A possible parse tree for The waiter brought the meal of the day

the object is the meal that the waiter brings to a specific location, the table. These
are two distinct entities. In consequence, the phrase to the table is a verb adjunct
and must be attached to the verb phrase node.

In the sentence

The waiter brought the meal of the day

the verb object is the meal of the day, which is an entity in itself. The phrase of the
day is a postmodifier of the noun meal and must be attached to the noun phrase
node.

When we hear such ambiguous sentences, we unconsciously retain the one that
is acceptable from a pragmatic viewpoint. Prolog does not have this faculty, and the
parser must be hinted. It can be resolved by considering verb, preposition, and noun
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types using logical constraints or statistical methods. It naturally requires adding
some more Prolog code. In addition, sentences such as

I saw a man with a telescope

remain ambiguous, even for humans.

9.5 Using Variables

Like Prolog, DCG symbols can have variables. These variables can be used to
implement a set of constraints that may act on words in a phrase. Such constraints
govern, for instance, the number and gender agreement, the case, and the verb
transitivity. Variables can also be used to get the result from a parse. They enable us
to build the parse tree and the logical form while parsing a sentence.

DCG variables will be kept in their Prolog predicate counterpart after consulting.
Variables of a DCG symbol appear in front of the two list variables that are added
by expand_term/2 while building the Prolog predicate. That is, the DCG rule

np(X, Y, Z) --> det(Y), noun(Z).

is translated into the Prolog clause

np(X, Y, Z, L1, L) :-
det(Y, L1, L2),
noun(Z, L2, L).

9.5.1 Gender and Number Agreement

French and German nouns have a gender and a number that must agree with that
of the determiner and the adjective. Genders in French are masculine and feminine.
German also has a neuter gender. Number is singular or plural. Let us use variables
Gender and Number to represent them in the noun phrase rule and to impose the
agreement:

np(Gender, Number) -->
det(Gender, Number), noun(Gender, Number).

To keep the consistency along with all the rules of the grammar, lexical rules
must also describe the gender and number of words (Table 9.3).

A Prolog query on np with the French vocabulary loaded generates two noun
phrases whose determiner and noun agree in gender:

?- np(Gender, Number, L, []).
Gender = masc, Number = sing, L = [le, garçon];
Gender = fem, Number = sing, L = [la, serveuse];
No
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Table 9.3 A vocabulary with gender and number

French German

det(masc, sing) --> [le]. det(masc, sing) --> [der].
det(fem, sing) --> [la]. det(fem, sing) --> [die].
det(_, plur) --> [les]. det(neut, sing) --> [das].
noun(masc, sing) --> [garçon]. det(_, plur) --> [die].
noun(fem,sing) --> [serveuse]. noun(masc, _) --> [’Ober’].

noun(fem,sing) --> [’Speise’].

In addition to number and gender, German nouns are marked with four cases:
nominative, dative, genitive, and accusative. The determiner case must agree with
that of the adjective and the noun. To implement the case agreement, let us mark the
noun phrase rule with an extra variable Case.

np(Gender, Number, Case) -->
det(Gender, Number, Case),
adj(Gender, Number, Case),
noun(Gender, Number, Case).

Let us also write a small vocabulary:

det(masc, sing, nominative) --> [der].
det(masc, sing, dative) --> [dem].
det(masc, sing, genitive) --> [des].
det(masc, sing, accusative) --> [den].

adj(masc, sing, nominative) --> [freundliche].
adj(masc, sing, dative) --> [freundlichen].
adj(masc, sing, genitive) --> [freundlichen].
adj(masc, sing, accusative) --> [freundlichen].

noun(masc, _, Case) -->
[’Ober’],
{Case \= genitive}.

noun(masc, _, genitive) --> [’Obers’].

Querying np with the German vocabulary

?- np(G, N, C, L, []).

generates four noun phrases whose determiner, adjective, and noun agree in gender
and case:

G = masc, N = sing, C = nominative,
L = [der, freundliche, ’Ober’];

G = masc, N = sing, C = dative,
L = [dem, freundlichen, ’Ober’];

G = masc, N = sing, C = genitive,
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L = [des, freundlichen, ’Obers’];
G = masc, N = sing, C = accusative,
L = [den, freundlichen, ’Ober’];

No

So far, we have seen agreement within the noun phrase. It can also be applied to
categorize verbs. Some verbs such as sleep, appear, or rushed are never followed
by a noun phrase. These verbs are called intransitive (iv). Transitive verbs such as
bring require a noun phrase after them: the object (tv). We can rewrite two verb
phrase rules to mark transitivity:

vp --> verb(iv).
vp --> verb(tv), np.

verb(tv) --> [brought].
verb(iv) --> [rushed].

9.5.2 Obtaining the Syntactic Structure

We used variables to implement constraints. Variables can also return the parse
tree of a sentence. The idea is to unify variables with the syntactic structure of a
constituent while it is being parsed. To exemplify this, let us use a simplified version
of our grammar:

s --> np, vp.
np --> det, noun.
vp --> verb, np.

The parse tree of

The waiter brought the meal

is reflected by the Prolog term

T = s(np(det(the), noun(waiter)),
vp(verb(brought), np(det(the), noun(meal))))

To get this result, the idea is to attach an argument to all the symbols of rules,
where each argument represents the partial parse tree of its corresponding symbol.
Each right-hand-side symbol will have a variable that corresponds to the structure it
matches, and the argument of the left-hand-side symbol will unify with the structure
it has parsed. Each rule carries out a part of the tree construction when it is involved
in the derivation. Let us consider the rule:

s --> np, vp.

We add two variables to np and vp, respectively NP and VP, that reflect the
partial structure they map. When the whole sentence has been parsed, NP and VP
should be
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NP = np(det(the), noun(waiter))

and

VP = vp(verb(brought), np(det(the), noun(meal)))

When NP and VP are unified, s combines them into a term to form the final
structure. This term is s(NP, VP). We obtain the construction of the parse tree by
changing rule

s --> np, vp

into

s(s(NP, VP)) --> np(NP), vp(VP).

The rest of the rules are modified in the same way:

np(np(D, N)) --> det(D), noun(N).
vp(vp(V, NP)) --> verb(V), np(NP).

det(det(the)) --> [the].
det(det(a)) --> [a].

noun(noun(waiter)) --> [waiter].
noun(noun(meal)) --> [meal].
noun(noun(table)) --> [table].
noun(noun(tray)) --> [tray].

verb(verb(bring)) --> [brought].

The query:

?- s(Structure, L, []).

generates all the sentences together with their syntactic structure:

Structure = s(np(det(the), noun(waiter)),
vp(verb(brought), np(det(the), noun(waiter)))),

L = [the, waiter, brought, the, waiter] ;

Structure = s(np(det(the), noun(waiter)),
vp(verb(brought), np(det(the), noun(meal)))),

L = [the, waiter, brought, the, meal] ;

Structure = s(np(det(the), noun(waiter)),
vp(verb(brought), np(det(the), noun(table)))),

L = [the, waiter, brought, the, table]
...
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9.6 Application: Tokenizing Texts Using DCG Rules

We can use DCG rules for many applications other than sentence parsing, which we
exemplify here with a tokenization grammar.

9.6.1 Word Breaking

The first part of a tokenizer takes a character list as an input and breaks it into
tokens. Let us implement this with a DCG grammar. We start with rules describing
a sequence of tokens (tokens) separated by blanks. Blank characters (blank)
are white spaces, carriage returns, tabulations, or control codes. A token (token)
is a sequence of alphanumeric characters (alphanumerics) or another symbol
(other). Finally, alphanumerics are digits, uppercase letters, lowercase letters, or
accented letters:

tokens(Tokens) --> blank, {!}, tokens(Tokens).
tokens([FirstT | Tokens]) -->
token(FirstT), {!}, tokens(Tokens).

tokens([]) --> [].

% A blank is a white space or a control character
blank --> [B], {B =< 32, !}.

% A token is a sequence of alphanumeric characters
% or another symbol

token(Word) --> alphanumerics(List), {name(Word,
List), !}.
token(Symbol) --> other(CSymbol), {name(Symbol,
[CSymbol]), !}.

% A sequence of alphanumerics is an alphanumeric
% character followed by other alphanumerics
% or a single alphanumeric character.

alphanumerics([L | LS]) -->
alphanumeric(L), alphanumerics(LS).

alphanumerics([L]) --> alphanumeric(L).

% Here comes the definition of alphanumeric
characters:
% digits, uppercase letters without accent, lowercase
% letters without accent, and accented characters.
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% Here we only consider letters common in French,
German,
% and Swedish

% digits
alphanumeric(D) --> [D], { 48 =< D, D =< 57, !}.

% uppercase letters without accent
alphanumeric(L) --> [L], {65 =< L, L =< 90, !}.

% lowercase letters without accent
alphanumeric(L) --> [L], {97 =< L, L =< 122, !}.

% accented characters
alphanumeric(L) --> [L], {name(A, [L]), accented(A),
!}.

accented(L) :-
member(L,
[’à’, ’â’, ’ä’, ’å’, ’æ’, ’ç’, ’é’, ’è’, ’ê’, ’ë’,
’î’, ’ï’, ’ô’, ’ö’, ’œ’, ’ù’, ’û’, ’ü’, ’ÿ’,
’À’, ’Â’, ’Ä’, ’Å’, ’Æ’, ’Ç’, ’É’, ’È’, ’Ê’, ’Ë’,
’Î’, ’Ï’, ’Ô’, ’Ö’, ’Œ’, ’Ù’, ’Û’, ’Ü’, ’Ÿ’]).

% All other symbols come here
other(Symbol) --> [Symbol], {!}.

Before applying the tokens rules, we need to read the file to tokenize and to
build a character list. We do it with the read_file/2 predicate. We launch the
complete word-breaking program with

?- read_file(myFile, CharList),
tokens(TokenList, CharList, []).

9.6.2 Recognition of Sentence Boundaries

The second role of tokenization is to delimit sentences. The corresponding grammar
takes the token list as an input. The sentence list (sentences) is a list of
words making a sentence (words_of_a_sentence) followed by the rest of the
sentences. The last sentence can be a punctuated sentence or a string of words with
no final punctuation (words_without_punctuation). We define a sentence
as tokens terminated by an end punctuation: a period, a colon, a semicolon, an
exclamation point, or a question mark.
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sentences([S | RS]) --> words_of_a_sentence(S),
sentences(RS).
% The last sentence (punctuated)
sentences([S]) --> words_of_a_sentence(S).
% Last sentence (no final punctuation)
sentences([S]) --> words_without_punctuation(S).

words_of_a_sentence([P]) --> end_punctuation(P).
words_of_a_sentence([W | RS]) -->
word(W),
words_of_a_sentence(RS).

words_without_punctuation([W | RS]) -->
word(W),
words_without_punctuation(RS).

words_without_punctuation([W]) --> [W].

word(W) --> [W].

end_punctuation(P) --> [P], {end_punctuation(P), !}.

end_punctuation(P) :- member(P, [’.’, ’;’, ’:’, ’?’,
’!’]).

We launch the whole tokenization program with

?- read_file(myFile, CharacterList),
tokens(TokenList, CharacterList, []),
sentences(SentenceList, TokenList, []).

9.7 Semantic Representation

9.7.1 �-Calculus

One of the goals of semantics is to map sentences onto logical forms. In many
applications, this is a convenient way to represent meaning. It is also a preliminary
step to further processing such as determining whether the meaning of a sentence is
true or not.

In some cases, the logical form can be obtained simultaneously while parsing.
This technique is based on the principle of compositionality, which states that it is
possible to compose the meaning of a sentence from the meaning of its parts. We
shall explain this with the sentence

Bill is a waiter



9.7 Semantic Representation 271

and its corresponding logical form

waiter(’Bill’).

If Pierre replaces Bill as the waiter, the semantic representation of the sentence
is

waiter(’Pierre’).

This means that the constituent is a waiter retains the same meaning indepen-
dently of the value of the subject. It acts as a property or a function that is applied to
other constituents. This is the idea of compositional analysis: combine independent
constituents to build the logical form of the sentence.

The �-calculus (Church 1941) is a mathematical device that enables us to
represent intermediate constituents and to compose them gracefully. It is a widely
used tool in compositional semantics. The �-calculus maps constituents onto
abstract properties or functions, called �-expressions. Using a �-expression, the
property is a waiter is represented as

�x:waiter.x/

where � is a right-associative operator. The transformation of a phrase into a
property is called a �-abstraction. The reverse operation is called a ˇ-reduction.
It is carried out by applying the property to a value and is denoted

�x:waiter.x/.Bill/

which yields

waiter.Bill/

Since there is no � character on most computer keyboards, the infix oper-
ator ^ classically replaces it in Prolog programs. So �x:waiter.x/ is denoted
X^waiter(X). �-expressions are also valid for adjectives, and is fast is mapped
onto X^fast(X). A combination of nouns and adjectives, such as is a fast waiter,
is represented as: X^(fast(X), waiter(X)).

While compositionality is an elegant tool, there are also many sentences where it
does not apply. Kick is a frequently cited example. It shows compositional properties
in kick the ball or kick the box. A counter example is the idiom kick the bucket, which
means to die, and where kick is not analyzable alone.

9.7.2 Embedding �-Expressions into DCG Rules

It is possible to use DCG rules to carry out a compositional analysis. The idea is to
embed �-expressions into the rules. Each rule features a �-expression corresponding
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to the constituent it can parse. Parsing maps �-expressions onto constituents rule-
by-rule and builds the semantic representation of the sentence incrementally.

The sentence we have considered applies the property of being a waiter to a
name: Pierre or Bill. In this sentence, the verb is, as other verbs of being, only
links a name to the predicate waiter(X). So the constituent is a waiter is
roughly equivalent to waiter. Then, the semantic representation of common nouns
or adjectives is that of a property: �x:waiter.x/. Nouns incorporate their semantic
representation as an argument in DCG rules, as in:

noun(X^waiter(X)) --> [waiter].

As we saw, verbs of being have no real semantic content. If we only consider
these verbs, verb phrase rules only pass the semantics of the complement to the
sentence. Therefore, the semantics of the verb phrase is simply that of its noun
phrase:

vp(Semantics) --> verb, np(Semantics).

The Semantics variable is unified to X^waiter(X), where X is to represent
the sentence’s subject. Let us write this in the sentence rule that carries out the ˇ-
reduction

s(Predicate) --> np(Subject),
vp(Subject^Predicate).

The semantic representation of a name is just this name:

np(’Bill’) --> [’Bill’].
np(’Mark’) --> [’Mark’].

We complement the grammar with an approximation: we consider that determin-
ers have no meaning. It is obviously untrue. We do it on purpose to keep the program
simple. We will get back to this later:

np(X) --> det, noun(X).
det --> [a].
verb --> [is].

Once the grammar is complete, querying it with a sentence results in a logical
form:

?- s(S, [’Mark’, is, a, waiter], []).
S = waiter(’Mark’).

The reverse operation generates a sentence from the logical form:

?- s(waiter(’Bill’), L, []).
L = [’Bill, is, a, waiter].
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9.7.3 Semantic Composition of Verbs

We saw that verbs of being played no role in the representation of a sentence. On
the contrary, other types of verbs, as in

Bill rushed
Mr. Schmidt called Bill

are the core of the sentence representation. They correspond to the principal functor
of the logical form:

rushed(’Bill’)
called(’Mr. Schmidt’, ’Bill’)

Their representation is mapped onto a �-expression that requires as many
arguments as there are nouns involved in the logical form. Rushed in the sentence
Bill rushed is intransitive. It has a subject and no object. It is represented as

X^rushed(X)

where X stands for the subject. This formula means that to be complete the
sentence must supply rushed(X) with X = ’Bill’ so that it reduces to
rushed(’Bill’).

Called in the sentence Mr. Schmidt called Bill is transitive: it has a subject and
an object. We represent it as

Y^X^called(X, Y)

where X and Y stand, respectively, for the subject and the object. This expression
means that it is complete when X and Y are reduced.

Let us now examine how the parsing process builds the logical form. When the
parser considers the verb phrase

called Bill

it supplies an object to the verb’s �-expression. The �-expression reduces to one
argument, �x:called.x;Bill/, which is represented in Prolog by

X^called(X, ’Bill’)

When the subject is supplied, the expression reduces to

called(’Mr. Schmidt’, ’Bill’).

Figure 9.8 shows graphically the composition.
Let us now write a complete grammar accepting both sentences. We add a

variable or a constant to the left-hand-side symbol of each rule to represent the
constituent’s or the word’s semantics. The verb’s semantics is a �-expression as
described previously, and np’s value is a proper noun. The semantic representation
is built compositionally – at each step of the constituent parsing – by unifying the
argument of the left-hand-side symbol.
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S Sem = called(Mr. Schmidt Bill)

NP Sem = Mr. Schmidt VP Sem = called(x Bill)

Verb Sem = called(x y) NP Sem = Bill

Mr. Schmidt called Bill

Fig. 9.8 Parse tree with a semantic composition

s(Semantics) --> np(Subject),
vp(Subject^Semantics).
vp(Subject^Semantics) --> verb(Subject^Semantics).
vp(Subject^Semantics) -->
verb(Object^Subject^Semantics), np(Object).

np(’Bill’) --> [’Bill’].
np(’Mr. Schmidt’) --> [’Mr. Schmidt’].

verb(X^rushed(X)) --> [rushed].
verb(Y^X^called(X, Y)) --> [called].

?- s(Semantics, [’Mr. Schmidt’, called, ’Bill’], []).
Semantics = called(’Mr. Schmidt’, ’Bill’)

In this paragraph, proper nouns were the only noun phrases we considered.
We have set aside common nouns and determiners to simplify the presentation.
In addition, prepositions and prepositional phrases can also be mapped onto �-
expressions in the same way as verbs and verb phrases. We will examine the rest
of the semantics in more detail in Chap. 14.

9.8 An Application of Phrase-Structure Grammars
and a Worked Example

As we saw in Chap. 1, the Microsoft Persona agent uses a phrase-structure grammar
module to parse sentences and gets a logical form from them. Ball et al. (1997) give
an example of order:

I’d like to hear something composed by Mozart.

that Persona transforms in the logical form:

like1 (+Modal +Past +Futr)
Dsub: i1 (+Pers1 +Sing)
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Dobj: hear1
Dsub: i1
Dobj: something1 (+Indef +Exis +Pers3 +Sing)

Prop: compose1
Dsub: mozart1 (+Sing)
Dobj: something1

Although Persona uses a different method (Jensen et al. 1993), a small set of
DCG rules can parse this sentence and derive a logical form using compositional
techniques. To write the grammar, let us simplify the order and proceed incremen-
tally. The core of the sentence means that the user would like something or some
Mozart. It is easy to write a grammar to parse sentences such as:

I would like something
I would like some Mozart

The sentence and the noun phrase rules are close to those we saw earlier:

s(Sem) --> np(Sub), vp(Sub^Sem).

In anticipation of a possible left-recursion, we use an auxiliary npx symbol to
describe a nonrecursive noun phrase:

npx(SemNP) --> pro(SemNP).
npx(SemNP) --> noun(SemNP).
npx(SemNP) --> det, noun(SemNP).

np(SemNP) --> npx(SemNP).

The verb phrase is slightly different from those of the previous sections because
it contains an auxiliary verb. A possible expansion would consist of the auxiliary
and a recursive verb phrase:

vp --> aux, vp.

Although some constituent grammars are written this way, the treatment of
auxiliary would is disputable. In some languages – notably in Romance languages –
the conditional auxiliary is rendered by the inflection of the main verb, as in French:
j’aimerais ‘I would like’. A better modeling of the verb phrase uses a verb group
that corresponds either to a single verb or to a sequence, including an auxiliary to
the left and the main verb, here

verb_group(SemVG) --> aux(SemAux), verb(SemVG).
verb_group(SemVG) --> verb(SemVG).

vp(SemVP) --> verb_group(SemVP).
vp(SemVP) --> verb_group(Obj^SemVP), np(Obj).

The vocabulary is also similar to what we saw previously:

verb(Obj^Sub^like(Sub, Obj)) --> [like].
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verb(Obj^Sub^hear(Sub, Obj)) --> [hear].

aux(would) --> [would].

pro(’I’) --> [’I’].
pro(something) --> [something].

noun(N) --> proper_noun(N).

proper_noun(’Mozart’) --> [’Mozart’].

det --> [some].

This grammar answers queries such as:

?- s(Sem, [’I’, would, like, some, ’Mozart’], []).
Sem = like(’I’, ’Mozart’)

Now let us take a step further toward the original order, and let us add the
infinitive verb phrase to hear:

I would like to hear something
I would like to hear some Mozart

The infinitive phrase has a structure similar to that of a finite verb phrase except
that it is preceded by the infinitive marker to:

vp_inf(SemVP) --> [to], vp(SemVP).

We must add a new verb phrase rule to the grammar to account for it. Its object
is the subordinate infinitive phrase:

vp(SemVP) --> verb_group(Obj^SemVP), vp_inf(Obj).

The new grammar accepts queries such as:

?- s(Sem, [’I’, would, like, to, hear, some,
’Mozart’], []).
Sem = like(’I’, X^hear(X, ’Mozart’))

In the resulting logical form, the subject of hear is not reduced. In fact, this is
because it is not explicitly indicated in the sentence. This corresponds to an anaphora
within the sentence – an intrasentential anaphora – where both verbs like and hear
implicitly share the same subject.

To solve the anaphora and to understand how Prolog composes the logical forms,
instead of using the variable Obj, let us exhibit all the variables of the �-expressions
at the verb phrase level. The nonreduced �-expression for hear is

ObjectHear^SubjectHear^hear(SubjectHear, ObjectHear).

When the infinitive verb phrase has been parsed, the ObjectHear is reduced and
the remaining expression is
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SubjectHear^hear(SubjectHear, ’Mozart’).

The original �-expression for like is

ObjectLike^SubjectLike^like(SubjectLike, ObjectLike)

where ObjectLike unifies with the �-expression representing hear. Since both
subjects are identical, �-expressions can be rewritten so that they share a same
variable in Subject^SemInf for hear and SemInf^Subject^SemVP for like.
The verb phrase is then:

vp(Subject^SemVP) -->
verb_group(SemInf^Subject^SemVP),
vp_inf(Subject^SemInf).

and the new grammar now solves the anaphora:

?- s(Sem, [’I’, would, like, to, hear, some,
’Mozart’], []).
Sem = like(’I’, hear(’I’, ’Mozart’))

Let us conclude with the complete order, where the track the user requests is
something composed by Mozart. This is a noun phrase, which has a passive verb
phrase after the main noun. We model it as:

np(SemNP) --> npx(SemVP^SemNP), vp_passive(SemVP).

We also need a model of the passive verb phrase:

vp_passive(SemVP) --> verb(Sub^SemVP), [by], np(Sub).

and of the verb:

verb(Sub^Obj^compose(Sub, Obj)) --> [composed].

Finally, we need to modify the pronoun something so that it features a property:

pro(Modifier^something(Modifier)) --> [something].

Parsing the order with the grammar yields the logical form:

?- s(Sem, [’I’, would, like, to, hear, something,
composed, by, ’Mozart’], []).
Sem = like(’I’, hear(’I’, X^something(compose
(’Mozart’, X))))

which leaves variable X uninstantiated.1 A postprocessor would then be necessary
to associate X with something and reduce it.

1Prolog probably names it _Gxxx using an internal numbering scheme.
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9.9 Further Reading

Colmerauer (1970, 1978) created Prolog to write language processing applications
and, more specifically, parsers. Pereira and Warren (1980) designed the Definite
Clause Grammar notation, although it is merely a variation on the Prolog syntax.
Most Prolog environments now include a compiler that is based on the Warren
Abstract Machine (WAM) (Warren 1983). This WAM has made Prolog’s execution
very efficient.

Textbooks on Prolog and natural language processing delve mostly into syntax
and semantics. Pereira and Shieber (1987) provide a good description of phrase-
structure grammars, parsing, and formal semantics. Other valuable books include
Gazdar and Mellish (1989), Covington (1994b), and Gal et al. (1989).

SRI’s Core Language Engine (Alshawi 1992) is an example of a comprehensive
development environment based on Prolog. It is probably the most accomplished
industrial system in the domain of syntax and formal semantics. Using it, Agnäs
et al. (1994) built the Spoken Language Translator (SLT) to translate spoken English
to spoken Swedish in the area of airplane reservations. The SLT has been adapted
to other language pairs.

Exercises

9.1. Translate the sentences of Sect. 9.2.1 into French or German and write the
DCG grammar accepting them.

9.2. Underline constituents of the sentence The nice hedgehog ate the worm in its
nest.

9.3. Write a grammar accepting the sentence The nice hedgehog ate the worm in its
nest. Draw the corresponding tree. Do the same in French or German.

9.4. The previous grammar contains a left-recursive rule. Transform it as indicated
in this chapter.

9.5. Give a sentence generated by the previous grammar that is not semantically
correct.

9.6. Verbs of being can be followed by adjective phrases or noun phrases. Imagine
a new constituent category, adjp, describing adjective phrases. Write the corre-
sponding rules. Write rules accepting the sentences the waiter is tall, the waiter is
very tall, and Bill is a waiter.

9.7. How does Prolog translate the rule lex --> [in, front]?

9.8. How does Prolog translate the rule lex --> [in], {prolog_code},
[front]?
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9.9. Write the expand_term/2 predicate that converts DCG rules into Prolog
clauses.

9.10. Write a grammar accepting the sentence The nice hedgehog ate the worm in
its nest with variables building the parse tree.

9.11. Replace all nouns of the previous sentence by personal pronouns, and write
the grammar.

9.12. Translate the sentence in Exercise 9.10 into French or German, and add
variables to the rules to check number, gender, and case agreement.

9.13. Calculate the ˇ-reductions of expressions �x:f .x/.y/ and �x:f .x/

.�y:f .y//.

9.14. Write a grammar that accepts the noun phrase the nice hedgehog and that
builds a syntactic representation of it.

9.15. Persona’s parser accepts orders like Play before you accuse me. Draw the
corresponding logical form. Write grammar rules that parse the order Play a song
and that build a logical form from it.



Chapter 10
Partial Parsing

10.1 Is Syntax Necessary?

The description of language in terms of layers – words, parts of speech, and
syntax – could suggest that a parse tree is a necessary step to obtain the semantic
representation of a sentence. Yet, many industrial applications do not rely on syntax
as we presented it before. The reason is that a syntactic parser can be expensive in
terms of resources and sometimes it is not worth the cost.

Some applications need only to detect key words, as in some telephone speech
servers. There, the speech recognition module spots meaningful words and sets
the others aside. It enables the system to deal with the noisy environment or the
fragmented nature of speech by telephone. Other applications rely on the detection
of word groups such as noun phrases. Although sentences are not fully parsed, the
result is sufficient to make use of it. Information retrieval and extraction are typical
applications relying on group detection techniques.

In this chapter, we will examine a collection of techniques to extract incomplete
syntactic representations. These techniques are generally referred to as partial or
shallow parsing and operate on groups of words, often called chunks. Some of
them just carry out the detection of key words or specific word patterns. Others
use phrase-structure rules describing groups such as noun groups or verb groups.
Finally, some techniques are an extension of part-of-speech tagging and resort to
similar methods.

10.2 Word Spotting and Template Matching

10.2.1 ELIZA

A first shallow technique consists in matching predefined templates. It appeared
in the popular ELIZA program that mimics a dialogue between a psychotherapist

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__10, © Springer-Verlag Berlin Heidelberg 2014
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Table 10.1 Some ELIZA
templates

User Psychotherapist

. . . I like X. . . Why do you like X?

. . . I am X. . . How long have you been X?

. . . father. . . Tell me more about your father

and his/her patient (Weizenbaum 1966). In fact, ELIZA understands nothing. She
“spots” a handful of words or patterns such as yes, no, why, I’m afraid of X, I
like X, etc., where X is a name or any group of words. When a template matches
the user’s sentence, ELIZA has a set of ready-made answers or questions mapped
onto it. When no template matches, ELIZA tries to guess whether the sentence
is a declaration, a negation, or an interrogation, and has repartees like in what
way, can you think of a specific example, go on, etc. It enables the machine
to follow the conversation with a semblance of realism. Table 10.1 shows some
user/psychotherapist templates.

ELIZA’s dialogue pays specific attention to words like mother and father.
Whenever one of these words occurs, ELIZA asks for more details. We remind the
reader that this program was created when Freudian theories were still influential.
Although the approach is now considered simplistic, at best, the psychoanalytical
settings secured ELIZA mainstream popularity.

10.2.2 Word Spotting in Prolog

A word spotting program can easily be written using DCG rules. Utterances are
modeled as phrase-structure rules consisting of a beginning, the word or pattern to
search, and an end. The translation into a DCG rule is straightforward:

utterance(U) --> beginning(B), [the_word], end(E).

Each predicate has a variable that unifies with the part of the utterance it
represents. Variables B and E unify respectively with the beginning and the end of
the utterance. The variable U is used to build the system answer as in the templates
in Table 10.1.

Prolog translates the DCG rules into clauses when they are consulted. It adds two
arguments to each predicate, and the previous rule expands into:

utterance(U, L1, L) :-
beginning(B, L1, L2),
c(L2, the_word, L3),
end(E, L3, L).

We saw in Chap. 9 that each predicate in the rule covers a word sequence,
and that it corresponds to the difference of the two new arguments: L1 minus
L corresponds to utterance; L1 minus L2 corresponds to beginning; L3
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Fig. 10.1 The composition of utterance

minus L corresponds to end. Figure 10.1 shows the composition of the utterance
with respect to the new lists.

To match B and E, the trick is to define beginning/3 and end/3 as append-
like predicates:

beginning(X, Y, Z) :- append(X, Z, Y).
end(X, Y, Z) :- append(X, Z, Y).

ELIZA is then a loop that reads the user input, tries to find a matching utterance,
and answers with the corresponding template. It stops when the user writes the
word bye. The next program is a simplified version of ELIZA. It matches the
user/psychoanalyst pairs in Table 10.1.

%% A simplified version of ELIZA in Prolog
%%

% The main loop reads the input and calls process/1
% It stops when the input is the word bye.

eliza :-
write(’Hello, I am ELIZA. How can I help you?’), nl,
repeat,
write(’> ’),
tokenize(In),
process(In).

% process/1 accepts the user’s utterance. It either
% terminates or tries to find a template matching the
% user’s utterance

process([bye | _]) :-
write(’ELIZA: bye’), nl, !.

process(In) :-
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utterance(Out, In, []),
!,
write(’ELIZA: ’), write_answer(Out),
fail.

% utterance is a set of DCG rules describing
templates

utterance([’Why’, aren, ’’’’, t, you | Y]) -->
[’I’, am, not], end(Y).

utterance([’How’, long, have, you, been | Y]) -->
[’I’, am], end(Y).

utterance([’Why’, do, you, like | Y]) -->
[’I’, like], end(Y).

utterance([’Do’, you, often, think, of | Y]) -->
beginning(_), [’I’, remember], end(Y).

utterance([’Please’, tell, me, more, about, your,
X, .]) -->
beginning(_), [X], end(_), {important(X)}.

utterance([’Why’, are, so, negative, ’?’]) -->
[no].

utterance([’Tell’, me, more, .]) -->
[_].

utterance([’Please’, go, on, .]) -->
beginning(_).

% The Prolog clauses beginning/3 and end/3
% link the pieces of the utterance

beginning(X, Y, Z) :- append(X, Z, Y).
end(X, Y, Z) :- append(X, Z, Y).

% The Freudian facts
important(father).
important(mother).
important(brother).
important(sister).

% write_answer/1 prints the content of the list
% containing Eliza’s answer.

write_answer([Head | Tail]) :-
write(Head), write(’ ’),
write_answer(Tail).

write_answer([]) :- nl.
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The next lines are a sample dialogue with ELIZA:

?- eliza.
Hello, I am ELIZA. How can I help you?
> yes
ELIZA: Tell me more .
> I like apples
ELIZA: Why do you like apples
>I went out with my father
ELIZA: Please tell me more about your father .
> no
ELIZA: Why are so negative ?
> I am cold
ELIZA: How long have you been cold
> bye
ELIZA: bye

true
?-

10.3 Named Entities and Multiwords

10.3.1 Named Entities

While ELIZA has no real application, the techniques we used in it can serve to
detect specific patterns in texts or in speech. The recognition of named entities is an
example of it. A named entity is an entity whose name in a text refers to a unique
person, place, object, etc., as William Shakespeare or Stratford-upon-Avon in the
phrase:

William Shakespeare was born and brought up in Stratford-upon-Avon.

This opposes to phrases referring to entities with no name as this person or a
street in:

meeting with this person in a street nearby,

and reflects overall the distinction between common and proper nouns; see Fig. 10.2.
Names of people or organizations are frequent in the press and the media, where

they surge and often disappear quickly. The first step to recognize them is to
identify the phrases corresponding to names of persons, organizations, or locations
(Table 10.2). Such phrases can be a single proper noun or a group of words.

Named entity recognition also commonly extends to temporal expressions
describing times and dates, and numerical and quantity expressions, even if these
are not entities.



286 10 Partial Parsing

Named entities

William Shakespeare was born and brought

up in Stratford-upon-Avon

Other entities

Meeting with our guest on the landing at
lunchtime.

Fig. 10.2 Named entities: entities that we can identify by their names (Portrait: credits Wikipedia.
Map: Samuel Lewis, Atlas to the topographical dictionaries of England and Wales, 1848, credits:
archive.org)

10.3.2 Multiwords

Although conceptually different, named entities are often associated with multi-
words – or multiword expressions (MWE) – i.e., sequences of two or more words
that act as a single lexical unit. Multiwords include complex prepositions, adverbs,
conjunctions, or phrasal verbs where each of the words taken separately cannot be

archive.org
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Table 10.2 Named entities in English and French

Type English French

Company names British Gas plc. Compagnie générale d’électricité SA
Person names Mr. Smith M. Dupont
Titles The President of the United States Le président de la République

Table 10.3 Multiwords in
English and French

Type English French

Prepositions to the left-hand side à gauche de
Adverbs because of à cause de
Conjunctions
Verbs give up faire part ‘inform’

go off rendre visite ‘pay a visit’

clearly understood (Table 10.3). The concept of what a multiword is may seem
intuitive, but there are many tricky cases. In addition, people do not always agree on
their exact definition.

The identification of named entities and multiwords uses roughly the same
techniques.

10.3.3 A Standard Named Entity Annotation

In the 1990s, The US Department of Defense organized series of competitions
to measure the performance of commercial and academic systems on multiword
detection. It called them the Message Understanding Conferences (MUC). To help
benchmarking the various systems, MUC-6 and MUC-7 defined an annotation
scheme that was shared by all the participants. This annotation has subsequently
been adopted by commercial applications. The definition of the named entity
annotation can be read from the MUC-7 web page.1

The MUC annotation restricts the annotation to information useful for its main
funding source: the US military. It considers named entities (persons, organizations,
locations), time expressions, and quantities. The annotation scheme defines a cor-
responding XML element for each of these three classes: <ENAMEX>, <TIMEX>,
and <NUMEX> (Chinchor 1997), with which it brackets the relevant phrases in a
text. The phrases can consist of one, two, or more words.

The <ENAMEX> element identifies proper nouns and uses a TYPE attribute with
three values to categorize them: ORGANIZATION, PERSON, and LOCATION, as in

the <ENAMEX TYPE="PERSON">Clinton</ENAMEX> government
<ENAMEX TYPE="ORGANIZATION">Bridgestone Sports Co.</ENAMEX>
<ENAMEX TYPE="ORGANIZATION">European Community</ENAMEX>

1http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.html

http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.html
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<ENAMEX TYPE="ORGANIZATION">University of California</ENAMEX> in
<ENAMEX TYPE="LOCATION">Los Angeles</ENAMEX>

The <TIMEX> element identifies time expressions and uses a TYPE attribute to
distinguish between DATE and TIME, as in

<TIMEX TYPE="TIME">twelve o’clock noon</TIMEX>
<TIMEX TYPE="TIME">5 p.m. EST</TIMEX>
<TIMEX TYPE="DATE">January 1990</TIMEX>

The <NUMEX> element is used to bracket quantities. It has also a TYPE attribute
to categorize MONEY and PERCENT, as in

<NUMEX TYPE="MONEY">20 million New Pesos</NUMEX>
<NUMEX TYPE="MONEY">$42.1 million</NUMEX>
<NUMEX TYPE="MONEY">million-dollar</NUMEX> conferences
<NUMEX TYPE="PERCENT">15 pct</NUMEX>

10.4 Detecting Named Entities with Rules

The detection of named entities and multiwords with rules is an extension of word
spotting. Just as for word spotting, we represent them using DCG rules. We use
variables and Prolog code to extract them from the word stream and annotate them.

Compounded prepositions, conjunctions, and phrasal verbs are often listed
in dictionaries and can be encoded as Prolog constants. Named entities raise
more problems. Their identification generally requires specialized dictionaries of
surnames, companies, countries, and trademarks. Some of these dictionaries, called
gazetteers, are available on the Internet. They are built from the compilation of
lexical sources such as economic and legal newspapers, directories, or internet web
sites.

The extraction of named entities also relies on hints that vary according to the
type of entity to detect. Locations may include words such as Ocean, Range, River,
etc. Legal denominations will be followed by acronyms such as Ltd., Corp., SA,
and GmbH. Persons might be preceded by titles such as Mr., Mme, Herr, Dr., by
a surname, or have a capitalized initial. Currency phrases will include a sign such
as e, $, £, etc., and a number. Such techniques can be applied to any measuring
expression: length, time, etc.

Let us write rules to detect the phrasal verb give up, the French title M. XXXX,
such as M. Dupont, and the European money worth XXXX euros, such as 200 euros.
As a result, the detector appends the multiword parts using an underscore character:
give_up, or builds a list with surrounding XML tags [<ENAMEX>, ’M.’,
’Dupont’, </ENAMEX>], and [<NUMEX>, 200, euros, </NUMEX>].
The corresponding rules are:

multiword(give_up) --> [give, up].
multiword([’<ENAMEX>’, ’M.’, Name, ’</ENAMEX>’]) -->
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Table 10.4 Longer matches
are preferred

English French

Competing multiwords in front of en face de
in front en face

Examples the car in front la voiture en face
in front of me en face de moi

[’M.’], [Name],
{

name(Name, [Initial | _]),
Initial >= 65, % must be an upper-case letter
Initial =< 90

}.
multiword([’<NUMEX>’, Value, euros, ’</NUMEX>’]) -->
[Value], [euros],
{

number(Value)
}.

10.4.1 The Longest Match

Among the set of multiwords we want to detect, some may have a common suffix,
as for the phrases in front and in front of. This corresponds to the rules:

multiword(in_front) --> [in, front].
multiword(in_front_of) --> [in, front, of].

With the sentence:

The car in front of the house

rules as they are ordered above yield two solutions. The first multiword to be
matched is in front, and if Prolog backtracks, it will find in front of. A backtracking
strategy is not acceptable in most cases. What we generally want is the longest
possible match (Table 10.4).

Prolog interpreters consider rules sequentially and downwards (from the be-
ginning to the end). We implement the longest match by ordering the DCG rules
properly. When several multiwords compete, i.e., have the same beginning, the
longest one must be searched first, as in the sequence:

multiword(in_front_of) --> [in, front, of].
multiword(in_front) --> [in, front].
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10.4.2 Running the Program

Now we will write a rule to embed the multiword description. If the word stream
contains a multiword, it should be modeled as a beginning, the multiword, and an
end, as in ELIZA. Its transcription into a DCG rule is straightforward:

word_stream_multiword(Beginning, Multiword, End) -->
beginning(Beginning),
multiword(Multiword),
end(End).

Extracting the list of multiwords means that the whole word stream must be
matched against the rule set. The multiword detector scans the word stream from the
beginning, and once a multiword has been found, it starts again with the remaining
words.

multiword_detector/2 is a Prolog predicate. It takes the word stream In
as the input and the multiword list Out as the output. It searches a multiword within
the word stream using the word_stream_multiword DCG rule.

Each word_stream_multiword rule is translated into a Prolog predicate
when consulted and two new variables are added. Thus, word_stream_multi-
word is of arity 5 in the multiword_detector rule. The two last variables are
unified respectively to the input list and to the empty list.

When word_stream_multiword reaches a multiword, Beginning is
unified with the beginning of the word stream and End with the rest. The program
is called recursively with End as the new input value.

multiword_detector(In, [Multiword | Out]) :-
word_stream_multiword(Beginning, Multiword, End,
In, []),
multiword_detector(End, Out).
multiword_detector(_, []).

Using the detector with the sentence M. Dupont was given 500 euros in front of
the casino results in [’<ENAMEX>’, ’M.’, ’Dupont’, ’</ENAMEX>’],
[’<NUMEX>’, 500, euros, ’</NUMEX>’], and in_front_of:

?- multiword_detector([’M.’, ’Dupont’, was, given,
500, euros, in, front, of, the, casino], Out).
Out = [[<ENAMEX>, M., Dupont, </ENAMEX>],
[<NUMEX>, 500, euros, </NUMEX>], in_front_of]

The result is a list containing sublists. The flatten/2 predicate can replace
recursively all the sublists by their elements and transform them into a flat list.

?- flatten([[’<ENAMEX>’, ’M. ’, Dupont, ’</ENAMEX>’],
[’<NUMEX>’, 500, ’DM’, ’</NUMEX>’], in_front_of], Out).
Out = [<ENAMEX>, M., Dupont, </ENAMEX>, <NUMEX>,
500, DM, </NUMEX>, in_front_of]
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The multiword detector can be modified to output the whole stream. That is,
the multiwords are tagged and other words remain unchanged. In this program,
Beginning is appended to the multiword Multiword that has been detected
to form the Head of the word stream. The Head and the result of the recursive call
Rest form the Output. We must not forget the End in the termination fact.

multiword_detector(In, Out) :-
word_stream_multiword(Beginning, Multiword, End, In,
[]), !,
multiword_detector(End, Rest),
append(Beginning, [Multiword], Head),
append(Head, Rest, Out).
multiword_detector(End, End).

Let us now execute a query with this new detector with flatten/2:

?- multiword_detector([’M.’, ’Dupont’, was, given,
500, euros, in, front, of, the, casino], Res),
flatten(Res, Out).
Out = [<ENAMEX>, M., Dupont, </ENAMEX>, was, given,
<NUMEX>, 500, euros, </NUMEX>, in_front_of, the,
casino]

10.5 Noun Groups and Verb Groups

The word detection techniques enabled us to search certain word segments, with
no consideration of their category or part of speech. The detection can extend to
syntactic patterns.

The two most interesting word groups are derived from the two major parts of
speech: the noun and the verb. They are often called noun groups and verb groups,
although noun chunks and verb chunks are also widely used. In a sentence, noun
groups (Table 10.5) and verb groups (Table 10.6) correspond to verbs and nouns and
their immediate depending words. This is often understood, although not always,
as words extending from the beginning of the constituent to the head noun or the
head verb. That is, the groups include the headword and its dependents to the left.
They exclude the postmodifiers. For the noun groups, this means that modifying
prepositional phrases or, in French, adjectives to the right of the nouns are not part
of the groups.

The principles we exposed above are very general, and exact definitions of
groups may vary in the literature. They reflect different linguistic viewpoints that
may coexist or compete. However, when designing a parser, precise definitions are
of primary importance. Like for part-of-speech tagging, hand-annotated corpora
will solve the problem. Most corpora come with annotation guidelines. They are
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Table 10.5 Noun groups

English French German

The waiter is bringing the
very big dish to the table

Le serveur apporte le très
grand plat sur la table

Der Ober bringt die sehr
große Speise an den Tisch

Charlotte has eaten the meal
of the day

Charlotte a mangé le plat du
jour

Charlotte hat die
Tagesspeise gegessen

Table 10.6 Verb groups

English French German

The waiter is bringing the
very big dish to the table

Le serveur apporte le très grand
plat sur la table

Der Ober bringt die sehr
große Speise an den Tisch

Charlotte has eaten the meal
of the day

Charlotte a mangé le plat du
jour

Charlotte hat die
Tagesspeise gegessen

usually written before the hand-annotation process. As definitions are often difficult
to formulate the first time, they are frequently modified or complemented during
the annotation process. Guidelines normally contain definitions of groups and
examples of them. They should be precise enough to enable the annotators to
bracket consistently the groups. The guidelines will provide the grammar writer
with accurate definitions, or when using machine learning techniques, the annotated
texts will encapsulate the linguistic knowledge about groups and make it accessible
to the automatic analysis.

10.5.1 Groups Versus Recursive Phrases

The rationale behind word group detection is that a group structure is simpler and
more tractable than that of a sentence. Group detection uses a local strategy that
can accept errors without making subsequent analyses of the rest of the sentence
fail. It also leaves less room for ambiguity because it sets aside the attachment of
prepositional phrases. As a result, partial parsers are more precise. They can capture
roughly 90 % of the groups successfully (Abney 1996).

Like for complete sentences, phrase-structure rules can describe group patterns.
They are easier to write, however, because verb groups and noun groups have a
relatively rigid and well-defined structure. In addition, local rules usually do not
describe complex recursive linguistic structures. That is, there is no subgroup inside
a group and, for instance, the noun group is limited to a unique head noun. This
makes the parser very fast. Moreover, in addition to phrase-structure rules, finite-
state automata or regular expressions can also describe group structures.
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10.5.2 DCG Rules to Detect Noun Groups

A noun group consists of an optional determiner the, a, or determiner phrase such
as all of the, one or more optional adjectives, and one or more nouns. It can also
consist of a pronoun or a proper noun – a name. This definition is valid in English.
In German, sequences of nouns usually form a single word through compounding.
In French, noun groups also include adjectives to the right of the head noun that we
set aside.

The core of the noun group is a sequence of nouns also called a nominal
expression. A first possibility would be to write as many rules as we expect nouns.
However, this would not be very elegant. A recursive definition is more concise:
a nominal is then either a noun or a noun and a nominal. Symbols noun and
nominal have variables that unify with the corresponding word. This corresponds
to the rules:

nominal([NOUN | NOM]) --> noun(NOUN), nominal(NOM).
nominal([N]) --> noun(N).

Nouns usually divide into common and proper nouns although, depending on
applications, it can be sometimes preferable to ignore the difference between both
categories:

noun(N) --> common_noun(N).
noun(N) --> proper_noun(N).

The simplest noun groups consist of a determiner and a nominal. The determiners
are the articles, the possessive pronouns, etc. They are sometimes more complex
phrases that we set aside here. Determiners are optional, and the group definition
must also represent their absence. A noun group can also be a single pronoun:

% noun_group(-NounGroup)
% detects a list of words making a noun group and
% unifies NounGroup with it

noun_group([D | N]) --> det(D), nominal(N).
noun_group(N) --> nominal(N).
noun_group([PRO]) --> pronoun(PRO).

The adjective group serves as an auxiliary in the description of noun group. It
can feature one or more adjectives and be preceded by an adverb. If we set aside the
commas, this corresponds to:

%adj_group(-AdjGroup)
%detects a list of words making an adjective
%group and unifies AdjGroup with it

adj_group_x([RB, A]) --> adv(RB), adj(A).
adj_group_x([A]) --> adj(A).
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adj_group(AG) --> adj_group_x(AG).
adj_group(AG) -->
adj_group_x(AGX), adj_group(AGR),
{append(AGX, AGR, AG)}.

Past participles and gerunds can replace adjectives, as in A flying object or The
endangered species:

adj(A) --> past_participle(A).
adj(A) --> gerund(A).

We must be aware that these rules may conflict with a subsequent detection of
verb groups. Compare the ambiguous phrase detected words in the detected words
and The partial parser detected words.

Adjectives can precede the noun. Using the adjective group, we add two rules to
the noun group:

noun_group(NG) -->
adj_group(AG), nominal(NOM),
{append(AG, NOM, NG)}.

noun_group(NG) -->
det(D), adj_group(AG), nominal(NOM),
{append([D | AG], NOM, NG)}.

10.5.3 DCG Rules to Detect Verb Groups

Verb groups can be written in a similar way. In English, the simplest group consists
of a single tensed verb:

verb_group([V]) --> tensed_verb(V).

Verb groups also include adverbs that may come before the verb:

verb_group([RB, V]) --> adv(RB), tensed_verb(V).

Verb groups can combine auxiliary and past participles, or auxiliary and gerund,
or modal and infinitive, or to and infinitive, or be simply an auxiliary:

verb_group([AUX, V]) --> aux(AUX),past_participle(V).
verb_group([AUX, G]) --> aux(AUX), gerund(G).
verb_group([MOD, I]) --> modal(MOD), infinitive(I).
verb_group([to, I]) --> [to], infinitive(I).
verb_group([AUX]) --> aux(AUX).

Verb groups can include adverbs and have more auxiliaries:

verb_group([AUX, RB, V]) -->
aux(AUX), adv(RB), past_participle(V).
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verb_group([AUX1, AUX2, V]) -->
aux(AUX1), aux(AUX2), past_participle(V).

verb_group([MOD, AUX, V]) -->
modal(MOD), aux(AUX), past_participle(V).

Now let us write a rule that describes a group inside a word stream: word_-
stream_group. As for with the multiwords, such a stream consists of a begin-
ning, the group, and an end. Its transcription into a DCG rule is:

word_stream_group(Beginning, Group, End) -->
beginning(Beginning),
group(Group),
end(End).

Finally, a group can either be a noun group or a verb group. As for multiwords,
noun groups and verb groups are annotated using the XML tags <NG> and <VG>:

group(NG) -->
noun_group(Group),
{append([’<NG>’ | Group], [’</NG>’], NG)}.

group(VG) -->
verb_group(Group),
{append([’<VG>’ | Group], [’</VG>’], VG)}.

10.5.4 Running the Rules

Let us write a Prolog program using an approximation of the longest match
algorithm to run the rules. The program is similar to the multiword detector:

group_detector(In, Out) :-
word_stream_group(Beginning, Group, End, In, []),
group_detector(End, Rest),
append(Beginning, [Group], Head),
append(Head, Rest, Out).

group_detector(End, End).

Since these rules match the longest segments first, they must be written from the
longest to the shortest.

Although the grammar is certainly not comprehensive, it can fare reasonably well
for a first step. We shall apply it to a text from the Los Angeles Times “Flying Blind
With the Titans”, December 17, 1996:

Critics question the ability of a relatively small group of big integrated prime contractors
to maintain the intellectual diversity that formerly provided the Pentagon with innovative
weapons. With fewer design staffs working on military problems, the solutions are likely to
be less varied.
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We complement the grammar with the lexical rules to identify the part of speech
of each word:

% Determiners
det(a) --> [a].
det(the) --> [the].

% Common nouns
common_noun(ability) --> [ability].
common_noun(critics) --> [critics].
common_noun(contractors) --> [contractors].
common_noun(design) --> [design].
common_noun(diversity) --> [diversity].
common_noun(group) --> [group].
common_noun(problems) --> [problems].
common_noun(solutions) --> [solutions].
common_noun(staffs) --> [staffs].
common_noun(weapons) --> [weapons].

% Proper nouns
proper_noun(pentagon) --> [pentagon].

% Adverbs
adv(formerly) --> [formerly].
adv(less) --> [less].
adv(likely) --> [likely].
adv(relatively) --> [relatively].

% Adjectives
adj(big) --> [big].
adj(fewer) --> [fewer].
adj(innovative) --> [innovative].
adj(intellectual) --> [intellectual].
adj(military) --> [military].
adj(prime) --> [prime].
adj(small) --> [small].

% Infinitives
infinitive(be) --> [be].
infinitive(maintain) --> [maintain].

% Tensed verbs
tensed_verb(provided) --> [provided].
tensed_verb(question) --> [question].
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% Past participles
past_participle(integrated) --> [integrated].
past_participle(varied) --> [varied].

% Auxiliaries
aux(are) --> [are].

And we run our detector, which results in:

?- group_detector([critics, question, the, ability,
of, a, relatively, small, group, of, big, integrated,
prime, contractors, to, maintain, the, intellectual,
diversity, that, formerly, provided, the, pentagon,
with, innovative, weapons, with, fewer, design,
staffs, working, on, military, problems, the,
solutions, are, likely, to, be, less, varied], L),
flatten(L, Out).

Out = [<NG>, critics, </NG>, <VG>, question, </VG>,
<NG>, the, ability, </NG>, of, <NG>, a, relatively,
small, group, </NG>, of, <NG>, big, integrated, prime,
contractors, </NG>, <VG>, to, maintain, </VG>, <NG>,
the, intellectual, diversity, </NG>, that, <VG>,
formerly, provided, </VG>, <NG>, the, pentagon, </NG>,
with, <NG>, innovative, weapons, </NG>, with, <NG>,
fewer, design, staffs, </NG>, working, on, <NG>,
military, problems, </NG>, <NG>, the, solutions,
</NG>, <VG>, are, </VG>, likely, <VG>, to, be, </VG>,
less, varied]

Though the grammar misses groups, we realize that a limited effort has rapidly
produced results.

We must note that this example is slightly artificial because no word has an
ambiguous part of speech. A more realistic example would have to deal with this. A
way to solve it could be to write as many rules as there are possible parts of speech
for a word, for instance:

common_noun(question) --> [question].
tensed_verb(question) --> [question].

Another way could be to use a part-of-speech tagger as a first processing step and
to apply the rules on the part-of-speech sequence.
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Table 10.7 Tagset to annotate noun groups

No bracket No bracket
Beginning End Between (outside) (inside)

[NG NG] NG][NG Outside Inside

10.6 Group Annotation Using Tags

Group annotation results in bracketing a word sequence with opening and closing
annotations. This can be recast as a tagging problem. However, the annotation
inserts brackets between words instead of assigning tags to words. The most
intuitive annotation is then probably to tag intervals. We can then use algorithms
very similar to part-of-speech tagging to carry out the group detection. They give us
an alternate method to DCG rules describing verb groups and noun groups.

For the sake of simplicity, we first present annotation schemes for noun groups.
We will then generalize them to verb groups and other groups. We describe which
tags to use to annotate the intervals, and we will see that we can equivalently tag the
words instead of the gaps.

10.6.1 Tagging Gaps

Below are examples of noun group bracketing from Ramshaw and Marcus (1995).
They insert brackets between the words where appropriate.

[NG The government NG] has [NG other agencies and instruments NG] for pursuing [NG these
other objectives NG].

Even [NG Mao Tse-tung NG] [NG ’s China NG] began in [NG 1949 NG] with [NG a partnership
NG] between [NG the communists NG] and [NG a number NG] of [NG smaller, non-communists
parties NG].

If we only consider noun groups, the tagset must include opening and ending
brackets. There must also be a tag to indicate a separation between two contiguous
noun groups. The rest of the gaps are to be labeled with a “no bracket” tag.

As noun group detection usually considers nonrecursive sequences, we avoid
nested brackets, as in this sequence: [... [ or in this one: ] ...]. To check
nesting while processing the stream, we must make a distinction between a
“no bracket” inside a group and “no bracket” outside a group. The tagger can
then prevent an inside “no bracket” to be followed by an opening bracket. We
complement the tagset with “no bracket” tags denoting either we are within a group
or outside (Table 10.7).

In addition to nested groups, other inconsistencies can occur, such as the
sequences:
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• [ Outside
• ] Inside, or
• Outside ].

The tagger must keep track of the preceding bracket to refuse illegal tag pairs.

10.6.2 Tagging Words

Instead of tagging the gaps, we can equivalently tag the words. Ramshaw and
Marcus (1995) defined a tagset of three elements {I, O, B}, where I means that
the word is inside a noun group, O means that the word is outside, and B (between)
means that the word is at the beginning of a noun group that immediately follows
another noun group. Using this tagging scheme, an equivalent annotation of the
sentences in Sect. 10.6.1 is:

The/I government/I has/O other/I agencies/I and/I instruments/I for/O pursuing/O
these/I other/I objectives/I ./O

Even/O Mao/I Tse-tung/I ’s/B China/I began/O in/O 1949/I with/O a/I partnership/I
between/O the/I communists/I and/O a/I number/I of/O smaller/I ,/I non-communists/I
parties/I ./O

As in the case for gap tagging, some inconsistencies can occur, such as the
sequence: O B. The tagger can refuse such sequences, mapping them to a plausible
annotation. That is, in the example above, to change the B tag into an I tag.

10.6.3 Extending IOB to Two or More Groups

From its original definition, researchers modified the IOB scheme and extended it
to annotate two or more group categories. The most widespread variant of IOB is
called IOB2, where the first word in a group receives the B tag (begin), and the
following words the I tag. As for IOB, words outside the groups are annotated with
the O tag. Using IOB2, the two examples in Sect. 10.6.1 would be annotated as:

The/B government/I has/O other/B agencies/I and/I instruments/I for/O pursuing/O
these/B other/I objectives/I ./O

Even/O Mao/B Tse-tung/I ’s/B China/I began/O in/O 1949/B with/O a/B partnership/I
between/O the/B communists/I and/O a/B number/I of/O smaller/B ,/I non-communists/I
parties/I ./O

The IOB2 annotation scheme gained acceptance from the conferences on
Computational Natural Language Learning (CoNLL 2000, see Sect. 10.12) that
adopted it and went popular enough so that many people now use the term “IOB
scheme” when they actually mean IOB2.
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Words POS Groups

He PRP B-NP
reckons VBZ B-VP
the DT B-NP
current JJ I-NP
account NN I-NP
deficit NN I-NP
will MD B-VP
narrow VB I-VP
to TO B-PP
only RB B-NP
£ # I-NP
1.8 CD I-NP
billion CD I-NP
in IN B-PP
September NNP B-NP
. . O

Fig. 10.3 An annotation
example of syntactic groups
using the CoNLL 2000
extended IOB scheme
(IOB2). The parts of speech
are predicted using Brill’s
tagger, while the groups are
extracted from the Penn
Treebank. The noun groups
and verb groups are
highlighted in light blue and
light green, respectively
(After data provided by Tjong
Kim Sang and Buchholz
(2000))

Extending IOB to annotate two or more group categories is straightforward. We
just need to use tags with a type suffix as for instance the tagset {I-Type1,
B-Type1, I-Type2, B-Type2, O} to markup two different group types,
Type1 and Type2. CoNLL 2000 (Tjong Kim Sang and Buchholz 2000) again is an
example such an annotation extension. The organizers used 11 different group types:
noun phrases (NP), verb phrases (VP), prepositional phrases (PP), adverb phrases
(ADVP), subordinated clause (SBAR), adjective phrases (ADJP), particles (PRT),
conjunction phrases (CONJ), interjections (INTJ), list markers (LST), and unlike
coordinated phrases (UPC).2 The noun phrases, verb phrases, and prepositional
phrases making up more the 90 % of all the groups in the CoNLL 2000 corpus.

10.6.4 Annotation Examples from CoNLL 2000, 2002,
and 2003

As we saw, the CoNLL shared task in 2000 used the IOB2 tag set to annotate
syntactic groups. Figure 10.3 shows an example of it with the sentence:

He reckons the current account deficit will narrow to only £1.8 billion in September.

whose annotation is:

[NG He NG] [VG reckons VG] [NG the current account deficit NG] [VG will narrow VG] [PG to
PG] [NG only £1.8 billion NG] [PG in PG] [NG September NG].

2We feel that the word “phrase” has a misleading sense here. Most people in the field would
understand it differently. The CoNLL 2000 phrases correspond to what we call group or chunk in
this book: nonrecursive syntactic groups.
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and where the prepositional groups are limited to the preposition to avoid recursive
groups. The corpus consists of three columns:

1. The first column contains the sentences with one word per line and a blank line
after each sentence.

2. The second column contains the parts of speech of the words. The CoNLL 2000
organizers used Brill’s tagger (Sect. 7.3) trained on the Penn Treebank to assign
these parts of speech (Tjong Kim Sang and Buchholz 2000). The tagset shown
in Table 7.12.

3. The third column contains the groups with the chunk annotation.

The topic of CoNLL 2002 and 2003 shared tasks was to annotate named entities.
These tasks reused the ideas laid down in CoNLL 2001 with the IOB2 and IOB tag
sets:

• The CoNLL 2002 annotation (Tjong Kim Sang 2002) consists two columns,
the first one for the words and the second one for the named entities with
four categories, persons (PER), organizations (ORG), locations (LOC), and
miscellaneous (MISC). CoNLL 2002 uses IOB2. Figure 10.4, left part, shows
the annotation of the sentence:

[PER Wolff PER], a journalist currently in [LOC Argentina LOC], played with [PER Del
Bosque PER] in the final years of the seventies in [ORG Real Madrid ORG].

• The CoNLL 2003 annotation (Tjong Kim Sang and De Meulder 2003) has four
columns: the words, parts of speech, syntactic groups, and named entities. Both
the syntactic groups and named entities use the original IOB scheme. Figure 10.4,
right part, shows the annotation of the sentence:

[ORG U.N. ORG] official [PER Ekeus PER] heads for [LOC Baghdad LOC].

10.7 Machine Learning Methods to Detect Groups

As with part-of-speech tagging, we can use either statistical or symbolic methods
to detect groups, where in both cases, statistical classifiers or rules are trained from
hand-annotated corpora. Group detection methods usually consider the words and
their part of speech in a window around the group tag to identify. This means that
group detection generally involves a part-of-speech tagging step before starting to
detect the groups.

10.7.1 Group Detection Using Symbolic Rules

The symbolic rules algorithm is very similar to that of Brill’s part-of-speech tagging
method. The initial tagging considers the part of speech of the word and assigns the
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CoNLL 2002 CoNLL 2003

Words Named entities Words POS Groups Named entities

Wolff B-PER U.N. NNP I-NP I-ORG
, O official NN I-NP O
currently O Ekeus NNP I-NP I-PER
a O heads VBZ I-VP O
journalist O for IN I-PP O
in O Baghdad NNP I-NP I-LOC
Argentina B-LOC . . O O
, O
played O
with O
Del B-PER
Bosque I-PER
in O
the O
final O
years O
of O
the O
seventies O
in O
Real B-ORG
Madrid I-ORG
. O

Fig. 10.4 Annotation examples of named entities using the CoNLL 2002 (left) and CoNLL 2003
(right) IOB schemes. CoNLL 2002 has two columns and uses IOB2. CoNLL 2003 has four
columns and uses IOB for the groups and named entities (After data provided by Tjong Kim Sang
(2002) and Tjong Kim Sang and De Meulder (2003))

group annotation tag that is most frequently associated with it, that is, I, O, or B.
Then, rules applied sequentially modify annotation tags.

Rules consider the immediate context of the tag to be modified, spanning a few
words to the left and a few words to the right of the current word. More precisely,
they take into account group annotation tags, parts-of-speech tags, and words around
the current word. When the context of the current word matches that of the rule being
applied, the current tag is altered.

Ramshaw and Marcus (1995) applied a set of 100 templates using a combination
of 10 word contexts and 10 part-of-speech contexts, 20 templates in total, and 5
group annotation tag contexts spanning up to 3 words to the left and to the right:

• W0, W�1, W1 being, respectively, the current word, the first word to the left, and
the first word to the right.

• T0, T�1, T1 being, respectively, the part of speech of the current word, of the first
word to the left, and of the first word to the right.



10.7 Machine Learning Methods to Detect Groups 303

Table 10.8 Patterns used in the templates

Word patterns Noun group patterns

Pattern Meaning Pattern Meaning

W0 Current word G0 Current noun group tag
W

�1 First word to left G
�1, G0 Tag bigram to left of current word

W1 First word to right G0, G1 Tag bigram to right of current word
W

�1, W0 Bigram to left of current word G
�2, G�1 Tag bigram to left of current word

W0, W1 Bigram to right of current word G1, G2 Tag bigram to right
W

�1, W1 Surrounding words
W

�2, W�1 Bigram to left
W1, W2 Bigram to right
W

�1;�2;�3 Words 1 or 2 or 3 to left
W1;2;3 Words 1 or 2 or 3 to right

Table 10.9 The five first rules from Ramshaw and Marcus (1995)

Pass Old tag Context New tag

1 I G1 = O, T0 = JJ O
2 - G

�2 = I, G
�1 = I, T0 = DT B

3 - G
�2 = O, G

�1 = I, T
�1 = DT I

4 I G
�1 = I, T0 = WDT B

5 I G
�1 = I, T0 = PRP B

• G0, G�1, G1 being, respectively, the group annotation tag of the current word, of
the first word to the left, and of the first word to the right.

Table 10.8 shows the complete set of templates. Word and part-of-speech
templates are the same.

After training the rules on the Penn Treebank using its part-of-speech tagset, they
could retrieve more than 90 % of the noun groups. The five most productive rules
are given in Table 10.9. The first rule means that an I tag is changed into an O
tag when the current part of speech is an adjective (JJ) and the following word is
tagged O. The second rule sets the tag to B if the two previous tags are I and the
current word’s part of speech is a determiner (DT).

10.7.2 Group Detection Using Stochastic Tagging

We can use the same methods as in Chap. 8 to determine a sequence of group tags.
The maximum likelihood estimator determines the optimal sequence of group tags
G D g1; g2; g3; : : : ; gn, given a sequence of words W D w1;w2;w3; : : : ;wn and of
part-of-speech tags T D t1; t2; t3; : : : ; tn.

As context of the current group tag gi , we can use a window of three words
wi�1, wi , and wiC1 centered on it as well the surrounding parts of speech: ti�1, ti ,
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and tiC1. We estimate P.gi jwi�1;wi ;wiC1; ti�1; ti ; tiC1/ using logistic regression,
for instance, and we maximize the equation:

P.G/ D
nY

iD1
P.gi jwi�1;wi ;wiC1; ti�1; ti ; tiC1/: (10.1)

using the Viterbi algorithm (Sect. 8.2.4).

10.7.3 Using Classifiers

Other classifiers such decision trees, logistic regression, or support vector machines
are alternatives to stochastic tagging. As with symbolic rules in Sect. 10.7.1, the
baseline considers the current word’s part of speech and assigns the group annota-
tion tag that is most frequently associated with this part of speech. Considering a
larger window of one or two adjacent words to the left or to the right of the current
word improves the performance. For the sentence:

He/PRP reckons/VBZ the/DT current/JJ account/NN deficit/NN will/MD narrow/VB to/TO
only/RB £/# 1.8/CD billion/CD in/IN September/NNP ./.

the feature vector .ti�1; ti ; tiC1/ associated with the word deficit has the value: (NN,
NN, MD).

In addition to the parts of speech, a classifier can also use the word values.
This corresponds to a lexicalization of the model, which usually improves the
performance. However, as the training set is always finite, after being trained, the
classifier will have to deal with unseen words, words that exist but are not present
in the training set. This can be a problem for some learning algorithms like decision
trees. A practical solution to this is to build a dictionary of the words seen in the
training corpus, where all the words with a frequency lower than a certain threshold
are mapped onto a unique token, OTHER_WORD. Once trained, instead of using the
word value, the group detector will take this symbol when it encounters a word that
is not in the dictionary.

The features consisting of parts of speech and word values are called static
because they are determined before the program runs. We can build classifiers that
use dynamic features or dynamic attributes that are computed at run time. In our
case and provided that the analysis is carried from left to right, the classifier can
use the group tag assigned to the word before the current word or to the two words
preceding the current word.

Kudoh and Matsumoto (2000) obtained the best results in CoNLL 2000 with a
feature set consisting of five words, five parts of speech centered on the current word
as well as the two preceding group tags:

.wi�2;wi�1;wi ;wiC1;wiC2; ti�2; ti�1; ti ; tiC1; tiC2; gi�2; gi�1/:
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Words POS Groups

BOS BOS BOS Padding
BOS BOS BOS
He PRP B-NP
reckons VBZ B-VP
the DT B-NP
current JJ I-NP
account NN I-NP
deficit NN I-NP Input features
will MD B-VP
narrow VB I-VP Predicted tag
to TO B-PP ↓
only RB B-NP
£ # I-NP
1.8 CD I-NP
billion CD I-NP
in IN B-PP
September NNP B-NP
. . O
EOS EOS EOS Padding
EOS EOS EOS

Fig. 10.5 Input features:
.wi�2;wi�1;wi ;wiC1;wiC2,
ti�2; ti�1; ti ; tiC1; tiC2; gi�2; gi�1/

used by Kudoh and
Matsumoto (2000) and the
Yamcha system (After data
provided by Tjong Kim Sang
and Buchholz (2000))

Table 10.10 Input feature vectors .wi�1;wi ;wiC1; ti�1; ti ; tiC1; gi�1/ extracted from the sen-
tence in Fig. 10.5. They are used by the classifier at index i to predict the group tag gi . We used
the padding symbols BOS, beginning of sentence, and EOS, end of sentence (After data provided
by Tjong Kim Sang and Buchholz (2000))

Input feature vectors Output

wi�1 wi wiC1 ti�1 ti tiC1 gi�1 gi

BOS He reckons BOS PRP VBZ BOS B-NP
He reckons the PRP VBZ DT B-NP B-VP
reckons the current VBZ DT JJ B-VP B-NP
the current account DT JJ NN B-NP I-NP
current account deficit JJ NN NN I-NP I-NP
account deficit will NN NN MD I-NP I-NP
deficit will narrow NN MD VB I-NP B-VP
will narrow to MD VB TO B-VP I-VP
narrow to only VB TO RB I-VP B-PP
to only £ TO RB # B-PP B-NP
only £ 1.8 RB # CD B-NP I-NP
£ 1.8 billion # CD CD I-NP I-NP
1.8 billion in CD CD IN I-NP I-NP
billion in September CD IN NNP I-NP B-PP
in September . IN NNP . B-PP B-NP
September . EOS NNP . EOS B-NP O

Figure 10.5 shows this feature set graphically, and Table 10.10 shows the features
of a smaller set .wi�1;wi ;wiC1; ti�1; ti ; tiC1; gi�1/ extracted for all the words in the
sentence.
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Table 10.11 Group detection efficiency using different feature sets. The training data was
extracted from the CoNLL 2000 training set, and the decision trees were trained using the C4.5
implementation available from the Weka environment. They were then applied to the CoNLL 2000
test set. In the lexicalized models, we used words that had a frequency greater than 100 in the
training set. All the other words were mapped onto the OTHER_WORD symbol. The evaluation
was carried out using the CoNLL 2000 script, which uses the F -measure, see Sect. 10.11.3 for a
definition. The annotated data as well as the evaluation script are available from the CoNLL 2000
web page

Context Models

T
�2 T

�1 T0 T
C1 T

C2 POS POS POS POS
W

�2 W
�1 W0 W

C1 W
C2 – Words – Words

G
�2 G

�1 – – Groups Groups
– – � – – 77.07 79.51 – –
– � � – – 81.88 85.88 83.03 86.68
� � � – – 82.84 86.48 83.11 86.75
– � � � – 87.13 89.75 88.36 90.28
� � � � � 88.34 90.40 88.61 90.53

10.7.4 Group Detection Performance and Feature Engineering

The choice of a feature set is very significant for the performance of a classifier.
Table 10.11 shows examples of with the C4.5 decision tree classifier using different
sets. We used part-of-speech tags, lexical values, and group tags extracted from
contexts of different sizes. Choosing and tuning an optimal feature set is a delicate
operation that has to balance precision and computational requirements. It is often
referred to as feature engineering.

As a general rule, the larger the contexts, the better the results, however, the result
improvements are not proportional to the growth of the context size and tend quickly
to reach a plateau. Some feature sets of are more efficient too. The classifier using
features extracted from the two words surrounding the current word outperforms
the one using the two words preceding it by 4.29 for nonlexicalized models (87.13
vs. 82.84), although the number of features is equal. We can see that lexicalization
improves the figures by 2.88 on average. The gain brought by dynamic features –
group tags – is more modest, 0.58 on average.

The best figure obtained by the classifier is for a window of five words with 12
parameters, t�2; t�1; t0; tC1; tC2;w�2;w�1;w0;wC1;wC2; g�2; g�1, not far off from
the figure of 93.48 obtained by Kudoh and Matsumoto (2000) and the Yamcha
system with support vector machines, a more efficient, but slower, machine learning
algorithm. The figures obtained with the lexicalized models in Table 10.11 use a
threshold value of 100, i.e., all the words with a frequency <100 in the training
corpus are mapped onto the OTHER_WORD symbol.
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Sentences

Tokenizer

Multiwords

Part-of-speech
tagging

Group detection
(or chunking)

Fig. 10.6 A cascade of partial parsers

10.8 Cascading Partial Parsers

We saw that partial phrase-structure rules or statistical taggers could detect mul-
tiwords and groups. We can combine both detectors into a multilevel parser and
add more layers. A tokenizer is necessary to read the text before it can be passed
to the parsers. The applications generally use a part-of-speech tagger before the
group detector (or chunker) and sometimes a morphological parser. The parser’s
structure is then a pipeline of analyzers, where each parsing level has a definite task
to achieve. This technique is referred to as cascaded parsing.

With this approach, the exact number and nature of levels of cascaded parsers
depends on the application and the expected result. In addition, some layers are
generic, like tokenization, while others may be more specific and depend on the
application goal. However, the principle is that one level uses the output of the lower
level and passes on the result to the next layer (Fig. 10.6). This corresponds precisely
to the format and organization of the CoNLL corpora.

10.9 Elementary Analysis of Grammatical Functions

10.9.1 Main Functions

In a previous section, we named groups according to the part of speech of their main
word, that is, noun groups and verb groups. We can also consider their grammatical
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function in the sentence. We already saw that main functions (or relations) are
subject, direct object, and indirect object. An accurate detection of function is
difficult, but we can write a simplified one using cascaded parsing and phrase-
structure rules.

We can recognize grammatical functions using a layer above those we have
already described and thus complement the cascade structure. In English, the subject
is generally the first noun group of a sentence in the active voice. It is marked
with the nominative case in German, while case inflection is limited to pronouns
in English and French. The direct object is the noun group just after the verb if there
is no preposition in-between. It is marked with the accusative case in German.

We will now write a small set of DCG rules to encode this simplified description.
The structure of a simple sentence consists of a subject noun group, a verb group in
the active voice, and an object noun group. It corresponds to the rules:

sentence(S, V, O) -->
subject(S), verb(V, active), object(O), [’.’].

subject(S) --> noun_group(S).

object(O) --> noun_group(O).

verb(V, active) --> verb_group(V, active).

We must modify the description of verbs in the terminal symbols to add an
active/passive feature.

10.9.2 Extracting Other Groups

The subject–verb–object relation is the core of most sentences. However, before
extracting them, it is useful to skip some groups between them. Among the groups,
there are prepositional phrases and embedded clauses, as in the two sequences:
subject, prepositional groups, verb and subject, relative clause, verb.

A prepositional group can be defined as a preposition followed by a noun group.
Using a DCG rule, this translates into:

prep_group([P | [NG]]) --> prep(P), ng(NG).

The detection of prepositional groups is a new layer in the cascade structure. A
new rule describing ng as a terminal symbol is then necessary to be consistent with
the noun groups detected before:

ng([’<NG>’| NG]) --> [[’<NG>’| NG]].

Embedded clauses can be relative, infinitive, or subordinate. Here we will only
consider relative and infinitive clauses that may modify a noun.
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A relative clause is an embedded sentence whose subject or object has been
replaced with a relative pronoun. The relative pronoun comes in front of the clause.
For simple clauses, this translates into two rules:

%Relative clause: The relative pronoun is the subject
relative_clause(RC) -->
relative_pronoun(R), vg(VG), ng(NG),
{append([R | [VG]], [NG], RC)}.

% Relative clause: The relative pronoun is the object
relative_clause(RC) -->
relative_pronoun(R), ng(NG), vg(VG),
{append([R | [NG]], [VG], RC)}.

An infinitive clause is simply a verb phrase set in the infinitive. For simple
examples, it translates into a verb group possibly followed by a noun group, where
the verb group begins with to:

infinitive_clause([[’<VG>’, to | VG], NG]) -->
vg([’<VG>’, to | VG]), ng(NG).

infinitive_clause([[’<VG>’, to | VG]]) -->
vg([’<VG>’, to | VG]).

Like for noun groups, we must describe verb groups as a terminal symbol:

vg([’<VG>’ | VG]) --> [[’<VG>’ | VG]].

Now let us write the rules to describe the modifiers and annotate them:

modifier(MOD) -->
prep_group(PG),
{append([’<PG>’ | PG], [’</PG>’], MOD)}.

modifier(MOD) -->
relative_clause(RC),
{append([’<RC>’ | RC], [’</RC>’], MOD)}.

modifier(MOD) -->
infinitive_clause(IC),
{append([’<IC>’ | IC], [’</IC>’], MOD)}.

Finally, we write the detector to run the program:

modifier_detector(In, Out) :-
word_stream_modifier(Beginning, Group, End, In,[]),
modifier_detector(End, Rest),
append(Beginning, [Group], Head),
append(Head, Rest, Out).

modifier_detector(End, End).

word_stream_modifier(Beginning, Group, End) -->
beginning(Beginning),
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modifier(Group),
end(End).

Let us apply these rules on the first sentence of the Los Angeles Times excerpt.
We must add prepositions and a relative pronoun to the vocabulary:

prep(of) --> [of].
prep(with) --> [with].

relative_pronoun(that) --> [that].

