David R. Brooks

Guide to HTML, JavaScript
and PHP

For Scientists and Engineers

@ Springer

David R. Brooks

Institute for Earth Science Research and Education
2686 Overhill Drive

Eagleville, PA 19403

USA

brooksdr@drexel.edu

ISBN 978-0-85729-448-7 e-ISBN 978-0-85729-449-4
DOI 10.1007/978-0-85729-449-4
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011926229

© Springer-Verlag London Limited 2011

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

“The best way to become acquainted with a subject is to write
a book about it.”
—Benjamin Disraeli

“Each problem that I solved became a rule, which served
afterwards to solve other problems.”
—Ren¢é Descartes

i
What Is the Purpose of This Book?

There are many students and professionals in science and engineering, other than those spe-
cifically interested in fields such as computer science or computer engineering, who need to
know how to solve computational problems on computers. There are basically two approaches
to meeting the needs of such people. One is to rely on software applications such as spread-
sheets, using built-in functions and perhaps user-defined macros, without requiring any
explicit understanding of the principles on which programming languages are based.

A second approach is to learn a programming language, previously Fortran or Pascal,
and more recently C, C++, or Java. These languages are important for certain kinds of
work, such as computer science or scientific computing, but they may be viewed, possibly
with good reason, as irrelevant by many students and professionals.

From a student’s point of view, there is no painless solution to this dilemma, but in this
book I assume that learning to solve computational problems in an online environment
using HTML,' JavaScript, and PHP will at least appear to be a more relevant approach.
HTML and JavaScript are universally used for developing self-contained online applica-
tions. The use of PHP for accessing externally stored data files, a capability that is not
available directly through JavaScript, greatly extends the range of science and engineering
problems that can be addressed. A working knowledge of these programming languages is
a valuable skill for any scientist or engineer. The fact that these are Web-based languages
may make such skills more immediately marketable than comparable skills developed
with older text-based languages.

!'See Glossary for definitions of terms appearing in bold font.

vi Preface

In some ways, the HTML/JavaScript/PHP environment is more difficult to learn than a
traditional text-based programming language such as C. C is a mature (some might prefer
“obsolete”), fairly small language with an unambiguous set of syntax rules and a primitive
text-based input/output interface. You can view the limitations of C as either a blessing or
a curse, depending on your needs. A major advantage of C is that programs written in
ANSI Standard C should work equally well on any computer that has a C compiler, making
the language inherently platform-independent.

HTML, JavaScript, and PHP, on the other hand, are immature and unstable program-
ming languages (if we can agree to call HTML a “language”) that function within a con-
stantly changing Web environment. There are dialects of HTML and JavaScript that will
work only on particular computing platforms and the possibility exists for language “exten-
sions” that may be even more platform-dependent. PHP is more platform-independent, but
it is still an evolving language whose standards are set and maintained by a user group —
essentially by volunteers. While it is true that there are extensions to languages such as C
and other older languages that are platform-dependent, the platform dependence of lan-
guages used in the online environment is a major implementation issue rather than an
occasional minor inconvenience.

As one indication of the teaching and learning challenges these environments provide,
just three popular paperback HTML and JavaScript reference books occupy nearly 6 in. of
space (15 cm in deference to a metric audience) on my office bookshelf! A great deal of
the material in those books is devoted to explaining the often subtle differences among
various versions of HTML and JavaScript.

Fortunately, it is possible to work with some core subsets of HTML and JavaScript
which, with PHP, can be used to solve some of the same kinds of computational problems
that would be appropriate for a more traditional language such as C or C++. My initial
motivation for writing this book was to learn how to use HTML, JavaScript, and PHP to
create my own online applications, and I now use this environment for many tasks that I
previously would have undertaken in C. Based on this experience, [have concluded that,
despite the fact that these languages cannot fairly be defined as “scientific computing”
languages, it is nonetheless entirely reasonable to use them to learn basic programming
skills, and to create useful and robust science and engineering applications.

Although this book is intended for “scientists and engineers,” as suggested by its title,
the content is not technically complex. The examples and exercises do not require exten-
sive science, engineering, or mathematics background and only rarely is mathematics
beyond basic algebra needed. So, I believe this book could serve as a beginning program-
ming text for undergraduates and even for high school students.

ii
Learning by Example
It is well known that people learn new skills in different ways. Personally, I learn best by

having a specific goal and then studying examples that are related to that goal. Once I
understand those examples, I can incorporate them into my own work. I have used that

Preface vii

learning model in this book, which contains many complete examples that can serve as
starting points for your work. (See the second quotation at the beginning of this preface.)

This model works particularly well in an online environment. The amount of online
information about HTML, JavaScript, and PHP, including code samples, is so vast that it
is only a slight exaggeration to state that nobody writes original code anymore. If you have
trouble “learning by example,” you will have trouble learning these languages, not just
from this book, but in general because that is how most of the available information is
presented.

It is an inescapable fact that a great deal of the source code behind Web pages involves
nothing more (or less) than creative cutting, pasting, and tweaking of existing code. Aside
from the issues of plagiarism and intellectual dishonesty that must be dealt with in an aca-
demic environment, there is also the practical matter of an effective learning strategy. You
cannot learn to solve your own computational problems just by trying to paste together
someone else’s work. (Believe me, I’ve tried!) Until you develop your own independent
skills, you will constantly be frustrated because you will never find exactly what you need
to copy and you will be unable to synthesize what you need from what is available.

So, while you should expect to find yourself constantly recycling your own code based
on what you learn from this book, you need to make sure that you really /earn how to use
these languages and don’t just learn to copy!

If you are reading this book, you almost certainly are not and do not aspire to be a pro-
fessional programmer. For a casual programmer from a scientific or technical background,
it can be very time consuming to cut through the clutter of online information about these
languages when the applications are not directly applicable to the needs of scientists and
engineers. In my own work, what I need over and over again is some sample code that will
jog my memory about how to approach recurring programming problems — how to select
items from a pull-down list, how to extract information from a data file, how to pass infor-
mation from an HTML document to a PHP application, how to display data-based graph-
ics, etc. Throughout the book, I have tried to give examples that serve this need, including
an entire chapter devoted to PHP graphics.

iii
The Origin and Uses of This Book

In 2007, Springer published An Introduction to HTML and JavaScript for Scientists
and Engineers. This was followed in 2008 by An Introduction to PHP for Scientists and
Engineers: Beyond JavaScript. Those two books followed the sequence in which I learned
to use HTML, JavaScript, and PHP in my own work. (See the first quotation at the begin-
ning of this preface.) When the time came to consider a second edition of the HTML and
JavaScript book, it seemed a better idea to undertake a rewrite that would combine both
books into a single volume. This book is the result. I have, hopefully, clarified some of the
explanations. There are more examples and exercises and I have added some new material
that my students and I have found useful, including a brief introduction to using “pseudo-
code” as an approach to organizing solutions to computing problems (see Appendix 4).

viii Preface

I have used both of the original books as texts in an 11-week (one quarter) introductory
programming course for biomedical engineering graduate students at Drexel University.
I found that a course restricted just to HTML and JavaScript is a little “thin” for this audi-
ence. Adding a brief introduction to PHP solves the problem. This book easily provides
enough material for a one-semester introductory programming course for science and
engineering students because the possibilities for PHP-based applications are limitless.
Because of the book’s very specific focus on science and engineering applications,
I believe the book is also particularly well suited for developing a working knowledge of
HTML, JavaScript, and PHP on your own if you are a student or professional in any
technical field.

iv

Acknowledgments

I am indebted to several classes of graduate students from Drexel University’s School of
Biomedical Engineering, Science & Health Systems, who have provided feedback on the

material in this book and its predecessors. [am also once again indebted to my wife, Susan
Caughlan, for her patient and always helpful proofreading of my manuscripts.

Institute for Earth Science Research and Education David R. Brooks

1 Introducing HTML and JavaScriptccoccooviiiiiiiniiiieeceeeeen 1
1.1 Introducing the TOOLScceoiriiiieiiiietieieei ettt 1
1.1.1 What Is an HTML Document?c.ccccocereirenenieeneniceneneene 1
1.1.2 What IS JavaScript?......cccccverieriiiieiieieiesie e 3
1.1.3 How Do You Create HTML/JavaScript Documents?.................... 4
1.1.4 Some Typographic Conventions Used in This Book..................... 6

1.1.5 Where Can You Find More Information About HTML
and JavaSCript?ocooiiieieiee e 6
1.2 Your First HTML/JavaScript DOCUMENLScccceeeminieeninieininiceeecneenes 7
1.3 Accessing HTML Documents on the Web...........ccccoeeevienineinincininencns 14
1.4 Another EXamplec.ocooeiiininiiiniiiiniccenee ettt 16
2 HTML Document Basicsc.cccooeniniiiinininiiieicee 19
2.1 Documents, Elements, Attributes, and Values 19
2.1.1 Essential Elementsccccc.... 19
2.1.2 Some Other Important Elements 20
2.2 HTML Syntax and Stylecocevueoirinieiinineieineecrerccseseee e 26
2.3 Using the script Element.......cocominiinineniniineiiinciecncceseeenes 28
2.4 Creating and Organizing a Web Site........c.ccccvereiineneiinienennenceenene 28
2.5 Selecting and Using COlOTS........coeoveirenieinenieiieneieereiee e 32
2.6 Using Cascading Style Sheets..........cocoorereinenieiinieneiieneeenceesee 34
2.7 Another EXampPlecccoeiiiiiiiiiiieieest e 39
3 HTML Tables, Forms, Lists, and Frames.................c...cccccooeiiiiiiiiinienncee. 41
3.1 The table EIBMeNnt.......cccoociiiiiiieiiiieieeieee e e 41
3.1.1 Basic Table FOrmattingcccceveririeierienieneeeeieee e 41
3.1.2 Subdividing Tables into SECiONS.......cccerveveerieierierieiieeeeeieeeee 43
3.1.3 Merging Cells Across Rows and Columnscccccceeveeencnnnnen. 45
3.2 The formand input Elementsccccocoieviiiiiniiniiiiieieceeeee e 48
3.3 Creating Pull-Down Lists.......ccccociiiiiiiiiiiiieeeee e 52
3.4 Combining Tables and FOrmsccccooiiimiiiininiiieee e 53
3.5 E-Mailing the Contents of FOrms.........ccocoeoieiiiiiinieieenceeeee e 55
3.6 The List EISMENtSccoooiiiiiiiiiiiieiieeeeeee e 57

Contents

3.7 USINg HTML Framesccectverieiienieirienieceiesieeie et 62
3.8 MOre EXAmPIes.....ccoovveriiiiiieieiiiicieiie ettt 67
3.8.1 Selecting Cloud Types from a List of Possibilities 67
3.8.2 A Simple “Split Window” Applicationccoeevvrveverennnne. 69
Fundamentals of the JavaScript Languagec..c..coccooivininnnininnene 73
4.1 Capabilities Of JAVASCIIP.....ooviriiieieiiiieie ettt 73
4.2 Some Essential Terminology.........cccceevivieierieniinenieienienreeeeeeiesieeveenens 74
4.3 Structure of JavaScript COde........coviririerieniiiieieieieee et 76
4.3.1 JavaScript Statements..........cccocveeeeeerierieneeieeeeere e 76
43.2 Statement BIOCKScccceviiininiiniiciinccceecce 76
433 COMMENLS ..ottt 71
4.4 Data and ODJECLS ...cverviiuierieieiieieieeteeeste ettt ere e s eaesseereeseesaeseeneas 78
4.4.1 Data Declarations and Variables...........cccccevereineneinenennennens 78
442 DaAta TYPES ceeoueeeiieeuieeiteeie ettt ettt ettt ettt ettt 79
443 LIETalS ..cooouiiiciiiiciiicctec s 80
4,44 Case SENSIIVILY ...occverieriiieierieieieete ettt naeene s 80
4.4.5 Objects and Methods for Input and Output..........ccccceeeveriennennns 81
4.4.6 String Methodsccooveieriiriiiicieieieee e 83
4.5 Tokens, Operators, Expressions, and Statements...........c.ccccocevecerennennnnen 85
451 TOKENS ettt 85
4.5.2 Arithmetic OPErators.........coveirerieirerierieiirieieesieneese e seeerennens 85
4.5.3 The Assignment OPErator...........ccevuerveererierierienreereeiesienieereeneens 86
4.5.4 Shorthand Arithmetic/Assignment Operatorscoceeveuennene 87
4.6 The JavaScript Math ODJECt.......ccererieiririeinirieieereiee et . 89
4.7 Comparison Operators and Decision-Making Structures.................. e 93
4.7.1 Relational and Logical Operators...........c..cccccuene.. e 93
4.7.2 The if Construct (Branching Structures)... e 93
4.7.3 The switch Construct....... ... 98
4.8 Loop Structurescccceeeveeveeeneeneeenne e 99
4.8.1 Count-Controlled LOOPS......ccceevrvieieieniiieieieieeienee e 99
4.8.2 Conditional LOOPSocveeveeuieieiieiieiieiesie st 101
4.9 Using JavaScript to Change Values in Form Fields.........cccocccvinennene. 104
410 More EXaMPIES.....ccueeuieiiiiiiieiieieieeieeie ettt 107
4.10.1 Solving the Quadratic Equation............cccccevivieienieneiieieeene 107
4.10.2 Rectangular Rule Numerical Integration.............ccccoceveereieneens 108
Using Arrays in HTML/JavaScript...........coccooiiiiiiiiniiieeeeeeeeee 111
5.1 BasiC Array Properties........ccoceoivieieienierieiieiieieie et 111
5.2 Some Operations 0N ATTAYSceeeeruerueruiereeieieniesseeseeeesessesseeneeneessennes 115
5.2.1 Manipulating Stacks and QUEUESccceeeeierieniirieieieeee. 115
522 SOTEINE ceeeuieiiiietieiete ettt ettt et ettt be st e e e 117
5.3 More about Array Methodscccoieiiiiiiiiiieee e 118
5.4 Creating Two-Dimensional AITayscccccererieieienieneeieeeiee e 119
5.5 Using Arrays to Access the Contents of FOrmscccocovivieienenennne. 122

Contents

8

Xi
5.5.1 Accessing values of type="text" Fields......ccocerrrirerrrrnecns 122

5.5.2 Accessing type="radio" and type="checkbox"
FICIAS ..ottt 125
5.5.3 Accessing Multiple Options Chosen in <select> tags.............. 127
5.6 Hiding the Contents of a JavaScript SCIipt........cceoervrererieenienieeneneeenens 129
5.7 MOre EXAMPIESvovieeieviiiiiiciieiieiecte ettt ene 131
5.7.1 Checking IDs and Passwords...........c.occevververrenieienienienieeeeneienns 131
5.7.2 MAZIC SQUATES......eeveuierieiieiieiietesieeie et eseesesse e s eeesaesseeseesaesaensens 132
JavaScript Functionsccooooviiiiiiiiiiieceee e 135
6.1 The Purpose of Functions in Programmingcccceeeevvieierieniennennnnne. 135
6.2 Defining JavaScript FUNCHONSccoovieiiieieieiieiieieieie e 136
6.3 Using JavaScript Functions With HTML Formsccccccoeevevievieniennennnne. 138
6.3.1 Passing Numerical Values to a Function..............cceceeverenreeennnnn. 139
6.3.2 Using Entire Forms as Inputccoceevievieniininiiieeeeeeeeiene 142
6.3.3 Using Arrays to Return Output Valuesccoevevvevienininieniennnns 145
6.4 Some Global Methods and Event Handlersccccevereinincicnenennncns 146
6.4.1 Global Methods........ccectruerieiiinieiieieeeeeeee e 146
6.4.2 Using Event Handlers with Forms and Functionsc..c.cccco.e.... 149
6.5 Recursive FUNCHONSccoiveiririeiiiricietreec et 150
6.6 Passing Values from One Document to Anotherccoeeveievienienennnne. 154
6.7 Revisiting the JavaScript sort () Methodsccveveriieneniicnenicennens 157
6.8 MOre EXAMPIESooviiieiiiniiiieiieieiee et 158
6.8.1 Dewpoint TEMPETatULe.c.ceervereririeieieiteeeieetenteieeteseee e 158
6.8.2 Loan Repayment Schedulec.ccoeoeviniiinininninininenccneee 160
6.8.3 Legendre Polynomialsc.ccecevirieininiiiinincinineecseeceeen 162
6.8.4 Array-Derived Pull-Down Menus..........cccoeovrereniienenieeneneennen 163
6.8.5 Creating a “Password-Protected” HTML Document..................... 165
Creating a Server-Side Environment with PHP 167
7.1 Getting Started with PHP 167
7.2 MOTE EXAMPIESeueviiiieiiiiiiciiciesiee ettt 182
7.2.1 Solving the Quadratic EQUation...........ccccoccoeeirerieineneinenieinees 182
7.2.2 Preventing Multiple Submissions from a Form.............cccccceeuenee. 184
Working with PHP ... 187
8.1 Structure of PHP SCIIPLS ..c.evviiiiiriiiciriiiccricerceceeeee e 187
8.1 Calculations with PHPcccccoooiiiiiiiiieeeeeeeeee e 188
8.3 More About PHP File Input/Output.........cccecveviiniiiiiieieieneceeeeeeeeae 203
8.4 MOre EXAMPIESooviiiiiieiieiisiiciiceee e 206
8.4.1 Calculating Volumes of Solid ObjJectsccceeeririeiierieneiieienene 206
8.4.2 Processing . bmp Image Files..........coceevirienininiiieeeeceee 211
8.4.3 Transforming and Displaying Images...........ccccoevvroirvieneninieciennne 221

8.4.4 Self-Contained HTML/JavaScript/PHP Documents...................... 222

Xii

9

10

11

12

Contents

PHP AT TAYS.....ooiiiiieiieieeiteteee ettt ettt siae et enteenbeenseenneenseennas 225
9.1 Array Definitionccoooviivieiieieiiieii ettt 225
0.2 AITAY SOTHINZ .c.evetenieiiiteieieet ettt ettt sttt eae s 229
9.3 Stacks, Queues, and Line Crasherscccocoveviriecierieneiieieieeeve e 232
9.4 MOre EXAMPIES.....cooiiiiiiiieiieiicieieeieeteet ettt 234
9.4.1 The Quadratic Formula Revisitedccccevvevvieievieereeieennnns 234

9.4.2 Reading checkbox Values.......cccccevirieieienieneiieieieeieeve e 237

9.4.3 Building a HiStogram ATTaYccccceevieeeeerieneieeeeeiereneeeenenes 241

9.4.4 Shuffle a Card Deck........ccoevieirinieiiiieinieesee e 243

9.4.5 Manage a Data File.........coccoecieieiiniiiieieieieececeeee e 244

9.4.6 Recursive INSertion SOTtcceveieerienieenenieenenieeeeseeeeeeenes 249
Summary of Selected PHP Language Elements..................ccccoooininninnnnnnen. 251
10.1 Data Types and OPEratorscceeeeeeieruerrenenieierreeeeeesesesseeseeseesenns 251
TO.1.T Data TYPES cocveereieeiieeiieeiie ettt ettt et 251

LO.1.2 OPETALOTS ..eovvieuiieniieiieiiieeitesiteeteeteete et et eteete et esteebeeseeenaee e 252

10.2 Conditional EXCCULIONcc.evveuiitirieiiiienieieiesteeeiesteeeeete et 253
10.2.1 Conditional EXECULIONc.ccerveuirierieiiiericieenieieieseeei e 253

10.2.2 Case-Controlled Conditional Execution...........ccccoceeveerireeennenn 254

T0.3 LOOPS tteuteentieitettett ettt sttt st sttt ettt et ettt be et naee s reenaee e 255
10.3.1 Count-Controlled LOOPS........ccceeieierieriiniieieieiesieee et 256

10.3.2 Condition-Controlled LOOPS.......ccoeeviiievieniinieiieieiesie e 258

10.4 Functions and Language CONnStructs...........coeveerienieenienieeninieeeeneeenens 259
10.4.1 File Handling and I/O Functionsc..ccceceeveveerenerincneneenenns 259

10.4.2 String Handling Functions............. 269

10.4.3 Math Constants and Functions 273

10.4.4 Array Functions and Language Constructs 275

10.4.5 Miscellaneous Functions and Constructsc.ocoeeeevvereennennene. 281

Using PHP from a Command Line..............c..cccoocoiiiiniiinincnenee 287
Using Graphics with PHP ... 293
12,1 INtrOAUCHION c.eouiiiiieiieiecee ettt 293
12.2 Writing GD Graphics Applications for Displaying Datac..c.cceeuenee. 293
12.2.1 Getting Started........cccecevueeeerieieeneceseieesee e 295

12.2.2 Pie CRAItS...cvoveeieiiieiietiieietiet ettt 297

12.2.3 Horizontal Bar Charts.............ccceeierieriininieieieieeeeeeeee e 306

12.2.4 Vertical Bar Chartsccoecieievieniiieieieiee e 316

12.2.5 Line Graphscccooieieieieieiiieieieie ettt 330

12.3 Summary of Some GD Graphics Functions..............cceceevveviiniiienenennnne 344
12.3.1 Create and Destroy Images...........ccceeveverieierienienieeeeeeeee e 344

12.3.2 Draw Lines and Shapescccoceveeieieneninieieiee e 345

12.3.3 DiSPlay TeXtuueueoueiuieiieiieieeie ettt 347

Contents Xiii

APPEINAICES ..ottt ettt et et e et e et eerbe et eenbe et e enbeebaensean 349
A.1 List of Document EXamples.........c.ccecveviiriiiiiierieniinieeeeieieiesreeieeseeesse e enees 349
A.2 Displaying Special Characters in an HTML Documentcccoocevveerieenene 353
A3 ASCII Character COAeS......ccuerueueriieiiriirieiieiinieiteiesteeere sttt sttt 355
A.4 Strategies for Solving Computational Problems............cccocvevviririiieienieniennenns 357
EX@ICISES. ..ottt 365
GLOSSATY ...ttt ettt 395
IIA@X ..ottt 403

Introducing HTML and JavaScript

Abstract Chapter 1 provides a very brief introduction to using HTML and JavaScript for
creating simple Web pages. It presents examples of how JavaScript interfaces with an
HTML document to display some printed output in a Web browser window. The chapter
introduces the concept of an HTML document as an object, with certain methods and
properties accessible through JavaScript to act on that object.

Numerous examples show how to modify the appearance of a document by using
HTML tags and their attributes, including as part of a text string passed as a calling argu-
ment to JavaScript’s write () method.

1.1
Introducing the Tools

1.1.1
What Is an HTML Document?

HTML is an acronym for HyperText Markup Language. HTML documents, the foun-
dation of all content appearing on the World Wide Web (WWW), consist of two essen-
tial parts: information content and a set of instructions that tells your computer how to
display that content. The instructions—the “markup,” in editorial jargon—comprise the
HTML language. It is not a programming language in the traditional sense, but rather a
set of instructions about how to display content. The computer application that translates
this description is called a Web browser. Ideally, online content should look the same
regardless of the operating system on which a Web browser resides or the browser used.
This goal of complete platform independence is achieved only approximately in
practice.
A basic HTML document requires a minimum of four sets of elements:

<html> .. </html>
<head> .. </head>
<title> .. </title>
<body> .. </body>

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, 1
DOI 10.1007/978-0-85729-449-4 1, © Springer-Verlag London Limited 2011

2 1 Introducing HTML and JavaScript

These elements define the essential parts of an HTML document: the document itself, a
heading section, a title section, and a body. Each of the elements is defined by two tags—a
start tag and an end tag. Tags are always enclosed in angle brackets: <..>. End tags start
with a slash (/). As will be shown later, some HTML elements have only one tag. Most
tags are supposed to occur in pairs, although this rule is enforced only loosely in HTML.
In order to support a scripting language such as JavaScript (much more about that later!),
another element must be added to the four basic elements:

<script> .. </script>

As used in this book, a script element always contains JavaScript code.
These elements are organized as follows within an HTML document:

<html>
<head>
<title> .. </title>

<!-- Optional script elements as needed. -->
<script> .. </script>

</head>

<body>

</body>
</html>

The html tag encloses all other tags and defines the boundaries of the HTML docu-
ment. We will return to the other tags later. script tags often appear inside the <head>
tag, but they can appear elsewhere in a document, too. The indenting used to set off pairs
of tags is optional, but it makes documents easier to create, read, and edit. This style is part
of good programming practice in all languages.

Because JavaScript is so tightly bound to HTML documents, you must learn JavaScript
along with at least a subset of HTML. Unfortunately for anyone trying to learn and use
HTML and JavaScript, each of the several available browsers is free to implement and sup-
port JavaScript in its own way. A browser doesn’t even have to support JavaScript at all,
although it is hard to imagine why it wouldn’t. Browsers can and do incorporate some pro-
prietary HTML and JavaScript features that may not be supported by other browsers. Newer
versions of any browser may support features that won’t be recognized by earlier versions.

Fortunately, it is possible to work with what is essentially a de facto standardized subset
of HTML and JavaScript. As a result, some of the descriptions of the details of HTML and
JavaScript in this book will be incomplete; this is not necessarily a bad thing!

Although HTML documents are usually considered to be a way of distributing informa-
tion for remote access on the Web, they are equally useful when used locally on any com-
puter that has a browser. So, in conjunction with JavaScript (and later with PHP), you can
create a self-contained problem-solving environment that can be used locally as well as
(literally) globally.

1.1 Introducing the Tools 3

Good programming technique often involves separating the input/output (1/0)
interface from the underlying calculations that do the work of a program. The program-
ming environment provided by HTML/JavaScript provides a conceptually elegant means
of implementing this strategy. An HTML document provides the I/O interface and
JavaScript (and/or PHP, as will be seen later in this book) handle the calculations. An
advantage of HTML is that it provides a wealth of interface possibilities that far surpass
those of text-based languages such as C.

1.1.2
What Is JavaScript?

JavaScript is an interpreted (rather than compiled) object-oriented programming language
that has been developed for use alongside other Web tools. JavaScript does not operate as
a standalone language. It is designed to work together with HTML for creating interactive
Web pages. It is not the same as Java, which is a compiled object-oriented language.

JavaScript is used to write client side applications, which means that JavaScript code
is sent to a user’s computer when a Web page is loaded. The code is then executed, basi-
cally line by line, by a JavaScript interpreter included as part of the user’s (client’s) Web
browser. This arrangement minimizes security issues that can arise when a client computer
interacts with the computer that sent the page. It also makes it easy to package an entire
problem, with its own user interface and solution, self-contained within a single document.
But the inability to interact dynamically with information stored on a server imposes limi-
tations on the kinds of tasks that JavaScript can accomplish.

It is commonplace to refer to any set of written computer instructions as a “program.”
However, this term is more rigorously applied to a separate entity that can be executed on its
own. Because JavaScript is interpreted rather than compiled, a separately executable entity is
never created. Instead, JavaScript code statements are interpreted and executed one at a time,
essentially “on the fly.” Although this may seem inefficient, there is rarely any discernible
time lag associated with executing JavaScript commands on modern computers.

JavaScript is one of a class of scripting languages whose purpose is to access and mod-
ify components of an existing information interface. (Microsoft’s VBScript is another
scripting language.) In this case, the interface is an HTML document. As soon as HTML
documents on the Web evolved from one-way delivery systems for displaying fixed con-
tent, something like JavaScript immediately became necessary. One of its first applications
arose from the need to check values entered by users into the fields of HTML forms that
can be sent back to the originator. (Forms are discussed in a later chapter.) JavaScript can
be used to compare input values against an expected range or set of values and to generate
appropriate messages and other actions based on those comparisons.

JavaScript has evolved into a complete programming language with extensive capabili-
ties for manipulating text and handling mathematical operations, useful for a wide range of
computing problems. Possible applications include many self-contained scientific and
engineering calculations. As noted earlier, JavaScript is restricted to problems that do not
need to access external data sources, regardless of whether those sources reside on a local
computer or on a remote server.

4 1 Introducing HTML and JavaScript

As previously noted, the major challenge in learning HTML/JavaScript is that it is not
a completely standardized environment. The various dialects of HTML and JavaScript
pose problems even for experienced programmers. These kinds of problems can be mini-
mized by focusing on an appropriate subset of HTML/JavaScript. This is feasible because
there is little reason to use browser-specific subsets of HTML/JavaScript in the context of
the topics dealt with in this book.

1.1.3
How Do You Create HTML/JavaScript Documents?

Because HTML/JavaScript documents are just text documents, they can be created with
any text editor. Even Windows’ very basic Notepad application is a workable choice for
simple tasks." Once they are created, you can open HTML files in your computer’s
browser—hopefully without regard to which browser you are using. As long as you give
such documents an .htm or .html file name extension, they should automatically open
in your browser when you double-click on the file name. Although Windows documents
are no longer restricted to three-letter extensions, a convention that dates back to the pre-
Windows days of the MS-DOS operating systems, the three-letter . htm extension is often
used on Windows systems. The four-letter . html extension is commonly used on UNIX
systems.”

There is one other consequence of using Windows computers for creating all the code
examples in this text: Windows file names are case-insensitive, while in UNIX, all spell-
ings, including file names and commands, are case-sensitive. This shouldn’t cause prob-
lems, but it is something to keep in mind. In Windows, you can name a document
newDocument . htm. Later, you can spell it newdocument .htm, NEWDOCUMENT .
HTM, or any other combination of uppercase and lowercase letters and it won’t matter. On
a UNIX system, that file can be accessed only with the original spelling.

Although you can create text (and, therefore, HTML) documents with a full-featured
word processor such as Microsoft Word, this is not recommended. When you save a word
processor document it no longer contains just the text you have typed, but also all the lay-
out and formatting information that goes with that document. You can choose to save a
document as just text with an . htm extension, but it is easy to forget to do this.

Microsoft Word and other modern word-processing applications can also format any
document as an HTML document. However, this is also not recommended. These con-
verted documents may include a huge quantity of extraneous information and HTML

"When you save a file in Notepad, the default extension is . txt. You may need to enclose the
file name plus its .htm extension in quote marks to prevent Notepad from adding the .txt
extension.

20n Windows computers, you can associate extensions with whatever application you wish. So,
for example, if you have more than one browser installed on your computer, you could designate
one of them as the default browser and assign it as the application for opening HTML
documents.

1.1 Introducing the Tools 5

instructions that make the resulting file much larger and more complex than it needs to be.
(To see this for yourself, save a Word document as an HTML document and then look at
the result in a text editor such as Notepad!)

RTF (“rich text format”) documents are also unacceptable, as they still retain some
formatting information that is inappropriate for an HTML document. Any document that
contains “smart quotes” rather than "straight quotes" can also cause problems, because
smart quotes may not be displayed properly by browsers. (This is much less of a problem
on current browsers than it used to be.)

There are commercial Web development tools that allow you to create Web pages with-
out actually knowing anything about HTML or JavaScript. These applications are not
suitable for use with this book. The obvious reason is that the primary purpose of the book
is to show you how to write your own HTML documents and JavaScript code. Also, these
applications may create HTML files that are much larger and more complex than they need
to be for basic HTML documents. So, these applications are better suited for Web develop-
ment projects that involve a lot of graphics and the other “bells and whistles” that make
commercial Web pages attractive.

Creating an HTML/JavaScript document that works properly inevitably involves switch-
ing back and forth between a text editor and a browser—making changes and observing the
effects of those changes. Once you create a basic HTML document, you can open it in your
browser and move back and forth between this document and your text editor. Whenever you
change the document, you can reload or refresh it in your browser. It is certainly possible, but
not particularly convenient, to do this with a simple text editor such as Notepad.

There are many commercial software tools whose purpose is to facilitate writing and
editing HTML documents by integrating document creation, editing, and viewing. As
noted previously, some of them are intended for large and complicated projects and may
be “overkill” for use with this book. For several years, for creating this book and in my
own day-to-day work, I have used Visicom Media’s AceHTML Freeware V.5 (see www.
visicommedia.com). This software provides an HTML/JavaScript editor with some auto-
matic color-based text formatting that makes HTML instructions and JavaScript code
easier to read. There is an integrated browser, so it is easy to switch back and forth between
creating and editing a document and seeing the results of your work.

AceHTML also has a JavaScript syntax checker. As is typically the case, the checker
isn’t very good at telling you how to fix a syntax error, but it at least tells you where the
error was detected. The freeware version of this editor may or may not be available cur-
rently, and it may require you to install other software that you may or may not want on
your computer. At the time this book was being published, freeware versions of AceHTML
were still available, as were versions available for purchase.

Although, in principle, it shouldn’t make any difference which browser you use, the
outputs displayed in this text come from either AceHTML’s internal browser or Mozilla’s
Firefox, which is the default browser on the author’s Windows computers. When you

SRecent versions of AceHTML assume XHTML as the default language, rather than HTML. If
you use such a version with this book, you must override this assumption by saving files with
.htmor .html extensions.

6 1 Introducing HTML and JavaScript

display content in an “alert” box, as will be described later in this book, the appearance of
this box is different for different browsers, and hence may be different from what is dis-
played in this book.

114
Some Typographic Conventions Used in This Book

HTML tags and JavaScript code are printed in a monospaced (Courier) fontin
document examples and whenever they are referred to in the text. Thus, document is
interpreted as a reference to an HTML object, as opposed to its general use as a term iden-
tifying a body of text. Some technical terms used for the first time are printed in bold font.
Their definitions can be found in the Glossary. Within descriptions of HTML document
features and JavaScript code, user-supplied text is denoted by {italicized text in braces
(curly brackets)}; the curly brackets are not necessarily meant to be included in the user-
supplied text.

AceHTML and other editors typically apply some combination of color coding, bold
fonts, and italicized fonts to various language elements. When HTML code is copied from
the editor and inserted into this black-and-white text, bold and italic fonts are retained but
of course the color coding is not.

The renderings of HTML documents and other output as displayed in a browser window
have been captured and edited on a Windows computer by pressing the PrtScn (or Print
Screen) key and copying the resulting screen image into an image editing program. (Pressing
Alt-PrtScn copies just the currently active window instead of the entire screen.)

Because of the small format of this book, line breaks in document examples are often nec-
essary and may sometimes be misleading. Although every effort has been made to use line
breaks in a way that does not affect the operation of the script, it may sometimes be necessary
to remove some line breaks when you reproduce these documents for your own use.

1.1.5
Where Can You Find More Information About HTML and JavaScript?

By now, it should be clear that this book is in no way intended as a reference source for
either HTML or JavaScript. Any attempt to provide complete coverage for either language
would thoroughly confound the purpose of the book and is far beyond the author’s capa-
bilities! Therefore, you must look elsewhere for exhaustive treatments of HTML and
JavaScript. Here are three useful language reference sources:

Thomas Powell, HTML: The Complete Reference, Third Edition, 2001, Osborne/McGraw-
Hill, Berkeley, CA. ISBN 0-07-212951-4.

Thomas Powell and Dan Whitworth, HTML Programmer’s Reference, Second Edition,
2001, Osborne/McGraw-Hill, Berkeley, CA. ISBN 0-07-213232-9.

Thomas Powell and Fritz Schneider, JavaScript: The Complete Reference, 2001, Osborne/
McGraw-Hill, Berkeley, CA. ISBN 0-07-219127-9.

1.2 Your First HTML/JavaScript Documents 7

If you are at all serious about creating your own online applications (“serious” perhaps
being defined as anything past the bare minimum needed to complete a course based on
this text), there is no substitute for these or similar references.

The first HTML book the author ever read is out of print, but it is still worth looking for
in libraries or remaindered book stores. Even though it addresses an older (and simpler)
version of HTML, it is still an excellent resource for the kinds of applications discussed in
this book and it is included here for reasons that are only partly nostalgic:

Todd Stauffer, Using HTML 3.2, Second Edition, 1996, Que Corporation, Indianapolis, IN.
ISBN 0-7897-0985-6.

1.2
Your First HTML/JavaScript Documents

A typical first goal in learning any programming language is to display a simple message.
With HTML, this is trivially simple: Just type the message in the body of the document, as
shown in Document 1.1. (Appendix 1 contains an index to all documents in the text.) Save
the file with the name shown.

Document 1.1 (HelloWor1dHTML. htm)

<html>

<head>

<title>First HTML Document</title>
</head>

<body> Hello, worldl
Hello, world!
</body>
</html>

Most document examples presented in this text will include a browser’s rendering of
the screen output produced by the document. When a border appears around the output, as
it does for the output from Document 1.1, the purpose is to distinguish the output from the
rest of the text—the document doesn’t generate that border. In the text, renderings are
always in black and white or grayscale. In some cases, as noted, color renderings
are printed on separate color plates. In other cases (such as Document 1.3, below) you will
have to try the code yourself to view outputs in color.

Document 1.1 is certainly not very exciting. But the point is that an HTML document
simply displays the static content you provide. As you will learn in Chap. 2, HTML pro-
vides many facilities for changing the appearance of this content, but not the content
itself.

You can display content with JavaScript, too. With JavaScript, input and output always
pass through an HTML document. Instructions (code) you write in JavaScript are called

8 1 Introducing HTML and JavaScript

ascript. The capability to interpret JavaScript instructions must be built into your browser.
Document 1.2 uses JavaScript to generate a simple text message that is displayed in the
document. There is no good reason to use JavaScript simply to display fixed content, but
this exercise will provide an introduction to JavaScript syntax. Don’t worry if the details
of this and following examples seem obscure—hopefully, future chapters will clarify all
these details!

Document 1.2 (HelloWorld.htm)

<html>
<head>
<title>Hello, world!</title>
<script language="javascript" type="text/javascript">
// These statements display text in a document.
document.write ("Hello, world!");
document.write ("
It's a beautiful day!");

</script>
</head>
<body>
<!-- No content in the body of this document. -->
z;i::lii Hello, w-::-rl;i!
It's a beaunfil day!

A browser must be instructed to interpret certain parts of an HTML document as
JavaScript code. To accomplish this, all text appearing inside the script element will
be interpreted by a browser as one or more JavaScript statements. This means that HTML
elements cannot appear inside the script element, because then the JavaScript inter-
preter would attempt (inappropriately) to interpret them as JavaScript code. This will
generate a JavaScript error. In Document 1.2, the
 tag, which generates a line
break, is an HTML element, but it is included inside a quoted string of text. This is
allowed, but

document.write ("Hello, world!");

 document.write ("It's a beautiful day!");

18 not.

As noted previously, JavaScript is an object-based language. In programming terminol-
ogy, an HTML document is an object. Using JavaScript, predefined methods can be used
to act on a specified object. (Objects will be discussed in more detail starting in Chap. 4.)
Document 1.2 accesses (“calls” or “invokes”) the write () method of the document
object to display text. A method is associated with its object by using “dot notation,” as in
document.write ().

Methods such as write () often, but not always, require one or more inputs, referred
to as calling arguments. In Document 1.2, the text strings "Hello, world!" and
"
It's a beautiful day!"; (enclosed in single or double quotes) are

1.2 Your First HTML/JavaScript Documents 9

calling arguments for the write () method. Calling arguments provide the values on
which a method acts.

As you will see, most HTML elements include attributes that are used to assign prop-
erties to the element. The script element should include values for the 1anguage and
type attributes, as shown:

<script language="javascript" type="text/javascript">

However, HTML does not actual require that these attributes be included. Comments
within an HTML document are indicated by a specific sequence of symbols:

<!== {comments} —->

In keeping with the style adopted in this book, italicized text enclosed in curly brackets
indicates text that is entered by the user. The curly brackets could be part of the comment,
but are not needed and would normally not be included.

Inside a script element, single-line comments begin with two slashes, as in the fifth
line of Document 1.2. Comments are a basic part of good programming style, no matter
what the language. Some authors prefer not to use many comments in HTML/JavaScript
because it increases the size of the file that must be sent to the client computer. However,
when you are learning the material presented in this book, there is no excuse for not mak-
ing liberal use of comments as reminders to yourself of what you are doing.

One use of HTML comments is to hide JavaScript code from browsers that don’t have
a JavaScript interpreter. This is much less of a problem than it might have been several
years ago. It is also irrelevant for now because, of course, your browser must support
JavaScript in order to be useful for this book. In any event, JavaScript hiding is done like
this:

<script language="javascript" type="text/javascript">
<!-- Start hiding JavaScript code here.
{Put JavaScript statements here.}
// Stop hiding code here. -->
</script>

Although these HTML comment tags appear to be out of place because HTML elements
can’t appear inside a script element, a browser that does support JavaScript will ignore
the HTML comment tags themselves and a browser that doesn’t support JavaScript will
ignore everything inside the comment tags.

HTML syntax is case-insensitive, which means that <htm1> is equivalent to <HTML>
or even <hTmL>. Some HTML document authors favor uppercase spellings for tags
because they stand out from the text content. However, XHTML (extended HTML), the
apparent successor to HTML, requires tags to be in lowercase letters.* Hence, this text will

“Although this book adopts some XHTML style rules, the documents are written in HTML and
are not intended to be fully XHTML-compliant.

10 1 Introducing HTML and JavaScript

always use lowercase letters for tag names. Note that, despite previous warnings that file
names and commands are case-sensitive in some systems, browsers should not be case-
sensitive in their interpretation of HTML tags, regardless of the underlying operating
system.

JavaScript syntax is always case-sensitive, regardless of the computer system on which it
runs, like the C/C++ languages from which it is derived. So, when you write JavaScript code,
you need to be very careful about case. For example, document is an object name recognized
by JavaScript, but Document is not. (Try this in Document 1.2 if you need convincing.)

Note that each of the two JavaScript statements (the calls to document .write ())is
terminated with a semicolon. JavaScript interprets a semicolon as “end of statement.” As
a matter of syntax, a line feed at the end of a statement will also be interpreted as marking
the end of that statement. However, it is poor programming practice to use this “implied
semicolon,” and all JavaScript statements appearing in this book should terminate
with semicolons. (Authors are not perfect!)

You can make Document 1.2 a little fancier by using other HTML elements and their
attributes to control the appearance of the text. (Chap. 2 will present much more information
about elements and attributes.) In Document 1.3, font (font description), h1 (heading),
and hr (horizontal rule) are elements, and color, size, and align are attributes. Of
these elements, the hr element requires only a single tag because it does not enclose any
HTML content. Single-tag elements should include a forward slash at the end: <hr />
rather than <hr>.

Document 1.3 (HelloWorld2.htm)

<html>
<head>
<title>Hello, world!</title>
</head>
<body>
<hl align="center">First JavaScript</hl>
<hr />
<script language="javascript" type="text/javascript">
document.write ("<font size='5"'
color='red'><center>Hello, world!");
document.write ("

It's a beautiful day!</center>");
</script>
</body>
</html>

(Try this yourself to see the colors displayed.)

1.2 Your First HTML/JavaScript Documents 1

As previously noted, there is no good reason to use JavaScript to display this fixed
content, but Document 1.3 again makes the point that any HTML tags appearing as part of
the calling argument passed to document.write ()are treated as part of the text
string—the characters enclosed in quote marks—and therefore don’t violate the rule that
HTML elements can’t be used inside a script element. The HTML tags are essentially
“pasted” into the HTML document right along with the text. Within the string

"

It's a beautiful day!</center>"

the attribute values are enclosed in single quotes rather than double quotes. Otherwise,
it would not be clear where the quoted string begins and ends. Using double quotes
inside a statement already enclosed in double quotes will generate a JavaScript error
message.

Another difference between Document 1.2 and Document 1.3 is that, in 1.3, the script
element is inside the body element. This is OK, although we will often try to keep the
script element inside the head element, thus ensuring that the JavaScript code is inter-
preted before the rest of the page is loaded. This detail is of no concern in this example,
whose sole purpose is to display some text.

As expected, this attempted modification of the script, containing HTML tags in a con-
text where a browser expects to see only JavaScript code, will produce an error:

<script language="javascript" type="text/javascript">
<center> // ERROR!!
document.write ("Hello, world");

</script>

You can include more than one script element within an HTML document, as shown
in Document 1.4a, in which there are two separate script sections, arbitrarily divided
into a section above the horizontal rule (see the <hr /> tag) and another below the rule.

Document 1.4a (HelloWorld3.htm)

<html>

<head>

<title>Hello, world! (v.3)</title>

</head>

<body bgcolor="lightgreen" text="magenta">

<hl align="center">First JavaScript</hl>

<script language="javascript" type="text/javascript">
document.write ("
This document was last modified on
"+document.lastModified+"") ;

</script>

<hr />

12 1 Introducing HTML and JavaScript

<script language="javascript" type="text/javascript">
document.write ("background = "+document.bgColor) ;
document.write ("
font = " + document.fgColor) ;
document.write ("<font size='5"
color="red'><center>Hello,world!
");
document.write ("
He said, "It's a beautiful day!"
</center>");
</script>
</body>
</html>

(See Color Example 1 for full-color output.)

Document 1.4a contains an answer to this question: How do you display double quote
marks with the document .write () method if you can’t use double quotes inside a
quoted string? The answer: Use the escape sequence " ;. Escape sequences always
start with an ampersand (&) and end with a semicolon (;). There are many escape sequences
for displaying characters that are not available directly from the keyboard or would be
misinterpreted by HTML if entered directly, and we will discuss them later as needed.
A list of commonly used escape sequences appears in Appendix 2.

JavaScript objects have properties as well as methods. Like methods, properties are
associated with objects through the use of dot notation. One useful property of the
document object is lastModified, used in Document 1.4a. As its name suggests, this
property accesses the time and date stamp automatically stored along with a document
whenever it is modified and saved, based on the calendar and clock on the computer used
to create the document. This stamp is automatically attached to the document, without any
special action required by the creator of the document. The lastModified property is
useful for documents that contain time-sensitive information, or just to give users some
idea of whether a page displayed in a browser is current.

Document 1.4a contains these two statements that access two more document
properties:

document.write ("background = "+document.bgColor) ;
document.write ("
font " + document. fgColor) ;

These display a code for the background and font colors.

1.2 Your First HTML/JavaScript Documents 13

Attributes such as size and color have values. These values are supposed to be
enclosed in quotes, although this is not actually required in HTML. Quotes are required in
XHTML and they are always used in this book. You can use either double or single quotes.
In HTML documents, double quotes are generally accepted as the standard. However,
when HTML elements with attributes are included inside quoted strings, as in

document.write ("<font size='5"
color="red'><center>Hello,world!
");
document.write ("
He said, "It's a beautiful day!"
</center>");

then single quotes are required for the values in order to avoid conflict with the double
quotes around the string.

A more reasonable approach to generating the output shown for Document 1.4a is
to use JavaScript only as required to access desired document properties (and per-
haps display some related text), and use HTML for everything else. Document 1.4b is
a modified version of Document 1.4a which does the content formatting with HTML
tags inside the document. There is no need to show the output, as it is identical to that
for Document 1.4a.

Document 1.4b (HelloWor1d3HTML.htm)

<html>

<head>

<title>Hello, world! (with HTML)</title>

<script language="javascript" type="text/javascript">
document.write (
" This document was last modified on

"+document.lastModified+"") ;

</script>

</head>

<body bgcolor="lightgreen" text="magenta">

<hl align="center">First JavaScript</hl>

<hr />

<script language="javascript" type="text/javascript">
document.write ("background = "+document.bgColor) ;
document.write ("
font = " + document.fgColor) ;

</script>

<center>Hello,world!

He said, "It's a beautiful day!"</center>"

</body>

</html>

1.3 Accessing HTML Documents on the Web 15

institution may have to purchase space on a commercial Web server or they can set up their
own server. In any case, access to Web pages is universal in the sense that any computer
with an Internet connection and a browser can request to be connected to a Web site
through its Internet address—its Uniform Resource Locator (URL).

Not all HTML documents have to be publicly accessible on the Web. They can be pro-
tected with logon identifications and passwords, or they can be available only locally
through an intranet (as opposed to the Internet). The Internet is a global network of inter-
connected computers, whereas an intranet is a local network that may or may not also
provide connections to the Internet. For example, a company can provide an intranet with
no external access, exclusively for internal use by its own employees.

Note that when you view HTML documents in the browser on your local computer,
they are not available on the Internet unless you have specifically set up a server on your
computer, assigned it a URL, and placed HTML documents in a folder associated with that
server. Usually you have to purchase a URL from a company that specializes in hosting
Web sites, but it may also be possible to associate your local network with a free URL
obtained from one of these companies.’

Internet addresses look something like this:

http://www.myUniversity.edu/~myName/index.htm

Internet addresses usually start with the http:// prefix, to indicate that the Hypertext
Transfer Protocol (HTTP) is being used. There are some variations, such as ht tps, which
indicates that the address that follows resides on a secure server, as required for financial
transactions, for example. The rest of the address identifies a Web server and then a folder
or directory on a computer system at myUniversity for someone named myName. The
. edu extension identifies this site as belonging to an educational institution, in the same
way as .gov, .com, and . org identify government, commercial, and organization sites.
The ~ symbol is often used as a “shorthand” identifier for a folder (or directory) set aside
for Web pages belonging to a user whose name follows the ~, but there are many ways to
specify the location of Web pages. Sometimes names in URLSs are case-sensitive, depend-
ing on the operating system installed on the computer system containing the Web page. So,
if you type myname instead of myName in the above URL, it may not work. Users of
Windows computers should note the use of forward slashes rather than backslashes to
separate folders (or directories).

The index.htm (or index.html) file contains the home page for this individual.
By default, the index.htm file is automatically opened, if it exists, whenever this URL
is accessed. That is, the address

http://www.myUniversity.edu/~myName/
is equivalent to the address that includes the index . htm file name.

At the time this book was being written, the author was running a server using a free URL
provided by www.no-ip.com.

16 1 Introducing HTML and JavaScript

As they were being developed, the documents discussed in this book resided neither on
the Internet nor on an intranet. Instead, they were simply stored in a folder on a computer
and accessed through the file menu in a browser, just as you would access a file with any
other software application. For example, the “address” on the author’s computer for the
first document in this text is

file:///C:/Documents%20and%20Settings/David/Desktop/
JavaScript/JavaScriptCode/HelloWorld.htm

Spaces are represented by the hexadecimal code %20 and, yes, there are three forward
slashes following file :. To view this document stored somewhere on your computer, you
don’t have to open your browser and type in the complete address. All you should have to
do is double click on the file and it should automatically open in your browser.

You should create a separate folder on your computer as you work through the exam-
ples in this book and write your own documents. You could make documents you create
yourself accessible on the Internet or an intranet by placing them on a Web server. For
example, if you are taking a course based on this book, your instructor may require you to
post homework assignments on a Web site.

1.4
Another Example

This example shows how to include an image in an HTML document.
Document 1.5 (house.htm)

<html>

<head>

<title>Our New House</title>

<script language="javascript" type="text/javascript">
document.write ("This document was
last modified on "+document.lastModified+"");
</script>

</head>

<body>

<h1l>Our New House</hl>

<p>

Here's the status of our new house. (We know you're
fascinated!)</p>

<!-- Link to your image goes here. —-->

</body>

</html>

1.4 Another Example 17

There are several image formats that are widely used in HTML documents, including
image bitmaps (.bmp), Graphics Interchange Format (.gif), and Joint Photographic
Experts Group (. jpg).

The original . jpg file has been
compressed, and this process can
result in jagged edges where edges
should be straight. This effect is vis-
ible in the house framing and roof
lines.

Within the img element, height
and width attributes allow you to
control the size of the image display
(in pixels). However, this is not nec-
essarily a good idea for photos like
this because it is not equivalent to
actually “resizing” the image, as is
possible with image-editing soft-
ware.® Hence, it is important to use
images that initially are sized appro-
priately. The house.jpg image
was resized to 300 pixels high by
400 pixels wide, which retained the height-to-width ratio of the original (cropped) photo.
If a very large high-resolution image file is displayed as a very small image, using the
height and width attributes, the original large file must still be transmitted to the client
computer. In view of the fact that high-resolution images can produce very large files (>10
Mb), it is still important to consider appropriate resolution and sizing for images included
in HTML documents, even in an age of high-speed broadband Internet connections and
large amounts of online storage space. (The size of the compressed grayscale house.
jpg image printed here is about 93 Kb.)

Document 1.5 could be made into a default home page simply by changing its name to
index.htm.

Here is a final admonition which hopefully does not sound too preachy: Intellectual
honesty and fairness in the use of other people’s material is important, no matter what the
setting. The image displayed by Document 1.5 was taken by this book’s author, of his own
house under construction. In other words, the author “owns” this image. Whenever you
post images (or other material, for that matter) online, please be careful to respect intel-
lectual property rights. Your default approach should be that online materials are copy-
righted and cannot be used freely without permission. If you are in doubt about whether
you have permission to use an image or other material, don’t!

*IrfanView (www.irfanview.com) has been used for all image processing in this book. This very
popular freeware program does an excellent job of resizing images while maintaining detail from
the original image. Of course, its future availability cannot be guaranteed to readers of this book.

HTML Document Basics

Abstract Chapter 2 describes the characteristics of an HTML document, including some of
the basic HTML elements and their attributes. The list of attributes will not necessarily be
complete, but includes a subset that will be used in this book. The chapter includes a description
of how to set colors in documents and a brief introduction to cascading style sheets (CSS).

2.1
Documents, Elements, Attributes, and Values

2.1.1
Essential Elements

Asnoted in Chap. 1, JavaScript needs an HTML document to serve as a user interface. (Or,
the other way around, HTML documents need a scripting language such as JavaScript to
manage interactions with users.) A basic HTML document consists of four sections defined
by four sets of elements, arranged as follows:

<html>
<head>
<title> .. </title>

</head>
<body>

</body>
</html>

Each of these elements has a start tag and an end tag. Tags are always enclosed in angle
brackets <...> and the end tag always includes a forward slash before the element name.
The body element supports attributes that can be used to control the overall appearance
of an HTML document. Documents, elements, attributes, and values are organized in a
specific hierarchy:

HTML document — elements — attributes — values

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, 19
DOI 10.1007/978-0-85729-449-4 2, © Springer-Verlag London Limited 2011

20 2 HTML Document Basics

Elements exist within a document. Elements can have attributes and attributes (usually)
have values. Note that some of the elements are nested inside others. For example, all other
elements are nested inside the html element, and the title element is nested inside the
head element.

Following is a brief description of the four elements that will be part of every HTML
document. Attributes, if any, are listed for each element. Note, however, that not all pos-
sible attributes are listed. Thus, a listing of “none” may mean that there are attributes for
this element, but that they are not used in this book. Consult an HTML reference manual
for a complete list of attributes. Because several elements can share common attributes,
attributes and their values are listed separately, following the list of elements.

<body> .. </body>

The body element contains the HTML document content, along with whatever
elements are required to format, access, and manipulate the content.
Attributes: background, bgcolor, text

<head> .. </head>

The head element contains information about the document. The head element
must contain a title element and under XHTML rules, the title must be the first
element after head. From the perspective of this book, the other important element to
be included in head is script, which will contain JavaScript code.
Attributes: none

<html> .. </html>

The html element surrounds the entire document. All other HTML clements are
nested within this element.
Attributes: none

<title> .. </title>

The title element contains the text that will be displayed in the browser’s title bar.
Every HTML document should have a title, included as the first element inside the
head element.
Attributes: none

2.1.2
Some Other Important Elements

The four basic elements discussed previously constitute no more than a blank template for
an HTML document. Other elements are needed to display and control the appearance of
content within the document. Here are some important elements that you will use over and
over again in your HTML documents. They are listed in alphabetical order. The list of attri-
butes is not necessarily complete, but includes only those which will be used in this book.

2.1 Documents, Elements, Attributes, and Values 21

<a>..

The a (for “anchor”) element provides links to an external resource or to an internal
link within a document.
Attributes: href, name

 ..

The b element forces the included text to be displayed in a bold font. This is a
“physical element” in the sense that it is associated specifically with displaying text in
a bold font, even though the actual appearance may depend on the browser and com-
puter used. In contrast, see the st rong element below.
Attributes: none

 or

The br element inserts a break (line feed) in the text. Multiple breaks can be used to
insert multiple blank lines between sections of text. The break element has no end tag
because it encloses no content. Under XHTML rules, a closing slash (after a space)
must be included:
. The slash is rarely seen in older HTML documents, so its
use will be encouraged but not required.
Attributes: none

<center> .. </center>
The center element causes displayed text to be centered in the browser window.
Attributes: none

 ..

This is a “logical element” that will typically cause text to be displayed in italics, but
it can be redefined to produce different results in different environments. For most pur-
poses, em and 1 are interchangeable. See the i element below.
Attributes: none

 ..

The font element controls the appearance of text. The two most commonly used
attributes control the size and color of the text.
Attributes: size, color, face

<hr /> or <hr>

The horizontal rule element draws a shaded horizontal line across the screen. It does
not have an end tag. A closing slash (after a space) is required in XHTML. A noshade
attribute displays the rule as a solid color, rather than shaded.
Attributes: align, color, noshade, size, width

<hn> .. </hn>

Up to six levels of headings (for # ranging from 1 to 6) can be defined, with decreas-
ing font sizes as n increases from 1 to 6.
Attributes: align

(continued)

22 2 HTML Document Basics

(continued)

<i> o </i>

i is a “physical element” that forces the included text to be displayed in italics. The
actual appearance may depend on the browser and computer used. Compare with the
em element above.
Attributes: none

The img element provides a link to an image to be displayed within a document.
The image is stored in a separate file, perhaps even at another Web address, the location
of which is provided by the src attribute.
Attributes: align, border, height, src, vspace, width

<p> .. </p>

The p element marks the beginning and end of a paragraph of text content. Note that
HTML does not automatically indent paragraphs. Rather, it separates paragraphs with
an empty line, with all the text aligned left. It is common to see only the start tag used
in HTML documents, without the corresponding end tag. However, the use of the end
tag is enforced by XHTML and this is the style that should be followed.
Attributes: none

<pre> .. </pre>

The default behavior of HTML is to collapse multiple spaces, line feeds, and tabs to
a single space. This destroys some of the text formatting that you may wish to preserve
in a document, such as tabs at the beginning of paragraphs.

The pre element forces HTML to recognize multiple spaces, line feeds, and tabs
embedded in text. The default action for pre is to use a monospaced font such as
Courier. This may not always be appropriate. But, because line feeds and other text
placement conventions are recognized, pre is very useful for embedding programming
code examples within an HTML document.

Attributes: none

 ..

strong is a “logical element” that will typically cause text to be displayed in a bold
font, but it can be redefined to produce different results in different environments. For
most purposes, b and strong are interchangeable. Compare this with the b tag
above.
Attributes: none

Note that most of the elements described here require both start and end tags. The gen-
eral rule is that any element which encloses content requires both a start and end tag. The
br and hr elements do not enclose content, so no end tag is needed. However, br and hr
should include a closing slash in their tags in order to be XHTML compatible—for
example,
 rather than
, with a space before the slash.

