




Digital Design 

with RTL Design, VHDL, and Verilog 

SECOND EDITION 

FRANK VAHID 
University of California, Riverside 

@QWILEY 
A John Wiley & Sons, Inc., Publication 



To my Jamil)~ Amy, Eric, Kelsi, and Maya; 
and to all engineers who apply their skills 

to improve the human condition. 

VP and EXECUTIVE PUBLISHER 
ASSOCIATE PUBLISHER 
EDITORIAL ASSISTANT 
SENIOR PRODUCTION MANAGER 
SENIOR PRODUCTION EDITOR 
EXECUTIVE MARKETING MANAGER 
COVER DESIGNER 
MEDIA EDITOR 
COYER PHOTO 

Don Fowley 
Dan Sayre 
Katie Singleton 
Micheline Frederick 
Kerry Weinstein 
Christopher Ruel 
J im O'Shea 
Lamen Sapira 
Comstock Images/Getty Images, Inc.; 
iStockphoto 

This book was set in 10/12 Times Roman by Frank Vahid. The text and cover were 
printed by Donnelley/Crawfordsville. 

Copyright © 201 l, 2007 John Wile}' & Sons, Inc. AU rights reserved. No pan of this publication may be 
reproduced, stored in a retrieval sysLem or transmitted in any form or by any means. electronic. mechanical. 
phoLocopying, recording. scanning o r otherwise. except as penninecl under Sectiorui I 07 or I 08 of the 1976 
Uni ted Stales Copyright Act. without either the prior wriuen permission of the Publisher, or authorization 
through payment of lhe appropriate per-copy fee to the Copyright Clearance Center. Inc. 222 Rosewood 
Drive, Danvers, MA 01923, website w\vw.copyright .com. RequesLS to the Publisher for permission should 
be addressed to the Permissions Department, John Wiley & Sons. Inc., 111 River Street, Hoboken.. NJ 
07030-5774. (201)7.:l8-601 l. fax (201)748-6008, website hllp://www.wiley.comlgo/permissions. 

Evaluation copies are provided to qualified academics and profes..~ionals for review purposes only, for use 
in their courses during the next academic year. These copies are licensed and may not be sold or 
Lr:msferred 10 a third party. Upon completion of the review period, please retlll'Tl Lite evaluation copy to 
Wiley. Return in~tructions and a free of charge retw·n shipping label are available atwww.wiley.com/go/ 
retumlabel. OuL~ide of the Uni Led States. please contact your local representative. 

TSBN 978-0-470-53 !08-2 

Printed in the United States of America 
L098765432l 



Contents 

Preface ix 
To Students About To Study Digital Design ix 
To Instructors of Digital Design ix 
How to Use This Book xii 

RTL-Focused Approach xii 
Traditional Approach with Some Reordering x:ii 
Traditional Approach xiii 

Acknowledgements xiii 
About the Cover xiv 
About the Author xiv 

Reviewers and Evaluators xv 

CHAPTER 1 
Introduction 1 
1.1 Digital Systems in the World Around Us 
1.2 The World of Digital Systems 4 

Digital versus Analog 4 
Digital Encodings and Binary Numbers-Os and 

ls 9 
1.3 Implementing Digital Systems: 

Microprocessors versus Digital Circuits 22 
Software on Microprocessors: TI1e Digital 

Workhorse 22 
Digital Design- When Microprocessors Aren't 

Good Enough 26 

1.4 About this Book 28 
1.5 Exercises 29 

CHAPTER 2 
Combinational Logic Uesign 35 
2.1 Introduction 35 
2.2 Switches 36 

Electronics l 0 l 36 
The Amazing Shrinking Switch 37 

2.3 The CMOS Transistor 40 

2.4 Boolean Logic Gates-Building Blocks for 
Digital Circuits 43 

Boolean Algebra and its Relation to Digital 
Circuits 43 

AND, OR, & NOT Gates 46 
Building Simple Circuits Using Gates 49 

2.5 Boolean Algebra 52 
Notation and Terminology 53 
Some Properties of Boolean Algebra 55 
Complementing a Function 60 

2.6 Representations of Boolean Functions 61 
Equations 62 
Circuits 62 
Truth Tables 62 
Converting mnong Boolean Function 

Representations 64 
Standard Representation and Canonical Form 68 
Multiple-Output Combinational Circuits 71 

2.7 Combinational Logic Design Process 73 
2.8 More Gates 80 

NAND&NOR 80 
XOR&XNOR 81 
Interesting Uses of these Additional Gates 82 
Completeness of NAND and of NOR 82 
Number of Possible Logic Gates 83 

2.9 Decoders and Muxes 84 
Decoders 84 
Multiplexers (Muxes) 86 

2.10 Additional Considerations 91 
Nonideal Gate Behavior- Delay 91 
Active Low Inputs 92 
Demultiplexers and Encoders 93 
Schematic Capture and Simulation 93 

2.11 Combinational Logic Optimizations 
and Tradeoffs (See Section 6.2) 95 

2.12 Combinational Logic Description Using 
Hardware Description Languages (See 
Section 9.2) 95 

2.13 Chapter Summary 96 
2.14 Exercises 96 

iii 



iv Contents 

CHAPTER 3 

Sequential Logic Design: Controllers 105 
3.1 Introduction I 05 
3.2 Storing One Bit- Flip-Flops 106 

Feedback- The Basic Storage Method l 06 
Basic SR Latch I 07 
Level -Sensitive SR Latch 111 
Level-Sensitive D Latch-A Basic Bit Store 11 2 
Edge-Triggered D Flip-Flop-A Robust Bit 

Store 113 
Clocks and Synctuonous Circuits J 17 
Basic Register-Storing Multiple Bits 120 

3.3 Finite-State Machines (FSMs) 122 
Mathematical Fonnalism for Sequential 

Behavior- FSMs 124 
How to Capture Desired System Behavior as an 

FSM 129 

3.4 Controller Design 132 
Standard Controller Architecture for 

implementing 
an FSM as a Sequential Circuit 132 

Controller (Sequential Logic) Design Process 
133 

Converting a Circuit to an FSM (Reverse 
Engineering) 140 

Common Mistakes when Capturing FSMs 142 
FSM and Controller Conventions 145 

3.5 More on Flip-Flops and Controllers 146 
Non-Ideal Flip-Flop Behavior 146 
Rip-Flop Reset and Set inputs 149 
initial State of a Controller 150 
Non-Ideal Controller Behavior: Output Glitches 

151 

3.6 Sequential Logic Optimizations and 
Tradeo:ffs 
(See Section 6.3) 153 

3.7 Sequential Logic Description Using 
Hardware Description Languages (See 
Section 9.3) 153 

3.8 Product Profile-Pacemaker 153 
3.9 Chapter Summary 156 
3.10 Exercises 157 

CHAPTER 4 
Datapath Components 167 
4.1 Introduction 167 
4.2 Registers 168 

Parallel-Load Register 168 
Shift Register L 73 
Multifunction Registers 175 
Register Design Process 179 

4.3 Adders 181 
Adder-Carry-Ripple Style 183 

4.4 Comparators 19 l 
Equality (Identity) Comparator 191 
Magnirude Comparator-Carry-Ripple Style 

192 
4.5 Multiplier-Array-Style 195 
4.6 Subtractors and Signed Numbers 196 

Subtractor for Positive Numbers Only 196 
Representing Negative Numbers: Two's 

Complement Representation 200 
Building a Subtractor Using an Adder and Two's 

Complement 203 
Detecting Overflow 205 

4.7 Aritlunetic-Logic Units-ALUs 207 
4.8 Shifters 210 

Simple Shifters 211 
Barrel Shifter 214 

4.9 Counters and Timers 215 
Up-Counter 2 16 
Up/Down-Counter 217 
Cowlter with Load 218 
Timers 222 

4.10 Register Files 225 
4.11 Datapatb Component Tradeoffs (See Section 

6.4) 230 
4.12 Datapath Component Description Using 

Hardware Description Languages (See 
Section 9.4) 230 

4.13 Product Profile: An Ultrasound Machine 
230 

Fw1ctional Overview 23 I 
Digital Circuits in an Ultrasound Machine's 

Beamfonner 234 
Future Challenges in Ultrasound 237 

4.14 Chapter Summary 237 
4.15 Exercises 238 



CHAPTER 5 
Register-Transfer Level (RTL) Design 247 
5.1 Introduction 247 
5.2 High-Level State Machines 248 
5.3 RTL Design Process 255 

Step 2A-Creating a Datapath using 
Components from a Library 259 

Step 2B-Connecting the Datapath to a 

Controller 262 

Step 2C- Deriving the Controller's FSM 263 

5.4 More RTL Design 264 
Additional Datapath Components for the Library 

264 
RTL Design Involvi11g Register Files or 

Memories 265 
RTL Design Pitfall Involving Storage Updates 

271 
RTL Design lnvolvmg a Timer 272 
A Data-Dominated RTL Design Example 275 

5.5 Determining Clock Frequency 278 
5.6 Behavioral-Level Design: C to Gates 

(Optional) 281 
5.7 Memory Components 285 

Random Access Memory (RAM) 286 

Bit Storage in a RAM 288 

Using a RAM 290 
Read-Only Memory (ROM) 292 

ROM Types 294 
Using a ROM 297 
The Bluni.ng of the Distinction between RAM 

and ROM 299 

5.8 Queues (FIFOs) 299 
5.9 Multiple Processors 303 
5.10 Hierarchy- A K ey Design Concept 305 

Managing Complexity 305 
Abstraction 306 
Composing a Larger Component from Smaller 

Versions of the Same Component 307 
5.11 RTL Design Optimizations and Tradeoffs 

(See Section 6.5) 309 
5.12 RTL Design Using Hardware Description 

Languages (See Section 9 .5) 310 

Contents v 

5.13 Product Profile: Cell Phone 310 
Cells and Basestations 310 
How Cellular Phone Calls Work 3 11 
lnside a Cell Phone 312 

5.14 Chapter Summary 316 
5.15 Exercises 317 

CHAPTER 6 
Optimizations and Tradeoffs 325 
6.1 Introduction 325 
6.2 Combinational Logic Optimizations and 

Tradeoffs 327 
Two-Level Size Optimization Using Algebraic 

Methods 327 
A Visual Method for Two-Level Size 

Optimization-K-Maps 329 
Don' t Care Input Combinations 336 

Automating T wo-Level Logic Size Optimization 
339 

Multilevel Logic Optimization-Performance 
and Size Tradeoffs 348 

6.3 Sequential Logic Optimizations and 
Tradeoffs 351 

State Reduction 351 
State Encoding 354 

Moore versus Mealy FSMs 360 
6.4 Datapath Component Tradeoffs 365 

Faster Adders 365 
Smaller Multiplier-Sequential (Shift-and-Add) 

Style 375 
6.5 RTL Design Optimizations and Tradeoffs 

377 
Pipelining 377 
Concurrency 380 
Component Allocation 381 
Operator Binding 382 
Operator Scheduling 383 
Moore versus Mealy High-Level State Machines 

386 

6.6 More on Optimizations and Tradeoffs 386 
Serial versus Concurrent Computation 386 
Optimizations and Tradeoffs at Higher versus 

Lower Levels of Design 387 
Algorithm Selection 388 

Power Optimization 389 



vi Contents 

6.7 Product Profile: Digital Video Player/ 
Recorder 393 

Digital Video Overview 393 
DVD-One Form of Digital Video Storage 393 
MPEG-2 Video Encoding-Sending Frame 

Differences Using l-, P-, and B-Frames 395 
Transfonning to the Frequency Domain for 

Further Compression 396 
6.8 01apter Summary 402 
6.9 Exercises 403 

CHAPTER 7 
Physical Implementation on ICs 413 
7 .1 Introduction 413 
7.2 Manufactured IC Types 414 

Full-Custom Integrated Circuits 414 
Semicustom (Application-Specific) Integrated 

Circuits-ASICs 415 

7.3 Off-che-Shelf Programmable IC 
Type-FPGA 423 

Lookup Tables 424 
Mapping a Circuit among Multiple Lookup 

Tables 426 
Programmable Interconnects (Switch Matrices) 

432 
Configurable Logic Block 434 
Overall FPGA Architecture 436 

7.4 Other Off-the-Shelf IC Types 438 
Off-the-Shelf Logic (SSI) IC 438 
Simple Programmable Logic Device (SPLD) 

441 
Complex Programmable Logic Device (CPLD) 

445 
FPGA-to-Strucn1red-ASIC Flows 445 

7 .5 IC Tradeoffs, Trends, and Comparisons 446 
Tradeoffs Among IC T ypes 447 
IC Technology Trend-Moore's Law 448 
Relative Popularity of IC Types 450 
ASSP 450 
IC Types versus Processor Varieties 451 
FPGAs alongside Microprocessors 452 

7.6 Product Profile: Giant LED-Based Video 
Display wich FPGAs 453 

7.7 ChapterSummary 457 
7.8 Exercise 457 

CHAPTER 8 
Programmable Processors 461 
8.1 Introduction 461 
8.2 Basic Architecture 462 

Basic Datapath 462 
Basic Control Unit 465 

8.3 A llrree-Instruction Programmable 

Processor 469 
A First Instruction Set with Three Instructions 

469 
Control Unit and Datapath for the Three

Instruction Processor 47 1 
8.4 A Six-Instruction Programmable Processor 

475 
Extending the lnstn1ction Set 475 
Extending the Control Unit and Datapatb 476 

8.5 Example Assembly and Machine Programs 
478 

8.6 Further Extensions to lhe Programmable 
Processor 480 

Instruction Set Extensions 480 
Input/Output Extensions 48 L 
Pe1fonnance Extensions 48 l 

8.7 Chapter Summary 482 
8.8 Exercises 483 

CHAPTER 9 
Hardware Description Languages 487 
9.1 Introduction 487 
9.2 Combinational Logic Description Using 

Hardware Description Languages 489 
Structure 489 

Combinational Behavior 494 
Testbenches 498 

9.3 Sequential Logic Description Using 
H ardware Description Languages 501 

Register 50 I 
Oscillator 503 
Controllers 505 

9.4 Datapath Component Description 
Using Hardware Description Languages 
509 

Full-Adders 500 



Carry-Ripple Adders S 11 

Up-Counter 514 . . 
9.5 RTL Design Using Hardware Descnpbon 

Languages 517 
High-Level State Machine of the Laser-Based 

Distance Measurer 517 
Controller and Datapath of the Laser-Based 

Distance Measurer 523 

9.6 Chapter Summary 532 
9.7 Exercises 532 

APPENDIX A 
Boolean Algebras 537 
A.l Boolean Algebra 537 
A.2 Switching Algebra 538 
A.3 Important Theorems in Boolean Algebra 

540 
A.4 Other Examples of Boolean Algebras 545 
A.5 Further Readings 545 

Contents vii 

APPENDIX B 
Additional Topics in Binary Number Sys
tems 547 
B.1 Introduction 547 
B.2 Real Number Representation 547 
B.3 Fixed Point Arithmetic 550 
B.4 Floating Point Representation 55 l 

The lEEE 754-1985 Standard 552 

B.5 Exercises 556 

APPENDIX C 
Extended RTL Design Example 557 
C.1 Introduction 557 
C.2 Designing the Soda Dispenser Controller 

558 
C.3 Understanding the Behavior of the 

Soda Dispenser Controller and Datapath 
562 



This page intentionally left blank 



Preface 

10 STUDENTS ABOUT 10 STUDY DIGJT AL DESIGN 

Digital circuits form the basis of general-pw·pose computers and also of special-purpose 
devices like cell phones or video game consoles. Digital circujts are dramatically 
changing the world. Studying digital design not only gives you the confidence that comes 
with fundamentally understanding how digital circuits work, but also introduces you to an 
exciting possible career direction. This statement applies regardless of whether your 
major is electrical engineering, computer engineering, or computer science; in fact, the 
need for digital designers with strong computer science skills continues to increase. I 
hope you find digital design to be as interesting, exciting, and useful as I do. 

Throughout this book, I have tried not only to introduce concepts in the most intui
tive manner, but 1 have also tried to show how those concepts can be applied to real-world 
systems, such as pacemakers, ultrasound machines, printers, automobiles, or cell phones. 

Young and capable engineering students sometimes leave their major, claiming they 
want a job that is more "people-oriented." Yet we need those people-oriented students 
more than ever, as engineering jobs are increasingly people-oriented, in several ways. 
First, engineers usually work in rightly integrated groups involving numerous other engi
neers, rather than "sitting alone in front of a computer all day" as many students believe. 
Second, engineers often work direcrly with customers, such as business people, doctors, 
lawyers, or government officials, and must therefore be able to connect with those cus
tomers. Third, and in my opinion most importantly, engineers build rhings rhat 
dramatically impact people's lives. Needed are engineers who combine their enthusiasm, 
creativity, and innovation with their solid engineering skills to invent and build new prod
ucts that improve people's quality of life. 

I have included "Designer Profiles" at the end of most chapters. The designers, 
whose experience levels vary from just a year to several decades, and whose companies 
range from small to huge, share with you their experiences, insights, and advice. You will 
notice how commonly they discuss the people aspects of their jobs. You may also notice 
their enthusiasm and passion for thei1' jobs. 

10 INSTRUCTORS OF DIGITAL DESIGN 

This book has several key feahrres that distinguish it from existing djgital design books. 

• RTL design. In the l 970s/l 980s, chips had hundreds or thousands of gates, and 
hence digital design emphasized gate-level minimization. Today's chips hold mil
lions of gates, and modern design is thus dominated by register-trans/er level 
(RTL) design. A student exposed to RTL design 1n a first course will have a more 
relevant view of the modem digital design field, leading not only to a better appre
ciation of modem computers and other digital devices, but to a more accw·ate 

i.x 



x Preface 

understanding of careers involving digital design. Such an accurate understanding 
is critical to attract computing majors to digital design careers, and to create a 
cadre of engineers with the comfort in both "software" and "hardware" necessary 
in modem embedded computing system design. Chapter 5 is entirely devoted to 
RTL design and is one of the only concise introductions to basic RTL design con
cepts and examples to be found anywhere. 

• Comprehensive and flexible HDL coverage. HDLs are an important part of 
modern digital design, but they must be introduced carefully, such that students 
continue to learn fundamental digital design concepts along with the appropriate 
role of HDLs. Thus, this book covers HDLs in a separate chapter (Chapter 9), 
whose subsections each correspond to an earlier chapter, such that Section 9 .2 can 
directly follow Chapter 2, Section 9.3 can follow Chapter 3, Section 9.4 can 
follow Chapter 4, and Section 9.5 can follow Chapter 5. This approach provides 
instructors the flexibility to cover HDLs in the latter part of a course only, or inter
mixed throughout, but in either case clearly showing students that HDLs are a 
mechanism for supporting digital design while being distinct from basic concepts. 
Furthermore, rather than the book choosing just one of the popular lan
guages- VHDL, Verilog, or the relatively new SystemC- the book provides 
equal coverage of all three of those HDLs. We use our extensive experience in 
synthesis with commercial tools to create HDL descriptions well suited for syn
thesis, in addit ion to being suitable for simulation. Furthermore, for courses that 
cover HDLs in more depd1 or that have a follow-up cow-se emphasizing more 
HDL design, two low-cost books have been created (one for VHDL, one for 
Yerilog) specifically to accompany this book Those HDL-introduction books use 
the same chapter structure and examples from this textbook, eliminating the 
common situation of students struggling to correlate their distinct and sometimes 
contradicting HDL book and digital design book. Our HDL-introduction books 
discuss language, simulation, and testing concepts in more depth than digital 
design books that incorporate HDL coverage, providing numerous HDL exam
ples. The HDL books are also usable by themselves for HDL learning or 
reference. The HDL-introduction books improve upon the plethora of existing 
HDL books by emphasizing use of the language for real design, clearly distin
guishing HDL use for synthesis from HDL use for testing, and by using extensive 
examples and figures throughout to illustrate concepts. The HDL-introduction 
books also come with complete PowerPoint slides that use graphics and anima
tions to serve as an easy-to-use tutorial on the HDL. 

• Top-down design versus optimization. Digital design and logic-size optimization 
were inseparably inte11wined in the 1970s/ 1980s' small-capacity chip era. This 
book cleanly distinguishes design concepts from optimization concepts by using a 
distinct chapter for optimization (Chapter 6), expanding optimization coverage to 
also include tradeoffs and to include RTL topics. Nevertheless, the book provides 
an instructor maximum flexibility to introduce optimization at the times and to the 
extent desired by the instructor. In particular, the optimization chapter's sub
sections each correspond directly to one earlier chapter, such that Section 6.2 can 
directly follow Chapter 2, Section 6.3 can follow Chapter 3, Section 6.4 can 



Preface xi 

follow Chapter 4, and Section 6.5 can follow Chapter 5. The book also empha
sizes the modern approach of top-down design, involving capturing desired 
behavior and then converting to a circuit. At the same time, this book, like other 
books, uses a concrete bottom-up approach, starting from transistors, and building 
incrementally up to gates, flip-flops . registers, controllers, datapath components, 
and RTL. 

• Extensive use of applied examples and figures. After describing a new concept 
and providing basic examples, the book provides exmnples that apply the concept 
to applications recognizable to a student, like a "seat belt unfastened" warning 
system, a computerized checkerboard game, a color printer, or a digital video 
camera. Furthennore, the end of most chapters includes a product profile, 
intended to give students an even broader view of the applicability of the con
cepts, and to introduce clever application-specific concepts the snidents may find 
interesting- like the idea of bearnfonning in an ultrasound machine or of filtering 
in a cellular phone. The book extensively uses figures to illustrate co11cepts; it 
contains over 600 figures. 

• Learning through discovery. The book emphasizes understanding the need for 
new concepts, which not only helps students learn and remember the concepts, but 
develops reasoning skills that can apply the concepts to other domains. For 
example, rather than just defining a carry-lookahead adder, the book shows intui
tive but inefficient approaches to building a faster adder, eventually solving the 
inefficiencies and leading to ("discovering") the carry-lookahead design. 

• Jntroducrion to FPGAs. The book includes a fully bottom-up introduction to 
FPGAs, showing snidents concretely how a circ uit can be converted into a bit
stream that programs the individual lookup tables, switch matrices, and other pro
grammable components in an FPGA. This concrete introduction eliminates the 
mystery of the increasingly common FPGA devices. 

• Author-created graphical animated PowerPoint slides. A rich set of PowerPoint 
slides is available to instructors. The slides were created by the textbook's author, 
resulting in consistency of perspective and emphasis between the slides and book. 
The sljdes are designed to be a truly effective teaching tool for the instructor. Most 
slides are graphical, avoiding slides consisting of just bulleted lists of text. The 
slides make extensive use of animation, where appropriate, to gradually unveil 
concepts or build up circuits, yet animated slides are carefully created so they can 
be printed out and understood. Nearly every figure, concept, and example from 
this book is included in the set of almost 500 slides. 

• Complete solutions manual. Instructors may obtain a complete solutions manual 
(about 200 pages) containing solutions to every end-of-chapter exercise in this 
book. The manual extensively utilizes figures to illustrate solutions. 

Many of the above features can be seen in the sample book materials available at 
http://www.ddvahid.com. Materials are available to instmctors via the instructors site . 

The second edition of this book includes a rewrite of the RTL design introduction in 
Chapter 5 to more intuitively introduce the subject, a further emphasis of top-down 



xii Preface 

design (capture and convert) throughout Chapters 2-5, and improvements and additions 
to the descriptions, examples, and exercises in all chapters of the book. 

HOW TO USE THIS BOOK 
This book was designed to allow flexibility for instructors to choose among the most 
conunon approaches of material coverage. We describe several approaches below. 

RTL-Focused Approach 

An RTL-focused approach would simply cover the first 6 chapters in order: 

I. Introduction (Chapter 1) 

2. Combinational logic design (Chapter 2) 
3. Sequential logic design (Chapter 3) 

4. Combinational and sequential component design (Chapter 4) 
5. RTL design (Chapter 5) 
6. Optimizations and tradeoffs (Chapter 6), to the extent desired 
7. Physical implementation (Chapter 7) and/or processor design (Chapter 8), to the 

extent desired 

We think this is a great way to order the material, resulting in students doing interesting 
RTL designs in about seven weeks. HDLs can be introduced at the end if time pennits, or 
left for a second course on digital design (as done at UCR), or covered immediately after 
each chapter- all three approaches are common. 

Traditional Approach with Some Reordering 

This book can be reactily used in a traditional approach that introduces optimization along 
with basic design, with a slight difference from the traditional approach being the swap
ping of coverage of combinational components and sequential logic, as follows: 

1. Introduction (Chapter 1) 

2. Combinational logic design (Chapter 2) followed by combinational logic optimi
zation (Section 6.2) 

3. Sequential logic design (Chapter 3) followed by sequential logic optimization 
(Section 6.3) 

4. Combinational and sequential component design (Chapter 4) followed by compo
nent tradeoffs (Section 6.4) 

5. RTL design (Chapter 5) to the extent desired, followed by RTL optimization/ 
tradeoffs (Section 6.5) 

6. Physical implementation (Chapter 7) and/or processor design (Chapter 8), to the 
extent desired 

This is a reasonable and effective approach, completing ail discussion of one topic (e.g., 
FSM design as well as optimization) before moving on to the next topic. The reordering 
from a traditional approach introduces basic sequential design (FSMs and contmllers) 
before combinational components (e.g. , adders, comparators, etc.). Such reordering may 
lead into RTL design more naturally than a traditional approach, following instead an 



Preface xiii 

approach of increasing abstraction rather than the traditional approach that separates com
binational and sequential design. HDLs can again be introduced at the end, left for 
another course, or integrated after each chapter. This approach could also be used as an 
intennediary step when migrat ing from a traditional approach to an RTL approach. 
Migrating might involve gradually postponing the Chapter 6 sections- for example, cov
ering Chapters 2 and 3, and then Sections 6.2 and 6.3, before moving on to Chapter 4. 

Traditional Approach 

This book could also be used in a traditional approach, as follows: 

1. Introduction (Chapter 1) 

2. Combinational logic design (Chapter 2) followed by combinational logic optimiza
tion (Section 6.2) 

3. Combinational component design (Sections 4.1 , 4.3~. 8) followed by combina
tional component tradeoffs (Section 6.4- Faster Adders) 

4. Sequential logic design (Chapter 3) followed by sequential logic optimization 
(Section 6.3) 

5. Sequential component design (Sections 4.9, 4.10) followed by sequential compo
nent tradeoffs (Section 6.4- Smaller Multiplier) 

6. RTL design (Chapter 5) to the extent desired, followed by RTL optimization/ 
tradeoffs (Section 6.5) 

7. Physical implementation (Chapter 7) and/or processor design (Chapter 8), to the 
extent desired. 

Coverage of the firs t five topics has been the most widespread approach during the past 
two decades, with the above adding RTL design towards the end of the approach. 
Although the emphasized distinction between combinational and sequential design may 
no longer be relevant in the era of RTL design (where both types of design are inter
mixed), some people believe that such distinction makes for an easier learning path. 
HDLs can be included at the end, left for a later course, or integrated throughout. 

ACKNOWLEDGEMENTS 
Many people and organizations c.ontributed to the making of this book. 

• Staff members at John Wiley and Sons Publishers extens ively supported the 
book's development. Dan Sayre inspired and oversaw the development of the 
second edition, and Micheline Frederick oversaw production. Kelly Applegate and 
Foti Kutil from Publication Services assisted greatly with composition and for
matting of the second edition. Bill Zobrist supported my earlier "Embedded 
System Design" book, and motivated me to write the first edition of the book. 

• Ryan Mannion contributed many i tems, including the appendices, numerous 

examples and exercises, several subsections, the complete exercise solutions 
manual, fact-checking, extensive proofreading, tremendous assistance during pro
duction, help with the slides, plenty of ideas dming discussions, and much more. 



xiv Preface 

• Roman Lysecky developed numerous examples and exercises, contributed most of 
the content of the HDL chapter, and co-authored our accompanying HDL-intro
duction books. Scott Sirowy contributed some of the HDL code for the second 
edition. Francesca Perkins did extensive proofreading of the second edition. Scott 
Sirowy, David Sheldon, and Bailey Miller helped with proofreading also. 

• Numerous reviewers provided outstanding feedback on various versions of the 
book. Special thanks go to first-edition adopters who have provided great feed
back, includin g Greg Link, Mark Brehob, Sharon Hu, Nikil Dutt, Eli 
Bozorgzadeh, and Jay Brockman (who has also made his lectures available on the 
web). 

• Tbe importance of the support provided to my research and teaching career by the 
National Science Foundation cannot be overstated. 

ABOUT THE COVER 
The cover 's image of shrinking chips is more than just a nice visual; the image graphi
cally depicts the amazing real-life phenomenon of digital circuits ("computer chips") 
shrinking in size by about one half every 18 months, for several decades now, a phenom
enon referred to as Moore's Law. Such shrinking has enabled incredibly powerful 
computing circuits to fit inside tiny devices, like modem cell phones, medical devices, 
and portable video games. 

ABOUT THE AUTHOR 

Frank Vahid is a Professor of Computer Science and Engi-
neering at the University of California, Riverside. He 
received his bachelor's degree in electrical engineering 
from the U niversity of Illinois at Urbana-Champaign, and 
his master 's and doctoral degrees in computer science from 
the University of California, Irvine. He has worked for 
Hewlett Packard and AMCC, and bas consulted for 
Motorola, NEC, Atmel, Cardinal Health, and several other 
engineering firms. He is the inventor on three U.S. patents, 
has published over 150 research papers and two books on 
embedded systems, and helped establish the Embedded 
Systems Week conference. He established UCR's Com
puter Engineering program, and has received several UCR 
teaching awards. His research includes incorporating 
FPGAs into embedded systems, and networked sensor 
blocks that ordinary people can configure to monitor their surroundings. 

See this book's website at http://www.ddvahid.com for additional book materials, for 
access to the publisher's book website and instructor materials, or to submit comments, 
corrections, or suggestions. 



Reviewers and Evaluators 

Rehab Abdel -Kader 
Otmane Ait Mohamed 
Hussain Al-Asaad 
Rocio Alba-Flores 
Bassem Alhalabi 
Zekeriya Aliyazicioglu 
Vishal Anand 
Bevan Baas 
Noni Bohonak 
Don Bouldin 
David Bourner 
Elaheh Bozorgzadeh 
Frank Candocia 
Ralph Carestia 
Rajan M. Chandra 
Ghulam Chaudhry 
Michael Chelian 
Russell Clark 
James Conrad 
Kevan Croteau 
Sanjoy Das 
James Davis 
Edward Doering 
Travis Doom 
Jim Duckworth 
Niki! Dutt 
Dennis Fairclough 
Paul D. Franzon 
Subra Ganesan 
Zane Gastineau 
J. David Gillanders 
Clay Gloster 
Ardian Greca 
Eric Hansen 
Bruce A. Harvey 
John P. Hayes 
Michael Helm 
William Hoff 
Erh-Wen Hu 
Xiaobo Sharon Hu 
Baback Izadi 

Georgia Southern University 
Concordia University 
University of California, Davis 
University of Minnesota, Duluth 
Florida Atlantic University 
California Polytechnic State University, Pomona 
SUNY Brockport 
University of California, Davis 
University of South Carolina, Lancaster 
University of Tennessee 
University of Maryland Baltimore County 
University of California, Irvine 
Florida International University 
Oregon lnsti tute of Technology 
California Polytechnic State University, Pomona 
University of Missouri, Kansas City 
California State University, Long Beach 
Saginaw Valley State University 
University of North Carolina, Charlotte 
Francis Marion University 
Kansas State University 
University of South Carolina 
Rose-Hulman Institute of Technology 
Wright State University 
Worcester Polytechnic Institute 
University of California, Irvine 
Utah Valley State College 
North Carolina State University 
Oakland University 
Harding University 
Arkansas State University 
Howard University 
Georgia Sou them University 
Dartmouth College 
FAMU-FSU College of Engineering 
University of Michigan 
Texas Tech University 
Colorado School of Mines 
William Paterson University of New Jersey 
University of Notre Dame 
SUNY New Paltz 

xv 



xvi Reviewers and Evaluators 

Jeff Jackson 
Anura Jayasumana 
Bruce Johnson 
Richard Johnston 
Rajiv Kapadia 
Bahadir Karnv 
Robert Klenke 
Clint Kohl 
Hermann Krompholz 
Timothy Kurzweg 
Jumoke Ladeji-Osias 
Jeffrey Lillie 
David Livingston 
Hong Man 
Gihan Mandour 
Diana Marculescu 
Miguel Marin 
Maryam Mouss avi 
Olfa Nasraoui 
Panicia Nava 
John Nestor 
Rogelio Palomera 
James Peckol 
Wi told Pedrycz 
At1drew Peny 
De1tis Popel 
Tariq Qayyum 
Gang Qu 
Mihaela Radu 
Suresh Rai 
Wi Iii am Reid 
Musoke Sendaula 
Martha Sloan 
Scott Smith 
Gary Spivey 
Larry Stephens 
James Stine 
Philip Swain 
Shannon Tauro 
Carlos Tavora 
Marc Timmerman 
Hariharan Vijayaraghavan 
Bin Wang 
M. Chris Wernicki 
Shanchieh Yang 
Henry Yeh 
Kathleen Wltitehorn 
Naeem Zaman 

University of Alabama 
Colorado State University 
University of Nevada, Reno 
Lawrence Technological University 
Minnesota State University, Mankato 
Fairleigh Dickinson University 
Virginia Commonwealth University 
Cedarville University 
Texas Tech University 
Drexel University 
Morgan State University 
Rochester Insti tute of Technology 
Virginia Military Institute 
Stevens Institute of Technology 
Christopher Newp011 University 
Carnegie Mellon University 
McGill University 
CaW'ornia State University, Long Beach 
University of Memphis 
University of Texas, El Paso 
Lafayette College 
Garcia University of Puerto Rico, Mayaguez 
University of Washington 
University of Alberta 
Springfield College 
Baker University 
CaW'ornia Polytechnic State University, Pomona 
University of Maryland 
Rose-Hulman Instin1te of Technology 
Louisiana State University, Baton Rouge 
Clemson University 
Temple U1tiversity 
Michigan Technological University 
Boise State University 
George Fox University 
University of South Carolina 
Illinois lnstitute of Technology 
Purdue University 
University of California, Irvine 
Gonzaga University 
Oregon lnstimte of Technology 
University of Kansas 
Wright State University 
New York lns6tute of Technology 
Rochester Insti tute of Technology 
California State University, Long Beach 
Colorado School of Mines 
San Jaoquin Delta College 



1 
Introduction 

.._ 1.1 DIGITAL SYSTEMS IN THE WORLD AROUND US 
Meet Arianna. Arianna is a five-year-old girl \.\'ho lives in California. She's a cheerful. out
going kid who loves to read, play soccer, dance, and tell jokes that she makes up her:;elf. 

One day. Arianna's family was driving home from a soccer 
~me. She was in rhe micklle of exciteclly talking ahout th~ g~me 
when suddenly the van in wbjch she was riding was clipped by a 
car that had crossed over to the wrong side of the highway. 
Although the accident wasn' t pat1icularly bad, the impact caused 
a luost ilem from the n:ar of the v;u1 lu prujed furward in1>ide l11e 

van, striking Arianna in the back of the head. She became 
unconscious. 

Arianna was rushed to a hos pital. Doctors immediately noticed that her breathing 
was very weak- a common situation after a severe blow to the head- so they put her 
onto a ventilator, which i.s a medical device that a~sists with breathing. She had sustained 
brain trauma during the blow to the head. and she remained unconsc ious for several 
weeks. ~11 her vital ;; igni:; were .c;tahl e, except she contin11ect to require hreathing assis
tance from the ventilator. Patients in such :t s ituation sometimes recover, :tnd someti mes 
they don't. When they do recover. sometimes that recovery takes many months. 



2 lntroduct'.on 

Ponabte 
~e111ila1or 

Digital 
circuits 
inside 

Thanks to the advent of modem portable ventilators, 
Ariamut 's parents were given the option of taking her home 

while they hoped for her recovery. an option they chose. In 
addition to the remote monitoring of vital sigm and the 

daily at-home visits by a nurse and respiratory therapist, 
Arianna was sun-ounded by her parents, brother, sis1er, 
cousins, other family, and frie.nds. For the majority of the 
day, someone was holding her h:ind, singing to her. whis 
perinr; in her ear, or encoma~ing her to recover. He r s ister 
slept nearby. Some srudie.s show that such human interaction 
can indeed increase the chances of recovery. 

And recover she did. Several months lat~r, with her 
Utum s illiug al her siue, Arimm11 upeaed her eyes. L<tler !hal 
<lay, ~he was transportefl hack to th e hospital. She was 
weaned from the ventilator. Then, after a lengthy time of 

recovery and rehabilitation, Arianna fi nally went home. 
Today, six-year-old Arianna '>hows few signs of the accident 
that ne.arly took her life. 

What does this story have to do with digital design? 
Ariamm ·s recovery was aided by a portable ventilator 

device. whme invention was possible thanks to digital cir
cuits . Over the past three decades, the :unount of digital 

circuitry that can be stored on a single computer chip has 
increased <lnmmlii.:;illy-by nearly 100,00) lime~, bdieve il 

or not. Thus, vemilators. f!long with ::ilmrnr everything else 
that nms on electricity, can take advantage of incredibly 
powerful and fast yet inexpensive digital circuits. The venti
lator in Arianna's case \.Vas !l1e Pulrnonetics LTV 1000 
ventilator. Whe.reas a ventilator of the early 1990s might 
bave been the size of a large copy machine and cost about 
5100,000, the LTV 1000 is not much bi_gger or heavier than 
this textbook and costs only a few thousand dollars- small 
enough, and inexpensive enough, lo be carried in medical 

rescue hclicopt:!rs and ambulances for life-saving situations, 
<tml even lo be sen! hornc wilh ii p<tlienl. Tl11:: dig.il11l c in: ui ts 
inside contimrn lly mnnitor the patient's hreath i ng, anrt 
provide just the right amount of air pres&ure and volwne to 

the patient. Every breath that the device delivers requires 
millions of computations for proper delivery, computations 
wJuch are carrie.d out by the digital circuits inside. 



One indica10r of The 
r at11 thm 11ew 

i11w!mio11s are 
dn eluped i.s Jtt: 
11111•1ber oj 1<ew 
patents gra11ted: 
nearly 200, 000 in 
1008 c.lone (from 
obow 500,000 ro1al 
a,?p/ic,uiont). 

Photo courtesy of Pufmonctfr:s 

Photo courtesy of Pulmonetics 

1.1 Dioital Systems in the World Around Us 3 

Portable ventilators help not only trmuna vie 
tiins, but even more commonly help patients with 
uebililatiug llist:<tse:s, like mulliplt: si.;krusis, LU gaiu 
mobility. Today, such people can move about in a 
wheelchair, and hence do things like attend school, 
visit museums, and take part in a family picnic, 
experiencing a far better quality of life than was fea
s iblt: just a dt:l:aue agu wueu tl1usc peupk would 
have been confined to a bed connecced co a large, 
heavy, expensive ventilator. ror example, the. young 
girl pictured on the left will likely require a venti
lator for the rest of her life-but she will be able to 
move about iu her wheelchair quite freely, rather 
rhan being mostly confined to her home. 

The I .TV I()(){) ventilator c1e~crihec1 ahove was 
conceived and designed by :t small group of people, 
pictured on the left, who sought to build a portable 
and reHable ventilator in order to help people. like 
Arianmi ;mu Ll1uusamls uf ulhi:;ri, lik.t: lier (as well as 

to make some good money doing so!). Those 
designers probably started off like you, re.ading text
books and taking courses on digital design, 
programming, electronics, andior other subjects. 

The ventilator js just one of literally tem of thousands of meful device.'.\ that have 
come abour and continue co be creaced Thanks co the era of digical circuics. If you stop and 
think ahout how many c1evices in the worlc1 are made possihle hecrmse of digita l circuits, 
you may be guile surprised. A few such devices include: 

Antilock brakes, a.irbogs, nutofocus cumerns, automatic teller machines, aircraft controller3 
und 11aviga:ors, camcorders, cruh registers, ceU phones, computer networks, credit cW'd 
readers, cruise controllers, defibrillators. djgitul cnmerns, DVD ployers, electric card readers, 
electronic games, electronic pianos, fux machines, fmgerprint identifiers, heoring aids, home 
security system.~ , moderns, pacemakers, pagers, personal computers, personal digital tlssis
tnnts, photocopiers, portable music players, robotic aftl1s. >Cllllller>, teleYis!om, thenuosmt 
controllers, TV set-top boxes, vemilators, video game consoles-the list goes on. 

Those devices were created by hundreds of thousands of des igners, including com
puter scientists, computer engineers, electrical engjneers, mechanical engineers, and 
ulhtrs, wurk.iug with peuplt like Sl:ieulists, Llocturs, busintss people, auJ te<tchtrs. Om: 
thing that seems clear is chat new devices will cominue co be invemed for the foreseeable 
fu ture-<levices that in another decade will be hundreds of rimes smaller, cheaper, and 
more powerful tforn tod~y·s c1evices, enahling new appl ications ttrnt we can hArely c1ream 
of. Already, we see. new applications tbat seem futuristic but that exist today, like tiny 
digital-circuit-controlled medicjne dispensers jmplanted under the skin, voice-controlled 
appliances, robotic self- guiding bomehold vacuum cleaners, laser-guided automobile 
cruise control, handheld phones with full Internet access, and more. 'Nbat's not clear is 
what new and exciting applications will be developed in the future, or who those devices 
will benefit. Futme designers, like yourself perhaps, will help determine that. 



4 1 lntroduct'.on 

1.2 THE WORLD OF DIGITAL SYSTEMS 

Digital versus Analog 

A digital signal, also known as a discrece signal, is a signal that at any rime can have one 
of a fillite. set of possible. values. In c.ontrast. an analog signal can have one. of an infinite 
number of possible values, and is also known a& a continuous signal. A signal is j ust s ome 
physical phenomenon that has a unique value at every inst:mt of time. An everyday 
exarnpfo of an analog aign11J is the temperature outside, because physical t~mpcraturc is a 
continuous value- the temperature may be 92.356666 ... degrees. An everyday example 
of a digital signal i:s the number of fingers you hold up, because the vaJue must be either 
0, J, 2, 3, 4, 5, 6, 7 , 8, 9 , ur l~a fiuite sel uf values. In fa<.:l, LLe lerm "di gil;tl" rnme1' 

from the Latin word for udigit" (digirus), meaning finger. 
rn computing systems, the most common ctigi ral signals are those thfl t c::m have one of 

only two possible values, like. on or off (ofte.n re.presente.d as 1 or D). Such a two-valued 
representation is known as a binary representation. A digital system is a system that takes 
digital inputs and generntes digital outputs. /\ digital circuit is a connection of digital com 
poncnts that together comprise a digital system. ln this textbook, the term "digital" will 
refer to systems with binary-valued signals. A single binary signal is known as a binary 
digit, or bit for shm1 (binary digit). Di~i tal electronics became extremely popular in the 
mid-1900s afler U1t: UJV~u tiun ur Utt: lrnusislor, UH dt:dri<.: swildt tl1al (;ltll be lww.~<l Ull ur uff 

using anotller electric signal. We'll describe transistors further in the next chapter. 

Digi tal Circu it" are the Rasis for C:omputers 

Fig1ne 1.1 (a) General-pUipOse 

The most wel l-known use. of digital circuits in the world around us is prob
ably to build the microproce.-sors that serve as the brain of general-purpose 
computers, like the pe rsonal computer or laptop computer that you might 
have at home, illustrated in Figure l. J (11}. G0ncral-purpos~ computers arc 
also used as servers, which operate behind the scenes to implement banking, 
airline reservation, web search, payroll , and sim ihu such systems. General
purpuse <.:Uinpulcrs lake wgital input uala, sud1 as lellers auJ uumbt:rs 
received from files or keyboards, and ourpuc new digital data. :;uch as new 
Jene.rs ~n<1 numhe.rs stored in file~ or ctisplayec1 on fl monitor. r ,earning ahout 
digitaJ design is therefore useful in understanding how computers work 
';under the hood," and hence has been required learning for most computjng 
and electrical engineer ing majors for decades. Based on material m 

upcoming chapters, we'll design a simple computer in Chapter 8. 

computer 

About f 00.000 illlique tm,, digital 
rirruitr Wl'rP rJ,,,;gnt'rl in 20{)R 

Digital Circuits are the Basis for Much More 
lncreasin~ly, djf,ital circuits ilJe being used for much more than imple
mrnliug genernl-purpust: cumpuk:rs. More aud mure ut:w applit.:aliuns 
conven analog signals m djgi1al ones, and run those digital s ignals through 
customized digital circuits, to achieve numerous benefits. Sucb applicatiom. 
such as those in .Figure l. l (b), include. cell phones, automobile engine con
trollers, TV set-top boxes, music instruments, djgital cameras and 
camcorders, video game consoles, and so on. Digital circuits found inside 
applications other thrill general purpo;;e computers are often called embedded 
systems, because those djgital systems arc embedded inside another ckc
tronic device. 



1.2 The World of Digital Systems 5 

The world is mostly analog, and therefore many app1ications were previ 
ously implemented with analog circuits. However, many implementations 
have. o..:ha11geu vr an~ diangiug v•er lo rJigiLal i1upleme.11taliu11s. To u11der
sraod why, notice char although rhe world is mostly analog. humam often 

~ Sound waves r-----.:;>---------: 
benefit from converting analog signals to digital signals before "pro
cessing" that information. For examp1e, a car horn is actually an analog 
signaJ- the volume can take on infinite possible values, and the volume 
varie:-. ove.r lime Llue lo vmi<tlion~ iu llle. balle.ry slre.nglh , lt::m pt::rnlure, de. 

But humans neglect those variarfons, and iosread '·digitize" the sound 
heard into one of two values: the car horn is "off," or the car horn is .. on" 
(get out of the way!). 

: It : move the 

Jf ft : membrane, 

: I t ~ l which moves 
: T , L : the magnet, 

l ... '."!f.'.:'.':--_~_J __ --1~ --which creates 

Converting analog phenomena to digital for use with digital circuits 
can also yield benefits. Let's exanune a pruticular example- audio 
recording. Audio is clearly an analog signal, with infinite possible fre
rp1encies :mrt volume<>. l.onsirler recorning an auclio signal like music 
through a microphone, ~o that the music can later be played over speakers 
in an electronic stereo system. One type of microphone, a dynamic 

current in tt'e nearby wire 

Figure 1.2 Analog audio w ith 
a microphone. 

microphone, works based on a principle of electromagnetism- moving a 
magucl m:;u a wire causes L.:hangiug c.;wTent \am] hemx vullage) ju Utt:: wire, as illu;slraleu 

in Figure J .2.. The more the magnet moves. the higher the voltage on the wire. A micro
phone thus has a ~mall membrane attached to a magnet near a wire- when sound hits the 
membrane, the magnet moves, causing current in the wire. Likewise, a speaker works on 
the same principle in reverse-a changing current in a wire wiU cause a nearby magnet to 
moYe, which jf attached to a membrane will create sound. (If you get a chance, open up 

an old speaker-you']] find a strong magnet inside.) If 1he microphone is arcached 
rli recrly to the speaker (through an :m1plifier that strengrhen~ the microphone's rnnpnt 
current), then no digitization is reguired for sound lo be c:tptured by the microphone and 
played by the speaker. But what if the sound should be saved on some sort of media so 
that a song can be recorded now and played back later? The sound can be recorded using 
aualug mt:lhuc.ls ur <ligilal ruelhuc.ls, bul <ligilal mt::Ll1u<l.s have mauy a<l\anlag~. 

One advantage of digital methods is lack of deterioration in quality over time. In the 
1970s and 1980:;, the audio ca~sette. tape, an analog method. was a c.ommon method for 
recording and playjng songs. Audio tape contains on its surface huge nwnbers of mag
netic particles that can be moved to particular orientations using a magnet. Those 
particles hold that orientation even after the magnet is removed. Tbus, magnetism can be 
used co change 1he rape's magnecic panicles, some of them up, some higher. some down, 
etc. This is similar to how you can .spike ynnr hair, ~ome np, some sideways, ~ome clown, 
using hair gel. The possible orientations of the tape's magnetic particles, and your hair, 
are infinite, so the tape is definitely analog. Recording onto 3 tape is done by passing the 
tape under a "bead" that generates a magnetic field based on the electric current on the 
wire L.:omiug frum a micruphoue. The tape'~ 111ag.11elii; particles wuul<l tl1us be muveJ lo 

particular orientations. To play a recorded song back, one wouJd pass the rape under the 
he.ad agajn, bllt this time the head operate:; in reverse, ge.nerating current on a wire based 
on the changing magnetic field of the moving tape. That current then gets amplified and 
sc:nt to the speakers. 



6 lntroduct'.on 

(a) 

(b ) 

U1 2 ,.._.---- ~ 
.- ;::> 1 

analog signal 

/
/ on wire 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

I 

0 ~~1-T-----i~T---i---i-----i---iF---i-.... "--+-~ 

analog-to
micropione digi\2.1 

converter 

di 9 ital-to. 
analog 
converter 

. I I I I I I I I I I I 
1 00 : o 1 11 o 11 o I 11 I 11 I 11 I o 1 I 1 o l 1 o I 00 I timo 

----- -- digilized signal I'_, 
0001101011111101101000 

read from tape, CD, etc. analog signal 
/ reproduced from 

/ dig ti zed signal 
I I I 
I I I 
I I I 

'---~--' 2J 2 I 

"': ·' ~---:ll ~La : " !10 !10 !11!11!11 !01iio !10! oo!tim• 
o~~ 

i;pe;:iker 

Figure 1.3 AnaJog-dighal conversion. (a) Convening an analog s ignal ro a digiLal signal, (b) 
converting a digical ;;ignal co an analog signal. Notice some qualily los;; in che reproduced 
signal- lhe signal (in blue) in (b) roughly follows buc does nor exactly march ihe s ignal in (a). 

A problem with audio tape is that the orientations of the particles on the tape's 
surt'ace change over time- just like a spiked hairdo in the morning eventually flattens out 
chroughour rhe day. Thus, audio tape quaUry dereriorares over rime. Such deteriorarion is 
a probJe.m with many analog systems. 

Digitizing tbc audio can reduce such deterioration. Digitized audio works as shown 
in Fig.use l.3(a). TI1e figun: shows au <Jmtlog :sig.1ml 011 a win; Juriag a periuu uf Lime. We 
wmzp!P. that signal M particular time intervals, shown hy the rlashed lines As»rnrning rhe 
analog s ignal can range from 0 Volts to 3 Volts, 2nd that we plan lo store each sample 

using two bits, them we must round each sample to the nearest Volt (0. L 2, or 3). Each 

llillnpk appeans illi a puiul i11 Llie figun::. We cfilJ :slure 0 Volts as lhe lwu bi ls 00, l Vull as 

the two hits 01, 2 Volts as the two hits 1 o, anc1 3 Volts as the two hits 11 . Thus, the 
shown analog signal would be converted into the following digital s ignal: 

0001101'J1111110 1 1C1C:OO. Th1s process is caJled anal<>g-to-digital conversion or 
just diginzation. 

To record this digita l signal, we just need to store Os and ls on the recording 

media Regular audio tape could be used, recording a short beep to represent a 1 and 
uu beep lu represenl a 0, fur example. Wltik lhe auwu sigrn:tl Oil lite lape will uderiu
rare over time. we can sdll cenainly tel l the difference between a beep and no beep, just 
like we can te ll the difference between a car horn being on or off A slightly quieter 

beep is still a beep. You ' ve likely heard digitized data communicated using a manner 
~irnilar tu such beep~ when yuu 've pickeJ up a phone beiug useJ by a cumpuler muuem 
or a fax m::ichine.. F.ve.n hette.r th an auclio tape, the rtigita1 signal crn1lcl he rewrrled using 



1.2 The World of Digital Systems 7 

a media specifically designed to store Os and ls. For example, the surface of a CD 
(compact disc) or DVD (digital video disc) can be configured to reflect a laser beam to 
<t st:usur ~ilher slrungJy or w~a.\Jy, thu~ s1uriug ls auJ Os easily. Lik.ew is~. lii:tn.l Jisk.s 
in computers use magnetic particle orientation to store o~ and ls, ma'<lng such disks 
sirrular to tape, but enabling faster access to random parts of the djsk smce the head can 

move sideways across tbe top of tbe spinning disk. 

To p lay back tlfr> digitized audio s i,gnal, the dig;ital value of each :sampling period 
can simply be converted to an analog signa l, as in Figure 1.3(b). Tbe process is known 
as digitnl-tn-a1lalng r.nm•ersinn. The reproclucerl sign11 l is not an exnct replica of the 
original analog signal. The faster the analog signal is sampled and the more bits used 

for each sample, the closer the reproduced analog s ignal will be to the original analog 
s ignal- at .some point, humans can't notice the difference between an original audio 
s igmtl am.l u11e llml has been lligilizeJ and lheu <.:unvalt:<l bacl lu aualug. 

Another arlvflntage of r1 igiri7,er1 m1r1 io is compression. Suppose that each sample 
will be stored with ten bits, rather than just two bit.. , to achieve better quality due to 

less rounding. The result is many more bits for the same audio the s ignal in Figure J.3 
has eleven samples, and at ten hits per sample, one hundred ten bits would be required 
Lu slure lhe auwu . Sampling lhuus;m<ls uf limes it set.:uu<l n~~ulls in huge numbers of 

bits. However, suppose that a panicular audio recording has many samples char have tbe 
value DOOOOOOOOO or the value 1111111111. We could compress the digital fi le by 
creating new words using the following scheme: if the first bit of a word is 0, the next 

bit being o means the word should be expanded to th~ sample 0 00000000 0 ; the next 
bit being 1 means the word should be expa11ded to 1111111111. So OD is shorthand 
for 0000000000 because the first bit is D and the next bit i:; o. and 01 is sborthand for 
1111111 111 . lf insrear1 the firsr hit of 11 worrt is a 1, then the next ten hits represent 
the actual sample. So for 10000001111, the first bit is 1, a11d thus the actual sample 
is the next ten bits , or 0000001111.. Using this compression scheme, the digitjzed 
s ignal " 000 0000000 OOOO CC·OOOO 0000001111 1111111111'" would be com
prt:~scll tu " 00 00 10000 001111 0 1." The rea:iver, whidt mw;l kuuw Lhc 

compression scheme, would decompress that compressed signal into the original 
uncompresse.d digitized signal . There are many other scbeme.s tlut can be. used to com

press digitized audio. Perhaps the mostly widely known audio compre&sion scheme is 

k'l1own as MP3, which is popular for compressing digitized songs. A typical song might 
require many tens of megabytes uncompressed, but compressed usually only requires 
about 3 or 4 megabytes . Thanks to compression (combined with h.igher-capacil} disk:;), 
tocl;:iy 's portable mmic players c:in store tens of rhousamls of songs- a capahility 
undreamt of by most people in the 1990s. 

Digitized audio is widely used not only in mw;ic recording, but also in voice commu
nications. For example, digital cellular telephone:s, called cell phones or mobile phones, 
digicize a person's voice and then compress the digital iiignal before transmining chat 
signal. ~nch rligirization enables far more cell phones to operate in a partic111f11· region 
than is possible using analog cell phones. Pictures and \'ideo can be digitized in a manner 

sLmilu to that described for audio. D igital cameras and video recorders, for example, 
store pictures and video in compressed digital form. 

Digi tized audio. picrures, and video are j ust a few of 1he rnousands of past and 
fn111re applicritions that henefit from r1 igiri7,ation of analog phenomena. As showr1 in 



8 lntroduct'.on 

Si'ltt'tll ite~ DVD ViliM M11~it":f"ll 

Portable p layers recorders nslrumenls 

m11~ t": plf"IYf!r~ CP.11 (>Mnl'!>i Ci'Jmf'!(;'l~ Tl/s ??? 

1995 1997 1999 2001 2003 2005 2007 

Figure 1.4 More and more arntlog products arc becoming primarily digital. 