And the query yields:

?- modifier_detector([[<NG>, critics, </NG>], [<VG>,
question, </VG>], [<NG>, the, ability, </NG>], of,
[<NG>, a, relatively, small, group, </NG>], of, [<NG>,
big, integrated, prime, contractors, </NG>], [<VG>,
to, maintain, </VG>], [<NG>, the, intellectual,
diversity, </NG>], that, [<VG>, formerly, provided,
</VG>], [<NG>, the, pentagon, </NG>], with, [<NG>,
innovative, weapons, </NG>], with, [<NG>, fewer,
design, staffs, </NG>], working, on, [<NG>, military,
problems, </NG>], [<NG>, the, solutions, </NG>],
[<VG>, are, </VG>], likely, [<VG>, to, be, </VG>],
less, varied], O).

O = [[<NG>, critics, </NG>], [<VG>, question, </VG>],
[<NG>, the, ability, </NG>], [<PG>, of, [<NG>, a,
relatively, small, group, </NG>], </PG>], [<PG>, of,
[<NG>, big, integrated, prime, contractors, </NG>],
</PG>], [<IC>, [<VG>, to, maintain, </VG>], [<NG>,
the, intellectual, diversity, </NG>], </IC>], [<RC>,
that, [<VG>, formerly, provided, </VG>], [<NG>, the,
pentagon, </NG>], </RC>], [<PG>, with, [<NG>,
innovative, weapons, </NG>], </PG>], [<PG>, with,
[<NG>, fewer, design, staffs, </NG>], </PG>], working,
on, [<NG>, military, problems, </NG>], [<NG>, the,
solutions, </NG>], [<VG>, are, </VG>], likely, [<IC>,
[<VG>, to, be, </VG>], </IC>], less, varied]

Prepositional phrases and relative clauses are labeled with <PG>, <IC>,
and <RC> tags. Remaining groups are [<NG>, critics, </NG>],
[<VG>,question, </VG>], and [<NG>, the, ability, </NG>],
which correspond to heads of the subject, main verb, and the object of the sentence.
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10.10 An Annotation Scheme for Groups in French

The PEAS initiative (Gendner et al. 2003) defines an XML annotation scheme
for syntactic groups (chunks) and functional relations for French. It was created
to reconcile different annotation practices and enable the evaluation of parsers.
We present here the chunk annotation that applies to continuous, nonrecursive
constituents.

The PEAS annotation identifies six types of chunks:

1. Verb groups (noyau verbal): <NV></NV>
2. Noun groups (groupe nominal): <GN></GN>
3. Prepositional groups: <GP></GP>
4. Adjective groups: <GA></GA>
5. Adverb groups: <GR></GR>
6. Verb groups starting with a preposition: <PV></PV>

The sentence En quelle année a-t-on vraiment construit la première automobile?
‘Which year the first automobile was really built?’ is bracketed as

<GP> En quelle année </GP> <NV> a –t-on </NV> <GR> vraiment </GR> <NV>
construit </NV> <GN> la première automobile</GN> ?

The annotation first identifies the sentence in the corpus:

<E id="2"> En quelle année a -t-on vraiment
construit la première automobile ? </E>

The second step tokenizes the words:

<DOCUMENT fichier="Guide.1">
<E id="E2">
<F id="E2F1">En</F>
<F id="E2F2">quelle</F>
<F id="E2F3">année</F>
<F id="E2F4">a</F>
<F id="E2F5">-t-on</F>
<F id="E2F6">vraiment</F>
<F id="E2F7">construit</F>
<F id="E2F8">la</F>
<F id="E2F9">première</F>
<F id="E2F10">automobile</F>
<F id="E2F11">?</F>

</E>
</DOCUMENT>

using the DTD

<!ELEMENT DOCUMENT ( E+ ) >
<!ATTLIST DOCUMENT fichier NMTOKEN #REQUIRED >
<!ELEMENT E ( F)+>
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<!ATTLIST E id NMTOKEN #REQUIRED >
<!ELEMENT F ( #PCDATA ) >
<!ATTLIST F id ID #REQUIRED >

The third step brackets the groups:

<DOCUMENT fichier="Guide.1.ph1.IR.xml">
<E id="E2">
<Groupe type="GP" id="E2G1">
<F id="E2F1">En</F>
<F id="E2F2">quelle</F>
<F id="E2F3">année</F>
</Groupe>
<Groupe type="NV" id="E2G2">

<F id="E2F4">a</F>
<F id="E2F5">-t-on</F>

</Groupe>
<Groupe type="GR" id="E2G3">
<F id="E2F6">vraiment</F>
</Groupe>
<Groupe type="NV" id="E2G4">

<F id="E2F7">construit</F>
</Groupe>
<Groupe type="GN" id="E2G5">

<F id="E2F8">la</F>
<F id="E2F9">première</F>
<F id="E2F10">automobile</F>

</Groupe>
<F id="E2F11">?</F>

</E>
</DOCUMENT>

using the DTD

<!ELEMENT DOCUMENT ( E+ ) >
<!ATTLIST DOCUMENT fichier NMTOKEN #REQUIRED >
<!ELEMENT E ( F | Groupe )+>
<!ATTLIST E id NMTOKEN #REQUIRED >
<!ELEMENT Groupe ( F+ ) >
<!ATTLIST Groupe id ID #REQUIRED >
<!ATTLIST Groupe type ( GA | GN | GP | GR | NV |
PV ) #REQUIRED >
<!ELEMENT F ( #PCDATA ) >
<!ATTLIST F id ID #REQUIRED >
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10.11 Application: Information Extraction and the FASTUS
System

Quis, quid, quando, ubi, cur, quem ad modum, quibus adminiculis
‘Who, what, when, where, why, in what manner, by what means’
Hermagoras, De rhetorica, in K. Halm, Rhetores latini minores, p. 141.

10.11.1 The Message Understanding Conferences

The FASTUS system was designed at the Stanford Research Institute (SRI) to
extract information from free-running text (Appelt et al. 1993; Hobbs et al. 1997).
It was implemented within the course of the Message Understanding Conferences
(MUCs) that we introduced in Sect. 10.3.3. MUCs were organized to measure the
performance of news monitoring systems. They were held regularly until MUC-7 in
1997, under the auspices of DARPA, an agency of the US Department of Defense.
The performances improved dramatically in the beginning and then stabilized.
DARPA discontinued the competitions when it realized that the systems were no
longer improving.

MUCs are divided into a set of tasks that have changed over time. The most basic
task is to extract people and company names. The most challenging one is referred
to as information extraction. It consists of the analysis of pieces of text ranging from
one to two pages, the identification of entities or events of a specified type and their
circumstances, and filling a predefined template with relevant information from the
text. Information extraction then transforms free texts into tabulated information.
Here is an example news wire cited by Hobbs et al. (1997) and its corresponding
filled template drawn from MUC-3 (Table 10.12):

San Salvador, 19 Apr 89 (ACAN-EFE) – [TEXT] Salvadoran President-elect Alfredo
Cristiani condemned the terrorist killing of Attorney General Roberto Garcia Alvarado and
accused the Farabundo Marti National Liberation Front (FMLN) of the crime.
: : :

Garcia Alvarado, 56, was killed when a bomb placed by urban guerrillas on his vehicle
exploded as it came to a halt at an intersection in downtown San Salvador.
: : :

Vice President-elect Francisco Merino said that when the attorney general’s car stopped at
a light on a street in downtown San Salvador, an individual placed a bomb on the roof of
the armored vehicle.
: : :

According to the police and Garcia Alvarado’s driver, who escaped unscathed, the attorney
general was traveling with two bodyguards. One of them was injured.
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Table 10.12 A template derived from the previous text (After Hobbs et al. (1997))

Template slots Information extracted from the text

Incident: Date 19 Apr 89
Incident: Location El Salvador: San Salvador (city)
Incident: Type Bombing
Perpetrator: Individual ID urban guerrillas
Perpetrator: Organization ID FMLN
Perpetrator: Organization confidence Suspected or accused by authorities: FMLN
Physical target: Description vehicle
Physical target: Effect Some damage: vehicle
Human target: Name Roberto Garcia Alvarado
Human target: Description Attorney general: Roberto Garcia Alvarado

driver
bodyguards

Human target: Effect Death: Roberto Garcia Alvarado
No injury: driver
Injury: bodyguards

10.11.2 The Syntactic Layers of the FASTUS System

FASTUS uses partial parsers that are organized as a cascade of finite-state automata.
It includes a tokenizer, a multiword detector, and a group detector as first layers. The
detector uses a kind of longest match algorithm. Verb groups are tagged with active,
passive, gerund, and infinitive features. Then FASTUS combines some groups
into more complex phrases. Complex groups include notably the combination of
adjacent nouns groups (appositives):

The joint venture, Bridgestone Sports Taiwan Co.
First noun group Second noun group

of noun groups separated by prepositions of or for (noun postmodifiers):

The board of directors

and of noun group conjunctions:

a local concern and a Japanese trading house

Complex groups also include verb expressions such as:

plan to set up
announced a plan to form

Such complex groups can be found in French and German, where they have often a
one-word counterpart in another language:

mettre une lettre à la poste ‘mail a letter’
jemanden kennen lernen ‘know somebody’



10.11 Application: Information Extraction and the FASTUS System 315

Table 10.13 Documents in a
library returned from a
catalog query and split into
relevant and irrelevant books

Relevant documents Irrelevant documents

Retrieved A B

Not retrieved C D

They merely reduce to a single semantic entity that is formed differently from
one language to another.

FASTUS’ upper layers then deal with grammatical functions and semantics.
FASTUS attempts to reduce sentences to a basic pattern consisting of a subject, a
verb, and an object. Finally, FASTUS assigns a sense to some groups by annotating
them with a semantic category such as company, product, joint venture, location,
and so on.

SRI first used a full parser called TACITUS, and FASTUS as a front-end to
offload it of some tasks. Seeing the excellent results and speed of FASTUS, SRI
completely replaced TACITUS with FASTUS. It had a considerable influence on
the present evolution of parsing techniques. FASTUS proved that the local and
cascade approach was more efficient and much faster than other global analyses
for information extraction. It had a considerable number of followers.

10.11.3 Evaluation of Information Extraction Systems

The MUCs introduced a metric to evaluate the performance of information extrac-
tion systems using three figures: recall, precision, and the F -measure. This latter
metric, originally borrowed from library science, proved very generic to summarize
the overall effectiveness of a system. It has been used in many other fields of
language processing since then.

To explain these figures, let us stay in our library and imagine we want to retrieve
all the documents on a specific topic, say morphological parsing. An automatic
system to query the library catalog will, we hope, return some of them, but possibly
not all. On the other hand, everyone who has searched a catalog knows that we will
get irrelevant documents: morphological pathology, cell morphology, and so on.
Table 10.13 summarizes the possible cases into which documents fall.

Recall measures how much relevant information the system has retrieved. It is
defined as the number of relevant documents retrieved by the system divided by
number of relevant documents in the library:

Recall D jAj
jA [ C j :

Precision is the accuracy of what has been returned. It measures how much of
the information is actually correct. It is defined as the number of correct documents
returned divided by the total number of documents returned.
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Precision D jAj
jA [ Bj :

Recall and precision are combined into the F -measure, which is defined as the
harmonic mean of both numbers:

F D 2PR

P CR:

The F -measure is a composite metric that reflects the general performance of a
system. It does not privilege precision at the expense of recall, or vice versa. An
arithmetic mean would have made it very easy to reach 50 % using, for example,
very selective rules with a precision of 100 and a low recall.

Using a ˇ-coefficient, it is possible to give an extra weight to either precision,
ˇ > 1, or recall, ˇ < 1, however:

F D .ˇ2 C 1/PR

ˇ2P CR :

Finally, a fallout figure is also sometimes used that measures the proportion of
irrelevant documents that have been selected.

Fallout D jBj
jB [Dj :

10.12 Further Reading

The development of partial parsing has been mainly driven by applications without
concern for a specific linguistic framework. This is a notable difference from many
other areas of language processing, where theories abound. Due to the simplicity
of the methods involved, partial or shallow parsing attracted considerable interest in
the 1990s and renewed the field. Its successes in information extraction competitions
such as the MUCs, where it proved that it could outperform classical parsers, also
contributed to its popularity. See, for instance, MUC-5 (1993).

One of the first partial parsing systems is due to Ejerhed (1988). Church (1988)
first addressed group detection as a tagging problem and used statistical methods.
He tagged the gaps with brackets. Ramshaw and Marcus (1995) used a symbolic
strategy. They created the IOB tagset, and they adapted Brill’s (1995) algorithm
to learn rules to detect groups from annotated corpora. Kudoh and Matsumoto
(2000) applied classifiers based on support vector machines that are to date the
best-performing methods for group detection. Abney (1994) is a rather old but still
valuable survey of partial parsing with much detail that provides a comprehensive
bibliography of 200 papers! Roche and Schabes (1997) and Kornai (1999) are other
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sources for partial parsing techniques. On the application side, Appelt et al. (1993)
describe with eloquence the history and structure of the FASTUS system.

FASTUS started a long line of information extraction systems that are now
ubiquitous. Techniques to find the circumstances of an event have a long history.
Hermagoras of Temnos quoted in Sect. 10.11 is known to have formulated first the
seven fundamental elements to answer. These elements were used throughout the
Middle Ages by confessors for the examination of penitents, and they are now used
by search engines. For a review of the early history, see Robertson (1946).

Partial parsing was the topic of a series of conferences on Computational
Natural Language Learning (CoNLL). Each year, the CoNLL conference organizes
a “shared task” where it provides an annotated training set. Participants can train
their system on this set, evaluate it on a common test set, and report a description
of their algorithms and results in the proceedings. In 1999, the shared task was
dedicated to noun group chunking (http://www.cnts.ua.ac.be/conll99/npb/); in 2000
it was extended to other chunks (http://www.cnts.ua.ac.be/conll2000/chunking/); in
2001 the topic was the identification of clauses (http://www.cnts.ua.ac.be/conll2001/
clauses/); and in 2002 and 2003 the task was multilingual named entity recognition
(http://www.cnts.ua.ac.be/conll2002/ner/ and http://www.cnts.ua.ac.be/conll2003/
ner/). The CoNLL sites and proceedings are extremely valuable as they provide
data sets, annotation schemes, a good background literature, and an excellent idea
of the state of the art.

Exercises

10.1. Complement the ELIZA program and add possible templates and answers.

10.2. Implement a multiword detector to detect dates in formats such as in English,
04/04/1997 or April 4, 1997, and in French, 20/04/1997 or 20 avril 1997.

10.3. Complement the noun group grammar from Sect. 10.5.2 and write down the
vocabulary to recognize the noun groups of the text:

The big tobacco firms are fighting back in the way that served them well for 40 victorious
years, pouring their wealth into potent, relentless legal teams. But they are also starting to
talk of striking deals – anathema for those 40 years, and a sure sign that, this time, victory
is less certain.
The Economist, no. 8004, 1997.

10.4. See Exercise 10.3; do the same for verb groups.

10.5. Write a noun group grammar to parse the French text:

Les limites de la régulation de l’audiovisuel sont clairement définies aujourd’hui par la loi.
C’est le principal handicap du CSA: son champ d’action est extrêmement limité. Alors que
la télévision numérique prend son essor, le CSA, dont les compétences s’arrêtent au câble et
à l’hertzien, n’a aucun pouvoir pour contrôler ou sanctionner la télévision de demain formée

http://www.cnts.ua.ac.be/conll99/npb/
http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2001/clauses/
http://www.cnts.ua.ac.be/conll2001/clauses/
http://www.cnts.ua.ac.be/conll2002/ner/
http://www.cnts.ua.ac.be/conll2003/ner/
http://www.cnts.ua.ac.be/conll2003/ner/
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par les chaînes satellitaires.
Le Monde, mercredi 3 septembre 1997.

10.6. See Exercise 10.5; do the same for verb groups.

10.7. Write a noun group grammar to parse the German text:

Die Freude über das neue große Europa wird also nur von kurzer Dauer sein. Die
Probleme, die sich aus einer Union der 25 ergeben, dürften dagegen Regierungen und
Völker über Jahre hinweg in Atem halten. Zunächst einmal wird es alles andere als leicht
sein, die 10 neuen Mitgliedsstaaten zu integrieren. Die Migrationswellen, die von ihnen
ausgehen, werden der „alten“ EU reichlich Kopfschmerzen bereiten. Vor allem stellt sich
der Entscheidungsprozess innerhalb der Union künftig noch weitaus schwieriger dar.
Die Zeit, 30 April 2004.

10.8. See Exercise 10.7; do the same for verb groups.

10.9. Write a Prolog program to convert the IOB2 tagging scheme explained in
Sect. 10.6.2 into a bracketed notation such as the one described in Sect. 10.10. Apply
it to the CoNLL-2000 corpora available from this page: http://www.cnts.ua.ac.be/
conll2000/chunking/.

10.10. See Exercise 10.9 and write a reverse converter to translate a bracketed
notation into an IOB2 tagging scheme.

10.11. Download the annotated corpora available from the CoNLL-2000 shared
task as well as the evaluation script (http://www.cnts.ua.ac.be/conll2000/chunking/).
Apply the noun group rules from Sect. 10.5.2 to detect them in the corpora and
evaluate the rule efficiency using the CoNLL-2000 evaluation script. Use only the
part-of-speech information. Complement the rules so that you reach a figure of 80
for the noun groups.

10.12. See Exercise 10.11; do the same for the verb groups.

10.13. Adapt the Prolog code of Brill’s tagger from Chap. 7 so that it can detect
noun groups.

10.14. Download the group annotated corpora from the CoNLL-2000 web page
(http://www.cnts.ua.ac.be/conll2000/chunking/). From the training corpus, extract
the feature vectors corresponding to different feature sets shown in Fig. 10.5
and Table 10.10 as described in Sect. 10.7.3. You can start from the feature set
corresponding to the baseline – part of speech and group annotation tag of the
current word – and then try one or two more models. Train the corresponding
decision tree classifiers, apply them to bracket the test set, and evaluate the results
using the CoNLL-2000 evaluation script. To build the classifiers, you can use the
Weka implementation of C4.5 available from this site: http://www.cs.waikato.ac.nz/
ml/weka/.

http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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10.15. Write rules that detect some complex noun groups:

• Adjacent noun groups linked by the prepositions of or for
• Noun group conjunctions

10.16. Find press wires on football matches on the Web and implement a program
to retrieve teams’ names and final scores. Use a base of football team names, and
adopt a cascaded architecture.



Chapter 11
Syntactic Formalisms

A word is said to govern another word, which depends upon it in the
sentence. Thus, when we say Charles loves study, the verb loves,
governs the noun, study. So when we say, I am going to the church,
the preposition to, governs the noun, church. Agreement and
government are called Syntax.
Chauncey Allen Goodrich, Lessons in Latin Parsing, Durrie &
Peck, New Haven, 1838.

11.1 Introduction

Studies on syntax have been the core of linguistics for most of the twentieth century.
While the goals of traditional grammars had been mostly to prescribe what the
correct usage of a language is, the then-emerging syntactic theories aimed at an
impartial description of language structures. These ideas revolutionized the field.
Research activity was particularly intense in the years 1940–1970, and the focus
on syntax was so great that, for a time, it nearly eclipsed phonetics, morphology,
semantics, and other disciplines of linguistics.

Among all modern syntax researchers, Noam Chomsky has had a considerable
and indisputable influence. Chomsky’s seminal work, Syntactic Structures (1957),
is still considered by many as a key reading in linguistics. In his book (in Sect. 6.1),
Chomsky defined grammars as essentially a theory of [a language] that should be
(1) adequate: whose correctness should be measurable using corpora; (2) general:
extendible to a variety of languages; and, as far as possible, (3) simple. As goals, he
assigned grammatical rules to describe syntactic structures:

These rules express structural relations among the sentences of the corpus and the indefinite
number of sentences generated by the grammar beyond the corpus (predictions).

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__11, © Springer-Verlag Berlin Heidelberg 2014
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More specifically (in Sect. 5.5), Chomsky outlined a formal model of syntax
under the form of grammars that was precise enough to be programmable and
verifiable.

Chomsky’s ideas appealed to the linguistics community because they featured
an underlying analogy between human languages and computer – or formal –
languages together with a mathematical formalism that was already used for
compilers. Chomsky came at a convergence point where advances in computer
technology, mathematical logic, and programming languages made his theory
possible and acceptable. Chomsky’s theories on syntactic structures have originated
much research in the domain and have an astounding number of followers, notably
in the United States. In addition, his theories spurred a debate that went well beyond
linguistic circles reaching psychology and philosophy.

In the meantime, linguists, mostly in Europe, developed other structural ap-
proaches and also tried to derive generic linguistic structures. But instead of using
the computer operation as a model or to posit cognition universals, as Chomsky
did, some of them tried to study and expose examples from a variety of languages
to prove their theories. The most prominent figure of the European school is Lucien
Tesnière. Although Tesnière’s work (1959, 2nd edn., 1966, both posthumous) is less
known, it is gaining recognition and it is used with success in implementations of
grammars and parsers for English, French, German, and many other languages.

Many computational models of syntactic structures inherited from Chomskyan
grammars use the notion of constituent – although Chomsky does not limit
grammars to a constituent decomposition. Traditional approaches are based on the
notion of connections between words, where each word of a sentence is linked to
another one under a relation of subordination or dependence. For this reason, these
syntactic models are also called dependency grammars. This chapter introduces both
structural approaches – constituency and dependency – and associated formalisms.

11.2 Chomsky’s Grammar in Syntactic Structures

Chomsky fractionates a grammar into three components. The first level consists
of phrase-structure (PS) rules expressing constituency. The second one is made
of transformation rules that complement PS rules. Transformations enable us to
derive automatically new constructions from a given structure: a declarative form
into an interrogative or a negative one; an active sentence into a passive one.
Transformation rules apply to constituent structures or trees and describe systematic
mappings onto new structures.

Initially, PS and transformation rules used a vocabulary made of morphemes,
roots, and affixes, as well as complete words. The inflection of a verb with the past
participle tense was denoted [en + verb] where en represented the past participle
affix, for example, [en + arrive]. A third morphophonemic component handled the
final word generation, mapping forms such as [en + arrive] onto arrived.
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Sentence 0
NP + VP 1
T + N + VP 2
T + N + Verb + NP 3
the + N + Verb + NP 4
the + man + Verb + NP 5
the + man + hit + NP 6
the + man + hit + T + N 7
the + man + hit + the + N 8
the + man + hit + the + ball 9

Fig. 11.1 Generation of
sentences

11.2.1 Constituency: A Formal Definition

Constituency is usually associated with context-free grammars. Formally, such
grammars are defined by:

1. A set of designated start symbols, ˙ , covering the sentences to parse. This set
can be reduced to a single symbol, such as sentence, or divided into more
symbols: declarative_sentence, interrogative_sentence.

2. A set of nonterminal symbols enabling the representation of the syntactic
categories. This set includes the sentence and phrase categories.

3. A set of terminal symbols representing the vocabulary: words of the lexicon,
possibly morphemes.

4. A set of rules, F , where the left-hand-side symbol of the rule is rewritten in the
sequence of symbols of the right-hand side.

Chomsky (1957) portrayed PS rules with an example generating the man hit the
ball. It has a straightforward equivalent in DCG:

sentence --> np, vp.
np --> t, n.
vp -- verb, np.
t --> [the].
n --> [man] ; [ball] ; etc.
verb --> [hit] ; [took] ; etc.

A set of such PS rules can generate sentences. Chomsky illustrated it using a
mechanism that resembles the top-down algorithm of Prolog (Fig. 11.1).

Generation was the main goal of Chomsky’s grammars: to produce all potential
sentences – word and morpheme sequences – considered to be syntactically correct
or acceptable by native speakers. Chomsky introduced recursion in grammars to
give a finite set of rules an infinite capacity of generation.

From the initial goal of generation, computational linguists wrote and used
grammars to carry out recognition – or parsing – of syntactically correct sentences.
A sentence has then to be matched against the rules to check whether it falls within
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the generative scope of the grammar. Parsing results in a parse tree – the sequence
of grammar rules that were applied. The parsing process can be carried out using:

• A top-down mechanism, which starts from the initial symbol – the sentence –
down to the words of the sentence to be parsed

• A bottom-up mechanism, which starts from the words of the sentence to be
parsed up to the sentence symbol.

Some parsing algorithms run more efficiently with a restricted version of context-
free grammars called the Chomsky normal form (CNF). Rules in the CNF have
either two nonterminal symbols to their right-hand side or one nonempty terminal
symbol:

lhs --> rhs1, rhs2.
lhs --> [a].

Any grammar can be converted into an equivalent CNF grammar using auxiliary
symbols and rules as for

lhs --> rhs1, rhs2, rhs3.

which is equivalent to

lhs --> rhs1, lhs_aux.
lhs_aux --> rhs2, rhs3.

The equivalence is said to be weak because the resulting grammar generates the
same sentences but does not yield exactly the same parse trees.

11.2.2 Transformations

The transformational level consists of the mechanical rearrangement of sentences
according to some syntactic relations: active/passive, declarative/interrogative, etc.
A transformation operates on a sentence with a given phrase structure and converts it
into a new sentence with a new derived phrase structure. Transformations use rules –
transformational rules or T -rules – to describe the conversion mechanism as:

T1: np1, aux, v, np2 !
np2, aux, [be], [en], v, [by], np1

which associates an active sentence to its passive counterpart. The active part of the
rule matches sentences such as:

the man will hit the ball

and its passive part enables us to generate the equivalent passive sentence:

the ball will be (en hit) by the boy

where (en hit) corresponds to the past participle of verb to hit. An additional
transformational rule permutes these two elements:
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SS

NP1 VP NP2 VP

Verb NP2 Verb PP

Aux V Aux be en V by NP2

Fig. 11.2 A tree-to-tree mapping representing the active/passive transformational rule

T2: affix, v !
v, affix, #

where # marks a word boundary. Once applied, it yields:

the ball will be hit en # by the boy

hit en # is then rewritten into hit by morphophonemic rules. Finally, the transforma-
tional process yields:

the ball will be hit by the boy

A tree-to-tree mapping as shown in Fig. 11.2 can also reflect transformation rules.
Other common transformations include (Chomsky 1957):

• Negations. John comes! John doesn’t come.
• Yes/no questions. they arrive! do they arrive; they have arrived ! have they

arrived; they can arrive! can they arrive; they arrived! did they arrive
• Interrogatives. John ate an apple! did John eat an apple; John ate an apple!

what did John eat; John ate an apple! who ate an apple
• Conjunction. (the scene of the movie was in Chicago; the scene of the play was

in Chicago)! the scene of the movie and of the play was in Chicago.
• Topicalization. that is, moving a constituent in front of a sentence to emphasize

it. the waiter brought the meal to the table! to the table, the waiter brought the
meal; I don’t like this meal! this meal, I don’t like.

In Chomsky’s formalism, PS rules are written so that certain generated sen-
tences require a transformation to be correct. Such transformations are said to
be obligatory. An example is given by the affix permutation rule (T2). Other
rules are optional, such as the passive/active transformation (T1). PS rules and
obligatory transformations account for the “kernel of a language” and generate
“kernel sentences”. All other sentences can be unfolded and mapped onto this kernel
using one or more transformations.

According to Chomsky, transformations simplify the description of a grammar,
and make it more compact. Writing a grammar only requires the phrase structure of
kernel sentences, and all others are derived from transformations. Later Chomsky
related kernel sentences to a deep structure, while transformed sentences correspond
to a surface structure. Transformations would then map the surface structure of
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Table 11.1 Movements to obtain the passive of sentence The man hit the ball. Traces are
represented by —. Original positions of traces are in bold

Movements Traces Passives

First movement The man hit . . . . . . — is hit by the man
Second movement . . . hit the ball The ball is hit —

Table 11.2 Questions beginning with a wh-word and their traces (—)

Questions Traces

Who ate an apple in the dining room? — ate an apple in the dining room
What did John eat in the dining room? John ate — in the dining room
Which apple did John eat in the dining room? John ate — in the dining room
Where did John eat an apple? John ate an apple —

a sentence onto its deep structure. The deep structure would consist of a set of
obligatory transformations and a core phrase structure on which no transformation
could be carried out.

11.2.3 Transformations and Movements

Transformation theory evolved into the concept of movement (Chomsky 1981). A
movement is a sentence rearrangement where a constituent is moved to another
location. The moved constituent leaves a trace: an empty symbol representing its
initial location. Passives correspond to a composition of two movements: one that
moves the subject noun phrase into the position of a prepositional phrase headed by
by, and another that moves the object noun phrase into the empty subject position
(Table 11.1).

Paradigms of movement are questions beginning with an interrogative pronoun
or determiner: the wh-movements. A wh-word – who, which, what, where – is moved
to the beginning of the sentence to form a question. Consider the sentence John ate
an apple in the dining room. According to questions and to the wh-word type in
front of the question, a trace is left at a specific location in the original sentence
(Table 11.2). Traces correspond to noun phrases.

Transformations or movements use a syntactic model of both the original
phrase – or sentence – and its transformed counterpart. These models form the left
and right members of a T -rule. Applying a transformation to a phrase or conversely
unfolding a transformation from it, requires knowing its tree structure. In conse-
quence, transformational rules or movements need a prior PS analysis before being
applied.
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11.2.4 Gap Threading

Gap threading is a technique to parse wh-movements (Pereira 1981; Pereira
and Shieber 1987). Gap threading uses PS rules that consider the sentence after
the movement has occurred. This requires new rules to account for interrogative
pronouns or interrogative determiners moved in front of sentence, as for:

John ate an apple
What did John eat?

with a rule to parse the declaration:

s --> np, vp.

and a new one for the question:

s --> [what, did], np, vp.

One aim of gap threading is to keep changes in rules minimal. Thus the trace – or
gap – should be handled by rules similar to those of a sentence before the movement.
The rule describing a verb phrase with a transitive verb should remain unchanged:

vp --> v, np.

with the noun phrase symbol being possibly empty in case of a gap:

np --> [].

However, such a rule is not completely adequate because it would not differ-
entiate a gap: the absence of a noun phrase resulting from a movement, from the
pure absence of a constituent. Rules could insert empty lists wrongly in sentences
such as:

John ate

To handle traces properly, gap threading keeps a list of the moved constituents –
or fillers – as the parsing mechanism reads them. In our example, fillers are wh-
terms. When a constituent contains a moved term, it is stored in the filler list. When
a constituent contains a gap – a missing noun phrase – a term is reclaimed from the
head of the filler list.

Gap threading uses two lists as arguments that are added to each constituent of
the DCG rules. These lists act as input and output of gaps in the current constituent,
as in:

s(In, Out) --> np(In, Out1), vp(Out1, Out).

At a given point of the analysis, the first list holds fillers that have been stored
before, and the second one returns the remaining fillers once gaps have been filled
in the constituent.

In the sentence:

What did John eat —?
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the verb phrase eat — contains a gap. Before processing this phrase, the filler list
must have accumulated what, which is removed when the verb phrase is completely
parsed. Hence, input and output arguments of the vp constituent must be:

% vp(In, Out)
vp([what], [])

or, to be more general,

vp([what | T], T)

The noun phrase rule handling the gap accepts no word as an input (because it is
a gap). Its right-hand side is then an empty list. The real input is received from the
filler list. The rule collects the filler from the first argument of np and returns the
resulting list in the second one:

np([what | T], T) --> [].

The whole set of rules is finally:

s(In, Out) -->
[what, did],
np([ what | In], Out1),
vp(Out1, Out).

s(In, Out) --> np(In, Out1), vp(Out1, Out).

np(X, X) --> [’John’]. % no gap here
np(X, X) --> det, n. % no gap here
np([what | T], T) --> []. % the gap

vp(In, Out) --> v, np(In, Out).

v --> [eat]; [ate].

det --> [an].

n --> [apple].

When parsing a sentence with a movement, initial and final filler lists are set to
empty lists:

?- s([], [], [what, did, ’John’, eat], []).
true

as in the initial declaration:

?- s([], [], [’John’, ate, an, apple], []).
true
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NP

N Group Relative

Det Noun S

N Group Relative

NP VP

Det Noun Verb Trace

The meal that the waiter brought

Fig. 11.3 The parse tree of The meal that the waiter brought with gap threading

11.2.5 Gap Threading to Parse Relative Clauses

Gap threading can also be used to parse relative clauses. Relative clauses are
sentences complementing a noun phrase whose subject or object has been replaced
by a relative pronoun. Consider the noun phrase:

The meal that the waiter brought

The rule describing such a phrase is:

np --> ngroup, relative

where ngroup maps the meal and relative maps that the waiter brought.
The modified sentence corresponding to the relative clause here is:

The waiter brought the meal

where the noun phrase the meal has been moved from its object position to the front
of the relative and has been replaced by the object pronoun that (Fig. 11.3). The
phrase:

The waiter who brought the meal

is similar, but the movement occurs on the subject noun phrase, which is replaced
by subject pronoun who.

Let us write a grammar using gap threading to parse such noun phrases. The top
rule has two new variables to hold fillers:

np(In, Out) --> ngroup(In, Out1), relative(Out1, Out).

The relative clause is a sentence that starts with a pronoun, and this pronoun is
stored in the filler input list of the sentence symbol:

relative(In, Out) --> [that], s([that | In], Out).
relative(In, Out) --> [who], s([who | In], Out).
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There might also be no relative clause:

relative(X, X) --> [].

When we encounter a trace, a noun phrase is missing. The head pronoun is then
removed from the filler list:

np([PRO | T], T) --> [].

The rest of the grammar is straightforward:

s(In, Out) --> np(In, Out1), vp(Out1, Out).

vp(In, Out) --> v, np(In, Out).

ngroup(X, X) --> det, n.

det --> [the].
n --> [waiter].
n --> [meal].
v --> [brought].

When launching the parse, both filler lists are empty:

?- np([], [],[the, meal, that, the, waiter, brought],
[]). true

?- np([], [], [the, waiter, who, brought, the, meal],
[]). true

In the examples above, we have made no distinction between object and subject
pronouns. The program could have been refined to take this difference into account.

11.3 Standardized Phrase Categories for English

The aim of a standard for phrase categories is to define an annotation set that would
be common to people working on syntax. Such a standard would facilitate corpus
and program sharing, assessment, and communication between computational lin-
guists. Currently, there is no universally accepted standard. Defining an annotation
set requires finding a common ground on the structure or the denomination of a
specific group of words. It proves to be more difficult than expected. There is a
consensus on main categories but details are sometimes controversial.

Most annotation schemes include phrase categories mapping the four main
parts of speech, namely nouns, verbs, adverbs, and adjectives. Category names
correspond to those of constituent heads:

• Noun phrases (NP), phrases headed by a noun.
• Verb phrases (VP), phrases headed by a verb together with its objects.
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Table 11.3 The Penn Treebank phrase labels (After Marcus et al. (1993))

Categories Description

1. ADJP Adjective phrase
2. ADVP Adverb phrase
3. NP Noun phrase
4. PP Prepositional phrase
5. S Simple declarative clause
6. SBAR Clause introduced by subordinating conjunction or 0 (see below)
7. SBARQ Direct question introduced by wh-word or wh-phrase
8. SINV Declarative sentence with subject-aux inversion
9. SQ Subconstituent of SBARQ excluding wh-word or wh-phrase
10. VP Verb phrase
11. WHADVP wh-adverb phrase
12. WHNP wh-noun phrase
13. WHPP wh-prepositional phrase
14. X Constituent of unknown or uncertain category

Null elements
1. * “Understood” subject of infinitive or imperative
2. 0 Zero variant of that in subordinate clauses
3. T Trace – marks position where moved wh-constituent is interpreted
4. NIL Marks position where preposition is interpreted in pied-piping context

• Adjective phrase (AdjP), a phrase headed by an adjective, possibly with
modifiers.

• Adverbial phrase (AdvP), a phrase headed by an adverb.
• Most annotation sets also feature prepositional phrases (PP): noun phrases

beginning with a preposition.

The Penn Treebank (Marcus et al. 1993) is a corpus annotated with part-of-
speech labels. Parts of it are also fully bracketed with syntactic phrase categories,
and it was one of the first corpora widely available with such an annotation.
Table 11.3 shows its set of phrase labels.

As an example, Fig. 11.4 shows the bracketing of the sentence:

Battle-tested industrial managers here always buck up nervous newcomers with the tale of
the first of their countrymen to visit Mexico, a boatload of samurai warriors blown ashore
375 years ago.

in the Penn Treebank, where pseudo-attach denotes an attachment ambiguity
for VP-1. In effect, blown ashore can modify either boatload or samurai warriors.
Both attachments mean roughly the same thing, and there is no way to remove the
ambiguity. In this bracketing, blown ashore has been attached arbitrarily to warriors,
and a pseudo-attach has been left to indicate a possible attachment to boatload.

Bracketing of phrases is done semiautomatically. A first pass uses an automatic
parser. The output is then complemented or corrected by hand by human annotators.
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Fig. 11.4 Bracketed text in the Penn Treebank (After Marcus et al. (1993, p. 325))

11.4 Unification-Based Grammars

11.4.1 Features

In the examples above, there is no distinction between types of noun phrases. They
appeared under a unique category: np. However, noun phrases are often marked
with additional grammatical information, that is, depending on the language, a
person, a number, a gender, a case, etc. In German, cases correspond to a specific
inflection visible on the surface form of the words (Table 11.4). In English and
French, noun phrases are inflected with plural, and in French with gender. We saw
in Chap. 6 that such grammatical characteristics are called features. Case, gender,
or number are features of the noun that are also shared by the components of the
noun phrase to which it belongs.
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Table 11.4 Inflection
imposed to noun group der
kleine Ober ‘the small waiter’
by the case feature in German

Cases Noun groups

Nominative der kleine Ober
Genitive des kleinen Obers
Dative dem kleinen Ober
Accusative den kleinen Ober

If we adopt the generative framework, it is necessary to take features into account
to have correct phrases. We can get a picture of this with the German cases and a
very simple noun phrase rule:

np --> det, adj, n.

Since we do not distinguish between np symbols, the rule will output ungram-
matical phrases as:

?-np(L, []).
[der, kleinen, Ober]; %wrong
[der, kleinen, Obers]; %wrong
[dem, kleine, Obers] %wrong
...

To avoid such a wrong generation, we need to consider cases and other features
and hence to refine our model. In addition, beyond generation features are necessary
in many applications such as spelling or grammar checking, style critique, and so on.

A solution could be to define new noun phrase symbols corresponding to cases
such as np_nominative, np_genitive, np_dative, np_accusative.
We need others to consider number, np_nominative_singular, np_nomin-
ative_plural, . . . , and it is not over, because of gender: np_nominative_
singular_masc, np_nominative_singular_fem, etc. This process leads
to a division of main categories, such as noun phrases, nouns, and adjectives, into
subcategories to account for grammatical features.

11.4.2 Representing Features in Prolog

Creating a new category for each grammatical feature is clumsy and is sometimes
useless in applications. Instead, features are better represented as arguments of main
grammatical categories. This is straightforward in Prolog using the DCG notation.
To account for cases in noun phrases, let us rewrite np into:

np(case:C)

where the C value is a member of list [nom, gen, dat, acc] denoting
nominative, genitive, dative, and accusative cases.

We can extend the number of arguments to cover the rest of the grammatical
information. Prolog functors then represent main categories such as noun phrases,
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and arguments represent the grammatical details. Arguments are mapped onto
feature structures consisting of pairs feature/values as for gender, number, case,
person, and type of determiner:

np(gend:G, num:N, case:C, pers:P, det:D)

Using Prolog’s unification, features are easily shared among constituents making
up a noun phrase, as in the rule:

np(gend:G, num:N, case:C, pers:P, det:D) -->
det(gend:G, num:N, case:C, pers:P, det:D),
adj(gend:G, num:N, case:C, pers:P, det:D),
n(gend:G, num:N, case:C, pers:P).

Let us exemplify it with a small fragment of the German lexicon:

det(gend:masc, num:sg, case:nom, pers:3, det:def) -->
[der].

det(gend:masc, num:sg, case:gen, pers:3, det:def) -->
[des].

det(gend:masc, num:sg, case:dat, pers:3, det:def) -->
[dem].

det(gend:masc, num:sg, case:acc, pers:3, det:def) -->
[den].

adj(gend:masc, num:sg, case:nom, pers:3, det:def) -->
[kleine].

adj(gend:masc, num:sg, case:gen, pers:3, det:def) -->
[kleinen].

adj(gend:masc, num:sg, case:dat, pers:3, det:def) -->
[kleinen].

adj(gend:masc, num:sg, case:acc, pers:3, det:def) -->
[kleinen].

n(gend:masc, num:sg, case:nom, pers:3) --> [’Ober’].
n(gend:masc, num:sg, case:gen, pers:3) --> [’Obers’].
n(gend:masc, num:sg, case:dat, pers:3) --> [’Ober’].
n(gend:masc, num:sg, case:acc, pers:3) --> [’Ober’].

To consult this lexicon, Prolog needs a new infix operator “:” that we define
using the op/3 built-in predicate:

:- op(600, xfy, ’:’).

And our grammar generates correct noun phrases only:

?- np(_, _, _, _, _, L, []).
L = [der, kleine, ’Ober’] ;
L = [des, kleinen, ’Obers’] ;
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L = [dem, kleinen, ’Ober’] ;
L = [den, kleinen, ’Ober’] .

?-

11.4.3 A Formalism for Features and Rules

In the previous section, we directly wrote features as arguments of Prolog predicates.
More frequently, linguists use a notation independent of programming languages,
which is referred to as unification-based grammars. This notation is close to Prolog
and DCGs, however, and is therefore easy to understand. The noun phrase rule

np(gend:G, num:N, case:C, pers:P, det:D) -->
det(gend:G, num:N, case:C, pers:P, det:D),
adj(gend:G, num:N, case:C, pers:P, det:D),
n(gend:G, num:N, case:C, pers:P).

is represented as:

NP ! DET ADJ N2

6
6
6
6
6
4

gend W G
num W N
case W C
pers W P
det W D

3

7
7
7
7
7
5

2

6
6
6
6
6
4

gend W G
num W N
case W C
pers W P
det W D

3

7
7
7
7
7
5

2

6
6
6
6
6
4

gend W G
num W N
case W C
pers W P
det W D

3

7
7
7
7
7
5

2

6
6
4

gend W G
num W N
case W C
pers W P

3

7
7
5

Rules of a grammar describing complete sentences are similar to those of DCGs.
They consist, for example, of:

S ! NP VP
2

4
num W N
case W nom
pers W P

3

5
�

num W N
pers W P

�

VP ! V

�
num W N
pers W P

�
2

4
trans W i
num W N
pers W P

3

5

VP ! V NP
�

num W N
pers W P

�
2

4
trans W t
num W N
pers W P

3

5 Œcase W acc�
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NP ! Pronoun
2

6
6
4

gen W G
num W N
pers W P
case W C

3

7
7
5

2

6
6
4

gen W G
num W N
pers W P
case W C

3

7
7
5

with lexicon entries such as:

DET ! der
2

6
6
4

gend W masc
num W sg
case W nom
det W def

3

7
7
5

11.4.4 Features Organization

A feature structure is a set of pairs consisting of a feature name – or attribute – and
its value.

2

6
6
6
4

feature1 W value1
feature2 W value2
:::

featuren W valuen

3

7
7
7
5

Unlike arguments in Prolog or DCGs, the feature notation is based solely on the
name and not on the position of the argument. Hence, both

2

4
gen W fem
num W pl
case W acc

3

5 and

2

4
num W pl
case W acc
gen W fem

3

5

denote the same feature structure. Feature structures can be pictured by a graph as
shown in Fig. 11.5.

The value of a feature can be an atomic symbol, a variable, or another feature
structure to yield a hierarchical organization as in:

2

6
6
4

f1 W v1

f2 W
2

4
f3 W v3
f4 W

�
f5 W v5
f6 W v6

�

3

5

3

7
7
5

whose corresponding graph is shown in Fig. 11.6.
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gender

number

case

Fig. 11.5 Graph representing
a feature structure

v1

v3

v5

v6

f1

f2 f3

f4 f5

f6

Fig. 11.6 Graph
corresponding to embedded
feature structures

Grouping a set of features into a substructure enables the simplification of
notations or rules. A feature denoted agreement can group gender, number, and
person, and can be encoded as a single structure. German nominative and accusative
pronouns er ‘he’ and ihn ‘him’ can then be represented as:

Pronoun ! er
2

6
6
4

agreement W
2

4
gender W masc
number W sg
pers W 3

3

5

case W nom

3

7
7
5

Pronoun ! ihn
2

6
6
4

agreement W
2

4
gender W masc
number W sg
pers W 3

3

5

case W acc

3

7
7
5

which enables us to simplify the noun phrase rule in:
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NP ! Pronoun
�

agreement W X
case W C

� �
agreement W X
case W C

�

We can even push categories into structures and rewrite the previous rule as

2

4
cat W np
agreement W X
case W C

3

5!
2

4
cat W pronoun
agreement W X
case W C

3

5

Unlike the case for DCGs, unspecified or nonshared features are simply omitted
in unification-based grammars. There is no need for an equivalent of the anonymous
variable then.

11.4.5 Features and Unification

Unification of feature structures is similar to term unification of Prolog but is more
general. It is a combination of two recursive operations:

• Structures merge the set of all their features, checking that identical features have
compatible values.

• Variables unify with values and substructures.

Feature structure unification is usually denoted [.
Unification results in a merger of features as in

�
feature1 W v1
feature2 W v2

�

[
�

feature2 W v2
feature3 W v3

�

D
2

4
feature1 W v1
feature2 W v2
feature3 W v3

3

5 :

Variable unification considers features of same name and applies to values, other
variables, or recursive feature structures, just as in Prolog but regardless of their
position. Here are a couple of examples:

• Œfeature1 W v1� and Œfeature1 W v2� fail to unify if v1 ¤ v2.

•

�
f1 W v1
f2 W X

�

[
2

4
f5 W v5
f2 W

�
f3 W v3
f4 W v4

�

3

5 D

2

6
6
4

f1 W v1
f2 W

�
f3 W v3
f4 W v4

�

f5 W v5

3

7
7
5

•

�
f1 W v1
f2 W X

�

[
2

4
f5 W X
f2 W

�
f3 W v3
f4 W v4

�

3

5 D

2

6
6
6
6
6
4

f1 W v1
f2 W

�
f3 W v3
f4 W v4

�

f5 W
�
f3 W v3
f4 W v4

�

3

7
7
7
7
7
5
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v1

v3

v4

f1

f2

f5

f3

f4

Fig. 11.7 Graph with
re-entrant feature structures

In the last example, both features f2 and f5 result of the unification of X
and are therefore identical. They are said to be re-entrant. However, the structure
presentation does not make it clear because it duplicates the X value as many times
as it occurs in the structure: twice here. Different structures could yield the same
result, as with the unification of

2

4
f1 W v1
f2 W

�
f3 W v3
f4 W v4

�

3

5 and

2

4f5 W
�
f3 W v3
f4 W v4

�

f2 W X

3

5

where feature f2 and f5 have (accidentally) the same value.
To improve the structure presentation, identical features are denoted with a label.

Here Œ1� indicates that f2 and f5 are the same:

2

6
6
4

f1 W v1
f2 W Œ1�

�
f3 W v3
f4 W v4

�

f5 W Œ1�

3

7
7
5

and Fig. 11.7 shows the corresponding graph.

11.4.6 A Unification Algorithm for Feature Structures

Unification of feature structures is close to that of terms in Prolog. However, feature
structures provide partial specifications of the entities they represent, while Prolog
terms are complete. Feature structure unification is merely a union of compatible
characteristics, as in the example

Œcase W nom� [ Œgender W masc� D
�

case W nom
gender W masc

�
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where both structures merge into a more specific set. As is, corresponding Prolog
terms struct(case: nom) and struct(gender: masc)would fail to
unify.

There are possible workarounds. Given a syntactic category, we could itemize all
its possible attributes and map them onto a Prolog term. We would have to assign
each feature to a specific argument rank, for instance, case to the first argument,
gender to the second one, and so on. We would then fill the specified arguments
and leave the others empty using the anonymous variable ‘_’. For the example
above, this would yield terms

struct(case: nom, gender:_)

and

struct(case: _, gender: masc)

that unify properly:

?- X = struct(case: nom, gender:_), Y =
struct(case: _, gender: masc), X = Y.

X = struct(case: nom, gender: masc)
Y = struct(case: nom, gender: masc)

However, when there are many features and hierarchical structures, such a method
could be tedious or difficult.

A better idea is to use incomplete lists. Incomplete lists have their tails
uninstantiated as [a, b, c | X]. Such lists can represent partial structures
as [case: nom | X] or [gender: masc | Y] and be expanded through
a Prolog unification. Merging both feature structures is simple. It consists in the
unification of X with [gender: masc | Y]:

?- STRUCT = [case: nom | X], X = [gender: masc | Y].
STRUCT = [case: nom, gender: masc | Y]

To be more general, we will use the anonymous variable as a tail.
Converting a feature structure then consists in representing features as members
of a list, where closing brackets are replaced by | _]. Hence, structures
Œcase W nom� and Œgender W masc� are mapped onto [case: nom | _] and
[gender: masc | _], and their unification yields [case: nom, gender:
masc | _]. Hierarchical features as:

2

6
6
6
6
6
4

cat W np

agreement W
2

4
gender W masc
number W sg
pers W 3

3

5

case W acc

3

7
7
7
7
7
5
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are represented by embedded incomplete lists:

[cat: np,
agreement: [gender: masc, number: sg, pers: 3 | _],
case: acc | _]

Let us now implement the unification algorithm for feature structures due to
Boyer (1988). The unif/2 predicate consists of a fact expressing the end of
unification – both structures are the same – and two main rules:

• The first rule considers the case where the heads of both lists represent features
of the same name. The rule unifies the feature values and unifies the rest.

• When feature names are different, the second rule uses a double recursion. The
first recursion unifies the tail of the first list with the head of the second list. It
yields a new list, Rest3, which is the unification result minus the head features
F1 and F2. The second recursion unifies the rest of the second list with the list
made up of the head of the first list and Rest3:

:- op(600, xfx, ’:’).

unif(FStr, FStr) :-
!.

unif([F1:V1 | Rest1], [F1:V2 | Rest2]) :-
!,
unif(V1, V2),
unif(Rest1, Rest2).

unif([F1:V1 | Rest1], [F2:V2 | Rest2]) :-
F1 \= F2,
unif(Rest1, [F2:V2 | Rest3]),
unif(Rest2, [F1:V1 | Rest3]).

Consulting unif/2 and querying Prolog with:

?- X = [case: nom | _], Y =[gender: masc | _],
unif(X, Y).

results in:

X = [case: nom, gender: masc | _]
Y = [gender: masc, case: nom | _]

11.5 Dependency Grammars

11.5.1 Presentation

Dependency grammars form an alternative to constituent-based theories. These
grammars describe a sentence’s structure in terms of syntactic links – connections or
dependencies – between its words (Tesnière 1966). Each link reflects a dominance
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The very big cat

Fig. 11.8 Dependency graph
of the noun group The very
big cat

<root>

cat

The big

very

Fig. 11.9 Tree representing
dependencies in the noun
group The very big cat

The waiter brought the meal

Fig. 11.10 Dependency
graph or stemma of the
sentence The waiter brought
the meal

relation (conversely a dependence) between a headword and a dependent word.
Examples of simple dependencies tie a determiner to its noun, or a subject noun
to its main verb. Dependency links are pictured by arrows flowing from headwords
to their dependents (or the reverse).

In noun groups, determiners and adjectives depend on their noun; adverbs depend
on their adjective (Fig. 11.8), as in:

The very big cat

where the noun cat is the head of the and big, and the adjective big is the head of
very. In addition, cat is the head – or the root – of the whole phrase. Figure 11.9
shows an alternate equivalent representation of the dependencies that uses an
explicit <root> symbol. In the rest of this book, we will use the convention that
<root> corresponds to the first word of the sentence at index 0.

According to the classical dependency model, each word is the dependent of
exactly one head with the exception of the head of the sentence. Conversely, a
head may have several dependents (or modifiers). This means a dependency graph
is equivalent to a tree. Figure 11.10 shows a graph representing the structure of a
simple sentence where determiners depend on their noun; nouns depend on the main
verb, which is the root of the sentence. Tesnière used the word stemma – garland or
stem in Greek – to name the graphic representation of these links.

Although dependency and constituency are often opposed, stemmas embed sorts
of constituents that Tesnière called nœuds. Deriving a nœud from a dependency
graph simply consists in taking a word, all its dependents, and dependents of
dependents recursively. It then corresponds to the subtree below a certain word.1

And in many cases, stemmas and phrase-structure trees yield equivalent structures
hinting that dependency and constituency are in fact comparable formalisms.

1Nœud is the French word for node. It shouldn’t be mistaken with a node in a graph, which is a
single element. Here a nœud is a whole subtree.
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Den Mann hat der Junge gesehen

Fig. 11.11 Dependency graph of Den Mann hat der Junge gesehen (Modified from Bröker (1998))

There are a couple of differences, however. One is the importance given to words
in dependency grammars. There are no intermediate representation symbols such as
phrases of constituent grammars. Syntactic relations involve words only, and nodes
in stemmas are purely lexical.

Another difference is that dependency grammars do not need a fixed word order
or word contiguity in the nœuds to establish links. In that sense, dependency theory
is probably more suited than constituent grammars to model languages where the
word order is flexible. This is the case for Latin, Russian, and German to a lesser
extent. Figure 11.11 gives an example with the sentence (Bröker 1998):

Den Mann hat der Junge gesehen
The man=obj has the boy=subj seen ‘The boy has seen the man.’

where positions of noun groups den Mann and der Junge can be inverted and
yield another acceptable sentence: Der Junge hat den Mann gesehen. Meaning is
preserved because functions of noun groups are marked by cases, nominative and
accusative here.

In the example above, stemmas of both sentences are the same, whereas a phrase-
structure formalism requires more rules to take the word order variability into
account. Modeling the verb phrase needs two separate rules to describe the position
of the accusative noun group:

hat den Mann gesehen

and the nominative one:

hat der Junge gesehen

VP ! AUX NP V

�
num W N
pers W P

� �
num W N
pers W P

�

Œcase W acc�

2

4
tense W pastpart
num W N
pers W P

3

5

and

VP ! AUX NP V

�
num W N
pers W P

� �
num W N
pers W P

�

Œcase W nom�

2

4
tense W pastpart
num W N
pers W P

3

5
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w1 w2 w3 w4 w5

Fig. 11.12 Cyclic dependencies in a graph

w1 w2 w3 w4 w5

Fig. 11.13 A nonconnected graph spanning sentence w1w2w3w4w5

When word order shows a high degree of freedom, the constituent structure
tends to become combinatorial making grammars resorting on it impracticable. For
this reason, many linguists, especially in Europe, believe dependency grammar to
be a more powerful formalism than constituency. On the contrary, constituency
is a property of English that possibly makes dependency less useful in this
language.

11.5.2 Properties of a Dependency Graph

After Tesnière, followers extended or modified the definition of dependency gram-
mars. This has led to variations from the original theory. However, some common
principles have emerged from the variety of definitions. We expose here features that
are the most widely accepted. They result in constraints on dependency graphs. As
for constituent grammars, dependency grammars also received formal mathematical
definitions.

The first principle is that dependency graphs are acyclic. This means that there is
no loop in the graph. Figure 11.12 shows two structures that are not acceptable.

The second principle is that dependency graphs should be connected. This
corresponds to the assumption that a sentence has one single head, the root, to
which all the other words are transitively connected. Figure 11.13 shows a sentence
w1w2w3w4w5 with two nonconnected subgraphs.

The third principle, called projectivity or adjacency, was described by Lecerf
and Ihm (1960), when they observed that the set of direct and indirect dependents
of a word formed a contiguous sequence – a segment. They defined projectivity as a
constraint on the graph where each pair of words .Dep;Head/, which are directly
connected, is only separated by direct or indirect dependents of Head or Dep. All
the words in-between are hence dependents of Head . This can be restated more
formally as: for all dependency relations in a sentence between a word wi and its
head whi , either direction, wi  whi , respectively whi ! wi , and 8wj , so that
i < j < hi , respectively hi < j < i , wj is transitively connected to whi . In a
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w1 w2 w3

Fig. 11.14 A nonprojective graph. The dependents of w3 do not form a contiguous sequence (After
Lecerf and Ihm (1960))

<root>

like

would do

What you me to ?

Fig. 11.15 Dependency graph of What would you like me to do? (After Järvinen and Tapanainen
(1997))

dependency graph, projectivity results in the absence of crossing arcs. Nonprojective
graphs are graphs that contain at least one nonprojective link (Fig. 11.14).

The projectivity principle is more controversial that the two first ones. Lecerf
and Ihm (1960) assumed that this property was universal. However, although less
frequent than projective examples, there are many cases of nonprojective sentences.
Figures 11.15 and 11.16 show two examples in English and Latin. The sentence
What would you like me to do? shows a dependency link between what and do.
The projectivity principle would require that would, you, and like are dependent of
do, which is untrue. The sentence is thus nonprojective. The Latin verse Ultima
Cumaei venit iam carminis aetas ‘The last era of the Cumean song has now arrived’
shows a dependency link between carminis and Cumaei, but neither venit nor iam
are dependent of carminis.

As shown by these examples, instead of considering projectivity as a universal
principle, we can better reformulate it as a frequent property that suffers exceptions.

11.6 Differences Between Tesnière’s Model and Current
Conventions in Dependency Analysis

Current conventions in dependency analysis are not completely unified and can
diverge significantly from Tesnière’s model. In this section, we discuss two features
that show a notable variation according to annotation styles and syntactic parsers,
namely the analysis of prepositions and auxiliaries, and coordination.
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<root>

venit
has come

iam
now

aetas
age

Ultima
Last

carminis
song

Cumaei
Cumean

Fig. 11.16 Dependency graph of Ultima Cumaei venit iam carminis aetas. ‘The last era of the
Cumean song has now arrived’ (Virgil, Eclogues IV.4) (After Covington (1990))

<root>

est donné
is given

le livre
the book

par Alfred
by Alfred

à Charles
to Charles

Fig. 11.17 Dependency graph of Le livre est donné par Alfred à Charles ‘The book is given by
Alfred to Charles’ (After Tesnière (1966), stemma 96)

11.6.1 Prepositions and Auxiliaries

In Tesnière’s stemmas (graphs), prepositions and auxiliaries are treated more or
less as sorts of morphemes of either their object noun or their main verb. Both the
preposition and its object noun and the auxiliary and its main verb are gathered in
the same node. Figure 11.17 shows an example of it with the sentence Le livre est
donné par Alfred à Charles ‘The book is given by Alfred to Charles,’ where the two
words of the verb group est donné ‘is given’ form a unique node. Tesnière also sets
some determiners – the definite articles – as part of their noun’s node, as the le livre
‘the book’ in Fig. 11.17.

In the current conventions, dependency graphs have only one word per node. This
means that for verb groups consisting of an auxiliary and a main verb, one of the two
words will be the head and the other one, a dependent. This then yields two possible
annotations. In addition, depending on the convention, the verb’s subject, object,
or adjuncts will either attach to the auxiliary or to the main verb. Figures 11.18
and 11.19 show four different possible graphs for the sentence I have eaten the
meal. As the annotation must be uniform across a given corpus, the annotators have
to decide on one convention. The choice is often arbitrary and is usually explained
in the annotation guidelines of each corpus.
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<root> <root>

eaten eaten

have meal I have meal

ehtehtI

Fig. 11.18 Dependency graph of I have eaten the meal with different conventions to relate an
auxiliary to its main verb. Here the main verb is the head of its auxiliary

<root> <root>

have have

I eaten I eaten meal

meal the

the

Fig. 11.19 Dependency graph of I have eaten the meal with different conventions to relate an
auxiliary to its main verb. Here the auxiliary is the head of its main verb

<root>

donne
gives

Alfred
livre
book

à cousine
to cousin

un
a

votre
your

jeune
young

Fig. 11.20 Dependency graph of Alfred donne un livre à votre jeune cousine ‘Alfred gives a book
to your young cousin.’ The preposition à and its object noun cousine are in the same node (After
Tesnière (1966), stemma 135)

For auxiliaries, we can justify Tesnière’s style by comparing the construction of
the future tense between French, on one side, and English and German, on the other
side. In French, future is rendered by specific suffixes that we have seen in Chap. 6.
In English and German, future uses an auxiliary, will or werden. This means that
with the current annotation conventions, for a same word, we will have two nodes
in English and German and only one in French. Using one node, as Tesnière did,
was a way to generalize the annotation and make it less dependent on the language.

A similar treatment applies to prepositions that Tesnière placed in the same node
as their object noun. Figure 11.20 shows the graph of the sentence Alfred donne
un livre à votre jeune cousine ‘Alfred gives a book to your young cousin.’ Current
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<root>

donne

Alfred livre à

un cousine

votre jeune

Fig. 11.21 Dependency
graph of Alfred donne un livre
à votre jeune cousine ‘Alfred
gives a book to your young
cousin’, where the preposition
is the head of its object noun

<root>

donne

Alfred livre cousine

un à votre jeune

Fig. 11.22 Dependency
graph of Alfred donne un livre
à votre jeune cousine ‘Alfred
gives a book to your young
cousin’, where the noun is the
head of its preposition

<root>

Bring
Bring

es
it

mir
to me

Fig. 11.23 Dependency
graph of the German sentence
Bring es mir ‘Bring it to me’

<root>

cedant
yield

arma
arms

togae
to the toga

Fig. 11.24 Dependency
graph of the Latin sentence
cedant arma togae ‘let arms
yield to the toga’, Cicero, De
Officiis, I, 22

annotation conventions would either make the preposition, here à ‘to’, the head
of the prepositional phrase (Fig. 11.21) or would use the main noun, here cousine
‘cousin’ (Fig. 11.22).

Tesnière’s stemma follows a tradition of German linguists, where prepositions
are considered as case markers. See Hjelmslev (1935–1937) for a discussion. In the
German sentence Bring es mir ‘Bring it to me’, the English phrase to me is rendered
by the German word mir, which corresponds to the word mich ‘me’ in the dative
case (Fig. 11.23). The preposition to would then act as an equivalent of the dative
case in this sentence. A similar example is given by the Latin sentence cedant arma
togae ‘let arms yield to the toga’ (let the military power give way to civilian power),
where the word togae is the inflection of toga, a clothing of ancient Rome, in the
dative case (Fig. 11.24).
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<root>

aime
loves

Alfred
père

father
et

and
mère

mother

son
his

sa
his

Fig. 11.25 Dependency graph of Alfred aime son père et sa mère ‘Alfred loves his father and his
mother’ (After Tesnière (1966), stemma 251)

<root>

achète
buys

Alfred
des livres

books
et

and
des cahiers
notebooks

neufs
new

Fig. 11.26 Dependency graph of Alfred achète des livres et des cahiers neufs ‘Alfred buys new
books and notebooks’ (After Tesnière (1966), stemma 255)

The decision on which style to adopt with auxiliaries as well as with prepositions
has sometimes practical consequences when parsing. In general, they are, however,
limited because the graphs are roughly equivalent. We summarize these conse-
quences here. As prepositions are very informative on which word the prepositional
phrase will attach, most annotation standards prefer to have them as the head of
their object noun. For auxiliaries, using the main verb as the head gives probably
more information on its dependents than auxiliaries, but this can create more
nonprojective links that are a problem to many parsers.

11.6.2 Coordination and Apposition

Differently to prepositions and auxiliaries, Tesnière’s treatment of coordination is
radically different from what can be found in the current annotation practices. In
his stemmas, Tesnière uses two different types of links to denote, respectively,
dependencies and conjunctions, where dependencies are directed arcs whereas
conjunctions are not. Figures 11.25 and 11.26 show the annotation of the sentences
Alfred aime son père et sa mère ‘Alfred loves his father and his mother’ and Alfred
achète des livres et des cahiers neufs ‘Alfred buys new books and notebooks.’ In the
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<root>

aime

Alfred père

son et mère

sa

Fig. 11.27 Dependency
graph of Alfred aime son père
et sa mère ‘Alfred loves his
father and his mother.’ The
first conjunct is the head of
the conjunction and the
second conjunct

<root>

aime

Alfred et

père mère

son sa

Fig. 11.28 Dependency
graph of Alfred aime son père
et sa mère ‘Alfred loves his
father and his mother.’ The
conjunction is the head of the
conjuncts

latter sentence, the adjective neufs ‘new’ has two heads, which departs from nearly
all current annotation conventions.

In current dependency analysis, there is no difference between the two types of
links that are merged as dependencies. One must then decide which word will be
the head in coordinated structures. As for prepositions and auxiliaries, two different
conventions are used that either make one of the conjuncts (Fig. 11.27) or the
conjunction (Fig. 11.28), the head of the coordinated structure.

From these two possibilities, choosing a conjunct as the head is probably a better
option because it exhibits the lexical links between the head and the dependent, as
in the sentence Alfred aime son père et sa mère (Fig. 11.27), between aime ‘loves’
and père ‘father’, unless the annotators wish to have a symmetrical presentation of
the graphs.

A last example of tricky representation of conjunctions is given by the sentence
L’un portait sa cuirasse, l’autre son bouclier ‘The one carried his cuirass, the other
his buckler’, where the verb is shared by the two members of the sentence: l’un
sa cuirasse and l’autre son bouclier. Tesnière represents the conjunction with a
duplicated verb node as shown in Fig. 11.29.

11.7 Valence

Tesnière and others stressed the importance of verbs in European languages: main
verbs have the highest position in the node hierarchy and are the structural centers of
sentences. All other types of phrases are organized around them. Hence verbs tend to
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<root>

portait
carried

L’un
The one

cuirasse
cuirass

l’autre
the other

bouclier
buckler

sa
his

son
his

Fig. 11.29 Dependency graph of L’un portait sa cuirasse, l’autre son bouclier ‘The one carried
his cuirass, the other his buckler.’ Chanson de Malbrough (After Tesnière (1966), stemma 273)

impose a certain structure to sentences. Connected to this observation, a major claim
of dependency grammars is that verbs have specific complement patterns. Verb
complements in a broad sense include groups that accompany it: subject, objects,
and adjuncts.

Different verbs combine differently with their complements. Certain com-
plements are essential to a verb, like its subject, most of the time. Essential
complements cannot be removed from the sentence without making it incorrect
or incomplete. Other complements are optional – or circumstantial – like adjuncts
that give information on space, time, or manner. Removing them would modify the
meaning of the sentence but would still result into something acceptable.

The valence is the number of essential complements of a verb. Using an analogy
with chemistry, valence is the attraction power of a verb for potential complements
and a specific property of each verb. Just as for chemical elements, the valence is
not a strict requirement but rather reflects a sort of most current, stable construction.
Common valence values are (Table 11.5):

• 0, for verbs describing weather, it’s raining, snowing
• 1, corresponding to the subject of intransitive verbs, he’s sleeping, vanishing
• 2, the subject and object of transitive verbs, she read this book.
• 3, the subject and two objects – direct and indirect objects – of ditransitive verbs,

Elke gave a book to Wolfgang, I said it to my sister.
• 4, the subject, object, source, and destination of certain verbs like move or shift:

I moved the car from here to the street (Heringer 1993).

From a quantitative definition: the number of slots or arguments attached to a
verb and filled with its essential complements, valence is also frequently extended to
cover qualitative aspects. It includes the grammatical form and the meaning of these
slots. Grammatical properties include possible prepositions and syntactic patterns
allowed to each complement of a verb: noun group, gerund, or infinitive. Many
dictionaries, especially learners’ dictionaries, itemize these patterns, also referred to
as subcategorization frames. Tables 11.6–11.8 summarize some verb–complement
structures.
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Table 11.5 Valence values and examples, where iobject denotes the indirect object

Valences Examples Frames

0 it’s raining raining Œ�
1 he’s sleeping sleeping Œsubject W he�

2 she read this book read

�
subject W she
object W book

�

3 Elke gave a book to Wolfgang gave

2

4
subject W Elke
object W book
iobject W Wolfgang

3

5

4 I moved the car from here to the street moved

2

6
6
4

subject W I
object W car
source W here
destination W street

3

7
7
5

Table 11.6 Verb–complement structures in English

Verb Complement structure Example

slept None (Intransitive) I slept
bring NP The waiter brought the meal
bring NPC toC NP The waiter brought the meal to the patron
depend onC NP It depends on the waiter
wait forC NPC toC VP I am waiting for the waiter to bring the meal
keep VP(ing) He kept working
know thatC S The waiter knows that the patron loves fish

Table 11.7 Verb–complement structures in French

Verb Complement structure Example

dormir None (Intransitive) J’ai dormi
apporter NP (Transitive) Le serveur a apporté un plat
apporter NPC àC NP Le serveur a apporté un plat au client
dépendre deC NP Ça dépend du serveur
attendre queC S(Subjunctive) Il a attendu que le serveur apporte le plat
continuer deC VP(INF) Il a continué de travailler
savoir queC S Le serveur sait que le client aime le poisson

Table 11.8 Verb–complement structure in German

Verb Complement structure Example

schlafen None (Intransitive) Ich habe geschlafen
bringen NP(Accusative) Der Ober hat eine Speise gebracht
bringen NP(Dative)C NP(Accusative) Der Ober hat dem Kunde eine Speise gebracht
abhängen vonC NP(Dative) Es hängt vom Ober ab
warten aufC S Er wartete auf dem Ober, die Speise zu bringen
fortsetzen NP Er hat die Arbeit fortgesetzt
wissen NP(Final verb) Der Ober weiß, das der Kunde Fisch liebt
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subject

object

The waiter brought the meal

Fig. 11.30 Dependency graph of the sentence The waiter brought the meal

subject
object

adjunct of manner

They played the game in a different way

Fig. 11.31 Dependency graph of the sentence They played the game in a different way (After
Järvinen and Tapanainen (1997))

In addition, typical complements of a verb often belong to broad semantic
categories. The verb read generally involves a person as a subject and a written
thing as an object. This extension of valence to the semantic domain is called the
selectional restrictions of a verb and is exemplified by the frame structure of gave:

gave

2

4
subject W PERSON
object W THING
iobject W PERSON

3

5

Chapter 15 gives more details on this aspect.

11.8 Dependencies and Functions

The dependency structure of a sentence – the stemma – generally reflects its
traditional syntactic representation, and therefore its links can be annotated with
function labels. In a simple sentence, the two main functions correspond to subject
and object relations that link noun groups to the sentence’s main verb (Fig. 11.30).

Adjuncts form another class of functions that modify the verb they are related
to. They include prepositional phrases whose head is set arbitrarily to the front
preposition (Fig. 11.31). In the same way, adjuncts include adverbs that modify a
verb (Fig. 11.32).

As for phrase categories in constituent grammars, a fixed set of function labels
is necessary to annotate stemmas. Tables 11.9 and 11.10 reproduce the set of
dependency functions proposed by Järvinen and Tapanainen (1997). Figures 11.33
and 11.34 show examples of annotations.
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subject
object

adjunct of time

John Smith the president of IBM announced his resignation yesterday

Fig. 11.32 Dependency graph of the sentence John Smith, the president of IBM, announced his
resignation yesterday (After Collins (1996))

Table 11.9 Main functions used by Järvinen and Tapanainen (1997) in their functional depen-
dency parser for English. Intranuclear links combine words inside a nœud (a constituent). Verb
complementation links a verb to its core complements. Determinative functions generally connect
determiners to nouns. Modifiers are pre- or postmodifiers of a noun, i.e., dependents of a noun
before or after it

Name Description Example

Main functions
main Main element, usually the verb He doesn’t know whether to send a

gift
qtag Question tag Let’s play another game, shall we?
Intranuclear links
v-ch Verb chain, connects elements in a

complex verb group
It may have been being examined

pcomp Prepositional complement, connects a
preposition to the noun group after
it.

They played the game
in a different way

phr Verb particle, connects a verb to a
particle or preposition.

He asked me who would look after the
baby

Verb complementation
subj Subject
obj Object I gave him my address
comp Subject complement, the second

argument of a copula.
It has become marginal

dat Indirect object Pauline gave it to Tom
oc Object complement His friends call him Ted
copred Copredicative We took a swim naked
voc Vocative Play it again, Sam
Determinative functions
qn Quantifier I want more money
det Determiner Other members will join. . .
neg Negator It is not coffee that I like, but tea
Modifiers
attr Attributive nominal Knowing no French, I couldn’t express

my thanks
mod Other postmodifiers The baby, Frances Bean, was. . .

The people on the bus were singing
ad Attributive adverbial She is more popular
Junctives
cc Coordination Two or more cars. . .
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Table 11.10 Adverbial functions used by Järvinen and Tapanainen (1997). Adverbial functions
connect adjuncts to their verb

Name Description Example

Adverbial functions
tmp Time It gives me very great pleasure this evening
dur Duration They stay in Italy all summer through

frq Frequency I often catch her playing
qua Quantity It weighed almost a ton
man Manner They will support him, however grudgingly. . .
loc Location I don’t know where to meet him
sou Source They traveled slowly from Hong Kong

goa Goal They moved into the kitchen every stick of furniture they
possessed

cnd Condition If I were leaving, you should know about it

meta Clause adverbial Will somebody please open the door?
cla Clause initial element In the view of the authorities, Jones was. . .

<root> The people on the bus were singing

main

v-ch

subj

det mod

pcomp

det

Fig. 11.33 Graph representing The people on the bus were singing (After Järvinen and Tapanainen
(1997))

<root> Anna , my best friend , was here last night

main

loc

tmp

det

subj

mod

mod
mod

attr attr

Fig. 11.34 Stemma representing Anna, my best friend, was here last night (After Järvinen and
Tapanainen (1997))

11.9 Corpus Annotation for Dependencies

The dependency graph of a sentence of n words is compactly expressed by the
sequence:

D D f< Head.1/;Rel.1/ >;< Head.2/;Rel.2/ >; : : : ; < Head.n/;Rel.n/ >g ;
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Words: <root> Bring the meal to the table
Index: 0 1 2 3 4 5 6

root

object

det

loc

pcomp

det

Fig. 11.35 Dependency graph of the sentence Bring the meal to the table. <root> is at index 0

Table 11.11 A representation of dependencies due to Lin (1995). Direction gives the direction of
the head. Symbol ‘>’ means that it is the first occurrence of the word to the right, ‘>>’ the second
one, etc. ‘*’ denotes the root of the sentence

Index Word Direction Head Head index Function

1 Bring * Root Main verb
2 the > meal 3 Determiner
3 meal < Bring 1 Object
4 to < Bring 1 Location
5 the > table 6 Determiner
6 table < to 4 Prepositional complement

which maps each word of index i to its head, Head.i/, with the relation Rel.i/.
The head is defined by its position index in the sentence. By convention, we set the
position of the root to index 0 in the sentence.

The representation of the sentence Bring the meal to the table, whose graph is
shown in Fig. 11.35 is:

D D f< 0; root >;< 3; det >;< 1; object >;< 1; loc >;< 6; det >;< 4;
pcomp >g;

where < 0; root > denotes the root of the dependency graph.
The sentence structure is probably easier to read if we use a tabular format.

Table 11.11 is a representation due to Lin (1995), where the words are in the
first column, one word per row. On each row, we indicate the head word and its
grammatical function in the last column.

11.9.1 Dependency Annotation Using XML

MALT XML is a representation format created to annotate the Talbanken corpus
in Swedish (Einarsson 1976; Nilsson et al. 2005). The corpus is organized as a
sequence of sentences, where each sentence consists of a sequence of words. The
annotation uses XML and has two main elements: sentence and word. The
sentence element has one main attribute, id, that denotes the sentence number, and
the word element has five attributes:
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• id, a unique, sequential identifier within the sentence.
• form, the word form.
• pos, the word part of speech followed by it grammatical features using the

Stockholm–Umeå tagset (Ejerhed et al. 1992), see Chap. 7, Sect. 7.5.3.
• head, the head position using id.
• deprel, the grammatical relation between the word and its head.

The representation is based on the assumption that each word has at most one
head. By convention, the word ids start at 1, and a root word has dummy head
located at index 0 with the ROOT grammatical function. A dependency tree for the
Swedish sentence Dessutom höjs åldersgränsen till 18 år ‘In addition, the age limit
is raised to 18’ can be represented as follows:

<sentence id="24">
<word id="1" form="Dessutom" postag="ab" head="2"
deprel="ADV"/>

<word id="2" form="höjs" postag="vb.prs.sfo"
head="0" deprel=""/>

<word id="3" form="åldergränsen"
postag="nn.utr.sin.def.nom" head="2"
deprel="SUB"/>

<word id="4" form="till" postag="pp" head="2"
deprel="ADV"/>

<word id="5" form="18" postag="rg.nom" head="6"
deprel="DET"/>

<word id="6" form="år" postag="nn.neu.plu.ind.nom"
head="4" deprel="PR"/>

<word id="7" form="." postag="mad" head="2"
deprel="IP"/>

</sentence>

11.9.2 The CoNLL Annotation

In 2006 and 2007, the conferences on natural language learning (CoNLL) organized
shared tasks to measure the performance of dependency parsers. They used a tabular
annotation that is now a widely accepted standard in the field (Buchholz and Marsi
2006).

In the corpora using this annotation, the rows represent sequential tokens, one
token per row, and the columns correspond to the token annotation. Each sentence
is followed by one single blank line, and the columns are separated by single
tabulations. The encoding format is UTF-8. Table 11.12 shows a description of the
ten columns, called fields in the CoNLL tasks and Tables 11.13, and 11.14 show
annotation examples in German and Italian.
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Table 11.12 The CoNLL annotation scheme with the column names and descriptions. When
unavailable in the corpus, the cell is replaced with an underscore character (Buchholz and Marsi
2006). The tagsets for parts of speech, morphological features, and functions are all language
dependent

# Name Description

1 ID Token index, starting at 1 for each sentence.
2 FORM Word form or punctuation.
3 LEMMA Lemma or stem.
4 CPOSTAG Part-of-speech tag.
5 POSTAG Fine-grained part-of-speech tag.
6 FEATS Unordered set of morphological features separated by a vertical bar (|).
7 HEAD Head of the current token, which is either a value of ID or zero (0) if this is

the root.
8 DEPREL Dependency relation to the HEAD.
9 PHEAD Projective head of current token, which is either a value of ID or zero (0). The

dependency structure resulting from the PHEAD column is guaranteed to
be projective, when available in the corpus.