2.1 Documents, Elements, Attributes, and Values 23

Description of attributes:

These descriptions may not include all possible values. For a complete listing, consult an
HTML reference manual.

align= ".."
Values: "1eft", "right", or "center"
Aligns text horizontally.

background = ".."
Value: the URL of a gif- or jpeg-format graphics file.

Setting the background attribute displays the specified image as the background,
behind a displayed HTML document page. Depending on the image size (in pixels),
background images may automatically be “tiled,” resulting in a repeating image that
can be visually distracting. It is not necessary to use background images and they should
be used with care.

bgcolor = ".."
Values: Background colors can be set either by name or by specifying the intensity of
red, green, and blue color components. This topic is addressed in section 2.5 Selecting
and Using Colors.

border=".."
Value: The width, in pixels, of a border surrounding an image.

color = ".."
Values: Text colors can be set either by name or by directly specifying the intensity of
red, green, and blue color components. See section 2.5 Selecting and Using Colors.

face = "."

Values: Font typefaces can be set either generically, with cursive, monospace,
sans-serif, or serif, or with specific font names supported by the user’s com-
puter. The generic names should always produce something that looks reasonable on
any computer, but specific font names that are not available on the user’s computer may
produce unexpected results.

height = "."

Value: The displayed height of an image in pixels (width="80", for example) or,
when followed by a % sign (width="80%", for example), as a percent of total screen
height. The displayed height overrides the actual height of the image file—the number
of rows in the image.

href = "."
Value: The URL of an external or internal Web resource, or the name of an internal
document reference.

hspace = ".."
Value: The horizontal space, in pixels, between an image and the surrounding text.

(continued)

24 2 HTML Document Basics

(continued)

name = ".."

Value: The name assigned to an internal document reference through an “a” element.

size = ".."

Values: An unsigned integer from 1 to 7 or a signed number from +1 to +6 or —1 to —6.
An unsigned integer is an absolute font size, which may be system dependent. The

default value is 3. A signed integer is a font size relative to the current font size, larger

for positive values and smaller for negative values.

For the hr element, size is the vertical height of the horizontal rule, in pixels.

src = "."

Value: As an attribute for an img tag, the URL of a graphics file. For local use, images
and their HTML document are usually stored in the same folder.

text = ".."
Values: The text attribute, used with the body element, selects the color of text in a
document, which prevails unless overridden by a font attribute.

won

vspace =
Value: The vertical space, in pixels, between an image and the surrounding text.

width = ".."

Values: The width of an image or horizontal rule, in pixels or as a percent of total
screen width, in percent. For example, width="80" is interpreted as a width of 80
pixels, but width="80%" is a width equal to 80 percent of the total screen width.
The displayed width overrides the actual pixel width of the image.

Document 2.1 shows how to use some of these elements.
Document 2.1 (tagExamples.htm)

<html>
<head>
<title>Tag Examples</title>
</head>
<body bgcolor="white">
<hl>Here is a Level 1 Heading</hl>
<h2>Here is a Level 2 Heading</h2>
<hr />
<pre>
Here is some preformatted
text that has
been created with the pre element. Note that it
retains the

2.1 Documents, Elements, Attributes, and Values 25

paragraph tab
included
in the <i>original document</i>. Also, it does
not "collapse" line feeds
and

white spaces. Often, it is easier to
use preformatted text than it
is to use markup to get the same effect. Note, however, that
the default
rendering of
preformatted text is to use a monospaced Courier font. This
is often a good choice for
displaying code in an HTML document, but perhaps not a good
choice for other kinds of text content.
</pre><p><center>
Here, a small
graphic (the check box) has been inserted into
the document using the "img" element. This text is outside
the preformatted
region, so the default font is different. If you look at the
original document, you can also see that
white spaces and line feeds are now collapsed.
</p><p>
Note too, that the text is now centered. The way the text is
displayed will
depend on how you
have the display window set in your browser. It may change
when you go from full screen to a window, for example.
</center></p><p>
Centering is now turned off. The default text alignment is
to the left of your screen.
You can change the size and color of text <font size="7"
color="blue"> by using the &It,font>,
eclement.
</body>
</html>

Below is one rendering of Document 2.1. The small checkbox graphic has been created
with Windows’ Paint program. The actual text displayed in your browser is larger than
this, but the output image has been reduced in size (perhaps to the extent of not being read-
able) to fit on the page. Also, because of the line feeds imposed on the text of this code
example by the page width, the output looks a little different from what you might expect.
So, you need to try this document on your own browser.

26 2 HTML Document Basics

Document 2.1 answers an interesting question: How can HTML display characters that
already have a special meaning in the HTML language or which do not appear on the
keyboard? The angle brackets (< and >) are two such characters because they are part of
HTML tags. They can be displayed with the §1t; and > escape sequences (for the
“less than” and “greater than” symbols from mathematics). There are many standardized
escape sequences for special symbols. A list of some of them is given in Appendix 2.

2.2
HTML Syntax and Style

A general characteristic of programming languages is that they have very strict syntax
rules. HTML is different in that regard, as it is not highly standardized. The positive spin
on this situation is to call HTML an “open standard,” which means that self-described
bearers of the standard can treat the language as they see fit, subject only to usefulness and
market acceptance. HTML has an established syntax, but it is very forgiving about how
that syntax is used. For example, when a browser encounters HTML code that it does not
understand, typically it just ignores it rather than crashing, as a “real” program would do.

Fortunately, market forces—the desire to have as many people as possible accept your
browser’s interpretation of HTML documents—have forced uniformity on a large subset
of HTML. This text will adopt some HTML style conventions and syntax that will be as
platform independent as possible. Although these “rules” might seem troublesome if you
are not used to writing stylistically consistent HTML documents, they should actually
help beginners by providing a more stable and predictable working environment. The
only things worse than having syntax and style rules are having no rules or rules that
nobody follows.

2.2 HTML Syntax and Style 27

Here are some style rules that will be used in this text. Under the circumstances of
HTML, they are more accurately referred to as “guidelines.” Some of them will make
more sense later on, as you create more complicated documents.

1. Spell the names of HTML elements in lowercase letters.
Unlike JavaScript and some other languages, the HTML language is not sensitive to
case. Thus, <html>, <HTML>, and <hTmL> are equivalent. However, the XHTML
standard requires element names to be spelled with lowercase letters. In the earlier days
of HTML, many programmers adopted the style of using uppercase letters for element
names because they stood out in a document. You will often still see this style in Web
documents. Nonetheless, this book will consistently use lowercase letters for element
names.

2. Use the pre element to enforce text layout whenever it is reasonable to use a mono-
spaced font (such as Courier).
HTML always collapses multiple “white space” characters—spaces, tabs, and line
breaks—into a single space when text is displayed. The easiest way to retain white
space characters is to use the pre element. Other approaches may be needed if propor-
tional fonts are required. Also, tabbed text may still not line up, as different browsers
have different default settings for tabs.

3. Nest elements properly.
Improperly nested elements can cause interpretation problems for your browser. Even
when browsers do not complain about improperly nested elements, HTML is easier to
learn, read, and edit when these restrictions are enforced.
Recall this markup in Document 2.1:

Here is some preformatted
text

If you write this as:

Here is some

..{text}

it is easy to see that the em element is properly nested inside the strong element. If
this is changed to

 ..{text}

your browser probably won’t complain, but it is not good programming style.

28 2 HTML Document Basics

It is more common to use b and 1 tags instead of strong and em:

Here is some

<i>

. {text}

</i>

4. Enclose the values of attributes in single or double quotes

In Document 2.1, bgcolor="white" is an attribute of <body>. Browsers generally
will accept bgcolor=white, but the XHTML standard enforces the use of quoted
attribute values. This text will be consistent about using double quotes unless attribute
values appear inside a string that is surrounded with double quotes (for example, an
attribute value embedded in a parameter in the document .write () method). Then
attribute values will be single-quoted.

2.3
Using the script Element

The script elements (there can be more than one set of script tags in a document) often,
but not always, appear inside the head element, after the title element. Here is a
description of script along with its essential attributes.

<script language="javascript" type="text/javascript">

</script>
Attributes: 1anguage, type, src

The values usually assigned to the language and type attributes are
language="javascript" and type="text/javascript". The values shown
in the description are default values, so for documents using JavaScript, it is usually not
actually required to include these attributes.

The src attribute has a value corresponding to the name of a file containing JavaScript,
usually (but not necessarily) with a . js extension. This attribute will be used in a later
chapter.

24
Creating and Organizing a Web Site

Obviously this is a major topic, a thorough investigation of which would go far beyond the
reach of this text. There is an entire industry devoted to hosting and creating Web sites,
including helping a user obtain a domain name, providing storage space, developing

2.4 (reating and Organizing a Web Site 29

content, and tracking access. For the purposes of a course based on this text, the goal is
extremely simple: create a Web site sufficient to display the results of work done during
the course.

The first step toward creating a Web site is establishing its location. In an academic
environment, a college, university, or department computer may provide space for Web
pages. A URL might look something like this:

http://www.myuniversity.edu/~username
where the “~” symbol indicates a directory where Web pages are stored. Together with a
user name, this URL directs a browser to the home Web directory for that user. As noted
in Chap. 1, HTML documents are not automatically Internet accessible, and for the pur-
poses of this book, your Web pages may be accessible only locally on your own
computer.

In this home directory there should be at least one file, called index.htm (or index.
html). UNIX systems favor the .html extension, but Windows users may prefer the
three-character . htm extension because it is more consistent with Windows file extension
conventions. This is the file that will be opened automatically in response to entering the
above URL. That is, the index . htm file is the “home page” for the Web site. This home
page file could be named something different, but then its name would have to be added to
the URL:

http://www.myuniversity.edu/~username/HomePage.htm

An index.htm file can contain both its own content as well as links to other content
(hyperlinks), including other pages on the user’s Web site and to external URLs. Here are
four important kinds of links:

1. Links to other sites on the World Wide Web.
This is the essential tool for globally linking Web pages.

Syntax:
{description of linked Web page}

The URL may refer to a completely different Web site or it may be a link to local docu-
ments in the current folder or a subfolder within that folder.

2. Links to images.
The img element is used to load images for display or to use as a page background.

Syntax: <img src="{URL plus image name}" align=".."
height=".." width=".." />

The image may exist locally or it may be at a different Web site. The align, height,
and width attributes, which can be used to position and size an image, are optional.

30 2 HTML Document Basics

However, for high-resolution images, it is almost always necessary to specify the height
and width as a percentage of the full page or as a number of pixels in order to reduce the
image to a manageable size in the context of the rest of the page. Resizing the image, if
possible, will solve this problem.

You can also make a “clickable image” to direct the user to another link:

Syntax:
<img src="{URL plus image name}" align=".."
height=".." width=".." />

3. Links to e-mail addresses.
An e-mail link is an essential feature that allows users to communicate with the author
of'a Web page.

Syntax:
{description of recipient}

Often, but not necessarily, the {description of recipient} is also the e-mail address. The
actual sending of an e-mail will be handled by the default mailer on the sender’s
computer.

4. Internal links within a document.
Within a large document, it is often convenient to be able to move from place to place
within the document, using internal links.

Syntax:
{description of target position}

{target text}

The “#” symbol is required when specifying the value of the href attribute, to differ-
entiate this internal link from a link to another (external) document.

The careless specification of linked documents can make Web sites very difficult to
maintain and modify. As noted previously, every Web site should have a “home” directory
containing an index.htm file. In order to make a site easy to transport from one com-
puter to another, all other content should be contained either in the home directory or in
folders created within that directory. References to folders that are not related in this way
should be avoided, as they will typically need to be renamed if the site is moved to a dif-
ferent computer. Although it is allowed as a matter of syntax to give a complete (absolute)
URL for a local Web page, this should be avoided in favor of a reference relative to the
current folder.

This matter is important enough to warrant a complete example. Document 2.2a—c
shows a simple Web site with a home folder on a Windows desktop called home and two
subfolders within the home folder named homework and personal. Each subfolder
contains a single HTML document, homework.htm in homework and resume . htm
in personal.

2.4 (reating and Organizing a Web Site 31

Document 2.2a (index.htm)

<html>

<head>

<title>My Page</title>

</head>

<body>

<V-- These absolute links are a bad idea! -->

Here are links to

<a href="C:/Documents and Settings/David/desktop/

JavaScript/Book/homework.htm">homework and

<a href="C:/Documents and Settings/
David/desktop/JavaScript/Book/resume.htm">

personal documents.

</body>

</html>

Document 2.2b (resume . htm)

<html>

<head>
<title>Resumé</title>
</head>

<body>

Here is my resumé.
</body>

</html>

Document 2.2¢ (homework.htm)

<html><head>
<title>Homework</title>
</head>

<body>

Here are my homework problems.
</body>

</html>

Note that Document 2.2a uses forward slashes to separate the directories and the file
names. This is consistent with UNIX syntax, but Windows/DOS systems use backward
slashes. Forward slashes are the HTML standard, and they should always be used even
though backward slashes may also work. Another point of interest is that UNIX directory
paths and filenames are case-sensitive, but Windows paths and filenames are not. This
could cause problems if you develop a Web page on a Windows/DOS computer and then
move it to a UNIX-based system. As a matter of style, you should be consistent about case
in directory and file names even when it appears not to matter.

32 2 HTML Document Basics

As a brief diversion, the “¢” in resumé in Document 2.2b is produced by entering the
escape sequence é.

In Document 2.2a, the absolute references to a folder on a particular Windows com-
puter desktop are a bad idea because this reference will need to be changed if the index.
htm file is moved to a different place on the same computer, or to a different computer—
for example, to a University department computer with a different directory/folder struc-
ture. Document 2.2d shows the preferred solution. Now the paths to homework . htmand
resume.htm are given relative to the home folder, wherever the index2.htm file
resides. (Remember that this file, no longer named index . htm, will not be recognized as
a default home page.) This document assumes that folders homework and personal
exist in the home folder. This relative URL should work without modification when the
Web site is moved to a different computer. If the Web site is moved, only a single refer-
ence, to the index2 . htm file, needs to be changed.

Document 2.2d (index?2 .htm, a new version of index.htm)

<html>

<head>

<title>My Page</title>

</head>

<body>

<l-- Use these relative links instead! -->
Here are links to

homework and

personal documents.
</body>

</html>

Proper attention to using relative URLs from the very beginning when designing a Web
site will save a lot of time in the future!

25
Selecting and Using Colors

As previously noted, several attributes, such as bgcolor, are used to set colors of text or
backgrounds. Colors may be identified by name or by a six-character hexadecimal numeric
code that specifies the strength of the signal emitted from the red, green, and blue electron
“guns” that excite the corresponding phosphors on a cathode ray tube color monitor screen.
This convention has been retained even when other display technologies are used. The hex
code is in the format # RRGGBB where each color value can range from 00 (turned off) to
FF (maximum intensity).

34 2 HTML Document Basics

2.6
Using Cascading Style Sheets

As you create more Web pages, you may wish to impose a consistent look for all your
pages, or for groups of related pages. It is tedious to insert elements for all the characteris-
tics you may wish to replicate—font size, font color, background color, etc. Style sheets
make it much easier to replicate layout information in multiple sheets. A complete discus-
sion of style sheets is far beyond the scope of this book, as there are many different kinds
of style sheets, many ways to make use of them, and many browser-specific nuances. This
book will use cascading style sheets (CSS), which are widely accepted as a default kind
of style sheet, but will present only a small subset of all the possibilities! By way of intro-
duction, Document 2.3 shows how to use a st yle element to establish the default appear-
ance of the body of an HTML document.

Document 2.3 (stylel.htm)

<html>

<head>

<title>Style Sheets</title>

<style title="David's default" type="text/css">
body.bright {background: red; font: 16pt serif;

color: blue; font-style: italic; font-weight: bold}

</style>

</head>

<body class="bright">

Here is the body.

</body>

</html>

The style element has an optional tit1le attribute and a t ype attribute set equal to
"text/css", where the css stands for cascading style sheet. Inside the style ele-
ment, dot notation is used to assign a class name, bright, to the body element: body .
bright. Inside curly brackets attributes are assigned values, with each attribute and its
value being separated by a semicolon. Then, the <body> tag assigns the class name
bright as the value of the class attribute. As a result, the document background color
is red, with the font set to a blue, bold, italicized 16-point serif font.

Any HTML tag that encloses content can be assigned a class value defined in a style
element. For this simple example, with styles applying only to a single body element, the
class name is optional. With no class name and no class attribute in <body>, the style
rules will automatically be applied to the entire HTML document.

In general, several different style rules can apply to the same HTML element. For
example, several style rules could be established for paragraphs (<p> .. </p>), each of
which would have its own class name.

2.6 Using Cascading Style Sheets 35

In summary, style specifications follow a hierarchy:

style element — other HTML elements/.class name] —
properties — value(s)

where the /.class name] is optional.

How did CSSs get that name? Because the properties set for an element cascade down,
or are “inherited,” by other elements contained within that element unless those elements
are assigned their own style properties. So, for example, properties set for the body ele-
ment are inherited by the p and h1 elements, because these are contained within the body
element. Properties set for the head element are inherited by content appearing in the
title element.

CSSs can be used to modify the appearance of any HTML element that encloses con-
tent. Here are some properties that can be specified in style sheets.

Background properties

background-color

When used in a body element, background-color sets the background color for an
entire document. It can also be used to highlight a paragraph, for example, when used with
a p element.

background-image

This property is used with a URL to select an image file (gif or jpeg) that will appear as a
background. Typically, this is used with a body element, but it can also be used with other
elements, such as p. For other background properties that can be used to control the appear-
ance of a background image, consult an HTML reference text.

background

This allows you to set all background properties in a single rule.

Color property

The color property sets the default color for text, using the descriptions discussed in
Sect. 2.5.

Font properties

font-family

Font support is not completely standardized. However, browsers that support style sheets

should support at least the generic font families given in Table 2.2.

Example: font-family: Arial, sans-serif;

2.6 Using Cascading Style Sheets 37

your browser choices, with the generic name as the last choice, you can be reasonably sure
that text will be displayed with a sans-serif font.

Text properties

Of the many text properties, here are just three that may be useful.

text-align

This is used in block elements such as p. It is similar in effect to the HTML align attri-
bute. The choices are left, right, center, and justify. With large font sizes,
justify may produce odd-looking results.

Example: text-align: center;

text-indent

Recall that paragraphs created with the p element do not indent the first word in the para-
graph. (HTML inserts a blank line, but left-justifies the text.) This property allows you to
set indentation using typesetting notation or actual measurements. An actual English or
metric measurement—inches (in), millimeters (mm), or centimeters (cm)—may be easiest
and will always give predictable results.

Example: text-indent: 0.5in;

white-space

The value of this property is that you can prevent spaces from being ignored. (Remember
that the default HTML behavior is to collapse multiple spaces and other nonprintable char-
acters into a single blank space.) Some older browsers may not support this property. You
can use the HTML pre element by itself, instead, but this causes text to be displayed in a
monospaced font such as Courier. The example given here retains white space regardless
of the typeface being used.

Example: white-space: pre;

Styles aren’t restricted just to the body element. For example, paragraphs (<p>
</p>) and headings (<hn > .. </hn>) can also have styles associated with them. You
can also set styles in selected portions of text, using the span element, and in blocks of
text using the div element.

<div> .. </div>
Attributes: align, style

 ..
Attributes: align, style
Values for align: "1eft" (default), "right", "center"

38 2 HTML Document Basics

You can create style sheets as separate files and then use them whenever you wish to use
a particular style on a Web page. This makes it easy to impose a uniform appearance on
multiple Web pages. Documents 2.4a and 2.4b show a simple example.

Document 2.4a (body.css)

body {background:silver; color:white; font:24pt Times}
hl {color:red; font:18pt Impact;}
h2 {color:blue; font:16pt Courier;}

Document 2.4b (style2.htm)

<html>
<head>
<title>Style Sheet Example</title>
<link href="body.css" rel="stylesheet"
type="text/css" />
</head>
<body>
<hl>Heading 1</hl>
<h2>Heading 2</h2>
Here is some text.
</body>

</html>
(See Color Example 2 for full-color output.)

This example shows how to create a file, body . css, containing style elements that
can be applied to any document by using the 1ink element, as in Document 2.4b. The
.css extension is standard, but not required. (You could use .txt, for example.)
Although this example is very simple, the concept is powerful because it makes it easy to
create a standard style for all your documents that can be invoked with the 1 ink element.
The Impact font chosen for h1 headings may not be supported by all browsers. If not, a
default font will be used in its place.

The attributes of 1ink include href, which contains the URL of the style sheet file,
the rel="stylesheet" (relationship) attribute, which describes how to use the file (as
a style sheet), and the type, which should be "text/css", just as it would be defined
if you created a style element directly in the head element. In this example, body .
css is in the same folder as style2.htm. If you keep all your style sheets in a separate
folder, you will of course need to reference that folder.

It is worth emphasizing that this discussion has barely scratched the surface of style
sheets. Style sheets can make your Web pages more visually appealing and can greatly
simplify your work on large Web projects. Some developers advocate replacing a// indi-
vidual formatting elements, such as font and its attributes, with style sheet specifications.
In newer versions of HTML, the use of individual formatting elements is “deprecated,” but
there is little likelihood that support for them will disappear from browsers in the foresee-
able future. For the kinds of applications discussed in this book, CSSs may sometimes be
convenient, but they are not required.

2.7 Another Example 39

2.7
Another Example

Documents 2.5a, b show how to use a style sheet file to specify different background and
text colors for different sections of text.

Document 2.5a (rwb . css)

p.red {background:red;color:blue;font:20pt Times}
div.white {background:white;color:red;font:20pt Times}
span.blue {background:blue;color:white;font:20pt Times}

Document 2.5b (rwb . htm)

<html>

<head>

<title>A Red, White, and Blue Document</title>

<link href="rwb.css" rel="stylesheet" type="text/css" />
</head>

<body>

<p class="red">

This text should be blue on a red background.
</p><p><div class="white" style="font-style: italic;">
This text should be red on a white background.
</div></p>

<p>This text should be white on a Dblue
background.

</p>

</body>

</html>

(See Color Example 3 for full-color output.)

The stars (they are supposed to be red, silver, and blue) have been drawn using Windows’
Paint program.

HTML Tables, Forms, Lists, and Frames

Abstract Chapter 3 shows how to use HTML tables, forms, lists, and frames. It explains
how to organize documents for user input by combining forms and tables, and how to send
the contents of a form back to its creator.

3.1
The tabl e Element

3.11
Basic Table Formatting

HTML tables and forms are the two most important ways to organize the content of a Web
page. Forms are critical because they provide a user interface for JavaScript. Sometimes it
is helpful to organize information in a form through the use of one or more tables. With
that approach in mind, first consider tables.

Because HTML ignores text formatting, such as white space and line feeds (the Enter
key), it can be difficult to control the placement of content on a web page. The addition of
images only compounds this problem. An easy way to gain some control is to create a
table, using the table element. Then the relative locations of text and graphics can
be established by entering them into cells of the table. Within the start and end tags,
<table> .. </table>, rows and cells are defined with the tr (“table row”) and td
(“table data”) elements. These elements are nested as follows:

<table>
<tr>
<td> .. </td> {as many columns as you need...}
</tr>
{as many rows as you need...}

</table>

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, |
DOI 10.1007/978-0-85729-449-4 3, © Springer-Verlag London Limited 2011

42 3 HTMLTables, Forms, Lists, and Frames

The <tr> .. </tr> tags define the rows and the <td> .. </td> tags define cells
in columns within those rows. You can define as many rows and columns as you need.
With these elements, you can organize information in a familiar spreadsheet-like row-and-
column format. Document 3.1 shows how to use a table to organize and display some
results from residential radon testing.

Document 3.1 (radonTable.htm)

<html>
<head>
<title>Radon Table</title>
</head>
<body>
<hl>Results of radon testing</hl>
<p>
The table below shows some radon levels measured in
residences.
 For values greater than or equal to 4
pCi/L, action should be taken
 to reduce the
concentration of radon gas. For values greater than or

equal to 3 pCi/L, retesting is recommended.
</p>
<table>
<tr bgcolor="silver">
<td>Location</td><td>Value, pCi/L</td>
<td>Comments</td></tr>
<trc>
<td>DB's house, basement</td><td>15.6</td>
<td bgcolor="pink">Action should be taken!</td></tr>
<trc>
<td>ID's house, 2nd floor bedroom</td><td>3.7</td>
<td bgcolor="yellow">Should be retested.</td></tr>
<trc>
<td> FJ's house, 1st floor living room</td><td> 0.9</td>
<td bgcolor="1lightgreen">No action required.</td></tr>
<trc>
<td> MB's house, 2nd floor bedroom</td><td>2.9</td>
<td bgcolor="1lightgreen">No action required.</td></tr>
</table>
</body>
</html>

3.1 The table Element 43

(See Color Example 4 for full-color output.)

The syntax for tables includes several possibilities in addition to tr and td for
customizing the appearance of a table. These include the caption element, which asso-
ciates a caption with the table, and the th element, which is used to create a “header” row
in a table by automatically displaying text in bold font. (The th element can be used
anywhere in a table in place of td.) The caption, td, th, and tr elements are used
only inside the start and end tags of a table element: <table> .. </table>. With
these elements, a more comprehensive table layout looks like this:

<table>
<caption> .. </caption>
<tr>
<!-- Use of th in place of td is optional. -->

<th> .. </th>

</tr>
<tr>
<td> .. </td>

</tr>
</table>
The attributes associated with these tags all have default values, so you don’t need to give
them values. You can create a table without using any attributes at all and then add attri-
butes as needed. In Document 3.1, the only specified attribute is the background color in

some cells. An easy way to familiarize yourself with the effects of specifying table
attributes and their values is to experiment with Document 3.1.

44 3 HTMLTables, Forms, Lists, and Frames

3.1.2
Subdividing Tables into Sections

The tbody element allows a table to be divided into two or more groups of rows. Each
group of rows enclosed by a <tbody> .. </tbody> tag can have its own attributes and
can have a different predefined class attribute value. Document 3.2 shows a simple
example in which rows in a table are grouped by background color.

Document 3.2 (tbody.htm)

<html>
<head>
<title>Using the tbody element</title>
<style>
th {background-color:black; color:white;}
tbody.cold {text-align:center;
font-weight:bold; background-color:gray;}
tbody.cool {text-align:center;
font-weight:bold; background-color:silver;}
tbody.hot {text-align:center;
font-weight:bold; background-color:ivory;}
</style>
</head>
<body>
<table border>
<tr><th>Month</th><th>Average
Temperature

s°F</td></tr>
<tbody class="cold">
<tr><td >January</td><td>30.4</td></tr>
<tr><td>February</td><td>33.0</td></tr>
<tr><td>March</td><td>42.4</td></tr>
</tbody>
<tbody class="cool">
<tr><td>April</td><td>52.4</td></tr>
<tr><td>May</td><td>62.9</td></tr>
</tbody>
<tbody class="hot">
<tr><td>June</td><td>71.8</td></tr>
<tr><td>July</td><td>76.7</td></tr>
<tr><td>August</td><td>75.5</td></tr>
</tbody>
<tbody class="cool">
<tr><td>September</td><td>68.2</td></tr>
<tr><td>October</td><td>56.4</td></tr>
</tbody>

3.1 The table Element 45

<tbody class="cold">
<tr><td>November</td><td>46.4</td></tr>
<tr><td>December</td><td>35.8</td></tr>

</body>

</html>

January—March and November—December
use the “cold” class, April-May and September—
October use “cool,” and June—August use “hot.”
Each class has a different background color.
(For this grayscale rendering of the output, gray,
silver, and ivory have been chosen instead of
something more colorful.)

3.13
Merging Cells Across Rows and Columns

If you are familiar with creating tables in a word
processing application, you know that it is easy to
create more complicated table layouts by merg-
ing cells across rows and columns. You can also
do this with HTML forms, using the colspan
and rowspan attributes. Document 3.3 shows a
table that displays cloud names, altitudes, and
whether they produce precipitation or not.

Document 3.3 (cloudType . htm)

<html>
<head>
<title>Cloud Type Chart</title>
</head>
<body>
<table border="2">
<caption>Cloud Type Chart</caption>
<tr>
<th align="center">Altitude</th>
<th colspan="2">Cloud Name</th></tr>
<tr><td align="center" rowspan="3">High</td>
<td colspan="2">Cirrus</td></tr>
<tr><td colspan="2">Cirrocumulus</td></tr>
<tr><td colspan="2">Cirrostratus</td></tr></tr>
<tr><td align="center" rowspan="2">Middle</td>
<td colspan="2">Altocumulus</td></tr>
<tr><td colspan="2">Altostratus</td></tr></tr>

46 3 HTMLTables, Forms, Lists, and Frames

<tr><td align="center" rowspan="5">Low</td>
<td>Cumulus</td>
<td>nonprecipitating</td></tr>
<tr><td>Altocumulus</td>
<td>nonprecipitating</td></tr>
<tr><td>Stratocumulus</td>
<td>nonprecipitating</td></tr>
<tr><td>Cumulonimbus</td>
<td align="center"
bgcolor="silver">precipitating</td></tr>
<tr><td>Nimbostratus</td> <td align="center"
bgcolor="silver">precipitating</td></tr></tr>
</table>
</body></html>

It is much more tedious to merge
cells across rows in columns in an
HTML table than it is in a word
processor. You need to plan your
table in advance, and even then you
should be prepared for some
trial-and-error editing!

Here is a summary of some
table-related elements and their
attributes. All the elements except
table itself should appear only
inside a table element.

<caption> .. </caption>

Displays the specified text as a caption for a table. Earlier versions of HTML support
only "top" (the default value) or "bottom" for the value of the align attribute.
Some browsers may allow "center" as a value for align, which is worth noting
because this might often be the alignment of choice for a table caption.
Attributes: align

<table> .. </table>
Contains table-related and other elements.
Attributes: border, bordercolor, cellpadding, cellspacing, width

<tbody> .. </tbody>

Groups rows within the body of a table so each group can be given different attributes
and styles.
Attributes: align, char, charoff,valign

(continued)

3.1 The table Element 47

(continued)

<td> .. </td>

Defines data cells in the rows of a table. Does not contain other table-related
elements.

Attributes: align, bgcolor, char, charoff, colspan, nowrap, rowspan,
width

<th> .. </th>

The th element works just like the td element except it automatically displays text
in bold font, serving as headings for table columns. Does not contain other elements.
Attributes: align, bgcolor, char, charoff, colspan, nowrap, rowspan,
valign, width

<tr> .. </tr>
Defines rows in a table. Contains td or th elements.
Attributes: align, bgcolor, valign

Description of attributes:

align= "."
Values: "1eft", "right", or "center"

Aligns text horizontally. When align is specified in a tr element, its value will be
overridden if it is specified again within a td element in that row.

bgcolor = ".."
Values: color names or hexadecimal values " # RRGGBB"

Sets the background color for a cell or row. When bgcolor is specified in a tr
element, its value will be overridden if it is specified again within a td element in that
row.

border = ".."
Values: an integer number of pixels

Adds a border to the table and its cells. A value is optional. If it is included, a colored
(or gray, by default) border is added around the outer boundary of the table.

bordercolor = ".."
Values: color names or hexadecimal values " # RRGGBB"
Sets the color of a table border.

cellpadding = ".."
Values: an integer number of pixels
Defines vertical spacing between cells in a table.

cellspacing = ".."
Values: an integer number of pixels
Defines horizontal spacing between cells in a table.

colspan = ".."
Values: an integer
Defines how many columns a cell will span.

(continued)

48 3 HTMLTables, Forms, Lists, and Frames

(continued)

nowrap
Prevents text from being automatically wrapped within a cell. It does not have a
value.

rowspan = ".."

Values: an integer
Defines how many rows a cell will span.

valign = "..
Values: "top", "middle", or "bottom"

Aligns text vertically. When valign is specified in a tr element, its value will be
overridden if it is specified again within a td element in that row.

width = ".."
Values: a number or a percentage

Specifies table or cell width in pixels (width="140") or as a percentage of the
window or table header width (width="80%").

3.2
The Formand i nput Elements

One of the most important applications of HTML documents is to provide the Web page
equivalent of a paper form. In some cases, a form just helps to organize user input to a Web
page. Often, an online form includes provisions for sending a completed form back to the
author of the Web page. In other cases, the form may act as an I/O interface in which a user
provides input and the Web page provides results from calculations or other actions. This use
of forms is especially important for the material presented in later chapters of this book.
HTML forms are defined by the form element, using start and end tags: <form>

</form> tags. The attributes of the form element are:

action= ".."

Value: a programmer-supplied URL that identifies a processing script, PHP file name,
ormailto: followed by an e-mail address. For example,
action="mailto:my mail@my univ.edu".

enctype=".."

Value: This book uses only enctype="text/plain". In combination with
method="post", this will transmit form data with the name of the form field
followed by an “=" sign and the value of the field. This makes it easy to interpret the
contents of a form that has been submitted.

method = ".."
Values: "get", "post"

The method attribute controls how data from a form is sent to the URL, PHP file,
or e-mail address identified in the action attribute. In this book, the "post™ value is
used because it is the easiest way to transmit form data in an easily readable format.

(continued)

50 3 HTMLTables, Forms, Lists, and Frames

(continued)

readonly
Value: none

Prevents field values in type="text" or text="password" from being
changed.

size=".."
Value: width of the displayed field, in characters.

type=".."
Values: See Table 3.1.

value="."

Value: a programmer-supplied default value that will be displayed in the field. This
value can be overridden by user input unless the readonly attribute is also
specified.

The form element typically contains a combination of document text and input fields.
The document text can be used to explain to the user of the form what kind of input is
expected. Document 3.4 gives a simple example that uses several input field types:

Document 3.4 (Location.htm)

<html>
<head>
<title>Data Reporting Site Information</title>
</head>
<body>
<form>
Please enter your last name:
<input type="text" name="last name" size="20"
maxlength="20" />

Please enter your latitude:
<input type="text" name="lat" value="40" size="T7"
maxlength="7" />
N <input type="radio" name="NS" value="N" checked />
or S <input type="radio" name="NS" value="S" />

Please enter your longitude:
<input type="text" name="lon" value="75" size="8"
maxlength="8" />
E <input type="radio" name="EW" value="E" /> or W
<input type="radio" name="EW" value="W" checked />

Please enter your elevation:
<input type="text" name="elevation" size="8" maxlength="8"
/> meters

3.2 The formand input Elements 51

Please indicate the seasons during which your site reports
data:

Winter: <input type="checkbox" name="seasons"
value="Winter" />
Spring: <input type="checkbox" name="seasons"
value="Spring" />
Summer: <input type="checkbox" name="seasons"
value="Summer" />
Fall: <input type="checkbox" name="seasons"
value="Fall" />
</form>
</body>
</html>

Note that some of the text fields are blank because no default value attribute has been
specified. These require user input, and there is no way to establish ahead of time what this
input might be. However, it may still be worthwhile in some cases to provide a default
value if that might help the user to understand what is required. When the allowed input
choices can be limited ahead of time by the creator of the document, it is appropriate to use
radio buttons and checkboxes. You can create as many different combinations of these
kinds of field as your application needs.

Each group of radio and checkbox buttons has its own unique field name and,
within each group, each button should have its own value. In Document 3.4, there are two
radio button groups, named NS and EW. It is important to specify a value for each button,
because the value of the checked button will be captured when the contents of the form are
submitted to a recipient’s e-mail address. This will be demonstrated in the modified ver-
sion of this document presented in Sect. 3.5. Default values for the radio field can be
specified by using the checked attribute. When you access the document, the button with
the checked attribute will be “on.” You can change it by clicking on another of the
buttons in the group.

The same basic rules apply to checkbox fields. You can have more than one group of
checkboxes, each with its unique name. The only difference is that you can select as many
boxes as you like within each group, rather than just one value with radio fields.

52 3 HTMLTables, Forms, Lists, and Frames

33
Creating Pull-Down Lists

A common feature on Web pages that use forms is a pull-down list. The select and
option tags provide another way to limit the input choices a user can make on a form.
The implementation described here is similar to a group of radio buttons in the sense that
only one item can be selected from a list. This can simplify a document interface and elimi-
nate the need for some input checking that might otherwise need to be done if a user is free
to type whatever he/she likes in an input field. For example, creating a pull-down list of the
months of the year eliminates the need for a user to type (and perhaps to mistype) the name
of a month, as shown in Document 3.5

Document 3.5 (select.htm)

<html>

<head>

<title>Pull-Down List</title>

</head>

<body><form>

Select a month from this menu:

<select name="testing">
<option value="1" selected>January</option>
<option value="2">February</option>
<option value="3">March</option>
<option value="4">April</option>
<option value="5">May</option>
<option value="6">June</option>
<option value="7">July</option>
<option value="8">August</option>
<option value="9">September</option>
<option value="10">October</option>
<option value="11">November</option>
<option value="12">December</option>
</select>
</form></body>
</html>

In the output shown, the user has chosen the month of April, which is now highlighted.
The values of the value attribute can be, but do not have to be, the same as the text dis-
played for each option. In this case, the month values are numbers between 1 and 12, rather
than the names of the months. Assigning the selected attribute to the first option means
that “January” will be highlighted when the pull-down box is first displayed. For longer
lists, the default format is for HTML to include a scroll bar alongside the list.

3.4 Combining Tables and Forms 53

Although it is easy to create pull-down
lists as well as groups of radio buttons
and checkboxes, as described in Sect. 3.3,
it is not yet obvious how a document will
make use of the selections a user makes.
As will be shown in Chap. 4, JavaScript
provides the required capabilities.

34
Combining Tables and Forms

In terms of organizing an interactive Web page, it is often helpful to create one or more
tables in which the cell contents are fields in a form. Document 3.6 gives an example.

Document 3.6 (siteDefinition.htm)

<html>
<head>
<title>Observation Site Descriptions</title>
</head>
<body>
<form>
<table border="2" cellpadding="5" cellspacing="2"
align="center">
<caption>Observation Site
Descritions</caption>
<tr bgcolor="lightblue">
<th>Site #</th><th>Site Name</th><th>Latitude</th>
<th>Longitude</td><th>Elevation</th>
</tr>
<tr bgcolor="palegreen">
<td>Site 1</td>
<td><input type="text" name="Namel" size="10"
maxlength="10" value="Namel" /></td>
<td><input type="text" name="Latitudel" size="10"
maxlength="10"
value="Latitudel" /></td>
<td><input type="text" name="Longitudel" size="10"
maxlength="10" value="Longitudel" /></td>
<td><input type="text" name="Elevationl" size="10"
maxlength="10" value="Elevationl" /></td>
</tr>
<tr bgcolor="ivory">
<td>Site 2</td>

54 3 HTMLTables, Forms, Lists, and Frames

<td><input type="text" name="Name2" size="10"
maxlength="10" value="Name2" /></td>
<td><input type="text" name="Latitude2" size="10"
maxlength="10" value="Latitude2" /></td>
<td><input type="text" name="Longitude2" size="10"
maxlength="10" value="Longitude2" /></td>
<td><input type="text" name="Elevation2" size="10"
maxlength="10" value="Elevation2" /></td>
</tr>
<tr bgcolor="palegreen">
<td>Site 3</td>
<td><input type="text" name="Name3" size="10"
maxlength="10" value="Name3" /></td>
<td><input type="text" name="Latitude3" size="10"
maxlength="10" value="Latitude3" /></td>
<td><input type="text" name="Longitude3" size="10"
maxlength="10" value="Longitude3" /></td>
<td><input type="text" name="Elevation3" size="10"
maxlength="10" value="Elevation3" /></td>
</tr>
<tr bgcolor="ivory">
<td>Site 4</td>
<td><input type="text" name="Named" size="10"
maxlength="10" value="Name4" /></td>
<td><input type="text" name="Latitude4" size="10"
maxlength="10" value="Latituded" /></td>
<td><input type="text" name="Longitude4d" size="10"
maxlength="10" value="Longitude4" /></td>
<td><input type="text" name="Elevation4" size="10"
maxlength="10" value="Elevation4" /></td>
</tr>
<tr bgcolor="palegreen">
<td>Site 5</td>
<td><input type="text" name="Name5" size="10"
maxlength="10" value="Name5" /></td>
<td><input type="text" name="Latitude5" size="10"
maxlength="10" value="Latitude5" /></td>
<td><input type="text" name="Longitude5" size="10"
maxlength="10" value="Longitude5" /></td>
<td><input type="text" name="Elevation5" size="10"
maxlength="10" value="Elevation5" /></td>
</tr>
</table>
</form>
</body>
</html>

3.5 E-Mailing the Contents of Forms 55

The output is shown with the original default field names, before a user starts to add
new values.

Although it may seem like a lot of work to create Document 3.6, the task is greatly
simplified by copying and pasting information for the rows. When you access this page,
the Tab key moves from field to field but skips the first column, which is just fixed text.
The user of the page can change the default values of all the input text boxes.

3.5
E-Mailing the Contents of Forms

Document 3.4 would be much more useful if the location information provided by the user
could be sent to the creator of the document. In general, if the basic purpose of forms is to
provide an interactive interface between the user of a Web page and its creator, there needs
to be a way to transmit the user-supplied information on a form back to the creator.
Remember that HTML/JavaScript constitutes a purely client-side environment. However,
it is possible to use the form action="mailto.." and method attributes to send the
contents of a form indirectly to the originator of the form (or some other specified
destination) by using the client computer’s e-mail utility.

In principle, this is easy to do, but the method described here is not very reliable. It may
be necessary first to resolve conflicts between a user’s browser and e-mail utility which
have nothing to do with the contents of the Web page itself, or it may simply not be pos-
sible to get this method to work across some networks and platforms.

Here is how to direct the contents of a form to a specified e-mail address, at least in
principle!

<form method="post"
action="mailto:my mail@myuniversity.edu"
enctype="text/plain">

56 3 HTMLTables, Forms, Lists, and Frames

Document 3.7 is a modification of Document 3.3 which allows a user to e-mail the
contents of the form to a specified address.

Document 3.7 (location2.htm)

<html>
<head>
<title>lLocation information</title>
</head>
<body bgcolor="ivory">
<form method="post"
action="mailto:my mail@university.edu"
enctype="text/plain">
Please enter your last name:
<input type="text" name="last name" size="20"
maxlength="20" />

Please enter your latitude:
<input type="text" name="lat" size="7"
maxlength="7" />
N <input type="radio" name="NS" value="N" />
or S <input type="radio" name="NS" value="S" />

Please enter your longitude:
<input type="text" name="lon" size="8"
maxlength="8" />
E <input type="radio" name="EW" value="E">
or W <input type="radio" name="EW" value="W" />

Please enter your elevation:
<input type="text" name="elevation" size="8"
maxlength="8" /> meters

<input type="submit"
value="Click here to send your data." />
</form>
</body>
</html>

58 3 HTMLTables, Forms, Lists, and Frames

Document 3.8 shows how to use these list tags.
Document 3.8 (1ists.htm)

<html>
<head>
<title>Using HTML Lists</title>
</head>
<body>
This page demonstrates the use of unordered, ordered, and
definition lists.

<1i> Use unordered lists for "bulleted" items.</1li>
<1i> Use ordered lists for numbered items. </1i>
<1i> Use definition lists for lists of items to be defined.
</1li>

Here are three ways to organize content in an HTML document:

<1li>Use a table. </1i>
<1li>Use a list. </1i>
<1li>Use &Ilt,;pre>
</pre>,; tags. </1li>

This is a way to produce a neatly formatted glossary list.
<di>
<dt>definition list
(¢lt;dl>,;)</dt>
<dd>Use this to display a list of glossary items and their
definitions. </dd>
<dt>ordered list
(¢lt,;ol>) </dt>
<dd>Use this to display a numbered list. </dd>
<dt>unordered list
(¢lt,;ul>,;)</dt>
<dd>Use this to display a list of bulleted items. </dd>
</d1>
</body>
</html>

3.6 The List Elements 59

The use of these tags imposes a preset format for displaying list items. Blank lines are
inserted before and after the list, withno
 or<p> .. <p> tags required to separate
the lists from other text in the document. For ordered and unordered lists, the list items
themselves are indented. For the definition list, the items are not indented, but the
“definitions” are. The contents of a list item can include text formatting elements. For
example, in Document 3.8, the items in the definition list use the st rong element to dis-
play the item name in a bold font. A list item can be an image, , or
a URL reference, .

Note the use of &1t; and > to display the < and > characters in the document.
(Recall that if you simply enter these characters, they will not be displayed on the screen
because HTML will try to associate them with tags.)

There are some attributes associated with list elements that provide a little more control
over the appearance of lists.

60 3 HTMLTables, Forms, Lists, and Frames

start="n"
Value: The integer n specifies the starting value of an ordered list. The default value is

start="1".

type =

Values: For unordered lists: "disc" (the default value), "square", "circle"
For ordered lists: "A" (uppercase letters), "a" (lowercase letters), "I" (uppercase

Roman letters), "1 " (lowercase Roman letters), "1 " (numbers, the default value)

value = "n"

Value: The integer n specifies a numerical value for an item in an ordered list which
overrides the default value. Subsequent list items will be renumbered starting at this
value.

Finally, it is possible to combine list types to create more complicated list structures.
Document 3.9 shows how list tags can be used to create the table of contents for a
book.

Document 3.9 (bookContents.htm)

<html>

<title>Table of Contents for My Book</title>
<body>

<h2>Table of Contents for My Book</h2>

Chapter One</1i>
<ol type="I">
Section 1.1</1i>
<ol type="i">
<1li>First Topic</1li>
Second Topic</1li>
<ul type="circle">
 subtopic 1</1li>
 subtopic 2</1li>

Section 1.2</1i>
Section 1.3</1i>

3.6 The List Elements 61

Chapter Two</1li>
<ol type="I">
Section 2.1</1i>
<ol type="i">
<1li>First Topic</1li>
Second Topic</1li>
<ul type="circle">
 subtopic 1</1li>
 subtopic 2</1li>

Section 2.2</1i>
Section 2.3</1i>

Chapter Three</1li>
<ol type="I">
Section 3.1</1i>
<ol type="i">
<1li>First Topic</1li>
Second Topic</1li>
<ul type="circle">
 subtopic 1</1li>
 subtopic 2</1li>
 subtopic 3</1li>

Section 3.2</1i>
Section 3.3</1i>
<ol type="i">
<1li>First Topic</1li>
Second Topic</1li>

Section 3.4</1i>

</body>
</html>

Note that if this list were used for an online book, for example, each list item could
include a link to a URL or a hypertext link to another location within the same document.

62 3 HTMLTables, Forms, Lists, and Frames

Table of Contents for My Book

1. Chapter One
I Sectionll
i. First Topic
ii. Second Topic
o subtopic 1
o subtapic 2
II. Sectionl1.2
III. Section 1.3
2. Chapter Two
I. Section2.1
i. First Topic
ii. Second Topic
o subtopic 1
o subtopic 2
. Section2.2
III. Section2.3
3. Chapter Three
I Section3.1
i. First Topic
ii. Second Topic
© subtopic 1
o subtopic 2
o subtopic 3
II. Section 3.2
III. Section3.3
i. First Topic
il. Second Topic
IV. Section 3.4

3.7
Using HTML Frames

Another way of organizing content in HTML documents is through the use of frames to
divide a window into several separately addressable blocks of content. Frames are built
using two elements, frame and frameset.

<frame /> .. </frame>
Attributes: bordercolor, frameborder, marginheight, marginwidth,
name, scrolling (yes, no, or auto), src

Provides a nameable window region, as defined by the frameset element, with a
link to the content of that region. A value for the src attribute must be given, but the

(continued)

3.7 Using HTML Frames 63

(continued)

other attributes are optional. The default value for the scrolling attribute is auto,
which automatically provides a scroll bar if needed to display all of a window’s content.

<frameset> .. </frameset>
Attributes: border, bordercolor, cols, frameborder, framespacing,
rows

Provides specifications for dividing a web page window into two or more separately
linkable sub-windows. All attributes are optional except cols and rows, which must have
values of n pixels, n% of the available window, or * to fill the remaining window space.

Consider the following screen display. It is divided into three sections. The upper
left-hand corner contains a clickable image. The lower left-hand corner contains links to
other HTML documents. The right-hand column will be used to display those documents.
When this page is first accessed, a “home page” document should be displayed.

Document 3.10a shows the first step in creating this page.
Document 3.10a (frameMain.htm)

<html>
<head>
<title>A simple frameset document</title>
</head>
<frameset cols="30%, 70%" frameborder="1">
<frameset rows="60%, 40%">
<frame src="framel.htm" scrolling="no" />
<frame src="frame2.htm" />
</frameset>
<frame name="homeFrame" src="homeFrame.htm" />
</frameset>
</html>

64 3 HTMLTables, Forms, Lists, and Frames

The frameset element is used to define the frames. In this case, the window is
divided into two columns. The left-hand column occupies 30% of the page and the right-
hand column occupies the remaining 70%. (In the graphic displayed previously, the
proportions look different because the screen display has been cropped to save space.)
The line

<frameset cols="30%, 70%" frameborder="1">
could also be written
<frameset cols="30%, *" frameborder="1">

where the asterisk is interpreted as “fill the remaining portion of the screen with the
right-hand column.” If the frame size is given as a number without the % sign, it is inter-
preted as pixels rather than a percentage of the full window. Setting this frame size to
cols="200, *" will produce a left-side frame that is always 200 pixels wide, regardless
of the screen resolution.

The left-hand column is further divided into two sub-windows. The top window
occupies the top 60% and the bottom window occupies the remaining 40%. Each window
is associated with a separate HTML document, framel .htmand frame2.htm. These
windows could be given names, but they don’t have to have names. The right-hand column
is associated with another HTML document, homeFrame . htm. This “home frame” will
be the destination for content that will be linked from the frame in the lower left-hand
corner. This frame needs a name to serve as a “target” for the other documents that will be
displayed here. The name can be anything, but homeFrame is a self-explanatory and
therefore reasonable choice.

Documents 3.10b—d show the HTML code for each of the three frames.

Document 3.10b (homeFrame . htm)

<html>

<head>

<title>My Home Frame</title>

</head>

<body bgcolor="lightgreen">

<hl><blink><i>Home page display goes
here.</i></blink></hl1>

</body>

</html>

Document 3.10c (framel . htm)
<html>

<head>
<title>Title Frame</title>

3.7 Using HTML Frames 65

</head>

<body bgcolor="pink">

<center><i>Frames

Demo

<img src="frame.gif"
border="2"></i></center>

</body>

</html>

Document 3.10d (frame2 . htm)

<html>
<head>
<title>Gossip Column</title>
</head>
<body bgcolor="lightblue">

Links to other stuff.

Gossip Column

Picture Gallery

home

</body>
</html>

Document 3.10e is the HTML document referenced in Document 3.10c.
Document 3.10e (frameDescription.htm)

<html>

<head>

<title>How this image was created.</title>
</head>

<body>

This image was created in Windows' Paint program.
Click here to return.
</body>

</html>

66 3 HTMLTables, Forms, Lists, and Frames

Document 3.10d, for the lower left-hand corner, contains links to several other documents,
each of which can be displayed in the right-hand window. This is done by using the target
attribute, which links to homeFrame, the name value given in Document 3.10a:

Gossip Column

It is up to you to provide the gossip.htm and photoGallery.htm documents.
Document 3.10d also includes a link back to the home page document. The image shown
here is the result of clicking on the “Picture Gallery” link to a document on the author’s
computer; the page image has been cropped to save space.

Document 310b contains the code for the home frame that is displayed when the page
is first accessed. (The blink element, which causes text to blink on and off, will be
ignored by some browsers.) Document 3.10c, for the upper left-hand frame, contains the
clickable image, frame . gif, with a border drawn around it. Clicking on the image opens
a link to descriptive file, frameDescription.htm (see Document 3.10¢), to be
provided by you. This document will be displayed in the “Frames Demo” window (not
opened in a new window) and it should contain a link to return to framel . htm:

Click here to return.
HTML frames provide a great deal of flexibility for displaying content, but there is one

consequence that may not be immediately obvious. If you try these examples on your own
computer, you will see that only the main frame document (frameMain.htm) is

3.8 More Examples 67

displayed as the URL link, regardless of which document is being displayed in the
right-hand column. So, you cannot directly copy or bookmark the URL for a particular
document. Accessing the “view source” option on your browser will display the HTML
code only for frameMain.htm. If you wish to bookmark the “picture gallery” page, for
example, you cannot do so directly. You can display the page separately by accessing the
document separately:

http://... /photoGallery.htm

but doing that assumes you already know the name and location of this document.

This situation does not really hide all the code for these documents. You can look at the
frameMain.htm HTML code and then access separately the homeFrame.htm,
framel.htm, and frame2.htm documents to examine their HTML code.

3.8
More Examples

3.8.1
Selecting Cloud Types from a List of Possibilities

Create a document that allows users to select observed cloud types from a list of
possibilities. More than one cloud type can exist simultaneously. The categories are:

High altitude: Cirrus, Cirrocumulus, Cirrostratus

Mid altitude: Altostratus, Altocumulus

Low altitude: Stratus, Stratocumulus, Cumulus
Precipitation-producing: Nimbostratus, Cumulonimbus

A good way to organize this information is to use a table within a form. The form fields
should be of type checkbox rather than radio because multiple selections are possible.
Compare this problem with Document 3.3, in which a table was used to display just the
cloud types.

Document 3.11 (cloudl.htm)

<html>

<head>

<title>Cloud Observations</title>

</head>

<body bgcolor="#aaddff">

<hl>Cloud Observations</h1>

 Cloud Observations (Select as many cloud
types as observed.)

68 3 HTMLTables, Forms, Lists, and Frames

<form>
<table>
<tr>
<td>High </td>
<td>
<input type="checkbox" name="high"
value="Cirrus" /> Cirrus</td>
<td>
<input type="checkbox" name="high"
value="Cirrocumulus" /> Cirrocumulus </td>
<td>
<input type="checkbox" name="high"
value="Cirrostratus" /> Cirrostratus </td></tr>
<tr>
<td colspan="4"><hr noshade color="black" />
</td></tr>
<tr>
<td> Middle </td>
<td>
<input type="checkbox" name="mid"
value="Altostratus" /> Altostratus </td>
<td>
<input type="checkbox" name="mid"
value="Altocumulus" /> Altocumulus</td></tr>

<trc>
<td colspan="4"><hr noshade color="black" />
</td></tr>
<trc>
<td> Low</td>
<td>
<input type="checkbox" name="low" value="Stratus" />
Stratus</td>
<td>

<input type="checkbox" name="low"
value="Stratocumulus" /> Stratocumulus</td>
<td>
<input type="checkbox" name="low" value="Cumulus" />
Cumulus </td></tr>
<tr>
<td colspan="4"><hr noshade color="black" />
</td></tr>
<tr>
<td> Rain-Producing </td>
<td>

3.8 More Examples 69

<input type="checkbox" name="rain"
value="Nimbostratus" /> Nimbostratus</td>
<td>
<input type="checkbox" name="rain"
value="Cumulonimbus" /> Cumulonimbus </td></tr>
</table>
</form>
</body>
</html>

In Document 3.11, checkboxes for the cloud types are organized into four groups, for
high-, mid-, and low-altitude clouds, plus rain-producing clouds. Within each group, each
checkbox has a name associated with it. As will be shown in Chap. 5, this arrangement
makes it possible for JavaScript to “poll” the checkboxes to see which clouds are observed
within each group.

Note that the names given to each checkbox in Document 3.11 are the same as the text
entered in the corresponding cell. This is only because these names and text are reasonable
descriptions of the cell contents. In general, the text in the cell does not need to be the same
as, or even related to, the value of the name attribute of the checkbox.

3.8.2
A Simple "Split Window" Application

Create an application that maintains one or more “header lines” across the top of a Web
page window while scrolling through a long text document.

Consider this file:

DRB Worcester PA
40.178 -75.3325

4030 5200
Mon day yr hr min sec EST PYR-1 PYR-2 T
7 1 2008 0 0 0 1 0.00031 0.00031 20.198

7 1 2008 0 1 0 1.000694444 0.00031 0.00031 20.174
7 1 2008 0 2 0 1.001388889 0.00031 0.00031 20.174

70 3 HTMLTables, Forms, Lists, and Frames

The file contains 1,440 lines of data (24 h times 60 min per hour for July 1, 2008) with
the date and time, the day and time converted to a fractional Eastern Standard Time day
(EST), data from two instruments, PYR-1 and PYR-2, and air temperature in degree
Celsius.

For a file of this size, it might be convenient to be able to display these data under a
fixed header that identifies the columns, in the same way that spreadsheets allow creation
of a “split window.” Documents 3.12a, b show a very simple solution to this problem,
using HTML frames.

Document 3.12a (pyranometerMain.htm)

<html>

<head>

<title>Display pyranometer data</title>

</head>

<frameset rows="10%, *">
<frame src="header.htm" scrolling="no" />
<frame src="pyranometer.dat" />

</frameset>

</html>

Document 3.12b (header.htm)
<html>
<head>
<title></title>
</head>
<body>

This is the header.

mon ,; day ,; yr hr
 min sec EST
 PYR-1 PYR-2 ,;T

</body>
</html>

3.8 More Examples Al

The frameset rows attribute allocates the top 10% of the page to the header and the
output file, pyranometer.dat, is displayed in the remainder of the page. For a display
that is too long to fit in one window, HTML automatically creates a scroll bar down the
right-hand side of the window. A border has been retained under the top frame, just to
make clear how the page is divided, but it is optional; to remove the border, set the f rame -
set attribute border="0".

A simple modification of the frameset code in Document 3.12a would allow listing
a number of different files in a left-hand column, each of which could be displayed in the
home page frame simply by clicking on the file name. To do this, the direct link to pyra-
nometer.dat in Document 3.12a would be replaced with another name specified as the
value of a target attribute in the reference to each document to be displayed:

Note that the pyranometer.dat file is just a tab-delimited text file, not an HTML
document.

Fundamentals of the JavaScript Language 4

Abstract Chapter 4 presents the core programming capabilities of JavaScript. The topics
include basic programming terminology and concepts, code structure, data and objects,
variables, operators, mathematical and string-manipulation functions, decision-making
structures, and constructs for repetitive calculations.

41
Capabilities of JavaScript

Previous chapters have presented the features of HTML that provide the potential for
interacting with a scripting language such as JavaScript. In order to work in this environ-
ment, you must understand some of the fundamental concepts underlying programming
languages as well as the details of how JavaScript implements these concepts. Although an
HTML document interface is still required to manage input and output in the HTML/
JavaScript environment, the material in this chapter attempts to minimize the details of
interactions between JavaScript and HTML in favor of presenting programming concepts
and their JavaScript implementation as directly as possible.