Figure l.4, over the past decade. numerous products that were previous ly analog have 
cuuverlt:tl primarily lu uigi tal ledmulogy. Purl<tble mu~ic playe~. fur exa111ple, 
swirched from cassette rapes 10 digiral CDs in the middle I 990s. and recemJy to MP3s 
and other digital formats. Early cell pbones used analog communication, but in the late 
1990s digital communjcation, similar in idea to that shown in Figure 1.3, became dom
inant. In the c:arly 2000s, analog VHS video players gave way to digitaJ video disc 
(DVD) players, and then to hard-drive-based digital video recorders (DVRs). Portable 
video cameras have begun co digitize video before storing che video onto tape or a hard 
drive, while ;;till pictnre ca merns lrnve elimim1te<1 fi lm :mrl .<:tore photrn: on rligi tal c::irrl;;. 

Musical instruments are increasingly digital-based, with electronic drums, keyboards, 
and electric guitars including more digital processing. Analog TV is also giving way to 
digital TV. Hundreds of other devices have co11ve1ted from analog to digital in pa.:; t 
<lt:cm.ks, ~ud1 <ts duck.s am.I w;tlchcs, huusehulu tl1c::rn1u-;tals, hwu;m lt:mpt:rnlurc:: ther
mometers (wl1ich now work in the e::i r rnther than unrier rile tongue or other places). car 

engine controUers, gasoline pumps, hearing aids, and more. Many other devices were 
never analog, instead being introduced in digital form from the very start. For example, 
video games have been digital since their inception. 

The above de\ices use digitizmion. and digitization requires tha1 phenomena be 
encorlect into - s anct Os. C:o111p11t::itions using rligirnl circ11i t ;; also ff>i] ll i re that 1111mhers he 
digitized into ls and Os. The next section describes bow to encode items digitaJly . 

.... THE TELEPHOiVE. 

TI1e te~cphonc. patentccl by Alc11ander Graham Bell in 
the late 1800s {though invented by Antonio Meucci). 
operates using the c:cctrn1nagnctic principle described 
earlier- your speech creates sound waves tllat move a 
membrane. which moves a magnet, which creates 
current on a nearby wire. Rw1 that wire to somewhere 
far away, put a magnet connected to a membrane near 
that wire. and the membrane will move. producini; 
5otrnd waves that 11ound like you talking. Much of the 
telephone .system today digitizc5 the au:lio to improve 
quality a11d quantity of audio transmissions over Jong 
di~tances. A couple of interesting facts about the 
telephone: 
• Believe it or not. We.stem Union actually tw11ed 

duwu Bell\ iuilial pruposcJ to J cvdup lhc 

telephone, perhaps thinking char the then-popular 

telegraph was all people needed. 

• Bell wid his a:s~isliU ll 

Waison dfaagreed on 

how to answer the 
phone: Watson \'.'anted 
''Hello," which won. 

but Bell wanted "Hoy 
hoy" imteacl. (Fans of 
the T\' show The 

Simpsom muy have 
ncticc<l that Homer's 
boss, Mr. Bums. 
ilJJ.Swcr:s U1c: µhuuc wi[]1 
a "hoy hoy.") An ead;y-.rtyie telephone. 

~Source of some of the :tbove m:tleri31: www.pbs.org, 
tr.inscr:pl ot 'The ·1etephone··i. 



1.2 The World of Digital Systems 9 

Digital Encodings and Binary Numbers-Os and l s 

analog 
phcnomono 
~ 

sensors and 
other inpu1s 

d igital 
d<.'lta 

Oigital System 

digital 
cll'lt<I 

actuators a1d 
Other OUlP\.JlS 

~ 
~ 

Figure 1.5 A f)lpl l'~I 
rligital ~yst~m. 

temperature 
sensor 

0 0 1 0 0 0 0 1 

·11s a:i aegrees· 

Figure 1.6 1t1e11linct ~enM1r 
th~t 011tp11t~ ltig1tal 1111·11. 

The previous section showed an example of a djgital system, which involved digiti2ing an 
auruo signal into bits that could then be processed using a digital circuit to achieve several 
benefits. Those bits encoded the data of interest. Encoding data into bits is a remraJ task 
in digital sy~tems. Some. of the data to process may already be in d.Jgital fom1. while. other 
dnt::i mny be in analog fonn (e.g., :.mdio, video, temperature) ::ind thus require conversion 
to digital data first, as iJlustrated at the top of Figure J .5. A digital system takes digital 
data a~ inpm. and produces digital data as output 

Encoding Analog Phenomena 
Any analog phenomena can be digitized, and hence applications that digitize analog 
phi:;uuuitua c:;xist iu a wide V1uidy uf dumaiu~. Autumubik;s uigitize i11iuru1atiu11 about 
the engine temperature. car speed, fuel level, etc., so that an on-chip computer can 
monitor and control the vehicle. The ventilator introduced earlier rugitizes the measure 

of the air flowing into the patient, so that a computer can make calculations on how 
much additionaJ flow to provide. Digitiz.ing analog phenomena requires: 

• A sen.~t>I' tlmt measures the. analog phy.;iell phenomena and converts the measured 
value to an analog electrical signal. One example is the microphone (which mea

sures sound) in Figure 1.3. Other examples include video captme devices (which 
measure light), thermometers (which measure 1emperarure), and speedometers 
(which me~snre speert). 

• An analog-10-digi.ral converter that converts the electrical signal into binary 
e.ncodings. The. conve11er must sample (measure) the ele.ctrical signal at a part1c
ulx rate and convert each sample to some value of bits . Such a converter wru; 
featured in Figure 1.3, and is :shown as the A2D component in Figure 1.5. 

Like.wi..;e, a digitn.l-tn-analng r.nnverter (shown as n2A in Figure I S) converts hirs 
back to an electricaJ signal, and an actuator converts that electrical signal back to phys
ical phenomena. Sensors and actuators together represent types of dcvioc3 known as 
irun.~ducen·-Je,· i1.x'!> that ~unverl uue form u[ c:;uc:rgy lu auuU1er. 

Many examples in this book will ut111ze ide.ahzed .;e.nsors that themselves dire.ctly 
output digitized data. For instance, an example might use a temperature sensor that reads 

the present 1ernperature and sets its 8-bit output to an encoding representing the tempera
ture:; as a binary number, as in Figure 1.6 (Mx nc:;xl sn:liuns for binar}' uumbt:r em;uuiugs). 

Encoding Digital Phenomena 
Other phenomena arc inherently digital. Such phenomena can only take on one value at a 
time fron1 a finite set of values. Some digital phenomena can take on only 011e of two pos

sible 'values at a time, and thus can be straightforwardly encoded ai; a single bit. For 
example, the following type.~ of sensors may output an e.lectrical signal that takes on one. 
of two vnlues at ::i time: 



10 1 Introduction 

0 1 
Figure 1.7 A bunon is 
easily encoded as a bit. 

Motion sensor: outputs a pos1t1ve voltage (say +3 V) when motion is sensed, 
0 ·volts when no motion is sensed. 

• Light sensor: output;; a positive voltage when light is sensed, 0 V when dark. 

• Rntton (sen~or): 011tp11ts ::i po~itive voltage when the hntton ic;; pre~se1i , 0 V when 
not pressed . 

We can straightforwardly encode each sensor's output to a bit, with 1 representing the 
pus ilive vuH<tge anJ 0 represenling 0 V, as fur Ute button iu Figure 1.7. Ex<tmpks 
throughour this book utilize idealized sensors that directly output rlle encoded bit value. 
Olher digital phenomena can assume several possible values. For example, a keypad 
may have four buttons, ;;olored red, blue, green, and black, as in Figure 1.8. A designer 
might create a c ircuit such that when red is pressed, the keypad's three-bit output has the 

value 001; blue outputs 010 , green 011, and black 10J. lf no button is pressed, the 
outpm is ooo. 

An even more genernl rligirnl phenomenon is the F.nglish Hlph::ihet. F.ach char
acter comes from a finite set of characters, so typing on a keyboard results jn 

8 ( blue )(green)( black) digital, not analog, data. The digital data can be converted to bits by assigning a bit 
'-----~~~------' encoding to each character. A popular encoding of English characters is known as 

ASCII, whjcu :slaJ1u:s fur A1w::ric<LJ1 Stam.hull CuJt: fur 11Jfunu;1liuu Inlen:haugt:, ;iml 

0 0 0 is pronounced as "askey." ASCII encodes each character into seven bits. For 
r---------~ example, the ASCU encoding for the uppercase JetteJ· "A' is .. 1oocoo1." and for '.H' 
8~@ is "1000010." A lowercase 'a' is "1100001," and 'b' js "1100010." Thus, the 

name "ABBA" would be encoded as "1000001 1000010 lJDOOlO l OJJDOl." 

0 1 0 

Figure 1.8 Keypad encodings. 

ASCII defines 7-bit encodings for alJ 26 letters (upper- and lowercase), the numer
ical symbols 0 rhrough 9, puncruarion marks. and even a number of encodings for 
nonprintflh1e "conrrol " operations. There fire 12~ encoctings total in AS\.11 . . C\ rnh"et 
of ASCII encodings is shown in Fjgure 1.9. Another encodjng, Unicode, is 

increasing in popularity due to its support of international la11guages. Unicode uses 
16 bits per character, instead of just the 7 bits used in ASCII, and represents charac
lens irulll '1 uiversily u[ lauguagc:s ir1 Lile wurlJ. 

Encoding Symbol 

010 0000 <Space> 
0100001 ! 
010 0010 
0100011 # 
0100100 $ 
0100101 % 
0100110 & 
010 0111 
010 1000 
010 1001 
010 1010 
0101011 + 
0101100 
0101101 
0101110 
0101111 

Encod ing s m bol Encoding Symbol 
100 0001 A 100 1110 N 
100 0010 B 1 oc 1111 0 
100 0011 c 101 ocoo p 
100 0100 D 101 0001 0 
1000 I01 E 101 0010 R 
100 0110 F 101 0011 s 
1000111 G 101 0100 T 
100 1000 H 1010101 u 
100 1001 I 101 0110 v 
100 1010 J 101 0111 w 
100 1011 K 101 1000 x 
100 1100 L 101 1001 y 
100 I I 01 M 101 iUlO z 

Figure 1.9 Sample ASCil encodings. 

Encod ing Symbol 

110 0001 a 
110 0010 b 

1111001 y 
1111010 z 

011 OOOJ 0 
011 0001 1 
011 0010 2 
011 0011 3 
011 0100 4 
011 0101 5 
011 OllD 6 
011 0111 7 
011 1000 B 
0111001 8 



5 2 3 

104 103 102 10 1 10° 

figure 1.10 Base ten 
nwnber system. 

0 

z4 zs z2 z1 z.O 
Figure 1.11 Base two 

number system. 

l SQIV ill!! fO/l'J\Vlllg Oil 

a T-.Jhirl, a11dfo1md ii 
mtlru funny: 

"'There t.rc 10 types of 
people in the world: 
thase who get binary, 
a11d lho:;c wh<> don"t."' 

0 

16 8 4 2 

Figure 1.12 Base 1wo 

number syscem sbowing 
weights Jn base ten. 

1.2 The World of Digital Systems 11 

Encoding Numbers as Binary Numbers 
Perhaps the most important use of digital circuits is to perform arithmetic computations. 
1J1 fai:l, <t kt:y driver of early Jigilal rnmpulcr Je~igu wa:; lht! ari lluueli~ i:umputatiou of 
baUistic rrajeccorie.~ in World War II. To perform arithmetic computations, we need a way 
to encode numbers as bits- we need binary numbers. 

To understand binary numbers. fu st refreshing om· understanding of decimal 
numbers can help. Decimal numbers use a base ten numbering system. Base ten is a num
lxriug sy:slem wliere U1e righlmmst digit represents l11t: 11urnbt:r u[ uues (10°) pn:s~nt, the 
next djgit represems the number of group;;; of tens (101

) present (meaning that tbe digit's 
place has a weight of 101), the. ne.xt digit's place has a weight of (102) , and so on, as illus
trated in Figure l.JO. So the digits "523" in base 10 represent 5* 101 + 2*101 + 3* 10°. 

With an understanding of base ten numbers, we can introduce base two numbers, 
known as binary numbers. Because digital circuits opernte with values tbat are either 
"on" or "off." such circuits need only rwo symbols. rather than cen symbols. Let those two 
symhols he r. flnd 1. ff we need to represent ~ ci11anti ty more than I , we'll nse another 
digit, whose weight will be 21• So "10" in base two represents l two and 0 ones. Be 
careful not to call that 10 "ten" or "ten. bai:e two" (which makes no i:ense) instead, you 
might say "one zero, base two.'' If we need a bigger quantity, we'll use another digit, 
whust; weighl will be 27·• The wei ghts fur the fint few Lligils in bas~ lwu are shuwn iu 
Figure l.l l. For a given binary number. rhe lowest-weight (rightmosr) illgit is called rhe 
IMsf significant bit, and the highest-weight (leftmost) digit is the most ~ig11ijica11t bit. 

For example, the mtmber 101 in base tv;o equals l *2! + 0"21 -+- J *2°, or 5 in base 
ten. 1o1 can be spoken as "one zero one, base two." Definitely do not say "one hundred 
one, b;tse two." 101 is one hundred one if in base ten, but the leftrnost l does not repre

sent one hundred when in base cwo. 
When we are writing 1111mhers of rl ifferent hase.c; :met the h:ise llf the numher ii:: not 

obvious, we can indicate the base with a subscript, as foUows: 101 2 = 510• We might 
speak this as "one zero one in base two equals five in base ten." This book usually dis 
plays binary numbers using a different font, e.g., :. o 1, to readily distinguish binary 
numbers [rum Jeciurnl numbers. 

Note thar because binary isn't as popular as decimal. people haven't created short 
names for its weights of 2 1, 22, and so on. like the.y tiave for weights in base ten (hun
dreds, thousands, miJlions, etc.). Instead, people just use the equivalent base ten name for 
each base two group-a source of confusion to some people just learning binary. Never
theless, it may still be easier to think of each wei~ht in base two using base ten 
names-one, rwo. four, eight- rather than increasing powers of cwo, as in Figme I .12 . 

.... WHJ' BASE TEN? 

H11nrnns h:ive tr.n fingers. so rhr.y choi:e a nnm~rtnz 
system when~ r.ach chgit can rcpre~en• ten po!>sihlr. 
v:ilues. Thtm~ ·, nmhmg mag1c:il :iho111 h:i!>e tr.n. I f 

h11m:in!> had nu'lt', fingers, they wo11l11 prohahly n<>e a 
hMe rvne nim1hr.rmg syi:tr.m. I t t11n1s om th::it hasr. 
twelve wai: 11~r.<1 ~omewh:it in the past tno, hecm1~e hy 
m;ing our tlrnmh, we c:m easi ly po•nt to twr. lvc 
<11tfcr1~nt ~pots nn the., rr..m:iming four finger;<; on i hM 

thnm"i!>'~ han<l- the fnnr tnps nfthose fmger::, the tour 
1ml1rllr. p:ms of thnse ting.~rs , an<! the fo11r bottoms of 
tho'ie fingers. ·1 h:it m:iy partly explain why twelve, i:; 
common m hmn:m counting tooay, li ke. the ll!>r. ot tho~ 
tr.rm "dn1r.n;· :ind tre twelve. honrs of :i clock 

(Soun:e; lde:as arui Tllfonn."llicn, Amo P::mLLilli, \V,'w\', Norton 
and Com?any.) 



12 1 Introduction 

Indian English 
has a name for 
UP: lakh. In 
2008, 1he 
/11dia11 car 
company Tata 
Motors 
1111veiled the 
"one /ak/1 car." 
costing a mere 
100.000 
rupees, or 
abo111 $2,500. 

711e Web search 
1ool 11a111e 
Google comes 
f rom the word 
"googol " -a I 
followed by 100 
zeroes, 
apparen1ly 
implying that 
1/ie 100/ can 
search a lot of 
information. 

.... NAA.JES IX BASE TE.\~ 

English speakers use names for various quantities in 
base ten, names that arc useful but can hamper 
gaining an intuitive understanding of base ten. 102 

has its own name: hundred. I 03 has the name 
thousand. There is no name (in American English) 
for 104 or 10'5. 106 has the name million, and 
subsequent groups that arc multiples of 1,000 have 
the names billion, trillio11 , quadrillio11, etc. Engl ish 
speakers also use abbreviated names for groups of 
tens-the numbers 10, 20. 30, .... 90 could be called 
one ten, two ten, up to nine ten, but instead have 
abbreviated names: one ten as just "ten," two ten is 
"twenty," up to nine ten being "ninety." You can sec 
how "ninety" is a shortening of " nine ten." Special 
names are also used for tJ1e numbers between 10 and 
20. I I could be "one ten one," but is instead 
"eleven," while 19 could be "one ten nine" but is 

instead "nineteen." Table 1.1 indicates how one 
might count in base ten without these various nan1cs, 
to emphasize the nature of base ten. 523 might be 
spoken as "five hundred two ten three" rather than 
"five hundred twenty-three." Kids may have a harder 
time learning math because of the arbitrary base ten 
names- for example, carrying a one from the ones 
column to the tens column makes more sense if tJ1e 
ones column swns to "one ten seven" rather than to 
"scventccn"- "one ten seven" obviously adds one to 
die tens column. Likewise, learning binary may be 
s lightly harder for some students due to a lack of a 
solid w1dcrstanding of base ten. To help remedy the 
s ituation, perhaps when a s tore clerk tells you "That 
will be ninety-nine cents,'' you might say "You mean 
nine ten nine cents." lf enough of us do diis, perhaps 
it will catch on? 

Table 1.1 Counting in base ten without the abbreviated or short names. 

0 to 9 

IO to 99 

100 to 900 

1000 and up 

A s usual: "zero," "one;' "t\vo," ... , "nine." 

IO, 11 , 12, ... 19: "one ten;• "one ten one," "one ten two," ... "one ten nine" 
20, 2 1, 22, .. ., 29: "two ten." "two ten one," "two ten two," ... "two ten nine" 
30, 40, ... 90: "three ten," "four ten," ... "nine ten" 

As usual: "one hundred," " two hundred," ... "nine hundred." Even clearer would be to 
replace lhe word "hundred" by "ten to die power of 2." 

As usual. Even clearer for understanding bases: replace " tJ1ousand" by "ten to tJ1e 
(power of) 3", " ten thousand"' by "ten to the 4," e tc., eliminating die various names. 

Example 1.1 Using digita l data in a digita l system 

A digital system is desired lhal reads tJ1e 
value of a temperature sensor and shows U1e 
letter "F' (for "freezing") on a display if tJ1e 
temperature is 32 degrees Fahrenheit or 
below, shows " N'" (for "normal") if the tem
perature is between 32 and 212 degrees, and 
shows the letter "B" (for "boiling") if tJ1e 
temperature is 212 or greater. The tempera
ture sensor has an 8-bit output representing 
the temperature as a binary nwnbcr between 
0 and 255. The display has a 7-bit input that 
accepts an ASCII bit encoding and displays 
tJ1e corresponding symbol. 

Figure 1.13 shows tJ1e temperatw·e 
sensor output connected to the input of tJ1e 
des ired digital system. Each wire can have 

Digital System 

if (input <= •00100000•) II "32" 
output = •1000110• ll"F" 

•33• 

else if (input>= "11010100'J II ·212· 
output= •1000010• II "B" 

else 
output = • 1oo111 o• ll"N" 

"N" 

I display[[] 

Figure 1.13 Digi tal sys tem witJ1 bit encoded input 
(an 8-bit binary number) and 7-bit output (ASCII). 
The desired behavior of the digital system is shown. 



1.2 The World of Digital Systems 13 

the value of 1 or 0. The figure also shows a 7-bit output from the digital system connected to the 
display's 7-bit input. 

The desired behavior for the digital system is shown in the figure: if tJ1e input is less than or 
equal to binary 001 00000, which is 32 in base ten, then the output should be set to 1000110, 
which is the letter "F'' in ASCII, as seen from Figure 1.9. Likewise, if the input is greater than or 
equal to binary 11010100, which is 212 in base ten, then the output should be 1000010, which 
is "B" in ASCII. For any other input value (which means tJ1e value is between 32 and 212), the 
output should be 1001110, which is "N" in ASCII. An example input of 00100001, which is 33 
in base ten, is shown. For that input, the digital system outputs "N," as shown. 

This example demonstrates how a digital system operates on digital input bits-Os and 
ls- and creates digital output bits. We'll later sec how to build circuits to implement desired digital 
system behavior. 

• 
Converting from Binary to Decimal 
Because humans deal primarily with decimal numbers, a conunon digital design task is to 
convert a binary number to decimal, or to convert a decimal number to binary. Converting 
a binary number to decimal is straightforward: we s imply sum the weights of each digit 
having a 1, as in the following example. 

Example 12 Binary to decimal 

1 

2 
4 

8 
16 
32 
64 
128 
256 
512 
1024 

2048 

Figure 1.14 Memorizing 
powers of two helps in 
working with binary. 

Convert these binary numbers to decimal numbers: 1, 110, 10000, 10000111, and 00110. 

12 is just I *2°, or 110 • 

1102 is 1 *22 + I *21 + 0*2°, or 6io. We might think of this using tJ1e weights shown in Figure 
1.12: 1*4+ 1*2+0*1,or6. 

100002 is 1* 16 + 0*8 + 0*4 + 0*2 + O*l, or 16w. 
I()()()() 11 12 is I* 128 + 1 *4 + I *2 + I* I = 135 io. Notice this time that we didn't bother to write 

tJ1e weights having a 0 bit. 
001102 is the same as 1102 above - the leading O's don ' t change the value. 

When converting from binary to decimal, people often find it useful to be comfort
able knowing the powers of two, shown in Figure 1.14, because each successive place to 
the left in a binary number is two times the previous place. In binary, the first, rightmost 
place is 1, the second place is 2, then 4, then 8, 16, 32, 64, 128, 256, 5 12, l 024, 2048, and 
so on. You might stop at this point to practice counting up by powers of two: 1, 2, 4, 8, 
16, 32, 64, 128, 256, 512, 1024, 2048, etc., a few times. Now, when you see the number 
10000111, you might move along the number from right to left and count up by powers 
of two for each bit to determine the weight of the leftmost bit: 1, 2, 4, 8, 16, 32, 64, 128. 
The next highest 1 has a weight of (counting up again) 1, 2, 4; adding 4 to 128 gives 132. 
The next 1 has a weight of 2; adding that to 132 gives 134. The rightmost 1 has a weight 
of 1; adding that to 134 gives 135. Thus, 10000111 equals 135 in base ten. 

Being comf01table counting up in binary can also be helpful when working with 
binary. Counting up in binary goes as follows (using three digits): 000, 001, 010, 011, 

100, 101, 110, 111. You might practice writing out this sequence several times to 
become more comfortable with it, doing so for four or even five digits also. Note that a 
binary number whose digits are all ls has a base ten value exactly one less than the value 
of the next higher digit; for example, 111 is 7 in base ten, which is one less than 1000. 



14 1 Introduction 

An interesting fact about binary nwnbers is that you can quickly detemtine whether 
a binary nwnber is odd just by checking if the least-significaat (i.e., rightmost) digit has a 
1. Jf Lhe righlmusl digil is a o, the nLuuber must be t::veu, b~<tllM~ the 11u111ber is the sum 
of even numbers. as the only odd-weighted digit is rhe rightmosr digir with a weight of l . 

Converting from Decimal to Binary Using the Addition Method 
As seen earlier, converting a binary number to decimal is easy just add the weights of 
each digit having a 1. Converting a decimal number to binary takes slightly more effort. 
Om: mdhod for cuuvc::rliug a uc::i.:i11ml number lu a binary u wubc::r by baud is lhe udtliLiun 
method. in wh.ich \.\'e put a 1 in the highe'it place whose weight doesn't exceed tbe 
number. add that number to a sum, and repeat until the sum equals the desired number. 
For example, we can convert the decimal number 12 to binary as shown in Figure l.15 . 

Desired decirYtal Cun'er'lt Bh ary 
number: 12 sum number 

16>12. toobg; 0 
(a) 0 -----

P 11I 0 in 1 O'i:; r>l<'C:F! 16 8 4 2 1 

8 <= 12, so put 0 
(b) 1 in B's p acG, B -----

r.m rent i:;um is 8 
i 6 8 4 2 1 

91"4=12 "'-= 12, so put 0 1 
(c) 1 in •1 's place, 12 """"""'-=""""""'""""""~ 

r:urrent 1;11n ii:; 12 
16 8 4 2 1 

Reached desi ted 12, 
0 0 0 (d) so out Os in rcamaining done -----

ri~r.ei; 
16 8 4 2 1 

figu re 1. 15 Convening the decimal number 12 to binary using ibe addition method. Cal puning a l 
in place J 6 would exceed 12. so we put a Ll there. (b) putting a 1 in place 8 gives us a sum of 8 so 
far, (ct putring a 1 in rlace 4 gi vr.~ a sumo~ 1<+4= 12, th~ n~~ircY1 valt1~. (n) hccmm~ 12 ha<; alrc::iny 

been reached. we put Os in the remaining place;;. The answer i s mus 0 1100. or j ust 1 1 00. 

We c:m check our work hy cml\'erting 11 oo h::ick to rleci mal: I ~R + I "'4 + 0~2 + O;i;2 
= 12. 

/\s another example, Figure 1.16 
illustrates the addition method for con
veniug Lite decimal number 23 lu 

binary. using a more compacr repre
sentation of the calculations. We can 
check our work by con\'er1ing the 
result, 1-Jlll, back to dec imal: 1*16 
- 0*8 + l *4 + 1 *2 + 1 ~ l - 23. 

barnple 1.3 Dtn;1111al lu binary 

0Gsircad decimal 
r"IU 'nber: 23 

Binary 
number 

1 0 1 1 -----
sum: o t6 8 4 2 

'rn 
(a)....._,~ 

(b) 20 
(c) 'a2 

(d) '23 
(e) 

Figure 1.16 Decimal 

23 to binary with tl:c 
addition method: (a) 

32 loo bi g, put 1 u1 
pl11cc 16. (b) 
16+8=24 is too 
much, put 0 in place 
8, (c) 16+4=20, (d) 
20+2=22, (c) 
22+1=23. 

Couvcrl lhc folluwiug ua;imiil 11um bc1:s to binary u:siug lhc mhliliun u:cU1u.l: 8, 14, 99. 
To convert 8 lu binary, we :starl by pulling a 1 u1 Lhc 8':s plt1cc, yickling 10 0 0 (pultiug o~ iu 

Luc luwc:r plm;c~ nul yet co11:s:U::n::d). The curn:nl :swu is 8, SU WC arc: uu11c-U1c llO:SWcr i:s 1000. 



1.2 The World of Digital Systems 15 

To convert 1'1 to binary, we start by put1ing a 1 in 1he 8's place (16 is too much}, yielding 
1000 nnd 11 sum of 8. We put n l in the L's ploce, yielding 1100 and n sum of 8 t4=12. We put n 

1 in the 2 's p:acc. yielding 1110, and a sum of l2+2""'14, so wc arc dono-1hc answer is 111 ·J. We 

c<1n chc:.ck. uur wurk by wuvcrtiu~ b11ck tu ucdmal: 8 + 4 + 2 = 14. 
To convcr. 99 co binary. we scan by puct!ng a:. in the 64's place (the nexc higher place. 128. is 

tM hig- nrtice rhM heing :ihl~ tn cn11nt hy JY'IW~r~ rif two i~ quire. h:in11y in rhi!': pmhlr-m), yielt1ing 

1 000000 and a sum of 64. We put a 1 in the 32's p lace, yielding: llD•JOOO and a mm of 6L+32=96. 
Putting a 1 t11 the 16's p lace yield a sum of 96+16- 112, which is too much. so we put a 0 in the 16's 

place. Likewise, we put Ds in the &'s place and the ;j's place. Putting a 1 in the 2's place yields 

1100010 and a sum of 96+2=98. Finally, we put a 1 in the l's place. yielding t1e final answer of 

1100011 and a sum of 98+1""99. We can check our work by converting back to decimal: 64 + 32 + 
2 +I = 99. 

• 
Note that the addition method must be conducted starting from the highest weight 

place rather than starting from the lowest weight- Ln other words from left to right. 

Starting from the lowest weight, or from right to left, cioes not work. For ex ~mp le, for the 
decimal number 8, starting from the lowest weight would put a 1 in the l 's place, then a 
1 in the 2.'s place yielding a sum of 3, and then a 1 in the 4 's place. yielding a sum of 7. 

Putting a 1 in the 8's place would then yield a sum of 15. which i5 too much, and thus the 
procedure would fail. 

Example 1.4 Converting from decimal to binary to set a DIP-switch controlled channel 

This example illustrates converting decimal to binary iO configure a digital household appliru1cc. A 
ceiling fan is a conunon household iippliancc th:it often comes with a re mote. controller tbat can be 
uscu tu luru lhc fau un ur ulT, <t:I illWitrnlcu i11 F ig w·c 1. 1 ?(<t). All !he fou:s ;ui<l rc111uk cuulruUcr:s 

may operate on the same wireless frequency. Because one house may have multiple such ceiling 
fans. a method i;; needed to prevent the remote controller of one fan from affecting anot11er fan. A 
C'i"lmmon methocl 1.c; to e.nco<1e. a channr.I n11ml~r in rt~ wire.lec;c; s1gn:i t. such th~t r.ach c~1lmg-ta11/ 

remote-controller pair in a home shares a unique channel. When a ceiling fan's module detects. the 

remote control wireless frequency, it checks whether the detected channel matches its own channel 

before responding. A common menns for setting the channel is to use a D[P s wi tch inside lhe 

remote controller and another DIP switch i.ruide the ceiling fan module. An 8-pin DIP switch ltas 

cighl switd1cs llial each cau be either i11 iill up ur uown po~itio11 , iillU eight outputs that each will be 
cirhcr a 1 lf ics correspondjng swicch is up or a 0 if its swicch is down. Thus, such 2. DIP swicch can 
represent 2& ~ 256 distinct values. 

S11pr11!'.e. th1~ c-~iling t an m:in11facn1rr.r wi.;;ht';<; to set a parti~n l ~r ~e.iling-fan/rr.m11te..-co11trol l r.r 

channel to 73. The manufactmer first converts 73 to binary, shown in Fi~ure I. ll(b) to be 

01001 001 . The manufacturer can then set the DIP switch imide the ceiling fan moduJe, as wdl as 

i1tside the remote controller, to the up/down se rtings shown in Figure 1. 17(c). Then, that ceiling fan 

module will only rCSJ..'Olld (by turning the fan on or off. in chis case shown merely 113 setting its 
outpm ro 1 ), if it detects the remote controller's frequency AND the cncodc.d channel matches its 

DIP swicch's value. 

ln case a homeowner happens to purchase two fan/controller pairs tlm are sec to the same 
channel (the chances of which are l in 256). noticing tbis wten one remote controller affects 1wo fans. 
then the home.o""ner can remedy the problem without h ilYing to remove and exchange. one of the fans. 



16 1 Introduction 

figure 1.17 Decimal to bimu,. cmversion for a DIP switch: (a) ceiling fan with remote control. 
both having DIP switches to set their commtmjcation channel. lb) setting the fan's channel to 
''73" requires first converting 7 3 to binary. then setting the DIP switch to represent that binary 
val m~. t.c) cei ling tan moonle only 011tp11t.<: 1 it th~ r?u.iverl channel marchr..> DIP ~w i tch .<:etting. 

lm;tead, heJshe can open the ceiling fan module and the remote controller of one pair, and simply 
change the DIP switch setting& for ths t pair, ensur'.ng that both DIP switches m.'ltch after the change. 

While rhis section introduced the addition method for converting from decimal lo 
hinary, many hooks ~nrl weh re.srnirces intT'1011ce. the. suhtractinn methnd, wherein we 
st:trt by setting a current number to the desired decimal number, put a 1 in the highe~t 
binary number place that doesn't exceed the current number, subtract that place's weight 
from the current number, and repeat until the current number reaches zero. The two 
mt:U1uds ;rre fUJ1damcnluUy Lile s;uue; Lhe <1Lhli tiu11 111dl1uu tuay be murt: intuitive wl1e11 
converting by hand. 

Hexade-cirnal and Octal Number s 
Base sixteen numbers, known as h exadecimal mmwers or just hex, are also popular in 
digital design, mainly b-:!cause one base sixteen digit is equivalent to four base two digit5, 
making hexadecimal nurnbers a nice :.hortband representation for binary numbers. In base 
sixteen, the fim digit represems up ro fifteen ones- the sixteen symbols commonly used 
~re 0, I , 2, .. ., 9. A, K l., D , F .. F (sn A =ten, R =eleven, l. =twelve, D =thirteen, 
E =fourteen, and F = fifteen). The next digit represents the number of groups of 161, the 
next di.git the number of groups of 162

, etc., as shown in Figure 1.1&. So 8AF16 equals 
8*162 + IO:k 161 "T" 15*16°, or 2223io. 



Because one digit in base 16 represents 16 
values, and four digits in ba<;e two represents 16 
values, then each digit in base 16 represents 
four digits in base two, as shown at the bottom 
of Figure 1. 18. Thus, to convert 8AF 16 to 
binary, we convert 8 16 to 10002, A 16 to 10102, 

and F16 to 11112, resul ting in 8AF16 = 
100010 1011 11 2. You can see why hexadecimal 
is a popular shorthand for binary: 8AF is a lot 
easier on the eye than 1000101011 11. 

1.2 The World of Digital Systems 17 

8 A F 

154 153 162 151 160 

8 A F 

• • • 1000 1010 1111 

hex binary hex binary 

0 0000 8 1000 
0001 9 1001 

2 0010 A 1010 
3 0011 B 1011 
4 0100 c 1100 
5 0101 D 1101 
6 011 0 E 1110 
7 0111 F 1111 

To convert a binary number to hexadec
imal, we j ust substitute every four bits with the 
corresponding hexadecimal digit. Thus, to 
convert J 0 110 I J 01 2 to hex, we group the bits 
into groups of fotu- starting from the right, 
yielding 1 OLI O 1101. We then replace each 
group of four bits with a single hex digit. 110 I 
is D, 0 11 0 is 6, and I is 1, resulting in the hex 

Figure 1.18 Base s ixteen number system. 

number 160 16. 

Example 1.5 Hexadecimal to/from binary 

Convert the following hexadecimal numbers to binary: FF, I 011 , AOOOO. You may find it useful to 
refer to Figure 1.18 to expand each hexadecimal digit to fou r bits. 

FF16 is 1111 (for the left F) and 1111 (for the right F), or 11111 111 2• 

1011 16 is 0001. 0000, 0001, 0001, or 0001000000010001 2• Don't be confused by the fact 
that 1011 didn't have any symbols but 1 and 0 (which makes the number look like a 
binary number). We said it was base 16, so it was. If we said it was base ten, then I 01 1 
would equal one d10usand and eleven. 

A000016 is 101 0, 0000. 0000, 0000, 0000, or 101000000000000000002• 

Convert d1c following binary numbers to hexadecimal : 0010, 0 1111110, 111100. 

00102 is 2 16• 

0 11 111102 is 0111 and 1110, meaning 7 and E. or 7E16• 1111002 is 11 and 110 0, which is 
0011 and 1100, meaning 3 and C, or 3CI(,· Notice that we start grouping bits into 
groups of four from the right, not the left. 

• 
If a decimal number needs to be converted to hexadecimal , one can use the addition 

method. Sometimes, though, it is easier to first convert from decimal to binary using the 
addition method, and then converting from binary to hexadecimal by grouping sets of 
four bits. 



18 1 Introduction 

Example 1.6 Decimal to hexadec imal 

Convert 99 base l 0 to base 16. 
To perform this com·crsion. we Clln first convert 99 to binary and then convert the binary result to 

hexadecimal. Com<crting 99 IO binary was docc in Example 1.3, yicldin5 1100011. Converting 
1100011 to hexadecimal can be done by grouping sets of four bits <,starting from the right), so 
1100011 is 110 and 0011, meaning 6 and 3. or 6316- We can check our work by conYcrting 63 15 to 
decimal: 6*16 1 + 3'"16° "" 96 + 3"" 99. 

Example 1.7 RFID tag with identifier in hexadecimal 

/11 2004, a Bar.-efo11a 
rluh /11•gnn riilnwi11g 
c1u1omers ro imp/am 
RFfD 1ags under tludr 
s!:i11 ro .1;ai11 c.ccess 10 
VIP .'ou11~e• ,,,,d /11 !JUY 
tltei r bill. Jiu U.S. 
F.D.A. approved ll11ma11 
RFfD implcmt.r i11 2004. 
Sou re~: 
1~u111.1ilere,Risrer:co.1Jk 

An RFID tag (radio frequency identification tag) is a chip that automatically responds to a radio 
signal by sending back a signal containing a unique identification munber. RFID tags have been 
used since ihe 1990s with automobile toll transponders. dairy CO\\>S (as in Figure l .19(a)), and dogs 
(in which the tag may be implanted under the skin). An RFID tag typically ha;; an electronic circuit 
that uses the radio s ignal to power the chip, thus eliminating the need for a battery, decreasing the 
tag size, and increa...:ing tag longevity. 

Figure l. L 9(b) illustrates how the identifier in a cow tag might be structured as a 32-bit stored 
value where the first 8 bits correspond to a province (or srate) number and the next i; bits to a city 
number (Ihm representing tl1e cow's binhplace), and the last l 6 bits correspond to the animal's 
unique number. The device that wirelessly programs that identifier u1to the tag may require that the 
identifier be input in hex, even though the programming device will actually write Os and ls into 
the tag's 32-bit storage- typing 8 hex digits is less error-prone than typing 32 bits. Figure I. l 9(c) 
provides sample desired values in decimal, Figure 1.l 9(d) shows those values converted io binary, 
and Figure 1.19(e) shows the binary \'alues con\'erted to hex. Finally, Figure l.L9(t) shows the 8-
digit hex value that would be entered into the programming device, which would rhen program a 
specific tag with the corresponding 32-bit value. Once that value is programmed into the :ag, the tag 
can be attached to the cow, and subsequently read countless times by an RFlD reader, perhaps to 
help ensure that each cow is milked no more than once per day. 

(b) I I I I I I 1111 1111111 11 1111111 11 1111111 1 
Province 1' City ff Animal Ii 

(CJ Province: 7 City: 180 Anirnal: 513 
(a) (d) 0000011 1 10100000 OC000010 00000001 

(e) 07 AO 0201 

(f) Tag ID n hex: 07A00201 

Figure 1.19 Hex used to configure RFID tag: (a) RFID tag attached io cow's eur, (b) 32-bit 
value inside tug stores unique identifier, the first 8 bits indi~ating a provi11ce number, the 
second 8 bi;s indicati11g a city number, w1d rhe remaining 16 bits being the animal's unique 
nw11ber, (c) srunp:e values in decimal, (d) binary equivalems, (e) hex equivalents obtained 
from binary, (f) fina.I 32-bit identifier in hex. 

• 



::>ecimal 

2610 

To bi!ar)' 

1 1 0 1 0 ·.:..:.: .. ':..:.:.: .. :..:..:. ... .:.:.: .. ':..-. 
16 8 4 2 

16+13 
16 ,, -24'24/4+2 

:26 

1.2 The World of Digital Systems 19 

Binary 
:i 1 0 

16 3 4 2 

To dt imal 

16 +8+2 
=261c 

To he><'. To ctal 

1010 11 010 

= 1A
16 

= 32
8 

Figure 120 Methods for converting to binary and from binary by hand. 

Hase eight numb~rs, known as octal numbers. are som~.times used as a binary short

hand too, because one base eighr digit equals three binary digits. 503g equals 5"'82 + 0*81 

+3*8') "' 323io. We can convert 5038 directly to binary simply by expanding each di git 

into three bits . resulting in 5038 = 1 0 1 ooo 0 11, or 10100001 12. Likewise, we can 
convert binary to octal by grouping the binary number into g roups of three bit;; starting 

from the right, and then replacing each group with the corri!sponding octal digit. Thus, 
lOlllOL, yid<l:s 1 0 11101, ur 135x. 

Figw-e l .20 summru·izes the methods for conve.rting decimal to bmary, and for con
verting binary to decimal, hex, or octal. Converting from decimal to hex or octal can be 
done by fust conve1ting to bimuy a11d then from binary to hex or octal. Converting from 

hex or ocral to binary is a straightforward expansion of each digit co its four- or three-bit 
equivalent, respectively. 

Automatic C.Onversi()n from Decimal to Binary Using the Divide-by-2 Method 
The addition method is intuitive when convening from decimal 10 binary by hand. but if 
we wish to pe1fonn the conve-rsion automatically with a computer program, another 

method, known as the divide-by-2 method, is well-suited. The divide-by-2 method 
iuvulve1' re~ale<l l)' Uividiug lhe uei.:iuml nurnber by 2; U1e remfiluder al ead1 :slep, wbid1 
will he either 0 or I, hecome.~ a hit in the hinary rnm1her, start ing from rhe least signifi

cant (rightmost) digit For example, the process of converting the decimal munber 12 to 
binary using the divide-by-2 method is shmvn in Figure l .21 . 

Example 1.8 Dec ima l to binary us ing the divide-by-2 method 

Conver; the following numbers to binary using th~ divide-by-2 method: 8, ii, 99. 

To cmwcrt 8 to binary, we 5tart by dividing 8 by 2: 812=4, remainder 0. Then we divide the 
quotient, 4 , by 2: 412=2, remainder 0. Then we di'idc 2 by 2. 212=1, remainder 0. FuiaUy, we divide 
1 b) 2: L/2=i), rc111aiu<.k:r 1. We ~top Uiviwng u c<.;ausc U1c 4uulicnt is uuw 0. CombiJJiug all the 

remainders, least significanr digit first, yields !he binary number : 0 0 0. We can check thi;; answer 

by multiplying each binary digit by its weight and adding the tem1s: l *21 + 0"'21 + 0*2 1 + 0"2° = 8. 
·10 convert 14 m hinary, we tnllow ~ ~imil:ir prn.~r.ss: 1412=7. n~m~inrlr.r II 7f2=·~ . rem:imr1r.r I. 

3/2= 1. remainder L l/2=0. remainder 1. Combining the remainders gives m the binary nwnber 



20 1 Introduction 

Decimal Binary 

~ 
1. Divide decimal number by 2 0 

Insert remainder into the binary number 1 1 
Continue since quotient (6) is greater than 0 0 (current value: 0) 

3 
2. Divide quotient by 2 2../6 0 0 

Insert remainder into the binary number -Q 2 
Continue since quotient {3) is greater than o 0 (current value: 0) 

1 
3. Divide quotient by 2 2../3 0 0 ---

Insert remainder into the binary number -2 4 2 1 
Continue since quotient {1) is greater than o 1 (current value: 4) 

0 
0 0 4. Divide quotient by 2 211 ----

Insert remainder into the binary number --0 8 4 2 1 
Quotient is o, done 

- 1 (current value: 12) 

Figure 1.21 Converting the decimal number 12 to binary using the dividc-by-2 method. 

1110. Checking the answer shows that 1110 is correct: I *23 + 1 *22 + I *21 + 0*2° = 8 + 4 + 2 + 
0 = 14. 

To convert 99 to binary, the process is the same but naturally takes more steps: 9912 = 49 
remainder I. 49/2 = 24, remainder I. 24/2 = 12, remainder 0. 12/2 = 6, remainder 0. 6/2 = 3, 
remainder 0. 3/2 = I, remainder I. 112 = 0, remainder I. Combining the remainders toged1cr gives us 
the binary number 1100011.Wc know from Example 1.3 that d1 is is the correct answer. 

• 
We can use che same basic method to convert a base I 0 number to a number in any 

base. To conve1t a number from base I 0 to base n, we repeatedly divide the number by n 
and place the remainder in the new base n number, starting from the least significa nt 
digit. The method is called the divide-by-n method. 

Example 1.9 Decimal to arbitrary bases using the divide-by-n method 

Convert the number 3439 to base JO and to base 7. 
We know the number 3439 is 3439 in base 10, but let 's use the dividc-by-11 method (where n is 

10) to illustrate that the method works for any base. We start by dividing 3439 by 10: 3439/10 = 
343. remainder 9. We d1cn divide die quotient by IO: 343/10 = 34, remainder 3. We do the same 
with the new quotient: 34/3 = 3, remainder 4. Finally, we divide 3 by 10: 3/1 0 = 0, remainder 3. 
Combining the remainders, least s ignificant digit first, gives us the base 10 number 3439. 

To convert 3439 to base 7, the approach is similar, except we now divide by 7. We begin by 
dividing 3439 by 7: 3439n = 491, remainder 2. Continuing our calculations, we get 49 ln = 70, 
remainder I. 7017 = 10, remainder 0. I0/7 = I, remainder 3. 117 = 0, remainder I. Thus, 3439 in base 
7 is 13012. Checking the answer verifies that we have the con·ect resul t: I *7~ + 3*73 + 0*72 + I *71 + 
2*7° = 2401 + 1029 + 7 + 2 = 3439. 

• 
Conversion between any two bases can be done by first converting to base ten, then 

converting the base ten number to the desired base using the divide-by-n method . 



Seek.mg to soll'e rJ/e 
pmblem, the 
Tntema1io11ai 
Elecrroteclm ica/ 
Commissio11 (JEC) in 
/999 in~mr!urrd 
srandan'i names, know11 
as binary prefixes, for 
rluse power-Qft11·a 
~i::.tT "hhi" fur 1024 
(210

), " mi!bi':Jor 
1.048.570 r2- }, (/ten 
"gibi," "tebC' and 
more. Tliose prefi::es 
liaven'r q"'ire ca11xh1 on 
ye.1. 

1.2 The World of Digital Systems 21 

Bltes. IGlouytes. Megab_ytes. and Mon: 
When cti~cmsing hits, the term byte i ~ commonly 11se<l tn refer tn ;i group of~ hiK The 
term is used regardless of whether those bits en::ode a character, a binary number, an 
audio s iunplc, or 3omcthing else. Note that the t~rm byte therefore jus t rdcrs to the 
number of bits. not to a value in base two (in contrast to the term hundred in base ten, for 
example. which refers co a value). 

Because digital systems often store large quantities of bits, metric prefixes like kilo 
(referring to a thous~md, or 103), mega (million, or L06), giga (billion, or 10~\ :md tcra 
(trUlion, or 1012) are commonly used. Sometjmes those prefixes are u&ed when describing 
the mw1ber uf bits. Fur exumpk, <l Lypical severnl miuule suug wig.hi bt: eucu<leu ;1~ 24 
megabirs. More commonly. those prefixes are used when describing rhe number of byres. 
So that same song would be encode.d as 2418 = 3 megabytes . A feature length movie. 
might be encoded as about 2 gigabytes. A computer hard drive might have a capa::;ity of 
l tcrabytc. Kilobyt~s , megabytes, gigabytes , and tcrabytcs arc commonly written as 
Kbyles ur KB , Mbyles ur MB, Gbylc:s ur GB, illlU Thyle,.,; ur TB , respedivdy. 

lJnfo111mately, an in:iccmate naming convention rlevelnped in rligirnl system termi
nology. Quantitie,; i n digital systems, especiaJly memory sizes, are often powers of two, 
such as 1024 (2 1°), 2048 (2 11

), or 4096 (2 12
) . Engineers began referring to 1024 as IK, 

2048 as 2K, 4096 as 4K, and so on. For ex.ample, one of the first personal computers was 
Lhe Cummu<lure 64, m1mt:<l t.lut: lo ils lmvir1g 2 16 = 65,536 byles uf memury", ur abuul 64 
kilobytes of memory. This inaccurare use of metric prefixes is common today when refer
ring to computer memory sizes, so a L megabyte memory actually has 1,048,576 (2'.?.0) 
byces rather than 1,000,000 bytes, and a L gigabyte memory actually has 1,073,741,824 
(230) bytes rather than 1.000,000,000 bytes. 

Another unfortunate convention is the use of Kb co represent kilobits, Mb for mega
hits. etc. Note the lower-ca.c:e .. h'' to represents hiu, in conta.st to the 11pper-ca.se "R" to 

repre,;ent bytes as in KB or MB. The difference is easy to overlook. 

In case you are curious, the metric prefixes that follow tera a.re peta (1015), exa 
(l OIR), ze1tu ( J071

), am.I. yu1tu (.lcY"). Du you tl1inl yuw· i.:ompuler will e\'er lmvt: a yoll<t
byre-sized hard drive? 

Appendix A discusses number representations further . 

.,.. INTERNET PROTOCOL (IP) ADDRESSES 

Llterne: domain nacr.es have an [p (Internet Protocol) 
address that is 32 bits long (for 1Pv4, the mosr 
common IP addres;;ing used today}. To aid in human 
readability, the 32 bits are djvided into four bytes, and 
each byte is written as ~ ts decimal number equivalent, 
with each number separated by a period. You may 
have therefore seen an address like 192.168. l. l. Thar 
address in binary is 11000110 IOIO lOOO ()()(0)001 
00000001 (spaces arc added for readability: they :lon't 
exis: in :be actual b i.nary address). Given a website's 

domain name. a web browser looks up the domain 
name's IP address and lhen contacts ihat address_ 

32 bits can represent 231, or about 4 billion, unique 
addresses. which you might imagine soon may not be 
sufficient for aU the computers and sites on the 
Internet. The newer CPv6 therefore uses 12& bit 
addresses. and i;; s lowly being adopted. 



22 1 Introduction 

1.3 IMPLEMENTING DIGITAL SYSTEMS: MICROPROCESSORS VERSUS 
DIGITAL CIRCUITS 

Designers cm1 implement :i digital system for an application by choosing one of two 
common digita l system implementation methods-programming a microprocessor, or 
creating a custom digital circuit. which is known as digiral design. 

As an examrle of this ch'1i ce, ronsicler a .simple appl ic::ition that t11rns '111 a famp 
whenever there is motion in a dark room. Asswne a motion detector has an output wire 
named a that outputs a 1 bit when motion is detected, and a o bit otherwise. Assume a 
light sensor bas an output wire b that outputs a 1 hit when light is sensed, and a o bit 
olherwV;e. A.ml assunu:: a wire F lurus on Ute lamp wheu Fis 1, am.l turn~ uff Ute lctmp 
wben o. A drawing of the system is shown in Figure l .22(a) . 

Motion a Dstector ..._, I,/ 
Detector Detector --n~ a a 

sensor Digital 

~-i-L::: 1 
[Q F 

System PO 
Micro-

Light b processor 
sensor b 

====~~-=-=::::_ 
l l 

--~--~-----------.. ~- -~----
(a) (b) (c) 

Figure 1.22 Muliuu· iu·lhc:-o.lark·dcta.:lur sy:skm: (<t) ~y:slcm u)u<.;k ili '111nu11, lb) implcmcnltlliuu 

llliiug tl mic1uprucc~:sur, (c) i111plcmc11taliu11 u~iug it L:u~lo111 <li5ilal circuil. 

The design problem is to determine what to put inside the block named Detector. Tbe 
De1ecror block takes wires a and b as inpms. and generates a value on F, such that the 
light shonlcl tllm rm when motion is cfetectecl when clark. T11e rJP.tN'.lnr applic:1tion is 
readily implemented as a digital system, because the application's inputs and outputs 
obviously are digital, having only two possible values each. A designer can implement 
the Detector block by programming a microprocessor (Figw-e 1 . 2.2.~b)) or by creating a 
rnslom digital circuit (Figure J .22\c)) . 

Software on Microprocessors: The Digital Workhorse 

Designers who work with digital phenomena ~onunonly buy :m off the shelf micropro 
cessor and write software for that microprocessor, rather than design a custom digital 
circuit. Micruprucessurs are re<tlly lite "workhorse" of digital systems, lmm.lling musl 
digital processing tasks. A microprocessor is a programmable digital device that executes 
a me.r-spec1fied sequen:e of instruct1ons. known as a program or as .softwllre. Some of 
those instructions read the microprocessor's inputs, others write to the microprocessor 's 
outputs , and other instructions pcrfonn computations on the input data. 



A "processor" 
processes, or 
tra11sfor1m. data. A 
"microprocessor" 
is a pm11ra111111able 
processor 
implemented 011 a 
single compwer 
chip-the "micro" 
just means small 
here. 171.e term 
"microprocessor" 
became popular in 
the 1980s when 
processors shrank 
dow11fro111 
multiple chips to 
just one. 171e .first 
single-chip 
microprocessor 
was rhe Imel 4004 
chip in 1971. 

1.3 Implementing Digital Systems: Microprocessors versus Digital Circuits 23 

Figure I .23(a) illustrates a 
basic microprocessor with eight 
input pins named 10, II , ... , 17, 
and eight output pins named PO, 
P 1, ... , P7. A photograph of a 
microprocessor package with 
such pins is shown in Figure 
l.23(b) (the ninth pin on this 
side is for power, and on the 
other side for ground). 

A microprocessor-based 
solution to the motion-in-the
dark detector application is 
illustrated in Figure I .22(b), and 
a photograph of a physical 

IO PO 
11 5:'. P1 
12 n· P2 

0 
13 -o P3 

a 
14 £ P4 
15 gi PS 
16 Q P6 

17 P7 

(a) 

(b) 

Figure 113 A basic microprocessor: (a) with eight outputs 

PO-P7 that each can be set to a 0 or 1, and eight inputs JO-
17 too, (b) photograph of a real microprocessor package. 

implementation is shown in Figure 1.24. The designer connects the a wire to the micro
processor input pin 10, the b wire to input pin I 1, and output pin PO to the F wire. The 
designer could then specify the instructions for the microprocessor by writing the fol
lowing C code: 

void main( ) 
{ 

while (1) 
PO = IO && !Il; // F 

C is one of several popular languages 
for describing the desired instructions to 
execute on the microprocessor. The above 
C code works as follows. The micropro
cessor, after being powered up and reset, 
executes the instructions within main's 
curly brackets { } . The first instruction is 
"whi l e ( 1)" which means to forever 
repeat the instructions in the while's curly 
brackets. Inside those brackets is one 
instruction , "PO = IO && ! I l," which 
assigns the microprocessor's output pin PO 

a and !b, 

motion sensor 

with a 1 if the input pin 10 is 1 and light sensor 

(written as &&) the input pin I J is not 1 

microprocessor 

a 

(meaning /1 is o). Thus, the output pin PO, Figure 1.24 Physical motion-in-the-dark 
which turns the lamp on or off, forever detector implementation using a microprocessor. 

gets assigned the appropriate value based 
on the input pin values, which come from 
the motion and light sensors. 



24 1 Introduction 

Figure 1.25 shows an example of 
the values of s ignals a, b, and F over 
time, with time proceeding to the 
right. As time proceeds, each signal 
may be either O or 1, illustrated by 
each signal's associated line being 
either low or high. We made a equal 
to o until time 7:05, when we made a 
become 1. We made a stay 1 until 
7:06, when we made a retum back to 
o. We made a stay o until 9:00, when 
we made a become 1 again, and then 
we made a become o at 9:0 I . On the 

a 0-----'n ... ____ _,n ... ___ _ 
1 

b 
o --------~ 

F ~ ___ __.n ._ __________ _ 
6:00 7:05 7:06 9:00 9:01 time 

Figure 1.25 Timing diagram of motion-in-the-dark 
detector system. 

other hand, we made b start as 0, and then become 1 between 7:06 and 9:00. The diagram 
shows what the value of F would be given the C program executing on the micropro
cessor- when a is 1 and b is O (from 7:05 to 7:06), F will be 1. A diagram with time 
proceeding to the right, and the values of digital signals shown by high or low lines, is 
known as a timing diagram . We draw the input lines (a and b) to be whatever values we 
want, but then the output line (F) must describe the behavior of the digital system. 

Example 1.10 Outdoor motion notifier using a microprocessor 

Let 's use the basic microprocessor of Figure 
1.23 to implement a system that sounds a .--------llQ P01-----1 

buzzer when motion is detected at any of 
three motion sensors outside a house. We 
connect the motion sensors to microprocessor 
input pins IO, 11 , and I2, and connect output 
pin PO to a buzzer (Figure 1.26). (We assume 
the motion sensors and buzzers have appro
priate electronic inte1faccs to die 
microprocessor pins.) We can then write the 
following C program: 

void main () 
{ 

while (1) { 
PO = IO I I Il I I !2; 

11 s: P1 
12 ~f P2 
13 ~ P3 
14 g P4 

~ 

15 gl PS 
16 Q P6 

17 P7 

motion sensor 

Figure 1.26 Motion sensors connected to 
microprocessor. 

buzzer 

The program executes the statement inside the while loop repeatedly. Thal statement will set PO 
to 1 if IO is 1 or (written as 1 1 in the C language) I 1 is 1 or I2 is 1, otherwise the statement sets PO 
to 0. 