10 PDEPREL Dependency relation to the PHEAD.

Table 11.13 Dependency annotation of the German sentence Um ihn dennoch anzuschieben,
wollte sich die Privatwirtschaft erstmals “in erheblichem Umfang an den Risiken” der Investition
beteiligen ‘Nevertheless in order to push it, the private sector wanted to take part for the first
time “to a substantial risk extension” in the investment,’ which exhibits a nonprojective structure.
Example from CoNLL-X (Brants et al. 2002). In this corpus, the lemmas as well as the features
are not available

1 Um _ KOUI KOUI _ 4 CP 4 CP
2 ihn _ PPER PPER _ 4 OA 4 OA
3 dennoch _ ADV ADV _ 4 MO 4 MO
4 anzuschieben _ VVIZU VVIZU _ 6 MO 6 MO
5 , _ $, $, _ 6 PUNC 6 PUNC
6 wollte _ VMFIN VMFIN _ 0 ROOT 0 ROOT
7 sich _ PRF PRF _ 21 OA 6 OA
8 die _ ART ART _ 9 NK 9 NK
9 Privatwirtschaft _ NN NN _ 6 SB 6 SB
10 erstmals _ ADV ADV _ 6 MO 6 MO
11 “ _ $( $( _ 6 PUNC 6 PUNC
12 in _ APPR APPR _ 21 MO 21 MO
13 erheblichem _ ADJA ADJA _ 12 NK 12 NK
14 Umfang _ NN NN _ 12 NK 12 NK
15 an _ APPR APPR _ 21 OP 21 OP
16 den _ ART ART _ 15 NK 15 NK
17 Risiken _ NN NN _ 15 NK 15 NK
18 ” _ $( $( _ 15 PUNC 15 PUNC
19 der _ ART ART _ 20 NK 20 NK
20 Investition _ NN NN _ 15 AG 15 AG
21 beteiligen _ VVINF VVINF _ 6 OC 6 OC
22 . _ $. $. _ 6 PUNC 6 PUNC
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Table 11.14 Dependency annotation of the Italian sentence Non ci rendiamo conto del lavoro
psicologico, dei prodigi di equilibrio, di diplomazia che fanno per noi ‘We do not realize the
psychological work, the prodigious balancing acts, the diplomacy, they do for us.’ Example from
CoNLL 2007 (Montemagni et al. 2003). In this corpus, the projectivized structure is not available

1 Non non B B _ 3 mod _ _
2 ci ci P PQ gen=N|num=P|per=1 3 clit _ _
3 rendiamo rendere V V num=P|per=1|mod=I|tmp=P 0 ROOT _ _
4 conto conto S S gen=M|num=S 3 ogg_d _ _
5 del di E E gen=M|num=S 4 mod _ _
6 lavoro lavoro S S gen=M|num=S 5 prep _ _
7 psicologico psicologico A A gen=M|num=S 6 mod _ _
8 , , PU PU _ 5 con _ _
9 dei di E E gen=M|num=P 5 cong _ _
10 prodigi prodigio S S gen=M|num=P 9 prep _ _
11 di di E E _ 10 mod _ _
12 equilibrio equilibrio S S gen=M|num=S 11 prep _ _
13 , , PU PU _ 11 con _ _
14 di di E E _ 11 cong _ _
15 diplomazia diplomazia S S gen=F|num=S 14 prep _ _
16 che che P PR gen=N|num=N 17 ogg_d _ _
17 fanno fare V V num=P|per=3|mod=I|tmp=P 6 mod_rel _ _
18 per per E E _ 17 mod _ _
19 noi noi P PQ gen=N|num=P|per=1 18 prep _ _
20 . . PU PU _ 19 punc _ _

11.10 Projectivization

In Sect. 11.5.2, we introduced the projective property of dependency graphs.
Although nonprojectivity is more an exception than the rule, recent corpus studies
showed that nonprojective links were from 0.1 to 5.4 % of the total number of
arcs, depending on the language (Buchholz and Marsi 2006). This can seem
negligible. However, when we consider the whole graph instead, this signifies that
in some languages like Dutch, up to a third of the sentences contain one or more
nonprojective links.

This has serious consequences as some parsers only accept projective structures.
It is therefore important to be able to identify nonprojective links and sentences,
which we do in the next section with a Prolog program. This would not be a big
gain if we were not able to propose a solution for them. In fact, it is possible to
approximate nonprojective structures with a projective equivalent, which allows
parsers to analyze them. It is also possible to mark “projectivized” graphs with
backtraces and retrieve the nonprojective originals from them. Finally, it can be
demonstrated that projective dependency graphs and constituent parse trees are
weakly equivalent.
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11.10.1 A Prolog Program to Identify Nonprojective Arcs

We saw that projective arcs corresponded to contiguous segments (Fig. 11.14). This
means that inside a segment defined by wi , a word of index i , and whi , its head
of index hi , all the words are transitively connected to whi . The identification of
nonprojective arcs is carried out using the negation of this property. A dependency
arc .i; hi / is nonprojective if there is at least one word wj which has its index inside
the range i::hi and none of this word’s transitive heads is whi .

Here is the Prolog program that implements the definition. We encode dependen-
cies as a list of words w/1 with a subset of features taken from the CoNLL format:

w([id=ID, form=FORM, head=HEAD, deprel=DEPREL])

where id is the position of the word, and head, the position of its head.

% nonproj_links(+DepGraph, -NPL) returns
nonprojective links.
% DepGraph is the set of dependency relations and NPL,
% the nonprojective links.

nonproj_links(DepGraph, NPL) :-
nonproj_links(DepGraph, DepGraph, NPL).

nonproj_links(_, [], []).
nonproj_links(DepGraph, [Arc | T], NPL) :-
range(Arc, MIN, MAX),
proj_in_range(DepGraph, Arc, MIN, MAX),
!,
nonproj_links(DepGraph, T, NPL).

nonproj_links(DepGraph, [Arc | T], [Arc | NPL]) :-
!,
nonproj_links(DepGraph, T, NPL).

% range(+Arc, -MIN, +MAX) finds the range of Arc
range(w(Arc), MIN, MAX) :-
member(id=DepPos, Arc),
member(head=HeadPos, Arc),
MIN is min(DepPos, HeadPos),
MAX is max(DepPos, HeadPos).

% proj_in_range(+DepGraph, +Arc, +MIN, +MAX) succeeds
if all
% the arcs inside Arc are transitively connected to
its head
% or fails otherwise
proj_in_range(DepGraph, Arc, MIN, MAX) :-
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findall(
w([id=DepPos, form=Dep, head=HeadPos]),
(

member(w([id=DepPos, form=Dep, head=HeadPos
| _]), DepGraph),
DepPos > MIN,
DepPos < MAX

),
InRange),

head_chains(DepGraph, InRange, Arc).

% head_chains(+DepGraph, +ArcsInRange, +Arc) succeeds
% if all the arcs in ArcsInRange are transitively
% connected to Arc
head_chains(_, [], _).
head_chains(DepGraph, [w([id=DepPosIR, form=DepIR,

head=HeadPosIR]) | T],
w([id=DepPos, form=Dep, head=HeadPos | _])) :-

!,
chain(DepGraph,

w([id=DepPosIR, form=DepIR, head=HeadPosIR]),
w([id=HeadPos, form=_, head=_])),

head_chains(DepGraph, T,
w([id=DepPos, form=Dep, head=HeadPos | _])).

% chains(+DepGraph, +Arc, +Head) succeeds
% if Arc is transitively connected to Head
chain(_, w([id=_, form=_, head=HeadPos]),

w([id=HeadPos, form=_, head=_])) :- !.
chain(DepGraph, w([id=_, form=_, head=HeadPosIR]),

w([id=HeadPos, form=_, head=_])) :-
member(

w([id=HeadPosIR, form=HeadIR, head=HHPosIR
| _]), DepGraph),

chain(DepGraph,
w([id=HeadPosIR, form=HeadIR, head=HHPosIR]),
w([id=HeadPos, form=_, head=_])).

Using our representation, we can encode the dependencies shown in Fig. 11.10
and Table 11.13, and check whether they are projective or not. The deprel_1 fact
represents the first graph:

deprel_1([w([id=1, form=the, head=2, deprel=det]),
w([id=2, form=waiter, head=3, deprel=sub]),
w([id=3, form=brought, head=0, deprel=root]),
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w([id=4, form=the, head=5, deprel=det]),
w([id=5, form=meal, head=3, deprel=obj])]).

for which the program returns an empty list of nonprojective links, meaning that the
graph is projective:

?- deprel_1(L), nonproj_links(L, NONPROJ).
L = ...
NONPROJ = []

The second one is nonprojective, and the program returns the link that breaks the
projectivity:

deprel_2([w([id=1, form=’Um’, head=4, deprel=’CP’]),
w([id=2, form=ihn, head=4, deprel=’OA’]),
w([id=3, form=dennoch, head=4, deprel=’MO’]),
w([id=4, form=anzuschieben, head=6, deprel=’MO’]),
w([id=5, form=’,’, head=6, deprel=’PUNC’]),
w([id=6, form=wollte, head=0, deprel=’ROOT’]),
w([id=7, form=sich, head=21, deprel=’OA’]),
w([id=8, form=die, head=9, deprel=’NK’]),
w([id=9, form=’Privatwirtschaft’, head=6,
deprel=’SB’]),
w([id=10, form=erstmals, head=6, deprel=’MO’]),
w([id=11, form=’‘‘’, head=6, deprel=’PUNC’]),
w([id=12, form=in, head=21, deprel=’MO’]),
w([id=13, form=erheblichem, head=12, deprel=’NK’]),
w([id=14, form=’Umfang’, head=12, deprel=’NK’]),
w([id=15, form=an, head=21, deprel=’OP’]),
w([id=16, form=den, head=15, deprel=’15’]),
w([id=17, form=’Risiken’, head=15, deprel=’NK’]),
w([id=18, form=’’’’, head=15, deprel=’PUNC’]),
w([id=19, form=der, head=20, deprel=’NK’]),
w([id=20, form=’Investition’, head=15,
deprel=’AG’]),
w([id=21, form=beteiligen, head=6, deprel=’OC’]),
w([id=22, form=’.’, head=6, deprel=’PUNC’])]).

?- deprel_2(L), nonproj_links(L, NPROJ).
L = ...
NPROJ = [w([id=7, form=sich, head=21, deprel=’OA’])]
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11.10.2 A Method to Projectivize Links

Kunze (1967) proposed a simple method to build projective dependency trees from
trees containing nonprojective links. The idea is to replace all the nonprojective links
.i; hi / between a word i and its head hi with .i; hhi /, where hhi is the head of hi . As
a graphical analogy, we can say that we move up the head of a nonprojective link to
its head’s head. In Fig. 11.15, we would replace

w([id=1, form=’What’, head=7])

with

w([id=1, form=’What’, head=4])

and in Table 11.13,

w([id=7, form=sich, head=21]),

with

w([id=7, form=sich, head=6]),

To build a complete projective tree, we can proceed iteratively. We replace the
nonprojective links with projective equivalents, one at a time, until we obtain a
projective tree. As there can be two or more nonprojective links in a tree, a simple
operation ordering is to always select the nonprojective link that has the smallest
span. This algorithm is guaranteed to converge.

Once we have projectivized a graph, it is possible to carry out the reverse
operation to recover the original structure. To do this, we can keep the list of
operations as backpointers. Another idea that is used in parsing is to replace the arc
labels – the grammatical functions – that have been modified with traces indicating
the way up and the way down (Nivre and Nilsson 2005).

In Table 11.13, the two predicates:

w([id=7, form=sich, head=21, deprel=’OA’]),
w([id=21, form=beteiligen, head=6, deprel=’OC’]),

where ’OA’ and ’OC’ are the original functions, would be replaced, respectively,
with

w([id=7, form=sich, head=6, deprel=’OA+OC’]),

for the link that is moved up and with

w([id=21, form=beteiligen, head=6, deprel=’OC-’]),

for the path that was used by the movement. In the new label ’OA+OC’, the + sign
indicates that this link was moved, and the suffix OC, the path it used. The change
from OC to OC- is to help disambiguation when a head has two or more dependents
with the same label.
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11.11 From Constituency to Dependency

In spite of their different graphical representation, constituency and dependency are
related formalisms, and it is possible to some extent to convert constituent parse
trees into dependency trees. The reverse is also true, at least partly: unlabeled
projective dependency trees have a constituent equivalent. We will now review
techniques to convert constituents into dependencies.

11.11.1 Transforming a Constituent Parse Tree into
Dependencies

The procedure to convert constituents into dependencies is based on the idea of
assigning each constituent in the parse tree a unique head selected amongst the
constituent’s children (Jensen et al. 1993). In the grammar below, we indicate the
heads in the right-hand side of the rules with an asterisk:

s --> np, vp*
np --> det, noun*
vp --> verb*, np

By following the child–parent links from the word level up to the root of the
tree, we can label every constituent with a head word. The heads of the respective
constituents can then be used to create dependency trees. Our small grammar would
select the noun as the lexical head of a noun phrase np, the verb as the head of a
verb phrase vp, and the head of vp as the head of the sentence s.

As an application example, let us consider the sentence The boy hit the ball,
shown in Chap. 1. Using the rules above and the parse tree in Fig. 1.4, we can
establish that boy and ball are the respective heads of the in the boy and the in
the ball, that hit is the head of the second noun phrase, and hence the head of ball,
and finally using the sentence rule s, that hit is also the head of the first noun phrase,
i.e., of boy and the root of the sentence. We have thus recreated the dependency tree
shown in Fig. 1.7.

In most constituent treebanks, however, the head is not indicated and the
conversion is not straightforward. Magerman (1994) and Collins (1999) designed
rules to create dependencies out of the Penn treebank. To do this, they singled out
one symbol in the right-hand side of each phrase-structure rule to be the head of
the remaining symbols. Table 11.15 is an example of such rules to convert the Penn
treebank constituents into dependencies. The rules scan the constituent daughters
from left to right (!) or from right to left ( ) with a priority ordering.
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Table 11.15 Head percolation rules (After Johansson and Nugues (2007a))

ADJP  NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT FW
RBR RBS SBAR RB

ADVP ! RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN
CONJP ! CC RB IN
FRAG ! (NN* | NP) W* SBAR (PP | IN) (ADJP | JJ) ADVP RB
INTJ  **
LST ! LS :
NAC  NN* NP NAC EX $ CD QP PRP VBG JJ JJS JJR ADJP FW
NP NX  (NN* | NX) JJR CD JJ JJS RB QP NP-" NP
PP WHPP ! (first non-punctuation after preposition)
PRN ! (first non-punctuation)
PRT ! RP
QP  $ IN NNS NN JJ RB DT CD NCD QP JJR JJS
RRC ! VP NP ADVP ADJP PP
S  VP *-PRD S SBAR ADJP UCP NP
SBAR  S SQ SINV SBAR FRAG IN DT
SBARQ  SQ S SINV SBARQ FRAG
SINV  VBZ VBD VBP VB MD VP *-PRD S SINV ADJP NP
SQ  VBZ VBD VBP VB MD *-PRD VP SQ
UCP ! **
VP ! VBD VBN MD VBZ VB VBG VBP VP *-PRD ADJP NN NNS NP
WHADJP  CC WRB JJ ADJP
WHADVP ! CC WRB
WHNP  NN* WDT WP WP$ WHADJP WHPP WHNP
X ! **

11.11.2 Trace Revisited

As the constituent model does not easily render what corresponds to nonprojective
links in dependency grammars, the Penn Treebank (Marcus et al. 1993) uses two
main workarounds to encode them. The first one is to create specific categories
where nonprojectivity is most frequent in English, all sorts of wh-phrases, to isolate
it from the other phrase categories. It dedicates as many as five categories for
this, more than a third of all its constituent categories: SBARQ for direct questions
introduced by wh-words or wh-phrases, SQ for subconstituents of SBARQ, WHADVP
for wh-adverb phrases, WHNP for wh-noun phrases, and finally WHPP for wh-
prepositional phrases.

The second workaround is to introduce null elements and pseudo-attachments
(Marcus et al. 1994). The traces denoted T are one of them. They mark the position
where moved wh-constituents are interpreted in a parse tree. Figure 11.36 shows an
example of such traces. Doing so, the Penn Treebank embeds dependencies into its
constituents forming a sort of dual formalism.

A direct representation of the traces in a dependency graph is probably a more
intuitive solution. Table 11.16 and Fig. 11.37 show how they can be converted into a
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Fig. 11.36 Constituent representation of the sentence Why, they wonder, should it belong to the
EC? in the Penn treebank (Marcus et al. 1993)

Table 11.16 A nonprojective representation of the sentence Why, they wonder, should it belong to
the EC? Projective heads are given in the fifth column (After Johansson and Nugues (2007a))

Index Word Head Function Projective head

1 Why 8 PRP 6
2 , 4 P 4
3 they 4 SBJ 4
4 wonder 6 PRN 6
5 , 4 P 4
6 should 0 ROOT-SBARQ 0
7 it 6 SBJ 6
8 belong 6 VC 6
9 to 11 PMOD 11
10 the 11 NMOD 11
11 EC 8 CLR 8
12 ? 6 P 6

Why , they wonder , should it belong to the EC ?
1 2 3 4 5 6 7 8 9 10 11 12

<root>

Fig. 11.37 Nonprojectivity in the Penn treebank with the sentence Why, they wonder, should it
belong to the EC? (After Johansson and Nugues (2007a))
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dependency graph by relinking them to their interpretations (Johansson and Nugues
2007a). Links are created from the heads of the traces, here wonder for *T*-1
and belong for *T*-2 to the heads of the pointed constituents unless the relinking
causes the dependency graph to become cyclic. This explains the arc between belong
and Why, while a potential cycle prevents a link from wonder.

11.12 Further Reading

Literature on Chomsky’s works and generative transformational grammar is un-
countable. Most linguistics textbooks in the English-speaking world retain this
approach. Recent accounts include Radford (1988), Ruwet (1970), Haegeman and
Gueron (1999), Lasnik et al. (2000).

Principles of dependency grammars stem from an old tradition dating back to
the ancient Greek and Latin grammar schools. Tesnière (1966) proposes a modern
formulation. Heringer (1993) provides a short and excellent summary of his work.
Other accounts include Lecerf (1960a,b), Hays (1964), Kunze (1975), and Mel’čuk
(1988). For an early definition and example of parsing as the analysis of bilexical
relations, see Domergue (1782, pp. 205–206).

Often associated to dependencies, the concept of grammatical function is
more recent. Cull introduced this term in English in 1840 and the compléments
circonstantiels ‘grammatical adjuncts’ found their place in the high school grammar
books in France from the 1850s (Chervel 1979). The adjunct categorization was
then based on rhetorical criteria. As of today, the definition of a comprehensive
annotation set for grammatical functions is still a matter of debate.

Within the work of Tesnière, valence has been a very productive concept,
although it has not always been explicitly acknowledged. It provides theoretical
grounds for verb subcategorization, cases, and selectional restrictions that we find
in other parts of this book (Chap. 15). In addition to verbs, valence can apply to
adjectives and nouns.

Unification-based grammars were born when Alain Colmerauer designed the
systèmes-Q (1970) and later the Prolog language with his colleagues. Systèmes-Q
have been applied in the MÉTÉO system to translate weather reports from English
to French (TAUM 1971). MÉTÉO is still in use today. Prolog is derived from them
and was also implemented for a project aimed at dialogue and language analysis
(Colmerauer et al. 1972). For a review of its history, see Colmerauer and Roussel
(1996).

Unification-based grammars have been used in many syntactic theories. The
oldest and probably the simplest example is that of Definite Clause Grammars
(Colmerauer 1978; Pereira and Warren 1980). Since then there have been many
followers. The most notable include head-driven phrase structure grammars
(Pollard and Sag 1994) and lexical function grammars (Kaplan and Bresnan 1982).
Unification-based grammars do not depend on a specific syntactic formalism. They
are merely a tool that we used with PS rules in this chapter. Dependency grammars
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can also make use of them. Dependency unification grammar (Hellwig 1980, 1986)
and unification dependency grammar (Maxwell 1995) are examples. Accounts of
unification formalisms in French include Abeillé (1993) and in German, Müller
(1999).

Exercises

11.1. Describe step-by-step how the Prolog search mechanism would generate the
sentence the boy hit the ball, and compare this trace with that of Fig. 11.1.

11.2. Write a Prolog program that converts a DCG grammar into its Chomsky
normal form equivalent.

11.3. Write a grammar using the DCG notation to analyze simple sentences: a noun
phrase and a verb phrase, where the verb phrase is either a verb or a verb and an
object. Write transformation rules that map declarative sentences into their negation.

11.4. Complement PS rules of Exercise 11.3 to parse a possible prepositional
phrase within the verb phrase. Write transformation rules that carry out a topicaliza-
tion of the prepositional phrase.

11.5. Write DCG rules using the gap threading technique to handle sentences and
questions of Table 11.2.

11.6. Find a text of 10–20 lines in a language you know and bracket the constituents
with the phrase labels of Table 11.3.

11.7. Unify

�
gen W fem
case W acc

�

and

�
gen W fem
num W pl

�

,

2

4
gen W fem
num W pl
case W acc

3

5 and

�
gen W fem
num W sg

�

,

2

4
gen W masc
num W X
case W nom

3

5 and

2

4
gen W masc
num W pl
case W Y

3

5 when possible.

11.8. Unify

�
f1 W v1
f2 W X

�

and

2

4
f1 W v5
f2 W

�
f3 W v3
f4 W v4

�

3

5,

�
f1 W v1
f2 W X

�

and

2

4
f1 W Y
f2 W

�
f3 W v3
f4 W Y

�

3

5,

�
f1 W v1
f2 W X

�

and

2

4
f5 W X
f2 W Y
f1 W Y

3

5.

11.9. Using the unification grammar formalism, write rules describing the noun
group in a language you know.



Exercises 369

11.10. Write a norm/2 predicate that transforms complete lists into incomplete
ones as, for example, [a, b, [c, d], e] into [a, b, [c, d | _],
e, | _].

11.11. Find a text of approximately ten lines in a language you know and draw the
stemmas (dependency links).

11.12. Draw the stemmas of the sentences in Tables 11.13 and 11.14.

11.13. Annotate the stemmas of the sentences in Tables 11.13 and 11.14 with their
corresponding functions.

11.14. Use the program in Sect. 11.10 and complete it to projectivize the graphs.

11.15. Write a program to convert constituents into dependency graphs.

11.16. Compute the theoretical number of dependency graphs of sentences of seven
words, given that a word has only one head. Out of this set, compute the number of
graphs that are projective.



Chapter 12
Constituent Parsing

12.1 Introduction

In the previous chapters, we used Prolog’s built-in search mechanism and the
DCG notation to parse sentences and constituents. This search mechanism has
drawbacks, however. To name some of them: its depth-first strategy does not handle
left-recursive rules well, and backtracking is sometimes inefficient. In addition, if
DCGs are appropriate to describe constituents, we haven’t seen means to parse
dependencies until now.

This chapter describes algorithms and data structures to improve the efficiency of
constituent parsing. It begins with a basic bottom-up algorithm and then introduces
techniques using well-formed substring tables or charts. Charts are arrays to store
parsing results and hypotheses. They are popular parsing devices because of some
superior features: charts accept left-recursive rules, avoid backtracking, and can
work with a top-down or bottom-up control.

Frequently, sentences show an ambiguous structure – exhibit more than one
possible parse. Search strategies, either bottom-up or top-down, produce solutions
blindly; the ordering of the resulting parse trees being tied to that of the rules.
For most cases, however, sentences are not ambiguous to human readers who
retain one single sensible analysis. To come to a similar result, parsers require
a disambiguation mechanism.

Early disambiguation methods implemented common sense rules to assess parse
trees and to discard implausible ones. Current solutions, inspired from speech recog-
nition and part-of-speech tagging, use statistical or machine-learning techniques.
They enable us to properly parse most ambiguous sentences. Recent approaches
based on dependencies yield a very high rate of performance for unrestricted
texts. This chapter outlines symbolic techniques as well as probabilistic methods
applicable to constituency grammars. The next chapter will introduce dependency
parsing.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__12, © Springer-Verlag Berlin Heidelberg 2014
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S

NP V P

Det VerbNoun

The waiter brought the meal

Det Noun

NP

Start

Fig. 12.1 Bottom-up
parsing. The parser starts with
the words and builds the
syntactic structure up to the
top node

12.2 Bottom-Up Parsing

12.2.1 The Shift–Reduce Algorithm

We saw in Chap. 9 that left-recursive rules may cause top-down parsing to loop
infinitely. Left-recursion is used to express structures such as noun phrases modified
by a prepositional phrase, or conjunctions of noun phrases as, for example,

np --> np, pp.
np --> np, conj, np.

It is possible to eliminate left-recursive rules using auxiliary symbols and rules.
However, this results in larger grammars that are less regular. In addition, parsing
with these new rules yields slightly different syntactic trees, which are often less
natural.

A common remedy to handle left-recursive rules is to run them with a bottom-
up search strategy. Instead of expanding constituents from the top node, a bottom-
up parser starts from the words. It looks up their parts of speech, builds partial
structures out of them, and goes on from partial structure to partial structure until it
reaches the top node. Figure 12.1 shows the construction order of partial structures
that goes from the annotation of the as a determiner up to the root s.

The shift and reduce algorithm is probably the simplest way to implement
bottom-up parsing. As input, it uses two arguments: the list of words to parse and a
symbol, s, np, for example, representing the parsing goal. The algorithm gradually
reduces words, parts of speech, and phrase categories until it reaches the top node
symbol – the parsing goal. The algorithm consists of a two-step loop:

1. Shift a word from the phrase or sentence to parse onto a stack.
2. Apply a sequence of grammar rules to reduce elements of the stack.

This loop is repeated until there are no more words in the list and the stack is reduced
to the parsing goal. Table 12.1 shows an example of shift and reduce operations
applied to the sentence The waiter brought the meal.
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Table 12.1 Steps of the shift–reduce algorithm to parse the waiter brought the meal. At iteration 7,
a further reduction of the stack yields [s], which is the parsing goal. However, since there are
remaining words in the input list, the algorithm fails and backtracks to produce the next states of
the stack. The table does not show the exploration of paths leading to a failure

It. Stack S/R Word list

0 [the, waiter, brought, the, meal]
1 [the] Shift [waiter, brought, the, meal]
2 [det] Reduce [waiter, brought, the, meal]
3 [det, waiter] Shift [brought, the, meal]
4 [det, noun] Reduce [brought, the, meal]
5 [np] Reduce [brought, the, meal]
6 [np, brought] Shift [the, meal]
7 [np, v] Reduce [the, meal]
8 [np, v, the] Shift [meal]
9 [np, v, det] Reduce [meal]
10 [np, v, det, meal] Shift []
11 [np, v, det, n] Reduce []
12 [np, v, np] Reduce []
13 [np, vp] Reduce []
14 [s] Reduce []

12.2.2 Implementing Shift–Reduce Parsing in Prolog

We implement both arguments of the shift_reduce/2 predicate as lists: the
words to parse and the symbol – or symbols – corresponding to the parsing goal.
We represent grammar rules and the vocabulary as facts, as shown in Table 12.2.

Using this grammar, shift_reduce should accept the following queries:

?- shift_reduce([the, waiter, brought, the, meal],
[s]).

true

?- shift_reduce([the, waiter, brought, the, meal],
[np, vp]).

true

?- shift_reduce([the, waiter, slept], X).
X = [s];
X = [np, vp];
X = [np, v];
...

To implement this predicate, we need an auxiliary stack to hold words and
categories where we carry out the reduction step. This initial value of the stack
is an empty list
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Table 12.2 Rules and vocabulary of a shift–reduce parser

Rules Vocabulary

rule(s, [np, vp]). word(d, [the]). word(v, [brought]).
rule(np, [d, n]). word(n, [waiter]). word(v, [slept]).
rule(vp, [v]). word(n, [meal]).
rule(vp, [v, np]).

% shift_reduce(+Sentence, ?Category)
shift_reduce(Sentence, Category) :-
shift_reduce(Sentence, [], Category).

Then shift_reduce/3 uses two predicates, shift/4 and reduce/2.
It repeats the reduction recursively until it no longer finds a reduction. It then
applies shift. The parsing process succeeds when the sentence is an empty list
and Stack is reduced to the parsing goal:

% shift_reduce(+Sentence, +Stack, ?Category)
shift_reduce([], Category, Category).
shift_reduce(Sentence, Stack, Category) :-
reduce(Stack, ReducedStack),
write(’Reduce: ’), write(ReducedStack), nl,
shift_reduce(Sentence, ReducedStack, Category).

shift_reduce(Sentence, Stack, Category) :-
shift(Sentence, Stack, NewSentence, NewStack),
write(’Shift: ’), write(NewStack), nl,
shift_reduce(NewSentence, NewStack, Category).

shift/4 removes the first word from the word list currently being parsed and
puts it on the top the stack – here appends it to the end of the Stack list – to produce
a NewStack.

% shift(+Sentence, +Stack, -NewSentence, -NewStack)
shift([First | Rest], Stack, Rest, NewStack) :-
append(Stack, [First], NewStack).

reduce/2 simplifies the Stack. It searches the rules that match a sequence of
symbols in the stack using match_rule/2 and match_word/2.

%reduce(+Stack, -NewStack)
reduce(Stack, NewStack) :-
match_rule(Stack, NewStack).

reduce(Stack, NewStack) :-
match_word(Stack, NewStack).

match_rule/2 attempts to find the Expansion of a rule on the top of
Stack, and replaces it with Head to produce ReducedStack:
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match_rule(Stack, ReducedStack) :-
rule(Head, Expansion),
append(StackBottom, Expansion, Stack),
append(StackBottom, [Head], ReducedStack).

match_word/2 is similar:

match_word(Stack, NewStack) :-
append(StackBottom, Word, Stack),
word(POS, Word),
append(StackBottom, [POS], NewStack).

The stack management of this program is not efficient because shift/4,
match_word/2, and match_rule/2 have to traverse it using append/3. It is
possible to avoid the traversal using a reversed stack. For an optimization, see
Exercise 12.1.

12.2.3 Differences Between Bottom-Up and Top-Down Parsing

Top-down and bottom-up strategies are fundamental approaches to parsing. The
top-down exploration is probably more intuitive from the viewpoint of a Prolog
programmer, at least for a neophyte. Once a grammar is written, Prolog relies on its
built-in search mechanism to parse a sentence. On the contrary, bottom-up parsing
requires additional code and may not be as natural.

Whatever the parsing strategy, phrase-structure rule grammars are written
roughly in the same way. There are a couple of slight differences, however. As
we saw, bottom-up parsing can handle left-recursive rules such as those describing
conjunctions. In contrast, top-down parsers can handle null constituents like

det --> [].

Bottom-up parsers could not use such a rule with an empty symbol because they are
able to process actual words only.

Both parsing methods may fail to find a solution, but in different ways. Top-down
parsing explores all the grammar rules starting from the initial symbol, whatever
the actual tokens. It leads to the expansion of trees that have no chance to yield
any solution since they will not match the input words. On the contrary, bottom-
up parsing starts with the words and hence builds trees that conform to the input.
However, a bottom-up analysis annotates the input words with every possible part
of speech, and generates the corresponding partial trees, even if they have no chance
to result into a sentence.

For both strategies, Prolog produces a solution – whenever it exists – using
backtracking. When Prolog has found a dead-end path, whether in the bottom-up or
the top-down mode, it selects another path and explores this path until it completes
the parse or fails. Backtracking may repeat a same operation since Prolog does not
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store intermediate or partial solutions. We will see in the next section a parsing
technique that stores incomplete solutions using a table or a chart and thus avoids
parsing repetitions.

12.3 Chart Parsing

12.3.1 Backtracking and Efficiency

Backtracking is an elegant and simple mechanism, but it frequently leads to
reparsing a same substructure to produce the final result. Consider the noun phrase
The meal of the day and DCG rules in Fig. 12.2 to parse it.

The DCG search algorithm first tries rule np --> npx, uses npx to parse The
meal, and fails because of the remaining words of the day. It then backtracks with the
second np rule, reuses npx to reparse The meal, and finally completes the analysis
with pp. Backtracking is clearly inefficient here. The parser twice applies the same
rule to the same group of words because it has forgotten a previous result: The meal
is an npx.

Chart – or tabular – parsing is a technique to avoid a parser repeating a same
analysis. A chart is a memory where the parser stores all the possible partial results
at a given position in the sentence. When it needs to process a subsequent word,
the parser fetches partial parse structures obtained so far in the chart instead of
reparsing them. At the end of the analysis, the chart contains all possible parse trees
and subtrees that it represents tidily and efficiently.

12.3.2 Structure of a Chart

A chart represents intervals between words as nodes of a graph. Considering a
sentence of N words, nodes are numbered from left to right, from 0 to N . The
chart – which can also be viewed as a table – then has N C 1 entries or positions.
Figure 12.3 shows word numbering of the sentence Bring the meal and the noun
phrase The meal of the day. A chart node is also called a vertex.

Directed arcs (or edges) connect nodes and define constituents. Each arc has a
label that corresponds to the syntactic category of the group it spans (Fig. 12.4).
Charts consist then of sets of nodes and directed labeled arcs. This algorithmic
structure is also called a directed acyclic graph (DAG).

A chart can store alternative syntactic representations. As we saw in Chap. 9, the
grammar in Fig. 12.5 yields two parse trees for the sentence

Bring the meal of the day.
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Fig. 12.2 A small set of DCG rules where left-recursion has been eliminated

0 Bring 1 the 2 meal 3

0 The 1 meal 2 of 3 the 4 day 5

Fig. 12.3 Nodes of a chart

0 1 2Bring the meal 3

detv

s

vp

noun

np

Fig. 12.4 Nodes and arcs of a chart associated with the sentence Bring the meal

Fig. 12.5 A small grammar for restaurant orders in English

The chart of Fig. 12.6 shows the possible parses of this sentence. The rules:

vp --> v, np.
vp --> v, np, pp.

create two paths that connect node 0 to node 6. Starting from node 0, the first one
traverses nodes 1 and 6: arc v from 0 to 1, then np from 1 to 6. The second sequence
of arcs traverses nodes 1, 3, 6: arc v from 0 to 1, then np from 1 to 3, and finally pp
from 3 to 6.
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0 1 2Bring the meal 3

detv

vp

noun

np

4 5 6of the day

noundetprep

pp
np

np

s

Fig. 12.6 A chart representing alternative parse trees

12.3.3 The Active Chart

So far, we used charts as devices to represent partial or complete parse trees. Charts
can also store representations of constituents currently being parsed. In this case,
a chart is said to be active.

In the classical chart notation, the parsing progress of a constituent is indicated
using a dot (
) inserted in the right-hand side of the rules. A dotted rule represents
what has been parsed so far, with the dot marking the position of the parser relative
to the input. Thus

np --> det noun �
is a completely parsed noun phrase composed of a determiner and a noun. Since the
constituent is complete, the arc is said to be inactive. Rules

np --> det � noun
np --> � det noun

describe noun phrases being parsed. Both correspond to constituent hypotheses that
the parser tries to find. In the first rule, the parser has found a determiner and looks
for a noun to complete the parse. The second rule represents the constituent being
sought originally. Both arcs are said to be active since the parser needs more words
from the input to confirm them.

Consider the sentence Bring the meal. Table 12.3 shows dotted-rules and arcs
during the parsing process, and Fig. 12.7 shows a graphic representation of them.

Charts can be used with top-down, bottom-up, or more sophisticated strategies.
We introduce now a top-down version due to Earley (1970). Its popularity comes
from its complexity, which has been demonstrated as 0.N 3/.
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Table 12.3 Some dotted-rules and arcs in the chart while parsing Bring the meal of the day

Positions Rules Arcs Constituents

0 s --> � vp [0, 0] � Bring the meal
1 vp --> v � np [0, 1] Bring � the meal
1 np --> � det noun [1, 1] � the meal
1 np --> � np pp [1, 1] � the meal
2 np --> det � noun [1, 2] the � meal
3 np --> det noun � [1, 3] the meal �
3 np --> np � pp [1, 3] the meal �
3 vp --> v np � [0, 3] Bring the meal �
3 s --> vp � [0, 3] Bring the meal �

0 1 2Bring the meal 3

np --> det noun •

np --> det • noun

np --> np • pp

v --> bring • det --> the • noun --> meal •

vp --> v • np

vp --> v np •

s --> vp •

np --> • det noun

np --> • np pps --> • vp

Fig. 12.7 Some arcs of a chart labeled with dotted-rules while parsing Bring the meal of the day

12.3.4 Modules of an Earley Parser

An Earley parser consists of three modules, the predictor, the scanner, and the
completer, which are chained by the parsing process. The initial goal of the
algorithm is to parse the start symbol, which is generally a sentence s. Here, we
illustrate the algorithm with the noun phrase The meal of the day and the rules in
Fig. 12.5. The start symbol is then np and is represented by the dotted-rule

start --> � np

The Predictor

At a given position of the parsing process, the predictor determines all possible
further parses. To carry this out, the predictor selects all the rules that can process
active arcs. Considering the dotted rule, lhs --> c1 c2 ...
 c...cn, the
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Fig. 12.8 Dotted-rules resulting from the recursive run of the predictor with starting goal np

0 The meal of the day

np --> • det noun

start --> • np

1 2 3 4 5

np --> • np pp

np --> • det adj noun

Fig. 12.9 Graphic representation of the predictor results

0 The meal of the day

det --> the •

np --> • det noun

start --> • np

1 2 3 4 5

np --> • np pp

np --> • det adj noun

Fig. 12.10 The scanner accepts word The from the input

predictor searches all the rules where c is the left-hand-side symbol: c -->
x1 ...xk . The predictor introduces them into the chart as new parsing goals
in the form of c --> 
 x1 ...xk . The predictor proceeds recursively with
nonterminal symbols until it reaches the parts of speech. Considering The meal of
the day with np as the starting parsing goal and applying the predictor results in
new goals shown in Fig. 12.8 and graphically in Fig. 12.9.

The Scanner

Once all possible predictions are done, the scanner accepts a new word from the
input, here the. The parts of speech to the right of a dot are matched against the word,
here in our example, rules np --> 
 det noun and np --> 
 det adj
noun. The scanner inserts the word into the chart with all its matching part-of-
speech readings in the form of pos --> word 
 and advances the parse position
to the next node, here

det --> the � [0, 1]

as shown in Fig. 12.10.
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0 The meal of the day

det --> the •

np --> det • noun

np --> • det noun

start --> • np

1 2 3 4 5

np --> det • adj noun

np --> • np pp

np --> • det adj noun

Fig. 12.11 The completer looks for completed constituents and advances the dot over them

The Completer

The scanner introduces new constituents under the form of parts of speech in the
chart. The completer uses them to advance the dot of active arcs expecting them,
and possibly complete the corresponding constituents. Once a constituent has been
completed, it can in turn modify others expecting it in active arcs. The completer
thus is applied to propagate modifications and to complete all possible arcs. It
first determines which constituents are complete by looking for dots that have
reached the end of a rule: c --> x1 ...xk 
. The completer then searches all
the active arcs expecting c, that is, the rules with a dot to the left of it: lhs --> c1
c2 ...
 c ...cn, moves the dot over c: lhs --> c1 c2 ...c 
 ...cn,
and inserts the new arc into the chart. It proceeds recursively from the parts of speech
to all the possible higher-level constituents.

In our example, the only completed constituent is the part of speech det. The
completer advances the dot over it in two active arcs and inserts them into the chart.
It does not produce new completed constituents (Fig. 12.11).

np --> det � noun [0, 1]
np --> det � adj noun [0, 1]

From node 1, the predictor is run again, but it does not yield new arcs. The
scanner accepts word meal, advances the position to 2, and inserts

noun --> meal � [1, 2]

as shown in Fig. 12.12.
At node 2, the completer can advance active arc

np --> det noun � [0, 2]

and complete a higher-level constituent (Fig. 12.13).

np --> np � pp [0, 2]
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0 of the day

det --> the •

np --> det • noun

np --> • det noun

start --> • np

1 2 3 4 5

np --> det • adj noun

np --> • np pp

np --> • det adj noun

noun --> meal •

The meal

Fig. 12.12 Predictor and scanner are run with word meal

0 The meal of the day

det --> the •

np --> det • noun

np --> • det noun

start --> • np

1 2 3 4 5

np --> det • adj noun

np --> • np pp

np --> • det adj noun

noun --> meal •

np --> det noun •

np --> np • pp

Fig. 12.13 The completer is run to produce new chart entries

12.3.5 The Earley Algorithm in Prolog

To implement the algorithm in Prolog, we must first represent the chart. It consists
of arcs such as

np --> np � pp [0, 2]

which we represent as facts

arc(np, [np, ’.’, pp], 0, 2).

The start symbol is encoded as:

arc(start, [’.’, np], 0, 0).

Although this data representation is straightforward from the description of
dotted-rules, it is not efficient from the speed viewpoint. The arc representation can
be improved easily, but an optimization may compromise clarity. We leave it as an
exercise.
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New arcs are stored in the chart, a list called Chart, using the expand_
chart/1 predicate, which checks first that the new entry is not already in the
chart:

expand_chart([], Chart, Chart).
expand_chart([Entry | Entries], Chart, NewChart) :-
\+ member(Entry, Chart),
!,
expand_chart(Entries, [Entry | Chart], NewChart).

expand_chart([_ | Entries], Chart, NewChart) :-
expand_chart(Entries, Chart, NewChart).

The Earley algorithm is implemented by the predicate earley_parser/5. It
uses five arguments: the input word sequence, the current position in the sequence
CurPos, the final position FinalPos, the current chart, and the final chart. The
earley_parser main rule consists of calling the predictor, scanner, and
completer predicates through the N C 1 nodes of the chart:

earley_parser([], FinalPos, FinalPos, Chart, Chart):-
!.

earley_parser(Words, CurPos, FinalPos, Chart,
FinalChart) :-
predictor(CurPos, Chart, PredChart),
NextPos is CurPos + 1,
scanner(Words, RestWords, CurPos, NextPos,

PredChart, ScanChart),
completer(NextPos, ScanChart, NewChart),
!,
earley_parser(RestWords, NextPos, FinalPos,

NewChart, FinalChart).

The Earley algorithm is called by parse/3, which takes the word sequence
Words and the start Category as arguments. The parse/3 predicate initializes
the chart with the start symbol and launches the parse. The parsing success
corresponds to the presence of a completed start symbol, which is, in our ex-
ample, the arc(start, [np, ’.’], 0, FinalNode) fact in the chart
FinalChart:

parse(Words, Category, FinalChart) :-
expand_chart([arc(start, [’.’, Category], 0, 0)],

[], Chart),
earley_parser(Words, 0, FinalPos, Chart,

FinalChart),
member(arc(start, [Category, ’.’], 0, FinalPos),

FinalChart).

Table 12.4 shows the transcription of np rules in Fig. 12.5 encoded as Prolog
facts. It contains a small vocabulary to parse the phrase The meal of the day.
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Table 12.4 Rules and vocabulary for the chart parser

Rules Words

rule(np, [d, n]). word(d, [the]). word(prep, [of]).
rule(np, [d, a, n]). word(n, [waiter]). word(v, [brought]).
rule(np, [np, pp]). word(n, [meal]). word(v, [slept]).
rule(pp, [prep, np]). word(n, [day]).

The Predictor

The predictor looks for rules to expand arcs from a current position (CurPos).
To carry this out, predictor/3 searches all the arcs containing the pattern:
[..., X, ’.’, CAT, ...], where CAT matches the left-hand side of a rule:
rule(CAT, RHS). This is compactly expressed using the findall/3 built-
in predicate. predictor/3 then adds arc(CAT, [’.’ j RHS], CurPos,
CurPos) to the chart NewChart. predictor/3 is run recursively until no
new arc can be produced, that is, NewChartEntries == []. It then returns
the predictor’s chart PredChart.

predictor(CurPos, Chart, PredChart) :-
findall(
arc(CAT, [’.’ | RHS], CurPos, CurPos),
(

member(arc(LHS, ACTIVE_RHS, InitPos, CurPos),
Chart),

append(B, [’.’, CAT | E], ACTIVE_RHS),
rule(CAT, RHS),
\+ member(arc(CAT, [’.’ | RHS], CurPos,CurPos),
Chart)

),
NewChartEntries),

NewChartEntries \== [],
expand_chart(NewChartEntries, Chart, NewChart),
predictor(CurPos, NewChart, PredChart),
!.

predictor(_, PredChart, PredChart).

Using chart entry arc(np, [np, ’.’, pp], 0, 2) and rules in
Table 12.4:

?- predictor(2,[arc(np, [np, ’.’, pp], 0, 2)],Chart).

adds

arc(pp, [’.’, prep, np], 2, 2)

to the Chart list.



12.3 Chart Parsing 385

The Scanner

The scanner gets a new word from the input and looks for active arcs that match
its possible parts of speech to the right of the dot. The scanner stores the word with
its compatible parts of speech as new chart entries. Again, we use findall/3 to
implement this search.

scanner([Word | Rest], Rest, CurPos, NextPos, Chart,
NewChart) :-

findall(
arc(CAT, [Word, ’.’], CurPos, NextPos),
(

word(CAT, [Word]),
once((
member(arc(LHS, ACTIVE_RHS, InitPos, CurPos),
Chart),

append(B, [’.’, CAT | E], ACTIVE_RHS)))
),
NewChartEntries),

NewChartEntries \== [],
expand_chart(NewChartEntries, Chart, NewChart).

The Completer

The completer looks for completed constituents, that is, for arcs with a dot at
the end of the right-hand-side part of the rule. They correspond to arc(LHS,
COMPLETE_RHS, InitPos, CurPos), where COMPLETE_RHS matches
[..., X, ’.’]. We use the goal append(_, [’.’], COMPLETE_RHS)
to find them. The completer then searches arcs with a dot to the right of the LHS
category of completed constituents: [..., ’.’, LHS, ...], advances the
dot over LHS: [..., LHS, ’.’, ...], and stores the new arc with updated
node positions. We use findall/3 to implement the search, and completer/3
is run recursively until there is no arc to complete.

completer(CurPos, Chart, CompChart) :-
findall(
arc(LHS2, RHS3, PrevPos, CurPos),
(

member(arc(LHS, COMPLETE_RHS, InitPos, CurPos),
Chart),

append(_, [’.’], COMPLETE_RHS),
member(arc(LHS2, RHS2,PrevPos,InitPos), Chart),
append(B, [’.’, LHS | E], RHS2),
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append(B, [LHS, ’.’ | E], RHS3),
\+ member(arc(LHS2, RHS3, PrevPos, CurPos),
Chart)

),
CompletedChartEntries),

CompletedChartEntries \== [],
expand_chart(CompletedChartEntries,Chart,NewChart),
completer(CurPos, NewChart, CompChart),
!.

completer(_, CompChart, CompChart).

An Execution Example

Table 12.5 shows the arcs added to the chart while parsing the phrase The meal of
the day. The parser is queried by:

?- parse([the, meal, of, the, day], np, Chart).

Note that the completer calls at position 2 that completes np, and at position
5 that completes np, pp, and the starting goal np.

12.3.6 The Earley Parser to Handle Left-Recursive Rules
and Empty Symbols

The Earley parser handles left-recursive rules without looping infinitely. In effect,
the predictor is the only place where the parser could be trapped into an infinite
execution. This is avoided because before creating a new arc, the predictor
predicate checks that it is not already present in the chart using the goal

\+ member(arc(CAT, [’.’ | RHS], CrPos, CrPos), Chart)

So

start --> � np [0, 0]

predicts

np --> � np pp [0, 0]
np --> � det noun [0, 0]
np --> � det adj noun [0, 0]

but np --> 
 np pp predicts nothing more since all the possible arcs are already
in the chart.

The Earley algorithm can also parse null constituents. It corresponds to examples
such as meals of the day, where the determiner is encoded as word(d, []).
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Table 12.5 Additions to the chart

Module New chart entries

Position 0
start arc(start, [’.’, np], 0, 0)
predictor arc(np, [., d, n], 0, 0), arc(np, [., d, a, n], 0, 0),

arc(np, [., np, pp], 0, 0)
Position 1

scanner arc(d, [the, .], 0, 1)
completer arc(np, [d, ., a, n], 0, 1), arc(np, [d, ., n], 0, 1)
predictor []

Position 2
scanner arc(n, [meal, .], 1, 2)
completer arc(np, [d, n, .], 0, 2)
completer arc(np, [np, ., pp], 0, 2), arc(start, [np, .], 0, 2)
predictor arc(pp, [., prep, np], 2, 2)

Position 3
scanner arc(prep, [of, .], 2, 3)
completer arc(pp, [prep, ., np], 2, 3)
predictor arc(np, [., d, n], 3, 3), arc(np, [., d, a, n], 3, 3),

arc(np, [., np, pp], 3, 3)
Position 4

scanner arc(d, [the, .], 3, 4)
completer arc(np, [d, ., a, n], 3, 4), arc(np, [d, ., n], 3, 4)
predictor []

Position 5
scanner arc(n, [day, .], 4, 5)
completer arc(np, [d, n, .], 3, 5)
completer arc(np, [np, ., pp], 3, 5), arc(pp, [prep, np, .],

2, 5)
completer arc(np, [np, pp, .], 0, 5)
completer arc(np, [np, ., pp], 0, 5), arc(start, [np, .], 0, 5)

As we wrote it, the scanner would fail on empty symbols. We need to add a second
rule to it to handle empty lists:

% The first scanner rule
scanner([Word | Rest], Rest, CurPos, NextPos, Chart,

NewChart) :-
findall(
arc(CAT, [Word, ’.’], CurPos, NextPos),
(

word(CAT, [Word]),
once((
member(arc(LHS, ACTIVE_RHS, InitPos, CurPos),
Chart),

append(B, [’.’, CAT | E], ACTIVE_RHS)))
),
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NewChartEntries),
NewChartEntries \== [],
expand_chart(NewChartEntries, Chart, NewChart),
!.

% The second rule to handle empty symbols
scanner(Words, Words, CurPos, NextPos, Chart,

NewChart) :-
findall(
arc(CAT, [[], ’.’], CurPos, NextPos),
(

word(CAT, []),
once((
member(arc(LHS, ACTIVE_RHS, InitPos, CurPos),
Chart),

append(B, [’.’, CAT | E], ACTIVE_RHS)))
),
NewChartEntries),

NewChartEntries \== [],
expand_chart(NewChartEntries, Chart, NewChart),
!.

Let us add

word(d, []).
word(n, [meals]).

to the database to be able to parse meals of the day:

?- parse([meals, of, the, day], np, Chart).

12.4 Probabilistic Parsing of Context-Free Grammars

So far, parsing methods made no distinction between possible parse trees of an
ambiguous sentence. They produced trees either through a systematic backtracking
or simultaneously in a chart with the Earley algorithm. The reason is that the parsers
considered all rules to be equal and tried them sequentially.

We know this is not the case in reality. Some rules describe very frequent
structures, while others are rare. As a solution, a parser could try more frequent
rules first, prefer certain rules when certain words occur, and rank trees in an order
of likelihood. To do that, the parser can integrate statistics derived from bracketed
corpora. Because annotation is done by hand, frequencies captured by statistics
reflect preferences of human beings.

There are many possible probabilistic parsing techniques. They all aim at
finding an optimal analysis considering a set of statistical parameters. A major
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difference between them corresponds to the introduction of lexical statistics or not –
statistics on words as opposed to statistics on rules. We begin here with a description
of nonlexicalized probabilistic context-free grammars, or PCFG.

12.5 A Description of PCFGs

A PCFG is a constituent context-free grammar where each rule describing the
structure of a left-hand-side symbol is augmented with its probability P.lhs! rhs/
(Charniak 1993). Table 12.6 shows a small set of grammar rules with imaginary
probabilities.

According to figures in the table, the structure of a sentence consists 4 times out
of 5 in a noun phrase and a verb phrase – P.s ! np; vp/ D 0:8 – and 1 time out of 5
in a verb phrase – P.s ! vp/ D 0:2. Such figures correspond in fact to conditional
probabilities: knowing the left-hand-side symbol they describe proportions among
the right-hand-side expansions. The probability could be rewritten then as

P.lhs! rhsjlhs/:

The sum of probabilities of all possible expansions of a left-hand-side symbol
must be equal to 1.0.

Probabilities in Table 12.6 are fictitious and incomplete. A sentence has, of
course, many more possible structures than those shown here. Real probabilities
are obtained from syntactically bracketed corpora – treebanks. The probability
of a given rule lhs ! rhsi is obtained by counting the number of times it occurs
in the corpus and by dividing it by the count of all the expansions of symbol lhs.

P.lhs! rhsi jlhs/ D Count.lhs! rhsi /
P

j

Count.lhs! rhsj /
:

Parsing with a PCFG is just the same as with a context-free grammar except
that each tree is assigned with a probability. The probability for sentence S to have
the parse tree T is defined as the product of probabilities attached to rules used to
produce the tree:

P.T; S/ D
Y

rule.i/ producing T

P.rule.i//:

Let us exemplify probabilistic parsing for an ambiguous sentence using the
grammar in Table 12.6. Bring the meal of the day has two possible parse trees,
as shown in Table 12.7. We consider trees up to the verb phrase symbol only.
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Table 12.6 A small set of phrase-structure rules augmented with probabilities, P

Rules P Rules P

s --> np vp 0.8 det --> the 1.0
s --> vp 0.2 noun --> waiter 0.4
np --> det noun 0.3 noun --> meal 0.3
np --> det adj noun 0.2 noun --> day 0.3
np --> pronoun 0.3 verb --> bring 0.4
np --> np pp 0.2 verb --> slept 0.2
vp --> v np 0.6 verb --> brought 0.4
vp --> v np pp 0.1 pronoun --> he 1.0
vp --> v pp 0.2 prep --> of 0.6
vp --> v 0.1 prep --> to 0.4
pp --> prep np 1.0 adj --> big 1.0

Table 12.7 Possible parse trees for Bring the meal of the day

Parse trees

T1: vp(verb(bring),
np(np(det(the), noun(meal)),

pp(prep(of), np(det(the), noun(day)))))
T2: vp(verb(bring),

np(np(det(the), noun(meal))),
pp(prep(of), np(det(the), noun(day))))

The probability of T1 is defined as (Fig. 12.14):

P.T1;Bring the meal of the day/ D
P.vp! v; np/ � P.v! Bring/ � P.np! np; pp/�
P.np! det; noun/ � P.det! the/ � P.noun! meal/�
P.pp! prep; np/ � P.prep! of / � P.np! det; noun/�
P.det! the/ � P.noun! day/ D
0.6 � 0.4 � 0.2 � 0.3 � 1.0 � 0.3 � 1.0 � 0.6 � 0.3 � 1.0 � 0.3 = 0.00023328;

and that of T2 as (Fig. 12.15) as:

P.T2;Bring the meal of the day/ D
P.vp! v; np; pp/ � P.v! Bring/ � P.np! det; noun/�
P.det! the/ � P.noun! meal/ � P.pp! prep; np/ � P.prep! of /�
P.np! det; noun/ � P.det! the/ � P.noun! day/ D
0.1 � 0.4 � 0.3 � 1.0 � 0.3 � 1.0 � 0.6 � 0.3 � 1.0 � 0.3 = 0.0001944:

T1 has a probability higher than that of T2 and then corresponds to the most likely
parse tree. Thus PCFG would properly disambiguate among alternative structures
for this sentence. However, we can notice that PCFGs are certainly not flawless
because they would not properly rank trees of Bring the meal to the table.
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VP 0.00023328

Verb 0.4 NP 0.000972

NP 0.09 PP 0.054

Det 1.0 Noun 0.3 Prep 0.6 NP 0.09

Det 1.0 Noun 0.3

Bring the meal of the day

Fig. 12.14 Parse tree T1 with nodes annotated with probabilities

VP 0.0001944

Verb 0.4 NP 0.09 PP 0.054

Det 1.0 Noun 0.3 Prep 0.6 NP 0.09

Det 1.0 Noun 0.3

Bring the meal of the day

Fig. 12.15 Parse tree T2 with nodes annotated with probabilities

12.5.1 The Bottom-Up Chart

Figures 12.14 and 12.15 show a calculation of parse tree probabilities using a
bottom-up approach. Although it is possible to use other types of parsers, this
strategy seems the most natural because it computes probabilities as it assembles
partial parses. In addition, a chart would save us many recalculations. We will
combine these techniques to build a probabilistic context-free parser. We introduce
them in two steps. First, we present a symbolic bottom-up chart parser also known
as the Cocke–Younger–Kasami (CYK) algorithm (Kasami 1965). We then extend it
to probabilistic parsing in a next section.

The CYK algorithm uses grammars in Chomsky normal form (CNF, Chap. 11)
where rules are restricted to two forms:

lhs --> rhs1, rhs2.
lhs --> [terminal_symbol].

However, the CYK algorithm can be generalized to any type of grammar (Graham
et al. 1980).
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Fig. 12.16 Annotation of the
words with their possible part
of speech. Here words are not
ambiguous

Fig. 12.17 Constituents of
length 1 and 2

Fig. 12.18 Constituent of
lengths 1, 2, and 3

Let N be the length of the sentence. The idea of the CYK parser is to consider
constituents of increasing length from the words – length 1 – up to the sentence –
length N . In contrast to the Earley parser, the CYK algorithm stores completely
parsed constituents in the chart. It proceeds in two steps. The first step annotates
the words with all their possible parts of speech. Figure 12.16 shows the result of
this step with the sentence Bring the meal of the day. It results in chart entries such
as arc(v, [bring, ’.’], 0, 1), arc(det, [the, ’.’], 1, 2),
etc. This first step is also called the base case.

The second step considers contiguous pairs of chart entries that it tries to reduce
in a constituent of length l , l ranging from 2 to N . Considering the rule

lhs --> rhs1, rhs2

the parser searches couples of arcs corresponding to arc(rhs1, [..., ’.’],
i, k) and arc(rhs2, [..., ’.’], k, j) such that i < k < j and j �
i D l . It then adds a new arc: arc(lhs, [rhs1, rhs2, ’.’], i, j) to
the chart. Since constituents of length 2, 3, 4, . . . ,N are built in that order, it ensures
that all constituents of length less than l have already been built. This second step is
called the recursive case.

Let us consider constituents of length 2 in our example. We can add two noun
phrases that we insert in the second row, as shown in Fig. 12.17. They span nodes
1–3 and 4–6. Since their length is 2, no constituent can start in cell 5–6, otherwise it
would overflow the array. We insert the symbol “—” in the corresponding cell. This
property is general for any constituent of length l and yields a triangular array.

The parse is complete and successful when length N , here 6, has been reached
with the start symbol. Figure 12.18 shows constituents of length 3, and Fig. 12.19
shows the completed parse, where constituents are indexed vertically according to
their length.
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Fig. 12.19 The completed
parse

12.5.2 The Cocke–Younger–Kasami Algorithm in Prolog

From the algorithm description, the Prolog implementation is relatively straight-
forward. We use two predicates to carry out the base case and the recursive case:
tag_words/5 and cyk_loop/4.

Since we use a CNF, we need to rewrite some rules in Table 12.6:

• rule(np, [d, a, n]) is rewritten into rule(np, [det, np]) and
rule(np, [a, n]).

• rule(vp, [v, np, pp]) is rewritten into rule(vp, [vp, pp]) and
rule(vp, [v, np]).

• rule(s, [vp]) is rewritten into rule(s, [vp, pp]) and rule(s,
[v, np]).

• rule(vp, [v]) is rewritten into word(vp, [brought]), word(vp,
[bring]), and word(vp, [slept]).

• rule(np, [pronoun]) is rewritten into word(np, [he]).

The parsing predicate parse/2 consists of tagging the words (the base case)
and calling the reduction loop (the recursive case).

parse(Sentence, Chart) :-
tag_words(Sentence, 0, FinalPosition,[],WordChart),
cyk_loop(2, FinalPosition, WordChart, Chart).

{tag_words/3 tags the words with their possible parts of speech and adds the
corresponding arcs using the expand_chart/1 predicate.

tag_words([], FinalPos, FinalPos, Chart, Chart).
tag_words([Word | Rest], Pos, FinalPos, Chart,

WordChart) :-
NextPos is Pos + 1,
findall(
arc(LHS, [Word, ’.’], Pos, NextPos),
word(LHS, [Word]),
ChartEntries),

expand_chart(ChartEntries, Chart, NewChart),
tag_words(Rest, NextPos, FinalPos, NewChart,
WordChart).
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cyk_loop/4 implements the recursive case. It proceeds from length 2 to the
sentence length and attempts to reduce constituents using inner_loop/5. The
new constituents are added to the chart using expand_chart/3.

cyk_loop(FinalPos, FinalPos, Chart, FinalChart) :-
inner_loop(0, FinalPos, FinalPos,Chart,FinalChart).

cyk_loop(Length, FinalPos, Chart, FinalChart) :-
inner_loop(0, Length, FinalPos, Chart, ILChart),
NextLength is Length + 1,
cyk_loop(NextLength, FinalPos, ILChart,FinalChart).

inner_loop(StartPos, Length, FinalPos, Chart,Chart):-
FinalPos < StartPos + Length.

inner_loop(StartPos, Length, FinalPos, Chart,
ILChart) :-

EndPos is StartPos + Length,
findall(
arc(LHS3, [LHS1, LHS2, ’.’], StartPos, EndPos),
(

member(arc(LHS1, RHS1,StartPos,MidPos), Chart),
member(arc(LHS2, RHS2, MidPos, EndPos), Chart),
StartPos < MidPos,
MidPos < EndPos,
rule(LHS3, [LHS1, LHS2])

),
ChartEntries),

expand_chart(ChartEntries, Chart, NewChart),
NextStartPos is StartPos + 1,
inner_loop(NextStartPos, Length, FinalPos, NewChart,

ILChart).

12.5.3 Adding Probabilities to the CYK Parser

Considering sentence S , the parser has to find the most likely tree T defined as the
maximum probability

T .S/ D arg max
T

P.T; S/:

Let us suppose that sentence S consists of constituents A and B: S ! A;B . The
most likely parse tree corresponds to that yielding the maximum probability of both
A and B . This is valid recursively for substructures of A and B down to the words.

To obtain most likely constituents for any given length, we need to maintain an
array that stores the maximum probability for all the possible constituents spanning
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all the word intervals i : : : j in the chart. In other words, that means that if there are
two or more competing constituents with the same left-hand-side label spanning
i : : : j , the parser retains the maximum and discards the others. Let lhs be the
constituent label, and �.i; j; lhs/ this probability.

The base case initializes the algorithm with part-of-speech probabilities:

�.i; i C 1; part_of _speech! word/:

The recursive case maintains the probability of the most likely structure of lhs.
It corresponds to:

�.i; j; lhs/ D max.�.i; k; rhs1/ � �.k; j; rhs2/ � P.lhs! rhs1; rhs2//;

where the maximum is taken over all the possible values of k with i < k < j and
all possible values of rhs1, rhs2 with lhs! rhs1; rhs2 in the grammar.

12.6 Evaluation of Constituent Parsers

12.6.1 Metrics

We have a variety of techniques to evaluate parsers. The PARSEVAL measures
(Black et al. 1991) are the most frequently cited for constituent parsing. They take a
manually bracketed treebank as the reference – the gold standard – and compare it
to the results of a parser.

PARSEVAL uses a metric similar to that of information extraction, that is, recall
and precision. Recall is defined as the number of correct constituents generated by
the parser, i.e., exactly similar to that of the manually bracketed tree, divided by
the number of constituents of the treebank. The precision is the number of correct
constituents generated by the parser divided by the total number of constituents –
wrong and correct ones – generated by the parser.

Recall D Number of correct constituents generated by the parser

Number of constituents in the manually bracketed corpus
:

Precision D Number of correct constituents generated by the parser

Total number of constituents generated by the parser
:

A third metric is the number of crossing brackets. It corresponds to the number
of constituents produced by the parser that overlap constituents in the treebank.
Table 12.8 shows two possible analyses of Bring the meal of the day with crossing
brackets between both structures. The number of crossing brackets gives an idea of
the compatibility between structures and whether they can be combined into a single
structure.
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Table 12.8 Bracketing of order Bring the meal of the day and crossing brackets

Bracketing Crossing brackets

(((bring) (the meal)) (of the day)) ( ) ( )
((bring) ((the meal) (of the day))) ( ) ( )

12.6.2 Performance of PCFG Parsing

PCFGs rank the possible analyses. This enables us to select the most probable parse
tree and to evaluate it. Charniak (1997b) reports approximately 70 % recall and 75 %
precision for this parsing method.

In terms of accuracy, PCFG parsing does not show the best performance.
This is mainly due to its poor use of lexical properties. An example is given
with prepositional-phrase attachment. While prepositional phrases attach to the
preceding noun phrase 6 to 7 times out of 10 on average, there are specific
lexical preferences. Some prepositions attach more often to verbs in general, while
others attach to nouns. There are also verb/preposition or noun/preposition couples,
showing strong affinities.

Let us exhibit them with the orders:

Bring the meal to the table

and

Bring the meal of the day

for which a parser has to decide where to attach prepositional phrases to the table
and of the day. Alternatives are the verb Bring and the noun phrase the meal.
Prepositional phrases headed by of attach systematically to the preceding noun
phrase, here the meal, while to attaches here to the verb. Provided that part-of-speech
annotation of both sentences is the same, the ratio

P.T1 jBring the meal of the day /

P.T 2 jBring the meal of the day /
D P.T1 jBring the meal to the table /

P.T 2 jBring the meal to the table /
;

D P.vp! v; np/ � P.np! np; pp/

P.vp! v; np; pp/
:

depends only on rule probabilities and not on the lexicon. In our example, the PCFG
does not take the preposition value into account: any prepositional phrase would
always attach to the preceding noun, thus accepting an average error rate of 30
to 40 %.
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12.7 Improving Probabilistic Context-Free Grammars

We saw in Sect. 11.4 that we could extend phrase-structure rules with grammatical
features to get a better generation of sentences. We will describe here how we can
use such features to improve probabilistic parsing as well.

We have reviewed a set of possible features to generate syntactically correct
sentences: number, gender, etc. In this section, we will restrict ourselves to
one feature, the grammatical case, and more specifically to the nominative and
accusative cases. Both cases are used in Latin, German, and Russian, easy to
understand, and correspond roughly to the subject and object functions in English
and French.

Starting from this small grammar:

S ! NP VP
NP! DET N
VP ! V NP

we introduce the nominative and accusative cases using unification grammars and
the feature notation of Sect. 11.4, where nom stands for nominative, i.e. the subject,
and acc for accusative, i.e. the object:

S ! NP VP�
case W nom

�

NP ! DET N�
case W C � �

case W C � �
case W C �

VP ! V NP�
case W acc

�

As we want to build a probabilistic parser, we need to derive estimates from a
corpus. The Penn Treebank is the standard candidate for English; however, it was
not annotated with case, at least originally. A possible solution could have been to
relabel it manually. This would have certainly required a sizable and costly amount
of human effort.

An ingenious and automatic work around came from Johnson (1998), who
encoded an equivalent of the case feature by marking the daughters of a rule with
their parent using the caret symbol, ^. He could then subcategorize systematically
the nonterminal symbols with about the same effect as inflecting the noun phrases
with a case and capturing their function.

Using our small rule set, this means that we split NP into two symbols: NP^S ,
corresponding to a subject, and NP^VP, to an object. Following Johnson (1998), we
relabel VP similarly and we rewrite the grammar:

s --> np, vp.
np --> det, n.
vp --> v, np.
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as

s --> np_s, vp_s.
np_s --> det, n.
np_vp --> det, n.
vp_s --> v, np_vp.

where we used the underscore instead of the caret.
Johnson (1998) showed that a systematic parent annotation of PS rules could

improve the precision and recall of PCFG by 8 %. This figure can further be
increased by dividing phrase categories, as we have done with NP, and refining them
with other grammatical features. See Klein and Manning (2003) for a description.

12.8 Lexicalized PCFG: Charniak’s Parser

Charniak’s parser (1997a) (second, improved version in Charniak 2000) builds on
PCF grammars and introduces lexical preferences into the phrase-structure rules.
To do this, Charniak creates phrase subcategories based on the lexical head of each
phrase. It then one step beyond the subcategorization with features that we have
studied in the previous section. We call this a rule lexicalization.

We have seen in previous sections that the attachment of prepositional phrases to
a verb or a noun phrase was extremely sensitive to the value of the preposition. That
is why instead of using the rule:

PP! Prep NP

Charniak replaces them with as many rules as there are prepositions:

PP:of ! of NP
PP:on ! on NP
PP:with! with NP

Charniak (1997a) extends this idea to all the constituents and Fig. 12.20 shows
the parse tree of the sentence: Corporate profits rose. This category of grammars is
called lexicalized PCFG, where we extract the head of constituents using percolation
rules like the ones shown in Table 11.15.

As with PCFG, Charniak’s parser maximizes the probability of a parse tree T
given a sentence S :

T .S/ D arg max
T

P.T; S/:

using the probabilities of the rules producing T .
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S:rose

NP:profits VP:rose FPUNC:.

Adj:corporate Noun:profits Verb:rose

Corporate profits rose .

Fig. 12.20 Tree structure of
Corporate profits rose (After
Charniak (1997a))

The final probability is the product of the probabilities of all the constituents in
the tree. These probabilities are similar to those in Table 12.6, but there are many
more PS rules however as we have to pair each constituent category, for instance
NP, with all its possible heads, here potentially all the nouns.

To compute the probability of a constituent, for instance Corporate profits to be a
NP with profits as a head (NP:profits), Charniak’s parser (1997a) uses the following
steps:

1. Determine the probability of the constituent head, profits in the example.

• This probability takes into account the previous parsing steps and is computed
using this formula: P.hjhp; t; tp/, where h is the head of the constituent, hp,
the head of the parent constituent, t , the type of the constituent and tp, the type
of the parent constituent.

• In Charniak’s example, the probability of profits to be the head of the NP,
Corporate profits is P.profitsjrose;NP; S/.

2. Determine the probability of the constituent given the head.

• As for the first term, we take the previous steps into account and we use
the formula: P.r jh; t; tp/, where r is the phrase-structure rule producing the
constituent.

• In Charniak’s example, the probability of NP! Adj Noun is computed using
P.NP! Adj Nounjprofits;NP; S/

3. Apply the parser recursively to parse the subconstituents.

This yields a product of probabilities:

P.T; S/ D
Y

r2T
P.r jh; t; tp/P.hjhp; t; tp/

that the parser maximizes to find the parse tree. The parser algorithm uses an
extension to the CYK algorithm (Charniak et al. 1998).

The estimates of P.r jh; t; tp/ and P.hjhp; t; tp/ are impossible to compute given
the current size of annotated corpora: The data is far too sparse. Charniak used a
sophisticated linear interpolation to approximate both of them:

P.hjhp; t; tp/ D �1P.hjhp; t; tp/C �2P.hjchp; t; tp/C �3P.hjt; tp/C �4P.hjt /
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and

P.r jh; t; tp/ D �1P.r jh; t; tp/C �2P.r jh; t/C �3P.r jch; t/
C�4P.r jt; tp/C �5P.r jt /;

where chp are clusters of hp words linked by their behavior in P.hjhp; t; tp/.

12.9 Further Reading

Parsing techniques have been applied to compiler construction as well as to human
languages. There are numerous references reviewing formal parsing algorithms,
both in books and articles. Aho et al. (1986) is a starting point.

Most textbooks in computational linguistics describe parsing techniques for
natural languages. Pereira and Shieber (1987), Covington (1994b), Gazdar and
Mellish (1989), and Gal et al. (1989) introduce symbolic techniques and include
implementations in Prolog. Allen (1994), Jurafsky and Martin (2008), and Manning
and Schütze (1999) are other references that include surveys of statistical parsing.
All these books mostly describe, if not exclusively, constituent parsing.

Prepositional phrase attachment is a topic that puzzled many of those adopting
the constituency formalism. It often receives special treatment – a special section
in books. For an introduction, see Hindle and Rooth (1993). Techniques to solve
it involved the investigation of lexical preferences that probably started a shift of
interest toward dependency grammars.

Statistical parsing is more recent than symbolic approaches. Charniak (1993)
is a good account to probabilistic context-free grammars (PCFG). Manning and
Schütze (1999) is a comprehensive survey of statistical techniques used in natural
language processing. See also the two special issues of Computational Linguistics
(1993, vol. 19, nos. 1 and 2). PCFGs were a first attempt to introduce probabilities
into phrase–structure rules. Johnson (1998) and Klein and Manning (2003) showed
they could be significantly improved with grammatical features. Although unlexical-
ized PCFGs are merely a reformulation of feature grammars, they had a significant
impact in the constituent parsing community. Charniak (1997a, 2000) introduced an
efficient lexicalized parser that still defines the state-of-the-art in constituent parsing.
It is available for download from this location: http://cs.brown.edu/~ec/.

Quality of statistics and rules is essential to get good parsing performance.
Probabilities are drawn from manually bracketed corpora, and their quality depends
on the annotation and the size of the corpus. A key problem is sparse data. For
a good review on how to handle sparse data, see Collins (1999). Symbolic rules
can be tuned manually by expert linguists or obtained automatically using inductive
logic techniques, either for constituents or dependencies. Zelle and Mooney (1997)
propose an inductive logic programming method in Prolog to obtain rules from
annotated corpora.

http://cs.brown.edu/~ec/
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Exercises

12.1. The shift–reduce program we have seen stores words at the end of the list
representing the stack. Subsequently, we use append/3 to traverse the stack and
match it to grammar rules. Modify this program so that words are added to the
beginning of the list.

Hint: you will have to reverse the stack and the rules so that rule s --> np,
vp is encoded rule([vp, np | X], [s | X]).

12.2. Trace the shift–reduce parser with a null symbol word(d, []) and
describe what happens.

12.3. Modify the shift–reduce parser so that it can handle lists of terminal symbols
such as word(d, [all, the]).

12.4. Complete arcs of Fig. 12.13 with the Earley algorithm.

12.5. Trace the Earley algorithm in Prolog with the sentence Bring the meal of
the day.

12.6. In the implementation of Earley’s algorithm, we represented dotted rules
such as

np --> np • pp [0, 2]

by Prolog facts such as

arc(np, [np, ’.’, pp], 0, 2).

This representation involves searching a dot in a list, which is inefficient.
Modify the program so that it can use an arc representation, where the sequence
of categories to the left and to the right of the dot are split into two lists, as with
arc(np, [np], [pp], 0, 2).

12.7. The Earley chart algorithm accepts correct sentences and rejects ill-formed
ones, but it does not provide us with the sentence structure. Write a retrieve
predicate that retrieves parse trees from the chart.

12.8. Modify the Cocke, Younger, and Kasami Prolog program to include parsing
probabilities to constituents in the chart.

12.9. Modify the Cocke, Younger, and Kasami Prolog program to produce the best
parse tree as a result of the analysis. Hint: to retrieve the tree more easily, use an
array of back pointers: an array storing for each best constituent over the interval
i ...j, the rule that produced it, and the value of k.



Chapter 13
Dependency Parsing

13.1 Introduction

Parsing dependencies consists of finding links between heads (also called gover-
nors) and modifiers (or dependents) – one word being the root of the sentence
(Fig. 13.1). In addition, each link can be annotated with a grammatical function.

There is a large array of techniques to parse dependencies. In this chapter, we
introduce some of them in order of increasing complexity. We begin with an exten-
sion of shift–reduce to parse dependencies, and we describe how to use symbolic
and machine-learning techniques to guide the parser. We then present other parsing
strategies using constraint satisfaction and statistical lexical dependencies.

13.2 Evaluation of Dependency Parsers

Before we review dependency parsing techniques, let us first describe how we will
evaluate them. As for constituents, we will compare the output of an automatic
parser with its corresponding manual annotation. Most evaluation metrics follow
Lin (1995), who proposed to consider the links between each word in the sentence
and its head. The error count is then the number of words that are assigned a wrong
head (governor). Figure 13.2 shows a manually annotated dependency tree of Bring
the meal to the table and a possible parse. The error count is 1 out of 6 links and
corresponds to the wrong attachment of to. Lin (1995) also described a method to
adapt this error count to constituent structures. This error count is probably simpler
and more intuitive than the PARSEVAL metrics.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__13, © Springer-Verlag Berlin Heidelberg 2014
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table

the

to

meal

the

Bring

Which sentence root?

Which head?

meal

Fig. 13.1 Possible roots in the sentence Bring the meal to the table and heads for word meal.
There are N possible roots, and each remaining word has theoretically N � 1 possible heads

<root> Bring the meal to the table <root> Bring the meal to the table

Fig. 13.2 Evaluation of dependency trees: the reference dependency tree (left), and a possible
parse output (right)

13.3 Nivre’s Parser

13.3.1 Extending the Shift–Reduce Algorithm to Parse
Dependencies

Nivre (2003) proposed a dependency parser that creates a graph that he proved to be
both projective and acyclic. The parser is an extension to the shift–reduce algorithm
that we saw in Sect. 12.2. As with the regular shift–reduce, Nivre’s parser uses a
stack S and a list of input words W . However, instead of finding constituents, it
builds a set of arcs A representing the graph of dependencies.