JavaScript shares capabilities with other languages such as C/C++. In general, what are
the capabilities of these kinds of languages? What kinds of tasks can programmers expect
them to perform? Here is a list.

1. Manage input and output.

To be useful, any language must provide an input/output (I/O) interface with a user.
When a computer program is executed or a script is interpreted (in the case of
JavaScript, as a result of loading a Web page into a user’s browser), the user provides
input. The language instructs the user’s computer to perform tasks based on that
input. The language then instructs the computer to display the results. A simple inter-
face (for a text-based language such as C, for example) will accept keyboard input
and display text output on a computer monitor. As noted several times in previous
chapters, HTML and JavaScript work together to provide an elegant and universal
1/O interface.

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, 73
DOI 10.1007/978-0-85729-449-4 4, © Springer-Verlag London Limited 2011

74

2.

4 Fundamentals of the JavaScript Language

Permit values to be manipulated in a symbolic way, independent of the way a particular
computer stores that information internally.

The essential thrust of programming languages is to provide a name-based symbolic
interface between a computer and a programmer. When quantities can be given names
instead of memory addresses, they can then be accessed and manipulated through those
names rather than requiring a programmer to keep track of where values are stored in a
computer’s memory.

. Perform arithmetic operations on numbers.

A general-purpose programming language must include a range of arithmetic operations
on numbers. Although JavaScript is not intended as a “number-crunching” language for
serious scientific computing, it does support many arithmetic operations and functions
including, for example, trigonometric, logarithmic, and exponential functions. So, it
is useful for a wide range of numerical calculations of interest in science and
engineering.

. Perform operations on characters and strings of characters.

A great deal of the work JavaScript is asked to do involves manipulating characters and
strings of characters rather than numbers. For example, JavaScript may be asked to
compare a name provided as input against a predefined set of names. An HTML docu-
ment is inherently character-based, so JavaScript must support the manipulation of
characters and strings of characters, including interpreting strings of characters as num-
bers and vice versa. This is necessary because computers store numerical values in
ways that differ fundamentally from the way characters are stored.

. Make decisions based on comparing values.

Computers cannot make decisions by “thinking” about multiple possibilities in a
human-like way. However, they can compare values and act on the results of those
comparisons. Typically, a program will compare values and then execute instructions
based on the results of those comparisons. In particular, such decisions are often embed-
ded in branching structures that execute one set of instructions to the exclusion of
others, based on a comparison of values.

. Perform repetitive calculations.

Loop structures are used to allow computers to perform repetitive calculations. These
calculations may be terminated after they have been executed a specified number of times,
or they may be executed only until or while some set of conditions is satisfied.

4.2
Some Essential Terminology

The terminology of programming languages can be confusing. Nonetheless, it is essen-
tial to agree upon the meaning and use of terms in order to discuss programming con-
cepts, especially because the programming-specific meaning of some terms must be

76 4 Fundamentals of the JavaScript Language

43
Structure of JavaScript Code

43.1
JavaScript Statements

Instructions in JavaScript are conveyed through a series of statements. As indicated in the
previous section, statements are built from expressions consisting of tokens. To begin a
statement, simply start typing something that follows the syntax rules of JavaScript. When
it is time to terminate a programming language statement, there are two choices. One
choice is to press the Enter or Return key on your computer. This will terminate both the
physical line and the statement. This means that each physical line can contain no more
than one statement. (It could be a blank line with no statement at all.) The second choice is
to use a unique terminating character to mark the end of a statement.

As a matter of syntax, JavaScript allows both these choices. An “end of line” mark
(created by pushing the Enter or Return key) will mark the end of a statement. Because
of JavaScript’s roots in C/C++, the preferred syntax is to terminate each statement with a
semicolon. In this book, JavaScript statements will a/lways be terminated with a semicolon.
As a bonus, this style choice allows multiple statements to appear on the same line.

A set of JavaScript statements is called a script. Presumably, the goal of a script is to do
something useful. So, the implication of calling something a “script” is that it contains all
the instructions required to complete a specific task. As noted in Chap. 1, even the simplest
text editor can be used to create a script, which is nothing more than a text document. But,
as was the case for creating HTML documents, it will be easier to create JavaScript scripts
with an editor intended for this purpose.

JavaScript is a free-format language. This means that statements can appear anywhere
on a line. As long as you terminate each statement with a semicolon, you can even put
multiple statements on a single line. This flexibility is supposed to encourage the writing
of code that is logically organized and easy to read. Good programmers always adopt a
consistent approach to the layout of their code. Hopefully, the examples in this book will
point the way to producing easily readable code. See Appendix 4 for a “pseudocode”
approach to designing accurate and readable code.

4.3.2
Statement Blocks

Often, several code statements are grouped together in a statement block. These blocks
begin and end with curly brackets:

{statements go here}

Later in this chapter, there will be several examples of how to use statement blocks.

4.3 Structure of JavaScript Code 77

433
Comments

Comments are an essential part of good programming style, no matter what the
language. Comments are inserted into code by using certain combinations of characters
that will always be interpreted unambiguously as marking the beginning or end of a
comment. JavaScript supports two kinds of comments: single- and multiple-line
comments. You can use either or both of these comment formats within the same script.
However, they cannot be mixed in the same comment. Also, you cannot have “nested”
multiple-line comments:

// This is a single-line comment.
/* This
is a
multiple-line
comment .

*/
/* This code
/* will generate a syntax error! */

*/

Because a JavaScript interpreter ignores comments when it executes statements,
comments can occur on separate lines or on the same line as a statement. Comments started
with a double slash cannot be placed at the beginning of a statement because JavaScript
has no way of knowing where the comment ends and the code begins. This code will work
because there is an (invisible) “return” character at the end of the line that is interpreted as
the end of the comment:

// The gravitational constant is
var g=9.8; // m/s"2

This will not work
// The gravitational constant is var g=9.8; // m/s"2
but this will:
/* The gravitational constant is */ var g=9.8; //m/s"2
It is easy to overlook the importance of including comments in your code. Intelligently
commented code is easier to understand, both for you when you return to it at a later date

and for others who need to examine your code. If you don’t develop the habit of including
comments in all your code, eventually you will be sorry!

78 4 Fundamentals of the JavaScript Language

4.4
Data and Objects

In general, programming languages can work with different kinds of information. Each
kind of information is associated with a data type. Each data type is stored differently
within the programming environment, and each is associated with a specific set of opera-
tions. For example, it is obvious that you can add two numbers (3.3 + 12.9), butitis
less obvious what (if anything) it means to associate an addition operation with character
literals ("A' + 'c'). In the latter case, A and c are not being used as symbolic names,
but as the “literal values” of the characters 'A' and 'c'.

A concept central to all high-level programming languages is that discrete units of
information called variables can be associated with specific locations in computer memory.
Variables serve as “containers” for data. A data container is established by giving it a sym-
bolic name, called an identifier. This process is called data declaration. Once identifiers
have been established with meaningful names, you can write code to manipulate information
symbolically by using the identifier names, thereby freeing you from having to think directly
about where information is actually stored in your computer’s memory. (As a practical
matter, you can’t figure out exactly where this information is stored even if you think you
need to know.) This symbolic approach makes it possible to write scripts that will work
without modification on any computer with a Web browser that supports JavaScript.

441
Data Declarations and Variables

A basic programming rule, no matter what the language, is that variables must be declared
before they are used elsewhere in a program. Data declaration assigns an identifier
(a variable name) to a data container and associates the identifier with a particular location
in your computer’s memory. The allocation of memory is handled by the programming
environment (in this case, your browser and its JavaScript interpreter) and is of no concern
to you as a programmer.

The data declaration process, whether explicit or implicit, is required to enable a
programming environment to manage its memory resources and perform appropriate oper-
ations. In JavaScript, the keyword var is used to declare variables and their identifiers.
Consider this code:

var g;
g=9.8;
g="gravitational acceleration";

Unlike some other languages such as C and C++, a single keyword serves to declare all
variables, regardless of their data type. In the above example, the var statement asks the
JavaScript interpreter to set aside space for a variable named g. At the time of the declara-
tion, it is not yet clear what kind of information the identifier g is going to represent.

4.4 Dataand Objects 79

JavaScript is a weakly typed language, which means that the programmer has a great
deal of latitude in associating an identifier with data of a particular type. Consider the
second and third lines in the above code fragment. The second line associates g with
the numerical value 9.8. The third associates g with the string "gravitational
acceleration™" and replaces the previous value with the new one. These statements
imply that the “container” associated with the identifier g can hold anything you want it to
hold and that you can change your mind about the nature as well as the value of the infor-
mation held in the container. The data declaration statement in JavaScript reserves the
name of an identifier associated with a data container, but not the nature of its contents. To
put it another way, JavaScript infers data type from the current contents of a variable con-
tainer. If the nature of the contents of the container (not just the value) is changed, then the
data type associated with that container will change, too. If you use spreadsheets such as
Excel, you will be familiar with this kind of data typing. When you enter content in a
spreadsheet cell, the spreadsheet imposes its own default typing for the content—as a
number or text, for example. If you enter something different in the same cell, the
spreadsheet reinterprets the contents accordingly.

Because of weak typing, it is almost always possible to omit the var keyword when
using a variable name for the first time. The statement

pi=3.14159;

without a previous var pi; isan implicit data declaration for the variable identifier pi.
Although this is generally allowed in JavaScript, there are a few situations where an
explicit data declaration is actually required. Even when they are allowed, implied declara-
tions are poor programming practice in any language and should be avoided in your code.
So, to avoid potential problems, it is best to be diligent about explicitly declaring all vari-
ables, using the var keyword, before you use them.

4.4.2
Data Types

JavaScript supports three basic data types (primitives): numbers, strings, and Boolean
values. JavaScript does not distinguish between integers and real numbers. That is, it does
not provide separate data types for integers and real numbers. Instead, JavaScript stores al//
numbers in a floating point format, which provides what is, in general, an approximation
of the actual value. In contrast, integers, in languages that support a separate data type,
are stored as exact values, in a binary format. This distinction can have significant
consequences in some kinds of numerical calculations.

Some languages, such as C/C++, have a separate data type for representing individual
characters, from which string representations are built. JavaScript works essentially the other
way around, with a single character being represented as a string variable of length one.

Boolean data have one of two values, true or false. Boolean variables can be
assigned one of these two values:

var x=true,y=false;

80 4 Fundamentals of the JavaScript Language

Note that the words t rue and false are values, not “names” (or string literals, as defined
in the next section), so they are not enclosed in quote marks.

443
Literals

Literals are actual numbers, character strings, or Boolean values embedded in code. In the
statement var pi=3.14159;, 3.14159 is a number literal. In the statement var
name="David";, "David" is a string literal. The advantage of using literals is that
their value is self-evident.

In general, it is good programming style to limit the use of the same literal value in
many places in your code. For example, rather than using the literal 3.14159 whenever
you need the value of m, you should assign a value to the quantity © by using a data
declaration statement var pi=3.14159;. Now you can insert the value of © anywhere
in your program just by referring to its identifier. Suppose you declare var B = 5.195;
and use this variable name in several places in your code. If, later on, you decide you need
to change the value of B to 5.196, you can make this change just once, in the data
declaration statement, and the change will automatically apply everywhere the B identifier
is used.

4.4.4
(ase Sensitivity

JavaScript is case sensitive. This means that all reserved words and identifiers must be
spelled exactly as they have been defined. For example, Var is not the same as var; the
statement Var pi=3.14159; will generate a syntax error. If you define a variable
named radius, you cannot later change that spelling to Radius or RADIUS. Because
of case sensitivity, you could define three separate identifiers as radius, Radius, and
RADIUS. However, this is potentially confusing and should be avoided.

There are two reasons why it is especially important to be very careful when you spell
names in JavaScript. First, recall that JavaScript doesn’t require an explicit data declara-
tion statement for variable identifiers. So, you could write the declaration statement var
taxes, income, rate; and then, later in your script, type texas=income*rate;.
This misspelling of taxes as texas would be an obvious mistake on your part, but
JavaScript will not see anything wrong with what you have done.

Second, remember that HTML is not case sensitive. Since you will be using HTML and
JavaScript together in the same document, it is easy to forget this distinction between the
two languages. Be careful!

4.4 Dataand Objects 81

4.4.5
Objects and Methods for Input and Output

In plain language usage, an object is a thing—any kind of thing. An object has properties.
Perhaps it is a ball—round, 6 cm in diameter, shiny, and red. Objects can do things. A ball
can roll and bounce. In the world of programming, objects also have properties and they
can do things. For example, there is a Math object in JavaScript that knows about math-
ematical constants (properties) and how to do certain kinds of mathematical calculations.
(See Sect. 4.6 below.) In programming terminology, implementations of actions associated
with an object are called methods. For example, you might define a method to describe
how high a ball will bounce when you drop it onto a hard surface.

The reason objects are introduced now is that in order to see how JavaScript works, you
need to display the results of calculations done in response to user input. For now, the
document.write () method of the document object, first introduced in Chap. 1, or
window.alert (), a method of the window object will be used to display output. It is
not necessary to include the window object name, so it is OK simply to write alert ().
The purpose of using these methods is to avoid, for now, worrying about the interface
between JavaScript and input fields in HTML forms. In later chapters, these methods
will be used much less frequently.

For the same reason, to avoid interactions with an HTML document, the window.
prompt (),or prompt () method will be used for input. Bothprompt () andalert ()
will be used much less frequently after JavaScript and HTML forms are integrated,
although they will remain useful for monitoring the performance of scripts.

Suppose you wish to ask the user of a script to provide the radius of a circle. The
statement

var radius=prompt ("Give the radius of a circle: ");

results in a message box being opened

on the user’s monitor. The “undefined”

message that may appear in the input

box means that the variable named

radius does not currently have a

value assigned to it. When a value is

typed in the input box, that value will

be assigned to the variable radius.

Then, additional lines of code can be written to use that value. Subsequent sections of this
chapter make frequent use of the prompt () method to get user input for a script.
Document 4.1 shows how to use the prompt () and alert () methods.

Document 4.1 (circle.htm)

<html>

<head>

<title>Calculate area of a circle.</title>
<script>

82 4 Fundamentals of the JavaScript Language

var radius=prompt ("Give the radius of a circle: ");
radius=parseFloat (radius) ;

var area=Math.PI*radius*radius;

alert("The area of the circle with radius="+radius+" is
"tarea+".");

</script>

</head>

<body>

</body>

</html>

Suppose you type 3.3 in the input box. The following alert message box will then
appear on your screen.

The formats of the prompt () and alert () windows are browser-dependent and can’t
be changed from within your script.!
Note the shaded line in Document 4.1:

radius=parseFloat (radius) ;

The purpose of parseFloat (), which is a “global” method not associated with a
particular object, is to convert appropriate strings of characters into a numerical represen-
tation. (Global methods will be discussed again in Chap. 6.) In document 4.1, the variable
radius is replaced by the output from the parseFloat () function. Why? Because
anything entered in the prompt () input window is considered to be a string of charac-
ters, regardless of whether those characters “look” like a number. Often, code will work
properly without the parseFloat () method, because JavaScript will automatically
apply an appropriate type conversion (typically from a string of characters to a number).
But there are some potential problems with relying on implicit type conversions, as will be
discussed in later examples. For now, suffice it to say that you should always apply
parseFloat () to numerical data entered through a prompt () regardless of whether
it appears to be necessary.>

! Author’s note: Some of my students complain that the alert box looks too much like a “warning,”
rather than an information window. For the examples in this chapter, you can use document .

write () instead of alert () if that is your preference.

2In some cases, the parseInt () method, discussed in Chap. 6, might be the preferred choice if
the number is to be treated as an integer.

4.5 Tokens, Operators, Expressions, and Statements 85

4.5
Tokens, Operators, Expressions, and Statements

451
Tokens

As noted previously, tokens are the smallest lexical units of a language. One way to think
about tokens is to consider how a script might be stored in compressed form. Each unique
piece of information will be represented by a token. For example, variable name identifiers
will be stored as tokens. The concept of tokens explains why myname or my name are
allowed variable names, but my name is not—my name will be interpreted as two
separate names (two tokens).

4,5.2
Arithmetic Operators

Operators are also tokens. JavaScript operators, shown in Table 4.3, include arithmetic
operators for addition, subtraction, multiplication, division, and the modulus operator for
returning the remainder from division. These are all binary operators, which means that
they require two operands, one to the left of the operator and one to the right. The addition
and subtraction operators can also function as unary operators, with a single operand to the
right of the operator; for example, -x.

With the exception of the modulus, or remainder, operator, these should all be familiar.
The modulus operator works with either integer or real number operands. (Remember that
JavaScript does not support a separate integer data type.) The result of dividing 17 by 3 is
5 with a remainder of 2. The result of dividing 16.6 by 2.7 is 6 (6 times 2.7=16.2) with a
remainder of 16.6—16.2=0.4.

The addition operator also works as a concatenation operator for strings. The expression
var author = "David" + " " + "Brooks"; makes perfect sense to JavaScript
and will give variable author the expected value of "David Brooks". Note that the
expression "David" + "Brooks" will produce the result "DavidBrooks."

When JavaScript interprets an expression, it scans the expression from left to right one
or more times. Operations implied by the presence of operators are evaluated according to
precedence rules. Fortunately, these rules are the same ones that apply in algebraic expres-
sions. Suppose a=3, b=4, and c=5. What is the value of x in the algebraic expression
X =a+ bc ? Based on precedence rules, multiplication and division operations are carried
out before addition and subtraction. So, X =3+4-5=3+20=23 . That is, a multiplication
operation has precedence over an addition operation, so the addition operation is delayed
until after the multiplication is performed, even though the addition operator is to the left

of the multiplication operator. Parentheses are required to alter the precedence rules:
x=(3+4)5=35,

4.5 Tokens, Operators, Expressions, and Statements 87

With this definition of the assignment operator, it is clear that the JavaScript statement
a+b=x; makes no sense, and will generate a syntax error. Why? Because:

Only an identifier can appear on the left side of the assignment operator.

Finally, note that the algebraic expression x = x +1 makes no sense at all because it is
not possible for x to be equal itself plus 1. However, the JavaScript statement x=x+1;
makes perfect sense. It means “Add 1 to the current value of x and then replace the value
of x with this new value.” So, as a result of executing these statements:

var x=5.5;
x=x+1;

x will have a value of 6.5.

It is sometimes difficult for beginning programmers to remember that an assignment
statement is not the same thing as an algebraic equation. Although JavaScript (and other
programming languages) allow you to perform mathematical operations with variable
identifiers, these languages do not understand the concepts of algebra. When it sees an
assignment operator, all it knows how to do is evaluate the expression on the right side of
the operator and assign that result to the identifier on the left side of the expression. In
doing the expression evaluation, it assumes that every identifier has already been assigned
an actual, and not just a symbolic, value.

As a result of how the assignment operator works, a general rule about assignment
statements is:

An identifier should never appear on the right side of an assignment operator
unless it has previously been assigned an appropriate value.

Identifiers that do not follow this rule are called uninitialized variables. They are often
assigned a value of 0 by default, but you should never violate the rule based on this
assumption.

45.4
Shorthand Arithmetic/Assignment Operators

Table 4.4 shows some shorthand operators for combining arithmetic operations and
assignments. They are popular among programmers because they are easy to write quickly,
but their use is never actually required.

The increment operator (++) adds 1 to the value of the variable to which it is applied,
and the decrement operator (--) subtracts 1. These operators are commonly used in
looping structures, as discussed later in this chapter.

As shown in Table 4.4, you can apply the increment or decrement operators either
before the variable name (pre-increment or pre-decrement) or after (post-increment
or post-decrement). This choice can lead to some unexpected results. Consider
Document 4.2.

90 4 Fundamentals of the JavaScript Language

These methods must be used appropriately in order to produce meaningful results. For
example, it makes no sense (at least in real-number mathematics) to ask Math.sqgrt ()
to calculate the square root of a negative number. Fortunately or unfortunately, depending
on your point of view, JavaScript is very forgiving about such abuses. It will return a
“value” of NaN if you ask it to do an inappropriate calculation, but it won’t tell you what
the problem is.

Trigonometric and inverse trigonometric functions always work in radians, not degrees.
So Math.sin (30) ; will calculate the sine of 30 rad, not 30°. This is an easy error to
make. It will not produce an error message because the requested calculation does not
represent a problem from JavaScript’s point of view. To convert from degrees to radians,
multiply degrees by 7/180.

When functions are called with very large or very small arguments, or when they should
produce answers that are algebraically equal to 0 (as in the sin of 0 or m radians) or
approaching infinity (as in the tangent of m /2 radians), problems can arise due to the
imprecision inherent in real-number calculations. For example, Math.sin (Math.PI) ;
will produce a value 1.2246e-16 rather than 0. (Try it and see.)

Despite the fact that “log” is often used to denote base 10 logarithms, with “In”” used for
base e logarithms, the Math.log () object supports only natural (base) logarithms and
uses 1og rather than 1n. Logarithms to some other base n can be calculated as

log, (x) = log,(x) / log,(n)

Base 10 logarithms are often used in engineering calculations. So, a JavaScript expres-
sion to calculate the base 10 logarithm of a variable x is

Math.log (x)/Math.log(10);
or, using the Math . LN10 property,
Math.log (x)/Math.LN10O;

The Math object methods mostly work just as you would expect. However, random ()
(the parentheses are required even though there is no calling argument) deserves a closer
look. As is true for random number generators in all programming languages, JavaScript’s
random () method is really only a “pseudorandom” number generator. It relies on an algo-
rithm which follows a predetermined path whenever the method is used. The randomness
results from “seeding” the algorithm with a starting value based on a value read from your
computer system’s internal clock. This “seed” value is not predictable, for all practical pur-
poses, and therefore should produce a sequence of numbers that appears to be random.

A call to an algorithm-driven random number generator such as Math.random ()
should generate a real number x randomly located within the interval 0<x<1. (That is, it
is possible that x might be exactly 0, but not exactly 1.) This range can be expressed math-
ematically as [0,1). Repeated calls to Math. random () *n should produce real numbers
uniformly distributed over the interval [0,n). However, practical applications of random
numbers are more likely to require uniformly distributed integers over a specified range.

4.6 The JavaScript Ma t h Object 91

Caution is required when converting uniformly distributed real numbers to uniformly
distributed integers. Some sources suggest

Math.round (n*Math.random() + 1) //Not a good idea!

This will produce integers in the range [1,7], but those integers will not be uniformly dis-
tributed!® The correct code is

Math.floor (n* (Math.random()%$1) + 1);

One of the Chap. 4 exercises explores this problem in more detail. See Document 4.3,
below, for an appropriate approach to generating uniformly distributed integers.

Whenever a script contains many references to the Math object’s properties and
methods, it is convenient to use the with keyword. Within a wi th statement block, refer-
ences to an object’s properties and methods do not have to be prefixed with the object
name and dot operator.

with (Math) {
{statements that refer to properties and/or methods of the Math
object, such as...}
var x=sin(.197);

Finally, it is interesting to note that you can create your own extensions to the Math
object—for example, a method that correctly returns the value of an angle expressed in
degrees rather than radians. These extensions exist only for the document in which they are
defined, but you can save your own library of extensions that can be pasted into any script.
For more information, see the exercises for Chap. 6.

Document 4.3 shows how to use some Math object methods. The for statement block
will be discussed later in the chapter. For now, its purpose should be clear from the output:

Document 4.3 (mathFunctions2.htm)

<html>
<head>
<title>Demonstration of the Math object.</title>
<script language="javascript" type="text/javascript">
for (var i=1; i<=10; i++)
with (Math) {
var x=floor (100* (random () $1))+1;
document.write (x+" "+sqrt(x)+" "+pow(x,3)+"
");
}

3Even JavaScript: The Complete Reference, the book referenced in Chap. 1, makes this mistake.

92 4 Fundamentals of the JavaScript Language

</script> 93 9.643650760992955 804357
</head> 73 8 54400374531753 389017
<body> 637.937253933193772 250047
</body> 69 8.306623862918074 328509
</html> 20 4.47213535499958 8000

95 9.746794344808963 857375

. . . . 43 6,557438524302 79507
This code will generate integer values of x in the 315 5677643628300215 29791

range [1,100]. Why writeMath. random () $1rather | 442 117649

than just Math.random () ? If the random number | 103 1622776601633795 1000
generator happens to produce a value of exactly 1, the
modulus operation replaces it with 0, because 1%1 equals 0. Any other number in the
range [0,1) is unchanged by the modulus operation.*

The output from Document 4.3 illustrates an interesting point: Even though JavaScript
does not have a data type for integers, it nonetheless knows how to display whole numbers
not as real numbers with 0’s to the right of a decimal point, but as integers. On the other
hand, real numbers that are not whole numbers are typically displayed with 15 digits to the
right of the decimal point! This is a consequence of how JavaScript stores numbers
internally, but it is hardly ever desirable or meaningful to display this many digits.

Languages such as C/C++ have formatting options to gain more control over the
appearance of output. JavaScript provides only limited options. One solution makes use of
the Math.round () method. If this statement from Document 4.3:

document.write (x+" "+sqrt(x)+" "+pow(x,3)+"
");
is replaced with:

document.write (x+" "+round (sqrt(x)*100)/100+" "+
pow (x,3) +"
");
' 5264

the output will be changed as shown, with no more than two 44 6.63 85184
digits to the right of the decimal point. Other values can be sub- | 75 8B 66 421875
stituted for 100, as appropriate. The output is not simply trun- 15 3.87 3375
cated to the selected number of digits, but rounded appropriately, '
just as you would round numbers by hand. That is, if you wish 38 6.16 54872
to display the value of pi with four digits to the right of the deci- 39 6.24 59319
mal point, both you and JavaScript would display 3.1415927 as 18 4.24 5332
3.1416. 77 8.77 456533
A better solution makes use of the fact that JavaScript 57755 185193
numbers are objects, with properties and methods. Here is some ’
code that makes use of the toFixed () method for number 637.94 250047
objects:

4 Author’s note: 1 have seen some online references claiming that some implementations of
Math.random () might, in fact, occasionally produce a value exactly equal to 1.

4.7 Comparison Operators and Decision-Making Structures 93

var x=2,n=3.3,2z=3.777777;
document.write (x.toFixed (3)+"
");
document.write (n.toFixed (3)+"
");
document.write (z.toFixed (5)+"
");
/*
This statement generates a syntax error.
document.write(7.toFixed (2)+"
") ;
but these work:
*/
document.write ((7) .toFixed (2)+"
");
document.write (13.3.toFixed (2)+"
");

(
(

The displayed results are:

2.000
3.300
3.77778
7.00
13.30

Note that you can use toFixed () to retain 0’s to the right of the decimal point even for
whole numbers, which you cannot do when you use Math.round (). So, toFixed ()
is probably the best way to exert some control over the appearance of JavaScript output.

47
Comparison Operators and Decision-Making Structures

4.7.1
Relational and Logical Operators

As noted at the beginning of this chapter, a programming language should be able to make
decisions based on comparing values. JavaScript provides a set of operators for comparing
values and a syntax for taking actions based on the results of comparisons. Table 4.6
summarizes JavaScript’s relational and logical operators.

Some of these operators are familiar from mathematics. When two characters are
required, it is because some mathematical symbols are not standard keyboard characters.

4.7.2
The 1 T Construct (Branching Structures)

Branching structures are based on a translation into programming syntax of spoken-
language statements such as: “If x is greater than y, then let z=10, otherwise let z=0" or “If

4.7 Comparison Operators and Decision-Making Structures 95

The syntax requires only the if statement. The “then” word that you might use in
conversation is implied—there is no then keyword in JavaScript. The expressions to
be evaluated must be enclosed in parentheses. The else 1if’s and else’s are optional.
The curly brackets are required to form a statement block whenever there is more than one
statement for each branch.

If you consider an if structure as defining branches in a road that eventually rejoin at
a main road, the minimum choice is a road with no branches, with the option to continue
along the road toward your destination or to bypass the road completely.

With multiple possible branches, it is important to understand that

Only the first branch of an iT statement for which the expression evaluates as
true will be taken.

To use the road analogy, once you select a branch in the road, you take only that branch and
no other.

This principle is illustrated in Document 4.4, which assigns a letter grade based on a
90/80/70/60 grading system. Suppose the numerical grade is 83. This is less than 90, so the
first branch is not executed. However, 83 is greater than or equal to 80, so a letter grade of
B is assigned. But, 83 is also greater than or equal to 70. Does this mean that the letter
grade is now reassigned to a C, etc.? No, because only the first true branch (assign a B) is
executed; the subsequent branches are ignored.

Document 4.4 (grades.htm)

<html>
<head>
<title>Get letter grade</title>
<script language="javascript" type="text/javascript">
var grade=
parseFloat (prompt ("What is your numerical grade?"));
document.write ("For a numerical grade of "+grade+
", your letter grade is ");
if (grade >= 90) document.write("A");
else if (grade >= 80) document.write("B");
else if (grade >= 70) document.write("C");

96 4 Fundamentals of the JavaScript Language

else if (grade >= 60) document.write('"D");
else document.write ("F");
document.write (".");

</script>

</head>

<body>

</body>

</html>

Note how identifier grade is given its value, with prompt () and parseFloat ()
combined in a single statement; for comparison, look again at Document 4.1. This script
will actually work without applying parseFloat (), because comparisons such as

(grade >= 90) will initiate an appropriate type conversion. However, neglecting to
apply the parseFloat () requires JavaScript to compare “apples and oranges,” and
should be avoided both as a matter of good programming style and to prevent possible
unforeseen problems in other circumstances.

Document 4.5 is another example of a calculation that uses an 1 f structure. It calculates
income tax when there are two tax rates, one of which applies to all income up to $50,000,
and the other which applies to just that portion of income that is in excess of $50,000.

Document 4.5 (taxes.htm)

<html>
<head>
<title>Calculate income tax</title>
<script language="javascript" type="text/javascript">
var income=
prompt ("Enter your income (no commas!): $");
income=parseFloat (income) ;
var tax,loRate=.17,hiRate=.37;
if (income<=50000.)
tax=income*1loRate;
else
tax=50000.*1oRate+ (income-50000.) *hiRate;
document.write ("For an income of S"+income+", your tax
is S$"+tax.toFixed(2)+".");
</script>
</head>
</body>
</html>

4.7 Comparison Operators and Decision-Making Structures 97

For the example shown, the tax is ($50,000)(0.17) + ($23,000)(0.37) = $17,010.00.
The toFixed (2) method displays the result with two 0’s to the right of the decimal
point.

When comparisons get more complicated, you must be careful about how you form
logical/relational expressions. Suppose you want your code to respond to the statement: “If
today is Tuesday or Thursday, I should be in class.” The proper implementation is:

if ((today == "Tuesday") || (today == "Thursday"))
If this expression is rewritten as
(today == "Tuesday" || "Thursday") // don't do it!

it has a value of t rue if today is "Tuesday" buta value of "Thursday" (rather than
false)if today is "Monday". This is not at all what you intended!

An alternate version of the original expression, without the two inner sets of
parentheses, is:

// poor style!
(today == "Tuesday" || today == "Thursday")

This will be interpreted correctly, but it depends on the fact that the equality operator has
precedence over the OR operator. In cases like this, the use of “extra” parentheses, as in

((today == "Tuesday") || (today == "Thursday"))

is better programming style. It makes clear the order in which you wish the operations
to be performed and also makes it unnecessary to memorize the precedence rules for
relational and logical operators.

Finally, the expression

// don't do it!
(today = "Tuesday") || (today = "Thursday")

may look OK but, again, it is not at all what you intended because the equality operator has
been replaced with an assignmen t operator. The expression has a value of "Thursday"
rather than true.

Using an assignment operator (=) when you intend to use an equality operator
(==) is a common programming mistake that is very hard to pinpoint because it
does not generate a JavaScript error. Be careful!

98 4 Fundamentals of the JavaScript Language

473
The switch Construct

There is one more type of branching construct that is useful for certain kinds of compari-
sons. Suppose you would like to write code that will tell a user how many days are in a
particular month.

Document 4.6 (daysInMonth.htm)

<html>

<head>

<title>Days in Month</title>

<script language="javascript" type="text/javascript">

var month=prompt ("Give month (1-12): ");
switch (month) {

case "1":

case "3":

case "5":

case "7":

case "8":

case "I10":

case "12":

alert ("There are 31 days in this month.'"); break;
case "4":

case "6":
case "9":
case "I11":
alert ("There are 30 days in this month.'"); break;
case "2":

alert ("There are either 28 or 29 days in this
month."); break;
default:
alert ("I do not understand your month entry.");
}
</script>
</head>
<body>
</body>
</html>

Although this code could be implemented with if syntax, the switch construct is
perhaps a little more clear. The syntax should be clear from Document 4.6. The switch
keyword is followed by an expression enclosed in parentheses. The possible values of the
expression are enumerated in the case labels that follow. The “numbers” of the months

4.8 Loop Structures 99

are given as text because the value from prompt () is text. It will not work to replace the
case statements with, for example, case 5: instead of case "5": because, unlike
comparisons made with the == and other relational operators, no automatic type conver-
sion will be performed. (See also the === and !== operators previously defined in
Table 4.6.) If the linemonth=parseFloat (month) ; isinserted after the prompt, then
the case values must all be numbers, and not text.

Each case and its value is followed by a colon. The values do not have to be in any
particular order. The default keyword provides an opportunity to respond to
unexpected or other values. The statements following the first case label whose value
matches the expression are executed. Note that these statements are not enclosed in curly
brackets. They are executed in order and, unlike the “single branch” behavior of if..
statements, will continue to execute subsequent statements that apply to other case
values unless the break keyword appears as the last statement in a group of statements
to be executed.

4.8
Loop Structures

The ability to perform repetitive calculations is important in computer algorithms. This is
enabled through the use of loop structures. Loops can be written to execute the same code
statements a prescribed number of times, or they can be written so that loop execution (or
termination) is based on conditions that change while statements in the loop are being
executed. The former situation uses count-controlled loops and the latter uses conditional
loops.

4.8.1
Count-Controlled Loops

Count-controlled loops are managed with the for keyword. The general syntax of a
count-controlled loop is:

for (counter= {expression giving on initial value of counter};
{expression giving high (or low) value of counter);
{expression controlling incrementing (or decrementing) of counter})

The for keyword is followed by three statements inside a pair of parentheses. The
first statement sets the initial value of a counter. You can give the identifier name—
counter in the above example—any name you like. The second expression sets condi-
tions under which the loop should continue to execute; the loop continues to execute as
long as the value of the second expression is t rue. The third expression controls how
the counter is incremented or decremented. It is up to you to make sure that these three

100 4 Fundamentals of the JavaScript Language

related expressions are consistent and will actually cause the loop to terminate. For
example, the loop

for (i=1; i=12; i+=2)

will never terminate because i will never equal 12. Perhaps you meant to write the second
expression as 1<=12;. If so, then the loop will execute for 1=1, 3,5,7,9, and 11.

Now, consider Document 4.7, which displays the integers 0—10, in order. The counter k
is initialized to 1. It is incremented in steps of 1, and the loop executes as long as k is less
than 10. Use of the shortcut incrementing or decrementing operators, as in k++, is very
common in for loops.

Document 4.7 (counter2.htm)

<html>

<head>

<title>Counter</title>

<script>

var k;

document.write ("Here's a simple counter: "+'"
");
for (k=0; k<=10; k++) { //curly brackets optional

document.write (k+"
");} Here's a simple counter:

</script> 0 ’
</head> 1
<body> 5
</body> 3
</html> 4
5
For this example, a statement block enclosed in curly 6
brackets following the for.. loop is not required because | 7
only one statement is executed in the loop. Document 4.8 | §
shows a version of Document 4.6 which counts backward | §

from 10. 10

Document 4.8 (countdown2 . htm)

<html>

<head>
<title>Countdown</title>

<script>

var k;

document.write ("Start launch sequence!”
+"
");

4.8 Loop Structures 101

for (k=10; k>=0; k--) { //curly brackets optional
document.write (k+"
"); Start launch sequence!
} 10
document.write ("FIRE!!"); 9
</script> 3
</head> 7
<body> 5
</body>
</html> 3
4
Recall that a for... loop was used previously in Document 3
4.3. Now would be a good time to look back at that code and 2
make sure you understand how that loop worked. 1
0

FIRE!N

482
Conditional Loops

It is often the case that conditions under which repetitive calculations will or will not be
executed cannot be determined in advance. Instead, conditions that control the execution
or termination of a loop structure must be determined by values calculated inside the loop,
while the script is running. Such circumstances require conditional loops.

There are two kinds of conditional loops: pre-test and post-test loops. The statements
in pre-test loops may or may not be executed at all, depending on the original values of
loop-related variables. Post-test loops are always executed at least once, and the values
of loop-related variables are tested at the end of the loop. The syntax is slightly
different:

pre-test loop:

while ({logical expression}) {
{statements that result in changing the value of the pre-test logical
expression}

}
post-test loop:

do {
{statements that result in changing the value of the post-test logical
expression}
} while ({logical expression}) ;

Conditional loops can always be written either as post- or pre-test loops. The choice is
based on how a problem is stated. Consider this problem:

102 4 Fundamentals of the JavaScript Language

A small elevator has a maximum capacity of 500 Ib. People waiting in line to enter
the elevator are weighed. If they can get on the elevator without exceeding the load
limit, they are allowed to enter. If not, the elevator leaves without trying to find some-
one who weighs less than the person currently first in line. If the elevator is overloaded,
it crashes. It is possible that there might be a large gorilla in line, weighing more than
500 Ib. This gorilla shouldn’t be allowed on the elevator under any circumstances.
Write a document that will supply random weights for people (or gorillas) waiting in
line, control access to the elevator, and stop allowing people (or gorillas) to enter if the
weight limit would be exceeded.

One solution to this problem is shown in Document 4.9.
Document 4.9 (gorillal.htm)

<html>
<head>
<title>The elevator problem (with gorillas) .</title>
<script language="javascript" type="text/javascript">
var totalWeight=0.,limitWeight=500.,maxWeight=550.;
var newWeight;
do {
newWeight=Math.floor (maxWeight* (Math.random() %1))+1;
if ((totalWeight + newWeight) <= limitWeight) ({
totalWeight += newWeight;
document.write (
"New weight = " + newWeight + " total weight = "
+totalWeight + "
");
newWeight=0.;
}
else document.write("You weigh " + newWeight +
" 1b. I'm sorry, but you can't get on.");
} while ((totalWeight + newWeight)
<= limitWeight) ;

Zi::ii” New weight = 191 total weight = 191
<body> MNew weight = 154 total weight = 345
</body> New weight = 151 total weight = 496
</html> You weigh 108 Ib. I'm sorry, but you can't get on.

This solution to the problem uses the Math.random () method to generate random
weights between 0 and 500 Ib. The calculations are done inside a post-test loop. The code is
arranged so that the effect of adding a new person to the elevator is tested before the person
is allowed on the elevator. It is left as an exercise to rewrite this loop as a pre-test loop.

In principle, count-controlled loops can also be written as conditional loops. However,
it is better programming style to reserve conditional loop structures for problems that

4.8 Loop Structures 103

actually need them. Clearly, Document 4.9 is such a problem because there is no way for
the script to determine ahead of time what weights the Math.random () method will
generate. Another example of a problem that demands a conditional loop calculation is
Newton’s algorithm for finding the square root of a number.

Given a number #n:

1. Make a guess (g) for the square root of n. n/2 is a reasonable guess.

2. Replace g with (g +n/ g)/ 2,

3. Repeat step 2 until the absolute difference between g and » is smaller than some
specified value.

This algorithm is easy to write as a conditional loop. Consider Document 4.10.
Document 4.10 (newtonSqgrt2.htm)

<html>
<head>
<title>Newton's square root algorithm</title>
<script language="javascript" type="text/javascript">
var n=prompt ("Enter a positive number:");
n=parseFloat (n) ;
var g=n/2;
do {
g= (g +n/g)/2.;
} while (Math.abs(g*g-n) > le-5);
alert(g+" is the square root of "+n+".");
</script>
</head>
<body>
</body>
</html>

This algorithm is imple-
mented as a post-test loop
because a reasonable assumption is that the calculation inside the loop will always need to
be done at least once. In fact, considering that the initial guess for the square root of # is
n/2, this assumption is true for all values of n except 4. The statement g= (g+n/g) /2; is
an excellent example of how an assignment operator differs from the same symbol (=)
when it is used in an algebraic context. This kind of “replacement assignment” is often
seen in conditional loops.

The terminating condition while (Math.abs (g*g-n)>1le-5); is important. It
is not obvious whether g? will be larger or smaller than n. So, you must test the absolute
value of g> — n to ensure that the value being compared to 107 is always positive (because
any negative number is less than +107).

104 4 Fundamentals of the JavaScript Language

This algorithm will work for any positive number. Note that the algorithm does not give
exactly 3 as the square root of 9. On the other hand, if you calculate the square root of 4, it
will give exactly 2. These kinds of discrepancies are a result of how numbers are stored
and how numerical calculations are done. Newton’s square root algorithm is a numerical
approximation, so in general, it will approach the actual answer (within the specified accu-
racy), but won’t necessarily give the exact answer for a perfect square. Except for annoy-
ing strings of zeros and digits—to the right of the 3 in the output shown here—these
discrepancies are usually of no practical concern. If desired, the extraneous digits can be
removed with the Math.round () or toFixed () method.

4.9
Using JavaScript to Change Values in Form Fields

In an interactive environment, you would like to be able to calculate new values based on
user input. HTML form fields can serve both purposes: users can enter values and the
document can use JavaScript to calculate new values for other fields. Consider this
problem:

Atmospheric pressure decreases with elevation. When barometric pressure is given in
weather reports, it is always referenced to sea level. (Otherwise it wouldn’t be possible
to draw weather maps that show the movement of air masses.) Scientists often need to
know the actual barometric pressure at a site. This is called station pressure. An approx-
imate conversion from sea level pressure to station pressure is:

=P —h/9.2

station s level
where pressure P is expressed in millibars and elevation / is expressed in meters.

U.S. users will need to convert from inches of mercury to millibars: P . =
33.864+P.

s o e WVTItE an application that calculates station pressure from sea level
inches of Hg

pressure and elevation.

Document 4.11 demonstrates several new HTML and JavaScript features.
Document 4.11 (stationPressure.htm)

<html>

<head>

<title>Convert sea level pressure to station
pressure.</title>

Convert sea level pressure to station pressure (true
pressure)

4.9 Using JavaScript to Change Values in Form Fields 105

</head>
<body bgcolor="lightblue">
This application converts sea level pressure to
station pressure.

Station pressure is the actual pressure at an
observer's observing site.

It is always less than or equal to sea level pressure
(unless you are below

sea level).

<form>
Fill in elevation and sea-level pressure:
<input type="text" name="elevation" value="0" size="8"
maxlength="7" /> (m)
<input type="text" name="sea_ level pressure" value="1013.25"
size="8" maxlength="7" /> (mbar)

<input type="button" name="Calculate"
value="Click here to get station pressure:"
onclick="result.value=
parseFloat (sea_level pressure.value) -
parseFloat (elevation.value) /9.2;" />
input type="text" name="result" size="8"
maxlength="7" /> (mbar)

<input type="reset" value="Reset all fields." />
</form>
</body>
</html>

The HTML code in Document 4.11 provides default values for the input fields. The
output reproduced here is for these default values.

Earlier discussions noted that JavaScript script was often, but not always, contained
within a script element in the head of a document. But, Document 4.11 shows that
JavaScript statements can appear in a document without a script element. It is not

106 4 Fundamentals of the JavaScript Language

obvious that this should be so—you could easily imagine a scenario in which JavaScript
statements were allowed to exist only inside a script element.

The "button™ field allows a user to initiate an action by clicking anywhere on the
button. In this case, a click initiates the calculation of station pressure based on the values
currently in the elevation and sea level pressure fields—either the default
values or new values entered by the user. In order to respond to a moving a mouse cursor
over the button field and clicking, HTML uses an event handler, an important means of
providing interaction between a document and its user. Event handlers are attributes (of
input) whose “values” consist of a set of JavaScript instructions enclosed in quotes.
There are several event handlers, but in this chapter only onc1ick will be used. (We will
return to the topic of event handlers in Chap. 6.) In Document 4.11, the event to be “han-
dled” is a click of a mouse when its cursor is somewhere in the screen space defined by the
“Click here to get station pressure” button.

How is information transmitted from a form field to JavaScript? It will not work to use,
for example, just the elevation name from the form field. Why not? Because
elevation isjust the name
of the field, not its value. ‘

Form fields have attributes,
such as name, and those attri- Fqorm field —
butes have values, such as /'71

=

3
elevation. The attributes g{ﬁeldname}. defaultvalue
have values, too, accessed
through the “dot notation”
shown. One of the values of a field name is its de faultValue, which is the value originally
assigned to the form field in the HTML document; this value can be left blank.

Of interest here is value, either the same as defaultValue oranew value entered
by the user. It is the value attribute that provides the input for a calculation and will
also receive calculated results in other form fields. Applying the parseFloat

(elevation.value) method translates the text in value into a numerical value.
Using just elevation as the argument for parseFloat () makes no sense at all
from JavaScript’s point of view. It may seem cumbersome to use this notation, but
remember that the name assigned to an HTML form field is simply not the same thing as
an identifier in JavaScript.

Once a mouse is clicked over the button field in Document 4.11, the JavaScript statement
is executed. The application of parseFloat () to the values in the elevation and
sea level pressure fields is required for the same reasons previously discussed
for numerical values entered through prompt () . The distinction between text and numeri-
cal values is easy to forget because JavaScript often applies type conversions to text values,
on its own. In Document 4.11, the calculation for the result field could also be written as

fieldname}, value

result.value = sea level pressure.value -
elevation.value/9.2; // Bad idea!
However, if you replace the “~” sign with a “+” sign, the numerical calculation will not be
done! (Try it and see.) What is the difference? The “+” operator has a specific meaning when
applied to strings (it is interpreted as a concatenation operator), but the “~” operator does not.

410 More Examples 107

When it encounters a subtraction operator, JavaScript is “smart enough” to understand that
the text values must be converted to numbers in order to carry out the specified action but,
from JavaScript’s point of view, this is not necessary for the “addition” operator.

Type conversion issues also apply when results of a numerical operation are assigned to
a form field name. Although result.value=..looks like an assignment of one numeri-
cal value to another, the numerical result must actually be converted back to text before it
can be assigned to result.value. You might think that some kind of “convert this
number to text” method is required, and in some sense it is, but you don’t have to specify
this conversion in your script because JavaScript automatically does it for you.

Finally, clicking anywhere on the “Reset all fields” button sets all inputs back to their
original values. JavaScript does this by accessing the defaultValue assigned to each
field.

4.10
More Examples

4.10.1
Solving the Quadratic Equation

Here is a simple algebraic calculation that is easy to implement.

For the quadratic equation ax? +bx+c= 0 ,find the real roots:

r= [—b + (b2 - 4ac)1/2]/2a r,= [—b - (b2 - 4ac)1/2]/2a

The “a” coefficient must not be 0. If the discriminant b? —4ac =0, there is only one
root. If b>—4ac is less than 0, there are no real roots.

Document 4.12 (quadratic.htm)

<html>
<head>
<title>Solving the Quadratic Equation</title>
</head><body><form>
Enter coefficients for ax² + bx + c = 0:

a = <input type="text" value="1" name="a" />

(must not be 0)

b = <input type="text" value="2" name="b" />

c = <input type="text" value="-8" name="c" />

click for rl = <input type="text" value="0" name="rl"
onclick="var A=parseFloat (a.value), B=parseFloat (b.value),
C=parseFloat (c.value) ;

108 4 Fundamentals of the JavaScript Language

rl.value= (-B+Math.sqrt (B*B-4.*A*C)) /2./A;" />

click for r2 = <input type="text"

value="0" name="r2" onclick="var
A=parseFloat (a.value) ,B=parseFloat (b.value),
C=parseFloat (c.value) ;

r2.value= (-B-Math.sqrt (B*B-4.*A*C)) /2./A;" />

</form></body></html>

This is a workable solu-
tion to the problem, but it is
certainly not elegant or
thorough. (It’s the kind of
application you might write
for your own use, but you
might not want to distribute
it globally on the Web!) For
example, no check is per-
formed on the discriminant
to see if it’s non-negative
before the Math.sqgrt () method is applied. However, if the discriminant is negative,
then JavaScript will simply assign a value of NaN to the result, which can be interpreted as
a message that there are no real roots.
Note the use in Document 4.12 of the ^{..} tag to display exponents and
other superscripts in HTML. The _{...} tag will display subscripts.

4.10.2
Rectangular Rule Numerical Integration

Programming languages such as JavaScript do not “know” about symbolic mathematics,
including calculus, so they can’t be used to perform analytic integration of functions.
However, there are several ways to integrate functions numerically. This is especially useful
for functions that do not have analytic integrals, such as the normal probability density func-
tion (see Exercise 6.6). Rectangular Rule integration is the simplest of these methods.

Assume f(x)=x2. To calculate an approximation to the integral of /(x), specify the lower
and upper boundaries for the integration, x; and x,. Divide the interval (x,—x,) into n
equal intervals, dx=(x, —x,)/n. Then,

INITIALIZE integral=0 (Initialize the value to 0.)
LOOP fori=0ton—1,
X=X, +iedx+dx/2
y=x-+x (This could be any function of x.)
integral =integral +y
END LOOP
ASSIGN integral =integral * dx

410 More Examples 109

The graph illustrates the Rectangular Rule integration of f{x)=x? over the interval 1-4,
with n=3. The sum of the areas of the gray rectangles is the approximation to the integral.
For implementation in code, n should be much larger than 3!

16 — - S S -
12 /////

0
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
X

f(x) = x?

Document 4.13 (RectangularRule.htm)

<html>
<head>
<title></title>
</head>
<body>
<h2>Rectangular Rule integration</h2>
for f(x)=x²
<form>
x₀: <input type="text" name="x0" value="1" />

x₁: <input type="text" name="x1" value="3" />

<input type="button" value="Click here to integrate."
onclick="var x,X0,X1,i,n=20,integral=0,y; //y=x*x
Xl=parseFloat (x1l.value) ;
X0=parseFloat (x0.value) ;
dx=(X1-X0) /n;
for (i=0; i<n; i++) {
x=X0 + i*dx + dx/2;
y=X*x;
integral+=y;

110 4 Fundamentals of the JavaScript Language

result.value=integral*dx; "/>
<input type="text" name="result" value="result" /></br />
</form>
</body>
</html>

The analytic integral of f(x)=x* is x*/3. The value of the integral over the interval 1—4
is 4%/3—13/3=(64—1)/3=21. Document 4.13 gives a value that is close but not exact.
Increasing n will improve the approximation. In general, numerical integration algorithms
work well for “well behaved” functions but they will not give exact values.

It is possible to write code that allows a user to enter a function in an <input> field,
expressed in proper JavaScript syntax, rather than having to “hard code” the function as in
this example. (See Exercise 6.6.)

Using Arrays in HTML/JavaScript

Abstract Chapter 5 presents an introduction to arrays. It explains how to define arrays in
JavaScript, how to use them, and how to use arrays to interact with an HTML form.

5.1
Basic Array Properties

The concept of arrays is extremely important in programming, as it provides a way to
organize, access, and manipulate related quantities. It is important to form a mental model
of how arrays are implemented, as shown in the sketch. It may be helpful to think of a post
office analogy. The post office has a name, equivalent to the name of an array. Inside the
post office are numbered mail boxes. The numbers on the boxes correspond to array
“addresses,” called indices. The contents of the boxes correspond to array elements. In
many programming languages, including JavaScript, the numbering of array elements
always begins at 0 rather than 1.

Addresses (indices)
012346586 n-1

Array Name {n elements)
Contents {elements)|

JavaScript supports an Array object for creating, using, and manipulating related
values. The most important Array method is the constructor new Array (), which
allows you to create arrays. Syntax possibilities for doing this include:

var Arrayl new Array();

var Array2 = new Array(value 1,value 2,..,value n);

var Array3 new Array(10);

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, m
DOI 10.1007/978-0-85729-449-4 5, © Springer-Verlag London Limited 2011

112 5 Using Arrays in HTML/JavaScript

The first statement creates an empty array named Arrayl. The second statement creates
an array of n elements with initial values as provided by the arguments. The third state-
ment creates an array with ten elements whose values are unspecified. Because, as will be
shown later, the declared size of an array is easily overridden, it makes little sense to
declare an array using the syntax of the third statement.

It is not actually necessary to invoke the Array () constructor in order to create a
JavaScript array. Each of these statements will create an array:

var Arrayl = [];

var Array2 [value 1,value 2,..,value n];

var Array3 = [,rrrrrrrsli

Note the use of square bracket notation rather than parentheses in this syntax. The third
statement, with nine commas, implies an empty array of ten elements. This syntax might
be useful for declaring sparse (mostly empty) arrays:

var SparseArray = [1.1,,3.3,,,,1;

Array elements can also be assigned by using variable names that already have
appropriate values. The statements

3.3, b= 5.5, ¢ =7.7;
var A = [a,b,c];

var a

create array A with three elements equal to 3.3, 5.5, and 7.7.

Square bracket notation is also used to access the elements of an array. Individual array
elements can appear to either the right or the left of an assignment operator, with the usual
provision that array elements appearing on the right side of an assignment operator should
already have been given an appropriate value. That is, you can use assignment statements
to assign values to undefined array elements or to change previously assigned values:

Array indices can be numbers, as in the above example, or identifiers, suchas x [1], or
even expressions, such as x [2*73+3], assuming the identifier or expression represents an
integer value. If, for example, j=2.5, the index is (2)(2.5)+3=8, and this is an allowed
index, assuming there are at least nine elements in x. However, if j=2.3, x [2*7+3] is
undefined because (2)(2.3)+3 is not a whole number. For the same reason, x[1] is
defined, but x [4/3] is not.

Unlike some other languages, JavaScript allows an array declaration to be overridden
later in the script. Continuing with the above example, it is easy to add one or more
additional elements:

5.1 Basic Array Properties 113

Bearing in mind that arrays are objects, the current length of an array is contained in the
length property. For the above example, A.length has a value of 5. The value of
length is equal to the number of declared locations in the array. To look at it another
way, length gives the value of the next available array index. This is true regardless of
whether any or all of the array elements have been assigned values. For example, the
statements

var A = new Array(5);
alert (A.length);

display a value of 5 despite the fact that the array A is empty.

A useful feature of JavaScript arrays is that not all elements must contain the same kind
of data. Document 5.1 gives a simple example in which array elements are a mixture of
numbers and text strings.

Document 5.1 (siteData.htm)

<html>
<head>
<title>Site Names</title>
<script>
var siteID = ["Drexel”,3, "home",101];
var i;
for (i=0; i<siteID.length; i++)
document.write (i+", "+siteID[i]+'"
");

</script>

</head> 0, Drexel
<body> 13
</body> 2, home
</html> 3,101

Document 5.1 shows how the 1ength property of an array is used to determine the
terminating condition in a for... loop to access all the elements of the array. Remember
that the index value of the last element in an array is always one less than the total num-
ber of elements in the array. This is why the terminating condition is i<siteID.
lengthandnot i<=siteID.length. The latter choice won’t produce an error mes-
sage, but it is an inappropriate choice for termination because the element A[A.
length] does not exist.

Because the number of elements in a JavaScript array can be expanded while a script is
running, the code in Document 5.1 demonstrates the most reliable way to control a for
loop when accessing arrays. Using the length property is usually preferable to using a
numeric literal as the terminating condition for accessing an entire array.

114 5 Using Arrays in HTML/JavaScript

Note that it is also possible to use a for... loop to access just parts of an array. For
example,

for (i=1; i<A.length; i+=2) {

accesses just the even elements of A—the second, fourth, etc. (Starting the loop at an index
of 1 first accesses the second element of A.)
This code:

for (i=A.length-1; i>=0; i--) {

accesses the elements of A backwards. A for... loop does not have to start at the first
element of an array—it can start anywhere—and it can terminate anywhere up to and
including the last element in an array. Attempts to access array elements that do not exist
will produce unpredictable results. This code:

var a=Array(l1,2,3,4,5,6,7);
for (var i=0; i<=7;i++) document.write(a[i]+' ');

produces this output:

123456 7 undefined

because the upper limit of the loop counter is 7 (1 <=7) instead of 6 (1<7) and the seventh
element of array a does not exist.

Another interesting feature of JavaScript is that the assignment operator can be used to
assign one array name to another. But, you need to be careful about interpreting this action.
Consider this modification to Document 5.1:

var siteID = ["Drexel"”,3, "home",101];
var newSite = [];
var i;

newSite = sitelID;
for (i=0; i<newSite.length; i++)
alert (newSite[i]);

You could also have written var newSite = siteID;, which eliminates the need
for the separate newSite = sitelID; statement. A reasonable interpretation of such
statements is that newSite is an independent copy of sitelID, stored in different
memory locations from siteID. However, this is not true! This code does not actually
create an independent copy of siteID. Instead, both siteID and newSite are
now identified with the same data in memory. This is because an array name doesn’t liter-
ally represent the contents of the array. Rather, the name simply identifies a location in

5.2 Some Operations on Arrays 115

memory where the first element of the array is stored. If you assign one array name to
another array name, all that happens is that the “box” in memory holding the array ele-
ments now has two “name tags” instead of just one. As a result, changes made to elements
in either array name will affect elements in the other array, too.

The interpretation of an array name as a “pointer” to a location in memory helps to
explain why the first element of an array is identified by an index of O rather than 1. The
index is an offset—the “distance” from the memory location “pointed to” by the array
name. For the very first element in an array, this offset is 0.

5.2
Some Operations on Arrays

There are some Array methods that are useful for the kinds of problems addressed in this
book.

5.2.1

Manipulating Stacks Add to stack. Remove from stack.
and Queues I X I —>

Stacks and queues
are abstract data types

familiar to computer "new” end "old” end
science students. They O->OOOI I -+« OO —->0

are used to store and Add to queue. Remove from queue.
retrieve data in a par-

ticular way. A stack uses a last-in first-out (LIFO) data storage model. You can think of it
as a stack of dinner plates. You put new dinner plates on the top of the stack, and when you
retrieve a dinner plate, it always comes from the top of the stack. So, the last value added
on a stack is the first value retrieved.

A queue uses a first-in first-out (FIFO) data storage model. It operates like a queue
(aline, in American English) of people waiting. A new person joins the line at the end, and
people leave the line according to who has been in line the longest. So, a value removed
from the queue is always the “oldest” value.