• 



1.3 lmplement.'ng Dioirnl Systems: Microprocessors versus Dioi1al Circuits 25 

Example 1.11 Counting the number of active motion sensors 

lwe/ 11Gmed their 
tvolvin;: 1960.•I 
9Csdesktop 
pmrf'.<mr< usi11;: 

numbers: 80286, 
8uJ:S6, so1s6. 
As PCs became 
pup.clw; fnfe/ 
~witched to 
catcll1er ;umres: 
t/ie 80586 11'<1S 

calfuf a Pmtium 

("pt ma .. means 
S ),fol/cwed by the 
Pn1ti11m Pm. //,;
Pemium 11, Cor£ 2 
Dul!, and c tlteFs. 
Ei·entua/ly_ tilt 
11umt:.\ dumi 1wtt:d 
over 1/u nirmhl'rs. 

This example uses the basic microprocessor of Figure 1.23 to implement a simple digital system 
that outputs in binary the number of motion sensors that presently detect motion. Assume two 
motion sensors, meaning a two-bii binary number will need to be output to represent the possible 
count.~ 0 (OD), I (01). and 2 (1 0). The motion sensors arc connected io microprocessor input pins 
IO and TJ , and the binary number is outpm onto output pins PI and PO. We can write the following 
C program to aeh.icve the desired behavior: 

vo i r1 me; i r () 
{ 

Wh i I !" ( 1 } { 
i t ( ! Tf! FvF. ! Tl } { 

Pl : o; PO = o; ii m itp11t. 00, mP.;mi ng 7.F' r'."l 

P. l ~F: it ( (TO FtF. ! Tl } II (!TO i;,i;. f11 J { 

Pl = o; PO = 1; ii m itrmt 01 , mP.Ani ng nnF' 

P. 11'!.F: i t (TO F.F. Tl } 

Pl: 1; PO= O; ii m itput. 1 0, mP.;mi ng t:w:; 

Designers like:: lu u~e mic:ruprrn.;e::s

sors in thei r rtigital systems hecllnse 
microprocessors are readily available. 

inexpensive, easy to program. and easy 
to reprogram. It may surprise you to 
learn that you can buy cenain micro
processor chips for under $1 . Sucb 
microprocessors are found in places 
like telephone answering machines, 
microwave ovens. cars. toys, cercain 
meclic:1l rlevices. anc1 even in shoe.;; with 
blinking lights . Examples include the 
805 I (originally designed by Intel), the 
68HC 11 (umue by Mulurul<t), ilie PIC 
(made by MicroChip). and the AYR 
(made by Atmel). Other microproces
sors may cost tens of dollars, found in 

• 

Figure 1.27 Microprocessor chip packages: (a) PIC 
nnd 8051 microprocessors, costing about SI each, 
(b) n Pentium processor with part of its package 
cover removed, showing the silicon chip inside. 

places like cell phones, pm1able digital assistants, office automation equipment, and 
medical equipment Such processors include the ARM (made by the ARM corporacion), 



26 Introduction 

the MIPS (made by the MIPS corporation), and others. Other microprocessors, like the 
well-kuu\\11 Pt:utium or Cure 2 Quml prlli,:es:;ur~ from Imel, may cosl ~veral 11Ll11Jn:u 

dol l:irs :ind may he fonnct in rlesktop computers. Some microprocessor~ may cost several 
thousand dollars and are found in a mainframe computer running, perhaps, an airline res 
t:rv<tliou sy.sleui. There art: many huuJn:ili uf differe nt mii;;rupruces:sur lypcs available, 

differing in petformance, cost, power. and other metrics. And many of the. small Jow
power processors cost under SI. 

Sume readt:n. uf lhis buuk may be fmuili<tr wilh .suf L wan:: prugnmuui.11g of mi crupru

cessors, others may not. Knowledge of microprocessor programmlng is not essential to 
learning the material in this book. We will o~casionally compare custom digital circuits 
wilh llieir c urrespuutli ug mii;;rupruces:sur w1pleme.11laliu11s- tl1e cuudusiuns uf lhu~e 

comparisons can he 11nc1erstnml witho11t knowledge of programming itself 

Digital Design-When Microprncessors Aren't Good Enough 

With fl v:iriety of microprocessors rea<l ily :waifa hle, why wo111d anyone ever neer1 to 
design new digital circuits , other than those relatively few people designJng micropro 
cessor digital circuits themselves~ The reason is that software running on a 

micropmcP~~sor isn' t fll vrnys goml enough for a parti c111a r :ipplicmion. In many cases. soft
ware may be too s low. Microproce~son; only execute one instruction or a few instructions 

at a time . But a custom digital circuj t can execute hundreds or thousands of computations 

in parallel. Many applications. like picnue or video compression, face recognjdon, voice 
command detection, or graphics display, require huge nurnben; of computations to be 
done in a short period of time in order to be practical- after au, who wa11ts a voice-con

trolled phone tbac requires 5 minutes co decode your voice command. or a digital camera 
that requires 15 minutes to take each picture? In other cases, microprocessors are too big, 

or consume too much power, or would be too costly, thus making custom digital circuits 
preferable. 

For the motion-in-the-dark-detector application, an alternative to the microprocessor

based design uses a custom digital circuit inside the Detector block A circuit is an inter
connection of electric components. We must design a circuit thm. for each different 
combination of inputs a and b, generates the proper value on F. One such circuit is shown 
in Figure 1.22(c). We'll describe the components in that circuit lfltcr; briefly, the trian
gular component invens the value on b. and rbe bullet-shaped component oucputs al onJy 
if both iti; inputs are 1 , so F will be. 1 only if a is 1 and bis o. Hut you 've now seen one. 

simple example of designing a digital circuit to solve a design problem. A microprocessor 
illsu has a i;;in.:uil i11siue., bul bt:L:au~e lhat L:irt;uil is ue::sigucu lu exc:i;;ulc: prugrnm~ rnlher 

than just detect motion at night, a small micr oprocessor' s c.ircmt may contain about ten 
thousand components, compared to j ust two components in ow- custom digital circuit of 
Figure l .22(c). Tims, o ur l.:u~lum uigilill L:irl.:uil may be smaller, d1eaper, ;mu fa~ler, ;mu 

consu me less power than an implement~tiCln on a microprocessor. 



1.3 Implementing Digital Systems: Microprocessors versus Digital Circuits 27 

Example 1.12 Deciding among a microprocessor and custom digital circuit 

We are asked to design a digital system to control a fighter jet's aircraft wing. In order to properly 
control the aircraft, the digital system must execute a computation task I 00 times per second that 
adjusts the wing's position based on the aircraft's present and desired speeds, pitch, yaw, and other 
flight factors. Suppose we estimate that software on a microprocessor would require 50 ms (mill i
seconds) for each execution of the computation task, whereas a custom digital circuit would require 
5 ms per execution. 

Executing the computation task 100 times on the microprocessor would require 100 * 50 ms = 
5000 ms, or 5 seconds. But we require those JOO executions to be done in I second, so tJ1e micropro
cessor is not fast enough. Executing the task I 00 times with die custom digital circuit would require 
100 * 5 ms= 500 ms, or 0.5 seconds. As 0.5 seconds is less than 1 second, the custom digital circuit 
can satisfy the system's performance constraint. We thus choose to implement the digital system as a 
custom digital c ircuit rather than by using a microprocessor. 

• 
Many applications use both microprocessors and c ustom digital circuits to attain a 

system that achieves just the right balance of performance, cost, power, s ize, design time, 
flexibility, etc. 

Example 1.13 Partitioning tasks in a digital camera 

A digital camera caprures picrurcs digitally using several steps. When the shutter button is pressed, 
a grid of a few million light-sensitive electronic elements capture the image, each clement storing a 
binary number (perhaps 16 bits) representing the intensi ty of light hitting the e lement. The camera 
then performs several tasks: tJ1e camera reads die bits of each of these e lements, compresses the 
tens of millions of bits into perhaps a few million bits, and stores the compressed bits as a fi le in the 
camera's flash memory, among other tasks. Table 1.2 provides sample task execution limes nrnning 
on an inexpensive low-power microprocessor versus executing as a custom digital circui t. 

Table 1.2 Sample digital camera task execution times (in seconds) on a 
microprocessor versus a digital circuit. 

Task Microprocessor Custom digital circuit 

Read 5 s 0.1 s 

Compress 8 s 0.5 s 

Store I s 0.8 s 

We need to decide which tasks to implement on the microprocessor and which to implement as 
a custom digital circuit, subject to the constraint that we should strive to minimize the amount of 
custom digital circuitry in order to reduce chip costs. Such decisions arc known as partitioning. 
Three partitioning options arc shown in Figure 1.28. If we implement all three tasks on the micro
processor, the camera will require 5 + 8 + I = 14 seconds to take a picture-too much time for the 
camera to be popular with consumers. We could implement all the tasks as custom digital circuits, 
rcsuJting in 0.1 + 0.5 + 0.8 = 1.4 seconds. We could instead implement the read and compress tasks 



28 1 Introduction 

Image Sensor Micro-
processor 

(a ) 
(teAti, 

compress, 
Memory anr/ stnrP.) 

(c) 

(b) 

RAarl 
circuit 

Reaci 
circuit 

Cnmrm~.-; 
circuit 

Microproces~or 
(Mott~) 

Compress 
circuit 

Store 
circuit 

Figure 1.18 Digital camera implemented with: (a) a microprocessor, (b) custom circuits, 
and (c) a cornbLnation of custom circuits and a microprocessor. 

with custom digital circuits, while leaving the store cask to lhe microprocessor. resulting in 
0. L + 0.5 + 1. or L .5 seccmds. 

We might cit",d rle nn thi!> l~;;t impleJiit~nt~hon opt ion, to s:we. c.o<:t w1thm1t mnr h not1reahle nm~ 

overhead. 

• 
1.4 ABOUT THIS BOOK 

Section l. l discussed how digi ta] systems now appear nearly everywhere and signifi
cantly impact rhe way we live. Section J .2 highlighted how learning digital design 
accomplishes two goals: showing us how trucroprocessors work "'under the hood;' and 
enabling us to implement systems using custom digital circuits instead of (or along with) 
microprocessors to achieve better implementations. This latter goaJ is becoming increas
ingly significant sLnce so many analog phenomena, li.ke music and video. are becoming 
digital. That section aJso mtroduced a key method of digitizing analog signals, namely 
binary numbers, and described how to convert between decimal and binary number&, as 
well as between numbers of any two bases . Section l.3 described how designers may 
prefer to Lmplemem digital systems by writing software that execures on a micropro
cessor, yet ciesigners often use c11Stom clig irnl circuits to meet an applic::ition·s 

per formance requirements or other requirements. 

It1 the remainder of this book you will learn about the exciting and challenging field 
of digital design, wherein we converr desired system functionaliry into a custom digiral 
circuit. Cbaptex 2 w1U introduce the most basic fonn of digttaJ c1r:'.mt, combinational cir

cuits, whose outputs are each a function of the present values on the circuit's inputs. That 
chapter will show how to use a fon11 of math called Boolean algebra to describe our 
desired circuit functional iry. and will provide clear steps for conveni ng Boolean equa
tions ro c ircuits. \.liapter 3 will inrrrnlnce a more arlvance<l type of circuit, sequential 
circuits, whose outputs are a function not only o:- the pre&ent input values, but also of pre
Yious input values- in other words, sequential circuits have memory. Such circuits are 
1,;uum1u11ly reft:rred Lu as i.;uulrulkrs. Tirnl drnpLer will shuw us ltuw Lu use 1111ulher math
ematical ahstraction, known as ::i tlnite-srnte machine, ro represent desirerl sequenrial 



1.5 Exercises 29 

functionality, and will provide c lear steps for converting finite state machines to circuits. 
As with any form of design, we often use pre-de.signed building blo-ck.s, or components, 
lo makt: our i.lesigu t;~k easier. Ch<tµlt:r 4 oJeM..:riOO.~ st:vernl sud 1 o..:ompunenls, kuowu <ts 
darapath components. including registers (for storing digiral data). adders, comparators. 
multipliers, and small memories called register files, among other blocks. Chapter 5 intro

duces the modem approach to digital design, known as register transfer level design, 
wherein we design systems consisting of datapath components controlled by controllers, 
lo irnµkmc:nl wkrt:sting cu1LI ui.dul custom digital i;ircuih. Ju fact, llml dt<tplt:r slluws 
how ro conven a C program to a cus tom digital circuit- clearly demonsrrating thm any 
desired function can be nnple.mented a~ software on a trucroprocessor or as a custom 
digital circuit. That chapter also introduces some addi tional components, including ROM 
and RA_\1 memories, and queues. Chapters l through 5 fom1 the core of this book- after 
those five chapters, the reader can specify a wide variety of desired functionality and can 
convert chat fonctionaljry to a working custom digital circuir. 

Ch~pter t1 introc!11ces methorls for c!esigning Fmtn rligit:il circui ts. The chapter 
describes methods for improving basic combinational circuits, basic seguential circuits, 

datapath components, and register transfer level designs. That chapter emphasizes the 
important notion of rradeojfs, wherein we might make one aspect of the design better, but 
al the e>..pense u[ wurseniug auull1er ;isped. Trnut:uffs are Ute e~sence uf Je~igu. 

Chapter 7 describes different physical devices on which we can implement our 
digital c.ircuits, including application-specific integrated circuits, tield-progrrumnable 
gate-arrays (FPGAs), simple programmable logic devicas, and cheap off-the-shelf CCs. 

Chapter 8 npplic3 the digital design methods of earlier chapters to build u common 
type of digital circuit- a programrnable microprocessor. The chapter demystifies the 
workings of a microprocessor. using a very simple design to illusmue the concep{s. 

\,h~pter 9 introc111c_e;; harc!ware rlescriptim1 languages, which are wiciely 11sec1 in 
modem digital design for describing desired circuit functionality as well as for repre
senting the final custom digital circuit design. Hardware description languages, looking 
much like software programming languages but with important extensions and differ
t:m.:e~, sc:rvt: as II1e iupul tu musl muucrn digital Je~ign Louis. 

1.5 EXERCISES 

SECTION 1.2: THE WORLD OF DIGITAL SYSTEMS 
1.1 What i;; a digitaJ signal, and how does it differ from an analog signal? Give two C\'eryday 

examples of digital phenomena (e.g., a window can be open or closed) and two everyday 
examples of analog phenomena. 

1.2 Suppose an analog audio signal comes in over a wire, and the voltage on the wire can rru1ge 
from 0 Volts (VI to J V. You want to convert the analog signal to a digital signal. You decide 
to encode each srunple using two bits. such that 0 V would be em~oded ns 00, l V as 0 1, 2 V 
as lC, and 3 V as 11. You srunple the s ignal every l millisecond wid detect the following 
sequence of voltages: OV OV l V 2V jV 'J.V l V. Show the &ignal converted to dibital as a 
stre:l.Ill of Os and l s. 



30 Introduction 

1.3 Assume that 0 V is encoded as 00, I Vas 01, 2 V as 10. and 3 V as 11. You are given a 
digital encoding of an audio signal a~ follows: 1111101'.)'.) 1 010000. Plot the re-created 
analog signal with time on the x -axis and voltage on the y-axis. Assume that each encodlng's 
corresponding voltage •hould be output for l millisecond. 

I .~ Assun:e that a signal is encoded using 12 bits. Assume that many of the encodings huu out to 
be e ither 000000000000, O•BOOOOOOOOl, or 111111111111. We thus decide to 
create compressed encodings by rcprc.scnting OC•0CCCOOOOOO as 00, 000000C•CC001 as 
01, and 111111111111 as lD. 11 ruca11s that an uncompressed e11codi11g follows . Using 
this encoding scheme, dccomprcs5 the following cnco<lcd stream: 

00 00 0 1 1 0 11 010101010101 00 00 1 0 10 

l.j Using me same encoclLng scheme as in Exercise 1.4, compress che following uneocoded scream: 

000000000000 000000000001 100000000000 1111 11111111 

1.6 Encode the following words into bits using the ASCH encoding tabk in Figure 1.9. 
(a) LET 
(b) RESET ! 
(c) IIELLO $1 

I.I Suppose you are building a keypad that has buttons A through G. A tl1rce-bit output should 
inrucate which bu non is currently being pressed. o oo represents no button being pressed. 
Decide on a 3-bit encoding to represent each button being pressed. 

L& Convert the following binary numbers to decimal numbers: 
(a) LOO 
(b) LOil 
( c) 000000000000 l 
(d) Llllll 
(e) LO 1010 

l.9 Convert chc following binary numbers ro decimal munbers: 
(a) LOlO 
(b) LOOOOOO 
(c) L 1001 LOO 
(d) Lllll 
(c) LOlllO l IOOI 

1. JO Convert the following binary nwnbers to decimal numbers: 
(a) 000011 
(b) Llll 
(c) L 1110 
(d) L 11100 
(e) 0011010 

I. J l Cuuvc1i Uu:; fulluwiog uccimill uwubi:;r.s lo binar y uumbcn U1'ill6 the itLhliliuu mcllto<l: 
(a) 9 
(b) L5 
(c) 32 
(u) L~O 

LI 2 Convert the following decimal nwnbers to binary numbers using the addition method: 
(a) L9 
(b) 30 
(c) 6L 
(d) L'.28 



1.5 Exercises 31 

1.1 3 Conve11 the following decimal numbers to binary numbers using the addition method: 
(a) 3 
(b) 65 
(c) 90 
(d) 100 

1. 14 Conve11 the following decimal numbers to binary numbers using the divide-by-2 method: 
(a) 9 
(b) 15 
(c) 32 
(d) 140 

1.15 Convert the following decimal numbers to binary numbers using the divide-by-2 method: 
(a) 19 
(b) 30 
(c) 64 
(d) 128 

1. 16 Conve11 the following decimal numbers to binary numbers using the divide-by-2 method: 
(a) 3 

(b) 65 
(c) 90 
(d) JOO 

1. 17 Conve11 the following decimal numbers to binary numbers using the divide-by-2 method: 
(a) 23 
(b) 87 
(c) 123 
(d) IOI 

1. 18 Conve11 the following binary numbers to hexadecimal: 
(a) 11110000 
(b) 1111111 I 
(c) 01011010 
(d) 1001101101101 

1. 19 Conve11 the follow ing binary numbers to hexadecimal: 
(a) 11001 10 1 
(b) 10100101 
(c) 1111000 1 
(d) 1101101111100 

l.20 Convert the following binary numbers to hexadecimal: 
(a) 11100111 
(b) l JOO 1000 
(c) 10100100 
(d) Oll001 l01 l01101 

1.21 Conve11 the following hexadecimal numbers to binaiy: 
(a) FF 
(b) FOA2 
(c) OFlOO 
(d) 100 



32 Introduction 

1.22 Convert the following hexadecimal numbers to binary: 
(a) 4F5E 
(b) 3FAD 
(c) 3E2A 
(d) DEED 

l .23 Convert the following hexadecimal numbers to binary: 
(a) BOC4 
(b) IEF03 
(c) F002 
(d) BEEF 

1.24 Convert the following hexadecimal numbers to decimal: 
(a) FF 
(b) FOA2 
(c) OFIOO 
(d) 100 

l.25 Convert the following hexadecimal numbers to decimal: 
(a) 10 
(b) 4E3 
(c) FFO 
(d) 200 

l.26 Convert the decimal number 128 to the following nwnbcr systems: 
(a) binary 
(b) hexadecimal 
( c) base three 
(d) base five 
(e) base fifteen 

1.27 Compare the number of digits necessary to represent the following decimal numbers in 
binary. octal, decimal, and hexadecimal representations. You need aot determine the actual 
representations- just the number of required dig its. For example, representing the decimal 
number 12 requires four digi ts in binary (1 100 is the actual representation), two digits in 
octal (14), two digi ts in decimal (12), and one digit in hexadecimal (C). 

(a) 8 
(b) 60 
(c) 300 
(d) 1000 
(e) 999,999 

l .28 Determine the decimal number ranges that can be represented in binary, octal , decimal, and 
hexadecimal using the following numbers of dig its. For example, 2 digits can represent 
decimal number range 0 through 3 in binary (00 through 11 ), 0 tlu-ough 63 in octal (00 
through 77), 0 tl1rough 99 in decimal (00 through 99), and 0 tlu-ough 255 in hexadecimal (00 
through FF). 

(a) I 
(b) 3 
(c) 6 
(d) 8 



1.5 Exercises 33 

1.29 Re\Vrit;.i the follow ing bit quantities as byte quantities, using the most appropriate metric 
quantity; e.g., 16,000 bits is 2,000 bytes, mo; t appropriately written a..r; '.2 Kbyte~. 

(a) 8,000,000 
(b) 32,()()(),000.00J 
(c) 1,000,000,COO 

SliCTIUN 1.3: IMl'LKMlCT\TJNG Ul{;lT..\L S YST.1£MS: PROGRAMMING _\11CROPRO
C£SSORS \' liRSUS UliSl l.>Nl NG Ul{;;lT..\L ClRCIJlTS 

1.30 Use a microprocessor like rhac in Figure 1.23 to implemem a system that sounds an alarm 
whenever there is n:otion detected ac che same time in chree dlfferem rooms. Each room's 
morion sensor is an inpuc co the microprocessor; a 1 means motion, a 0 means no motion. 
The rnjcrupcou:::s~ur ctta :soum.I Luc alan11 by :.clliu,g au output wire ''a.lanu" Lu 1. Sl1uw lhc 
cuuncdiun:s lo anu frum lhc microproccs:sur, ;mu Ll1c C co<lc tu execute uu Luc 1llicrupro
ccssor. Hint: this problem is similar to Example l.J 0. 

I .'H A ;:1~11rit)' c::imera cnmpany wi.<:hef. 10 ar.<1 a ~~c~ mcognitinn fo:irure. tn rhe.ir c;m1e:rai; ~ 11ch 

that the camera only broadcasts video when a hwnan face. is detected in the video. The 
camera records 30 video frames per second. For each frame. the camera \.\oouJd execute a face 
recognjtion application. The application implemented on a mjcroprocessor require:; 50 ms. 
Tbe appHcation implemented as a custom digital circuit requires I ms. Compute the 
maximum number of frames per second ;hai each implememacion suppom, and indicace 
which implementation is suffic~enr for 30 frames per second. 

1.32 Suppose that a particular banking system supports encrypted transactions, and :ha1 decrypting 
each transaction coruist..r; of t!:ree sub-tasks A, B, and C. The execution tirne.s of each taslc on 
a microproc~s~or ver;:n~ a cu;:tom r1i g1 tal cirrnit arr, •mm;: versm I m;: tnr I\, 211 m;: Vt',r;:m 2 
mf. tor H, anrl 20 ms versn~ l mf. t '1r C:. l'm1ition rh,~ tasks among the microprnce;:sor an,1 
custom digitaJ circuitry. such tbat you minimize the amount of custom digital circuitry. while 
meeting the constraint of decrypting at least 40 transactions per second . .1\ssume that each 
cask requires the same amount of digital circuitry. 

1.33 How many possible partirionings are there of a set of N tasks , where each task can be imple
mented either on a microprocessor or as a custom digifal c ircuit? How many possible 
partitionings are there of a sef of 20 tasks (expressed as a number witl1out any exponents)? 



34 1 Introduction 

.... DESIGNER PROFILE 

Kelly first became 
interested in engineering 
while attending a talk 
about engineering at a 
career fair in high school. 
"I was dazzled by the 
interesting ideas and the 
cool graphs." While in 
college, though, she 
learned that "there was 
much more to engineering 
than ideas and graphs. Engineers apply their ideas and 
skills to build things that really make a difference in 
people's lives, for generations to come." 

In her first few years as an engineer, Kelly has worked 
on a variety of projects that may help numerous 
individuals. One project was a ventilator system like the 
one mentioned earlier in this chapter. "We designed a new 
control system that may enable people on ventilators to 
breathe with more comfort while still getting the proper 
amount of oxygen." In addition, she examined alternative 
implementations of that control system, including on a 
microprocessor, as a custom digital circuit. and as a 
combination of the two. ''Today's technologies, like 
FPGAs, provide so many different options. We examined 
several options to see what the tradcoffs were among 
them. Understanding the tradeoffs among the options is 
qui te important if we want to build the best system 
possible." 

She also worked on a project that developed small sclf
explanatory electronic blocks that people could connect 
together to build useful electronic systems involving 

almost any kind of sensor, like motion or light sensors. 
"Those blocks could be used by kids to learn basic 
concepts of logic and computers, concepts which are quite 
important to learn these days. Our hope is that these 
blocks will be used as teaching tools in schools. The 
blocks can also be used to help adults set up useful 
systems in their homes, perhaps to monitor an aging 
parent, or a chi ld at home sick. The potential for these 
blocks is great- it will be interesting to see what impact 
they have. 

"My favorite thing about engineering is the variety of 
skills and creativity involved. We arc faced with problems 
that need to be solved, and we solve them by applying 
known techniques in creative ways. Engineers must 
continually learn new technologies, hear new ideas, and 
track current products, in order to be good designers. It's 
all very exciting and challenging. Each day at work is 
different. Each day is exciting and is a learning 
experience. 

"Studying to be an engineer can be a great deal of 
work, but it's worth it. The key is to stay focused, to keep 
your mind open, and to make good use of available 
resources. Staying focused means to keep your priorities 
in order- for example, as a student, studying comes first, 
recreation second. Keeping your mind open means to 
always be willing to listen to different ideas and to learn 
about new technologies. Making good use of resources 
means to aggressively seek infonnation, from the Internet, 
from colleagues, from books, and so on. You never know 
where you are going to get your next important bi t of 
information, and you won't get that information unless 
you seek it." 



2 
Combinational Logic Design 

2.1 INTRODUCTION 

(a) 

b=U 

~b=1 

A digital circuit whose output value depends solely on the present combination of tl1e 
cimlir inputs· vaJ.ues is called a combinational circuit. For example, Figure 2.1 (a) shows 
a ctoorhell system: if the hunon is presse<I, the hell sonnet<:. Figure 2. I (h) shows a motion
in-the-dark lamp; if there is mo6on and it is dark, the lamp turns on. In contrast, in a 
sequential circuit, the output value dcpi:mds on the present and pas! input values, such as 
the tog.i;le l amp in Figure 2. l (c}; pressing the button turns the lamp on, which stays on 
even after the button is released. Pressing rhe bunon again would rurn the lamp off. 

'-' 11/ ' ""_.._'I ., 

D . . I F 1 c ~I 
191:0 ::; "~/ 

Sy~tAm ~ 

"'''./ .... c .... --
Digital F~1 '\7 

System 

\ ) : ) Motion G. 

~ Diqital F=U 1' - ___.. sensor Digi!A 
System System 

p 

-~- Light b 
Diqital F=1 [I. sensor - -System -

if a=O and b=O, then F=O 

if b =O, t1on F=O if il::O anti h= 1. then F=O 
Cannot determine value of 

(c) F M IAly from V!lllll' of h 
if h= l . t1en F::1 if !'1=1 and b=O, lh€:n F= 1 

(b) ifa= 1 and b~1 , then F=O 

Fi~are 2.1 Comhinati<m:t l ~yc;temc; like (a) :inrt (h) :im .mch thllt the 011tp11r val11 ~ can hr. clt'.trrniini'.<I c;o lely from rhr

pre.~e.nt inp111 \':tl11e<:. In c11ntr:ist. :i c;r.'111ential sy11r~m :ism (cj hm; !'>om~ intr.mal " mr.m l1ry" rh ;it :ili;n imp:icr.;. i he nmp11t. 

Combinarional circtLits arc a basic class of digital circuits that arc able to implement 
suu1e llysle.m~, l.Jul lh;tl impurlaully make up parl of mun: <.:umplex 1,;ir1,;ui ls. Th.is dmpler 
introduces rhe basic building blocks of combinational circuit'>. known as logic gates, and 
also introduces a form of mathematics known as Boolean algebra that is useful for 
working with combinatjonal circuits. The chapter will describe a process for designing 
basic combinational circuits, wherein a designer first captures the desired c ircuit 
behavior, and then conve11s (hat behavior imo a circuit of logic gates. Chapter 3 will 
intJ'OdtlCe Sequential CirCllifS :tncl fl prnCf.>A<;S for their cte<:ign, ::IJ10 rhapter 4 Will OeSCrihe 
more complex combinational components. 



36 2 Combi'lationa l Log'c Design 

2.2 SWITCHES 

Electronics 101 

Altlw1115h 
imd£rsrar.dins tlie 
etectrvmcs 
u11dcrlyi11g digital 
los.ic 3all!.f is 
op:iona!, mm11• 
people find that a 
hn.ri.
imdersrnr:ding 
sa1isfies 1'1UC'.l1 

curiosity '1nli also 
lie!p:r irt 
imdersrnndins 
som? of rile 1:011-

i<ieal dir;iral gare 
behavior laur 011. 

2nhmi:; 

ov fJ v 

4.5A 

Electron.ic switches form che basis of au digital circuits, so make a good scarring point for 
the lii!:rns~ion of digital circuit!'.. Yon nse a type 11f 'witch, a light switch. whenever yon 
turn lights on or off. To understand a switch, it helps to understand some basic 
electronics. 

You're probably familiar with the idea of electrons, or let's jmc sa) charged panicles, 
flowing through wires and causing lighti; to illttmLnate. or stereos to blast music. An anal
ogous situation is water flowing through pipes and causing sprinklers to pop up or 
turbines to rurn. We now describe three basic electrical terms: 

• Vu!Jugtt is Ll1e difli::re nc.:e in dectric.; [JUlential bdwet:u Lwu puinls. Vullage is mea
sured in voles (V). Convention says that the earth, or ground. is 0 V. lnformaJly, 
voltage tells us how .. e.age.r" the charged particle.~ on one side of a wire are to get 
to ground (or any lower voltage) on the wire's other side. Voltage is analogous to 
the pressure of water trying to flow through a pipe- water under higher pressure 
is more eaier to flow, even if the water can't actually flow, perhaps because of a 

closed faucec. 

• Curre11t is a measure of the flow of charged particles. Informally, current indi
L:ales lhc: ratt: that pMtidt:s un:: udmtUy lluwiug. CwTeul is m1uluguus lu Ll1e 

volume of water t1owing through a pipe. Current is measured in amperes (A>. or 
amps for short. 

• Resistance is the tendency of a wire (or anything. really) to resist the flow of cur
rent Resistance is :malogrn1s to a pipe's cl iamerer-~ mmnw [1 ipe resists w:iter 
flow, while a wide pipe lets water flow more freely. Electrical resistance is mea
sured in ohms (QJ. 

Consider a battery. The particles a t the positive terminal want to flow to the 
negative terminal. How "eager" are they ro flow? That depends on the volcage ctif
ference between the terminals- a 9 V battery's particles are more eager to t1ow 
than a J.5 v battery 's particles, because the 9 '\J battery's particles have. more 
potential energy. Now suppose you connect the positive terminal through a light 
bulb back to the negative terminal as sho\\-n in Figure 2.2. The 9 V battery will 
result in more current flowing, and thus a brighter lit light, than the 1.5 V battery. 
Precisely how mucb cwTent will ±low is determined using the equation 

V = !R (known as Ohm's Law) 

Figure 2.2 9V battery 
connected to a light bulb. 

where Vis voltage., J is current, and R is resistance (in this case, of the. light bulb). 
So if the resistance were 2 ohms, a 9 V battery would result in 4.5 A (since 9 = 
!*2) of current while a 1.5 V battery would result in 0.75 A. 

Rewriting the equation as I = \l/R might make more intuitive seni:c- rhc 
higher the voltage, the more cw-reot; the hi.~her the resistance, the less cunent. 
Ohm's Law is pt:rhaps the must fuudameulal e4ualiun in de<..:lruuic.:s . 



2.2 Switches 37 

The Amazing Shrinking Switch 

Now back to switches. Figw-e 2.3(b) shows tbat a switch has three pilrts- let's call them 
the source input, the output. and the control input. The source jnput has higher vollage 
than the output, so current tries to tlow from the source input through the switch to the 

output. The: whole purpose of a switch is to block that current when the control sc:ts the: 
swi lch "uff," <UJU tu allow llml curreuL Lu 1luw wheu c:unlrul sels U1e swilch " Ult." Fur 

example. when yon flip a light switch 11p to t11r11 the switch on, the swirch causes th~ 

source input wire to physical ly touch the output wire, so current flows. When you flip the 

switch down to tum the switch off, the switch physically separates the source input from 
the o utput. llt uur waler aualugy, lhe c uulrul u1put is like ;i f'aucel v;1lve llrnl delemill1es 

whether writer t1ows through a pipe. 

relay ·i1acuum tube 

(a) 

• 
discrete 

:ransistor 

quarter 

IC 

{to i:eA thA re!Rtive i:i7e) 

control 
input 

"oft" 

~-
source 
inp1i1 

source 
input 

control 
input 

(b ) 

output 

.. or" 

output 

figure 2.3 Switches: (a) Evolution, s tarting with relays (1 930>). rhen vacuun: tubes (1940s). discrete 
transistors (l 950s). and integrated circuits (]Cs) containing transistors O 960s-presenl), JCs 
originaJJy beld a·::iout ten transistors: now they can hold several billion. (b) Simple vie\\-' of a switch. 

Switches are what cause digital circuits to utilize binary numbers made from 
bils- U1e uu ur uff u etlw·e uf <t sw ild1 currt:lSpun<ls tu th~ ls auJ Os ill binary. We nuw 

discuss the evolution of swjtches over the l 9CX>s, leading up to the CMOS transistor 
switches conm10nl y used today in digital c ircuits. 

1930s- Relays 
Engineers in the 19~[)s tri~ct to cfevi.c:e ways to comp11te Hsing elecrrnnically controiieii 

switches- switches whose control input was another voltage. One such switch, an e lectro
magnetic relay like that in Figure 2.3(a), was a lready being used by the telephone industry 

for switching telephone calls. A relay has a control input that is a type of magnet, w h.ich 

becomes magnetized when the control has a positjve voltage. ln one type of relay, that 
m~gnet pull!: H piece of metal clown, re,c;nhing in a connection from the snnrce input to the 

output- akin to pulling down a drawbridge to connect one road to another. When the 
control input returns to 0 V, the piece of metal re turns up again (perhaps pushed by a small 
spring), disconnecting the source input from the output. In telephone systems, relays 
enabled calls to be routed from one phone to another, wi1llom the need for those nice 
human operators that p revious ly woulcl manually connect o ne phone 's line to annrhf'J. 



38 2 Combi'lationa l Log'c Design 

.... ••DEBUGGJNG" 

]n 194j, a muth gut stuck Ju UllC uf Lite n:lays uf tl1c M<tcl a cu11:putcr 

al Har.,an.I. Tu ~cl lhc cu111pulc1 wurkiuM prupcrl}' a,t;aii1, lcdmld<tn~ 

fULu1tl autl rcum~eJ Lhc bu~. Though Lite: term "bug" l1au bccu used 
for decades before by e.ng~neers rn indicate a defect in mcchanlca.I or 
clecrrical equipment, the removal of thar moth in 1945 is considered 
to be the origin of the rerm "debugging" in compurer programming. 
Technicians :aped chat mo:b to their wrirren log (shown in tbe picrure 
to the righr1, and char moth is now on di~play ar the ~ational Museum 
of American History in Washington, D.C. 

1940s- Vacuum Tubes 

•• I t

" 

Relays relied on meta] parts moviur; up and down, ru1d thus were slow. In the 1940s and 
1950s. vacuum rubes, which were originally used to amplify weak electric signals like 
thm:e in a telegraph, heg:rn to replace relay~ in computers. A vacnnm mhe, shown in 
Figure 2.3(a), is similar in design to a light bulb. ln a light buJb, electrons flow through a 
filament in a vacuum inside the bulb, causing the fi lament to become hot and emit 
light-but not bum due to the lack of oxygen in the vacuum. In a vacuum tube, an extra 
lermimtl i:-i 11tlued inside lhe bulu, separaled by Ll1e v;i1,;uu1u fru11t Ll1e fih:uuenl. If a pusili\e 

voltage is applied at char cermjnal, then electrons can t1ow from the filament to the extra 
terminal through the vac.uum; Le., a positive. voltage at the extra terminal causes a ··con
nection" between lhe filament and the extra tenninal. Vacuum tubes had no moving parts, 

so the tubes were much faster than relays. 
Tue urndti.ue said lo be Ll1e world's fml gem::rnl-purpu:-ie rnmpuler, lhe ENIAC (elec

tronic numerical imegrator and computer), was completed in the U.S. in 1946. ENIAC 
contamed about .18,000 vacuum tubes and 1500 relays, weighe.d over 30 tons, was JOO 
feel long and 8 feet high (so it likely wouJd not iit in any room of your house, unless you 
have an absurdly big how;c), and consumed 174,000 watts of power. lnrnginc the heat 
r;enerated by a room full of 1740 100-watt li~ht bulb~ . That's hot. For all that, ENIAC 
could compuce about 5000 operaiions per second-compare that to the billions of opera
tions per second of tod~y·s personal computers, ancl even the tens of miliions of 
computations per second by a haudheld cell phone . 

Although vacuum tubes were faster than relays, t11ey consumed a lot of power. gen
t:rnled a Jul uf lJeaL, and failed fre.yueully. 

Vflc1111m t11hes were commonplace in many e lectronic rtppli:mce~ in the tc)t'iOs nmt 

1970s. 1 remember taking trips to the store with my dad in the early 1970s to buy replace
ment tubes for our television set. Vacuum tubes still live today in a few electronic devices. 
One place you might still find tubes is in electric guitar amplifiers, where the tube;s 
wt.i.4ue-~;uuntliug audio ampWicaljun is s lill ueurn11deJ by ruck guilar eullmsiasls whu 

wane their versions of classic rock songs to sound just like the originals. 

1950s- Discrete Trnnsistors 
The inveution of the transistor in 1947, credited to \Villiam Shockley, John Budeen, and 
Walter Brattain of Bell Laboratories (the research ann of AT&T), resulted in smaller and 
lower-power computers A sol io-~tme (cliscrete) transist'1r. shown in Figure 2.3(a), 111=es a 



Jack Ki lb)' of 
Texas imt.rtm:e111S 
wul Rour:1·1 Nurcr: 
of Fa frchiid . 

Sm11ca11d11ctors 
a re ofte:1: cn::diteJ 
wir/1 ead1 hm:i11s 
i11df!pe11de111/~ 
invented tile JC. 

2.2 Switches 39 

small piece of silicon, "doped" with some extra materials, to create a switch. Since these 
switches used "solid" materials rather than a vacuum or even moving parts in il relay, they 
were commonly referred co as solid-stare rransismrs. Solid-s1ate rransi;;cors were smaUer. 
cheaper, faster, and more reliable than tubes, and be.came the domin:mt computer switch 
in the 1950s and 1960s. 

1960s-lntegrated Circuits 
The invention of the integrated circuit (IC) m 1958 revolutionized computing. An IC, 

a.k.a. a chip, packs numerous tiny transistors on a fingernail-sized piece of silicon. So 
instead of 10 transistors requiring l 0 discrete electronic components on a board, 10 tran
sistors can be implemented on one componem, the chip. Figure 2.3(a) shows a picture of 
an IC ha\;ing a few million transistors. Though e.arJy l Cs featured only tens of transistors, 

improvements in lC technology have resulted in several billion transistors on a chip 
today. IC technology has :shrunk transistors down to a totally different sca1e. A vacuum 
cube (ab<Jm 100 mm long) is co a modern IC 1ransistor {abouc 100 nm) as a skyscraper 
(about 0.5 km) is to the thickness of a credit card (about 0.5 nun). 

I've been working in this field for l'vVO decades , and the amount of tr:.ms istors on a 
chip still amazes me. The number I billion is bigger than most of us have an i.ntujtive feel 
for. Consider the volume thac l billion pennies would occupy. Would chey fir in your bed
room? The answer i~ probably no. as a typical bedroom is about 40 cubic meters, while l 
biUion pennies would occupy about 400 cubic meters. So a billion pennies would (){;CllPY 

about IO bedrooms, roughly the size of a house, packed from wall to wall, t1oor to 
ct:ili.ug. ff we ~tacked lhe pennies, lhe.y wuuld reach uearly 1000 miles intu lht: sKy- fur 
comrmrison, a jet t1ies at an altitucte of ahont) miles. R11 t we manage to fit I hiilinn mm
s istors onto silicon chips of just a few square centimeters. Truly amazing. The wires that 
connect all those transistors on a chip, if straightened into one straight wire, would be 
severaJ miles long. 

T\. trnnsistors ::ire smaller, more reliahle, faster, ::incl less power-hungry than rliscrete 
transistors. IC transistors are now by far the most commonly used switch in cornputjng. 

ICs of the early L 960s could hold tens of transistors, and are known today as small
sc<tle i11Legrnliuu (SSJ). As lrausislur siLe1', shnm.k., in the Lile 1960s ;mu e<1rly 1970s, ICs 
could hold hundreds of 1ransistors, known as medjmn-scale integration (M S[). The 1970s 
saw the development of large-scale integration (LSI) ICs with thousands of transistors, 
while very large scale integration (VLSI ) chips evolved in the 1980s. Since then, !Cs 
have continued to increase in their capacity, to several billion transistors . To calibrate 
yuur umkrslauuing uf lhi1i uumber, a prncessur iu a 2009 laplup cumpuLer, li.k.e au lulel 

... A SIGJ'\iJFJC.41~ T lJVVENTIOJ\' 

We now know 1hut the invention of the tnUlsistor was the 
scW1 of 1he amazing computation and co11uuunicatfon 
revolutions that occtU'red in the latter half of the 20th 
century, enabling us today to do things like 3ee the world 
on TV, surf the web, alld ta.i.k on cell phones. But the 
implications of the tmnsistor were not known by most 

people at the time of its irwentiou. Newspapers :lid not 
headline the news. and most s tories that did appear 
prOOicted simply that tmnsistol'3 would improve thing3 
like radios and hearing aids. One mc.y wonder what 
recently i1wented but unnoticed technology might 
sigi1ificantly change ihe world once lgoin. 



40 2 Combi'lationa l Log'c Design 

..,_HOW TR.ASSJSTORS ARE JlAI>E SO S:t-L1U L'SJ,VG PHOTOGRAPHIC JIETHODS 

1f yuu luuk ll pcm:il <111<l umk the suulksl Jul LhaL yuu 
cuul<l uu a sbccl uf paper, L11al <lot's arc<t wuuld bolJ 

111<111)' thuusamls ufuamisturs un a mo<lcrn i;ilicuu dup. 
How can chip makers crcacc such tiny uansi;;cors? The 
key lies in phmographic merhods. Chip makers lay a 
special chemical onco che chip-special because the 
chemical changes when exposed m ligbL Chip makers 
rhen shine Hgh1 j1rough a lens thac focuses che light 
down 10 excremely 5mall regions on cl1e chip-similar 
to how a microscope's lens lets us see tiny chings by 
focusing ligbc, bm [n reverse. The chemical in the small 
illuminaced region changes, and chen a solvenc wa;;hes 
away che chemical- hue some regions scay because of 
rhe lighr iliac changed rhat region. Those remaining 

regions ruru1 parts ur lntlJ.SislOJ'li. Rcpcali11~ this JJfl.~SS 

uvc:r <111<l uvcr ag:tiu , will; <liffcn:;nL d1c111.ic;tls ;u 

Jiffcn::nl steps, rcsulLS nut only in Lrnushtors, but alsu 
wires conneccing rhe cransistors. and insulacors 
prevcncing crossing wires from !Ouching. 

Plwrograpll of a PemiLun 
processor's silicon chip, 
!Javillg mWio11s of 
rransis10rs. Accual size is 
abour 1 cm each side. 

Atom or Celeron processor, requires only about 50 milhon transistors, and the processor 
in a cell phone, like an ARM processor, may ha\'e only a few million transistors. Many of 
today's high-end chips, lib chips inside Internet routers, contain tens or hundrnds of such 
microproce.~sors, and can conceivably couta1n thousands of e.ven sma1Jer microprocessors 
(ur ju~l a kw very big micrupnx.:t:~~uns). 

IC density has been doubling roughly every 18 months since the 1960s . The doubUng 
of lC de.nstty every 18 months is widely known as JfMre's Law. named after Gordon 
Moore, a co-founder of [ntel Corporation, who made predi:;tions back in 1965 that the 

number of components per IC would double every year or so. At some point, chip makers 
won 't be able to shrink transistors any fuither. After all, the transistor has to at least be 
wide enough to let electrons pass !:hrough. People have been predicting lhe end of 
Moore;;; Law for two rtec:i<ies now, hut trnnsistors keep s hrinking, though in 2009 many 
observen noted a slowdown. 

~at only do smaller transistors and wires provide for more functjonality in a chip, 
but they also provide for faster circuits, in part because electrons need not travel as far to 
gel frurn uue lrnrnsi~lur tu tl1e ucxl. This iucreaseu speeu is the rnain reasuu why pcrs uual 
computer clock speeds have improved so drastically over the past few decades, from kilo
hen:z frequencies m the 1970s to gigahertz frequencies in the 2000s. 

2.3 THE CMOS TRANSISTOR 

The mos t popular type of re: transistor is the \.MO~ transis tor. A <ietailert exp1amition of 
how a CMOS transistor works is beyond the scope of this book, but nevertheless a simpli
fied explanation may satisfy much curiosity. 

A chip is made primarily from the element silicon. A chip, also known as an inte
grnleu t:in:uil, ur IC, is lypit:ally abuul Utt: size uf a fingenrn.il. Even .i i yuu upeu up a 

computer or ocher chlp-based device. you would nor actually see the silicon chip, since 
chips are actually inside a larger, usually blac.k, prote.ctJve. package_ Hut you certainJy 



A positive 
voltage here ... 

"'.. 

(a) 

... attracts electrons here, 
turning the channel 

hetwtiM ;;n11rc1< ;i nl'l rlrai 'l 
nto a conductor. 

nMOS ~ 
gare-jl 

2.3 TneCMOS Transistor 41 

conducts 

(b) 

does not 
oondur:I 

figure 2.4 c:vros 1ransiscors: (a) transistor on silicon. (b) 
nMOS transistor symbol with indication of conducting when 
gate"' 1. (c) pMOS transistor symbol conducts when gate "' o. 

rlne.~ nnt 
co11du1.,i 

r:nnrluct.r; 

(c) 

should be able to sec those black packages, mounted on a printed circuit board, inside a 
variety of household electronic devices. 

Figure 2.4(a) illu~trates a cross section of a tin;- part of siUcon chip, sho\.\'ing the side 
view of one type of rMO~ transistor-fin nMOS rransistor. li1e rrnnsistor h~~ the thre-e 
parts of a ~witch: (1) the source input; (2) the output, which is called the dro;,1 , perhaps 
because electric particles tlow to the drain like water flows to a drain; and (3) the control 
input. which is caUed the gate, perhaps because the gate blocks the current flow like a gate 
blocks a dog from escaping the ba:;kyard. A chip maker create,; the source and drain by 
injecting certain elements into the silicon. The region between the source and drain is tha 
charmei. The gate is separated from the channel by an insuJation layer made from silicon 
dioxide, known as oxide. Figure 2.4(b) shows the electronic symbol of an nMOS transistor. 

Suppose ll1e urniu WtlS l;UJlllet;led lo a SUltlll pusilivt vull;igt (modtru ledmulugits 
use about l or 2 V) known as the "power supply," Mid d1e source wa5 connected through 
a resistor to ground. Current \.\'ottld thus try to flow from drain to source, and on to 
ground. (Cnfonunately. convention is that current t1ow is denned using positive charge, 
even tho11gh neg~tive1y charged e lectron~ are flctnflliy flowing-so notice we say c11rrent 
tlows from drain to source, even tllough electrons flow from source. to drain.) However, 
the silicon channel between ,;ource and drain is not normally a conductor, which is a sub
stance that allows electrons to flow readily. Instead, the channel is normally an i11sulator, 
which is a substance that resists the flow of electrons. Think of an insulator as an 

extremely large resistance. Since I = VIR, then I will essentially be 0. The switch is off. 
A feature of silicon is that the chrumel can be changed from ai1 insulator to a con

ductor just by applyir1g a small positive volta~e to the ~ate . That gate voltage doesn' t 
re~uH iu curreul fluw Crum Ute gale lo ch;uu1el, becau~t tlie iui;ulatiug ux.iue layer bclweeu 
lhe g<tLe and lhe cltanud blucb such flow. Bul llial galt vultagt dues cn:alt a pusilive 
eleccric field that passes through the oxide and attracts electrons, which have a negative 
charge, from the larger silicon region into the challlel region-akin to bow you can move 
paper clips on a tabletop by moving a magnet under the table. whose magnetic field 
passes through tbe table. When enough electrons gather into the channel. the channel sud
rten ly hecomes a conrtuctor. A cnnrl11ctnr J1~s extremely low resisrance, so cnrrent t1ows 
almost freely he.rween rtrain ~net sonrce. The switch is now on. Th11s, silicon is nm quite, a 



42 2 Combi'l ationa l Lag·c Design 

I~ 

I 
source 

figure 2.5 CMOS trans!sror operation analogy- A person may not be able to cross a 1~ver until just 
enough stepping stones arc attracted into one pathway. L!kewise. electrons ·::an't cross the channel 
between source and drain untiljust enough elec!fons arc attracted into the channel. 

conrlncror hut nor quite an insufaror either, rather representing something in 
betwe.en-hence the term semiconductnr. 

An analogy to the current trying to cross the channel is a person trying to eras;; a 
river. Normally, the ri\'er might not ha\'c enough stepping stones for the person to to walk 
across. But if we could attract stones from other parts of the river into one pathway (the 
d1a1111c:l). LIJe person i.:uukl easily walk ai.:russ l11e river (Figun: 2.5). 

nMOS is one type of CMOS transistor. The other type is pMOS. which is similar. 
excert rhat the chrrnnel ha.<: the opposite fllnctiorrnlity-the channel is a conrluctor nor
mally, and doesn't conduct when the gate has a pmitive voltage. Figure 2.4(c) shows the 
electronic symbol for a pMOS transistor. The use of these two "complementary" types of 
transistors is where the C comes from in CMOS. The MOS stands for metal oxide semi
conductoc the reasons for that name should be clear from abo,·e, as MOS transistors use 
metal ( lu cum1e1,;l Lnmsislurs ), m.iue (Lu insulalc ), aml stu1icun<luclur material. 

• SILICON VALLEY. AND THE SHAPE OF SJLJC01\ 

Silicon VaJley is not a city, but n:fers to an area in 
Northern California, abou; an hour south of San 
Frauci.~co, that includes several cities like San Jose, 

Mountain View, Sunnyvale, Milpitas, Palo Alto, and 
others. The area ii; heavily popu'.ated by computer and 

ot3er high-technology compnnies. and to a l&rge extent 
is the result of Stanford U1tiver3ity's (lo;.:nted in Pa.lo 
Alto) effort~ to attract and crce.tc such companies. 
\\bat shape is silicon? Once, as my plane arrived i11 

Silicon ValJcy, the person next to me asked "What shape 
is a silicon. anyway?" I realized he thought silicon was 
a type uf µolygou, Lik.c tt pcnltt,t;uu or au ucla~on. WclJ, 
lhc "'ur<l:s <lo suuud :simili:tr. Silicon i:s uu! tt :slu:p:::, but 
an clemem, like carbon or aluminum or silver. Silicon 
has an ammic nwnber of 14, has a chemical symbol of 
"Si:· and is the second most abundant element Cnexc to 

oxygen) !n the earth's crust, fmmd in items JjJce >and 
a.nd clay. Silicon i..; med to m ake mirrors and glass, in 
addition to chjps. fa fact, to the naked eye, a silicon chip 

actually looks like a small mirror. 

A chip pack11xe with its chip c:uver removed- you am 
.n:e th<:. mirmr·like siliwfl chip i11 th;: ci:r.la. 



2.4 Boolean Logic Gates- Building Blocks for Digital Circuits 43 

2.4 BOOLEAN LOGIC GATES-BUILDING BLOCKS FOR DIGITAL CIRCUITS 
You've se.en that CMOS transistors can be used to imple.ment switches on an incredibly 

tfoy scale. However, trying to use switches ns building blocks to build complex digital cir
i.:uilli ls aluu LU lryiug Lo us~ small roi.:ks Lu builu a britlg«:: . as illuslnll~ i11 Figur«:: 2.6. 
Sure., you could probably buiJd something from rudime.ntary building blocks, but th~ 
building process would be a rccl pain. Switches (fllld small rocks) arc just too low-level as 
buililiug bludts. 

aovo6 
These blocks ... 

The rght building b locks ... 

. .. a1e hard to vvork with . 

. .. enable greater designs. 

Transistors are 
hard to work w th 

The logic gates that we'll 
soon introduce enable 
greater designs 

Figure 2.6 H:wmg the rieht h11i lo1ing hlr1Ck!: .~:m mak~ :ill the o1ifft'.rt'ncr. when hni l<1ing thmg;c;. 

Boolean Algebra and its Relation to Digital Circuits 

Fonunately, Boolean logic gaces aid the design task by representing digital circuit 
building blocks that are much easier to work with than switches. Boolean logic was 

developed in the mid- I 800s by the mathematician George Boole, not to build digital cir
cuits (which weren't even a glimmer in anyone's eye back then). bm rather as a scheme 
for u~ing algebraic methods to fomulize hwnan logic and thought. 

Algebra is a branch of mathematics that uses letters or symbols to represent numbers 
or values. where those leners/i;ymbols can be combined according ma set of known rules. 
Boolea11 algebra uses vari able.s (known as .Hoolean variables) whose values can only be 

1 or o (representing tme or fa lse, respectively). Boolean algebra's operators, like AND, 
OR, ant.! NOT, upc:;ralc uu wd1 variables am.I rd.um 1 ur 0. Su we might Jechue Buult:a.n 

varif-lhles -x , y , and 7., :mrl then Sf-1)1 thnt 7. = Y. OR y, meaning 7. will eq1rni 1 if x is 1 

or y is 1. else z will equal o. Contrast Boolean algebra with the regular algebra you're 
familiar with, perhaps from hi?;h school, in which variable Yalues could be inte,gers (for 

example), and operators coulci he arirlition, s11htractim1, nnrl multiplication. 
The basic Boolean operaiors are AND, OR, and NOT: 

• AND relurnis 1 if bU!h its upera.i1us an: 1. Su Ute r«::sul l uf a AND b is 1 if both 
;h: l amt h::1, otherwise the result is o. 



44 2 Combi'lationa l Log'c Design 

"ab- OJ " is 
shortha11J jor 
"a- D. b- 1." 

• OR returns 1 if either or both of its operands are 1. So the result of a. OR b is 1 

in any of the following cases: a:O=Ol, ab=1 0, a b =ll. Thus, the only time 
a OR bi~ o is wltt:11 ab=OO. 

• !\OT returns 1 if its operand is 0. So NOT(a) returns 1 if a is 0, and returns 0 if 
a isl. 

We use Boolean logic operators frequently in everyday thought, such as in the state
ment "I'll go to lunch if Mary goes OR John goes, AND Sally does not go." To represent 
this using Boolean concepts, let F represent my going to lunch (F= l mean.s I'll go to 
lund1, F= 0 111t:tu1s J wuu' l g,u). Lel BuukillI v;uiauks m, j, amJ s rt:pn:st:ul M ttry, Juhn, 
and Sally each going to lunch (so s =l would represent Sally going co lunch, else s = O). 
Then we can translate the above English .;entence into the Boolean equation: 

F = { rr OP j j Z\Nn N0'T' ( !!; ) 

So F will equal 1 if either m or j is 1. and s is o. Now that we've tramlaced tbe 
English sentence mto a Hoolean equation. we can perform several mathematical activities 
with that equation. One thing we can do is determine the value of? for different values of 
m, j, ands : 

• m=l, j = O. s=l ~ F = (1 OR o) AND NOT(l) = l AND o = o 

• m=1, j =1, s =O ~ F - (1 OR 1) AND NOT(O) - 1AND1 - 1 

ln the first case. f rlon ·r go to lunch; in the seconc1, T c1o . 
A second thing we could do is apply some algebrajc rules (discussed later) to modify 

the original equation to the cquivuJcnt equation: 

F • (~and NOT(o)) OR (j and NCT (a ); 

Jn other words, J' U go to lunch if Mary goes AND Sally does not go, OR if John goes 
A_ \ID Sally docs not go. Tiut stutcmcnt, as different as it may look from the earlier state
ment, is neve1theless equivalent to the earlier statement. 