Nivre’s parser uses two operations in addition to shift and reduce, left-arc and
right-arc. Using the notation .head;modifier/ to denote an arc from a head to a
modifier:

Shift pushes the next input word onto the stack.
Reduce pops the top of the stack. We also add a constraint to the reduce operation

to check that the top of the stack has a head and then ensures that the graph is
connected.

Left-arc adds an arc .n0; n/ from the next input word n0 to the top of the stack
n and reduces n from the top of the stack. We set a condition to this operation:
there must not be an arc .n00; n/ already in the graph. Without it, the top of the
stack would have two or more heads.

Right-arc adds an arc .n; n0/ from the top of the stack n to the next input word
n0 and pushes n0 on the top of the stack.



13.3 Nivre’s Parser 405

Table 13.1 The parser transitions, where W is the initial word list; I , the current input word list;
A, the graph of dependencies; and S , the stack. The triple hS; I; Ai represents the parser state. n,
n0, and n00 are lexical tokens. The pair .n0; n/ represents an arc from the head n0 to the modifier n

Parser transitions

Actions State before State after Conditions

Initialization hnil;W;;i
Termination hS; nil; Ai
Left-arc hnjS; n0jI; Ai hS; n0jI; A[ f.n0; n/gi Àn00.n00; n/ 2 A
Right-arc hnjS; n0jI; Ai hn0jnjS; I; A[ f.n; n0/gi
Reduce hnjS; I; Ai hS; I; Ai 9n0.n0; n/ 2 A
Shift hS; njI; Ai hnjS; I; Ai

Table 13.1 shows the start and final parser states as well as the four transitions
and their conditions.

13.3.2 Parsing an Annotated Corpus

Nivre (2006) proved that for each sentence with a projective dependency graph,
there is a transition sequence that enables his parser to generate this graph. He
called this procedure gold-standard parsing, because it corresponds to the sequence
of parsing transitions taken in the set {left-arc, right-arc, reduce, shift} that produces
the manually-obtained gold-standard graph. The parser has a linear complexity, and
the number of transitions needed to parse a sentence is at most 2n � 1, where n is
the length of the sentence.

To parse a manually-constructed graph, we could set the graph as a search goal
and use the Prolog backtracking mechanism to find the transitions. Although this
is possible, there are more efficient methods. Given a dependency graph, we can
formulate simple conditions on the stack and the current input list to execute left-
arc, right-arc, shift, or reduce. The two first conditions on left-arc and right-arc are
obvious:

• We execute a left-arc if the top of the stack and the next word in the list are linked
by a left arc in the gold-standard graph.

• We execute a right-arc if the top of the stack and the next word in the list are
linked by a right arc in the gold-standard graph.

The reduce condition is slightly more complex. We execute it when the gold-
standard graph contains an arc in either direction between the next word in the list
and a word in the stack, below the top. Finally, we execute a shift when no other
action can be carried out. The operation we have just explained that determines
which transition to apply given a certain parser state is called an oracle. The oracle
at a given step of the parsing process is summarized by the condition below, where
TOP is the top of the stack, FIRST , the first token of the input list, and arc, the
relation holding between a head and a dependent:
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Table 13.2 The transition sequence to apply to the sentence The waiter brought the meal to
produce its dependency graph. The graph uses left or right arrows to give the direction of the
dependency

Trans. Stack Queue Graph

start ; ROOT the waiter brought the meal {}
sh

ROOT the waiter brought the meal {}
sh

the waiter brought the meal {}
ROOT

la
ROOT waiter brought the meal {the waiter}

sh
waiter brought the meal {the waiter}
ROOT

la
ROOT brought the meal {the waiter, waiter brought}

ra
brought the meal {the waiter, waiter brought,
ROOT ROOT! brought}

sh
the meal {the waiter, waiter brought,
brought ROOT! brought}
ROOT

la
brought meal {the waiter, waiter brought,
ROOT ROOT! brought, the meal}

ra
end meal [] {the waiter, waiter brought,

brought ROOT! brought, the meal,
ROOT brought! meal}

1. if arc.TOP;FIRST/ 2 A, then right-arc;
2. else if arc.FIRST;TOP/ 2 A, then left-arc;
3. else if 9k 2 Stack; arc.FIRST; k/ 2 A or arc.k;FIRST/ 2 A, then reduce;
4. else shift.

As an example, let us examine the oracle in action with the sentence:

The waiter brought the meal.

The dependency graph can be represented by the set of links:

fthe waiter;waiter brought;ROOT! brought; the meal; brought! mealg;

where we use left or right arrows to give the direction of the dependency, and the
dummy word ROOT to indicate the root of a sentence. Knowing this graph, we
can invoke the oracle to find the transition sequence. Table 13.2 shows the parser
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states in the form of a stack, an input list, and the graph in construction. We start
with an empty list of actions, and we ask the oracle at each step of the parsing
procedure: What is the next action? When we reach the end of the input list, we
have the complete transition sequence,

[sh, sh, la, sh, la, ra, sh, la, ra]

and we can check that the parser has built a graph that is equal to the one we
constructed manually.

13.3.3 Nivre’s Parser in Prolog

Nivre’s parser is simple to understand, and its implementation in Prolog is easy. Let
us call the top-level predicate

nivre_parser(+Sentence, ?Operations, ?RefGraph)

where Sentence is the input sentence, RefGraph, the manually-annotated
dependency graph, and Operations, the sequence of transitions that produces
this graph. We will design the program to work with two modes. The first one
will use Sentence and RefGraph as input, and for each projective graph, the
program will output a list of transitions. The second mode will use Sentence and
Operations as input to produce a graph.

We represent the input sentences as lists of words with their corre-
sponding position, form, and part of speech, w([id=ID, form=FORM,
postag=POSTAG]), and we use a variation of the CONLL format described in
Sect. 11.9.2 to encode dependencies, w([id=ID, form=FORM, head=HEAD,
deprel=DEPREL]). The input sentence The waiter brought the meal is
represented as:

[w([id=0, form=root, postag=’ROOT’]),
w([id=1, form=the, postag=’DT’]),
w([id=2, form=waiter, postag=’NN’]),
w([id=3, form=brought, postag=’VBD’]),
w([id=4, form=the, postag=’DT’]),
w([id=5, form=meal, postag=’NN’])]

and its dependency graph as:

[w([id=1, form=the, head=2, deprel=det]),
w([id=2, form=waiter, head=3, deprel=sub]),
w([id=3, form=brought, head=0, deprel=root]),
w([id=4, form=the, head=5, deprel=det]),
w([id=5, form=meal, head=3, deprel=obj])]

Finally, the Operations list will consist of symbols corresponding to the
initials of the transitions: {la, ra, re, sh}. For example, the sequence, shift, right-
arc, left-arc, reduce, will be represented by [sh, ra, la, re].
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The Four Transitions

The Prolog program uses four transitions shown in Table 13.1 that we transcribe as
four predicates: left_arc/6, right_arc/6, shift/4, and reduce/3.

The left_arc/6 predicate adds an arc to the graph linking the first word of
the list to the top of the stack with the condition that the first word has no head in
the current graph.

% left_arc(+Words, +Stack, -NewStack, +Graph,
-NewGraph)

left_arc([W | _], [T | Stack], Stack, Graph,
[w([id=IDT, form=FORMT, head=IDW, deprel=_]) |
Graph]) :-

W = w([id=IDW | _]),
T = w([id=IDT, form=FORMT | _]),
\+ member(w([id=IDT, form=FORMT | _]), Graph).

The right_arc/6 predicate adds an arc to the graph linking the top of the
stack to the first word of the list with the condition that the top of the stack has no
head in the current graph.

% right_arc(+Words, -NewWords, +Stack, -NewStack,
% +Graph, -NewGraph)
right_arc([W | Words], Words, [T | Stack],

[W, T | Stack], Graph, [w([id=IDW, form=FORMW,
head=IDT, deprel=_]) | Graph]) :-

W = w([id=IDW, form=FORMW | _]),
T = w([id=IDT | _]),
\+ member(w([id=IDW, form=FORMW | _]), Graph).

The reduce/3 predicate reduces the Stack provided that the word has a head
already in the graph.

% reduce(+Stack, -NewStack, +Graph)
reduce([T | Stack], Stack, Graph) :-
T = w([id=IDT, form=FORMT | _]),
member(w([id=IDT, form=FORMT | _]), Graph).

The shift/4 predicate removes the next word from the list currently being
parsed and pushes it on the top the stack. Here we set it as the head of the Stack
list to produce a NewStack:

% shift(+Words, -NewWords, +Stack, -NewStack)
shift([First | Words], Words, Stack, [First | Stack]).
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The Oracle

The oracle determines which transition to apply given a certain parser state. The
oracle/4 predicate uses the algorithm described in Sect. 13.3.2 and unifies
Operation with a value in the set {la, ra, re, sh}. However, the first Prolog
rule checks whether Operation is already instantiated when the predicate is
called and if yes, it does not execute the algorithm. This will enable the program
to work with two modes: determine a transition sequence from a graph, and also
build a graph from a given transition sequence.

% oracle(+Words, +Stack, +Graph, -Operation)
% Predicts the next transition from the

manually-annoted graph
oracle(_, _, _, Op) :-
nonvar(Op),
!.

oracle([W | _], [T | _], Graph, la) :-
T = w([id=IDT, form=FORMT | _]),
W = w([id=IDW | _]),
member(w([id=IDT, form=FORMT, head=IDW | _]),
Graph),
!.

oracle([W | _], [T | _], Graph, ra) :-
T = w([id=IDT | _]),
W = w([id=IDW, form=FORMW | _]),
member(w([id=IDW, form=FORMW, head=IDT | _]),
Graph),
!.

oracle([W | _], [_ |Stack], Graph, re) :-
member(K, Stack),
K = w([id=IDK, form=FORMK | _]),
W = w([id=IDW, form=FORMW | _]),
(
member(w([id=IDK, form=FORMK, head=IDW | _]), Graph)
;
member(w([id=IDW, form=FORMW, head=IDK | _]), Graph)
),
!.

oracle(_, _, _, sh).

The Top-Level Predicate

The top-level predicate calls an auxiliary predicate that stores the stack and
the current graph. If it fails to produce a transition sequence, it returns a list
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containing the atom fail. We can use the program in two ways with the modes:
nivre_parser(+Sentence, -Transitions, +Graph) and
nivre_parser(+Sentence, +Transitions, -Graph).

nivre_parser(Sentence, Ops, RefGraph) :-
nivre_parser(Sentence, [], Ops, [], RefGraph).

nivre_parser(_, [fail], _).

The auxiliary predicate consists of three rules, where the first two represent
terminal conditions, and the third is the general recursive case. The terminal
conditions correspond respectively to the two possible modes. The first rule is
used when the program produces a transition sequence from a reference graph. The
terminal condition is met when the queue is empty. We check additionally that the
two graphs – the reference graph and the graph built by the parser – are equal.
This is always the case when the reference graph is well-formed and projective. The
second rule corresponds to the application of a transition sequence, and the output
is the graph. Finally, the recursive rule calls the oracle and executes the predicted
transition.

nivre_parser([], _, [], CurGraph, RefGraph) :-
nonvar(RefGraph),
!,
subset(RefGraph, CurGraph),
subset(CurGraph, RefGraph).

nivre_parser([], _, [], Graph, Graph).
nivre_parser(Words, Stack, [Op | Ops], Graph,
RefGraph) :-
oracle(Words, Stack, RefGraph, Op),
execute_action(Op, Words, NWords, Stack, NStack,
Graph,NGraph),

nivre_parser(NWords, NStack, Ops, NGraph,
RefGraph).

The execute_action/7 predicate calls the predicted operation and produces
a new parser state. Its purpose is merely to select the arguments of the transitions.

% execute_action(+Op, +Words, -NewWords, +Stack,
% -NewStack, +Graph, NewGraph)
execute_action(la, Words, Words, Stack, NStack, Graph,

NGraph) :-
left_arc(Words, Stack, NStack, Graph, NGraph).

execute_action(ra, Words, NWords, Stack, NStack,
Graph,NGraph) :-

right_arc(Words, NWords, Stack, NStack, Graph,
NGraph).

execute_action(re, Words, Words, Stack, NStack, Graph,
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Graph) :-
reduce(Stack, NStack, Graph).

execute_action(sh, Words, NWords, Stack, NStack,
Graph,Graph) :-

shift(Words, NWords, Stack, NStack).
execute_action(Op, _, _, _, _, _, _) :-
\+ member(Op, [la, ra, re, sh]),
write(’Illegal action. Returning’), nl.

Running the Parser

Applying the parser to The waiter brought the meal yields:

?- nivre_parser([w([id=0, form=root, postag=’ROOT’]),
w([id=1, form=the, postag=’DT’]), ...], A,

[w([id=1, form=the, head=2, deprel=det]),
w([id=2, form=waiter, ...]).

A = [sh, sh, la, sh, la, ra, sh, la, ra] .

Conversely, given this transition sequence, the parser produces the original
dependency graph.

13.4 Guiding Nivre’s Parser

So far, we gave the parser a solution in the form of a reference graph to find the
transition sequence. In most practical cases, this is not what we want. We generally
have a sentence as input, and our goal is to automatically build a graph. We will
now introduce techniques to carry this out. We will start with symbolic rules that
resemble phrase-structure rules for dependencies: dependency rules. We will then
move on to consider machine-learning techniques so that we can train our parser
on manually-annotated corpora. The combination of machine learning and Nivre’s
parser produces highly efficient systems.

13.4.1 Parsing with Dependency Rules

Dependency Rules

Writing dependency rules or D-rules consists in describing possible dependency
relations between word categories (Covington 1990): typically a head part of speech
to a dependent part of speech (Fig. 13.3).
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Fig. 13.3 Examples of
D-rules

These rules mean that a determiner can depend on a noun (1) (or that a noun can
be the head of a determiner), an adjective can depend on a noun (2), and a noun can
depend on a verb (4). The rules express ambiguity. A preposition can depend either
on a verb (5) as in Bring the meal to the table or on a noun (3) as in Bring the meal
of the day. Finally, rule 6 means that a verb can be the root of the sentence.

In our example, D-rules use parts of speech, which means that before parsing,
we must use a POS tagger to annotate each word of the input list. D-rules can also
involve the lexical value of the words or their semantic category or as, for instance,

of  noun.

which means that the word of depends on a noun. When the rules involve word
values, they are said to be lexicalized.
D-rules are often related to one or more functions. The first rule in Fig. 13.3

expresses the determinative function, the second one is an attributive function, and
the third rule can be a subject, an object, or an indirect object function. Using a
unification-based formalism, rules can encapsulate functions, as in:

2

6
6
4

category W noun
number W N
person W P
case W nominative

3

7
7
5 

2

4
category W verb
number W N
person W P

3

5

which indicates that a noun marked with the nominative case can depend on a verb.
In addition, the noun and verb share the person and number features. Unification-
based D-rules are valuable because they can easily pack properties into a compact
formula: valence, direction of dependency relation (left or right), lexical values, etc.
(Covington 1989; Koch 1993).

Using D-Rules with Nivre’s Parser

We can use D-rules to guide Nivre’s parser. We need first to write a grammar, a set
of rules, for the language we want to process and write a guide predicate so that
at a given point of the analysis it will examine the grammar and select a transition
among the four possible ones.

Most languages have directional constraints for the dependencies. For instance,
a determiner is always before the noun in English, French, and German. We can
formulate these constraints using oriented D-rules to represent left, POS.n0/  
POS.n/, and right, POS.n/ ! POS.n0/, dependencies. In the first case, the head
is to the left of the dependent, and in the second one, it is the opposite. Oriented
D-rules reduce ambiguity significantly.
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Table 13.3 Conditions on the left-arc and right-arc transitions to run Nivre’s parser with D-rules

Actions Parser transitions Conditions

Left-arc hnjS; n0jI; Ai ! hS; n0jI; A[ f.n0; n/gi POS.n/ POS.n0/ 2 R
Àn00.n00; n/ 2 A

Right-arc hnjS; n0jI; Ai ! hn0jnjS; I; A[ f.n; n0/gi POS.n/! POS.n0/ 2 R

The guide links the D-rules to the parsing actions. To carry out a left-arc, the
grammar must contain the rule POS.n/  POS.n0/ and to carry a right-arc, the
grammar must contain the rule POS.n/ ! POS.n0/. Table 13.3 shows the new
conditions to run Nivre’s parser with D-rules.

The D-rule constraints are not sufficient to write a complete guide as the
transition selection is still ambiguous. We can always apply a shift, and the grammar
may contain conflicting rules; for instance, a preposition can depend on a noun and
a noun can depend on a preposition. When two or more transitions are applicable,
we need a procedure to select a unique one. In its original article, Nivre (2003)
experimented with three parsing strategies that depended on the transition priorities.
The first two are:

• The parser uses the constant priorities for the transitions: left-arc > right-arc >
reduce > shift.

• The second parser uses the constant priorities left-arc > right-arc and a rule to
resolve shift/reduce conflicts. If the top of the stack can be a transitive head of
the next input word according to the grammar, then shift; otherwise reduce.

Both strategies are easy to implement.

D-Rules and Nivre’s Parser in Prolog

Before we start writing a guide, we need to write a grammar. We represent the D-
rules with a drule/4 predicate, where each rule contains the parts of speech of
the head and the dependent, the function, and the dependency direction. A simple
grammar of English using the Penn Treebank tagset will be:

%drule(+HeadPOS, +DepPOS, +Function, +Direction)
drule(’ROOT’, ’VBD’, root, right).
drule(’NN’, ’DT’, determinative, left).
drule(’NN’, ’JJ’, attribute, left).
drule(’VBD’, ’NN’, subject, left).
drule(’VBD’, ’PRP’, subject, left).
drule(’VBD’, ’NN’, object, right).
drule(’VBD’, ’PRP’, object, right).
drule(’VBD’, ’IN’, adv, _).
drule(’NN’, ’IN’, pmod, right).
drule(’IN’, ’NN’, pcomp, right).
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Let us now write a guide predicate that resembles those proposed by Nivre
(2003). It consists of five rules that describe transition priorities. The first rule tries
a left-arc. It looks for a D-rule that links the top of the stack to the first word in
the queue. If this fails, the second rule tries a right-arc. It looks for a D-rule that
links the first word in the queue to the top of the stack. If we cannot execute these
actions, either because there is no D-rule or because their conditions are not met,
we try shift with a lookahead condition that the top of the stack can be the head of
the second-next word in the queue. We look for a correspondingD-rule. If this does
not work, we try reduce and then shift.

% guide(+Words, +Stack, -Operation)
guide([W | _], [T | _], la) :-
T = w([id=_, form=_, postag=POST | _]),
W = w([id=_, form=_, postag=POSW | _]),
drule(POSW, POST, _, left).

guide([W | _], [T | _], ra) :-
T = w([id=_, form=_, postag=POST | _]),
W = w([id=_, form=_, postag=POSW | _]),
drule(POST, POSW, _, right).

guide([_, W | _], [T | _], sh) :-
T = w([id=_, form=_, postag=POST | _]),
W = w([id=_, form=_, postag=POSW | _]),
drule(POST, POSW, _, right).

guide(_, _, re).
guide(_, _, sh).

We need to slightly modify nivre_parser/5 to run it with the guide:

nivre_parser([], _, [], Graph, Graph).
nivre_parser(Words, Stack, [Op | Ops], Graph,
RefGraph) :-
guide(Words, Stack, Op),
execute_action(Op, Words, NWords, Stack, NStack,
Graph,NGraph),

nivre_parser(NWords, NStack, Ops, NGraph,
RefGraph).

Applying the parser to The waiter brought the meal, where each word was tagged
with its part of speech, yields the correct graph:

[w([id=5, form=meal, head=3, deprel=_G1015]),
w([id=4, form=the, head=5, deprel=_G915]),
w([id=3, form=brought, head=0, deprel=_G775]),
w([id=2, form=waiter, head=3, deprel=_G675]),
w([id=1, form=the, head=2, deprel=_G535])]

with the transition sequence [sh, sh, la, sh, la, ra, sh, la, ra].
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Evaluating the Parser

Using annotated corpora, it is possible to derive automatically a grammar of
D-rules, then run and assess the parser. There are a few freely available corpora that
we can download. Talbanken05 in Swedish (Einarsson 1976; Nilsson et al. 2005) is
one example. It contains annotated Swedish sentences and was used in the CoNLL
2006 shared task (Buchholz and Marsi 2006). It comes with a training set and a test
set as well as an evaluation procedure that is comparable to the one described in
Sect. 13.2.

We can use the training set to extract dependency rules and then run the parser
on the test set. Nivre’s parser does not guarantee to produce connected graphs. This
means that some words from the input sentence will have no head in the graph. In
this case, we assign them a ROOT head. The result score will depend on the number
of rules we use. With the 100 most frequent ones in the CoNLL 2006 training set,
we reach an attachment score of about 57 % in the test set.

Although this result is far from the state of the art, we obtained it with a minimal
guide. There are many ways to improve it, and this means that using Nivre’s parser
withD-rules is a viable strategy. Here are a list of possible improvements: introduce
lexicalizedD-rules, constrain the parser to produce connected graphs, and constrain
the graph to have only one root. We leave these improvements as an exercise
(Exercise 13.1).

13.4.2 Using Machine-Learning Techniques

D-rules provide a simple way to control a dependency parser. However, they use
limited information to make a decision: the part of speech of two words, the top of
the stack, and the first word in the queue. Most current implementations of Nivre’s
parser use a richer set of features and hence rely on machine-learning techniques to
implement the guide.

We now describe techniques that are similar to those we used with chunking (see
Sect. 10.7.3) and that fit the sequential nature of Nivre’s parser. We modify the guide
so that before each transition it extracts features from the parser state. The features
represent a sort of context to the transition and, using them as an input to a classifier,
the guide predicts the next transition.

We build the classifier from a data set using a machine-learning algorithm. We
collect a set of transition contexts from an annotated corpus using gold-standard
parsing. This produces a list of feature values and the corresponding transition. We
then automatically train a classifier such using ID3, logistic regression, or support
vector machines (Chap. 4) that we have embedded in the guide.
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Table 13.4 Feature vectors extracted while parsing the sentence The waiter brought the meal.
In the left part of the table, the parser prints the parts of speech of the top of the stack and next
in the queue before each transition. In the middle part, the parser prints two words from the stack
and the queue

Stack Queue Stack Queue

POS(T0) POS(Q0) POS(T0) POS(T
�1) POS(Q0) POS(Q

C1) Transitions

nil ROOT nil nil ROOT DT sh
ROOT DT ROOT nil DT NN sh
DT NN DT ROOT NN VBD la
ROOT NN ROOT nil NN VBD sh
NN VBD NN ROOT VBD DT la
ROOT VBD ROOT nil VBD DT ra
VBD DT VBD ROOT DT NN sh
DT NN DT VBD NN nil la
VBD NN VBD ROOT NN nil ra

Predicting the Parser Transitions

We saw that gold-standard parsing could produce a transition sequence from a well-
formed projective graph, and that the output sequence would exactly generate the
input graph. While parsing, each transition has a corresponding parser state from
which we can extract information in the form of feature vectors. To train a classifier,
the idea is to associate a feature vector with the next transition.

The simplest features correspond to words’ parts of speech on the top of the
stack, POS(T0), and the next word in the input queue, POS(Q0). This is more or
less the information provided by D-rules. A generalization is straightforward, and
we can use more data from the stack or the queue and extend the size of the vector
from two to four or more. We can also lexicalize the features and use the word forms
in addition to their parts of speech. Table 13.4 shows feature vectors extracted while
parsing the sentence:

The waiter brought the meal

annotated as

root/ROOT the/DT waiter/NN brought/VBD the/DT meal/NN.

The vectors use the part of the speech of the words and their dimension is two,
POS(T0), POS(Q0), and four, POS(T0), POS(T�1), POS(Q0), POS(QC1).

After the data is collected from an annotated corpus, we can apply a training
procedure to create a 4-class classifier. Once trained, given a feature vector the
classifier will choose a transition in the set {la, ra, sh, re}. We can then embed
this classifier in the guide of Nivre’s parser. When parsing a sentence, the parser
extracts the current context after each transition and asks the guide to predict the next
one. Support vector machines are among the most effective training algorithms we
can use. In the next section, we use the C4.5 implementation of Weka (Sect. 4.3.2).
The C4.5 training procedure is fast and produces decision trees that are easy to
understand.
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Table 13.5 Parsing performance using different feature sets on Swedish data. The training data
was extracted from projective sentences in the CoNLL 2006 training set. The decision trees were
trained using the C4.5 implementation available from the Weka environment. Words that had no
head after parsing were assigned the ROOT head. The evaluation was carried out on the test set
using the CoNLL 2006 script, which uses the attachment score. See Sect. 13.2 for a definition.
The annotated data as well as the evaluation script are available from the CoNLL 2006 web page
(After data provided by Buchholz and Marsi (2006))

Stack Queue Constraints Graph

POS(T0) POS(T
�1) POS(Q0) POS(Q

C1) POS(Q
C2) LA RA RE LMS Score

� – � – – – – – – 64.57
� – � – – – – – � 67.42
� – � – – � � � – 72.83
� – � – – � � � � 73.41
� � � � � – – – – 78.05
� � � � � – – – � 78.71
� � � � � � � � – 81.30
� � � � � � � � � 81.64

Feature Vectors and Parsing Performance

The feature set is a key factor in the parsing performance, and designing a good set is
a very significant issue in practice. To realize it, we will experiment with our parser
with two words in the stack and three words in the queue, and we will compare the
results with a context involving just one word. We will also include the leftmost
dependent of the top of the stack.

To help the guide, we will extract three additional Boolean parameters to
check that the transition conditions are met: “can do left-arc”, “can do right-arc”,
and “can do reduce”. These features are intended to have the classifier model
constraints on transitions. Hopefully, it will learn them and, as far as possible, avoid
predicting illegal transitions. If this nevertheless happens and the classifier predicts
a transition that violates the constraints, the guide will fall back to the priorities
la > ra > re > sh. In total, the sets will have from two to eight parameters.

Table 13.5 shows the scores and hints that larger feature sets yield better results.
This rule is true in general until we reach a ceiling in the size of the set. Using, say,
20 words from the queue would probably not improve the parser performance. In
addition, there is a danger with larger sets to be overadapted to the training data. The
classifier will then tend to learn specific properties of the data it is trained on and be
biased toward it. An overadapted feature set will yield superior scores on training
data, but possibly have inferior results on a different corpus. We call this an overfit.

The best score we obtain in Table 13.5 is 81.64. This is below the top score of the
CoNLL 2006 shared task, which was 89.54. However, it is a good result given that
we have only used parts of speech and that C4.5 is not as efficient as support vector
machines. We can easily improve the performance using lexical features, such as the
word form or the lemma. In fact, lexicalization has a strong impact on the parsing
performance. Many attachment ambiguities can only be resolved by the knowledge
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Table 13.6 Model for the feature set, where top denotes the top of the stack and next, the next
in the queue. The feature names follow the CoNLL format described in Table 11.12 (After Nivre
et al. (2006))

Location Description FORM LEMMA CPOS POS FEATS DEPREL

Stack top � � � � � �
Stack top� 1 �
Input next � � � � �
Input nextC 1 � �
Input nextC 2 �
Input nextC 3 �
Graph Head of top �
Graph Leftmost dependent of top �
Graph Rightmost dependent of top �
Graph Leftmost dependent of next �

of the lexical values. As an example of possible extensions, Nivre et al. (2006)
proposed an effective feature set shown in Table 13.6.

Finding Grammatical Functions

We saw in Chap. 11 that the grammatical functions form an important layer in
the description of dependency relations. In addition, the analysis of functions is
essential in many applications. However, so far, our parser has only created the
arcs of the dependency graphs. The time has now come to see how we can identify
functions.

From a technical viewpoint, functions are just labels to add to the arcs, and there
are two main ways to assign them:

1. We can first modify the guide and use a two-step classifier: the first one predicts
the next transition as before and if it is a left-arc or a right-arc, a second classifier
predicts the function. This second classifier will have as many classes as there
are functions and can be trained from the functions extracted from gold-standard
parsing.

2. A second possibility is to extend the left-arc and right-arc transitions to include
the function. The transition sequence to parse The waiter brought the meal is
shown in Table 13.2: [sh, sh, la, sh, la, ra, sh, la, ra]. The
augmented transitions to assign the functions will be:
[sh, sh, la-det, sh, la-sub, ra-root, sh, la-det,
ra-obj].

We will just need one classifier to predict both the transition and the function.
We train this classifier from the new transitions we collect with the gold-standard
parsing procedure.
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The annotation format of CoNLL 2006 and 2007 makes provision for
grammatical functions. This means that we can train our transition and function
classifiers on the same corpus. Moreover, classifiers can more or less use the same
features. See Table 13.6 for an example. The evaluation is carried out the same way
as for the bare dependency graphs, but this time it measures the labeled attachment
score: the proportion of arcs that have both a correct head and a correct label. This
label is called DEPREL in the CoNLL format.

Parsing Nonprojective Links

Identifying functions has an interesting side effect: it enables Nivre’s parser to
handle nonprojectivity. By construction, this parser is limited to projective graphs.
However, we saw in Sect. 11.10.2 that is it possible to projectivize nonprojective
graphs. We also saw that we can recover the original nonprojective graphs if we
mark the arc labels with the projectivization operations. This, of course, assumes
that the arcs in the graphs have labels (functions).

Now we can build a nonprojective system. It uses a projective parser that is
preceded by a preprocessing step that projectivizes the training corpus and followed
by a postprocessing step that recovers nonprojective arcs from the parsed sentences.

The preprocessing step corresponds to the procedure explained in Sect. 11.10.2
(Kunze 1967; Nivre and Nilsson 2005). It creates a new set of function labels,
where the new labels annotate the projectivized arcs. Once this preprocessing step
is applied to the training set, we can train the classifiers using a projective parser.
When the classifiers are trained, we can run the parser on sentences. It labels the arcs
with the original functions as well as with nonprojective markers. We finally apply
the postprocessing step to identify these markers and create nonprojective arcs.

13.5 Finding Dependencies Using Constraints

Using constraints is a symbolic strategy that can be an alternative to D-rules.
Although it is not as widely used as machine-learning techniques, it can be of
interest when no annotated corpus is available. The parsing algorithm is then framed
as a constraint satisfaction problem.

Constraint dependency parsing annotates words with dependencies and function
tags. It then applies a set of constraints to find a tag sequence consistent with all
the constraints. Some methods generate all possible dependencies and then discard
inconsistent ones (Harper et al. 1999; Maruyama 1990). Others assign one single
dependency per word and modify it (Tapanainen and Järvinen 1997).

Let us exemplify a method inspired by Harper et al. (1999) with the sentence
Bring the meal to the table. Table 13.7 shows simplified head and function
assignments compatible with a word’s part of speech.
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Table 13.7 Possible
functions according to a
word’s part of speech

Parts of speech Possible heads Possible functions

Determiner Noun det
Noun Verb object, iobject
Noun Prep pcomp
Verb Root root
Prep Verb, noun mod, loc

The first step generates all possible head and function tags. Using Table 13.7,
tagging yields:

Words Bring the meal to the table
Position 1 2 3 4 5 6
Part of speech verb det noun prep det noun
Possible tags <nil, root> <3, det> <4, pcomp> <3, mod> <3, det> <4, pcomp>

<6, det> <1, object> <1, loc> <6, det> <1, object>

<1, iobject> <1, iobject>

Then, a second step applies and propagates the constraint rules. It checks that the
constraints do not conflict and enforces the consistency of tag sequences. Rules for
English describe, for instance, adjacency (links must not cross), function uniqueness
(there is only one subject, one object, one indirect object), and topology:

• A determiner has its head to its right-hand side.
• A subject has its head to its right-hand side when the verb is at the active form.
• An object and an indirect object have their head to their left-hand side (active

form).
• A prepositional complement has its head to its left-hand side.

Applying this small set of rules discards some wrong tags but leaves some
ambiguity.

Words Bring the meal to the table
Position 1 2 3 4 5 6
Part of speech verb det noun prep det noun
Possible tags <nil, root> <3, det> <1, object> <3, mod> <6, det> <4, pcomp>

<1, iobject> <1, loc>

13.6 Covington’s Parser

In the previous sections, we saw that Nivre’s parser was restricted to the class of
projective graphs. Although projective structures are by far the most frequent in
English or French, this restriction impairs the expressivity of the parser, notably in
languages where nonprojectivity is not as anecdotal: German, Latin, Russian, etc.
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We now introduce Covington’s parser (1990, 1994a, 2001), which extends
parsing to nonprojective dependencies. Covington’s parser is, in fact, a family
of algorithms. It starts with a brute-force search that considers all the word pair
combinations on which we can gradually set constraints to comply with some
generally accepted properties of dependency graphs: head uniqueness and possibly
projectivity.

The parser is relatively easy to implement, and it can use D-rules or machine
learning techniques. We first introduce a nonprojective version of it and we refine it
to produce projective graphs. Like the other parsers we have already seen, the parser
input will be a tokenized sentence, where words are tagged with their part of speech.

13.6.1 Covington’s Nonprojective Parser

The brute-force version of Covington’s algorithm examines each pair of words in
the sentence and tries to set a link between them if the grammar or any kind of guide
permits it. It can be implemented as a left-to-right pass with the following code:

Algorithm 1 The Covington algorithm
1: procedure PARSE(w1;w2; : : : ;wn)
2: for i  1; n do
3: for j  i � 1; 1 do
4: if PERMISSIBLE(wi ;wj ) then
5: LINK(wi ;wj )

that scans the word list and attempts to create links with the words to the left of the
current word, wi . The link operation can either create a left-arc wj  wi , a right-arc
wj ! wi , or do nothing.

A widely accepted property of dependency graphs is that each word must
have a unique head. We will now use lists to represent data and enforce unique-
ness. We will store the sentence’s words in an input list: InputList. The
parser accepts one word at a time and maintains two other lists: HeadList and
WordList. WordList contains the words already read in a decreasing index
order. HeadList contains the words that have not been assigned a head yet, also
in a decreasing index order. At the beginning of the parse, both HeadList and
WordList are empty.

1. Accept a word W from the input list. Add it to WordList.
2. Search HeadList to find dependents of W starting with the most recently added.

Words found are removed from HeadList.
3. Search the elements of WordList to find at most one head for W. If no head is

found, add W to HeadList.

At the end of the parse, HeadList should contain the head of the sentence.
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At each step of the traversal of both HeadList and WordList, the parser
has to decide whether or not it sets a link between the current word and the
word in the list. We carry this out with a guide using the term we introduced in
Sect. 13.4. Classifiers in the form of decision trees, logistic regression, or support
vector machines will predict the existence or absence of a link and the relation
holding between two words (if any). To train the classifiers, we need to collect data
from a hand-annotated corpus. We extract features using a gold-standard parsing.
In the rest of this section, we will exemplify the guide with dependency rules.
Extending Covington’s parser with machine-learning techniques is left as exercises
(Exercises 13.4 and 13.5).

Let us now implement this algorithm in Prolog. We will use the dependency
rules below. They have three arguments: the head part of speech, the dependent part
of speech, and the grammatical function linking the words. We use a guide/3
predicate between the rules and the parser to make the linking decision easier to
port a classifier.

% drule(HeadPOS, DependentPOS, Function)
drule(noun, det, det).
drule(noun, adj, attribute).
drule(verb, noun, subject).
drule(verb, noun, object).

Let us now write the parsing algorithm. The input–output format will follow the
CoNLL tabular structure. The input will be a sentence in the form of a list of words,
where each word will have an index, a form, and a part of speech:

w([id=Inx, form=Word, postag=POS])

The output will be the dependency graph. We will use the same format as for the
input, and we will add a head index and a grammatical function to the words:

w([id=Inx, form=Word, postag=POS, head=HdInx,
deprel=Funct]).

The parse/2 predicate needs an auxiliary parse/4 to store the lists,
WordList and HeadList. Instead of pushing the current word in WordList,
we push the whole w/1 fact as it is being parsed. If we can find a head to it in
WordList, w/1 will be fully instantiated. Otherwise, we will leave HdInx and
Funct as variables until we find a word to be a suitable head. WorldList will
store the parse result. At the end of the process, we attach the words remaining in
HeadList to the root and we reverse WordList.

parse(InputL, Result) :-
parse(InputL, [], [], ReversedResult),
reverse(ReversedResult, Result).

% parse(+InputL, +HeadList, +WordList, -Result)
% We search dependents of W in HeadList and a head for
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% W in WordList
parse([w([Inx, W, POS]) | InputL], HeadL, WordL,
Result) :-
search_headlist(w([Inx, W, POS]), HeadL, NewHeadL,
WordL),
search_wordlist(w([Inx, W, POS]), WordL, NewHeadL,
NextHeadL, HeadInx, Function),

parse(InputL, NextHeadL, [w([Inx, W, POS,
head=HeadInx,deprel=Function]) | WordL], Result).

%The remaining headless words are assigned the ROOT
head parse([], HeadL, WordL, WordL) :-
assign_root(HeadL, WordL).

% assign_root(+HeadList, -WordList)
% assigns roots to the words remaining in WordList
assign_root([], _).
assign_root([w([id=Inx, form=W, postag=POS]) | Rest],

WordL) :-
member(
w([id=Inx, form=W, postag=POS, head=0,
deprel=’ROOT’]),WordL),

assign_root(Rest, WordL).

% search_headlist(+CurWord, +HeadL, -NewHeadL,
-WordL).

% Searches dependency links in HeadL, and possibly
% assigns them the current word as their head
search_headlist(w([id=Inx1, W, postag=POS]),
[w([id=Inx2, D, postag=POS_D]) | HeadL],
NewHeadL, WordL) :-
% Create left arc
drule(POS, POS_D, F),
% We instantiate the relation in WordL
member(w([id=Inx2, D, postag=POS_D, head=Inx1,
deprel=F]),WordL),

search_headlist(w([id=Inx1, W, postag=POS]), HeadL,
NewHeadL, WordL).

search_headlist(CurWord, [Word | HeadL],
[Word | NewHeadL],WordL) :-

% Do nothing
search_headlist(CurWord, HeadL, NewHeadL, WordL).

search_headlist(_, [], [], _).
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% search_wordlist(+CurWord, +WordL, +HeadL,
% -NextHeadL, -Head, -Deprel),
% Tries to find a head in WordL
% We look for the first word that can be the head
% of the current word
% Nothing has been done. Shift CurWord to HeadList
search_wordlist(CurWord, [], HeadL, [CurWord | HeadL],

_, _).
search_wordlist(w([_, _, postag=POS]),

[w([id=Inx2, _, postag=POS_H, _, _]) | _], HeadL,
HeadL,Inx2, F) :-

% Create right arc
drule(POS_H, POS, F).

% We have not found it and we go on
search_wordlist(CurWord, [_ | WordL], HeadL,

NextHeadL,H, F) :-
% Do nothing
search_wordlist(CurWord, WordL, HeadL, NextHeadL,
H, F).

This algorithm, which is nondeterministic, can successfully parse the sentences:

The waiter ran
The waiter brought a meal

However, the good parse is not the first one delivered by Prolog. Notably, the
first parse attaches a to waiter and assigns the dependency brought -> meal
the subject function (Fig. 13.4). Prolog must backtrack to find the correct solution.

?- parse([w([id=1, form=the, postag=det]),
w([id=2, form=waiter, postag=noun]),
w([id=3, form=brought, postag=verb]),
w([id=4, form=a, postag=det]),
w([id=5, form=meal, postag=noun])], R).

R = [w([id=1, form=the, postag=det, head=2,
deprel=det]),

w([id=2, form=waiter, postag=noun, head=3,
deprel=subject]),

w([id=3, form=brought, postag=verb, head=0,
deprel=’ROOT’]),

w([id=4, form=a, postag=det, head=2, deprel=det]),
w([id=5, form=meal, postag=noun, head=3,

deprel=subject])]
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The waiter brought a meal
1 2 3 4 5

ROOT

det subject

subject
det

Fig. 13.4 The first parse

Table 13.8 Executing Covington’s parser with The waiter brought a meal

Word Procedure Headlist Wordlist Actions

Init. Œ� Œ�

w1 Headlist
Œ� Œ�

Wordlist
Œw1� Œw1 ‹�

w2 Headlist la
Œ� Œw1 w2�

Wordlist noact
Œw2� Œw2 ‹;w1 w2�

w3 Headlist la
Œ� Œw2 w3;w1 w2�

Wordlist noact noact
Œw3� Œw3 ‹;w2 w3;w1 w2�

w4 Headlist noact
Œw3� Œw3 ‹;w2 w3;w1 w2�

Wordlist noact ra
Œw3� Œw4 w2;w3 ‹;w2 w3;w1 w2�

w5 Headlist noact
Œw3� Œw4 w2;w3 ‹;w2 w3;w1 w2�

Wordlist noact ra
Œw3� Œw4 w3;w4 w2;w3 ‹;w2 w3;w1 w2�

13.6.2 Relations Between Nivre’s and Covington’s Parsers

We can reframe Covington’s parser and describe the link operations in terms of
actions. Using this presentation, we will discover its similarities with Nivre’s parser
and we will be able to apply to it the same machine-learning techniques. When
scanning Headlist, each time we set a link, it corresponds to a left-arc action of
Nivre’s parser. When scanning WordList, we create at most one link from a word
to the current word, which corresponds to a right-arc action of Nivre’s parser. To be
compatible with the transition-based framework, we need to introduce a no-action
that corresponds to list traversal steps, either Headlist or WordList, where we
set no link to or from the current word (Table 13.8).
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13.6.3 Covington’s Projective Parser

Covington (1990) also provided a projective version of this parser. Recall the
definition of a projective graph: if there is a sequence of words wi : : :wj : : :wk in
which there is a dependency between wi and wk , in either direction, then wj does
not have a link preceding wi or following wk . To enforce projectivity, we modify the
rules:

• When searching HeadList, use only the most recent elements and do not skip
a word.

• When searching WordList for a head: first, skip all the words that are direct or
indirect dependents of the current word w. Then, look at the preceding word, its
head, its head’s head, and so on, following a chain of dependency links.

search_headlist_for_dependents(w(W, POS),
[w(D, POS_D) | HeadList], NewHeadList,
WordList) :-

drule(POS, POS_D, F),
% We instantiate the relation in WordList
member(w(D, POS_D, W, F), WordList),
search_headlist_for_dependents(w(W, POS), HeadList,
NewHeadList, WordList).

search_headlist_for_dependents(_, HL, HL, WordList).

% search_wordlist_for_a_head(+Word, +WordList, -Head,
% -Function),
% Tries to find a head in WordList

% We look for the first word that does not depend
% on the current word
search_wordlist_for_a_head(w(W, POS), WordList, H, F) :-
next_with_no_link(w(W, POS), WordList, [],
[w(H, POS_H, _, _) | NewWordList]),

drule(POS_H, POS, F).

% next_with_no_link(+W, +WordList, -InvWordList,
-Result)

% We go to the next word that has no link with the
% current word

next_with_no_link(w(W, POS), [w(H, POS_H, HH, F)
| WordList],InvWordList, Result) :-
link(w(W, POS), w(H, POS_H, HH, F), InvWordList),
next_with_no_link(w(W, POS), WordList,
[w(H, POS_H, HH, F) | InvWordList], Result).
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next_with_no_link(w(W, POS), Result, _, Result).

% link(Word1, Word2, +InvWordList)
% Checks whether there is a link between Word1 and
% Word2 within InvWordList

link(w(W1, POS1), w(W2, POS2, H2, F2),
InvWordList) :-
H2 == W1.

link(w(W1, POS1), w(W2, POS2, H2, F2),
[w(W3, POS3, H3, F3) | InvWordList]) :-

W3 == H2,
link(w(W1, POS1), w(W3, POS3, H3, F3),
InvWordList).

link(w(W1, POS1), w(W2, POS2, H2, F2),
[_ | InvWordList]) :-
link(w(W1, POS1), w(W2, POS2, H2, F2),
InvWordList).

Using this new version of the parser, we get better dependencies (Table 13.9):

?- parse([the, waiter, brought, a, meal], L).

L = [w(the, determiner, waiter, determinative),
w(waiter, noun, brought, subject),
w(brought, verb, _G861, _G862),
w(a, determiner, meal, determinative),
w(meal, noun, brought, subject)]

but meal is still the subject. Backtracking assigns the right function:

L = [w(the, determiner, waiter, determinative),
w(waiter, noun, brought, subject),
w(brought, verb, _G861, _G862),
w(a, determiner, meal, determinative),
w(meal, noun, brought, object)]

We could again improve the parser by enforcing some topology constraints, such
as the object is after the verb when at the active form.

13.7 Eisner’s Parser

Independently, Sleator and Temperley (1993) and Eisner (1996) developed chart-
based dependency parsers that have an O.n3/ complexity. Eisner’s parser applies to
projective graphs and can be combined with statistical or machine-learning methods.
In CoNLL 2007 and 2008, this class of parsers delivered the highest accuracy figures
for English.
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Table 13.9 Executing Covington’s parser with projectivity constraints with The waiter brought
a meal

Word Procedure Headlist Wordlist Actions

Init. Œ� Œ�

w1 Headlist
Œ� Œ�

Wordlist
Œw1� Œw1 ‹�

w2 Headlist la
Œ� Œw1 w2�

Wordlist skip
Œw2� Œw2 ‹;w1 w2�

w3 Headlist la
Œ� Œw2 w3;w1 w2�

Wordlist skip skip
Œw3� Œw3 ‹;w2 w3;w1 w2�

w4 Headlist noact
Œw3� Œw3 ‹;w2 w3;w1 w2�

Wordlist noact
Œw4;w3� Œw4 ‹;w3 ‹;w2 w3;w1 w2�

w5 Headlist la noact
Œw3� Œw4 w5;w3 ‹;w2 w3;w1 w2�

Wordlist skip skip ra
Œw3� Œw4 w3;w4 w5;w3 ‹;w2 w3;w1 w2�

Eisner’s parser builds on an adaption of the CYK algorithm that it modifies to
lower its complexity. We first describe the initial adaptation and then how to alter it
to recreate the final parser.

13.7.1 Adapting the CYK Parser to Dependencies

Alshawi (1996) introduced a parser that resembles the CYK parser (Sect. 12.5.2)
for dependencies. This parser uses the concept of dotted subtree (Eisner 2000): a
sequence of words ws ::wt corresponding to the range Œs; t � and a root wi inside this
range: s � i � t , where all the words in the range are descendants of the root. We
denote this subtree: .s; t; i/.

A dotted subtree may not be complete; that is, the projection of the head may
extend beyond the subtree in the final tree. Figure 13.5 shows an example of a dotted
subtree spanning w3::w5 with brought as the head: .3; 5; 3/. This dotted subtree is
not a real subtree as the projection of brought corresponds to the whole sentence.

As with the CYK algorithm, the parser combines dotted subtrees through a
bottom up analysis. It initializes the chart with constituents of length 0 consisting
of the individual words, and merges pairs of adjacent dotted subtrees .s1; t1; i/ and
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The waiter brought a meal
1 2 3 4 5

ROOT

det subject

object

det

Fig. 13.5 Dependency graph of The waiter brought a meal

s1 t1

wi

t1 +1 t2

w j

s1 t2

w j

Fig. 13.6 attach_left operation: Merge two adjacent dotted subtrees rooted, respectively, at wi
and wj , where wj becomes the head of the resulting subtree

s1 t1

wi

t1 +1 t2

w j

s1 t2

wi

Fig. 13.7 attach_right operation: Merge two adjacent dotted subtrees rooted, respectively, at wi
and wj , where wi becomes the head of the resulting subtree

.t1 C 1; t2; j / into a larger tree using two operations: attach_left..s1; t1; i/; .t1 C
1; t2; j // and attach_right..s1; t1; i/; .t1C1; t2; j //. Their respective definitions are:

Initialization: .0; 0; 0/; .1; 1; 1/; .2; 2; 2/; : : : ; .i; i; i/; : : : ; .n; n; n/.
attach_left: The head of the right part, wj , becomes the head of the resulting tree:
.s1; t2; j / (Fig. 13.6) and

attach_right: This time the head of the left part, wi , becomes the head of the new
tree: .s1; t2; i/ (Fig. 13.7).
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Table 13.10 Chart corresponding to a sentence of length n: The chart is filled with constituents
of increasing length, where the cells are filled with dotted subtrees

Chart

Length 0 1 2 : : : i : : : n� 1 n

0 .0; 0; 0/ .1; 1; 1/ .2; 2; 2/ : : : .i; i; i/ : : : .n� 1; n� 1; n� 1/ .n; n; n/
1 .0; 1; 0/ .1; 2; 1/ .2; 3; 2/ : : : .i; i C 1; i/ : : : .n� 1; n; n� 1/ �

.0; 1; 1/ .1; 2; 2/ .2; 3; 3/ : : : .i; i C 1; i C 1/ : : : .n� 1; n; n/ �
2 .0; 2; 0/ .1; 3; 1/ .2; 4; 2/ : : : .i; i C 2; i/ : : : � �

.0; 2; 1/ .1; 3; 2/ .2; 4; 3/ : : : .i; i C 2; i C 1/ : : : � �

.0; 2; 2/ .1; 3; 3/ .2; 4; 4/ : : : .i; i C 2; i C 2/ : : : � �
3 : : :

: : : : : :

n� 1 .0; n� 1; 0/ .1; n; 1/ � � � � � �
.0; n� 1; 1/ .1; n; 2/ � � � � � �
.0; n� 1; 2/ .1; n; 3/ � � � � � �
: : :

.0; n� 1; n� 1/ .1; n; n/ � � � � � �
n .0; n; 0/ � � � � � � �

Table 13.11 Chart corresponding to the dependency graph shown in Fig. 13.5. For instance, the
triple .0; 3; 0/ corresponds to the subtree ranging from the root to word brought

LengthnWord index 0 1 2 3 4 5

0 .0; 0; 0/ .1; 1; 1/ .2; 2; 2/ .3; 3; 3/ .4; 4; 4/ .5; 5; 5/

1 .1; 2; 2/ .4; 5; 5/ –
2 .1; 3; 3/ .3; 5; 3/ – –
3 .0; 3; 0/ – – –
4 – – – –
5 .0; 5; 0/ – – – – –

root the waiter brought the meal

After the initialization and similarly to CYK, the parser fills the cells of the chart
with constituents .i; j; k/ of increasing length: j � i equals to 1, then 2, 3, : : :, until
the tree covers the range Œ0; n� with the root at index 0: .0; n; 0/. Each cell is the
combination of two adjacent subtrees (Table 13.10).

Table 13.11 shows an example of the chart with the sentence The waiter brought
the meal, where the cells are filled with triples leading to the complete tree.

We have presented a conversion of the CYK algorithm that enables us to parse
dependencies. Using it, we can associate probabilities to the triples as with the CYK
parser for constituents (Sect. 12.5.3), score the subtrees, and have a unique result for
each sentence.

This version is far from optimal, however, as its time complexity is in O.n5/:
there are O.n3/ triples to fill in the chart, and each triple .i; j; k/ needs to examine
O.n2/ pairs, .i; l; k/ and .l C 1; j;m/, with varying l and m, to build it. We will
see in the next section that we can bring small changes that lower its complexity
to O.n3/.
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Fig. 13.8 Splitting the two trees into two parts on the head index. This results in four spans whose
head is to the left or right of the span (light gray)
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Fig. 13.9 attach_right creates an arc from wi to wj and a span that contains all the dependents
to the right of wi and to the left of wj (gray)

13.7.2 A More Efficient Version

Eisner’s parser is an improvement of the CYK conversion that constrains the
position of the headword in the triple .i; j; k/ to be either wi or wj . It thus eliminates
the two variables representing the head positions and reduces the parsing complexity
to O.n3/.

To put this idea into practice, we start from the trees in Figs. 13.6 and 13.7 that
we split into two parts to the left and right of their headword. Each of these parts
is called a span. Figure 13.8 shows a partition that creates four spans from the two
trees. To fit the new structure, we need to modify and complement the operations of
the previous section. We use four functions:

1. attach_right that creates a right-arc between two spans rooted at wi , respectively
wj , with its dependents to the right, respectively to the left, and results in a new
span from i to j . Figure 13.9 shows this operation.

2. complete_right that gathers the right dependents of wj (Fig. 13.10).
3. attach_left and complete_left that are the mirrors of the two preceding

functions.
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Fig. 13.10 complete_right
gathers the dependents to the
right of wj and creates a span
from i to t2 (gray)

13.7.3 Implementation

Representing the Spans

Eisner’s parser uses a chart, where we fill each cell with spans of increasing length.
Their representation is similar to that of the triples from the previous section: each
span is bounded by two indices, i and j , and has a head, either i or j . However, the
spans need to distinguish whether they have gathered all their dependents to the left,
respectively to the right, and thus whether they need to carry out a complete_left,
respectively complete_right operation. We need then one more parameter to mark
if a span is available for a complete operation.

Using the notation proposed by McDonald (2006), we model a span by a
quadruple .i; j; d; c/, where:

• i and j are the indices of the start and the end of the span,
• d 2 f!; g marks the head of the span, either wi or wj , and
• c 2 f0; 1g is a flag that reflects if the span is either incomplete (0) or complete

(1), meaning that it has dependents to acquire to the left, in the case of a head to
the right, or to the right, in the case of a head to the left.

As examples, Fig. 13.9 shows five spans from left to right before and after an
attach_right operation. We represent them by the following quadruples:

Before: .i; t1;!; 1/, .t1 C 1; j; ; 1/, and .j; t2;!; 1/,
After: .i; j;!; 0/ and .j; t2;!; 1/.

Parsing Algorithm

As with the CYK parser, Eisner’s parser incrementally fills the cells of the chart
with spans of increasing length, where each span results from the composition of
two subspans. Given a span of length k, this composition can be done in k � 1
different ways. To make this analysis possible, we associate a score with each span
and span construction. We will then fill the chart with the maximal scoring spans
and discard the others.
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Fig. 13.11 Eisner parser (After McDonald (2006))

We denote C.i; j; d; c/ the score of span .i; j; d; c/, and we define an attachment
score s.h; d/ between two words, wh and wd , where wh is the head, and wd , the
dependent.

We initialize the chart with spans of length 0 and a score of 0, and we apply a
sequence of attach and complete operations to spans of increasing length from 1 to
n. We fill the quadruples with the optimal spans so that each span score corresponds
to the maximal sum of the scores of two spans it can be created from plus, in the
case of an attach operation, the attachment score. The score C.i; j; d; c/ of span
.i; j; d; c/will then be the sum of all the scores of the individual links involved in its
construction. Figure 13.11 shows the complete algorithm after McDonald (2006)’s
implementation.

Let us denote W , the sequence of words w0;w1; : : : ;wn, and G its dependency
graph. The score of G is the sum of the individual scores s.i; j /, where .i; j / 2 G,
wi is the head and wj , the dependent:

s.W;G/ D
X

.i;j /2G
s.i; j /:

This final score is given once the chart is filled by the score of the span ranging
from the root w0 to the end of the sentence wn: C.0; n;!; 1/. The dependency tree
can then be extracted from the chart using a mirror chart of back pointers that store
for each span the two spans it originates from.

13.7.4 Learning Graphs with the Perceptron

As we have seen in the previous section, Eisner’s parser requires an attachment score
s.h; d/ between the words wh and wd to carry out an attach operation. We define
such a score as the dot product of a feature vector f.wh;wd / representing the link
and a weight vector weight:
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The waiter brought a meal
1 2 3 4 5

DT NN VBD DT NN

Fig. 13.12 An incorrect
dependency analysis of The
waiter brought a meal

s.h; d/ D weight � f.wh;wd /

and we learn automatically the weight vector from manually parsed corpora using
online learning algorithms such as the perceptron that we saw in Sect. 4.7. The final
score of the dependency graph G of a sentence W is the sum of all the scores:

s.W;G/ D
X

.h;d/2G
weight � f.wh;wd /

This dot product may seem somewhat abstract. Let us make it concrete with a
simple example. We have seen in Sect. 13.4 that D-rules indicate the possibility
of a link. Let us use then the part of speech of the head and the part of speech of
the dependent as elementary features. To apply the perceptron, we must represent
these two parts of speech in the form of a vector of binary digits as introduced in
Sect. 4.10. Given that there are about 50 parts of speech in the Penn Treebank, we
need to create a vector of 100 dimensions to represent a link. Each vector will have
2 bits that are set to 1; the rest being zeros.

Now let us extract the feature vectors representing the links from graph G in
Fig. 13.5, which shows the dependency tree of the sentence The waiter brought the
meal, and from G0 in Fig. 13.12 that shows a wrong analysis of the same sentence.
For each link, we build pairs consisting of the parts of speech of the head and the
dependent that we convert into binary vector. Table 13.12 shows these vectors with
parts of speech limited to the set fROOT;DT;NN;VBDg.

In real parsers, such as that of McDonald (2006), there are many more features,
including the parts of speech and lexical values of the surrounding words and
combinations of them.

The training procedure uses a corpus 
 D f.Wt ; Gt /gTtD1 of T sentences, where
Wt is a sentence, and Gt , its associated hand-annotated dependency graph. We
initialize the weight vector weight.0/ to 0 and we apply successive updates using the
perceptron. At iteration k, we parse a sentence Wt of the corpus using the weight
vector weight.k/ to compute the score s.Wt ; Gt /. The parser returns the graph OGt.k/.
The perceptron learns the next weight vector weight.kC1/ from differences between
Gt and OGt.k/: we compute its update by subtracting f.Wt ; OGt.k// from f.Wt ;Gt /.
And we do so until the weight vector converges or we have reached a preset epoch
number. Figure 13.13 shows this algorithm modified from McDonald (2006).
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Table 13.12 Feature vectors extracted from the dependency graph G shown in Fig. 13.5 and G0

in Fig. 13.12. The parts of speech are encoded as Boolean values

Head POS Dependent POS

Feature vectors ROOT DT NN VBD ROOT DT NN VBD

Graph G
f.waiter;The/ (NN, DT) 0 0 1 0 0 1 0 0
f.brought;waiter/ (VBD, NN) 0 0 0 1 0 0 1 0
f.ROOT; brought/ (ROOT, VBD) 1 0 0 0 0 0 0 1
f.meal; the/ (NN, DT) 0 0 1 0 0 1 0 0
f.brought;meal/ (VBD, NN) 0 0 0 1 0 0 1 0
f.W;G/ DP

.h;d/2G f.wh;wd / 1 0 2 2 0 2 2 1
Graph G0

f.brought;The/ (VBD, NN) 0 0 0 1 0 1 0 0
f.The;waiter/ (DT, NN) 0 1 0 0 0 0 1 0
f.ROOT; brought/ (ROOT, VBD) 1 0 0 0 0 0 0 1
f.brought; the/ (VBD, DT) 0 0 0 1 0 1 0 0
f.the;meal/ (DT, NN) 0 1 0 0 0 0 1 0
f.W;G0/ DP

.h;d/2G0
f.wh;wd / 1 2 0 2 0 2 2 1

Fig. 13.13 Learning the weight vector weight using the perceptron (Modified from McDonald
(2006))

13.8 Further Reading

While most research in English has been done using the constituency formalism
– and many computational linguists still use it – dependency inspires much of the
present work. Early implementations of dependency theories include Link Grammar
(Sleator and Temperley 1993) and the Functional Dependency Grammar (Järvinen
and Tapanainen 1997) that uses constraint rules and produces a dependency
structure where links are annotated with functions. Covington (1990) described an
algorithm that could parse discontinuous constituents. Constant (1991), El Guedj
(1996), and Vergne (1998) provide accounts in French; Hellwig (1980, 1986) was
among the pioneers in German.
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Some authors reformulated parsing a constraint satisfaction problem (CSP),
sometimes combining it with a chart. Constraint handling rules (CHR) is a simple,
yet powerful language to define constraints (Frühwirth 1998). Constraint handling
rules are available in some Prologs, notably SWI Prolog.

In 2006 and 2007, the Conference on Computational Natural Language Learning
(CoNLL) organized its shared task on multilingual dependency parsing (Buchholz
and Marsi 2006; Nivre et al. 2007). The conference site provides background
literature, data sets, and an evaluation scheme (http://www.cnts.ua.ac.be/conll/). As
a result, two main classes of parsing methods emerged from these shared tasks:
the first one being transition-based, as is Nivre’s parser, and the second one based
on Eisner’s parser. They still dominate the world of dependency parsing today. See
McDonald (2006) and Kübler et al. (2009) for details as well as well as for a third
technique based on maximum spanning trees.

The performance of a parser depends in a large measure on the feature set
it uses. In this chapter, we reviewed relatively simple sets. Table 11.12 shows a
baseline set for transition-based parsing that needs to be experimentally tuned for
each language to analyze. While feature sets can be created manually, Nilsson and
Nugues (2010) describe an automatic procedure to discover features for transition-
based parsers. In Eisner’s parser, we considered first-order features involving a
single arc between a head and a dependent. It is possible to extend the set to second-
order features representing two links, between a head and two adjacent dependents
or between a head, a dependent, and a dependent of the dependent, as well as higher-
order features. Eisner’s parser needs then to be extended to accommodate these
features. See Carreras (2007) for a description. Readers interested in building a high-
performance parser should refer to the original papers, from CoNLL for instance,
that describe the complete feature sets.

Finally, we trained Eisner’s parser using the perceptron. This online learning
technique can also be applied to transition-based parsing combined with beam
search; the features are then extracted from the parser states and transitions
(Johansson and Nugues 2007b). Although, this combination initially yielded results
inferior to those obtained with local classifiers, they are now on a par with the best
published performances (Zhang and Nivre 2011).

Exercises

13.1. Improve Nivre’s parser with D-rules. Use the suggestions proposed in
Sect. 13.4.1.

13.2. Add features to Nivre’s parser and evaluate their contribution. Download an
annotated corpus from the CoNLL 2006 web site and use the evaluation script to
measure the attachment score. You can use features proposed in Table 13.6.

http://www.cnts.ua.ac.be/conll/
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13.3. Implement a function classifier to Nivre’s parser. Download an annotated
corpus from the CoNLL 2006 web site and use the evaluation script to measure
the labelled attachment score. You can use features proposed in Table 13.6.

13.4. Rewrite Covington’s parser to parse an annotated corpus using either the
projective or nonprojective version. Download a corpus from the CoNLL 2006 web
site, for example, and extract features. You can use features proposed in Table 13.6.

13.5. Extend Covington’s parser (projective or nonprojective) with classifiers.
Train classifiers from the features you extracted in Exercise 13.4. You can use
either decision trees or support vector machines. Apply your parser on a corpus
from the CoNLL 2006 web site and use the evaluation script to measure the labeled
attachment score.

13.6. Implement Eisner’s parser.



Chapter 14
Semantics and Predicate Logic

Insbesondere glaube ich, dass die Ersetzung der Begriffe Subject und
Praedicat durch Argument und Function sich auf die Dauer bewähren wird.
“In particular, I believe that the replacement of the concepts subject and
predicate by argument and function, respectively, will stand the test of
time.”

Gottlob Frege, Preface to Begriffsschrift, 1879.

14.1 Introduction

Semantics deals with the meaning of words, phrases, and sentences. It is a wide
and open subject intricately interwoven with the structure of the mind. The potential
domain of semantics is immense and covers many of the human cognitive activities.
It has naturally spurred a great number of theories. From the philosophers of
ancient and medieval times, to logicians of the nineteenth century, psychologists
and linguists of the twentieth century, and now computer scientists, a huge effort
has been made on this subject.

Semantics is quite subtle to handle or even to define comprehensively. It would
be a reckless challenge to claim to introduce an exhaustive view of the topic. It
would be even more difficult to build a unified point of view of all the concepts
that are attached to it. In this chapter, we will cover formal semantics. This
approach to semantics is based on logic and is the brainchild of both linguists
and mathematicians. It addresses the representation of phrases and sentences, the
definition of truth, the determination of reference (linking words to the world’s
entities), and some reasoning. In the next chapter, we will review lexical semantics.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__14, © Springer-Verlag Berlin Heidelberg 2014
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Table 14.1 A dialogue between diners and the robot

Dialogue turns Sentences

Socrates orders the dinner from the robot Bring the meal to the table
The robot, after it has brought the meal, warns the diners The meal is on the table. It is hot
Pierre, who was not listening Is this meal cold?
. . . Miam miam
Socrates, after the dinner is finished Clear the table

14.2 Language Meaning and Logic: An Illustrative Example

Roughly defined, formal semantics techniques attempt to map sentences onto logical
formulas. They cover areas of sentence representation, reference, and reasoning.
Let us take an example to outline and illustrate layers involved in such a semantic
processing. Let us suppose that we want to build a robot to serve us a dinner. To
be really handy, we want to address and control our beast using natural language.
So far, we need to implement a linguistic interface that will understand and process
our orders and a mechanical device that will carry out the actions in the real world.
Given the limits of this book, we set aside the mechanical topics and we concentrate
on the linguistic part.

To avoid a complex description, we confine the scope of the robot’s understand-
ing to a couple of orders and questions. The robot will be able to bring meals to
the table, to answer a few questions from the patrons, and to clear the table once
the meals have been eaten. Now, let us imagine a quick dialogue between the two
diners, Socrates and Pierre, and the robot (Table 14.1).

Processing the sentences’ meaning from a logical viewpoint requires a set of
steps that we can organize in operating modules making parts of a semantic
interpretation system. The final organization of the modules may vary, depending
on the final application.

• The first part has to represent the state of the world. There is a table, diners
around the table, a meal somewhere, and a robot. A condition to any further
processing is to have them all in a knowledge base. We represent the entities,
persons and things, using symbols that we store in a Prolog database. The
database should reflect at any moment the current state of the world and the
properties of the entities. That is, any change in the world should update the
Prolog database correspondingly. When the robot mechanically modifies the
world or when it asserts new properties on objects, a corresponding event has
to appear in the database.

• The second part has to translate phrases or sentences such as The robot brought
the meal or the meal on the table into formulas a computer can process. This also
involves a representation. Let us consider the phrase the meal on the table. There
are two objects, x and y, with x being a meal and y being a table. In addition,
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both objects are linked together by the relation that x is on y. A semantic module
based on formal logic will translate such a phrase into a logical form compatible
with the representation of objects into the database. This module also has to assert
it into the database.

• A third part has to reference the logical forms to real objects represented in the
database. Let us suppose that the robot asserts: The meal is on the table. It is hot.
Referencing a word consists of associating it to an object from the real world
(more accurately, to its corresponding symbol in the database). Referencing is
sometimes ambiguous. There might be two meals: one being served and another
one in the refrigerator. The referencing module must associate the word meal
to the right object. In addition, referencing has also to keep track of entities
mentioned in the discourse and to relate them. It in the second sentence refers to
the same object as the meal on the table in the first sentence, and not to another
meal in the refrigerator.

• A fourth part has to reason about the world and the sentences. Consider the
utterance The meal is on the table. Is it cold? Is the latter assertion true? Is it
false? To answer this question, the semantic interpreter must determine whether
there is really a meal on the table and whether it is cold. To check it, the
interpreter needs either to look up whether this fact is in the database or to have
external devices such as a temperature sensor and a definition of cold. In addition,
if a fact describes the meal as hot, a reasoning process must be able to tell us that
if something is hot, it is not cold. We can implement such reasoning in Prolog
using rules and an inference mechanism.

14.3 Formal Semantics

Of the many branches of semantics, formal semantics is one of the best-established
in the linguistic community. The main assumption behind it is that logic can model
language and, by extension, human thought. This has many practical consequences
because, at hand, there is an impressive set of mathematical models and tools to
exploit. The most numerous ones resort to the first-order predicate calculus. Such
tools were built and refined throughout the twentieth century by logicians such as
Frege, Herbrand, Russell, and Tarski.

The formal semantics approach is also based on assumptions linking a sentence
to its semantic representation and, most notably, the principle of compositionality.
This principle assumes that a sentence’s meaning depends on the meaning of the
phrases that compose it: “the meaning of the whole is a function of the meaning of
its parts.” A complementary – and maybe more disputable – assumption is that the
phrases carrying meaning can be mapped onto syntactic units: the constituents. As a
result, the principle of compositionality ties syntax and semantics together. Though
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there are many utterances in English, French, or German that are not compositional,
these techniques have proved of interest in some applications.

14.4 First-Order Predicate Calculus to Represent the State
of Affairs

The first concrete step of semantics is to represent the state of affairs: objects,
animals, people, and observable facts together with properties of things and relations
between them. A common way to do this is to use predicate–argument structures.
The role of a semantic module will then be to map words, phrases, and sentences
onto symbols and structures characterizing things or properties in a given context:
the universe of discourse.

First-order predicate calculus (FOPC) is a convenient tool to represent things
and relations. FOPC has been created by logicians and is a proven tool to express
and handle knowledge. It features constants, variables, and terms that correspond
exactly to predicate–argument structures. We examine here these properties with
Prolog, which is based on FOPC.

14.4.1 Variables and Constants

We can map things, either real or abstract, onto constants – or atoms – and
subsequently identify the symbols to the things. Let us imagine a world consisting
of a table and two chairs with two persons in it. This could be represented by five
constants stored in a Prolog database. Then, the state of affairs is restrained to the
database:

% The people:
’Socrates’.
’Pierre’.

% The chairs:
chair1. % chair #1
chair2. % chair #2

% The unique table:
table1. % table #1

A second kind of device, Prolog’s variables such as X, Y, or Z, can unify with
any entity of the universe and hold its value. And variable X can stand for any of the
five constants.
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14.4.2 Predicates

Predicates to Encode Properties

Predicates are symbols representing properties or relations. Predicates indicate, for
instance, that ’Pierre’ has the property of being a person and that other things
have the property of being objects. We state this simply using the person and
object symbols as functors (predicate names) and ’Pierre’ and table1 as
their respective arguments. We add these facts to the Prolog database to reflect the
state of the world:

person(’Pierre’).
person(’Socrates’).

object(table1).
object(chair1).
object(chair2).

We can be more specific and use other predicates describing that table1 is a
table, and that chair1 and chair2 are chairs. We assert this using the table/1
and chair/1 predicates:

table(table1).

chair(chair1).
chair(chair2).

Predicates to Encode Relations

Predicates can also describe relations between objects. Let us imagine that chair
chair1 is in front of table table1, and that ’Pierre’ is on table1. We
can assert these relative positions using functors, such as in_front_of/2 or
on/2, linking respectively arguments chair1 and table1, and ’Pierre’ and
table1:

in_front_of(chair1, table1).

on(’Pierre’, table1).

So far, we have only used constants (atoms) as arguments in the properties and
in the predicates representing them. If we want to describe more accurately three-
dimensional scenes such as that in Fig. 14.1, we need more elaborate structures.

In such a scene, a coordinate system is necessary to locate precisely entities of
the world. Since we are in a 3D space, 3D vectors give the position of objects that we
can represent using the v/3 predicate. v(?x, ?y, ?z) indicates the coordinate
values of a point on x, y, and z axes. To locate objects, we will make use of v/3.
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Fig. 14.1 A
three-dimensional scene

For the sake of simplicity here, we approximate an object’s position to its gravity
center. We locate it with the position/2 predicate. Position facts are compound
terms that take the name of an object and the vector reflecting its gravity center as
arguments:

position(table1, v(0, 0, 0)).
position(chair1, v(1, 1, 0)).
position(chair2, v(10, -10, 0)).

14.5 Querying the Universe of Discourse

Now, we have a database containing facts, i.e., properties and relations uncondition-
ally true that describe the state of affairs. Using queries, the Prolog interpreter can
check whether a fact is true or false:

?- table(chair1).
false.

?- chair(chair2).
true.

In addition, unification enables Prolog to determine subsets covering certain
properties:

?- chair(X).
X = chair1;
X = chair2

We can get the whole subset in one shot using bagof/3. The alternate query
yields:
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?- bagof(X, chair(X), L).
L = [chair1, chair2]

The built-in bagof/3 predicate has a cousin: setof/3. The difference is that
setof/3 sorts the elements of the answer and removes possible duplicates.

We may want to intersect properties and determine the set of the corresponding
matching objects. Prolog can easily do this using conjunctions and shared variables.
For instance, we may want to select from the set of chairs those that have the
property of being in front of a table. The corresponding query is:

?- chair(X), in_front_of(X, Y), table(Y).
X = chair1, Y = table1

14.6 Mapping Phrases onto Logical Formulas

Using predicate–argument structures, we can map words, phrases, and sentences
onto logical formulas. Simplifying a bit, nouns, adjectives, or verbs describe
properties and relations that we can associate to predicates. Having said this, we
have solved one part of the problem. We need also to determine the arguments that
we will represent as logical variables.

Arguments refer to real-world entities, and the state of affairs should define their
value. We then need a second process to have a complete representation that will
replace – unify – each variable with a logical constant. We will first concentrate on
the representation of words or phrases and leave the arguments uninstantiated for
now.

As a notation, we use �-expressions that provide an abstraction of properties or
relations. The � symbol denotes variables that we can substitute with an entity of
the real world, such as:

�x:property.x/

or

�y:�x:property.x; y/

where �x indicates that we may supply an expression or a value for x.
Supplying such a value is called a ˇ-reduction. It replaces all the occurrences of

x in the expression and eliminates �x:

.�x:property.x//entity#1

yields

property.entity#1/
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Table 14.2 Representation of nouns and adjectives

Lexical representations Sentences Semantic representations

Nouns
X^chair(X) chair1 is a chair chair(chair1)
X^patron(X) Socrates is a patron patron(’Socrates’)
Adjectives
X^yellow(X) table1 is yellow yellow(table1)
X^hot(X) meal2 is hot hot(meal2)

� is a right-associative operator that we cannot get with Western keyboards. We
use the symbol ^ to denote it in Prolog. And X^property(X) is equivalent to
�x:property.x/.

14.6.1 Representing Nouns and Adjectives

Nouns or adjectives such as waiter, patron, yellow, or hot are properties that we map
onto predicates of arity 1. For example, we represent the noun chair by:

�x:chair.x/

whose equivalent notation in Prolog is X^chair(X). Let us suppose that chair1 is
an entity in the state of affairs. We can supply it to this �-expression:

.�x:chair.x//chair1

and carry out a ˇ-reduction that yields:

chair.chair1/:

Table 14.2 shows some examples of representation of nouns and adjectives.
We can consider proper nouns as well as common nouns. In this case, we will

have predicates such as X^pierre(X) and X^socrates(X). This means that
there are several Pierres and Socrates that can be unified with variable X. We can
also make a nice distinction between them and treat proper nouns as constants like
we have done before. In this case, there would be one single Pierre and one single
Socrates in the world. Such a choice depends on the application.

14.6.2 Representing Noun Groups

Noun groups may consist of a sequence of adjectives and a head noun. We form
their semantic representation by combining each representation in a conjunction of
properties (Table 14.3).
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Table 14.3 Noun groups

Noun groups Semantic representation

hot meal X^(hot(X), meal(X))
fast server X^(fast(X), server(X))
yellow big table X^(yellow(X), big(X), table(X))

Table 14.4 Representation of verbs

Lexical representations Sentences Sentence representations

Intransitive verbs
X^ran(X) Pierre ran ran(’Pierre’)
X^sleeping(X) Socrates is sleeping sleeping(’Socrates’)
Transitive verbs
Y^X^served(X,Y) Roby served a meal served(’Roby’, Z^meal(Z))
Y^X^brought(X, Y) Roby brought a plate brought(’Roby’,Z^plate(Z))

Table 14.5 Preposition representation

Lexical
representations Phrases Phrase representations

Y^X^in(X, Y) The fish in the plate in(Z^fish(Z), T^plate(T))
Y^X^from(X,Y) Pierre from Normandy from(’Pierre’, ’Normandy’)
Y^X^with(X,Y) The table with a napkin with(Z^table(Z), T^napkin(T))

The case is trickier when we have compounded nouns such as:

computer room
city restaurant
night flight

Noun compounds are notoriously ambiguous and require an additional inter-
pretation. Some compounds should be considered as unique lexical entities such
a computer room. Others can be rephrased with prepositions. A city restaurant is
similar to a restaurant in the city. Others can be transformed using an adjective. A
night flight could have the same interpretation as a late flight.

14.6.3 Representing Verbs and Prepositions

Verbs such as run, bring, or serve are relations. We map them onto predicates of
arity 1 or 2, depending on whether they are intransitive or transitive, respectively
(Table 14.4).

Prepositions usually link two noun groups, and like transitive verbs, we map them
onto predicates of arity 2 (Table 14.5).
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14.7 The Case of Determiners

14.7.1 Determiners and Logic Quantifiers

So far, we have dealt with adjectives, nouns, verbs, and prepositions, but we have
not taken determiners into account. Yet, they are critical in certain sentences.
Compare:

1. A waiter ran
2. Every waiter ran
3. The waiter ran

These three sentences have a completely different meaning, although they differ
only by their determiners. The first sentence states that there is a waiter and that
s/he ran. We can rephrase it as there is an x that has a conjunction of properties:
waiter.x/ and ran.x/. The second sentence asserts that all x having the property
waiter.x/ also have the property ran.x/.