JavaScript arrays provide a very friendly environment for implementing stacks and
queues because arrays can be resized dynamically, while a script is running. However, the
methods shown here for operating on stacks and queues may not work in all browsers. For
example, they don’t work in the internal browser supplied with the AceHTML freeware
used for developing the code in this book." You will just have to try the code to see if it
works with your browser.

You can specify an external browser to use from within AceHTML, to replace its internal
browser.

116 5 Using Arrays in HTML/JavaScript

The push () and pop () methods are used for managing stacks and queues. push ()
adds (“pushes”) the specified arguments to the end of the target array (the “top” of the
stack), in order, as you would for either a stack or a queue. The 1ength property is auto-
matically updated. The pop () method (no calling arguments) removes (“pops”) the last
(most recent) element from the array, returns the value of that element, and decreases
length by 1, as you would for a stack.

The shift () and unshift () methods are similar to push () and pop (), except
that they operate from the front (index 0) of an array. shift () (no arguments) removes
the first element from the array (as you would for a queue), returns the value of that ele-
ment, shifts the remaining elements down one position, and decreases Length by 1. The
unshift () method shifts current array elements up one position for each argument,
inserts its arguments in order at the beginning of the array, and increases length by 1 for
each argument. This action wouldn’t be used with either a stack or queue—it amounts to
allowing “line crashers.” The use of these methods might seem backwards because
unshift () adds elements and shift () removes them.

To summarize:

For a queue: use push () to add a new value at the end of the queue and shift () to
remove the “oldest” value (the value at index 0).

For a stack: use push () to add a new value to the top of the stack and pop () to remove
a value from the top of the stack.

Documents 5.2 illustrates how to use these methods to treat an array first as a stack and
then as a queue.

Document 5.2 (stacksAndQueues.htm)

<html>
<head>
<title>Stacks and Queues</title>
<script language="javascript" type="text/javascript">
var a=[1,3,5,71, i;
// Treat the array like a stack.
document.write ("STACK:" + a + " length of a = " +
a.length+"
");
a.push(11,12,13);
document.write(a + " length of a = " + a.length
+"
");
for (i=1; i<=3; i++) {
a.pop () ;
document.write(a + " length of a = " +
a.length+"
");
}
// Treat the array like a queue.
document.write ("QUEUE:" + a + " length of a = " +
a.length+"
");

5.2 Some Operations on Arrays

a.push(11,12,13);
document.write(a +
+"
");
for (i=1; i<=3;
a.shift();
document.write(a +
+"
");
}
</script>
</head>
<body></body>
</html>

i++) |

Note the use of an entire array name in the
document.write () parameter list. This
automatically displays all the elements of the
array, separated by commas.

5.2.2
Sorting

" length of a

" length of a

117

= " + a.length

= " + a.length

STACK:1,3,5,7 length of a=4
1,3,57,11,12,13 length of a =7
1,3,57,11,12 length of a= 6
1,3,57,11 length ofa=35
1,3,5,7 length of a=4
QUEUE:1,3,5,7 length of a=4
1,3,5,7,11,12,13 length of a =7
3,5,7,11,12,13 length of a=$
57.11,12,13 lengthofa=>5
7,11,12,13 length of 2 =4

Sorting array elements in ascending or descending order is a fundamental computing task.
However, it can be challenging to write efficient sorting algorithms. (Understanding and
developing sorting algorithms is a standard topic in basic computer science courses.)
Fortunately, JavaScript has an Array method, sort (), that will operate on arrays with-
out much work on your part. Document 5.3 shows how to use this method to sort an array
in ascending order. Unfortunately, as you will see, this code does not produce the expected

result!
Document 5.3 (sort.htm)
<html>

<head>
<title>Sorting Arrays</title>

<script language="javascript" type="text/javascript">

var a=[7,5,13,3];
document.write(a +
a.sort();
document.write(a +
</script>
</head>
<body>

</body>
</html>

" length of a

" length of a

" + a.length+"
");

" + a.length+"
");

7,5.13,3 length of 2 = 4
13,3,5.7 length of 2 = 4

118 5 Using Arrays in HTML/JavaScript

The contents of the array are displayed before and after application of the sort ()
method. The array is clearly not sorted, as 13 is not less than 3! It is apparent that the
sort () method has performed a “lexical” sort based on the order of characters in the
ASCII character sequence even when the characters represent numbers; the character “1”
comes before the character “3” in this sequence in the same sense that “a” comes before
“c” in the dictionary, and therefore, “ac” comes before “c.” This result would be easier to
understand if the values from the array came from a prompt () or from the input fields
of a form because it has already been demonstrated that “numbers” are treated like strings
of characters. However, for sorting arrays of user-defined numbers, this behavior is less
obvious and is clearly a potential disaster.

The sort () method can cause problems even with text. If, for example, you replace
the array declaration with

var a=["zena","David", "apple", "pie"];

the result is still probably not what you . . _
intended. Uppercase letters come zena,David.apple,pie length of a = 4

before lowercase letters in the stan- | David.apple pie.zena length of a = 4
dard ASCII character sequence, so
“David” is still “less than” “apple.”

The behavior of the sort () method constitutes a serious implementation problem. If
you are sorting just text, you could consider using the toUpperCase () or toLower-
Case () methods to convert all of the letters to either uppercase or lowercase letters prior
to applying the sort () method, but this isn’t a very satisfying solution in general.
A more comprehensive solution is to supply the sort () method with your own code for
deciding whether one item is larger than, smaller than, or equal to another item in an array.
This solution will be addressed in Chap. 6.

53
More about Array Methods

Several array methods and the 1ength property have been described in previous sections
in the context of stacks and queues. Table 5.1 summarizes these and some other array
methods.

The reverse () method could be used to change the order in a sorted array from
ascending to descending, for example. The join () method, which converts array ele-
ments into a string with user-selected separator characters, is paired with the string object’s
split () method, which converts a delimited string of values into an array of elements.
The toString () method converts array elements into a string, too, but the separator
character is always a comma. slice () can be used to create a new array from a subset
of contiguous elements in the original array.

5.4 (reating Two-Dimensional Arrays 121

at the end of each row. Note the use of double square bracket notation [r] [c] to access
the individual “cells” in the two-dimensional table.

In some cases it might be helpful to have the columns identified by name rather than by
an index and Document 5.5 shows how this can be done. This code will make more sense
after reading Chap. 6, which deals with the topic of JavaScript functions. Basically, each
element of the array siteID is created as an object with properties, using the new
keyword to reference a user-defined array constructor, function IDArray (). This
function creates properties for the elements of siteID, with names that are appropriate
for the values passed as arguments.

Document 5.5 (TwoDArray 2.htm)

<html>
<head>
<html>
<head>
<title>"Multidimensional" arrays</title>
<script language="javascript" type="text/javascript">
var siteID = new Array();
function IDArray (ID, lat,lon,elev) {
this.ID=ID;
this.lat=lat;
this.lon=lon;
this.elev=elev;
}

siteID[0]=new IDArray ("Drexel”,39.955,-75.188,10.);
siteID[1]=new IDArray ("home",40.178,-75.333,140.);
siteID[2]=new IDArray ("NC",35.452,-81.022,246);
siteID[3]=new IDArray ("Argentina",-34.617,-58.37,30.);
siteID[4]=new IDArray ("Netherlands'",52.382,4.933,-1);
var i;

for (i=0; i<siteID.length; i++) {
document.write (siteID[i] .ID+
", "+siteID[i].lat+"”, "+siteID[i].lon+",
"+siteID[i] .elev+"
");

}

</script>

</head>

<body>

</body>

</html>

The output is the same as for Document 5.4. The “this” in this.ID=ID; is inter-
preted as defining a property of “this” array object. The output from this code is the same

122 5 Using Arrays in HTML/JavaScript

as for Document 5.4. It is convenient to use the same names both as “placeholders” for the
arguments and for the property names themselves. However, this is just a convenience.
Rewriting function IDArray () as

function IDArray(a,b,c,d) {
this.ID=a; this.lat=b; this.lon=c; this.elev=d;

does not change the results.

55
Using Arrays to Access the Contents of Forms

5.5.1
Accessing Values of type="text" Fields

Consider this generic problem: A form stores several values in <input> fields in a table.
You want the last row of the table to hold the sum of all the previous values. Based on
previous material, you can give each form field a name: v1, v2, v3, etc. Then, you can
sum the values:

sum.value =
parseFloat (vl.value) tparseFloat (v2.value) + ..

This is not a very satisfying solution, if for no other reason than the fact that large tables
will require a Jot of typing.

Fortunately, there is a more elegant alternative. When you create an HTML form, all the
elements are automatically stored in an array called elements. You can access the
contents of this array just as you would the contents of any other array. Consider the fol-
lowing very simple document.

Document 5.6 (formArray.htm)

<html>
<head>
<title>Using the elements|[] array to access values in forms.
</title>
</head>
<body>
<form name="myform">
A[0]<input type="text" value="3" />

A[l]<input type="text" value="2" />

</form>

5.5 Using Arrays to Access the Contents of Forms 123

<script language="javascript" type="text/javascript">

for (var i=0; i<document.myform.elements.length; i++) {
document.write ("A["+i+"] =

"+document.myform.elements [i] .value+"
");

}

</script>

</body>

</html>

First of all, note that these form fields haven’t been
given names in the <input /> tags. They could have
names, but the point here is to avoid having to assign
many different field names to something that can be treated as a unit, under a single name.
Not surprisingly, the elements of the e lements array are assigned, starting with index 0,
in the order in which they appear in the form.

Previously, forms themselves haven’t been given names. However, it is entirely possi-
ble that you might wish to have more than one group of form fields in a document, each of
which would have its own elements array and could be accessed through its own name.
Hence, the use of the name attribute in the form tag in Document 5.6. In this example,
the use of “document” in, for example,

document.myform.elements[i] .value;

is optional.
Document 5.7 shows a solution to the generic problem given at the beginning of this
section.

Document 5.7 (sumForm. htm)

<html>
<head>
<title>Sum a column of values</title>
</head>
<body>
<form name="sumform">
<input type="text" value="3.3" />

<input type="text" value="3.9" />

<input type="text" value="7.1" />

Here is the sum of all the values.

<input type="text" name="sum" value="0"
/>

</form>
<script language="javascript" type="text/javascript">
var sum=0;
for (var i=0;

124 5 Using Arrays in HTML/JavaScript

i<(sumform.elements.length-1);
i++)

sumt+=parseFloat (sumform.
elements[i] .value);
sumform.elements [sumform.
elements.length-1] .value=sum;
</script>

</body>

</html>

The terminating condition on the for... loop is
i<(sumform.elements.length-1)
rather than
i<sumform.elements.length

because the last element in the elements array does not contain one of the values to be
summed.

With multiple columns in a table, you will need to implement the for... loop appropri-
ately. For example, in a form that should be treated as two columns, the index values 0, 2,
4, ... will access the left column and 1, 3, 5, ... will access the right column. Document 5.8
gives an example.

Document 5.8 (sumForm2 .htm)

<html>

<head>

<title>Sum a column of values</title>

</head>

<body>

<form name="sumform">

<table border>
<tr><td><input type="text" value="Value 1" /></td>
<td><input type="text" value="3.3" /></td></tr>
<tr><td><input type="text" value="Value 2" /></td>
<td><input type="text" value="3.9" /></td></tr>
<tr><td><input type="text" value="Value 3" /></td>
<td><input type="text" value="7.1" /></td></tr>

</table>

Here is the sum of all the values.

<input type="text" name="sum" value="0"

/>

</form>

5.5 Using Arrays to Access the Contents of Forms 125

<script language="javascript" type="text/javascript">
var sum=0;
for (var i=1; i< (sumform.elements.length-1); i+=2)

sumt+=parseFloat (sumform.elements[i] .value) ;

sumform.elements [sumform.elements.length-1] .value=sum;

</script>

</body>

</html>

Document 5.8 sums the right hand column of values. Although the output from
Document 5.8 looks like a table that could be represented by a two-dimensional array, that
is not the case here. The input fields are still numbered consecutively, left to right and
top to bottom, in the order in which they appear. Also, remember that if the input fields
containing the values you wish to process don’t appear first inside the <form>..</form>
tag, then the starting position will need to be offset appropriately.

5.5.2
Accessing type="radio" and type="checkbox" Fields

Consider this fragment from an HTML document.

Employee is punctual:
Y <input type="radio" name="punctual" value="Y"
checked /> ,;
N <input type="radio" name="punctual" value="N"
/>

This code defines a type="radio" field with two possible values. If you look at the
elements array associated with the form containing this fragment, each field will be
stored as a separate element in the elements array. However, what you really want to
know is which button in the "punctual™ group has been pressed. Similarly, with a
group of type="checkbox" fields, you want to know which choices are selected.
Conveniently, each group of radio buttons or checkboxes is associated with its own array,
assigned the name you have provided for that group. Document 5.9 provides some exam-
ples of how to use arrays to access the contents of radio buttons and checkboxes.

126 5 Using Arrays in HTML/JavaScript

Document 5.9 (buttonAccess.htm)

<html>
<head>
<title>Accessing Radio Buttons and Checkboxes</title>
</head>
<body>
Access contents of form fields...

<form>
Give name: <input type="text" name="Ename" size="15"
value="Mr. Bland" />

Employee is punctual:
Y <input type="radio" name="punctual" value="Y"
checked /> ,;
N <input type="radio" name="punctual" value="N" />

Employee likes these animals:
Dogs <input type="checkbox" name="animals" value="dogs" />
Cats <input type="checkbox" name="animals" value="cats"
checked />
Boa constrictors <input type="checkbox" name="animals"
value="boas" checked />

<input type="button"
value="Check here to examine form contents."
onclick="howMany.value=elements.length;
contents.value=elements [parseFloat (n.value)] .value;
var i;
if (punctual[0].checked)
alert (Ename.value+' is always on time.');
else
alert (Ename.value+' is always late.');
for (i=0; i<animals.length; i++) {
if (animals[i] .checked) alert (Ename.value+
']Jikes '+animals[i] .value);
};o " />

elements: <input type="text" name="howMany"
value="0" />

Which one (0 to # elements - 1)? <input type="text" name="n"
value="1" />
Contents: <input type="text" name="contents"
value="--" />

</form>
</body>
</html>

5.5 Using Arrays to Access the Contents of Forms 127

The output shows the screen after the button box has been clicked and the firstalert ()
box is displayed.

553
Accessing Multiple Options Chosen in <se l ect> Tags

Previously, the select tag used to create pull-down lists has allowed selecting only one
value from the list. However, it is also possible to select multiple values from a list of
options. Document 5.10 shows how to extract the value or values selected from a pull-
down list, using the options array that is automatically generated for these lists.

Document 5.10 (chooseSelect.htm)

<html>
<head>
<title>Using values from a select list</title>
<script language="JavaScript" type="text/javascript" >
function whichSelected (list) ({
var n=list.length;

var i;

var s="";

for (i=0; i<n; i++) {

if (list.options[i].selected)
s = st" "+list.options[i] .value;

return s;
}
</script>
</head>
<body >
<h2>Shows how to access values from a ¢lt;select>,; tag.</h2>

128 5 Using Arrays in HTML/JavaScript

<h3>0Only one item can be chosen...</h3>
<select name="unique" size="3">
<option value="uniquel" selected>unique 1</option>
<option value="unique2" >unique 2</option>
<option value="unique3" >unique 3</option>
</select>

Click in this field to see what you have chosen: <input
type="text" name="selectedUnique"
onfocus="selectedUnique.value =
unique.options[unique.selectedIndex] .value ;" />

<h3>Multiple items can be chosen...</h3>
Hold down Shift or
Ctrl
key to make multiple selections.

<select name="multiple" size="3" multiple>
<option value="multiplel" selected>multiple 1</option>
<option value="multiple2">multiple 2</option>
<option value="multiple3" >multiple 3</option>
</select>

Click on this field to see what you have chosen:
<input size="40" type="text" name="selectedMultiple"
onfocus="selectedMultiple.value=whichSelected (multiple) ;"
/>

</body>
</html>

In the first case illustrated in Document 5.10, where only one item can be selected, the
selected item in the unique listis obtained from the opt i ons array created by JavaScript,
using the selectedIndex property of the select element:

5.6 Hiding the Contents of a JavaScript Script 129

unique.options[unique.selectedIndex] .value

The shaded line in Document 5.10 shows how to define a multiple-choice pull-down
list—by including the multiple attribute. These choices can be identified, again by
using the options array. In this case, a function has been written to accomplish this task,
using code like this to search through all the elements of options to find selected
elements:

if (list.options[i].selected)..

JavaScript functions will be discussed in detail in Chap. 6.

5.6
Hiding the Contents of a JavaScript Script

Basic security might seem to be the most obvious reason to hide part or all of a script.
However, a better reason in the JavaScript context is to make it easy to modify or update
part of a script without disturbing the HTML document of which it is a part; this is espe-
cially useful if the same script is used in several different HTML documents.

To do this, it is possible to save JavaScript code in a separate file that is referenced in
an HTML document. Note that this does not overcome the limitation that a script is always
loaded into a client computer when the HTML document containing the script is accessed.
All that actually happens is that the “hidden” file is sent to the client computer and inserted
into the script when the script is executed. Although this file isn’t visible when the HTML
document source is viewed from a browser, it is certainly a mistake to assume that this
provides any serious security protection for the hidden file.

Based on the discussion of arrays in the previous section, another obvious use for a hid-
den file is to hold data that will be used to build an array within a script. If these data are
stored in a separate file, you can then keep the data up-to-date by editing just the data file
rather than an entire HTML document. Document 5.11 is a version of Document 5.4 in
which the ID data are stored in a separate file.

Arrays are used to store values in memory and manipulate them while a program is
running. With traditional programming languages, data can be stored in a file that is
“loaded” into memory to be read from and written to when needed. In the same way, a
program can create new data to be stored permanently in a file that exists externally from
the program itself.

However, this model does not work with HTML/JavaScript. Why not? Remember that a
JavaScript script is loaded into a client computer when a Web page is accessed. The client
computer has access only to the contents of this script. Hence, it is not possible to access
data from a file that remains behind on the server computer. This limits the usefulness of
JavaScript arrays for accessing large amounts of data stored in a central location. This
restriction applies even when JavaScript is used locally on your own computer, because
JavaScript simply does not provide the tools for accessing or creating external data files
even when they reside physically on the same computer as the script that is running.

130 5 Using Arrays in HTML/JavaScript

The alternative is to send along all the required data as part of the script. This is a
workable solution for small amounts of data that do not need to be protected in a secure
environment. This solution works for both online and local applications of JavaScript. In a
local environment, it is even reasonable to store large amounts of data, although there are
some formatting issues for storing data. Unlike other languages, JavaScript cannot simply
read data stored in a specified text format. Instead, as shown in Document 5.11, the data
should be stored as part of an array definition.

Document 5.11 (siteData4 .htm)

<html>
<head>
<title>"Multidimensional" arrays</title>
<script language="javascript" src="siteData.dat">
// This file defines the site characteristics.
</script>
<script language="javascript" type="text/javascript">
var i;
for (i=0; i<siteID.length; i++) {
document.write (siteID[i] .ID+
", "+siteID[i].lat+", "+siteID[i].lon+t",
"+siteID[i] .elev+
"
");
}
</script>
</head>
<body>
</body>
</html>

Data file siteData.dat for siteData4d.htm:

var siteID = new Array();
function IDArray (ID,lat,lon,elev) {

this.ID=1ID;

this.lat=lat;

this.lon=lon;

this.elev=elev;
}
siteID[0]=new IDArray ("Drexel",39.955,-75.188,10);
siteID[1l]=new IDArray("home",40.178,-75.333,140);
siteID[2]=new IDArray ("NC",35.452,-81.022,246);
siteID[3]=new IDArray ("Argentina",-34.617,-58.367,30);
siteID[4]=new IDArray("Netherlands",52.382,4.933,-1);

5.7 More Examples 131

The file site data.dat is referenced within its own script element:

<script language="Jjavascript" src="site_data.dat">
</script>

It is more typical to give such a “hidden” file a . j s (for JavaScript) extension, but it is not
required. In this case, the .dat extension seemed to more accurately reflect the purpose
of the file.

The siteData.dat file doesn’t hold just the raw site ID information. Rather, it holds
the values plus all the code required to define an array holding this information. This is
convenient approach that minimizes the number of separate <script> .. </script>
elements required. Because JavaScript arrays are expandable while a script is running,
there is no restriction on how many new sites can be added to the file or, for that matter, on
how many sites can be removed.

5.7
More Examples

5.7.1
Checking IDs and Passwords

Here is a typical problem that involves comparing the contents of a form field against a set
of predetermined values.

Provide a form that asks a user for a password. Check their entry against a list of pass-
words and provide an appropriate message depending on whether the password is valid or
not. (It’s not necessary to take any action other than printing an appropriate message.)

Document 5.12 provides a “solution” to this problem, but without addressing the problem
of password security at all. In fact, this example just serves as a reminder that there is no
security associated with anything sent as part of a JavaScript script! So, this is just a dem-
onstration of how to search through a list of items to see if a user-specified item is present,
rather than an application you would want to use to safeguard information.

Document 5.12 (passwordl.htm)

<html>

<head>

<title>Check a password</title>

<script language="javascript" type="text/javascript">
var PWArray-new Array();

PWArray[0]="mypass';

PWArray|[l]="yourpass";

132 5 Using Arrays in HTML/JavaScript

</script>
</head>
<body>
<form>
Enter your password: <input type="password" name="PW"
value=""
onchange="var found=false; result.value='not OK';
for (var i=0; i<PWArray.length; i++)
if (PW.value == PWArray([i]) ({
found=true;
result.value='0K';
} " />

(Tab to or click on this box to check your password.)

<input type="text" name="result"
value="Click to check password." />
</form>
</body>
</html>

In general, it would make more sense to store the IDs and passwords in a separate . js
file, as described in Sect. 5.6.

5.7.2
Magic Squares

Define a 3 x 3 two-dimensional array of integers, with values 1-9, and display the con-
tents row-by-row. The integer values should be arranged so they form a “magic square,”
defined as an nxn square matrix of integers, with values 1 through »?, each of which
appears once and only once, arranged so that each row and column, and each main
diagonal, all add to the same value. It can be shown that for a matrix of size n x n, this
value is n(n*+1)/2. For a 3 x 3 matrix, the value is 15.

Here is some JavaScript code for constructing such a matrix, which can be addressed by
row and column indices:

Document 5.13 (magicSquare.htm)

<html>

<head>

<title>magic Square</title>

<script language="javascript" type="text/javascript">

5.7 More Examples 133

var a=[[8,1,6]1,I[3,5,71,[4,9,211;
var r,c; //alert(al0].length);
for (r=0; r<a.length; r++) ({

for (c=0; c<a[0].length; ct+)
document.write (al[r] [c]+" "); 8 1 6
document.write ("
"); A
| 3587
</script> 4 9 2
</head>
<body>
</body>
</html>

The shaded line of code in Document 5.13 demonstrates an alternate way of defining an
array of arrays—compare this with Document 5.4, for example. The number of rows can
be different from the number of columns. As is true for all JavaScript arrays, there is no
restriction on the nature of the contents of the individual “cells” in this table. The square
bracket notation is not limited just to an array of arrays, but an “array of arrays of arrays”
is already conceptually unwieldy.

It is left as an exercise to write appropriate code for adding up the rows, columns, and
diagonals of a square matrix to determine whether the matrix forms a magic square.

JavaScript Functions

Abstract Chapter 6 introduces the important concept of functions in programming and
shows how to integrate documents, forms, JavaScript, and functions to create a complete
HTML/JavaScript problem-solving environment.

6.1
The Purpose of Functions in Programming

Functions are self-contained code modules which accept input, perform operations on that
input, and return one or more results. The built-in JavaScript methods previously discussed in
Chap. 4 are examples of functions. For example, the Math.sin () method accepts a single
value as input—an angle expressed in radians—and returns the sine of that value. User-defined
functions also accept input, often more than one value, and return a value. They are an impor-
tant concept in any programming language. Here are three reasons to use functions:

1. Organizing solutions to computational problems
A problem to be solved on a computer often consists of several related parts, in which
output from one part is used as input to the next part. Functions provide a mechanism for
creating a code structure that reflects the nature of this kind of problem. By organizing code
into a series of self-contained modules, and by controlling the flow of information among
these modules, the problem can be solved in a logical fashion, one part at a time. Basically,
this is a matter of separating large problems into smaller and more manageable parts.

2. Creating reusable code
Often, identical calculations must be done several times within a program, but with dif-
ferent values. Functions allow you to write code to perform the calculations just once,
using variable names as “placeholders” that will represent actual values when the func-
tion is used. Once a function has been written and tested, it can be used in other programs,
too, allowing you to create a library of useful calculations. JavaScript’s Math method is
an example of a function library that has already been written for you.

3. Sharing authorship of large programming projects
Large programming projects often involve more than one person. When a project is
broken down into several smaller tasks, individual programmers can work independently

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, 135
DOI 10.1007/978-0-85729-449-4 6, © Springer-Verlag London Limited 2011

136 6 JavaScript Functions

and then collaborate to assemble the finished product. Without the separation of tasks
made possible by functions, this kind of collaborative approach would not be
practical.

The sketch shows schematically how this task-based approach works. Output from
each task serves as input to the next task until the solution is reached. Some problems
might not have such a “linear” solution structure, but in any case a function-based
approach makes it easier to organize a solution to a large problem.

In general, functions are “called” (or “invoked,” in the same sense as previously described
for object methods) by passing values from a calling program (or another function) to the
function. The function executes some operations and then returns a result.

In addition to providing a mechanism for modularizing the solution to a problem,
functions play an important role in program design. The syntax of function implementa-
tion forces a programmer (or, for large projects, groups of programmers) to think carefully
about a problem and its solution: “What information is required to complete this task?
What information is provided when the task is completed? What steps are required to solve
the problem? What information must be provided by the user of a program? Can the
problem be divided into smaller related parts? How does each part relate to the others?
Are the specified inputs and outputs for each part consistent with the relationships among
the parts?” Once these questions are answered, the structure of a program should be clear.
Often, working out an appropriate function structure is the hardest part of solving a large
computational problem.

6.2
Defining JavaScript Functions

Functions are essential for JavaScript programming. In fact, a large portion of all JavaScript
code is written as functions called from HTML documents. One of JavaScript’s first appli-
cations was to use functions to check values entered in forms. Inappropriate values are
flagged and a warning message is displayed. Forms can be used in conjunction with
functions for many kinds of calculations, as will be done throughout this chapter.

It is important to understand how information is provided to and extracted from a
function. The basic “mental model” shown in the
sketch is applicable to JavaScript and many other lan- Functioh name
guages. A function resides in an isolated subset of
computer memory. Communications with the contents
of this space are strictly controlled and limited to
specific pathways. The box represents the computer
memory set aside for the function. This space and the
operations carried out within it are not visible to the
rest of a script, including to other functions within that

Local variables

Output e-— return {optional}

6.2 Defining JavaScript Functions 137

script. Access to the function’s memory space is available along only two paths. The large
arrow represents the input pathway to the function, through its parameter list. The small
arrow represents a single output from the function, generated as a result of a return
statement.

Here is the syntax for a generic function.

function doSomething (inputl, input2, input3,...) {

var locall,local2,local3,.. outputName;

locall = {an expression using one or more inputs...};

local2 =
{an expression using one or more inputs and (optionally) locall ...},

local3 =
{an expression using one or more inputs and (optionally) locall
and local2...} ;

{Do some calculations here with some combination of parameters
and local variables...} ;

return outputName; // or some other value

The function keyword is required at the beginning of every function. Every function
must have a user-provided name, doSome thing in this generic example. Spaces between
parts of a function name are not allowed, but underlines are. So, for example, you could
name the function do_something, butnotdo something (because do something
is interpreted as two tokens rather than one). JavaScript function names are case-sensitive.
As in all aspects of programming, it will be helpful in your own work to settle upon a
function-naming convention and use it consistently.

The parameter list contains the names of one or more input parameters, separated by
commas and enclosed in parentheses. These names are placeholders for input values
passed to the function when it is called. Occasionally, a function will have no values in its
parameter list. However, parentheses are still required.

All the code in a function constitutes a statement block, enclosed in right and left curly
brackets. The opening bracket can appear either at the end of the function () line or on
the next line. Your code will be more easily readable if you adopt a consistent style of
indenting the body of the code, as shown in the example.

Within the function, one or more local variables can be defined in statements that begin
with the var keyword. Local variables may not be required for some calculations, but
code may be clearer if the results of intermediate calculations are stored in separate vari-
ables. In any event, the required calculations are done using appropriate combinations of
the input parameters and local variables. The general programming rule that a variable
should never be used until it has first been assigned a value applies equally to local vari-
ables in functions. To put it another way, a local variable should never appear on the
right-hand side of an assignment operator until it has first appeared on the left.

It is important to understand that the local variables defined within a function are
invisible to the rest of your script, including to other functions. This means that you can
select local variable names, assign values, and change those values without regard to what

138 6 JavaScript Functions

happens in other functions and elsewhere in a script, even when the same variable name is
used elsewhere.

The result of calculations performed in a function is returned to the place from which
the function was called by using the return keyword in a statement. Only one return
statement can be executed in a function. A function can have more than one return state-
ment, perhaps in various possible branches of an if. . . construct, but only one of these
can actually be executed. The value to be returned can be declared as a local variable, too,
as shown in the shaded items in the code above, but it is also possible to return the result
of a calculation without first assigning that result to a variable name.

There are two critical points about functions:

The parameter list is a one way path for input only. Information can be passed in
to the function along this path, but no information passes out along this path.

The return statement is a one way path for a single value flowing out of the
function.

Successful programming requires accurate mental pictures of how programming
paradigms work. The function model shown here, including the restricted input/output
paths and the protected nature of locally declared variables, is one of the most important
paradigms in all of programming. It makes it possible to separate large and complex com-
putational problems into a series of smaller (and hopefully simpler) problems, linked
through a series of function interfaces. This modularization makes even small scripts eas-
ier to write, and it also makes it practical for large programming projects to be written,
tested, and maintained by more than one person.

6.3
Using JavaScript Functions with HTML Forms

In a sense, all the previous material in this book has been directed toward this section.
Why? Because the basic problem-solving model for the HTML/JavaScript environment is
to use JavaScript functions together with forms in HTML documents.

The function model described in the preceding section would be very simple except for
the fact that, in JavaScript, a value passed to a function through a parameter list can be one
of three distinctly different things: a value (a character string or number), a form field, or
an entire form. These are not interchangeable, and each must be treated differently. In
order to explain these differences, consider the simple problem of calculating the area of a
circle. Given a radius 7:

Area =nr’

6.3 Using JavaScript Functions with HTML Forms 139

Recall that prompt () and alert () and document.write () methods provided
an I/O interface for these kinds of calculations in Chap. 4. Later in Chap. 4, some JavaScript
calculations were initiated as a result of using the onc1ick event handler in a button
field. These approaches were acceptable at the time, but they are too limited to be good
solutions for more complex problems. The following detailed analysis of several approaches
to implementing this simple calculation in a function may seem tedious and unnecessary
because the problem itself is so simple, but a thorough understanding of the analysis is
absolutely essential to successful JavaScript programming.

6.3.1
Passing Numerical Values to a Function

A JavaScript function to solve the problem of calculating the area of a circle is:

function getArea(r) {
return Math.PI*r*r;

The parameter r is assumed to be a number representing the radius of a circle. The
calculation is straightforward, using the PI property of the Math object (Math.PI).
There is no exponential operator in JavaScript (1> can’t be represented as r~2 as it could
in a spreadsheet, for example), so r is just multiplied by itself.

It seems clear that you should be able to pass a value of the radius from a form field to
getArea (). However, previous examples in Chap. 4 have provided ample evidence that
caution is required! Consider this input element appearing within a form:

<form>
<input type="text" name="radius" maxlength ="6"
size="6" value="-99" />

What “value” can be passed from this form to the function? Recall that the name of the
field, radius in this case, is not the same as the value associated with this field. In this
context, it is important to make sure that a function receiving information through its input
parameter list understands how to interpret that input. Consider Document 6.1, which
shows one way pass information. Passing radius to getArea will not produce the
desired result, nor will radius.value. Why not? Because radius is only the “value”
of the name attribute, and radius.value is still only a character representation of the
required numerical input.

You should not be surprised to learn that the calling argument to function
getArea () should be parseFloat (radius.value), as shown in Document 6.1.

140 6 JavaScript Functions

Document 6.1 (circlel.htm)

<html>
<head>
<title>Circle Area (1)</title>
<script language="javascript" type ="text/javascript">
function getArea(r) {
return Math.PI*r*r;
}
</script>
</head>
<body>
<hl>Circle Area (1)</hl>
<p>
<form>
Enter radius, then press tab key or click on "area"
box.

radius (cm) :
<input type="text" name="radius" size="6" maxlength="7"
value="-99",
onblur = "area.value=getArea (parseFloat (radius.value)) ;">
area (cm²):
<input type="text" name="area" size="6" maxlength="7"
value="-99">
</form>
</body>
</html>

In Document 6.1, function getArea (r) expects a numerical value equal to the
radius of the circle. The name of the function is appropriate to its purpose and is a name
unlikely to be associated with a variable name. The shaded line of code uses the onblur
event handler to “call” the function when the user clicks elsewhere on the document or
presses the Tab key. The value passed to function getArea (r) is parseFloat
(radius.value), which converts the value of the radius field from a string to a num-
ber. Note that, in this case, the parseFloat () isnotactually required because JavaScript
will perform an appropriate type conversion, but it is much better style to perform an
explicit type conversion whenever string values need to be interpreted as numbers.

6.3 Using JavaScript Functions with HTML Forms 141

The approach taken in Document 6.1 is called “pass by value.” Another option is to
“pass by name.” The field name is provided as input to the function, which then must do
the job of converting the value attribute to a number, as shown in Document 6.2.

Document 6.2 (circle2.htm)

<html>
<head>
<title>Circle Area (2)</title>
<script language="javascript" type ="text/javascript">
function getArea(r) {
var radius=parseFloat (r.value) ;
return Math.PI*radius*radius;
}
</script>
</head>
<body>
<hl>Circle Area (1)</hl>
<p>
<form>
Enter radius, then press tab key or click on "area"
box.

radius (cm):
<input type="text" name="radius" size="6" maxlength="7"
value="-99", onblur = "area.value=getArea (radius) ;">
area (cm²):
<input type="text" name="area" size="6" maxlength="7"
value="-99">
</form>
</body></html>

There is no difference in the results produced by these two approaches, and either is accept-
able as long as you are careful not to confuse a field name with its value. If you pass something
inappropriate to a function, such as a string value that isn’t converted to a numerical value, then
the function will generate a syntax error or return a result of NaN, for “not a number.”

There is another subtlety worth noting about using functions with forms. Consider this
modification of Document 6.1:

<script language="javascript" type="text/javascript">
// UNACCEPTABLE CHOICE FOR FUNCTION NAME!
function area(r) {
return Math.PI*r*r;

}
</script>

<form>

142 6 JavaScript Functions

Enter radius, then press tab key or click on "area"
box.

radius (cm) :
<input type="text" name="radius" size="6"
maxlength="7" value="-99",
onblur =
"area.value=area (parseFloat (radius.value));" />
area (cm²):
<input type="text" name="area" size="6"
maxlength="7" value="-99" />

In this code, the function name, area, is the same as a field name in the form. Although
one could envision a programming environment in which this conflict could be resolved
based on the context, this code will simply not work in JavaScript. So,

The names of functions should never be the same as the names of form input
fields.

6.3.2
Using Entire Forms as Input

There is yet another way to write a function that calculates the area of a circle. Consider
Document 6.3.

Document 6.3 (circle3.htm)

<html>
<head>
<title>Circle Area (4)</title>
<script language="javascript" type ="text/javascript">
function getArea (f) {
var r=parseFloat (f.radius.value);
f.area.value = Math.PI*r*r;
}
</script>
</head>
<body>
<hl>Circle Area (3)</hl>
<form>
Enter radius, then press tab key or click on "area"
box.

radius (cm) :

6.3 Using JavaScript Functions with HTML Forms 143

<input type="text" name="radius" size="6"
maxlength="7" value="-99",
onblur = "getArea (form);" />
area (cm²):
<input type="text" name="area" size="6"
maxlength="7" value="-99" />
</form>
</body>
</html>

In this version of function getArea (), the entire form (actually, just information
about where the form is located in computer memory) is passed to the function, through
the parameter name f. There is no return statement. How, then, is the result of the cal-
culation made available to the area form field? The answer lies in these two statements:

var r=parseFloat (f.radius.value);
f.area.value = Math.PI*r*r;

The first statement extracts the numerical value of the radius. The second statement
modifies not the form parameter itself, but the value property of one of its fields.
(It automatically converts the number back to text, too.) Note that this approach requires
the function to “know” the names of the fields in the form passed as input to the function.
This is a major conceptual difference compared to the previous approaches. The fact that
the form and the JavaScript function are linked in this way is not a problem for self-
contained documents such as this. The only disadvantage is that it could limit the use of the
function in other scripts that use different field names for the same physical quantities.

In the previous discussion of JavaScript’s function model, it was clear that the parameter
list acted as a one-way path for input to be passed to a function, but it could not be used to
deliver output. Document 6.3 appears to violate this rule because the output has, in fact, been
delivered back to the form “through” the parameter £. However, this result does not, in fact,
compromise the model. When you pass a “value” to a function, you are actually passing
memory addresses telling the function where particular parameters are stored. The function is
allowed to make use of information stored at these addresses, but not to change the addresses
themselves. Specifically, when the location of a form is passed as a parameter, what the
function can do is modify the contents of fields stored in the form. This is what the

f.area.value = Math.PI*r*r;

statement does.

Itis important to understand that the name f appearing in the functiongetArea (form)
has nothing to do with names used in the HTML document. This is a consequence of the
“protected” environment created by a function definition, in which names defined within
the function are invisible to the rest of a document and script. In fact, it would be accept-
able from JavaScript’s point of view to use form as a parameter name, although this might
not be a good choice as a matter of style.

144 6 JavaScript Functions

The ability of a function to modify fields within a form is important because it is one
way to circumvent the restriction that a return statement can return only a single value
as output. Suppose you wanted to calculate both the area and circumference of a circle.
Does this require two separate functions? No. Consider Document 6.4.

Document 6.4 (circleStuff.htm)

<html>
<head>
<title>Circle Stuff</title>
<script language="javascript" type ="text/javascript">
function circleStuff (f) {
var r=parseFloat (f.radius.value);
f.area.value=Math.PI*r*r;
f.circumference.value=2*Math.PI*r;
}
</script>
</head>
<body bgcolor="#99ccff">
<hl>Circle Stuff</hl>
<form>
Enter radius, then press tab key or click on "area"
box.

radius (cm) :
<input type="text" name="radius" size="6"
maxlength="7" value="-99",
onblur = "circleStuff (form);" />
area (cm²):
<input type="text" name="area" size="6"
maxlength="7" value="-99" />
circumference (cm) :
<input type="text" name="circumference" size="6"
maxlength="7" value="-99" />
</form>
</body>
</html>

6.3 Using JavaScript Functions with HTML Forms 145

Document 6.4 includes an additional form field for the circumference, calculated
in the

f.circumference.value=2*Math.PI*radius;

statementin circleStuff ().Both the area and the circumference are calculated within
the function, but no return statement is used.

It is not quite true that a function accepting a form name as a parameter must know the
values of all the <input... /> tag name attributes. Recall from Chap. 5 that all form
fields are available in an array called elements [] which is automatically created along
with a form. The following modification of the function in Document 6.4 will also work.
It uses the elements [] array to access the form fields.

function circleStuff (f) {
var r=parseFloat (f.elements[0].value);
f.elements[l] .value=Math.PI*r*r;
f.elements[2] .value=2*Math.PI*r;

In this case, the function must still be aware of the physical meaning of each form field
as well as its position among the other fields.

It is important to understand that the significance of Document 6.5 rests on its
demonstration of how to use a single function to generate more than one output value, to
circumvent the requirement that a function can return only a single value.

63.3
Using Arrays to Return Output Values

Yet another way to return multiple values from a function is to have the function return an
array, the elements of which contain the output values of interest. Document 6.5 shows how
to do this by presenting another version of the “circle stuff” code given in Document 6.4.

Document 6.5 (circleStuff2.htm)

<html>
<head>
<title>Circle Stuff with Arrays</title>
<script language="javascript" type ="text/javascript">
function circleStuff (r) {
var A = Array();
A[0] = Math.PI*r*r;
A[l] = 2*Math.PI*r;
return A;
}
</script>
</head>

146 6 JavaScript Functions

<body bgcolor="#99ccff">
<hl>Circle Stuff</hl>
<form>
Enter radius, then press tab key or click on "area" or
"circumference" field.

radius (cm) :
<input type="text" name="radius" size="6"
maxlength="7" value="-99",

onblur = "var A = Array();
A = circleStuff (parseFloat (radius.value));
area.value = A[0]; circumference.value = A[1l]; " />

area (cm²):
<input type="text" name="area" size="6"
maxlength="7" value="-99" />
circumference (cm) :
<input type="text" name="circumference" size="6"
maxlength="7" value="-99" />
</form>
</body>
</html>

Of course, with this approach it is necessary for the programmer to keep track of which
output value is stored in which array element.

6.4
Some Global Methods and Event Handlers

6.4.1
Global Methods

This book has already made extensive use of the parseFloat () method. Table 6.1 lists
several methods of the G1obal object, including parseFloat ().

The last three methods are particularly important because they provide mechanisms
for converting the text values of form fields into numerical values. The parseFloat ()
method tries to analyze its text argument as a number, starting at the left. The characters
+, —, ., e (in proper context as part of scientific notation), and the digits 1-9 are allowed.
IfparseFloat () encounters some othercharacteritstops. So,parseFloat (7.17x)
returns 7.17 but parseFloat (x7.17) returns NaN.

The parseInt () method, which converts a text string into an integer, requires
additional discussion. Consider Document 6.6.

148 6 JavaScript Functions

The parseFloat () method produces the expected value, but parseInt () witha
single string argument does not. Why not? The problem lies in how parselInt () inter-
prets numbers. This method can accept two arguments. The first is the text that is to be
converted to an integer. The second argument, described as “optional” in JavaScript docu-
mentation, is the “radix,” or the number base used for the conversion of the string given as
the first argument. When the second argument is absent, parseInt () tries to determine
the appropriate base from the string itself. Strings of digits beginning with a zero are
assumed to be base-8 (octal) numbers, not base 10! In Document 6.6, an entry of “07” will
not cause a problem because 7 is an allowed digit in a base-8 system. However, 8 and 9 are
not allowed digits in the base-8 system, so parseInt ("09") returns O rather than 9!
This is a perfect example of behavior that some might consider a “feature,” but which
others might consider a very annoying bug.'

The behavior of parseInt () is cause for concern because it is always tempting to
ignore “optional” arguments. Consider that a two-digit format is standard for entering
months, days, hours, minutes, degrees, etc., and there may be good reasons for treating
whole numbers as integers rather than floating point numbers.? For example, it is reason-
able to expect users to enter November 8, 2006, as 11/08/2006 rather than 11/8/2006. In
this case, a day entered as 08 and converted to an integer using parseInt () would have
a value of 0 rather than 8—a serious error! Hence, parseInt () should always be called
with both arguments. Without exception for the topics addressed in this book, the second
argument should be 10, to force conversion to a base-10 integer even with one or more
leading zeros.

The Number () method provides a third way to convert text strings to a number. Unlike
parseFloat (), Number () will not ignore trailing characters that are not part of a
number. That is, Number (7.17x) or Number ("123 456") returns NaN instead of
7.17 or 123. As shown in Table 6.1, Number () will convert other objects to numbers, too.
Number (true) returns a value of 1 and Number (false) returns 0. Number (new
Date ()) will return the number of milliseconds since midnight, January 1, 1970,
Universal Time.

For the purposes of this book, and for applications you will write for your own use as
opposed to distributing them globally on the Web, it is probably not worth the effort to
check the validity of all entries in fields that are supposed to be numbers. The i sNaN ()
method provides a way to do this, but it has some limitations. Referring to Document 6.6,
isNaN (parselnt (x.value)) would return a value of “false” for the default entry of
09 in the "x" field (meaning that it is a valid number) even though Document 6.6 makes
clear that the value returned from parseInt () without the second base argument is in
error. The fact that 1 sNaN (parseInt (x.value)) would return a value of “true” for
an entry of . 09 is perhaps not so surprising, because .09 is not an integer, but it might be
a misleading result.

The eval () method listed in Table 6.1 is very powerful because it allows user entry of
JavaScript expressions. Document 6.7 shows how to use the eval () method to implement

'Author’s note: I admit to learning about this “feature” only when someone pointed out that one
of my own applications sometimes gave erroneous results.

’In some programming environments, integers are stored internally in a different format than float-
ing point numbers, which has implications for mathematical operations carried out on integers.

6.4 Some Global Methods and Event Handlers 149

a very simple calculator that recognizes the four basic arithmetic operators (+, —, *, and /)
and knows how to interpret parentheses. The same approach can be used to evaluate much
more complicated expressions, too—basically anything that can be interpreted as one or
more JavaScript statements.

Document 6.7 (calculator.htm)

<html>
<head>
<title>Simple Calculator</title>
</head>
<body bgcolor="silver">
<form>
Type expression to be evaluated, using numbers
and +, -, *, /:

<input type="text" name="expression" size="30"
maxlength="30"
onchange="result.value=eval (expression.value) ;"
/>
<input type="text" name="result" size="8"
maxlength="8" />
</form>
</body>
</html>

6.4.2
Using Event Handlers with Forms and Functions

JavaScript is an event driven language, meaning that scripts are activated as a result of
events that happen in an HTML form. The onblur event handler was first used in
Document 6.1 and onclick in Chap. 4. Whenever a user tabs to a form field or clicks on
that field with a mouse, that field is said to be in focus. The onblur event handler initiates
JavaScript activity whenever a document user presses the Tab key to leave a particular
form field or clicks elsewhere on a document. Several event handlers that can be used in
this way are summarized in Table 6.2. Note the spelling of the names using only lowercase
letters. These are the “official” names, and the convention should be followed even though
spellings using some uppercase letters (onBlur is common, for example) will be accepted
by case-insensitive HTML.

The primary use for these event handlers is to execute code that will perform operations
with field values, including changing those values.

152 6 JavaScript Functions

deferred multiplications are carried out and a value is returned. When the function returns
control of the script back to the point from which it was initially called, all the “plates”
have been removed from the stack.

For more complicated recursive algorithms, it can be difficult to actually follow the
course of the calculations. Fortunately, it isn’t necessary to do this. As long as the algo-
rithm is properly designed, with a condition that will eventually terminate the recursive
calls, the programming environment takes care of keeping track of all the intermediate
values generated during the execution of the algorithm.

Here’s another example of a well-known function that is defined recursively. The
Fibonacci numbers £, that form the sequence 1, 1, 2, 3, 5, 8, 13, 21, ... are defined for
positive integer values of as

F =1lifn=1orn=2
F=F +F ifn>2

Document 6.9 shows how simple it is to evaluate this function using a recursive
algorithm.

Document 6.9 (fibonacci.htm)

<html>
<title>Calculate Fibonacci numbers</title>
<body>
<script language="JavaScript" type="text/javascript">
function Fib (n) ({
if (n<=2) return 1;
else return Fib (n-1)+Fib(n-2);
}
</script>
</head>
<hl>Calculate the nth Fibonacci number</hl>
<p>
<form>
Enter n (a positive integer):
<input type="text" name="n" size="2" maxlength="3"
value="1"
onblur="FibN.value=Fib (parseInt (n.value));" />
(Press Tab to get nth
Fibonacci number.)

<input type="text" name="FibN" size="8"
maxlength="8" value="1" />
</form>
</body>
</html>

6.5 Recursive Functions 153

Because this function requires multiple recursive calls, it is not easy to follow the
sequence of events. However, you don’t have to worry about these details as long as the
algorithm is written properly!

Recursive algorithms can also be formulated using count-controlled or conditional loop
structures. However, a recursive formulation is often much shorter and more direct to
implement in code. The famous “Towers of Hanoi” problem is an excellent example of a
problem that is difficult to solve “directly” but is trivial to solve recursively.

Consider three poles, on one of which are stacked 64 golden rings. The bottom ring is
the largest and the others decrease in size. The object is to move the 64 rings from one
pole to another, using the remaining pole as a temporary storage place for rings. There
are two rules for moving rings:

1. Only one ring can be moved at a time.
2. A ring can never be placed on top of a smaller ring.

Describe how to move the entire stack of rings from one pole to another.

It can be shown that it will take 2" — 1 moves to move n rings. For n = 64, if you could
move one ring per second without ever making a mistake, it would take roughly 100 times
the estimated age of the universe! However, you can develop an algorithm that will work,
in principle, for any number of rings and apply it to a value of n that is small enough to be
practical. For n = 4, it will take 15 moves.

In a conceptual sense, the solution is easy (but perhaps not obvious). Suppose the poles
are labeled A, B, and C. Initially, all the rings are on A and the goal is to move them all to
C. The steps are:

1. Move n — 1 rings from A to B.
2. Move the n" ring from A to C.
3. Move n — 1 rings from B to C.

This solution is “conceptual” in the sense that it has not yet been specified how to do
steps 1 and 3; only step 2 defines a specific action that can be taken. However, the power
of recursive functions allows this problem to be solved without giving additional specific
steps! Consider Document 6.10.

154 6 JavaScript Functions

Document 6.10 (towers.htm)

<html>
<head>
<title></title>
<script language="javascript" type="text/javascript">
function move (n, start, end, intermediate) {
if (n > "0") {
move (n-1, start, intermediate, end) ;
document.write ("move ring "+n+
" from "+start+" to "+end+".
");
move (n-1, intermediate, end, start) ;

} move ring 1 from A to B.

} move ring 2 from A to C.

_ o " move ring 1 from B to C.

var n=prompt ("Give n:"); move ring 3 from A to B.
move (n, "A","C", "B") ; move ring 1 from C to A.
</script> move ring 2 from C to B.
</head> move ring 1 from A to B.
<body> move ring 4 from A to C.
</body> move ring 1 from B to C.

move ring 2 from B to A.
</html> move ring 1 from C to A.
move ring 3 from B to C.

Amazingly, this simple “conceptual” code is all that is required |move ring 1 from A to B.
to solve this problem in the sense that all the steps are explicitly ~|mMove ring 2 from Ato C.
written out. Do not try this code with large values of n! move ring 1 from B to C.

The success of this algorithm depends, once again, on how parameter lists work—
passing information along a “one-way street” into a function. In principle, you can manu-
ally follow the individual values of the parameters during the recursive calls, but it is
hardly worth the effort. All that is actually required is that the algorithm be stated
appropriately.

6.6
Passing Values from One Document to Another

Just as it is useful to be able to pass values to functions within an HTML document, it
might be useful to be able to pass values from one document to another document. Here’s
a typical problem:

Create a “sign on” page that asks a user for an ID and password. Check the values pro-
vided and if they are OK, provide access to a second page. Otherwise, access to the
second page will be denied. The second page will be able to make use of information
about the user that can be accessed through the user’s ID.

6.6 Passing Values from One Document to Another 155

JavaScript is not actually a suitable language for solving this problem because of the
lack of two-way interaction between the client and the server. This means, essentially, that
alist of approved IDs and passwords must be sent to the client computer—not a great idea!
(You can “hide” this information in a separate file, as described in Chap. 5, but this is still
not a real solution.) Nonetheless, it is still interesting to see how to pass information from
one document to another. Document 6.11 provides a simple example.

Document 6.11a (passID.htm)

<html>
<head>
<title>Get ID and password.</title>
<script language="javascript" type="text/javascript">
function checkIDPW () {
var PWinput=login_form.PW.value;
var IDinput=login_form.ID.value;

var flag=prompt ("ID = "+IDinput+
", PW = "+PWinput+". OK (y or n)?'");
if (flag == "y'") return true; else return false;
}
</script>
</head>
<body>

<form method="1link" action="catchID.htm"
name="login form" onsubmit="checkIDPW() ;">

ID: <input type="text" name="ID">

PW: <input type="text" name="PW">

<input type="submit" value="Access protected page.">
</form>
</body>
</html>

Document 6.11b (catchID.htm)

<html>

<head>

<title>Receive ID and password from another
document.</title>

</head>

<body>

<form name="catchForm">

<input type="hidden" name="info">

</form>

<script language="javascript" type="text/javascript">

catchForm.info.value=window.location;

156 6 JavaScript Functions

// alert(window.location);
function getID (str)
{
theleft=str.indexOf ("=")+1;
theright=str.lastIndexOf ("¢");
return str.substring(theleft, theright);
}
function getPW(str) {
theleft=str.lastIndexOf ("=")+1;
return str.substring(theleft);
}
document.write ("ID is '"+getlID (catchForm.info.value)+
", PW is "+getPW(catchForm.info.value))
</script>
</body>
</html>

Document 6.11a is the “sign on” page. It asks the user for an ID and password. The
form uses method="1ink" to submit data to another document—catchID.htm.
Because no additional location information is given in this example, the second document
must reside in the same directory (or folder) as the first document. When the link is made
to the second form, the first form provides a text string that can be accessed as window.
location. This consists of the URL of the first form plus values of all the form fields
defined in the first document. If you know the format of this string, it is possible to extract
the form field values—an ID and password, in this case.

In Document 6.11b, methods of the String object are used to extract substrings of
window. location.Byremovingthecommentcharactersfromthe // alert (window.
location) ; statement and “commenting out” the document .write () statement near
the end of the code, you can see the entire string and how it is formatted:

This window shows the result of passing “xxx” and “ssss” for the ID and password.

This code requires that there be no “surprises” in the ID and password values. Their
contents should be restricted to letters and digits. Other characters may be translated into
their hex code representations, which will complicate their extraction from window.
location. Although it might be possible, in principle, to extract several passed values,
using more values will complicate the code.

Although it hasn’t been done in Document 6.11b, the implication of the code is that you
can save the ID and password by assigning them to the value of a form field in the new
document. Then you can use these values just as you would any value created directly
within this document.

6.7 Revisiting the JavaScript sort () Method 157

6.7
Revisiting the JavaScript sort () Method

Recall Document 5.3 in Chap. 5, which introduced JavaScript’s sort () method. That
example demonstrated that the results are browser-dependent and therefore unreliable. In
at least some browsers, sort () treats array elements that “look” like numbers as though
they were characters. Thus, 13 is less than 3 in the same sense that “ac” is less than “c.” To
fix that problem, you need to create a separate function that is passed as a parameter to the
sort () method. This function should accept as input two values x and y (elements in the
array being sorted) and should return a value less than 0, 0, or greater than 0, depending on
whether x is less than, equal to, or greater than y.

In this way, you can provide your own code for comparing values. In this case, you wish
to force a type conversion from text to number so that 13 will be greater than 3. Consider
this modification of Document 5.3:

Document 6.12 (sort2.htm)

<html>
<head>
<title>Sorting Arrays</title>
<script language="javascript" type="text/javascript">
function compare (x,y) {
var X=parseFloat (x); Y=parseFloat(y)
if (X<Y) return -1;
else if (X==Y) return O;
else return 1;
}
var a=[7,5,13,3];
var i;
document.write(a + " length of a = " + a.length+"
");
a.sort (compare) ;
document.write(a + " length of a = " + a.length+"
");
</script>
</head>
<body> 7.5, 135 lengthof a = 4
2=

</b0dy> - -
3.5.7.13 lengthof a=4
</html> T gth

The two calls to document .write () in Document 6.12 show the array before and
after sorting; it is clear that this code works as expected. Your “compare” function can
have any name you choose, as long as you use it consistently. The general idea is that, in
order to force JavaScript to sort an array correctly, you need to do appropriate data type
conversions in the “compare” function along with type-appropriate comparisons.

158 6 JavaScript Functions

In Document 6.12, the code
if (X<Y) return -1;
else if (X==Y) return 0;
else return 1;
could be replaced with

return parseFloat (X) - parseFloat(Y);

Because the only operation is subtraction, even return X - Y would work, even if that
is not very good JavaScript programming style.

6.8
More Examples

A thorough understanding of how functions and methods work is essential to using HTML/
JavaScript as a reliable problem-solving environment. As described earlier in Sect. 6.3,
there are several different approaches to getting information to and from a function. By
design, the problem to be solved in these earlier examples—calculating the area and/or
circumference of a circle—was conceptually trivial. The purpose of the solutions pre-
sented was to provide templates that you can adapt for use in your own code. When
JavaScript code doesn’t work, the reason is often that a function interface has been imple-
mented incorrectly. Hopefully, the examples presented in this section will provide some
points of reference for your own code.

6.8.1
Dewpoint Temperature

The dewpoint temperature is the temperature at which water vapor condenses from the
atmosphere. It is related to air temperature and relative humidity through the following

equations:
a=17.27
b=2377

a=aT,/(b+T,)+In(RH)
T,=(b+a)/(a-a)

where relative humidity RH is expressed as a decimal fraction (between 0 and 1) and
air and dewpoint temperatures 7, and T, are in degree Celsius.

6.8 More Examples 159

Document 6.13 (dewpoint.htm)

<html>
<head>
<title>Dewpoint Calculator</title>
<body>
<script language="JavaScript" type="text/javascript">
function getDewpoint (T,RH) {
var a=17.27,b=237.7,alpha;
var temp=parseFloat (T.value);
var rh=parseFloat (RH.value) /100;
alpha=a*temp/ (b+temp)+Math.log(rh) ;
return ((b*alpha)/ (a-alpha)) .toFixed(2);
}
</script>
</head>
<hl>Dewpoint Temperature Calculator</hl>
<p>
<form>
<input type="reset" value="Reset" />

Temperature:
<input type="text" name="T" size="5" maxlength="6"
value="-99" /> °C

Relative Humidity:
<input type="text" name="RH" size="6" maxlength="6"
value="-99" /> %

<input type="button"
value= "Click here to get dewpoint temperature (deg
c)."
onclick="DP.value=getDewpoint (T,RH)" />

Dewpoint Temperature: <input type="text" name="DP" size="5"
maxlength="6" value="-99" /> °C

</p>
</form>
</body>
</html>

160 6 JavaScript Functions

Dewpoint Temperature Calculator

Reset |

Temperature: |25 i %
Relative Hurmidity: [63 %

Dewpoint Temperature: [1746 ¢

It is not absolutely necessary to define the local variables a, b, and alpha in function
getDewpoint (), but it makes the conversion of the equations into JavaScript easier to
understand. Note the use of the toFixed () method to control the display of the result.