A third thing we could do is formally prove properties about the equation. For 
example, we coLtld prove that if Sally goes to lunch (s = l), then J don 't go to lunch (F= O) 

no matter who else goes, using the equation: 

F - (m OR j) ~.ND NOT(l) - (m OR j) ~.ND 0 - 0 

No matter what the values of m anc1 j , F will ecp1al o. 
~oting all the mathematical activities we can do using Boolean equations, you can 

start to sec what Boole was trying to accompli sh in fomuilizing human reasoning. 

bample 2.1 Converting a problem statementto a Boolean equation 

Convert the following problem statements to Boolean C<jUations using AND, OR, and !\OT o~ra

tors, F should equal 1 otll)' if: 

1. a ls 1 and b is 1 .Answer: F "'a AND b 

1. either of a or b is 1. Answer: F = a OR b 



2.4 Boolean Logic Gates- Building Blocks for Digital Circuits 45 

3. both a and bare not 0. Answer: F"" NOT(a) AND l'OT(b) 

4. A is 1 imrl r 1s 0 . AnnvPr: 7 = il ANI) NC ff(h) 

Convert lhe. following English problem statements to Boolean equations: 

I. A fi re .~prinl:lr.r ~ysrem should spr:iy wMer it high heat i~ sensN1 and the s>'str.m 1s sel tn r.nahlerl . 

Amwer: I ~I Hoolt~:m wiriahle h r.~prMem -high he::it 1s sense.ii." P. rr.pre~ent "e:n:ihlen:· :ind "'rt»p

resent "spraying water." Then an equation is: F = h AND e. 

2. A car alarm should sound if the alann is enabled. and either the car is shaken or the door is 
opened. A.nswer. Lei a represent ··aiarm is enabled." s represent "car is ;;baken." d represent 
.. iloor i~ openr.11," :inrl ii' mpr1~''<',nl '':illlrm .i;onnrls." Then :i11 equMion i~: F = ri AND (fl C lR rlj . 

(a) Alcema1ively, assuming cbac che door sensor d represencs "door is clo;;ed" insccad of oi:en 

(meaning d"'l when 1he door is dosed. o when open). we obtain the following equation: f "' 
-~AND (s OR NOT(d)). 

• 
Example 22 Evaluilling Buul~crn ~Qualiun;) 

Siw1111011 • . 7J 1111' 

wa-:. is also 
co1;s1derco tha 
f atlrer of 
i r1{0r:11:J11

4 

<Jfl 

Tl:eory. cur! ro 
l11s later work 
Oil digift1/ 
COJJ11i11JJ11CG 11011. 

Eviiluiilc lhc Boukuu c:qullliou F =(a AND b) OR (c AND d) fur lhc given v:tluc:s of vwiabk:s a , b, 
c, iiu<l d: 

• a=l. b=L C=l. d=O.Answer: E' = ll AN!) l) UK (1 AND 0) "' 1 UK •J = l. 
• a=O, b=l,c=O. d=:.Answer: E' - (O Af\lJ liUR.(O ANUl) .,. OUR. 0 - 0. 

• a=l,b=l, C=l. d=:.An.nv.:r: [i' "' (1ANU1) UR (1AND 1)"' 1UR1 "' 1. 

One might now be wondering what 
Boolean algebra has 10 do with building cir
c11its 11sing s witches. In 193~ . an MIT 
graduate student named Claude Shannon 
wrote a paper (based on his master's thesis) 
describing how Boolean algebra could be 
applied lu switd1-bused i..:iri..:uils, by showing 

that "on" switches couJd be created as a 1 (or 
true), and ··off' switches as a 0 (or fals~.j, by 
connecting those switches in a certain way 
(Figure 2.7). His thesis is widely considered 
as the seed that developed into modem 
digital design. Since Boolean algebra comes 
with a rich set of axioms, theorems, pos tu
lates, and rules, we can use all those things 
to manipulate digital circuits using algebra. 
In other words: 

We can build circuits bJ 11oing milth. 

Booleai 
algebra 

(rn1d-l8UUS) 

Bocle'6 intent: farm111iZe 
human lhoughl 

Switches 
(Hl30o;) 

i 
ShannM (1938) 

i 
Digital design 

For relep/1011€ 
switching and other 
electtMic use~ 

Showed application 
of Boolean dlgebrd 
to design of switch
ha.i;ert rirr:ui1!': 

Figure 2.J Shannon applied Boolean 
:ilgebra to switch-baseci circuiti;, providing 
:l formal basis to digital circuit design. 

Tl1at's an extrem~Jy powerful concept. We.'JJ be buildJng circuits by doing math 
throughout this chapter. 



46 2 Combi'lationa l Log'c Design 

AND, OR, & NOT Gates 

Earlier we said .1 
.. gate ·· was tfu switch 
cu11trul input <lit 
CAf{)S 1rnmis1or. but 

no-.v we're wlkmg 
abin!t " logic gates.'' fn 
an 1111/orluna!e 11amin9 
sfmilarirv, the sm11e 
worJ (gate, refers to 
hvn di{fnf'nl t/1inp,s. 
Dc11 't worry\ though; 
after Vil' nexl seerio11, 
we'/! be1tsi11g the word 
"15ute ·' :u rrfi::r wily tu 
a logic got,. 

To build di~ital circuits that can be manipulated using. Boolean al.i?;ebrn, we ii.rst imple
ment the Boolean operarnrs AND, OR, and NOT using small circuics of switches. and call 
those circuit!> Hoole.an logic gates. Then, we forget about switche.~, and instead use 

Boolean logic gates as building blocks. Suddenly, the power of Boolean algebra is at om 
fingenips fur uc:sig_ujug mure cumplt:x c ircuj ls! Th.is is like firsl assembling ruclui inlu 
three shilpes ofhricks, ancl then h11il fl ing sh11c111res like il hriclge from those hricks, as in 
Figure 2.6. Trying to build a bridge from small ro:ks is harder than building a bridge 
from the three basic brick shapes . Likewise, trying to build a motion-in-the-dark circuit 
(ur any ciruiil) frum swild1es i1' lmrJer Ll tan bui lding a cin;uil frum Buult:an lugiL: gal~s. 

Let's first impl~me_nt Hoolean logic gate_.; usmg CMOS transistors, shown in Figure 
2.8 and soon to be described, and then a later section will show how Boolean algebra 
helps build better c ircuits . You reaUy don't have to understand the underlying transistor 

implememations of logic gates to Je;un the digital design meihods in che resi of ihi s book, 
and in fact many textbooks omit the. transistor ctiscuss1on enttre.ly. Hut an understanding 
of the underlying transistor implementation can be quite satisfying to a student, leaving 
no "mysteries." Sucb an understanding can also help in unde rstanding the nonideal 

behavior of logic gates that one may later have to learn 10 deal with in digital design. 

NOT 

Symbol 

TrJth table ~ 

AND 

:D--F 
x y F 

0 0 0 
0 0 

0 0 

Figure 2.8 Basic logic ga:es' 
symbols. trui.b tables. and 
transistor circuits: (a) NITT 
tinverter) gate. (b) 2-ioput OR 
gate. le) 2-input A-'lD gate. 
Warning: rea.1 AND and OR 
gates aren 'f built thi;; way. but 
rather in a more complex 
manner- sec Section 2.8. 

Transi5'.or 
circuit F 

1 0 11 
1 1 1 

1-Y 

1.BV = .. 1., 
1.2 v 
0.6V 

"O" 
ov 

Figure 2.9 Sample 
vohage ranges for 
ls and Os. 

(a ) 

1 will represent the power supply's voltage level, which today is usually around 1 V 
lu 2 V fur CMOS lt:dmulugy (e.g. , 0.9 V, ur L.6 V). 0 will n:preseul gruuuJ. Nule lltal 

~my two symhols or worcls cm11rl he 11Seci rMher than 1 m1cl o to represent power ::incl 
ground voltage ]e\'els. For example, alternatives could be t rue and fa lse, or H and L. 

Furthermore, 1 and J typically each rcpres:mts a voltage range, such as 1 representing 
ruty vullage between l.2 V lu l.8 V anJ 0 repre~euliug. bd wec:n 0 V c.rnJ 0.6 V, as in 

Figure 2.9. 



x 

F 

2.4 Boolean Logic Gates- Building Blocks for Digital Circuits 47 

NOTGnte 
A NOT gate has tm input x and an output F. F should always be the opposite, or inverse, 
uf x-for llus re<isuu, a NOT gate is i.;0111111011ly i.:<tllt:u au inverter. We ~11 build a NOT 
gate using one pMOS and one nMOS transistor. as shown in Figure 2.8(a). The triangle at 
the top of tbe transistor circuit represents the positive voltage of the power supply, which 
we represent as 1. The series of lines at the bottom of the circuit represents ground, which 
we represent as o. When the input x is o, the pMOS transistor will conduct, but the 
uMOS will uul, as shuwu i11 (a). lu llrnl cast:. wt: i.;au lllink of lht: i.;ircuit as a win: frum 1 

to F. so when x = u, then F = 1. On the other hand, when x is l , the nMOS will conduct, 
but the pMOS wiU not. as shown in (b). ln that ca.;e, we can think of the circuit as a wire 
from 0 to F, so when x=l , then F=O. The table in Figure 2.8, called a lTuth table, sum

marizes the NOT gate's behavior by listing the gate's output for every possjbJc input. 
Figure 2.10 sha.vs a timing diagrnm for an inverter (See Sectiou 1.3 fo r an introduc

tion to timing diagrams.) When the input is o. the ourpm ls 1: when the input is l , the 
rn1tp11r is o. 

0 -----' 

0 F 

0 

timA 

Figure 2.10 Inverter 
timing diagram. 

(a) 

Figure 2.11 lnverter conduction paths ween: 
(a) the input is 0, and (b) the inpuC is 1 . 

l.omhining pMOS :mci nM()~ in thi~ w:iy has the benefi t of 1'1w power commmp
tion. Figure 2. 11 s hows that for any value of :r., either the pMOS or nMOS transistor 
will be nonconducting. Thus, current never flows (at least in theory) from the power 
source to ground , which will also be true for the AND and OR gates to be defi ned next. 
TlJis feat w·e makes CMOS circuits c.uuslllut: k~s power Lli<m o lht:r trarn;istor teclmolu

gies, and partly explains why CMOS is the most popular logic gate transistor 
technology today. 

OR Gate 
A basic OR 1;ate h as two inputs x and y and an output F. F should be 1 only if at least 
one of x or y is 1 . We can build an OR gate using rwo pMOS transistors and two nMOS 
tr:msisto r<: , as shown in Fignre 2 R(h). (~ection 2. ~ expl :iins that OR gMes ;:i re actually 
built in a more complex manner.) If at least one of x or y is 1, then a connection occurs 
from 1 to F, but no connection from o to F, so F L; 1 , as shown in Figure 2.12(a). If both 
x and y are o, then a connection occurs from o to F, but no connection from 1 to F, so F 
i ~ 0, as shown in Figure: 2. 12(b ). T he lrulh table for the OR gait: appt:<trs iu Figure 2.8(b ). 



48 2 Combi'lationa l Log'c Design 

I 
(b) 

0 

time 

figure Z.13 OR gate 
timing ruagram. 

Figure 2.12 OR gdlc UJuuul:~un path~ : (a)V11bc11 

unc: input is 1. am.I (b) w ltcu bulJ1 inpul:s arc 0 . 

D 

Figure 2. I3 shows a timing diagram for an OR gate. The table. lists all possible value. 
combinations of inputs x and y, and shows that F will he 1 if either or hDth inputs is a 1. 

Larger OR gates having more than two inputs are also possible .. If at least one of the 
OR gale: 's inputs an:: 1, lht: uulpul is 1. Fur <t lhn::t:-inpul OR gale, Liu: lnmsislur 1.:in.:uil 
Fignre 28(h) woulrl have three pMOS rr:rns istors on top anri th ree nMOS transistor~ on 
the bottom, instead of two transistors of each kind. 

A_~D Gate 
A basic AND gate has cwo inputs x and y and an output F. F should be l only if both x 
and y are 1. We can build an AND gate using two pMOS transistors and two nMOS tran
sistors, as &hown in Figure 2.&(c) (again, Section 2.8 will show that A~D gates are 
actually built in a more complex manner). If both x and y are 1, the.n a connection occurs 
from 1 tu F, bul nu rnnue.L:tiun from ground tu F, su F js 1, as shuwn iI1 Figure. 2.14(a). U 
at leaH one of x or y is o. then a connection occurs from o to !::". but no connection from 
1 to F, so F is C, as shown in Figure 2.14{b). The truth table for the Al\D gate appears in 
Figure 2.8(c). 

Figure 2.15 shows a timing diagram for au AND gate. We set inputs x and y to each 
possible combination of values, and shov.: that I:" will be 1 only if both inputs are a 1. 

x-1...9 f-l-y )( f-J-y x~Jl_J 

I \ 

(a) 

., F 
1 

F 
0 

Figure 2.14 AN I) g:it•~ con<111ction p;;rhi;: (:i) wh~n 
11 11 itlpt1B ar~ 1. ::incl lh) wh~n 11ny m p11111: 0. 

y I 0 

F 0---'I 
time 

Figure 2.15 AND ~alt: 
lL11u11g Jiilgr<:m. 



2.4 Boolean Logic Gates- Building Blocks for Digital Circuits 49 

Larger AND gates having more than rwo inputs are also possible. The output is 1 

only if all the inputs are 1. For a three-input AND gate, the transis tor circuit in Figure 
2.8(b) woukl ha\.e Lhree pMOS Lmnsistu~ uu lop am] Lllfee rLV10S trnnsi~Lurs 011 th~ 

bonom, instead of two transistors of eacll kind. 

Building Simple Circuits Using Gates 

H~wing built logic gate building blocks from transistors, we 
now show how to build useful circuits from those building 
blocks. Recall the dir;ital system exam ple of Chapter 1, the 
motion-in-the-dark detector. a=l meanr motion. and t=o 
me.ant nark, ,;;o we vnmted P = ;:i Af\O NOT(h). We c~n 

Detector 

b 

connect b through an invetter to get NOT (l:) , and connect Figure 2.16 Mrnion-in-the
the result :.ilong with a into an Al'D gate, whose output is F. dark detector circuit. 
The resulting circuit appears in Chapter l. iihown again in 
Figurt: 2.16 fur t:oun:uieuet:. We now prnviue rnure examplt:~. 

Example 2.3 Converting a Boo lean equation to a circu itv1ith logic gates 

Conven the following equation to a circuit: 

F = a .AND NOT j b OR NOT( c ) 

We start by drawing .I-' on the right, and tl1en 
worhng toward the inputs. (We could instead >tart 

hy 11r:iwrng th~ input~ on the left ::inc1 wnrk mg 
toward the output.) The equation for I:'. ANDs two 
items: a. and the output of a UOT. We thus begin by 
drawing the circuit of Figure 2. 17(a). The NOT's 
iupul cutt:cs from au OR uf l wu ilcm~ : b, a11J 

NOT(c ). We complete the drawing in Figure 2.17{b) 
by includitlg an OR gate 1nd NOT gate as shmvn. 

-t>D-F 
(a) 

Fig11re 2.17 Building tbe circuit for ? : 
(a) partial, (b) complete. 

Example 2.4 More examples converting Boolean equations to gates 

• 

Figure 2. 18 shows two more examples converting Boolean equations 10 circui ts using logic gates. 

We again start from the output and work back to the inputs. The figure shows the correspondence 
between equation operators and gates, and the order in which wc added each ~me to the. circuit. 

F - a AND (s OR d) 
11 2 

F 

{a) 

Figure 2.18 fa:amplc~ uf <.:u11vcrtiug Buuk:~m c4 m1tiuus Lu c if'<.:u.i ts. (b) 

• 



SO 2 Combi'lationa l Log'c Design 

Example 2.5 Using A 'JD and OR gates with more thnn two inputs 

Figure 2.19(a) shows an implementation of the e<Juation F = a AND b . .\ND c, using two-input 
AND gates. However, designers would typically instead implement such an equation using a single 
three-input AND gate, shov,n :n (b). The function is the some, but the three-input Af\1) gate uses 
fewer transistors, 6 ratner tha..n 4 4 = 8 (as weU as having Jes> delay-more on delay later). Likewise, 
F = a AND b AND c AND d would typ:cuJly be implemented using o four-input AND gate. 

Fig1re 2.19 Using multipJo.input 
A.\JD gates: (a) ming 2 °input AND 
gates, (b) using a 3-input AND 
gate. 

(a) 

The some approach applies to OR gates. For exrunple, F 
implemented using n single three-input OR gate. 

F 

(b) 

a OR b OR c would typicalJy be 

Below are examples starting from English problem descriptions, each of which 1s 
firsl L:.unverletl lu a Buulean eyualiun, ;mu Ll1e11 impkmeuletl as a t;irctLil. 

Example 2.6 Seatbel1 warning light 

Suppose you want to design a system for an automobile that illu
tninatcs a wamini; Light whc.ucvcr the driver's seatbelt is not fa~

tcncd illld the key i~ in the ignition. A5sume the following 
~cnson: 

• a sensor with output £ indicates whether the driver's belt 
is fastened (s"' 1 means the belt is fosiened), and 

• a ~ensor with output k mrticatt's who~th.~r rhe key i<: in thr-
ign1rion (i(:::; 1 mP.ilflS the key is in) 

Asstu11e the warning light has a single input w that illumir.rues 
the light when w i5 1. So the inputs to OlLr cligitd system ore s 
und k, and the output is ,v, w should equal I when both of the 
follow ing occur: s is 0 Md k is 1. 

Let's first write u C program executing on a micropro
cessor to solve the desig11 problem. If s connects to I 0, k to 
I 1, und w to PO, then the code inside ibe C program's m:;i i:i ( ) 
function would be: 

while (1) { 
P •J = ! IO && 

Thr, cortr, repc:it<:lily chtr.k<: the se.ns;'lrs :mrt ~r,ts thr- w11mmg 
light. 

(a) 

(b ) 

Figure 2.20 Seatbelt warning 
light. (a) unfastened, 1b) 

warning light illuminated. 

A Boole:m l'l}ll:ition ctr.scrihing a cirrni t impkme.ntmg the. t1r.s1gn i.;.: 

W "" NU'l (S) JlJ\L k 



2.4 Boolean Logic Gates-Building Blocks for Digital Circuits 51 

Using the AND and Nar logic gates introduced earlier, the design can be completed by con
necting s to a NOT gate. and cmmecting the resulting NOT(s) and k to the inputs of a 2-input 
AND gate, as shown in Figure 2.21. 

Figure 2.22 provides a timing diagram for the circuit. In a timing diagram, we can set the 
inputs to whatever values we want, but then we must draw the output line to match the circuit's 
function. In the figure, we set Sand k to 00, then 01, then 1 0, then 11. The only time that the 
output w will be 1 is when sis 0 and k is 1, as shown in the figure. 

Belt Warn Inputs 

k--+-----1 k:_____rLI 

s 

Seatbelt 

1 
s o-----' 

Outputs w:_n__ 
time 

Figure 221 Seatbelt warning circuit. Figure 2.22 Timing diagram for seatbelt warning circuit. 

We stated earlier that logic gates arn more 
appropriate than transistors as building blocks for 
designing digital circuits. Note, however, that the 
logic gates are ultimately implemented using transis
tors, as shown in Figure 2.23. For C programmers, 
an analogy is that writing software in C is easier than 
writing in assembly, even though the C ultimately 
gets implemented using assembly. Notice how much 
less intuitive and less descriptive is the transistor
based circuit in Figure 2.23 than the equivalent logic 
gate-based circuit in Figure 2.21. 

Example 2 .. 7 Seat belt warning light with driver sensor 

Figure 2.23 Seat belt wanting 
circuit using transistors. 

This example extends the previous example by add
ing a sensor, with output p, that detects whether a 
person is actually sitting in the driver's seat. and by 
changing the system's behavior to only illuminate 
the warning when a person is detected in the seat 
(p,,,1). The new circuit equation is: 

w = p AND NOT (s ) AND k 

In this case, a 3-input AND gate is used. The circuit 
is shown in Figure 2.24. 

Be aware that the order of the AND gate's 
inputs does not matter. 

Rgure 2.24 
Seat belt 
warning 
circuit with 
person sensor. 

k BeltWarn 

w 

• 



52 2 Combinational Logic Design 

Example 2.8 Seat belt warning light with initial illumination 

Let's further extend the previous example. Automo
biles typically light up all their warning lights when 
you first turn the key, so that you can check that all the 

warning lights are working. Assume that the system 
receives an input t that is 1 for the first 5 seconds after 
a key is inserted into the ignition. and 0 afterward 
(don't worry about who or what sets t in that way). So 
the system should set W=l when p=l and S=O and 

k=l, OR when t=l. Note that when t=l, the circuit 
should illuminate the light, regardless of the values of 
p, s, and k. The new circuit equation is: 

w = (p AND NOT(s) AND k) OR t 

The circuit is shown in Figure 2.25. 

Some circuit drawing rules and conventions 

k 

There are some mies and conventions that designers 
commonly follow when drawing circuits of logic gates, 
as shown in Figure 2.26. 

• Logic gates have one or more inputs and one 
output, but each input and output is typically not 
labeled. Remember: the order of the inputs into a 
gate doesn't affect the gate's logical behavior. 

• Each wire has an implicit direction, from one 
gate's output to another gate's input, but we typi
cally don't draw arrows showing each direction. 

• A single wire can be branched out into two (or 
more) wires going to multiple gate inputs- the 
branches have the same value as the single wire. 
But two wires can NOT be merged into one 
wire- what would be the value of that one wire 
if the incoming two wires had different values? 

2.5 BOOLEAN ALGEBRA 

BettWarn 

Figure 2.25 Extended seat 
belt warning circuit. 

no yes 

D-(•)D 
no yes 

=D-;)D 

---' notok 
(c) 

Figure 2.26 Circuit drawing rules. 

• 

Logic gates are useful for implementing circuits, but equations are bener for manipulating 
circuits. The algebraic tools of Boolean algebra enable us to manipulate Boolean equa
tions so we can do things like simplify the equations, check whether two equations are 
equivalent, find the inverse of an equation, prove properties about d1e equations, etc. 
Since a Boolean equation consisting of AND, OR, and NOT operations can be straight
forwardly transformed into a circuit of AND, OR, and NOT gates, manipulating Boolean 
equations can be considered as manipulating digital circuits. We'll informally introduce 
some of the most useful algebraic tools of Boolean algebra. Appendix A provides a 
formal definition of Boolean algebra. 



2.5 Boolean Algebra 53 

Notation and Tenninology 

This section defines notation and terminology for describing Boolean equations. These 
definitions will be used extensively throughout the book. 

Operators 
Writing out the AND, OR, and NOT operators as words in equations is cumbersome. 
Thus, Boolean algebra uses simpler notation for those operators: 

• "NOT( a )" is typically w1·itten as a ' or a. This book uses a' , which one speaks as 
"a prime." a ' is also known as the complemellt of a , or the inverse of a. 

• "a OR b" is typically written as "a + b," specifically intended to look similar to 
the addition operator in regular algebra. "a +bu is even referred to as the sum of 
a and b. "a + b" is usually spoken as "a or b." 

• "a AND b'' is typically written as "a * b '' or "a •b" specifically intended to look 
similar to the multiplication operator in regular algebra, and even referred to as 
the product of a and b. Just as in regular algebra, we can even write "ab" for the 
product of a and b , as long as the fact that a and b are separate variables is clear. 
"a* b" is usually spoken as "a and b" or even just as "a b." 

Mathematicians often use other notations for Boolean operators, but the above nota
tions seem to be the most popular among engineers, likely due to the intentional 
similarity of those operators with regular algebra operators. 

Using the simpler notation, the earlier seat belt example: 

w = ( p AND NOT ( s ) AND k ) OR t 

could be rewritten more concisely as: 

w = ps ' k + t 

which would be spoken as "w equals p s prime k, or t." 

Example 2.9 Speaking Boolean equations 

Speak the following equations: 

1. F = a ' b ' + c. Answer: "F equals a prime b prime or c." 

2. F a + b * c 1 • Answer: "F equals a orb and c prime." 

Convert the following spoken equations into written equations: 

1. "F equals ab prime c prime." Answer: F = ab' c '. 

2. "F equals ab c or d e prime." Answer; F abc t de ' . 

The rules of Boolean algebra require that we evaluate expressions using the precedence 
rule that * bas precedence over + , that complementing a variable bas precedence over * 
and + , and that we of comse compute what is in parentheses first. We can make the 
earlier equation' s order of evaluation explicit using parentheses as follows: 
w = (p 1< ( s ') "1< k ) + t . 

Table 2. l summarizes Boolean algebra precedence rules. 



54 2 Combinational logic Design 

TABLE 2.1 Boolean algebra precedence, highest precedence first. 

Symbol Name Description 

() Parentheses Evaluate expressions nested in parentheses first 

NOT Evaluate from left to right 

* AND Evaluate from left to right 

+ OR Evaluate from left to right 

Conventions 
Although we borrowed the multiplication and addition operations from regular algebra 
and even use the tenns sum and product, we don't say "times" for AND or "plus" for OR. 

Digital design textbooks typically name each variable using a single character, 
because using a single character makes for concise equations like the equations above. 
We'U be writing many equations, so conciseness will aid understanding by preventing 
equations that wrap across multiple lines or pages. Thus, we' ll usually follow the conven

tion of using si ngle characters. However, when you describe digital systems using a 
hardware description language or a programming language like C, you should probably 
use much more descriptive names so that your code is readable. So instead of using "s" 
to represent the output of a seat-belt-fastened sensor, you might instead use 
"seatBeltFastened." 

Example 2.10 Evaluating Boolean equations using precedence rules 

Evaluate the followi ng Boolean equations, assuming a= 1 , b= 1 , C= 0 , d= 1. 

1. F = a * b + c. Answer: "has precedence over-, so we evaluate the equation as F = ( 1 * 
1) + 0 = (1) + 0 = 1 + 0 = 1. 

2. F = ab + c. Answer: the problem is identical to the previous problem, using the shorthand 
notation for "'. 

3. F ab' . Answer: we first evaluate b' because NOT has precedence over AND, resulting in F 

1 * (l') = 1 * (0) = 1 * 0 = 0. 

4. F ( ac) ' . Answer: we first evaluate what is inside the parentheses, then we OT the result, 
yielding ( 1 * 0) I = ( 0) I = 0 I = 1. 

5. F = (a + b') * c + d'. Answer: The parentheses have highest precedence. Inside the 
parentheses , OT has highest precedence. So we evaluate the parentheses part as ( 1 + ( 1 ' ) ) 

= ( 1 + ( 0) ) = ( 1 + 0) = 1. Next, "' has precedence over +, yielding ( 1 * 0 ) + 1 ' 
( 0) + 1 '. The NOT has precedence over the OR, giving ( 0) + ( 1 ' ) = ( 0) + ( 0) 

0 + 0 = 0 . 

Variables, Literals, Terms, and Sum of Products 
This section defines a few more concepts, using the example equation: F (a , b, c) 
a' be + abc' + ab + c. 

• 

• Variable: A variable represents a quantity (0 or 1). The above equation has three 
var iables: a, b, and c. We typically use variables in Boolean equations to repre-



2.5 Boolean Algebra 55 

sent the inputs of our systems. Sometimes we explicitly list a function's variables 
as above ("P (a, b, c ) = ... ").Other times we omit the explicit List ("P = ... " ). 

• literal: A literal is the appearance of a variable, in either true or complemented 
form. The above equation has 9 literals: a', b, c, a, b , c ', a , b, and c. 

• Product term: A product cem1 is a product of literals. The above equation has four 
terms: a' be, abc ' , ab, and c. 

• S um of products: An equation written as an ORing of product terms is known as 
being in sum-of-products form. T he above example equation for F is in sum-of
products fonn. The following equations are also jn sum-of-products form: 

abc + abc' 

ab + a 'c + abc 

a + b • + ac (note that a product term can have just one literal). 

The following equations are NOT in sum-of-products form: 

(a + b ) c 

(ab + be) (b + c) 
(a I ) I + b 
a (b + c (d + e) ) 

(ab + be) I 

People seem to prefer working with Boolean equations in sum-of-products fonn, and thus 
that form is very common. 

Some Properties of Boolean Algebra 

This section lists some of the key rules of Boolean algebra. Assume a , b , and c are 
Boolean variables, which each holds the value of either o or 1. 

Basic Properties 
The fol1owing properties, known as postulates, are assumed to be true: 

• Commutative 
a + b = b + a 

a * b = b * a 
This property should be obvious. Just try it for different values of a and b. 

• Distributive 
a * (b + c ) = a * b + a * c 
a + (b * c ) = (a + b) * ( a + c ) (This one is tricky!) 

Careful, the second one may not be obvious. It's different than regular algebra. 
But you can verify that both of the distributive properties hold simply by evalu
ating both sides for all possible values of a, b, and c. 

• Associative 

( a + b ) + c = a + (b + c ) 

(a * b ) * c = a * (b * c ) 

Again, try it for different values of a and b to see that this holds. 



56 2 Combinational Logic Design 

• l<lentity 

0 + a 

1 * a 

a + o 
a * 1 

a 
a 

This one should be intuitive. ORing a with o (a+O) just means that the result will 
be whatever a is. After all, l +O is 1, while O+O is o. Likewise, ANDing a with 
1 (a*l) results in a. l*l is 1, while O*l is o. 

• Complemeni 

a + a• 1 

a * a• o 
This also makes intuitive sense. Regardless of the value of a, a' is the opposite, 
so you get a o and a 1, or you get a 1 and a o. One of (a , a' ) will always be a 1, 

so ORing them (a+a') must yield a 1. Likewise, one of (a, a') will always be a 
0, so ANDing them (a*a') must yield a 0. 

The following examples apply these basic properties to some digital design examples to 
see how the properties can help. 

Example 2.11 Applying the basic properties of Boolean algebra 

Use the properties of Boolean algebra for the following problems: 

• Show that abc ' is equivalent to c 'ba. 
The commutatjvc property allows swapping the operands being ANDed, so 
a*b*c' = a*c'*b = c'*a*b = c' *b*a = c'ba. 

• Show that abc + abc ' = ab. 
The first distributive property allows factoring out the ab term: 
abc + abc' = ab ( c+c' ) . Then, the complement property allows replacing the c +c ' 
by 1 : ab ( c+c' ) = ab ( 1) . Finally, the identity property allows removal of the 1 from 
the AND term: ab ( 1) = ab*l = ab. 

• Show that the equation x + x ' z is equivalent to x + z. 
The second illstributive property (the tricky one) allows replacing x+x' z by 
(x+x ' ) * (x+z). The complement property allows replacing (x+x' ) by 1, and the iden

tity prope1ty allows replacing 1 * (X+Z) by x +z. 

• Showthat (a+a' ) bcisjust be. 
The complement property states that (a+a ' ) is 1, yielding 1 *be. The identity property 
then results in be. 

• Multiply out (w + x ) (y + z) intosum-of-products fonn. 
First writing ( w + x ) as A will make clear that the distributive property can be applied: 
A ( y + z ) . The first distributive property yields Ay + Az. Expanding A back yields 
(w+x ) y + (w+x ) z. Applying the first distributive property again yields 

wy + xy + wz + xz, which is in sum-of-products form. 

• 



Example 2.12 Simplification of an automatic sliding door system 

Suppose you wish to design a system to control an auto
matic sliding door, like one that might be found at a gro
cery store's entrance. An input p to the system indicates 
whether a sensor detects a person in front of the door 
(p=l means a person is detected). An input h indicates 
whether the door shou.ld be manually held open (h= 1) 

regardless of whether a person is detected. An input c 
indicates whether the door should be forced to s tay 
closed (like when the store is closed for 
business)- c = 1 means the door should stay closed. The 

2.5 Boolean Algebra 57 

DoorOpener 
h 

c 

latter two would normally be set by a manager with U1e Figure 2.27 Initial door opener circuit. 
proper keys. An output f opens the door when f is 1. 
The door should be opened if the door is set to be manually held open, OR if U1e door is not set to be 
manually held open but a person is detected. However, in either case, the door should only be opened 
if the door is not set to stay closed. These requirnments can be translated into a Boolean equation: 

f = he I + h I pc I 

A circuit to implement this equation could then be created, as in Figure 2.27. 
The equation can be manipulated using the properties described earlier. Looking at the equa

tion. we might try to factor out the c'. We might then be able to simplify the remaining h+h' p 
part too. Let's try some transformations, first factoring out c ' : 

f he' + h'pc• 
f c'h + c'h'p (by the commutative property) 

f = c• (h + h'p) (by the first distributive property) 

f C' ((h+h')*(h+p) ) (by U1e 2nd distributive property- the tricky one) 

f C' ((l)*(h + p )) (by U1e complement property) 
f C' (h+p) (by the identity prope1ty) 

Note that the simpler equation still makes intuitive 
sense- the door should be opened only if the door is not 
set to stay closed (c ' ), AND either the door is set to be 
manually held open (h) OR a person is detected (v). A 
circuit implementing this simpler equation is shown in 
Figure 2.28. Applying the algebraic properties led to a 
simpler circuit. In other words, we used math to simplify 
the circuit. 

Simplification of logic circuits is the focus of Section 2.11. 

Example 2.13 Equivalence of two automatic sliding door systems 

DoorOpener 
c 

h 

p 

Figure 2.28 Simplified door 
opener circuit. 

• 

Suppose you found a really cheap device for automatic sliding door systems. The device had inputs 
c, h, and p and output f, as in Example 2. 12, but the device's documentation said that: 



58 2 Combinational Logic Design 

f = c'hp + c'hp' + c ' h'p 

Does that device do the same as that in Example 2.12? One way to check is to see if the above equa
tion can be manipulated into d1e equation in Example 2. J 2: 

f = c'hp + c'hp' + c'h ' p 
f c'h(p + p ' l + c'h'p 
f 

f 
f 

c'h( l ) + c'h'p 
c'h + c'h ' p 
he' + h'pc' 

(by the distributive prope.rty) 

(by the complement property) 

(by d1e identity property) 

(by the commutative property) 

That's the same as the original equation in Example 2.12, so d1e device should work. 

Additional Properties 

• 

This section introduces some adctitional properties, which happen to be known as theo
rems because they can be proven using the above postulates: 

• Null elements 
a + 1 1 

a * 0 0 

These should be fairly obvious. 1 OR anything is going to be 1, while o AND 
anything is going to be o. 

• la empotent Law 
a + a a 

a * a a 

Again, this should be fairly obvious. If a is 1, 1 +1 = 1 and l*l= l, while if a is o, 
O+O =O and O*O = O. 

• Involution Law 
(a' ) ' = a 

Fair ly obvious. If a is 1, the first negation gives O, while the second gives 1 again. 
Likewise, if a is 0 , the firs t negation gives 1 , while the second gives 0 again. 

• DeMorgan's lAw 
(a + b ) I = a I b I 

(ab ) I = a I + b I 

These are not as obvious. Their proofs are in Appendix A. L et's consider both 
equations intuitively here. Consider {a + b )' = a ' b'. The left side will only 
be 1 if (a + b ) evaluates to o, which only occurs when both a AND b are o, 
meaning a' b' - the right side. Likewise, consider (ab) ' = a ' + b' . The left 
side will only be 1 if (ab) evaluates to o, meaning at least one of a OR b must be 
0, meaning a' + b ' - the right side. DeMorgan 's Law can be stated in English 
as follows: The complement of a swn equals the product of the complements; the 
complement of a product equals the sum of the complements. DeMorgan's Law is 
widely used, so take the time now to understand it and to remember it. 

The following examples apply some of these additional propetties. 



2.5 Boolean Algebra 59 

Example 2.14 Applying the additional properties 

Convert the equation F = ab ( c-td) into sum-of-products form. 
The distributive property allows us to "mllltiply Ollt" the eqllation to F = abc + abd. 

Convert the equation F = wx (x' y + zy' -t xy) into sum-of-products form, and make 
any obvious simplifications. 
The distributive property allows us to "multiply out" the equation: 
wx (x 'y + zy' + xy) = wxx 'y + wxzy' + wxxy. That equation is in sum-of. 
products fom1. The complement property allows us to replace wxx 'y by W* O*y, and d1e 
n ull element property means that w* O*y = 0. The idempotent propeny allows us to replace 
wxxy by wxy (because xx = x). The resulting equation is therefore 
o + wxzy' + wxy = wxzy • + wxy. 

• Prove that X (X' + y (X 1 +y') ) can never evaluate to 1. 
Repeated application of the first distributive property yields: xx' + xy (x' +y' ) = 
xx' + xyx' + xyy' . The complement property tells us that xx ' =0 and yy' =0, 
yielding 0 + O*y + x * 0. The null clement property leads to 0 + 0 + 0. which 
equals 0. So the equation always evaluates to 0, regardless of the actual values of x and y. 

• Detennine the opposi te function of F = (ab' + c) . 
The desired function is G = F ' = (ab' +c) '. DeMorgan's 
G = (ab ' ) ' * c'. Applying DeMorgan's Law again to d1e first 
G = (a' + (b') ') * c ' . T he involution property yields (a' + b } * 
the distributive property yields G = a I c I + be I . 

Law yields 
tem1 yields 
c ' . Finally, 

• 
Example 2 .. 15 Applying DeMorgan's Law in an aircraft lavatory sign 

~ :::~ s_ 
c- L::__j 
Figure 2.29 Aircraft 

lavatory sign block 
diagram. 

Commercial aircraft typically have an illuminated sign indicating whether a lavatory (bathroom) is 
available. Suppose an aircraft has three lavatories. Each lavatory has a sensor outputting 1 if the lava

tory door is locked, 0 otherwise. A circuit will have three inputs, a, b, and c, coming from t110sc sen
sors, as shown in Figure 2.29. If a11y lavatory door is utllocked (whether one. two, or all three doors 
are unlocked), the circuit should illuminate the "Available" sign by setting the circuit's output S to 1. 

With this understanding, we recognize that the OR ftmc· 
tion suits the problem, as OR outputs 1 if any of its inputs are 
1. regardless of how many inputs are 1. We begin writing an 
equation for S. S should be 1 if a is 0 OR bis 0 OR c is 0. 
Saying a is 0 is the same as saying a ' . Thus, d1e equation for 
Sis: 

S = a' + b ' + c' 

We translate the equation to the circuit in Figm·e 2.30. 
DeMorgan's Law can be applied (in reverse) to the equa

tion by noting dlat (abc) '= a' +b ' +c ',so we can replace 
the equation by: 

s = (abc ) ' 

The circuit for that equation appears in Figure 2.31. 

Circuit 

figure 2.30 Aircraft lavatory 
sign circuit. 

~$2B 
figure 2.31 Circuit after applying 
DeMorgan's Law. 



60 2 Combinational Logic Design 

Example 2.16 Proving a property of the automatic sliding dam system 

A famous digital circuit 
error was the en-or found 
in the floating poi/I/ unit of 
Intel's Pentium processor. 
It was found after the 
processor was already 
being widely sold in 1994. 
ultimately costing Intel 
S475 mi//io11. Thus. using 
Boolean techniques to 
f2J12J!£. correct behavior of 
circuits is a g1vwing trend. 

Your boss wants you to prove that the automatic slirung door circu.jt of Example 2.12 ensures dmt the 
door will s tay closed when the door is supposed to be forced to s tay closed, namely, when C=l. If 
the function f = c' (h+p) describes the sliding door, you can prove the door will stay closed 
(f=O ) using properties of Boolean algebra: 

f : CI (h+p) 
Let c = 1 (door forced closed) 
f 1 ' (h+p) 
f = O(h+p) 
f Oh + Op (by d1e distributive property) 
f 
f 

0 + 0 

0 
(by d1e null elements property) 

Therefore, no matter what the values of h and p, if C= 1 , f will equal 0- the door will stay dosed. 

Example 2.17 Automati<: sliding door with opposite polarity 

Example 2.12 computed the function to open an automatic sliding door as: 

f = c' ( h + p) 

Suppose our function wi II control an automatic door control that has the opposite polarity: d1e func
tion should outpltt 0 to open the door, and 1 to close the door. The function g that opens the door can 
be computed and simplified as follows: 

g = f' 
g = (c I (h+p) ) I (by substin1ting the equation for f) 
g = (c I ) I + (h+p) I (by DeMorgan's Law) 

g = c + (h +p) I (by the Involution Law) 
g c + h'p' (by DeMorgan's Law) 

• 
Complementing a Function 

A common task is to compute the complement of a Boolean function, as was done in 
Example 2.17. A function's complement , also known as the inverse of a function, evalu
ates to 1 whenever the function would evaluate to o, and evaluates to 1 whenever the 
function would evalua te to o . 

... YOC:R PROBLE1U JS MY PROBLEM 

Boolean algebra was not invented for digital design, but 

rather for the different problem of formalizing human 

logic and thought. Digital design progressed slowly until 

Claude Shannon showed how Boolean algebra could be 
applied. In other words, powerful techniques from some 

oilier problem were applied to the digital desjgn 
problem. Such borrowing of techniques from different 
problem domains is common in various fields 
engineering, and can lead to major breakthroughs. 



2.6 Representations of Boolean Functions 61 

The equation for a function's complement can be simplified by repeated use of 
DeMorgan's Law followed by other simplficiations. Note that DeMorgan's Law applies 
to any number of variables, not just two. Specifically, for three variables: 

(a + b + c ) ' ( abc) ' 

(abc ) ' ( a I + b I + C I ) 

Likewise for four variables, five variables, and so on. 
For example, the complement of the function f = w' xy + wx' y' z' is f • 

(w' xy + wx' y' z' ) '. DeMorgan's Law can then be applied as follows: 

f• 
f• 
f' 

(w•xy + wx'y'z') ' 
( W I xy) I ( WX I y I z I ) I 

{w+x•+y' } (w'+x+y+z) 
(by DeMorgan's Law) 

{by DeMorgan's Law) 

The equation can then be expanded into sum-of-products fonn as follows: 

f' = w (w' +x+y+z) + x ' (w ' +x +y +z} + y' (w' +x+y+z ) 
f• =WW' + wx + wy + wz + X ' W ' + x'x + x•y + X'Z + 

y 1 w1 + y'x + y'y + y ' z 
f' = wx + wy + wz + w•x• + x ' y + x'z + w•y• + xy• + y•z 

2.6 REPRESENTATIONS OF BOOLEAN FUNCTIONS 

A Boolean f unction is a mapping of each possible combination of values for the func
tion's variables (the inputs) to either a o or 1 (the output). Figure 2.32(a) provides two 
alternative English descriptions of a particular Boolean function. There are several better 
representations than English for describing a Boolean function, including equations, cir
cuits, and truth tables, as shown in Figure 2.32(b), (c), and (d). Each representation has its 
own advantages and disadvantages, and each is useful at different times during design. 
Yet all the representations, as different as they look from one another, represent the very 
same function. Such is akin to how there are different ways to represent a particular 
recipe for chocolate chip cookies: written words, pictures, or even a video. But no matter 
how the recipe is represented, it's the same recipe. 

Engli$h 1: " F output$ 1 when a i$ 0 and b i$ 0, or when a i$ 0 and b i$ 1." 

(a) 
English 2: "F outputs 1 when a is o. regardless of b's value." 

Equation 1: F(a,b) = a' b' + a 'b 
Equation 2: F(a,b) = a· 

(b) 

a 

b 

Circuit 1 

a b 
0 0 

F 
0 1 

0 

F 

0 
0 

figure 2.32 Seven 
representations of the same 
fi.mction F(a,b); 

Truth table 

(a) Two English descriptions, 
(b) two equations, (c) two 
circuits, (d) a truth table. 

(d) 



62 2 Combinational Logic Design 

Equations 

Circuits 

Truth Tables 

The word "tnrth" in 
trlllh table comes 
from Boolean 
algebra ·.s use of nvo 
1•alues '"Jme" and 
·:false"-the table 
shDw.r when t1 

f1111ctio11 rerums tnre. 

One way to represent a Boolean function is by using an equation. An equation is a math
ematical s tatement equating one expression with another. F (a, b) = a' b ' + a ' b is 
an example of an equation. The rjght-hand side of the equation is often referred to as an 
expressio11, which evaluates to either o or 1. 

Different equations can represent the same function. The two equations in Figure 
2.32(b),P(a,b) = a 1 b 1 + a 1 bandP (a , b ) = a•,representthesamefunction . Both 
equations perfonn exactly tl1e same mapping of the input values to output values-pick any 
input values (e.g., a=O and b =O), and both equations map those input values to the same 
output value (e.g., a=O and b=O would be mapped to P=l by either equation). 

One advantage of an equation as a Boolean function representation compared to 
other representations (such as English) is tl1at equations can be manipulated using proper
ties of Boolean algebra, enabling simplification of an equation, or proving that two 
equations represent tl1e same function, or provjng prope11ies about a function, and more. 

Another way to represent a Boolean function is using a circuit of logic gates. A circuit is 
an interconnection of components . Because each logic gate componellt has a predefined 
mapping of input values to output values, and because wires just transmit tl1eir values 
unchanged, a circuit describes a function. 

Different circuits can represent tl1e same function. The two circuits in Figure 2.32(c) 
both represent tl1e same function F. The bottom circuit uses fewer gates, but the function 
is exactly tl1e same as tl1e function of tl1e top circuit. 

One advantage of a circuit as a Boolean function representation compared to other 
representations is that a circuit may represent an actual physical irnplemenration of a 
Boolean function. Anotl1er advantage is that a circuit drawn graphically can enable quick 
and easy comprehension of a function by humans. 

Another way to represent a Boolean function is using a truth 
table. A trnth table's left side lists the input variables, and 
shows all possible value combinations of those inputs, with 
one row per combination, as shown in Figure 2.33. A truth 
table's right side lists the function 's output value (1 or 0) for 
each row's particular combination of input values, as in 
Figure 2.32(d). Any function of two variables will have those 
four input combinations on the left side. People usually list 
the input combinations in order of increasing binary value 
(oo=O, 01= 1, 10=2, 11=3), tl1ough strictly speaking, tl1e 
combinations could be listed in a.ny order as long as all pos-

Inputs Output 

a b F 
0 0 

0 
0 

Figure 2.33 Truth table 
structure for a two-input 
function F (a, b) . 

sible combinations are included. For any combination of input values (e.g., a=O, b=O), 
one merely needs to look at the corresponding value in the output column to determine 
the function 's output. In the case of a=O, b =O, the output shown in Figure 2.32(d) is 1. 



2.6 Representations of Boolean Functions 63 

a b F a b c F a b c d F 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 

(a) 0 0 0 0 0 
0 0 0 

0 0 0 
0 

(b) 0 0 0 
0 0 

Figure 2.34 Truth table structures for: (a) a two-input 0 0 
function F (a, b), (b) a three-input function 0 
F (a, b, c) , and (c) a four-input function 0 0 
F (a, b, c, d) . Defining a specific function involves 0 
filling in the rightmost column for F with a 0 or a 1 for 0 
each row. 

(c) 
Figure 2.34 shows the truth table structures for a two-input function, a three-input 

function, and a four-input function. 

Gene pair 

M 
blue 

blue 

brown 

brown 

D 

blue 

brown 
blue 

brown 

Outcome 

F 
blue 

brown 

brown 

brown 

Truth tables are not only found in 
digital design. If you've studied basic 
biology, you've Likely seen a type of truth 
table describing the outcome of various 
gene pairs. For example, the table in Figure 
2.35 shows outcomes for different eye color 
genes. Each person has two genes for eye 
color, one (labeled M) from the mom, one Figure 2.35 Truth table used to describe 

outcomes for gene pairs. 
(labeled D) from the dad. Assuming only 
two possible values for each gene, blue and brown, the table lis ts all possible combina
tions of eye color gene pairs that a person may have. For each combination, the table lists 
the outcome. Only when a person has two blue eye genes will they have blue eyes; having 
one or two brown eye genes results in brown eyes, due to the brown eye gene being dom
inant over the blue eye gene. 

Unlike equations and circuits, a Boolean function has only one truth table representa
tion (neglecting the trivial differences obtained by reordering the inputs or by not listing 
the input combinations in increasing binary order). 

One advantage of a truth table as a Boolean function representation compared to 
other representations is the fact that a function has only one truth table representation, so 
any other Boolean function representation can be converted to a truth table to detennine 
whether different representations represent the same function-if two representations rep
resent the same function, then their truth tables will be identical. Truth tables can also be 
quite intuitive to human readers for some functions, as a truth table clearly shows the 



64 2 Combinational Logic Design 

output for every possible input. Thus, notice that truth tables were used in Figure 2.8 to 
describe in an intuitive manner the behavior of basic logic gates. 

A drawback of truth tables is that for a large number of inputs, the number of tmth 
table rows can be very large. Given a function with n inputs, the number of input combi
nations is 2". A function with 10 inputs would have 2 10 = 1024 possible input 
combinations- you can't easily see much of anything in a table havfog 1024 rows. A 
function with 16 inputs would have 65,536 rows in its truth table. 

Example 2.18 Capturing a function as a truth table 

TABLE 2.2 Truth table for 
5-or-greater function. 

a b c 

0 0 0 

0 0 1 

0 1 0 

F 

0 

0 

0 

Create a truth table describing a function that detects wl1ether a 
three-bit inputs' value. representing a binary nwnbcr, is 5 or 
greater. Table 2.2 shows a trnth table for tbe function. We first 
list all possible combinations of the three input bits, which 
we've labeled a. b, and c. We then enter a 1 in the output row 
if the inputs represent 5, 6, or 7 in binary, meaning the last 
three rows. We enter Os in all the other rows. 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Converting among Boolean Function Representations 

Given the above representations, conve1ting from 
one representation to another is sometimes necessary 
or useful. For the three representa tions discussed so 
far (equations, circuits, and truth tables), there are 
six possible conversions from one representation to 
another, as shown in Figure 2.36, which will now be 

described. 

1. Equations to Circuits 
Converting an equation to a circuit can be done 
straightforwardly by using an AND gate for every 

Figure 2 .. 36 Possible conversions 

from one Boolean function 
representation to another. 

• 

AND operator, an OR gate for every OR operator, and a NOT gate for every NOT oper
ator. Several examples of such conversions appear in Section 2.4. 

2. Circuits to Equations 
Converting a c ircuit into an equation can be done by starting from the circuit's inputs, and 
then writi ng the output of each gate as an expression involving the gate's inputs. The 
expression of the last gate before the output represents the expression for the circuit 's 

function. 



2.6 Representations of Boolean Functions 65 

c 

h 

p 

For example, consider the circuit in Figure 
2.37. To convert to an equation, we start with the 
inverter, whose output will represent c ' . We 
continue with the OR gate- note that we can't 
detennine the output for the AND gate yet until 
we create expressions for all that gate's inputs. 
The OR gate's output represents h +p. Finally, 
we write the outplllt of the AND as c ' (h+p) . 
Thus, the equation F (c,h,p) c ' (h+p) 

represents the same function as the circuit. 

Figure 2.37 Converting a circuit to 

an equation. 

3. Equations to Truth Tables 
Converting an equation to a truth table can be done by first cre
ating a trnth table structure appropriate for the number of function 
input variables, and then evaluating the right-hand side of the 
equation for each combination of input values. For example, to 
convert the equation F (a, b) = a 'b ' + a' b to a truth table, 
we would first create the truth table structure for a two-input func
tion, as in Figure 2.34(a). We would then evaluate the rjght-hand 
side of the equation for each row's combination of input values, as 
follows: 

• a =O and b = o, F 0' * 0' + 0 I* 0 l*l + l*O . a=O and b = 1, F 0 ' *1 ' + 0I*1 l*O + l*l 

• a =l and b = o, F 1 ' * 0' + 1 ' *0 O*l + O*O 

. a=l and b = 1 , F 1 ' *1' + 1'*1 O*O + 0*1 

Inputs Output 

a b F 
0 0 1 

0 1 1 
0 0 

0 

Figure 2.38 Truth table 
for F(a,b)=a'b'+a'b. 

l + 0 1 

0 + 1 1 

0 + 0 0 

0 + 0 0 

We would therefore fill in the table's right column as in Figure 2.38. Note that we applied 
properties of Boolean algebra (mostly the identity property and null elements property) to 
evaluate the equations. 

Notice that converting the equation F (a, b} =a' to a tmth table Tesults in exactly the 
same truth table as in Figure 2.38. In particular, evaluating the right-hand side of the 
equation for each row's combination of input values yields: 

• a=O and b = o, F 0' 1 Inputs Output . a=O and b = 1 , F 0' 1 a b a' b' a' b F . a=l and b = o, F 1 ' 0 0 0 1 0 1 

• a=l and b = 1 , F 1 ' 0 0 1 0 1 1 

1 0 0 0 0 
1 1 0 0 0 Some people find it useful to create inter

mediate colmnns in the truth table to compute 
the equation's intermediate values, thus filling 
each colunm of the table from left to right, 
moving to the nex.t column only after filling all 

Figure 2.39 Tmth table for F (a, b) = 

a' b' +a' b with intermediate columns . 

rows of the current column. An example for the equation F ( a, b } 

shown in Figure 2.39. 
a 'b ' + a 'bis 



66 2 Combinational Logic Design 

4. Truth Tables to Equations 
Converting a truth table to an equation can be 
done by creating a product term for each 1 in the 
output column, and then ORing all the product 
terms. Doing so for the table of Figure 2.40 would 
yield the tenns shown in the rightmost column. 
ORing those terms y ields F = a 1 b 1 + a 1 b. 
This conversion will be very freq uently used; take 
the time to understand it now. 

5. Circuits to Truth Tables 
A combinational circuit can be convened to a 

Inputs Outputs Term 

a b F F = sum of 

0 0 1 a ' b' 
0 1 1 a ' b 
1 0 0 
1 1 0 

Thus: F = a' b' + a ' b 

figure 2.40 Converting a trud1 table to 
an equation. 

trutl1 table by first converting tl1e circuit to an equation (described earlier), and then con
vening the equation to a trnth table (described earlier). 

6. Truth Tables to Circuits 
A truth table can be converted to a circuit by first converting the truth table to an equ ation 
(described earlier), and then converting the equation to a circuit (described earlier). 

Example 2.19 Parity generator circuit design starting from a truth table 

For this example, 
starting from a 
trwh table is a 
more na111ral 
choice than an 
equario11. 

Nothing is perfect, and digital circuits are no exception. Sometimes a bit on a wire changes even 
though it is not supposed to change. So a 1 becomes a 0, or a 0 becomes a 1. accidentally. For exam
ple. a 0 may be traveling along a wire, when suddenly some electrical noise comes out of nowhere 
and changes d1e 0 to a 1. The likelihood of such errors can be reduced by methods such as using 
well-insulated wires, but such errors can't be completely prevented. Nor can all such errors be 
detected and corrected- but we can detect some of them. Designers typically look for situations 
where errors are likely to occur, such as data being transmitted between two chips over long 
wires- like from a computer over a printer cable to a printer, or from a keyboard over a wireless 
channel to a computer. For those situations, designers add circuits that at least try to detect that an 
error has occurred, in which case the receiving circuit can request that the sending circuit resend the 
data. 

One conunon method of detecting an error is called parity. Say we have 7 data bits to transmit. 
We add an extra bit, called the parity bit, to make 8 bits total. The sender sets the parity bit to a 1 if 
that would make the total number of ls even- that's called even parity. For example, if the 7 data 
bits were 0000001. then the parity b it would be 1, making the total number of ls equal to 2 (an 
even number). The complete 8 bits would be 00000011, where we've italicized the parity bit. If 
the 7 data bits were 1011111. then the parity bit would be 0, making the total nwnber of l s equal 
to 6 (an even number). The complete 8 bits would be 101 11110. 