Predicate logic uses two quantifiers to transcribe these statements into formu-
las:

• The existential quantifier, denoted 9, and read there exists, and
• The universal quantifier, denoted 8, and read for all

that we roughly associate to determiners a and every, respectively.
The definite determiner the refers to an object supposedly unique over the whole

universe of discourse. We can connect it to the restricted existential quantifier
denoted 9Š and read there exists exactly one. The waiter ran should then be related
to a unique waiter.

We can also use the definite article to designate a specific waiter even if there
are two or more in the restaurant. Strictly speaking, the is ambiguous in this case
because it matches several waiters. The refers then to an object unique in the mind
of the speaker as s/he mentions it, for instance, the waiter s/he can see at the very
moment s/he is saying it or the waiter taking care of her/his table. The universe of
discourse is then restricted to some pragmatic conditions. We should be aware that
these conditions may bring ambiguity in the mind of the hearer – and maybe in that
of the speaker.

14.7.2 Translating Sentences Using Quantifiers

Let us now consider determiners when translating sentences, and let us introduce
quantifiers. For that, we associate determiner a with quantifier 9 and every with 8.
Then, we make the quantifier the head of a logical formula that consists either of
a conjunction of predicates for determiner a or of an implication with every. The
arguments are different depending on whether the verb is transitive or intransitive.
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Table 14.6 Representation of sentences with intransitive verbs using determiners

Sentences Logical representations

A waiter ran 9x.waiter.x/^ ran.x//
exists(X, waiter(X), ran(X))

Every waiter ran 8x.waiter.x/) ran.x//
all(X, waiter(X), ran(X))

The waiter ran 9Šx.waiter.x/^ ran.x//
the(X, waiter(X), ran(X))

With intransitive verbs, the logical conjunctions or implications link the subject
to the verb. Table 14.6 shows a summary of this with an alternate notation using
Prolog terms. Predicates – principal functors – are then the quantifiers’ names:
all/3, exists/3, and the/3.

When sentences contain a transitive verb like:

A waiter brought a meal
Every waiter brought a meal
The waiter brought a meal

we must take the object into account. In the previous paragraph, we have represented
subject noun phrases with a quantified logical statement. Processing the object is
similar. In our examples, we map the object a meal onto the formula:

9y.meal.y//

Then, we link the object’s variable y to the subject’s variable x using the main
verb as a relation predicate:

brought.x; y/

Finally, sentence A waiter brought a meal is represented by:

9x.waiter.x/ ^ 9y.meal.y/ ^ brought.x; y///

Table 14.7 recapitulates the representation of the examples.

14.7.3 A General Representation of Sentences

The quantifiers we have used so far are the classical ones of logic. Yet, in addition
to a, every, and the, there are other determiners such as numbers: two, three,
four; indefinite adjectives: several, many, few; possessive pronouns: my, your;
demonstratives: this, that; etc. These determiners have no exact counterpart in the
world of standard first-order logic quantifiers.
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Table 14.7 Logical representation of sentences with transitive verbs using determiners

Sentences Logical representation

A waiter brought a
meal

9x.waiter.x/^ 9y.meal.y/^ brought.x; y///

exists(X, waiter(X),
exists(Y, meal(Y), brought(X, Y))

Every waiter
brought a meal

8x.waiter.x/) 9y.meal.y/^ brought.x; y///

all(X, waiter(X),
exists(Y, meal(Y), brought(X, Y))

The waiter brought a
meal

9Šx.waiter.x/^ 9y.meal.y/^ brought.x; y///

the(X, waiter(X),
exists(Y, meal(Y), brought(X, Y))

Fig. 14.2 Semantic
representation of Two waiters
brought our meals

A more general representation uses determiners themselves as functors of Prolog
terms instead of logic quantifier names. The subject noun phrase’s determiner
will be the principal functor of term mapping the whole sentence. Subsequent
determiners will be the functors of inner terms. For example,

Two waiters brought our meals

is translated into

two(X, waiter(X), our(Y, meal(Y), brought(X, Y)))

Figure 14.2 depicts this term graphically.
Such a formalism can be extended to other types of sentences that involve more

complex combinations of phrases (Colmerauer 1982). The basic idea remains the
same: we map sentences and phrases onto trees – Prolog terms – whose functor
names are phrases’ determiners and whose arity is 3. Such terms are also called
ternary trees. The top node of the tree corresponds to the sentence’s first determiner
(Fig. 14.3). The three arguments are:

• A variable that the determiner introduces into the semantic representation, say X
• The representation of the first noun phrase bound to the latter variable, that is X

here
• The representation of the rest of the sentence, which we give the same recursive

structure

As a result, a sentence is transformed into the Prolog predicate (Fig. 14.3):

determiner(X, SemNP, SemRest).
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Fig. 14.3 Semantic representation using ternary trees

Fig. 14.4 Representation of The waiter who has a cap brought a meal

This representation also enables us to process relative clauses and adjuncts. We
represent them as a conjunction of properties. For example,

The waiter who has a cap

is translated into

the(X, (waiter(X), a(Y, cap(Y), has(X, Y))), P)

where the second argument corresponds to the relative clause, the comma (,) be-
tween waiter(X) and a(Y, cap(Y), has(X, Y)) stands for a conjunction
of these properties, and where P is linked with a possible rest of the sentence. If we
complement this phrase with a verb phrase:

The waiter who has a cap brought a meal

we can give a value to P and the complete sentence representation will be (Fig. 14.4):

the(X,
(waiter(X), a(Y, cap(Y), has(X, Y))),
a(Z, meal(Z), brought(X, Z))).

14.8 Compositionality to Translate Phrases to Logical Forms

In Chap. 9, we used �-calculus and compositionality to build a logical form
out of a sentence. We will resort to these techniques again to incorporate the
representation of determiners. Just like the case for nouns and verbs, we will process
determiners using arguments in the DCG rules that will carry their partial semantic
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representation. The construction of the logical form will proceed incrementally
using Prolog’s unification while parsing the phrases and the sentence. The semantic
composition of a sentence involves:

1. The translation of the first noun phrase – the subject
2. The translation of the verb phrase – the predicate – that contains a possible second

noun phrase – the object

From the representation we provided in Chap. 9, the main change lies in the noun
phrase translation. We approximated its semantics to the noun itself. Now we refine
it into:

determiner(X, SemNP, SemRest).

14.8.1 Translating the Noun Phrase

To obtain SemNP, we have to compose the semantics of the determiner and of the
noun, knowing that the noun’s representation is:

noun(X^waiter(X)) --> [waiter].

Since the determiner must form the top node of the semantic tree, it has to embed
an incomplete representation of the whole phrase. If we go back to the principles of
�-calculus, we know that the �-variable indicated roughly that we request a missing
value. In this case, the determiner needs the noun representation to reduce it. In
consequence, variables in the noun phrase rule must be:

np(Sem) --> determiner((X^SemNP)^Sem), noun(X^SemNP).

We need to specify a variable X in the �-expression of this rule, because it unifies
with the Sem term, that is, with its first argument, as well as with SemNP and
SemRest.

To write the determiner’s lexical rule, we have now to proceed down into the
structure details of Sem. The term Sem reflects a logical form of arity 3. It obtained
its second argument SemNP from the subject – it did this in the np rule. It has to get
its third argument, SemRest, from the verb and the object. SemRest will be built
by the verb phrase vp, and since it is not complete at the moment, we denote it with
a �-expression. So, variables in the determiner rules are:

determiner((X^SemNP)^(X^SemRest)^a(X, SemNP, SemRest)) -->
[a].

Again, we must specify the X variable that is to be bound in SemRest. Using
these rules, let us process a waiter. They yield the logical form:

(X^SemRest)^a(X, waiter(X), SemRest)
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whose �-variable (X^SemRest)^ requests the semantic value of the verb phrase.
The sentence rule s provides it and builds the complete representation, where vp
brings SemRest:

s(Sem) --> np((X^SemRest)^Sem), vp(X^SemRest).

14.8.2 Translating the Verb Phrase

Now, let the verb phrase rules compose the semantics of the rest (SemRest). The
representation of the verbs remains unchanged. The verbs feature a single variable
when intransitive, as in:

verb(X^rushed(X)) --> [rushed].

and two variables when transitive:

verb(Y^X^ordered(X, Y)) --> [ordered].

Verb phrase semantics is simple with an intransitive verb:

vp(X^SemRest) --> verb(X^SemRest).

It is a slightly more complicated when there is an object. As for the subject,
the object’s determiner embeds a ternary tree as a representation (Fig. 14.2).
It introduces a new variable Y and contains a �-expression that requests the
representation of the verb. This �-expression surfaces at the verb phrase level to
bind the verb semantics to the third argument in the ternary tree. Let us name it
(Y^SemVerb)^. It enables us to write the vp rule:

vp(X^SemRest) -->
verb(Y^X^SemVerb),
np((Y^SemVerb)^SemRest).

Finally, the whole program consists of these rules put together:

s(Sem) --> np((X^SemRest)^Sem), vp(X^SemRest).

np((X^SemRest)^Sem) -->
determiner((X^SemNP)^(X^SemRest)^Sem),
noun(X^SemNP).

vp(X^SemRest) --> verb(X^SemRest).
vp(X^SemRest) -->
verb(Y^X^SemVerb),
np((Y^SemVerb)^SemRest).
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Let us also write a couple of vocabulary rules:

noun(X^waiter(X)) --> [waiter].
noun(X^patron(X)) --> [patron].
noun(X^meal(X)) --> [meal].

verb(X^rushed(X)) --> [rushed].
verb(Y^X^ordered(X, Y)) --> [ordered].
verb(Y^X^brought(X, Y)) --> [brought].

determiner((X^SemNP)^(X^SemRest)^a(X, SemNP,
SemRest)) --> [a].
determiner((X^SemNP)^(X^SemRest)^the(X, SemNP,
SemRest)) --> [the].

These rules applied to the sentence The patron ordered a meal yield:

?- s(Sem, [the, patron, ordered, a, meal], []).

Sem =
the(_4,patron(_4),a(_32,meal(_32),ordered(_4,_32)))

where _4 and _32 are Prolog internal variables. Let us rename them X and Y to
provide an easier and equivalent reading:

Sem = the(X, patron(X), a(Y, meal(Y), ordered(X, Y)))

Similarly, the waiter rushed produces

Sem = the(X, waiter(X), rushed(X))

14.9 Augmenting the Database and Answering Questions

Now that we have built a semantic representation of a sentence, what do we do with
it? This has two answers, depending on whether it is a declaration or a question.
We must keep in mind that the state of affairs – here the Prolog database – reflects
the total knowledge available to the interpretation system. If it is a declaration – a
statement from the user – we must add something because it corresponds to new
information. Conversely, if the user asks a question, we must query the database to
find a response. In this section, we will review some straightforward techniques to
implement it.

14.9.1 Declarations

When the user utters a declaration, the system must add its semantic representation
to the description of the state of affairs. With a Prolog interpreter, the resulting
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semantic fact – corresponding, for example, to determiner(X, NP, Rest) –
will have to be asserted to the database.

We can carry this out using one of the asserta or assertz predicates. The
system builds the semantic representation while parsing and asserts the new fact
when it has finished, that is, after the sentence rule. Since asserta is a Prolog
predicate and we are using DCG rules, we enclose it within curly brackets (braces).
The rule

sentence(Sem) -->
np(...), vp(...), {asserta(Sem), ...}.

will result into a new Sem predicate asserted in the database once the sentence has
been parsed.

14.9.2 Questions with Existential and Universal Quantifiers

In the case of a question, the parser must also build a representation. But the
resulting semantic formula should be interpreted using inference rules that query
the system to find an answer. Questions may receive yes or no as an answer. They
may also provide the value of a fact from the database.

Yes/no questions generally correspond to sentences beginning with an auxiliary
verb such as do, is, have in English, with Est-ce que in spoken French, and with
a verb in German. Other types of questions begin with wh-words such as what,
who, which in English, with qu-words in French such as quel, qui, with w-words in
German such as wer, wen.

We must bring some modifications to the parser’s rules to accept questions,
although basically the sentence structure remains the same. Let us suppose that
we deal with very simple yes/no questions beginning with auxiliary do. The rule
structure after the auxiliary is that of a declaration. Once the question has been
parsed, the system must “call” the semantic fact resulting from the parsing to answer
it. We do this using the call predicate at the end of rules describing the sentence
structure. The system will thus succeed and report a yes, or fail and report a no:

sentence(Sem) -->
[do], np(...), vp(...), {call(Sem), ...}.

If the sentence contains determiners, the Sem fact will include them.
Notably, the subject noun phrase’s determiner will be the predicate functor:
determiner(X, Y, Z). For example,

Did a waiter rush?

will produce Sem = a(X, waiter(X), rushed(X)).
To call such predicates, we must write inference rules corresponding to the

determiner values. The most general cases correspond to the logical quantifiers
exists, which roughly maps a, some, certain, . . . , and to the universal quantifier
all.
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Intuitively, a formula such as:

exists(X, waiter(X), rushed(X)),

corresponding to the sentence:

A waiter rushed

should be mapped onto to the query:

?- waiter(X), rushed(X).

and

a(X, waiter(X), a(Y, meal(Y), brought(X, Y)).

should lead to the recursive call:

?- waiter(X), a(Y, meal(Y), brought(X, Y)).

In consequence, exists can be written in Prolog as simply as:

exists(X, Property1, Property2) :-
Property1,
Property2,
!.

We could have replaced exists/3 with a/3 or some/3 as well.
The universal quantifier corresponds to logical forms such as:

all(X, waiter(X), rushed(X))

and

all(X, waiter(X), a(Y, meal(Y), brought(X, Y)).

We map these forms onto Prolog queries using a double negation, which
produces equivalent statements. The first negation creates an existential quantifier
corresponding to

There is a waiter who didn’t rush
and
There is a waiter who didn’t brought a meal

And the second one is interpreted as:

There is no waiter who didn’t rush
and
There is no waiter who didn’t brought a meal

Using the same process, we translate the double negation in Prolog by the rule:

all(X, Property1, Property2) :-
\+ (Property1, \+ Property2),
!.

We may use an extra call to Property1 before the negation to ensure that there
are waiters.
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14.9.3 Prolog and Unknown Predicates

To handle questions, we want Prolog to retrieve the properties that are in the
database and instantiate the corresponding variables. If no facts matching these
properties have been asserted before, we want the predicate call to fail. With
compiled Prologs, supporting ISO exception handling, a call will raise an exception
if the predicate is not in the database. Fortunately, there are workarounds. If you
want that the unknown predicates fail silently, just add:

:- unknown(_, fail).

in the beginning of your code.
If you know the predicate representing the property in advance, you may define

it as dynamic:

:- dynamic(predicate/arity).

Finally, instead of calling the predicate using

Property

or

call(Property)

you can also use

catch(Property,
error(existence_error(procedure, _Proc), _),
fail)

which behaves like call(Property) except that if the predicate is undefined it
will fail.

14.9.4 Other Determiners and Questions

Other rules corresponding to determiners such as many, most, and more are not so
easy to write as the previous ones. They involve different translations that depend
on the context and application. The reader can examine some of them in the exercise
list.

Questions beginning with wh-words are also more difficult to process. Some-
times, they can be treated in a way similar to yes/no questions. This is the case for
which or who, which request the list of the possible solutions to predicate exists.
Other wh-words, such as where or when, involve a deeper understanding of the
context, possibly spatial or time reasoning. These cases are out of the scope of this
book.

From this chapter, the reader should also be aware that the presentation has been
simplified. In “real” natural language, many sentences are very difficult to translate.
Notably, ambiguity is ubiquitous, even in benign sentences such as
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Every caterpillar is eating a hedgehog

where two interpretations are possible.
Mapping an object must also take the context into account. If a patron says This

meal, pointing to it with his/her finger, no ambiguity is possible. But, we then need
a camera or tracking means to spot what is the user’s gesture.

14.10 Application: The Spoken Language Translator

14.10.1 Translating Spoken Sentences

The Core Language Engine (CLE) (Alshawi 1992) is a workbench aimed at
processing natural languages such as English, Swedish, French, and Spanish.
The CLE has a comprehensive set of modules to deal with morphology, syntax,
and semantics. It provides a framework for mapping any kind of sentence onto
logical forms. The CLE, which was designed at the Stanford Research Institute in
Cambridge, England, is implemented in Prolog.

CLE has been used in applications, the most dramatic of which is definitely
the Spoken Language Translator (SLT) (Agnäs et al. 1994). This system translates
spoken sentences from one language into another for language pairs such as
English/Swedish, English/French, and Swedish/Danish.

Translation operates in nearly real time and has reached promising quality levels.
Although SLT never went beyond the demonstration stage, it was reported that it
could translate more than 70 % of the sentences correctly for certain language pairs.
Table 14.8 shows examples from English into French (Rayner and Carter 1995).
SLT is limited to air travel information, but it is based on principles general enough
to envision an extension to any other domain.

Table 14.8 Examples of French–English translations provided by the SLT (After Rayner and
Carter (1995))

English What is the earliest flight from Boston to Atlanta?
French Quel est le premier vol Boston–Atlanta?
English Show me the round trip tickets from Baltimore to Atlanta
French Indiquez-moi les billets aller-retour Baltimore–Atlanta
English I would like to go about 9 am
French Je voudrais aller aux environs de 9 heures
English Show me the fares for Eastern Airlines flight one forty seven
French Indiquez-moi les tarifs pour le vol Eastern Airlines cent quarante sept
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14.10.2 Compositional Semantics

The CLE’s semantic component maps sentences onto logical forms. It uses unifica-
tion and compositionality as a fundamental computation mechanism. This technique
makes it easy to produce a representation while parsing and to generate the
corresponding sentence in the target language.

Agnäs et al. (1994, pp. 42–43) give an example of the linguistic analysis of the
sentence

I would like to book a late flight to Boston

whose semantic structure corresponds to the Prolog term:

would(like_to(i,
book(i,

np_pp(a(late(flight)),
X^to(X, boston)))))

The parse rule notation is close to that of DCGs, but instead of the rule

Head --> Body_1, Body_2, ..., Body_n.

CLE uses the equivalent Prolog term

rule(<RuleId>,
Head,
[Body_1,
Body_2,
...
Body_n])

Table 14.9 shows the rules involved to parse this sentence. For example, rule 1
describes the sentence structure and is equivalent to

s --> np, vp.

Rules embed variables with values in the form of pairs Feature = Value to
implement syntactic constraints and semantic composition.

The lexicon entries follow a similar principle and map words onto Prolog terms:

lex(<Wordform>, <Category> (Features>))

Table 14.10 shows lexical entries of the sentence I would like to book a late flight
to Boston, and Fig. 14.5 shows its parse tree.

The semantic value of words or phrases is denoted with the sem constant in the
rules. For instance, flight has the semantic value flight (Table 14.10, line 3) and
a has the value a(NBAR) (Table 14.10, line 5), where NBAR is the semantic value
of the adjective/noun sequence following the determiner.
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Table 14.9 Rules in the CLE formalism (After Agnäs et al. (1994, p. 42))

# Rules

1. rule(s_np_vp,
s([sem=VP]),
[np([sem=NP,agr=Ag]),
vp([sem=VP,subjsem=NP,aspect=fin,agr=Ag])]).

2. rule(vp_v_np,
vp([sem=V,subjsem=Subj,aspect=Asp,agr=Ag]),
[v([sem=V,subjsem=Subj,aspect=Asp,agr=Ag,subcat=,
[np([sem=NP])]]),
np([sem=NP,agr=_])]).

3. rule(vp_v_vp,
vp([sem=V,subjsem=Subj,aspect=Asp,agr=Ag]),
[v([sem=V,subjsem=Subj,aspect=Asp,agr=Ag,
subcat=[vp([sem=VP,subjsem=Subj])]]),

vp([sem=VP,subjsem=Subj,aspect=ini,agr=])]).
4. rule(vp_v_to_vp,

vp([sem=V,subjsem=Subj,aspect=Asp,agr=Ag]),
[v([sem=V,subjsem=Subj,aspect=Asp,agr=Ag,
subcat=[inf([]),vp([sem=VP,subjsem=Subj])]]),

inf([]),
vp([sem=VP,subjsem=Subj,aspect=inf,agr=])]).

5. rule(np_det_nbar,
np([sem=DET,agr=(3-Num)]),
[(det([sem=DET,nbarsem=NBAR,num=Num]),
nbar([sem=NBAR,num=Num])]).

6. rule(nbar_adj_nbar,
nbar([sem=ADJ,num=Num])
[adj([sem=ADJ,nbarsem=NBAR]),
nbar([sem=NBAR,num=Num])]).

7. rule(np_np_pp,
np([sem=np_pp(NP,PP),agr=Ag]),
[np([sem=NP,agr=Ag]),
pp([sem=PP])]).

8. rule(pp_prep_np,
pp([sem=PREP]),
[prep([sem=PREP,npsem=NP]),
np([sem=NP,agr=_])]).

The parser composes the semantic value of the noun phrase a flight applying the
np_det_nbar rule (Table 14.9, line 5) equivalent to

np --> det, nbar.

in the DCG notation. It results in sem = a(flight).
All the semantic values are unified compositionally and concurrently with the

parse in an upward movement, yielding the sentence’s logical form.
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Table 14.10 Lexicon entries in the CLE formalism (After Agnäs et al. (1994, p. 42))

# Lexicon entries

1. lex(boston,np([sem=boston,agr=(3-s)])).
2. lex(i,np([sem,agr=(1-s)])).
3. lex(flight,n([sem=flight,num=s])).
4. lex(late,adj([sem=late(NBAR),nbarsem=NBAR])).
5. lex(a,det([sem=a(NBAR),nbarsem=NBAR,num=s])).
6. lex(to,prep([sem=X^to(X,NP),npsem=NP])).
7. lex(to,inf([])).
8. lex(book,v([sem=have(Subj,Obj),subjsem=Subj,aspect=ini,agr=_,

subcat=[np([sem=Obj])]])).
9. lex(would,v([sem=would(VP),subjsem=Subj,aspect=fin,agr=_,

subcat=[vp([sem=VP,aubjsem=Subj])]])).
10. lex(like,v([sem=like_to(Subj,VP),subjsem=Subj,aspect=ini,

agr=_,subcat=[inf([]),vp([sem=VP,subjsem=Subj])]])).

Fig. 14.5 Parse tree for I would like to book a late flight to Boston (After Agnäs et al. (1994,
p. 43))

14.10.3 Semantic Representation Transfer

The complete CLE’s semantic layer relies on two stages. The first one maps
a sentence onto a so-called quasi-logical form. Quasi-logical forms are basic
predicate–argument structures, as we saw in this chapter, where variables repre-
senting real objects remain uninstantiated. The second layer links these variables
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to values, taking the context into account and so constructing fully resolved logical
forms.

Translation from one language to another need not resolve variables. So the
SLT builds a quasi-logical form from the source sentence and transfers it into the
target language at the same representation level. SLT uses then a set of recursive
transfer rules to match patterns in the source sentence and to replace them with their
equivalent in the target language. Rules have the following format (Rayner et al.
1996):

trule(<Comment>
<QLF pattern 1>
<Operator>
<QLF pattern 2>).

where Operator describes whether the rule is applicable from source to target
(>=), the reverse (=<), or bidirectional (==).

Some rules are lexical, such as

trule([eng, fre],
flight1 >= vol1).

which states that flight is translated as vol, but not the reverse. Others involve
syntactic information such as:

trule([eng, fre],
form(tr(relation,nn),

tr(noun1),
tr(noun2))

>=
[and, tr(noun2),

form(prep(tr(relation)),
tr(noun1))]).

which transfers English compound nouns like arrival time – noun1 noun2. These
nouns are rendered in French as: heure d’arrivée with a reversed noun order –
noun2 noun1 and with a preposition in-between d’ – prep(tr(relation)).

14.11 RDF and SPARQL as Alternatives to Prolog

As alternative to Prolog to represent the universe of discourse, we can use tabular
databases to store information and the SQL query language to extract or modify it.
The resource description framework (RDF) together with SPARQL is a third option
that enjoys a growing popularity. We introduce it now.
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Fig. 14.6 A RDF triple consisting of two nodes Subject and Object connected by an arc with the
Predicate label

Fig. 14.7 The RDF graph representing Prolog predicates in Sect. 14.4.2

14.11.1 RDF Triples

The resource description framework represents information as a collection of triples,
where each triple consists of a subject, a predicate, and an object. In Sect. 14.4.2,
we encoded a small set of facts with Prolog predicates. It is easy to convert them
to RDF triples. One-place predicates such as person(’Socrates’) assert the
type of the argument: Socrates is a person. We rewrite them as triples using the
built-in rdf:type RDF predicate:

ilppp:Pierre rdf:type ilppp:person.
ilppp:Socrates rdf:type ilppp:person.

ilppp:table1 rdf:type ilppp:object.
ilppp:chair1 rdf:type ilppp:object.
ilppp:chair2 rdf:type ilppp:object.

where each member of a triple consists of a prefix, ilppp or rdf here, a colon, an
a local name; the rdf prefix is defined by the RDF standard, while ilppp is just
for this book. Two-place predicates have an even more straightforward conversion
from the Prolog format. We just reuse the Prolog predicate names as is in the triples
and the first and second argument for the subject and object:

ilppp:chair1 ilppp:in_front_of ilppp:table1.
ilppp:Pierre ilppp:on ilppp:table1.

A set of triples forms a directed graph, where the subjects and objects are graph
nodes and the predicates are the labels of the arcs linking the subjects to the objects
(Fig. 14.6). Figure 14.7 shows the set of triples resulting from the translation of our
small Prolog database.
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RDF were designed as an extension to the World Wide Web and they followed
the idea of global addresses to find the nodes. Just as http://www.springer.com/
is a universal network reference to Springer publishing, RDF nodes use names
in the form of uniform resource identifiers (URIs), a variation of Web addresses.
While RDF subjects and predicates are always URIs, an RDF object can either be a
nonterminal node of the graph or a terminal one: a graph leaf. Accordingly, objects
can be URIs or have literal values such as numbers, strings, dates, etc.

As URIs are often long and poorly legible, the RDF standard uses abridged names
consisting of a namespace, what we called the prefix, a colon, and a local name.
As header of our set of triples, we need to give the list of prefixes to recover the
complete URIs:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix ilppp: <http://cs.lth.se/nlp/02/book#>.

so that the RDF predicate rdf:type is expanded into:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

All the other RDF nodes or predicates would be expanded the same way using the
rdf or ilppp prefixes.

14.11.2 SPARQL

Once we have stored facts in a database, Prolog enables us to extract information
using queries such as:

?- object(X), object(Y), in_front_of(X, Y).

that finds that objects linked by an in front of relation:

X = chair1,
Y = table1.

SPARQL is the RDF query language that plays the role of Prolog for triple stores.
Its syntax shows similarities with SQL and we write a query equivalent to the Prolog
one this way:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ilppp: <http://cs.lth.se/nlp/02/book#>

SELECT ?x ?y
WHERE
{
?x rdf:type ilppp:object.
?y rdf:type ilppp:object.
?x ilppp:in_front_of ?y

}

http://www.springer.com/
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Table 14.11 The nodes returned by the SPARQL query

Variables ?x ?y

Values ilppp:chair1 ilppp:table1

where the variables start with a question mark, here ?x and ?y, and the lines
correspond to a conjunction of goals, acting like commas in Prolog. The first
and second lines of the query extract all the ?x and ?y that are of type ilppp:
object, and the third line adds the constraint that the nodes are connected with the
ilppp:in_front_of property.

The query returns a table, here of one line, with the values found in the triple
store (Table 14.11).

14.11.3 DBpedia and Yago

DBpedia (Auer et al. 2007; Bizer et al. 2009) and Yago (Suchanek et al. 2007) are
two examples of large semantic knowledge repositories based on RDF graphs. Both
projects collected automatically their knowledge from the Wikipedia encyclopedia,
and they used the semistructured information they could find in the entire article
collection, notably the infoboxes, to derive billions of RDF triples.

Wikipedia infoboxes are tabulated data summarizing key facts of certain entries.
These facts depend on the article category: if it is a country, the infobox will list the
country capital, the population size, the flag, the president, king, or queen, etc. If it
is a city, it lists the mayor, the population, the area, etc. The article on the Korean
city of Busan (http://en.wikipedia.org/wiki/Busan) has such an infobox located at
the top right of the page. Clicking on the Edit tab shows the wiki markup used to
encode the infobox, abridged here:

{{Infobox settlement
| name = Busan
...
| area_total_km2 = 767.35
...
| population_total = 3,614,950
...
}}

The DBpedia extraction algorithm reads all the Wikipedia articles, recognizes
the infobox using its start and end delimiters, respectively {{Infobox and }},
and applies regular expressions to extract the properties and their values, such as
the pairs (name, Busan), (area, 767.35), and (population, 3,614,950). DBpedia or
Yago also map the named entities they extract from this process to unique identifiers
following the URI format. They adopt the Wikipedia naming nomenclature and the

ilppp:object
ilppp:object
http://en.wikipedia.org/wiki/Busan
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Table 14.12 The values returned by the DBpedia SPARQL end point

Variables Entity Population

Values http://dbpedia.org/resource/Busan 3,614,950

URI of the city of Busan is dbpedia:Busan, where the dbpedia: prefix is the
abbreviation of http://dbpedia.org/resource/.

Finally, DBpedia or Yago store the data they extract in the form of RDF triples.
For Busan, this results in:

dbpedia:Busan foaf:name "Busan, Korea"@en .
dbpedia:Busan dbpedia-owl:populationTotal "3614950".
dbpedia:Busan dbpedia-owl:areaTotal "7.6735E8" .
...

with the prefixes:

@prefix dbpedia: <http://dbpedia.org/resource/>.
@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
...

The RDF format makes it easier to link the DBpedia or Yago graphs to other
similar data graphs, and using SPARQL, it is possible to extract knowledge as
with tabular database queries. DBpedia provides such a SPARQL end point (http://
dbpedia.org/sparql), where the query:

SELECT ?entity ?population
WHERE
{
?entity foaf:name "Busan, Korea"@en.
?entity dbpedia-owl:populationTotal ?population.

}

identifies the entity named Busan, Korea in English (@en tag), its population, and
returns the values in Table 14.12.

14.12 Further Reading

Relations between logic and language have been a core concern for logicians,
linguists, and philosophers. For a brief presentation and a critical discussion on
philosophical issues, you may read Habermas (1988, Chap. 5). The reader can
also find good and readable introductions in Encyclopédie philosophique universelle
(Jacob 1989) and in Morton (2003).

Modern logic settings stem from foundational works of Frege (1879), Peirce
(1885, 1897), and Herbrand (1930). Later, Robinson (1965) proposed algorithms

http://dbpedia.org/resource/Busan
dbpedia:Busan
http://dbpedia.org/resource/
http://dbpedia.org/sparql
http://dbpedia.org/sparql
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to implement logic programs. Robinson’s work eventually gave birth to Prolog
(Colmerauer 1970, 1978). Burke and Foxley (1996) provide a good introductory
textbook on logic and notably on Herbrand bases. Sterling and Shapiro (1994) also
give some insights on relations between Prolog and logic. Textbooks with examples
of semantic processing in Prolog include Pereira and Shieber (1987), Gal et al.
(1989, 1991), Covington (1994b), and Blackburn and Bos (2005).

Some books attribute the compositionality principle to Frege (1879). In fact,
he said exactly the opposite. The investigation of rational ways to map sentences
onto logical formulas dates back to the ancient Greeks and the Middle Ages. Later,
Montague (1974) extended this work and developed it systematically to English.
Montague has had a considerable influence on modern developments of research
in this area. For a short history of compositionality, see Godart-Wendling et al.
(1998). The Handbook of Logic and Language (van Benthem and Ter Meulen 1997)
provides a comprehensive treatment on current theories in the field. A shorter and
very readable introduction on the philosophy of language is that of Taylor (1998).

Text is the largest repository of human knowledge, and the availability of internet
encyclopedias like Wikipedia, that anybody can download, or large corpora in many
languages has made it possible to apply a systematic extraction of this knowledge.
This was the idea behind projects harvesting structured information from text
such as Yago, DBpedia, or Google’s Knowledge Graph (Singhal 2012). Yago and
DBpedia publish their results in the form of predicate–argument structures (RDF
triples) with unique entity identifiers that other applications can reuse. The RDF
format makes it relatively easy to link them to other data graphs or data sets. The
Geonames geographic database is an example of this (http://www.geonames.org/).
For an introduction to the RDF format and SPARQL, Allemang and Hendler (2011)
is a good and legible reference.

Exercises

14.1. Write facts to represent
Tony is a hedgehog
A hedgehog likes caterpillars
Tony likes caterpillars
All hedgehogs likes caterpillars

14.2. Write DCG rules to get the semantic structure out of sentences of Exer-
cise 14.1.

14.3. Write DCG rules to obtain the semantic representation of noun phrases made
of one noun and one and more adjectives such as The nice hedgehog, the nice little
hedgehog.

14.4. Write rules accepting sentences with embedded relative clauses, such as The
waiter that ran brought a meal and producing a logical form out of them:

http://www.geonames.org/
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the(X, (waiter(X), ran(X)), a(Y, meal(Y), brought(X, Y))

14.5. Write rules to carry out the semantic interpretation of determiner two, as in
the sentence Two waiters rushed.

14.6. Write rules to carry out the semantic interpretation of determiner No, as in No
waiter rushed.

14.7. Write rules to carry out the semantic interpretation of how many, as in how
many waiters rushed.

14.8. Write rules to parse questions beginning with relative pronouns who and what
in sentences, such as Who brought the meal? and What did the waiter bring? and
build logical forms out of them.

14.9. Write a small dialogue system accepting assertions and questions and
answering them. A transcript of a session could be:

User: the patron ordered the meal
System: OK
User: who brought the meal
System: I don’t know
User: who ordered the meal
System: the patron
User: the waiter brought the meal
System: OK
User: who brought the meal
System: the waiter

14.10. Some sentences such as all the patrons ordered a meal may have several
readings. Cite two possible interpretations of this sentence and elaborate on them.

14.11. Download a dump of Wikipedia in the language you like (http://dumps.
wikimedia.org/) and write DCG rules or regular expressions to extract the infoboxes.

14.12. Write DCG rules to parse the infoboxes you extracted in Exercise 14.11 and
extract one or more properties from them, for instance, the population size. Should
you prefer it, you can use regular expressions instead of DCG rules.

http://dumps.wikimedia.org/
http://dumps.wikimedia.org/


Chapter 15
Lexical Semantics

Τῶν κατὰ μηδεμίαν συμπλοκὴν λεγομένων ἕκαστον ἤτοι οὐσίαν
σημαίνει ἢ ποσὸν ἢ ποιὸν ἢ πρός τι ἢ ποὺ ἢ ποτὲ ἢ κεῖσθαι ἢ
ἔχειν ἢ ποιεῖν ἢ πάσχειν. ἔστι δὲ οὐσία μὲν ὡς τύπῳ εἰπεῖν οἷον
ἄνθρωπος, ἵππος· ποσὸν δὲ οἷον δίπηχυ, τρίπηχυ· ποιὸν δὲ οἷον
λευκόν, γραμματικόν· πρός τι δὲ οἷον διπλάσιον, ἥμισυ, μεῖζον· ποὺ
δὲ οἷον ἐν Λυκείῳ, ἐν ἀγορᾷ· ποτὲ δὲ οἷον χθές, πέρυσιν· κεῖσθαι δὲ
οἷον ἀνάκειται,κάθηται· ἔχειν δὲ οἷον ὑποδέδεται, ὥπλισται· ποιεῖν
δὲ οἷον τέμνειν, καίειν· πάσχειν δὲ οἷον τέμνεσθαι, καίεσθαι.

Aristotle, Categories, IV. See translation in Sect. 15.2.

15.1 Beyond Formal Semantics

15.1.1 La langue et la parole

Formal semantics provides clean grounds and well-mastered devices for bridging
language and logic. Although debated, the assumption of such a link is common
sense. There is obviously a connection – at least partial – between sentences and
logical representations. However, there are more controversial issues. For instance,
can the whole language be handled in terms of logical forms? Language practice,
psychology, or pragmatics are not taken into account. These areas pertain to
cognition: processes of symbolization, conceptualization, or understanding.

Bibliography on nonformal semantics is uncountable. Let us have a glimpse at
it with Ferdinand de Saussure (1916), the founder of modern linguistics. Much of
Saussure’s work, but not exclusively, was devoted to the area of what we would
call now real-world semantics. He first made the distinction between the cultural
background of a community of people of a same language embodied in words
and grammatical structures and physical messages of individuals expressed by the

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__15, © Springer-Verlag Berlin Heidelberg 2014
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means of a tongue. He called these two layers language and speech – la langue et la
parole, in his words.

15.1.2 Language and the Structure of the World

Starting from the crucial distinction between langue and parole, Saussure went
on to consider linguistic values of words, taking examples from various languages
(Saussure 1916, Chap. 4). Comparing words to economic units, Saussure described
them as structural units tied together into a net of relationships. These units would
have no sense isolated, but taken together are the mediators between thought and the
way individuals express themselves. Accepting Saussure’s theory, languages are not
only devices to communicate with others but also to seize and understand reality.
This entails that the structure of knowledge and thought is deeply intermingled
within a linguistic structure. And of course, to fit communication, this device has
to be shared by a community of people.

In this chapter, we limit ourselves to some aspects on how a language and, more
specifically, words relate to the structure of the world. Words of a specific tongue
also embed a specific view of the universe. We believe that most concepts are
common to all languages and can be structured in the same way. However, certain
words cover concepts somewhat differently according to languages. In addition, the
ambiguity they introduce is puzzling since it rarely corresponds from one language
to another. We present techniques to structure a lexicon and to resolve ambiguity.
Within this framework, we examine verb structures and case grammars that provide
us with a way to loop back to sentence representation and to formal semantics.

15.2 Lexical Structures

15.2.1 Some Basic Terms and Concepts

To organize words, we must first have a clear idea of what they express. In
dictionaries, this is given by definitions. Definitions are statements that explain the
meaning of words or phrases. Some words have nearly the same definition and hence
nearly the same meaning. They are said to be synonyms. In fact, perfect synonyms
are rare if they even exist. We can relax the synonymy definition and restate it as:
synonyms are words that have the same meaning in a specific context. Synonymy is
then rather considered as a graded similarity of meaning. Antonyms are words with
opposite meanings.

Contrary to synonymy, a same word – or string of characters – may have several
meanings. It is then said to be ambiguous. Word ambiguity is commonly divided
between homonymy (or homography) and polysemy:
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expressions

substance quantity quality relation place time position state action affection

Fig. 15.1 Aristotle’s ontology

• When words of a same spelling have completely unrelated meanings, such as for
the strings lot in a lot of and a parking lot, they are said to be homonyms or
homographs.

• When a word extends its meaning from concrete to abstract and to concepts tied
by analogy, it is said to be polysemous. Consider the example of tools used in
computer tools and in carpenter tools, where the latter is a concrete object and
the former a computer program.

15.2.2 Ontological Organization

There are several ways to organize words within a lexicon. Most dictionaries for
European languages sort words alphabetically. An obvious advantage of this method
is to provide easy access to words. However, alphabetical organization is of little
help when we want to process semantic properties. A more intuitive way is to
organize words according to their meaning. The lexicon structure then corresponds
to broad categories where we arrange and group the words. Such a classification
certainly better reflects the structure of our knowledge of the world and is more
adequate for semantic processing.

A first classification dates back to ancient Greek philosophy, when Aristotle
established his famous division of words into ten main categories (Fig. 15.1). Such
a lexicon structure, and beyond it, the representation of the world it entails, is often
called an ontology in computational linguistics.

Expressions, which are in no way composite, signify substance, quantity, quality, relation,
place, time, position, state, action, or affection. To sketch my meaning roughly, examples
of substance are ‘man’ or ‘the horse’, of quantity, such terms as ‘two cubits long’ or ‘three
cubits long’, of quality, such attributes as ‘white’, ‘grammatical’. ‘Double’, ‘half’, ‘greater’,
fall under the category of relation; ‘in the market place’, ‘in the Lyceum’, under that of
place; ‘yesterday’, ‘last year’, under that of time. ‘Lying’, ‘sitting’, are terms indicating
position; ‘shod’, ‘armed’, state; ‘to lance’, ‘to cauterize’, action; ‘to be lanced’, ‘to be
cauterized’, affection.

Aristotle, Categories, IV. (trans. E. M. Edghill)

We can deepen the classification hierarchy. Aristotle’s substance is what we
could call now an entity. It includes man and horse as well as meal and table.
It is easy to introduce further divisions between these words. To refine them, we
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animates

human beings furniturefoodanimals

substanceFig. 15.2 Extending
Aristotle’s ontology

insert new nodes under the substance class. Figure 15.2 shows a symbolic tree
distinguishing between animates, human beings, animals, food, and furniture. This
tree representation – now ubiquitous – is traditionally attributed to Porphyry.

15.2.3 Lexical Classes and Relations

An ontological structure defines classes and relationships relative to each word of
the lexicon. The most obvious way to group words within an ontological tree is to cut
a branch under a word. The branch then contains the hyponyms of that word: more
specific and specialized terms. For instance, hyponyms of animals are mammals,
carnivores, felines, or cats. We can go the reverse direction, from specific to more
general, and abstract heading to the root of the tree. Thus we get the hypernyms of a
word. Hypernyms of hedgehogs are insectivores, mammals, animals, and substance.

It is easy to express hypernymy and hyponymy using Prolog facts. Let us define
the is_a/2 predicate to connect two concepts. We can represent the hierarchy of
the previous paragraph as:

%% is_a(?Word, ?Hypernym)

is_a(hedgehog, insectivore).
is_a(cat, feline).
is_a(feline, carnivore).
is_a(insectivore, mammal).
is_a(carnivore, mammal).
is_a(mammal, animal).
is_a(animal, animate_being).

Hypernymy and hyponymy are reversed relationships and are both transitive.
This can trivially be expressed in Prolog:

hypernym(X, Y) :- is_a(X, Y).
hypernym(X, Y) :- is_a(X, Z), hypernym(Z, Y).

hyponym(X, Y) :- hypernym(X, Y).
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Beyond the tree structure, we can enrich relationships and link parts to the whole.
Feet, legs, hands, arms, chest, and head are parts of human beings. This relation is
called meronymy. Meronymy is also transitive. That is, if nose, mouth, brain are
meronyms of head, they are also meronyms of human beings. Again it is easy to
encode this relation using Prolog facts. Let us use the has_a/2 predicate:

%% has_a(?Word, ?Meronym).

has_a(human_being, foot).
has_a(human_being, leg).
has_a(human_being, hand).
has_a(human_being, arm).
has_a(human_being, chest).
has_a(human_being, head).
has_a(head, nose).
has_a(head, mouth).
has_a(head, brain).

The opposite of meronymy is called holonymy.

15.2.4 Semantic Networks

We can generalize the organization of words and knowledge and extend it to any
kind of relationships that may link two concepts. Words are figured as a set of nodes,
and relationships are labeled arcs that connect them. This representation is called a
semantic network (Quillian 1967).

Figure 15.3 shows an extension of Fig. 15.2 where we have added the relations
eat and possess. As we see, the graph contains two eat links: the first one
between carnivores and meat, and the second one between animates and food.
Once a semantic net has been designed, we search relations between two concepts,
climbing up from specific to general. Inheritance enables us then to assign relations
eat(X, meat) to nodes X under carnivores, and eat(Y, food) to other
nodes Y under animates.

Inheritance makes the design of a semantic network easier; therefore the core
structure of the graph remains centered on hypernymy, that is, “is a” links. Other
properties come as a supplement to it. There are then many ways to augment a net.
Design decisions depend on the application. The verbs linking words representing
the agent of an action and its object are among common and useful arcs.
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possess

eat

carnivoresinsectivores

meatmammals

eat

animates

substance

human beings furniturefoodanimals

Fig. 15.3 A semantic
network

15.3 Building a Lexicon

Dictionaries – or lexicons – are repositories of a language’s words. They are
organized as a set of entries – the words – containing one or more senses. Current
dictionaries attempt to itemize all the senses of words and typically contain more
than 50,000 entries. Others are focused on specific domains. Dictionaries associate
words or senses with grammatical models and definitions. Grammatical models
such as the part of speech or a verb’s conjugation class indicate morphological and
syntactic properties of words; this enables their lemmatization and parsing. Models
can also extend to semantic and pragmatic classifications. Many dictionaries cross-
reference words using synonyms and give usage examples to show how a word is
used in context.

As we could have guessed, wide-coverage lexical databases are central to most
natural language processing applications. Instead of creating a new base from
scratch, many computerized dictionaries have been derived from existing paper
lexicons and transcribed in a computer-readable format, which are called machine-
readable dictionaries (MRDs). Computerized dictionaries often take the structure of
their paper counterparts and are organized as a set of entries corresponding to word
senses with their syntactical model, semantic annotations, and definition.

Learner or nonnative speaker dictionaries are often preferred as primary re-
sources to derive lexical databases. They describe precisely pronunciation and
syntactical features, such as a verb’s subcategory or an inflection paradigm,
while other dictionaries sometimes take it for granted by native speakers. Some
dictionaries also tie words to specialized domains with labels such as: anatomy,
computer science, linguistics, etc., or to general semantic codes: life, body, people,
food, etc. Finally, most learner’s dictionaries define each entry with a controlled
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vocabulary limited to two to three thousand words. This ensures a consistency in
definitions, ease of understanding, and avoids circular – looping – definitions.

General lexicographic sources for English include the Longman Dictionary of
Contemporary English (LDOCE) (Procter 1978), the Oxford Advanced Learner’s
Dictionary (OALD) (Hornby 1995), the Collins Cobuild English Language Dic-
tionary (COBUILD) (Sinclair 1987) or the Cambridge International Dictionary
of English (CIDE) (Procter 1995). Among them, the computerized version of the
LDOCE gained the largest popularity within the academic computational linguistics
community.

15.3.1 The Lexicon and Word Senses

As we saw in Chap. 1, many words are ambiguous, that is, a same string of
letters has more than one meaning. Most dictionaries arrange homonyms that have
clearly different meanings under different entries. The OALD (1995 edition) lists
three entries for bank: two nouns, organization and raised ground, and a verb
turn. Polysemy, which refers to meaning variations within a same entry, is subtler.
Dictionaries divide entries into submeanings with more or less precision according
to the dictionary. These are the senses of a word. Let us take the example of the
sentence

The patron ordered a meal

to realize concretely what word senses are. We will annotate each word of the
sentence with its correct sense, and we will use definitions of the OALD to carry
out this operation.

In the sentence, there are three content words: patron, order, and meal. For each
of these words, the OALD lists more than one sense. Patron has one main entry for
which the dictionary makes out two meanings:

1. A person who gives money or support to a person, an organization, a cause or an
activity

2. A customer of a shop, restaurant, theater

Order has two entries. The first one is a noun and the other is a verb for which
the OALD details four sub-meanings:

1. To give an order to somebody
2. To request somebody to supply or make goods, etc.
3. To request somebody to bring food, drink, etc. in a hotel, restaurant, etc.
4. To put something in order

And finally, meal has two entries – two homographs – one as in oatmeal, and the
other being divided into two submeanings:

1. An occasion where food is eaten
2. The food eaten on such occasion
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Table 15.1 Sense ambiguity in the sentence The patron ordered a meal

Words Definitions OALD sense numbers

The patron Correct sense:
A customer of a shop, restaurant, theater 1.2
Alternate sense:
A person who gives money or support to a person, an

organization, a cause or an activity
1.1

ordered Correct sense:
To request somebody to bring food, drink, etc. in a hotel,

restaurant etc.
2.3

Alternate senses:
To give an order to somebody 2.1
To request somebody to supply or make goods, etc. 2.2
To put something in order 2.4

a meal Correct sense:
The food eaten on such occasion 1.2
Alternate sense:
An occasion where food is eaten 1.1

Table 15.2 Some verb
constructions

English depend + on + object noun group
I like + verb-ing (gerund)
require + verb-ing (gerund)

French dépendre + de + object noun group
Ça me plaît de + infinitive
demander + de + infinitive

German hängen + von + dative noun group + ab
es gefällt mir + zu + infinitive
verlangen + accusative noun group

That is, with such a simple sentence, we already have 16 choices (2 � 4 � 2;
Table 15.1).

Classically, senses of a word are numbered relatively to a specific dictionary
using the entry number and then the sense number within the entry. So requesting
somebody to bring food, drink, etc. in a hotel, restaurant, etc., which is the 3rd
sense of the 2nd entry of order in the OALD is denoted order (2.3). The proper
sense sequence of The patron ordered a meal is then patron (1.2) order (2.3) meal
(1.2).

15.3.2 Verb Models

Dictionaries contain information on words’ pronunciations, parts of speech, declen-
sion, and conjugation models. Some enrich their annotations with more precise
syntactic structures such as the verb construction. In effect, most verbs constrain
their subject, object, or adjuncts into a relatively rigid construction (Table 15.2).
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Some dictionaries such as the OALD or the LDOCE provide the reader with
this argument structure information. They include the traditional transitive and
intransitive verb distinction, but descriptions go further. The OALD itemized 28
different types of verb patterns. Intransitive verbs, for example, are subdivided into
four categories:

• V are verbs used alone.
• Vpr are verbs followed by a prepositional phrase.
• Vadv are verbs followed by an adverb.
• Vp are verbs followed by a particle.

A verb entry contains one or more of these models to indicate possible constructions.
Some dictionaries refine verb patterns with semantic classes. They indicate

precisely the ontological type of the subject, direct object, indirect object, and
sometimes adjuncts. Verbs with different argument types will be mapped onto as
many lexical senses. For instance, Rich and Knight (1991) quote three kinds of
wanting:

1. Wanting something to happen
2. Wanting an object
3. Wanting a person

We can map the 2nd construction onto a DCG rule specifying it in its arguments:

%% word(+POS, +Construction, +Subject, +Object)

word(verb, transitive, persons, phys_objects) --> [want].

Argument types enforce constraints, making sure that the subject is a person and
that the object is a physical object. These are called selectional restrictions. They
may help parsing by reducing syntactic ambiguity.

The LDOCE lists selectional restrictions of frequent verbs that give the expected
semantic type of their subject and objects. It uses semantic classes such as
inanimate, human, plant, vehicle, etc. The Collins Robert French–English dictionary
(Atkins 1996) is another example of a dictionary that includes such ontological
information with a large coverage.

15.3.3 Definitions

The main function of dictionaries is to provide the user with definitions, that is,
short texts describing words. The typical definition of a noun first classifies it in a
genus proximum or superclass using a hypernym. Then, it describes in which way
the noun is specific using attributes to differentiate it from other members of the
superclass. This part of the definition is called the differentia specifica. Examples
from the OALD include (general in bold and specific underlined):
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bank (1.1): a land sloping up along each side of a canal or a river.
hedgehog: a small animal with stiff spines covering its back.
waiter: a person employed to serve customers at their table in a restaurant, etc.

from Le Robert Micro (Rey 1988)

bord (1.1): contour, limite, extrémité d’une surface.
hérisson (1.1): petit mammifère au corps recouvert de piquants, qui se nourrit essentiellement
d’insectes.
serveur (1.1): personne qui sert les clients dans un café, un restaurant.

and from Der kleine Wahrig (Wahrig 1978)

Ufer (1.1): Rand eines Gewässers, Gestade.
Igel (1.1): ein kleines insektfressendes Säugetier mit kurzgedrungenem Körper
und auf dem Rücken aufrichtbaren Stacheln.
Ober (1.2) –> Kellner: Angestellter in einer Gaststätte zum Bedienen der Gäste.

15.4 An Example of Exhaustive Lexical Organization:
WordNet

WordNet (Fellbaum 1998; Miller 1995) is a lexical database of English. It is
probably the most successful attempt to organize word information with a computer.
It has served as a research model for other languages such as Dutch, German, Italian,
and Spanish. A key to this success is WordNet’s coverage – it contains more than
120,000 words – and its liberal availability online: users can download it under the
form of Prolog facts from its home at Princeton University.

WordNet arranges words or word forms along with word meanings into a lexical
matrix (Fig. 15.4). The lexical matrix addresses both synonymy and polysemy. A
horizontal line defines a set of synonymous words – a synset in WordNet’s parlance.
A column shows the different meanings of a word form. In Fig. 15.4, F1 and F2 are
synonyms (both have meaning M1) and F2 is polysemous (it has meanings M1 and
M2). Synsets are the core of WordNet. They represent concepts and knowledge that
they map onto words.

From synonymy and synsets, WordNet sets other semantic relations between
words, taking their part of speech into account. WordNet creators found this
property relevant, citing cognitive investigations: when people have to associate
words spontaneously, they prefer consistently to group words with the same part
of speech rather than words that have a different one.

WordNet considers open-class words: nouns, verbs, adjectives, and adverbs. It
has set aside function words. According to classes, the organization and relation-
ships between words are somewhat different. However, semantic relations remain
based on synsets and thus are valid for any word of a synset.
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Word Word forms

meanings F1 F2 ... ... Fn
M1 E1,1 E1,2
M2 E2,2

Mm Em,n

Fig. 15.4 The lexical matrix (Miller et al. 1993)

{act, action, activity}
{animal, fauna}
{artifact}
{attribute}
{body, corpus}
{cognition, knowledge}
{communication}
{event, happening}
{feeling, emotion}

{food}
{group, collection}
{location, place}
{motive}
{natural object}
{natural phenomenon}
{person, human being}
{plant, flora}

{possession}
{process}
{quantity, amount}
{relation}
{shape}
{state, condition}
{substance}
{time}

Fig. 15.5 WordNet’s 25 semantic primes

{entity, something} {state {} group, grouping}
{psychological feature} {event {} possession}
{abstraction} {act, human action, human activity} {phenomenon}

Fig. 15.6 Nouns’ top nodes

15.4.1 Nouns

WordNet singles out 25 primitive concepts or semantic primes (Fig. 15.5), and
it partitions the noun set accordingly. Within each of the corresponding topics,
WordNet uses a hypernymic organization and arranges nouns under the form of
a hierarchical lexical tree. WordNet contains 95,000 nouns.

In addition to the 25 base domains, WordNet adds top divisions (Fig. 15.6). This
enables it to gather some classes and to link them to a single node. Figure 15.7
shows the hierarchy leading to {thing, entity}.

To picture the word hierarchy and synsets with an example, let us take meal. It
has two senses in WordNet:

1. meal, repast – (the food served and eaten at one time)
2. meal – (coarsely ground foodstuff; especially seeds of various cereal grasses or

pulse)

For sense 1, synonyms are nutriment, nourishment, sustenance, aliment, alimen-
tation, and victuals; and hypernyms are (from the word up to the root):

• nutriment, nourishment, sustenance, aliment, alimentation, victuals – (a source
of nourishment)
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{living thing, organism}

{thing, entity}

{nonliving thing, object}

{plant, flora}

{animal, fauna}

{person, human being}

{natural object}

{artifact}

{substance}

{food}

Fig. 15.7 {thing, entity} node of WordNet’s hierarchy

• food, nutrient – (any substance that can be metabolized by an organism to give
energy and build tissue)

• substance, matter – (that which has mass and occupies space; “an atom is the
smallest indivisible unit of matter”)

• object, physical object – (a physical (tangible and visible) entity; “it was full of
rackets, balls, and other objects”)

• entity, something – (anything having existence (living or nonliving))

15.4.2 Adjectives

WordNet divides adjectives into two general classes: descriptive and relational, and
into a more specific one: color adjectives. WordNet contains 20,000 adjectives.

Descriptive adjectives modify a noun and qualify one of its attributes. Examples
include hot and cold, as in hot meal and cold meal, where hot and cold both describe
the temperature attribute of meal. Another example is heavy and light, which give a
value to the weight attribute of a noun (more precisely to the object it represents). As
for other words, adjectives are grouped into synsets, and for each adjective synset,
there is a link to the attribute it describes.

In addition to synonymy, WordNet uses antonymy as a core concept to organize
descriptive adjectives. It clusters all of them around bipolar couples: word–antonym
together with their respective synsets. Hot and cold or wet and dry are typical
couples of antonyms, and WordNet enumerates 2,500 of them.

Antonymy relation, however, is not valid for all the members of a synset. Torrid
is a synonym of hot but it cannot be considered as an antonym of cold. To cope with
this, WordNet makes a distinction between bipolar antonymy and opposite concepts
– or indirect antonyms. There is no direct antonym for torrid, but using its synset,
WordNet can link it indirectly to cold via hot.



15.4 An Example of Exhaustive Lexical Organization: WordNet 481

Table 15.3 Name and description of verb files provided with the WordNet 1.6 distribution

File Description

Body Verbs of grooming, dressing, and bodily care
Change Verbs of size, temperature change, intensifying, etc.
Cognition Verbs of thinking, judging, analyzing, doubting
Communication Verbs of telling, asking, ordering, singing
Competition Verbs of fighting and athletic activities
Consumption Verbs of eating and drinking
Contact Verbs of touching, hitting, tying, digging
Creation Verbs of sewing, baking, painting, performing
Emotion Verbs of feeling
Motion Verbs of walking, flying, swimming
Perception Verbs of seeing, hearing, feeling
Possession Verbs of buying, selling, owning
Social Verbs of political and social activities and events
Stative Verbs of being, having, spatial relations
Weather Verbs of raining, snowing, thawing, thundering

Relational adjectives (pertainyms) such as fraternal, contextual, or dental are
modified nouns and behave much like them on the semantic side, although they
have the syntactic properties of adjectives. WordNet encodes them with a reference
to their related noun: fraternal with fraternity or brother, contextual with context,
and dental with teeth or dentistry. As opposed to descriptive adjectives, WordNet
does not associate them to an attribute.

15.4.3 Verbs

WordNet partitions verbs into 15 categories. Fourteen of these categories are
semantic domains: bodily functions and care, change, cognition, communication,
competition, consumption, contact, creation, emotion, motion, perception, posses-
sion, social interaction, and weather. A last part contains verbs referring to states:
verbs of being, having, and spatial relations (Table 15.3). WordNet has a total of
10,300 verbs.

The first relation WordNet sets between verbs is synonymy, as for other words.
However, synonymy is more delicate to delimit because verb meanings are quite
sensitive to the context. That is, two verbs with apparently the same meaning, such
as rise and ascend, do not occur with the same type of subject. This is a general
case, and most verbs are selective with the type of their nominal arguments: subject,
object, or adjunct. Moreover, as a verb often has no lexical synonym, WordNet
encodes synsets with a small explanation – a gloss. For example, the verb order
has nine senses whose sense 2 is represented by the synset {order, make a request
for something}. Bring has 11 senses, and sense 1 is the synset {bring, convey, take,
take something or somebody with oneself somewhere}.
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Then, WordNet organizes verbs according to principles similar to hyponymy and
meronymy for nouns. However, it cannot apply these principles directly because
they do not match exactly that of nominals. WordNet replaces them respectively
with troponymy and entailment.

WordNet designers found the is_a relationship not relevant or clumsy for verbs
(Fellbaum 1998, p. 79):

to amble is a kind of to walk is not a felicitous sentence.

To name specializations of more generic verbs, they coined the word troponyms.
Amble is then a troponym of walk. This is roughly a kind of verbal hyponymy
related to a manner, a cause, or an intensity that makes the description of an action
more precise. Since tropos is a Greek word for manner or fashion, it enables us to
rephrase the hierarchical relation between amble and walk as to amble is to walk in
a particular manner.

The second principle of verb organization is entailment – or implication – as he
is snoring implies he is sleeping, or she is limping implies she is walking. Relations
between verbs in these examples are not of the same kind. The latter is related to
troponymy: limping is a specialization or an extension of walking. The former is
an inclusion: the action of snoring is always included in an action of sleeping. In
total, WordNet makes out four kinds of entailments. In addition to extension and
inclusion, the two other entailments are backward presupposition – an action must
have been preceded by another one, as with the pair succeed/try – and cause – an
action leads to another one, as with give/have.

15.5 Automatic Word Sense Disambiguation

Although ambiguity is ubiquitous in texts, native speakers recognize the proper
sense of a word intuitively. In the beginning of computational linguistics, some
people declared it a human faculty impossible to reproduce automatically. This
is no longer the case. There have been considerable improvements recently, and
researchers have good reason to believe that a computer will be able to discriminate
among word senses. Here we will present an overview of techniques to carry out
word sense disambiguation, that, alone or combined, show promising results.

15.5.1 Senses as Tags

Let us again consider the sentence The patron ordered a meal. Solving ambiguity
has an obvious definition. It consists in linking a word with its correct sense entry
in a dictionary. We can recast this as a tagging problem. We regard a dictionary as
a sense inventory and senses as a finite set of labels that we call semantic tags. The
number of tags per word ranges from one to more than a dozen. Ambiguous words
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can receive several tags, and disambiguation consists in retaining one single tag –
a unique sense – per word. Semantic tagging applies most frequently to open-class
words: nouns, verbs, adjectives, and adverbs.

Compared to part-of-speech tagging, a major contrast comes from the tagset.
Dictionaries have somewhat different classifications of word senses and there is
no complete consensus on them. According to authors, sense division is also finer
or coarser. Applications can even use sets of word senses specifically designed
for them. If broad categories of senses are common across most dictionaries and
can be transcoded, there always will be some cases with a lack of agreement.
The dissimilarity in classification and how we perceive senses can be measured by
asking two or more different people to annotate a same text. The agreement between
manual annotators – or interannotator agreement – is usually significantly lower
for semantic tagging than, say, for part-of-speech annotation. There is no definitive
solution to it, however. We must be aware of it and live with it.

We can carry out semantic tagging using techniques similar to those that we
have used with parts of speech. Namely, we can resort to numerical or symbolic
techniques. Numerical techniques attempt to optimize a sequence of semantic
tags using statistics from a hand-annotated corpus. Symbolic techniques apply
constraints to discard wrong semantic readings and retain the good ones.

SemCor (Landes et al. 1998) is a frequently used resource to train systems for
English. It comes as a freely available corpus in which all the words are annotated
with the WordNet nomenclature.

15.5.2 Associating a Word with a Context

The basic idea of most disambiguation techniques is to use the context of a word
(Wilks et al. 1996, Chap. 11). The noun bank, for example, has two major senses1

that will probably appear in clear-cut contexts. Sense one (bank1) resorts to finance
and money; sense 2 (bank2) pertains to riversides and sloping ground. Context may
be given by the words of the sentence or of the paragraph where the word occurs.
This means that, depending on the words surrounding bank or what the text is about,
a reader can select one of its two senses.

Some finer and more local relations such as the order of two words or the
grammatical relations may also give the context. Disambiguating meal in The patron
ordered a meal requires such considerations, because the two senses of this word
belong to the same topic:

1. An occasion where food is eaten
2. The food eaten on such occasion

1OALD lists a third sense of bank as being a row of similar objects.
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15.5.3 Guessing the Topic

The idea of this technique is first to define a limited number of topics, that is, a
list of general areas, to attach a topic to each sense of words, and then to guess the
topic (or topics) of a paragraph or of a sentence. This technique implies that correct
word senses will make the paragraph topic converge and enable us to discard senses
attached to other topics. To make disambiguation possible, topics must, of course,
be different along with each sense of a word.

According to applications, topics may come from dictionaries that flag some
words with broad classifications – subject tags. For instance, the LDOCE catego-
rizes words with 300 subject codes or domains that we can use as topics: agriculture,
business, economics, engineering, etc. These tags usually annotate more specialized
words.2 Topics could also be a small set of hypernyms drawn from a comprehensive
lexical database. For instance, using WordNet, bank1 could be attached to financial
institution (finance or institution), and bank2 to slope:

%% topic(?Word, ?OALD_Sense, ?Topic).

topic(bank, bank1, [finance, institution]).
topic(bank, bank2, [slope]).

The disambiguation algorithm operates on a context that corresponds to a
sequence of words such as a paragraph, a fixed number of sentences, or a fixed
number of words, from 10 to 100, where the topic is supposed to be stable. A
procedure annotates the words in the window with the possible subject tags when
they are available. It yields possible sense sequences. The algorithm then retains the
sense sequence that has the maximum of subject tags in common. A variation of
this algorithm annotates nouns only. This method is referred to as a bag-of-words
approach because it does not take the word order into account.

15.5.4 Naïve Bayes

The naïve Bayes classifier is an alternate statistical strategy that uses the bag-of-
words approach. It also computes the sense of a word given its context. For a
polysemous word w with n senses s1, s2, . . . , sn, the context C is defined as the
sequence of words surrounding it: w�m;w�mC1; : : : ;w�1;w;w1; : : : ;wm�1;wm. The
optimal sense Os corresponds to arg max

si ;1�i�n
P.si jC/.

Using Bayes’ rule, we have:

2LDOCE annotates the rest of the nonspecialized words with another set of semantic codes: the
key concepts.
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Os D arg max
si ;1�i�n

P.si /P.C jsi /;
D arg max

si ;1�i�n
P.si /P.w�m;w�mC1; : : : ;w�1;w1; : : : ;wm�1;wmjsi /:

And using the bag-of-words assumption, we replace

P.w�m;w�mC1; : : : ;w�1;w1; : : : ;wm�1;wmjsi /

with the product of probabilities:

mY

jD�m;j¤0
P.wj jsi /:

This enables us to compute the optimal sense:

Os D arg max
si ;1�i�n

P.si /

mY

jD�m;j¤0
P.wj jsi /;

where P.si / and P.wj jsi / are both estimated from hand-annotated corpora.

15.5.5 Using Constraints on Verbs

As we saw, most verb arguments have a structure and a semantic type that is
relatively rigid. Another set of disambiguation techniques exploits these properties
and takes verb constructions and local relations into account. We start here from
clauses, and for each one we detect the verb group and noun groups. The idea is to
apply the selectional restrictions imposed by the verb group to its depending noun
groups and thus reject wrong senses.

This technique needs a group detector and a shallow parser to identify the verbs’
subject and object. The sense tagger operates on headwords, that is, here on the
main noun and the main verb of each group. The tagger goes through the verbs that
it annotates with their possible semantic constructions. It also annotates nouns with
their possible senses. Finally, for each verb sense, the tagger retains subject and
object senses that agree with the selectional restrictions.

Although this technique sets aside some parts of sentences, such as adjuncts,
it reduces ambiguity and can be used with a combination of other techniques. In
contrast to the previous technique, it has a more local viewpoint.

In addition, we can operate a disambiguation within groups using other selec-
tional restrictions on adjectives and adverbs. We need to extend the description of
adjectives with features giving the semantic type of the noun they expect to modify.
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Adverbs also have to include their modifier type. As an example, the word mean can
have the properties of being an adjective and of qualifying only persons:

%% word(+Category, +Qualify)

word(adjective, persons) --> [mean].

15.5.6 Using Dictionary Definitions

We saw that using the naïve Bayes approach to tag senses in unrestricted texts
requires an immense hand-annotation effort. It is possible to avoid it using unsuper-
vised methods. Unsupervised methods have no training step or are trained on raw
texts. These techniques are very appealing, especially in word sense disambiguation,
because they avoid the need for human labor to annotate the words.

Wilks and Stevenson (1997) described an algorithm that only uses word defini-
tions from general dictionaries as semantic resource. Their method was inspired by
a paper by Lesk (1986).

The algorithm tags each word with all its possible senses listed in the dictionary
and links each sense with its definition in a dictionary. It first applies constraints on
parts of speech and then identifies the context using the definitions: it selects senses
whose definitions overlap best within the range of a window ofN words, a sentence,
or a paragraph. This is made easier with dictionaries, such as the LDOCE, whose
definitions are written using a controlled defining vocabulary. Simplified main steps
of the program are:

1. A name recognition module identifies the proper nouns of the text.
2. A lemmatization module transforms each word into its canonical form. It

associates each content word with its set of possible senses listed in the dictionary
and with the corresponding textual definitions. Words occurring in definitions are
also lemmatized.

3. A part-of-speech tagger annotates each word with its part of speech. At this step,
the program can discard some senses because they have grammatical categories
different from that of the words in the sentence.

4. The algorithm then computes the definition overlap for each sequence of possible
senses. The overlap function considers a sequence of senses and their textual
definition – one definition per word. The algorithm concatenates definitions
of this sequence and counts the occurrences of each definition word: n. Each
definition word brings a score of n � 1. So, if a definition word appears once,
it will contribute nothing to the function; if it appears twice, it will contribute 1,
and so on. Then, the algorithm adds up the counts and associates this score to the
sense sequence.

5. The algorithm retains the sequence that has the maximum overlap, which is the
largest number of definition words in common.
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Wilks and Stevenson (1997) improved this algorithm using topics as defined in
Sect. 15.5.3. Basically, they compute an overlap function for topics within the range
of a paragraph:

6. The algorithm annotates nouns of a paragraph with possible subject tags when
available. It retains the sequence that has the maximum of subject tags in
common. This computation is similar to that of step 4.

7. The results of steps 4 and 6 are combined in a simplistic way. When both tags do
not correspond, the first one in the dictionary entry list is retained. This is based
on the assumption that entries are ordered by frequency of occurrence.

Step 4 of this algorithm can lead to very intensive computations. If a sentence
has 15 words with 6 senses each, it leads to 615 � 4:7 1011 intersections. Wilks and
Stevenson used simulated annealing to approximate the function. See also Wilks
et al. (1996, Chap. 11).

15.5.7 An Unsupervised Algorithm to Tag Senses

Yarowsky (1995) proposed a slightly supervised and effective algorithm based on
two assumptions on sense distribution:

• Nearby words provide strong clues to the sense of a word. This means that a word
has one sense per collocation.

• The sense of a word is consistent within any given document. This means that a
word has one sense per discourse.

The algorithm is basically a classifier. Given a polysemous word w with n senses
s1, s2, . . . , sn and a set of examples of the word surrounded by the neighboring
words, the algorithm assigns each example a class corresponding to one of the
senses. Each word in the examples is defined by a set of features, which are, as
for naïve Bayes, the surrounding words. The algorithm starts from a few manually
annotated examples that serve as a seed set to derive incrementally a sequence of
classifiers for the remaining unlabeled examples. It uses an objective function that
measures the performance of the classification. The algorithm is repeated until it has
classified all the examples.

The algorithm has an initialization step and two loops. It extracts the set of all the
examples of word w with the surrounding words from the training corpus. It results
in N contexts c1, . . . , cN of, say, ten words, centered around w. These examples
will be the input. In his original article, Yarowsky used the word plant and its two
main senses s1 D living and s2 D factory. The algorithm gradually annotates all
the examples of the corpus with one of the two senses. It produces a sequence of
annotated corpora Corpus.0/, Corpus.1/, . . . , Corpus.n/, and builds classifiers that
correspond to the sets of collocations of the first sense, Collk1 , and of the second one,
Collk2 . Corpus.0/ is the original, unannotated set of examples.
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1. Initialization. This step manually identifies initial collocations, and the first
sense classifier tags the examples whose context contains one of the collocations
with the corresponding sense label. Yarowsky used the words life for the
first sense, Coll11 D flifeg, and manufacturing for the second one, Coll12 D
fmanufacturingg. Both words enabled the disambiguation of 2% of the examples
in Corpus.1/.

2. Outer Loop. This loop uses the “one sense per collocation” principle. It
identifies the examples where the intersection of the context and one of the
collocation sets is nonempty: ck \ Collji ¤ ; with 1 � k � N , i D 1; 2,
and j is the iteration index of the loop. It annotates the corresponding examples
with the sense si . It results in Corpus.j /. In Yarowsky’s paper, contexts of plant
that contained one word of the first set were tagged with the first sense, and others
that contained one word of the second set were tagged with the second sense. The
algorithm applies optionally the “one sense per discourse” constraint.

• Inner Loop. The objective function determines for each sense other col-
locations that partition the training data Corpus.j / and ranks them by the
purity of the distribution. It builds new sets of classifiers ColljC1i with
collocations where the objective function is above a certain threshold. This
step identifies cell, microscopic, animal, and species as collocates of the
first sense ColljC11 D flife; cell;microscopic; animal; speciesg and equipment,
employee, and automate as collocates of the second sense: ColljC12 D
fmanufacturing; equipment; employee; automateg.

3. Repeat the outer loop until it converges (the partition is stable).

The algorithm identifies collocations with an objective function that determines
the “strongest feature.” It uses the log-likelihood ratio that is defined for a word w
with two senses as log P.Sense1jwk/

P.Sense2jwk/ . It ranks the resulting values depending on wk for
all wk members of the contexts w�m;w�mC1; : : : ;w�1;w;w1; : : : ;wm�1;wm, where
the collocations the most strongly tied to a specific sense show the largest values,
either positive or negative.

The “one sense per collocation” principle implies that counts of 0 are frequent.
In another paper, Yarowsky (1996) describes techniques to smooth data. Once the
collocation sets have been built, the resulting classifiers can be applied to other
corpora.

15.5.8 Senses and Languages

Word senses do not correspond in a straightforward way across languages. In a
famous comparison, Hjelmslev (1943) exemplified it with the values of French
words arbre ‘tree’, bois ‘wood’, and forêt ‘forest’ and their mapping onto German
and Danish scales (Figure 15.8). He went on and remarked that the word covering
the material sense in French (bois) and in Danish (træ) could also have the plant
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French German Danish

arbre Baum
Holz Træ

bois
forêt Wald Skov

Fig. 15.8 Values of arbre,
bois, and forêt in German and
Danish

French Welsh

gwyrdd
vert

bleu glas
gris

llwyd
brun

Fig. 15.9 Color values in
French and Welsh

sense but in different ways: a group of trees in French, a single tree in Danish. In
a more striking example, Hjelmslev cited color naming that is roughly common to
European languages with the exception of Celtic languages such as Welsh or Breton,
which does not makes the same distinction between blue and green (Figure 15.9).

There are many other examples where one word in English can be rendered
by more words in French or German, or the reverse. Finding the equivalent word
from one language to another often requires identifying its correct sense in both
languages. It is no great surprise that word sense disambiguation was attempted first
within the context of automatic machine translation projects.

This raises some questions about the proper granularity of sense division for a
translation application. In some cases, sense division that is available in monolingual
dictionaries is not sufficient and must be split within as many senses as there are in
both languages combined. In other cases, all senses of one word correspond from
one language to another. Therefore their distinction is not necessary and the senses
can be merged. This problem is still wide open and is beyond the scope of this book.

15.6 Case Grammars

15.6.1 Cases in Latin

Some languages, like Latin, Russian, and to a lesser extent German, indicate
grammatical functions in a sentence by a set of inflections: the cases. Basically,
Latin cases are relative to the verb, and a case is assigned to each noun group: the
noun and its depending adjectives. Latin has six cases that we can roughly associate
to a semantic property:

• Nominative marks the subject of the sentence.
• Accusative indicates the object of the verb.
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• Dative describes the beneficiary of a gift or of an action. It corresponds to the
indirect object of the verb.

• Genitive describes the possession. As opposed to other cases, it is relative to a
noun that the word in the genitive modifies or qualifies.

• Ablative describes the manner, the instrument, or the cause of an action. It
corresponds to the adjunct function.

• Vocative is used to name and to address a god or a person.
• Locative is a seventh and an archaic case. It indicates the location of the speaker

in some particular expressions.

Latin, like Russian, has quite a flexible word order. That is, we can arrange words
of a sentence in different manners without modifying its meaning. The subject can
appear at the beginning as well as at the end of a sentence. It has no specific location
as in English or in French.

A flexible word order makes cases necessary for a sentence to be understandable.
They indicate functions of groups: who did what to whom, when, and where and
hence the arguments of a verb. Searching the subject, for example, corresponds to
searching the noun phrase at the nominative case. Let us apply these principles to
parse the following example:

Servus senatoris domino januam clave aperit
Slave senator master door key opens

Aperit is the verb in the third-person singular of present and means open
(aperire). It is the predicate relative to which nouns will be the arguments. Each
Latin noun has a model of inflection, also called a declension, five in total. Servus
follows the second declension and means the slave. It is in the nominative case
and hence is the subject of the sentence. Senatoris, third declension, is the genitive
case of senator and is the noun complement of servus. Domino, second declension,
means master and is the dative of dominus. It corresponds to the indirect object of
the verb. Januam, first declension, is the accusative of janua – door – and is the
object. Finally, clave, third declension, is the ablative of clavis – the key – and the
instrument of the action. Once we have identified cases, we can safely translate the
sentence as:

The slave of the senator opens the door to the master with a key.

Cases are also useful to discover what goes with what such as an adjective and
its head noun. Both will have the same case even if the noun group is fragmented
within the sentence.

15.6.2 Cases and Thematic Roles

Case grammars stem from the idea that each verb – or each verb sense – has a
finite number of possible cases. Case grammars rest on syntactic and semantic
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Table 15.4 Examples of case frames (Fillmore 1968, p. 27)

Sentences Case frames

The door opened [O = door, (I), (A)]
John opened the door [O = door, (I), (A) = John]
The wind opened the door [O = door, (I), (A) = wind]
John opened the door with a chisel [O = door, (I) = chisel, (A) = John]

observations of languages like Latin and offer a framework to represent sentences.
Hjelmslev (1935–1937), and more recently, Fillmore (1968) are known to have
posited that cases were universal and limited to a handful. Because of declensions,
cases are obvious to those who learned Latin. However, it is somewhat hidden to
speakers of English or French only. That is probably why, compared to composi-
tionality, the acceptance of the case theory and its transposition to English or French
has been slower.