6.8.2
Loan Repayment Schedule

Given the principal amount P of a loan, an annual interest rate R in percent, and a repay-
ment period of n months, the monthly payment M is given by:

r=R/(00R) M=(Pr)/[1-1/(L+r)]

Create an HTML document that asks the user to enter P, R, and n and then calculates
and displays the monthly payment.

Document 6.14 (1oan.htm)

<html>
<head>
<title>Loan Calculator</title>
<body bgcolor="#99ccff">
<script language="JavaScript" type="text/javascript">
function getPayment (P, r,n) {
r=r/100/12;
var M=P*r/ (1-1/Math.pow(l+r,n));
return M. toFixed(2)

6.8 More Examples 161

</script>
</head>
<hl>Loan Calculator</hl>
<p>
<form>
Principal Amount: $:
<input type="text" name="amount" size="9"
maxlength="9" value="0" />

Annual rate: %
<input type="text" name="rate" size="6"
maxlength="6" value="0" />

Number of Months:
<input type="text" name="n" size="3"
maxlength="3" value="0" />

<input type="button"
value="Click here to get monthly payment."
onclick=
"monthly.value=getPayment (parseFloat (amount.value),
parseFloat (rate.value),parselnt (n.value,10));" />

Monthly Payment: $
<input type="text" name="monthly" size="9"
maxlength="9" />
</form>
</body>
</html>

162 6 JavaScript Functions

6.8.3
Legendre Polynomials

A set of functions called Legendre polynomials are sometimes required in science and
engineering applications. Here is a table of the first eight Legendre polynomials.

(63x5 —70x* + 15x)/8
(23136 — 315x% + 105x2 — 5)16
(4297 — 693x5 + 315x* — 35%)/16

0 1

1 x

2 (Bx2-1)/2

3 (5x* —3x)/2

4 (35x*—30x2 +3)/8
5

6

7

By making use of the fact that P (x) = 1 and P (x) =x, Legendre polynomials of order
n 22 can be generated through a recursion relation:

E(x)=[@2n-1)/nxF,_,(x)-[(a-1)/n]P,_,(x)

Write an application that will generate the value of the »® Legendre polynomial for
any value of x and n > 0.

Document 6.15 (legendre .htm)

<html>

<head>
<title>Legendre Polynomials</title>
<script language="JavaScript" type="text/javascript">
function Legendre (n,x) {

if (n == 0) return 1;
else if (n == 1) return x;
else

return (2*n-1)/n*Legendre (n-1,x)- (n-1)/n*Legendre (n-2, x) ;
}
</script>
</head>
<body>
<h3>Calculate the nth Legendre polynomial,
P_n (x), for any x and n ≥ 0</h3>

6.8 More Examples 163

<form>

n (≥ 0):
<input type="text" name="n" value="3" />

X:
<input type="text" name="x" value="1.5" />

<input type="button"

value="Click here to calculate Legendre polynomial"
onclick="L.value=

Legendre (parselnt (n.value, 10) ,parseFloat (x.value));" />

Legendre polynomial: <input type="text" name="L" />
</form>
</body>
</html>

Calculate the n'? Legendre polymomial, Pn{ x), for any x andn > 0

n(z 0)'3
< 5
| Clickhere to calculate Legendre polynomial B |

Legendre polynormial |1.916666666666667

As previously noted, the power of recursive algorithms allows this calculation to be
done very easily simply by “translating” the recursive definition into code.

6.8.4
Array-Derived Pull-Down Menus

In the previous introduction to creating pull-down menus with the select tag (see
Document 3.4, for example), the options in the list were “hard coded” into the HTML
document using the option tag. It is also possible to let JavaScript create the menu
entries using an array of items and the new Option () constructor. Document 6.16
shows how to do this.

Document 6.16 (buildMenu.htm)

<html>
<head>
<title>Build a variable-length pull-down menu</title>
<script language="javascript" type="text/javascript">
var listItems = new Array();
listItems|[0]="thingl";

164

listItems[1]="thing2";
listItems[2]="thing3";
listItems[3]="things4";
listItems[4]="newthing";

function buildSelect (1list, things)

var i;//alert (things) ;

for (i=0; i<things.length;

6

JavaScript Functions

list.options[i]=new Option (things[i], things[i]);

}

function getSelected(list)

var i;

for (i=0; i<list.length;
if (list.options[i].selected)
return list.options[i].value;

}
</script>
</head>

<body onload="buildSelect (menuForm.stuff,listItems);" >

<form name="menuForm" >
Here's the menu:

Click on an item to select it.

<select name="stuff" size="10"
onchange="1listChoice.value=getSelected (stuff) ;

</select>

This is the item selected:

<input type="text" name="listChoice" value=""/>

</form>
</body>
</html>

By placing the onload event
handler in the body tag, the call to
buildSelect () createsthe stuff
options list when the application is
loaded into the wuser’s browser.
buildSelect () gets its values
from a user-created array of options
and uses the new Option () con-
structor to copy those values into the
options array associated with the
pull-down list. The options array is
a property of the select tag (do not
try to change its name) whose ele-

"

ments contain all the option tags defined within the select tag. The syntax for using

the new Option () constructor is:

6.8 More Examples 165

new option identifier = new Option (fext to appear in options list,
text assigned to value attribute);

The selected item in the options list is displayed whenever a choice is made in the pull-
down menu, by using the onchange event handler inside the <select> tag.

The text to be displayed in the pull-down menu can be the same as the text assigned to
the value attribute for the option tag, as it is in Document 6.16, but it doesn’t have to
be the same. If the two input parameters for new Option () constructor are different,
instead of new Option (things[i],things[i]), as in this case, then you would
need two arrays to generate these values, or perhaps a two-dimensional array, as discussed
in Chap. 5.

As Document 6.16 demonstrates, you don’t have to “hard code” any of the opt ion tags
within the select tag. You could also just define the options array elements directly
instead of assigning them indirectly through an additional array of items. The point of using
this additional array is that you could maintain an array of menu options in another file
which can be pasted into your script as needed. In fact, this array could be a simulated two-
dimensional “data array” that contains many additional values for each entry into the pull-
down menu. After the user selects an item in the menu, then additional form fields can be
populated with information contained in the selected element of the data array.

This approach might be worth using for a long list of menu items even if it was a “static”
list that didn’t have to be changed, to make the body of the HTML shorter and easier to read.
Document 6.16 includes a function showing how to determine which item in the list has
been selected. It uses a for... loop rather than a conditional loop because it is also possible
in principle to specify multiple selections in a pull-down list. (See Document 5.10).

6.8.5
Creating a “Password-Protected” HTML Document

Document 5.12 in Chap. 5 suggested how to use arrays to store user IDs and passwords
and to check user input against entries in that array. However, that application didn’t show
how to use a password to access a “protected” site.

Document 6.17 provides a very simple solution to this problem: assume that the password
is the name of the protected file. Unless users know the name of that file, they cannot access
it. This “solution” is not really secure, though, because anyone who has access to the direc-
tory in which the “protected” file exists could possibly figure out what to enter for the
“password.”

Document 6.17a (passwordProtect.htm)

<html>

<script language="JavaScript"><!/--

function check() {

/* This code uses the name of an htm file as a "password."
Prompt the user for the password.

*/

166 6 JavaScript Functions

var pwd = prompt('Enter password before continuing..');
/* Access the file, assuming it's in the same directory.
If it's not, then include a string pointing to the location.
*/
location.href=pwd + ".htm";
}
/) ==>
</script>
<head>
<title></title>
</head>
<body>
<p>You will need a password to visit my site.</p>
<form>
<input type="button" onClick="check ()"
value="Click here to enter site." />
</form>
</body>
</html>

Document 6.17b (& crazy.htm)

<html>
<head>
<title></title>
</head>
<body>
<p>You have entered & crazy.htm.</p>
</body>
</html>

The protected file name can be any combination of keyboard characters that can be part
of a file name. In this case, access is provided only if the user enters & crazy at the
prompt. A somewhat better implementation would ask the user to enter the password in an
<input type="password" .. /> field, so that the typed characters will not appear
on the screen. This value would be passed to function check (), with the addition of
an input parameter in the function definition.

This code makes use of JavaScript’s location object, which is a property of the
window object. It acts essentially as the JavaScript equivalent of the HTML .tag. Document 6.17b is very simple but, of course, this document can
be as complicated as needed.

Creating a Server-Side Environment
with PHP

Abstract Chapter 7 compares the concepts of a server-side language, PHP, with the
client-side environment provided by HTML and JavaScript. It shows how to create an
environment in which information from an HTML document can be acted upon by a
PHP document located on a server.

71
Getting Started with PHP

JavaScript’s primary limitation relative to languages such as C/C++ is that it is a client-side
language embedded in Web browsers. When an HTML/JavaScript document is accessed
online or locally with a browser, only the contents of that document are available. JavaScript
code cannot access data stored elsewhere on a server. This restriction is inherent in the lan-
guage syntax and operating environment and applies regardless of whether the server is actu-
ally at a different location—a remote server—or whether external data exist on a local server
residing elsewhere on the same computer where the HTML/JavaScript document resides.

As aresult, the only way to access information from a JavaScript application is to have
all that information embedded within the application itself. Data can be formatted as a
JavaScript array and contained in a file (often with a . j s extension) that can be “included”
when the HTML document is opened. This at least allows the data part of an application to
be maintained separately from the processing part, but it does not overcome the inherent
limitations of client-side processing.

Because the ability to read and write data files is so important for science and engineering
applications, it is necessary to use some other language in place of or in addition to
JavaScript. One solution is to use PHP, a full-featured programming language similar in
syntax to JavaScript and other languages derived from a C/C++ heritage. PHP is a server-
side language, which means that PHP documents reside on a remote or local server rather
than being downloaded onto a browser on a client-side computer. Not only does PHP
provide capabilities for accessing files stored on a remote or local server, it also allows an
application to receive information from an HTML document and act on that information.
For PHP to be used in this way, even on a local computer, PHP must be installed in an
appropriately configured server environment, and not just installed as an application.

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, 167
DOI 10.1007/978-0-85729-449-4 7, © Springer-Verlag London Limited 2011

168 7 (reating a Server-Side Environment with PHP

Newcomers to PHP may hope that PHP will work just like a JavaScript function. They
will send a PHP document some information. That document would process the informa-
tion and “return” some results that could then be used within the HTML/JavaScript
document.

But PHP doesn’t work this way! Passing information from an HTML document is a
one-way street, from client to server. The PHP document can display output on your
browser screen, by creating an HTML-formatted web page as output, but it doesn’t return
information that can be used within an HTML document or by a JavaScript script. For
example, you cannot send information to a PHP application from the form fields in an
HTML/JavaScript document, ask the PHP application to do some calculations, and then
write the results back into form fields in the calling document for additional modifications
through JavaScript. However, you can create and save data in files on the server, as will be
shown later in this chapter.

As an example of how PHP works together with an HTML document, consider this
problem:

A user enters information about measurements taken with a sun viewing instrument
(called a sun photometer) that is used to measure total column water vapor in the atmo-
sphere. The information provided by the user consists of the instrument’s serial num-
ber, the location and time of the measurements, and voltage outputs from the instrument.
The application must use this information to find the location of the sun at the time and
place of the measurement and then calculate total column water vapor based on calibra-
tion constants stored for the instrument that was used to collect the data.

The purpose of most of the calculations in this application will be first to determine
the elevation (or zenith) angle of the sun based on the location and time of the measure-
ments, to obtain what is called the relative air mass. Next, the calibration constants for
the specified instrument must be retrieved. Finally, the precipitable water (PW) can be
calculated. Apart from the actual calculations of solar position and PW, which are orga-
nizationally trivial, if computationally a little involved, this is a conceptually simple and
typical data entry and processing problem that will provide a framework within which to
learn about PHP.

Assume that the calibration constants (A, B, C, 3, and 1) for several water vapor instru-
ments are entered in a space-separated text file, WWdata . dat, and stored on a server:

SN A B C beta tau

Wv2-113 0.762 0.468 0.20 0.65 0.10
Wv2-114 0.814 0.468 0.20 0.65 0.10
Wv2-157 0.911 0.468 0.20 0.65 0.10

A typical approach to programming problems is to separate a large problem into smaller
problems. For this problem, the first step will be to write an HTML document that will pass

7.1 Getting Started with PHP 169

an instrument serial number to a PHP application on a server. The second step is to write a
server-side application that will receive this serial number and will then search through
WvVdata.dat and display the calibration constants for that instrument. These two docu-
ments must be linked through an interface that passes information from the first document
to the second.

Document 7.1 is an HTML document that will pass an instrument serial number to a
server application.

Document 71. (getCalib.htm)

<html>
<head>
<title>Get calibration constant</title>
<script language="javascript">

document.write ("This document last modified on "

+ document.lastModified+". ")

</script>
</head>
<body>
<h2>Get calibration constants for water vapor instrument</h2>
<p>
<form method="post" action="getCalib.php">
Enter serial number here: <input type="text" name="SN"
value="WvV2-157" />

<input type="submit"

value="Click here to get calibration constants.." />
</body>
</html>

This document last modified on Thursday, February 01, 2007 11:05:02,

Get calibration constants for water vapor instrument

Enter serial number here: WV2-157
[Click here to get calibration constants _ |

In this document, an instrument serial number is entered in typical fashion, as a value
ina type="text" input field in a form. A type="submit" form field button is
used to send this value to a server-side application named getCalib.php. There is no
reason why the PHP application needs to have the same name as the client-side HTML/
JavaScript document, but using identical names (with different extensions) makes clear
which HTML files are associated with which PHP files.

170 7 (reating a Server-Side Environment with PHP

Note that JavaScript is used only incidentally in this document, to display the most
recent document modification date and time. The transfer to a PHP document is done
simply through the mechanism of an HTML form and does not require any other action
such as a JavaScript script.

Information is sent to a PHP application simply by setting the method and action
attributes in the form tag:

<form method="post" action="getCalib.php">

The value of the act ion attribute gives the location of the PHP document. The fact that,
in this example, the value is simply the PHP file name rather than a longer URL reference
implies that both the calling HTML document and the receiving PHP document reside in
the same folder on a local computer—in this case, the folder designated as the local host
on which PHP applications run. As will be shown below, this action automatically trans-
mits the name and value of every form field defined in the calling document. In this case,
there is only one value, the instrument serial number.

Now write the PHP application to receive and process this information. This requires
code that will be completely unfamiliar to JavaScript programmers.

Document 7.2. (getCalib.php)

<?php
// Extract instrument ID from POST data..
$SN=$_POST ["SN"];
$len=strlen ($SN) ;
// Open WV instrument calibration constant file..
$inFile = "WVdata.dat';
$in = fopen ($inFile, "r'") or die("Can't open file");
// Read one header line...
$line=fgets ($in) ;

// Search rest of file for SN match...

$found=0;
while ((!feof($in)) && ($found == 0)) {
// Could do it like this...
// Sline=fgets (S$in) ;
// Svalues=sscanf ($line,"%s $f %f %f Sf Sf");
// or like this...
// fscanf ($in,"%s %f %f $f $f %r",
// $SN_dat,$A,$B,$C,sbeta, $tau) ;

list ($SN_dat, $A, $B, $C, $beta, $tau) =fscanf ($in,
"$s $f Sf Sf Sf ¥f");
if (strncasecmp ($SN_dat, $SN, $1len)==0)
$found=1;
}
fclose ($in) ;

7.1 Getting Started with PHP 17

if ($found == 0) echo
"Couldn't find this instrument.";
else {
// Build table of outputs..
echo '"<p><table
border="'2"'><tr><th>Quantity</th><th>Value</th></tr>"."
</td></tr>";
echo '"<tr><td>Instrument ID</td><td>$SN</td></tr>";
echo '"<tr bgcolor='silver'><td colspan='2"'>
Calibration Constants</td></tr>";
echo "<tr><td>A</td><td>$A</td></tr>";
echo '"<tr><td>B</td><td>$B</td></tr>";
echo '"<tr><td>C</td><td>$C</td></tr>";
echo '"<tr><td>τ</td><td>$tau</td></tr>";
echo '<tr><td>g&beta,;</td><td>$beta</td></tr>";
echo '"</table>";
}
2>

What is required to create and use such a
document? The following steps proceed “from
scratch,” based on the assumption that you already
understand how to use HTML and JavaScript but
have never used a server-side programming

language.
Step 1. Setting up a PHP environment.

There is a very significant difference between

HTML/JavaScript documents and PHP applica-

tions. JavaScript is, essentially, universally and

automatically available through any modern

browser, so you shouldn’t have to do anything spe-

cial to process JavaScript code (unless, for some

reason, your browser’s JavaScript interpreter has been disabled). In contrast, the ability to

use an HTML document as a source of input for a PHP application requires access to a

server on which a PHP interpreter has been installed. (PHP is an interpreted, as opposed

to a compiled, language in the sense that stand-alone executable binary files are not gen-

erated.) The server must be configured specifically to allow PHP scripts to be processed

and all PHP applications must be saved on the server in an appropriate location.
Because of the potential for carelessly written or malicious code to wreak havoc on any

computer that allows remote access to its contents (in this case, through an HTML docu-

ment that passes information to a PHP application), appropriate safeguards must be estab-

lished to limit the ability to read and write data from or to specific locations on the server.

Because of these potential problems, some institutions do not support the use of server-side

applications on any of their computers.

172 7 (reating a Server-Side Environment with PHP

Even if the client browser and server reside on the same physical computer, a server and
PHP interpreter must still be installed and configured, and precautions should still be taken
to protect the computer’s contents. Server software may already exist on Windows and
Macintosh computers, but it may need to be activated. Options include the popular Apache
server, which is available through free downloads in versions for Windows (WAMP),
Macintosh (MAMP), and Linux (LAMP) computers. On the author’s Windows computers,
a default installation of the WAMP local server has automatically provided all the required
capability to run PHP applications, including graphics-based applications.

The steps involved in setting up a PHP environment for developing PHP applications
on a local computer include:

1. Install a server (or activate an existing server) on a local computer. Although it is
possible in principle to use PHP on a remote server, it will be much easier to learn how
to use this language if it is available on your own computer. This is the default situation
assumed for all the PHP code examples in the rest of this book.

2. Download and install a PHP interpreter. PHP may already be part of your server—it is
for a WAMP server, for example. If not, installation packages for PHP are available as
free downloads from http://www.php.net/downloads.php. For this book, a WAMP
installation on a Windows computer running XP Pro has been used, although this fact
should be irrelevant for using any of the PHP applications discussed in the book. That
is, the interpretation of PHP code should be platform-independent.

3. On your computer, configure the server to recognize PHP documents and to locate the
PHP interpreter. It is entirely possible that this will be done automatically when you
install a server and you may not need to change any configuration settings.

Fortunately, there are many online sources of help with installing PHP on your own
computer. For using PHP on a remote server, you don’t have to carry out the above steps
yourself, but you still need to know how to access the server. The details vary from system
to system, and you may need to get help from your system administrator.

Step 2. Creating, editing, and executing PHP documents

Just like HTML documents, PHP documents are text files that can be created with any
text editor. AceHTML, the editor used to produce all the code in this book, provides con-
venient editing and color-coded syntax formatting capabilities for creating PHP documents
just as it does for creating HTML/JavaScript documents.

At first, it may not be obvious that you cannot execute PHP scripts directly from an
editor’s browser window, as you can JavaScript scripts in HTML documents. However,
this is clearly the case. You can create and edit PHP scripts with an editor, but you must
then execute them on a server, even if that server resides on your own computer. For
example, on a Windows XP computer with a WAMP installation, PHP documents are
saved in the C: /wamp/www folder and executed by entering

localhost/{PHP document name}

7.1 Getting Started with PHP 173

as the URL in a browser window. These required folders are automatically created when
the WAMP package is installed. For convenience, you can also store the corresponding
HTML/JavaScript documents in the same folder (recall Document 7.1).

So, to execute a PHP document, create it in a code or text editor, save it in www (for a
WAMP installation) then switch to a browser to execute it at localhost on a local
Windows server. Whenever you make changes, save them and refresh the PHP document
in your browser window.

When you create applications, whether in JavaScript, PHP, or some other language, it is
important to develop a consistent approach that minimizes the time spent correcting the
errors you will inevitably make. It is rarely a good idea to create an entire application all at
once. A much better plan (in any language) is to proceed step-by-step, adding small sec-
tions of code and testing each addition to make sure the results are what you expect. When
you pass information from an HTML document to a PHP application, it is always a good
idea to display the values passed to the PHP application before writing more PHP code.

The error messages you will receive when you make mistakes in your code will almost
never be very helpful, although experience and practice will improve your ability to inter-
pret these messages. They may tell you where an error has been encountered but not what
the error actually is. You might like to see a message like ““You forgot to put a semicolon
at the end of line 17.” But that will not happen! PHP interpreters seem to be a little more
helpful than JavaScript interpreters when it comes to describing errors, but neither of them
will tell you what you really need to know—exactly what you did wrong and how to fix it.
And of course, no syntax checker will protect you against the worst error of all—code that
works perfectly well but is logically flawed and gives the wrong answers!

To test your PHP/server environment, start with this minimal PHP document. Name it
helloWorld.php and save it in www (or the equivalent location on your system).

Document 7.3. (helloWorld.php)

<?php
echo "Hello, world!";
?>

Open a browser and type localhost/helloWorld.php (or whatever is the
appropriate URL for your system). You should see the text, “Hello, world!” displayed in
your browser window.

Another difference between HTML files and PHP files is that your computer is probably
configured to automatically associate an . htmor . html extension with your browser. So,
if you double-click on a file with such an extension, it will open in your browser. But, if
you double-click on a file with a . php extension, the result is uncertain. On a Windows
computer, such files may open as text files in the Notepad utility unless you have specifi-
cally associated the . php extension with some other application, such as a code editor. In
any case, you cannot “execute” this file by double-clicking on it. Instead, you must enter
its URL in a browser, as noted above.

You can also save and execute this file:

174 7 (reating a Server-Side Environment with PHP

Document 7.4. (PHPInfo.php)

<?php
echo phpinfo() ;
?>

This file will display a great deal of information about how PHP is configured on your
server. (If you view the source code for this document, you can also learn a lot about
formatting output from PHP.)

The echo language construct in Document 7.3 displays the specified string literal and
in Document 7.4 displays the (very long) string output returned by phpinfo (), a PHP
function that displays information about your PHP installation.

Even more simply, you can just type http://localhost/ (for a WAMP server).
There should be an index.php file that will display some information about your server and
PHP configuration.

The first thing to notice about these Documents 7.3 and 7.4 is that PHP files do not need
to be embedded within an HTML document template, with its basic tags; they serve as
stand-alone applications. Although you will often see PHP documents that place PHP
scripts inside the body tag of an HTML document, these two examples demonstrate that
PHP can work on its own without any HTML “shell,” basically with the assumption that
any HTML syntax appearing in formatted output will be interpreted appropriately when
that output is echoed to your browser.

PHP code—a PHP script—is enclosed inside a PHP tag:

<?php

?>

There are other ways of implementing PHP scripts, including
<script language="PHP">

</gcript>

but the <?php .. ?>tag found in the examples in this book is widely used for stand-alone
PHP applications.

If you get error messages, or if nothing happens when you try to execute the documents
in this chapter, then something is wrong with your server/PHP installation. It is hopeless to
try to offer system-specific advice for resolving this kind of problem, but the most likely
sources of trouble at this level, assuming that you have installed both a server and PHP, is
that some server configuration options have been overlooked or have been given inappro-
priate settings, that you haven’t stored your PHP document in an appropriate folder on a
local computer, or that you do not understand the procedure for running PHP applications
on a remote server. You may need to consult with your system administrator (if you have
one!) to resolve these problems.

7.1 Getting Started with PHP 175

Step 3. Passing information from an HTML/JavaScript document to a PHP application.

The next thing you need to know to use PHP for anything other than displaying text output
in a browser window is how to pass information to a PHP document. By design (since this
is the essential reason for the existence of PHP), this is very easy to do, using the action
and method attributes of the form element.

<form action="{URL of PHP document}" method="post">

<input type="submit" value="{Putsubmit button text here.}" />
</form>

The example from Document 7.1,
<form method="post" action="getCalib.php">

passes information to getCalib.php.

This code in this book will always use method="post", although it is also possible
to use method="get" in some circumstances. A PHP document is identified through its
URL and not just by a directory/folder reference on the server. For the examples in this
book, the assumption is that the HTML document and the PHP document reside in the
same folder/directory on the same local server. For local use on a Windows computer using
a WAMP installation, this location could be C:/wamp/www with an automatically
assigned URL of localhost. This co-location of files is done just for convenience in a
local server environment. When you use PHP on a remote server, you will store the HTML
interface document on your local computer or download it from a server, and the URL for
the PHP document will be different, of course.

What makes the process of calling a PHP document from an HTML document so
painless is the fact that the contents of @/l form input fields in the calling document are
automatically available to the target PHP document, without any additional programming
effort on your part! There are some nuances and useful modifications to this very simple
procedure, including ways to ensure that the “submit” action is carried out only once per
visit to the calling document, but that discussion isn’t essential for now.

On the server side, getCalib.php receives the information from getCalib.htm
in a system-generated array named $ POST whose elements are accessed by using the
names associated with the form fields in the calling document. In Document 7.2, the
statements

$SN=$_POST["SN"] ;
$len=strlen ($SN) ;

assign the value of the ID form field—it is named SN and its default value is WW2-157—to
the PHP variable $SN and save the length of $SN in variable $1en. In PHP scripts, all
variable identifiers, whether user- or PHP-defined, begin with a $ character.

176 7 (reating a Server-Side Environment with PHP

Step 4. Reading and interpreting information stored in server-side text files.

The next step in solving the problem addressed in Document 7.2 is to compare the value
of $SN against the instrument serial numbers stored in Wvdata.dat. Open the file and
assign a name—a file handle in programming terminology:

$inFile = "WvVdata.dat';
$in = fopen ($inFile, '"r") or exit("Can't open file.");

The file handle $1in (it can be any name you like) provides a link between the physical
file stored on the server and the “logical” name by which that file will be known in a PHP
script. If the file exists, it is opened and the value of the file handle variable is the location
in memory of the first byte of the physical file. If the file doesn’t exist, the exit () func-
tion prints a message and terminates the application. (Note the syntax of this line of code,
which is a “short-hand” PHP version of an i f... else... statement using the or operator
instead of the | | operator.)

The parameters for the fopen () function are the file name and a string that specifies
the operations that are allowed to be performed on the file. It is not necessary to assign a
separate variable name to the physical file. The single statement

$in = fopen("WVdata.dat", "r'") or
exit("Can't open file.");

will work the same as the previous two statements, but the single “hard-coded” file name
doesn’t allow you to pass the name of the physical file from an HTML document to a vari-
able in the PHP document. Of course, for some applications, you might want to use a
hard-coded file name that can’t be changed by a user calling the PHP document.

A value of "r" (or ' r") identifies the file as a read-only text file. This means that the
PHP document can extract information from Wvdata . dat but cannot change its contents
in any way. Text files are subject to an important restriction: they are sequential access file
whose contents can only be read sequentially, starting at the beginning. Even if a program
does not need all the information in a text file, it must still be read and then, perhaps,
ignored.

With this restriction in mind, there are several ways to read text files and extract
information from them. The basic requirement is that the programmer must know exactly
how data in the file are stored. The first line in Wdata.dat is a header line:

SN A B C beta tau

The header line is followed by calibration values for instruments. From the PHP script’s
point of view, the number of instrument calibrations stored in this file is unknown—
additions to or deletions from the file can be made offline at any time. So, the script must
first read past the header line (which is assumed always to be present in this application)
and then search through an unknown number of instrument calibration data lines to find the
specified instrument:

7.1 Getting Started with PHP 177

// Read one header line..
$line=fgets ($in) ;
// Search rest of file for SN match..

$found=0;

while ((!feof($in)) && ($found == 0)) {

// Could do it like this..

// Sline=fgets(S$in) ;

// S$values=sscanf ($line,"%s Sf Sf $f %f Sf");
$Svalues=fscanf ($in, "%s $f %f %f %f %f'");

list ($SN_dat, $A, $B, $C, $beta, $tau)=$values;
if (strncasecmp ($SN_dat, $SN, $len)==0) $found=1;
}

fclose ($in) ;

The syntax is similar to JavaScript syntax for conditional loops, even if the file-handling
functions are unfamiliar because they have no equivalent in JavaScript. The variable
$found is assigned an initial value of 0 before starting the loop. You could also assume
that $ found is a boolean value and initialize it with a value of false, to be changed later
to true rather than 1, along with changing ($found == 0) to (!$found) in the
while (..) statement.

Inside the loop, the file is read one line at a time. The feof () function terminates the
conditional loop when an end-of-file mark is encountered, and the test on $found termi-
nates the loop when the specified instrument serial number is found. Since every line is
formatted the same way, the fscanf () function is a simple choice for extracting data
from the file. The shaded line in the above code stores six values in the user-named array
$Svalues. The elements of this array are then assigned to separate variable names using
the 1ist () language construct.

An alternative approach shown in the comment lines is to use the fgets () function
again to read a line of text into a user-specified string variable called $1ine. The
sscanf () function isused to extract the values. For this application there is no reason
to replace one statement for extracting values with two statements that accomplish the
same goal.

A third alternative is to use the fscanf () function to assign values directly to
variables:

fscanf ($in,"%s %f %f %f $f %r",
$SN _dat,$A,$B,sC, sbeta,stau) ;

This is actually the easiest way to read these values.

The format specification string in the fscanf () function tells PHP to look for a text
string followed by five real numbers. This string contains one or more format specifiers—
characters that tell how a value in the file is to be interpreted. In the example being dis-
cussed here, “s” describes a character string and the “£” describes a floating point number.
Each value in the text file must be separated by one or more spaces. This code will not
work as written if other printable characters, such as commas, are present. However, extra

178 7 (reating a Server-Side Environment with PHP

spaces and even tabs are OK—tabs are treated as “white space” separating the values and
are ignored by the format specification.

Except for white space, the contents of the data file must exactly match what the format
specifier string tells your code to expect. If the data records in the WVdata.dat file were
separated by commas instead of white space:

SN A B C beta tau
wv2-113, 0.762, 0.468, 0.20, 0.65, 0.10

Then the format specification string would have to be:

oo

Svalues=fscanf ($in, "$%s, $f, %f, $%f, %f, $f");,
There is more discussion of format specifications in Sect. 10.4.1.

The 1ist () construct (which looks like a function because of the parentheses, but in
programming terms is a language construct) associates the elements of $values with the
values read from one line of data in the calibration file. The names of these values can
be whatever you like. In this case, the choice that makes the most sense is to use the
descriptive names that appear in the header line of the data file.

The strncasecmp () function performs a case-insensitive comparison of the instrument
serial number passed from getCalib.htm against serial numbers in the Wwdata.dat
file. (That is, a value of either WW2-157 or wv2-157 passed from getCalib.htm will
be treated as a match with the Wv2-157 value in Wwdata . dat.) If a serial number match
is found, st rncasecmnp () returns a value of 0 and the $ found value is changed to 1. The
feof () function looks for an “end-of-file” mark in the file and terminates the loop if it gets
to the end of the file without finding a match with the user-specified serial number. When the
loop terminates, the fclose () function closes the data file.

If a calibration for the specified instrument doesn’t exist, then the script should print an
appropriate message. Otherwise, it should display the calibration values for that instrument.
Use an 1f.. else.. statement, with syntax similar to JavaScript:

if ($found == 0)
echo "Couldn't find this instrument.'";
else {
// Build table of outputs..
echo '"<p><table
border="2"'><tr><th>Quantity</th><th>Value</th></tr>";
echo "</td></tr>";
echo '"<tr><td>Instrument ID</td><td>$SN</td></tr>";
echo '"<tr bgcolor='silver'>
<td colspan='2'>Calibration Constants</td></tr>";
echo "<tr><td>A</td><td>$A</td></tr>";
echo "<tr><td>B</td><td>$B</td></tr>";
echo "<tr><td>C</td><td>$C</td></tr>";

7.1 Getting Started with PHP 179

echo '"<tr><td>τ</td><td>$tau</td></tr>";
echo '"<tr><td>&beta,</td><td>$beta</td></tr>";
echo '"</table>";

This code shows how to use echo to build output strings that include HTML tags. Tags are
used here to build a table, just as you would do in an HTML document. The multiple echo
statements in this example could be reduced by using PHP’s string concatenation operator,
a period. The statements building the output table could also be written like this:

echo '"<p><table border='2"'>
<tr><th>Quantity</th><th>Value</th></tr>"
n"</ed></tr>"
"<tr><td>Instrument ID</td><td>8$SN</td></tr>"
"<tr bgcolor='silver'><td colspan='2"'>"
"Calibration Constants</td></tr>"
"<Er><td>A</td><td>$A</td></tr>"
"<tr><td>B</td><td>$B</td></tr>"
"<Er><td>C</td><td>$C</td></tr>"
"<tr><td>&tau,;</td><td>$tau</td></tr>"
"<tr><td>&beta,</td><td>$beta</td></tr>"
"</table>";

This completes the task of finding calibration constants for an instrument serial number
passed from an HTML document and displaying the results of that search.

Step 5. Saving PHP output in a server-side file.

Now suppose you wish to process data submitted by a user and save it in a server-side file.
Document 7.5 is an expansion of Document 7.2 which demonstrates how to save the data
shown in the output image for Document 7.2 in a file. The few additional lines that are
required are shaded.

Document 7.5. (writeCalib.php)

<html>
<head>
<title>Get calibrations for water vapor instrument</title>
</head>
<body>
<?php
// Extract instrument ID from POST data..
$SN=$ POST["SN"];
Slen=strlen ($SN) ;

182 7 (reating a Server-Side Environment with PHP

Finally, the “sequential access” restrictions on text files apply to files opened with
append or write-only permission. Just as text files can be read from only sequentially, they
can be written to only sequentially. Writing starts at the beginning of a write-only file
(regardless of its current contents), and at the current end of an append file. It is not pos-
sible to “jump around” in this kind of file to write new information in random locations,
anymore than it is possible to read information from random locations.

Asnoted previously, the kinds of file access tasks described in this chapter are impossible
with JavaScript alone. Of course, there are many PHP language details to be explored, but
these are just details compared to the conceptual framework. The examples given here
show that by passing values to a PHP document, you can use those values to initiate pro-
cessing that takes place on a remote server, including accessing existing data and creating
new data that can be stored permanently on that server. Many Web programmers use PHP
primarily to access databases or validate the contents of submitted online forms. From a
science and engineering applications perspective, this will not be the primary use. With
PHP’s capabilities, and without knowing anything about formal database structure, you
can send information from a client-side application—input values for a calculation, for
example—to a PHP application and permanently store that information in whatever text-
based format you desire, along with results of operations performed on those data, includ-
ing operations that require access to other information stored on the server. These
capabilities vastly expand the range of online applications beyond those that can be carried
out with JavaScript alone.

7.2
More Examples

7.21
Solving the Quadratic Equation

For the quadratic equation ax? +bx+c¢ =0, find the real roots:

[—b +(b* - 4a<:)1/2] . [—b — (b* —4ac)]

r =
' 2a 2 2a

The “a” is the coefficient must not be 0. If the discriminant b’ —4ac =0 , there is only
one root. If the discriminant is less than 0, there are no real roots.

This problem can be solved easily just with JavaScript, but it provides another example
of passing HTML from field values to a PHP application.

7.2 More Examples 183

Document 7.6a (quadrat.htm)

<head>
<title>Solving the Quadratic Equation</title>
</head>
<body>
<form method="post" action="quadrat.php">
Enter coefficients for ax² + bx + ¢ = 0:

a = <input type="text" value="1" name="a" />

(must not be 0)

b = <input type="text" value="2" name="b" />

c <input type="text" value="-8" name="c" />

<input type="submit" value="click to get roots.." />
</form>
</body>
</html>

Document 7.6b (quadrat.php)

<?php

$a = $_POST["a"]
$b = $_POST["b"]
$c = $_POST["c"];

$d = $b*$b - 4*$a*Sc;

’

’

if (8d == 0) {
$rl = $b/(2*%a);
$r2 = "undefined";

else if (8d < 0) {
$rl = "undefined";
$r2 = "undefined";

184 7 (reating a Server-Side Environment with PHP

else {
$rl = (-$b + sqrt($b*$b - 4*$a*$c))/2/8%a;;
$r2 = (-$b - sqrt($b*$b - 4*$a*$c))/2/8%a;;
}
echo "r1 =" . $rl . ", r2 =" . $r2;
2>

rl=2,r2=-4

If the coefficient ¢ is changed from -8 to 8, the equation has no real roots:

r1 = undefined, r2 = undefined

Note that in this example, the PHP variable names are the same as the form field names
in the corresponding HTML document. These are reasonable names for coefficients of a
quadratic equation, but they could be given any other names, such as $p, $q, and $r, if
there were some reason to do that. The PHP document needs to know only the field names
by which these values were identified in the calling HTML document, because those names
must be available to extract values from $ POST []. For the kinds of problems presented
in this book, in which an HTML/JavaScript document is typically paired with a PHP docu-
ment, it is a reasonable style choice to use the same names for variables in the PHP code
as were used in the HTML document.

7.2.2
Preventing Multiple Submissions from a Form

Create an HTML document that allows a user to enter some meteorological observa-
tions. Pass these observations to a PHP document and append them to a file of observa-
tions. Take some steps to prevent a user from submitting the same set of observations
more than once.

A typical problem when using a form to send data to a remote server is that it is too easy
to submit the same data multiple times by clicking repeatedly on the “submit” button. If
you are using a PHP application to store data in a file, the result of multiple submissions
will be a data file with many duplicate data records.

The amount of effort that should be expended to write code that minimizes duplicate
submissions depends on the application and how hard you wish to make it to change data and
resubmit them as a new entry. Document 7.7 takes a somewhat relaxed approach based on
the assumption that a user may legitimately wish to submit several sets of data on the same
“visit” to the form, but should be prevented from sending the same data more than once.
Hence, the user is forced to reset the form before the “submit” button will work again.

Note that this is a JavaScript solution, having nothing to do with PHP in the sense that
the PHP application doesn’t check to see if data that are submitted already exist in the

7.2 More Examples 185

“append” file. It is certainly possible within the PHP application to prevent duplicate data
from being appended to the file, but it requires less effort to eliminate duplicate submissions
in the first place.

Document 7.7a (WeatherReport.htm)

<html>
<head>
<title>Weather Report</title>
<script language="javascript" type="text/javascript" >
var alreadySubmitted = false;
function submitForm ()
{
if (alreadySubmitted)
{
alert('"Data already submitted. Click on 'Reset Button'
and start over.");
return false;
}
else
{
alreadySubmitted = true;
return true;

}

</script>

</head>

<body>

<h2>Report weather observations</h2>

<form method="post" action="WeatherReport.php"
onSubmit="return submitForm (this.form);" >

Date (mm/dd/yyyy) : <input type="text" name="date"
value="09/23/2007" />

Time (UT hh:mm:ss): <input type="text" name="time"
value="17:00:00" />

Air temperature (deg C) :<input type="text" name="T"
value="23" />

Barometric pressure (millibar): <input type="text"
name="BP" value="1010" />

Cloud cover (octas 0-8): <input type="text" name="octas"
value="7" />

Precipitation today (total mm): <input type="text"
name="precip" value="2.3" />

<input type="submit" name="PushButton"
value="Click to submit.." />

186 7 (reating a Server-Side Environment with PHP

<input type="reset" value="Reset Button"
onClick="alreadySubmitted=false;"/>

</body>

</html>

The comma-delimited text file that will contain the reported data should be created
ahead of time, starting with just a header line:

Date, Time, T,BP,Octas, Precipitation
Document 7.7b (WeatherReport .php)

<?php

$date=$_ POST|["date"];
$time=$_POST ["time"];
$T=$_POST["T"];
$BP=$_POST["BP"];
Soctas=$_POST["octas"];
$precip=$_POST|["precip"];

echo "You have reported:
"

"date:" . $date . "
"
"time: " . $time . "
"

"Bp : " . $BP . '
"
"octas: " . $octas . "
"
"precip: " . $precip . '"
";

Sout=fopen ("WeatherReport.csv", "a") ;

fprintf ($out, "%s, $%s, %.1f, $.2f, %u, %.2f\r\n",
$date, $time, $T, $BP, Soctas, $precip) ;

fclose ($out) ;

?>

You may have to change the location of the output file to suit your situation. After two
submissions, the WeatherReport . csv file might look like this:

Date,Time, T,BP,Octas,Precipitation
09/23/2007, 17:00:00, 23.0, 1010.00, 7, 2.30
09/24/2007, 17:10:00, 25.0, 1012.00, 1, 0.00

Note that the fprintf () format string includes \ r\n as a line terminator, so the line
breaks will be visible if the file is opened in a Windows text editor such as Notepad, rather
than in Excel. Additional format specifiers limit the number of digits associated with the
floating-point numbers. See Sect. 10.4.1 for more details about how to use these specifiers.

Working with PHP

Abstract Chapter 8 describes the syntax of PHP and shows how to perform calculations
and work with text-based files. The chapter returns to the problem defined in Chap. 7 and
provides a complete PHP-based solution. Further information about reading and writing
files is also provided.

8.1
Structure of PHP Scripts

For this chapter, it is assumed that you are familiar with how basic programming concepts
such as variables, operators, assignment statements, functions, and loops are implemented
in JavaScript. These same concepts apply to PHP; thus little attention will be given to
general explanations. Although the file-handling syntax will be unfamiliar to JavaScript
programmers, because JavaScript does not have these capabilities, it is not difficult to learn
how to write PHP scripts if you are comfortable with JavaScript. A summary of selected
PHP language elements is provided in Chap. 10.

PHP scripts do not appear very different from JavaScript scripts, but there are some
important distinctions. For example, PHP scripts require a semicolon to terminate each
line, but JavaScript scripts do not. Every PHP variable name must be preceded by a “$”
symbol. (There is no compelling explanation for why this is the case.) Variables are not
declared ahead of time and there is no equivalent of the JavaScript var keyword for
declaring variables without assigning a value. If you use a variable name (for example,
$taxes) and misspell it later in your script, for example, $texas, PHP will not flag this
as an error, but your program obviously will no longer give correct results.

PHP scripts can be embedded in HTML documents or created as standalone documents
using the <?php .. 2> tag, and this is the style used in this book. (PHP scripts can also
be embedded in HTML documents within <script> .. </script>elements.) /* ..
* / is used for block (multiline) comments. Single-line or in-line comments can begin with
either // or #.

PHP supports functions, similar to syntax in JavaScript functions. However, argument
passing is simpler because there is no need to distinguish among forms, form fields, and
the values of form fields passed as inputs. There is no need in PHP for an equivalent of the

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, 187
DOI 10.1007/978-0-85729-449-4 8, © Springer-Verlag London Limited 2011

188 8 Working with PHP

JavaScript .value property, or for the parseFloat () or parselInt () functions
needed to transform form field strings into their corresponding numerical values in
calculations or when strings are passed as function arguments.

Recall that when JavaScript functions need to return multiple values, one possibility is
to pass a form as input and assign values to fields in that form. Another possibility is to
return an array of values. The second option, but not the first, is available for PHP.

Values returned from a JavaScript function can be used elsewhere in a JavaScript script
and then “returned” directly into form fields. PHP values, including output from functions,
can also be used anywhere within a PHP script, but values cannot be returned to form fields
in the calling HTML document. Output is returned to a client computer in the form of
HTML-formatted output that can be displayed in a browser window.

JavaScript processing is interactive in the sense that you can change inputs and
recalculate outputs, sometimes automatically, simply by changing a value in a form
field, and sometimes by clicking on a button, all from within the same document. In this
sense, PHP works more like old-fashioned command-line “batch processing.” If you
need another set of outputs, you need to return to the calling document, change the input
values in one or more form fields, and send the new values for reprocessing by the PHP
script.

From a user’s point of view, the biggest difference between JavaScript and PHP is the
fact that PHP scripts can read data from and write data to a file on a server. This presents
potential system security issues, and as a result, institutions that provide web space for
authorized users may prohibit the use of any server-side languages such as PHP. However,
there are no such restrictions with setting up a server on your own computer for your own
personal use, although it is certainly possible to overwrite a file that you really couldn’t
afford to lose!

8.2
Calculations with PHP

As a focus for learning how to do calculations with PHP, return to the problem of calculating
column water vapor (total precipitable vapor) based on measurements from a sun photom-
eter, as outlined in Chap. 7. As a first step toward solving this problem, Chap. 7 showed
how to pass an instrument serial number to a PHP application so that its calibration
constants could be retrieved from a server-side data file.

The next step in this application requires some extensive calculations of the sun’s
position at a specified location and time on Earth’s surface. Although the details of the
algorithms involved are incidental to learning about PHP, the fact that the code is fairly
lengthy, involving exponential, logarithmic, and trigonometric functions, will provide
many examples of how to do math with PHP.

There are two approaches to doing the calculations required for this problem. The (very
short) water vapor calculation requires as input the output voltages and calibration con-
stants for a specified instrument, and a value for the relative air mass (a dimensionless

8.2 (alculations with PHP 189

quantity that has a value of 1 when the sun is overhead, with a solar zenith angle z of 0°,
and which increases as the zenith angle increases, approximately as 1/cos(z)).

The relative air mass calculation for a particular time and place requires some lengthy
astronomical equations, but they are self-contained and can be done within JavaScript.
Hence, one option is to calculate the relative air mass in the HTML/JavaScript document
and send its value to a PHP application. The other option is to send just the input values—
instrument serial number, measurement location, time, and instrument output voltages—to
a PHP application, which will then do all the required calculations.

There is no compelling reason why one option is better than the other for this problem
(and other similar problems), unless it is considered important to prevent the user from
seeing the actual code required to perform the solar position and relative air mass calcula-
tions, as would be possible within JavaScript. The justification for choosing the second
option here is to take advantage of the opportunity to learn a great deal about the details of
using the PHP language.

As a starting point, Document 8.1 below is a complete HTML/JavaScript application
that calculates precipitable water vapor based on the assumption that the user already
knows the calibration constants for the instrument used to collect the data. All the equa-
tions for calculating solar position are incorporated into this document, so all that will be
required later is to translate them into PHP. This document is a good place to review your
understanding of how to do math calculations with JavaScript!

Document 8.1 (PWcalc2.htm)

<html>
<head>
<title>WV calculations for calibrated instrument</title>
<script language="javascript">
document.write ("This document last modified on
"+document. lastModified+".") ;
</script>
<script language="javascript">
function getSunpos (m,d,y,hour,minute, second, Lat,Lon) {
with (Math) ({
// Explicit type conversions to make sure inputs are
treated like numbers,
// not strings.
m=parseInt (m,10); d=parseInt(d,10);
y=parselInt(y,10);
hour=parseFloat (hour); minute=parseFloat (minute) ;
second=parseFloat (second); Lat=parseFloat (Lat);
Lon=parseFloat (Lon) ;
// Julian date
var temp=ceil ((m-14)/12);

190 8 Working with PHP

//This number is always <=0.
var JD = d - 32075 + floor (1461* (y+4800+temp) /4)
+floor (367* (m-2-temp*12) /12)
// m-2-temp*12 is always > 0
—floor (3* (floor ((y+4900+temp) /100)) /4) ;
JD =JD-0.5+hour/24 +minute/1440 +second/86400;
// Solar position, ecliptic coordinates
var dr=PI/180;
var T=(JD-2451545)/36525;
var L0=280.46645+36000.76983*T+0.0003032*T*T;
var M=357.52910+35999.05030*T-0.0001559*T*T-0.00000048*T*T*T;
var M rad=M*dr;
var e=0.016708617-0.000042037*T-0.0000001236*T*T;
var C=(1.914600-0.004817*T-0.000014*T*T) *sin(M_rad)
+(0.019993-0.000101*T) *sin (2*M_rad)+0.000290*sin (3*M_rad) ;
var L save=(L0+C) /360;
if (L_save < 0) var L true=(L0+C)-ceil (L_save) *360;
else var L_true=(L0+C) -floor (L_save) *360;

if (L_true < 0) L_true+=360;
var f=M rad+C*dr;
var R =1.000001018* (1l-e*e)/ (l+e*cos (£)) ;
// Sidereal time
var Sidereal time=280.46061837+360.98564736629*
(JD-2451545)+0.0003879*T*T-T*T*T/38710000;
S_save=Sidereal time/360;
if (S_save < 0) Sidereal time=Sidereal time-ceil (S_save) *360;
else Sidereal time=Sidereal_ time-floor (S_save) *360;
if (Sidereal_ time < 0) Sidereal_ time+=360;
// Obliquity
var obliquity=23+26/60+21.448/3600-46.8150/3600%*
T-0.00059/3600*T*T +0.001813/3600*T*T*T;
// Ecliptic to equatorial
var right Ascension =
atan2 (sin(L_true*dr) *cos (obliquity*dr),
cos (L_true*dr));
var declination =
asin(sin (obliquity*dr) *sin(L_true*dr)) ;
var Hour Angle = Sidereal_ time + Lon -
right Ascension/dr; // Don't know why!!
var Elev=asin(sin(Lat*dr) *sin(declination) +
cos (Lat*dr) *cos (declination) *cos (Hour_Angle*dr)) ;

8.2 (alculations with PHP 191

/* relative air mass from Andrew T. Young, Air mass and
refraction (Eq. 5), Appl. Opt., 33, 6, 1108-1110 (1994) */
var cosz=cos (PI/2-Elev);

} // End with (Math) &

var airm=(1.002432*cosz*cosz+0.148386*cosz+
0.0096467)/ (cosz*cosz*cosz+0.149864*cosz*cosz+
0.0102963*cosz+0.000303978) ;

return airm;

}

function get_ PW(IR1, IR2,A,B,C,beta, tau,airm,p) {

/* NOTE:

1. Station pressure may be included in these
calculations in the future.

2. No addition operations in these calculations, so
explicit string conversions to numbers are not required.
*/

var x = C*airm*tau - (Math.log(IR2/IR1)-A)/B;
var PW = Math.pow (x,1/beta) /airm;
return Math.round (PW*1000) /1000;

}

</script>

</head>

<body bgcolor="white">

<h2>Calculations for Total Precipitable Water Vapor (PW)</h2>

<p>

<form>

<table border="2">
<tr bgcolor="silver"><td colspan="4">

Location:</td></tr>

<td>longitude (decimal degrees): </td>

<td> <input type="text" name="lon" value="-75.188"
size="8"> </td>

<td>latitude (decimal degrees): </td><td>

<input type="text" name="lat"

value="39.955" size="8"></td>

</tr>
<tr bgcolor="silver"><td colspan="4">

Calibration constants:</td>
</tr>
<tr><td>A (you <u><i>must</i></u> provide a

value), B, and C:</td>
<td><input type="text" name="A" value=""

192 8 Working with PHP

size="8"></td>
<td><input type="text" name="B" value="0.468"
size="8"></td>
<td><input type="text" name="C" value="0.2"
size="8"></td>
<tr><td colspan="2">¢beta, and &tau,:</td>
<td><input type="text" name="beta" value="0.65"
size="4"></td>
<td><input type="text" name="tau" value="0.10"
size="4"></td>
</tr>
<tr bgcolor="silver"><td colspan="4">Date:</td>
</tr>
<tr><td>mm/dd/yyyy</td>
<td><input type="text" name="mon" value="4" size="3"></td>
<td><input type="text" name="day" value="5" size="3"></td>
<td><input type="text" name="yr" value="2007" size="5"></td>
</tr>
<tr bgcolor="silver"><td colspan="4">Time:</td></tr>
<tr><td>hh:mm:ss (<i><u>must</u></i> be Universal Time
)</td>
<td><input type="text" name="hr" value="14" size="3"></td>
<td><input type="text" name="min" value="33" size="3"></td>
<td><input type="text" name="sec" value="15" size="3"></td>
</tr>
<tr><td colspan="2" bgcolor="silver">
Station pressure (mbar, not currently used in
calculation) :</td>
<td colspan="2"><input type="text" name="p"
value="1013"size="7"></td>
</tr>
<tr bgcolor="silver"><td colspan="4">Instrument
voltages:</td></tr>
<tr>
<td>IR1</td>
<td><input type="text" name="IR1" value="0.742"
size="5"> </td>
<td>IR1_{dark}</td>
<td><input type="text" name="IR1l_dark"
value="0.003" size="5"></td>
</tr>

8.2 (alculations with PHP 193

<tr>
<td>IR2</td>
<td><input type="text" name="IR2" value="0.963"
size="5"></td>
<td>IR2_{dark}</td>
<td><input type="text" name="IR2_dark"
value="0.004" size="5"></td>
</tr>
</table>
<input type="button" value="Click here to calculate
relative air mass and PW"
onclick="
// Get relative air mass &
airm.value=getSunpos (this.form.mon.value,
this.form.day.value, this.form.yr.value,
this.form.hr.value, this.form.min.value,
this.form.sec.value,
this.form.lat.value, this.form.lon.value) ;
// then PW &
PW.value=get_ PW(this.form.IRl.value-
this.form.IR1l dark.value,
this.form.IR2.value-this.form.IR2 dark.value,
this.form.A.value, this.form.B.value,
this.form.C.value, this.form.beta.value,
this.form. tau.value,
this.form.airm.value, this.form.p.value) ;
airm.value=Math.round (airm.value*10000)/10000; ">

Relative air mass: <input type="text" name="airm"
value="0" size="7">

Overhead precipitable water vapor (cm H₂O0) :
<input type="text" name="PW" value="0" size="T7">
</form>
</body>
</html>

194 8 Working with PHP

Location:

longitude (decimal degrees): I-?EMEB_ T latitude (decimal degrees): E?TQTEE
Calibration constants:

A (vou must provide a value). B, and C (1123 [E.J_ES [c.
fandt |F |W
Date:

mm dd vy 4 e |2007
Time:

hhvmm:ss (must be Universal Time) (14 [33 |15
Station pressure (mbar, not currently used in calculation): 1013

Instrument voltages:

IR1 0732 Rlg, 0.003
IR2 jpssz R, 0.c04

Click here to calculate relative air mass and PW |

Relative air mass: |1.4352

Overhead precipitable water vapor (cm H,O): [1.767

To start the transition from JavaScript to PHP, Document 8.2a below is an HTML document
that will pass instrument and measurement data to a PHP application. See Appendix 4 for a
“pseudocode” approach to organize an HTML/PHP solution to this problem.

Document 8.2a (PWcalc3.htm)

<html>
<head>
<title>WV calculations for calibrated instrument</title>
<script language="javascript">
document.write ("This document last modified on "
+document. lastModified+".") ;
</script>
</head>
<body bgcolor="white">
<h2>Calculations for Total Precipitable Water Vapor
(PW)</h2>
<p>
<form method="post" action="PWcalc3.php">
<table border="2">
<tr bgcolor="silver"><td
colspan="4">Location:</td></tr>
<td>longitude (decimal degrees): </td>
<td> <input type="text" name="lon" value="-75.188"
size="8"> </td>

8.2 (alculations with PHP

<td>latitude (decimal degrees): </td>
<td><input type="text" name="lat" value="39.955"
size="8"></td></tr>
<tr bgcolor="silver"><td colspan="4">
Instrument Serial Number:</td></tr>
<tr><td colspan="4"><input type="text" name="SN"
value="WV2-117" /></td></tr>
<tr bgcolor="silver">
<td colspan="4">Date:</td></tr>
<tr><td>mm/dd/yyyy</td>
<td><input type="text" name="mon" value="4"
size="3"></td>
<td><input type="text" name="day" value="5"
size="3"></td>
<td><input type="text" name="yr" value="2005"
size="5"></td></tr>
<tr bgcolor="silver"><td
colspan="4">Time:</td>
<tr><td>hh:mm:ss (<i><u>must</u></i> be Universal
Time)</td>
<td><input type="text" name="hr" value="14"
size="3"></td>
<td><input type="text" name="min" value="33"
size="3"></td>
<td><input type="text" name="sec" value="15"
size="3"></td></tr>
<tr><td colspan="2" bgcolor="silver">Station
pressure (mbar, not currently used in
calculation) :</td>
<td colspan="2"><input type="text" name="p"
value="1013" size="7"></td></tr>
<tr bgcolor="silver"><td colspan="4">
Instrument voltages:</td></tr>
<tr>
<td>IR1</td>
<td><input type="text" name="IR1" value="0.742"
size="5"> </td>
<td>IR1_{dark}</td>
<td><input type="text" name="IRl dark" value="0.003"
size="5"></td>
</tr>
<tr>
<td>IR2</td>
<td><input type="text" name="IR2" value="0.963"
size="5"></td>
<td>IR2_{dark}</td>

196 8 Working with PHP

<td><input type="text" name="IR2_dark" value="0.004"
size="5"></td>

</tr>

</table>

<input type="submit"
value="Click here to calculate PW.." />

</form>

</body>

</html>

This document last modified on 01/16/2008 10:39:39.
Calculations for Total Precipitable Water Vapor (PV)
Location:
longitude (decimal degrees): -75.188 latitude (decimal degrees): 39.955
Instrument Serial Number:
Wwve-117
IDate:
mm/ddfyyyy 4 5 2005
|Time:
hhmmss (st be Universal Time) 14 33 15
igt;&n;_p_r;s.-rm'_e (mbar, not currently used in calculation): 1013
Instrument voltages: -
IR1 0742 TR 1 dark 0.003
IR2 0963 IR 2dark 0.004
[Click here to calculate PAW...]

The output looks similar to the output for Document 8.1, except that the PW calculations
are replaced with a “submit” button that will pass values to a PHP document. The compan-
ion Document 8.2b, below, is a PHP application that will accept input values from
Document 8.2, look up calibration constants in a file stored on a server, and then calculate

PW. It incorporates the previous code for these calculations from Document 8.1, translated
into PHP.