The receiver now can detect w]1ether a bit has changed during transmission by checking 
whether mere is an eve1\ number of ls in the 8 bits received. If there is an even munber of l s, the 
transmission is assumed correct. If not even, an error occurred during transmission. For example, if 
00000011 is received, the transmission is assumed to be correct, and the parity bit can be dis
carded, leaving 0000001. Suppose instead that 10 000011 is received. Seeing the odd number of 
ls, the receiver knows that an error occurred- note that the receiver does not know which bit is 
erroneous. Likewise, 00000010 would represent an error too. 

Let's describe a function that ge1terates an even pru·ity bit P for 3 data bit!; a, b, and c. Starting 
from an equation is hard- what's the equation? For this example, starting wi tl1 a truth table is the 
natural choice, as shown in Table 2.3. For each configuration of data bits (i.e .. for each row in the 



Undetected incorrect 
transmissions are 
sometimes why an 
email or webpage is 
receii•ed with garbled 
text, or why a 
compwer. printer. or 
mobile phone might 
execute incorrectly or 
.free::.e up. 

2.6 Representations of Boolean Functions 67 

truth table), the value of the parity bit is set such as to make the total number of ls even. The rows 
labeled 1, 2, 3, and 4 have two, two. two, and four l s, respcct.ivcly- all being even numbers of ls. 

From the trutJ1 table, tJ1e following equal.ion for P can be derived: TABLE 2.3 Even parity for 
P = a'b'c(J) + a'bc'(2) + ab'c'(3) + abc(4) 3-bitdata. 

We used the numbers / , 2, 3, and 4 to show the correspondence 
between each 1 in the table and each term in the equation. For 
example, the input values for the row numbered (3) in the table are 
1 0 0, which means ab' c'. This equation could then be conve11cd 
to a circuit having four 3-input AND gates and one 4-input OR gate. 

Note that receiving data that has an even number of ls and that is 
supposed to have even parity docsn 't mean for sure that tJ1e received 
data is reaJly correct (note that we were careful to say earlier that the 
transmission was "assumed" to be correct if the parity was correct). In 
particular, if two errors occur on different bits, then tJ1e parity will still 
be even. For example, the sender may send 0110, but the receiver may 
receive 1111. 1111 has even parity and thus looks correct. 

a 

0 

0 

0 

0 

1 

1 
--

1 

1 

b 

0 

0 

1 

1 

0 

0 

1 

1 

c p 

0 0 

1 1 (/) 

0 1 (2) 
1 0 

0 1 (3) 
1 0 
- --
0 0 

1 1 (4) 

More powerful error detection methods a.re possible to detect multiple errors, but at the price 
of adding extra bits. 

Odd parity is also a common kind of parity- the parity bit value makes the total number of ls 
odd. There's no quality difference between even parity and odd parity- the key is s imply that the 
sender and receiver must both use the same kind of parity, even or odd. 

A popular representation of letters and numbers is known as ASCII, which encodes each char
acter into 7 bits. ASCil adds one bit for parity, for a total of 8 bits per character. 

• 

Example 2.20 Converting a combinational circuit to a truth table 

Conve11 tJ1e circuit depicted in Figure 2.41 (a) into a truth table. 
We begin by convert.ing tJ1e circuit to an equation. Starting from tJ1e gates closest to ilie 

inputs-the leftmost AND gale and ilie inverter in this case-we label each gate's output as an 

expression of ilie gate's inputs. We label the leftmost AND gate's output, for example, as ab. Like
wise, we label the leftmost inverter's output as c'. Continuing through tJ1e circuit's gates, we label 
the rightmost inverter's output as (ab) '. Finally, we label the rightmost AND gate's output as 
(ab) ' c ', which co1Tesponds to tJ1e Boolean equation for F. The fuJiy labeled circuit is shown in 
Figure 2.41(b). 

Figure 2.41 Converting a 
circuit to an equation: (a) 
originaJ circuit, and (b) 
circuit wiili gates' output 
expressions labeled. 

c 
(a) 

:=~~ 
c' l\__F 

c - -~ 
(b) 



68 2 Combinational Logic Design 

Inputs Outputs 

a b c ab (ab)' c' F 

0 0 0 0 1 1 1 
0 0 1 0 1 0 0 
0 1 0 0 1 1 1 

0 1 1 0 1 0 0 
1 0 0 0 1 1 1 
1 0 1 0 1 0 0 
1 1 0 1 0 1 0 
1 1 1 1 0 0 0 

Figure 2.42 Truth table for d1e circuit"s equation. 

From the Boolean equation, we can now construct the truth table for the combinational circuit. 

Since our circuit has three inputs- a. b, and c- tlmre are 23 = 8 possible combinations of inputs 
(i.e., abc = ooo, 001, 010, 0 1 1, 100 , 1 01, 110 , 111), so the trum table has the 
e ight rows shown in Figure 2.42. For each input, we compute the value of F and fill in me corre
sponding entry in the truth table. For example, when a=O, b= O. and c=O, F is ( 00) '* 0 ' 
( 0 } ' * 1 = 1*1 = 1. We compute the circuit's output for the remaining combinations of inputs 

using a truth table with intermediate values, shown in Figure 2.42. 

• 
Standard Representation and Canonical Fonn 

Standard Representation-Truth Tables 
As stated earlier, although there are many equation representations and circuit represen
tations of a Boolean function, there is only one possible trnth table representation of a 
Boolean function. Truth tables therefore represent a standard representation of a func
tion- for any function, there may be many possible equations, and many possible 
circuits, but there is only one truth table. The truth table representation is unique. 

One use of a standard representation of a Boolean function is for comparing two 
functions to see if they are equivalent. Suppose you wanted to check whether two 

Boolean equations represented the same function. One way would be to try to manipulate 
one equation to be the same as the other equation, like we did in the automatic sliding 
door example of Example 2.13. But suppose we were not successful in getting them to be 
the same- is that because they really are not the same, or because we just didn't manipu

late the equation enough? How do we really know the two equations do not represent the 
same function? 

A conclusive way to check whether two 
items represent the same function is to create 
a truth table for each, and then check whether 
the truth tables are identical. So to determine 
whether F = ab + a ' is equivalent to F = 

a ' b 1 + a 'b + ab, we could generate 
truth tables for each, using tlle method 
described earlier of evaluating the function 
for each output row, as Figure 2.43. 

F = ab+a' 

a 
0 
0 

1 

1 

b 

0 
1 

0 

1 

F 

1 

0 

1 

F = a ' b '+ 
a' b +ab 

a 
0 
0 

1 

1 

b 

0 
1 

0 

1 

F 

1 

0 

1 

figure 2.43 Trud1 tables sl1owing equivalence. 



2.6 Representations of Boolean Functions 69 

We see that the two equations are indeed 
equivalent, because the outputs are identical 
for each input combination. Now let's check 
whether F = ab + a ' is equivalent to 
F = {a +b) ' by comparing truth tables. 

As seen in Figure 2.44, those two equa
tions are clearly not equivalent. Comparing 
truth tables leaves no doubt. 

While comparing truth tables works fine 

F = ab+a' F = (a+b) ' 

a b F a b 

0 0 0 0 
0 1 0 1 

0 0 0 

Figure 2.44 Non-equivalence proven. 

F 

0 
0 
0 

when a function has only 2 inputs, what if a function has 5 inputs, or 10, or 32? Creating 
truth tables becomes increasingly ctunbersome, and in many cases unrealistic, since a 
truth table's numbe1· of rows equals 2", where n is the number of inputs. 2" grows very 
quickly. 232 is approximately 4 billion, for example. We can't realistically expect to 
compare 2 tables of 4 billion rows each. 

However, in many cases, the number of output ls in a truth table may be very small 
compared to the number of output Os. For example, consider a function G of 5 variables a, 
b, e , d, and e: G = abed + a' bede. A truth table for this function would have 32 
rows, but only three ls in the output column-one l from a' bede, and two ls from abed 
(which covers rows corresponding to abede and abede ' ).This leads to the question: 

Is there a more compact but still standard representation of a Boolean function? 

Canonical Form-Swn-of-Minterms Equation 
The answer to the above question is yes. The key is to create a standard representation 
that only describes the situations where the function outputs 1, with the other situations 
assumed to output 0. An equation, such as G = abed + a ' bede, is indeed a represen
tation that only describes the situations where G is 1 , but that representation is not unique, 
that is, the representation is not standard. We therefore want to define a standard form of 
a Boolean equation, known as a ca11011ical form . 

You've seen cauonical fonns in regular algebra. For example, the canonical form of a 
polynomial of degree two is: ax2 + bx + c. To check whether the equation 9x2 + 3x 

+ 2 + 1 is equivalent to the equation 3 * { 3x2 + 1 + x ) , we convert each to canon
ical form, resulting in 9x2 + 3x + 3 for both equations. 

One canonical form for a Boolean function is known as a sum of minterms. A 
minterm of a function is a product term whose literals include every variable of the func
tion exactly once, in either true or complemented fonn. The function F {a; b; e ) = a' be 

+ abe ' + ab + e has four terms. The fu-st two terms, a 'be and abe ' , are mintenns. 
The third term, ab, is not a minterm since c does not appear. Likewise, the fourth term, c, 

is not a mintenn, since neither a nor b appears in that term. An equatiQO is in sum-of-min
terms f orm if the equation is in sum-of-products form, and every product tenn is a 
min term. 

Converting any equation to sum-of-minterms canonical form can be done by fol 
lowing just a few steps: 

1. First, manipulate the equation until it is in sum-of-products form. Suppose the 
given equation is F {a, b, c) = (a+b) {a' +ac) b. We manipuJate it as follows: 



70 2 Combinational logic Design 

F (a+b ) (a'+ac)b 

F (a+b) (a' b+acb) 
F a(a'b+acb) + b (a'b+acb) 
F aa'b + aacb + ba'b + bacb 
F O*b + acb + a'b + acb 

F acb + a'b + acb 
F acb + a'b 

(by the distributive property) 
(distributive property) 

(distributive property) 
(complement, commutative, 

idempotent) 

(nuU elements) 

(idempotent) 

2. Second, expand each term until every term is a minterm: 
F acb + a'b 
F 

F 

F 

acb + a'b*l 
acb + a' b * ( c+c' ) 
acb + a'bc + a'bc' 

(identity) 

(complement) 
(distributive) 

3. (Optional step.) For neatness, arrange the literals within each term to a consistent 
order (say, alphabetical), and also arrange the terms in the order they would 
appear in a truth table: 

F = a'bc' + a'bc + abc 

The equation is now in sum-of-minterms form. The equation is in sum-of-products fonn, 
and every product term is a mintenn because each term includes every variable exactly 
once. 

An alternative canonical form is known as product of max terms. A maxterm is a sum 
term in which every variable appears exactly once in either true or complemented form, 
such as (a + b + c') for a fu nction of three variables a, b, and c. An equation is in 
product-of-maxtenns fonn if the equation is the product of smn terms, and every sum 
term is a maxterm. An example of a function (different from that above) in product-of
maxterms form is J (a,b,c ) = (a+ b + c ') (a' + b' + c' ) . To avoid con
fusi ng the reader, we will not discuss the product-of-maxterms form further, as sum-of
minterms form is more conunon in practice, and sufficient for our purposes. 

Example 2.21 Comparing two functions using canonical form 

Suppose we want to determine whether the functions G (a, b, c, d, e ) = abed + a' bcde and 
H(a,b,c,d,e) = abcde + abcde' + a'bcde + a ' bcde(a' + c) areequivalent.We 
first convert G to sum-of-minterms form: 

G abed + a•bcde 
G abcd (e+e' ) + a'bcde 
G abcde + abcde' + a•bcde 
G a•bcde + abcde' + abcde 

We then convc11 H to swu-of-mintcrms form: 

H abcde + abcde' + a'bcde 
H = abcde + abcde' + a'bcde 
H = abcde + abcde' + a'bcde 
H = abcde + abcde' + a'bcde 
H = a'bcde + abcde' + abcde 

+ a ' bcde(a' + c) 
+ a ' bcdea' + a ' bcdec 
+ a ' bcde + a'bcde 



2.6 Representations of Boolean Functions 71 

Clearly, G and H are equivalent. 
Note that checking the equivalence using truth tables would have resulted in two rather large 

truth tables having 32 rows each. Using sum of rninterms was probably more appropriate here . 

• 
Compact sum-of-minterms representation 
A more compact representation of sum-of-minterms form involves listing each minterm 
as a number, with each minterm's number determined from the binary representation of 
its variables' values. For example, a 'bcde corresponds to 01111, or 15; abcde' 

corresponds to 1111 0, or 30; and abcde corresponds to 11111, or 31. Thus, we can say 
that the function H represented by the equation 

H = a •bcde + abcde 1 + abcde 

is the sum of the minterms 15, 30, and 31, which can be compactly written as: 

H = Lm ( 15, 3 o , 31 l 

The summation symbol means the sum, and then the numbers inside the parentheses rep
resent the minterms being s turuned on the right side of the equation. 

Multiple-Output Combinational Circuits 
The examples above showed combinational circuits with only one output, but many cir
cuits have multiple outputs. The simplest approach to handling a mult iple-output circuit is 
to treat each output separately, leading to a separate circuit for each output. Actually, the 
circuits need not be completely separate- they could share common gates. The following 
examples show how to handle multiple-output circuits. 

Example 2.22 Two-output combinational circuit 
Design a circuit to implement the following two equations of three inputs a, b, and c: 

F = ab + c' G = ab + be 
We can design the circuit by simply creating two separate circuits, as in Figure 2.45(a). 

F F 

G 

G 

(b) 

(a) 

Figure 2..45 Multiple-output circuit: (a) treated as two separate circuits, and (b) with gate sharing. 

We might instead notice that the term ab is conunon to both equations. Thus, the two circuits 
can share the gate that computes ab, as shown in Figure 2.45(b). 



72 2 Combinational Logic Design 

Example 2.23 Binary number to seven-segment display converter 

For this example, 
starting .from a 
trwh table is a 
more natural 
choice 1ha11 an 
eq1wrio11. 

Many electronic appliances display a number for us to read. Example appliances include a clock, a 
microwave oven, and a telephone answering machine. A popular and simple device for displaying a 
single digit uwnber is a seve11-segment display, illustrated in Figure 2.46. 

7 ----r'C'.=>o 
b I 

~=i~2:::>0 
d v~ 

abcdefg = 
(a) 

1111110 0110000 

(b) 

1101101 
(e) 

Figure 2.4& Seven-segment ilisplay: (a) connections of inputs to segments, (b) input values for 
numbers O. I, and 2, and (c) a pair of real seven-segment display components. 

The clisplay consists of seven light segments, each of which can be illuminated independently 
of the others. A desired digit can be displayed by setting the signals a, b , c, d, e , f, and g appro· 
priately. So to display tl1e digit 8, all seven signals must be set to 1. To display the digit 1, b and c 
are each set to 1. A few letters can be displayed too, like a lower case "b." 

Commonly, a microprocessor outputs 
a 4-bit binary number intended to be shown 
on a seven-segment display as a decimal 
(base ten) digit. Outputing four rather tl1an 
seven signals conserves scarce pins on tile 
microprocessor. Thus, a useful combina
tional circuit converts four bits w, x , y, and 
z of a binary number to tile seven-segment 
display signals a-g, as in Figure 2.47. 

The desired circuit behavior is easily 
captured as a table, shown in Table 2.4. In 

Converter 

Figure 2.47 Binary to seven-segment converter. 

case tile microprocessor outputs a number greater than 9, no segments are activated. 
We can create a custom logic circuit to implement the converter. Note tllat Table 2.4 is in tile 

form of a trutll table having multiple outputs (a through g). We can treat each output separately, 
designing a circuit for a, then for b, etc. Sum.ming the terms corresponding to d1e l s in the a 
column (as was done in Figure 2.40) leads to the following equation for a : 

a= w•x•y •z • + w•x•yz• + w•x•yz + w•xy•z + w•xyz• 
+ w•xyz + wx 1 y 1 2 1 + wx 'y ' z 

Likewise, sununing: tl1e terms for tile ls in the b column leads to the following equation for b: 

b = w'x'y ' z ' + w'x'y 'z + w'x'yz ' + w'x'yz + w'xy'z' 
+ w1 xyz + wx 1 y 1 2 1 + wx 1 y 1 z 

Equations could similarly be created for tile remaining outputs c ilirough g . Finally, a circuit 
could be created for a having 8 4-input AND gates and an 8-input OR gate, another circuit for b 
having 8 4 -input AND gates and an 8-input OR gate, and so on for c ilirough g. We could, of 
course, have minimized the logic for each equation before creating each of the circuits. 

You may notice that the equations for a and b have several temlS in conunon. For example, the 
term W 'X ' y' Z ' appears in botll equations. So it would make sense for both outputs to share one 



2.7 Combinational logic Design Process 73 

TABLE 2.4 4-bit binary number to seven-segment display truth table. 

w x y z a b c d e f g 

0 0 0 0 1 1 1 1 1 1 0 

0 0 0 1 0 1 1 0 0 0 0 

0 0 1 0 1 1 0 1 1 0 1 

0 0 1 1 1 1 1 1 0 0 1 

0 1 0 0 0 1 1 0 0 1 1 

0 1 0 1 1 0 1 1 0 1 1 

0 1 1 0 1 0 1 1 1 1 1 

0 1 1 1 1 1 1 0 0 0 0 

1 0 0 0 1 1 1 1 1 1 1 

1 0 0 1 1 1 1 1 0 1 1 

1 0 1 0 0 0 0 0 0 0 0 

1 0 1 1 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 

1 1 0 1 0 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 0 0 

1 1 1 1 0 0 0 0 0 0 0 

AND gate generating that tenn. Looking at the trud1 table, we sec that the term w' x' y' z ' is in fact 
needed for outputs a, b, c, e , f, and g, and thus tJ1e one AND gate generating that term could be 
shared by all six of those outputs. Likewise, each of the other required terms is shared by several out
puts, meaning each gate generating each term could be shared among several outputs. 

• 
2.7 COMBINATIONAL LOGIC DESIGN PROCESS 

The previous sections lead to the definition of a two-step process for designing combina
tional logic, summarized in Table 2.5. The first step is to describe the desired behavior of 
the logic, known as capturing the behavior. The behavior might be most naturally cap
tured as a truth table or as equations, depending on particular problem. The second step is 
converting that behavior into a circuit. If the behavior was captured as a truth table, equa
tions are first created from the trnth table. A circuit is then created for each equation. 
These two steps of capturing the behavior and converting to a circuit will appear for more 
complex circuits in subsequent chapters too, though their details will differ. 



74 2 Combinational Logic Design 

TABLE 2.5 Combinational logic design process. 

Step 1: 
Capture 
behavior 

Step 2: 
2A 

Convert 

Step 

Capture 
the function 

Create 
equations 

Description 

Create a truth table or equations, whichever is most natural for the given 
problem, to describe the desired behavior of each output of the 
combinational logic. 

This substep is only necessary if you captured the function using a truth 
table instead of equations. Create an equation for each output by ORing 
all the minterms for t11at output. Simplify the equations if desired. 

to circuit 
Implement as a For each output, create a circuit corresponding to the output 's equation. 

(Sharing gates among multiple outputs is OK optionally.) 
2B 

gate-based cirrnit 

Below are severaJ examples d emonstratin g the combinationaJ logic design process. 
We normally create equations that are in sum-of-products form. D irectly converti ng a 

s um-of-products equation into a circuit results in a column of AND gates (possibly pre
ceded by some NOT gates) that feeds into a single OR gate, which is known as a two
level circuit or two-level logic. 

Example 2.24 Three ls pattern detector 

For this example. 
starting from an 
equation is a more 
nawral choice 
than a t 1111h table. 

This example implements a circuit that can detect whet11er a pattem of at least three adjacent ls 
occur anywhere in an 8-bit input. and that outputs a 1 in that case. The inputs are a , b. c, d, e , f , g. 
and h , and the output is y. So for an input of abcdefgh = 00011101, y should be 1 , s ince there 
are three adjacent ls, on inputs d , e , and f . For an input of 1 0101 011, the output should be o. 
since there are not three adjacent ls anywhere. An input of 11110000 should result in y = 1., since 
having more t11an tllfee adjacent l s should stiU output a 1. Such a circuit is an extremely simple 
example of a general class of circuits known as pattern detectors. Pattern detectors are widely used 
in image processing to detect objects like humans or tanks in a digitized video image, or to detect 
specific spoken words in a digitized audio strcan1, for example. 

Step 1: Capture behavior. We could capture the function as a rather large truth table, listing out 
all 256 combinations of inputs. and entering a 1 for y in each row where at least three ls 
occur. However, a simpler method for capturing this particular function is to create an 
equation that lists the possible occurrences of three l s in a row. One possibility is that of 
abc=lll. Another is that of bcd::::lll. Likewise, if cde=lll, def= l ll, 
efg=lll, or fgh= l ll, we should output a 1. For each possibility, the values of the 
oilier inputs don' t matter. So if abc= l ll. we output a 1, regardless of ilie values of d. 
e , f, g, and h . Thus, an equation describing y is simply: 

y = abc + bed + cde + def + efg + fgh 

Step 2A: Create equations. We skip this substep because an equation was already created above. 

Step 2B: implement as a gate·based circuit. No simplification of the equation is possible. The 
resulting circuit is shown in Figure 2.48. 



2.7 Combinational Logic Design Process 75 

a------1 
b------1 c------t 

figure 2.48 Three ls pattern detector. 

• 

Example 2.25 Number-of-1 s counter 

For this example, 
s tarting from a 
rrwh table is a 
more natural 
choice than an 
equation. 

This example designs a circuit that counts the number of ls present on three inputs a, b, c, and out
puts that number in binary using two outputs, y and z. An input of 110 has two ls, so the circuit 
should output 10. The nwnber of l s on three inputs can range from 0 to 3, so a 2-bit output is suffi
cient, since 2 bits can represent 0 to 3. A number-of-ls counter circuit is useful in various s ituations, 
such as detecting the density of electronic particles hitting a collection of sensors by counting how 

many sensors are activated. 

Step 1: Capture behavior. Capturing the behavior for this example is most naturally achieved 
using a truth table. We List all the possible input combinations, and the desired output 
number, as in Table 2.6. 

TABLE 2.6 Truth table for number-of-1s counter. 

Inputs (#of l s) Outputs 

a b c y z 

0 0 0 (0) 0 0 

0 0 1 (1) 0 1 

0 1 0 (1) 0 1 

0 1 1 (2) 1 0 

1 0 0 (1) 0 1 

1 0 1 (2) 1 0 

1 1 0 (2) 1 0 

1 1 1 I ( 3) 1 1 



76 2 Combinational Logic Design 

Step 2A: C reate equations. We create equations (as was done in Figure 2.40) for each output as 
follows : 

y a ' bc + ab'c + abc' + abc 
z = a 1b'c + a'bc 1 + ab'c' + abc 

We can simplify the first equation algebraically: 

y = a'bc + ab'c + ab (c' + c ) = a ' bc + ab'c + ab 

Step 2B: Implement as a gate-based circuit. We then create the final circuits for the two outputs, 
as shown in Figure 2.49. 

a 
b 
c 

a 
b 
c 

a 

b 

a 
b 
c 

a 
b 
c 

a 
b 
c 

a 
b 
c 

Figure 2.49 Numbcr-of-1.s counter gate-based circuit. 

Simplifying Circuit Notations 

• 

Some new simplifying notations were used in the circuits in the previous example. One 
simplifying notation is to list the inputs multiple times, as in Figure 2.50(a). Such listing 
reduces tines in a drawing crossing one another. An input listed multiple times is assumed 
to have been branched from the same input. 

a ----1 
b --t.+-0 c--- ~v- b-tE[)- · ~D-• 

(a) :D (b) • E{J 
figure 2.50 Simplifying circuit notations: (a) listing inputs multiple times to reduce drawing of 
crossing wires, (b) using inversion bubbles or complemented input to reduce NOT gates drawn. 

Anoth er simplifying notation is the use of an inversion bubble at the input of a gate, 
rather than the use of an inverter, as in Figure 2.50(b). An i11versio11 bubble is a small 
circle drawn at the input of a gate as shown. indicating that the signal is inverted. An 
external input that has inversion bubbles at rmmy gates is assumed to feed through a 
single inverter that is then branched out to those gates. An alternative simplification is to 
simply list the input as complemented, like b' shown in the figure. 



2.7 Combinational Logic Design Process 77 

Example 216 12-button keypad to 4-bit code converter 

For this example, 
siarti11g from 
eq11atio11s is a 
more natural 
cho ice than a truth 
wble, although we 
used an i11formal 
table ( 110 1 a tntth 
table) to help us 
determine the 
eq11atio11s. 

You've probably seen 12-button keypads in 
many different places, like on a telephone or at 
an ATM machine as shown in Figure 2.51. The 
first row has buttons l , 2, and 3, the second row 
has 4, 5, and 6, the third row has 7, 8 , and 9, and 
the last row has *, 0, and #. The outputs of such 
a keypad consist of seven signals--one for each 
of the four rows (rl, r2 , r3, and r4), and one 

for each of the three cohmrns (cl, c2 , and c3). 
Pushing a particular button causes exactly two 
outputs to become 1, corresponding to the row 
and column of that button. So pushing button 
''1'' causes rl "' l and c l "'l, while pushing but
ton"#" causes r4=1 and c3=L 

A useful circuit converts the seven signals 
from the keypad into a 4-bit output wxyz that 
indicates which button is pressed, as in Figure 

Dllll 
Dllll 
111111 
111111 

c1 c2 c3 

Converte r 
r3 

r4 

figure 2.51 Converter for 12-button keypad. 

w 
x 
y 
z 

2.51: d1e output may be connected to a microprocessor or od1er device. Buttons "O'' to "9" should 
be encoded as 0000 through 100 1 (0 through 9 in binary), respectively. Button"*" should be 
encoded as 1 010, and # as 1011. 1111 will mean that no button is pressed. Assume for now that 
only one button can ever be pressed at a given time. 

Step 1: Capture behavior. We could capture the behavjor for w, x, y, and z using a truth 
table, with the seven inputs on the left side of the table, and the four outputs on the right side, but 
that table would have 27 = 128 rows, and most of those rows would correspond merely to multiple 
buttons being pressed. Let 's try instead to captw·e the functions using equations. The informal table 
in Table 2.7 might help us get started. 

TABLE 2.7 Informal table for the 12-button keypad to 4-bit 
4· bit code outputs code converter. 

Button Signals 

1 rl cl 

2 rl c2 

3 rl c3 

4 r2 cl 

5 r2 c2 

6 r2 c3 

7 r3 cl 

Button Signals 

4-hit code outputs 
w x y 

8 r3 c2 1 0 0 
w x y z 

9 r3 c3 1 0 0 
0 0 0 1 

* 0 0 1 0 
r4 cl 1 0 1 

0 0 1 1 
0 r4 c2 0 0 0 

0 1 0 0 
# r4 c3 1 0 1 

0 1 0 1 
(none) 1 1 1 

0 1 1 0 

0 1 1 1 

Guided by this table, we can create equations for each of the four outputs, as follows: 

w r3c2 + r3c3 + r4cl + r4c3 + rl'r2'r3'r4'cl ' c2'c3' 

x : r2cl + r2c2 + r2c3 + r3cl + r l' r2'r3'r4'cl ' c2'c3' 

z 

0 

1 

0 

0 

1 

1 



78 2 Combinational Logic Design 

y r l c2 + rlc3 + r 2c3 + r3cl + r4cl + r4c3 + 
r l 'r2'r3'r4'cl'c2'c3' 

z = r l cl + rlc3 + r 2c2 + r3cl + r3c3 + r4c3 + 

r 1 1 r2 1 r3'r4 1 cl 1 c2 1 c3' 

Step 2B: Implement as gate-based circuit (We skip substep 2A, as we already created equations). 
We can now create a circuit for each output. Obviously, the las t !enn of each equation could be 
shared by all four outputs. Other terms could be shared too (like r2c3). 

Note that this circuit would not work well if multiple buttm1s can be pressed simultaneously. 
Our circuit will output either a valid or invalid code in that si tuation, dependin g on which buttons 
were pressed. A preferable circuit would treat multiple buttons being pressed as no button being 
pressed. We leave the design of that circuit as an ex:ercise. 

Circuits similar to what we designed above exist in computer keyboards, except that there arc 
a Jot more rows and columns. 

..,_ SLOJJ DOWN! THE QWERTY KEYBOARD 

Inside a standard computer keyboard is a small micro
processor and a ROM. The microprocessor detects 
which key is being pressed, looks up t11e 8-bit code 
for that key (much like the 12-button keypad in 
Example 2.26) from tl1e ROM, and sends that code to 
the computer. There's an interesting story behind tlle 
way the keys are arranged jn a standard PC keyboard, 
which is known as a QWERTY keyb-Oard because 
those are the keys that begin the top left row of letters. 
The QWERTY arrangement was made in the era of 
type .. vriters (shown in the picture below), which, in 

Keys connected to anns. 

case you haven't 
seen one, had each 
key connected to 
an arm tl1at would 
swing up and press 
an ink ribbon 
against paper. 

Example 2.27 Sprinkler valve controller 

An annoying problem 
with typewriters was 
that arms would often 
get januned side-by
side up near the paper 
if you typed too 
fast- like too many 
people gettingjarnmed 

Arms stllck! side-by-side while 
they all try to 
simultaneously walk 

through a doorway. So typewriter keys were arranged 
in the QWERTY arrangement to slow down typing by 
separating common letters, since slower typing reduced 
the occurrences of jammed keys. When PCs were 
invented, the QWERTY arrangement was the natural 
choice for PC keyboards, as people were accustomed 
to that arrangement. Some say the differently-arranged 
Dvorak keyboard enables faster typing. but that type of 
keyboard isn' t very common, as people are just too 
accustomed to the QWERTY keyboard. 

• 

Automatic lawn sprinkler systems use a digital system to control the opening and closing of water 
valves. A sprinkler system usually supports several different zones, such as the backyard, left side yard, 
right side yard, front yard, etc. Only one zone's valve can be opened at a time in order to maintain 
enough water pressure in the sprinklers in that zone.Suppose a sprinkler system supports up to 8 zones. 
Typically, a sprinkler system is controlled by a small, inexpensiYe microprocessor executing a program 
that opens each valve only at specific times of the day and for specific durations. Suppose the micro
processor only has 4 output pins available to control the valves, not & outputs as req uired for the 8 zones. 
We can instead program the microprocessor to use I pin to indicate whether a valve should be opened, 



For this example. 
starti11g from 
l'quatio11s is a 
more natural 
choice than a 
trlllh table. 

2.7 Combinational Logic Design Process 79 

and use the 3 other pins to output the active zone (0, 1, ... , 7) in binary. Thus, we need to design a com
binarional circuir having 4 inpurs, e (Che enabler) and a, b, c (the binary vaJue of rhe acrive zone), 
and haviJlg 8 outputs d 7, d6, .. ., dO (the valve controls), as shown in Figure 2.52. When e=l, the circuit 
should decode the 3-bit binary input by setting exactly one output to 1. 

Step 1: Capture behavior. Valve 0 should be active when abc=OOO and e=l. So the equation 
for dO is: 

do = a'b'c 'e 

Likewise, valve 1 should be active when abc=OO 1 and e=l , so the equation for dl is: 

dl = a'b'ce 

dO 
a d1 

b d2 
Micro- d3 

processor c 
d4 
d5t---il------

decoder d6 t---11-------
........... ~e d?i---11-----... 

Figure 2.52 Sprinkler valve controller block diagram. 

The equations for the rema11ung outputs can be 
determined similarly: 

d2 a 1 bc 1 e 
d3 a'bce 

d4 ab'c ' e 

d5 ab'ce 

d6 abc'e 

d7 = abce 

Step 2A: Create equations. Equations were 
already created. 

Step 2B: Implement as a gate· based circuit. The 
circuit implementing the equations is 
shown in Figure 2.53. The circuit is actu
ally a commonly used component known 
as a decoder with enable. Decoders as a 
building block will be introduced in an 
upcoming section. 

a-L=::::;;:::d=~i 
b--1--+-a 
C--+--<-+-<e1 dO 

d1 

d2 

d3 

d4 

dS 

d6 

d7 

Figure 2.53 Sprinkler valve controller circuit 
(actually a 3x8 decoder with enable). 

• 



80 2 Combinational Logic Design 

2.8 MORE GATES 

NANO &NOR 

NANO 

D-
NOR 

=f>-

Designers use several other types of gates beyond just AND, OR, and NOT. Those gates 
include NANO, NOR, XOR, and XNOR. 

A NAND gate (sh011 for "not AND") has the opposite output of an AND gate, outputting a 
o only when all inputs are 1 , and outputting a 1 otherwise (meaning at least one input is O). 
A NANO gate has the same behavior as an AND gate followed by a NOT gate. Figure 
2.54(a) illustrates a NANO gate. 

A NOR gate ("not OR") has the opposite output as an OR gate, outputting a o if at 
least one input is 1, and outputting 1 if all inputs are o. A NOR gate has the same 
behavior as an OR gate followed by a NOT gate. Figure 2 .54(b) shows a NOR gate. 

Whereas Boolean algebra has the symbols "*" and "+" for the AND and OR opera
tions, no such conunonly-used operator symbols exist for NANO and NOR. Instead, the 
NANO operation on variables a and b would be written as (a*b) ' or just (ab ) ' , and 
the NOR operation would be written as (a + b} '. 

NANO NOR XOR XNOR 

:D-F ~v-F ~D- ~I>-
x y F x y F x y F x y F 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 

(c) (d) 

x4 P--v x4 
F y-1 

Figure 2.54 Additional gates: (a) 
NAND, (b) NOR, (c) XOR, (d) 

F XNOR. 

x-i ~y 

Section 2.4 warned that the shown CMOS transistor implementations of AND and 
OR gates were not realistic. The reason is because pMOS transistors don't conduct Os 
very well, but they conduct ls just fine. Likewise, nMOS transistors don't conduct ls 
well, but they conduct Os just fine. The reasons for these asymmetries are beyond this 
book's scope. The implications are that the AND and OR gates in Figure 2.8 are not fea
sible, as they rely 0 11 pMOS transistors to conduct Os (but pMOS conducts Os poorly) and 
nMOS transistors to conduct ls (but nMOS conducts ls poorly). However, if we switch 
the locations of power and ground in the AND and OR circuits of Figure 2.8, the results 
are the NANO and NOR gate circuits shown in Figure 2.54(a) and Figure 2.54(b). 



An AND gate can still be implemented in 

CMOS, by appending a NOT gate at the output 
of a NAND gate (NAND followed by NOT 
computes AND), as in Figure 2.55. Likewise, 
an OR gate is implemented by appending a 

NOT gate at the output of a NOR gate. Those 
gates are obviously slower than NAND and 
NOR gates due to the extra NOT gate at the 
output. Fortunately, straightforward methods 
can convert any AND/OR/NOT circuit to a 
NAND-only circuit, or to a NOR-only circuit. 
Section 7.2 describes such methods. 

x-4 

2.8 More Gates 81 

~D-F 
+ 

f:-y 
F 

Example 2 .. 28 Aircraft lavatory sign using a NANO gate Figure 2.55 AND gate in CMOS. 

XOR&XNOR 

XOR 

XNOR 

~I>-

Example 2.15 created a lavatory available sign using 
the following equation: 

s = (abc ) ' 

Noticing that the term on the right side corresponds to a 
NAND, the circuit can be implemented using a single NAND 
gate, as shown in Figure 2.56. 

a --1-----1 
b --t-----1 c----

Circuit 

Figure 2.56 Circuit using NAND. 

• 

A 2-input XOR gate, short for "exclusive or" and pronounced as "ex or," outputs a 
1 if exactly one of the two inputs has a value of 1. So if such a gate has inputs a 
and b, then the output F will be 1 if a = 1 and b =O, or if b=l and a =O. A 2-input 

XOR gate is equivalent to tl1e function F = ab ' + a' b. In other words, one or 
the other input is 1 , but not both. Figure 2.54(c) illustrates an XOR gate (for sim
plicity, we omit the transistor-level implementation of an XOR gate). For XOR 
gates with three or more inputs, the output is 1 only if the number of input ls is 

odd. 
An XNOR gate, short for "exclusive nor" and pronounced "ex nor," is simply 

the opposite of XOR. A 2-input XNOR is equivalent to F = a' b' + ab. In other 
words, F will be 1 if both input values are Os, or if both input values are ls. Figure 

2.54(d) illustrates an XNOR gate, omitting the transistor-level implementation for 
simplicity. For XNOR gates with 3 or more inputs, the output is 1 only if the 
number of input l s is even. 

The XOR operation applied to variables a and b is written as a e b ; three vari

ables would be a~ be c . There is no commonly used symbol for XNOR; instead, 
XNOR would be written as (a e b )' 



82 2 Combinational Logic Design 

Interesting Uses of these Additional Gates 

Figure 2.57 Detecting 
binary 0 with NOR. 

Detecting Binar y 0 Using NOR 
A NOR gate can detect the situation of an n-bit binary number being equal to 0, because 
NOR outputs a 1 only when all n inputs are 0. For example, suppose a byte (8-bit) input 
to your system is counting down from 99 to 0, and when the byte reaches 0, you wish to 
sound an alarm. You can detect the byte being equal to 0 by simply connecting the 8 bits 
of the byte into an 8-input NOR gate. Figure 2.57 shows such detection for a 3-bit binary 
number. 

Detecting Equality Using XNOR 
XNOR gates can be used to compare two n-bit data items 
for equality, since a 2-input XNOR outputs a 1 only when 
the inputs are both o or are both 1. For example, suppose a 
byte input A (a7a6a5 ... a o) to yam system is counting 
down from 99, and you want to sound an alarm when A 

bas the same value as a second byte input B 

(b7b6b5 .. . bo). You can detect such equality using eight 2-
input XNOR gates, by connecting ao and bO to the first 
XNOR gate, al and bl to the second XNOR gate, etc., as 
in Figure 2.58. Each XNOR gate indicates whether the bits 
in that particular position are equal. ANDing all the 
XNOR outputs indicates whether every position is equal. 

Gener~1ting and Detecting Parity Using XOR 

figure 2.58 Detecting equality 
with 2-input XNORs. 

An XOR gate can be used to generate a parity bit for a set of data bits (see Example 
2.19). XORing the data bits results in a 1 if there is an odd nwnber of ls in the data, so 
XOR computes the correct parity bit for even parity, because the XOR's output 1 would 
make the total munber of ls even. Notice that the truth table for generating an even parity 
bit in Table 2.3 does in fact represent a 3-bit XOR. Likewise, an XNOR gate can be used 
to generate an odd parity bit. 

XOR can also be used to detect proper parity. XORing the incoming data bits along 
with the incoming parity bit will yield 1 if the number of ls is odd. Thus, for even parity, 
XOR can be used to jndicate that an error has occurred, s ince the number of ls is sup
posed to be even. XNOR can be used ro detect an error when odd parity is used. 

Completeness of NANO and of NOR 

figure 2.59 AND and 
NOT gates can form OR. 

It should be fairly obvious that if you have AND gates, OR gates, and NOT gates, you 
can implement any Boolean function. This is because a Boolean function can be repre
sented as a sum of products, which consists only of AND, OR, and NOT operations. The 
set of AND, OR, and NOT gates are thus complete with respect to implementing Boolean 
functions. 

What might be slightly less obvious is that if you had only AND and NOT gates, you 
could srill implement any Boolean function. Wby? Here's a simple explanation- to 
obtain an OR, just put NOT gates at the inputs and output of an AND, as in Figure 2.59 
(showing NOT gates as inversion bubbles). The resulting output computes OR, because F 

= (a'b' )' = a'' + b'' (by DeMorgan's Law) = a + b. 



2.8 More Gates 83 

Likewise, if you had only OR and NOT gates, you could implement any .Boolean 
function. To obtain an AND, you could simply invert the inputs and output of an OR, 
since F = (a' +b ' ) ' = a' '*b ' ' = ab. 

It follows that if you only had NAND gates available, you could still implement any 
Boolea11 function. Why? We just saw above that we can implement any Boolean function 
using just NOT and AND gates. A NOT gate is a I-input NAND gate. An AND gate can 
be implemented as a NAND gate followed by a I-input NAND. Thus, we can implement 
any Boolean function using just NAND. ANAND gate is thus known as a universal gate. 

Likewise, if you had only NOR gates, you could implement any Boolean fw1ction , 
because a NOT gate is a 1-input NOR gate, and an OR gate can be implemented as a 
NOR gate followed by a I-input NOR. Since NOT and OR can implement any .Boolean 
function, so can just NOR. A NOR gate is thus also known as a universal gate. 

Number of Possible Logic Gates 

Having seen several different types of 
basic 2-input logic gates (AND, OR, 
NANO, NOR, XOR, XNOR), one might 
wonder how many possible 2-input logic 
gates exist. That question is the same as 
asking how many Boolean functions 
exist for two variables. To answer the 
question, first note that a two-variable 
function 's truth table will have 22 = 4 
rows. For each row, the function could 
output one of two possible values (O or 

a b 
0 0 
0 1 

1 0 

F 
0or1 
0 or 1 

0Or1 
O or 1 

2 choices I\.) 

• 2 choices I\.) 

2 choices I\.) 

2 choices 
. 

f\.) 

24 = 16 
possible functions 

figure 2.60 Counting the munber of possible 
Boolean functions of two variables. 

1). Thus, as illustrated in Figure 2.60, there are 2 * 2 * 2 * 2 = 24 = 16 possible functions. 
Figure 2.61 lists all 16 such functions. The figw-e labels the 6 familiar functions 

(AND, OR, NANO, NOR, XOR XNOR). Some of the other functions are o, a , b, a' , 
b', and 1. The remaining functions are uncommon functions, but each could be useful 
for some application. Thus, logic gates may not be built to represent those functions, but 
instead those functions, when needed, might be built as a circuit of the basic logic gates. 

a b fO f1 i2 f3 f4 15 16 f7 f8 f9 110 f11 112 113 114 f15 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 

0 1 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 0 1 0 0 1 0 0 1 0 0 1 

1 0 1 0 0 1 0 0 1 {) 0 1 0 

0 .D (!! .D .D .D .D .D :i:l "ct! .D 

0 cr. cr. cr. er. 0 
z 0 0 0 ~ z 
<l >< IQ z <l 
<ti <ti <ti >< z 

<ti <ti 

Figure 2.61 The16 possible Boolean functions of two variables. 

A more general question of interes t is how many Boolean functions exist for a 
Boolean function of N variables. This number can be determined by first noting that an 



84 2 Combinational Logic Design 

N-variable function will have 2N rows in its truth table. Then, note that each 

row can output one of two possible values. Thus, the number of possible functions will be 
2 * 2 * 2 *- 2N times. Therefore, the total number of functions is: 

So there are: 22
l = 28 = 256 possible Boolean functions of 3 variables, and 

22
' :: 2 16 

:: 65536 possible functions of 4 variables. 

2.9 DECODERS AND MUXES 

Decoders 

Two additional components, a decoder and a multiplexer, are also conunonly used as 
digital circuit building blocks, though they themselves can be built from logic gates. 

A decoder is a higher-level building block commonly used in digital circuits. A decoder 
decodes an input n-bit binary number by setting exactly one of the decoder's 2" outputs to 1. 

For example, a 2-input decoder, illustrated in Figure 2.62(a), would have 22 = 4 outputs, d3 , 
d2 , dl, do. If the two inputs ili o are oo , do would be 1 and the remaining outputs would 
be o. If iliO= Ol, d l would be 1. If i liO=lO, d 2 would be l . lf iliO=ll, d3 would be 
1. One and only one output of a decoder will ever be 1 at a given time, corresponding to the 
particular current value of the inputs, as shown in Figure 2.62(a). 

The internal design of a decoder is straightforward. Consider a 2x4 decoder. Each 
output do, dl, d2 , and d3 is a distinct function. do should be 1 only when il= O and 
i 0 =0, so dO = i l ' iO' . Likewise, dl=il ' i O, d2 =ili0 ' , and d3 =ili0. Thus, we 
build the decoder with one AND gate for each output, connecting the true or comple
mented values of il and iO to each gate, as shown in Figure 2.62. 

dO 

dO 1 dO 0 dO 0 dO 0 d1 

0 iO d1 0 iO d1 0 iO d1 0 iO d1 0 

0 i1 d2 0 0 i1 d2 0 i1 d2 i1 d2 0 d2 

d3 0 d3 0 d3 0 d3 1 
d3 

(a) 

i1 iO 
(b) 

Figure 2.62 2x4 decoder: (a) outputs for possible input combinations, (b) internal design. 



2.9 Decoders and Muxes 85 

The internal design of a 3x8 decoder is similar: dO= i2 'i 1' i 0', dl=i2 ' il ' i 0, 

etc. 
A decoder often comes with an extra input 

called enable. When enable is 1 , the decoder 
acts normally. But when enable is o, the decoder 

outputs all Os- no output is a 1. The enable is 
useful when sometimes you don ' t want to acti
vate any of the outputs. Without an enable, one 

output of the decoder must be a 1, because the 
decoder has an output for every possible value 
of the d ecoder 's n-bit input. We earlier created 

and used a decoder with enable in Figure 2.53. 

dO 0 

io d1 0 

i1 d2 0 

e d3 

1 
(a) 

dO 0 

io d1 

i1 d2 

e d3 

0 
(b) 

0 

0 

0 

Figure 2.63 Decoder with enable: (a) e "'l: 
A block diagram and illustrated behavior of a nonnal decoding, (b) e=O: all outputs o. 
decoder with enable appear in Figure 2.63. 

When designing a particular system, we 
check whether part (or all) of the system's functionality could be carried out by a decoder. 
Using a decoder reduces the amowlt of required combinational logic design, as you '11 see in 
Example 2.30. 

Example 2.29 Basic questions about decoders 

1. What would be a 2x4 decoder's output values when the inputs are 00? Answer: d0=1, dl=O, 
d2 ,,,0, d3 ,,,0. 

2. What would be a 2x4 decoder's output values when the inputs are 11? Answer: dO=O. dl=O, 
d2=0, d3=1. 

3. What input values of a 2x4 decoder cause more than one of the decoder's outputs to be 1 at d1e 
same time? Answer: No such input values exist. Only one of a decoder's outputs can be l at a 
given time. 

4. What would the input values of a decoder be if the output values are d O::::O, d l ::::l, d2::::0, d3::::0? 
Answer: The input values must be i l=O, iO=l. 

5. What would the input values of a decoder be if the output values are d Q,,, l, d l ,,,l, d2,,,0, d3,,,Q? 
Answer: This question is not valid. A decoder only has one output equal to I at any time. 

6. How many outputs would a 5-input decoder have? Answer: 25
, or 32. 

7. A 2-input decoder with enable having inputs il=O , iO=l , and e=O, would have what output 
values? Answer: All outputs would be 0. 

• 
Example 2.30 New Year's Eve countdown display 

A New Year's Eve countdown display could make use of a decoder. The display may have 60 light 
bulbs going up a tall pole, as in Figw·e 2.64. We want one light per second to illuminate (with d1e 
previous one turning off), starting from bulb 59 at the bottom of the pole. and ending with bulb 0 at 
tbe top. We could use a microprocessor to count down from 59 to 0, but the microprocessor probably 
doesn't have 60 output pins that w~ could use to control each light. Our microprocessor program 
could instead output the numbers 59. 58, .... 2, l , 0 in binary on a 6-bit output port (dms outputting 
111011, 111 010, .. ., 000010, 000001, 000000). Assume each light bulb has a signal that illu-



86 2 Combinational logic Design 

minates the bulb when set to 1. Thus, the problem is to design a circuit that, for each binary number 
that could be input, illuminates the appropriate light bulb. 

Designing a circuit using gates could be done, but would require a design for each of the 60 
bulb signals. Instead, we could connect those six bits coming from the microprocessor to a 6-input. 
64 (26)-output decoder, with decoder output d59 lighting bulb 59, d58 lighting bulb 58, etc. 

We'd probably want an enable on our decoder in this example, since all the lights should be off 
until we started the countdown. The microprocessor would initially set enable to 0 so that no lights 
would be illuminated. When the 60 second countdown begins, the microprocessor would set enable 
lo I, and then output 59, then 58 (I second later), then 57, etc. The final system would look like that 
in Figure 2.64. 

Figure 2.64 Using a 6x64 decoder to !5 
VI 

connect a microprocessor and a column VI 
Q) 

of lights for a New Year's Eve display. 8 .... 
The microprocessor sets e = 1 when the 8-
last minute countdown begins, and then .il 

:::? 
counts down from 59 to 0 in binary on 
the pins i 5 .. i 0. Note that the 
microprocessor should never output 60, 
61, 62, or 63 on i5 .. i 0, and thus those 
outputs of the decoder go unused. 

iO dO 
i1 d1 
i2 d2 
i3 d3 
i4 
i5 ••• 

d58 
e d59 

d60 
d61 

6x64 d62 
dcd d63 

-+--+- Happy 
O New Year! 

1--~~~~~4--<1 2 

3 

58 
59 

Notice that we implemented this system without having to design any gate-level combinational 
logic- we merely used a decoder and connected it to the appropriate inputs and outputs. 

• 

Whenever you have outputs s uch that exactly one of those outputs should be set to 1 

based on the value of inputs representing a binary number, think about using a decoder. 

Multiplexers (Muxes) 

A multiplexer ("mux" for short) is another higher-level building b lock in digital circu its. 
An Mxl multiplexer has M data inputs and 1 output, and allows only o ne input to pass 
through to that output. A set of additional inputs, known as select inputs, determines 
which input to pass through. M ultiplexers are sometimes called selectors because they 
select one input to pass through to the output. 

A mux is like a railyard switch that connects multiple input tracks to a single o utput 
track, as shown in Figure 2.65. The switch 's control lever causes the connection of the 
appropriate input track co the outpuc track. Whether a train appears at the output depends 
on whether a train exists on the presently selected input track. For a mux, the switch's 
control is not a lever, but rather select inputs, which represent the desired connection in 
binary. Rather than a train appearing or not appearing at the output, a mux outputs a 1 or 
a O depending on whether the connected input has a 1 or a 0. 



2.9 Decoders and Muxes 87 

Figure 2.65 A multiplexer is like a railyard switch, determining which input track connects to the 
single output track, according to the switch's control lever. 

A 2-input multiplexer, known as a 2x 1 multiplexer, has two data inputs i 1 and i 0, 
one select input so, and one data output d, as shown in Figure 2 .66(a). As shown in 
Figure 2.66(b), if sO=O, io's value passes through; if sO=l, il's value passes through. 

The internal design of a 2xl multiplexer is shown in Figure 2.66(c). When sO=O, 
the top AND gate outputs l*i O=i O, and the bottom AND gate outputs O*il=O. Thus , 
the OR gate outputs iO+O =iO. So i O passes through as desired. Likewise, when 
sO=l, the bo ttom gate passes il while the top gate outputs o, resulting in the OR gate 
passing il. 

A 4-input multiplexer, known as a 4xl multiplexer, has fow· data inputs i3 , i 2, il, 
and i O, two select inputs sl and so , and one data output d . A mux always has just one data 
output, no matter how many inputs. A 4xl mux block diagram is shown in Figure 2.67(a). 

2x 1 2x1 2x1 
iO 

iO i1 
i1 

d 

so so so 
0 1 

(a) (b) so (c) 

Figure 2.66 2xl multiplexer: (a) block symbol, (b) connections for sO=O, and sO=l. and (c) 
internal design. 



88 2 Combinational Logic Design 

A common 
misconception is 
that a multiplexor 
is a decoder in 
reverse. It is not. 

iO 
4x1 

iO i1 
i1 

i2 
d 

i2 

i3 

s1 so i3 

s1 so 
(a) (b) 

figure 2.67 4x l multiplexer: (a) block symbol and (b) internal design. 

The internal design of a 4x1 multiplexer is shown in Figure 2.67(b). When sls0 ;;; 00, 
the top AND gate outputs iO*l*l ;;; i O, the next AND gate outputs il.*O*l ;;; O, the next 
gate outpu ts i2*1*0 = 0, and the bottom gate outputs i3*0*0 =0. The OR gate outputs 
iO +O+O+O=iO. Thus , i O passes through, as desired. L ikewise, wh.en slsO=Ol, the 
second AND gate passes il , while the remaining AND gates all output o. When 
sls0=1 0, the third AND gate passes i2, and the other AND gates output o. When 
sls0=11., the bottom AND gate passes i'.3, and the other AND gates output 0. For any 
value on slsO, only 1 AND gate will have two ls for its select inputs and will thus pass 
its data input; the other AND gates will have at least one 0 for its select inputs and will 
thus output o. 

An 8x1 multiplexer would have 8 data inputs ( i 7 ... iO}, 3 select inputs (s2, sl, and 
so), and one data output. More generally, an Mx l multiplexer has M data inputs, log2(M) 
select inputs, and one data output. Remember, a multiplexer always has just one output. 

Example 2.31 Basic questions about multiplexers 

Assume a 4x I multiplexer's data inputs have the following present values: iO= l. il= l , i2=0, and 
i3 =0. What would be the value on the multiplexer's output d for the following select input values? 

1. slsO = 01. Answer: Because s l sO=O l passes input il through to d, then d would have the 
value of il, which presently is 1. 

2. slsO = 11. Answer: That configuration of select line input values passes i3 through, so d 
would have the value of i 3, which presently is 0. 

3. How many select inputs must be present on a 16x I multiplexer? Answer: Four select inputs 
would be needed to uniquely identify which of the 16 i11puts to pass through to the output since 
log2(16)=4. 

4. How many select lines are there on a 4x2 multiplexer? Answer: This question is not valid- there 
is no such thing as a 4x2 multiplexer. A multiplexer has exactly one output. 

5. How many data inputs are there oo a multiplexer having five select inputs? Answer: Five select 
inputs can uniquely identify one of 25=32 inputs io pass through to the output. 

• 



2.9 Decoders and Muxes 89 

Example 2.32 Mayor's vote display using a multiplexer 

Consider a small town with a very unpopular mayor. Mayor's switches 

m 
IJl 
0 
a. 
e 

Cl.. 

4x1 

iO 

i1 

i2 
d 

i3 

s1 so 

on/off 

Green/ 
Red 
LED 

Manager's 
switches 

During every town meeting, the city manager presents 
four proposals to the mayor, who then indicates his 
vote on the proposal (approve or deny). Very consis
tently, right after the mayor indicates his vote, die 
town's citizens boo and shout profanities a t die 
mayor- no matter which way he votes. Having had 
enough of this abuse, the mayor sets up a simple digi

tal system (the mayor happens to have taken a course 
in digital design), shown in Figllfe 2.68. He provides 
himself witll four switches that can be positioned up or 
down, outputting 1 or 0, respectively. When tile time 

comes during the meeting for him to vote on d1e first 
proposal, he places the fust switch e ither in the up 

Figure 2.68 Mayor's vote display system (accept) or down (deny) position- but nobody else 
implemented using a 4x 1 mux. can see tlle position of tlle switch. When the time 

comes to vote on the second proposal, he votes on tile second proposal b y placing the second 
switch up or down. And so on. When he has finished casting all his votes, be leaves tile meeting 
and heads home. With the mayor gone, the city manager powers up a large green/red light. When 
the input to the light is 0, the light lights up red. When the input is 1, the light lights up green. The 
city manager controls two "select" switches that can route any of the mayor's switch outputs to tlle 
light, and so the manager steps through each configuration of the switches, s tarting with configura
tion 00 (and calling out "The mayor's vote on tbis proposal is ... "), then 01, then 1 0 , and finally 
11, caus ing the light to light either green or red for each configuration depending on the positions 
of the mayor's switches. The system can easily be implemented using a 4x I multiplexer, as shown 
in Figure 2.68. 

N-bit Mxl 
Multiplexer 

Muxes are often used 
to selectively pass 
through not just 
single bits, but N-bit 
data items. For 
example, one set of 
inputs A may consist 
of four bits a3, a2, 

a3 
b3 

a2 
b2 

a1 
b1 

ao 
bO 

iO 2x1 

i1 so 
d 

iO 2x1 

i1 so 
d 

iO 2x1 

i1 so 
d 

iO 2x1 
d 

A 
4 

IO 
4 

B 11 

4-bit 
2x 1 

4 
D c 

so 

so 

• 
Simplifying 
notation: 
4 
~c 

for: !
is short 

--c3 

--c2 

--c1 
i1 so 

al, a o, and another so-----__. - CO 
set of inputs B may 
also consist of four 
bits b3, b2, bl, bO. 