Surveying a set of languages ranging from Estonian to Walapai, Fillmore
percolated a dozen core cases, or thematic roles. A first classification led him to
define (Fillmore 1968, p. 24):

• Agentive (A) – the case of the instigator of the action, which is typically animate
• Instrumental (I) – the case of the force or object, typically inanimate, causing

the event
• Dative (D) – the case of the entity typically animate affected by the action
• Factitive (F) – the case of the object or being resulting from the event
• Locative (L) – the case of the identifying the place of the event or the orientation

of the action
• Objective (O) – the most general case indicating the entity that is acted upon or

that changes

As an example, Fillmore (1968, p. 27) attached to the verb open a frame
containing an objective case that always occurs in the sentence, and optional
instrumental and agentive cases denoted in parentheses: [O, (I), (A)]. This frame
enables us to represent sentences in Table 15.4. One must note that the objective
case, here filled with the door, sometimes corresponds to the grammatical subject
and sometimes to the grammatical object.

To be complete and represent our Latin sentence, we add a dative case:

The slave of the senator opens the door to the master with a key.
[O = the door, (I) = a key, (A) = the slave of the senator, (D) = the master]

Later a multitude of authors proposed extensions to these cases. Most general
and useful are:

• Source – the place from which something moves
• Goal – the place to which something moves
• Beneficiary – the being, typically animate, on whose behalf the event occurred
• Time – the time at which the event occurred
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Table 15.5 Bring cases with constraints

Case Type Value

Agentive Animate (Obligatory) The waiter
Objective (or theme) (Obligatory) the meal
Dative Animate (Optional) the patron
Time (Obligatory) past

Over the time, Fillmore himself slightly changed the structure and name of
his cases. Here is a more abstract classification of cases together with their
description.

• Agent – primary animate energy source
• Experiencer – psychological locus of an experience
• Theme – primary moving object
• Patient – object which undergoes a change
• Source – starting point of a motion or change
• Goal – destination, target of a motion
• Location – location of an object or event
• Path – trajectory of a motion, between source and goal
• Content – content of an event of feeling, thinking, speaking, etc.

Some verbs do not fit into this case scheme, in spite of its generality. Fillmore
again cited some of them such as the verb set buy, sell, pay, spend, charge, etc.,
whose cases are the quadruplet buyer, seller, goods, money, and the set replace,
substitute, swap, etc., whose cases are old, new, position, causer. In addition, some
applications may require other more specific cases.

15.6.3 Parsing with Cases

Parsing with the case grammar formalism transforms a sentence – or a part of it
– into a kind of logical form: the frame. The predicate is the main verb, and its
arguments represent the cases (or the roles). The parsing process merely maps noun
groups or other features such as the tense or adverbs onto the cases. According to
the verbs, some cases will be obligatory, such as the agent for most verbs. They will
be assigned with exactly one argument. Others cases will be optional. They will be
assigned with at most one value. In addition, cases are constrained by an ontological
type. Table 15.5 shows a representation of the sentence

The waiter brought the meal to the patron

which links noun groups and the verb tense to cases.
We can relate verbs cases to Tesnière’s actants and circonstants (1966), which

are idiosyncratic patterns of verbs encapsulated into a predicate argument structure.
Tesnière first made a distinction between the typical cases of a verb – actants
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– and its optional modifiers – circonstants. A verb attracts a definite number of
actants corresponding to its valence. Drawing on the semantic side, cases fit well
an ontology of nouns and lead to subcategories of verb patterns. The agent, or the
subject, of verb eat is generally animate. The instrument of open should comply
with the instrument ontological subtree. These semantic properties related to verb
cases are another viewpoint on sectional restrictions.

15.6.4 Semantic Grammars

Originally, parsing with a case grammar was carried out using a combination of
techniques: shallow parsing and “expectations” on verb arguments. First, the parser
detects the verb group and its depending noun groups or noun phrases. Then, the
parser fills the cases according to “markers”: topological relations, ontological com-
patibility (selectional restrictions), prepositions, tense, and for German, syntactic
cases.

In many circumstances, we can assimilate the Agent to the subject of a sentence
and the Theme to the object. Languages like English and French have a rather rigid
word order in a sentence, and functions correspond to a specific location relative to
a the verb. The subject is generally the first noun phrase; the object comes after the
verb. In German, they are inflected respectively with the nominative and accusative
cases.

Adjuncts are more mobile, and a combination of constraints on prepositions and
selectional restrictions can be productive to fill modifier cases such as Source, Goal,
and Instrument. Prepositions such as from, to, or into often indicate a Source and a
Goal. We can add a double-check and match them to location classes such as places,
cities, countries, etc. Other prepositions are more ambiguous, such as by in English,
pour in French, and auf in German. Ontological categories come first as conditions
to carry out the parse. They enable us to attach noun groups to classes and to choose
a case complying with the selectional restrictions of the verb.

Phrase-structure rules can help us implement a limited system to process cases.
It suffices to replace parts of speech and phrase categories with ontological classes
in rules. This leads to semantic grammars dedicated to specific applications, such
as this one describing a piece of the real and gory life of animals:

sentence --> np_insectivores, ingest, np_crawling_insects.
np_insectivores --> det, insectivores.
np_crawling_insects --> det, crawling_insects.

insectivores --> [mole].
insectivores --> [hedgehog].
ingest --> [devoured].
ingest --> [ate].
crawling_insects --> [worms].
crawling_insects --> [caterpillars].
det --> [the].
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Rules describe prototypic situations, and parsing checks the compatibility of the
types in the sentence. They produce a semantic parse tree.

Semantic grammars were once popular because they were easy to implement.
However, they are limited to one application. Changing context or simply modifying
it often requires a complete redesign of the rules.

15.7 Extending Case Grammars

15.7.1 FrameNet

The FrameNet research project started from Fillmore’s theory on case grammars
(1968). Reflecting on it, Fillmore noticed how difficult (impossible?) it was to work
out a small set of generic cases applicable to all the verbs. He then altered his
original ideas to form a new theory on frame semantics (Fillmore 1976). With
frame semantics, Fillmore no longer considers universal cases but a set of frames
resembling predicate–argument structures, where each frame is specific to a class of
verbs. Frames are supposed to represent prototypical conceptual structures shared
by a language community, i.e., here English.

FrameNet is a concrete outcome of the frame semantics theory. It aims at
describing the frame properties of all the English verbs as well as some nouns and
adjectives, and at annotating them in a large corpus. Like WordNet, FrameNet takes
the shape of an extensive lexical database, which associates a word sense to a frame
with a set frame elements (FEs). FrameNet also links the frames to annotations in
the 100-million word British National Corpus.

Ruppenhofer et al. (2010) list Revenge as an example of frame, which features
five frame elements: Avenger, Punishment, Offender, Injury, and Injured_party. The
Revenge frame serves as a semantic model to 15 lexical units, i.e., verb, noun, or
adjective senses:

avenge.v, avenger.n, get back (at).v, get_even.v, retaliate.v, retaliation.n, retribution.n,
retributive.a, retributory.a, revenge.n, revenge.v, revengeful.a, revenger.n, vengeance.n,
vengeful.a, and vindictive.a

where the .v suffix denotes a verb, .n a noun, and .a an adjective.
Once the frame was defined, the FrameNet team annotated the corresponding

lexical units in sentences extracted from its corpus. The annotation identifies one
lexical unit per sentence, which is the target, and brackets its frame elements as in
these examples from Ruppenhofer et al. (2010, Chapter 3):

1. [<Avenger> His brothers] avenged [<Injured_party> him].
2. With this, [<Avenger> El Cid] at once avenged [<Injury> the death of his son].
3. [<Avenger> Hook] tries to avenge [<Injured_party> himself] [<Offender> on Peter Pan]

[<Punishment> by becoming a second and better father].
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Table 15.6 The valence patterns of avenge in the sentences above and their three levels of
annotations: frame element (FE), phrase type (PT), and grammatical function (GF)

Sent. 1 avenge FE Avenger Injured_party
PT NP NP
GF Ext Object

Sent. 2 avenge FE Avenger Injury
PT NP NP
GF Ext Obj

Sent. 3 avenge FE Avenger Injured_party Offender Punishment
PT NP NP PP PPing
GF Ext Obj Comp Comp

Each frame element contains semantic and grammatical information split into
three levels of annotation. The first level is the name of the semantic role. The second
and third ones describe how a frame element is realized in the sentence: the phrase
syntactic category and its grammatical function. The phrase syntactic category, i.e.,
noun phrases, prepositional phrases, and so on, is called the phrase type (PT).
FrameNet uses a small set of grammatical functions (GFs), which are specific to
the target’s part of speech (i.e., verbs, adjectives, prepositions, and nouns). For the
verbs, FrameNet defines four GFs: Subject, Object (Obj), Complement (Comp),
and Modifier (Mod), i.e., modifying adverbs ended by -ly or indicating manner.
FrameNet renames the subjects as external arguments (Ext).

Table 15.6 shows the three-level annotation of the sentences above. Altogether,
these levels form a valence group. Each sentence shows a valence pattern, a
specific set of valence groups.

15.7.2 The Proposition Bank

The Proposition Bank, or Propbank (Palmer et al. 2005), has goals similar to
FrameNet, although its initial focus was more on the annotation of all the propo-
sitions of a large body of text than on the thorough description of a lexicon of
predicates and arguments. Propbank started from the syntactic annotation of the
Penn Treebank that we saw in Sect. 11.3 and added a layer of predicate–argument
structures to it for all the verbs in the treebank. The idea was that this annotation
could be used to train statistical classifiers and then build more easily semantic
parsers.

Propbank models the observed predicate–argument structures of each verb with
a specific role set. The verb accept, for example, has one sense, denoted accept.01,
and four roles represented by the arguments Arg0, Arg1, Arg2, and Arg3:

Roleset: accept.01, take willingly

Roles:
Arg0: acceptor
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Arg1: thing accepted
Arg2: accepted-from
Arg3: attribute

While accept.01 has four arguments, most verbs in Propbank have only two,
Arg0 and Arg1, or sometimes three, Arg2. The maximum is of six arguments for
certain verbs of motion. The thematic roles are specific to each verb sense, but they
follow some rules: Arg0 and Arg1 generally correspond to the agent and patient of
Fillmore’s case grammar. The other arguments have a relatively variable role: Arg2
is usually either an instrument, a benefactive, or an attribute, Arg3, a starting point,
Arg4, an ending point, and Arg5, a direction.

Using the roles defined for accept, Propbank annotates the Penn Treebank
sentence (Palmer et al. 2005):

He wouldn’t accept anything of value from those he was writing about.

with one predicate and five arguments:

[Arg0 He] [ArgM-MOD would] [ArgM-NEG n’t ] accept [Arg1 anything of value] [Arg2 from those
he was writing about] .

In addition to the verb-specific roles numbered from Arg0 to Arg5, the annotation
includes 13 possible semantic adjuncts or modifiers, such as the time or the location,
that can apply to any verb (Table 15.7). In the previous sentence, we had two of these
modifiers: a modal, would and a negation, n’t.

A verb in Propbank can have two or more senses when its description requires
different role sets. The verb kick has six senses numbered from kick.01, kick.02 to
kick.06, where the two first senses correspond respectively to drive or impel with the
foot and begin. Each of these senses has its own role set as here for sense 1 and 2:

Roleset: kick.01, drive or impel with the foot

Roles:
Arg0: kicker
Arg1: thing kicked
Arg2: instrument (defaults to foot)

Roleset: kick.02, begin

Roles:
Arg0: causer of beginning
Arg1: thing beginning

In the sentence:

John tried to kick the football, but Mary pulled it away at the last moment.

to kick the football is an infinitive clause, where kick has sense 01. Although kick
has no grammatical subject here, we can consider that John, the subject of tried,
also plays the role of subject for kick. We saw in Sect. 11.2.3 that this phenomenon
is called a movement in Chomsky’s grammar using the analogy that the subject
would have moved from kick to try. The Penn Treebank marks what would be the
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Table 15.7 The semantic adjuncts or modifiers in Propbank

AM-DIR Directionals AM-REC Reciprocals AM-ADV Adverbials
AM-LOC Locatives AM-PRD Secondary predication AM-MOD Modals
AM-MNR Manner AM-PNC Purpose AM-NEG Negation
AM-TMP Time AM-CAU Cause
AM-EXT Extent AM-DIS Discourse

original subject position of kick as a trace, here *trace*-1, and Propbank reuses it at
the semantic level:

[Arg0 John-1] tried [Arg0 *trace*-1] to kick [Arg1 the football], but Mary pulled it away at the
last moment.

In the sentence:

While program trades swiftly kicked in, a “circuit breaker” that halted trading in stock
futures in Chicago made some program trading impossible.

kick has sense 02 and we use the corresponding role set to annotate it as:

While [Arg1 program trades] [ArgM-MNR swiftly ] kicked in, a “circuit breaker” that halted
trading in stock futures in Chicago made some program trading impossible.

While Propbank annotates only verb predicates, a parallel project, Nombank
(Meyers et al. 2004) annotated the nominal predicates. Nombank tried when
possible to follow the Propbank nomenclature and transpose the roles from the verbs
to the nouns. For example, acceptance.01 is modeled after accept.01:

Roleset: acceptance.01, take willingly, source verb-accept.01

Roles:
Arg0: acceptor
Arg1: thing accepted
Arg2: accepted-from
Arg3: attribute

and the phrase government acceptance of its bid for control of Jaguar is annotated
as:

[Arg0 government] acceptance [Arg1 of its bid for control of Jaguar]

15.7.3 Annotation of Syntactic and Semantic Dependencies

In 2008 and 2009, the conference on natural language learning (CoNLL) organized
an evaluation of parsers for syntactic and semantic dependencies. The corpus
annotation builds on the CoNLL tabular format that we saw for the parts of speech
and morphology in Sect. 6.6 and for syntax in Sect. 11.9.2, and adds columns to the
right to represent the semantic roles.
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Table 15.8 The semantic annotation of a sentence simplified from CoNLL 2008 and 2009

Lexical and morphological level Syntactic level Semantic level

ID Form Lemma POS Feats Head Deprel Sense APred1 APred2
1 The the DT _ 4 NMOD _ _ _
2 luxury luxury NN _ 3 NMOD _ A1 _
3 auto auto NN _ 4 NMOD _ A1 _
4 maker maker NN _ 7 SBJ maker.01 A0 A0
5 last last JJ _ 6 NMOD _ _ _
6 year year NN _ 7 TMP _ _ AM-TMP
7 sold sell VBD _ 0 ROOT sell.01 _ _
8 1,214 1,214 CD _ 9 NMOD _ _ _
9 cars car NNS _ 7 OBJ _ _ A1
10 in in IN _ 7 LOC _ _ AM-LOC
11 the the DT _ 12 NMOD _ _ _
12 U.S. u.s. NNP _ 10 PMOD _ _ _

Table 15.8 shows the annotation of the sentence:

The luxury auto maker last year sold 1,214 cars in the U.S.

simplified from Surdeanu et al. (2008). This annotation goes from the words to
semantics, and we can roughly divide it into three main levels:

1. The lexical and morphological level with the columns ID, Form, Lemma, POS,
Feats corresponding respectively to the word index, the word form, the part of
speech, and the grammatical features. The annotation in these columns is similar
to the one we saw in Sect. 6.6.

2. The syntactic level with the columns Head and Deprel that show the dependen-
cies and the grammatical functions as in Sect. 11.9.2. And finally,

3. The semantic level with the columns Sense, APred1, and APred2 that show the
predicates and the arguments:

• The sense column marks the verbal and nominal predicates using the Prop-
bank and Nombank role sets.

• The remaining columns, from APred1 to APredn, contain the argument labels
for the each semantic predicate. There are as many APred columns as there
are predicates, and the column order follows the predicate order in the sense
column, i.e., the first argument column, APred1, corresponds to the first
predicate in the sense column, and so on.

The sentence in Table 15.8 has two predicates: one verb, sell.01, and one
noun, maker.01. The CoNLL format associates two argument columns to these
two predicates. The nominal predicate maker.01 occurs first in the sentence and
is associated with the first argument column, APred1; the verbal predicate sell.01 is
associated with APred2. Had the sentence contained five predicates, we would have
had five argument columns.
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The luxury auto maker last year sold 1,214 cars in the U.S.
1 2 3 4 5 6 7 8 9 10 11 12

ROOT
NMOD

NMOD NMOD

SBJ

NMOD TMP NMOD

OBJ

LOC

NMOD

PMOD

Fig. 15.10 The syntactic dependencies

Fig. 15.11 The semantic analysis in the form of segments

For each predicate, the arguments in the corresponding column mark the head of
the semantic roles. Table 15.8 shows that sell.01 is associated with the roles A0 and
A1 as well as with two adjuncts: AM-TMP and AM-LOC, whose respective heads
are maker, cars, year, and in, and where the Propbank role set for sell.01 is:

Roleset: sell.01, commerce: seller

Roles:
Arg0: seller
Arg1: thing sold
Arg2: buyer
Arg3: price paid
Arg4: benefactive

We can derive the complete semantic roles using the syntactic dependencies in
Fig. 15.10 and the subtrees defined by the descendant nodes of each semantic head.
We call such a subtree a yield and the resulting constituent, a yield string, if the
graph is projective. Using the yields, we can extract the roles associated with sell in
the sentence:

A0: The luxury auto maker
A1: 1,214 cars
AM-TMP: last year
AM-LOC: in the U.S.

The creation of segments from heads may involve more complex cases when the
graph is nonprojective or when the yield strings are overlapping. Figure 15.11 shows
a graphical representation of the roles using the segment creation algorithm de-
scribed by Johansson and Nugues (2008a) and the MATE tools semantic processing
pipeline (Björkelund et al. 2010).
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The luxury auto maker last year sold 1,214 cars in the U.S.

The luxury auto maker last year sold 1,214 cars in the U.S.

The luxury auto maker last year sold 1,214 cars in the U.S.

The luxury auto maker last year sold 1,214 cars in the U.S.

The luxury auto maker last year sold 1,214 cars in the U.S.

maker.?? sell.??

maker.01 sell.01

sell.01

sell.01

Input sentence

Predicate identification

Predicate sense disambiguation

Argument identification

Argument labeling

A0
AM-TMP

A1

AM-LOC

Fig. 15.12 The sequence of classifiers: predicate identification, predicate sense disambiguation,
argument identification, and argument labeling

15.7.4 A Statistical Method to Identify Semantic Roles

We saw that it was possible to develop a case parser using manually written rules.
However, such parsers require much labor, testing, and debugging, and have an
unavoidably limited coverage. We introduce now a statistical technique to identify
semantic roles for unrestricted text. In our description, we will follow the CoNLL
2008 annotation that uses the Propbank and Nombank roles and Johansson and
Nugues (2008b) that reported the best figures in the evaluation.

Almost all the semantic role labelers, also called semantic parsers, start with
a parsing step, which takes a sentence as input and produces either dependencies
or constituents. As for CoNLL 2008, we will use dependency structures as input
to the semantic analyzer. This analyzer then consists of a sequence of classifiers
that identifies the predicates in the sentence, the sense of each predicate, for each
predicate, its arguments in the form of head words, and finally the label of each
argument. Figure 15.12 shows this sequence on the sentence The luxury auto maker
last year sold 1,214 cars in the U.S. for the predicate sell.
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Table 15.9 The features used for the predicate identification and disambiguation steps. The
extracted values correspond to the word sold in the sentence The luxury auto maker last year
sold 1,214 cars in the U.S.

Feature Value

PREDFORM sold
PREDLEMMA sell
PREDHEADFORM ROOT
PREDHEADPOS ROOT
PREDDEPREL ROOT
CHILDFORMSET {maker, year, cars, in}
CHILDPOSSET {NN, NNS, IN}
CHILDDEPSET {SBJ, TMP, OBJ, LOC}
DEPSUBCAT SBJ+TMP+OBJ+LOC
CHILDFORMDEPSET {maker+SBJ, year+TMP, cars+OBJ, in+LOC}
CHILDPOSDEPSET {NN+SBJ, NN+TMP, NNS+OBJ, IN+LOC}

Predicate Identification

This step considers all the words in the input sentence and decides if a word is
a predicate or not using a binary classifier. In Fig. 15.12, the classifier identified
maker and sell as predicates. To make the decision, the classifier extracts features
from the input words and the dependency structures of the training set and trains a
model. The classifier then uses this model to identify the predicates of unannotated
sentences.

In CoNLL 2008, Johansson and Nugues (2008b) used logistic regression and
trained two classifiers, one for the verbs and one for the nouns, with the following
features to decide whether a word is a predicate or not:

PREDFORM, PREDLEMMA: Lexical form and lemma of the word;
PREDHEADFORM, PREDHEADPOS: Form and part of speech of the head node

of the word;
PREDDEPREL: Dependency relation between the word and its head;
CHILDFORMSET, CHILDPOSSET, CHILDDEPSET: The sets of forms, parts of

speech, and dependency relations of the dependents of the word;
DEPSUBCAT: Subcategorization frame: the concatenation of the dependency

relations between the word and its dependents;
CHILDFORMDEPSET: The sets of pairs of forms and dependency relations of the

dependents of the word;
CHILDPOSDEPSET: The sets of pairs of parts of speech and dependency relations

of the dependents of the word.

Table 15.9 shows the features and their values extracted for the word sold in the
sentence The luxury auto maker last year sold 1,214 cars in the U.S. These values
can be computed from the CoNLL columns produced by the parsing step and shown
in Table 15.8 and in Fig. 15.10.
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Predicate Sense Disambiguation

This step assigns a sense number to each predicate after it has been identified. In
Fig. 15.12, the classifier assigned the sense 01 to both maker and sell. As the sense
number has no consistent meaning across the lemmas in Propbank and Nombank,
it is necessary to train one classifier per lemma. For a given predicate, the training
procedure collects all its occurrences in the training corpus and the classes are the
observed sense numbers for this predicate. The classifier uses logistic regression and
the same feature set as for the predicate identification step (Table 15.9).

Argument Identification

This step identifies the head words of all the arguments of a predicate. For a given
predicate, we apply a binary classifier to each word in the sentence from left to right
to decide if it is an argument head word or not. In Fig. 15.12, the classifier found
that the argument head words of sell were maker, year, cars, and in. Then, using
the dependency graph, we use the yield (subgraph) of these head words to derive
the complete argument strings. This procedure is applied to all the predicates in the
sentence and results in unlabeled propositions, where each predicate is associated
with its set of arguments.

To train the classifier, we collect all the predicate–word pairs contained in each
sentence of the annotated corpus and we extract feature vectors from these pairs.
Given a sentence and a predicate, we mark a predicate–word pair as positive, if the
word is an argument head word of the predicate, or negative otherwise. The feature
set used to identify the arguments includes features extracted from the predicate and
that are identical to those from the predicate identification step, the predicate lemma
and its sense, for instance, sell.01, as well as features extracted from the candidate
argument:

ARGFORM, ARGPOS: The form and the part of speech of the argument word;
ARGDEPREL: The dependency relation between the argument word and its head;
LEFTFORM, RIGHTFORM: The form of the leftmost, respectively rightmost,

dependent of the argument word;
LEFTPOS, RIGHTPOS: The part of speech of the leftmost, respectively rightmost,

dependent of the argument word;
LEFTSIBLINGFORM, RIGHTSIBLINGFORM: The form of the left, respectively

right, sibling of the argument word;
LEFTSIBLINGPOS, RIGHTSIBLINGPOS: The part of speech of the left, respec-

tively right, sibling of the argument word;
DEPRELPATH: The concatenation of dependency labels and link direction when

moving from the predicate to the argument word. The dependency path from
maker to cars in Fig. 15.10 is SBJ"OBJ#;
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Table 15.10 The features
used for the argument
identification step in addition
to those extracted from the
predicate. The values
correspond to the word maker
as argument to the predicate
sell in the sentence The
luxury auto maker last year
sold 1,214 cars in the U.S.

Feature Value

ARGFORM maker
ARGPOS NN
ARGDEPREL SBJ
LEFTFORM The
RIGHTFORM null
LEFTPOS DT
RIGHTPOS null
LEFTSIBLINGFORM null
RIGHTSIBLINGFORM cars
LEFTSIBLINGPOS null
RIGHTSIBLINGPOS NNS
DEPRELPATH SBJ#
POSPATH VBD#NN
POSITION before

POSPATH: The concatenation of parts of speech and link direction when moving
from the predicate to the argument word. The part-of-speech path from maker to
cars in Fig. 15.10 is NN"VBD#NNS;

POSITION: The position of the argument word relative to the predicate, before,
on, or after.

Table 15.10 shows the features and their values extracted for the argument
maker with respect to the predicate sell. As Propbank and Nombank have different
properties, training two classifiers, one for the verbs and one for the nouns, should
produce better results.

The feature extraction procedure will create many more negative examples than
positive ones in the training corpus. Many of these negative examples have no
chance to be an argument, because of their part of speech or their path to the
predicate. It is possible to balance the numbers by restricting the words in the
training set that are the direct dependents of the predicate or the direct dependents
of the predicate ancestors in the dependency graph.

Argument Labeling

This final step labels the argument head words of a proposition. For a given predicate
and its arguments obtained from the previous step, the labeling step uses a multiclass
classifier to assign the arguments with a label from A0 to A5 or those in Table 15.7.
In Fig. 15.12, the classifier labels maker with A0, year with AM-TMP, cars with
A1, and in with AM-LOC.

The training procedure is similar to that of the argument identification step except
that the classes are the different argument labels collected from a semantically-
annotated corpus. The features are similar too.
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Evaluation

The evaluation of semantic dependency parsers resembles that of dependency
parsing defined in Sect. 13.2. In CoNLL 2008, Surdeanu et al. (2008) divided the
semantic dependencies into two types:

1. Those from the virtual ROOT word to the predicates, where the label is the
predicate sense. These dependencies are created by the predicate identification
and disambiguation steps.

2. The dependencies from the predicates to their arguments, where the labels are
the argument labels. They are created by the argument identification and labeling
steps.

The scoring procedure compares the semantic dependencies produced by the
automatic parser with those of a manually-annotated test set and computes the
precision and recall of the semantic links. The final CoNLL 2008 score combines
these labeled precision and recall with a syntactic score and computes the harmonic
mean of them. See Surdeanu et al. (2008) for the details.

Feature Selection

The features used in the classifiers are essential to the performance of a semantic
parser. Contrary to intuition, a larger set of features does not necessarily lead to
improved figures and may even degrade them. The features are also sensitive to the
language: a feature set effective for English may yield poor results for Chinese or
German.

There are two main procedures to carry out the selection of a feature set from
a finite pool of N potential features: forward selection and backward elimination.
Both techniques build an optimal set using a greedy search procedure, where they
incrementally add, respectively remove, features:

1. A forward selection starts with an empty set and adds one feature at each
iteration. At iteration n, the set has n features, and the search procedure generates
N � n successor sets of nC 1 features. The procedure evaluates these successor
sets and keeps the one that yields the best performance. The search stops when
there is no improvement in the performance.

2. A backward elimination starts with a feature set consisting of the complete pool
of N features and removes one feature at each iteration. At iteration n of the
procedure, the feature set consists of N � n features. Its successors are the N �
n sets generated by removing one feature. The backward elimination evaluates
these sets and keeps the one that leads to the largest improvement.

The feature selection is carried out for each step of the processing pipeline shown
in Fig. 15.12 and produces one different feature set per step in the pipeline. To avoid
a possible overfit, classification models should be trained and evaluated using a
crossvalidation. Björkelund et al. (2009) give examples of feature sets for seven
languages obtained using a forward selection.
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Table 15.11 A dialogue with the EVAR system

Turn Utterance

EVAR Guten Tag, hier ist die automatische Intercity-Auskunft.
‘Hello, this is the automatic Intercity information system.’

User Ich will nach Hamburg fahren
‘I want to go to Hamburg’

EVAR Sie wollen nach Hamburg fahren?
‘You want to go to Hamburg?’
Wo wollen Sie abfahren?
‘Where do you want to start?’

User In Erlangen
EVAR Sie wollen von Erlangen abfahren?

‘You want to start from Erlangen?’
An welchem Tag?
‘Which day?’

User Morgen früh
‘Tomorrow morning’

EVAR Sie wollen am Donnerstag den 26. Juni zwischen 6 und 12 Uhr fahren?
‘You want to travel on Thursday 26th of June between 6 and 12?’

User Genau
‘Yes’

EVAR Ich habe mehrere Verbindungen gefunden.
‘I found connections.’
Nach Hamburg HBF fahren sie ab Erlangen um 11 Uhr 1, Ankunft in Hamburg HBF. . .
‘To Hamburg, you can start from Erlangen at 11.01, arrival in Hamburg: : :’
Soll ich die Verbindungen wiederholen?
‘Shall I repeat?’

User Nein Danke
EVAR Möchten Sie weitere Auskünfte?

‘Would you like more information?’
User Nein
EVAR Auf wiederhören

‘Good bye’

15.8 An Example of Case Grammar Application: EVAR

The EVAR application (Mast et al. 1994) is a spoken dialogue system that answers
inquiries about train connections in Germany. EVAR uses a dedicated ontology to
represent the domain and a case grammar to process the utterances. It is able to
process exchanges like the one in Table 15.11.
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noun

atcartsbcetercno

thing location animate worth classifying time

transport human beast

Fig. 15.13 Semantic classes in the EVAR application (After Mast et al. (1994))

15.8.1 EVAR’s Ontology and Syntactic Classes

EVAR organizes nouns as a classical ontological tree restricted to the railway
domain in Germany (Fig. 15.13). For instance, train is linked to “transport,”
Hamburg to “location,” etc.

15.8.2 Cases in EVAR

EVAR uses a partial parser to detect syntactic groups, notably noun groups,
prepositional groups, infinitive groups, verb groups, and time and date expressions.
It represents utterances with a case grammar tied to the train domain and uses the
ontology in Fig. 15.13. The case system is relatively detailed – it is said to be fine
grained – and consists of about 30 cases associated to verbs and also to nouns and
adjectives. Table 15.12 shows some examples of case frames together with their
constraints.

Sagerer (1990) gives the full description of the semantic cases related to EVAR.

15.9 Further Reading

Although it may not serve for immediate applications, Saussure’s Cours de lin-
guistique générale (1916) offers a fundamental background introduction on links
between language and thought. Also of interest is Hjelmslev’s Prolegomena to a
Theory of Language (1943), which provides a complement to Saussure’s views. A
good introduction to the classical texts is the historical presentation on linguistics
by Harris and Taylor (1997).

Electric Words by Wilks et al. (1996) provides an account on semantics that
focuses on computerized dictionaries. It contains many mistakes, however. Mel’čuk
et al. (1995) propose a detailed dictionary model for French. Fellbaum (1998)
gives an in-depth description of WordNet and its design. The WordNet lexical
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Table 15.12 Some verbs and nouns with their cases in the EVAR system (After Mast et al. (1994))

Word senses Examples and cases

Fahren1.1 Der Zug fährt von Hamburg nach München
‘The train is going from Hamburg to Munich’
Instrument: noun group (nominative), Transport, obligatory
Source: prepositional group (Origin), Location, optional
Goal: prepositional group (Direction), Location, optional

Fahren1.2 Ich fahre mit dem Zug von Hamburg nach München
‘I am going by train from Hamburg to Munich’
Agent: noun group (nominative), Animate, obligatory
Instrument: prepositional group (prep=mit), Transport, optional
Source: prepositional group (Origin), Location, optional
Goal: prepositional group (Direction), Location, optional

Abfahrt1.1 Die Abfahrt des Zuges von Hamburg nach München
‘The departure of the train at Hamburg for Munich’
Object: noun group (genitive), Transport, optional
Location: prepositional group (Place), Location, optional
Time: prepositional group (Moment), Time, optional

Verbindung1.5 Eine Verbindung von Hamburg nach München
‘A connection from Hamburg to Munich’
Source: prepositional group (Origin), Location, optional
Goal: prepositional group (Direction), Location, optional

database is regularly updated and its content is available for download from
http://wordnet.princeton.edu/. Pustejovsky (1995) presents an alternate viewpoint
on lexical structure. Dutoit (1992) describes another model that governed the
implementation of Dicologique, a lexical database in French of size comparable
to WordNet.

Literature on word sense disambiguation is countless. The reader can find a
starting point in a dedicated special issue of Computational Linguistics, especially in
its Introduction (Ide and Véronis 1998), which lists more than 300 references! Word
sense disambiguation has made considerable progress recently. The SENSEVAL
workshops, renamed SEMEVAL from 2007, benchmark competing systems for a
variety of languages. Proceedings are available from the ACL Anthology (http://
www.aclweb.org/anthology/).

In a classical text, Fillmore (1968) gives the rationale behind case grammars.
Jackendoff (1990) gives another detailed description of cases for English. Later,
Fillmore started the FrameNet project that itemizes the frame elements of all the
verbs. Its description and content is available for download from http://framenet.
icsi.berkeley.edu/. The Proposition bank or Propbank is a similar project aimed
at annotating the Penn Treebank with semantic data (Kingsbury et al. 2002). The
Unified Verb Index is an attempt to merge all the English verb entries of three
different lexicons, Verbnet, Propbank, and Framenet, in a single index: http://verbs.
colorado.edu/verb-index/.

http://wordnet.princeton.edu/
http://www.aclweb.org/anthology/
http://www.aclweb.org/anthology/
http://framenet.icsi.berkeley.edu/
http://framenet.icsi.berkeley.edu/
http://verbs.colorado.edu/verb-index/
http://verbs.colorado.edu/verb-index/
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Automatic role labeling using statistical techniques has received considerable
interest recently and was the theme of four conferences on Computational Natural
Language Learning (CoNLL 2004, CoNLL 2005, CoNLL 2008, and CoNLL
2009). Annotated data, descriptions, and performance of the competing systems
are available from the conference web pages: http://www.lsi.upc.edu/~srlconll/
st04/st04.html, http://www.lsi.upc.edu/~srlconll/st05/st05.html, http://barcelona.
research.yahoo.net/dokuwiki/doku.php?id=conll 2008:start, and http://ufal.mff.
cuni.cz/conll2009-st/.

Exercises

15.1. Implement the complete semantic net of Fig. 15.3.

15.2. Implement a graph search that finds entities linked by properties using
inheritance, and test it using the eat/2 relation.

15.3. Annotate each word of the following sentences with their possible senses:

The waiter brought the starter to the customers.
Le serveur a apporté l’entrée aux clients
Der Ober hat die Vorspeise zum Kunden gebracht.

You may use any dictionary.

15.4. Write verb syntactical models corresponding to senses of order in Table 15.1.

15.5. Write selectional restrictions corresponding to senses of order in Table 15.1.

15.6. Take a dozen or so words and, using their definitions, build the corresponding
ontological tree.

15.7. According to WordNet, bring entails come, come up (move toward, travel
toward something or somebody or approach something or somebody). Classify this
type of entailment as coextensiveness, proper inclusion, backward presupposition,
or cause.

15.8. Implement the word sense disambiguation algorithm outlined in Sect. 15.5.3.

• Write a Prolog program that produces all sense sequences of a given sentence.
Implement the lexical database representing possible senses of patron, ordered,
and meal, and test the program with The patron ordered the meal.

• Find topics associated with senses of words patron, order, and meal. Set these
topics under the form of Prolog facts.

• Write a Prolog program that collects all the topics associated with a sense
sequence.

• What is the main condition for the algorithm to produce good results?

http://www.lsi.upc.edu/~srlconll/st04/st04.html
http://www.lsi.upc.edu/~srlconll/st04/st04.html
http://www.lsi.upc.edu/~srlconll/st05/st05.html
http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=conll
http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=conll
2008:start
http://ufal.mff.cuni.cz/conll2009-st/
http://ufal.mff.cuni.cz/conll2009-st/
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15.9. Disambiguate by hand the senses of words in the sentence: the patron ordered
the meal using word definitions and the algorithm of Sect. 15.5.6. You may use any
dictionary.

15.10. Program the algorithm of Exercise 15.9.



Chapter 16
Discourse

16.1 Introduction

The grammatical concepts we have seen so far apply mostly to isolated words,
phrases, or sentences. Texts and conversations, either full or partial, are out of their
scope. Yet to us, human readers, writers, and speakers, language goes beyond the
simple sentence. It is now time to describe models and processing techniques to
deal with a succession of sentences. Although analyzing texts or conversations often
requires syntactic and semantic treatments, it goes further. In this chapter, we shall
make an excursion to the discourse side, that is, paragraphs, texts, and documents. In
the next chapter, we shall consider dialogue, that is, a spoken or written interaction
between a user and a machine.

Most basically, a discourse is made of referring expressions, i.e., words or
phrases that refer to real – or possibly imaginary – things: the discourse entities
or discourse referents. A first objective of discourse processing techniques is then
to identify and track sets of referring expressions – phrases or words – along
with sentences and to relate them to entities – real-world objects. A symmetrical
operation is to associate entities with their mentions in a text.

A discourse normally links the entities together, via their mentions, to address
topics, issues throughout the sentences, paragraphs, chapters such as, for instance,
the quality of food in restaurants, the life of hedgehogs and toads, and so on. At a
local level, i.e., within a single sentence, grammatical functions such as the subject,
the verb, and the object provide a model of relations between entities. A model of
discourse should extend and elaborate relations that apply not to an isolated sentence
but to a sequence and hence to the entities that this sequence of sentences covers.

Models of discourse structures are still a subject of controversy. As for semantics,
discourse has spurred many theories, and it seems relatively far off to produce a
synthesis of them. In consequence, we will merely adopt a bottom-up and pragmatic
approach. We will start from what can be a shallow-level processing of discourse and
application examples; we will then introduce theories, namely centering, rhetoric,
and temporal organization, which provide hints for a discourse structure.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__16, © Springer-Verlag Berlin Heidelberg 2014

511



512 16 Discourse

16.2 Discourse: A Minimalist Definition

16.2.1 A Description of Discourse

Intuitively what defines a discourse, and what differentiates it from unstructured
pieces of text, is its coherence. A discourse is a set of more or less explicit topics
addressed in a sequence of sentences: what the discourse is about at a given time.
Of course, there can be digressions, parentheses, interruptions, etc., but these are
understood as exceptions in the flow of a normal discourse. Distinctive qualities of
a discourse are clarity, expressiveness, or articulation, which all relate to the ease of
identification of discourse topics and their logical treatment. Discourse coherence
ideally takes the shape of a succession of stable subjects (or contexts) that are
chained rationally along with the flow of sentences.

More formally, we describe a discourse as a sequence of utterances or segments,
S1; S2; S3; : : : ; Sn, so that each of these segments is mapped onto a stationary
context. Segments are related to sentences, but they are not equivalent. A segment
can span one or more sentences, and conversely a sentence can also contain several
segments. Segments can be produced by a unique source, which is the case in most
texts, or by more interacting participants, in the case of a dialogue.

16.2.2 Discourse Entities

Discourse entities – or discourse referents – are the real, abstract, or imaginary
objects introduced by the discourse. Usually they are not directly accessible to a
language processing system because it would require sensors to “see” or “feel”
them. In a language like Prolog, discourse entities are represented as a set of facts
stored in a database.

Referring expressions are mentions of the discourse entities along with the text.
Table 16.1 shows entities and references of sentences adapted from Suri and McCoy
(1994):

1. Susan drives a Ferrari
2. She drives too fast
3. Lyn races her on weekends
4. She often beats her
5. She wins a lot of trophies

Discourse entities are normally stable – constant – over a segment, and we can
use them to delimit a segment’s boundaries. That is, once we have identified the
entities, we can delimit the segment boundaries. Let us come back to our example.
There are two sets of relatively stable entities that we can relate to two segments.
The first one is about Susan and her car. It consists of sentences 1 and 2. The second
one is about Susan and Lyn, and it extends from 3 to 6 (Table 16.2).
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Table 16.1 Discourse entities and mentions (or referring expressions)

Mentions Discourse entities
(or referring expressions) (or referents) Logic properties

Susan, she, her ’Susan’ ’Susan’
Lyn, she ’Lyn’ ’Lyn’
A Ferrari X ferrari(X)
A lot of trophies E E 	 {X | trophy(X)}

Table 16.2 Context segmentation

Contexts Sentences Entities

C1 1. Susan drives a Ferrari Susan, Ferrari
2. She drives too fast

C2 3. Lyn races her on weekends Lyn, Susan, trophies
4. She often beats her
5. She wins a lot of trophies

16.3 References: An Application-Oriented View

As a starting point of discourse processing, we will focus on referring expressions,
i.e., words or phrases that correspond to the discourse entities. This treatment can
be done fairly independently without any comprehensive treatment of the text. In
addition, the identification of discourse entities is interesting in itself and has an
industrial significance in applications such as information extraction.

In this section, we will take examples from the Message Understanding Con-
ferences (MUCs) that we already saw in Chap. 10. We will learn how to track the
entities along with sentences and detect sets of phrases or words that refer to the
same thing in a sentence, a paragraph, or a text.

16.3.1 References and Noun Phrases

In MUC, information extraction consists in converting a text under the form of a file
card. Cards are predefined templates whose entries are formatted tabular slots that
represent the information to be extracted: persons, events, or things. For each text,
information extraction systems have to generate a corresponding card whose slots
are filled with the appropriate entities.

Detecting – generating – the entities is a fundamental step of information
extraction; a system could not fill the templates properly otherwise. To carry it out,
the basic idea is that references to real-world objects are equivalent to noun groups
or noun phrases of the text. So, detecting the entities comes down to recognizing the
nominal expressions.
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Table 16.3 References in the
sentence: Garcia Alvarado,
56, was killed when a bomb
placed by urban guerrillas on
his vehicle exploded as it
came to a halt at an
intersection in downtown San
Salvador

Entities Noun groups

Entity 1 Garcia Alvarado
Entity 2 a bomb
Entity 3 urban guerrillas
Entity 4 his vehicle
Entity 5 it
Entity 6 a halt
Entity 7 an intersection
Entity 8 downtown
Entity 9 San Salvador

To realize in concrete terms what this means, let us take an example from Hobbs
et al. (1997) and identify the entities. We just have to bracket the noun groups and
to assign them with a number that we increment with each new group:

[entity1 Garcia Alvarado], 56, was killed when [entity2 a bomb] placed by [entity3 urban
guerrillas] on [entity4 his vehicle] exploded as [entity5 it] came to [entity6 a halt] at [entity7 an
intersection] in [entity8 downtown] [entity9 San Salvador].

We have detected nine nominal expressions and hence nine candidates to be
references that we represent in Table 16.3.

Typical discourse analyzers integrate modules into an architecture that they apply
on each sentence. Depending on applications, they use a full-fledged parser or a
combination of part-of-speech tagger, group detector, semantic role identifier, or
ontological classifier. Here, we could have easily created these entities automatically
with the help of a noun group detector. A few lines more of Prolog to our noun group
detector (Chap. 10) would have numbered and added each noun group to an entity
database.

16.3.2 Names and Named Entities

In unrestricted texts, in addition to common nouns, many references correspond to
names (or proper nouns). Names refer inter alia to:

Persons: Mrs. Smith, François Arouet, Dottore Graziani, Wolfgang A. Mozart,
H.C. Andersen, Sammy Davis, Jr.

Companies or organizations: IBM Corp., Fiat SpA, BT Limited, Banque Na-
tionale de Paris, Siemens AG, United Nations, Nations unies

Countries, nations, or provinces: England, France, Deutschland, Romagna,
Vlaanderen

Cities or geographical places: Paris, The Hague, Berlin, le Mont Blanc, la Città
del Vaticano, the English Channel, la Manche, der Rhein.
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While entities coincide with unique things from the real world, named entities
correspond to persons, locations, organizations, trade marks, etc., that can we can
identify in a unique way by their name. In addition, although numerical expressions
and dates are sometimes called named entities, the most common acceptation is that
they are restricted to proper nouns (names).

16.3.3 Finding Names – Proper Nouns

Name recognition is central to a proper reference processing and uses the techniques
we described in Chap. 10. They are similar to noun group detection, or chunking,
and can be carried out with rules or statistical methods. Name recognition frequently
uses a dedicated index of names: a gazetteer. Such name gazetteers can sometimes
be downloaded from the Internet; however, for many applications, they have to be
compiled manually or bought from specialized companies.

Name indexes are rarely complete or up-to-date. Peoples’ names particularly are
tricky and may sometimes be confused with common names. The same can be said
of names of companies, which are created every day, and those of countries, which
appear and disappear with revolutions and wars. If we admit that there will be names
missing in the database, we have to design the rules or the features of a statistical
system so that they cope with them.

Rules

Guessing a person’s name is often done through titles and capitalization. Here are a
few rules of thumb to reflect this:

• A first name, a possible initial, and a surname that is two strings of characters
with a capitalized first letter followed by lowercase letters:

Robert Merryhill, Brigitte Joyard, Max Hübnisch
A possible enhancement is to try to match the first string to common first

names.
• A title, possible first names or initials and a surname where common titles have

to be itemized:
Sir Robert Merryhill, Dr. B. K. Joyard, Herr Hübnisch

• A person’s name and a suffix:
R. Merryhill Sr., Louis XXII, Herr Hübnisch d. med.

We can implement a rule-based name recognition system with local DCG rules
and a word spotting program to match titles and first names as in Sect. 10.4. We can
test the character case with a short piece of Prolog code or regular expressions.
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Table 16.4 Features used for named-entity recognition by Zhang and Johnson (2003). The
features are extracted from the tokens in a window of three tokens centered at the current token
unless specified

Features

Tokens in a window of five tokens centered at the current token: wi�2;wi�1;wi ;wiC1;wiC2

Initial capitalization of the tokens in a window of five tokens
Booleans describing the word type: initial capitalization, all capitalization, all digitals, or digitals

containing punctuations
Parts of speech of the tokens
Set of chunk tags of the chunk at the current token
Token prefix and suffix
Previous predicted NER tags
Conjunction of the previous NER tag and the current token
Presence in gazetteers of locations, persons, organizations, and other named entities

Machine-Learning Techniques

Named-entity recognition (NER) with machine learning consists usually of a
pipeline of classifiers that carry out tokenization, POS tagging, and possibly
lemmatization and chunking. Then, the NER step is roughly identical to chunking
that we saw in Sect. 10.7, except that it uses a different feature set.

Table 16.4 outlines a relatively simple feature set used by Zhang and Johnson
(2003) in CoNLL-2003 (Tjong Kim Sang and De Meulder 2003). It represents a
good starting point to build a NER classifier.

16.3.4 Disambiguation of Named Entities

In a document or a collection of documents, writers may use different names to
refer to a same named entity. Think of Ferdinand de Saussure, for instance, and
the variants Saussure or de Saussure. Conversely, a name like Cambridge may refer
to different cities: Cambridge, England; Cambridge, Massachusetts; or Cambridge,
Ontario.

To avoid confusion, a solution is to assign named entities with a unique identifier.
If the entities are known persons, cities, countries, or organizations, etc., DBpedia,
Yago, or Wikidata are widely used nomenclatures based on the articles in Wikipedia
(Sect. 14.11.3). They provide unique identifiers to notable entities, something like
a Social Security number for US residents. Geonames is a similar comprehensive
register for geographical names.

DBpedia assigns Ferdinand de Saussure with the identifier (URI):
http://dbpedia.org/resource/Ferdinand_de_Saussure, while Wikidata uses http://
www.wikidata.org/wiki/Q13230. Such unique names can then be used across
programs and applications. In addition, when the properties and the values of

http://dbpedia.org/resource/Ferdinand_de_Saussure
http://www.wikidata.org/wiki/Q13230
http://www.wikidata.org/wiki/Q13230
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the corresponding entities are encoded using the RDF format, they can be accessed
and linked across different repositories.

As we saw, strings mentioning an entity may be ambiguous and refer to two
or more persons, places, things, etc. The name Saussure matches at least 11
different persons in the English version of Wikipedia. Henri de Saussure, father
of Ferdinand, and René de Saussure, his brother, are two of them. Henri has
the http://dbpedia.org/resource/Henri_Louis_Frédéric_de_Saussure identi-
fier in DBpedia and http://www.wikidata.org/wiki/Q123776 in Wikidata. Finding
the correct entity behind a name is referred to as named-entity disambiguation.

Bunescu and Paşca (2006) proposed a supervised classification method to
disambiguate named entities based on the vector space model and ranking support
vector machines. We introduced the vector space model in Sect. 5.12 and support
vector machines in Sect. 4.8.

Given an ambiguous named-entity mention in a document and entity candidates
in the form of Wikipedia articles, Bunescu and Paşca (2006) represent each
mention–entity pair with a feature vector. This means that if the system finds 11
entity candidates for the mention, they build 11 vectors. Each vector consists of two
components:

1. The first dimension is the cosine similarity between the document, restricted
to a window of 55 words centered on the mention, and the Wikipedia page
corresponding to the entity. This similarity is the dot product of the bag-of-word
vectors that uses tf � idf as term weight.

2. The remaining dimensions are occupied by copies of the bag-of-word vector
representing the document, also restricted to a window of 55 words, with as many
copies as there are categories in Wikipedia, History, Science, Politics, etc. If the
vocabulary used in Wikipedia has V unique words and there are C categories, the
vector dimension will then be of V � C . For each category, the vector is copied
as is if the entity belongs to the category or copied and set to 0 if not.

Bunescu and Paşca (2006) built a training set of positive and negative examples
from the Wikipedia text, where they used the link markup to create a gold
annotation. A link in Wikipedia is encoded with two parts separated by a vertical
bar: the link itself, the page we go when we click on the link, and the text that shows
in the page. The Wikipedia code:

[[Ferdinand de Saussure|Saussure]]

shows the word Saussure and takes us to the Ferdinand de Saussure page. It reflects
the association between the mention Saussure and the entity Ferdinand de Saussure
in a document.

Relying on the work of the Wikipedia editors, these links enable us to extract
mention–entity pairs in their context: a positive pair here: (Saussure, Ferdinand de
Saussure), and negative ones: (Saussure, Henri de Saussure), (Saussure, René de
Saussure), etc.

http://dbpedia.org/resource/Henri_Louis_Fr�d�ric_de_Saussure
http://www.wikidata.org/wiki/Q123776
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on his vehicle exploded as it came to a haltFig. 16.1 Coreferencing an
entity with a noun group and
a pronoun

16.4 Coreference

16.4.1 Anaphora

In the example shown in Table 16.3, we numbered eight objects corresponding to
noun groups and one corresponding to the pronoun it. Such a pronoun is generally
related to a previous expression in the text and depends on this expression to be
interpreted. Here, the reader can easily guess that it and the noun group his vehicle
designate the same entity. This means that entities 5 and 4 in Table 16.3 are equal
and that nominal expressions his vehicle and it corefer to a same thing (Fig. 16.1).

The pair of expressions his vehicle and it form an anaphora where the first
reference to the object – his vehicle – is the antecedent and subsequent references
– here it – are anaphors. Antecedent and anaphors are then a set of references to
a same entity in a text. The antecedent acts as the semantic source of the set and
enables the understanding of the anaphors (Tesnière 1966).

Third-person and relative pronouns (he/she/it/who) are typical examples of ana-
phors. In addition to them, anaphora uses demonstrative pronouns such as this/that
in He did that, or location adverbs such as here/there in He was there. Demonstrative
pronouns (or adjectives) can be used as determiners as in this vehicle. The possessive
pronouns (or adjectives) are similar and also denote an anaphora as his in his vehicle
that is tied to the vehicle’s possessor: Garcia Alvarado.

While normally anaphors have their antecedent before they occur, there are
sometimes examples of forward references or cataphora. For example, in the
sentence:

I just wanted to touch it, this stupid animal.

It refers to the stupid animal. It has been shown that in most structured discourses,
cataphoras occur in the same sentence. However, this is not always the case, and
sometimes the referent is never mentioned, either because it is obvious given the
context, because it is unknown, or for some other reasons:

They have stolen my bicycle.



16.4 Coreference 519

16.4.2 Solving Coreferences in an Example

Although we had no difficulty recognizing the identity of the two expressions, his
vehicle and it in the example above, coreference resolution is not as straightforward
as it may appear at a first sight. Let us come back to our example in Table 16.3 to
show this, and let us make our method explicit to outline an algorithm. We will first
admit that coreferences of a pronoun are always located before the pronoun occurs
in the text. Then, in the example, in addition to his vehicle (entity 4), pronoun it
(entity 5) has four possible candidates: it could be Garcia Alvarado (entity 1), a
bomb (entity 2), or urban guerrillas (entity 3).

We can rule out entities 1 and 3 from the coreference set because they do not
match the pronoun’s number or gender. If entity 5 had been Garcia Alvarado –
a man – the pronoun would have been he, and if it had been urban guerrillas – a
plural – the pronoun would have been they. The noun group A bomb is more difficult
to discard. We do not retain it because of a semantic incompatibility. Selectional
restrictions of the verb came likely require that its subject is a vehicle or a person.

We saw examples of anaphora where a same entity is specified by a noun and
a pronoun. Pairs of references can also consist of nouns or noun groups. They can
simply be a repetition of identical expressions, (the vehicle, the vehicle). Sometimes
there might be a different determiner, a different denomination, synonyms, or aliases
to refer to a same thing. For instance, in an economic wire, we can first have
Bayerische Motoren Werke, then BMW, and finally the German automaker.

Coreference is a far-reaching concept that can prove very complex. The definition
of anaphora may also vary: most authors restrain anaphors to be pronouns and
certain types of adverbs. Others extend it to noun phrases, either definite or not.
In the rest of the text, we will make no distinction, and we will define coreference
resolution or coreference recognition as the retrieval of sets of references to identical
entities in a text – what we have just come to do. We will also keep the terms
antecedent and anaphor to refer to the first and second term of a coreferring pair,
even if the anaphor is not a pronoun.

16.4.3 The MUC Coreference Annotation

Before we explain general methods to solve coreferences, let us first examine
an annotation scheme proposed in the sixth and seventh Message Understanding
Conferences (MUC-6 and MUC-7) to tag them. While there are various mark-up
models, this one, based on XML tags, is widely public and can be considered as a
standard. In addition, as the MUC’s final objective is to extract information, these
tags have an application interest.

The annotation of references and coreferences in a text consists first of identi-
fying of the referring expressions and then assigning a unique label to expressions
referring to a same entity. Hirschman and Chinchor (1997) proposed to annotate
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nominal expressions, that is nouns, noun phrases, and pronouns, here considered as
referring expressions, and their antecedents, with the XML-defined COREF element.
COREF has five possible attributes: ID, REF, TYPE, MIN, and STAT.

ID is an arbitrary integer that assigns a unique number to each nominal
expression of the text. REF is an optional integer that links a nominal expression to a
coreferring antecedent. REF value is then the ID of its antecedent. From Hirschman
and Chinchor’s annotated examples, the text

<COREF ID="100">Lawson Mardon Group Ltd.</COREF> said <COREF ID="101"
TYPE="IDENT" REF="100">it</COREF>

indicates that Lawson Mardon Group Ltd. and it are assigned respectively with ID
100 and 101, and that it refers to the same entity as Lawson Mardon Group Ltd.
through REF="100".

In the MUC competitions, coreference is defined as symmetric and transitive,
that is, if A is coreferential with B , the reverse is also true. And if A is coreferential
with B , and B is coreferential with C , then A is coreferential with C . Such a
coreference set then forms an equivalence class called a coreference chain. This
is stated with the TYPE attribute that specifies the link between the anaphor and its
antecedent: "IDENT" is the only possible value of the attribute, and it indicates that
coreferences are identical. One may imagine other types of coreference such as part,
subset, etc.

Other attributes are MIN and STAT. Some denominations may have a variable
length and yet refer to the same entity, such as Queen Elizabeth of England and
Queen Elizabeth. In a text where the denomination appears in full, a coreference
analyzer could bracket both. The COREF tag MIN indicates the minimum valid
string. From Hirschman and Chinchor’s guidelines,

<COREF ID="100" MIN="Haden MacLellan PLC">Haden MacLellan PLC of
Surrey, England</COREF> : : : <COREF ID="101" TYPE= "IDENT"
REF="100">Haden MacLellan</COREF>

indicates that Haden MacLellan PLC of Surrey, England and Haden MacLellan PLC
are both valid bracketing.

Finally, STAT (“status”) means that the annotation is optional. It is used
when coreference is tricky or doubtful. The only value for this attribute is OPT
(“optional”). From Hirschman and Chinchor’s guidelines,

<COREF ID="102" MIN="Board of Education">Our Board of Educa-
tion</COREF> budget is just too high, the Mayor said. <COREF ID="103"
STAT="OPT" TYPE="IDENT" REF="102">Livingston Street</COREF> has lost
control.

indicates that Board of Education and Livingston Street refers to the same entity, but
that it can bewilder the reader and the annotation is left optional.
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16.4.4 The CoNLL Coreference Annotation

Format

In 2011 and 2012, the CoNLL shared task assessed coreference resolution (Pradhan
et al. 2011). The CoNLL 2011 corpus consists of a set of documents in English,
where the coreference chains are marked in each document, while CoNLL 2012
extends the languages to Chinese and Arabic. The CoNLL format contains syntactic
and semantic annotations. It uses columns to describe the index, words, lemmas,
parts of speech, parse trees, semantic types, and predicate–argument structures. The
coreference chains are given in the last column.

Table 16.5 shows the simplified annotation of the short text:

“Vandenberg and Rayburn are heroes of mine,” Mr. Boren says, referring as well to Sam
Rayburn, the Democratic House speaker who cooperated with President Eisenhower. “They
allowed this country to be credible. I really want to see that happen again.”

where the sentences are separated by a blank line.
The CoNLL coreference format is similar to other CoNLL formats that we saw

in other chapters of this book. The main differences are:

• The first column contains a document identifier, which corresponds to the scope
of coreference solving. While coreferences could be annotated across multiple
documents, this not the case here.

• The parse bit column contains the parse trees of the sentences. It uses constituents
and the Penn Treebank annotation. For each word in the table, the parse bit starts
with the first open parenthesis in the parse tree and consists of the phrase symbols
and parentheses up to the word. The word and part-of-speech leaves are replaced
with a star (*) and followed by possible parentheses closing the constituent.
Using this column, we can extract all the noun phrases of a document, and thus
the mentions.

• The goal of coreference solving is to predict the coreference chains in the last
column from the other columns given as input.

Mentions and Chains

The entity or event mentions in the CoNLL corpus are described with a parenthesis
structure, where each entity is assigned a number unique in the document.

Representing a coreference chain as:

CorefChain.x/ D fMentionx1 ;Mentionx2 ; : : : ;Mentionxng;
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Table 16.5 Simplified annotation of three sentences in the CoNLL 2011 corpus (After Pradhan
et al. (2011))

Document Index Word POS Parse bit Type Chain

wsj_0771 0 “ “ (TOP(S(S* * –
wsj_0771 1 Vandenberg NNP (NP* (PERSON) (8|(0)
wsj_0771 2 and CC * * –
wsj_0771 3 Rayburn NNP *) (PERSON) (23)|8)
wsj_0771 4 are VBP (VP* * –
wsj_0771 5 heroes NNS (NP(NP*) * –
wsj_0771 6 of IN (PP* * –
wsj_0771 7 mine NN (NP*)))) * (15)
wsj_0771 8 , , * * –
wsj_0771 9 ” ” *) * –
wsj_0771 10 Mr. NNP (NP* * (15
wsj_0771 11 Boren NNP *) (PERSON) 15)
wsj_0771 12 says VBZ (VP* * –
wsj_0771 13 , , * * –
wsj_0771 14 referring VBG (S(VP* * –
wsj_0771 15 as RB (ADVP* * –
wsj_0771 16 well RB *) * –
wsj_0771 17 to IN (PP* * –
wsj_0771 18 Sam NNP (NP(NP* (PERSON* (23
wsj_0771 19 Rayburn NNP *) *) –
wsj_0771 20 , , * * –
wsj_0771 21 the DT (NP(NP* * –
wsj_0771 22 Democratic JJ * (NORP) –
wsj_0771 23 House NNP * (ORG) –
wsj_0771 24 speaker NN *) * –
wsj_0771 25 who WP (SBAR(WHNP*) * –
wsj_0771 26 cooperated VBD (S(VP* * –
wsj_0771 27 with IN (PP* * –
wsj_0771 28 President NNP (NP* * –
wsj_0771 29 Eisenhower NNP *))))))))))) (PERSON) 23)
wsj_0771 30 . . *)) * –
wsj_0771 0 “ “ (TOP(S* * –
wsj_0771 1 They PRP (NP*) * (8)
wsj_0771 2 allowed VBD (VP* * –
wsj_0771 3 this DT (S(NP* * (6
wsj_0771 4 country NN *) * 6)
wsj_0771 5 to TO (VP* * –
wsj_0771 6 be VB (VP* * (16)
wsj_0771 7 credible JJ (ADJP*))))) * –
wsj_0771 8 . . *)) * –
wsj_0771 0 I PRP (TOP(S(NP*) * (15)
wsj_0771 1 really RB (ADVP*) * –
wsj_0771 2 want VBP (VP* * –
wsj_0771 3 to TO (S(VP* * –

(continued)
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Table 16.5 (continued)

Document Index Word POS Parse bit Type Chain

wsj_0771 4 see VB (VP* * –
wsj_0771 5 that IN (SBAR* * (16)
wsj_0771 6 happen VBP (S(VP* * –
wsj_0771 7 again RB (ADVP*)))))))) * –
wsj_0771 8 . . * * –
wsj_0771 9 ” ” *)) * –

where x denotes an entity or an event, and Mentionxi , its i th mention of it in a
document, the coreference chains in Table 16.5 are:

CorefChain.0/ D fVandenbergg;
CorefChain.6/ D fthis countryg;
CorefChain.8/ D fVandenberg and Rayburn;Theyg;
CorefChain.15/ D fmine;Mr. Boren; Ig;
CorefChain.16/ D fbe; thatg;
CorefChain.23/ D fRayburn; Sam Rayburnn, the Democratic House speaker

who cooperated with President Eisenhowerg;

To carry out the annotation, the annotators extracted all the noun phrases and
pronouns and created the coreference chains from them. The mentions use the
maximal span of a noun phrase, i.e., given a head noun, the NP constituent that
includes all its direct and indirect dependents. In the example above, both noun
phrases and mentions:

Sam Rayburn

and

Sam Rayburn, the Democratic House speaker who cooperated with President Eisenhower

refer to the same person. The annotators kept only the latter phrase as it spans all
the dependents. They did not mark the singletons: entities or events mentioned only
once in a text.

The annotators could also include verbs as part of coreference chains, although
they accounted for less than 2 % of the mentions in the corpus. The next two
sentences give an example of a verb–noun coreference (Pradhan et al. 2011):

Sales of passenger cars grew 22%. The strong growth followed year-to-year increases.

In Table 16.5, be is marked as a mention and corefers with that.
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16.5 References: A More Formal View

16.5.1 Generating Discourse Entities: The Existential
Quantifier

In Chap. 14, we introduced a logical notation to represent nominal expressions that
differs from that of the previous section. If we take the formal semantics viewpoint,
a sentence such as:

A patron ordered a meal.

exposes two new terms: a patron and a meal. These entities are tied to indefinite
noun phrases and hence to logical forms headed by the existential quantifier 9:

9x; patron.x/
9y;meal.y/

A discourse interpretation program should reflect them in a Prolog database and
augment the database with the corresponding semantic facts:

patron(patron#3).
meal(meal#15).

We generate the entities by creating new constants – new atoms – making
sure that they have a unique name, here patron#3 or meal#15. Then, we can
add them in the database under the form of facts using the asserta/1 built-in
predicate.

New entities are only a part of the whole logical set because the complete
semantic representation of the sentence is:

a(X, patron(X), a(Y, meal(Y), ordered(X, Y)))

To be consistent with this representation, we must also add the predicate
ordered(Subject, Object) to link the two new entities. We carry this out
by asserting a last fact:

ordered(patron#3, meal#15).

16.5.2 Retrieving Discourse Entities: Definite Descriptions

While indefinite noun phrases introduce new entities, definite ones usually refer to
entities created previously. A possible subsequent sentence in the discourse could
be:

The patron ate the meal,
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which should not create new entities. This simply declares that the patron already
mentioned ate the meal he ordered. Such definite noun phrases are then anaphors.

The logic interpretation of definite descriptions usually translates as:

9Šx; patron.x/
9Šy;meal.y/

where properties are quantified with 9Š meaning that x and y are unique. To reflect
this in the Prolog database, we could identify x and y among the entities previously
created and then assert the new fact:

ate(patron#3, meal#15).

An alternate processing of the ate/2 relation – and probably a more alert one –
is to first create new atoms, that is, new names:

patron(patron#5).
meal(meal#17).

to link them with ate/2:

ate(patron#5, meal#17).

and to assert later that some names are identical:

equals(patron#3, patron#5).
equals(meal#15, meal#17).

This method is precisely the coreference recognition that we described previ-
ously. Besides, proceeding in two steps enables a division of work. While a first task
generates all potential entities, a second one resolves coreferences using techniques
that we review in Sect. 16.6.

16.5.3 Generating Discourse Entities: The Universal
Quantifier

We saw that determiners can also correspond to the universal quantifier 8. An
example of such a sentence is:

Every patron ordered a meal.

Its corresponding logic representation is:

8x; patron.x/) 9y;meal.y/; ordered.x; y/
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Table 16.6 A Skolem function

X Y Skolem function values

pierre cassoulet#2 f(pierre) = cassoulet#2
charlotte pytt_i_panna#4 f(charlotte) = pytt_i_panna#4
dave yorkshire_pudding#4 f(dave) = yorkshire_pudding#4

or in a predicate form:

all(X, patron(X), a(Y, meal(Y), ordered(X, Y))).

In such a logical form, each value of X should be mapped onto a specific value
of Y: each patron has eaten his/her own and unique meal. A definition in extension
of this sentence – that is, the list of all the facts it encompasses – could be:

Pierre ordered a cassoulet,
Charlotte ordered a pytt i panna, and
Dave ordered a Yorkshire pudding.

Doing so, we have defined a function linking each value of X with a unique value
of Y, that is, Pierre with a specific cassoulet, Charlotte with a pytt i panna, and Dave
with a Yorkshire pudding. In logic, this is called a Skolem function (Table 16.6).

Our Skolem function has eliminated variable y and the existential quantifier. It
has replaced them by f .x/ in the logical form:

8x; patron.x/) ordered.x; f .x//

or

all(X, patron(X), a(f(X), meal(f(X)), ordered(X, f(X))))

More generally, Skolemization handles logical formulas with universally quan-
tified variables, x1; x2; : : : ; xn, and a variable existentially quantified y on its
left-hand side:

8x1;8x2; : : : ;8xn; 9y; pred.x1; x2; : : : ; xn; y/

It substitutes y by a function of the universally quantified variables:

y D f .x1; x2; : : : ; xn/

yielding unique values for each n-tuplet .x1; x2; : : : ; xn/.
Skolemization results in a new formula, where variable y has disappeared:

8x1;8x2; : : : ;8xn; pred.x1; x2; : : : ; xn; f .x1; x2; : : : ; xn//

and where f .x1; x2; : : : ; xn/ is called a Skolem function.
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16.6 Solving Coreferences

Although coreferences to a same object are frequently ambiguous, they generally
raise no understanding problem to a human reader, with the exception of poorly
written texts. However, they represent a tricky issue for a machine. The field has long
been dominated by complex linguistic theories that are difficult to implement and
to process. Fortunately, as with partial parsing, the MUCs, and later CoNLL, have
focused research on concrete problems and robust algorithms that revolutionized
coreference resolution.

In the next sections, we describe algorithms to automatically resolve corefer-
ences. We first introduce systems based on manually written rules and then describe
an efficient machine-learning approach. Even if coreference algorithms do not reach
the performance of POS taggers or noun group detectors, they have greatly improved
recently and can now be applied to unrestricted texts.

16.6.1 A Simplistic Method: Using Syntactic and Semantic
Compatibility

A basic rule that links an anaphor and its antecedent is that their number and
gender are identical. This yields the idea of a simplistic method to resolve anaphoric
pronouns. The algorithm first collects a list of all the mentions. When an anaphor
occurs, the antecedent is searched backward in this list. We set aside cataphoras
here. The resolution retains the first antecedent it finds in the list – the most recent
one – that agrees in gender and number.

This method may seem naïve, but in fact, most of the time the first antecedent
occurring in the sentence or in the previous one with matching gender and number
is the good one. This recency principle has been observed in many experimental
studies. The method ranks properly potential antecedents of it in the sentence:

Garcia Alvarado, 56, was killed when a bomb placed by urban guerrillas

on his vehicle exploded as it came to a halt at an intersection in

downtown San Salvador
1

2

We can extend this resolution method to find antecedents of definite noun
phrases. The recency principle remains the same, but in addition to syntactic features
such as gender and number, we add semantic constraints. We search the antecedent
of a definite noun phrase, considered as an anaphor, among the entities that are
semantically compatible. Compatibility takes the form of:
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• The identity – identical noun groups indicate a same reference
• A direct ontological link between mentions – generalization or specialization as

in a car and the vehicle, or
• Compatible modifiers – adjectives and complements of the head noun as in car,

white car or police car, but not in police car and ambulance

Huls et al. (1995) report that such a method identifies pronoun anaphor coref-
erences with an accuracy of 95 %. Although this figure would probably degrade in
some cases, it proves the power and effectiveness of this very simple model. The
existence of gender for nouns in French and in German makes the search probably
more accurate in these languages.

16.6.2 Solving Coreferences with Shallow Grammatical
Information

Kameyama (1997) proposed an algorithm using manually written rules that pro-
duced good results in the MUC contest for the coreference resolution task. Here is
a slightly modified version of her algorithm. It operates on pronouns and definite
noun groups only. It sets aside others such as indefinite and possessive noun groups.

The algorithm first extracts all nominal expressions of the text to form the set
of mentions. Then, it scans these expressions in left-to-right order, and for each
pronoun or definite noun group, it collects preceding nominal expressions – the
potential antecedents – within a definite span of a couple of sentences. The exact
window size depends on the type of referring expression:

• The entire MUC text preceding the current expression for proper nouns.
• Narrower for definite noun phrases. Kameyama suggests ten sentences.
• Even narrower for pronouns. Again, Kameyama suggests three sentences.
• The current sentence for reflexive pronouns.

The algorithm applies constraints on the collected nominal expressions to check
the compatibility between the current entity E and possible antecedents:

• Number and gender consistency: both must coincide. In some cases, such as with
organizations, plural pronouns may denote a singular antecedent.

• Ontological consistency: type of E must be equal to the type of the antecedent
or subsume it. For instance, the automaker is a valid antecedent of the company,
but not the reverse.

• Modifier consistency: modifiers such as adjectives must not contradict such as in
the British company and the French company.

Then, among possible candidates, the algorithm retains the one whose salience
is the highest. This salience is based on the prominence of certain elements in a
sentence, such as subjects over objects, and on obliteration with time (or recency).
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It has its origin in a rough model of human memory. Memory tends to privilege
recent facts or some rhetoric or syntactic forms. A linear ordering of candidates
approximates salience in English because subjects have a relatively rigid location in
front of the sentence. Kameyama’s salience ranks candidates from:

1. The preceding part of the same sentence in left–right order (subject salience)
2. The immediately preceding sentence in left–right order (subject salience)
3. Other preceding sentences within the window in right–left order (recency)

In addition, the algorithm improves the name recognition with aliases. Com-
panies are often designated by full names, partial names, and acronyms to avoid
repetitions. For example, consider Digital Equipment Corporation, Digital, DEC.
An improvement to coreference recognition is to identify full names with substrings
of them and their acronyms.

16.6.3 Salience in a Multimodal Context

EDWARD (Huls et al. 1995) is a model that extends salience to a gesture designation
of entities. EDWARD is part of a system that is intended to control a graphical
user interface made of windows containing icons that represent files. The interface
accepts natural language and mouse commands to designate objects, that is, to
name them and to point at them. This combination of modes of interaction is called
multimodality.

The multimodal salience model keeps the idea of recency in language. The
subject of the sentence is also supposed to be retained better than its object, and
an object better than an adjunct. In addition, the model integrates a graphical
salience and a possible interaction. It takes into account the visibility of entities
and pointing gestures. Syntactic properties of an entity are called linguistic context
factors, and visual ones are called perceptual context factors. All factors: subject,
object, visibility, interaction, and so on, are given a numerical value. A pointed
object has the highest possible mark.

The model uses a time sliding window that spans a sentence. It creates the
discourse entities of the current window and assigns them a weight corresponding
to their contextual importance. Computation of an entity’s weight simply sums up
all the factors attached to it. An entity salience is then mapped onto a number: its
weight. Then the window is moved to the next sentence, and each factor weight
attached to each entity is decremented by one. An entity mentioned for the first time
and in the position of an object has a context factor weight – a salience – of 3. The
next sentence, its worth will be 2, then 1, and finally 0 (Table 16.7).

The model sequentially processes the noun phrases of a sentence. To determine
coreferring expressions of the current noun phrase, the model selects all entities
semantically compatible with it that have been mentioned before. The one that has
the highest salience value among them is retained as a coreference. Both salience
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Table 16.7 Context factors (simplified) according to Huls et al. (1995). Note that a subject appears
twice in the context factor list: as a subject and as a major constituent

Context factors (CF) Objects in Scope Successive weights

Linguistic CFs
Major-constituent

referents CF
Referents of subject, (in)direct object, and

modifier
[3, 2, 1, 0]

Subject referent CF Referent of the subject phrase [2, 1, 0]
Nested-term referent CF Referents of the noun phrase modifiers (e.g.,

prepositional phrase, relative clause)
[1, 0]

Perceptual CFs
Visible referent CF Referents visible in the current viewpoint.

Typically icons visible in a window
[1, . . . , 1, 0]

Selected referent CF Referents selected in the model world.
Typically icons selected – highlighted –
with the mouse or by a natural language
command

[2, . . . , 2, 0]

Indicated referent CF Referents indicated by a pointing gesture.
Typically an icon currently being pointed
at with a mouse

[30, 1, 0]

Table 16.8 Computation of the salience value (SV) of Lyn, Susan, and Ferrari

SV of Susan SV of Lyn SV of Ferrari

Initial values 0 0 0
Susan drives a Ferrari 3C 2 D 5 0 3

major + subject major
Decay after completion 3� 1C 2� 1 D 3 3� 1 D 2

She drives too fast 3C 3C 2 D 8

existing + major + subject
0 2

Decay after completion 3� 1� 1C 2� 1� 1C
3� 1C 2� 1 D 4

3� 1� 1 D 1

Lyn races her on
weekends

4C 3 D 7

existing + major
3C 2 D 5

major + subject
1

Decay after completion 3 � 1 � 1 � 1C 3 � 1 �
1C2�1�1C3�1 D 3

3� 1C 2� 1 D 3 3� 1� 1� 1 D 0

She often beats her 3C 3C 2 D 8

existing + major + subject
3C 3 D 6

existing + major
0

values are then added: the factor brought by the current phrase and the accumulated
salience of its coreference. All entities are assigned values that are used to interpret
the next sentence. Then, the decay algorithm is applied and the window is moved to
the next sentence.

Table 16.8 shows a processing example. It indicates the salience values of Lyn,
Susan, and Ferrari. In case of ambiguous reference, the system would ask the user
to indicate which candidate is the right one.
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MorphologyText Tokenizer POS tagging Noun phrases

Named entities Nested NPs Semantic classes Mentions

Fig. 16.2 Pipeline to extract the mentions

16.6.4 Using a Machine-Learning Technique to Resolve
Coreferences

Algorithms we have seen so far are based on manually engineered rules. This
strategy requires a good deal of expertise and considerable clerical work to test and
debug the rules. In this section, we introduce a machine-learning approach where
the coreference solver uses a classifier automatically trained from a hand-annotated
corpus (Soon et al. 2001).

The coreference solver is a decision tree. It considers pairs of mentions, noun
phrases and pronouns, .NPi ;NPj /, where each pair is represented by a feature
vector of 12 parameters. The solver first extracts pairs of mentions and computes
feature vectors for each pair. It then takes the set of mention pairs as input and
decides for each pair whether it corefers or not. Using the transitivity property, it
identifies all the coreference chains in the text.

The ID3 learning algorithm (Quinlan 1986) (Sect 4.3.2) automatically induces
the decision tree from annotated texts using the MUC annotation standard
(Sect. 16.4.3).

Mention Detection

To create the set of mentions, the solver extracts all the noun phrases and pronouns
from the text. Using a POS tagger, a constituent parser, and the Penn Treebank
annotation, as in Table 16.5, this would correspond to the NP constituents and words
with the PRP and PRP$ tags.

Instead, Soon et al. (2001) used a partial parser, a chunker, to detect the mentions,
probably because fast and reliable constituent parsers were still uncommon at the
time they created their algorithm. They applied a processing pipeline similar to what
we have seen in information extraction: tokenization, morphological processing,
POS tagging, noun phrase identification, named entity recognition, nested noun
phrase extraction, and semantic class determination (Fig. 16.2).

The four first modules are generic to many language processing applications. The
named entities module follows the MUC style and extracts organization, person,
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location, date, time, money, and percent entities. When a noun phrase and a named
entity overlap, they are merged to form a single noun phrase.

The Nested NPs module is a work-around to a constituent parser to detect
mentions inside noun phrases. It has two roles:

1. It extracts the possessive pronouns from the noun phrases as in his long-term
strategy that results in two mentions: his and his long-term strategy.

2. It also extracts modifier nouns in nominal compounds, as in wage reductions, to
generate two mentions: wage and wage reduction.

In a modern coreference solver, the Nested NPs module would be replaced by a
parser that would automatically bracket the embedded noun phrases.