Document 8.2b (PWcalc3.php)

<html>

<title>WV calculations for calibrated instrument
</title>

<?php

8.2 (alculations with PHP 197

function getJD ($m, $d4, $y, Shour, $minute, $second) {
// Julian date
Stemp=ceil (($m-14)/12);//This number is always <= 0.
$JD = $d - 32075 + floor (1461* ($y+4800+Stemp) /4)
+floor (367* ($m-2-$temp*12) /12) // m-2-temp*12 is always > 0.
—floor (3* (floor (($y+4900+S$temp) /100)) /4) ;
$JD =$JD-0.5+$hour/24+$minute/1440+$second/86400;
return $JD;
}
function getSunpos ($m, $d, $y, $hour, $Sminute, $second, $Lat, $Lon) {
// Retrieve Julian date
$JD=getJD ($m, $d, Sy, $hour, $Sminute, $second) ;
// Solar position, ecliptic coordinates
$dr=pi () /180;
$T=($JD-2451545) /36525;
$L0=280.46645+36000.76983*$T+0.0003032*$T*S$T;
$M=357.52910+35999.05030*$T-0.0001559*ST*$T-0.00000048*ST*ST*$T;
$M_rad=$M~*$dr;
$e=0.016708617-0.000042037*$T-0.0000001236*S$T*ST;
$C=(1.914600—0.004817*$T—0.0000l4*$T*$T)*sin($M_rad)
+(0.0l9993—0.000101*$T)*sin(2.*$M_rad)+0.000290*sin(3.*
$M rad) ;
// Replacement code for L true=fmod(LO+c,360)
$L_save= (SL0+$C) /360;
if ($L_save < 0) $L_true=($L0+$C)-ceil ($L_save) *360;
else $L_true=($L0O+S$C) -floor ($L_save) *360;
if ($L_true < 0) $L_true+=360;
$£=$M rad+$C*$dr;
SR =1.000001018* (1-$e*Se)/ (1+Se*cos ($£)) ;
// Sidereal time
$Sidereal_time:280.46061837+360.98564736629*($JD—
2451545)4+0.0003879*8T*$T-ST*$T*$T/38710000;
// Replacement code for Sidereal=fmod (Sidereal,360)
$S_save=$Sidereal time/360;
if ($S_save < 0) $Sidereal time=$Sidereal time-
ceil ($S_save) *360;
else $Sidereal time=$Sidereal time-
floor ($S_save) *360;
if ($Sidereal time < 0) $Sidereal time+=360;
// Obliquity
$obliquity=23+26/60+21448/3600-46.8150/3600%*
S$T-0.00059/3600*8$T*ST +0.001813/3600*$T*$T*ST;
// Ecliptic to equatorial

198 8 Working with PHP

$right Ascension = atan2(sin(L_true*dr) *cos ($obliquity*
$dr) , cos ($L_true*$dr)) ;
$declination = asin(sin($obliquity*$dr) *sin ($L_true*$dr));
$Hour Angle = $Sidereal time + $Lon - $right Ascension/$dr;
$elev=asin (sin ($Lat*$dr) *sin ($declination) +cos ($Lat*
$dr) *cos ($declination) *cos ($Hour_Angle*$dr)) ;
/* relative air mass from Andrew T. Young, Air mass and
refraction (Eq. 5),
Appl. Opt., 33, 6, 1108-1110 (1994) */
$Scosz=cos (pi () /2-$elev) ;
// echo Scosz;
$airm=(1.002432*$cosz*$cosz+0.148386*$cosz+0.0096467) /
($cosz*$cosz*$cosz+
0.149864*$cosz*$cosz+0.0102963*$cosz+0.000303978) ;
return $airm;
}
?>
</head>
<body bgcolor="white">
<?php
echo '"<h2>Calculations for Total Precipitable Water
Vapor (PW)</h2>";
$m=getSunpos (§_POST ["mon"],$_POST["day"],$_POST["yr"],
$_POST["hr"],$_POST["min"],$_POST["sec"],
$_POST[”lat"],$_POST["lon"]);
$IR1=$_POST["IRl”]—S_POST["IRl_dark"];
$IR2=$_POST["IR2”]—$_POST["IR27dark"];
$A=$_POST[”A"];
$B=$_POST["B"];
$C=$_POST["C"];
$beta—$_POST["beta"];
S$tau=$_POST["tau"];
$SN=$_POST["SN"];
$len=strlen ($SN) ;
// Open WV instrument calibration constant file &
$inFile = "WVdata.dat";
$in = fopen($inFile, 'r') or die("Can't open file");
// Read one header line &
$line=fgets ($in) ;
// Search rest of file for SN match &
$found=1;
while ((!feof($in)) && ($found == 1)) {

8.2 (alculations with PHP 199

$line=fgets ($in) ;

$values=sscanf ($line, "%s $f %f %f %f %f\n");

list ($SN_dat, $A, $B, $C, $beta, $tau)=$values;

if (strncasecmp ($SN_dat, $SN, $len)==0) {
$found=0;

}
fclose ($in) ;
// Build table of outputs &

echo '"<p><table
border="'2"'><tr><th>Input</th><th>Value</th></tr>";
echo "</td></tr>";
echo "<tr><td>Instrument SN</td><td>$SN</td></tr>";
echo '"<tr bgcolor='silver'><td colspan='2'>Calibration
Constants</td></tr>";
echo "<tr><td>A</td><td>$A</td></tr>";
echo "<tr><td>B</td><td>$B</td></tr>";
echo "<tr><td>C</td><td>$C</td></tr>";
echo '"<tr><td>&tau,</td><td>$tau</td></tr>";
echo '"<tr><td>β</td><td>$beta</td></tr>";
echo '"<tr bgcolor='silver'>
<td colspan='2'>Measurements</td></tr>";
echo "<tr><td>IR1 (sunlight - dark)</td><td>$IR1</td></tr>";
echo "<tr><td>IR2 (sunlight - dark)</td><td>$IR2</td></tr>";
echo "</table></p>";
$x = $C*$m*$tau - (log ($IR2/$IRL)-$A)/S$B;
$SPW = pow ($x,1/$beta) /$m;
echo '"<p><table border='2'><tr><th>Output</th>
<th>Value</th></tr>";
echo '<tr><td>relative air mass</td><td>";
echo round($m, 4);
echo '"</td></tr>";
echo '"<tr><td>PW, cm H₂0</td><td>";
echo round ($PW, 4) ;
echo '"</table></p>";
?>
</body>
</html>

200

8 Working with PHP

Needless to say, Document 8.2 deserves close attention and line-by-line comparison

with Document 8.1, because it contains a great deal of information about using PHP in
your own applications. Here are some general observations about similarities and
differences between JavaScript and PHP.

1.
2.
3.

The syntax of writing expressions and statements is essentially the same.

The syntax for user-defined functions is essentially the same.

In PHP, mathematical calculations are carried out with built-in functions, such as
sin (x), rather than the “methods” such as Math.sin (x) used in JavaScript.
distinctions between a “function” and a “method” at the conceptual and language
design level don’t matter in these applications.

Values passed to a PHP application do not need to be converted explicitly from
strings to numbers. In other words, there is no PHP equivalent to JavaScript’s
parseFloat () method. Recall that, in JavaScript, the result of adding two “num-
bers” passed from a form field would be a string that contained the concatenation of the
two “numbers,” interpreted as though they were strings of characters. In PHP, the con-
catenation operator is a period, not a “+” sign, so there is no chance for confusion. It is
safe to conclude that the operator determines how its operands will be treated; the state-
ment $SC = $A + $B; interprets SA and $B as two numbers because this is the only
interpretation that makes sense for the addition operator.

8.2 (alculations with PHP 201

Considering that PHP and JavaScript are two different languages, the translation from
JavaScript to PHP is remarkably easy. The explicit conversions of form field value from
strings to numbers that are required in JavaScript is replaced by PHP code that assigns
variables based on the values passed to the $ POST [] array in Document 8.3:

$m=getSunpos ($_POST ["mon"], $_POST ["day"], $_POST ["yr"],
$_POST["hr"y,

$ POST["min"],$_POST["sec"],$ POST["lat"],
$_POST["Ilon"]);

//$m=§ POST["airm"];
$IR1=$_POST(["IR1"]-$_POST["IRI dark"];
$IR2=$_POST["IR2"]-$_POST["IR2 dark"];
$A=$_POST["A"];

$B=$_POST["B"];

$C=$_POST["C"];

$beta=$_POST["beta"] ;

$tau=$_POST["tau"];

$SN=$_POST["SN"];

$len=strlen ($SN) ;

$_POST is the PHP-generated array containing all the form field values passed to the
application. For the most part, the new variable names created in Document 8.3 are the
same as the names in the form fields from the calling HTML/JavaScript application.
However, this doesn’t have to be true. The statements

$IR1=$_POST["IR1"]-$_POST["IRI dark"];
$IR2=$_ POST["IR2"]-$_POST["IR2 dark"];

take advantage of the fact that the voltage from each channel required for the precipitable
water vapor calculation

$x = $C*$m*$tau - (log ($IR2/$IR1)-$SA)/$B;
$PW = pow ($x,1./$beta)/$m;

is the voltage reported when the instrument is pointed at the sun, minus the “dark” voltage
produced by the instrument’s electronics. So, $IR1 and $IR2 are defined as the differ-
ence between the sunlight and dark voltages for each channel, as posted from the calling
document.

When converting JavaScript to PHP it is critical to remember to add a $ character to the
beginning of all variable names. If you forget this character, PHP may not produce an error
message, but your program will certainly not work!

The PHP syntax for creating user-defined functions that return a single value is just like
JavaScript:

202 8 Working with PHP

function
getSunpos ($m, $d, $y, $hour, $minute, $second, $Lat, $Lon) {

S$airm=(1.002432*8cosz*$cosz+0.148386*8cosz+0.0096467) /
($cosz*$cosz*Scosz+
0.149864*$cosz*$cosz+0.0102963*$cosz+0.000303978) ;
return $airm;

A PHP function for rounding numbers to a specified number of digits to the right of the
decimal point can be used to limit the number of digits that would otherwise be displayed
in an output string. For calculations based on the physical world, many of the digits
displayed by default are meaningless. This statement rounds off the relative air mass to
four digits:

echo round ($m, 4) ;

The round () function will not retain significant digits when they are 0. In other words,
round (5.444,4) displays 5.444 rather than 5.4440. (You can gain more control over
output using other output functions such as printf ().)

With PHP functions, it is the programmer’s responsibility to ensure that input arguments
are used appropriately because no syntax distinction is made between, for example, argu-
ments intended to be used as character strings and those intended to be used as numbers.
On the other hand, it is not necessary to worry about arguments that “look™ like numbers
being treated as strings, as could be the case in JavaScript.

The statement below from function getSunpos () in Document 8.3 demonstrates
that a user-defined PHP function can be called from inside another PHP function, as
expected:

$JD=getJD ($m, $d, $y, $Shour, $minute, $second) ;

One important topic not addressed by Document 8.3 is how to return multiple values from
a PHP function. As previously noted, PHP functions can also return multiple values. Use the
array () constructor to create an array of the values you wish to return from a function and
then return that array. (PHP arrays will be discussed in detail in Chap. 9.) The 1ist ()
construct can then be used to extract the values from that array. Document 8.3 shows how to
do this. (It might be worthwhile to compare this example with Document 6.5.)

Document 8.3 (circleStuff.php)

<?php

/* function CIRCLESTUFF(Sr) {...}
will also work because PHP function names are case-
insensitive!

*/

8.3 More About PHP File Input/Output 203

function CircleStuff ($r) {
$area=M PI*$r*$r;
$circumference=2.*M PI*$r;
return array ($area, $circumference) ;

list ($area, $Scircumference) = CircleStuff (3.);
echo $area . ", " . $circumference;

?>

The echo statement displays the following:

28.274333882308, 18.849555921539

(This result begs for application of the round () function!)

It is a peculiarity of PHP that function names are case-insensitive. Thus, function
CircleStuff () and function CIRCLESTUFF () will both work in this example.
Because variable names are case-sensitive, and because great care is generally required in
matching cases in all other aspects of programming, it makes little sense to take advantage
of this PHP “feature.”

83
More About PHP File Input/Output

Consider the following problem:

A text file contains wind speed data:

1 1991 31

3.2, 0.4, 3.8, 4.5, 3.3, 1.9, 1.6, 3.7, 0.8, 2.3,
2.8, 2.4, 2.5, 3.2, 4.1, 3.9, 5.0, 4.4, 4.4, 5.5, 3.0,
3.7, 2.2, 2.0

2.6, 2.8, 2.3, 2.3, 1.2, 2.4, 3.1, 4.0, 3.6, 2.9,
6.0, 4.4, 0.8, 3.8, 3.5, 4.5, 2.7, 3.4, 6.6, 5.2, 1.6,

2 1991 28

4.6, 5.9, 3.1, 3.2, 4.5, 4.4, 3.9, 4.4, 7.5,
8.4,10.2, 9.2, 8.1, 6.3, 3.1, 3.5, 2.2, 1.4, 0.4, 4.2,
5.4, 4.0, 2.9, 1.7

2.5, 2.3, 2.1, 1.5, 2.3, 4.1, 5.3, 6.0, 6.0,
9.7,11.3,12.7,13.0,13.0,11.6, 9.9, 9.6, 8.7, 5.4, 5.1,
5.3, 5.6, 4.4, 4.2

(continued)

204 8 Working with PHP

(continued)

The three numbers in the first line of the file are the month, year, and number of days
in the month. Then, for each day in the month, 24 hourly wind speeds are given (in units
of miles per hour), separated by commas. Each set of 24 hourly values is on the same line
of text in the file, even though each of those lines occupies three lines as displayed here.
This pattern is repeated for all 12 months. Missing data are represented by a value of —1.

Write a PHP script that will read this file and count the number of missing values for
each month. The script should display as output the number of each month (1-12) of the
year, and the number of missing values for that month. Write the results into a file and
save it.

The calculations required for this problem are simple, but reading the data file correctly
is more complicated and requires some care. Document 8.4 shows the code for solving this
problem.

Document 8.4 (windspd.php)

<?php
$inFile="windspd.dat";
$outFile="windspd.out";
$in = fopen ($inFile, "r") or die("Can't open file.");
$out=fopen ($outFile, "w") ;
while (!feof ($in)) {
// Read one month, year, # of days.
fscanf ($in, "%u %u $%u”, $m, $y, $nDays) ;
if (feof ($in)) exit;
echo $m . ', ' . $§y . ', ' . $nDays . '
';
$nMissing=0;
for ($i=1; $i<=$nDays; $i++) {
$hrly = fscanf ($in, "8f,%f,8%f,%f,%f,%f,%f,%f,8f, $%f,%f,
%f,%f,%f,%fr,%f,%f,%f,%f,%f,%f,%f, %1, 3f");
for ($hr=0; $hr<24; S$hr++) ({
// echo $hrly([$hr] . ', ';
if ($hrly[$hr] == -1) $nMissing++;
}
// echo $hrly([23] . '
';
}
echo 'Number of missing hours this month is ' . $nMissing
.'.
';
fprintf ($out, "%u, %u, Sul\r\n",$m,S$y, $nMissing) ;
}
echo "All done.
"
// fclose(Sin);
// fclose (Sout) ;
?>

8.3 More About PHP File Input/Output 205

1, 1991, 31

Number of missing hours this month is 22.
2,1991, 28

Number of missing hours this month is 0.
All done.

The input file required by Document 8.4, windspd.dat, is stored in the PHP docu-
ment folder, and the output file is written to the same directory. (You might want to create
a separate directory just for output files created by PHP scripts, or for a particular project.)
The output shown here is for a short version of this file, with data for only 2 months.

It is often the case that the code to read data from a data file should not assume ahead of
time how many values are in the file. Thus, a conditional loop is most often the appropriate
approach. The feof () function is used to test for an end-of-file mark that, when found, uses
exit to close all the open files and terminate the program. If additional processing is
required after reaching the end of the file, the alternative is to use break rather than exit:

while (!feof($in)) {

// Read one month, year, # of days.
fscanf ($in, "%u %u %u", $m, $y, $SnDays) ;
if (feof ($in)) break;

}

echo "All done.
";

fclose ($in) ;

fclose ($out) ;
// possibly more code here..

Executing a break exits the loop and code execution continues starting with the first
statement after the loop.

The hourly data are read with £scanf (). You might be tempted to try reading the 24
hourly wind speed values like this':

// PHP code that won't work!
for (Shr = 0; $hr<23; S$hr++)

fscanf ($in, "%f,", Shrlyl[i]):;
fscanf ($in, "%f", Shrly[23]);

This code assumes that fscanf () can be used to read values from the file one at a time.
However, this won’t work in PHP. The fscanf () function reads an entire line of text,
just as fgets () does, regardless of what appears in the format string. The difference is
that, without providing specific variable names to be read from the file, fscanf () puts
values in an array, whereas fgets () puts everything in a string that must then be parsed

'Actually, you might be tempted only if you have programmed in C/C++.

206 8 Working with PHP

with sscanf (). So, you can read the entire 24 h worth of wind speeds with a single call
to £scanf (), but you need to write out 24 format specifiers, as shown.
Note these two echo statements inside the while... loop in Document 8.4:

// echo $hrly([$hr] . ', ';

// echo $hrly[23] . '
';

If the //’s are removed, all the wind speed values will be displayed. Whenever you are
reading a file, it is important to ensure that you are reading the file correctly. The best way
to do this is to echo back values from the file. If they all have the expected values, by
comparison with the original data file, then you can proceed.

Part of the output for this problem is an output file that summarizes the missing data:

(windspd.out)

1,1991, 22
2,1991,0

The file is opened in write-only mode and the data are written with fprintf () in the
shaded line in Document 8.4. fprintf () isthe basic function for creating formatted text
files as output. In this case, the format specifier string "$u, %u, %u\r\n" writes three
comma-separated integer values for the output file.

Because this code was written on a Windows computer and the output file will be used
on a Windows computer, each line is terminated not just with \n, but with \ r\n. This is
because Windows text files have both a “linefeed” and a “return” character at the end of
each line. Recall Document 7.5, in which only the \ n character was used as a line termina-
tion. Although it is not obvious, the fact that this file was created as a . csv file and opened
directly into Excel means that only the line feed \n character was needed. If you open the
same file in Windows’ Notepad, for example, there will be no line breaks.

8.4
More Examples

8.4.1
Calculating Volumes of Solid Objects

Write an HTML document that allows a user to select a solid object shape and enter its
dimensions and the material from which it is made. The choices could be a cube, a
rectangular block, a cylinder, or a sphere. You could choose a number of possible mate-
rials—air, gold, water, etc. Then call a PHP application that will find the mass of the
object by calculating its volume based on the specified shape and the density of the
material as retrieved from a data file.

208 8 Working with PHP

<input type="submit" value="Click to get volume."

was replaced with the shaded lines that are now commented out of the <input> tag near the
end of Document 8.5a. This code will show which item has been chosen for each <select>
list. It remains to be seen how this information will be handled by the PHP application.

It is almost never a good idea to try to write an entire JavaScript or PHP application all
at once. A much better approach is to proceed step by step, testing your results one step at
a time. Once you understand Document 8.5a, it is then worth writing a single-line PHP
application that will simply look at what is posted to the application using the print r ()
function to display the contents of the $ POST array:

<?php
print_r ($_POST) ;

?>

This code will display something like this:

Array ([L]=>1[W]=>1[H]=>1[R]=> 3 [shapes] => cube [material] => oxygen)

Although it may not be obvious at first glance, this is an amazingly helpful result! In
JavaScript, it is necessary to invoke the selectedIndex properties of the two select
objects, shapes andmaterial, in order to determine which opt i on has been selected.
But, the output shown here demonstrates that this is not necessary in the PHP application.
PHP already “knows” which option has been selected without any effort on your part.
These values have been stored in the system-generated PHP array $ POST, whose ele-
ments are identified by name rather than with an integer index starting at 0. The details of
this output will make more sense when PHP arrays are discussed in Chap. 9.

Once you are convinced that the inputs are successfully passed to PHP, the calculations
can be done. The first step is to create a data file containing materials and their densities:

(density.dat)

material density (kg/m”"3)
water 1000

aluminum 2700

gold 19300

silver 10500

oxygen 1.429

air 1.2

The header line is optional, but it is always a good idea to describe the contents of a data
file, including, in this case, the physical units in which the densities should be supplied.

The next step is less obvious. Although it is certainly possible to “hard code” volume
calculations for each allowed shape, a more interesting solution is to create a second data
file that contains PHP code for calculating the volume of each shape:

8.4 More Examples 209

(volume.dat)

shape volume

cube SL*S$L*SL

sphere 4./3.*M PI*S$R*$SR*$SR
cylinder M PI*S$SR*$SR*SL
block SL*SW*SH

The code string for each allowed shape assumes specific variable names for the
dimensions—S$1L, $W, $H, and $R—as already defined in Document 8.5a.
Start building the PHP application like this:

<?php

print_r ($_POST) ;
$material=$ POST [material];
$shape=$_POST [shapes];

$L=$ POST[L];

$W=$ POST[W];

$H=$ POST[H];

$R=$ POST[R];

echo "
" . $material . ", " . $shape . "
";
?>
This code will display:

Array ([L]=>1[W]=>1[H]=> 1 [R] => 3 [shapes] => cube [material] => oxygen)
oxygen, cube

Now it is clear that the PHP application is properly receiving the inputs passed from
Document 8.5a and has stored them in local variables. (You could also echo the values of
$1, $W, $H, and $R if you like.) In Document 8.5a, the fields were given the names L, W,
H, and R, but this would not need to be the case. All that is important for the PHP application
is to give the variables the same names used in the volume . dat file.

Document 8.5b gives the entire solution to this problem. This code should be written in
three sections: first, the definition of the variables as shown above, then the code to search
for the material in its data file, and finally the code to do the mass calculation.

Document 8.5b (getMass.php)

<?php

print_r ($_POST) ;
$material=$_ POST [material];
$shape=$_POST [shapes];
$L=$_POST [L];

$W=$_POST [W];

8.4 More Examples 21

The first of these lines appends "*$d " to the volume calculation string—mass equals
volume times density. This string now looks like “legal” PHP code, for example:

M PI*$R*$R*$L*$d

(You could echo the value of $vv if you want to see what it contains.) The next line of
the code “executes” this statement, using the eval () construct (it looks like a function,
but is not), which is similar to the JavaScript eval () global method. The return key-
word is required to get back the numerical result, and the round () function is applied to
the calculation to remove extraneous digits from the output.

The obvious advantage of this approach is that you can add new materials and shapes
without altering the PHP code, assuming that, at most, four variables—Ilength, width,
height, and radius—will be sufficient to describe all dimensions needed for the volume
calculations. For more complicated shapes, it might be necessary to add new variables or
apply different interpretations to existing variables.

8.4.2
Processing . bmp Image Files

Image files come in a variety of formats—jpg, gif, bmp, etc. Of these, bitmapped files are
conceptually the simplest. A bitmap file (indicated with a . bmp extension) consists of two
sections—an information section that contains information about the structure of the file
and the image section itself. For 24-bit color images, the image is represented as a series
of three bytes per pixel, with each byte containing values for the blue, green, and red color
“guns” (in that order) that are used to produce that pixel. This arrangement allows for
256 x256x256=16,777,216 possible colors. There are other kinds of . bmp files that have
fewer colors, but these will not be considered here—they actually require more code to
process.

Because each pixel in a 24-bit color image requires three color bytes to define, bitmap
images can be very large. In principle, . bmp files can be compressed, but this is gener-
ally not done. It is possible to apply “lossless compression” algorithms, such as the
widely used ZIP compression algorithm, to . bmp files. The results depend greatly on the
nature of the image itself. For example, an image with large blocks of single colors could
be compressed significantly. However, this process has nothing to do with the image
format itself because a compressed file needs to be uncompressed back to its original
state before it can be used as an image file. Consequently, bitmap file compression is
irrelevant to this discussion.

The simple structure of . bmp files makes them very easy to analyze with PHP (and
other programming languages that can access external files). Although an image file is
obviously not a “text” file, . bmp files can nonetheless be treated as text files that can be
read and written one byte at a time, interpreting each byte as a “character.” Here are the
necessary details about the contents of each section in a . bmp file:

212 8 Working with PHP

Header record

The header consists of 14 8-bit bytes.

Image information record
The image information record consists of 40 bytes.

Image data

The image pixels are stored “upside down.” In other words, the first pixel in the image
section represents the lower left-hand corner of the image as it is viewed. The pixels proceed
from left to right, and row-by-row to the top of the image. If required, each row in the image
is padded on the right end with extra bytes so that each row contains a multiple of 4 bytes.
The value of these bytes is not specified, but they are not necessarily filled with zeros.

As an example of extracting from these
records the values needed to work with a
.bmp image, consider this image of a
male wild turkey. This image, printed
here in grayscale, is a 24-bit color .bmp
file. Document 8.6 reads the header and
image information records and interprets
the values according to Tables 8.1 and
8.2. If you want to try this code, you will
of course need to find your own .bmp
image. Any photo processing utility
should let you save an image in . bmp format, or you can create your own bitmap image
with a drawing utility such as Windows’ Paint program.

Document 8.6 (bmp_info.php)

<?php

$inFile="turkey.bmp";

// Get the size of this file,

echo "File size: " . filesize($inFile)."
";
$in=fopen ($inFile, 'r’);

// Read header.

Table8.1 Contents of header record

‘Byte Position (offset index + 1)

-2 Image type field (BM)
36 File size, bytes

-8 Not needed

9-10 Not needed

11-14 Offset to image data, bytes

214 8 Working with PHP

echo "Compression type = ".$compressionType. '
";
$imageSize=$c[23]*16777216+8$c[22]*65536+8c[21]*256+8c[20];
echo "Image size = ".$imageSize.'"
";
$Xresolution=$c[27]*16777216+$c[26]*65536+8c[25]*256+$c[24];
echo "X-resolution = ".$Xresolution. "
";
$Yresolution=$c[31]*16777216+$c[30]*65536+8c[29]*256+$c[28];
echo "Y-resolution = ".$Yresolution. "
";
$nColors=$c[35]1*16777216+8c[34]*65536+8c[33]*256+$c[32];
echo "number of colors = ".$nColors. "
";
$importantColors=5$c[39]*16777216+$c[38]*65536+$c[37]*256+$c[36];
echo "important colors = ".$importantColors. "
";

// Close the file.

fclose ($in) ;

?>

The shaded line of code in Document 8.6 shows how to use fgetc () toread a single
character and then to use ord () to convert that character into its base-10 integer
value.

As indicated in Table 8.1, the first two | Fjje sze 36882
bytes , $c[0] and $c[1], contain ASCIl | 66771814400000054000
values 66 and 77, corresponding to the upper- File size = 36882 bytes.
case letters B and M, which identify this as a | Offset to start of image = 54
bitmap file. Bytes $c[2] through $c[5] 400001310009300010240
contain the file size, represented as a 32-bit | 000022014300191100191100
integer. This integer is stored in four bytes,in | 00000000
low-to-high (reversed) order, and the base-10 | Thisimage has 93 rows and 131

integer is extracted like this: columns.
of color planes= 1
file size = Bits per pixel = 24
$c[2]+256*5c[3]+65536*Sc Compression type = 0
[4]1+16777216*Sc[5] Image size = 36828
= 18 + 144256 = 36882 X-resolution = 2835

Y -resolution = 2835
number of colors= 0
important colors = 0

This value is the same as the value obtained

fromfilesize ($inFile).

The next four bytes can be ignored. The last four bytes give the offset to the start of the
image data, also stored in four reverse-order bytes even though for 24-bit images only the
first (lowest order) byte will have a value other than 0:

Offset to image =
$c[10]1+256*$c[11]1+65536*$c[12]+16777216*$c[13] =54

This value is as expected because 14+40, the number of bytes in the header and image
information records, equals 54.

8.4 More Examples 215

The image information record shows that this image is 91 pixels high and 131 pixels
wide. There are 24 bits per color. The only compression type of interest in this discussion
is 0, for an uncompressed image. The image size is 32,828 bytes, equal to the file size
minus 54 bytes for the header and image information records. The X- and Y-resolution are
given in the somewhat puzzling units of pixels per meter, which might be useful for decid-
ing how to display this image on a computer monitor. For 24-bit color images, the number
of colors is not specified here, and all colors are “important,” so the number of important
colors can be ignored.

With this information, it is now possible to read and interpret the image section of a
.bmp file. As a test of whether images are being interpreted properly, a reasonable goal is
to read the image, convert the pixels to their grayscale equivalent, and create a new . bmp
file containing this grayscale image. An easy way to convert a color image to grayscale is
to average the blue, green, and red values for each pixel and replace each of those values
with that average value. With this approach, the format of the grayscale image file will be
exactly the same as the 24-bit color image.

Document 8.7 shows how to read a . bmp file.

Document 8.7 (omp_read.php)

<?php
$inFile="turkey.bmp";
echo filesize ($inFile) . "
";
$in=fopen ($inFile, 'r');
// Read header.
$ch=array () ;
for ($i=0; $i<14; $i++) {
$ch[$i]=ord (fgetc ($in)) ;
echo $ch($i]." ";

}
echo "
";
//Soffset=5ch[10];
for ($i=0; $i<40; $i++) {

$ch[$i]=ord (fgetc ($in)) ;

echo $chi($i]."” ";
}
echo '"
";
$cols=$ch[5]*256+$ch[4];
$bytes=3*$cols;
// Each row 1is padded to contain a multiple of 4 bytes.
$nPad=4-$bytes%4;
echo "# of pad bytes = ".$nPad.'"
'";
Srows=$ch[9]*256+$ch[8];
echo "rows and columns: ".$rows." ".$cols."
";

216 8 Working with PHP

// Read image.
for ($r=1; $r<=$rows; Sr++) {
for ($c=1; $c<=$cols; S$c++) {
for ($i=0; $i<=2; $i++) {
$ch[$i]=fgetc ($in) ;
echo ord($ch[$i]);
}
echo " ";
}
// Read pad bytes at end of line.
for ($p=1; $p<=$nPad; $p++) {
$pad=fgetc ($in) ;
echo "pad";
}
echo "
";
}
fclose ($in) ;
?>

36882667718 14400000054000
400001310009300010240000022014300191100191100000000
00

of pad bytes = 3

rows and columns: 93 131

488478 488478 488478 659993 75109103 639791 85119113 599387 609488 78110105
92124119 80112107 83113108 649489 88118113 83113108 86116111 97129124
669893 75103103 679393 729597 668789 8199106 607885 8096103 95111117 769298
99118121 80100101 82104102 749896 436864 729793 729793 729995 709591
98125121 92117113 618884 739894 649187 85110106 77104100 689389 588680
659086 7510397 84109105 81109103 508172 599382 6710190 7611099 77111100
629685 619584 80116104 6810492 478573 569482 84122110 81119107 6610694
61101896710593 6710593 6710593 6610191 85119109 77108101 7610399 114138138
138159161 126145150 115133140 110125134 146161170 124139148 137154163
101120128 112134140 130152158 80108109 92128122 73113102 115155144
74114103 79119108 76116105 6010089 101141130 78118107 122162151 121160152
90130119 8812711997137126 101140132 101140132 80122111 74118105 107152136
122167151 88131116 100141126 115156141 86124112 101139127 106143133
111148138 81121110 539584 82123115 84127118 84129120 106146141 142171176
126149157 92118124 87116120 104135136 87122118 6710397 74114103 569684
87127115 7011196 347560 529176 79118103 padpadpad

(continued)

8.4 More Examples 219

This simple example of how to manipulate the contents of a . bmp file opens the door
to many possibilities for processing images. The contrast in images can be stretched or
compressed, linearly or nonlinearly. Starting with a grayscale image, it is easy to generate
false-color images based on the grayscale values. All these possibilities are applicable to
medical and other kinds of X-ray imaging, for example.

A less obvious application is to use .bmp files to transmit text messages. In fact,
although it seems like a silly use of the . bmp file format, there is no reason why a . bmp
file can’t contain just text in the bytes that assign RGB color settings, rather than “real”
color values. “Image processing” then becomes simply a matter of appropriately interpret-
ing the file contents as text.

Because of the structure of .bmp files, it is easy to embed “hidden” text within an
image. Even in a relatively small bitmap image, there are places to hide text where it will
be virtually undetectable in the image itself. Individual color values can be replaced with
ASCII character codes that still look like legitimate color settings. Even better, the padding
bytes that may be added to the end of each row of an image (depending on its width, to
make each row a multiple of four bytes) are completely invisible within the image. They
are not needed for anything and they can be used to store text.

Within the 14-byte image header record, there are four unused bytes that can be used to
hold the location—perhaps the row and column—of the start of the text message. This
information could also be included in the padding bytes for the first (bottom) row of the
image, for example. While not actually encrypted, a small text message embedded within
a large . bmp file will be very hard to find unless you know what you are looking for and
where to look for it.

Document 8.9 writes the message “Please don’t eat me!” into the padding bytes, start-
ing at row 9—this value is written into the unused seventh byte of the header record.

Document 8.9 (omp hidetext.php)

<?php

$inFile="turkey.bmp";

SoutFile="turkey text.bmp";

echo filesize ($inFile) . "
";

$in=fopen ($inFile, 'r');

$out=fopen ($outFile, 'w');

ShiddenText="Please don't eat me!";

$startRow=9;

// Read header.

$ch=array () ;

for ($i=0; $i<14; $i++) {
$ch[$i]=ord (fgetc ($in)) ;

echo $ch[$i]."” ";
// Write starting row for text here, in unused byte.
if ($i==6) fwrite ($out,chr ($startRow),1);

else fwrite ($out,chr($ch($i]l),1);

220 8 Working with PHP

echo "
";
//Soffset=Sch[10];
for ($i=0; $i<40; $i++) {
$ch($i]=ord (fgetc ($in)) ;
echo $chi($i]."” ";
fwrite ($Sout,chr ($ch($i]),1);
}
echo "
";
$Scols=$ch[7]*16777216+$ch[6]*65536+$ch[5]*256+$ch[4];
$bytes=3*$cols;
$nPad=4-$bytes%4; // Each row padded to contain a multiple

of 4 bytes.

echo "# of pad bytes = ".$nPad.'
";
Srows=$ch[11]*16777216+$ch[10]*65536+$ch[9]*256+$ch[8];
echo "rows and columns: ".$rows." ".$cols.'"
";

// Read image.
$K=strlen ($hiddenText) ;
$knt=0;
for ($r=1; $r<=S$rows; Sr++) {
for ($c=1; $c<=$cols; S$c++) {
for ($i=0; $i<=2; $i++) {
$ch($i]=£fgetc($in);
}
$avg=(ord ($ch[0]) +ord($ch[1])+ord($ch[2]))/3;
fwrite ($out, chr ($avg),1);
fwrite ($out, chr ($avg),1);
fwrite ($out, chr ($avg),1);
}
// Read pad bytes at end of line.
for ($p=1; $p<=$nPad; S$p++) {
$pad=fgetc ($in) ;
if (($r>=$startRow) && ($knt<$K)) {
// Write text into pad bytes.
fwrite ($out, substr ($hiddenText, $knt,1),1);
Sknt++;
}
else fwrite ($out, $pad, 1) ;

}

fclose ($in) ;

fclose ($out) ;

echo "A grayscale file has been created.
";
?>

8.4 More Examples 221

Using turkey text.bmp as the input file, the output from Document 8.9, for row
9, looks like this:

949494 949494 949494 939393 808080 757575 898989 787878 848484 929292
939393 108108108 929292 104104104 898989 999999 949494 939393 939393
898989 868686 100100100 777777 686868 797979 848484 616161 797979 828282
636363 606060 515151 737373 666666 666666 505050 707070 555555 383838
585858 575757 505050 303030 353535 292929 111111 222 222 444 111 666 222222
232323 161616 161616 141414 888 111111 777 777 555 181818 111 111 111 111 111
111222 666 151515 161616 343434 828282 100100100 696969 333 444 666 000
171717 343434 838383 133133133 102102102 105105105 145145145 102102102
123123123 110110110 117117117 132132132 120120120 153153153 115115115
137137137 120120120 138138138 129129129 129129129 122122122 878787
969696 989898 989898 115115115 112112112 929292 989898 979797 979797
123123123 114114114 120120120 106106106 124124124 120120120 909090 808080
959595 109109109 979797 888888 888888 797979 858585 979797 747474
119119119 939393 113113113 Ple

The first three characters in the text message (‘“Ple”) are found in the three padding bytes
at the end of row 9—remember that this text doesn’t affect the image in any way. This code
doesn’t retrieve the location of the first row containing the text message from the header
record, to tell you where to start looking for the text message, but it could easily do that.

843
Transforming and Displaying Images

The GD graphics library for PHP will be discussed in Chap. 12. It includes functions for
transforming and displaying existing JPEG, GIF, or PNG images. There is no similar func-
tion for BMP images because those images are just “text” files that can be used to create
images as discussed in the previous section. Document 8.10 shows how to create and dis-
play a PNG image starting with an existing GIF image, using ImageCreateFromGIF ()

and ImagePNG (). Similar functions exist for JPEG images. The Header specifies the
output content type.

Document 8.10 (TransformImage.php)

<?php

$imagePath="turkey.gif"; // existing image
$im=ImageCreateFromGIF ($imagePath) ;
Header ('Content-type: image/png');

ImagePNG ($im); // ImagePNG ($im, {filename}) saves to file.
ImageDestroy ($im) ;

?>

222 8 Working with PHP

8.4.4
Self-Contained HTML/JavaScript/PHP Documents

Given an amount of money A4, an annual interest rate » percent, and a number of years, y,
calculate the future value of that amount, F, assuming interest compounded annually:

F=A.(+r/100)

Previously, HTML/JavaScript documents have been kept separate from their related
PHP documents, with the understanding that an HTML/JavaScript document will provide
an input interface for a PHP document. The PHP document can be stored on a local
server—often, in the same directory—or on some remote server. For working locally with
documents, it may be convenient to combine an HTML/JavaScript document and its
associated PHP code into a single PHP document. Document 8.11 shows how to do this.

Document 8.11 (CompoundInterest.php)

<html>
<head>
<title>Calculate Compound Interest</title>
</head>
<body>
<h3>Calculate Compound Interest</h3>
<form action="<?php $ SERVER['PHP SELF']?>" method="post">
Initial amount (no commas), $: <input type="text"
name="initial" wvalue="10000" />

Annual interest rate, %: <input type="text" name="rate"
value="4" />

How many years?: <input type="text" name="years"
value="20" />

<input type="submit"
value="Generate compound interest table." />
</form>
<?php
$initia1:$_POST["initial"};
$rate=$_POST|["rate"];
$years=$_POST|["years"];
echo $initial."” ".$rate." ".$years."
";
for ($i=1; $i<=$years; S$i++) {
$amount=$initial*pow (1+$rate/100,$1i);
echo $i."” $".number format ($amount,?2)."
";

8.4 More Examples

?>
</body>
</html>

The “action” specified in the <form> tag,

$_SERVER['PHP SELF']

Calculate Compound Interest
is a call to the PHP section of

the same document. This |Tnitial amount (no commas), $: 10000

case was run for 10 years, but i) dterest rate, %:|4

after the PHP code is com-
pleted, the HTML document
reverts to the default value of
20 years.

How many years?: 20

| Generate compound interesttable. |

10000 4 10

1 $10,400.00
2 $10,816.00
3811,248.64
4 $11,698.59
5$12,166.53
6 $12,653.19
7$13,159.32
8 $13,685.69
9§14,233.12
10 $14,802.44

PHP Arrays

Abstract Chapter 9 provides an introduction to PHP arrays. The PHP array model pro-
vides several new ways of accessing and manipulating data, beyond those available in
JavaScript.

9.1
Array Definition

The ability to organize related information in arrays is as important for PHP as it is for JavaScript
and other languages. PHP supports dozens of functions and constructs for manipulating arrays,
corresponding to an array implementation model that is much more complicated than available
in JavaScript. Hence, it is often not sufficient simply to translate JavaScript array syntax into
PHP. This chapter will present just the basics of working with PHP arrays.

In JavaScript’s conceptual model for arrays, array elements can contain a mixture of
data types. Each element is accessed with an integer index. The index of the first element
is always 0.

PHP arrays include, but are not limited to, this model. In PHP, arrays are created with
the array () constructor:

SArrayName = array ([(mixed data types)..]l)

where SArrayName is a generic representation of a user-supplied array name. The
elements, which are optional for creating the array, can contain a mixture of data types, just
like JavaScript arrays. However, in PHP, each element of an array can have its own
user-defined index (key) value:

Sa = array(Skeyl => Svaluel, Skey2 => SvalueZ2,
skey3=> $value3,..);

The => operator associates a key with its value. The keys can be numbers, characters, or
strings. Numerical keys can start with any value, not just 0 (which would correspond to the
simpler JavaScript array model), and they don’t even have to be sequential (although they
usually are). Document 9.1 shows an example of an array with named keys.

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, 225
DOI 10.1007/978-0-85729-449-4 9, © Springer-Verlag London Limited 2011

226 9 PHP Arrays

Document 9.1 (keyedArray.php)

<?php

// Create an array with user-specified keys..

echo '
A keyed array:
';

$stuff = array('mine' => 'BMW', 'yours' => 'Lexus',
'ours' => 'house');

foreach ($stuff as $key => $val) {

echo 'Sstuff[' . $key . '] = '. $val . '
';
}
?>
A keyedarray:$stuff[mine] = BMW
Sstuff[yours] = Lexus
Sstuffl[ours] = house

The names associated with the keys and array elements can be anything you like—they
don’t have to be $key and $val, as they are in Document 9.1. A for... loop will not work
for an array with string names or non-sequential numerical keys. Instead, a foreach...
loop is used, with syntax as shown in the shaded statement. It is the syntax following the
as keyword that makes the association between a key name and its array element.

The number of elements in an array is given by the sizeof () or count ()) function.
Note that a foreach... loop does not require or even allow that you specify the length of
the array. The syntax that should be familiar to JavaScript programmers, using sizeof ()
and an integer index inside a for... loop, won’t work with this array because the indices
have arbitrary names rather than sequential values:

/* This won't work!

for ($i=0; $i<sizeof ($stuff); S$i++)
echo $stuff($i] . '
';

*/

This for.. loop code won’t generate an error message—it just won’t generate any
output.

If the keys specified are the default integer keys starting at 0, then it is straightforward
to use a JavaScript-like for... loop, as shown in Document 9.2, below. It is also possible
to use a for.. loop if the array is created with a starting index other than 0, or if it has
consecutive character keys; these possibilities are also illustrated in Document 9.2.

Document 9.2 (ConsecutiveKeyArray.php)

<?php

$a = array('david', 'apple', 'Xena', 'Sue');
echo "Using for.. loop
";

for ($i=0; $i<sizeof ($a); $i++)

9.1 Array Definition 227

echo $a[$i] . '
';
echo "Using implied keys with foreach.. loop
";
foreach ($a as $i => $x)

echo 'ajf’' . $i . '] =" . $x . '
';
echo "An array with keys starting at an integer other than
O
";
$negKey = array (-1 => 'BMW', 'Lexus', 'house');
for ($i=-1; $i<2; $i++)

echo $negKey[$i] . '
';
echo 'A keyed array with consecutive character keys..

$stuff = array('a' => 'BMW', 'b' => 'Lexus', 'c' =>
"house') ;
for ($i="'a'; $i<='c'; $i++)
echo $stuff($i] . '
';
?>

Using for... loop

david

apple

Xena

Sue

Using implied keys with foreach... loop

a[0] = david

a[1] = apple

a[2] = Xena

a[3] = Sue

An array with keys starting at an integer other than 0
[-1]=BMW

[0] = Lexus

[1]=house

A keyed array with consecutive character keys...
[a] = BMW

[b] = Lexus

[c] =house

Document 9.2 demonstrates that even if specific key definitions are omitted, they still
exist and are given default integer values starting at 0. It also shows that it is possible to
define just the first key, and the other keys will be assigned consecutively.

The ability to specify just the starting key provides an easy way to start array indices at
1 rather than 0, as might be convenient for labeling columns and rows in a table or the
12 months in a year:

228

9 PHP Arrays

Sa

array(l => 63.7,

77.5,

17, -3);

Sm = array(l => January, February,March,April,May, June,
July, August, September, October, November, December) ;

The first index has a value of 1 and the remaining unspecified indices are incremented
by 1. Either a foreach.. ora for... loop can be used to access the values, as shown in
Document 9.3.

Document 9.3 (base 1Array.php)

<?php

echo

';
$a = array(l => 63.7, 77.5,
foreach ($a as S$key => $val)

echo 'a['
}
for ($i=1;
echo $a[$i]
?>

$key . '] =

$i<=sizeof ($a);

'
';

17, =-3);
{
Sval

Si++)

"
';

'
A keyed array with indices starting at 1.

alll
al2]
al3]
ald]
63.7
77.5
17

-3

63.7
77.5
17
-3

A keyed array with indices starting at 1...

Two-dimensional arrays—think of them as row-and-column tables—can be formed
from an array of arrays, as shown in Document 9.4.

Document 9.4 (two-D.php)

array(l,2,3,4),

array(5,6,7,8),

9

,10,11,12),

array(13,14,15,16),

<?php

echo

$a = array (
0 =>
1 =>
2 => array
3 =>
4 =>

(
(
(
(
(

array(17,18,19,20)

'
A 2-D array
';

9.2 Array Sorting 229

$n_r=count($a); echo '# rows = ' . $n r . '
';
$n_c=count ($a[0]); echo '# columns = ' . $n_c . '
';
for ($r=0; $r<$n_r; Sr++) ({

for ($c=0; $c<$n_c; $c++)

echo $a([$r][$c] . ' ';

echo '
';
}
?>

2-D array
rows = 5
columns = 4
2 3 4

6 7 8

9 10 11 12

13 14 15 16
17 18 19 20

G

Document 9.4 uses the count () function to determine the number of rows and
columns in the array; this function is completely equivalent to and interchangeable with
sizeof (). The number of elements in $a, the “rows,” is returned by count ($a) . Each
element in $a is another array containing the “columns,” and count ($a[0]) (or any
other index) returns the number of elements in this array. The count () function counts
only defined array elements, so in order for it to work as expected, every element in an
array must be given a value. In Document 9.4, defining the first row as

0 => array(1,2,3)
will result in the number of columns being identified as 3 rather than 4 if you use

count ($af07]).
Higher-dimension arrays can be defined by extending the above procedure.

9.2
Array Sorting

PHP supports several functions for sorting arrays, including a sort () function similar to
JavaScript’s sort () method. Consider Document 9.5.

Document 9.5 (sortl.php)

<?php

// Create and sort an array..

$a = array('david', 'apple', 'sue', 'xena') ;
echo 'Original array:
';

for ($i=0; $i<sizeof ($a); $i++)

230 9 PHP Arrays

echo $a[$i] . '
';
sort ($a);
echo 'Sorted array:
';
for ($i=0; $i<sizeof($a); $i++)
echo $a[$i] . '
';
?>

This code produces the expected results with the array as defined:

Original array:
david

apple

sue

xena

Sorted array:
apple

david

sue

xXena

But it won’t do what you probably want for this change to the array, in which two names
are capitalized:

$a = array('david', 'apple', 'Xena', 'Sue');

Recall that JavaScript’s sort () method also produced unexpected results because of
its default actions in deciding which values were “less than” others. For example, “Sue”
is considered to be less than “sue” because the uppercase alphabet comes earlier in the
ASCII character sequence than the lowercase alphabet. The same problems exist with
PHP’s basic sort () function:

Original array:
david

apple

Xena

Sue

Sorted array:
Sue

Xena

apple

david

JavaScript programmers will also be concerned about potential problems with arrays
of numbers because of how JavaScript treats values passed from form fields. For exam-
ple, because “1” comes before “3” in the ASCII character sequence, JavaScript’s sort ()
will consider “13” to be less than “3” unless the parseFloat () or parseInt ()

9.2 Array Sorting 231

methods are first applied to the values to convert them explicitly to numbers. Document
9.6 demonstrates that PHPs sort () function does not have this problem with numbers.

Document 9.6 (sort2.php)

<?php
$a=array(3.3,-13,-0.7,14.4);
sort ($a) ;
for ($i=0; $i<sizeof ($a); $i++)
echo $a[$i] . '
';
?>

-13
-0.7
3.3
14.4

PHP offers several ways to sort arrays of strings and other combinations of elements,
but a simple and reliable approach is to use the usort () function and provide a user-
defined function that compares one array element against another using user-supplied cri-
teria. This is comparable to using the JavaScript sort () function with its optional
argument giving the name of a user-defined function to compare array elements. The
user-supplied comparison function must return an integer value less than 0 if the first argu-
ment is to be considered as less than the second, 0 if they are equal, and greater than 0 if
the first argument is greater than the second. For an array with strings containing upper-
and lowercase letters, the very simple function shown in Document 9.7 makes use of
strcasecnp () to perform a case-insensitive comparison of two strings.

Document 9.7 (sort3.php)

<?php
function compare ($x, Sy) {

return strcasecmp ($x, Sy) ;
}
// Create and sort an array..
$a = array('Xena', 'Sue', 'david', 'apple');
echo 'Original array:
';
for ($i=0; S$i<sizeof ($a); $i++)
echo $a([$i] . '
';
echo 'Sorted array with user-defined comparisons of
elements:
';
usort ($a, "compare") ;
for ($i=0; $i<sizeof ($a); $i++)
echo $a[$i] . '
';
?>

232 9 PHP Arrays

Original array:
Xena

Sue

david

apple

Sorted array with user-defined comparisons
of elements:
apple

david

Sue

Xena

9.3
Stacks, Queues, and Line Crashers

The concepts that apply to and queues are language-independent, so those concepts for
storing and retrieving data in arrays are the same for PHP as they are for JavaScript. As is
the case for JavaScript, it is very easy to work with queues and stacks in PHP because
arrays can be resized dynamically. The sketch in Sect. 5.2, which defined last-in/first-out
(LIFO) and first-in/first-out (FIFO) data storage models and operations on stacks and
queues, applies equally to PHP.

Because PHP’s array model supports user-defined keys for each element, the possibilities
for adding elements to and removing them from stacks or queues (or other array operations
models) is complicated. This section will deal only with the basics, assuming arrays with
integer indices that start at 0. This limited approach is sufficient for many science and
engineering problems and for basic data handling.

The basic functions are array pop (), array push (), array shift (), and
array unshift (). Document 9.8 demonstrates the use of each of these functions.

Document 9.8 (StacksAndQueues.php)

<html>
<head>
<title>Stacks and Queues</title>
</head>
<body>
<?php
$a = array(-17, "David", 33.3, "Laura");
// Treat Sa like a stack (last in, first out)..
echo "The original array (element [0] is the \"oldest\"
element) :
";

9.3 Stacks, Queues, and Line Crashers 233

print_r($a);
// Add two elements to Sa..
array push($a, "Susan”,0.5);
echo '"
Push two elements on top of stack:
";
print _r($a);
// Remove three elements from Sa..
array pop($a); array pop($a); array pop ($a);
echo '"
Remove three elements from top of stack:
";
print_r($a);
// Treat Sa like a queue (first in, first out)..
$a = array(-17, "David", 33.3, "Laura");
echo '"
Back to original array:
";
print_r($a);
echo '"
Remove two elements from front of queue:
";
array shift ($a);
array shift ($a);
print_r($a);
echo '"
Add three elements to end of queue:
";
array push($a, "Susan"”,0.5, "new guy");
print_r($a);
echo '"
Add a \"line crasher\" to the beginning of
the queue:
";
array unshift($a, "queue crasher guy");
print_r($a);
?>
</body>
</html>

The original array (element [0] is the "oldest"
element) :

Array ([0] => =17 [1] => David [2] => 33.3

[3] => Laura)

Push two elements on top of stack:

Array ([0] => =17 [1] => David [2] => 33.3

[3] => Laura [4] => Susan [5] => 0.5)

Remove three elements from top of stack:

Array ([0] => =17 [1] => David [2] => 33.3)
Back to original array:

Array ([0] => =17 [1] => David [2] => 33.3
[3] => Laura)

(continued)

234 9 PHP Arrays

(continued)

Remove two elements from front of queue:

Array ([0] => 33.3 [1] => Laura)
Add three elements to end of queue:
Array ([0] => 33.3 [1] => Laura [2] => Susan

[3] => 0.5 [4] => new_guy)

Add a "line crasher" to the beginning of the queue:
Array ([0] => queue crasher guy [1] => 33.3

[2] => Laura [3] => Susan[4] => 0.5 [5] => new _guy)

Document 9.8 deserves close study if you need to do this kind of data manipulation in
an array.

9.4
More Examples

9.4.1
The Quadratic Formula Revisited

In Document 7.6b (quadrat.php), three coefficients of a quadratic equation were
passed from an HTML document and retrieved by name:

$a = $_POST["a"];
$b = $ POST["b"];
$c = $_POST["c"];

This code requires the PHP application to “know” what names the form fields were
given in the corresponding HTML document ("a", "b", and "c"). In PHP terminology,
you can think of the form fields being passed as a keyed array, with the key names
corresponding to the form field names. For this and similar kinds of problems, it might be
desirable to make the code less dependent on names given in the HTML document.
Documents 9.9a, b show one way to do this.

Document 9.9a (quadrat2.htm)

<html>

<head>

<title>Solving the Quadratic Equation</title>

</head>

<body>

<form method="post" action="quadrat 2.php">

Enter coefficients for ax² + bx + ¢ = 0:

a = <input type="text" value="1" name="coeff[0]" />
(must not be 0)

238 9 PHP Arrays

Document 9.11a (CloudObs . htm)

<html>
<head>
<title>Cloud Observations</title>
</head>
<body bgcolor="#aaddff">
<hl>Cloud Observations</h1l>
 Cloud Observations (Select as many cloud
types as observed.)

<form method="post" action="CloudObs.php" />
<table>
<tr>
<td>High </td>
<td>
<input type="checkbox" name="high[]"
value="Cirrus" /> Cirrus</td>
<td>
<input type="checkbox" name="high[]"
value="Cirrocumulus" /> Cirrocumulus </td>
<td>
<input type="checkbox" name="high[]"
value="Cirrostratus" /> Cirrostratus </td></tr>
<tr>
<td colspan="4"><hr noshade color="black" />
</td></tr>
<tr>
<td> Middle </td>
<td>
<input type="checkbox" name="mid[]"
value="Altostratus" /> Altostratus </td>
<td>
<input type="checkbox" name="mid[]"
value="Altocumulus" /> Altocumulus</td></tr>
<tr>
<td colspan="4"><hr noshade color="black" />
</td></tr>
<tr>
<td> Low</td>
<td>
<input type="checkbox" name="low[]" value="Stratus" />
Stratus</td>

9.4 More Examples 239

<td>
<input type="checkbox" name="low[]"
value="Stratocumulus" /> Stratocumulus</td>
<td>
<input type="checkbox" name="low[]" value="Cumulus" />
Cumulus </td></tr>

<tr>
<td colspan="4"><hr noshade color="black" />
</td></tr>
<tr>
<td> Rain-Producing </td>
<td>

<input type="checkbox" name="rain[]"
value="Nimbostratus" /> Nimbostratus</td>
<td>
<input type="checkbox" name="rain[]"
value="Cumulonimbus" /> Cumulonimbus </td></tr>
</table>
<input type="submit" value="Click to process.." />
</form>
</body>
</html>

240 9 PHP Arrays

Itis very easy to process these data with PHP if the HTML document is written correctly.
Each cloud category—high, mid, low, or precipitating—must be specified as an array
high[] rather than just high, for example. (Note that you do not need to specify the
index values.) The $_POST [] operation performed in PHP will return an array including
just those cloud types that have been checked. PHP automatically does the work that would
require you to write more code in JavaScript. The PHP code to do this is given in Document
9.11b, below.

Document 9.11b (CloudObs . php)

<?php
$high = $_POST["high"];
$n = count ($high) ;
echo "For high clouds, you observed
";
for ($i=0; $i<$n; $i++)
echo $high[$i] . "
";
$mid = $_POST["mid"];
$n = count ($mid) ;
echo "For mid clouds, you observed
";
for ($i=0; $i<$n; $i++)
echo $mid[$i] . "
'";
Slow = $_POST["low"];
$n = count ($low) ;
echo "For low clouds, you observed
";
for ($i=0; $i<$n; $i++)
echo $low[$i] . '"
";
$rain = $_POST["rain"];
$n = count($rain);
echo "For precipitating clouds, you observed
";
for ($i=0; $i<$n; $i++)
echo $rain[$i] . "
";
?>

For high clouds, you observed
Cirrocumulus

Cirrostratus

For mid clouds, you observed

For low clouds, you observed

For precipitating clouds, you observed
Cumulonimbus

The number of boxes checked for each category is contained in the value of $n, which
is reset after each $ POST []. For mid and low clouds, no boxes are checked, so their
corresponding arrays are empty and their for.. loops are not executed. It would be a
simple matter to use the value of $n to determine whether the message displayed for an
empty category should be different; for example, “There were no low clouds observed.”

9.4 More Examples 241

943

Building a Histogram Array

Write a PHP application that reads scores between 0 and 100 (possibly including both
0 and 100) and creates a histogram array whose elements contain the number of scores
between 0 and 9, 10 and 19, etc. The last “box” in the histogram should include scores
between 90 and 100. Use a function to generate the histogram. You will have to create
your own data file for this problem.

The solution shown here is a minimal approach to this problem. It assumes that the

range of the values is from 0 to some specified number, and that the histogram “boxes” are
uniformly distributed over the range. The data file looks like this:

73
77
86
17
18

Your application should not assume that the number of entries in the file is known ahead

of time.

Document 9.12 (histo.php)

<?php

function buildHisto ($a, $1lo, $hi, $n_boxes) ({

echo "building histogram..
";
$h=array () ;

// echo "Number of boxes = ".$n boxes."
";
for ($i=0; $i<$n_boxes; $i++) {

array push ($h,0);

// echo Sh[$i]."
";

echo "size of histogram array = ".sizeof ($h)."
";
for ($n=0; S$n<sizeof ($a); Sn++) {
Si=floor ($a[$n]/$n_boxes) ;
if ($i==sizeof($h)) $i--; // handles value of 100
ShSi]++;
}

$sum=0;
for ($i=0; S$Si<sizeof ($h); Si++) {
echo "h[”.$i."] — ".$h[$i],"<bf />n,.

$sum+=$h[$i];
}

echo "# of entries = ".$sum. '
";

242

9 PHP Arrays

}
$in=fopen ("histo.dat", "r");
$a=array () ;
$i=0;
while (!feof ($in)) {
fscanf ($in, "%r", $s);

$al($i]=$s;

Si++;

// array push ($a,$s),; will also work.
// echo 'a['.Si.'"'] = '.Sa[Si].'
';

}
/* Alternative code..
$i=0;
while (!feof (Sin)) {
fscanf ($in,"%f",%a[S1i]) ;
Si++;
}
*/

echo 'Number of scores: '.sizeof ($a).'
';

buildHisto ($a,0,100,10);
fclose ($in) ;

?>
Number of scores: 39
building histogram...
size of histogram array = 10
h[0] =
h[1]=5
h[2]=2
h[3]=5
h[4]=5
h[5]=1
h[6]=3
h[7]=3
h[8]=8
h[9]=6
of entries = 39

The first step is to open and read the data file. This code demonstrates how to store
values in an array as they are read, one at a time, from a data file. Each value is read into a
variable and that variable is then assigned to the appropriate array element. This is a good
approach if there is a reason to test or modify the value read before saving it in the array.
Alternative code is also shown which reads every value directly into an array element. An
echo statement included to display the values as they are read, during code testing, is later

commented out of the script.