We want to multiplex 
those inputs to a four
bit output c, con-

(a) (b) (c) 

figure 2.69 4-bit 2x 1 mux: (a) intemal design using four 2x I muxes 
for selecting among 4-bit data items A or B, and (b) block diagram 
of a 4-bit 2x l mux component. (c) The block diagram uses a 
common simpHfying notation, using one thick wire with a slanted 
line a.nd the number 4 to represent 4 single wires. 



90 2 Combinational Logic Design 

sisting of c3, c2, cl., cO. Figure 2.69(a) shows how to accomplish such multiplexing 

using four 2x l muxes. 
Because muxing data is so common, ano ther common building block is that of an 

N-bit-wide Mxl multiplexer. So in our example, we would use a 4-bit 2xl mux. Don't get 
confused, though- an N-bit Mxl multiplexer is really just the same as N separate Mxl 
multiplexers, with all those muxes sharing the same select inputs. Figure 2.69(b) provides 
the symbol for a 4-bit 2x 1 mux. 

Example 2.33 Multiplexed automobile above-mirror display 

Some cars come with a d isplay above the 
rearview mirror, as shown in Figure 2.70. The 
car's driver can press a button to select among 
displaying the outside temperature, the average 
miles per gallon of the car, the instantaneous 
miles per gallon, and the approximate miles 
remaining until the car rw1s out of gasoline. 
Assmne the car's central computer sends the 
data to the display as four 8-bit binary nwnbcrs, 
T (the temperature), A (average mpg), I (instan
taneous mpg), and M (miles remainins) . T con
sists of 8 bit<>: t 7, t6, t s, t4, t3, t2, t l, to. 

Likewise for A, I. and M. Assume the display Figure 2JO Above-mirror display. 
system has two additional inputs X and y, which 
always change according to the following sequence-00, 01, 10, 11- whenever the button is 
pressed (we'll see in a la ter chapter how to create such a sequence) . When xy=OO, we want to dis
play T. When XY=Ol, we want to display A. When XY=l O, we want to display I, and when X:Y=ll, 

we want to display M. Assume the outputs D go to a display that knows how to convert the 8-bit 
binary number on D to a human-readable displayed number like that in Figure 2.70. 

We can design the display system using eight 4x I multiplexers. A simpler representation of 
that same design uses an 8-bit 4x l multiplexer, as shown in Figure 2.71. 

8 8-bit 
~--r--i10 4x 1 

8 o---

button 

Figure 2.71 Above-mirror display using an 8-bit 4x I mux. 

Notice how many wires must be run from the car's central computer, which may be under the 
hood. to the above-mirror display- 8*4=32 wires. That's a lot of wires. We'll sec in a later chapter 
how to reduce the nwnber of wires. 



2.10 Additional Considerations 91 

Notice in the previous example how simple a design can be when we can utilize 
higher-level buildi11g blocks. If we had to use regular 4x 1 muxes, we would have 8 of 
them, and lots of wires drawn. If we had to use gates, we would have 40 of them. Of 
course, underlying our simple design in Figure 2.71 are in fact eight 4xl muxes, and 
w1derlying those are 40 gates. And underlyjng those gates are lots more tra11sistors. We 
see that the higher-level building blocks make our design task much more managable. 

2.10 ADDITIONAL CONSIDERATIONS 

Nonideal Gate Behavior-Delay 
Ideally, a logic gate's output would change immediately in response to changes on the 
gate's inputs. The timing diagrams earlier in this chapter assumed such ideal zero-delay 
gates, as shown in F igure 2.72(a) for an OR gate. Unfortunately, real gate outputs don't 
change immediately, but rather after some short time delay. As an analogy, even the 
fastest automobiles can't go from 0 to 60 miles per hour in 0 seconds. A gate's delay is 
due in part to the fact that transistors don't switch from nonconducting to conducting (or 
vice versa) immediately- it takes some time for electrons to accumulate in the channel of 

an nMOS transistor, for example. Fwthennore, electric current travels at the speed of 
light, which, while extremely fast, is still not infmitely fast. Additionally, wires aren't 
perfect and can s low down electric current because of "parasitic" chat'acteristics like 
capacitance and inductance. 

For example, the timing diagnun in Figure 2.72(a) shows how an OR gate's output 
would ideally change from o to 1 when an input becomes 1. Figure 2.72(b) depicts how 
the output would actually 1ise slowly from 0 Volts, representing logic o, to its higher 
voltage of 1.8 Volts , representing logic 1. 

The maximum time for a gate's output to change (from o to 1 or 1 to o) in response 
to an input change is the gate's delay. Delays for modern CMOS gates can be less than l 
nanosecond, willch is extremely fast, but still not zero. Similarly, wires also have delays. 

The delay of a circuit, known as circuit delay, is the delay of the longest path from 
input to output, known as the circuit's critical path. Figure 2.73 shows a circuit with 
sample delays shown. Each wire has a delay of l nanosecond. The delay of the AND 
gate, OR gate, and NOT gate is l ns, 1 ns, and 0.5 ns, respectively. Three paths through 
the circuit are shown, one from t to w, one from s to w, and one from k to w (the path 

Figure 2.72 OR gate timing 
diagram: (a) ideal behavior 
without gate delay, (b) a more 
realistic depiction of F 
changing from lower to higher 
voltage, (c) F's value shown 
with logic 0 and 1 values but 
incorporating the delay. 

x 1 ___f----L 
Q I 

y 

(1.8 V) 
F 

(0 V) 

I 
I 
I 

o_ .... ! __ ~I 
; 
I 

:J 
time 

(a) 

I I 

x:_fl_ x:_fl_ 
y I y I 0 0 

:_v-F F 
0 

time time 
(b) (c) 



92 2 Combinational Logic Design 

Figure 2. 73 Computing the 

delay of the BelrWarn 
circuit from Example 2.8. 

k BeltWam 

( , 
I 

1 ns-
--- .... --'"'------" 

1 ns 
....... ~-... w 

,--- ::;; :-----1+1+1+1+1 = 5 ns ---1 ns ',;·--. 1 +O 5+1 +1±1 +1 +1 = 6 5 ns 
' '-- 1+1+1 = 3 ns 

Critical path delay = 6.5 ns 
Hence, circuit's delay is 6.5 ns 

from p to w is the same length and thus not shown). The path from k to w passes through 
a wire (l ns), the AND gate (1 ns), another wire (l ns), the OR gate (1 ns), and finally the 
wire to the output (l ns), for a total path delay of 5 ns. The path from s to w passes 
through a wire {l ns), the NOT gate (0.5 ns), a wire (l ns), the AND gate (1 ns), a wire (l 
ns), the OR gate (l ns), and finally the wire to the output (1 ns), for a path delay of 6.5 ns. 
Finally, the path from t tow passes through a wire ( l ns), the OR gate ( l ns), and a wire 
(l ns), for a path delay of 3 us. The path from s to w is thus the critical path, and hence 
the circuit's delay is said to be 6.5 ns. Even though the output would change in less than 
6.5 ns in response to t 's input changing, such information is not usually considered by 
digital designers; a designer using this circuit should expect to have to wait 6.5 ns for the 
output to change in response to any change on the inputs. 

Active Low Inputs 

Component inputs can generally be divided into two types. Control inputs influence the 
behavior of the component, such as the two select inputs of a 4x 1 mux, or the enable 
input of a 3x8 decoder. In contrast, data illputs flow thl'Ough the component, such as the 
4 data inputs of a 4x 1 mux, the 3 data inputs of a 3x8 decoder, or the inputs of any logic 
gate. Some control inputs involve the notion of being active-when the input is at one of 
its two levels, the input is carrying out its purpose; at the other level, the input is inactive. 

For example, the enable input of a 
decoder is active when its value is set to 
enable the decoder. Nonnally the active 
value of a control input is 1, in which case 
the control input is said to be active high. 
However, sometimes the active value of a 
control input is o, in which case the control 
input is said to be active low. For example, 
an active low decoder enable input would 
enable the decoder when o, and disable the 
decoder when 1 , as in Figure 2.74. Active 
low control inputs are typically denoted 
using an inversion bubble, as in the figure. 

iO 

i1 

dO 

d1 

d2 

e d3 

1 
(a) 

0 

0 

0 

0 

dO 

iO d1 

i1 d2 

e d3 

0 
(b) 

0 

0 

0 

Figure 2.74 Decoder with active low enable 
input: (a) e= l : disabled, a ll outputs 0, (b) 
e=O: enabled, normal output. 

Sometimes the input's name will also be modified to suggest the input's active low 
nature, such as e _ L, / e , or e. Tile reason for the existence of active low inputs is typi
cally related to the efficiency of the components's internal circuit design. 



2.10 Additional Considerations 93 

When discussing the behavior of a component, designers will often use the tenn 
assert to mean setting a control input to the value that activates the associated operation. 
Thus, we might say that one must "asseti" the enable input of a decoder to enable the 
decoder's outputs to be active. Using the term assert avoids possible confusion th at could 
occur when some control inputs are active-high and others are active-low. 

Demultiplexers and Encoders 

Two additional components, demultiplexers and encoders, can also be considered com
binational building blocks. However, those components are far less commonly used than 
their counterparts of multiplexers and decoders. Nevertheless, for completeness, we'U 
briefly introduce those additional components here. You may notice throughout this 
book th at demultiplexers and encoders don't appear in many examples, if in any exam
ples at all. 

Demultiplexer 
A demultiplexer has roughly the opposite functionality of a multiplexer. Specifically, a 
lxM demultiplexer has one data input, and based on the values of log2(M) select lines, 
passes that input through to one of M outputs. The other outputs stay 0. 

Encoder 
An encoder has the opposite functionality of a decoder. Specifically, an n x log2(n) 

encoder has n inputs and log2(n) outputs. Of then inputs, exactly one is assumed to be 1 

at any given time (such would be the case if the input consisted of a sliding or rotating 
switch with n possible positions, for example). The encoder outputs a binary value over 
the log2(n) outputs, indicating which of then inputs was a 1. For example, a 4x2 encoder 
would have four inputs d3 , d2 , dl, do , and two outputs el, eO. For an input 0001, the 
output is oo. 0010 yields 01, 0100 yields 10, and iooo yields 11-. In other words, 
dO = l results in an output of o in binary. dl =l results in an output of 1 in binary, d2 = 1 

results in an output of 2 in binary, and d3 =1. results in an output of 3 in binary. 

A priority encoder has similar behavior, but handles situations where more than one 
input is 1 at the same time. A priority encoder gives priority to the highest input that is a 
1 , and outputs the binary value of that input. For example, if a 4x2 p1iority encoder has 
inputs d3 and dl both equal to 1 (so the inputs are 1010) , the priority encoder gives pri
ority to d3, and hence outputs 1.1. 

Schematic Capture and Simulation 

How do designers !mow whether they designed a circuit correctly? Perhaps they created the 
truth table wrong, putting a o in an output coltunn where they should have put a 1. Or 
perhaps they wrote down the wrong mintenn, writing xyz when they should have w1itten 
xyz '. For example, consider the number-of-ones cow1ter in Example 2.25. That example 
involved creating a trnth table, then equations, and finally a circuit. ls the circuit correct? 

011e method of checking a circuit is to reverse engineer the function from tl1e cir
cuit- starting with the circuit, we could convert the circuit to equations, and then the 
equations to a truth table. If the result is the same original truth table, then the circuit is 



94 2 Combinational Logic Design 

likely to be correct. However, sometimes designers start with an equation rather than a 
truth table, as in Example 2.24. A designer can reverse engineer the circuit to an equation. 
but that equation may be different than the original equation, especially if the designer 
algebraically manipulated the original equation when designing the circuit. Furthermore, 
checking that two equations are equivalent may require converting to canonical form 
(sum-of-mintenns), which may result in huge equations if the function has a large 
number of inputs. 

In fact, even if a designer didn't make any mistakes in converting a mental under
standing of the desired function into a truth table or equation, how does the designer 
know that the original understanding was correct? 

A commonly used method for checking that a circuit works as expected is called 
simulation. Simulatiotl of a circuit is the process of providi ng sample inputs to the circuit 
and running a computer program that computes the circuit's output for the given inputs. A 
designer can then check that the output matches what is expected. The computer program 
that performs simulation is called a simulator. 

To use simulation to check a circuit, a designer must describe the circuit using a 
method that enables computer programs to read the circuit. One method of describing a 
circuit is to draw the circuit using a schematic capture tool. A schematic capture tool 

Figure 2.75 Display snapshot 
of a commercial schematic 
capture tool. 

~I I 

01 I 

allows a user to place logic gates on a computer screen and to draw wires connecting 
those gates. The tool allows users to save their circuit drawings as computer files. All the 
circuit drawings in this chapter have represented examples of schematics- for example, 
the circuit drawing in Figure 2.62(b), which showed a 2x4 decoder, was an example of a 
schematic. Figure 2.75 shows a schematic for the same design, drawn using a popular 
commercial schematic capture tool. Schematic capture is used not only to capture circuits 
for simulator tools, but also for tools that map our circuits to physical implementations, 
which will be discussed in Chapter 7. 

Once a designer has created a circuit using schematic capture, the designer must 
provide the simulator with a set of inputs that will be used to check for proper output. 
One way of providing the inputs is by drawing waveforms for the circuit's inputs. An 
input's waveform is a line that goes from left to right, representing the value of the input 
as time proceeds to the right. The line is drawn high to represent 1 and low to represent o 



2.11 Combinational Logic Optimizations and Tradeoffs (See Section 6.2) 95 

Inputs 
(a) 

Inputs 
(b) 

iO__fL_ iO __fL_ 

OulP"~ I ( Sim,lal~ 
d3 

Outpu~ ~·we+ 
d3 

Figure 2.76 Simulation: (a) begins with us 
defining the inputs s ignal over time, (b) 
automatically generates the output 
waveforms when we ask the simulator to 
simulate the circuit. 

d2 

d1 

dO 

Time 

d2 _____r

d1 _n_ 
dO --i__ 

for periods of time, as shown in Figure 2.76(a). After a designer is satisfied with the input 
waveforms, the designer instructs the simulator to simulate the circuit for the given input 
waveforms. The simulator determines what the circuit outputs would be for each unique 
combination of inputs, and generates wavefonns for the outputs, as illustrated in Figure 
2.76(b). The designer can then check that the output waveforms match the output values 
that are expected. Such checking can be done visually, or by providing certain checking 
statements (often called assertions) to the simulator. 

Simulation still does not guarantee that a circuit is correct, but rather increases a 
designer's confidence that the circuit is correct. 

2.11 COMBINATIONAL LOGIC OPTIMIZATIONS 
AND TRADEOFFS (SEE SECTION 6.2) 

The earlier sections in this chapter described how to create basic combinational circuits. 
This section physically appears in this book as Section 6.2, and describes how to make 
those circuits better (smaller, faster, etc.)-namely, how to make optimizations and 
tradeoffs. One use of this book involves studying combinational logic optimizations and 
tradeoffa immediately after studying basic combinational logic design, meaning covering 
that section now (as Section 2.11 ). An alternative use of the book studies that section later 
(as Section 6.2), after also studying basic sequential design, datapath components, and 
register-transfer level design- namely, after Chapters 3, 4, and 5. 

2.12 COMBINATIONAL LOGIC DESCRIPTION USING HARDWARE 
DESCRIPTION LANGUAGES (SEE SECTION 9.2) 

Hardware description languages (HDLs) allow designers to describe their circuits using a 
textual language rather than as circuit drawings. This section introduces the use of HDLs 
to describe combinational logic. The section physically appears in the book as Section 
9.2. One use of this book studies HDLs now (as Section 2.12), immediately after studying 
basic combinational logic. An alternative use of the book studies HDLs later (as Section 
9.2), after mastery of basic combinational, sequential, and register-transfer level design. 



96 2 Combinational Logic Design 

2.13 CHAPTER SUMMARY 

Section 2.1 introduced the idea of using a custom digital circuit to implement a system's 
desired functionality and defmed combinational logic as a digital circuit whose outputs 
are a function of the circuit's present inputs. Section 2.2 provided a brief history of digita l 
switches, staiting from relays in the 1930s to today's CMOS transistors, with the main 
trend being the amazing pace at which switch size and delay have continued to shrink for 
the past several decades, leading to !Cs capable of containing a bilJion transistors or 
more. Section 2.3 described the basic behavior of a CMOS transistor, just enough infor
mation to remove the mystery of bow transistors work. 

Section 2.4 introduced three fundamental building blocks for building digital cir
cuits- AND gates, OR gates, and NOT gates (inverters), which are fai· easier to work 
with than transistors. Section 2.5 showed how Boolean algebra could be used to represent 
circuits built from AND, OR, and NOT gates, enabling us to build and manipulate circuits 
by using math- an extremely powe1f ul concept. Section 2.6 introduced several different 
representations of Boolean functions , namely equations, circuits, ai1d truth tables. 

Section 2.7 described a straightforward three-step process for designing combina
tional circuits, and gave several examples of building real c ircuits using the three-step 
process. 

Section 2.8 described why NAND and NOR gates are actually more commonly used 
than AND and OR gates in CMOS technology, and showed that any circuit built from 
AND, OR, and NOT gates could be built with NAND gates alone or NOR gates alone. 
That section also introduced two other commonly used gates, XOR and XNOR. Section 
2.9 introduced two additional commonly used combinational building blocks, decoders 
and multiplexers. 

Section 2.10 discussed how real gates actually have a small delay between the time 
that inputs change and the time that the gate's output changes. The section introduced 
active low inputs, and it also introduced some less commonly used combinational 
building blocks, demultiplexers and encoders. The section introduced schematic capture 
tools, which allow designers to draw circuits su ch that computer programs can read those 
circuits. The section also introduced simulation, which generates the output waveforms 
for designer-provided input waveforms, to help a designer verify that a circuit is correct. 

2.14 EXERCISES 

An asterisk (*) indicates an especially challenging problem. 

SECTION 2.2: SWITCHES 

2.1 A microprocessor in 1980 used about I 0,000 transistors. How many of those microprocessors 
would fit in a modem chip having 3 bill ion transistors? 

2.2 The first Pentium microprocessor had about 3 million transistors. How many of those micro
processors would fit in a modern chip having 3 billion transistors? 

2.3 Describe the concept known as Moore's Law. 

2.4 Assume for a particular year that a particular s ize chip using state-of-the-art technology can 
contain 1 billion transistors. Assuming Moore's Law holds, how many transistors will the 
same size chip be able to contain in ten years? 



2.14 Exercises 97 

2.5 Assume a cell phone contains 50 million transistors. How big would such a cell phone be if 
the phone used vacuum tubes instead of transistors, assuming a vacuum tube has a volwue of 
1 cubic inch? 

2.6 A modem desktop processor may contain 1 billion transistors in a chip area of 100 nun2. If 
Moore's Law continues to apply, what would be the chip area for those J billion transistors 
after 9 years? What percentage is that area of the original area? Name a product into which 
the smaller chip might fit whereas the original chip would have been too big . 

SECTION 2.3: THE CMOS 1RANSISTOR 

2. 7 Describe the behavior of the CMOS trans istor circuit shown 

in Figure 2.77, clearly indicating when the transistor circuit 
conducts. 

2.8 If we apply a voltage to the gate of a CMOS transistor, why 
wouldn' t the current flow from the gate to the transistor's 

source or drain? 

2.9 Wby does applying a positive voltage to the gate of a CM OS 
transistor cause the transistor to conduct between source and 
drain? 

figure 2.77 Circuit combining 
two CMOS transistors. 

SECTION 2.4: BOOLEAN LOGIC GATES- BUILDING BLOCKS FOR DIGITAL 
CIRCUITS 

2.10 Which Boolean operation- Al'ID, OR, or NOT- is appropriate for each of the foUowing: 
(a) Detecting motion in any motion sensor surrounding a house (each motion sensor outputs 

1 when motion is detected). 
(b) Detecting that three buttons are being pressed simultaneously (each button outputs 1 when 

a button is being pressed). 
(c) Detecting the absence of light from a light sensor (tlle light sensor outputs 1 when light is 

sensed). 

2.11 Convert d1e following English problem statements to Boolean equations. Introduce Boolean 
variables as needed. 
(a) A flood detector should turn on a pump if water is detected and the system is set to enabled. 
(b) A house energy monitor should sound an aJarm if it is night and light is detected inside a 

room but motion is not detected. 
(c) An irrigation system should open d1e sprinkler's water valve if the system is enabled and 

neither rain nor freezing temperatw·es are detected. 

2.12 Evaluate the Boolean equation F = (a AND b ) OR c OR d for the given values of variables 
a, b , c. and d : 
~) a=l,b=l, C=l,d=O 
(b) a=O, b=l, C=l, d=O 
~) a=l,b= l , C=O,d=O 
(d) a=l, b=O. C=O, d= O 

2.13 Evaluate the Boolean equation F 
ables a , b, c , a1\d d: 
~) a= l, b=l, C=O,d=l 
(b) a=O, b= O, C= O, d= l 

~) a=l,b=0 , C=0,d=O 
(d) a=l, b=O , C=l, d= l 

a AND (b OR c) AND d for the given values of vari-



98 2 Combinational Logic Design 

2.14 Evaluate the Boolean equation F' 
ables a, b, c, and d: 
(a) a=l, b=l, e=O, d=l 
(b) a= O, b=O, e=O, d=l 
(c) a=l, b=O, c=O, d=O 
(d) a=l, b=O, C=l, d=l 

a AND (b OR (c AND d)) for the given values of vari-

2.15 Show the conduction paths and output value of the OR gate transistor circuit in Figure 2.12 
when: (a) x = 1 and y = 0, (b) x = 1 and y = 1. 

2.16 Show the conduction paths and output value of the AND gate transistor circuit in Figure 2.14 
when: (a) x = 1 and y = 0, (b) x = 1 and y = 1. 

2.17 Convert each of the following equations directly to gate-level circuits: 
(a) F = ab' + be + e ' 
(b) F = ab + b'c'd ' 
(c) F = (( a + b') * (c' + d ) ) + (c + d + e ' ) 

2.18 Convert each of the following equations directly to gate-level circuits: 
(a) F a'b' + b'c 
(b) F = ab + be + cd + de 
(c) F = ((ab) ' + (c) ) + (d + ef) ' 

2.19 Conven each of d1e following equations directly to gate-level circuits: 
(a) F = abe + a 'be 
(b) F = a + bed' + ae + f' 
(c) F = (a + b ) + ( c ' * (d + e + fg ) ) 

2.20 Design a system that sounds a buzzer inside a home whenever motion outside is detected at 
night. Assume a motion sensor bas an output M that indicates whether motion is detected (M= 1 
means motion detected) and a light sensor with output L that indicates whether Light is 
detected (L=l means light is detected). The buzzer inside the home has a single input B that 
when 1 sounds the buzzer. Capnu·e the desired system behavior using an equation, and then 
convert the equation to a circuit using AND, OR, and NCIT gates. 

2.21 A DJ ("disc jockey," meaning someone who plays music at a party) would like a system to 
automatically control a strobe light and disco ball in a dance hall depending on whether music 
is playing and people are dancing. A sound sensor has output S that when 1 indicates that 
music is playing, and a motion sensor has output M that when 1 indicates that people arc 

dancing. The strobe light has an input L that when I turns the light on, and the disco ball has 
an input B drnt when l turns d1e ball on. TI1e DJ wants the disco ball to turn on only when 
music is playing and nobody is dancing, and wants the strobe light to n1rn on only when music 
is playing and people are dancing. Create equations describing the des ired behavior for B and 
for L, and then convert each to a circuit using AND, OR, and NOT gates, 

2.22 Concjsely describe the following situation using a Boolean equation. We want to fire a football 
coach (by setting F "'l) if he is mean (represented by M=l). If he is not mean but ha~ a losing 
season (represented by the Boolean variable L=l), we want to fire him anyway. Write an equation 
that t:Fanslates the situation directly to a Boolean equation for F, without any simplification. 

SECTION 2.5: BOOLEAN ALGEBRA 
2.23 For the function F = a + a' b + aed + e' : 

(a) List all the variables. 
(b) List all the literals. 
(c) List all d1e product terms. 



2.24 For the function F = a ' d' + a' c + b' cd' + cd: 
(a) List all the variables. 
(b) List all the li terals. 
(c) List all the product tenns. 

2.14 Exercises 99 

2.25 Let variables T represent being tall, H being heavy, and F being fast. Let's consider anyone 
who is not tall as short, not heavy as light, and not fast as slow. Write a Boolean equation to 
represent each of the following: 
(a) You may ride a particular amusement park ride only if you are either tall and light, or 

short and heavy. 
(b) You may NOT ride an amusement park ride if you are either tall and light, or short and 

heavy. Use algebra to simplify the equation to sum of products. 
(c) You are eligible to play on a particular basketball team if you are tall and fast, or tall and 

slow. Simplify this equation. 
(d) You are NOT eligible to play on a particular football team if you are short and slow, or if 

you are light. Simplify to sum-of-products form. 
(e) You are eligible to play on both the basketball and football terun s above, based on the 

above criteria. Hint: combine the two equations into one equation by ANDing them. 

2.26 Let variables S represent a package being small, H being heavy, and E being expcnsjve . Let's 
consider a package that is not small as big, not heavy as light, and not expensive as inexpen
sive. Write a B0-0lean equation to represent each of the following: 
(a) Your company specializes in delivering packages that are both small and inexpensive (a 

package must be small AND inexpensive for us to deliver it); you'll also deliver packages 
that are big but only if they arc expensive. 

(b) A particular truck can be loaded with packages only if the packages are small and light, 
small and heavy, or big and light. Simplify the equation. 

(c) Your above-mentioned company buys the above-mentioned truck. Write an equation that 
describes the packages your company can deliver. Hint: Appropriately combine the equa
tions from the above two parts. 

2.27 Use algebraic manipulation to convert the following equation to sum-of-products form: 
F = a (b + c )(d ' ) + ac' (b + d ) 

2.28 Use algebraic manipulation to convert the following equation to sum-of-products form: 
F = a ' b(c + d') + a(b' + c ) + a (b + d)c 

2.29 Use DeMorgan's Law to find dle inverse of the following equation: F = abc + a' b. 
Reduce to swn-of-products form. H int: Start with F' = (abc + a' b ) ' 

2.30 Use DeMorgan's Law to find the inverse of the following equation: F ::: 
ac' + abd' + acd. Reduce to sum-of-products form. 

SECTION 2.6: REPRESENTATIONS OF BOOLEAN FUNCTIONS 

2.31 Convert the following Boolean equations to a digital circuit: 

(a) F (a,b,c ) = a ' bc + ab 
(b) F (a,b,c ) a ' b 
(c)F (a,b , c ) abc +ab+ a+ b + c 
(d) F (a,b,c) c • 



100 2 Combinational Logic Design 

F 

Figure 2.78 Combinational circuit for F. G 

TABLE 2.9 Truth table. 
a c F 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

TABLE 2.10 Truth table. 
a 5 c I F 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

TABLE 2.11 Truth table. 
a c F 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

Figure 2.79 Combinational circuit for G. 

'.U2 Create a Boolean equation representation of the digital circuit in Figure 2.78. 

2.33 Create a Boolean equation representation for the digital circuit in Figure 2.79. 

2.34 Convert each of d1e Boolean equations in Exercise 2.31 to a truth table. 

'.US Convert each of the following Boolean equations to a truth table: 
(a) F (a,b,c) = a• + be' 
(b) F (a,b,c) ::: (ab) '+ ac' + be 
(c) F (a,b,c ) = ab+ ac + ab'c' + c' 
(d) F (a,b,c,d} = a'bc + d' 

2.36 Fill it1 Table 2.8's colunms for the TABLE 2.8 Truth table. 
equation: F ::; ab + b ' 

Inputs 
2.37 Convert the function F shown in a b ab 

the truth table in Table 2.9 to an 0 0 
equation. Don't minimize the 0 1 
equation. 1 0 

2.38 Use algebraic manipulation 
1 1 

to 
minimize the equation obtained in 
Exercise 2.37. 

b' ab+b' 
Output 

p 

2.39 Convert the function F shown in d1e truth table in Table 2.10 to an equation. Don't minimize 
the equation. 

2.40 Use algebraic manipulation to minimize the equation obtained in Exercise 2.39. 

2Al Convert the function F shown in the trutl1 table in Table 2. LI to an equation. Don't minimize 
the equation. 

2.42 Use algebraic manipulation to minimize the equation obtained in Exercise 2.41. 

2.43 Create a truth table for the circuit of Figure 2. 78. 

2.-t4 Create a truth table for the circuit of Figure 2. 79. 

2.45 Convert the function F shown in the truth table in Table 2.9 to a digital circuit. 

2.46 Convert the function F shown in the truth table in Table 2.1 0 to a digital circuit. 

2.47 Convert the function F shown in the truth table in Table 2.11 to a digital circuit. 

2.48 Convert the following Boolean equations to canonical sum-of-mintcrms form: 
(a ) F (a,b,c) a'bc + ab 

(b) F (a,b,c) a'b 
(c ) F (a,b,c) = abc + ab + a + b + c 
(d ) F (a,b,c) - c' 



2.14 Exercises 101 

2.49 Determine whether the Boolean functions P = (a + b ) ' *a and G = a + b ' are 
equivalent, using (a) algebraic manipulation and (b) truth tables. 

2.50 Determine whether the Boolean functions F = ab ' and G = (a ' + ab ) ' are equivalent, 
using (a) algebraic manipulation and (b) truth tables. 

2.51 Detemline whether the Boolean function G "' 
a' b ' c + ab' c + abc' + abc is equiv
alent to the function represented by the circuit 
in Figure 2.80. 

2.52 Detemune whether the two circui ts in Figure 
2.81 are equivalent circuits, using (a) algebraic 
manipulation and (b) trnd1 tables. 

H 

Figure 2.80 Combinational circuit for H. 

a a 

b b 
G 

F 

c c 

d d 

figure 2.81 Combinational circuits for F and G. 

2.53 * Figure 2.82 shows two circuits whose inputs are unlabeled. 
(a) Detemline whether the two circuits arc equivalent. Hint: Try all possible labelings of d1c 

inputs for both circuits. 
(b) How many circuit comparisons would need to be performed to determine whether two cir

cuits with 10 unlabeled inputs are equivalent" 

F 

G 

figure 2.82 Combinational circuits for F and G. 

SECTION 2.7: COMBINATIONAL LOGIC DESIGN PROCESS 

2.54 A museum has t1uee rooms, each with a motion sensor (mO, ml , and m2) dlat outputs 1 when 
motion is detected. At night, the only person in the musemn is one security guard who walks 
from room to room. Create a circuit that sounds an alarm (by setting an output A to 1) if 
motion is ever detected in more than one room at a time ( i.e. , in two or three rooms), meani ng 
there must be one or more intruders in the museum. Start with a truth table. 

2.55 Create a circuit for the museum of Exercise 2.54 that detects whether the guard is properly 
patrolling the museum, detected by exactly one motion sensor being 1. (If no motion sensor is 
1 , the guard may be sitting, sleeping, or absent.) 



102 2 Combinational Logic Design 

2.56 Consider the museum security alann function of Exercise 2.54, but for a museum with 10 
rooms. A truth table is not a good starting point (too many rows), nor is an equation describing 
when the alarm should sound (too many tenns). However, the inverse of the alarm flmction can 
be straightforwardly captured as an equation. Design the circuit for the 10-room security system 
by designing the inverse of the function, and then just adding an inverter before the circuit's 
output. 

2.57 A network router connects multiple computers together and allows them to send messages to 
each other. If two or more computers send messages simultaneously, the messages "collide" 
and must be re-sent. Using the combinational design process of Table 2.5, create a comsion 
detection circuit for a router that connects 4 computers. The circuit has 4 inputs labeled MO 
through M3 that are 1 when the corresponding computer is sending a message and O other
wise. The circuit has one output labeled C that is 1 when a collision is detected and 0 
otherwise. 

2.58 Using the combinational des ign process of Table 2.5, create a 4-bit prime number detector. 
The circuit has four inputs-N3 , N2, Nl, and NO- that correspond to a 4-bit nun1ber (N3 is 
the most significant bit) and one output P that is 1 when the input is a prime number and that 
is 0 otherwise. 

2.59 A car has a fuel-level detector that outputs the current fuel-level as a 3-bit binary number, with 
000 meaning empty and 111 meaning fu!J. Create a circuit that illuminates a "low fuel" indi
cator light (by setting an output L to 1) when the fuel level drops below level 3. 

2.60 A cai· has a low-tire-pressure sensor that outputs the current tire pressure as a 5-bit binary 
number. Create a circuit that illuminates a "low tire pressure" indicator Light (by setting an 
output T to 1) when the tire pressure drops below 16. Hint: you might find it easier to c reate a 
circuit that detects the inverse function. You can then just append an inverter to the output of that 
circuit. 

SECTION 2.8: MORE GATES 

2.61 Show the conduction paths and output value of the NAND gate transistor circuit in Figure 

2.54 when: (a) X = 1 and y = 0, (b) X = 1 and y = 1. 

2.62 Show the conduction paths and output value of the NOR gate transistor circuit in Figure 2.54 
when: (a) x = 1 and y = 0, (b) x = 0 and y = 0. 

2.63 Show the conduction paths and output value of the AND gate transistor c ircuit in Figure 2.55 

when: (a) X = 1 and y = 1, (b) X = 0 and y = 1. 

2.64 Two people, denoted using variables A and B, want to ride with you on your motorcycle. 
Write a Boolean equation that indicates that exactly one of the two people can come (A=l 
means A can come; A=O means A can't come) . Then use XOR to simplify your equation. 

2.65 Simplify the following equation by using XOR wherever possible: F = a' b + ab' + 
cd' + c 'd + ac. 

2.66 Use 2 -input XOR gates to create a circuit that outputs a 1 when the number of ls on inputs a. 
b, c, d is odd. 

2.67 Use 2 -input XOR or XNOR gates to create a circuit that detects whether an even number of 
the inputs a, b, c, d are ls. 

SECTION 2.9: DECODERS AND MUXES 

2.68 Des ign a 3x8 decoder using Al'fD, OR, and NOT gates. 

2.69 Design a 4x l6 decoder using AND, OR, and NOT gates. 

2.70 Design a 3x8 decoder with enable using AND, OR, and NOT gates. 

2.71 Design an 8xl multiplexer using AND. OR, a11d NOT gates. 



2.72 Design a 16xl multiplexer using AND, OR, and NOT gates. 

2. 73 Design a 4-bit 4x l multiplexer using four 4x 1 multiplexers. 

2.14 Exercises 103 

2.74 A house has four external doors, each with a sensor that outputs 1 if its door is open. Inside 
the house is a single LED that a homeowner wishes to use to indicate whether a door is open 
or closed. Because the LED can only show the status of one sensor, the homeowner buys a 
switch d1at can be set to 0, I, 2, or 3 and that bas a 2-bit output representing the switch posi
tion in binary. Create a circuit to connect the four sensors, the switch, and the LED. Use at 

least one mux (a single mux or an N-bit mux) or decoder. Use block symbols, each with a 
clearly defined function, such as ·'2x 1 mux," "8-bit 2xl rnux," or "3x8 decoder": do not show 
the internal design of a mux or decoder. 

2.75 A video system can accept vjdeo from one of two video sources, but can only display one 
source at a given time. Each source outputs a stream of digitized video on its own 8-bit output. 
A switch with a single-bit output chooses which of the two 8-bit streams will be passed on a 
display's single 8-bit input. Create a circuit to connect dw two video sources, the switch, and 
the display. Use at least one mux (a single mux or an N-bit mux) or decoder. Use block sym
bols, each with a clearly defined function, such as "2x I mux," "8-bit 2xl mux," or "3x8 
decoder"; do not show the internal design of a mux or decoder. 

2.76 A store owner wishes to be able to indicate to customers that the items in one of the store's 
eight aisles are temporarily discounted ("on sale"). The store owner thus mounts a light above 
each aisle, and each light has a s ingle-bit input that turns on the light when 1. The store owner 
bas a switch that can be set to 0, I, 2, 3, 4, 5, 6, or 7, and that bas a 3-bit output representing 
the switch position in binary. A second switch can be set up or down and has a single-bit 
output d1at is 1 whe11 the switch is up: the store owner can set this switch down if no aisles are 
currently discmmted. Use at least one mux (a single mux or an N-bit mux) or decoder. Use 
block symbols, each with a clearly defined function, such as "2x I mux," "8-bit 2x I mux," or 
"3x8 decoder"; do not show the internal design of a mux or decoder. 

SECTION 2.10: ADDITIONAL CONSIDERATIONS 

2. 77 Deterntine the critical path of the following specified circuits. Assume dlat each AND and OR 
gate has a delay of 1 ns, each NOT gate has a delay of 0.75 ns, and each wire has a delay of 
0.5 ns. 
(a) The circuit of Figure 2.37. 
(b) The circuit of Figure 2.41. 

2.78 Design a l x4 demultiplexer using AND, OR, and NOT gates. 

2.79 Design an 8x3 encoder using AND, OR, and NOT gates. Assume iliat only one input will be 
1 a t any given time. 

2.80 Design a 4x2 priority encoder using AND. OR, and NOT gates. If every input is 0, me 
encoder output should be 00. 



104 2 Combinational logic Design 

~ DESIGNER PROFILE 

Samson enjoyed physics 
and math in college, and 
focused his advanced 
studies on integrated 
circuit ( IC) design, 
believing the industry to 
have a great future. 
Years later. he realizes 
his belief was true: 
"Looking back 20 years 
in high tech, we have 
experienced four major 
revolutions: the PC 

revolution, digital revolution, communication revolution, 
and Internet revolution- all four enabled by the IC 
industry. The impact of these revolutions to our daily life 
is profound." 

He has found his job to be "very challenging, 
interesting, and exciting. I continually learn new ski lls to 
keep up, and to do my job more efficiently." 

One of Samson's key design projects was for digital 
television, namely, high-definition TV (HDTV), involving 
companies like Zenith, Philips, and Intel. In particular, he 
led the 12-person design team that built Intel's first liquid 
crystal on s ilicon (LCoS) chip for rear-projection HDTV. 
''Traditional LCoS chips are analog. TI1ey apply different 
analog voltages on each pixel of the display chip so it can 
produce an image. But analog LCoS is very sensitive to 
noise and temperature variation. We used digital signals to 
do pulse width modulation on each pixel." Samson is 
quite proud of his team's accomplishments: "Our HDTV 
picture quality wa~ much better." 

Samson also worked on the 200-member design team 
for Intel's Pentium II processor. That was a very different 

experience. "For the smaller team project, each person 
had more responsibility, and overall efficiency was high. 
For the large team project, each person worked on a 
specific pa11 of the project- the chip was divided into 
clusters, each cluster into units, and each unit had a 
leader. We relied heavily on design flows and 
methodologies:' 

Samson has seen the industry's peaks and valleys 
during the past two decades: "Like any industry, the IC 
job market has its ups and downs." He believes the 
indus try survives the low points in large part due to 
innovation. " Brand names sell products, but without 
innovation, markets go elsewhere. So we have to be very 
innovative, creating new products so that we are always 
ahead in the global competition." 

But " innovation doesn't grow on trees." Samson points 
out. "There arc two kinds of innovations. The first is 
invention, which requires a good understanding of the 
physics behind technology. For example, to make an 
analog TV into a digital TV, we must know how human 
eyes perceive video images, which parts can be digitized, 
how digital images can be produced on a si licon chip, e tc. 
The second kind of innovation reuses existing technology 
for a new application. For example, we can reuse 
advanced space technologies in a new non-space product 
serving a bigger market. e-Bay is anot11cr example- it 
reused Internet technology for onl ine auctions. 
Innovations lead to new products, and thus new jobs for 
many years:' 

Thus, Samson points out that "The indus try is counting 
on new engineers from college to be innovative, so they 
can continue to drive the high-tech industry forward. 
When you graduate from college, it's up to you to make 
things better." 



3 
Sequential Logic 
Controllers 

3.1 INTRODUCTION 

Design· 

The output of a combinational circuit is a function of the circuit's present inputs. A com
binational circuit has no memory- the feature of a circuit storing new bits and retaining 
those bits over time for later use. Combinational circuits alone are of limited usefulness. 
Designers typically use combinational circuits as part of larger circuits called sequential 
circuits-circuits that have memory. A sequential circuit is a circuit whose output 
depends not only on the circuit's present inputs, but also on the circuit's present state, 
which is all the bits cmTently stored in the circuit. The circuit's state in tw11 depends on 
the past sequence of the circuit's input values. 

A11 everyday sequential system example is a lamp that toggles (changes from off to 
on, or from on to off) when its button is pressed, as was shown in Figure 2.l(c). After 
plugging in the lamp, push the lamp's button (the input) a first time, and the lamp tw1ls 
on. Push the button a second time, and the lamp turns off. Push the button a third time, 
and the lamp turns on again. The system's output (whether the lamp js on or off) depends 
on the input and on whether the system is currently in the stare of the lamp being on or 
off. That state in turn depends on the past sequence of input values since the system was 
initially powered on. In contrast, an everyday combinational system example is a basic 
doorbell, as was shown in Figure 2.l(a). Push the button (the input) now, and the bell (the 
output) rings. Push the button again, and the bell rings again. Push the button tomorrow 
and the bell rings the same each time. A basic doorbell has no state- its output value 
(whether the bell rings or not) depends solely on its present input value (whether the 
button is pressed or not). 

Most digital systems with which you are likely familiar involve sequential circuits. A 
calculator contains a sequential circuit to store the nwnbers you enter, in order to operate 
on those nwnbers. A digital camera stores pictures. A traffic light controller stores infor
mation indicating which light is presently green. A kitchen timer that counts down from a 
set time to zero stores the present count value, to know what the next value should be. 

This chapter describes sequential circuit building blocks called flips-flops and regis
ters, which can store bits. It then introduces a sequential circuit design process in which a 
designer first captures desired behavior, and then converts that behavior to a type of 
sequential circuit known as a controller, comprised of a register and combinational logic. 

105 



106 3 Sequential Logic Design: Controllers 

3.2 STORING ONE BIT-FLIP-FLOPS 

Call 
button 

Cancel 
button 

Bit 
Storage 

Blue light 
Sequential circuit design is aided by a 
building block that enables storing of a bit, 
much like combinational circuit design was 
aided by the AND, OR, and NOT gate 
building blocks. Storing a bit means that we 
can save either a 0 or a 1 in the block and 
later come back to see what was saved. For 
example, consider designing the flight atten
dant call-button system in Figure 3.1. An 

Figure 3.1 Flight attendant call-button 
system. Pressing Call tums on the light, 
which stays on after Call is released. 
Pressing Cancel turns off the light. 

airline passenger can push the Call button to 
turn on a small blue light above the passenger's seat, indicating to a flight attendant that 
the passenger needs service. The Light stays on even after the call button is released. The 
light can be turned off by pressing the Cancel button. Because the light must stay on even 
after the call button is released, a mechanism is needed to "remember" that the call button 
was pressed. That mechanism can be a bit storage block, in which a 1 will be stored when 
the call button is pressed, and a o stored when the cancel button is pressed. The inputs of 
this bit storage block will be connected to the call and cancel buttons, and the output to 
the blue light, as in Figure 3.1. The light illuminates when the block's output is 1. 

This section introduces the internal design of such a bit storage block by introducing 
several increasingly complex circuits able to store a bit- a basic SR latch, a level-sensitive 
SR latch, a level-sensitive D latch, and an edge-triggered D flip-flop. The D flip-flop will 
then be used to create a block capable of storing multiple bits, known as a register, which 
will serve as the main bit storage block in the rest of the book. Each successive circuit elim
inates some problem of the previous one. Be aware that designers today rarely use bit 
storage blocks other than D flip-flops. We introduce the other blocks to provide the reader 
with an underlying intuition of the D flip-flop's internal design. 

Feedback-The Basic Storage Method 

The basic method used to store a bit in a digital circuit is feedback . You've surely experienced 
feedback in the form of audio feedback, when someone talking into a microphone stood in 
front of the speaker, causing a loud continuous humming sound to come out of the speakers (in 
tum causing everyone to cover their ears and snicker). The talker generated a sound that was 
picked up by the microphone, came out of the speakers (amplified), was picked up again by the 
microphone, came out the speakers again (amplified even more), etc. That's feedback. 

Feedback in audio systems is annoying, but in digital 
systems is extremely useful. lntuitively, we know that 

somehow the output of a logic gate must feed back into the 
gate itself, so that the stored bit ends up looping around and 
around, like a dog chasing its own tail. We might try the circuit 
in Figure 3.2. 

Supp<:>se initially Q is o and s is o. At some point, suppose 
we sets to 1. That causes Q to become 1, and that 1 feeds back 
into the OR gate, causing Q to be 1, etc. So even when s returns 

s~ 
Figure 3.2 First (failed) 
attempt at using 
feedback to store a bit. 



Basic SR Latch 

~v-1 
:={>-o 
Figure 3.5 NOR 
behavior. 

3.2 Storing One Bit-Flip-Flops 107 

e 
(a) \ 

I 

s 1 \ ,,...?· 
Q----+

1
---'I _,,,;,../ 

\ ,,,,,./":/~ 
t 1 \ / 

o----.;.',--.i.-1-' / ,,/ 
' ./ ' 1 l • 

ao---~1--~ Q stays 1 forever 

Figure 3.3 Tracing the behavior of our first attempt at bit storage. 

to o, Q stays 1 . Unfortunately, Q stays 1 from then on, and we have no way of resetting Q to 
o. But hopefully you understand the basic idea of feedback now- we did successfully store 
a 1 using feedback, but we couldn't store a o again. 

Figure 3.3 shows the timing diagram for the feedback circuit of Figure 3.2. Initially, 
we set both OR gate inputs to 0 (Figure 3.3(a)). Then we set S to 1 (Figure 3.3(b) ), which 
causes Q to become 1 slightly later (Figure 3.3(c)), assuming the OR gate has a small 
delay as discussed in Section 2.10. Q becoming 1 causes t to become 1 slightly later 
(Figure 3.3(d)), assuming the wire has a small delay too. Q will stay at 1. Finally, when 
we changes back to o (Figure 3.3(e)), Q will continue to stay 1 because t is 1. The first 
curved line with an arrow indicates that the event of s changing from o to 1 causes the 
event of Q changing from o to 1. An event is any change on a bit signal from o to 1 or 
from 1 to o. The second curved line with an arrow indicates that the event of Q changing 
from o to 1 in turn causes the event of t changing from o to 1. That 1 then continues to 
loop around, forever, with no way for s to reset Q to o. 

It turns out that the simple circuit in Figure 3.4, called a basic 
S'R latch , implements the bit storage buildjng block that we 
seek. The circuit oonsists of a pair of cross-coupled NOR 
gates. Making the circuit's s input equal to 1 causes Q to 
become 1, while making R equal to 1 causes Q to become o. 
Making both s and R equal to o causes Q's current value to 
keep looping around. In other words, S "sets" the latch to 1, 

S (set) 

and R "resets" the latch to 0- hence the lette1·s S (for set) and R {reset) 
'---~~~~~~~--' 

R (for reset). 
Let 's see why the basic SR latch works as it does. Recall Figure 3.4 Basic SR 1atch. 

that a NOR gate outputs 1 only when all the gate's inputs 
equal o, as shown in Figme 3.5; if at least one input equals 1, the NOR gate outputs o. 



108 3 Sequential Logic Design: Controllers 

s 0------

R 
0 

0 

Suppose we make S=O and R =l, as 
in the SR latch circuit of Figure 3 .6, and 
that the values of Q and t are initially 
unknown. Because the bottom gate of the 
circuit has at least one input equal to 1 
(R), the gate outputs o- in the timing dia
gram, R becoming 1 causes Q to become 
o. In the circuit, Q's o feeds back to the 
top NOR gate, which will have both its 
inputs equal to o, and thus its output will 

be 1. In the timing diagram, Q becoming 
o causes t to become 1. In the circuit, 
that 1 feeds back to the bottom NOR gate, Figure 3.6 SR latch when 5,,, 0 and R"'l. 

which has at least one input (actually, 
both) equal to 1, so the bottom gate continues to output o. T hus the output Q equals o, and 
all values are stable, meaning the values won't change as long as no external input changes. 

Now suppose we keep S = O and 1 

change R from 1 back to 0 , as in Figure S o------
3.7. The bottom gate still has at least one 
input equal to 1 (the input coming from 
the top gate), so the bottom gate con
tinues to output o. The top gate 
continues to have both inputs equal to o 
and contin ues to output 1. The output Q 
will thus still be o. T herefore, the earlier 
R= 1 stored a o into the SR latch , also 
known as resetting the latch, and that o 
remains stored even when R is changed 
back to o . Note that R=l will reset the 
latch regardless of the initial value of Q. 

Consjder making S = l and R =O, as 
in Figure 3.8. The top gate in the circuit 
now has one input equal to 1, so the top 
gate outputs a 0- the timing diagram 
shows the change of S from 0 to 1, 
causing t to change from 1 to 0. The top 
gate's 0 output feeds back to the bottom 
gate, which now has both inputs e<jual to 
o and thus outputs 1- the timing 
diagram shows the change of t from 1 
to o, causing Q to change from o to 1. 

The bottom gate's i output (Q) feeds 

0 

Q 
o------

Figure 3.7 SR latch when 5 ,,, 0 and R"'O, after R 
was previously 1. 

s 
0 

R 

0 

Q 

back to the top gate, which has at least figure 3.8 SR latch when S=l and R=O. 
one input (actually, both of its inputs) 
equal to 1, so the top gate continues to output o. The output Q therefore equals 1, and all 
values are stable. 



Call 
button 

Cancel 
button 

Next, consider making S = 0 and 
R=O again, as in Figure 3.9. T he top 
gate still has at least one input equal to 
1 (the input coming from the bottom 
gate), so the top gate continues to 
output o. The bottom gate continues to 
have both inputs equal to o and con
tinues to output 1. The output Q is still 
1. Thus, the earlier S=l srored a 1 into 
the SR latch, also known as setting the 
latch, and that 1 remains stored even 
when we return s to o. Note that S=l 
will set the latch regardless of the initial 
value of Q. 

3.2 Storing One Bit-Flip-Flops 109 

R 
0------

0------

Q 
0 

Figure 3.9 SR latch when S= O and R=O, after S 
was previously 1. 

s 

R 

Blue light 

T he basic SR latch can be used to implement the 
flight attendant call-button system as shown in Figw-e 
3.10, by connecting the call button to S , the cancel 
button to R, and Q to the light. Pressing the call button 
sets Q to 1 , thus turning on the light. Q stays 1 even 
when the call button is released. Pressing the cancel 
button resets Q to o, thus tuming off the light. Q stays 
o even when the cancel button is released. 

Figure 3.10 Flight attendant call-button system using a 
basic SR laicb. 

Problem when SR=ll in a Basic SR latch 
A problem with the basic SR latch is that if s and R 
are both 1, undefined behavior results- the latch 

might store a 1, it might store a o, or its output might oscillate, changing from 1 to o to 

1 to o, and so on. In particular, ifs = 1 and R = 1 (written as "SR=ll" for short), both the 
NOR gates have at least one input equal to 1, and thus both gates output o, as in Figure 
3.1 l(a)_ A problem occurs whens and Rare made o again. Supposes and R return too 

at the same time. Then both gates will have Os at all their inputs, so each gate' s output 
will change from o to 1, as in Figure 3.ll(b). Those ls feed back to the gates' inputs, 
causing the gates to output Os, as in Figure 3.1 l (c). Those Os feed back to the gate inputs 
again, causing the gates to output ls. And so on. Going from 1 to o to 1 to o repeatedly 
is called oscillation . Oscillation is not a desirable feature of a bit storage block. 

s ~ I.__ __ 
R :1..__ __ 

1__fUl 
0 

(a) (e) 
a:__fUl 

Figure 3.11 The situation of S=l and R= l causes problems-Q oscillates when SR return to 0 0. 



110 3 Sequential Logic Design: Controllers 

Call 
button 

Cancel 
button 

In a real circuit, the delays of the upper and 
lower gates and wires would be slightly different 
from one another. So after some time of oscilla
tion, one of the gates will get ahead of the other, 
outputting a 1 before the other does, then a o 
before the other does, until it gets far enough 
ahead to cause the circuit to enter a stable situa-

1 
t 

0 

1 
Q 

0 

Figure J..12 Q eventually settles io either 
0 or 1 , due to race condition. 

tion of ejther Q= O or Q=l. Which situation will happen is unknown beforehand. A 
situation in which the final output of a sequential circuit depends on the delays of gates 
and wires is a race condition . Figure 3.12 shows a race condition involving oscillation 
but ending with a stable situation of Q= 1. 

ExterMI circuit 

Figure 3.13 Circuit added external to SR latch striving to 
prevent SR=l 1 when both buttons are pressed. 

Therefore, sand R must never be allowed to simul
taneously equal 1 in an SR latch. A designer using 
an SR latch should add a circuit external to the SR 
latch that strives to ensure that s and R never 
simultaneously equal 1. For example, in the flight 
attendant call-button system of Figure 3. 10, a pas
senger pushing both buttons at the same time might 
result in oscillation in the SR latch and hence a 
blinking light. The S R latch will eventually settle 
to 1 or o, and thus the light will end up either on or 
off. A designer might therefore decide that if both 
buttons are pressed then the call button should take 
priority so that SR won' t both be 1. Such behavior 
can be achieved using a combinational circuit in 

front of s and R, as shown in Figure 3.13. s should be 1 if the call button (denoted as 
Call) is pressed and either the cancel button (Crtcl) js pressed or not pressed, so 
s = Call *Cncl + Call *Cncl ' = Call. R should be 1 only if the cancel button is 
pressed and the call button is not pressed, meaning R = encl * Call' . The circuit in 
Figure 3. 13 is derived directly from these equations. 

Even with such an external circuit, s and 
R could still inadvertently both become 1 due 
to the delay of real gates (see Section 2.10). 
Assume the AND and NOT gates in Figure 
3.13 have delays of l ns each ( ignore wire 
delays for now). Suppose the cancel button is 
being pressed and hence SR= Ol, as in Figure 
3. 14, and then the call button is also pressed. 
s will change from o to 1 almost immedi
ately, but R will remain at 1 for 2 ns longer, 
due to the AND and NOT gate delays, before 
changing to o. SR would therefore be 11 for 2 
ns. A temporary unintended sjgnal value 
caused by circuit delays is called a glitch. 

I 

Call 
1 ~' ------

o_J 

Cncl 
0 

s 1~ 
Q I \ 

i l SR = 11 
I I 
I I 

!\ ,1~·----1 ,_ 1.-
12 ns: 

R 
0 

Figure 3.14 Gate delays can 
cause SR= l l . 



Significantly, glitches can also cause an 
w1intended latch set or reset. Assume that the 
wire connecting the cancel button to the AND 
gate in Figure 3.13 has a delay of 4 ns (perhaps 
the wire is very long), in addition to the l ns 

AND and NOT gate delays. Suppose both 
buttons are pressed, so SR=lO, and then the 
buttons are both released-SR should become 
00. s will indeed change to o almost immedi
ately. T he top input of the AND gate will 
become 1 after the 1 ns delay of the NOT gate. 
The bottom input of that AND gate will remain 
1 for 3 ns more, due to the 4 ns wire delay, thus 
causing R to change 1. After that bottom input 
finally changes to o, yet another l ns will pass 
due to the AND gate delay before R returns to 

3.2 Storing One Bit-Flip-Flops 111 

Call 

Cncl 

I 

1 I 

01 .___, -
I 
I 

:1 ..... · ____ _ 
I 
I 
I 

1 I 

sol___ 
I 
I 

l ~~--,~ SR = 01 
1 ~/ 'i (undesired 

R 1 ~ , glitch) 
0 '~-·-

' : 4 ns : 

Figure 3.15 Wire delay leading to a 
glitch causing a reset. 

o. Thus, R experienced a 4 ns glitch, which resets the latch to o- yet a reset is clearly not 
what the designer intended. 