Features

As input, the coreference solver takes a pair of extracted mentions .NPi ; NPj /,
where NPi is before NPj in the text. The solver considers NPi as a potential
antecedent and NPj as an anaphor and classifies the pair as positive if both NPs
corefer, or negative if they do not. Soon et al. (2001) described each pair by a feature
vector of 12 parameters that correspond to positional, grammatical, semantic, and
lexical properties:

• Positional feature:

1. Distance (DIST): This feature is the distance between the two mentions
measured in sentences: 0, 1, 2, 3, . . . . The distance is 0 when the mentions
are in the same sentence.

• Grammatical features:

2. i -Pronoun (I_PRONOUN): Is NPi a pronoun, i.e., personal, reflexive, or
possessive pronoun? Possible values are true or false.

3. j -Pronoun (J_PRONOUN): Is NPj a pronoun? Possible values are true or
false.

4. Definite noun phrase (DEF_NP): Is NPj a definite noun phrase, i.e., that starts
with the? Possible values are true or false.

5. Demonstrative noun phrase (DEM_NP): Is NPj a demonstrative noun phrase,
i.e., that starts with this, that, these, those? Possible values are true or false.

6. Number agreement (NUMBER): Do NPi and NPj agree in number? Possible
values are true or false.

7. Gender agreement (GENDER): Do NPi and NPj agree in gender? Possible
values are true, false, or unknown.

8. Both proper nouns (PROPER_NOUN): Are NPi and NPj both proper nouns?
Proper nouns are determined using capitalization. Possible values are true or
false.

9. Appositive (APPOSITIVE): Is NPj an apposition to NPi , as the chairman of
Microsoft in Bill Gates, the chairman of Microsoft, . . .
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Table 16.9 Feature vector of the mention pair: NPi = Frank Newman and NPj = vice chairman
(After Soon et al. (2001))

Feature type Feature Value Comments

Positional DIST 0 NPi and NPj are the same sentence
Grammatical I_PRONOUN – NPi is not a pronoun

J_PRONOUN – NPj is not a pronoun
DEF_NP – NPj is not a definite NP
DEM_NP – NPj is not a demonstrative NP
NUMBER + NPi and NPj are both singular
GENDER 1 NPi and NPj are both males (false = 0, true =

1, unknown = 2)
PROPER_NOUN – Only NPi is a proper noun
APPOSITIVE + NPj is an apposition to NPi

Semantic SEMCLASS 1 NPi and NPj are both persons (false = 0, true
= 1, unknown = 2)

ALIAS – NPj is not an alias of NPi
Lexical STR_MATCH – NPi and NPj do not match

• Semantic features:

10. Semantic class agreement (SEMCLASS): Do NPi and NPj have the same
semantic class? Possible values are true, false, or unknown. Classes are
organized as a small ontology with two main parts, person and object,
themselves divided respectively into male and female, and organization,
location, date, time, money, and percent. The head nouns of the NPs are linked
to this ontology using the WordNet hierarchy.

11. Alias (ALIAS): Are NPi and NPj aliases, for instance, IBM and International
Business Machines? Possible values are true or false.

• Lexical feature:

12. String match (STR_MATCH): Are NPi and NPj equal after removing articles
and demonstratives from both mentions? Possible values are true or false.

Table 16.9 shows an example of feature vector for the pair Frank Newman and
vice chairman excerpted from the next sentence (Soon et al. 2001):

Separately, Clinton transition official said that Frank Newman, 50, vice chairman and chief
financial officer of BankAmerica Corp., is expected to be nominated as assistant Treasury
secretary for domestic finance.

The set proposed by Soon et al. (2001) mainly consists of Boolean features. As
with chunking or parsing, it is possible to add word values to the feature vector and
train lexicalized models. Most lexicalized features are based on the head nouns of
the mentions or other dependency links that we extract with percolation rules as
those shown in Table 11.15 or with a dependency parser.

Lexicalized models improve the performance of coreference solving. Björkelund
and Nugues (2011) showed that the feature bigram consisting of the head noun of
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the antecedent and the head noun of the anaphor was one of the most significant.
However, lexicalized models require more annotated data than those based on
Booleans or parts of speech.

Training Examples

The training procedure extracts positive and negative examples from the annotated
corpus:

• It generates the positive examples using pairs of adjacent coreferring mentions. If
NPa1 – NPa2 – NPa3 – NPa4 is a coreference chain in a text, the positive examples
correspond to the set of pairs:

f.NPa1;NPa2/; .NPa2;NPa3/; .NPa3;NPa4/g;

where the first mention is always considered to be the antecedent and the second
one the anaphor.

• To create the negative examples, the training procedure considers the same
adjacent pairs antecedent, anaphor .NPi ;NPj /, and the mentions intervening
between them NPiC1;NPiC2; : : : ;NPj�1. For each positive pair .NPi ;NPj /, the
training procedure generates negative pairs, which consist of one intervening
mention and the anaphor NPj :

f.NPiC1;NPj /; .NPiC2;NPj /; : : : ; .NPj�1;NPj /g:

The intervening mentions can either be part of another coreference chain or not.

As classifier, Soon et al. (2001) induced a decision tree from the examples with
the ID3 algorithm. It is possible to use other binary classifiers such as logistic
regression or support vector machines.

Extracting the Coreference Chains

Once the classifier has been trained, it is applied to the mentions in a text to identify
the coreference chains. The engine first extracts all the mentions in the text. It
traverses the text from left to right from the second mention. For each current NPj ,
the algorithm considers every NPi before it as a possible antecedent. It then proceeds
from right to left and submits the pairs .NPi ;NPj / to the classifier until it reaches
an antecedent or the start of the text.

The algorithm is as follows:

1. Let NP1;NP2; : : : ;NPN be the mentions.
2. For j D 2 to N .
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(a) For each NPj , generate all the pairs .NPi ;NPj /, where i < j .
(b) Compute the feature vector of each pair .NPi ;NPj /.
(c) For i D j � 1 to 1, submit the pair .NPi ;NPj / to the classifier until a positive

pair is found or the beginning of the text is reached.
(d) If a noun phrase returns positive, NPj has an antecedent and is part of the

corresponding coreference chain.

16.6.5 More Complex Phenomena: Ellipses

An ellipsis is the absence of certain words or phrases normally necessary to build a
sentence. Ellipses occur frequently in the discourse to avoid tedious repetitions. For
instance, the sequence:

I want to have information on caterpillars. And also on hedgehogs.

features a second sentence whose subject and verb are missing. The complete
sentence would be:

I want to have information on hedgehogs.

Here the speaker avoids saying twice the same thing. Ellipses also occur with clauses
linked by conjunctions where a phrase or a word is omitted as in the sentence:

I saw a hedgehog walking on the grass and another sleeping.

Everyone, however, can understand that it substitutes the complete sentence:

I saw a hedgehog walking on the grass and I saw another hedgehog sleeping.

Ellipses are rather difficult to handle. In many cases, however, maintaining a
history of all the discourse’s referents can help retrieve an omitted referent or verb. A
referent missing in a sentence can be searched backward in the history and replaced
with an adequate previous one.

16.7 Centering: A Theory on Discourse Structure

Of the many theories on discourse structure, Grosz and Sidner’s (1986) has been
very influential in the computational linguistics community. Grosz and Sidner
modeled a discourse as being a composite of three components:

• The linguistic structure of the actual sequence of utterances in the discourse
• A structure of intentions
• An attentional state

Grosz and Sidner’s first assumption is that the linguistic structure of a discourse
is made of segments. They substantiated this claim using psychological studies
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Segment 0

Segment 1

Susan drives a Ferrari
She drives too fast

Segment 2

Lyn races her on weekends
She often beats her
She wins a lot of trophies

Fig. 16.3 The embedded
structure of discourse.
Segment 0 covers the five
sentences and spans segment
1 (1 and 2) and segment 2
(3–5)

showing a relative agreement among individuals over the segmentation of a text:
given a text, individuals tend to fractionate it in a same way. Segments have a
nonstrict embedded (hierarchical) organization (Fig. 16.3). It is roughly comparable
to that of the phrase structure decomposition of a sentence. Segment boundaries
are often delimited by clues and cue phrases, also called markers, that indicate
transitions.

The intentional structure is what underlies a discourse. It is the key to how seg-
ments are arranged and their internal coherence. It has global and local components.
From a global viewpoint, intention relates to the discourse purpose, which is the
main objective of the discourse and why it takes place. Within each segment there is
a discourse segment purpose that is local and that contributes to the main purpose.
Discourse segment purposes are often easier to determine than the overall discourse
intention.

The attentional state is the dynamic set of objects, relations, and properties along
with the discourse. The attentional state is closely related to segments. For each
of them there is a focus space made of salient entities, properties of entities, and
relations between entities, that is, predicates describing or linking the entities. The
attentional state also contains the discourse segment purpose.

While Grosz and Sidner’s general model may prove difficult to implement, Grosz
et al. (1995) derived a simpler concept of centering from it. Centering retains the
idea of segment, defined as a set of utterances, along which a limited number of
dynamic centers turn up. Centers are the “useful” entities of an utterance that link it
to other utterances of a segment. Since centers are a subset of entities, they are easier
to detect than the intention or the whole attentional state. They provide a tentative
model to explain discourse coherence and coreference organization.

Centers of an utterance are split into a set of forward-looking centers and a
unique backward-looking center, except for the first utterance of the segment,
which has no backward-looking center:

• The backward-looking center, or simply the center, is the entity that connects
the current utterance with the previous one and hence with one of the previous
forward-looking centers. It is often a pronoun.
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• Forward-looking centers are roughly the other discourse entities of a segment.
More precisely, they are limited to entities serving to link the utterance to other
utterances.

Forward-looking centers can be ordered according to syntactic, semantic, and
pragmatic factors, and the first one has a great chance to become the backward-
looking center of the next utterance. As examples, centers in Table 16.1 are:

• In sentence 1, Susan and Ferrari are the discourse entities and forward-looking
centers.

• In sentence 2, she is the backward-looking center because it connects the
utterance with the previous one.

• In sentence 3, Lyn and weekends are the forward-looking centers; her is the
backward-looking center.

16.8 Discourse and Rhetoric

Rhetoric also offers means to explain discourse coherence. Although rhetoric has
a very long tradition dating from ancient times, modern linguists have tended to
neglect it, favoring other models or methods. Recently however, interest has again
increased. Modern rhetorical studies offer new grounds to describe and explain
argumentation. Modeling argumentation complements parts of human discourse that
cannot only be explained in terms of formal logic or arbitrary beliefs. The Traité de
l’argumentation by Perelman and Olbrechts-Tyteca (1976) is a prominent example
of this trend.

On a parallel road, computational linguistics also rediscovered rhetoric. Most of
the renaissance in this community is due to influential papers on rhetorical structure
theory (RST) by Mann and Thompson (1987, 1988). This section provides a short
introduction to ancient rhetoric and then describes RST.

16.8.1 Ancient Rhetoric: An Outline

Rhetoric was studied in most schools of ancient Greece and Rome, and in
universities in the Middle Ages. Rhetoric was then viewed as a way to define how
best to compose ideas in a discourse, to make it attractive, to convince and persuade
an audience. It was considered as a kind of discourse strategy defining the optimal
arrangement or planning of arguments according to the type of audience, of speech
case, etc.

According to the ancient rhetoric school, the production of discourse had to
be organized around five canons – invention, arrangement, style, memory, and
delivery.
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• Invention (inventio) is related to the ideas or facts contained in a discourse:
what to say or to write are the first things to identify to make a discourse exist.
According to ancient Greeks, a key to invention was to answer the right questions
in the right order.

• Arrangement (dispositio) is the discourse construction for which general patterns
have been proposed. According to Cicero, a discourse should feature an introduc-
tion (exordium), a narrative (narratio) where the orator sets forth the issues of the
problem, a proposition (propositio) where s/he states her/his arguments for the
case, a refutation (refutatio), where s/he gives counterarguments, a confirmation
(confirmatio) where s/he reinforces her/his arguments, and finally a conclusion
(peroratio).

• Style (elocutio) concerns the transcription and the editing of ideas into words
and sentences. Rules of style suggested to privilege clarity – use plain words
and conform to a correct grammar. This was a guarantee to be understood by
everybody. Style was also a literary art where efficiency mattered most. It was
divided into three categories whose goals were to emote (movere), to explain
(docere), or to please (delectare) according to the desired effect on the audience.

• Memory (memoria) was essential so that the orator should retain what s/he had to
say. The Ancients advised orators to sleep well, to be in good shape, to exercise
memory by learning by heart, and to use images.

• Delivery (actio) concerned the uttering of the discourse: voice, tone, speed, and
gestures.

Although current discourse strategies may not be the same as those designed
and contrived in Athens or Sicily 2,500 years ago, if elucidated they give keys
to a discourse structure. Later, the historical definition of rhetoric was sometimes
superseded by a pejorative sense meaning empty political speeches or ranting.

16.8.2 Rhetorical Structure Theory

Rhetorical structure theory (RST) is a theory of text organization in terms of
relations that occur in a text. As for Grosz and Sidner, RST identifies a hierarchical
tree structure in texts. A text consists of nonoverlapping segments that define the
tree nodes. These segments are termed by Mann and Thompson as “text spans.”
They correspond typically to one or more clauses. Text spans may be terminal or
nonterminal nodes that are linked in the tree by relations.

Rhetorical relations are sorts of dependencies between two text spans termed
the nucleus and the satellite, where the satellite brings some sort of support or
explanation to the nucleus, which is the prominent issue. To illustrate this concept,
let us take the example of the Justify relation from Mann and Thompson (1987, pp.
9–11): “A justify satellite is intended to increase the reader’s readiness to accept the
writer’s right to present the nuclear material.” In the short text:
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1–3

2–31

Justify

Fig. 16.4 The Justify
relation

1–3

2–31

2 3

Justify

Concession

Fig. 16.5 More relations:
Concession

1. The next music day is scheduled for July 21 (Saturday), noon–midnight
2. I’ll post more details later,
3. but this is a good time to reserve the place on your calendar.

segments 2 and 3 justify segment 1, and they can be represented graphically by
Fig. 16.4.

Segments can then be further subdivided using other relations, in the example a
Concession (Fig. 16.5).

Relations are easy to represent in Prolog with facts
rhetorical_relation(relation_type, satellite, nucleus):

rhetorical_relation(justify, 3, 1).
rhetorical_relation(concession, 2, 3).

Another example is given by this odd text about dioxin (Mann and Thompson
1987, pp. 13–15):

1. Concern that this material is harmful to health or the environment may be
misplaced.

2. Although it is toxic to certain animals,
3. evidence is lacking that it has any serious long-term effect on human beings.

which can be analyzed with relations Elaboration and Concession in Fig. 16.6.
These relations are equivalent to the Prolog facts:

rhetorical_relation(elaboration, 3, 1).
rhetorical_relation(concession, 2, 3).
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1–3

2–31

2 3

Elaboration

Concession

Fig. 16.6 Elaboration and Concession

Circumstance Evidence Otherwise
Solutionhood Justify Interpretation
Elaboration Cause Evaluation
Background Antithesis Restatement
Enablement Concession Summary
Motivation Condition

Fig. 16.7 RST rhetorical relations linking a nucleus and a satellite

Sequence Joint Contrast

Fig. 16.8 Relations linking two nuclei

16.8.3 Types of Relations

The total number and the type of rhetorical relation vary much among authors and
even among papers written by their creators. Their number ranges from a dozen to
several hundreds. As we saw in the previous section, most relations link a nucleus
and a satellite. Figure 16.7 shows a slightly simplified list of them from Mann and
Thompson (1987). In some instances, relations also link two nuclei. They are shown
in Fig. 16.8.

16.8.4 Implementing Rhetorical Structure Theory

Mann and Thompson gave formal definitions of rhetorical relations using con-
straints on the satellite, the nucleus, and both. Table 16.10 shows constraints
holding for evidence. In addition, a rhetorical relation entails consequences that
are described by an effect: here, with evidence, the reader’s belief of the nucleus
is increased.
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Table 16.10 The EVIDENCE relation (After Mann and Thompson (1987))

Relation name EVIDENCE

Constraints on the nucleus N The reader R might not believe to a degree satisfactory to
the writer W

Constraints on the satellite S The reader believes S or will find it credible

Constraints on the N C S combination
R’s comprehending S increases R’s belief of N

The effect R’s belief of N is increased
Locus of the effect N

Table 16.11 Examples of cue phrases and forms

Cues English French German

Conjunctions Because, in fact, but,
and

Car, en effet, puisque, et,
mais

denn, und, aber,

Adverbial forms In addition, for example De plus, en particulier,
particulièrement, par
exemple

dazu, besonders, zum
Beispiel

Syntactic forms Past participles:
given

Present participles: étant
donné

Table 16.12 Typical orders
for some relations

Satellite before nucleus

Antithesis Condition
Background Justify
Concession Solutionhood

Nucleus before satellite
Elaboration Evidence
Enablement Statement

Such constraints are difficult – if not impossible – to implement in a computer as
is because they involve knowing the thoughts of the reader and the writer. However,
rhetorical relations are often indicated by a handful of specific cue words or phrases.
Mann and Thompson observe that a concession is often introduced by although,
as in the dioxin text from the previous section, or but. A common workaround to
detect a relation is then to analyze the surface structure made of these cue phrases.
They may indicate the discourse transitions, segment boundaries, and the type of
relations. Many cue phrases are conjunctions, adverbial forms, or syntactic patterns
(Table 16.11). Mann and Thompson also observed that the nucleus and the satellite
had typical topological orders (Table 16.12).

Recently, comprehensive works have itemized cue phrases and other constraints
enabling the rhetorical parsing of a text. Marcu (1997) and Corston-Oliver (1998)
are notable examples of this trend. As an example, Corston-Oliver (1998) recognizes
the Elaboration relation with a set of necessary criteria that must hold between two
clauses, clause 1 being the nucleus and clause 2 the satellite:
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Table 16.13 Cues to recognize the Elaboration relation (After Corston-Oliver (1998, p. 129))

Cue Score Cue Name

Clause 1 is the main clause of a sentence (sentence i ), and clause 2 is the
main clause of a sentence (sentence j ), and sentence i immediately
precedes sentence j , and (a) clause 2 contains an elaboration
conjunction (also, for example), or (b) clause 2 is in a coordinate
structure whose parent contains an elaboration conjunction.

35 H24

Cue H24 applies, and clause 1 is the main clause of the first sentence in
the excerpt.

15 H26

Clause 2 contains a predicate nominal whose head is in the set {portion,
component, member, type, kind, example, instance}, or clause 2
contains a predicate whose head verb is in the set {include, consist}.

35 H41

Clauses 1 and 2 are not coordinated, and (a) clauses 1 and 2 exhibit
subject continuity, or (b) clause 1 is passive and the head of the direct
object of clause 1 and the head of the direct object of clause 2 have the
same base form, or (c) clause 2 contains an elaboration conjunction.

10 H25

Cue H25 applies, and clause 2 contains a habitual adverb (sometimes,
usually, . . . ).

17 H25a

Cue H25 applies, and the syntactic subject of clause 2 is the pronoun
some or contains the modifier some.

10 H38

1–3

2–31

32

Elaboration

Elaboration

portion

include

Fig. 16.9 Rhetorical
structures

1. Clause 1 precedes clause 2.
2. Clause 1 is not subordinate to clause 2.
3. Clause 2 is not subordinate to clause 1.

and cues that are ranked according to an heuristic score (Table 16.13).
Corston-Oliver (1998) applied these cues to analyze the Microsoft Encarta

encyclopedia. With the excerpt:

1. A stem is a portion of a plant.
2. Subterranean stems include the rhizomes of the iris and the runners of the

strawberry;
3. The potato is a portion of an underground stem.

using cue H41, he could obtain the rhetoric structure shown in Fig. 16.9.
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Spring is back

Hedgehogs are waking up

Toads are still sleeping

Fig. 16.10 Events

16.9 Events and Time

In most discourses, actions, events, or situations have a temporal context. This
context is crucial to the correct representation of actions. It involves time, which
is reflected by time expressions, such as adverbs or adjuncts, now, tomorrow, in 5
minutes, and verb tenses, such as present, past, or future.

Understanding temporal relations between events is difficult and may depend on
the language. For instance, there is no exact correspondence for past and present
tenses between French and English. In the next section, we will provide hints on
theories about temporal modeling.

16.9.1 Events

Research on the representation of time, events, and temporal relations dates back
to the beginning of logic. It resulted in an impressive number of formulations and
models. A possible approach is to reify events, that is, to turn them into objects, to
quantify them existentially, and to connect them to other objects using predicates
based on action verbs and their modifiers (Davidson 1966). The sentence John saw
Mary in London on Tuesday is then translated into the logical form:

9"Œsaw."; John;Mary/ ^ place.";London/ ^ time.";Tuesday/�;

where " represents the event.
To represent the temporal context of an action sequence we can use a set of

predicates. Consider:

Spring is back. Hedgehogs are waking up. Toads are still sleeping.

There are obviously three actions or events described here. These events are located
in time around a reference point defined by the return of spring. From this point, the
hedgehogs’ waking up process extends onwards while the toads’ sleeping process
overlaps it (Fig. 16.10). Events have a different duration: the first sentence merely
describes a single time point whereas the two last processes are defined inside
intervals.

Let us denote e1, e2, and e3 the events in Fig. 16.10, and let us portray them in
Prolog. In addition, let us use the agent semantic role that we borrow from the case
grammars. We have a first representation:
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event(e1).
is_back(e1).
agent(e1, spring).
...
event(e2).
waking_up(e2).
agent(e2, hedgehogs).
...

event(e3)
sleeping(e3).
agent(e3, toads).

16.9.2 Event Types

Events are closely related to sentence’s main verbs, and different classifications have
been proposed to associate a verb with a type of event. Vendler’s (1967) for English,
Gosselin (1996) for French, and others came to a consensus to divide verbs into four
categories, denoting:

• A state – a permanent property or a usual situation (e.g., be, have, know, think).
• An achievement – a state change, a transition, occurring at single moment (e.g.,

find, realize, learn).
• An activity – a continuous process taking place over a period of time (e.g., work,

read, sleep). In English, activities often use the present perfect, -ing.
• An accomplishment – an activity with a definite endpoint completed by a result

(e.g., write a book, eat an apple).

Some authors have associated events to verbs only. It is safer, however, to take
verb phrases – predicates – and even subjects into account to link events to Vendler’s
categories (Table 16.14). Compare The water ran, which is an activity in the past,
and The hurdlers ran (in a competition), which depicts an achievement.

16.9.3 Temporal Representation of Events

Let us now try to represent processes in a temporal chronology. In the example
in Fig. 16.10, the only process that has a definite location is e1. It is associated
to a calendar period: spring. Other processes are then relative to it. As for these
sentences, in most discourses it is impossible to map all processes onto an absolute
time. Instead, we will represent them using relative, and sometimes partial, temporal
relations.
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Table 16.14 Vendler’s verb categories

English French German

State The cat is sick
I like chocolate

Le chat est malade
J’aime le chocolat

Die Katze ist krank
Ich esse Schokolade

gern
Activity She works for a

company
He is writing a book

Elle travaille pour une
entreprise

Il écrit un livre

Sie arbeitet für eine
Firma
Er schreibt ein Buch

Accomplishment He wrote a book
The dormouse ate the
pears

il a écrit un livre
Le loir a mangé les
poires

Er hat ein Buch
geschrieben
Die Haselmaus hat die

Birnen gegessen
Achievement The sun set

I realized I was wrong
Le soleil s’est couché
Je me suis rendu compte
que j’avais tort

Die Sonne ist
untergegangen
Ich habe eingesehen, ich

nicht recht hatte

Simplifying things, we will suppose that time has a linear ordering and that each
event is located in time: it has a certain beginning and a certain end. This would not
be true if we had considered conditional statements. Temporal relations associate
processes to time intervals and set links, constraints between them. We will adopt
here a model proposed by Allen (1983); Allen’s (1984), whose 13 relations are listed
in Table 16.15.

Using Allen’s representation, relations before(e1, e2), after(e2,
e1), and contains(e3, e1) depict temporal constraints on events e1, e2,
and e3 in Sect. 16.9.1. Temporal relations result in constraints between all processes
that enable a total or partial ordering of them.

16.9.4 Events and Tenses

As we saw, event modeling results in time intervals and in relations between them.
From event examples in Fig. 16.10, we can define two new temporal facts:

• Instantaneous events, which are punctual and marking a transition
• Situations, which have a duration – true over an interval

Relations as well as events or situations are not accessible directly. As for
rhetorical relations or segment boundaries, we need cues or markers to track them.
In the example above, we have mapped events onto verbs. This hints at detection
and description methods. Although there is no definitive solution on how to detect
events, many techniques rely on verbs and verb phrases to act as markers.

A first cue to create and locate an event is the verb tense. A sentence sequence
defines a linear sequence of enunciation events. A basic distinction is between the
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Table 16.15 Allen’s temporal relations

# Relations Graphical representations

1. before(a, b)

2. after(b, a)
3. meets(a, b)

4. met_by(b, a)

5. overlaps(a, b)

6. overlapped_by(b, a)

7. starts(a, b)

8. started_by(b, a)

9. during(b, a)

10. contains(a, b)

11. finishes(b, a)

12. finished_by(a, b)

13. equals(a, b)

past present future

moment
of enunciation

Time of the event or
situation

Fig. 16.11 Ideal time: past,
present, and future

moment of the enunciation and the time of the event (or situation). Figure 16.11
represents a kind of ideal time.

The sentence

Ernest the hedgehog ate a caterpillar

creates two events; one corresponds to the processes described the sentence, e1,
and the other, e2, to the time of speech. Both events are linked by the relation
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Past Present Future

E S E S S E

Fig. 16.12 Ideal tenses

Past perfect Simple past Present perfect

Hedgehogs had woken up Hedgehogs woke up Hedgehogs have woken up

E R S R, E S E S, R

Fig. 16.13 Event, reference, and speech for some English tenses

before(e1, e2). We could have refined the model with a beginning e1b and
an end e1e of Ernest’s dinner. New relations would be:

before(e1b, e1e).
before(e1b, e2).
before(e1e, e2).

Using a verb classification and tenses helps determine the events location or
situation boundaries. We may also rely on time adverbs and time adjuncts such as
for five minutes, tomorrow, etc.

The ‘ideal’ representation, however, is not sufficient to describe many narrative
phenomena where the writer/reader viewpoint is moved relatively to temporal
events. Reichenbach (1947) elaborated a more complex representation to take this
viewpoint into account. Basically, verb tenses are mapped onto a triple representing
on a linear scale the point of the event or situation denoted E, the point of speech
denoted S, and a point of reference denoted R. The reference corresponds to a sort
of writer/reader viewpoint.

Let us first consider the time of speech and the event. It is clear to the reader that
an event described by basic tenses, past, present, and future, is respectively before,
coinciding, and after the point of speech (Fig. 16.12).

Reichenbach’s tense model introduces the third point to position events relatively
in the past or in the future. Consider the past sentence

Hedgehogs had already woken up when the sun set.

Two events are described, the hedgehogs’ waking up, ewu, and the sunset, ess.
Among the two events, the speaker viewpoint is focused by the clause Hedgehogs
had already woken up: then, the action takes place. This point where the speaker
moves to relate the story is the point of reference of the narrative, and the event is
before it (Fig. 16.13). The point of reference of the first process enables us to locate
the second one relatively to it and to order them in a sequence.

Some tenses describe a time stretch of the event, as for the French imparfait
compared to the passé composé (Fig. 16.14), or continuous tenses of English
(Fig. 16.15).
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Passé composé Imparfait

Les hérissons se sont réveillés Les hérissons se réveillaient

R, E S SR, E

Fig. 16.14 French imparfait and passé composé

Past perfect, extended Simple past, extended Present perfect, extended

Hedgehogs had been waking
up

Hedgehogs were waking up Hedgehogs have been wak-
ing up

E R S SR, E E S, R

Fig. 16.15 Some English tenses involving a stretch of time

16.10 TimeML, an Annotation Scheme for Time and Events

Several schemes have been proposed to annotate temporal information in texts.
Many of them were incompatible or incomplete, and in an effort to reconcile and
unify the field, Ingria and Pustejovsky (2004) introduced the XML-based Time
Markup Language (TimeML). TimeML is a specification language whose goal is
to capture most aspects of temporal relations between events in discourses. It is
based on Allen’s (1984) relations and inspired by Vendler’s (1967) classification of
verbs.

TimeML defines the XML elements TIMEX3 to annotate time expressions (at
four o’clock), EVENT to annotate the events (he slept), and “signals.” The SIGNAL
tag marks words or phrases indicating a temporal relation. It includes function words
such as later and not (he did not sleep). TimeML also features elements to connect
entities using different types of links, most notably temporal links, TLINKs, that
describe the temporal relation holding between events or between an event and a
time.

TimeML elements have attributes. For instance, events have a tense, an aspect,
and a class. The seven possible classes denote the type of event, whether it is a
STATE, an instantaneous event (OCCURRENCE), etc.

The sentence

All 75 people on board the Aeroflot Airbus died when it ploughed into a Siberian mountain
in March 1994

is marked up as follows (Ingria and Pustejovsky 2004):

All 75 people
<EVENT eid="e7" class="STATE">on board</EVENT>
<MAKEINSTANCE eiid="ei7" eventID="e7" tense="NONE"
aspect="NONE"/>
<TLINK eventInstanceID="ei7" relatedToEvent="ei5"
relType="INCLUDES"/>
the Aeroflot Airbus
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<EVENT eid="e5" class="OCCURRENCE" >died</EVENT>
<MAKEINSTANCE eiid="ei5" eventID="e5" tense="PAST"
aspect="NONE"/>
<TLINK eventInstanceID="ei5" signalID="s2"
relatedToEvent="ei6" relType="IAFTER"/>
<SIGNAL sid="s2">when</SIGNAL>
it
<EVENT eid="e6" class="OCCURRENCE">ploughed</EVENT>
<MAKEINSTANCE eiid="ei6" eventID="e6" tense="PAST"
aspect="NONE"/>
<TLINK eventInstanceID="ei6" signalID="s3"
relatedToTime="t2" relType="IS_INCLUDED"/>
<TLINK eventInstanceID="ei6" relatedToEvent="ei4"
relType="IDENTITY"/>
into a Siberian mountain
<SIGNAL sid="s3">in</SIGNAL>
<TIMEX3 tid="t2" type="DATE" value="1994-04">March 1994
</TIMEX3>.

In the example, three events e5, died, e6, ploughed, and e7, on board, are
annotated and instantiated using the MAKEINSTANCE tag. The text contains one
time expression, March 1994, which is annotated using TIMEX3. The events
and the time expressions are connected by two temporal links, TLINK. The
first link specifies that the passengers died after the plane ploughed, using the
relatedToEvent attribute. The second link specifies that event ploughed is
included in March 1994. A third and last TLINK refers to an event, e4, mentioned
in a previous, noncited sentence. The temporal signals when and in can also be
relevant, and they are tagged with a SIGNAL tag.

16.11 Further Reading

Schiffrin (1994) and Coulthard (1985) give general introductions to discourse.
Ducrot and Schaeffer (1995) and Simone (2007) provide shorter and very readable
accounts. Tesnière (1966) gives an outstanding description of anaphora (Chap. 42)
and anaphors (Chap. 43). Kamp and Reyle (1993) provide a thorough logical model
of discourse that they called the discourse representation theory – DRT.

The Message Understanding Conferences (MUCs) spurred very pragmatic
research on discourse, notably on named-entity recognition and coreference reso-
lution. Although considered a relatively low-level component, named-entity recog-
nition has proven essential to many discourse applications. The MUCs, followed by
CoNLL 2002 and 2003, created a framework to develop NER systems consisting
of annotated data and a metric to evaluate the performance of systems. This gave
birth to an uncountable number of papers and programs. The open-source Stanford
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Named Entity Recognizer is one of them (Finkel et al. 2005) (http://nlp.stanford.
edu/software/CRF-NER.shtml).

The MUCs also produced a coreference annotation scheme that became a
standard and gave researchers the first tools to evaluate their algorithms. While the
MUCs annotated a fairly small amount of data from unbalanced sources, OntoNotes
is a subsequent project that tried to overcome these limitations. OntoNotes is a
corpus of documents in Arabic, Chinese, and English totaling 2 million words
and covering multiple domains: newswire, broadcast news, broadcast conversation,
magazine, and web. It provided the material for the CoNLL 2011 and 2012 shared
tasks (Pradhan et al. 2012, 2011).

Coreference solvers use either rules or statistical techniques. The open-source
Stanford Deterministic Coreference Resolution System is a high-performance,
rule-based solver for English (Raghunathan et al. 2010) (http://nlp.stanford.edu/
software/dcoref.shtml). Soon et al. (2001) were first to develop a statistical system
equaling the performance of those based on manually written rules; see Sect. 16.6.4.
Most statistical solvers still use this algorithm with some variations. See the
proceedings of the CoNLL 2011 and 2012 shared tasks for a description of
improvements and multilingual feature sets. The evaluation of coreference solvers
is still a matter of debate. CoNLL 2011 and 2012 used the average of three different
metrics: MUC, B-CUBED, and CEAF. See Vilain et al. (1995), Bagga and Baldwin
(1998), and Luo (2005) for their respective descriptions.

Linking words to real word entities has become a core step of semantic and dis-
course interpretation as underlined by the new motto of the search team at Google:
Things, not strings (Singhal 2012). In Sect. 16.3.4, we introduced an algorithm to
disambiguate entities. Cucerzan (2007) presents another disambiguation algorithm
and Hoffart et al. (2011) describe AIDA, an open-source system available at http://
www.mpi-inf.mpg.de/yago-naga/aida/.

Introductions to rhetoric include books by Corbett and Connors (1999), Reboul
(1994), and Perelman and Olbrechts-Tyteca (1976). Annotated discourse treebanks
include the RST discourse treebank (Carlson et al. 2003) and the Penn discourse
treebank (PDTB) (Prasad et al. 2008). The PDTB site contains numerous papers on
discourse parsing (http://www.seas.upenn.edu/~pdtb/).

Time processing in texts is still a developing subject. Reichenbach (1947)
described a model for all the English tenses. Starting from this foundational work,
Gosselin (1996) provided an account for French that he complemented with a
process duration. He described rules and an implementation valid for French verbs.
Ter Meulen (1995) describes another viewpoint on time modeling in English, while
Gagnon and Lapalme (1996) produce an implementation of time processing for
French based on the DRT. Johansson et al. (2005) describe how semantic role
labeling and time processing can be used to generate animated 3D scenes from
written texts.

http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/dcoref.shtml
http://nlp.stanford.edu/software/dcoref.shtml
http://www.mpi-inf.mpg.de/yago-naga/aida/
http://www.mpi-inf.mpg.de/yago-naga/aida/
http://www.seas.upenn.edu/~pdtb/
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Exercises

16.1. Choose a newspaper text of about ten lines. Underline the references and link
coreferences.

16.2. Write DCG rules to detect noun groups and pronouns of Exercise 16.1 and
collect the discourse entities in a Prolog list.

16.3. Write a grammar recognizing names (proper nouns) in English, French, or
German. You will consider that a name consists of a title followed by a surname
whose first letter is capitalized.

16.4. Choose a newspaper text of about ten lines. Collect noun groups and pronouns
in a list with a noun group detector. Write a coreference solver in Prolog to associate
each pronoun to all preceding noun groups.

16.5. Using the program written for Exercise 16.4, write a first predicate that retains
the first preceding noun group – first potential antecedent – and a second predicate
that retains the two first noun groups.

16.6. Implement the Kameyama algorithm of Sect. 16.6.2 in Prolog.

16.7. Implement the Soon et al. (2001) algorithm of Sect. 16.6.4.

16.8. Select a newspaper article and underline elliptical sentences or phrases.

16.9. Using the result of Exercise 16.8, describe rules that would enable you to
resolve ellipses.

16.10. Select one page from a technical text and annotate clauses with rhetorical
relations listed in Table 16.9.

16.11. Write rules using the model of Table 16.12 to recognize the EVIDENCE
rhetorical relation.

16.12. Describe verb tenses in languages you know in terms of point of the event,
of speech, and of reference, as in Sect. 16.9.4.



Chapter 17
Dialogue

τὸν αὐτὸν δὲ λόγον ἔχει ἥ τε τοῦ λόγου δύναμις πρὸς τὴν τῆς
ψυχῆς τάξιν ἥ τε τῶν φαρμάκων τάξις πρὸς τὴν τῶν σωμάτων
φύσιν. ὥσπερ γὰρ τῶν φαρμάκων ἄλλους ἄλλα χυμοὺς ἐκ τοῦ
σώματος ἐξάγει, καὶ τὰ μὲν νόσου τὰ δὲ βίου παύει, οὕτω καὶ τῶν
λόγων οἱ μὲν ἐλύπησαν, οἱ δὲ ἔτερψαν, οἱ δὲ ἐφόβησαν, οἱ δὲ εἰς
θάρσος κατέστησαν τοὺς ἀκούοντας, οἱ δὲ πειθοῖ τινι κακῇ τὴν
ψυχὴν ἐφαρμάκευσαν καὶ ἐξεγοήτευσαν.

Gorgias, Encomium of Helen, 14, See translation in Sect. 17.5.

17.1 Introduction

While discourse materialized in texts delivers static information, dialogue is
dynamic and consists of two interacting discourses. Once written, a discourse
content is unalterable and will remain as it is for its future readers. On the contrary,
a dialogue enables exchange information flows, to complement and to merge them
in a composition, which is not known in advance. Both dialoguing parties provide
feedback, influence, or modify the final content along with the course of the
conversation.

In this chapter, we will envision dialogue within the framework of an interface
between a system and a user. Parties have information to transmit or to request
using natural language. The dialogue purpose will be to make sure that the request
is complete or the information has been well captured or delivered. Naturally, as for
other discourse applications, a dialogue module is only a part of the whole system
using language processing techniques we have described before.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__17, © Springer-Verlag Berlin Heidelberg 2014
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17.2 Why a Dialogue?

The first role of a dialogue module as an interface is to manage the communication
and to coordinate the turn-taking between the user and the system. It is also a
kind of integration shell that calls other language processing components to analyze
user utterances or to generate system answers. In addition, interaction and dialogue
techniques can help linguistic analysis be more flexible and recover from failures.

We saw that coreferences are sometimes difficult to resolve. They provide
an example of interaction usefulness. Instead of having an interactive system
conjecture about an ambiguous pronoun, it might be safer for it to ask the user
himself/herself to resolve the ambiguity. Two strategies are then possible: the system
can infer a missing reference and ask the user for a confirmation. Or, in case of
a more difficult ambiguity, it can ask the user to reformulate completely his/her
sentence.

To summarize, dialogue systems can help manage a user’s discourse to:

• Complement information when pieces are missing to understand a sentence or to
carry out a command,

• Clarify some ambiguous words or constructions, or
• Confirm information or intention to manage errors when a certain failure rate is

unavoidable, e.g., with speech recognition operating on naturally flowing speech.

17.3 Architecture of a Dialogue System

Many dialogue systems in commercial operation aim to provide information through
telephones or web browsers. Such speech servers receive calls from users request-
ing information, often in a specific domain, and answer interactively to questions.
Although many servers still interact with a user using touch-tone telephones, more
and more they feature speech recognition and speech synthesis modules.

Figure 17.1 shows how speech processing is located within a language processing
architecture, here to be a natural language interface to a database. In such systems,
a speech recognition module transcribes the user’s speech into a word stream.
The character flow is then processed by a language engine dealing with syntax,
semantics, dialogue, and finally by the back-end application program. A speech
synthesizer converts resulting answers (strings of characters) into speech to the user.

Speech recognition and synthesis are domains in themselves that are outside
the scope of this book. We will limit our discussion to the case of using speech
application programming interfaces (API) to build a dialogue system. Given a
speech signal, a speech recognition engine will carry out the transcription into words
for us, and given a text, a speech synthesis engine will read it aloud.

Application programming interfaces are available from a variety of sources. See
the section Further Reading (Sect. 17.8) for a short list of sources.
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Application

system

User speech

Machine spoken

answer

Speech recognition

module

Speech synthesis

module

Speech engine

Morphology

Syntax

Language engine

Semantics

Word stream Database queries

Answers

Word stream

Fig. 17.1 Speech recognition and synthesis front ends

17.4 Simple Dialogue Systems

Speech recognition conditions are difficult with telephone servers since they have
usually to handle a poor acoustic environment. It naturally comes at a price:
recognition is prone to errors and the number of active words – words that the
system can recognize at a given time – cannot be much more than a hundred on
many systems. Speech recognition is then a bottleneck that limits the whole system
performance.

For reasons of robustness and cost, operating components of real-world dialogue
applications rarely correspond to the integration of classical linguistic layers:
morphology, syntax, and semantics. The recognition itself does not attempt to
produce the full stream of words but generally uses word-spotting techniques. Word
spotting enables a word to be recognized within a short fragment of surrounding
speech or noise. So a word will be correctly identified, even if you say hmm before
or after it.

Because of word spotting, spoken systems do not stack a complete parsing
after speech recognition. They focus on interesting words, meaningful according to
context, and link them into information frames. These frames miss some words, but
the important issue here is not to miss the overall meaning and to keep dialoguing
with the user in real time and at a reasonable computational cost. Typical examples
of such dialogue systems, elementary from a linguistic viewpoint, are based on
automata.

17.4.1 Dialogue Systems Based on Automata

Dialogue systems based on finite-state automata have transitions triggered by
a limited number of isolated words (Fig. 17.2). At each state, the automaton
synthesizes a closed question: it proposes a finite choice of options. If the word
recognition device has not understood a word, it loops onto the same state, asking
for the user to repeat his/her command. If it corresponds to a legal transition, the
automaton moves the user to another state.

As we said, speech recognition is not foolproof. The system avoids possible
errors through a confirmation message while proceeding to a next state. On the
leftmost edge of Fig. 17.2
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Hello, this is Happy Bankers.
Which type of information do you want?
Loans, deposits, opening hours

We are happy to give you
information on loans. . . Loans

NoDeposits

Are you interested
in deposits?

Are you interested in
opening hours?

Sorry, can you
repeat?

Sorry, can you
repeat?

Sorry, can you
repeat?

Sorry, can you
repeat?

Opening hours

No

Yes

No

Yes

Fig. 17.2 An automaton for word-triggered dialogues

We are happy to give you information on loans: : :

the system uses an implicit confirmation. The user can accept the ongoing transition
either explicitly by saying yes, or implicitly by saying nothing. It can also contradict
– only if necessary – and reject the transition by saying, for instance, no or

No, I wanted to know about my account balance.

In this case, the user will regress to the previous state. Other edges as in the middle
and rightmost transitions:

Are you interested in deposits?

correspond to explicit confirmations. They require a mandatory answer – yes or no
– from the user.

As a general design rule, confirmations should not be too numerous to be
acceptable by users because they tend to be tedious if overused. The first strategy is
certainly preferable.

17.4.2 Dialogue Modeling

The basic structure of dialogue automata is far from providing a natural interaction.
However, it implements some fundamental characteristics shared by all dialogue
systems. Interactions between the user and the system correspond to pairs: the
system’s turns and the user’s turns. These pairs, which may be nested, have been
extensively studied. Levinson (1983) proposed a classification of them according
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Table 17.1 Classification of dialogue pairs

First member Preferred second member Dispreferred second member

Offer, Invitation Acceptance Refusal
Request Compliance Refusal
Assessment Agreement Disagreement
Question Expected answer Unexpected answer, no answer
Blame Denial Admission

Table 17.2 An exchange

Utt. no. Turns Utterances Tags

1 S: Which type of information do you want: loans, deposits, opening
hours?

I1

2 U: Loans R1
3 S: We are happy to give you information on loans E1

Table 17.3 An exchange with a nested evaluation exchange

Utt. no. Turns Utterances Tags

1 S: Which type of information do you want: loans, deposits,
opening hours?

I1

2 U: Deposits R1
3 S: Are you interested in deposits? I 21

R21

�

E14 U: Yes

to the nature of their first member. Table 17.1 shows an excerpt of Levinson’s
classification.

Levinson’s model, however, is not sufficient to take possible errors and confir-
mation into account. Moeschler and others at the University of Geneva (Moeschler
1989; Moeschler and Reboul 1994) proposed a more elaborate model, which
corrects some flaws. The model divides a dialogue as a sequence of exchanges, but
it complements pairs with a final assessment. An exchange is a sequence of three
different interventions:

• initiative interventions, which open an exchange (I )
• reaction interventions, which are answers to initiatives (R)
• evaluation interventions, which assess exchanges and possibly close them (E)

In addition, exchanges may be nested and hence have a recursive structure.
Table 17.2 shows a first exchange pictured by the leftmost edge of the automaton

in Fig. 17.2. It is annotated with intervention tags: I , R, and E. The two first turns
are an initiative and a reaction. The last turn is an implicit acknowledgment showing
that the system has understood the user command.

Along with the deposit question (middle edge), Fig. 17.2 shows a nested interac-
tion in the evaluation. There are first an initiative and a reaction. The third turn is an
evaluation, which is a recursive exchange, consisting of an initiative and a reaction
(Table 17.3).
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17.5 Speech Acts: A Theory of Language Interaction

Turns triggered by isolated words and phrases are a rudimentary dialogue model.
Ideally, systems should handle more complicated phrases or sentences. In addition,
they should take more elaborate interaction structures into account.

Language is basically a means for people to act one upon the other. However,
linguistic theories as we have considered them until now do not cover this interaction
aspect. Some authors have tried to remedy this and to investigate other approaches.
In contrast to formal or lexical semantics, which are based on logic, they have
attempted to give language a more “performative” foundation. Such a framework
has interested modern linguists such as Bühler (1934, 1982) and later language
philosophers such as Austin (1962) and Searle (1969).

Bühler postulated that language had three semantic functions according to his
organon model:

• A representation (Darstellung) of objects and the state of affairs that is being
described,

• An expression (Ausdruck) materializing the psychological state of mind of the
speaker – the sender of the message, and

• An appeal (Appell) corresponding to an effect on the hearer – the receiver of the
message.

Although Bühler admitted the dominance of the representation function of
language acknowledged before him, he stressed the psychological aspects of spoken
communication describing participants as “psychophysical” systems. He was the
first modern linguist to introduce that speech involved a sequence of acts that he
named Sprechakt, enabling the hearer to recognize the speaker’s state of mind or
internal planning.

Austin came to a similar conclusion and also considered speech as a sequence of
acts. For each of these acts, he distinguished what pertained to the classical side of
linguistics and resorted to morphology, syntax, and semantics from pragmatics and
the theory of action. He referred to the former as locutions and the latter as illocu-
tions. From these considerations on, Austin modeled the act of saying something,
with three components representing three different aspects of communication:

• locutionary – i.e., an act of saying something, corresponding to a phonetic
utterance, a syntactic structure, and a formal semantics content

• illocutionary – i.e., a conversational act, which can be, for instance, to inform, to
suggest, to answer, to ask

• perlocutionary – i.e., the effects of these acts, which can be to frighten, to worry,
to convince, to persuade

Classical grammar recognizes certain links between locutionary and illocution-
ary content. Some types of syntactical forms are frequently associated with speech
acts (Table 17.4).
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Table 17.4 Syntactical forms and speech acts

Classical speech acts Syntactic forms

Assertions, statements Affirmatives or declaratives
Orders, commands Imperatives
Questions Interrogatives

Table 17.5 Conditions to request, order, command (After Searle (1969))

Conditions Values

Propositional content Future act A of Hearer
Preparatory

1. Hearer is able to do A. Speaker believes Hearer is able to do A
2. It is not obvious to both Speaker and Hearer that Hearer will do A

in the normal course of events of his own accord
3. (For order and command) Speaker must be in a position of authority

over Hearer

Sincerity Speaker wants Hearer to do A
Essential Counts as an attempt to get Hearer to do A

However, the association is not systematic. Speech acts are not always related to
a logical – or propositional – content that could have been derived from the formal
structure of sentences. Rhetorical questions such as Can you open the door? are
in fact orders, and imperatives such as Have a good day! are greetings or wishes.
In addition, a syntactical classification is too coarse to reflect the many needs of
interaction analysis.

To cope with different aspects of communication, many authors have proposed a
classification of illocutionary acts. We retain Searle’s initial classes, which are best
known because they probably capture essential interaction paradigms:

• assertives, such as stating, asserting, denying, informing.
• directives, such as requesting, asking, urging, commanding, ordering.
• commissives, such as promising, committing, threatening, consenting, refusing,

offering.
• declaratives, such as declaring war, resigning, appointing, confirming, excom-

municating. Declarative speech acts change states of affairs.
• expressives, which are related to emotions or feelings such as apologizing,

thanking, protesting, boasting, complimenting.

Searle (1969) refines the speech act model by proposing conditions to complete
an act successfully. Conditions are a set of conversational postulates that should be
shared by speakers and hearers. These conditions are divided into a propositional
content, a preparatory condition, a sincerity, and an essential condition. Tables 17.5
and 17.6 reproduce two success conditions to speech acts (Searle 1969, pp. 66–67).

The work of Austin and Searle has been very popular in the computational
linguistics community and, far beyond it, in certain fields of philosophy and
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Table 17.6 Conditions to greeting (After Searle (1969))

Conditions Values

Propositional content None
Preparatory Speaker has just encountered (or has been introduced to, etc.) Hearer
Sincerity None
Essential Counts as courteous recognition of Hearer by Speaker

psychology. Although some people consider them as inventors, their findings are not
completely new. Gorgias, a Greek rhetorician who lived 2,500 years before them,
wrote:

The effect of speech upon the condition of the soul is comparable to the power of drugs over
the nature of bodies. For just as different drugs dispel different secretions from the body,
and some bring an end to disease and others to life, so also in the case of speeches, some
distress, others delight, some cause fear, others make the hearers bold, and some drug and
bewitch the soul with a kind of evil persuasion.

Encomium of Helen (Trans. RK Sprague)

17.6 Speech Acts and Human–Machine Dialogue

17.6.1 Speech Acts as a Tagging Model

Many language processing applications use the speech act theory as a kind of syntax
to parse a discourse or a dialogue. Constituents are the discourse segments, and
categories are illocution classes, termed broadly as speech acts or dialogue acts. As
a result, a discourse is a sequence of segments annotated with conversation acts.

Authors may not follow the Searle’s classification. Gazdar and Mellish (1989)
provide a small set of “illocutionary acts,” among which they quote: request,
statement, suggestion, question. Using these acts, they can label the dialogue in
Table 17.7.

Acts such as challenge or concession may be more suited to analyzing a
human conversation rather than a spoken human–machine interaction. In addition,
applications may need different sorts of acts. Therefore, most sets of speech acts
are designed for a specific dialogue system and are closely tied to it. Acts then
serve as tags to annotate discourse segments. Although disputable from a theoretical
viewpoint, this interpretation of speech acts as tags is used as a model for scores of
human–machine dialogue systems. We examine one of them in the next section.

17.6.2 Speech Acts Tags Used in the SUNDIAL Project

Bilange (1992) and Cozannet (1992) list a collection of speech acts that they used in
the SUNDIAL project (Table 17.8). The acts are divided into initiatives, reactions,
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Table 17.7 Illocutionary acts in a dialogue (After Gazdar and Mellish (1989, p. 385))

Turns Utterances Illocutionary acts

A I really think the automobile needs servicing Statement
B But we had done it recently Challenge
A No, not for two years. . . Challenge

Interruption
A Incidentally did you hear that gas prices are about to double? Concession

Table 17.8 Speech acts used in SUNDIAL (slightly modified)

System/
Acts User act Descriptions

Initiatives
request(P) S Open question or request for the value of P
yn_question(P, Val) S Is value of P Val? Answer should be yes or no
altern_question(P) S Alternative question: Vanilla or strawberry?
repeat(P) S/U Repetition request
inform(P) S/U Inform of P
recap(P) S Recapitulation of solved problems
Reactions
answer(P, Val) U Gives a value Val on the request of P
select(P, Val) U Gives a value Val on an alternative question on P
accept(P, Val) U Accept or confirm the value Val of P
reject(P, Val) U Reject the value Val of P
Evaluations
impl_valid(P, Val) S Implicit validation of confirmation of the value Val

of P
correct(P, Val) U Gives a new value Val to P

and evaluations following Moeschler’s (1989) dialogue modeling. They are intended
to enable a user to make a train ticket reservation by telephone.

Other projects such as VERBMOBIL use speech acts that are even more tied to
the application (Jekat et al. 1995). VERBMOBIL provides a language support to
an appointment system and its acts include INTRODUCE_NAME, ACCEPT_DATE,
REJECT_DATE, SUGGEST_SUPPORT_DATE.

17.6.3 Dialogue Parsing

Dialogue applications, for example, speech servers, are aimed at answering
relatively simple inquiries such as providing information on train timetables,
airfares, or credit card authorizations. Their possibilities are generally well
understood by users who call them and who do not expect to have a philosophical
conversation with the system.

For this reason, in many applications it is possible to restrict a human–machine
transaction to a dialogue opening, a negotiation where a user formulates a problem
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Table 17.9 An example of dialogue with SUNDIAL

Turns Utterances

S1 Bonjour puis-je vous aider?
‘Hello, can I help you?’

U1 Je veux une réservation de Londres à Paris
‘I want a reservation from London to Paris’

S2 Londres Paris à quelle date voulez-vous voyager?
‘London Paris which date?’

U2 Je veux voyager le 20 juin
‘I want to travel June 20’

S3 Le 20 juin à quelle heure?
‘June 20 which time?’

U3 À 17 heures 15
‘5.15 pm’

S4 17 heures 15?
‘5.15 pm?’

U4 Oui
‘Yes’

S5 Le vol BA-123 part à 17 heures 15 et arrive à Charles-de-Gaulle à
18 heures 39, est-ce que cela vous convient?
‘Flight BA-123 departure 5.15 pm and arrival 6.39 pm at Charles-
de-Gaulle airport. Is that OK for you?’

U5 Oui
‘Yes’

S6 Quel est votre nom?
‘What is your name?’

U6 Luc Martin
S7 Luc Martin une réservation pour Luc Martin sur le vol BA-123

arrivant à Charles-de-Gaulle à 18 heures 39
‘Luc Martin a reservation for Luc Martin on flight BA-123 arriving
at Charles-de-Gaulle at 6.39 pm’

U7 Oui
‘Yes’

S8 Votre réservation a été confirmée au revoir
‘Your reservation has been confirmed goodbye’

U8 Au revoir
‘Goodbye’

and solves it with the system, and a closing. Using Moeschler’s model, we can
describe each of these parts as a sequence of exchanges where utterances are divided
into initiatives (Ii ), reactions (Ir ), and evaluations (Ie).

Table 17.9 shows a dialogue example from Andry (1992), and Table 17.10 shows
the derived structure of the negotiation part. Utterances come either from the user
(u) or the system (s) and consist of one or more speech acts. Utterance S2

London Paris which date?

is split into two acts. The first one (S1a)

London Paris
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Table 17.10 Intervention structure

Exch. Interventions Recursive interventions Turns

Ii(s, [request]) S1
E1 Ir(u, [answer]) U1

Ie(s, [impl_valid]) S2a
Ii(s, [request]) S2b

E2 Ir(u, [answer]) U2
Ie(s, [impl_valid]) S3a
Ii(s, [request]) S3b

E3 Ir(u, [answer]) U3
E3e Ie(s, [impl_valid]) S4

Ir(u, [accept]) U4
E4 Ii(s, [recap, yn_question]) S5a S5b

Ir(u, [accept]) U5
Ii(s, [request]) S6

E5 Ir(u, [answer]) U6
Ie(s, [impl_valid]) S7a
Ii(s, [recap]) S7b

E6 Ir(u, [accept]) U7
Ie(s, [impl_valid]) S8

corresponds to an implicit confirmation that the system has understood the departure
and arrival cities Ie(s, [impl_valid]). The second one (S2b)

which date

is an explicit question to the user Ii(s, [request]).
We can parse the exchange in Table 17.10 and get its structure using DCG rules.

We first write a grammar to model the nonrecursive exchanges. We use variables to
unify the speaker – user or system – and the type of act.

exchange(ex(i(X, SA1), r(Y, SA2), e(E))) -->
initiative([X, SA1]),
reaction([Y, SA2]),
evaluation(E),
{X \= Y}.

exchange(ex(i(X, SA1), r(Y, SA2))) -->
initiative([X, SA1]),
reaction([Y, SA2]),
{X \= Y}.

exchange(ex(e(X, SA1), r(Y, SA2))) -->
evaluation([X, SA1]),
reaction([Y, SA2]),
{X \= Y}.

We model initiatives, reactions, and evaluations as a sequence of speech acts:

initiative([Speaker, SpeechActs]) -->
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Table 17.11 Syntactic forms or templates linking utterances to speech acts

Syntactic features Candidate speech acts

Interrogative sentence yn_question, altern_question, request
yes, right, all right, OK accept, impl_valid
no, not at all reject
Declarative sentence inform, impl_valid
sorry, pardon, can you repeat repeat
not X but Y, that’s not X it’s Y in fact. correct

acts([Speaker, SpeechActs]).

reaction([Speaker, SpeechActs]) -->
acts([Speaker, SpeechActs]).

evaluation([Speaker, SpeechActs]) -->
acts([Speaker, SpeechActs]).

To take the recursive exchange into account, we have to add:

evaluation(S) --> exchange(S).

Finally, we define the dialogue as a sequence of exchanges:

dialogue([SE | RS]) --> exchange(SE), dialogue(RS).
dialogue([]) --> [].

Although these rules do not completely implement Moeschler’s model, they give
an insight to it.

17.6.4 Interpreting Speech Acts

To complete our dialogue survey, we outline ways to map utterances to speech acts,
that is, in our example above, to annotate What is your name? as an open question.
Some words, phrases, or syntactic features have a correspondence in terms of speech
acts, as shown in Table 17.11. A first method is then to spot these specific patterns
or cues. Cues enable us to delimit segments, to generate candidate speech acts, and
to annotate the corresponding segment content. Once segments are identified, we
can proceed to parse them and obtain their logical form.

However, identification is not straightforward because of ambiguity. Some words
or syntactic features have more than one speech act candidate. The interrogative
mode usually corresponds to questions, but not always, as in Can you do that for
me?, which is likely to be a polite order in a human conversation. The system then
produces several possible acts for each utterance or sequence of utterances: Yes in
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the dialogue in Table 17.9 is either an acceptation (U5) or an implicit validation
(S4).

The identification of speech acts for unrestricted dialogues has not received a
definitive solution yet. However, it has attracted much attention and reasonably good
solutions for applications like speech servers. In a spoken dialogue, what matters are
the user’s acts that an automatic system identifies using a tagging procedure. Tagsets
can be relatively generic, as in the SUNDIAL project, or application-oriented, as in
VERBMOBIL. DAMSL (Allen and Core 1997) is another oft-cited tagset.

Speech act tagging uses statistical approaches or reasoning rules, or possibly
a combination of both. While many systems used by speech servers are based
on rules, Alexandersson (1996) describes a statistical technique similar to those
used in part-of-speech tagging. He uses a dialogue corpus where the turns are
annotated with illocutionary acts instead of parts of speech. The tagger is a hidden
Markov model, and the training procedure derives dialogue act n-grams. As for
part-of-speech tagging, the stochastic dialogue act tagging consists in finding the
most likely sequence of tags given a sequence of words and features.

As general principles, the features that rules or statistical modeling take into
account are:

• Cue words or phrases, which may be linked to specific speech acts.
• The syntactic and semantic forms of the utterance.
• Expectations to apply constraints on possible speech acts. These are based on

transitions from a previous state to the current state of the dialogue: when the
system asks a question, it expects an answer, a rejection or a failure, and it can
discard other acts.

• Task modeling and goal satisfaction. This point extends the previous one. It
restrains possible user acts and parameter values according to the progress point
where the user is in the dialogue.

17.6.5 EVAR: A Dialogue Application Using Speech Acts

EVAR – Erkennen, Verstehen, Antworten, Rückfragen – is a dialogue system
intended to provide information on train schedules in Germany (Mast 1993; Mast
et al. 1994). It gives an example of a thorough task modeling that enables the system
to restrain the number of possible dialogue acts at a given point of the inquiry
process. It avoids random initiatives from the user thanks to a constant guidance
process. EVAR structures the dialogue process in a sequence of phases:

• A greeting by the system
• A request from the user
• A clarification consisting of a confirmation of data requested by the user and

possible requests for details and specifications
• An answer from the system
• A closing
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Table 17.12 A dialogue in the EVAR prototype (After Mast et al. (1994))

Turns Dialogue Phases

S: Guten Tag. Hier ist die automatische Intercity-Auskunft.
Welche Information benötigen Sie?

‘Hello. This is the Automatic Travel Information System.
What information do you need?’

Greeting

U: Ich möchte morgen nach Hamburg fahren.
‘Tomorrow I want to go to Hamburg.’

Request

S: Sie möchten morgen nach Hamburg fahren?
‘Tomorrow you want to go to Hamburg?’

Confirmation

U: Ja morgen.
‘Yes tomorrow.’

S: Von wo möchten Sie abfahren?
‘Where do you want to start?’

Request for details

U: München
‘Munich’

S: Morgen von München nach Hamburg
‘Tomorrow from Munich to Hamburg’

U: Ja
‘Yes’

S: Wann möchten Sie fahren?
‘When do you want to leave?’

Request for specifi-
cation

U: Morgen früh
‘Early in the morning’

S: Morgen früh von München nach Hamburg
‘Tomorrow morning from Munich to Hamburg’

U: Ja
‘Yes’

S: Ich habe mehere Verbindungen gefunden. Nach Hamburg
HBF, fahren Sie ab München um 7 Uhr. Ankunft in
Hamburg HBF um 15 Uhr, . . .

‘I found a number of connections. From Munich departure
7, Arrival Hamburg 15, . . . ’

Answer

U: Vielen Dank
‘Thank you’

S: Möchten Sie weitere Auskünfte?
‘Do you want further information?’

Closing

U: Nein danke
‘No thank you’

S: Auf wiederhören.
‘Have a nice trip.’

EVAR enables transactions such as those in Table 17.12.
The finite state automaton in Fig. 17.3 models the dialogue progress. The S_

prefix denotes a system’s turn, and U_ denotes a user’s turn.
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Greeting Request rewsnAnoitacfiiralC Closing

Specification/

Details/

Confirmation/
S_GREETING U_REQUEST

S_ANSWER U_CLOSING

S_EXT_ANSWER U_NEGATION S_CLOSING

U_AGREE

S_ANSWER

U_CLOSING

Confirmation

S_REQ_CONF U_CONFIRMATION

S_SPEC_REQ_CONFU_NEG_CONF

Specification/Request for specification

S_REQ_SPEC NOITAMRIFNOC_UNOITIDDA_U S_SPEC_REQ_CONF

U_NEG_CONF U_CLOSING

Details/Request for details

S_REQ_DET NOITAMRIFNOC_UNOITIDDA_U S_SPEC_REQ_CONF

U_CLOSINGU_NEG_CONF

Fig. 17.3 The EVAR dialogue model (After Mast et al. (1994))

17.7 Taking Beliefs and Intentions into Account

The models of dialogue we have examined so far have an external viewpoint in
the sense that they are based on observations of the user’s behavior by the system.
Parallel to them, some authors tried to take into account the user’s beliefs, desires,
and intentions. They hoped to build an internal model of the user and thus to gain a
deeper insight into dialogue processes.

The ambition to model beliefs and intentions is appealing because it addresses
concerns and questions that often puzzle people: What does he want from me? What
does she mean? Knowing or extracting a user’s intentions would certainly help a
computer serve the user better. In addition, intention modeling recasts dialogue and
interaction into a framework more general than other formalisms.

However, such a model may prove difficult to implement. It is first a philosophi-
cal challenge to figure out and describe what the beliefs of individuals are. Second, if
beliefs or intentions could be completely described, it would be a second challenge
to box them into a program and run them with a computer. Fortunately, most
dialogue applications have a goal that is plainly prosaic, and simplifications can
be made. We describe now a classical representation of user modeling introduced
by Allen and Perrault (1980).
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Table 17.13 Belief spaces

Patron’s belief space Waiter’s belief space

9x; cassoulet.x/
9x; pyt t_i_panna.x/ 9x; pyt t_i_panna.x/
9x; yorkshire_pudding.x/ 9x; yorkshire_pudding.x/

17.7.1 Representing Mental States

The idea of conversational systems based on belief, desire, and intention is to
model the participants as processes – agents. The agents are human users as well as
artificial ones, and each agent has a specific knowledge and the desire to complete
an action. The agent’s core is a representation of their mental states, which uses
predicates aimed at describing their beliefs or knowledge spaces, and what they can
do. Agents are modeled using operators such as:

• want(A, X), which means that agent A wants to do X
• can_do(A, X), which means that agent A can do X
• believe(A, X), which means that agent A believes X
• know(A, X), which means that agent A knows X

Since beliefs are personal, that is, individual, the definition of truth is no longer
universal. For this reason, predicates have two arguments, the agent who is the
believer and the proposition that is believed or known. This nonuniversal logic is
called modal, and refers to the various modes of truth.

From these operators, some axioms can be derived such as:

(know(A, X), (X ) Y)) ) know(A, Y)
(believe(A, X), (X ) Y)) ) believe(A, Y)
(believe(A, X), X) ) know(A, X)

Mental states can be different according to dialogue participants, whether they
involve human beings together or humans and machines. Let us suppose that a
patron goes to a restaurant, looks at the menu, and sees as main courses cassoulet,
pytt i panna, and Yorkshire pudding. Let us also suppose that the restaurant is
running out of cassoulet. When entering the restaurant, the belief spaces of the
patron and the waiter are different (Table 17.13).

A short dialogue between the waiter and the patron when ordering the meal will
enable them to synchronize their belief spaces (Table 17.14).

Patron: I feel like a cassoulet
Waiter: Sorry sir, we have no more of it.

Such an exchange is also called a grounding – that is, setting a common ground.
Grounding is central to dialogue system design. The user must be sure that beliefs
and knowledge are shared between her/him and the system. If not, misunderstanding
would creep into many exchanges.
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Table 17.14 Belief spaces after dialogue

Patron’s belief space Waiter’s belief space

9x; pyt t_i_panna.x/ 9x; pyt t_i_panna.x/
9x; yorkshire_pudding.x/ 9x; yorkshire_pudding.x/

Table 17.15 Beliefs in Prolog

Patron’s belief space Waiter’s belief space

believe(patron(’Pierre’),
cassoulet(X))
believe(patron(’Pierre’),
pytt_i_panna(X))

believe(waiter(’Bill’),
pytt_i_panna(X))

believe(patron(’Pierre’),
yorkshire_pudding(X))

believe(waiter(’Bill’),
yorkshire_pudding(X))

Table 17.16 Intentions in Prolog

Patron’s intentions Waiter’s intentions

intend(patron(’Pierre’),
(cassoulet(X), order(X)))

intend(waiter(’Bill’),
take_order(X))

Mutual beliefs can be expressed as believe(A, P) ^ believe(B, P) ^
believe(A, believe(B, P)) ^ believe(B, believe(A, P)) ^
believe(A, believe(B, believe(A, P))), etc. Such a infinite con-
junction is denoted mutually_believe(A, B, P).

Mutual beliefs should not be explicitly listed all the time at the risk of being
tedious. Most of the time, the user knows that there is an artificial system behind
the box and expects something very specific from it. However, the system has to
make sure the user is aware of its knowledge and beliefs, for instance, using implicit
confirmation each time the user provides information.

Representing the corresponding beliefs and intentions using Prolog is straight-
forward (Tables 17.15 and 17.16)

Finally, modal operators can be used to transcribe speech acts. For instance, the
act of informing can be associated to the operator inform(A, B, P) (A informs
B of P), which will be applied with the following preconditions and effects:

• Preconditions: know(A, P), want(A, inform(A, B, P))
• Effects: know(B, P)

The operator request(A, B, P) can be modeled as:

• Preconditions: want(A, request(A, B, P)), believe(A, can_do
(B, P))

• Effects: believe(A, want(B, P))
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17.7.2 The STRIPS Planning Algorithm

Mental state consistency is usually controlled using a planning algorithm. Planning
has been extensively studied, and we introduce here the STRIPS algorithm (Fikes
and Nilsson 1971; Nilsson 1998). STRIPS considers planning as a search problem
given an initial and a final state. It uses rules describing an action – corresponding
here to the operators – with preconditions and postconditions. Postconditions are
divided into an add and a delete list, reflecting facts new to the world and facts to be
removed.

%strips_rule(+operator, +preconditions, +add_list,
% +delete_list).

strips_rule(inform(A, B, P), [know(A, P), want(A,
inform(A, B, P))], [believe(B, P)], []).

Mental states or world state are described by lists of facts. The apply/3
predicate applies an operator to a State that results in a NewState, subtracting
facts to be deleted and adding facts to be added:

% apply(+Action, +State, -NewState)

apply(Action, State, NewState):-
strips_rule(Action, _, _, DeleteList),
subtract(State, DeleteList, TempState),
strips_rule(Action, _, AddList, _),
union(AddList, TempState, NewState).

where subtract/3 and union/3 are predicates built-in in most Prologs. They
define set subtraction and union. subtract(+Set, +Delete, -Result)
deletes all elements of list Delete from list Set, resulting in Result.
union(+Set1, +Set2, -Result) makes the union of Set1 and Set2,
removing duplicates and resulting in Result.

STRIPS represents possible states as nodes of a graph (Fig. 17.4). Each node
consists of a list of facts. The actions enable movement from one node to another,
adding or deleting facts when the preconditions are met. Knowing an initial and a
final list of facts representing the initial state and the goal, the problem is stated
as finding the action plan that modifies the world, adding or deleting facts so that
the initial state is transformed into the final one. This is a search problem, where
STRIPS traverses a graph to find the plan actions as follows (Nilsson 1998, pp.
376–379).

• Repeat while Goals are not a subset of the current State,

1. Select a Goal from the Goals that is not already in the current State.
2. Find a STRIP rule whose Action adds Goal to the current State and make

sure that Action has not already been done.
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Initial state
Intermediary state 1
(contains

Intermediary state 2
(contains

Final state (con-
tains

Plan Action Plan

Fig. 17.4 The STRIPS schemata

3. Action may not be possible if the Preconditions are not met. There-
fore, use STRIPS to solve recursively Preconditions. This results in the
intermediary state 1 (InterState1).

4. Apply Action to add and delete facts from the intermediary state 1. This
results in the intermediary state 2 (InterState2).

5. Recursively solve the rest of Goals.

STRIPS in Prolog uses the initial state and the goals as inputs and produces the
final state and the plan, where the goals must be a subset of the final state. We
need some auxiliary variables to carry out the computation. The Prolog recursive
rule builds the Plan in a reverse order, adding the current Action to the head of
the list, and unifies it to the FinalPlan variable when the goal is satisfied. Prolog
also builds State, and unifies it to FinalState in a same way. To avoid possible
infinite loops when finding preconditions to an action, the rule keeps a copy of the
corresponding plan and prohibits the repetition of actions.

strips(Goals, InitState, FinState, Plan) :-
strips(Goals, InitState, [],[], FinState, RevPlan),
reverse(RevPlan, Plan).

% strips(+Goals, +State, +Plan, +PrecondPlan,
% -FinalState, -FinalPlan)

strips(Goals, State, Plan, _, State, Plan) :-
subset(Goals, State).

strips(Goals, State, Plan, PrecondPlan, FinalState,
FinalPlan) :-

member(Goal, Goals), %Select a goal
\+ member(Goal, State),
strips_rule(Action, _, AddList, _), %Find an action
member(Goal, AddList),
\+ member(Action, PrecondPlan),

% Find preconditions
strips_rule(Action, Preconditions, _, _),
% Get the FirstPlan and InterState1
% to achieve preconditions
strips(Preconditions, State, Plan,
[Action | PrecondPlan], InterState1, FirstPlan),

% Apply Action to the world
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apply(Action, InterState1, InterState2),
% From FirstPlan move forward
strips(Goals, InterState2, [Action | FirstPlan],
PrecondPlan, FinalState, FinalPlan).

17.7.3 Causality

Planning provides a good operation model for dialogue and for other discourse
phenomena such as causality. Causality occurs when some sentences are logically
chained and are part of a same demonstration. Consider, for instance, these
sentences:

Hedgehogs are back. Caterpillars shiver.

The second sentence is a consequence of the first. Causality can be related
to a logical demonstration but also depends on time-ordered events. Causal rules
represent specific events, which will result in certain facts or effects. Usually, they
also require preconditions. They can be expressed in Prolog using predicates whose
structure is similar to:

causes(preconditions, event, effects).

As we can see, this is also closely related to planning. The causes predicate
means that if the preconditions are met, and if an event occurs, then we will
have effects.

Many sentences involve sequences of actions – plans – that are temporally
chained. For instance:

Phileas the hedgehog was thirsty. He went out to have a pint.

These two sentences correspond to an action, which is followed by another, the
second one being a consequence of the first one. For both examples, discourse
understanding can be restated as a plan recognition problem.

17.8 Further Reading

Many dialogue systems rely on spoken input and output. Speech engines for
recognition as well as for synthesis for desktops and servers are available from
multiple vendors. They include Microsoft, Apple, Nuance, and Google. The Web
Speech API is an example of an application programming interface that uses
JavaScript and is dedicated to web browsers, while Android speech uses Java
and is intended for cellular telephones. Both APIs are supported by Google.
Microsoft Tellme is another example mainly intended for speech servers. It uses
VoiceXML, a language to specify simple dialogues. Open-source engines include
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the Cambridge Hidden Markov Toolkit (Cambridge HTK, http://htk.eng.cam.ac.
uk/) from the University of Cambridge for speech recognition and Festival from
the University of Edinburgh for speech synthesis (http://www.cstr.ed.ac.uk/projects/
festival/).

Speech acts theory in dialogue is mostly known from the works of Austin
(1962) and Searle (1969, 1979), although Bühler (1982) pioneered it. Searle and
Vanderveken (1985) describe a logical model of illocutionary acts as well as a
list of English verbs classified according to Searle’s ontology. Vanderveken (1988)
expands this work to French verbs. Foundations of belief and intention modeling
in dialogue are due to Hintikka (1962). Carberry (1990) provides accounts to plan
recognition in dialogue.

EVAR and the SUNDIAL projects have been a source of valuable research and
publications about spoken dialogue processing. Bilange (1992) gives an excellent
overview of dialogue processing techniques and application examples. Other works
include those of Andry (1992), Mast (1993), Eckert (1996), and Sagerer (1990).
The TRAINS project (Allen et al. 1995) is another example of elaborate dialogue
processing. Many applications, such as train reservation systems, are now available
commercially.

Planning includes a large number of applications and has spurred many algo-
rithms. In computational linguistics, it occurs within the frameworks of temporal
reasoning, intention modeling, and other forms of constraint-based reasoning.
Bratko (2012) gives a short introduction to planning and a collection of Prolog
programs. Russell and Norvig (2010) provides another introduction to planning.

Exercises

17.1. Write a dialogue program using Prolog clauses – no DCG rules – asking a
couple of questions and accepting yes or no answers only. Collect all the answers
and print them out at the end of the session.

17.2. Write a dialogue program using Prolog clauses – no DCG rules – reproducing
the dialogue of Fig. 17.2. Collect all the answers and print them out at the end of the
session.

17.3. Write verbs in a language you know corresponding to Searle’s ontology of
illocutionary classes: assertives, directives, commissives, declaratives, and expres-
sives.

17.4. Rewrite Exercise 17.1 using SUNDIAL’s speech act predicates in Table 17.8.

17.5. Rewrite Exercise 17.2 using SUNDIAL’s speech act predicates in Table 17.8.

17.6. The DCG dialogue rules described in Sect. 17.6.3 are not robust. Make a
parallel with sentence parsing and give examples where they would fail and why.

http://htk.eng.cam.ac.uk/
http://htk.eng.cam.ac.uk/
http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/
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17.7. Modify the rules of Sect. 17.6.3 so that they would never fail, but recover and
start again.

17.8. Write an automaton in Prolog to model EVAR’s main phases accepting a legal
sequence of speech acts, such as [S_GREETING, U_REQ_INFO, ...].

17.9. Modify the EVAR automaton of Exercise 17.8 to be interactive. Design
questions and messages from the system and possible answers from the user.
Replace the user and system turns with them.

17.10. Modify the EVAR automaton of Exercises 17.8 and 17.9 and use the
SUNDIAL speech acts. Make the system work so that you have a more or less
realistic dialogue.



Appendix A
An Introduction to Prolog

A.1 A Short Background

Prolog was designed in the 1970s by Alain Colmerauer and a team of researchers
with the idea – new at that time – that it was possible to use logic to represent
knowledge and to write programs. More precisely, Prolog uses a subset of predicate
logic and draws its structure from theoretical works of earlier logicians such as
Herbrand (1930) and Robinson (1965) on the automation of theorem proving.

Prolog was originally intended for the writing of natural language processing
applications. Because of its conciseness and simplicity, it became popular well
beyond this domain and now has adepts in areas such as:

• Formal logic and associated forms of programming
• Reasoning modeling
• Database programming
• Planning, and so on.

This chapter is a short review of Prolog. In-depth tutorials include: in English,
Bratko (2012), Clocksin and Mellish (2003), Covington et al. (1997), and Sterling
and Shapiro (1994); in French, Giannesini et al. (1985); and in German, Baumann
(1991). Boizumault (1988, 1993) contain a didactical implementation of Prolog in
Lisp. Prolog foundations rest on first-order logic. Apt (1997), Burke and Foxley
(1996), Delahaye (1986), and Lloyd (1987) examine theoretical links between this
part of logic and Prolog.