9.4 More Examples 243

Next, the histogram function is called. In addition to the number of histogram bins, the
lower and upper limits to the range of values are provided in case the code needs to be
modified later to accommodate data values that don’t have 0 as their lower limit. In this
simple solution, the lower and upper limits on the range of the values are not needed.

In function buildHisto (), the contents of each “bin” are initialized to 0. The
array index value for the histogram array is calculated as $i=floor ($a[$n]/$n_
boxes) ;. In the case of a score of 100, this index would have a value of 10, which is
beyond the 10 allowed boxes (indices 0-9), so in this case the index value is reduced by 1
and that value is put in the box holding values from 90 to100. This simple calculation of
histogram array indices is possible only because the original data values lie between 0 and
100. In general, a more sophisticated calculation would be required to associate values
with the appropriate histogram array element.

The buildHisto () function includes some echo statements for testing which are later
commented out. It is very important to include these intermediate outputs whenever you are
developing a new application, to ensure that your code is doing what you expect it to do.

9.4.4
Shuffle a Card Deck

Write a PHP application that will shuffle a deck of 52 “cards.” Represent the cards as
an array of integers having values from 1 to 52. After the results of shuffling this “deck”
are displayed, sort the deck in ascending order and display it again.

This is a very simple statement of a random shuffling problem. The solution presented
is to read once through the deck and exchange each element with another randomly chosen
element in the array, using the rand () function to select the element. Note that you can-
not simply use the rand () function to generate 52 random “cards,” because, almost
always, some card values will be duplicated and some will not appear at all.

Document 9.13 (cardShuffle . php)

<?php
$deck = array();
for ($i= 0; $i<52; $i++) {
$deck [$i]=$i+1;
echo $deck[$i]." ";
}
echo '"
";
for ($i=0; $i<52; $i++) {
$j=rand (0,51);
$save=§deck[$i];
$deck[$i]=$deck[$]];
$deck[$j]=$save;

244 9 PHP Arrays

for ($i=0; $i<52; $i++)
echo $deck([$i]." ";

echo '"
";

sort ($deck) ;

echo "Resort deck..
";

for ($i=0; $i<52; $i++)
echo $deck[$i]." ";

echo '"<br /";

?>

1234567891011121314151617181920212223242526272829303132
333435363738394041424344454647 4849505152
1762338222849401011333652543130721547124629 16268374419
41453534521431321392748241450322042183951

Resort deck ...
1234567891011121314151617181920212223242526272829303132
3334353637383940414243444546474849505152

The multiple echo statements in the code show the results of the code at each step. The
purpose of resorting the deck and displaying the results is to make sure that the code
actually moves the original elements around and does not, for example, overwrite elements
in a way that might produce duplicate or missing values.

9.4.5
Manage a Data File

Write an HTML/PHP application that allows you to manage entries in a text file stored
on a server. The application should be able to:

(a) Display all records.

(b) Look for a specified date or value in the file.
(c) Insert a new data report into the file.

(d) Optionally, remove a record.

(e) Optionally, reset the file to a previous version.

There can be duplicate values or dates (but not duplicate complete records), so you
must look for all of them. When you insert a new data report into the file, it must be
inserted into its chronologically correct position in the file. Make sure that a record with
the same date and value as an existing record is not duplicated.

To determine where a new record goes, or to look for a requested date, you need to
know whether the date of a record is later than (“greater than”), the same as (“equal to”),
orearlierthan(“lessthan”)someotherrecord. Youcandothiswiththe st rtotime (Sdate)
function, which converts a date given in any reasonable format, including the mm/dd/yyyy
format shown in the sample file below, into the integer number of seconds since (probably)

9.4 More Examples 245

01 January, 1970." Hence, this function allows you to compare dates as needed. For exam-
ple, to see if you have matched a requested date Sdate to a date $d in the file,

if (strtotime ($d) == strtotime ($date)) {..

The HTML document interface for this program should look something like this:

Your PHP application must process the radio button selection. This is easy, because
$_POST ["{name of your radio button}"] returns the text value of the value attribute
of the selected button.

Here is a sample initial file. It consists of a header line, followed by a series of data
entries consisting of a date in mm/dd/yyyy format and a value separated by a space.

Date Value
01/15/2006 17.3
01/20/2006 0.55
05/17/2006 83.9
09/09/2006 9.33
11/13/2006 15
01/01/2007 74.4
02/28/2007 64.4
05/05/2007 100
06/06/2007 64.4
12/12/2007 22.54

The “insert new data” option for this program will require you to open a file for reading,
close it, and then open it again for writing in order to insert the new record in its appropri-
ate place. Because these are sequential access files—opened only for reading or writing
starting at the beginning, but not both at the same time—you cannot simply write the new
record into your existing open file. Instead, you need to read the data in the file into an
array, insert the new record into its appropriate position in the array, close the original file,
and then open the file again in “write” mode so you can copy the expanded array back into
the original file. Alternatively, you might write all records, including a new record, directly
into a temporary file and then copy this new file back to the original file.

IThis is the usual reference date, but it is certainly possible for some operating systems to choose
a different reference. In any event, the starting date does not matter.

246 9 PHP Arrays

if (!copy("values.out", "values.dat"))
echo "Failed to copy file.";

Depending on how you approach this problem it might not require the use of arrays at
all. Documents 9.14a, b show one way to implement this basic data file management
application. It is incomplete because the section of code that inserts a new record doesn’t
actually write data into a new file. Instead, it uses echo statements to show what records,
including the new record, should be written into the file. (The completion of this application
is left as an exercise.)

Document 9.14a (DataReport.htm)

<html>
<head>

<title>Data Management Application</title>
</head>
<body>
<form method="post" action="DataReport.php">
Date (mm/dd/yyyy format): <input type="text" name="date"
value="12/12/2007" />

Value (number): <input type="text" name="x" value="17.7"
/>

find date: <input type="radio" name="choose"
value="find date" />
find value: <input type="radio" name='"choose"
value="find value" />
insert new report in chronological order: <input
type="radio" name="choose" value="insert" />

 ,;
view all reports: <input type="radio" name="choose"
value="view_all" checked />

<input type="submit" value="Click here." />
</form></body></html>

Document 9.14b (DataReport . php)

<?php

Snew_date=$_POST["date"];

Snew_value=$_POST["x"];

$Schoose=$_POST|["choose"];
$fileName="FinalExam2009 3.txt";

echo $new_date.” ".$new_value." ".$choose."
";
$in=fopen ($fileName, "r") ;

$line=fgets ($in); // read header

9.4 More Examples 247

echo $line. "
";
switch ($choose) {
case '"view all':
while (!feof ($in)) {
fscanf ($in, "%s %r", $date, $x);
echo $date.” ".$x."
";
}
break;
case '"find date':
$found=false;
while (!feof($in) && (!$found)) {
fscanf ($in, "%s %r'",$date, $x) ;
if (strtotime ($date)==strtotime ($new_date)) {
echo $date.” ".$x."
";
$found=true;

}
if (!$found) echo "This record not found.
";
break;
case '"find value":
$found=false;
while (!feof ($in)) {

fscanf ($in, "%s %r",$date, $x);
if ($x==$new_value) {

echo $date."” ".$x.'"
";

$found=true;

}
if (!$found) echo "This record not found.
";
break;
case "insert":
$temp=array (); $i=0;
$added=false; $duplicate=false;
// copy data into array
while (!feof($in)) {
fscanf ($in, "%s %f",$date, $x);
if ((strtotime ($date)==strtotime ($new_date)) &&
($x==%new_value)) $duplicate=true;
if ((strtotime ($date)>strtotime ($new_date)) &&
(!$added) && (!$duplicate)) { // insert new record
Stemp[$i] [0]=$new_date; $temp([$i] [1]=$new_value;
Sadded=true; $i++;
}
Stemp[$i] [0]=$date; Stemp[$i] [1]1=$x; S$i++;

248 9 PHP Arrays

if (strtotime ($new_date) >strtotime ($temp[$i-1][0])) {
Stemp[$i] [0]=$new_date; $temp[$i] [1]=$new_value;
}
echo '"new array..
";
for ($i=0; $i<count ($temp); $i++)
echo $temp[$i] [0]." ".$temp[$i] [1]."
";
}
if ($duplicate) echo '"Duplicate record, not added.
";
break;
}
fclose ($in) ;
?>

02/12/2007 64.4 insert
Date Value

new array...
01/15/2006 17.3
01/20/2006 0.55
05/17/2006 83.9
09/09/2006 9.33
11/13/2006 15
01/01/2007 74.4
02/12/2007 64.4
02/28/2007 64.4
05/05/2007 100
06/06/2007 64.4
12/12/2007 22.54

The sample output shows the result of entering a new record in the file. (The value is
duplicated, but not the date.) This application could be written with random rather than
sequential access file structures (which might make inserting or removing records easier),

9.4 More Examples 249

or by using PHP-accessible databases, but that is beyond the scope of this book. Although
the simple approach implemented in Document 9.14 might be unwieldy for very large and
complicated data files, it is perfectly satisfactory for small and simple files that you might
need to maintain for your own work for nothing more complex than basic recordkeeping
and table lookups.

9.4.6
Recursive Insertion Sort

PHP supports recursive functions, using code similar to the JavaScript code discussed in
Chap. 6. Document 9.15 gives a recursive implementation of the Insertion Sort algorithm.
(In general, it is not as efficient as PHP’s sort () function, but it works well for arrays
that are already almost in order.) Note the “&” preceding the name of the array argument
($a) in both functions. This symbol means that the array $a is passed “by reference” so
that PHP can moditfy its contents in memory. If the array is not passed by reference, it will
not be sorted

Document 9.15 (InsertionSort.php)

<?php
function insertionSort (&$a, $first, $last) {
if ($first<$last) {
insertionSort ($a, $first, $last-1) ;
insertInOrder ($a[$last], $a, $first, $last-1);
}
return $a;
}
function insertInOrder ($element, &$a, $first, $last)
if ($element>=%$a[$last]) $a[$last+l]=$element;
else if ($first<$last) ({
Sa[$last+1]=%a[$last];
insertInOrder ($element, $a, $first, $last-1) ;
}
else {
Sa[$last+l]=%a[$last];
$a[$last]=$element;

}
$x=array(7,3,4,13,544,-17,-1,0) ;
$x=insertionSort ($x,0,7);
var_dump ($x) ;

?>

array(8) { [0]=> int(-17) [1]=> int(-1) [2]=> int(0) [3]=>
int (3) [4]=> 1int(4) [5]=> 1int(7) [6]=> 1int(13) [7T]=>
int (544) }

Summary of Selected PHP Language 1 o

Elements

Abstract Chapter 10 provides a summary of PHP language elements that are necessary
or helpful to create the kinds of applications that have been discussed in this book. Most,
but not all, of the functions given have been used in previous chapters. As with other parts
of this book, the descriptions are not necessarily intended to be comprehensive or com-
plete, and they are not intended to take the place of a reference manual. Nonetheless, the
language elements and examples presented in this chapter cover a large range of practical
PHP programming situations.

10.1
Data Types and Operators

10.1.1
Data Types

PHP supports four scalar primitive data types:

Boolean (bool)
Integer (int)
Float (float)
String (string)

Boolean data can have values of t rue or false. The maximum size of an integer that
can be represented is system-dependent, but integers are often represented with a 32-bit
word, with 1 bit allocated for a sign. This gives a maximum integer value of 2,147,483,647.
If presented with an integer larger than the allowed maximum, PHP will convert it to a
floating point number, possibly with some loss of precision. The precision of floating point
numbers is also system-dependent, but is often approximately 14 digits. In other program-
ming languages you will sometimes find references to a “double” data type. In C, for
example, the precision of “float” and “double” real-number values is different, but there is
no such distinction in PHP, which supports only a single floating point number

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, 251
DOI 10.1007/978-0-85729-449-4 10, © Springer-Verlag London Limited 2011

10.2 Conditional Execution 253

10.2
Conditional Execution

10.2.1 Conditional Execution

PHP supports if... then... else... conditional execution. The “then” action is implied. Multiple
“else” branches can be included. Document 10.1 illustrates typical syntax.

Document 10.1 (conditionalExecution.php)

<?php
function getRoots ($a,$b, $c) {
echo "This function calculates roots..";
}
$i = 2;
if ($i == 0) {
echo "i equals 0";
}
elseif ($i == 1) {
echo "i equals 1";
}
elseif ($i == 2) {
echo "i equals 2";
}
else {
echo "i is not 0, 1, or 2";
}
echo '"
";
$discriminant=0.3;
if ($discriminant < 0.)
echo "There are no real roots.
";
elseif ($discriminant == 0.) {
echo "There is one real root.
";
$rl = -$b/$a/2;
echo $rl;
}
else {
echo "There are two real roots.
";
list ($rl,$r2) = getRoots ($a, $b, $c);
echo "
Print the roots here..";

?>

10

254

10.2.2

10 Summary of Selected PHP Language Elements

i equals 2

There are two real roots.

This function calculates roots...
Print the roots here...

Case-Controlled Conditional Execution

PHP also has a “switch” construct for conditional execution.

switch ($i)

case 0O:

echo "i

break;
case 1:

echo "i

break;
case 2:

echo "i

break;
default:

echo "i

{

equals 0.

equals 1.

equals 2.

does not

"

”n

”n

equal 0, 1, or 2.";

The order of the case values does not matter. Unlike the i f... construct, in which only
the first “true” path is executed, the break; statement is needed to exit the construct after
the first case match is encountered. Otherwise, all subsequent statements within the con-
struct are executed. There are certainly circumstances under which this might be the
desired result, in which case the break; statements wouldn’t be needed, although the
order of the case values probably would matter.

Multiple case values can be associated with the same action, as shown in Document 10.2.

Document 10.2 (daysInMonth.php)

<?php
Smonth=5;

switch (Smonth) ({

case 1:
case
case
case
case
case

= 0o J U1 W

10.3 Loops 255

case 12:
echo "There are 31 days in this month.
"; break;
case 4:
case 6:
case 9:
case 11:
echo "There are 30 days in this month.
"; break;
case 2:
echo '"There are either 28 or 29 days in this month.

"; break;
default:
echo "I do not understand your month entry.";
}
?>

In PHP, case values can be strings:

switch ($fruit) {
case "apple'":
echo '"This is an apple.";
break;
case "orange'":
echo '""This is an orange.";
break;
case "banana':
echo "This is a banana.'";
break;
default:
echo "This is not an allowed fruit treat.';

Comparisons against the value to be tested are case-sensitive. So if $fruit is assigned
as $fruit = "Banana", prior to the switch construct (instead of $fruit =
"banana";), the default message is printed. If this is a problem, it can be overcome by
using the strtolower () or strtoupper () functions.

10.3
Loops

PHP supports both count-controlled and conditional execution loops, including a
foreach.. loop designed specifically for accessing keyed arrays. In the examples
below, generic variable names such as Scounter are sometimes used, displayed in
italicized Courier font. Programmer-supplied text and/or statements are
represented by {italicized Times Roman font in curly brackets).

256 10 Summary of Selected PHP Language Elements

10.3.1
Count-Controlled Loops

The basic count-controlled loop iterates over a specified range of values. The general
syntax is:

for ((int) $counter = SstartValue;
Scounter {relational operator} SendValue;
Scounter = Scounter {+ or -} SincrementValue) {
{statements)

The statement(s) inside the loop are executed only if (or as long as) the second expression
evaluates as true. As a result, it is possible that the statements(s) inside the loop may never
be executed. The SstartValue can be smaller or larger than the SendValue, as long
as the third statement increments or decrements the Scounter so that the loop will even-
tually terminate (that is, the second expression evaluates as false). With appropriately
defined conditions, the loop can count “backward.” The curly brackets are optional if there
is only one statement to be executed inside the loop.

Examples:

Document 10.3 (countdown . php) 10
9
<?php 3
for ($i=10; $i>=0; $i--) 7
echo $i . '"
"; 6
echo "FIRE!
"; 5
?> 4
3
Document 10.4 (loopExamples.php) 2
1

<?php FIRE!

$a = array(17,-13.3, "stringThing", "PHP");
foreach ($a as $x)
echo "$x
";
for ($i=0; $i<=sizeof ($a); S$i++)
echo $a[$i] . '
';
$a = array(l => 17,2 => -13.3, 3 => "stringThing",
4 => "PHP");
foreach ($a as $k => $x)
echo "a[" . $k . "] =" [$§x . "
";
$b = array (77, 33, 4);
foreach ($b as $x) {
echo ("$x" . "
");

?>

10.3 Loops 257

17

-13.3
stringThing
PHP

17

-13.3
stringThing
PHP

a[l]=17
a[2]=-13.3

a[3] = stringThing
a[4] = PHP

77

33

4

See Document 9.2 for an example of how to use a for... loop to access an array
with character indices. Document 9.2 also shows that it is possible to define just the
first key value in an array, with the remaining keys automatically assigned with con-
secutive values.

The foreach... loop is used to access keyed elements in an array, including arrays
with other than integer indices. The curly brackets are optional if there is only one
statement.

foreach ((array) $Sa as Svalue) {
{one or more statements}

foreach ((array) S$a as Skey => Svalue) {
{one or more statements}

Example:
Document 10.5 (foreach.php)

<?php
$a = array(17,-13.3,
"stringThing", "PHP") ;
foreach ($a as $x)
echo "$x
";

$a = array(l => 17,2 => -13.3,
3 => "stringThing", 4 => "PHP");

258 10 Summary of Selected PHP Language Elements

foreach ($a as $k => $x)

echo "a[" . $§k . "] =" . $x . "
'";
?>
17
-13.3
stringThing
PHP
a[l]=17
a[2]=-13.3
a[3] = stringThing
a[4] = PHP
10.3.2

Condition-Controlled Loops
PHP supports both “post-test” and “pre-test” loops. The post-test syntax is:

do (
{one or more statements}
} while ((bool) ({logical expression}) ;

The conditional do... loop executes statements as long as the {logical expression} evaluates
as true. Because the expression is evaluated at the end of the loop, the statements inside the
loop will always be executed at least once.

The pre-test syntax is:

while ((bool) {logical expression}) {
{one or more statements}

The conditional while.. loop executes statements as long as the {logical expression}
evaluates as true. Because the expression is evaluated at the beginning of the loop, it is
possible that the statements inside a while... loop will never be executed.

Examples:

Document 10.6 (squares.php)
<?php

$x=0;

do {
Sx++;

10.4 Functions and Language Constructs 259

echo $x . ', ' . $x*$x . '
';
} while ($x*$x < 100.);
?>

1,1
2,4
3,9
4,16
5,25
6,36
7,49
8, 64
9, 81
10, 100

<?php
$in = fopen ("stuff.dat";, "r'") or
exit ("Can't open file stuff.dat.");
while (!feof ($in)) {
$line=fgets ($in) ;
echo $line . "
";
}
fclose ($in) ;
?>

10.4
Functions and Language Constructs

There are literally hundreds of PHP functions and language constructs. This section
contains a subset of functions and constructs used in or closely related to those used in
previous chapters. In these descriptions, the data type of an input parameter or return value
is given in italicized parentheses, e.g., (string).Programmer-supplied text is printed in
{italicized Times Roman font} inside curly brackets. Often, generic variable names are
givenin italicized Courier font,e.g., SfileHandle. Optional parameters are
enclosed in square brackets.

10.4.1
File Handling and 1/0 Functions

As noted previously, file access is the primary justification for using a server-side language
such as PHP. As a general rule, you can read files from anywhere on a local computer, but
you may need to set appropriate access permissions to write or modify files. You may need

10

260 10 Summary of Selected PHP Language Elements

to need to ask your system administrator about write access on a host computer. Problems
with assigning write permissions manifest themselves when PHP refuses to open a file in
write ("w") or append ("a") mode.

Format specifiers:

Some of the PHP I/O functions described below for reading read input or displaying output
require format specifiers that control how input is interpreted and how output is displayed.
Each output format conversion specifier starts with a percent sign (%) followed by, in order,
one or more of these optional elements:

Sign specifier

Either a “~” or a “+” forces numbers to be displayed with a leading sign. (By default,
negative numbers are preceded by a “~" sign, but positive numbers are not preceded by a
“+7 sign.)

Padding specifier

The padding specifier is a character, preceded by a single quote ('), used for padding
numerical results to the appropriate string size. The default character is a space. A typical
non-default character would be a 0.

Alignment specifier
By default, output is right-justified. Including a

w_

will force left justification.

Width specifier

A numerical width specifier defines the minimum number of spaces allocated for dis-
playing a number or string. If the width specifier is too small, it will be overridden to allow
display of the entire number or string.

Precision specifier

A numerical precision specifier, preceded by a decimal point, defines how many digits
to the right of the decimal point should be displayed for floating-point numbers. It is often
used along with the width specifier, for example, 8 . 3. When applied to a string, this value
defines the maximum number of characters displayed. When significant digits are lost, the
result is rounded rather than truncated. For example, an . 3 specifier applied to 17.4567
will display the number as 17.457. Numbers are right-padded with Os as needed. For
example, an n . 3 format specifier applied to 17.5 will display 17.500.

Data type specifier (required)

As opposed to the previous items, a data type specifier is a required part of a format
string, to tell PHP how to interpret values being read or displayed. Often, input formats
contain just the $ and a data type specifier. Some type specifiers for strings and base-10
numbers are given in Table 10.2. Format strings can contain characters other than the type
specifiers themselves. For example, the statement

10.4 Functions and Language Constructs 263

For these access modes, all files are sequential access as opposed to random access.
When a file is opened in read-only mode, its file handle points to the location of the first
byte of the file in memory. Reading from such a file implies that you always must read the
contents of the file starting at the beginning, even if you discard some of the information.
You cannot jump ahead or backward to a random location within the file.

In write-only mode, data are written to the file sequentially, starting at the beginning of
a blank file. If the file handle represents a physical file that already exists, then the old file is
replaced by the new data. (Be careful!) In append mode, the pointer to the file in memory is
positioned initially at the end of the file, just before the end-of-file character. (In write-only
or read-only mode, the file pointer is positioned initially at the beginning of the file.) New
data are added to the end of the file without changing whatever was previously in the file.

(bool) feof ((resource) SfileHandle)

Tests for the end-of-file marker on SfileHandle. Returns a value of t rue if the end-
of-file marker is found and false otherwise.

Example:

Sf = fopen (SfileName,'r") ;
while (!feof ($f)) {
$line = fgets(S$f);
{Statements to process file go here.}
}
fclose ($f);

(bool) file exists((string) $filename)

Returns a Boolean value of t rue if the specified file (or directory) exists, and false
otherwise.

(string) fgetc ((resource) S$SfileHandle)

Returns a single character from the file pointed to by SfileHandle.

(string) fgets ((resource) $fileHandle[, (int) Slengthl])

Returns a string of up to $Iength— 1 bytes from the file pointed to by SfileHandle,
or to an end-of line or end-of-file mark. If the optional length parameter is not provided,
fgets () will read to the end of the line or the end of the file, whichever comes first.

10

264 10 Summary of Selected PHP Language Elements

Examples:

Sline = fgets($in, 128);
StheWholeLine = fgets ($in);

Text files created on one system may cause problems when using fgets () on a
different system. UNIX-based files use only a single character, \n, as a line terminator.
Windows systems use two characters, \ r\n, as a line terminator. As a result, it is possible
that fgets () used in a script running on a Windows computer may not properly detect
end-of-line marks in a file created on a UNIX system.

(array)= file ((string) Sfilename)

Reads an entire file into array Sa. When Sfilename refers to a text file, each line in the
file becomes an array element.

Example:
For this data file:

Site Lat Lon

brooks 40.01 -75.99
europe 50.5 5.3
south -30 88
farsouth -79 -167

this code

<?php
Sa=file ("LatLon.dat") ;
var_dump ($a) ;

?>

produces this output:

array(5) { [0]=> string(14) "Site Lat Lon " [1]=> string(21) "brooks 40.01 -75.99
" [2]=> string(17) "europe 50.5 5.3 " [3]=> string(14) "south -30 88 " [4]=> string(17)
"farsouth -79 -167" }

(string) file get contents ((string) s$fileName)

Returns the entire contents of SfileName as a string. (See fwrite ().)

10.4 Functions and Language Constructs 265

(int) fprintf ((resource) SfileHandle,
(string) {format string}
[, {one or more values to be displayed, comma-separated}])

Writes a text string and optionally (but usually) one or more values according to the
format conversion specifier string, to the file pointed to by SfileHandle. The format
type specifiers should match the data type of the values.

fprintf () returns an integer value equal to the number of characters written to
SfileHandle. Typically, the return value is not needed. The format string is usually
specified as a string literal, but it may be assigned to a variable prior to calling
fprintf (). This capability allows for script-controlled formatting.

Examples:

fprintf (Sout, "Here is some output.\n");
// Writes the text into the file.

SformatString = "%$f, %f, %f\n";
fprintf (Sout, $formatString, $A, $B, $C) ;
// comma-delimited output

The ability to include commas in the output format string means that it is easy to create
a comma-delimited file that can be opened directly in a spreadsheet. With Microsoft Excel,
for example, these files typically have a . csv extension. On Windows systems, lines writ-
ten to a text file, but not necessarily to a . csv file that will be opened in a spreadsheet,
should be terminated with \ r\n rather than just \n. See printf (), below, for more
examples of how to use format specifiers to control the appearance of output.

(string) fread((resource) SfileHandle, (int) S$length)

Reads up to S1length bytes from SfileHandle, up to 8192 bytes, and returns the
result in a string.

(mixed) fscanf((resource) SfileHandle,
SformatString [, (mixed) Svar..])

Reads a line of text from a file and parses input according to a specified format string.
Without optional Svar parameters, the output is used to create an array, the elements
of which are determined by the format string. If Svar parameters are included,
fscanf () returns the number of parameters parsed. fscanf () will not read past the
end-of-line mark if more format specifiers are provided than there are values in the line.
Any white-space character in the format string matches any whitespace in the input
stream. For example, a tab escape character (\ t) in the format string can match a space
character in the input stream.

10

266 10 Summary of Selected PHP Language Elements

(int) fwrite((resource) SfileHandle,
(string) Ss[, (int) Slength])

Writes the contents of $s to the specified file or, optionally, the first S1ength
characters of 5. (For the inverse operation, see file get contents().)

(int) printf((string) SformatString
[, (mixed) S$Svar..])

Displays a text string according to the format conversion specifier, to the open window.
printf () returns the number of characters written. Typically, the return value is not
needed. SformatStringisusually given as a string literal, but it may be assigned to
a variable prior to calling printf (), a capability that allows for script-controlled
output formatting.

Examples for fscanf () and printf ():
Document 10.7 uses input file dateTime. txt:

01/14/2007 17:33:01
02/28/2007 09:15:00

Document 10.7 (dateTime.php)

<?php

$in=fopen ("dateTime.txt", "r");

while (!feof($in)) {

fscanf ($in, "%d/%d/4%d
$d:%d:%d", $day, $month, $year, $hour, $min, $sec) ;
printf ("$'02d/%'02d/%4d $'02d:%'02d:%'02d
",$day, $month, $year, $hour, $min, $sec) ;

}
?>

01/14/2007 17:33:01
02/28/2007 09:15:00

10.4 Functions and Language Constructs 267

Document 10.8 (formatExample.php)

<?php
Sa=67;
$b=.000717;
Sc=-67;
$d=83.17;
$e="Display a string.";
printf ("\t%c\n\rge\n\rsr", $a, $b, $b) ;
// no line feeds!
printf ("

$%$s
%e
%f

",$a,$b,$b);
printf ("
%d %Su
",$a,$a);
printf ("
%d %Su
",$c,$c);
// note effect of %u!
printf ("
He said, \"Let's go!\"
");
printf ("
Your discount is \$%'012.2f
",$d);
printf ("
%'x26s
",$e);
?>

C 7.17000e-4 0.000717

67
7.17000e-4
0.000717

67 67
-67 4294967229
He said, "Let's go!"

Your discount is
$000000083.17

xxxxxxxxxDisplay a string.

Note that printf () ignores the \n, \r, and \ t characters when it displays results in
your browser window because HTML ignores “white space.” This explains the presence
of the
 tags in the format string. However, fprintf () properly interprets these
characters when printing to a file. Hence, output to a file should not have
 tags
included in the format specifier

(mixed) print r((mixed) $expression [, (bool) s$return])

Displays information about Sexpression, often an array, in a readable format.
Setting Sreturn to true copies the output into a variable rather than displaying it.

10

268 10 Summary of Selected PHP Language Elements

Example:

<?php

$cars = array("VW", "GM", "BMW", "Saab");
print_r($cars);

$result = print_r($cars, true);

printf ("
%s",$result);

?>
Array ([0]=> VW [1] => GM [2] => BMW [3] => Saab)
Array ([0] => VW [1] => GM [2] => BMW [3] => Saab)

(string) sprintf ((string) SformatString
[, (mixed) Svar..])

Returns a string built according to the format specifier string and optional arguments.
SformatStringis usually given as a string literal, but may be assigned to a variable
prior to calling printf (), a capability that allows for script-controlled formatting.

(mixed) sscanf ((string) $Sline,
SformatString [, (mixed) Svar..])

Reads $1ine and parses its contents according to the format specifier string. Without
optional Svar parameters, the output is used to create an array, the elements of which
are determined by the format string. If Svar parameters are included, sscanf ()
returns the number of parameters parsed. sscanf () will not read past the end of
$1ine if more format specifiers are provided than there are values in the line.

(int) vprintf ((string) SformatString, (array) $a)

Displays a string built from the arguments of array Sa, formatted according to the
format string specifier.

Example for sprintf () and vprintf ():
Document 10.9 (arrayDisplay.php)

<?php

$a = array("vw", 17.3, "GM", 44, "BMW");
print_r($cars);

Sresult = print_r($cars, true);

printf ("
%s",$result);

10.4 Functions and Language Constructs 269

vprintf ("
%s, %f, %s, %u, %s'",8$a);
$result = sprintf ("
%s, %f, %s, Sum 3%s",
]

$a[0],%all],$al2],%al3],%a[4]);

echo '
' . $result;

2> VW, 17.300000, GM, 44, BMW
VW, 17.200000, GM, 44, BMW

10.4.2

String Handling Functions

(string) chr ((int) Sascii)
(int) ord((string) Ss)

chr () and ord () are complementary functions. chr () returns the single-character
string corresponding to the Sasci i value. ord () returns the base-10 ASCII value of
the first character of Ss. Apppendix 2 contains a list of the 256 standard ASCII codes
(base 10, 0-255) and their character representations for Windows computers. The
lowercase alphabet starts at ASCII (base-10) 97 and the uppercase alphabet starts at
ASCII 65. Nearly all ASCII characters can be displayed and printed by using their
ASCII codes.

(mixed) count chars((string) $s[, (int) smodel)

Counts the number of occurrences of every byte (with ASCII value 0...255) in S and
returns it according to Smode:

0—the default value, returns an array with the byte value as its keys and the number of
occurrences of every byte as its values.

1—same as 0, but only byte values that actually occur in the string are listed.

2—same as 0, but only byte values that do not occur are listed.

3—a string containing all unique characters is returned.

4—a string containing all characters not appearing in Ss is returned.

(string) ltrim ((string) Ss[, (string) S$Scharlist])
(string) rtrim ((string) Ss[, (string) Scharlist])
(string) trim ((string) $s[, (string) Scharlist 1)

Without the optional list of characters, strips whitespace characters from the left, right,
or both left and right ends of a character string. A list of other characters to be trimmed
can be specified with the optional Scharlist parameter. These functions are useful
for removing blank characters and return/linefeed characters from strings.

270

—_

0 Summary of Selected PHP Language Elements

10 Example:

<?php

$str="x x Mississippi x x";
echo ltrim($str, "x ")."
";
echo rtrim($str, "x ")."
";
echo trim ($str, "x ")."
";
?>

Mississippi X x
x x Mississippi
Mississippi

(int) strcasecmp((string) $sl, (string) $s2)

Performs a case-insensitive comparison of $s1 and $s2.

strcasecnp () returns 0 if $s1 and $s2 are identical, an integer less than 0 if
$s1 is less than Ss2 (in the lexical sense), and an integer value greater than 0 if Ss1
is greater than $s2.

Examples:

strcasecmp (("Dave","David"); // returns -4
strcasecmp ("DAVID", "david"); // returns 0

(int) strcmp((string) $sl, (string) $s2)

Performs a case-sensitive comparison of Ss1 and $s2.

strcmp () returns 0 if $s1 and Ss2 are identical, an integer value less than 0 if
$s1 is less than $s2 (in the lexical sense), and an integer value greater than 0 if Ss1
is greater than $s2.

Example:

strcmp ("david", "DAVID"); // returns 1

(string) stristr ((string) $s, (mixed) S$lookFor)

Returns all of $s from the first occurrence of S1ookFor to the end of Ss. If S1ook—
For is not found, returns false. The search is case-insensitive. If S1ookFor is not
a string, it is converted to an integer and interpreted as the ordinal value of a character.

Example: stristr ("David",'v'); // returns vid

10.4 Functions and Language Constructs 271

(int) strlen((string) Ss);

Returns the length (number of characters) in $s.

(int) strncasecmp((string) S$sl1, (string) S$s2,
(int) $n char)

Performs a case-insensitive comparison on the first $n _char characters of $s1 and
$s2.

strncasecnp () returns 0if $s1 and $s2 are identical, an integer value less than
0 if $s1 is less than $s2 (in the lexical sense), and an integer value greater than 0 if
$s1 is greater than $s2.

Examples:

strncasecmp ("Dave", "David", 3); // returns 0
strncasecmp (("Dave", "David", 4); // returns -4

$len = min(strlen("Dave'"),strlen("David")) ;
strncasecmp ("Dave”, "David", $len) ;

// compares number of characters contained in shorter
string parameter and returns -4

(int) strncmp ((string) $sl, (string) $s2, (int) $n char)

Performs a case-sensitive comparison on the first $n_char characters of $s1 and
$s2.
strncmp () returns 0 if Ss1 and S$s2 are identical, an integer value less than 0 if

$s1 is less than $s2 (in the lexical sense), and an integer value greater than 0 if Ss1
is greater than Ss2.

Examples:

strncmp ("Dave", "David", 3); // returns 0

Slen = min(strlen("Dave"),strlen ("David"));

strncmp ("Dave”, "David", $len) ;

// compares number of characters contained in shorter
string parameter and returns -1

(int) strpos ((string) $s , (mixed) $lookFor
[, (int) Soffset])

10

272 10 Summary of Selected PHP Language Elements

Returns the numeric position of the first occurrence of S1ookForin $s.If the optional
Sof fset parameter is provided (default is 0), the search starts at the specified offset
position rather than at the beginning of $s.

(string) strtolower ((string) $s)
(string) strtoupper ((string) $s)

strtolower () converts the alphabetic characters in Ss to lowercase.
strtoupper () converts the alphabetic characters in $s to uppercase.

(string) substr((string) Ss , (int) Sstart
[, (int) Slength])

Returns S1ength characters of Ss, starting at Sstart. The first character in a string
is at position 0. If the length of $s is less than or equal to Sstart characters long, a
warning message will be displayed. If SIength is not specified, all the characters
from position Sstart will be returned.

(int) substr compare((string) s$si,
(string) S$s2 , (int) Soffset [, (int) Slength
[, (bool) $Scase insensitivity]]

Returns 0 if $s1 is equal to $s2, <0 if $1 is less than $s2, and >0 if $s1 is greater
than Ss2. If the optional SI1ength parameter is supplied (default is 0), the comparison
uses S1ength characters of $s1.If S1ength is greater than or equal to the length of
$s1,awarning message will be displayed. If the optional Soffset parameter is spec-
ified (default is 0), the comparision starts at the specified offset from the beginning of
Ss1.1If Sof fset isnegative, the comparison starts counting from the end of the string.
Ifthe optional Scase insensitivity parameter is given a value of t rue (default
is false), the comparison is case-insensitive.

(string) substr count ((string) $s , (string) Swhat
[, (int) Soffset[, Slengthl]])

Returns the number of times the string Swhat occurs in $s, optionally starting at
Soffset (default is 0) and including the next S1ength characters.

10.4 Functions and Language Constructs 273

(string) substr((string) $s , (int) Sstart
[, (int) Slength])

Returns S$1ength characters of S$s, starting at Sstart. The first character in a string
is at position 0. If the length of $s is less than or equal to Sstart characters long, a
warning message will be displayed. If SI1ength is not specified, all the characters
from position Sstart will be returned.

Document 10.10 shows output from some of the string functions listed in this section.
Document 10.10 (stringFunctions.php)

<?php /* Created on: 6/13/2009 */ ?>

<html>
<body>
<?php
$strl="Hello, world!";
$str2="world";
echo stristr ($strl, 'w') . "
"; World!
echo substr_ compare ($strl, $str2,8) . "
"; -1
echo strpos ($strl, "wor'") . "
";
echo stristr($strl, "wor") . "
"; ?
?>
</body> worldl
</html>
1043

Math Constants and Functions

PHP’s math functions return integer or floating-point results, with a system-dependent
precision that is often about 14 digits for floating-point numbers. This is sufficient for all
but the most specialized calculations. There are also several pre-defined mathematical con-
stants, all of which are floating-point numbers. Constants and functions are built into PHP,
with no need for external libraries. Trigonometric functions always assume input parame-
ters in radians or produce angle outputs in radians. Data types are shown in parentheses,
for example (float). Optional arguments are enclosed in square brackets.

Constants and built-in math functions are listed in Tables 10.5 and 10.6. In this table,
“x” (and other arguments, in some cases) always represents a variable of the appropriate
type, even though they are shown without the $ symbol.

10

276 10 Summary of Selected PHP Language Elements

(mixed) array pop ((array) $a)

Treats Sa as a stack and removes and returns the last (newest) element of Sa, automati-
cally shortening Sa by one element. A value of NULL will be returned if the array is
already empty. This function resets the array pointer to the beginning of the array after
the element is removed.

Example (for array () and array pop ()):
Document 10.11 (arrayPop . php)

<?php

$stack = array("orange", "banana'", "apple'", "lemon");
$fruit=array pop ($stack);

print_r($stack);

?>

Array ([0] => orange [1l] => banana [2] => apple)

The variable $fruit will be assigned a value of Iemon.

(int) array push((array) s$a, (mixed) $var [, (mixed)..])

Treats Sa as a stack, and pushes the passed variable(s) onto the end of $a. The length
of $a increases by the number of variables pushed. Returns the number of elements in
the array after the “push.”

Example:
Document 10.12 (arrayPush.php)

<?php

$stack = array("red"”, "grn'");

$n = array push($stack, "blu”, "wh");
print_r($stack);

$stack([] = "blk";

printf ("
%u
",$n);
print_r($stack);

printf ("
%u
",sizeof ($stack));
?>

10.4 Functions and Language Constructs 277

Array ([0] => red [1l]=> grn [2] => blu [3] => wh)
4
Array ([0] => red [1l] => grn [2] => blu

[3] => wh [4] => blk)

The shaded line in Document 10.11 shows that a new variable can be “pushed” onto the
end of an array simply by assigning a new element to the array. Because this avoids what-
ever overhead might be associated with a function call, and it is shorter to write, it might
make sense touse array push () only when you wish to add multiple new values at the
same time.

(mixed) array shift((array) $Sa)

Removes the first element of Sa (the “oldest” element) and returns it, then shortens $a
by one element and moves everything down one position. Numerical keys will be reset
to start at 0. Literal keys are unchanged. array shift () is used to remove the old-
est element from an array treated as a queue. It resets the array pointer to element 0 after
it is used.

Example:
Document 10.13 (arrayShift.php)

<?php

$queue = array('"orange", "banana'", "raspberry", "mango");
print_r($Squeue) ;

$rottenFruit = array_shift(Squeue);

echo '
' . $rottenFruit;
echo '
' . count(Squeue) ;
?>
Array ([0] => orange [l1] => banana [2] => raspberry
[3] => mango)
orange
3

(int) array unshift((array) $a),
(mixed) Svar [, (mixed)..])

Adds one or more elements to the “front” of the array (the “old” end). The entire list is
inserted in order, so the first item in the list to be added is the first element in the modi-
fied array. Numerical keys are reset to start at 0. Literal keys are unchanged.

10

278 10 Summary of Selected PHP Language Elements

Example:
Document 10.14 (arrayUnshift.php)

<?php

$a = array("orange", '"banana", "raspberry'", "mango");
print_r($a);

array unshift ($a, "papaya', "mangosteen") ;

echo '
' . count($a) . '
';

print_r($a);

?>

Array ([0] => orange [1] => banana [2] => raspberry
[3] => mango)

6

Array ([0] => papaya [1l] => mangosteen [2] => orange

[3] => banana [4] => raspberry [5] => mango)

(int) count ((mixed) Sa [, Smode])
(int) sizeof ((mixed) Sa [, Smode])

count () and sizeof () are equivalent. They return the number of elements in the
array Sa. If the value of Smode if it is not specified, its default value is 0. Setting
smode to 1 or to COUNT RECURSIVE will count elements recursively in a multidi-
mensional array.

The “recursive count” might not do what you expect. In a two-dimensional array with
five “rows” and four “columns” (refer to Document 9.4, two-D. php), the recursive count
option counts 5 x 4 rows, and then five rows again, and returns a value of 25. The number
of elements in this two-dimensional array is not 25, but 25 — 5 = 20.

(bool) sort ((mixed) $Sa [, ssort flag])

(bool) usort ((mixed) Sa,(string) compare_function_name)
(bool) asort ((mixed) Sa)

(bool) ksort ((mixed) Sa)

(bool) arsort ((mixed) Sa)

(bool) krsort ((mixed) Sa)

sort () sorts an array in ascending order. The $sort flagis optional:
SORT_ REGULAR (default value) compares items without changing types
SORT NUMERIC compares items as though they are numbers

SORT _STRING compares items as though they are strings

10.4 Functions and Language Constructs 279

usort () sorts an array by calling a user-supplied function that compares two ele-
ments in an array. This can be used to sort an array in descending rather than the default
ascending order.

sort () and usort () will work with keyed arrays, but the key information is lost.
asort () will sortan array by element value but will maintain the relationship between
keys and elements. ksort () willalso keep the relationship between keys and elements,
but it will sort the array by key value rather than element value. arsort () and
krsort () do the same thing, but sort in reverse order.

Document 10.15 (SortingFunctions.php)

<?php
function compare ($a,$b) {

return $b-$a;
}
$x=array(7,3,4,13,544,-17,-1,0) ;
sort ($x) ;
echo "normal sort
";
var_dump ($x) ;
sort($x,SORT_STRING);
echo '"
sort as string
";
var_dump ($x) ;
usort ($x, "compare") ;
echo '"
normal sort, descending order
";
var_dump ($x) ;

$a=array ('mine' => 'BMW', 'hers' => 'Lexus',
'ours' = '"House') ;
sort ($a) ;

echo '"
sort keyed array
";
var_dump ($a) ;
echo '"
but the keys haven't been retained:
";
foreach ($a as $key => $val)
echo 'Sa[' . $key . '] = '. $val . '
';
$a=array('mine' => 'BMW', 'hers' => 'Lexus',
'ours' => 'House');
asort ($a);
echo '"use asort() to retain the keys
";
foreach ($a as $key => $val)

echo 'Sa[' . $key . '] = '. $val . '
';
arsort($a);
echo

"use ursort () to sort keyed array in reverse order
";
foreach ($a as $key => $val)

echo 'Sa[' . $key . '] = '. $val . '
';
ksort($a);

10

280 10 Summary of Selected PHP Language Elements

echo
"use ksort () to sort by key rather than by value
";
foreach ($a as $key => $val)

echo 'Sa[' . $key . '] = '. $val . '
';
krsort($a);
echo

"use krsort() to sort array in reverse order by key
";
foreach ($a as $key => $val)

echo 'Sa[' . $key . '] = '. $val . '
';
?>

normal sort

array(8) { [0]=> int(-17) [1]=> int(-1) [2]=> int(0)
[3]1=> int (3) [4]=> int(4) [5]=> int(7) [6]=> int (13)
[7]1=> int (544) }

sort as string

array(8) { [0]=> int(-1) [1]=> int(-17) [2]=> int (0)
[3]1=> int(13) [4]=> int(3) [5]=> int(4) [6]=> int (544)
[7]1=> int(7) }

normal sort, descending order

array(8) { [0]=> int(544) [1]=> int(13) [2]=> int(7)
[3]1=> int (4) [4]=> int(3) [5]=> int(0) [6]=> int(-1)
[7]1=> int (-17) }

sort keyed array

array(3) { [0]=> string(3) "BMW" [1]=> string(5)
"House"

[2]=> string(5) "Lexus" }

but the keys haven't been retained:

Sa[0] = BMW

Sa[l] = House

Sa[2] = Lexus

use asort () to retain the keys

Sa[mine] = BMW

Sa[ours] = House

Salhers] = Lexus

use ursort to sort keyed array in reverse order
Salhers] = Lexus

Salours] = House

Sa[mine] = BMW

use ksort () to sort by key rather than by value
Salhers] = Lexus

Sa[mine] = BMW

Salours] = House

use krsort() to sort array in reverse order by key
Salours] = House

Sa[mine] = BMW

Salhers] = Lexus

10.4 Functions and Language Constructs 281

10.4.5
Miscellaneous Functions and Language Constructs

break [(int) $n]

Exits the current conditional or count-controlled loop structure. An optional argument
following break (not in parentheses) specifies the number of nested structures to be
exited.

(bool) ctype alpha((string) $s)

Returns true if all the characters in $s (which could be just one character) are letters,
a—z or A—Z, false otherwise. This function will not detect some letters in non-English
languages that lie outside the a—z or A—Z range in the ASCII-collating sequence.

die([(string) $status])
die([(int) $status])
exit ([(string) Sstatus])
exit ([(int) $status])

Equivalent functions to exit a script. If the argument is a string, it will be printed on exit.
An integer argument, in the range 0-254, is available for use as an exit error code in
other applications, but it is not printed.

(array) explode((string) Sdelimiter, (string) Ss,
[(int) $nl)
(string) implode ((string) Sdelimiter, (array) S$a)

explode () returns an array of strings consisting of substrings of the string $s, in
which the substrings are separated by the Sdelimiter. When $n is present,
explode () will build array elements from the first $n values, with the last element
containing the remainder of the string. The delimiter must match the file contents
exactly. For example, a " " (single space) delimiter implies that the values are sepa-
rated by one and only one space. In a file with numerical values, the elements of the
returned array can be treated as numbers in subsequent code.

implode () returns all elements of Sa as a concatenated string, with the elements
separated by Sdelimiter.

10

282 10 Summary of Selected PHP Language Elements

(void) list((mixed) {arguments}) = Sarray
//a construct, not a function

Assigns contents of an array to several variables.

(string) number format((float) $n[, (int) $decimals,]
[(string) Scharacter, (string) Sseparator)])

Formats $n, as specified by one, two, or four parameters (not three parameters). With
one parameter, a comma is placed between each group of thousands, with no decimal
point or fractional digits. With two parameters, $n will include $decimals digits to
the right of a decimal point, and with a comma between each group of thousands. With
four parameters, $Scharacter will be used before the significant digits and $sepa-—
rator designates the character used to separate groups of thousands.

Example:

$n=17343789.936;

echo number format ($n)."
";

echo number format ($n,2)."
";

echo number format($n,2,',',"' ')."
";

Output:
17,343,790
17,343,789.94
17 343 789,94

(int) strtotime((string) Stime)

Converts a date and time description, in any common format, into the number of sec-
onds from January 1, 1970, 00:00:00 GMT. For dates specified in xx/Xx/Xx or Xx/xx/
xxxx format, strtotime () assumes the U.S. custom of supplying dates as mm/dd/
yy or mm/dd/yyyy. (The custom in many other countries is to specify dates as dd/mm/
yy or dd/mm/yyyy.) strtotime () can be used to determine whether a date comes
before or after another date.

Example:

echo strtotime ("12/04/2007"); yields the result 1196744400

10.4 Functions and Language Constructs

(int) strval ((mixed) Svar)

Converts any scalar variable (not an array) into a string.

283

(void) var dump ((mixed) $Svarl [, (mixed) s$var2])

Displays structured information about one or more variables. (Displays only defined

elements of an array.)

More examples:
Using this data file, LatLon.dat

Site Lat Lon

brooks 40.01 -75.99
europe 50.5 5.3
south -30 88
farsouth -79 -167

Document 10.16 (ExplodeArray.php)

<?php
Sa=file ("LatLon.dat") ;
var_dump ($a) ;
echo '"
";
for ($i=1; $i<sizeof ($a); $i++) {
list($s,$1la, $1lo)=explode (" ",$a[$i]);
echo $s."”, ".$la.", ".$lo."
";

foreach ($a as $s) {
list ($site, $Lat, $Lon) =explode (" ", $s) ;

echo $site.”, ".$Lat."”, ".S$SLon."
";

?>

284 10 Summary of Selected PHP Language Elements

array(5) { [0]=> string(14) "Site Lat Lon " [1]=> string(21) "brooks
40.01 -75.99 " [2]=> string(17) "europe 50.5 5.3 " [3]=> string(14)
"south -30 88 " [4]=> string(17) "farsouth -79 -167" }

brooks, 40.01, -75.99

europe, 50.5, 5.3

south, -30, 88
farsouth, -79, -167
Site, Lat, Lon
brooks, 40.01, -75.99
europe, 50.5,5.3
south, -30, 88
farsouth, -79, -167

Document 10.17 (varDump . php)

<?php

$a = array('david', 'apple', 'Xena', 'Sue');
$b = array();
list($b[0],$b[1],$b[2],$b[3]) = $a;
var_dump ($b) ;

?>

array (4) {

[3]=> string(3) "Sue" [2]=> string(4) "Xena" [1l]=>
string (5) "apple"

[0]=> string(5) "david" }

Document 10.18 (arrayList.php)

<?php

$stuff = array('I', "love', "PHP.');

list ($who, $do_what, $to_what) = $stuff;
echo "$who $do_what $to_what” . "
";
list($who, , $to_what) = $stuff;

echo "$who $to_what
";

$a = array('david', 'apple', 'Xena', 'Sue');
$b = array();
list($b[0],$b[1],$b[2],$b[3]) = $a;
var_dump ($b) ;

echo "
Access with for.. loop.
";

for ($i=0; $i<count ($b); $i++) echo $b[$i] . "
";
echo "Access with foreach.. loop.
";

foreach ($b as $key => $x) echo "a[" . $key . "] =" . $x .
"
";

?>

10.4 Functions and Language Constructs 285

I love PHP.

1 PHP.

array(4) { [3]=> string(3) "Sue" [2]=> string(4) "Xena"
[1]=> string(5) "apple" [0]=> string(5) "david" }
Access with for... loop.

david

apple

Xena

Sue

Access with foreach... loop.
a[3] = Sue

a[2] = Xena

a[1] = apple

a[0] = david

Note that with scalar, named variables, as in

$stuff = array('I’', '"love', '"PHP."');
list ($who, $do_what, $to_what) = $stuff;

the result is what you expect. However, if the target of the list operation is an array, as in
$a = array('david', 'apple’', 'Xena', 'Sue');

$b array () ;
list($b[0],$b[1],$b[2],8b[3]) = $a;

then the output shows that the order of the keys is reversed. That is, the first key for the $b
array is 3 and not 0. If you use a for... loop with the numerical indices, you can still get
elements printed in the same left-to-right order in which they are defined in $a, but if you
use a foreach... loop to display the contents of $b, the order will be reversed.

(Add your own PHP language notes here.)

Using PHP from a Command Line 1 1

Abstract Chapter 11 gives a brief introduction to using PHP from a command line. This
capability does not require that PHP run on a server and it allows user input from the key-
board while a script is executing.

Throughout this book, the typical model for using PHP has been to create an HTML
document that serves as an interface to pass form field values as input to a PHP application
running on a local or remote server. Those values are automatically sent to the S POST []
array. Some of the shorter PHP code examples—those that do not require user input—run
as stand-alone applications on a server. For example, some of the examples in Chap. 9 use
“hard-coded” array elements just to illustrate some syntax for processing arrays.

In the HTML/server PHP implementation, input was provided through form fields and
there was no provision for entering input from the keyboard. In some cases, it might be
convenient to be able to run stand-alone PHP applications with keyboard input. It is pos-
sible to do this from a command line interface (CLI). Doing so removes the possibilities
for HTML formatting of PHP output in a browser window, so you may find this to be a
practical solution only for calculations with simple output requirements.

The first step toward learning how command line PHP works on a local computer is to
find where the php . exe program resides. On a local computer, this is probably not the
same folder from which you have previously executed PHP applications on your local
server. Assume that this file is located in C: \ PHP.

Next, create this simple PHP file with a text editor and store it as hello.phpin C:\
PHP:

<?php
echo "Hello, world!";
>

CLI 11.1 (CLI stands for “command line interface”) shows a record of a Windows
command line session that executes this file. You can type the line as shown or you can
type php.exe hello.php—the .exe extension is assumed on Windows computers.

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, 287
DOI 10.1007/978-0-85729-449-4 11, © Springer-Verlag London Limited 2011

n

288 11 Using PHP from a Command Line

CLI11.1

C:\PHP>php hello.php
Hello, world!
C:\PHP>

This is a trivial PHP “application,” but it is important because it differs fundamentally
from what has been presented in the previous PHP chapters of this book. This PHP appli-
cation runs directly from the directory in which the php . exe application resides—C: \
PHP on this computer. In fact, hello.php can be executed from any directory that con-
tains a copy of the php . exe file. This application did not run on a server!

There are several command line options that can be used when a PHP file is executed,
but they are not needed for the simple examples shown in this chapter. As always, there are
many online sources of more information about using a CLI with PHP.

PHP’s command line capabilities make much more sense if you can provide input to a
PHP application that actually does something useful. Consider this problem:

Write a stand-alone application that allows a user to enter an upper and lower limit and
then calculates the integral of the normal probability density function,

exp(—x*/2)

N3

using those two limits. This function cannot be integrated analytically, so numerical
integration is required. There are several ways to integrate functions numerically, but
so-called Trapezoidal Rule integration will work well for this problem:

pdf(x) =

Xfpdf(x)z(i_ilthih f(x +Ax)])A2X

Start the code for a CLI application with this short script:

<?php
$a = $_SERVER|['argv'];
print_r($a);

?>

In the same way that $ POST [] contains values passed from an HTML document, the
'argv' element of the $§ SERVER/[] array contains the values passed from a command
line. CLI 11.2 shows the execution of this script:

11 Using PHP from a Command Line 289

CLI11.2

C:\PHP>php pdf 1.php -.5 .5
Array
(

[0] => pdf_1.php

[1] => -.5

[2] => .5

Note that the arguments passed to the PHP application through the 'argv' array
include the file name of the application itself as the first element. Therefore, the lower and
upper limits for the numerical integration are the second and third elements of array $a,
$a[l] and $a[2]. Document 11.1 shows the complete code for this problem.

Document 11.1 (pdf 1.php)

<?php
$a = $ SERVER|['argv'];
print_r(+$a);
$x1=$a[l]; $x2=$a[2];
$n=200;
$sum=0; $dx=($x2-$x1)/$n;
for ($i=1; $i<=8%n; $i++) {
Sx=$x1+ ($i-1) *$dx;
Syl=exp (-$x*$x/2) /sqrt (2.*M_PI);
Sx=8$x1+$i*8dx;
Sy2=exp (-$x*$x/2) /sqrt (2.*M_PI);
$sum+=5y1l+$y2;
}
echo "\n" . $sum*$dx/2.;
?>

CLI11.3

C:\PHP>php pdf 1.php -.5 .5
Array
(
[0] => pdf_1.php
[1] => -.5
[2] => .5
)

0.38292418907776
C:\PHP>

n

290 11 Using PHP from a Command Line

CLI 11.3 shows a command line session that executes this code. The application expects
you to provide the upper and lower integration limits after the PHP file name. No prompts
are provided for this information, and it is the user’s responsibility to know what needs to
be entered. Note that the HTML formatting tags that have been used in previous chapters—

 to produce a line break, for example—will not work in this environment. Instead,
the final echo statement in Document 11.1b contains a line feed escape character, \n.

In general, it would be more helpful to be able to provide prompts to the user about
required input from within a PHP application being executed from the CLI. Document
11.2 shows another approach to evaluating the normal probability distribution function
which prompts user input from the keyboard, to be entered while the script is executing.

Document 11.2 (pdf 2 .php)

<?php
echo "\nGive lower and upper limits for evaluating pdf,\
nseparated by a space: ";
fscanf (STDIN, "%f %r",$x1,$x2);
echo $x1 . ", " . $x2;
$n=200;
$sum=0; $dx=($x2-$x1)/$n;
for ($i=1; $i<=$n; $i++) {
Sx=$x1+($i-1) *$dx;
Syl=exp (-$x*$x/2) /sqrt (2.*M PI);
Sx=$x1+$i*$dx;
Sy2=exp (-$x*$x/2) /sqrt (2.*M_PI);
$sum+=5y1l+$y2;
}
echo "\n" . $sum*$dx/2.;
?>

CLI11.4

C:\PHP>php pdf 2.php

Give lower and upper limits for evaluating pdf,
separated by a space: -3 3

-3, 3

0.99729820978444

Document 11.2 uses the fscanf () function. But, instead of using a file handle as the
input resource, fscanf () uses the reserved name STDIN (which must be written in
uppercase letters), which identifies the keyboard as the input resource. The keyboard can
be designated as the input resource for any of the other input functions that require a
resource identifier, such as fgets () and fread ().

11 Using PHP from a Command Line 291

It is even possible to write PHP applications that will execute either from a CLI or on a
server through an HTML document. Document 11.3a provides an HTML interface and
11.3b is a PHP application that will work either on a server or as a stand-alone CLI
application.