Level -Sensitive SR latch 

A partial solution to the glitch problem is to 
extend the SR latch to have an enable input 
c as in Figure 3.16. When C=l, the sand R 

signals pass through the two AND gates to 
the s 1 and Rl inputs of the basic SR latch, 

Level-sensitive SR latch 

s 
S1 

because S*l=S and R*l=R. The latch is c 
enabled . But when C= O, the two AND gates 
cause Sl and Rl to be o, regardless of the 
values of s and R. The latch is disabled. 
The enable input can be set to o when s and 
R might change so that glitches won't prop
agate through to Sl. and Rl, and then set to 
1 only when s and R are stable. The ques

---· 
R R1 

Rgure 3.16 Level-sensitive SR latch- an SR 
latch with enable input C. 

tion then remains of when to set the enable input to 1. That question will be answered in 
the upcoming sections. 

Figure 3.17 shows the call button system from Figure 3.13, thjs time using an SR 
latch with an enable input c. The tin1ing diagram shows that if encl is 1 and then Ctll is 
changed to 1 , a glitch of SR=ll occw·s, as was already shown in Figure 3.14. H owever, 
because C=O, SlRl stay at oo_ When we late!' set the enable input to 1, the stable SR 

values propagate through to SlRl. An SR latch with an enable is called a level-sensitive 
SR latch , because the latch is only sensitive to its s and R inputs when the level of the 
enable input is 1. It is also called a transparent SR latch , because setting the enable input 
to 1 makes the internal SR latch transparent to the s and R inputs. It is also sometimes 
called a gated SR latch . 



112 3 Sequential Logic Design: Controllers 

I 

Call ~It-------
' Level-sensitive SR latch 

Call --<l.._----+-5----1 

encl 
11 
0 ~. ------

Cncl 

(a) 

c Clk -+-... 

R 

figure 3.17 Level-sensitive SR latch: (a) an SR latch with 
enable input C can reduce problems from glitching (b). 

i 

s~~ 
I 
I ,,- ... 
I / °' 

R 1 ! \r--1} 
o I J,_~.t ... _ ----

c 1 ! r-1 
o ----i------J L 

I 
I 

1 : ~ , 
S1 I ( \ 

· o ---:- :- .-, --.c'""o-rr.-~-ct 
! \ l values when 

R 1 0 -~:_.--.•.--J.t---"e""'na""b""l=ed ,J, 

(b) 

Glitch on R (or S) 
doesn't 

affect R1 (or 51) 

Notice that the top NOR gate of an SR latch outputs 
the opposite value as the bottom NOR gate that outputs Q. n 
Thus, an output Q 1 can be included on an SR latch almost CR 0

0

' -
for free, just by connecting the top gate to an output 
named Q ' . Most latches come with both Q and Q' out-
puts. The symbol for a level-sensitive SR latch with such figure 3.18 S ymbol for dual-

dual outputs is shown in Figme 3. 18. output level-sensitive SR latch. 

Level-Sensitive D Latch- A Basic Bit Store 

A designer using a level-sensitive SR latch 
has the burden of ensuring that s and R are 
never simultaneously 1 when the enable --+-D...---1 

input is 1. One way to relieve designers of 
this burden is to introduce another type of 
latch, calJed a level-sensitive D latch (also c 
known as a transparent D latch or gated D 
latch ), shown in Figure 3.19. Internally, the 
latch's D input connects directly to the S 

input of a level-sensitive SR latch, and con
nects through an inverter to the R input of the 

--+--1t--• 

D latch 

SR latch. The D latch is thus either setting figure 3.19 D latch internal circuit. 

(when D=l) or resetting (when D= O) its 
internal basic SR latch when the enable input c is 1. 



A level-sensitive D latch thus stores what
ever vaJue is present at the latch's D input when 
C = 1, and remembers that vaJue when C = 0. 

Figure 3.20 shows a timing diagram of a D latch 
for sample input values on D and c; arrows indi
cate which signal changes cause other signals to 
change. When D is 1 and c is 1, the latch is set 
to 1 , because Sl is 1 and Rl is o. When D is o 
and c is 1 , the latch is reset to o, because Rl is 
1 and Sl is o. By making R the opposite of s, 
the D latch ensures that s and R won't both be 1 

at the same time, as long as D is only changed 
when c is o (even if changed when c is 1, the 
inverter;s delay could causes and R to both be 1 

briefly, but for too short of time to cause a 
problem). 

The symbol for a D latch with dual-outputs 
(Q and Q' ) is shown in Figure 3 .2 1. 

Edge-Triggered D Flip-Flop-A Robust Bit Store 

3.2 Storing One Bit-Flip-Flops 113 

1 
D 

0 

1 
c 

0 

S1 

R1 

Q o----' 
figure 3.20 D latch timing diagram. 

Figure 3.21 D latch 
symbol. 

--lo+ 
-t__j-

The D latch still has a problem that can cause unpredictable circuit behavior- namely, 
signals can propagate from a latch output to another latch's input while the clock signal 
is 1. For example, consider the circuit in Figure 3.22 and the pulsing enable signals- a 
pulse is a change from o to 1 and back to o, and a pulsing enable signal is called a clock 
signal. When Clk = 1, the value on Y will be loaded into the first latch and appear at that 
latch's output. If Clk still equals 1, then that value will also get loaded into the second 
latch. The value will keep propagating through the latches until Cl k returns to o. 
Through bow many latches will the value propagate for a pulse on Clk? It 's hard to 
say- we would have to know the precise tinning delay information of each latch. 

y 01 01 02 Q2 03 03 04 04 

C1 C2 C3 C4 

Figure 3.22 A problem with latches-through bow Clk 
many latches will Y propagate for each pul~e of 
Clk A? For Clk B? Clk_A ___n__n Clk_B _fL_jl - -

Figure 5.:25 illustrates this propagation problem in more detail. Suppose Dl is ini
tially o for a long time, changes to 1 long enough to be stable, and then Clk becomes 1. 

Ql will thus change from o to 1 after about three gate delays, and thus D2 will also 
change from 0 to 1, as shown in the left timing diagram. If Clk is still 1 , then that new 

value for D2 will propagate through the AND gates of the second latch, causing S2 to 
change from 0 to 1 and R2 from 1 to 0, thus changing Q2 from 0 to 1 , as shown in the 
left timing diagram. 



114 3 Sequential Logic Design: Controllers 

D latch D latch 

D1-+--t-----i 02 

0- >1 

(a) 

Clk _~, 

/r', Too short-01 
Clk fl doesn't change 

01 _J > / 01 

01 /D2 ------v -----s2 ___ _ 
01/02 

S2 

R2 R2 ---------
'0 ) 

02 ____ ___,t---~ 2nd latch set 02 --------
{b) (c) 

figure 3.23 A problem with level-sensitive Latches : (a) while C = 1, Ql 's new value may propagate to D2, (b) such 
propagation can cause an unknown number of latches along a chain to get updated. (c) trying to shorten the clock's 
time at 1 to avoid propagation to the next latch, but Jong enough to allow a latch to reach a stable feedback situation, 

is hard because making the clock's high time too shon prevents proper loading of the latch. 

You might suggest making the clock signal such that the clock is 1 only for a short 
amount of time, so there's not enough time for the new output of a latch to propagate to 

the next latch's inputs. But how short is short enough? 50 ns? IO ns? 1 ns? 0.1 ns? And if 
we make the clock's time at 1 too short, that time may not be long enough for the bit at a 
latch's D input to stabilize in the latch's feedback circuit, and we might therefore not suc
cessful1y store the bit, as illustrated in Figure 3.23(c). 

A good solution is to design a more robust block for 
storing a bit- a block that stores the bit at the D input at 
the instant that the clock rises from o to 1. Note that we 
didn't say that the block stores the bit instantly. Rather, cJ-LITn 
the bit that will eventu ally get stored into the block is the figure 3.24 Rising clock edges. 
bit that was stable at D at the instant that the clock rises 
from o to 1. Such a block is called an edge-triggered 
D flip-flop . The word "edge" refers to the vertical part of the line representing the clock 
signal, when the signal transitions from o to 1. Figure 3.24 shows three cycles of a clock 
signal, and indicates the three rising clock edges of those cycles. 

Edge-Triggered D Flip-Flop Usin g a Master-Serva11t Design. One way to design an 

edge-triggered D fl ip-flop is to use two D latches, as shown in Figure 3.25. 
The first D latch, known as the master, is enabled (can store new values on Dm) when 

Clk is o (due to the inverter), while the second D latch, known as the servant, is enabled 



The common 
name is actually 
•i111aster-slave." 
Some choose 
instead to use the 
term "servant," 
due to many 
people finding the 
term "slave" 
offensive. Others 
use the terms 
"primory
secondary." 

3.2 Storing One Bit-Flip-Flops 115 

I 
I 

Clk I-D flip-flop 
I 
I 

D latch D latch D/Dm I 

D Q' 
Dm Om Ds Qs' Cm 

Cm Cs Qs 0 
Qm/Ds 

master servant Cs 

Clk Os 

Figure 3.25 A D flip-flop implementing an edge-triggered bit storage block, internally using two D 
latches in a master-servant arrangement. The master D latch stores its Dm input while Cl k = 0, but 
the new value appearing at Qm, and hence at Ds, does not get stored into the servant latch, because 
the servant latch is disabled when Clk = 0. When Clk becomes 1, the servant D latch becomes 
enabled and thus gets loaded with whatever value was in the master latch at t11e instant that Clk 
changed from 0 to 1. 

when Clk is 1. Thus, while Clk is O, the bit on D is stored into the master latch, and 
hence Qm and Ds are updated- but the servant latch does not store this new bit, because 
the servant latch is not enabled since Clk is not 1. When Clk becomes 1, the master 
latch becomes disabled, thus holding whatever bit was at the D input just before the clock 
changed from o to 1. Also, when Clk is 1, the servant latch becomes enabled, thus 
stming the bit that the master is storing, and that bit is the bit that was at the D input just 
before Clk changed from o to 1. The two latches thus implement an edge-niggered 
storage block- the bit that was at the input when Clk changed from o to 1 gets stored. 

The edge-triggered 

y D1 Q1 D2 02 D3 03 
block using two internal 
latches thus prevents the 
stored bit from propagating 
through more than one flip-
flop when the clock is 1. Clk 

Consider the chain of flip-
Clk_A _n_fl Clk_B _jl_Jl 

flops in Figure 3.26, which 
is similar to the chain in 
Figure 3.22 but with D flip
flops in place of D latches. 

Figure 3.26 Using D flip-flops, we now know through how many 
flip-flops Y will propagate for Clk_A and for Clk_H-one flip
flop exactly per pulse, for ei ther clock signal. 

We know that Y will propagate through exactly one flip-flop on each clock cycle. 
The drawback of a master-servant approach is that two D latches are needed to store 

one bit. Figure 3.26 shows four flip-flops, but there are two latches inside each flip-flop, 
for a total of eight latches. 

Many alternative methods exist other than the master-servant method for designing 
an edge-niggered flip-flop. In fact, there are hundreds of different designs for latches and 
flip-flops beyond the designs shown above, with those designs differing in terms of their 
size, speed, power, etc. When using an edge-triggered flip-flop, a designer usually doesn' t 
consider whether the flip-flop achieves edge-triggering using the master-servant method 
or using some other method. The designer need only know that the flip-flop is edge-trig-



116 3 Sequential Logic Design: Controllers 

Designers 
commonly refer to 
flip-flops as j ust 
.. flops.'' 

gered, meaning the data value present when the clock edge is rising is the value that gets 

loaded into the flip-flop and that will appear at the flip-flop 's output some time later. 
The above discussion is for what is known as positive or rising edge-triggered flip

flops , which are triggered by the clock signal changing from 0 to 1. There are also flip-flops 
known as negative or falling edge-triggered flip-flops, which are triggered by the clock 
changing from 1 to o. A negative edge-triggered D flip-flop can be built using a master
servant design where tl1e second flip-flop's clock input is inverted, rather than the first flip
flop's. 

Positjve edge-triggered flip-flops are 

drawn using a small triangle at the clock input, 
and negative edge-triggered flip-flops are 
drawn using a small triangle along with an 
inversion bubble, as shown in Figure 3.27. 
Because those symbols identify the clock input, 
those inputs typically are not given a name. 

fifi 
Figure 317 Positive (shown on the left) 

Bear in mind that although the master
servant design doesn't change the output unti l 
the falling clock edge, the flip-flop is still posi
tive edgetriggered, because the fl ip-flop stored 

and negative (right) edge-triggered D 
flip-flops. The sideways triangle input 
represents an edge-triggered clock input. 

the value that was at the D input at the instant that the clock edge was rising. 

Latches versus Flip-Flops: Various textbooks define the te11ns latch and flip-flop differ
ently. We'll use what seems to be the most common convent ion among designers, namely: 

• A latch is level-sensitive, and 

• A .flip-flop is edge-triggered. 

So saying Hedge-triggered flip-t1op;, would be redundant, since t1ip-flops are, by this 
definition, edge-triggered. Likewise, saying "level-sensiti ve latch" is redundant, s ince 
latches are by definition level-sensitive . 

Figure 3.28 uses a timing di agram to 
illustrate the difference between level-sensi
tive (latch) and edge-triggered (flip-flop) bit 
storage blocks. The figure provides an 

Clk 

example of a clock signal and a value on a : 
I 

signal D. The next signal trace is for the Q , : 
I I 

output of a D latch, which is level-sensitive. ' I : 
Q (D latch) :, 7 ' 

The latch ignores the first pulse on D , . : 

6 

I I 

(labeled as 3 in the figure) because Cl k is : :.-----
low. However, when elk btx:omes high (1), Q (D flip-flop) j 9 10!1 
the latch output follows the D input, so when --~: -----: 

I I 

D changes from 0 to 1 (4), so does the latch • • 
output (7). The latch ignores the next 
changes on D when Clk is low (5)1 but then 
follows D again when Cl k is high (6, 8). 

Figure 3.28 Latch versus flip-flop timirig. 



3.2 Storing One Bit-Flip-Flops 117 

Compare the latch's signal trace with the next signal trace showing the behavior of a 
1ising-edge-triggered D flip-flop. The value of D at the first rising clock edge (J) is 0, so 
the flip-flop stores and outputs a 0 (9). The value of D at the next risjng clock edge (2) is 
1, and thus the flip-flop stores and outputs a 1 (JO). Notice that the flip-flop ignores all 
changes to D that occur between the rising clock edges (3, 4, 5, 6)-even ignoring 
changes on D when the clock is high (4, 6). 

Clocks and Synchronous Circuits 

1----:=-l Cl~ 
L::__J 

figure 3.30 Oscillator 
component. 

The D flip-flop has an enable input that must be set to 1 for the block to s tore a bit. Most 
sequential circuits involving flip-flops use an enable signal that oscillates at a constant 
rate. For example, the enable signal could go high for 10 ns, then low for 10 ns, then high 
for IO ns, then low for IO ns, and so on, as in Figure 3.29. The time high and time low 
need not be the same, though in practice it usually is. (Tills book commonly shows the 
high time as shorter, to enhance figure readability). 

Ti~:~ :~lo_n_s_ ..... 110 ns 120 ns 130 ns 140 ns 150 ns 160 ns 

0 0 0 0 

Figure 3.29 An example of a clock signal named Clk. Circuit inputs should only change while 
Cl k = 0, such that latch inputs will be stable when Clk rises to 1. 

An oscillating enable signal is called a clock signal, because the signal ticks (high, 
low, high, low) like a clock. A circuit whose s torage elements can only change when a 
clock signal is active is known as a synchronous sequential circuit, or just synchronous 
circuit (the sequential aspect is implied- there is no such thing as a synchronous combi
national circuit). A sequential circujt that does not use a clock is called an asynchronous 
circuit. We leave the important but challenging topic of asynchronous circuit design for a 
more advanced digital design textbook. Most sequential circuits designed and used today 
are synchronous. 

Designers typically use an oscillator to generate a clock signal. An oscillator is a 
digital component that outputs a signal alternating between 1 and o at a constant fre
quency, like that in Figure 3.29. An oscillator component typically has no inputs (other 
than power) and has an output representing the clock signal as in Figure 3.30. 

A clock signal's period is the time after which the s ignal repeats itself--0r more 
simply, the time between successive ls. The signal in Figure 3.29 has a period of 20 ns. 
A clock cycle, or just cycle, refers to one such segment of time, meaning one segment 
where the clock is 1 and then o_ Figure 3.29 shows tllJ'ee and a half clock cycles. A clock 
signal's frequency is the number of cycles per second, and is computed as l/(the clock 
period). The signal in Figure 3 .29 bas a frequency of l /20 ns = 50 MHz. The units of 



118 3 Sequential Logic Design: Controllers 

~ HOW DOES IT WORK?-QUARTZ OSCILLATORS. 

Figure 3.31 Conceptual 
oscillator implementation. 

Concep t ually, an 
oscillator can be thought 
of as an inverter feeding 
back to itself, as in Figure 
3.31. If C is initially 1, the 
value will feed back 

through the inverter, and so C will become 0, which feeds 
back through the inverter, causing C to become 1 again, 
and so on. The oscillation frequency would depend on the 
delay of the inverter. Real oscillators must regulate the 
oscillation frequency more precisely. A common type of 
oscillator uses quartz 
a mineral consis ting of silicon dioxide in crystal form. 
Quartz happens to vibrate if an electric current is applied 

to it, and that vibration 
is at a precise 
frequency detennined 
by the quartz size and 
shape. Furthermore, 
when quartz vibrates, 
it generates a voltage. 
So by making quartz a 
speci tic size and shape 
and then applying a 
current, we get a 

Oscillator 
Figure 3.32 Oscillator providing 
a clock s ignal to an IC. 

precise electronic oscillator. The oscillator can be 
attached to an !C's clock signal input, as in Figure 3.32. 
Some !Cs come with a built-in oscillator. 

Freq. 

100 GHz 

Period 

0.01 ns 

frequency are Hertz, or Hz, where I Hz = I cycle per second. MHz is short for mega
hertz, meaning one million Hz. 

10 GHz 0.1 ns 

1 GHz 1 ns 
100 MHz 10 ns 

10 MHz 100 ns 

Figure 3.33 Common 
frequency and period 
relationships. 

A convenient way to mentally convert common clock periods to frequencies, and 
vice versa, is to remember that a l ns period equals a l GHz (gigahertz, meaning I billion 
Hz) frequency. Then, as shown in Figure 3.33, if one is slower (or faster) by a factor of 
I 0, the other is s lower (or faster) by a factor of I 0 also-so a I 0 ns period equals I 00 
MHz, while a 0. 1 ns period equals 10 GHz. 

Example 3.1 Flight attendant call-button using a D flip-flop 

Let's now design the earlier- introduced 
flight attendant call-button system 
using a D flip-flop. If the call button is 
pressed, a 1 should be stored. If the 
cancel button is pressed, a 0 should be 
stored. If both buttons arc pressed, 
we'll give priority to the call button, so 
a 1 should be stored. If neither button 
is pressed. the present value of Q 
should be stored back into the flip
Aop. From this description, we see that 
a combinational circuit can be used to 
set the D flip-flop's input. TI1c circuit's 
inputs will be Call, Cncl, and Q, and 
the output will be D, as shown in Fig
ure 3.34(a). 

Call 
button 

Cancel 
button 

Call 
button 

Cancel 
button 

Comb. 
Circuit 

D 
D 

Clk 
JUUl 

(a) 

(b) 

Q' Blue 

Q 

light 

L~ 

Q' Blue 

Q 

light 

~ 
Figure 3.34 Flight attendant call-button system: (a) block 
diagram, and (b) implemented using a D flip-flop. 



The circuit's desired behavior can be captured as the 
truth table in Table 3.1. If can~o and cnc1~0 (the first 
two rows), D equals Q's value. If Call=O and Cncl=l (the 
next two rows), D=O. If Call=l and Cncl=O (the next two 
rows), D=l. And if both Call=l and Cncl=l (the last two 
rows), the Call button gets priority, so D=l. 

After some algebraic simplification, we obtain the fol
lowing equation for D: 

D = Cncl ' Q + Ca l l 

We can then convert the equation to the circuit shown in 
Figure 3.34{b). That circuit is more robust than the earlier 
circuit using an SR latch in Figure 3.10. But it is still not as 

3.2 Storing One Bit-Flip-Flops 119 

TABLE 3.1 D truth table for 
call-button system. 

Call encl Q I D 
0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 

good as it could be; Section 3.5 will explain why we might want to add additional flip-flops at the 
Call and encl inputs. Furthennore, our design process in this example was ad hoc; the following 
two sections will introduce better methods for capturing desired behavior and converting to a circuit. 

The above sections went through several intermediate bit storage block designs 
before arriving at the robust D flip -flop design. Figure 3.35 summarizes those designs, 
including features and problems of each. Notice that the D flip-flop relies on an internal 
SR latch to maintain a stored bit between clock edges, and relies on the designer to intro
duce feedback outside the D flip-flop to maintain a stored bit across clock edges. 

Feature; S=1 
sets Q to 1 , R= 1 
resets Q to 0. 
Problem: 
SA=11 yields 
undefined Q, 
other glitches 
may sel/reset 
inadvertently. 

Level-sensitive SA latch 
s 

Feature; S and A only 
have effect when C=1. 
An external circuit can 
prevent SR=11 when 
C=1. 
Problem; avoiding 
SA=11 can be a burden. 

D latch 

D latch 

Om Qm 

Cm 

D flip-flop 

D latch 
Q' 

Ds Qs' 

Cs Qs Q 

Feature; SA can't be 11. Feature; Only loads D value 
Problem: C= 1 for too long present at rising clock edge, 
will propagate new values so values can't propagate to 
through too many latches; other flip-flops during same 
for too short may not clock cycle. Tradeoff: uses 
result in the bit being more gates internally, and 
stored. requires more external gates 

than SR-but transistors today 
are more plentiful and cheaper. 

Figure 3.35 Increasingly better bit storage blocks, leading to the D flip-flop. 



120 3 Sequential Logic Design: Controllers 

1111- A BIT OF HISTORY- RS, JK, T, AND D LATCHES AND FLIP-FLOPS. 

Many textbooks. especially those with origins in the 
1970s and 1980s, introduce several types of latches and 
flip-flops and use many pages to describe how to design 
sequential circuits using those different types. In the 

1980s, transistors on ICs were more costly and scarcer 
than today. TJ1e D flip-flop-based design for the call
button system in Figw·e 3.34(b) uses more transistors 
than the SR-latch-based design in Figure 3. IO-not only 
does a D tlip-tlop contain more transistors internally, but 
it may require more external logic to set D to the 
appropriate value. Other flip-flop types included a JK 
flip-flop that acts like an SR flip-flop plus the behavior 
that the flip-flop toggles if both inputs are 1 (toggle 

Basic Register- Storing Multiple Bits 

means to change from 0 to l , orfrom 1 to O). and a Tflip
flop with a s ingle input T that toggles the flip-tlop when 
1. For a given desired behavior, using a particular flip
flop type could save transistors. Designing sequential 

circuits for any flip-flop type was a challenging task. 
involving something cfilled "excitation tables'· and 
comparison of different designs, and was helpful for 
reducing circuit transistors. But today, in the era of 
billion-transistor ICs, die savings of such flip-flops are 
trivial. Nearly all modem sequential circuits use D flip
flops and hence are created u.sing the more 
straightforward design process introduced in this chapter. 

A register is a sequenHal component that can store multiple bits. A basic register can be 
built simply by using multiple D flip-flops as shown in Figure 3.36. That register can 
hold four bits. When the clock rises, all four flip-flops get loaded with inputs IO, Il , I2, 

and I3 simultaneously. 

!3 

03 

12 

02 

(a) 

11 IO 

01 00 

Fi11ure 3.36 A basic 4-bit register: (a) internal design, (b) block symbol. 

13 12 I1 IO 
reg(4) 

03020100 

(b) 

Such a register, made simply from multiple flip-flops, is the most basic form of a 
register- so basic that some companies refer to such a register simply as a "4-bit D flip
flop." Chapter 4 introduces more advanced registers having additional features and 
operations. 

Example 3.2 Temperature history display using r egisters 

We want to design a system that records the outside temperature every hour and displays the la'it 
three recorded temperat\1res, so that an observer can see the temperature trend. An architecture of 
the system is s hown in Figure 3.37. 

A timer generates a pulse on signal C every hour. A temperature sensor outputs the present 
temperature as a 5-bit binary number ranging from 0 to 31, corresponding to those temperatures in 
Celsius. Three displays convert their 5-bit binary inputs into a numerical display. 



))) 
x4 
x3 
x2 

Present 

Display 

3.2 Storing One Bit-Flip-Flops 121 

1 hour ago 

Display 

2 hours ago 

Display 

a4 a3 a2 a1 ao b4 b3 b2 b1 bO c4 c3 c2 c1 co 

TemperatureHistoryStorage 

figure 3.37 Temperature 

history display system. 
(In practice, we would actually avoid connecting the timer output 

C to a clock input, instead only connecting an oscillator output to a clock input.) 

Figure 3.38 
Internal design of 
the Tempera tu re 
History Storage 
component. 

We can implement the TemperatureHistoryS torage component using three 5-bit registers, as 
shown in Figure 3.38. Each pulse on signal C loads Ra with the present temperatw·e on inputs 
x4 . . xo (by loading the 5 flip-flops inside Ra with the 5 input bits). At the same time that register 
Ra gets loaded with that present temperature, register Rb gets loaded with the value that was in Ra. 
Likewise, Re gets loaded with Rb's value. All three loads happen at the same time, namely, on d1e 
rising edge of C. The effect is that the values that were in Ra and Rb just before the clock edge a.re 
shifted into Rb and Re, respectively. 

' ' ' ' j 
j j j~ ~ ' ' j 

' ' 
' J 

j ' j~ ' ' ' a4 a3 a2 a1 ao b4 b3 b2 lb1 bO c4 c3 c2 c1 co 

- - 14 04 14 0 4 14 04 -x4-
x3~ 

13 03 13 03 13 03 -
- 12 02 12 02 12 02 

x2 
11 01 11 0 1 11 01 x1 -

- xO- IO QO IO 00 IO 00 

c r [> Ra r> Rb 1> Re 

TemperatureHistoryStorage 

Figure 3.39 shows sample values in the regis ters for several clock cycles, assuming all the reg
is ters irlitially held Os, and assuming that as time proceeds the inputs x4 . . XO have the values 
shown at the top of tile timing diagram. 

x4 ... x0 
Figure 3.39 Example of 

c values in the 
TemperatureHistory Ra 
Storage registers. One 

0 18 21 24 25 26 27 

particular data item, l8, is 
Rb 0 0 18 21 24 25 26 shown moving through the 

registers on each clock 
Re 0 0 0 18 21 24 25 cycle. 



122 3 Sequential Logic Design: Controllers 

This example demonstrates one of the desirable aspects of synchronous circuits built from edge. 
triggered tlip·flops- many things happen at once, yet we need not be concerned about signals propa· 
gating too fast through a register to another register. The reason we need not be concerned is because 
registers only get loaded on the rising clock edge, which effectively is an infinitely small period of 
time, so by the time signals propagate through a register to a second register, it's too late-that second 
register is no longer paying attention to its data inputs. 

• 
In practice, designers avoid connecting anything but an oscillatQr's output to the 

clock input of a register. A key reason is so that automated tools that analyze a circuit's 
timing characteristics can work properly; such tools are beyond the scope of this book. 

We connected a timer's output, which pulsed once per hour, in the above example for the 

purpose of an intuitive introduction to registers. A better implementation would ins tead 

have an oscillator co1111ected to the clock input, and then use the "load" input of a register 
when the timer output pulsed. T he load input of a register will be introduced in Chapter 4. 

3.3 FINITE-STATE MACHINES (FSMS) 

Registers store bits in a digital circuit. Stored bits mean the circuit has memory resulting 
in sequential circuits. A circuit's state is the value of all a circuit's stmed bits. While a 
register storing bits happens to result in a circuit with state, state can be intentionally used 
to design circuits that have a specific behavior over time. For example, we can specifi
cally design a circuit that outputs a 1 for exactly three cycles whenever a button is 
pressed. We could design a circuit that blinks Lights in a specific pattern. We could design 
a circuit that detecets if tluee buttons get pushed in a particular sequence and then unlocks 
a door. AJl these cases make use of state to create specific time-ordered behavior for a 

circuit. 

Example 3.3 Three-cycles-high laser timer-a poorly done first design 

Consider the design of a part of a laser surgery 
system, such as a system for scar removal or 
corrective vision. Such systems work by turn
ing on a laser for a precise amount of time (see 
"How does it work?- Laser surgery" on 
page 123). A general architecture of such a 
system is shown in Figure 3.40. 

A surgeon activates the laser by pressing Figure 3.40 Laser timer system. 

the button. Assume that the laser should then 

patient 

stay on for exactly 30 n&. Assmne that tl1e system's clock period is 10 ns, so that 3 clock cycles last 
30 ns. Assmne that b from the button is synchronized with the clock and stays high for exactly l 
clock cycle. We need to des ign a controller component that, once detecting that b "' 1. holds x high 
for exactly 3 clock cycles, thus turning on the laser for 30 ns. 

This is one exan1ple for which a microprocessor solution may not work. Using a micropro

cessor's programming statements that read input ports and write output ports may not provide a way 
to hold an output port high for exactly 30 ns- for example. when the microprocessor clock fre
quency is not fast enough. 



Let 's try to create a sequential circuit implemen
tation for the system. After thinking about the 
problem for a while, we might come up with the (bad) 
implementation in Figure 3.41 . 

Knowing the output should be held high for three 
clock cycles, we used three flip-flops, with the idea 
being that we'll shift a 1 through those three llip-flops, 
taking three clock cycles for the bit to move through all 
three flip-flops. We ORed d1e flip-tlop outputs to gen
erate signal x, so that if any flip-flop contains a 1 , the 
laser will be on. We made b the input to the first flip-

3.3 Finite-State Machines (FSMs) 123 

b Q 

figure 3.41 First (bad) attempt to 
implement the laser timer system. 

flop , so when b= l , dlc first flip-tlop stores a 1 on the next rising clock edge. One clock cycle later, 
the second llip-flop will get loaded with l , and assuming b has now ren1rned to 0 , me first llip-flop 
will get loaded with 0. One clock cycle later, the tbird llip-flop will get loaded with 1 , and the second 
flip-flop with 0 . One clock cycle later, me third flip-flop will get loaded with 0 . Thus, the circuit held 
the output x at 1 for tbree clock cycles after the button was pressed. 

• 
We did a poor job implementing this system. First, what happens if the surgeon 

presses the button a second time before the three cycles are completed? Such a situation 
could cause the laser to stay on too long. ls there a simple way to fix our circuit to 

account for that behavior? Second, we didn't use any orderly process for designing the 

circuit- we came up with the ORing of flip-flop outputs, but how did we come up with 

that? Will that method work for all time-ordered behavior that needs to be designed? 
Two things are required to do a better job at designing circuits having time-ordered 

behavior: ( 1) a way to explicitly capture the desired time-ordered behavior, and (2) a 
technique for converting such behavior to a sequential circuit. 

.... HOW DOES IT WORK7-LASER SURGERY. 

Laser surgery has become very popular in the past two 
decades, and has been enabled due to digital systems. 
Lasers, invented in the early 1960s, generate an 
intense narrow beam of coherent light, with photons 
having a single wavelength and being in phase (like 
being in rhythm) with one another. In contrast, a 
regular light's photons tly out in all directions, with a 
diversity of wavelengths. Think of a laser as a platoon 
of soldiers marching in synch, while a regular light is 
more like kids running out of school at the end-of-the
day bell. A laser's light can be so intense as to even 
cut steel. The ability of a digital circuit to carefuJly 
control the location, intensity, and duration of the laser 
is what makes lasers so useful for surgery. 

One popular use of lasers for surgery is for scar 
removal. The laser is focused on the damaged cells 
slightly below the surface, causing those cells to be 
vaporized. The laser can also be used to vaporize skin 

cells that form bumps on the skin, due to scars or moles. 
Similarly. lasers can reduce wrinkles by smoothing the 
skin around the wrinkle to make the crevices more 
gradual and hence less obvious, or by stimulating tissue 
w1der the skin to stimulate new collagen growth. 

Another popular use of lasers for surgery is for 
correcting vision. In one popular laser eye surgery 
method, the surgeon uses a laser to cut open a tlap on 
the surface of the cornea, and then uses a laser to 
reshape the cornea by thinning the cornea in a 
particular pattern, with such thinning accomplished 
dl!ough Yaporizing cells. 

A digital system controls the laser's location. energy, 
and duration, based or1 programmed infomrntion of the 
desired procedure. Tbe availability of lasers, combined 
with low-cost high-speed digital circuits, makes such 
precise and useful surgery now possible. 



124 3 Sequential Logic Design: Controllers 

Mathematical Formalism for Sequential Behavior- FSMs 

Tile "Tryi11gT0Escape" 
state. 

Chapter 2 introduced a process for designing a combinational circuit that involved first 
capturing the desired combinational behavior using a mathematical formalism known a<; a 
Boolean equation (or a truth table, which could be converted to an equation), and then 
converting the equation to a circuit. For sequential behavior, a Boolean equation is not 

sufficient- a more powerful mathematical formalism is needed that can describe time
ordered behavior. 

Finite-state machines (FSMs) are one such formalism. The name is awkward, but the 

concept is straightforward. The main part of an FSM is a set of states representing every 
possible system "mode" or "situation." An FSM is "in" exactly one state at any time, that 

state being known as the FSM 's current or present state. 

My d aughter's hamster can serve as an intuitive example. After having a hamster as 
a family pet, I've learned that hamsters basically have four states that can be named 

Sleeping, Eating, RunningOnTheWheel, and TryingToEscape. Hamsters spend most of 
their day sleeping (being nocturnal), a bit of time eating or running on the wheel, and the 
rest of their time desperately trying to escape from their cage. At any given time, the 
hamster is in exactly one of those four states. 

A digital example is a system that repeatedly sets an output x to o for one clock 
cycle and to 1 for one clock cycle, so the output over time will be o 1 o 1 o 1 ... The 
system clearly has only two states, which might be named Lo and Hi. In state Lo, x = o; 
in state Hi, x = 1. T hose states and the transitions between them can be drawn as the state 

diagram in Figw-e 3.42(a). A state diagram is a graphical drawing of an FSM. 

I I I I 

Outputs: x 
elk cycle 1 h cycle 2 h cycle 3 h cycle 4 ! 

I I I I 
I I I I 

state ( Lo k Hi X Lo ~ Hi ~ 
Outputs: l : l l 

x ---1--! --, ! ! 
(a) (b) 

figure 3.42 A two-state FSM: (a) state diagram, (b) tinting diagram describing the state diagram's 
behavior. Above the timing diagram, an animation of the state diagram highlights the current state 
in each c lock cycle. "elk"' represents the rising edge of the clock s ignal. 

Each state in the state diagram is drawn as an oval. Assume the system starts in state 
Lo, as indicated by the arrow pointing from nothing to state Lo. The diagram shows that 

state Lo sets x to o by having "x= O" drawn near or in the state. The diagram also shows 
that on the next rising edge of the clock signal, elk', the system trar1sitions to state Hi. 
Such tra11sitions are drawn as directed edges, meaning a line with an arrow at one end. 
The diagram also shows that state Hi sets x to 1. On the next rising edge of the clock, the 

diagnun shows that the system transitions back to state Lo again. State diagrams are a 
popular· method for representing FSMs. FSMs can also be represented as a table or using 

various textual methods. 



( Lo x Hi x 
ot 

Lo Hi 

Figure 3.43 
Displaying multi-
bit or other values 
in a timing diagram. 

Figure 3.44 Three
cycles-high 
system: (a) state 
diagram, (b) 
timing diagram. 

3.3 Finite-State Machines (FSMs) 125 

Figure 3.42(b) provides a timing diagram showing the system' s behavior. Above the 
timing diagram are state diagrams that show the current state colored in. The current state 
is also shown in the timing diagram itself using the graphical notation shown in Figw-e 
3.43. A timing diagram easily shows a single bit's value by drawing the bit's line at the 
top or the bottom. But to represent something other than a single bit , like a current state 
or an integer value, the notation just lists the value as shown. A vertical line (or a pair of 
crossed lines) shows when the values change. 

Note that an FSM only moves along a single transition for a single rising clock edge. 
In particular, when in state Lo, a rising clock edge causes a move along the transition to 
state Hi, but then tbe system must wait for another rising clock edge to move along the 
transition from Hi back to Lo. 

Example 3.3 sought to build a system that held its output high for three cycles. 
Toward that end, the state diagram of Figure 3.42 can be extended to have four states, 
three of which set the output to 1 , as in Figure 3.44(a)_ The output x will be o for one 
cycle and then 1 for three cycles, as shown in the timing diagram of Figure 3.44(b). The 
state diagram uses state names Off, Onl, On2, and On3. State names are arbitrary; the 
only requirement is that an FSM's state names must each be unique. The state names in 
Figure 3 .44 could have been SO, SJ, S2, and S3, but names that describe a state's purpose 
in the FSM are preferable. 

Outputs: x 

elk 

State I Off lon1:on2pnalo11 lon1.on2!on2I Off I 
Outputs: 

elk" x 

(a) (b) 

Boolean expressions can be associated with the transitions to extend the behavior. 
Figure 3.45(a) extends the state diagram by associating an expression with the transition 
from state Off to state Onl such that the expression requires not just a rising clock, but 
also that b :l (written just as b) in order for the transition to be taken. Another transition 
can be added from Off back to Off, with the expression of a rising clock and b =O (written 
as b ' ). The timing diagram in Figure 3.45(b) shows the state and output behavior for the 
given input values on b. The initial state is Off While b is o, the FSM stays in Off (it 
keeps transitioning back to Off at each rising clock). When b becomes 1, the FSM transi
tions to Onl at the next rising cJock, then to 0112, then 0113, then back to Off. 

Inputs: b Outputs: x elk 
I I 
I I 

rn i 

! : 
b -------'· I . : 

Inputs: 

figure 3.45 Three
cycles-high system 
with button in put: 
(a) state diagram, (b) 
timing diagram. 

State I Off I Off Off I Off I Off lon1lon2 On31 Off I 

Output: ______ _.I L 
I I 

(b) 



126 3 Sequential Logic Design: Controllers 

The above examples illustrate that a finite-state machine or FSM is a mathematical 
formalism consisting of several items: 

• A set of states. The above example had four states: { Onl, On2, On3, Off}. 

• A set of inputs and a set of outputs. The example had one input: {b}, and one 
output: { x}. 

• An initial state: the state in which to start when the system is first powered on. An 
FSM's initial state can be shown graphically by a directed edge (an edge with an 
arrow at one end) starting from no state and pointing to the initial state. An FSM 
can only have one initial state. The example's initial state was the state named Off 
Note that Off i s just a name, and does not suggest that the system's power is off 
(rather, it suggests that the laser is off). 

• A set of transitions: An indication of the next state based on the current state and 
the current values of the inputs. The example used directed edges with associated 
input conditions, which is a Boolean expression of input variables, to indicate the 
next state. Those edges with conditions are called transitions. The example had 
several transitions, such as the edge with condition b*clkA. 

• A description of what output values to assign in each state. The example assigns a 
vaJue to x in every state. Assigning an output in an FSM is known as an action. 

After being defined, an FSM can then be executed (even if just mentally)- what 
computer programmers might call "running" the FSM. Tbe FSM starts with the current 
state being the initial state and then transitions to a different state based on the current 
state and input values, continuing as time proceeds. In each state, the FSM sets output 
values. Mentally executing an FSM is akin to mentally evaluating a Boolean equation for 
sample input values. 

The FSM in Figure 3.45 would be interpreted as follows. The system starts in the 
initial state Off The system stays in state Off until one of the state's two outgoing transi
tions has a true condition. One of those transitions has the condition of b' *elk ... -in that 
case, the system transitions right back to state Off The other transition has the condition 
of b*clk ... - in that case, the system transitions to state On/. The system stays in state 
Onl until its only outgoing transition's condition elk ... becomes true- in which case the 
system transitions to state On2. Likewise, the system stays in On2 until the next rising 
clock edge, transitioning to On3. The system stays in On3 until the next rising clock 

edge, transitioning back to state Off State Off has associated the action of setting x=O, 

while the states Onl, On2, and On3 each set x=l . 

.... "STATE" I UNDERSTAND, BUT WHY THE TERMS "RNITE" AND "MACHINE?" 

Finite-state machines, or FSMs, have a rather 
awkward name that sometimes causes confusion. The 
term "finite" is there to contrast FSMs with a similar 
representation used in mathematics that can have an 
infinite number of states; that representation is not 
very useful in digital design. FSMs, in contrast, have 
a limited, or finite, number of states. The tenn 

"machine" is used in its mathematical or computer 
science sense, being a conceptual object that can 
execute an abstract language- specifically, that sense 
of machine is not hardware. Finite-state machines arc 
also known as finite-state automata. FSMs are used 

for many things other than just digital design. 



Figure 3.46 Simplifying 
notation: implicit rising 
clock edge on every 
transition. 

Figure 3.48 Transition 
is taken on next rising 
clock edge. 

Example 3.4 

3.3 Finite-State Machines (FSMsl 127 

The FSM in Figure 3.45 precisely describes the desired time-ordered behavior of the 
laser timer system from Example 3.3. 

It is interesting to examine the behavior of this FSM if the button is pressed a second 
time while the laser is on. Notice that the transitions among the On states are independent 
of the value of b. So this system will always turn the laser on for exactly three cycles and 
then return to the Off state to await another press of the button. 

Simplifying FSM Notation: Making the Rising Clock Implicit 

Thus far the rising clock edge (el k "') has 
appeared in the condition o f every FSM transi
tion, because this book only considers the design 
of sequential circuits that are sync hronous and 
that use rising edge-triggered flip-flops to store 
bits. Synchronous circuits with edge-triggered 
flip-flops make up the majority of sequential c ir
cuits in modem practice. As such, to make state 
diagrams more readable, most textbooks and 
designers follow the convention s hown in Figure 
3.46 wherein every FSM transitio n is imp/icirly 
ANDed with a rising clock edge. For example, a 
transition labeled "a'" actually means 

Inputs-. x Outputs: b 

b' 

X=1 X=1 X=1 

e-'91 
Figure 3.47 Laser timer state diagram 
assuming every transition is ANDcd 
wid1 a rising clock. 

"a ' *e lk"'." Subsequent state diagrams will not include the rising clock edge in tnmsi
tion conditions, instead following the convention that every transitio n is implicitly 
ANDed with a rising clock edge. Figure 3.47 illustrates the laser timer state diagram from 
Figure 3.45, redrawn using implicit rising clock edges. 

A transition with no associated condition as in Figure 3.48 simply trans itions on the 
next rising clock edge, because of tl1e implicit rising cloc k edge. 

Fo llowing are more examples showing how FSMs can describe time-o rdered 
behavior. 

Secure car key 

Have you noticed that the keys for many new automobiles have a thicker plastic head than in the 
past (see Figure 3.49)? The reason is that, believe it or not, tJ1cre is a computer chip inside the head 
of the key, implementing a secure car key. In a basic version of such a secure car key, when the 
driver turns the key in the ignition, the car's computer (which is under the hood and communicates 
using what's called the basestatio11) sends out a radio signal asking the car key's chip to respond by 
sending an identi fier via a radio signal. The chip in the key then responds by sending the identifier 

Figure 3.49 Why are the heads of car keys getting thicker? Note that the key on the right is thicker 
than the key on the left. The key on the right has a computer chip inside that sends an identifier to 
the car's computer. thus helping to reduce car thefts. 



128 3 Sequential Logic Design: Controllers 

(ID), using what's known as a transponder (a transponder "transmits" in "response" to a request). If 
the basestation does not receive a response or the key's response has an ID different than the ID 
programmed into the car's computer, the computer shuts down and the car won't start. 

Let 's design the controller for such a 
key, having an ID of 1 0 J.1 (real IDs are typ- '\. Inputs; a Outputs: r 
ically 32 bits long or more, not just 4 bits). 

Assume the controller has an input a drnt is 
1 when the car's computer requests the key's 
ID. Thus the controller initially waits for the 
input a to become 1. T he key should then 
send its ID (1O11) serially, starting with d1e 
rightmost bit, on an output r; the key sends 
1 on the first clock cycle, 1 on the second 
cycle, 0 on the third cycle, and finally 1 on 
the fourth cycle. The FSM for the controller 
is shown in Figure 3.50. Note that the FSM 

r=1 r=O r=1 

figure 3.50 Secure car key FSM. Recall that each 
edge's condition includes an implicit rising clock 
edge. 

sends the bits starting from the bit on the right, which is known as the least significant bit (LSB). 
The computer chip in the car key has circuitry that converts radio signals to bits and vice versa. 

Figure 3.51 provides a timing diagram for the FSM for a particular situation. When we set 
a= 1, the FSM enters state Kl and outputs r = 1. The FSM then proceeds through K2, K3, and K4. 
outputting r = 1, 0, and 1, respectively, even though we returned input a to 0. 

Timing diagrams represent a particular s ituation defined by how we set the inputs. What would 
have happened if we had held a= 1 for many more clock cycles? The timing diagram in Figure 
3.52 illustrates that situation. Notice how in that case the FSM, after returning to state Wait, pro

ceeds to state Kl again on the next cycle. 
"So my car key may someday need 

its batteries replaced?" you might ask. 
Actually. no-those chips in keys draw 
d1eir power, as well as d1eir clock, from 
the magnetic component of the radio-fre
quency field generated from the 
computer basestation, as in RFID chips. 

elk 

Inputs 
a -----' 

State I lwait lwait l K1 I K2 I K3 I K4 1Waitlwait l 

The extremely low power requirement Outputs Ln __ makes custom digital circuitry, rather 
d1an instructions on a microprocessor, a 
preferred implementation. 

Computer chip keys make stealing 
cars a lot harder- no more "hot-wiring" 
to strut a car, since the car's computer 
won't work unless it also receives the 
correct identifier. And the method above 
1s actually an overly simplistic 
method-many cars have more sophisti
cated commmlication between the 
computer and the key, involving several 
communications in bodl directions, even 

using encrypted communication- making 
fooling the car's computer even harder. A 
drawback of secure car keys is that you 

figure 3.51 Secure car key timing diagram. 

elk 
Inputs 

a ____ .,. 

State I : Wait ; Wait I K1 K2 K3 K4 I Wait :K1I 

Outputs 

figure 3.52 Secure car key timing diagram for a different 
sequence of values on input a. 



3.3 Finite-State Machines (FSMs) 129 

can't just run down to the local hardware store and copy those keys for SS any longer-copying keys 
requires special tools that today can run 550-$100. A conunon problem while computer chip keys 
were becoming popular was that low-cost locksmiths didn't realize the keys bad chips in them, so 
copies were made and the car owners went home and later couldn't figure out why their car wouldn't 
start, even though the key fit in the i.gnition slot and turned. 

Example 3.5 Flight-attendant call button 

This example uses an FSM to describe the desired 
behavior of the flight-attendant call button system 
from Figure 3. I. The FSM has inputs Call and 
Cncl for the call and cancel buttons, and output 
L to control the light. Cal 1 will be given priority 
if both buttons are pressed. The FSM has two 
states, LightOff, which sets L to O. and LightOn, 

Call' 

Inputs; Call, Cncl Outputs. L 

Call 

Cnc1·ca11· 

which sets L to 1, as shown in Figure 3.53. Light- Figure 3.53 FSM for flight-attendant call 
Off is the initial state. The FSM sta:ys in that state button system. 
w1til Call is 1, which causes a transition to 

• 

LightOn. If Call is 0 , the FSM stays in Ligh10ff. In state LighrOn, the only way to transition back 
to Ligh10ff is if encl is 1 and Call is 0 (because the call button has priority), meaning 
encl *Call'. If that condition is false, i.e .. (Cncl *Call') I is tmc, the FSM stays in LightOn. 

Notice how clearly the FSM captures the behavior of the flight-attendant call button system. 
Once you understand FSMs, an FSM description is likely to be more concise and precise than an 
English description. 

• 
How to Capture Desired System Behavior as an FSM 

The previous section showed FSM examples, but how were those FSMs originally cre
ated? Creating an FSM that captures desired system behavior can be a challenging task 
for a designer. Using the following method can help: 

• List states: First list all possible states of the system, giving each a meaningful 
name, and denoting the initial state. Optionally add some transitions if they help 
indicate the purpose of each state. 

• Create transitions: For each state, define all possible transitions leaving that state. 

• Refine the FSM: Execute the FSM mentally and make any needed improvements. 

The method described above is just a guide. Capturing behavjor as an FS M may 
require some creativity and trial-and-error, as is the case ill some other engineering tasks, 
like computer programming. For a complex system, a designer may at first list a few 
states, and then upon defining transitions the designer may decide that more states are 
required. While creating an FSM, the preciseness of the FSM may cause the designer to 
realize that the system's behayjor should be different than originally anticipated. Note 
also that many different FSMs could be created that describe the same desired behavior; 
one FSM may be easier to understand whi le another FSM may have fewer states, for 
example. Experience can help greatly in creating correct and easy-to-understand FSMs 
that capture desired system behavior. 



130 3 Sequential Logic Design: Controllers 

Example 3.6 Code detector 

You've probably seen keypad-protected doors in 
airports or hospitals that require a person to press 
a sequence of buttons (i.e., a code) to unlock the 
door. A door may have three buttons, colored red, 
green, and blue, and a fourth button for starting 
the code. Pressing the start button followed by the 
sequence--red, blue, green, red- unlocks the 
door. Any other sequence would not unlock the 

door. An extra output a from the buttons compo
nent is 1 when any button is pressed; a is 1 for 

Start 
s 

u 

Red 
r 

Code Door 

Green 
lg detector lock 

Blue 
b 

a 

figure 3.54 Code detector architectme. 

exactly one clock cycle no matter how long a buttc>n is pressed. Figure 3.54 shows a system block 
diagram. Our goaJ is to create an FSM that describes the CodeDetector block. 

List states: We first list the \ 

possible states of the code detector ~ait for start button 
FSM. shown in Figure 3.55. A 
state is needed to wait for the start u= s ' 
button to be pressed; we name that 
state Wait, and add transitions Wait for first colored button 

u=O 
Blue 

u=O u=O 

Inputs: s,r,g ,b,a 
Outputs: u 

showing that the FSM stays in that 
state while s is 0. After the start 
button is pressed, a state is needed 

to wait for the first button to be 
pressed; we nan1e that state Stan. 
While in Start, if a button is Figure 3.55 Code detector's possible states. 

pressed (a=l) and it is the red 
button (r= 1), then the FSM should enter a state that indicates that the first colored button pressed 
was the correct one; we name that state Red] , and add a trans ition from Star/ to Red] wid1 condi
tion ar (for a = l AND r = l ) to make clear that Red I is entered if the red button is pressed. While 
in Red J, if the blue button is pressed, the FSM should enter another state indicating that the second 
colored button pressed was correct: we name that state Blue, and add a transition from Red] to 

Blue also. Likewise, we add states Green and Red2 for the las t two of d1e four required button 
presses. If the FSM reaches the Red2 state, then all four pressed buttons were the correct ones, and 
thus the door should be unlocked. Hence, state Red2 has associated the action of U=l, while all the 
other states set U=O. At this point, the FSM is incomplete, but lists all the states and a few key tran
sitions to capture the main behavior of detecting the correct sequence of pressed colored buttons. 

Create transitions: The next 
step is to create transitions for each 
state. State Wail already has a com
plete set of transitions: when s is 0, 
the FSM stays in Wait: w hens is 1, 

the FSM goes to Stan. State Starr's 
transitions should include waiting for 
a colored button to be pressed, so we 
add a transition with condition a' 
pointing back to Start, shown in 
Figure 3.56. If a button is pressed 
and that button is the red button, then 

u=O u=O u=O 

Inputs: s ,r,g,b,a 
Outputs: u 

Figure 3.56 Code detector FSM with more transitions. 



3.3 Finite-State Machines (FSMsl 131 

the FSM should go to state Red 1; we ·d already added that transition (ar). If a button is pressed and 
that button is not the red button (ar '), then the FSM should somehow enter a "fail" mode and not 
unlock the door. At this point, we might consider adding anotl1er s tate called Fail. Instead, we 
decide that the FSM should go back to the Wait state and just wait for the start button to be pressed 
again, so we add such a transition witl1 condition ar ' as shown. 

The pattern of three transitions 
for state Start can be replicated for \ 
states Red], Blue, and Green, mod- -..!!t.~~=:::::::::::::-
ified to detect the correct colored 
button press as shown in Figure 3.57. u=O 

Finally, we must decide what tl1c 
FSM should do after the FSM 
reaches state Red2 and unlocks tl1c u=O ar 
door. For simplicity of this example, 
we decide to have the FSM just 
return to state Wait, which locks tl1e 
door again; a real system would keep 

Inputs: s,r,g,b,a 
Outputs: u 

the door unlocked for a fixed period Figure 3.57 Code detector FSM with complete tmnsitions. 
of time before Jocking it again. 

Refine tl1e FSM: We can now mentally execute tl1c FSM to sec if it behaves as desired: 

• The FSM begins in the Wait state. As long as the start button is not pressed (s '),die FSM stays 
in Wait; when d1e start button s is pressed (and a ris ing clock edge arrives, of course), the FSM 
goes to the Start state. 

• Being in the Start state means tlie FSM is now ready to detect the sequence red, blue, green, red. 
If no button is pressed (a'), the FSM stays in Stan. If a bmton is pressed AND that button is d1e 
red button (ar). the FSM goes to state Red 1. Instead, if a button is pressed AND that button is 
not the red button (ar' ), d1e FSM rctums to the Wait state-note that when in the Wait state, 
further presses of the colored buttons would be ignored, until the s tart button is pressed again. 

• The FSM stays in state Redl as Jong as no button is pressed (a'). If a button is pressed AND 
that button is blue (ab), the FSM goes to state Blue: if that button is not blue (ab' ), the FSM 
rcnirns to state Wait. At this point. we detect a potential problem- what if the red button is still 
being pressed as part of Ilic first button press when the next rising clock edge arrives? The FSM 
would go to state Wait, which is not what we want. One solution is to add another state, 
Red I _Release, that the FSM transitions to after Red], and in which Ilic FSM stays until a= 0. 
For simplicity, we'll instead a.ssume that each button has a special circuit that synclu·onizcs 
the button with the clock signal. That circui t sets its output to 1 for exactly one clock cycle 
for each unique press of the button. This is necessary to ensure that the clirrent state doesn' t 
inadvertently change to anotl1er s tate if a button press lasts longer than a single clock cycle. 
We'll design such a synchronization circuit in Example 3.9. 

• Likewise, the FSM stays in state Blue as long as no button is pressed (a'), and goes to state 
Green on condition ag, and state Wait on condition ag'. 

• Finally, d1e FSM stays in Green if no button is pressed. and goes to state Red2 on condition ar, 
and to s tate Wait on condition ar'. 

• If the FSM makes it to state Red2, that means diat me user pressed Ilic buttons in die correct 
scqucncc-Red2 will set U=l, thus unlocking the door. Note that all oilier states set U=O. The 
FSM then returns to state Wait. 



132 3 Sequential Logic Design: Controllers 

The FSM works well for normal 

button presses. but let's mentally \ -~~i:'.::=:::::::::-
execute the FSM for tumsual cases. ,... 
What happens if the lL~er presses the 
start button and then presses all three 
colored buttons simultaneously, four 
times in a row? The way the FSM is 
defined, the door would unlock! A 
solution to this undesired situation is 
to modify the transitions between the 
states that detect correct colored 

u=O 

button presses, to detect not only the Rgure 3.58 Improved code detector FSM. 
correct colored button press, but also 

Inputs: s,r,g ,b,a 
Outputs:u 

that the other colored buttons are not pressed. For example, for the transition leaving state Start with 
condition ar, the condition should instead be a ( rb ' g' ) . That change also means that d1e transition 
going back to state Wair should have the condition a ( rb • g ' ) '. The intuitive meaning of that con
dition is that a button was pressed, but it was not just the red button. Similar changes can be made to 
the other transition conditions too, resulting in the improved FSM of Figure 3.58. 