Colmerauer started his work at the University of Montréal, and a first version of
the language was implemented at the University of Marseilles in 1972. Colmerauer
and Roussel (1996) tell the story of the birth of Prolog, including their try-and-fail
experimentation to select tractable algorithms from the mass of results provided by
research in logic.

In 1995, the International Organization for Standardization (ISO) published a
standard on the Prolog programming language. Standard Prolog (Deransart et al.
1996) is becoming prevalent in the Prolog community and most of the available

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0, © Springer-Verlag Berlin Heidelberg 2014
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implementations now adopt it, either partly or fully. Unless specifically indicated,
descriptions in this chapter conform to the ISO standard, and examples should run
under any Standard Prolog implementation.

A.2 Basic Features of Prolog

A.2.1 Facts

Facts are statements that describe object properties or relations between objects. Let
us imagine we want to encode that Ulysses, Penelope, Telemachus, Achilles, and
others are characters of Homer’s Iliad and Odyssey. This translates into Prolog facts
ended with a period:

character(priam, iliad).
character(hecuba, iliad).
character(achilles, iliad).
character(agamemnon, iliad).
character(patroclus, iliad).
character(hector, iliad).
character(andromache, iliad).
character(rhesus, iliad).
character(ulysses, iliad).
character(menelaus, iliad).
character(helen, iliad).

character(ulysses, odyssey).
character(penelope, odyssey).
character(telemachus, odyssey).
character(laertes, odyssey).
character(nestor, odyssey).
character(menelaus, odyssey).
character(helen, odyssey).
character(hermione, odyssey).

Such a collection of facts, and later, of rules, makes up a database. It transcribes
the knowledge of a particular situation into a logical format. Adding more facts to
the database, we express other properties, such as the gender of characters:

% Male characters % Female characters

male(priam). female(hecuba).
male(achilles). female(andromache).
male(agamemnon). female(helen).
male(patroclus). female(penelope).



A.2 Basic Features of Prolog 577

male(hector).
male(rhesus).
male(ulysses).
male(menelaus).
male(telemachus).
male(laertes).
male(nestor).

or relationships between characters such as parentage:

% Fathers % Mothers
father(priam, hector). mother(hecuba, hector).
father(laertes, ulysses). mother(penelope, telemachus).
father(atreus, menelaus). mother(helen, hermione).
father(menelaus, hermione).
father(ulysses, telemachus).

Finally, would we wish to describe kings of some cities and their parties, this
would be done as:

king(ulysses, ithaca, achaean).
king(menelaus, sparta, achaean).
king(nestor, pylos, achaean).
king(agamemnon, argos, achaean).
king(priam, troy, trojan).
king(rhesus, thrace, trojan).

From these examples, we understand that the general form of a Prolog fact
is: relation(object1, object2, ..., objectn). Symbols or names
representing objects, such as ulysses or penelope, are called atoms. Atoms are
normally strings of letters, digits, or underscores “_”, and begin with a lowercase
letter. An atom can also be a string beginning with an uppercase letter or including
white spaces, but it must be enclosed between quotes. Thus ’Ulysses’ or
’Pallas Athena’ are legal atoms.

In logic, the name of the symbolic relation is the predicate, the objects
object1, object2, . . . , objectn involved in the relation are the arguments,
and the number n of the arguments is the arity. Traditionally, a Prolog pred-
icate is indicated by its name and arity: predicate/arity, for example,
character/2, king/3.

A.2.2 Terms

In Prolog, all forms of data are called terms. The constants, i.e., atoms or numbers,
are terms. The fact king(menelaus, sparta, achaean) is a compound
term or a structure, that is, a term composed of other terms – subterms. The
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Fig. A.1 Graphical representations of terms

arguments of this compound term are constants. They can also be other compound
terms, as in

character(priam, iliad, king(troy, trojan)).
character(ulysses, iliad, king(ithaca, achaean)).
character(menelaus, iliad, king(sparta, achaean)).

where the arguments of the predicate character/3 are two atoms and a
compound term.

It is common to use trees to represent compound terms. The nodes of a tree are
then equivalent to the functors of a term. Figure A.1 shows examples of this.

Syntactically, a compound term consists of a functor – the name of the
relation – and arguments. The leftmost functor of a term is the principal functor.
A same principal functor with a different arity corresponds to different predicates:
character/3 is thus different from character/2. A constant is a special case
of a compound term with no arguments and an arity of 0. The constant abc can thus
be referred to as abc/0.

A.2.3 Queries

A query is a request to prove or retrieve information from the database, for example,
if a fact is true. Prolog answers yes if it can prove it, that is, here if the fact is in the
database, or no if it cannot: if the fact is absent. The question Is Ulysses a male?
corresponds to the query:
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Query typed by the user

Answer from the Prolog engine

which has a positive answer. A same question with Penelope would give:

?- male(penelope).
false.

because this fact is not in the database.
The expressions male(ulysses) or male(penelope) are goals to prove.

The previous queries consisted of single goals. Some questions require more goals,
such as Is Menelaus a male and is he the king of Sparta and an Achaean?, which
translates into:

?- male(menelaus), king(menelaus, sparta, achaean).
true.

where “,” is the conjunction operator. It indicates that Prolog has to prove both
goals. The simple queries have one goal to prove, while the compound queries are
a conjunction of two or more goals:

?- G1, G2, G3, ..., Gn.

Prolog proves the whole query by proving that all the goals G1 . . .Gn are true.

A.2.4 Logical Variables

The logical variables are the last kind of Prolog terms. Syntactically, variables
begin with an uppercase letter, for example, X, Xyz, or an underscore “_”. Logical
variables stand for any term: constants, compound terms, and other variables. A term
containing variables such as character(X, Y) can unify with a compatible
fact, such as character(penelope, odyssey), with the substitutions
X = penelope and Y = odyssey.

When a query term contains variables, the Prolog resolution algorithm searches
terms in the database that unify with it. It then substitutes the variables to the
matching arguments. Variables enable users to ask questions such as What are the
characters of the Odyssey?
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Or What is the city and the party of king Menelaus? etc.

?- king(menelaus, X, Y).
X = sparta, Y = achaean

?- character(menelaus, X, king(Y, Z)).
X = iliad, Y = sparta, Z = achaean

?- character(menelaus, X, Y).
X = iliad, Y = king(sparta, achaean)

When there are multiple solutions, Prolog considers the first fact to match the
query in the database. The user can type “;” to get the next answers until there is
no more solution. For example:

A.2.5 Shared Variables

Goals in a conjunctive query can share variables. This is useful to constrain
arguments of different goals to have the same value. To express the question Is
the king of Ithaca also a father? in Prolog, we use the conjunction of two goals
king(X, ithaca, Y) and father(X, Z), where the variable X is shared
between the goals:

?- king(X, ithaca, Y), father(X, Z).
X = ulysses, Y = achaean, Z = telemachus

In this query, we are not interested in the name of the child although Prolog
responds with Z = telemachus. We can indicate to Prolog that we do not need
to know the values of Y and Z using anonymous variables. We then replace Y and
Z with the symbol “_”, which does not return any value:

?- king(X, ithaca, _), father(X, _).
X = ulysses
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Fig. A.2 Kinds of terms in Prolog

A.2.6 Data Types in Prolog

To sum up, every data object in Prolog is a term. Terms divide into atomic terms,
variables, and compound terms (Fig. A.2).

Syntax of terms may vary according to Prolog implementations. You should
consult reference manuals for their specific details. Here is a list of simplified
conventions from Standard Prolog (Deransart et al. 1996):

• Atoms are sequences of letters, numbers, and/or underscores beginning with a
lowercase letter, such as ulysses, iSLanD3, king_of_Ithaca.

• Some single symbols, called solo characters, are atoms: ! ;
• Sequences consisting entirely of some specific symbols or graphic characters are

atoms: + - * / ^ < = > ~ : . ? @ # $ & \ ‘
• Any sequence of characters enclosed between single quotes is also an atom, such

as ’king of Ithaca’. A quote within a quoted atom must be double quoted:
’I’’m’

• Numbers are either decimal integers, such as -19, 1960, octal integers when
preceded by 0o, as 0o56, hexadecimal integers when preceded by 0x, as 0xF4,
or binary integers when preceded by 0b, as 0b101.

• Floating-point numbers are digits with a decimal point, as 3.14, -1.5. They
may contain an exponent, as 23E-5 (23 10�5/ or -2.3e5 (2.3 10�5/.

• The ASCII numeric value of a character x is denoted 0’x, as 0’a (97), 0’b
(98), etc.

• Variables are sequences of letters, numbers, and/or underscores beginning with
an uppercase letter or the underscore character.

• Compound terms consist of a functor, which must be an atom, followed immedi-
ately by an opening parenthesis, a sequence of terms separated by commas, and
a closing parenthesis.

Finally, Prolog uses two types of comments:

• Line comments go from the “%” symbol to the end of the line:
% This is a comment



582 A An Introduction to Prolog

• Multiline comments begin with a “/*” and end with a “*/”:

/*
this
is
a comment */

A.2.7 Rules

Rules enable us to derive a new property or relation from a set of existing ones.
For instance, the property of being the son of somebody corresponds to either the
property of having a father and being a male, or having a mother and being a male.
Accordingly, the Prolog predicate son(X, Y) corresponds either to conjunction
male(X), father(Y, X), or to male(X), mother(Y, X). Being a son
admits thus two definitions that are transcribed as two Prolog rules:

son(X, Y) :- father(Y, X), male(X).
son(X, Y) :- mother(Y, X), male(X).

More formally, rules consist of a term called the head or consequent, followed
by symbol “:-”, read if, and a conjunction of goals. They have the form:

HEAD :- G1, G2, G3, ... Gn.

where the conjunction of goals is the body or antecedent of the rule. The head is
true if the body is true. Variables of a rule are shared between the body and the head.
Rules can be queried just like facts:

?- son(telemachus, Y).
Y = ulysses;
Y = penelope;
?-

Rules are a flexible way to deduce new information from a set of facts. The
parent/2 predicate is another example of a family relationship that is easy to
define using rules. Somebody is a parent if s/he is either a mother or a father:

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

Rules can call other rules as with grandparent/2. A grandparent is the parent
of a parent and is defined in Prolog as

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

where Z is an intermediate variable shared between goals. It enables us to find the
link between the grandparent and the grandchild: a mother or a father.
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We can generalize the grandparent/2 predicate and write ancestor/2.
We use two rules, one of them being recursive:

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

This latter pattern is quite common for Prolog rules. One or more rules express
a general case using recursion. Another set of rules or facts describes simpler
conditions without recursion. They correspond to boundary cases and enable the
recursion to terminate.

A query about the ancestors of Hermione yields:

?- ancestor(X, hermione).
X = helen;
X = menelaus;
X = atreus;
false.
?-

Facts and rules are also called clauses. A predicate is defined by a set of
clauses with the same principal functor and arity. Facts are indeed special cases
of rules: rules that are always true and relation(X, Y) is equivalent to
relation(X, Y) :- true, where true/0 is a built-in predicate that always
succeeds. Most Prolog implementations require clauses of the same name and arity
to be grouped together.

In the body of a rule, the comma “,” represents a conjunction of goals. It is also
possible to use a disjunction with the operator “;”. Thus:

A :-
B
;
C.

is equivalent to

A :- B.
A :- C.

However, “;” should be used scarcely because it impairs somewhat the legibility
of clauses and programs. The latter form is generally better.

A.3 Running a Program

The set of facts and rules of a file makes up a Prolog text or program. To run it and
use the information it contains, a Prolog system has to load the text and add it to the
current database in memory. Once Prolog is launched, it displays a prompt symbol
“?-” and accepts commands from the user.
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Ways to load a program are specific to each Prolog implementation. A user
should look them up in the reference manual because the current standard does
not define them. There are, however, two commands drawn from the Edinburgh
Prolog tradition (Pereira 1984) implemented in most systems: consult/1 and
reconsult/1.

The predicate consult/1 loads a file given as an argument and adds all the
clauses of the file to the current database in memory:

?- consult(file_name).

file_name must be an atom as, for example,

?- consult(’odyssey.pl’).

It is also possible to use the shortcut:

?- [file_name].

to load one file, for example,

?- [’odyssey.pl’].

or more files:

?- [file1, file2].

The predicate reconsult/1 is a variation of consult. Usually, a program-
mer writes a program, loads it using consult, runs it, debugs it, modifies the
program, and reloads the modified program until it is correct. While consult
adds the modified clauses to the old ones in the database, reconsult updates the
database instead. It loads the modified file and replaces clauses of existing predicates
in the database by new clauses contained in the file. If a predicate is in the file and
not in the database, reconsult simply adds its clauses. In some Prolog systems,
reconsult does not exist, and consult discards existing clauses to replace
them by the new definition from the loaded file. Once a file is loaded, the user
can run queries.

The listing/0 built-in predicate displays all the clauses in the database, and
listing/1, the definition of a specific predicate. The listing/1 argument
format is either Predicate or Predicate/Arity:

?- listing(character/2).
character(priam, iliad).
character(hecuba, iliad).
character(achilles, iliad).
...

A program can also include directives, i.e., predicates to run at load time. A
directive is a rule without a head: a term or a conjunction of terms with a “:-”
symbol to its left-hand side:

:- predicates_to_execute.
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Directives are run immediately as they are encountered. If a directive is to be
executed once the program is completely loaded, it must occur at the end of the file.

Finally, halt/0 quits Prolog.

A.4 Unification

A.4.1 Substitution and Instances

When Prolog answers a query made of a term T containing variables, it applies a
substitution. This means that Prolog replaces variables in T by values so that it
proves T to be true. The substitution {X = ulysses, Y = odyssey} is a sol-
ution to the query character(X, Y) because the fact character(ulysses,
odyssey) is in the database. In the same vein, the substitution {X = sparta,
Y = achaean} is a solution to the query king(menelaus, X, Y).

More formally, a substitution is a set {X1 = t1, X2 = t2, ..., Xn =
tn}, where Xi is a variable and ti is a term. Applying a substitution � to a term T

is denoted T� and corresponds to the replacement of all the occurrences of variable
Xi with term ti in T for i ranging from 1 to n. Applying the (meaningless) sub-
stitution �1 = {X = ulysses} to the term T1 = king(menelaus, X, Y)
yields T1’ = king(menelaus, ulysses, Y). Applying the substitution
�2 = {X = iliad, Y = king(sparta, achaean)} to the term T2 =
character(menelaus, X, Y) yields T2’ = character(menelaus,
iliad, king(sparta, achaean)).

A term T 0 resulting from a substitution T� is an instance of T . More generally,
T 0 is an instance of T if there is a substitution so that T 0 D T� . If T 0 is
an instance of T , then T is more general than T 0. Terms can be ordered ac-
cording to possible compositions of instantiations. For example, character(X,
Y) is more general than character(ulysses, odyssey); king(X, Y,
Z) is more general than king(menelaus, Y, Z), which is more general
than king(menelaus, Y, achaean), which is itself more general than
king(menelaus, sparta, achaean).

A substitution mapping a set of variables onto another set of variables such as � =
{X = A, Y = B} onto term character(X, Y) is a renaming substitution.
Initial and resulting terms character(X, Y) and character(A, B) are
said to be alphabetical variants. Finally, a ground term is a term that contains
no variable such as king(menelaus, sparta, achaean).

A.4.2 Terms and Unification

To equate two terms, T1 and T2, Prolog uses unification, which substitutes variables
in the terms so that they are identical. Unification is a logical mechanism that carries
out a two-way matching, from T1 to T2 and the reverse, and merges them into a
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Fig. A.3 Unification of terms: a graphical interpretation

common term. Prolog unifies terms to solve equations such as T1 = T2. It also
uses unification in queries to match a goal or a subgoal to the head of the rule.
Figure A.3 shows the intuitive unification of terms

T1 = character(ulysses, Z, king(ithaca, achaean))

and

T2 = character(ulysses, X, Y)

through a graphical superposition.
The superposition of the two terms requires finding an instance common

to both terms T1 and T2. This can be restated as there exist two substitutions
�1 and �2 such that T1�1 D T2�2. A unifier is a substitution making T1
and T2 identical: T1� D T2� . In our example, there is an infinite number of
possible unifiers. Candidates include the substitution � = {Z = c(a), X =
c(a), Y = king(ithaca, achaean)}, which yields the common in-
stance: character(ulysses,c(a), king(ithaca, achaean)). They
also include � = {Z = female, Z = female, Y = king(ithaca,
achaean)}, which yields another common instance: character(ulysses,
female, king(ithaca, achaean)), etc.

Intuitively, these two previous unifiers are special cases of the unification of T1
and T2. In fact, all the unifiers are instances of the substitution � = {X = Z, Y =
king(ithaca, achaean)}, which is the most general unifier or MGU.

Using SWI-Prolog to unify T1 and T2, we obtain:

?- character(ulysses, Z, king(ithaca, achaean)) =
character(ulysses, X, Y).
Z = X, Y = king(ithaca, achaean).

A.4.3 The Herbrand Unification Algorithm

The reference algorithm to unify terms is due to Herbrand (1930) and Martelli and
Montanari (1982). It takes the two terms to unify as input. The output is either a
failure, if the terms do not unify or the MGU: � .
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The algorithm initializes the substitution to the empty set and pushes terms on
a stack. The main loop consists in popping terms, comparing their functors, and
pushing their arguments on the stack. When a variable is found, the corresponding
substitution is added to � (Deransart et al. 1996; Sterling and Shapiro 1994).

• Initialization step

Initialize � to fg
Initialize failure to false
Push the equation T1 D T2 on the stack

• Loop

repeat {
pop x D y from the stack
if x is a constant and x DD y. Continue.
else if x is a variable and x does not appear in y.

Replace x with y in the stack and in � . Add the substitution fx D yg to � .
else if x is a variable and x DD y. Continue.
else if y is a variable and x is not a variable.

Push y D x on the stack.
else if x and y are compounds with x D f .x1; :::; xn/ and y D
f .y1; :::; yn).
Push on the stack xi D yi for i ranging from 1 to n.

else Set failure to true, and � to fg. Break.
} until (stack¤ ;/

A.4.4 Example

Let us exemplify the Herbrand algorithm with terms: f(g(X, h(X, b)), Z)
and f(g(a, Z), Y). We will use a two-way stack: one for the left term and one
for the right term, and let us scan and push term arguments from right to left.

For the first iteration of the loop, x and y are compounds. After this iteration, the
stack looks like:

Left term of the stack (x) Right term of the stack (y)
g(X, h(X, b)) = g(a, Z)
Z = Y

with the substitution � = {}.
The second iteration pops the top terms of the left and right parts of the stack.

The loop condition corresponds to compound terms again. The algorithm pushes the
arguments of left and right terms on the stack:
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Left term of the stack (x) Right term of the stack (y)

X = a
h(X, b) = Z
Z = Y

with the substitution � = {}.
The third iteration pops the equation X = a. The algorithm adds this substitution

to � and carries out the substitution in the stack:

Left term of the stack (x) Right term of the stack (y)

h(X, b) 
 h(a, b) = Z
Z = Y

with the substitution � = {X = a}.
The next iteration pops h(a, b) = Z, swaps the left and right terms, and

yields:

Left term of the stack (x) Right term of the stack (y)

Z = h(a, b)
Z = Y

The fifth iteration pops Z = h(a, b) and yields:

Left term of the stack (x) Right term of the stack (y)

Z 
 h(a, b) = Y

with the substitution � = {X = a, Z = h(a, b)}.
Finally, we get the MGU � = {X = a, Z = h(a, b), Y = h(a, b)}

that yields the unified term f(g(a, h(a, b)), h(a, b)).

A.4.5 The Occurs-Check

The Herbrand algorithm specifies that variables X or Y must not appear – occur –
in the right or left member of the equation to be a successful substitution. The
unification of X and f(X) should then fail because f(X) contains X.

However, most Prolog implementations do not check the occurrence of variables
to keep the unification time linear on the size of the smallest of the terms being
unified (Pereira 1984). Thus, the unification X = f(X) unfortunately succeeds
resulting in a stack overflow. The term f(X) infinitely replaces X in � , yielding X =
f(f(X)), f(f(f(X))), f(f(f(f(X)))), etc., until the memory is exhausted.
It results in a system crash with many Prologs.
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Although theoretically better, a unification algorithm that would implement an
occurs-check is not necessary most of the time. An experienced programmer will not
write unification equations with a potential occurs-check problem. That is why Pro-
log systems compromised the algorithm purity for speed. Should the occurs-check
be necessary, Standard Prolog provides the unify_with_occurs_check/2
built-in predicate:

?- unify_with_occurs_check(X, f(X)).
false.

?- unify_with_occurs_check(X, f(a)).
X = f(a)

A.5 Resolution

A.5.1 Modus Ponens

The Prolog resolution algorithm is based on the modus ponens form of inference that
stems from traditional logic. The idea is to use a general rule – the major premise –
and a specific fact – the minor premise – like the famous:

All men are mortal
Socrates is a man

to conclude, in this case, that

Socrates is mortal

Table A.1 shows the modus ponens in the classical notation of predicate logic
and in Prolog.

Prolog runs a reversed modus ponens. Using symbols in Table A.1, Prolog tries
to prove that a query (ˇ) is a consequence of the database content (˛, ˛ ) ˇ/.
Using the major premise, it goes from ˇ to ˛, and using the minor premise, from ˛

to true. Such a sequence of goals is called a derivation. A derivation can be finite
or infinite.

A.5.2 A Resolution Algorithm

Prolog uses a resolution algorithm to chain clauses mechanically and prove a query.
This algorithm is generally derived from Robinson’s resolution principle (1965),
known as the SLD resolution. SLD stands for “linear resolution” with a “selection
function” for “definite clauses” (Kowalski and Kuehner 1971). Here “definite
clauses” are just another name for Prolog clauses.
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Table A.1 The modus ponens notation in formal logic and its Prolog equivalent

Formal notation Prolog notation

Facts ˛ man(’Socrates’).
Rules ˛) ˇ mortal(X) :- man(X).

Conclusion ˇ mortal(’Socrates’).

The resolution takes a program – a set of clauses, rules, and facts – and a query
Q as an input (Deransart et al. 1996; Sterling and Shapiro 1994). It considers a
conjunction of current goals to prove, called the resolvent, that it initializes with Q.
The resolution algorithm selects a goal from the resolvent and searches a clause in
the database so that the head of the clause unifies with the goal. It replaces the goal
with the body of that clause. The resolution loop replaces successively goals of the
resolvent until they all reduce to true and the resolvent becomes empty. The output
is then a success with a possible instantiation of the query goal Q’, or a failure
if no rule unifies with the goal. In case of success, the final substitution, � , is the
composition of all the MGUs involved in the resolution restricted to the variables
of Q. This type of derivation, which terminates when the resolvent is empty, is called
a refutation.

• Initialization

Initialize Resolvent to Q, the initial goal of the resolution algorithm.
Initialize � to fg
Initialize failure to false

• Loop with Resolvent = G1, G2, ..., Gi, ..., Gm

while (Resolvent ¤ ;) {

1. Select the goal Gi 2 Resolvent;
2. If Gi == true, delete it and continue;
3. Select the rule H :- B1, ..., Bn in the database such that Gi and H

unify with the MGU � . If there is no such rule, then set failure to true;
break;

4. Replace Gi with B1, ..., Bn in Resolvent
% Resolvent = G1,...,Gi�1, B1,...,Bn, GiC1,..., Gm

5. Apply � to Resolvent and to Q;
6. Compose � with � to obtain the new current � ;

}

Each goal in the resolvent – i.e., in the body of a rule – must be different from a
variable. Otherwise, this goal must be instantiated to a nonvariable term before it is
called. The call/1 built-in predicate then executes it as in the rule:

daughter(X, Y) :-
mother(Y, X), G = female(X), call(G).
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Fig. A.4 The search tree and
successive values of the
resolvent

where call(G) solves the goal G just as if it were female(X). In fact, Prolog
automatically inserts call/1 predicates when it finds that a goal is a variable.
G is thus exactly equivalent to call(G), and the rule can be rewritten more
concisely in:

daughter(X, Y) :-
mother(Y, X), G = female(X), G.

A.5.3 Derivation Trees and Backtracking

The resolution algorithm does not tell us how to select a goal from the resolvent.
It also does not tell how to select a clause in the program. In most cases, there is
more than one choice. The selection order of goals is of no consequence because
Prolog has to prove all of them anyway. In practice, Prolog considers the leftmost
goal of the resolvent. The selection of the clause is more significant because some
derivations lead to a failure although a query can be proved by other derivations. Let
us show this with the program:

p(X) :- q(X), r(X).
q(a).
q(b).
r(b).
r(c).

and the query ?- p(X).
Let us compute the possible states of the resolvent along with the resolution’s

iteration count. The first resolvent (R1) is the query itself. The second resolvent (R2)
is the body of p(X): q(X), r(X); there is no other choice. The third resolvent
(R3) has two possible values because the leftmost subgoal q(X) can unify either
with the facts q(a) or q(b). Subsequently, according to the fact selected and the
corresponding substitution, the derivation succeeds or fails (Fig. A.4).

The Prolog resolution can then be restated as a search, and the picture of
successive states of the resolvent as a search tree. Now how does Prolog select a
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clause? When more than one is possible, Prolog could expand the resolvent as many
times as there are clauses. This strategy would correspond to a breadth-first search.
Although it gives all the solutions, this is not the one Prolog employs because it
would be unbearable in terms of memory.

Prolog uses a depth-first search strategy. It scans clauses from top to bottom and
selects the first one to match the leftmost goal in the resolvent. This sometimes leads
to a subsequent failure, as in our example, where the sequence of resolvents is first
p(X), then the conjunction q(X), r(X), after that q(a), r(a), and finally
the goal r(a), which is not in the database. Prolog uses a backtracking mechanism
then. During a derivation, Prolog keeps a record of backtrack points when there
is a possible choice, that is, where more than one clause unifies with the current
goal. When a derivation fails, Prolog backs up to the last point where it could select
another clause, undoes the corresponding unification, and proceeds with the next
possible clause. In our example, it corresponds to resolvent R2 with the second
possible unification: q(b). The resolvent R3 is then q(b), r(b), which leads to
a success. Backtracking explores all possible alternatives until a solution is found or
it reaches a complete failure.

However, although the depth-first strategy enables us to explore most search
trees, it is only an approximation of a complete resolution algorithm. In some cases,
the search path is infinite, even when a solution exists. Consider the program:

p(X) :- p(X), q(X).
p(a).
q(a).

where the query p(a) does not succeed because of Prolog’s order of rule selection.
Fortunately, most of the time there is a workaround. Here it suffices to invert the
order of the subgoals in the body of the rule.

A.6 Tracing and Debugging

Bugs are programming errors, that is, when a program does not do what we expect
from it. To isolate and remove them, the programmer uses a debugger. A debugger
enables programmers to trace the goal execution and unification step by step. It
would certainly be preferable to write bug-free programs, but to err is human. And
debugging remains, unfortunately, a frequent part of program development.

The Prolog debugger uses an execution model describing the control flow of a
goal (Fig. A.5). It is pictured as a box representing the goal predicate with four ports,
where:

• The Call port corresponds to the invocation of the goal.
• If the goal is satisfied, the execution comes out through the Exit port with a

possible unification.
• If the goal fails, the execution exits through the Fail port.
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Fig. A.5 The execution model of Prolog

Fig. A.6 The execution box representing the rule p(X) :- q(X), r(X)

• Finally, if a subsequent goal fails and Prolog backtracks to try another clause of
the predicate, the execution re-enters the box through the Redo port.

The built-in predicate trace/0 launches the debugger and notrace/0 stops
it. The debugger may have different commands according to the Prolog system you
are using. Major ones are:

• creep to proceed through the execution ports. Simply type return to creep.
• skip to skip a goal giving the result without examining its subgoals. (Type s to

skip).
• retry starts the current goal again from an exit or redo port (type r).
• fail makes a current goal to fail (type f).
• abort to quit the debugger (type a).

Figure A.6 represents the rule p(X) :- q(X), r(X), where the box corre-
sponding to the head encloses a chain of subboxes picturing the conjunction of goals
in the body. The debugger enters goal boxes using the creep command.

As an example, let us trace the program:

p(X) :- q(X), r(X).
q(a).
q(b).
r(b).
r(c).

with the query p(X).

?- trace.
true.
?- p(X).

Call: ( 7) p(_G106) ? creep
Call: ( 8) q(_G106) ? creep
Exit: ( 8) q(a) ? creep
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Call: ( 8) r(a) ? creep
Fail: ( 8) r(a) ? creep
Redo: ( 8) q(_G106) ? creep
Exit: ( 8) q(b) ? creep
Call: ( 8) r(b) ? creep
Exit: ( 8) r(b) ? creep
Exit: ( 7) p(b) ? creep

X = b

A.7 Cuts, Negation, and Related Predicates

A.7.1 Cuts

The cut predicate, written “!”, is a device to prune some backtracking alternatives.
It modifies the way Prolog explores goals and enables a programmer to control
the execution of programs. When executed in the body of a clause, the cut always
succeeds and removes backtracking points set before it in the current clause.
Figure A.7 shows the execution model of the rule p(X) :- q(X), !, r(X)
that contains a cut.

Let us suppose that a predicate P consists of three clauses:

P :- A1, ..., Ai, !, AiC1, ..., An.
P :- B1, ..., Bm.
P :- C1, ..., Cp.

Executing the cut in the first clause has the following consequences:

1. All other clauses of the predicate below the clause containing the cut are pruned.
That is, here the two remaining clauses of P will not be tried.

2. All the goals to the left of the cut are also pruned. That is, A1, ..., Ai will
no longer be tried.

3. However, it will be possible to backtrack on goals to the right of the cut.

P :- A1, ..., Ai, !, AiC1, ..., An.
P :- B1, ..., Bm.
P :- C1, ..., Cp.

Cuts are intended to improve the speed and memory consumption of a program.
However, wrongly placed cuts may discard some useful backtracking paths and
solutions. Then, they may introduce vicious bugs that are often difficult to track.
Therefore, cuts should be used carefully.

An acceptable use of cuts is to express determinism. Deterministic predicates
always produce a definite solution; it is not necessary then to maintain backtracking
possibilities. A simple example of it is given by the minimum of two numbers:

minimum(X, Y, X) :- X < Y.
minimum(X, Y, Y) :- X >= Y.
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Fig. A.7 The execution box representing the rule p(X) :- q(X), !, r(X)

Once the comparison is done, there is no means to backtrack because both clauses
are mutually exclusive. This can be expressed by adding two cuts:

minimum(X, Y, X) :- X < Y, !.
minimum(X, Y, Y) :- X >= Y, !.

Some programmers would rewrite minimum/3 using a single cut:

minimum(X, Y, X) :- X < Y, !.
minimum(X, Y, Y).

The idea behind this is that once Prolog has compared X and Y in the first clause,
it is not necessary to compare them again in the second one. Although the latter
program may be more efficient in terms of speed, it is obscure. In the first version
of minimum/3, cuts respect the logical meaning of the program and do not impair
its legibility. Such cuts are called green cuts. The cut in the second minimum/3
predicate is to avoid writing a condition explicitly. Such cuts are error-prone and are
called red cuts. Sometimes red cuts are crucial to a program but when overused,
they are a bad programming practice.

A.7.2 Negation

A logic program contains no negative information, only queries that can be proven
or not. The Prolog built-in negation corresponds to a query failure: the program
cannot prove the query. The negation symbol is written “\+” or not in older Prolog
systems:

• If G succeeds then \+ G fails.
• If G fails then \+ G succeeds.

The Prolog negation is defined using a cut:

\+(P) :- P, !, fail.
\+(P) :- true.

where fail/0 is a built-in predicate that always fails.
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Most of the time, it is preferable to ensure that a negated goal is ground: all its
variables are instantiated. Let us illustrate it with the somewhat odd rule:

mother(X, Y) :- \+ male(X), child(Y, X).

and facts:

child(telemachus, penelope).
male(ulysses).
male(telemachus).

The query

?- mother(X, Y).

fails because the subgoal male(X) is not ground and unifies with the fact
male(ulysses). If the subgoals are inverted:

mother(X, Y) :- child(Y, X), \+ male(X).

the term child(Y, X) unifies with the substitution X = penelope and
Y = telemachus, and since male(penelope) is not in the database, the
goal mother(X, Y) succeeds.

Predicates similar to “\+” include if-then and if-then-else constructs. If-then is
expressed by the built-in ’->’/2 operator. Its syntax is

Condition -> Action

as in

print_if_parent(X, Y) :-
(parent(X, Y) -> write(X), nl, write(Y), nl).

?- print_if_parent(X, Y).
penelope
telemachus

X = penelope, Y = telemachus

Just like negation, ’->’/2 is defined using a cut:

’->’(P, Q):- P, !, Q.

The if-then-else predicate is an extension of ’->’/2 with a second member to
the right. Its syntax is

Condition -> Then ; Else

If Condition succeeds, Then is executed, otherwise Else is executed.
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A.7.3 The once/1 Predicate

The built-in predicate once/1 also controls Prolog execution. once(P) executes
P once and removes backtrack points from it. If P is a conjunction of goals as in the
rule:

A :- B1, B2, once((B3, ..., Bi)), Bi+1, ..., Bn.

the backtracking path goes directly from BiC1 to B2, skipping B3, ..., Bi . It is
necessary to bracket the conjunction inside once twice because its arity is equal to
one. A single level of brackets, as in once(B3, ..., Bi), would tell Prolog that
once/1 has an arity of i-3.

once(Goal) is defined as:

once(Goal) :- Goal, !.

A.8 Lists

Lists are data structures essential to many programs. A Prolog list is a sequence
of an arbitrary number of terms separated by commas and enclosed within square
brackets. For example:

• [a] is a list made of an atom.
• [a, b] is a list made of two atoms.
• [a, X, father(X, telemachus)] is a list made of an atom, a variable,

and a compound term.
• [[a, b], [[[father(X, telemachus)]]]] is a list made of two

sublists.
• [] is the atom representing the empty list.

Although it is not obvious from these examples, Prolog lists are compound terms
and the square bracketed notation is only a shortcut. The list functor is a dot: “./2”,
and [a, b] is equivalent to the term .(a, .(b, [])).

Computationally, lists are recursive structures. They consist of two parts: a head,
the first element of a list, and a tail, the remaining list without its first element.
The head and the tail correspond to the first and second argument of the Prolog list
functor. Figure A.8 shows the term structure of the list [a, b, c]. The tail of a
list is possibly empty as in .(c, []).

The notation “|” splits a list into its head and tail, and [H | T] is equivalent
to .(H, T). Splitting a list enables us to access any element of it and therefore it
is a very frequent operation. Here are some examples of its use:

?- [a, b] = [H | T].
H = a, T = [b]
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Fig. A.8 The term structure
of the list [a, b, c]

?- [a] = [H | T].
H = a, T = []

?- [a, [b]] = [H | T].
H = a, T = [[b]]

?- [a, b, c, d] = [X, Y | T].
X = a, Y = b, T = [c, d]

?- [[a, b, c], d, e] = [H | T].
H = [a, b, c], T = [d, e]

The empty list cannot be split:

?- [] = [H | T].
false.

A.9 Some List-Handling Predicates

Many applications require extensive list processing. This section describes some
useful predicates. Generally, Prolog systems provide a set of built-in list predicates.
Consult your manual to see which ones; there is no use in reinventing the wheel.

A.9.1 The member/2 Predicate

The member/2 predicate checks whether an element is a member of a list:

?- member(a, [b, c, a]).
true.

?- member(a, [c, d]).
false.



A.9 Some List-Handling Predicates 599

member/2 is defined as

member(X, [X | Y]). % Termination case
member(X, [Y | YS]) :- % Recursive case
member(X, YS).

We could also use anonymous variables to improve legibility and rewrite
member/2 as

member(X, [X | _]).
member(X, [_ | YS]) :- member(X, YS).

member/2 can be queried with variables to generate elements member of a list,
as in:

?- member(X, [a, b, c]).
X = a ;
X = b ;
X = c ;
?-

Or lists containing an element:

?- member(a, Z).
Z = [a | Y] ;
Z = [Y, a | X] ;
etc.

Finally, the query:

?- \+ member(X, L).

where X and L are ground variables, returns true if member(X, L) fails and
false if it succeeds.

A.9.2 The append/3 Predicate

The append/3 predicate appends two lists and unifies the result to a third
argument:

?- append([a, b, c], [d, e, f], [a, b, c, d, e, f]).
true.

?- append([a, b], [c, d], [e, f]).
false.
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?- append([a, b], [c, d], L).
L = [a, b, c, d]

?- append(L, [c, d], [a, b, c, d]).
L = [a, b]

?- append(L1, L2, [a, b, c]).
L1 = [], L2 = [a, b, c] ;
L1 = [a], L2 = [b, c] ;

etc., with all the combinations.
append/3 is defined as

append([], L, L).
append([X | XS], YS, [X | ZS]) :-
append(XS, YS, ZS).

A.9.3 The delete/3 Predicate

The delete/3 predicate deletes a given element from a list. Its synopsis is:
delete(List, Element, ListWithoutElement). It is defined as:

delete([], _, []).
delete([E | List], E, ListWithoutE):-
!,
delete(List, E, ListWithoutE).

delete([H | List], E, [H | ListWithoutE]):-
H \= E,
!,
delete(List, E, ListWithoutE).

The three clauses are mutually exclusive, and the cuts make it possible to omit
the condition H \= E in the second rule. This improves the program efficiency but
makes it less legible.

A.9.4 The intersection/3 Predicate

The intersection/3 predicate computes the intersection of two sets
represented as lists: intersection(InputSet1, InputSet2, Inter-
section).

?- intersection([a, b, c], [d, b, e, a], L).
L = [a, b]
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InputSet1 and InputSet2 should be without duplicates; otherwise
intersection/3 approximates the intersection set relatively to the first
argument:

?- intersection([a, b, c, a], [d, b, e, a], L).
L = [a, b, a]

The predicate is defined as:

% Termination case
intersection([], _, []).
% Head of L1 is in L2
intersection([X | L1], L2, [X | L3]) :-
member(X, L2),
!,
intersection(L1, L2, L3).

% Head of L1 is not in L2
intersection([X | L1], L2, L3) :-
\+ member(X, L2),
!,
intersection(L1, L2, L3).

As for delete/3, clauses of intersection/3 are mutually exclusive, and
the programmer can omit the condition \+ member(X, L2) in the third clause.

A.9.5 The reverse/2 Predicate

The reverse/2 predicate reverses the elements of a list. There are two classic
ways to define it. The first definition is straightforward but consumes much memory.
It is often called the naïve reverse:

reverse([],[]).
reverse([X | XS], YS) :-
reverse(XS, RXS),
append(RXS, [X], YS).

A second solution improves the memory consumption. It uses a third argument
as an accumulator.

reverse(X, Y) :-
reverse(X, [], Y).

reverse([], YS, YS).
reverse([X | XS], Accu, YS):-
reverse(XS, [X | Accu], YS).
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A.9.6 The Mode of an Argument

The mode of an argument defines if it is typically an input (+) or an output
(-). Inputs must be instantiated, while outputs are normally uninstantiated. Some
predicates have multiple modes of use. We saw three modes for append/3:

• append(+List1, +List2, +List3),
• append(+List1, +List2, -List3), and
• append(-List1, -List2, +List3).

A question mark “?” denotes that an argument can either be instantiated or not.
Thus, the two first modes of append/3 can be compacted into

append(+List1, +List2, ?List3).

The actual mode of append/3, which describes all possibilities is, in fact,

append(?List1, ?List2, ?List3).

Finally, “@” indicates that the argument is normally a compound term that shall
remain unaltered.

It is good programming practice to annotate predicates with their common modes
of use.

A.10 Operators and Arithmetic

A.10.1 Operators

Prolog defines a set of prefix, infix, and postfix operators that includes the classical
arithmetic symbols: “+”, “-”, “*”, and “/”. The Prolog interpreter considers opera-
tors as functors and transforms expressions into terms. Thus, 2 * 3 + 4 * 2 is
equivalent to +(*(2, 3), *(4, 2)).

The mapping of operators onto terms is governed by rules of priority and classes
of associativity:

• The priority of an operator is an integer ranging from 1 to 1,200. It enables us to
determine recursively the principal functor of a term. Higher-priority operators
will be higher in the tree representing a term.

• The associativity determines the bracketing of term A op B op C:

1. If op is left-associative, the term is read (A op B) op C;
2. If op is right-associative, the term is read A op (B op C).

Prolog defines an operator by its name, its specifier, and its priority. The specifier
is a mnemonic to denote the operator class of associativity and whether it is infixed,
prefixed, or postfixed (Table A.2).
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Table A.2 Operator specifiers

Operator Nonassociative Right-associative Left-associative

Infix xfx xfy yfx
Prefix fx fy –
Postfix xf – yf

Table A.3 Priority and specifier of operators in Standard Prolog

Priority Specifier Operators

1,200 xfx :- -->
1,200 fx :- ?-
1,100 xfy ;
1,050 xfy ->
1,000 xfy ’,’
900 fy \+
700 xfx = \=
700 xfx == \== @< @=< @> @>=
700 xfx =..
700 xfx is =:= =\= < =< > >=
550 xfy :
500 yfx + - # /\ \/
400 yfx * / // rem mod << >>
200 xfx **
200 xfy ^
200 fy + - \

Table A.3 shows the priority and specifier of predefined operators in Standard
Prolog.
It is possible to declare new operators using the directive:

:- op(+Priority, +Specifier, +Name).

A.10.2 Arithmetic Operations

The evaluation of an arithmetic expression uses the is/2 built-in operator. is/2
computes the value of the Expression to the right of it and unifies it with Value:

?- Value is Expression.

where Expression must be computable. Let us exemplify it. Recall first that “=”
does not evaluate the arithmetic expression:

?- X = 1 + 1 + 1.
X = 1 + 1 + 1 (or X = +(+(1, 1), 1)).
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To get a value, it is necessary to use is

?- X = 1 + 1 + 1, Y is X.
X = 1 + 1 + 1, Y = 3.

If the arithmetic expression is not valid, is/2 returns an error, as in

?- X is 1 + 1 + a.
Error

because a is not a number, or as in

?- X is 1 + 1 + Z.
Error

because Z is not instantiated to a number. But

?- Z = 2, X is 1 + 1 + Z.
Z = 2, X = 4

is correct because Z has a numerical value when X is evaluated.

A.10.3 Comparison Operators

Comparison operators process arithmetic and literal expressions. They evaluate
arithmetic expressions to the left and to the right of the operator before comparing
them, for example:

?- 1 + 2 < 3 + 4.
true.

Comparison operators for literal expressions rank terms according to their lexical
order, for example:

?- a @< b.
true.

Standard Prolog defines a lexical ordering of terms that is based on the ASCII
value of characters and other considerations. Table A.4 shows a list of comparison
operators for arithmetic and literal expressions.

It is a common mistake of beginners to confuse the arithmetic comparison (=:=),
literal comparison (==), and even sometimes unification (=). Unification is a logical
operation that finds two substitutions to render two terms identical; an arithmetic
comparison computes the numerical values of the left and right expressions and
compares their resulting value; a term comparison compares literal values of terms
but does not perform any operation on them. Here are some examples:
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Table A.4 Comparison operators

Arithmetic comparison Literal term comparison

Equality operator =:= ==
Inequality operator =\= \==
Less than < @<
Less than or equal =< @=<
Greater than > @>
Greater than or equal >= @>=

?- 1 + 2 =:= 2 + 1. ?- 1 + 2 == 1 + 2.
true. true.
?- 1 + 2 = 2 + 1. ?- 1 + 2 == 2 + 1.
false. false.
?- 1 + 2 = 1 + 2. ?- 1 + X == 1 + 2.
true. false.
?- 1 + X = 1 + 2. ?- 1 + a == 1 + a.
X = 2 true.
?- 1 + X =:= 1 + 2.
Error

A.10.4 Lists and Arithmetic: The length/2 Predicate

The length/2 predicate determines the length of a list

?- length([a, b, c], 3).
true.

?- length([a, [a, b], c], N).
N = 3

length(+List, ?N) traverses the list List and increments a counter N. Its
definition in Prolog is:

length([],0).
length([X | XS], N) :-
length(XS, N1),
N is N1 + 1.

The order of subgoals in the rule is significant because N1 has no value until
Prolog has traversed the whole list. This value is computed as Prolog pops the
recursive calls from the stack. Should subgoals be inverted, the computation of the
length would generate an error telling us that N1 is not a number.
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A.10.5 Lists and Comparison: The quicksort/2 Predicate

The quicksort/2 predicate sorts the elements of a list [H | T]. It first selects
an arbitrary element from the list to sort, here the head, H. It splits the list into
two sublists containing the elements smaller than this arbitrary element and the
elements greater. Quicksort then sorts both sublists recursively and appends
them once they are sorted. In this program, the before/2 predicate compares
the list elements using the @</2 literal operator.

% quicksort(+InputList, -SortedList)

quicksort([], []) :- !.
quicksort([H | T], LSorted) :-
split(H, T, LSmall, LBig),
quicksort(LSmall, LSmallSorted),
quicksort(LBig, LBigSorted),
append(LSmallSorted, [H | LBigSorted], LSorted).

split(X, [Y | L], [Y | LSmall], LBig) :-
before(Y, X),
!,
split(X, L, LSmall, LBig).

split(X, [Y | L], LSmall, [Y | LBig]) :-
!,
split(X, L, LSmall, LBig).

split(_, [], [], []) :- !.

before(X, Y) :- X @< Y.

A.11 Some Other Built-in Predicates

The set of built-in predicates may vary according to Prolog implementations. Here is
a list common to many Prologs. Consult your reference manual to have the complete
list.

A.11.1 Type Predicates

The type predicates check the type of a term. Their mode of use is
type_predicate(?Term).
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• integer/1: Is the argument an integer?

?- integer(3).
true.

?- integer(X).
false.

• number/1: Is the argument a number?

?- number(3.14).
true.

• float/1: Is the argument a floating-point number?
• atom/1: Is the argument an atom?

?- atom(abc).
true.

?- atom(3).
false.

• atomic/1: Is the argument an atomic value, i.e., a number or an atom?
• var/1: Is the argument a variable?

?- var(X).
true.

?- X = f(Z), var(X).
false.

• nonvar/1: The opposite of var/1.

?- nonvar(X).
false.

• compound/1: Is the argument a compound term?

?- compound(X).
false.

?- compound(f(X, Y)).
true.

• ground/1: Is the argument a ground term?

?- ground(f(a, b)).
true.

?- ground(f(a, Y)).
false.
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A.11.2 Term Manipulation Predicates

The term manipulation predicates enable us to access and modify elements of
compound terms.

• The built-in predicate functor(+Term, ?Functor, ?Arity) gets the
principal functor of a term and its arity.

?- functor(father(ulysses, telemachus), F, A).
F = father, A = 2

functor also returns the most general term given a functor name and an
arity. Functor and Arity must then be instantiated: functor(-Term,
+Functor, +Arity)

?- functor(T, father, 2).
T = father(X, Y)

• The predicate arg(+N, +Term, ?X) unifies X to the argument of rank N in
Term.

?- arg(1, father(ulysses, telemachus), X).
X = ulysses

• The operator Term =.. List, also known as the univ predicate, transforms a
term into a list.

?- father(ulysses, telemachus) =.. L.
L = [father, ulysses, telemachus]

?- T =.. [a, b, c].
T = a(b, c)

Univ has two modes of use: +Term =.. ?List, or -Term =.. +List.
• The predicate name(?Atom, ?List) transforms an atom into a list of ASCII

codes.

?- name(abc, L).
L = [97, 98, 99]

?- name(A, [97, 98, 99]).
A = abc

Standard Prolog provides means to encode strings more naturally using double
quotes. Thus

?- "abc" = L.
L = [97, 98, 99]
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A.12 Handling Run-Time Errors and Exceptions

Standard Prolog features a mechanism to handle run-time errors. An error or
exception occurs when the execution cannot be completed normally either suc-
cessfully or by a failure. Examples of exceptions include division by zero, the
attempt to evaluate arithmetically nonnumerical values with is/2, and calling a
noninstantiated variable in the body of a rule:

?- X is 1/0.
ERROR: //2: Arithmetic evaluation error: zero_divisor

?- X is 1 + Y.
ERROR: Arguments are not sufficiently instantiated

?- X.
ERROR: Arguments are not sufficiently instantiated

In the normal course of a program, such faulty clauses generate run-time errors
and stop the execution. The programmer can also trap these errors and recover from
them using the catch/3 built-in predicate.

catch(+Goal, ?Catcher, ?Recover) executes Goal and behaves like
call/1 if no error occurs. If an error is raised and unifies with Catcher,
catch/3 proceeds with Recover and continues the execution.

Standard Prolog defines catchers of built-in predicates under the form of the
term error(ErrorTerm, Information), where ErrorTerm is a standard
description of the error and Information depends on the implementation. The
query:

?- catch((X is 1 + Y), Error, (write(Error),nl,fail)).
error(instantiation_error, context(system: (is)/2, _GXyz))
false.

attempts to execute X is Y + 1, raises an error, and executes the recover goal,
which prints the error and fails. The constant instantiation_error is part of
the set of error cases defined by Standard Prolog.

Built-in predicates execute a throw/1 to raise exceptions when they detect an
error. The throw predicate immediately goes back to a calling catch/3. If there
is no such catch, by default, the execution is stopped and the control is transferred
to the user.

User-defined predicates can also make use of throw(+Exception) to throw
an error, as in:

throw_error :- throw(error(error_condition,context)).

The corresponding error can be caught as in the query:

?- catch(throw_error, Error, (write(Error),nl,fail)).
error(error_condition, context)
false.
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A.13 Dynamically Accessing and Updating the Database

A.13.1 Accessing a Clause: The clause/2 Predicate

The built-in predicate clause(+Head, ?Body) returns the body of a clause
whose head unifies with Head. Let us illustrate this with the program:

hero(ulysses).
heroine(penelope).

daughter(X, Y) :-
mother(Y, X),
female(X).

daughter(X, Y) :-
father(Y, X),
female(X).

and the query:

?- clause(daughter(X, Y), B).
B = (mother(Y, X), female(X));
B = (father(Y, X), female(X));

?- clause(heroine(X), B).
X = penelope, B = true.

A.13.2 Dynamic and Static Predicates

The built-in predicates asserta/1, assertz/1, retract/1, and abolish/
1 add or remove clauses – rules and facts – during the execution of a program. They
allow us to update the database – and hence to modify the program – dynamically.

A major difference between Prolog implementations is whether the system
interprets the program or compiles it. Roughly, an interpreter does not change
the format of rules and facts to run them. A compiler translates clauses into a
machine-dependent code or into more efficient instructions (Maier and Warren
1988). A compiled program runs much faster then.

Compiling occurs once at load time, and the resulting code is no longer
modifiable during execution. To run properly, the Prolog engine must be told which
predicates are alterable at run-time – the dynamic predicates – and which ones will
remain unchanged – the static predicates. Prolog compiles static predicates and runs
dynamic predicates using an interpreter.

A predicate is static by default. Dynamic predicates must either be declared using
the dynamic/1 directive or be entirely created by assertions at run time. In the
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latter case, the first assertion of a clause declares automatically the new predicate
to be dynamic. The directive specifying that a predicate is dynamic precedes all its
clauses, if any. For example, the program:

:- dynamic parent/2, male/1.
...
parent(X, Y) :-
...
male(xy).
...

declares that parent/2 and male/1 clauses may be added or removed at run
time.

The predicates asserta/1, assertz/1, retract/1, and abolish/1
can modify clauses of dynamic predicates only. Adding or removing a clause for
a static predicate raises an error condition.

A.13.3 Adding a Clause: The asserta/1 and assertz/1
Predicates

The predicate asserta(+P) adds the clause P to the database. P is inserted just
before the other clauses of the same predicate. As we have seen before, the predicate
corresponding to the clause P must be dynamic: declared using the dynamic/1
directive or entirely asserted at run time.

% State of the database
% Before assertion
% hero(ulysses).
% hero(hector).

?- asserta(hero(achilles)).
% State of the database
% After assertion
% hero(achilles).
% hero(ulysses).
% hero(hector).

The predicate assertz/1 also adds a new clause, but as the last one of the
procedure this time.

Adding rules is similar. It requires double parentheses, as in

asserta((P :- B, C, D)).

However, it is never advised to assert rules. Modifying rules while running a
program is rarely useful and may introduce nasty bugs.
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Novice Prolog programmers may try to communicate the results of a procedure
by asserting facts to the database. This is not a good practice because it hides what
is the real output of a predicate. Results, especially intermediate results, should be
passed along from one procedure to another using arguments. Assertions should
only reflect a permanent change in the program state.

A.13.4 Removing Clauses: The retract/1 and abolish/2
Predicates

The built-in predicates retract/1 and abolish/1 remove clauses of a dynamic
predicate. retract(+P) retracts clause P from the database.

% State of the database
% Before removal
% hero(ulysses).
% hero(achilles).
% hero(hector).

?- retract(hero(hector)).
% State of the database
% After
% hero(ulysses).
% hero(achilles).

?- retract(hero(X)).
X = ulysses ;
X = achilles ;

?- hero(X).
false.

The predicate abolish(+Predicate/Arity) removes all clauses of
Predicate with arity Arity from the database.

A.13.5 Handling Unknown Predicates

When a static predicate is called and is not in the database, it is often a bug. A
frequent cause is due to wrong typing as, for example, parnet(X, Y) instead of
parent(X, Y), where n and e are twiddled. For this reason, by default, Prolog
raises an error in the case of such a call.

An effect of dynamic/1 is to declare a predicate to the Prolog engine. Such
a predicate ‘exists’ then, even if it has no clauses. A call to a dynamic predicate



A.14 All-Solutions Predicates 613

that has no clauses in the database is not considered as an error. It fails, simply and
silently.

The Prolog engine behavior to calls to unknown predicates can be modified using
the unknown/2 directive:

:- unknown(-OldValue, +NewValue).

where OldValue and NewValue can be:

• warning – A call to an unknown predicate issues a warning and fails.
• error – A call to an unknown predicate raises an error. As we saw, this is the

default value.
• fail – A call to an unknown predicate fails silently.

A Prolog flag also defines this behavior. It can be set by set_prolog_flag/2:

?- set_prolog_flag(+FlagName, +NewValue).

where FlagName is set to unknown and possible values are error, warning,
or fail. The current flag status is obtained by current_prolog_flag/2:

?- current_prolog_flag(+FlagName, ?Value).

A.14 All-Solutions Predicates

The second-order predicates findall/3, bagof/3, and setof/3 return all the
solutions to a given query. The predicate findall is the basic form of all-solutions
predicates, while bagof and setof are more elaborate. We exemplify them with
the database:

character(ulysses, iliad).
character(hector, iliad).
character(achilles, iliad).
character(ulysses, odyssey).
character(penelope, odyssey).
character(telemachus, odyssey).

and the male and female predicates from Sect. A.2.1.
findall(+Variable, +Goal, ?Solution) unifies Solution with

the list of all the possible values of Variable when querying Goal.

?- findall(X, character(X, iliad), B).
B = [ulysses, hector, achilles]

?- findall(X, character(X, Y), B).
B = [ulysses, hector, achilles, ulysses, penelope, telemachus]
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The predicate bagof(+Variable, +Goal, ?Solution) is similar to
findall/3, except that it backtracks on the free variables of Goal:

?- bagof(X, character(X, iliad), Bag).
Bag = [ulysses, hector, achilles]

?- bagof(X, character(X, Y), Bag).
Bag =[ ulysses, hector, achilles], Y = iliad ;
Bag = [ulysses, penelope, telemachus], Y = odyssey ;
?-

Variables in Goal are not considered free if they are existentially quantified.
The existential quantifier uses the infix operator “^”. Let X be a variable in Goal.
X^Goal means that there exists X such that Goal is true. bagof/3 does not
backtrack on it. For example:

?- bagof(X, Y^character(X, Y), Bag).
Bag = [ulysses, hector, achilles, ulysses, penelope, telemachus]

?- bagof(X, Y^(character(X, Y), female(X)), Bag).
Bag = [penelope]

The predicate setof(+Variable, +Goal, ?Solution) does the same
thing as bagof/3, except that the Solution list is sorted and duplicates are
removed from it:

?- setof(X, Y^character(X, Y), Bag).
Bag = [achilles, hector, penelope, telemachus, ulysses]

A.15 Fundamental Search Algorithms

Many problems in logic can be represented using a graph or a tree, where finding a
solution corresponds to searching a path going from an initial state to a goal state.
The search procedure starts from an initial node, checks whether the current node
meets a goal condition, and, if not, goes to a next node. The transition from one
node to a next one is carried out using a successor predicate, and the solution is the
sequence of nodes traversed to reach the goal. In the context of search, the graph is
also called the state space.

In this section, we will review some fundamental search strategies, and as an
application example we will try to find our way through the labyrinth shown in
Fig. A.9. As we saw, Prolog has an embedded search mechanism that can be used
with little adaptation to implement other algorithms. It will provide us with the
Ariadne’s thread to remember our way in the maze with minimal coding efforts.
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Fig. A.9 The graph representing the labyrinth

A.15.1 Representing the Graph

We use a successor predicate s(X, Y) to represent the graph, where Y is the
successor of X. For the labyrinth, the s/2 predicate describes the immediate links
from one room to another. The links between the rooms are:

link(r1, r2). link(r1, r3). link(r1, r4). link(r1, r5).
link(r2, r6). link(r2, r7). link(r3, r6). link(r3, r7).
link(r4, r7). link(r4, r8). link(r6, r9).

Since links can be traversed both ways, the s/2 predicate is:

s(X, Y) :- link(X, Y).
s(X, Y) :- link(Y, X).

The goal is expressed as:

goal(X) :- minotaur(X).

where

minotaur(r8).

Finally, we could associate a cost to the link, for instance, to take into account its
length. The predicate would then be:

s(X, Y, Cost).
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A.15.2 Depth-First Search

A depth-first search is just the application of the Prolog resolution strategy. It
explores the state space by traversing a sequence of successors to the initial node
until it finds a goal. The search goes down the graph until it reaches a node without
successor. It then backtracks from the bottom to the last node that has successors.

Searching a path in a labyrinth is then very similar to other programs we
have written before. It consists of a first rule to describe the goal condition and
second recursive one to find a successor node when the condition is not met. The
depth_first_search(+Node, -Path) predicate uses the initial node as
input and returns the path to reach the goal:

%% depth_first_search(+Node, -Path)
depth_first_search(Node, [Node]) :-
goal(Node).

depth_first_search(Node, [Node | Path]) :-
s(Node, Node1),
depth_first_search(Node1, Path).

This short program does not work, however, because the path could include
infinite cycles: Room 2 to Room 6 to Room 2 to Room 6. . . To prevent them, we
need to remember the current path in an accumulator variable and to avoid the
successors of the current node that are already members of the path. We use a
depth_first_search/3 auxiliary predicate, and the new program is:

%% depth_first_search(+Node, -Path)
depth_first_search(Node, Path) :-
depth_first_search(Node, [], Path).

%% depth_first_search(+Node, +CurrentPath,-FinalPath)
depth_first_search(Node, Path, [Node | Path]) :-
goal(Node).

depth_first_search(Node, Path, FinalPath) :-
s(Node, Node1),
\+ member(Node1, Path),
depth_first_search(Node1, [Node | Path],FinalPath).

The result of the search is:

?- depth_first_search(r1, L).
L = [r8, r4, r7, r3, r6, r2, r1] ;
L = [r8, r4, r7, r2, r1] ;
L = [r8, r4, r7, r2, r6, r3, r1] ;
L = [r8, r4, r7, r3, r1] ;
L = [r8, r4, r1] ;
false.
?-
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A.15.3 Breadth-First Search

The breadth-first search explores the paths in parallel. It starts with the first node,
all the successors of the first node, all the successors of the successors, and so on,
until it finds a solution.

If the list [Node | Path] describes a path to a node, the search needs to
expand all the successors of Node. It generates the corresponding paths as lists.
There are as many lists as there are successors to Node. The search then sets the
successors as the heads of these lists. This is done compactly using the bagof/3
predicate:

expand([Node | Path], ExpandedPaths) :-
bagof(
[Node1, Node | Path],
(s(Node, Node1), \+ member(Node1, Path)),
ExpandedPaths).

As with the depth-first search, the breadth-first search consists of two rules. The
first rule describes the goal condition. It extracts the first path from the list and
checks whether the head node is a goal. The second rule implements the recursion.
It expands the first path – the head of the list – into a list of paths that go one
level deeper in the graph and appends them to the end of the other paths. The
breadth_first_search(+Node, -Path) predicate uses the initial node
as input and returns the path to reach the goal. The program needs to start with
a list of lists, and it uses the auxiliary predicate bf_search_aux/2.

%% breadth_first_search(+Node, -Path)
breadth_first_search(Node, Path) :-

bf_search_aux([[Node]], Path).

bf_search_aux([[Node | Path] | _], [Node | Path]) :-
goal(Node).

bf_search_aux([CurrentPath | NextPaths], FinalPath) :-
expand(CurrentPath, ExpandedPaths),
append(NextPaths, ExpandedPaths, NewPaths),
bf_search_aux(NewPaths, FinalPath).

The program is not completely correct, however, because expand/2 can fail
and make the whole search fail. A failure of expand/2 means that the search
cannot go further in this path and it has found no goal node in it. We can remove
the path from the list then. To reflect this, we must add a second rule to expand/2
that sets the path to the empty list and prevents the first rule from backtracking:

expand([Node | Path], ExpandedPaths) :-
bagof(
[Node1, Node | Path],
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(s(Node, Node1), \+ member(Node1, Path)),
ExpandedPaths),

!.
expand(Path, []).

The result of the search is:

?- breadth_first_search(r1, L).
L = [r8, r4, r1] ;
L = [r8, r4, r7, r2, r1] ;
L = [r8, r4, r7, r3, r1] ;
L = [r8, r4, r7, r3, r6, r2, r1] ;
L = [r8, r4, r7, r2, r6, r3, r1] ;
false.
?-

The breadth-first search strategy guarantees that it will find the shortest path to
the solution. A disadvantage is that it must store and maintain all exploration paths
in parallel. This requires a huge memory, even for a limited search depth.

A.15.4 A* Search

The A* search is a variation and an optimization of the breadth-first search. Instead
of expanding the first path of the list, it uses heuristics to select a better candidate.
While searching the graph, A* associates a value to paths it traverses. This value is
a function f of the node being traversed. f .n/ at node n is the sum of two terms
f .n/ D g.n/C h.n/, where g.n/ is the length of the path used to reach node n and
h.n/ is the estimate of the remaining length to reach the goal node. From a given
node, A* ranks the possible subsequent nodes minimizing f .n/. It then explores
“best nodes” first and thus avoids a blind searching.

The main difficulty of the A* search is to find a suitable h function. Its
presentation is outside the scope of this appendix. Russell and Norvig (2010)
examine search strategies in detail. Bratko (2012) describes an implementation of
A* in Prolog.

A.16 Input/Output

The first Prolog systems had only primitive input/output facilities. Standard Prolog
defines a complete new set of predicates. They represent a major change in the
Prolog language, and although they are more flexible they are not universally
accepted yet. This section introduces both sets of predicates. It outlines Standard
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Prolog input/output predicates and predicates conforming to the older tradition of
Edinburgh Prolog. Most input/output predicates are deterministic, that is, they give
no alternative solutions upon backtracking.

A.16.1 Input/Output with Edinburgh Prolog

Reading and Writing Characters

In Edinburgh Prolog, reading characters from the keyboard and writing to the screen
is carried out using get0/1 and put/1. Both predicates process characters using
their ASCII codes. get0/1 unifies with �1 when it reaches the end of a file. Here
are some examples of use:

?- get0(X).
a <return>

X = 97

?- put(65).
a

?- get0(X).
^D

X = -1

Reading and Writing Terms

The built-in predicates read/1 and write/1 read and write terms from the
current input and output streams. read(?Term) reads one term:

?- read(X).
character(ulysses, odyssey).

X = character(ulysses, odyssey)

where the input term must be terminated by a period. When reaching the end of a
file, X unifies with the build-in atom end_of_file:

?- read(X).
^D
X = end_of_file
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Writing terms is similar. write(+Term) writes one term to the current output
stream and nl/0 prints a new line:

?- T = character(ulysses, odyssey), write(T), nl.
character(ulysses, odyssey)

T = character(ulysses, odyssey)
?-

Opening and Closing Files

Prolog input and output predicates normally write on the screen – the standard
output – and read from the keyboard – the standard input. The predicates see/1
and tell/1 redirect the input and output so that a program can read or write any
file.

see/1 and tell/1 open a file for reading and for writing. Then input/output
predicates such as get0/1, read/1 or put/1, write/1 are redirected to the
current open file. Several files may be open at the same time. The program switches
between open files using see/1 or tell/1 until they are closed. seen/0 and
told/0 close the open input and the open output, respectively, and return to the
standard input/output, that is, to the keyboard and the screen. Let us show this with
an example.

see(in_file), Opens in_file as the current input stream.
see(user), The current stream becomes the user – the keyboard.
see(in_file), in_file becomes the current input stream again with

the reading the position it had before.
seen, Closes the current input stream. The current stream

becomes the keyboard.
seeing(IN_STREAM), IN_STREAM unifies with the current input stream.
tell(out_file), Opens out_file as the current output stream (creates

a new file or empties a previously existing file).
telling(OUT_STREAM), OUT_STREAM unifies with the current output stream.
tell(user), The current output stream becomes the user – the screen.
told. Closes the current output stream. The current output

stream becomes the user.

Here is a short program to read a file:

read_file(FileName, CodeList) :-
see(FileName),
read_list(CodeList),
seen.
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read_list([C | L]) :-
get0(C),
C =\= -1, % end of file
!,
read_list(L).

read_list([]).

A.16.2 Input/Output with Standard Prolog

Reading and Writing Characters

Standard Prolog uses streams to read and write characters. A stream roughly
corresponds to an open file. Streams are divided into output streams or sinks, and
input streams or sources. By default, there are two current open streams: the standard
input stream, which is usually the keyboard, and the standard output stream, the
screen. Other streams are opened and closed using open/4, open/3, close/1,
and close/2.

The predicates to read and write a character are get_char/1, get_char/2,
put_char/1, and put_char/2:

• get_char(?Char) unifies Char with the next character of the current input
stream.

• get_char(+Stream, ?Char) unifies Char with the next character of the
open input stream Stream. get_char/1 and get_char/2 predicates unify
with end_of_file when they reach the end of a file.

• put_char(+Char) writes Char to the current output stream.
• put_char(+Stream, ?Char) writes Char to the open output Stream.
• nl/0 and nl(+Stream) write a new line to the current output stream or to
Stream.

Here is a short example:

?- get_char(X).
a <return>

X = a

?- put_char(a).
a

?- get_char(X).
^D

X = end_of_file
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Instead of reading and writing characters, we may want to read or write their
numeric code, ASCII or Unicode, as with Edinburgh’s get0/1. The corresponding
Standard Prolog predicates are get_code/1, get_code/2, put_code/1, and
put_code/2.

The predicates get_char and get_code read a character or a code, remove it
from the input stream, and move to the next character. Sometimes it is useful to read
a character without removing it. The predicates peek_char and peek_code do
just that. They unify with the current character but stay at the same position and
leave the character in the stream.

Reading and Writing Terms

The Standard Prolog predicates read/1 and write/1 are identical to those of
Edinburgh Prolog:

• read(?Term) reads one term from the current input stream.
• write(+Term) writes a term to the current output stream.

read/2 and write/2 read and write terms from and to a file:

• read(+Stream, ?Term) reads a term from Stream.
• write(+Stream, ?Term) writes a term to Stream.

The predicates read_term and write_term read and write terms
with a list of options, either to the current input/output, read_term/2 and
write_term/2, or to a file, read_term/3 and write_term/3. The options
make it possible to adjust the printing format, for instance. They may depend on
the implementation and the operating system. Consult your manual to have the
complete list. The predicates read and write are equivalent to read_term and
write_term with an empty list of options.

Opening and Closing Files

The predicates to open and close a stream are open/4, open/3, close/1, and
close/2:

• open(+SourceSink, +Mode, -Stream) opens the file SourceSink
in an input or output Mode. The Mode value is one of read, write, append,
or update. Stream unifies with the opened stream and is used for the
subsequent input or output operations.

• open(+SourceSink, +Mode, -Stream, +Options) opens the file
with a list of options. open/3 is equivalent to open/4 with an empty list of
options. Consult your manual to have the complete list.

• close(+Stream) closes the stream Stream.
• close(+Stream, +Options) closes the stream Stream with a list of

options. close/1 is equivalent to close/2 with an empty list of options.
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Here is a short program to read a file with Standard Prolog predicates:

read_file(FileName, CharList) :-
open(FileName, read, Stream),
read_list(Stream, CharList),
close(Stream).

read_list(Stream, [C | L]) :-
get_char(Stream, C),
C \== end_of_file, % end of file
!,
read_list(Stream, L).

read_list(_, []).

Other useful predicates include current_input/1, current_output/1,
set_input/1, and set_output/1:

• current_input(?Stream) unifies Stream with the current input stream.
• current_output(?Stream) unifies Stream with the current output.
• set_input(+Stream) sets Stream to be the current input stream.
• set_output(+Stream) sets Stream to be the current output stream.

A.16.3 Writing Loops

Programmers sometimes wonder how to write iterative loops in Prolog, especially
with input/output to read or to write a sequence of terms. This is normally done with
a recursive rule, as to read a file. Counting numbers down to 0 takes the form:

countdown(X) :-
number(X),
X < 0.

countdown(X):-
number(X),
X >= 0,
write(X), nl,
NX is X - 1,
countdown(NX).

For example,

?- countdown(4).
4
3
2
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1
0
true.
?-

In some other cases, backtracking using the repeat/0 built-in predicate can
substitute a loop. The repeat/0 definition is:

repeat.
repeat :- repeat.

repeat never fails and, when inserted as a subgoal, any subsequent backtrack-
ing goes back to it and the sequence of subgoals to its right gets executed again.
So, a sequence of subgoals can be executed any number of times until a condition
is satisfied. The read_write/1 predicate below reads and writes a sequence of
atoms until the atom end is encountered. It takes the form of a repetition (repeat)
of reading a term X using read/1, writing it (write/1), and a final condition
(X == end). It corresponds to the rule:

read_write :-
repeat,
read(X),
write(X), nl,
X == end,
!.

A.17 Developing Prolog Programs

A.17.1 Presentation Style

Programs are normally written once and then are possibly read and modified several
times. A major concern of the programmer should be to write clear and legible code.
It helps enormously with the maintenance and debugging of programs.

Before programming, it is essential first to have a good formulation and
decomposition of the problem. The program construction should then reflect the
logical structure of the solution. Although this statement may seem obvious, its
implementation is difficult in practice. Clarity in a program structure is rarely
attained the first time. First attempts are rarely optimal but Prolog enables an
incremental development where parts of the solution can be improved gradually.

A key to the good construction of a program is to name things properly. Cryptic
predicates or variable names, such as syntproc, def_code, X, Ynn, and so on,
should be banned. It is not rare that one starts with a predicate name and changes it
in the course of the development to reflect a better description of the solution.
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Since Prolog code is compact, the code of a clause should be short to remain easy
to understand, especially with recursive programs. If necessary, the programmer
should decompose a clause into smaller subclauses. Cuts and asserts should be kept
to a minimum because they impair the declarativeness of a program. However, these
are general rules that sometimes are difficult to respect when speed matters most.

Before its code definition, a predicate should be described in comments together
with argument types and modes:

% predicate(+Arg1, +Arg2, -Arg3).
% Does this and that
% Arg1: list, Arg2: atom, Arg3: integer.

Clauses of a same predicate must be grouped together, even if some Prologs
permit clauses to be disjoined. The layout of clauses should also be clear and adopt
common rules of typography. Insert a space after commas or dots, for instance. The
rule

pred1 :- pred2(c,d),e,f.

must be rejected because of sticking commas and obfuscated predicate names. Goals
must be indented with tabulations, and there should be one single goal per line. Then

A :-
B,
C,
D.

should be preferred to

A :- B, C, D.

except when the body consists of a single goal. The rule

A :- B.

is also acceptable.

A.17.2 Improving Programs

Once a program is written, it is generally possible to enhance it. This section
introduces three techniques to improve program speed: goal ordering, memo
functions, and tail recursion.

Order of Goals

Ordering goals is meaningful for the efficiency of a program because Prolog tries
them from left to right. The idea is to reduce the search space as much as possible
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from the first goals. If predicate p1 has 1,000 solutions in 1 s and p2 has 1 solution
taking 1,000 h to compute, avoid conjunction:

p1(X), p2(X).

A better ordering is:

p2(X), p1(X).

Lemmas or Memo Functions

Lemmas are used to improve the program speed. They are often exemplified with
Fibonacci series. Fibonacci imagined around year 1200 how to estimate a population
of rabbits, knowing that:

• A rabbit couple gives birth to another rabbit couple, one male and one female,
each month (one month of gestation).

• A rabbit couple reproduces from the second month.
• Rabbits are immortal.

We can predict the number of rabbit couples at month n as a function of the
number of rabbit couples at month n � 1 and n � 2:

rabbit.n/ D rabbit.n � 1/C rabbit.n � 2/
A first implementation is straightforward from the formula:

fibonacci(1, 1).
fibonacci(2, 1).
fibonacci(M, N) :-
M > 2,
M1 is M - 1, fibonacci(M1, N1),
M2 is M - 2, fibonacci(M2, N2),
N is N1 + N2.

However, this program has an expensive double recursion and the same value
can be recomputed several times. A better solution is to store Fibonacci values in
the database using asserta/1. So an improved version is

fibonacci(1, 1).
fibonacci(2, 1).
fibonacci(M, N) :-
M > 2,
M1 is M - 1, fibonacci(M1, N1),
M2 is M - 2, fibonacci(M2, N2),
N is N1 + N2,
asserta(fibonacci(M, N)).

The rule is then tried only if the value is not in the database.
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The generic form of the lemma is:

lemma(P):-
P,
asserta((P :- !)).

with “!” to avoid backtracking.

Tail Recursion

A tail recursion is a recursion where the recursive call is the last subgoal of the last
rule, as in

f(X) :- fact(X).
f(X) :- g(X, Y), f(Y).

Recursion is generally very demanding in terms of memory, which grows with
the number of recursive calls. A tail recursion is a special case that the interpreter
can transform into an iteration. Most Prolog systems recognize and optimize it. They
execute a tail-recursive predicate with a constant memory size.

It is therefore significant not to invert clauses of the previous program, as in

f(X) :- g(X, Y), f(Y).
f(X) :- fact(X).

which is not tail recursive.
It is sometimes possible to transform recursive predicates into a tail recursion

equivalent, adding a variable as for length/2:

length(List, Length) :-
length(List, 0, Length).

length([], N, N).
length([X | L], N1, N) :-
N2 is N1 + 1,
length(L, N2, N).

It is also sometimes possible to force a tail recursion using a cut, for example,

f(X) :- g(X, Y), !, f(Y).
f(X) :- fact(X).

Exercises

A.1. Describe a fragment of your family using Prolog facts.

A.2. Using the model of parent/2 and ancestor/2, write rules describing
family relationships.
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A.3. Write a program to describe routes between cities. Use a connect/2
predicate to describe direct links between cities as facts, for example,
connect(paris, london), connect(london, edinburgh), etc., and
write the route/2 recursive predicate that finds a path between cities.

A.4. Unify the following pairs:

f(g(A, B), a) = f(C, A).
f(X, g(a, b)) = f(g(Z), g(Z, X)).
f(X, g(a, b)) = f(g(Z), g(Z, Y)).

A.5. Trace the son/2 program.

A.6. What is the effect of the query

?- f(X, X).

given the database:

f(X, Y) :- !, g(X), h(Y).
g(a).
g(b).
h(b).

A.7. What is the effect of the query

?- f(X, X).

given the database:

f(X, Y) :- g(X), !, h(Y).
g(a).
g(b).
h(b).

A.8. What is the effect of the query

?- f(X, X).

given the database:

f(X, Y) :- g(X), h(Y), !.
g(a).
g(b).
h(b).

A.9. What is the effect of the query

?- \+ f(X, X).

given the databases of the three previous exercises (Exercises A.6–A.8)? Provide
three answers.
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A.10. Write the last(?List, ?Element) predicate that succeeds if
Element is the last element of the list.

A.11. Write the nth(?Nth, ?List, ?Element) predicate that succeeds if
Element is the Nth element of the list.

A.12. Write the maximum(+List, ?Element) predicate that succeeds if
Element is the greatest of the list.

A.13. Write the flatten/2 predicate that flattens a list, i.e., removes nested lists:

?- flatten([a, [a, b, c], [[[d]]]], L).
L = [a, a, b, c, d]

A.14. Write the subset(+Set1, +Set2) predicate that succeeds if Set1 is a
subset of Set2.

A.15. Write the subtract(+Set1, +Set2, ?Set3) predicate that unifies
Set3 with the subtraction of Set2 from Set1.

A.16. Write the union(+Set1, +Set2, ?Set3) predicate that unifies
Set3 with the union of Set2 and Set1. Set1 and Set2 are lists without
duplicates.

A.17. Write a program that transforms the lowercase characters of a file into their
uppercase equivalent. The program should process accented characters, for example,
é will be mapped to É.

A.18. Implement A* in Prolog.
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