Document 11.3a (pdf 3 .htm)

<html>

<head>

<title>Integrate the normal probability density function
</title>

</head>

<body>

<h3>Evaluate the normal probability density function</h3>
<form method="post" action="pdf_ 3.php">

x1: <input type="text" name="x1" value="-0.5" />

x2: <input type="text" name="x2" value=".5" />

<input type="submit" value="Click to evaluate." />
</form>

</body>

</html>

Document 11.3b (pdf_3.php)

<?php
if ($_SERVER|['argc'] > 0) {
$a = $ _SERVER|['argv'];
print_r($a);
$x1=$a[l]; $x2=%a[2];
}
else {
$x1=$_POST['Xl'];
$x2=$_POST['X2'];
echo $x1 . ", " . $x2 . "
";
}
$n=200;
$sum=0; $dx=($x2-$x1)/$n;
for ($i=1; $i<=$n; $i++) {
$x=$x1+ ($i-1) *$dx;
Syl=exp (-$x*$x/2) /sqrt (2.*M_PI);
Sx=8$x1+$i*8dx;
Sy2=exp (-$x*$x/2) /sqrt (2.*M_PI);
$sum+=5yl+$y2;
}
echo $sum*$dx/2.;
?>

n

292 11 Using PHP from a Command Line

When Document 11.3b is run from a server, the output looks like this:

-0.5,.5
0.38292418907776

When Document 11.3b is run from a CLI, the output looks like it did for CLI 11.3.

In Document 11.3b, the "argc ' element of S SERVER[] contains the number of
command line parameters passed to the script when it is executed in a CLIL. If this value is
0, then the alternate path is executed to retrieve the values passed from Document 11.3a.

The capabilities introduced in this chapter for passing arguments from a command line
and accepting user input typed at a keyboard should be very familiar to C programmers, an
observation that most readers of this book may find totally irrelevant. Whether you find
using a CLI for some PHP applications useful or a giant leap backwards into the long-gone
and best forgotten days of text-based computing may depend on your previous programming
experience and quite possibly your age!

There is no doubt that a text-based CLI is primitive by the standards of today’s graphical
user interfaces (GUIs), but it still has its place for some kinds of applications. Once pro-
grammers started using PHP for web applications, they realized that if scripts could be
executed from a CLI it would be useful for many of the offline system-related tasks that
are required to maintain a large web site. Unlike server-based PHP, CLI-based PHP scripts
do not require close attention to file access privileges, which can be a major time saver for
a web site manager. Also, the programming overhead for these kinds of tasks can be much
lower with a simple text-based interface than it would be for more modern GUISs. Finally,
CLI scripts run very quickly in this text-based environment because they do not depend on
much larger and more complex GUI applications. So, CLI-based PHP quickly became
very popular with professional programmers.

For the casual programmer, the arguments favoring the use of a CLI are less compelling.
However, it is worth remembering that when PHP scripts run from a CLI, they are com-
pletely portable because they do not require a server. You can, for example, store such
applications on a directory on a USB pen drive along with the php . exe and (on a Windows
XP computer,) php5ts.d11 files. Here are the contents of a directory on a USB pen drive
that allows PHP applications to be run as CLI scripts.

The PHPInfo. php script produces a very hard-to-read unformatted text output when
it is run from the CLI, but the output from the pdf 1.php script is perfectly usable.
When you develop your own PHP applications, it may be worth considering whether they
can or should be made CLI-compatible, considering the output limitations.

Using Graphics with PHP

Abstract Chapter 12 introduces the GD graphics library that is often used in PHP
applications. It provides sample applications for creating pie charts, bar graphs, and line
graphs suitable for displaying scientific and engineering data.

12.1
Introduction

The GD is a library of graphics functions written in the C language, usable directly from other
languages such as PHP. This library is included as part of current PHP downloads and is typi-
cally activated by default when PHP is installed. It is an “open source” library, maintained by
an active user community. GD is used in Web applications for dynamically creating images
and it is a natural choice for creating simple science and engineering graphing applications to
supplement the text-based capabilities of PHP for reading and processing data files.

The GD includes functions for drawing text, lines, and shapes. These functions work at
the pixel level. To draw a line, for example, you must supply the starting and ending coor-
dinates, in pixel units. It requires careful planning and, sometimes, a lot of code to use
these functions to build graphics applications for displaying data.

The GD will create images in several popular graphics formats, including GIF, JPG,
and PNG. (The applications in this chapter will use GIF graphics.) A typical scientific and
engineering application for using GD with PHP is to access data on a server and create
graphic output “on the fly” that can then be displayed by your browser. It is also easy to
save that output as a separate file and, in fact, you can do both from within the same appli-
cation. Saved files can be accessed with any graphics application.

12.2
Writing GD Graphics Applications for Displaying Data

This section presents examples of applications for creating four types of graphs—pie
charts, horizontal and vertical bar graphs, and line graphs. The intent is not to create
sophisticated graphics applications, but to develop some basic capabilities for displaying

D.R. Brooks, Guide to HTML, JavaScript and PHP: For Scientists and Engineers, 293
DOI 10.1007/978-0-85729-449-4 12, © Springer-Verlag London Limited 2011

12

294 12 Using Graphics with PHP

modest amounts of data, using code that can be modified to meet problem-specific
needs.

Each application assumes that it will receive some input from an HTML document,
depending on the type of graph. For example, the user-supplied input required for the pie
chart application presented in this chapter consists of an array of up to 12 values that will
be used to generate the pie slices and another array containing an equal number of legends
to be associated with those values. HTML documents for testing each graphing application
are also provided.

In each case, some of the values required to define the graphing space and display the
output—for example, the diameter of a pie chart and the colors used for the slices—are
“hard-coded” into the application; otherwise, these values would have to be provided by
the user each time the function is called. Comments in each function provide information
about these properties so they can be changed as needed.

Developing code for graphics applications can be a challenge. The favored strategy for
creating text-based applications is to write the code one step at a time, using the echo
command or a function such as print r () to display temporary output and check the
results for each new section of code. Once the code has been thoroughly tested, then the
temporary output can be removed.

The same strategy is not readily available for GD graphics applications. Once an
image space has been defined, it is no longer possible to mix text commands
such as echo with graphics commands. The nearest GD equivalent of echo is
ImageString (). But, because the purpose of this function is only to output a user-
supplied string, and because this function must include coordinates to position the text
at a particular location within the image space, it is not nearly as convenient to imple-
ment as an echo command.

Not surprisingly, when graphics code contains an error, the resulting messages may not
be very helpful. The line position of actual syntax errors will be given, but often the mes-
sage consists of nothing more than some version of “Your code contains an error so I can’t
run it.” This will happen whenever you provide inappropriate input to a GD graphics routine
even though that input doesn’t create a syntax error. So, when you write graphics code,
you should start with something very simple, such as defining an image space with a
nonwhite background color (so you can see how big the space is on your monitor) and
displaying some text. After that, every change should be tested before proceeding. If you
try to write an entire graphics application all at once, without lots of intermediate testing,
you will be sorry!

One strategy for developing a graphing application that requires calculations to convert
values to coordinates in an image space is first to write code to do the calculations in a
text-based function. For a pie chart, for example, it is necessary to convert the data values
into angles that will define the starting and ending points of the pie slices. It may be helpful
to display the results of these calculations before actually trying to draw the chart. When
the results have been checked, then the echo commands can be commented out or
removed and the graphics functions can be added.

Finally, it is helpful to include a default set of data in each graphing function, so the
function will display some representative output without needing any external output. This

12.2 Writing GD Graphics Applications for Displaying Data 295

speeds up the process of developing the application because you can concentrate on writing
code for managing the graphics output and you don’t have to call the function from an
HTML document every time you make a change to the code.

In the sections that follow, the applications are developed in stages that follow these
guidelines for a step-by-step approach. The graphic output for each significant stage is also
shown. Just as it is a mistake to try to write an entire application all at once, it is also a
mistake to force you to read and understand the code for an entire application! Although
these examples may seem redundant, it is important to study the changes implemented at
each step along the way to developing the final application.

12.2.1
Getting Started

The first step in creating any graphics application is to follow the advice given in the
previous section and create an image space. This space serves as the pixel-based “canvas”
upon which graphic output will be drawn.

Document 12.1 (ImageSpace.php)

<?php

Header ('"Content-type: image/gif");

// define title

$TitleString = "Graphics Display Space";

// dimensions of plotting space

$x max = 800; $y max = 200;

// define font size (1-5, smallest to largest)

sfont size=5;

// starting point for title

$x_title = 10; $y_title = 30.;

// create image space

$im = ImageCreate ($x_max,$y max) or

die ('"Cannot Initialize new GD image stream");

// define colors —-- first call fills background

$background_color = ImageColorAllocate ($im, 234, 234, 234);

// define text color

$black = ImageColorAllocate ($im,0,0,0);

// display text

ImageString($im,$font_size,0,0,”(0,0)",$black);

ImageString ($im, $font size, 720,180, "(800,500)",$black) ;

ImageString ($im, Sfont size, $x_title,$y title,
$TitleString, $black) ;

// display image

ImageGIF ($im) ;

12

296 12 Using Graphics with PHP

// release resources
ImageDestroy ($im) ;
?>

Every GD graphics application includes at least these few lines of code:

// Identify this as a document that will create an image.
Header ('"Content-type: image/gif");

// Create an image space.

$x max = ..; $y max = .;
// Define lower right-hand corner of image space.
$im = ImageCreate ($x_max, $y max);

// Send the image to a browser.

ImageGIF ($im) ;

// Release the resources needed to store the image.
ImageDestroy ($im) ;

Every application must have a Header line before the image can actually be created
and sent to a browser (or saved as a file). In Document 12.1, the header text specifies that
the document will create a GIF image. Other possibilities include PNG and JPG images,
with the content type given as image/png or image/jpeq in the Header line.

The image space needs a user-supplied resource handle, assigned to $im in Document
12.1; this variable plays the same identifying role as a user-supplied file handle. The
variables $x_max and $y max, which can be “hard-coded” or supplied as user input,
contain the (x,y) pixel coordinates for the lower right-hand corner of the image space—
in these applications, the upper left-hand corner of the image space is always assumed
to be (0,0).

The image is actually created and sent to a browser with a call to ImageGIF ($im),
ImagePNG ($im, or ImageJPEG ($im), consistent with the text in the Header
line.

The code in Document 12.1 creates an image space 800 pixels wide by 200 pixels tall,
with a light gray background and the text “Graphics Display Space” displayed just below
the upper left-hand corner. Remember that x-pixels are counted from left to right and

12.2 Writing GD Graphics Applications for Displaying Data 297

y-pixels are counted from top to bottom—the upper left-hand corner is at coordinates (0,0)
and the lower right-hand corner of this example is at (800,200). Note that pixel offsets,
(720,180) instead of (800,200), are required to display the lower right-hand coordinates
inside the image space, but not for the text appearing in the upper left-hand corner. This
demonstrates that the coordinates expected by ImageString () correspond to the upper
left-hand corner of the text string. If the ImageString () function is asked to draw text
outside the graphics text, it won’t produce an error message, but nothing will be
displayed.

The convention of measuring y-coordinates positively downward from the top of the
image space means that when values are plotted on an x—y axis, the y-values are “upside
down.” That is, increasing a value along the y-axis corresponds to a smaller pixel value.

12.2.2
Pie Charts

A pie chart application is considered first because it is the simplest to implement, using GD
functions that make it easy to draw a colored segment of a circle. Start first by defining the
image space, as in the previous section.

Document 12.2a (piel.php)

<?php
Header ('"Content-type: image/gif");
// define title
$TitleString = "Pie Chart";
// dimensions of plotting space
$x_max = 800; $y max = 500;
// starting point for title
$x_title = 10; $y_title = 30.;
// create image space
$im = ImageCreate ($x_max, $y max) or
die ('"Cannot Initialize new GD image stream");
// define colors —-- first call fills background
$background_color = ImageColorAllocate ($im, 234, 234, 234);
// define text color
$black = ImageColorAllocate ($im,0,0,0);
// display text
ImageString ($im, 5, $x_title, Sy title, $TitleString, $black);
// display image
ImageGIF ($im) ;
// release resources
ImageDestroy ($im) ;
?>

12

298 12 Using Graphics with PHP

There is no need to show the output from this code, which consists just of a blank space
and the “Pie Chart” title. The next step is to add some default data and create the legend
block. For this application, the number of pie slices is limited to no more than 12.

Document 12.2b shows the code to do this, but these additions should not be made all
at once! Start by adding the new variables needed to accomplish the task. Make sure
there are no syntax errors and that the application still continues to run even though it
doesn’t display anything new. Add the code to display the legend at the very end of this
process.

Document 12.2b (pie2.php)

<?php

Header ('"Content-type: image/gif");

// define title

$TitleString = "Pie Chart";

// default data for testing, up to 12 values

$A = array(60,50,40,100,50,50,75,5,10,15,20,35);

$legends =

array ("Iteml"”, "Item2", "Item3", "Item4", "Itemb5", "Item6",
"Item7","Item8", "Item9", "Iteml0", "Iteml1", "Iteml2") ;

// upper left-hand corner of legend space

$x0_legend = 400; $y0_legend = 75;

// size of legend color boxes

$legend size = 25;

// vertical space between legend color boxes;

$dy_legend=30;

// dimensions of plotting space

$x_max = 800; $y max = 500;

// create image space

$im = ImageCreate ($x_max,$y max) or die ("Cannot Initialize

new GD image stream");

// define colors —-- first call fills background

$background;polor = ImageColorAllocate ($im, 234, 234, 234);

// define text color

$black = ImageColorAllocate ($im,0,0,0);

// define pie slice colors

$ColorCode =

array("255,0,0","51,0,255","51,255,51","255,153,0",
"0,204,153","204,255,102",
"255,102,102","102,204,255","204,153,255","255,51,153",
"204,0,255","255,255,51");

$PieColor=array () ;

for ($i=0; $i<12; $i++) {
$ColorCodeSplit = explode (', ',$ColorCode[$i]);
$PieColor([$i] =

ImageColorAllocate ($im, $ColorCodeSplit[0],

12.2 Writing GD Graphics Applications for Displaying Data 299

$ColorCodesplit[1l], $ColorCodeSplit[2]);
}
// starting point for title
$x title = 10; $y title = 30.;
// display text
ImageString($im, 5, §x_title, §y title, $TitleString, $black);
// Display legend
$n = count($A);
for ($i=0; $i<$n; $it++) {
ImageFilledRectangle ($im, $x0_legend,
$y0_legend+$dy legend*$i, $x0 legend+$legend size,
$y0_legend+$dy legend*$it+$legend size, §PieColor([$il);
Imagestring ($im, 5, $x0_legend+$legend size+5,
$y0_legend+$dy legend*$i+5, $legends[§i], $black) ;
}
// display image
ImageGIF ($im) ;
// release resources
ImageDestroy ($im) ;
?>

Pie Chart

(See Color Example 5 for full-color output.)

12

300 12 Using Graphics with PHP

Note how the pie slice colors are defined as text strings of RGB (red/green/blue) values
and converted to an array of color specifiers with the explode () function.

The shaded code draws the color squares and their legends. The terminating condition
on the for... loop ($1<$n) is set not to a constant value, but to a value determined by the
length of the data array; using this kind of calculation to set limits on for... loops is very
important in order to make the code as flexible as possible.

All that remains is to convert the data values into pie slice angles and display the chart,
as shown in Document 12.2c.

Document 12.2¢ (pie3.php)

<?php
Header ('"Content-type: image/gif");
$TitleString = "Pie Chart';

$A=array (60,50,40,100,50,50,75,5,10,15,20,35) ;

$legends = array("Iteml"”, "Item2","Item3","Item4", "Item5",
"ITtemé6", "Item7", "Item8", "Item9", "Item10", "Iteml1", "ITteml2") ;
// dimensions of plotting space

$x_max = 800; $y max=500;

// center point for pie chart

$x0 = 200; $y0 = 250;

// diameter of pie

$dia = 360;

// starting point for title

$x_title = 40; $y_title = 40.;

// upper left-hand corner of legend space

$x0_legend = 400; $y0_legend = 75;

// size of legend color boxes

$legend size = 25;

// vertical space between legend color boxes;

$dy_legend = 30;

// create image space

$im = ImageCreate ($x_max,$y max) or die ("Cannot Initialize
new GD image stream");

// define colors

$background color = ImageColorAllocate ($im, 234, 234, 234);
// first call fills background

$black=ImageColorAllocate ($im,0,0,0) ;

// pie section colors for up to $n max sections

$ColorCode =

12

302 12 Using Graphics with PHP

(See Color Example 6 for full-color output.)

The sizing of the pie slices is done in the shaded code. With the starting angle set to 0°,
the starting point for the pie slices drawn with ImageFilledArc () is the “three
o’clock” position (the position of the positive x-axis in a conventional x—y coordinate
plane), with angles increasing clockwise from there.

The final steps in creating this application are converting the code from Document
12.2¢ to a function, writing program code to accept input from an HTML document, and
passing that input to the function. It is possible to pass the chart title and all the pie slice
values and legends individually from HTML. However, another possibility is to put these
values in a text file and pass the name of that file from the HTML document to the PHP
application. Document 12.3a gives the very simple HTML code:

Document 12.3a (pieChartTest.htm)

<html>

<head>
<title></title>
</head>

<body>

12.2 Writing GD Graphics Applications for Displaying Data 303

<form method="post" action="pieChart.php" />
<input type="text" value="pieChart.dat" name="fileName"
/>

<input type="submit"
value=
"Click here to generate pie chart from specified file." />
</form>
</body>
</html>

The default data file for generating this chart, pieChart.dat, looks like this:

Quarterly Sales

17.7 January-March

15 April-June

19.2 July-September
30 October-December

Although it may not be obvious, this file is very easy to read because the text for the
legends contains no spaces between words. You will have to work harder if there are spaces
in these legends! (In that case, it might be easiest to put each legend on a separate line.)

The final pie chart application is given in Document 12.3b. The code in Document
12.2¢, pie3.php is simply copied inside in a function. The only change is that the default
title, array values, and legends for the chart have been commented out so they will be
replaced with the values passed to the function from the main program.

Document 12.3b (pieChart .php)

<?php

function generatePie ($TitleString, $A, $legends)
Header ('"Content-type: image/gif");
//8TitleString="Pie Chart";

//SA=array (60,50,40,100,50,50,75,5,10,15,20,35) ;
//Slegends=array ("Iteml","Item2","Item3","Item4", " "Item5",
//"Item6","Item7","Item8", "ITtem9","Iteml10", " "ITtemll",
//"Tteml2") ;

// dimensions of plotting space

$x_max=800; $y max=500;

// center point for pie chart

$x0=200; $y0=250;

// diameter of pie

$dia=360;

// starting point for title

$x_title=40; Sy title=40.;

// upper left-hand corner of legend space

304

N

2 Using Graphics with PHP

$x0_legend=400; $y0_legend=75;
// size of legend color boxes
$legend size=25;
// vertical space between legend color boxes;
$dy_legend=30;
// create image space
$im = ImageCreate ($x max, $y max) or
die ("Cannot Initialize new GD image stream");
// define colors
$background_color = ImageColorAllocate ($im, 234, 234, 234);
// first call fills background
$black=ImageColorAllocate ($im,0,0,0) ;
// pie section colors for up to 12 sections
$ColorCode =
array("255,0,0","51,0,255","51,255,51","255,153,0",
"0,204,153","204,255,102","255,102,102","102,204,255",
"204,153,255","255,51,153","204,0,255","255,255,51");
$PieColor=array () ;
for ($i=0; $i<12; $i++) {
$ColorCodeSplit = explode (', ', $ColorCode([$i]);
$PieColor[$i] = ImageColorAllocate ($im,
$ColorCodeSplit[0], $ColorCodeSplit[1l], $ColorCodeSplit[2]) ;
}
// Convert data array into angles, total of 360 deg.
$sum=array sum($3);
$n=count ($A) ;
$start=array () ;
$end=array () ;
$start[0]=0;
for ($i=0; $i<S$n; $i++) {
$slice=$A[$i]/$sum*360;
if ($i>0) $start([$i]=$end[$i-1];
$end[$i]=$start[$i]+$slice;
}
// Display title
ImageString ($im, 5, $x_title, Sy _title, $TitleString, $black) ;
// draw filled arcs
for ($i=0; $i<S$n; $i++) {
ImageFilledArc ($im, $x0, $y0, $dia, $dia, $start[$i], $end[$i],
$PieColor[$i], IMG_ARC_PIE);
}
// Display legend
for ($i=0; $i<S$n; $i++) {
ImageFilledRectangle ($im, $x0_legend,
8y0_legend+$dy legend*$i, $x0_legend+$legend size,
$y0_legend+$dy legend*$i+$legend size, $PieColor[$i]);

12.2 Writing GD Graphics Applications for Displaying Data

ImageString ($im, 5, $x0_legend+$legend size+t5,
$y0_legend+$dy legend*$i+5,$legends[$i], $black) ;
}
// Display and release allocated resources.
ImageGIF ($im) ;
ImageDestroy ($im) ;
}
// MAIN PROGRAM —=—=—==—=—=———— =
$inFile=$_POST["fileName"];
//SinFile="pieChart.dat";
$in=fopen ($inFile, "r") or exit("Can't open this file.");
$A=array () ;
$legends=array () ;
// rtrim() removes line feeds, etc. from end of string
$Title=rtrim(fgets ($in)) ;
$i=-1;
while (!feof ($in)) {
Si++;
fscanf ($in, "¢f $s",$A[$i],$legends[$i]);
$A[$i]=round ($A[$i],0);
}
fclose ($in) ;
generatePie ($§Title, $A, $legends) ;
?>

(See Color Example 7 for full-color output.)

305

12

306 12 Using Graphics with PHP

The main program is responsible for reading data from the piechart.dat file and
passing it to function generatePie (). This code is straightforward, but note the
use of the rtrim () function to remove return and linefeed characters from the end of the
title string. If you don’t include this step, “garbage” characters will probably be displayed
at the end of the chart title. (Try it and see what happens on your system.)

The data file used to generate this output is, on purpose, different from the default data,
just to make sure that the application works with a user-specified number of data values.
As noted previously, there is currently a hard-coded limit of 12 for the maximum number
of data values, because only 12 pie slice color codes are defined. There is no reason why
this limit couldn’t be increased if needed, by increasing the number of pie slice color
definitions, but pie charts are not the best choice for displaying large numbers of values.

12.23
Horizontal Bar Charts

A bar chart application is more difficult to implement than the pie chart application in the
previous section, because it requires more data scaling—converting data values to pixel
coordinates within a predefined space. As before, the first step is to set up an image space,
but there is no reason to show this code separately again. Past this simple first step, some
thought is required about what kinds of data the bar chart will display. For now, assume
that the data values can have positive or negative values, and that the minimum possible
negative value has the same magnitude as the maximum possible positive value.

Document 12.4a shows the code required to display such data. The default arrays of
values and labels represent monthly deviations from climatological mean temperatures, so
there will be 12 labels with 12 horizontal bars. The values are assumed to fall within the
range +2.5°.

Document 12.4a (Hbarl.php)

<?php

Header ('"Content-type: image/gif");

// define default data

$chartTitle = "Monthly temperature deviations from

climatological average';

// Assumes equal +/- values --> odd number of values

$x_labels = array("-2.5","-2.0","-1.5","-1.0","-0.5",
"0.0","+0.5","+1.0","+1.5", "+2.0", "+2.5");

$y_labels =

array ("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",

"Oct", "Nov", "Dec") ;
$x_va1ues = array(1.3,0.9,-0.2,-0.5,1,0,-2.5,
-.5,.6,.2,.7,2.3);
$n_x = count($x_labels); // number of x labels
$n_y = count ($y_labels); // number of y labels

12.2 Writing GD Graphics Applications for Displaying Data 307

$xvalue max = 2.5;

// define image space

$x_max = 800;

$y_max = 500;

// starting coordinates for title
$x0_title = 10; $y0 title = 10;

// space between x-axis labels

$dx = 50;

// space between horizontal bars

$dy = 30;

// y-tic size

$y _tic = 10;

// bar height

$bar_height = 25;

// label offsets

$xlabel offset = 40; $ylabel offset = 80;
$xaxis_xoffset 0; $xaxis_yoffset = 20;
$x0 = 100; $y0 = 60; // starting coordinates for of x—-axis

// create and color image space background
$im = imageCreate ($x_max, $y max) or die ("Cannot
Initialize new GD image stream");
$background color = ImageColorAllocate ($im,234,234,234);
// define colors
$text_color = ImageColorAllocate ($im,0,0,0); // text color
$line_color = ImageColorAllocate ($im,0,0,0); // line color
$title font_size = 5; // large font for title
// black text for title
$title_color = ImageColorAllocate ($im,0,0,0);
// draw chart title
ImageString ($im, $title font size, $x0_title, $y0_title,
SchartTitle, $title color);
// draw x-axis
ImageLine ($im, $x0, $y0, $x0+$dx* ($n_x-1),$y0, $line color);
// draw x labels
for ($i=0; $i<$n_x; $i++)
ImageString ($im, $title font size, $x0+$xaxis xoffset+$i*$dx,
Sy0-$xaxis yoffset, $x_labels([$i], $text color);
ImageLine ($im, $x0+$xaxis xoffset+$i*$dx, $y0,
$x0+$xaxis xoffset+$i*$dx, $y0+Sy tic,$line color);
}
// draw y labels
for ($i=0; $i<$n_y; $i++)
ImageString ($im, $title font_size, $xlabel offset,
Sylabel offset+$i*$dy,$y_labels([$i], $text color);

12

308 12 Using Graphics with PHP

// Create GIF image.

ImageGIF ($im) ;

// Release allocated resources.
ImageDestroy ($im) ;

?>

The last step is to scale the data values and generate their bars. Inside a for... loop, this
code will do the scaling from values to pixels:

$x _scaled = $x values[$i]/$xvalue max*S$dx*floor ($n_x/2);

Where $xvalue max is the magnitude of the largest possible data value. Document
12.4b shows the complete code.

Document 12.4b (Hbar2 . php)

<?php
Header ('"Content-type: image/gif");
// define default data
$chartTitle = "Monthly temperature deviations from average";
// Assumes equal +/- values —--> odd number of values
$x labels = array("-2.5","-2.0","-1.5","-1.0",
"-0.5","o", "+0.5","+1.0", "+1.5","+2.0", "+2.5");

12.2 Writing GD Graphics Applications for Displaying Data 309

$y_labels =

array ("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",
"Oct", "Nov'", "Dec") ;

$x_values = array(1.3,0.9,-0.2,-2.5,1,0,-1.1,

-.5,.6,2.2,.7,.3);

$n_x = count($x_labels); // number of x labels

$n_y = count ($y_labels); // number of y labels

$xvalue max = 2.5;

// define image space

$x_max = 800;

$y_max = 500;

// starting coordinates for title

$x0_title = 10; $y0_title = 10;

// space between x-axis labels

$dx = 50;
// space between horizontal bars
$dy = 30;

// y-tic size

$y_tic = $dy* ($n_y+1);

// bar height

$bar_height = 25;

// label offsets

$xlabel offset = 40; $ylabel offset = 80;
$xaxis_xoffset = 0; $xaxis_yoffset = 20;
$x0 = 100; $yO 60; // starting coordinates for of x-axis
// location of vertical 0O-axis
$x0axis_offset = $x0 + $dx*floor ($n_x/2);
$x_length = 100;

// create and color image space background

$im = imageCreate ($x max, $y _max) or die ("Cannot
Initialize new GD image stream");

$background color = ImageColorAllocate ($im,234,234,234);
// define colors

// text color

$text color = ImageColorAllocate ($im,0,0,0);

// line color

$line_color = ImageColorAllocate ($im,0,0,0);

// negative bar color

$negative = ImageColorAllocate ($im,0,0,255);

// positive bar color

$positive = ImageColorAllocate ($im,255,0,0);

// large font for title

$title_font size = 5;

// black text for title

12

310 12 Using Graphics with PHP

$title color = ImageColorAllocate ($im,0,0,0);
// draw chart title
ImageString ($im, $title_font size, $x0_title, $y0_title,
$chartTitle, $title_color);
// draw x-axis
ImageLine ($im, $x0, $y0, $x0+$dx* ($n_x-1),8y0, $1line_color) ;
// draw x labels
for ($i=0; $i<$n_x; $i++)
ImageString ($im, $title font_size, $x0+$xaxis xoffset+$i*$dx,
$y0-$xaxis_yoffset, $x_labels[$i], $text color);
ImageLine ($im, $x0+$xaxis xoffset+$i*$dx, $y0,
$x0+$xaxis_xoffset+$i*$dx, $y0+8y_tic, $line_color);
}
// draw y labels and bars
for ($i=0; $i<$n_y; $i++) {
$x_scaled =
ImageString ($im, $title_font size, $xlabel offset,
$ylabel offset+$i*$dy, $y_labels[$i], $text_color);
}
// draw bars
for ($i=0; $i<$n_y; $i++) {
$x_scaled = $x_values[$i]/$xvalue_max*$dx*floor ($n_x/2);
$color = $negative;
if ($x_scaled >= 0) $color = $positive;
ImageFilledRectangle ($im, $x0axis_offset,
$ylabel offset+$i*$dy, $x0axis_offset+$x scaled,
$ylabel offset+$i*$dy+$bar height, $color) ;
}
// draw vertical 0O-axis
ImageLline ($im, $x0axis_offset, $y0, $x0axis_offset,
$y0+$dy*n_y+dy, $line color);
// draw line across bottom
ImageLine ($im, $x0, $y0+$dy*n_y+dy, $x0+$dx* ($n_x-1),
Sy0+$dy*$n_y+$dy, $line color) ;
// Create GIF image.
ImageGIF ($im) ;
// Release allocated resources.
ImageDestroy ($im) ;
?>

12.2 Writing GD Graphics Applications for Displaying Data 3N

Note that the order in which lines and objects are drawn determines which lines and
objects are “on top.” The vertical grid lines are drawn before the bars and the vertical line
down from x=0 is drawn after the bars, so it is visible over them.

There are some questions about the general applicability and flexibility of this code.
What happens if the maximum data range is reduced or expanded? What happens if there
are no negative data values and the x-axis should start at 0? Or if both the minimum and
maximum values for a bar are greater than 0? Or if the magnitudes of the minimum
negative and maximum positive value are not the same?

The final version of this application will address these issues, with an HTML interface
that will allow testing of various options. Some “housekeeping” inputs will also be allowed,
such as the number, width, and spacing of bars.

Document 12.5a (HbarChartTest.htm)

<html>
<head>
<title></title>
</head>
<body>
<h3>Create a horizontal bar chart</h3>
<form method="post" action="Hbarchart.php">Chart title
(text): <input size="50" type="text" name="Title"
value="Monthly ranges" />

Data arrays (values separated by one space) :

Minimum values: <input size="50" type="text"

12

312 12 Using Graphics with PHP

name="A min" value="0.1 6 3 5.3 9.9 8.7 0.5 2 3 4 5 6"
/>

Maximum values: <input size="50" type="text"
name="A max"
value="1.5 2 7.8 4.5 6.4 7 9 10 3.3 0.5 4.4 3.3" />

Minimum data value: <input size="4" name="min" value="0"
/>

Maximum data value: <input size="4" name="max" value="10"
/>

X-axis labels (string values separate by one space):
<input size="50" type="text" name="X"
value="01 2 3456 7 8 9 10" />

Bar labels (string values separated by one space):
<input size="80" type="text" name="Y¥Y"
value="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec"
/>

Bar height (pixels): <input type="text" name="BarHeight"
value="25" size="3" />

Vertical space between bars (pixels):
<input type="text" name="dy" value="30" size="3" />

<input type="submit"
value="Click here to generate horizontal bar chart." />

<input type="reset"
Value =
"Click here to reset all fields to their original values."
/>

</form>
</body>
</html>

Create a horizontal bar chart

Chart ttle (text). Monthly ranges

Data arrays (values separated by one space)
Mirumum values: 01635399870523456
Maamum values 152784564791033054433
Miwmum data value. 0

Maxamum data value: 10

XK-azas labels (stnng values separate by one space) 012345678910
Bar labels (stnng values separated by one space)
Jan Feb Mar Apr May Jun Jul Aug Sep OctNov Dec
Bar hewght (pzels) 25

Vertical space between bars (pueels). 30

| |Click here to generate honzontal bar chart.| |

| Click here to reset all figlds to their onginal values |

12.2 Writing GD Graphics Applications for Displaying Data 313

Document 12.5a allows the user to specify two data arrays—one holding the minimum
data values for each bar and one holding the maximum values. This provides the flexibility
needed to process both negative and positive data values. Note that it makes no difference
whether a value in the “minimum” array is actually smaller than its corresponding “maxi-
mum” value—these values just mark the bounds of the bar, which can be drawn either
from left to right or right to left.

Document 12.5b gives the PHP code to process these data. The code from Document
12.4b is modified to draw bars using pixel values along the x-axis scaled from the minimum
and maximum data arrays. This code is incorporated into a function called from a main
program that extracts values from the HTML document.

Document 12.5b (HbarChart.php)

<?php

function HorizontalBarChart ($Title, $A min, $A max, $X, $Y,
$bar_height, $dy) {

Header ('"Content-type: image/gif");

// define default data

SchartTitle = $Title;

// Allows +/- values

$xmin values = explode (' ',$A min);
$xmax values = explode (' ',$A max);
$x_labels = explode(' ',$X);

$y_labels = explode(' ',$Y);

$n_x count ($x_labels); // number of x labels
$n_y = count ($y_labels); // number of y labels
$xvalue max=$ POST|["max"];
$xvalue min=$ POST|["min"];

// define image space

$x_max = 800;

$y_max = 500;

// starting coordinates for title

$x0_title = 10; $y0_title = 10;

// space between x-axis labels

$dx = 50;

// space between horizontal bars

// y-tic size

$y_tic=8dy* ($n_y+1);

// label offsets

$xlabel offset = 40; $ylabel offset = 80;
$xaxis_xoffset = 0; $xaxis_yoffset = 20;

$x0 = 100; $yO
// location of vertical 0O-axis
$x0axis_offset = $x0 + $dx*floor ($n_x/2);
$x_length = 100;

60; // starting coordinates for x-axis

12

314 12 Using Graphics with PHP

// create and color image space background
$im = imageCreate ($x max, $y max) or die ("Cannot
Initialize new GD image stream");
$background_color = ImageColorAllocate ($im,234,234,234);
// define colors
$text_color = ImageColorAllocate ($im,0,0,0); // text color
$line_color = ImageColorAllocate ($im,0,0,0); // line color
// negative bar color
$negative = ImageColorAllocate ($im, 0,0,255);
// positive bar color
$positive = ImageColorAllocate ($im,255,0,0);
Stitle font size = 5; // large font for title
// black text for title
S$title_color = ImageColorAllocate ($im,0,0,0);
// draw chart title
ImageString ($im, $title_font_size, $x0_title, $y0_title,
$chartTitle, $title color);
// draw x-axis
ImageLine ($im, $x0, $y0, $x0+$dx* ($n_x-1),$y0, $line color);
// draw x labels
for ($i=0; $i<$n_x; $i++)
ImageString ($im, $title font size, $x0+$xaxis xoffset+$i*$dx,
Sy0-$xaxis_yoffset,$x labels[$i], $text color);
ImageLline ($im, $x0+$xaxis xoffset+$i*$dx, $y0,
$x0+$xaxis xoffset+$i*$dx, $§y0+Sy_tic,$line color);
}
// draw y labels and bars
for ($i=0; $i<$n_y; $i++)
ImageString ($im, $title font_size, $xlabel offset,
Sylabel offset+$i*$dy,$y_labels([$i], $text color);
}
// draw bars
for ($i=0; $i<$n_y; $i++)

$xmin_scaled = ($xmin values([$i] - $xvalue min)/
($xvalue max - $xvalue min) * ($n_x-1) *$dx;
$xmax scaled = ($xmax values[$i] -

$xvalue min)/ ($xvalue max - $xvalue min) * ($n_x-1) *$dx;
$color = $negative;
if ($xmin _values[$i] >= 0) $color = $positive;
ImageFilledRectangle ($im, $x0 + $xmin_scaled,
Sylabel offset + $i*$dy,$x0 + $xmax scaled,
Sylabel offset + $i*$dy + $bar_ height, $color);
}
// draw vertical 0O-axis

//

12.2 Writing GD Graphics Applications for Displaying Data 315

ImageLine ($im, $x0axis offset,$y0,$x0axis offset,Sy0+$dy*$n y

+8dy,$line color);

// draw line across bottom

ImageLine ($im, $x0, Sy0+$dy*n_y+dy,
$x0+$dx* ($n_x-1),$y0+$dy*$n_y+S5dy, $1line_color);

// Create GIF image.

//ImageGIF(Sim, "HbarChart.gif") ;

ImageGIF ($im) ;

// Release allocated ressources.

ImageDestroy ($im) ;

}

// MAIN PROGRAM —=== === === —mm o mm e

$Title = $_POST["Title"];

$A min = §_POST["A min"];

$A max $_POST["A max"];

$X = $§_POST["X"];

$Y = $§ POST["Y"];

$BarHeight = $ POST|["BarHeight"];

$dy = $_POST["dy"];

HorizontalBarChart ($Title, $A min, $A max, $X, $Y, $BarHeight,
$dy) ;

?>

Depending on the choices a user makes in the HTML document interface, it is possible
that the requested bar chart may not fit in the defined image space, 500 pixels high by 800
pixels wide. This is because some values are “hard-coded” in the PHP document. For
example, the distance between x-axis labels is set at 50 pixels. The chart shown in the

12

316 12 Using Graphics with PHP

sample output is 13 x-axis units wide and that is the maximum that can be accommodated
with the existing code. It is certainly possible to add code in the PHP document to scale the
x-axis spacing so the data will fit within the available space, but every such increase in
flexibility comes at the cost of increasingly complicated code.

12.24
Vertical Bar Charts

As usual, the first step is to set up an image space. The next step is to define the graphing
space within the image space. One approach is to define the graphing space not in terms of
absolute pixels, but based on multiples of the number of x-axis and y-axis labels. To do
this, both the number of x-axis and y-axis labels and the space between labels must be
specified. Document 12.6a shows how to do this. This document also includes a set of
default x- and y-axis labels; these define a bar chart with 31 values (which could represent
days of the month) between 0 and 100.

Document 12.6a (Vbarl.php)

<?php
Header ('"Content-type: image/gif");
// define default data
$y_labels=array("0", IIlO”, "20", ”30", "40”, "50", ”60", "’70", ”80"
, "90", ”l 00") ,.
$x_labels:array(”0 "’ Ill ”, ”2 "’ II3 ”, ”4 "’ II5 ”, ”6"’ II7”, ”8 "’ II9”,
”10", "ll ”, "12", ”13"’ "14”, "15", ”l 6", "l 7”, ”18", "19”, "20",
”21 ", "22”, "23", ”24 "’ "25”, "26", ”2’7", "28”, ”29", "30”, "31 ") ’.
$n_x=31; // number of x-axis labels
$n_y=11; // number of y-axis labels
// define image space
$x_max = 800;
$y_max = 300;
// define graphing space 1in terms of intervals
// lower left-hand corner of graphing space
$x0 = 80; $y0 = 250;
$x_gap = 20; $y _gap = 20; // interval between axis labels
// create and color image space background
$im = imageCreate ($x_max, $y max) or die ("Cannot
Initialize new GD image stream");
$background _color = ImageColorAllocate ($im,234,234,234);
$title_font_size = 5; // large font for title
// black text for title
$title color = ImageColorAllocate ($im,0,0,0);
_ g
$chartTitle = "Bar Graph';
// starting coordinates for title
$x0_title = 10; $y0_title = 10;

12.2 Writing GD Graphics Applications for Displaying Data 317

ImageString ($im, $title font size, $x0_title, $y0_title, $chartT
itle,$title_color);
// draw graphing space
// black lines for graphing space borders
$line color=ImageColorAllocate ($im,0,0,0);
// medium line width for graphing space borders
ImageSetThickness ($im, 2) ;
// draw x-axis
ImageLine ($im, $x0, $y0, $x0+$n_x*$x_gap, $y0, $line color);
ImageLine ($im, $x0,$y0- ($n_y-1) *$y_gap, $x0+$n_x*$x gap, $y0-
($n_y-1) *$y_gap, $line_color); //top border
// y-axis
ImageLine ($im, $x0, $y0, $x0, $y0- ($n_y-1) *$y_gap, $line_ color);
// right border
ImageLine ($im, $x0+$n_x*$x_gap, $y0, $x0+$n_x*$x gap,
Sy0- ($n_y-1) *$y_gap, $line_color) ;
// Create GIF image.
ImageGIF ($im) ;
// Release allocated resources.
ImageDestroy ($im) ;
?>

Of course, the entire graphing space does not need to be outlined, but including this
outline during the application development process will make it easier to check that
everything is working as planned.

Look closely at the parameters in the calls to ImageLine () that outline the graphing
space. These parameters are not given as absolute pixel values, but start at the lower left-
hand corner of the graphing space (the outlined space resulting from executing Document
12.6a), (x,,y,), and draw lines of a length equal to (number of x-labels)x(pixels per x-label)
and (number of y-labels—1) x (pixels per y-label) —(number of y-labels— 1) because there
will be a y-axis label at the bottom of the axis as well as at the top. (This is not true for the
x-axis, which will have one label per bar.)

12

318 12 Using Graphics with PHP

The next step is to draw the x- and y-axis labels and vertical and horizontal grid lines.
A particular application may not need grid lines, but including them will make it easier to
check the code. Quite a bit of code is required to add these features to the output, as shown
in Document 12.6b.

Note that the output from Document 12.6a does not yet use the label information and
some of the other “hard-coded” values for creating the graphing space. However, it is
helpful to make sure these values have been defined and that the resulting code is free from
syntax errors before proceeding to the next step.

Document 12.6b (Vbar?2 . php)

<?php
Header ('"Content-type: image/gif");
// define default data
$chartTitle = "Bar Graph';
$x_title = "X-axis'"; $y_title = "Y-axis";
$y_labels=array(”0","10”,"20",”30","40”,”50","60”,"70",”80"
,"9o","100") ;
$x_labels=array(”0","l”,”2","3”,”4","5”,”6","7”,”8","9”,
MIQM, LI, MI2N, I3, MI4N MM NG Mg mign wign npgn o,
MODM MO3M MDA MDGH MOGH mpTM MOGHW WDQW WIOM M3y .
$n_x=31; // number of x-axis labels
$n_y=11; // number of y-axis labels
$ylabel mask=" "; // Mask for right-justifying y-labels
$ylabel length=4; // Maximum length of y-axis label
// define image space
$x_max = 800;
$y_max = 300;
// define graphing space 1in terms of intervals
// lower left-hand corner of graphing space
$x0 = 80; $y0 = 250;
$x_gap = 20; $y _gap = 20; // interval between axis labels
// label and title offsets from x-y origin _
// trial-and-error
$xlabel xoffset=-15;
$xlabel yoffset=10;
$ylabel xoffset=-28;
$ylabel yoffset=-8;
$xtitle xoffset=260;
$xtitle yoffset=25;
Sytitle xoffset=-45;
$Sytitle yoffset=-75;
// create and color image space background
$im = imageCreate ($x max, $y max) or
die ('"Cannot Initialize new GD image stream");

12.2 Writing GD Graphics Applications for Displaying Data 319

$background_color = ImageColorAllocate ($im,234,234,234);
$title_font_size = 5; // large font for title
// black text for title
$title_color = ImageColorAllocate ($im,0,0,0);
// starting coordinates for title
$x0_title = 10; $yO0_title = 10; // draw graphing space
ImageString ($im, $title font size, $x0_title, $y0_title,
$chartTitle, $title_color);
// black lines for graphing space borders
// medium line width for graphing space borders
$line_color=ImageColorAllocate ($im,0,0,0);
ImageSetThickness ($im, 2) ;
// draw x—-axis
ImageLine ($im, $x0, $y0, $x0+$n_x*$x_gap, $y0, $1line_color);
ImageLine ($im, $x0, $y0- ($n_y-1) *$y_gap, $x0+$n_x*$x gap,
//top border
$y0- ($n_y-1) *$y_gap, $line_color) ;
// y-axis
ImageLine ($im, $x0, $y0, $x0, $y0- ($n_y-1) *$y_gap, $1line_color) ;
// right border
ImageLine ($im, $x0+$n_x*$x gap, $y0, $x0+$n_x*$x_gap,
$y0- ($n_y-1) *$y_gap, $line_color);
// draw x-axis labels and vertical grid
// black lines for grids
$grid color = ImageColorAllocate ($im,0,0,0); $label color =
// black text for labels
ImageColorAllocate ($im, 0,0, 0); ImageSetThickness ($im,1);
for ($i=0; $i<=$n_x; $i++) {
$x=$x0+$xlabel xoffset+$i*$x_gap;
Sy=8y0+$xlabel yoffset;
if ($i>0)
ImageString ($im, 2, $x, $y, $x_labels[$i], $label color);
ImageLine ($im, $x0+$i*$y gap, $y0, $x0+$i*Sy gap,
Sy0-($n_y-1) *$y_gap, $grid color) ;
}
// draw y-axis labels and horizontal grid
$black=ImageColorAllocate ($im, 0,0, 0) ;
// define a black and transparent dashed line for grid lines
$style = array (
$black, $black, $black, $black, $black,
IMG_COLOR_TRANSPARENT, IMG_COLOR TRANSPARENT,
IMG_COLOR_TRANSPARENT, IMG_COLOR TRANSPARENT,
IMG_COLOR TRANSPARENT
)i
ImageSetStyle ($im, $style) ;

12

320 12 Using Graphics with PHP

for ($i=0; $i<$n_y; $i++)
// next two lines right-justify the y-axis labels
$ylabel=$ylabel mask . $y labels[$i];
$ylabel=substr ($ylabel, strlen ($ylabel) -$ylabel length);
$x=$x0+Sylabel xoffset;
$y=$y0+Sylabel yoffset-$i*$y gap;
ImageString ($im, 2, $x, $y, $ylabel, $1label color);
ImageLine ($im, $x0, $y0-$i*$x gap, $x0+$n_x*$x gap,

$y0-$i*$y gap, IMG_COLOR STYLED) ;

}

// Draw axis titles.

ImageString ($im, $title font_size, $x0+$xtitle xoffset,
$y0+$xtitle yoffset,$x title, $label color);

ImageStringUp ($im, $title_ font size, $x0+$ytitle xoffset,
$y0+Sytitle yoffset,$y title, $label color);

// Create GIF image.

ImageGIF ($im) ;

// Release allocated resources.

ImageDestroy ($im) ;

?>

The code required to produce this output includes several pixel offset values,
determined by trial and error, as required to position the labels properly to the left of the
y-axis and below the x-axis, and to center the axis titles along their axes. These offsets
depend on the length of the titles, of course. In principle, code could be written to calcu-
late the pixel offsets, but it seems more trouble than it is worth for this demonstration
application.

The y-axis labels have been right-justified by concatenating the label string to a mask of
blank spaces and extracting a right-hand substring. The x-axis labels have been offset to
the right so they are placed approximately in the middle of the space where each bar will
go. Just for demonstration purposes, code has been included for creating dashed horizontal
grid lines consisting of 5 black pixels alternating with 5 transparent pixels.

Document 12.6c adds the code necessary to draw the bars for the hard-coded default
data set.

12.2 Writing GD Graphics Applications for Displaying Data 321

Document 12.6¢ (Vbar3.php)

<?php
Header ('"Content-type: image/gif");
// define default data
$chartTitle = "Bar Graph';
$x_title = "X-axis"; $y_title = "Y-axis";
$y_labels=array(”0",”lO","20”,"30",”40",”50”,"60","70",”80@
"90", "100") ;
$x_1abels=array("0","l”,"2","3”,"4","5”,"6","7”,"8","9”,
MIQM, MIIM, MI2N, I3 MI4N WIS N NG NI mign mign npgn mogn,
MOOM MO3M MDA WDEM MOGH W7 MOGH WMDQH WIOM MMy .
$Y=array(23,10,15,100,0,55,60,16,23,33,44,77,88,91,5,85, 80,
66,49,33,22,25,83,90,44,25,11,9,77,20,15) ;
$n_x=31; // number of x-axis labels
$n_y=11; // number of y-axis labels
$ylabel mask=" "; // Mask for right-justifying y-labels
$ylabel length=4; // Maximum length of y-axis label
// define image space
$x_max = 800;
$y_max = 300;
// define graphing space in terms of intervals
// lower left-hand corner of graphing space
$x0 = 80; $y0 = 250;
$x_gap = 20; $y _gap = 20; // interval between axis labels
$bar_ width=10;
$bar_ offset=5;
// label and title offsets from x-y origin _
// trial-and-error
$xlabel xoffset=-15;
$xlabel yoffset=10;
Sylabel xoffset=-28;
$Sylabel yoffset=-8;
$xtitle xoffset=260;
$xtitle yoffset=25;
Sytitle xoffset=-45;
Sytitle yoffset=-75;
// create and color image space background
$im = imageCreate ($x max, $y max) or
die ('"Cannot Initialize new GD image stream");
$background color = ImageColorAllocate ($im,234,234,234);
$bar color=ImageColorAllocate ($im, 255,0,0);
// large font for title
$title_font size = 5;
// black text for title

322 12 Using Graphics with PHP

$title color = ImageColorAllocate ($im,0,0,0);
// starting coordinates for title
$x0_title = 10; $y0_title = 10; // draw graphing space
ImageString ($im, $title_font size, $x0_title, $y0_title,
$chartTitle, $title_color);
// black lines for graphing space borders
// medium line width for graphing space borders
$line_color=ImageColorAllocate ($im,0,0,0);
ImageSetThickness ($im, 2) ;
// draw x—-axis
ImageLine ($im, $x0, $y0, $x0+$n_x*$x_gap, $y0, $1line_color) ;
ImageLine ($im, $x0, $y0- ($n_y-1) *Sy_gap, $x0+%n_x*$x gap,
//top border
$y0- ($n_y-1) *$y_gap, $line_color) ;
// y-axis
// right border
ImageLine ($im, $x0, $y0, $x0, $y0- ($n_y-1) *Sy_gap, $line_color) ;
ImageLine ($im, $x0+$n_x*$x gap, $y0, $x0+$n_x*$x gap,
$y0- ($n_y-1) *$y_gap, $line_color);
// draw x-axis labels and vertical grid
// black lines for grids
$grid color = ImageColorAllocate ($im,0,0,0);
$label color = // black text for labels
ImageColorAllocate ($im, 0,0, 0); ImageSetThickness ($im,1);
for ($i=0; $i<=$n_x; $i++) {
$x=$x0+5xlabel xoffset+$i*$x gap;
Sy=8y0+$xlabel yoffset;
if ($i>0)
ImageString ($im, 2, $x, $y, $x_labels([$i], $label color);
ImageLine ($im, $x0+$i*$x gap, $y0, $x0+$i*$x gap,
$y0- ($n_y-1) *$y_gap, $grid color) ;
}
// draw y-axis labels and horizontal grid
$black=ImageColorAllocate ($im,0,0,0);
// define a black and transparent dashed line for grid lines
$style = array(
Sblack, $black, $black, $black, $black,
IMG_COLOR_TRANSPARENT, IMG COLOR TRANSPARENT,
IMG_COLOR_TRANSPARENT, IMG_COLOR TRANSPARENT,
IMG_COLOR_TRANSPARENT
) 7
ImageSetStyle ($im, $style) ;
for ($i=0; $i<$n_y; $i++) |

12.2 Writing GD Graphics Applications for Displaying Data 323

// next two lines right-justify the y-axis labels
$ylabel=$ylabel mask . $y labels[$i];
$ylabel=substr ($ylabel, strlen($Sylabel)-Sylabel length);
$x=$x0+Sylabel xoffset;
$y=$y0+Sylabel yoffset-$i*$y gap;
ImageString ($im, 2, $x, $y, $ylabel, $label color);
ImageLine ($im, $x0, $y0-$i*$y gap, $x0+$n_x*$x_gap,
$y0-$i*$y gap, IMG_COLOR_STYLED) ;

}

// Draw axis titles.

ImageString ($im, $title font size, $x0+$xtitle xoffset,
SyO+$xtitle yoffset,$x_title, $label color);

ImageStringUp ($im, $title font_size, $x0+$ytitle xoffset,
Sy0+Sytitle yoffset,$y title, $label color);

// Draw bars.

$y_range=3y gap* ($n_y-1);

Symin=0; $ymax=100;

for ($i=0; $i<$n_x; $i++) {

ImageFilledRectangle ($im, $x0+$bar offset+$x gap*$i, $y0, $x0+$

bar offset+$bar width+$x gap*$i,

Sy0- ($Y[$i]-$ymin) / ($ymax-$ymin) *Sy range, $bar_color);

}

// Create GIF image.

ImageGIF ($im) ;

// Release allocated resources.

ImageDestroy ($im) ;

?>

Documents 12.7a, b show the code for creating vertical bar charts using an HTML
document interface.

12

324 12 Using Graphics with PHP

Document 12.7a (VbarChartTest .htm)

<html>
<head>

<title>Vbar chart interface</title>
</head>
<body>
<h3>Create vertical bar chart</h3>
<form method="post" action="VbarChart.php" >
Data file name: <input type="text" name="FileName"
value="VbarChart.dat" />

Chart title: <input type="text" name="title" size="50"
value="Daily Rainfall (mm)" />

X-axis title: <input type="text" name="xTitle" value="day,
June 2009" />

Y-axis title: <input type="text" name="yTitle"
value="rainfall, mm" />

Number of bars: <input type="text" name="nBars" value="31"
/>

Minimum value: <input type="text" name="min" value="0"
/>

Maximum value: <input type="text" name="max" value="100"
/>

Y-axis labels: <input type="text" name="yLabels" size="50"
value="0,10,20,30,40,50,60,70,80,90,100" />

X-label space (pixels) <input type="text" name="xWidth"
value="20"/>

Bar width (% of x-label space): <input type="text"
name="barWidth" value="50" />

Bar color (RRR,GGG,BBB): <input type="text" name="barColor"
value="255,0,0" />

Offset for x-axis title (pixels): <input type="text"
value="250" name="xTitleOffset" />

Offset for y-axis title (pixels): <input type="text"
value="10" name="yTitleOffset" />

<input type="submit" value="Click to draw chart.." />

<input type="reset" value="Click to reset.." >

</form>
</body>
</html>

12.2 Writing GD Graphics Applications for Displaying Data 325

Document 12.7b (VbarChart.php)

<?php
function
drawChart ($chartTitle, $barColor, $bar_width, $x_gap, $n_x,
$x_title,$y_title, $xtitle xoffset,$ytitle_yoffset, $yMin,
$yMax, $x_labels, $y labels,$Y lo,$Y hi) {
Header ('"Content-type: image/gif");
$n_y=count ($y_labels); // number of y-axis labels
$ylabel mask=" "; // Mask for right-justifying y-labels
$ylabel length=4; // Maximum length of y-axis label
// define image space
$x_max = 800;
$y_max = 300;
// define graphing space in terms of intervals
$x0=80; $y0=250; // lower left-hand corner of graphing space
$y_range=200; // fixed y-axis graphing space
$y_gap=Sy_range/ ($n_y-1); // interval between y-axis labels
// define bar width as a % of total space for the bar --
$bar width=$x_gap*$bar width/100;
$bar_ offset=($x_gap-$bar_width)/2;
// label and title offsets from x-y origin
// trial-and-error
$xlabel xoffset=5;
$xlabel yoffset=10;
$ylabel xoffset=-28;
$ylabel yoffset=-8;
//Sxtitle xoffset=260;
$xtitle_yoffset=25;
Sytitle xoffset=-45;
$ytitle yoffset=-Sytitle yoffset;
// create and color image space background
$im = imageCreate ($x max, $y max) or
die ('"Cannot Initialize new GD image stream");
$background color = ImageColorAllocate ($im,234,234,234);
$colorArray=array () ;
$colorArray=explode (", ", $barColor) ;
//$bar color=ImageColorAllocate ($im,255,0,0);
$bar color=ImageColorAllocate ($im, $colorArray(0],
$colorArray[l], $colorArray(2]) ;
// large font for title
$title_font size = 5;
// black text for title
$title_color = ImageColorAllocate ($im,0,0,0);

// starting coordinates for title

326 12 Using Graphics with PHP

$x0_title = 10; $y0_title = 10; // draw graphing space
ImageString ($im, $title_font size, $x0_title, $y0_title,
$chartTitle, $title_color);
// black lines for graphing space borders
// medium line width for graphing space borders
$line_color=ImageColorAllocate ($im,0,0,0);
ImageSetThickness ($im, 2) ;
// draw x-axis
ImageLine ($im, $x0, $y0, $x0+$n_x*$x_gap, $y0, $1line_color);
ImageLine ($im, $x0, $y0- ($n_y-1) *Sy_gap, $x0+%n_x*$x gap,
//top border
Sy0-($n_y-1) *$y_gap, $line_color) ;
// y-axis
// right border
ImageLine ($im, $x0, $y0, $x0, $y0- ($n_y-1) *$y_gap, $line_color) ;
ImageLine ($im, $x0+$n_x*$x gap, $y0, $x0+$n_x*$x gap,
$y0- ($n_y-1) *$y_gap, $line_color) ;
// draw x-axis labels and vertical grid
// black lines for grids
$grid color = ImageColorAllocate ($im,0,0,0);
$label color = // black text for labels
ImageColorAllocate ($im, 0,0, 0); ImageSetThickness ($im,1);
// draw x-labels
for ($i=0; $i<=$n_x; $i++) {
$x=$x0+$xlabel xoffset+$i*$x_gap;
Sy=8y0+$xlabel yoffset;
ImageString ($im, 2, $x, 8y, $x_labels([$i], $label color);
ImageLine ($im, $x0+$i*$x gap, $y0, $x0+$i*$x gap,
$y0- ($n_y-1) *$y_gap, $grid color) ;
}
// draw y-axis labels and horizontal grid
$black=ImageColorAllocate ($im,0,0,0) ;
// define a black and transparent dashed line for grid lines
$style = array(
$black, $black, $black, $black, $black,
IMG_COLOR_TRANSPARENT, IMG_COLOR TRANSPARENT,
IMG_COLOR_TRANSPARENT, IMG_COLOR TRANSPARENT,
IMG_COLOR_TRANSPARENT
);
ImageSetStyle ($im, $style) ;
for ($i=0; $i<$n_y; $i++)
// next two lines right-justify the y-axis labels
$ylabel=$ylabel mask . $y labels[$i];
$ylabel=substr ($ylabel, strlen ($ylabel) -Sylabel length);
$x=$x0+Sylabel xoffset;

12.2 Writing GD Graphics Applications for Displaying Data

$y=$y0+Sylabel yoffset-$i*$y gap;
ImageString ($im, 2, $x, $y, $ylabel, $label color);
ImageLine ($im, $x0, $y0-$i*$y gap, $x0+$n_x*$x_gap,
$y0-$i*$y gap, IMG_COLOR_STYLED) ;
}
// Draw axis titles.
ImageString ($im, $title font size, $x0+$xtitle xoffset,
$y0+$xtitle_yoffset, $x_title,