3.4 CONTROLLER DESIGN 

Standard Controller Architecture for Implementing 
an FSM as a Sequential Circuit 

• 

The previous section provided e~amples of capturing sequential behavior using FSMs. 
Th.is section defines a process to convert an FSM to a sequential circuit. The sequential 
circuit that implements an FSM is commonly called a controller. Converting an FSM to a 
controller is quite straightforward when a standard pattern, commonly called a standard 
architecture, is used for the controller. Other ways exist for implementing an FSM, but 
us ing the standard architecture results in a straightforward design process. 

A standard controller architecture for an 
FSM consists of a register and combinational 
logic. For example, the standard controller 
architecture for the laser timer FSM of Figure 
3.45 is shown in Figure 3.59. The controller's 
register stores che current FSM state and is 
thus called a state register. Each state is rep
resented as a unique bit encoding. For 
example, the laser timer's Off state could be 

b 

FSM 
inputs 

elk 

Laser timer controller 
x 

FSM 
outputs 

encoded as 00, Onl as 0 1 , On2 as 1 0 , and Rgure 3.59 Standard controller architecture 
On3 as 11, the fom states thus requiring a 2- for the laser timer. 
bit state register. 

The combinational logic computes the output values for the present state, and also 
computes the next state based on the current state and current input values. Its inputs are 
thus the s tate register bits (sl and so in the example of Figure 3 . .59) and the FSM's 
external inputs (b for the example). The combinational logic's outputs are the outputs of 



3.4 Controller Design 133 

the FSM (x for the example), as well as the next state bits to be loaded into the state reg
ister (n 1 and no). 

The details of the combinational 
logic determine the behavior of the cir
cuit. The process for creating those 
details will be covered in the next sec
tion. A more general view of the standard 
controller architecture appears jn Figure 
3.60. That figure shows a state register 
that is m bits wide. 

Controller 
0 

--...,...-1 Combinational -----
FSM 
inputs 

logic 

s 
m 

elk m-bit 
---- 11 -:>State register 

N ,____ _ ____. 

FSM 
outputs 

m 

Controller (Sequential Logic) Design Process Figure 3.60 Standard controller architecture. 

Step 1: 
Capture 
behavior 

Step 2: 
Convert 

to circuit 

As in the combinational logic design process in Chapter 2, the sequential logic design 

process (which we' ll call the controller design process) consists of two steps shown in 
Table 3 .2. The first step is to capture the behavior, and the second step is to convert that 
captured behavior into a circuit. Combinational logic was captured as equations or truth 
tables, but those formalisms are insufficient for the time-ordered behavior of a controller, 
so capturing a controller's behavior is done with an FSM. The second step of converting 
the captured behavior to a circuit requires several substeps as shown in Table 3 .2. Each 
substep is a straightforward task- while the design process' first step of capturing the 
behavior as an FSM may requjre some trial-and-error, the second step of converting the 
FSM to a circuit is a straightforward "mechanical" activity even though it consists of 
several substeps. Examples will introduce and illustrate the controller design process. 

TABLE 3.2 Controller design process. 

Step 

Capture 
the FSM 

Description 

Create an FSM that describes the desired behavior of the controller. 

2
A Set up 

the architecture 

Set up the standard architecture by using a state register of appropriate width 
and combinational logic. The logic's inputs are the state register bits and the 
FSM inputs; the logic's outputs are the next state bits and the FSM outputs. 

2B 
Encode 
the states 

2C 
Fill in 
the tnlfh table 

Implement 
20 the combinational 

logic 

Assign a unique binary number, known as an encoding, to each state. Any 
encoding is sufficient as long as each state has a unique encocling. Usually a 
minimum number of bits is used and an encoding is assigned to each state by 
cowiting up in binary. 

Translate the FSM into a truth table for the combinational lo!lic such that the 
logic will generate the outputs and next state signals for the given FSM. 
Ordering the inputs with state bits first makes the correspondence between the 
table and the FSM clear. 

Implement the combinational logic using any method. 



134 3 Sequential Logic Design: Controllers 

Example 3.7 Three-cycles-high laser timer controller (continued) 

The earlier-introduced laser timer can be implemented using the controller design process. 

Step 1: Capture the FSM. The FSM was already created in Figure 3.47. 

Step 2A: Set up the architecture. The standard controller architecture for the laser timer FSM was 
shown in Figure 3.59. The state register has two bits to represent each of the four states. 
The combinational logic has external input band inputs s l and sO corning from the state 
register, and has external output x and outputs nl and n o going to the state register. 

Step 2B: Encode the states. A valid state 
encoding is: Off 00, 0111: 01, On2: 
10. On3: 1.1. Any non-redundant 
encoding is fine. The state diagram 
with encoded states is in Figure 3.61. 

Step 2C: Fill in the truth table. Given the 
implementation architecture and the 
binary encoding of each state, the FSM 
can be translated into the truth table for 
the combinational logic, as shown in 
Table 3.3. Placing d1e inputs coming 
from the state register in the table's 

Inputs: b Outputs: x 

Figure 3.61 Laser timer state diagram with 
encoded states. 

leftmost input columns allows us to easily see which rows correspond to which states. 
We fiJI all combinations of inputs on the left, as usual for a truth table. For each row, we 
look at the state diagram in Figure 3.6 l to determine the appropriate outputs. For the two 
rows starting with s 1s 0 = 0 0 (state Off), x should be 0. If b = 0, the controller should 
stay in state Off, so n1n0 should be 00. Ifb= 1, the controller should go to state Onl, 
so n lnO should be 01. 

Likewise, for the two rows starting with 
slsO = 01. (state 0111). x should be 1 and the next 
state should be On2 (regardless of b's value), so nlnO 
should be 10. We complete the last four rows similarly. 

Note the difference between the FSM inputs and 
outputs of Figure 3.61. and the combinational logic 
inputs and outputs of Figure 3.62- the latter include 
the bits from and to d1e state register. 

Step 20: Implement the combinational logic. The 
design can be completed using the combina
tional logic design process from Chapter 2. 
The following equations for the three combi
national outputs come from the trud1 table: 

x = sl + so (note from the table 
that x = 1 if sl = 1 or so = 1) 

nl = sl'sOb' + sl'sOb + 

slsO'b' + slsO'b 
nl sl 1 s0 + ~lsO' 

TABLE 3.3 Truth table for laser timer 
controller's combinational logic. 

Inputs Outputs 

Sl so b x nl no 

Off 
0 0 0 0 0 0 
0 0 1 0 0 1 

Onl 
0 1 0 1 1 0 

0 1 1 1 1 0 

0112 
1 0 0 1 1 1 
1 0 1 1 1 1 

On3 
1 1 0 1 0 0 
1 1 1 1 0 0 

no sl 1 s0 1 b + sls0 1 b 1 + slsO'b 
no sl'sO'b + slsO' 



Example 3.8 

We then obtain the sequential circuit in 
Figure 3.62, implementing the FSM. 

Figure 3.62 Final implementation of the 
three-cycles-high laser timer controller. 

b 

s1 

elk 

3.4 Controller Design 135 

Laser timer controller 

Combinational logic 
x 

Many textbooks use different table organizations from that in Table 3.3. However, we 
intentionally organized the table so that it serves both as a state table, which is a tabular 
representation of an FSM, and as a truth table that can be used to design the combina
tional logic of the controller. 

Understanding the laser timer controller's behavior 

To aid in understanding how a controller implements an FSM , this example traces through the 
behavior of the three-cycles-high laser timer controller. Assume the system is initially in state 00 
(slsO= 00), b is 0, and the clock is currently low. As shown in Figure 3.63(a), based on the com· 
binational logic, x will be 0 (the desired output in state 00), nl will be 0, and no will be 0, mean
ing the value 0 0 will be waiting at the state register's inputs. Thus, on the next clock edge, 0 0 will 
be loaded into the state register, meaning the system stays in state 00- which is correct. 

Now suppose b becomes 1. As shown in Figure 3.63(b), x will still be 0, as desired. nl will 
be 0, but no will be 1, meaning the value 01 will be waiting at the state register's inputs. Thus, on 
the ne.xt clock edge, 01 will be loaded into the state register, as desired. 

As in Figure 3.63(c), soon after 01 is loaded into the state register, x will become 1 (after the 
register is loaded, there's a slight delay as the new values for sl and sO propagate through the 
combinational logic gates). That output is correct- the system should output X=l when in state 01. 
Also, nl will become v and no will equal 0 , meaning the value 10 will be waiting at the state 
register inputs. Thus, on the next clock edge, 10 will be loaded into the state register, as desired. 

After 10 is loaded into the state register. x will stay 1, and nlnO becomes 11. When another 
clock edge comes, 11. will be loaded into the register, x will stay 1, and nlnO becomes 00. 

When another clock edge comes, 0 0 will be loaded into the register. Soon after, x will become 
0, and if bis O, nlnO will stay 00; if bis 1, nlnO will become 01. Notice that the system is back 
in the state where it started. 

Understanding how a state register and combinational logic implement a state machine can take 
a while, since in a particular state (indicated by the value presently in the state register), we generate 



136 3 Sequential Logic Design: Controllers 

(a) (b) 

b 

0 
0 0 

L--=====~ 
0 
L--=====~ 1 tL---=O==== 

elk ___ s_ta_te_=_o_o __ __.n._ ____ s_t_at_e_=_o_o ___ __.~ state=01 

Inputs~ ________ _:---------(+--~==~-------
Outputs: x ______________________ __. 

Figure 3.63 Tracing the behavior of the three-cycles-high laser timer controller. 

the external output for that state, and we generate the signals for the next state-but we don' t transi
tion to that next state (i.e., we don't load the state register) until the next clock edge. 

Example 3.9 Button press synchronizer 

This example develops a circuit that synchro
nizes a but ton press to a clock signal. such that 
when the button is pressed, the result is a signal 
that is 1 for exactly one clock cycle. Such a syn
chronized signal is useful to prevent a single 
button press that lasts multiple cycles from 
being interpreted as multiple button presses. 
Figure 3.64 uses a timi ng diagram to illustrate 
the desired behavior. 

elk cycle1 n cycle2 n cycle3 n cycle4 

Inputs: : : 
bi 

Outputs: 

bo __ --! 

Figure 3.64 Desired timing diagram of the 
button press synchronizer. 

• 

The circuit's input will be a signal bi, and the output a signal bo. When bi becomes 1 , rep
resenting the button being pressed. the system should set bo to 1 for exactly one cycle. The system 
waits for b i to return to 0 again, and then waits for bi to become 1 again, which would represent 
the next pressing of the button. 

Step 1: Capture the FSM. Figure 3.65(a) shows an FSM describing the circui t's behavior. The 
FSM waits in state A , outputting bo=O, until bi is 1. The FSM then transitions to state 
B , outputting bo"'l. TI1e FSM will then transition to either state A or C, which b-0d1 set 



3.4 Controller Design 137 

bo=O again, so that bo was 1 for just one cycle, as desired. The FSM goes from B to A 
if bi recurned to O. If bi is still 1, the FSM goes to state C, where the FSM waits for bi 
to retw·n 0, causing a transition back to state A. 

Step 2A: Set up the architecture. Because d1e FSM has d1ree states, the architecture has a two
bit state register, a<> in Figure 3.65(b). 

Step 2B: Encode the states. The three states can be straightforwardly encoded as 00. 01, and 
10, as in Figure 3.65(c). 

Step 2C: Fill in the truth table. We convert the FSM with encoded states to a truth table for d1e 

controller's combinational logic, as shown in Figure 3.65(d). For the unused state 11, we 
have chosen to output bo::::O and return to state 00. 

Step 2D: Implement the combinational logic. We derive the equations for each combinational 
logic output, as shown in Figure 3.65(e), and then create the final circuit ao; shown. 

Figure 3.65 Button press 
synchronizer design 
steps: (a) initial FSM, (b) 
controUer architectur e, 
(c) FSM with encoded 

states, ( d) truth table for 
the combinational logic, 
(e) final controller with 
implemented 

combinational logic. 

FSM inputs. bi; FSM outputs: bo 

bo=O bo=1 

(a) 
bo=O 

FSM inputs. bi; FSM outputs: bo 

Combinational logic 
Inputs Outputs 

s1 so bi n1 nObo 

0 0 0 0 0 0 0 

0 0 1 0 1 0 ---------
_________ , 

0 0 1 0 0 0 1 
0 1 1 1 0 1 --------- ---------· 

© 1 0 0 0 0 0 

1 0 1 1 0 0 ---------
_________ , 

1 1 0 0 0 0 
unused 

1 1 1 0 0 0 

(d ) 

~----~boo 
c "Tl 

elk 

Combinational 
logic 

s1 

(b) 

n1 = s1 's0bi + s1sO'bi 
no = s1 'sO'bi 

-CJ) 

~ s: 
n1 "' 

bo = s1 's0bi' + s1's0bi = s1's0 

Combinational logic 

(e) 

• 



138 3 Sequential Logic Design: Controllers 

Example 3.10 Sequence generator 

This example designs a sequential circuit with four out
puts: w, x, y, and z. The circuit should generate the fol
lowing sequence of output patterns: 0 001, 00 11. 1 1 00, 

and 1000. one per clock cycle. After 1000, the circuit 
should repeat the sequence. Sequence generators are 
common in a variety of systems, such as a system that 
blinks a set of four lights in a particular pattern for a fes
tive lights display. Another example is a system that 
rotates an electric motor a fixed number of degrees each 

Inputs: (none) Outputs: w, x, y, z 

wxyz=0001 wxyz=1 000 -cp---0 
wxyz=0011 wxyz=1 100 

clock cycle by powering magnets arcHmd the motor in a Figure 3.66 Sequence generator FSM. 
spe<:ific sequence to attract the magnetized motor to the 
next position in the rotation- known as a stepper motor. because the motor rotates in steps. 

The sequence generator controlJer can be designed 
using the controller design process: 

Step 1: Capture the FSM. Figure 3.66 shows an 
FSM having four states labeled A, B, C, and D 
(though any other four unique names would do 
j ust fine) to generate the desired sequence . 

Step 2A: Set up the architecture. The standard con
troller architecture for the sequence ge11erator 
will have a 2-bit state register to represent the 
four possible states, no inputs to the logic, and 
outputs w, x, y, z from the logic, along with 
outputs nl and no, as shown in Figure 3.67. 

Combinational 1--i!""+-
logic 

elk 

Figure 3.67 Sequence generator 
controller architecture. 

Step 2B: Encode the states. The states can be encoded as follows- A: 00, B : 01, C: 10, D: 11. 

Any other encoding with a unique code for each state would also be fine. 

Step 2C: Fill in the truth table. Table 3.4 shows the table for the FSM with encoded states. 

Step 2D: Implement the combinational logic. An equation can be derived for each output of the 
combinational logic directly from tl1c truth table. After some algebraic simplification, the 
equations are those shown below. The final circuit is shown in Figure 3.68. 

TABLE3.4 State table for sequence w sl 
generator controller. x slsO' 

Inputs Outputs y sl ' sO 

sl so w x y z nl no z sl' z 

A 
nl sl xor so 

0 0 0 0 0 1 0 1 
no so• 

B 0 1 0 0 1 1 1 0 

c 1 0 1 1 0 0 1 1 
s1 so 

no n1 

D 1 1 1 0 0 0 0 0 State re9i$ler Figure 3.68 Sequence generator ti!< 
controller with implemented 
combinational logic. • 



3.4 Controller Design 139 

Example 3.11 Secure car key controller (continued) 

a 

elk 

Let's complete the design for the secure car key controller from Example 3.4. We already carried 
out Step 1: Capture the FSM, shown in Figure 3.50. The remaining steps are as follows. 

Step 2A: Set up the architecture. The FSM has five. states, and thus requ.ires a 3-bit state reg
ister, which can represem eight states; three states will be unused. The inputs to the 
combinational logic are a and the three state bits s2, sl, and so, while the outputs are 
signal rand next state outputs n2, nl, and no. The architecture is shown in Figure 3.69. 

Step 2B: Encode the states. Let's encode the states using a straightforward binary encoding of 
000 through 100. The FSM with state encodings is shown in Figure 3.70. 

Step 2C: Fill in the truth table. The FSM converted to a truth table for the logic is shown in Table 
3.5. For the unused states. we have chosen to set r"' 0 and d1e next state to 000. 

Combinational 112 
logic 

n1 
no 

~ '= "t '-"a· 

~~100 

Inputs: a Outputs: r 

r=1 r=1 r=O r=1 

Figure 3.70 Secure car key FSM with encoded states. 

figure 3.69 Secure car key 
controller architecture. TABLE 3.5 Truth table for secure car key 

controller's combinational logic. 

Step 2D: Implement the combinational 
logic. We can design four circuits, one 
for each output, to implement the combina
tional logic. We leave this step as an 
exercise for the reader. 

Wait 

Kl 

K2 

KJ 

K4 

Unused 

s2 

0 
0 

0 

0 

0 
0 

0 
0 

1 
1 

1 
1 
1 
1 
1 
1 

Inputs 

s l so 

0 0 
0 0 

0 1 
0 1 

1 0 
1 0 

1 1 
1 1 

0 0 
0 0 

0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

Outputs 

a r n2 nl no 

0 0 0 0 0 
1 0 0 0 1 

0 1 0 1 0 
1 1 0 1 0 

0 1 0 1 1 
1 1 0 1 1 

0 0 1 0 0 
1 0 1 0 0 

0 1 0 0 0 
1 1 0 0 0 

0 0 0 0 0 
1 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 



140 3 Sequential Logic Design: Controllers 

Converting a Circuit to an FSM (Reverse Engineering) 

We showed in Section 2.6 that a circuit, truth table, and equation were all forms able to 
represent the same combinational function. Similarly, a circuit, state table, and FSM are 
all fonns able to represent the same sequential function. 

The process in Table 3.2 for converting an FSM to a circuit can be applied in reverse 
to convert a circuit to an FSM. In general, converting a circuit to an equation or FSM is 
known as reverse engineering the behavior of the circuit. Not only is reverse engineering 
useful to help develop a better understanding of sequential circuit design, but it can also 
be used to understand the behavior of a previously-designed circuit such as a circuit 
created by a designer who is no longer at a company, and also to check that a circuit we 
designed has the correct behavior. 

Example 3.12 Converting a sequential circuit to an FSM 

Given the sequcniial circuit in Figure 3.7 l. find 
an equivalent FSM. We start from step 2D in 
Table 3.2. The combinational circuit already 
exists. Step 2C fills in a truth table. The combi
national logic in the controller architecture bas 
three inputs: two inputs s 0 and s 1 represent 
the contents of the state register, and x is an 
external input. Thus the truth table will have 8 
rows because there are 23

"' 8 possible combina
tions of inputs. After listing the tmth table and 
enumerating all combinations of inputs (e.g., 
s l s0x=000, ... , s l s Ox=lll). the tech
niques in Section 2.6 can be used to fill in the 
values of the outputs. Consider d1e output y. 
The combinational circuit shows that y= sl '. 
Knowing this, we place a 1 in the v column of 
the tmth table in every row where sl = 0, and 

x 

n1 

no 
s1 so 

Figure 3.71 Circuit with unknown behavior. 

place a 0 in the remaining spaces in they column. Consider no, which the circuit shows as having 
the Boolean equation no ~ sl' so' x. Accordingly, we sec no to 1 when sl ~ O and so "' O and 
x = 1. We fill in the columns for z and nl using a s imilar analysis and move on to the next s tep. 

Step 2B encodes the states. The states have TABLE 3.6 Truth table for circuit. 
already been encoded. so this step in reverse assigns 
a name to encoded state. We arbitrarily choose the 
names A, B, C, and D, seen in Table 3.6. 

Step 2A sets up the standard controller architec-
tme. This step requires no work since the controller 
architecture was already defined. 

Finally. step 1 captures the FSM. Initially, we 
can set up an FSM diagram with the four states 
whose nan1es were given in siep 2A, shown in Figure 
3.72(a). Next, we list d1e values of the FSM outputs y 
and z next to each state as defined by the trudl table 

A 

B 

c 

D 

Inputs 

sl so 
0 0 
0 0 

0 1 
0 1 

1 0 
1 0 

1 l 
1 1 

Outputs 

x n l no y 

0 0 0 1 
1 0 1 1 

0 0 0 1 
1 1 0 1 

0 0 0 0 
1 1 0 0 

0 0 0 0 
1 0 0 0 

z 

0 
0 

0 
0 

1 
1 

0 
0 



3.4 Controller Design 141 

Outputs: y. z Inputs: x; Outputs: y. z 

0 0 0 0 YZ=10 

yz=10 yz= 10 

CD CD © CD yz=01 

YZ=00 YZ=01 
(a) (b) (e) 

Figure 3.72 Converting a truth iable to an FSM diagram: (a) initial FSM, (b) FSM with outputs specified, 
and (c) FSM with outputs and transitions specified. 

in Table 3.6. For example, in state A (sl sO = 00), the outputs y and z are 1 and 0, respectively, so 
we list "yz = 10" with state A in the FSM. 

After listing the outputs for states B, C, and D, shown in Figure 3.72(b), we examine the state 
transi tions specified in the truth table by nl and no. Consider the first row of the truth table, which 
says that n lnO = 00 when slsOx = 000. In other words, when in state A (slsO = 00). d1e next 
state is state A (nlnO = 00) if x is 0. We can represent this in the FSM diagram by drawing an 
arrow from state A back to state A and labeling the new transition "x 1 

." Now consider the second 
row of the truth table, which indicates d1at from state A, we transition to state B when X = 1. We add 
a transition arrow from state A to B and label it "x." After labeling all the transitions, we are left 
with the FSM in Figure 3.72(c). 

Notice that state D cannot be reached from any other state and transitions to s tate A on any 
input. We can reasonably infer that the original FSM had only three states and siate D is an extra, 
unused state. For completeness, it js preferable to leave state D in the final diagram, however. 

Given any synchronous circuit consisting of logic gates and flip-flops , we can always 
redraw the circuit as consisting of a state register and logic-the standard controller 
architecture- just by grouping all the flip-flops together. Thus, the approach described 
above works for any synchronous circuit, not just a circuit already drawn in the form of 
the standard controller architecture. 

Example 3.13 Reverse engineering the 0-flip-flop-based f light-attendant call button system 

Figure 3.34 showed a sequential circuit designed in TABLE 3.7 Truth table for circuit. 
an ad hoc manner rather than using this chapter's 
controller design process. Reverse engineering that 
circuit proceeds as follows. Treating the D flip- tlop 
as a one-bit state register with input D and output Q, 
step 2D obtains the equation for the controller 's out
put to the light as L = Q, and for the controller's 
next state as D = encl' Q + Call. Step 2C cre
ates a truth table. The inputs to d1e combinational 
logic are Q, Call. and encl, while the outputs are D 
and L. The table is shown in Table 3.7 , filling the out
put values based on the above equations for L and D. 
For step 28 in reverse, we give d1e name LightO.ff to 
the state Q=O, and LightOn to Q=l. 

light 
Off 

light 
On 

Q 

0 
0 

0 
0 

1 
1 

1 
1 

Inputs 

call encl 

0 0 
0 1 

1 0 
1 1 

0 0 
0 1 

1 0 
1 1 

Outputs 

D L 

0 0 
0 0 

1 0 
1 0 

1 1 
0 1 

1 1 
1 1 



142 3 Sequential Logic Design: Controllers 

Step 2A requires no action. Finally, 
step 1 in reverse creates the FSM from the 
truth table. The FSM goes from LighrOjf 
(Q=O) to LighrOn (Q= l ) if Call *Cncl' 

Inputs: Call, Cnc/ 

Call 

Outputs. L 

+ Call* encl is true, which simplified is Call' 
just Cal 1. It stays in LightOff if 
Call' encl ' + Call' encl is true, 
which s implifies to Call '. The truth table 
also shows that the FSM goes from state 
LightOn to LightOff when Call' *Cncl 

Call'*Cncl 

Figure 3.73 Reverse-engineered FSM for 
flight-attendant call button system. 

is true. It stays in lightOn if the condition Call ' enc l ' + Call xcncl' + Call xcncl is 
true, which simplifies to Call' e ncl' + Call, which further simplifies to encl' + Call. 

Note that this FSM js equivalent to the FSM in Figure 3.53 created directly to describe the flight
attendant call button system's desired behavior; the conditions that look different can be manipulated 
to be the same. Thus, the circuit built using the ad hoc approach seems to be correct in this case . 

• 
Common Mistakes when Capturing FSMs 

~ 
(a ) xy=1 1 -

next state? 

* (b~ 
Figure 3.74 A 
state's transitions 
should be exclusive. 

(a) what if 
xy=OO? 

x' ' * 
(b~ 

Figure 3.75 A state's 

transitions must be 
complete. 

Some mistakes are commonly made when capturing an FSM, relating to propenies 
regarding the transitions leaving a state. In short, one and only one transition condition 
should ever evaluate to true during any ris ing clock edge. The common mistakes involve: 

1. Non-exclusive tra11sitions-For a given state, when a ris ing clock comes, all the 
state's transitions should be exclusive, meaning no more than one transition con
dition should be true. Consider an FSM with inputs x and y , and a state S with the 
two outgoing transitions shown in Figure 3.74(a). What happens when x = 1 and 
y = 1- which transition should the FSM take? An FSM should be deterministic, 
meaning the transition to take can always be uniquely determined. The FSM 
creator might label the transitions " x" and "x' y" as shown in Figure 3.74(b) to 
solve the problem. Actually, a particular type of FSM known as a 1wndetermin
istic FSM does allow more than one condition to be true and chooses among them 
randomly. But we want deterministic FSMs when designing circuits, so we won't 
consider nondeterministic FSMs further. 

2. Jncompl.ete transitions- For a given state, when a rising clock edge comes, the 
state's transitions must be complete, meaning one of the transitions from that state 
must have a true condition. In other words, every input combination should be 
accounted for in every state. Designers sometimes forget to ensure this. For 
e~ample, consider an FSM with inputs x and y, and a state S with the outgoing 
transitions shown in Figure 3.75(a). What happens if the FSM is in S, and x = o 
and y = o? Nei ther of the two transitions from the state has a true condition. The 
FSM is incompletely specified. An FSM creator can add a third transition, indi
cating what s tate to go to if x 1 y' is true, as in Figure J.75(b). The three 
transitions now cover all possible values of x and y. A conunonly forgotten tran
sition is a transition pointing from a state back to itself. Sometimes making a 
transition the complement of another transition is a s imple way to ensure com
pleteness; e.g., if one of two transitions has the condition xy, then the other 
b·ansition can be given the condition ( x y) ' (avoid trying to write that other con
dit ion as x' +y' as that commonly leads to mistakes). 



3.4 Controller Design 143 

A designer can verify the above two properties using Boolean algebra. The exclusive 
transitions property can be verified by ensuring that the AND of every pair of conditions 
on a state 's transitions always results in 0. For example, if a state has two transitions, one 
with condition x and the other with condition x' y, transfonnations of Boolean algebra 
can be used as follows: 

x * x'y 
( X * XI) * Y 
0 * y 
0 

If a state has three transitions with conditions Cl , C2, and CJ, the designer can verify 
that Cl *C2=0, CJ *C3=0, and finally that C2*C3=0, thus verifying that every pair yields 
o. Note that verifying that CJ *C2*C3=0 does not verify that the transitions are exclusive; 
for example, if CJ and C2 were exclusive but C2 and CJ were not, Cl *C2*C3 would still 
equal o because o*C3=o. 

The second property of complete transitions can be verified by checking that the OR 
of all the conditions on a stare 's transitions results in l . Considering the same example of 
a state that has two transitions, one with condition x and the other with condition x' y, 
transformations of Boolean algebra can be applied as follows: 

x + x'y 
x* ( l +y) + x 'y 

x + xy + x'y 
x + (x+x' ) y 

x + y 

The OR of those two conditions is not 1 but rather x +y. If x and y were both o, 
neither condition would be true, and so the next state would not be specified in the FSM. 
Figure 3.75(b) fixed this problem by adding another transition, x' y' . Checking these 
transitions yields: 

x + x'y + x'y' 
x + x' (y+y' ) 
x + x' *l 

x + x' 
1 

If a state has three transitions with condi tions Cl , C2, and CJ, the designer can verify 
that CJ +C2+CJ=l. 

Proving the properties for the transitions of every state can be time-consuming. A 
good FSM capture tool will verify the above two prope11ies automatically and inform the 
designer of any problems. 



144 3 Sequential Logic Design: Controllers 

Example 3.14 

As evidence that 
this "pitfall" is 
indeed common. 
we admit thai the 
hypmhetical 
111is1ake in this 
example was in 
facl a mistake 
made 111 an early 
edition of this 
baok. A reviewer of 
rhe book caughr it. 
We added this 
example and this 
110/I! to stress the 
poil!t that the 
mistake is co111111011. 

Verifying transition properties for the code detector FSM 

U=O 

Inputs: s ,r,g,b,a 
Outputs: u 

Recall the code detector from 
Example 3.6. Suppose a designer 
instead captured the behavior as 
shown in Figure 3.76, using dif
ferent conditions for t11e transi
tions leaving the states Start. 
Red], Blue, and Green. We want 
to verify the exclusive transition 
property for the transitions leav
ing state Start. There are three 
conclitions: ar, a' , and 
a {r' +b+g) . We thus have three 
pairs of c011ditions. We AND each 
pair and prove that each equals U 
as follows: 

Figure 3.76 Problematic code detector FSM. 

ar * a' 
(a*a' ) r 

O*r 
0 

a' * a {r' +b +g) 

(a'*a}* (r' +b+g) 
O*{ r' +b+g) 
0 

ar * a {r' +b+g) 

(a*a) *r* (r' +b+g) 
a*r* {r' +b+g) 
arr' +arb+arg 
o + arb+arg 
arb + arg 
ar {b+g) 

It appears the FSM bas non-exclusive transitions, because the AND of the third pair of condi
tions does not result in 0, which in tum means both conditions could be true at the same 
time-resul ting in a nondeterministic FSM (if botl1 conditions are true, what is the next state?). 
Recall from the code detector problem description that we want to transition from the Start state to 
the Red! state when a button is pressed (a=l) and th at button is the red button and no other colored 
button is pressed. The FSM in Figure 3.76 has the condition ar. The mistake is under-specifying 
this condition; it should instead be arb' g ' - in otl1er words, a button has been pressed (a) and it 
is the red button (r) and the blue button has not been pressed (b ') and the green button has not been 
pressed (g' ). The transition from Stanl back to the Wait state could then be written as 
a {rb' g • ) ' (which is the same as in Figure 3.76 after applyjng DeMorgan·s Law). After this 
change, we can again try to verify the "only one condition is true .. property for all pairs of the three 
conditions arb' g' , a' , and a (rb' g') ' : 

arb 1 9 1 * a' 
aa' *rb'g' 
O*rb'g' 
0 

a 1 *a(rb 1 g 1
)

1 

O*(rb'g')' 
0 

arb' g' * a ( rb 'g' ) 1 

= a*a* (rb ' g' ) * (rb ' g' ) • 
write rb 'g' as Y for clarity ... 

a*a*Y*Y' 
a*a* O 

= 0 

We WQuld need to change the transition conwtions of the other states similarly (as was done in 
Figure 3.58), and then check the pairs of conditions for those states' transitions too. 



elk 

3.4 Controller Design 145 

To verify the completeness property for state Start, we OR the three conditions and prnve they 

equal 1: 

arb I g I + a I I + a (rb I g I ) I 

a• + arb 'g' + a (rb 'g' ) ' (write rb ' g' as Y for clarity) 
a' + aY + aY' 
a' + a (Y+Y') = a' + a ( l ) 
a' + a 
1 

We would need to check dle property for all other states too. 

FSM and Controller Conventions 

CJD 
a =O a=O 
b=1 b=O 
=O =1 

* CJD 
b=1 b=O 

Figure 3.77 
Unassigned outputs 
implicitly set to 0 . 

a 

Figure 3.78 Implicit 
clock connections. 

Simplifying FSM Notations: Unassigned Outputs 
We already introduced the simplified FSM notation wheTein every transition is implicitly 
ANDed with a rising clock edge. Another commonly used simplification involves 
assigning outputs. If an FSM has many outputs, listing the assignment of every output in 
every state can become cumbersome, and make the relevant behavior of the FSM hard to 
discern. A common simplifying notation is shown in Figure 3.77- if an output is not 
explicitly assigned in a state, the output is implicirly assigned a o. If the assignment of an 
output to o in a state is fundamental to understanding that state's behavior, then the output 
should still be explicitly assigned to o in order to aid someone trying to understand the 
behavior of the FSM. 

Simplifying Circuit Dn1wings: Implicit Clock Connections 
Most sequential circuits have a single clock s ignal connected to all sequential compo
nents. A component is known to be sequential because of the small triangle input drawn 
on the component's block symbol. Many circuit drawings therefore use a simpLification 
wherein the clock s ignal is assumed to be connected to all sequential components, as in 
Figure 3.78. This simplification leads to less cluttered wiring in the drawing. 

Mathematical Formalisms in Combina tional and Sequential Circuit Design 
This book bas thus far described two mathematical fonnalisms, Boolean functions and 
FSMs, for designing combinational and sequential circuits, respectively. Note that those for
malisms aren' t necessary to design circuits. Recall that the first attempt at building a three
cycles-high laser timer in Figure 3.41 just involved connecting components together in the 
hopes of creating a correctly working circuit. However, using those formalisms provides for 
a stmctured method of designing circuits. Those formalisms also provide the basis for pow
erful automated tools to assist with design, such as a tool that would automatically check for 
the common pitfalls described earlier in this section, tools that automatically convert 
Boolean equations or FSMs into circuits, tools that verify that two circuits are equivalent, or 
tools that simulate systems. The chapter scarcely touched on all the benefits of those math
ematical fonnalisms relating to automating the various aspects of designing circuits and of 
verifying that the circuits behave properly. The importance of using sound mathematical 
formalisms to guide design cannot be overstated. 



146 3 Sequential Logic Design: Controllers 

3.5 MORE ON FLIP-FLOPS AND CONTROLLERS 

Non-Ideal Flip-flop Behavior 

When first learning digital design we a<;sume ideal behavior for logic gates and flip-flops, 
just like when first learning physics of motion we assume there's no friction or wind 
resistance. However, there is a non-ideal behavior of flip-flops- metastability- that is 
such a common problem in the prnctice of real digital design, we feel obliged to discuss 
the issue briefly here. Digital designers in practice should study metastability and pos
sible solutions quite thoroughly before doing serious designs. Metastability comes from 
failing to meet flip-flop setup or hold times, which are now introduced. 

Setup Times and Hold Times 
Flip-flops are built from wires and logic gates, and wires and logic gates have delays. 
Thus, a real flip-flop imposes some restrictions on when the flip-flop 's inputs can change 
relative to the clock edge, in order to ensure correct operation despite those delays. Two 
impmtant restrictions are: 

• Setup time: The inputs of a flip-t)op (e.g., the D 
input) must be stable for a minimum amount of time, 
known as the setup time, before a clock edge arrives. 
This intuitively makes sense- the input values must 
have time to propagate through any flip-flop internal 
logic and be waiting at the internal gates' inputs 
before the clock pulse arrives. 

• Hold time: The inputs of a flip-flop must remain 
stable for a minimum amowlt of time, known as the 
hold time, after a clock edge anives. This also makes 
intuitive sense- the clock s ignal must have time to 
propagate through the internal gates to create a stable 
feedback situation. 

clk_Jl_ 
I 

o..f!l_ 
I I 

' ' ·-1 I 

setup time 

elk~ 
I 

o--1h-
, I 
I I 
I I ,___, 
I o 

hold time 

figure 3.79 Flip-flop setup 
A related restriction is on the rrurumum clock pulse and hold time restrictions. 

width- the pulse must be wide enough to ensure that the 
correct values propagate through the intemal logic and create a stable feedback situation. 

A flip-flop typically comes with a datasheet describing setup times, hold times, and 
minimum clock pulse widths. A datasheet is a document that tells a designer what a com
ponent does and bow to properly use that component. 

Figure 3.80 illustrates an example of a setup time violation. D changed to o too close 
to the rising clock. The result is that R was not 1 long enough to create a stable feedback 
situation in the cross-coupled NOR gates with Q being o. Instead, Q glitches to o briefly. 
That glitch feeds back to the top NOR gate, causing Q' to glitch to 1 briefly. That glitch 
feeds back to the bottom NOR gate, and so on. The oscillation would likely continue until 
a race condition caused the circuit to settle into a stable situation of Q = o or Q = 1- or the 
cin;uit could enter a metastable state, which we now describe. 



elk~ 

o+®i-
' I I I ,_ 
I I 

setup time 
violation 

Q~ 
metastable 

state 

Figure 3.81 Metastable 
flip-flop state caused by 
a setup time violation. 

3.5 More on Flip-Flops and Controllers 147 

D latch c 

D 

s 

u 

R 

Q' 

Q 

Figure 3.80 Senip time violation: D changed to 0 ( J) too close to the rising clock. u changed to 1 
after the inverter delay (2), ru1d then R changed to 1 after the AND gate delay (3). But then the 
clock pulse was over, causing R to change back to 0 (4) before a stable feedback situation with 
Q=O occurred in the cross-coupled NOR gates. R's chru1ge to 1 did cause Q to change to 0 after the 
NOR gate delay (5), but R's change back to 0 caused Q to change right back to 1 (6). The glitch of 
a 0 on Q fed back into the top NOR gate, causing Q ' to glitch to 1 (7). That glitch of a 1 fed back 
to the bottom NOR gate, causing another gli tch of a 0 on Q. That glitch nms around the cross
coupled NOR gate circuit (oscillation)- a race condition would eventually cause Q to settle to 1 or 
0, or possibly enter a metastable state (to be discussed). 

Metastability 
lf a designer fai ls to ensure that a circuit obeys the setup and hold times of a flip-flop , the 
result could be that the flip-flop enters a metastable scate. A tlip-flop in a metastable state 
is in a state other than a stable O or a stable 1. Metastable in general means that a system 
is only marginally stable- the system has other states that are far more stable. A flip-flop 
in a metastable state may have an output with a value that is not a o or a l, instead out
putting a voltage somewhere between that of a o and that of a 1. That voltage may also 
oscillate. Such an output is clearly a problem. Since a flip-flop's output is connected to 
other components like logic gates and other flip-flops, that strange voltage value may 
cause other components to output strange values, and soon the values throughout an 
enti re circuit can be in bad shape. 

Why would we ever violate setup and hold times? After all, within a circuit we design, 
we can measw-e the longest possible path from any flip-flop output to any tlip-flop input. As 
long as we make the clock period sufficiently longer than that longest path, we can ensure 
the circuit obeys setup times. Likewise, we can ensure that hold times are satisfied too. 

The problem is that our circuit likely has to interface to external inputs, and we can't 
control when those inputs change, meaning those inputs may violate setup and hold times 
when connected to flip-flop inputs. For example, an input may be connected from a 
button being pressed by a user-the user can't be told to press the button so many nano
seconds before a clock edge and to be sure to hold the button so many nanoseconds after 
the clock edge so that setup and hold times are satisfied. So metastability is a problem 
primarily when a flip-flop has inputs that are not synchronized with the circuit's 



148 3 Sequential Logic Design: Controllers 

clock- in other words, metastability is a problem when dealing with asynchronous 
i11puls. 

Designers typically try to synchronize a cir
cuit's asynchronous input to the circuit's clock 
before propagating that input to components in 
the circuit. A common way to synchronize an 
asynchronous input is to first feed the asynchro
nous input into a D flip-flop , and then use the 
output of that flip-flop wherever the input is 
needed, as shown for the asynchronous input ai 
in Figure 3.82. 

"Hold on now!" you might say. Doesn't that 
synchronizing flip-flop experience the setup and 
hold time problem, and hence the same metas ta
bility issue? Yes, that's trne. But at least the 
asynchronous input directly affects only one flip
flop, rather than perhaps several or dozens of tlip
flops and other components. And that synchronizer 
flip-flop is specifically introduced for synchroniza
tion purposes and has no other purpose, whereas 
other flip -flops are being used to store bits for 

\ 
\ 

ai \ 

\ , 
\ , I 

\ 
\ I 

I 

\ I 

/\ 
/ \ 

I \ 
I \ 

I \ 
I \ 

I 
I 

ai 

t 
synchronizer 

Figure 3.82 Feeding an asynchronous 
external input into a single flip-flop can 
reduc e metastability problems . 

other pwposes. We can therefore choose a flip-flop for the synchronizer that minimizes the 
metastability problem-we can choose an extremely fast flip-flop, and/or one with very 
small setup and hold times, and/or one with special circuitry to minimize metastability. That 
flip-flop may be bigger than normal or consume more power than nom1al, but there' s only 
one such 1lip-flop per asynchronous input, so those issues aren' t a problem. Bear in mind 
that no maner what we do, though, the synchronizer flip-flop could s till become metas table, 
but at leas t we can minimize the odds of a metastable state happening by choosing a good 
flip-flop. 

Another thing to consider is 
that a flip-flop will typically not 
stay metastable for very long. 
Eventually, the flip-flop will 
" topple" over to a stable o or a 
stable 1, like how a coin tossed 
onto the ground may spin for a 
while (a metastable state) but 
will eventually topple over to a 
very stable head or tail. What 
many designers therefore do is 
introduce two or more flip-tlops 
in series for synchrotlization 
purposes, as shown in Figure 
3.83. So even if the first flip-

Probability of flip-flop being 
metastable is: 

low 

ai 

very 
low 

very 
very 
low 

"" t / synchronizers 

incredibly 
low 

Figure 3.83 Synchronizer flip-flops reduce probability of 
metastability in a circuit 's regular flip-flops. 

flop becomes metastable, that flip-flop will likely reach a stable state before the next clock 
cycle, and thus the second flip-flop is even less likely to go metastable. Thus the odds of a 



3.5 More on Flip-Flops and Controllers 149 

metastable signal actually making it to our circuit's normal flip-flops are very low. This 
approach has the obvious drawback of delaying changes on the input signal by several 
cycles- in Figure 3.83 , the rest of the circuit won't see a change on the input ai for three 
cycles. 

As clock periods become shorter and shorter, the odds of the first tlip-flop stabilizing 
before the next clock cycle decreases, so metastability is becoming a more challenging issue 
as clock periods shrink. Many ad vanced metbods have been proposed to deal with the issue. 

Nevertheless, no matter how hard we try, metastability will always be a possibility, 
meaning our circuit may fail. We can minimize the likelihood of failure, but we can't 
completely eliminate failures due to metastability. Designers often rate their designs 
using a measure called mean time between failures, or MTBF. Designers typically aim 
for MTBFs of many years. Many students find this concept- that we can't design fail
proof circuits- somewhat disconcerting. Yet, that concept is the real situation in design. 

Designers of serious high-speed digital circuits should study the problem of metasta
bility, and modern solutions to the problem, thoroughly. 

Example 3.15 Adding a flip-flop to an asynchronous input to reduce the metastability problem 

Figure 3.69 showed t:be control
ler circuit for a secure car key 
controller. Assuming the input a 
is asynchronous, the11 changes 
on input a could propagate 
through the controller's combi
national logic to the state regis
ter's flip- flops such that flip
flop setup or hold times would 
be violated, resulting in meta
stable values. A synchronizer 
flip-flop could be added to the 
circuit's input to reduce the like
liJ1ood of metastability prob
lems, as shown in Figure 3.84. 

Flip-Flop Reset and Set Inputs 

Original 
a D 

flip-flop 
a r 

Combinational n2 
logic 

nl 
no 

Figure 3.84 Secure car key controller extended with D flip
flop on asynchronous i11put to reduce chances of 
metastability problems. 

• 

Some D flip-flops (as well as other flip-flop types) come with extra inputs that can force the 
tlip-flop to o or 1, independently of the D input. One such input is a clear, or reset, input 
that forces the flip-flop to o. Another such input is a set input that forces the tlip-flop to 1. 

Reset and set inputs are very useful for initializing tlip-flops to an initial value (e.g., initial
izing ail flip-flops to Os) when powering up or resetting a system. These reset and set inputs 
should not be confused with the R ands inputs of an RS latch or t1ip-t1op-the reset and set 
inputs are special control inputs to any type of flip-flop (D, RS, T, JK) that take priority over 
the normal data inputs of a flip-flop. 



150 3 Sequential Logic Design: Controllers 

The reset and set inputs of a flip
flop may be either synchronous or 
asynchronous. A synchronous reset 
input forces the flip-flop to o, regard
less of the value on the D input, during 
a rising clock edge. For the tlip-flop in 
Figure 3. 85(a), setti11g R to 1 forces 
the flip-flop to o on the next clock 
edge. Likewise, a synchronous set 
input forces the flip-flop to 1 on a 
rising clock edge. The reset and set 
inputs thus have priority over the D 

D Q' D 

Q 
A 

(a) 

Q' 

Q 
AR 

(b) 

AR 
D Q' 

Q 
AS 

(c) 

Figure 3.85 D flip-flops with: (a) synchronous reset 
R, (b) asynchronous reset AR, and (c) asynchronous 
reset and set. 

input. If a flip-flop has both a synchronous reset and a synchronous set input, the flip-flop 
datasheet must i11fonn the flip-flop user which has priority if both inputs are set to 1. 

An asynchronolts reset clears the flip-flop to o independently of the clock 
signal-the clock does not need to be rising, or even be 1 , for the asyn chronous reset to 
occur- hence the term "asynchronous." Likewise, an asynchronous set, also known as 
preset, can be used to asynchronously set the flip-flop to 1 . A flip-flop 's datasheet must 
indicate bow long such inputs take to have effect, usually at least 1 clock cycle. 

For brevity, we omit discussion 
of how synchronous/asynchronous 
reset/set inputs would be internally 
designed in a flip-flop. 

Sample behavior of a D flip
flop 's asynchronous reset input is 
shown in Figure 3.86. We assume 
that the flip-flop initial1y stores 1 . 

Setting AR to 1 forces the flip-flop 
to o, independent of any clock edge. 
When the next clock edge appears, 

AR is still l , so the flip-flop stays o 
even though the input D is 1 . Wllen 
AR returns to o, the flip-flop follows 
the D input on successive clock 
edges, as shown. 

Initial State of a Controller 

cycle 1 cycle 2 cycle 3 cycle 4 
elk---~~---~--..... ·----

o---' 

AR 

Figure 3.86 Asynchronous reset forces the flip-flop 
ouiput Q to 0, independent of elk or D input 

Particularly observant readers may have come up with a question when an earlier section 
implemented FSMs as controllers: what happened to the indication of the initial state of 
an FSM when we des igned the controller implementing the FSM? The initial state of an 
FSM is the state that the FSM starts in when the FSM is first activated-or in controller 
terms, when the controller is first powered on. For example, the laser timer controller 
FSM in Figure 3.47 has an initiaJ state of Off When we converted graphical FSMs to 
truth tables , we ignored the initiaJ state infonnation. Thus, all of the controller circuits 



3.5 More on Flip-Flops and Controllers 151 

designed earlier in this chapter start in some random state based on whatever values 

happen to appear in the state register when the circuit is first powered on. Not knowing 
the initial state of a circuit could pose a problem- for example, we don' t want our laser 

timer controller to start in a state that immediately turns on the laser. 
One solution is to add an additional input, reset, to every controller. Setting reset 

to 1 should cause a load of the initial state into the state register. This initial state should 
be forced into the state register. The reset and set inputs of a flip-flop come in very handy 
in this situation. We can simply connect the controller's reset input to the reset and set 
inputs of the state register's flip -flops in a way that sets the flip-flops to the initial state 
when reset is 1. For example, if the initial state of a 2-bit state register should be 01, 
then we could connect the controller 's reset input to reset and set inputs of the two flip
flops as shown in Figw-e 3.87. 

Of course, for this reset func
tionality to work as desired, the 
designer must ensme that the con
troller's reset input is 1 when the 
system is first powered up. Ensuring 
that the reset input is 1 during power 
up can be handled using an appro
priate electronic circuit connected to 
the on/off switch, the description of 
which is beyond the scope of this 
book. 

Note that, if the synchronous 
reset or set inputs of a flip-flop are 
used, then the earlier-discussed setup 
and hold times, and associated meta
stability issues, apply to those reset 
and set inputs. 

Non-Ideal Controller Behavior: Output Glitches 

b x - Combinational r--
logic n1 

·~ ·~ 
no 

s1 so 
State register 

elk 
C> - ~o O' ~ ~o O' C>-

C> 
R 

a - [> 
s 

Q -
reset l I 

Figure 3.87 Three-cycles-high laser timer controller 
with a reset input that loads the state register with 
the initial s tate U l. 

Glitching is the presence of temporary values on a wire typically caused by different 
delays of different logic paths leading to that wire. We saw an example of glitching in 
Figure 3.15. Glitching will also often occur when a controller changes states, due to dif
ferent path lengths from each of the controller's state register flip-flops to the controller's 
outputs. Consider the three-cycles-high laser timer design in Figure 3.62. The laser 
should be off (output x=O) in state slsO=OO and on (x=l) in states slsO=Ol , 
sls0=1 0, and slsO=ll. However, the delay of the wire from sl to x's OR gate in the 
figure could be longer than the delay of the wire from so to that OR gate, perhaps due to 
different wire lengths. The resuJt could be that when the state register changes state from 
slsO=O l to slsO=lO, the OR gate's inputs could momentarily become 00. The OR 
gate would thus output o momentarily (a glitch). In the laser timer example, that glitch 

could momentarily shut off the laser- an undesired situation. Even worse would be 
glitches that momentarily tum on a laser. 



152 3 Sequential Logic Design: Controllers 

A simple solution to controller output 
glitching is to add a flip-flop to the output. 
Figure 3.88 shows the laser-timer controller 
with a a flip-flop added to the x output. The 
flip-flop shifts the x output later by 1 clock 
cycle, wltich still results in three cycles high, 
but eliminates glitches from propagating to the 
x output--only the stable value appearing at 
the output would be loaded into the flip-flop 
on a rising clock edge. An output with a flip
flop added is called a registered output (think 
of the tlip-flop as a one-bit register). Regis

tered outputs are very common and should be 
used whenever there is any concern of glitches 
causing problems and when the shifting of the 
output later by one clock cycle is acceptable. 

If the one cycle shift is not acceptable, an 
alternative registered output solution is to 
widen the state register such that each con
troller output Xj has its own bit Nj in the 
state register, and to encode each state Sk 
such that Nj is 1 whenever Xj is assigned 1 

in that state, and such that Nj is o otherwise. 
Then, the output Xj should be connected 
directly from bit Nj of the state register. 
Because there will be no logic between the 
flip-flop for Nj and the output Xj , Xj will 
not experience gli tches. 

Figure 3.89 shows an encoding for the 
laser timer FSM where a bit has been added 
to the encoding con·esponding to output x. 
The state encoding for state Off (which sets 
x to O) has a o in that bit location. and has a 
1 in the other three states (which set x to 1). 

Figure 3.90 shows how the controller would 
then connect x directly with its corre-

D 
flip-flop 

Figure 3.88 Laser timer controller with 
registered output to prevent glitches. 

Inputs: b Outputs: x 

........ E~=O .b' Off 

b 
X=1 

01 1 On1 

figure 3.89 Laser timer state encoding wjth an 
extra bit corresponding to output x . 

sponding state register bit. figure 3.90 Laser timer controller with x 
Each of the above approaches has a connected to its state register bit. 

drawback. The first approach shifts the 
outputs by one clock cycle and uses extra flip-flops. The second approach uses a wider 
state reg ister and more combinational logic to compute the next state. Registered outputs 
therefore should be used when glitches should be avoided, like when the output controls 
a laser. In other cases, like in Chapter S's use of controllers, the glitches don't cause prob
lems and thus registered outputs aren't needed. 



3.8 Product Profile-Pacemaker 153 

3.6 SEQUENTIAL LOGIC OPTIMIZATIONS AND lRADEOFFS 
(SEE SECTION 6.3) 

The earlier sections described how to design basic sequential logic. This section, which 
physically appears in this book as Section 6.3, describes how to create better sequential 
logic (smaller, faster, etc.) using optimizations and tradeoffs. One use of this book 

involves studying sequential logic design optimizations and tradeoffs immediately after 
studying basic sequential logic design, meaning now. An alternative use studies sequen

tial logic design optimizations and tradeoffs later, after studying the introduction of basic 
darapath components and RTL design (Chapters 4 and 5). 

3.7 SEQUENTIAL LOGIC DESCRIPTION USING HARDWARE 
DESCRIPTION LANGUAGES (SEE SECTION 9.3) 

This section, which physically appears in this book as Section 9.3, introduces HDLs for 

describing sequential logic. One use of this book studies HDLs for sequential logic 
immediately after studying basic sequential logic design, meaning now. An alternative 

use studies HDLs for sequential logic later. 

3.8 PRODUCT PROFILE- PACEMAKER 

A pacemaker is an electronic device that provides electrical stimulation to the heart to 
help regulate the heart's beating, steadying a heart whose body's natural " intrinsic" pace
maker is not working properly, perhaps due to disease. Implantable pacemakers, which 

are surgically placed under the skin as shown in Figure 3.9 1, are worn by over 1/2 million 
Americans. They are powered by a battery that lasts ten years or more. Pacemakers have 
improved the quality of life as well as lengthened the lives of many millions of people. 

Figure 3.91 Pacemaker wid1 leads (left), and pacemaker's location under the skin (right). Courtesy of 
Medtronic, Inc. 



154 3 Sequential Logic Design: Controllers 

Pacemaker 

Controller 

z 

Timer 
(counts down 

from O.Ss) 

Figure 3.92 A basic pacemaker's controller FSM. 

Inputs: s, z 
Outputs: t, p 

t:ol , P=O 

A heart has two atria (left and right) and two ventricles (left and tight). The ventri
cles push the blood out to the arteries, while the atria receive the blood from the veins. A 
very simple pacemaker has one sensor to detect a natural <:ontraction in the heart's right 
ventricle, and one output wire to deliver electrical stimulation to that right ventricle if the 
natural contraction doesn't occur within a specified time period- typically just under one 
second. Such electrical stimulation causes a contraction, not only in the right ventricle, 
but also the left ventricle. 

We can describe the behavior of a simple pacemaker's controller using the FSM in 
Figure 3.92. The left side of the figure shows the pacemaker, consisting of a controller 
and a timer. The timer has an input t, which resets the timer when t = l. Upon being 
reset, the timer begins counting down from 0.8 seconds. If the timer counts down to o, the 
timer sets its output z to 1. The timer could be reset before reaching o, in which case the 
timer does not set z to 1, and instead the timer starts counting down from 0.8 seconds 
again. The controller has an input s, which is 1 when a contraction is sensed in the right 
ventricle. The controller has an output p , which the controller sets to 1 when the con
troller wants to cause a paced contraction. 

The right side of the figure shows the controller's behavior as an FSM. Initially, the 
controller resets the timer in state ResetTimer by setting t = 1. Normally, the controller 
waits in state Wait, and stays in that state as long as a contrnction is not detected (s ') and 
the timer does not reach o (z ' ).If the controller detects a natural contraction (s), then the 
controller again resets the timer and returns to waiting again. On the other hand, if the 
controller sees that the timer has reached o (z = 1), then the controller goes to state Pace, 
which paces the herut by setting p =l, after which the controller returns to waiting again. 
Thus, as long as the heart contracts naturally, the pacemaker applies no stimulation to the 
heart. But if the heart doesn' t contract naturally within 0.8 seconds of the last contraction 
(natural or paced), the pacemaker forces a contraction. 

The atria receive blood from the veins, and contract to push the blood into the ventri
cles. The atrial contractions occur just before the ventricular contractions. Therefore, 
many pacemakers, known as "an·ioventricular" pacemakers, sense and pace not just the 
ventricular contractions, but also the atrial contractions. Such pacemakers thus have two 



Controller 

ta za 

TimerA TimerV 

right atrium 

right left 
ventricle ventricle 

3.8 Product Profile-Pacemaker 155 

Inputs: sa, za, sv, zv 
Outputs: pa, ta, pv, tv 

ta=1 

Figure 3.93 An atrioventricular pacemaker's controller FSM, using the convention that FSM 
outputs not explicitly set in a s tate are implicitly set to 0. 

sensors, and two output wires for electrical stimulation, and may provide better cardiac 
output, with the desirable result being higher blood pressure (Figure 3.93). 

The pacemaker has two timers, one for the right atrium (TimerA ) and one for the 
right ventricle (TimerV). The controller initially resets TimerA in state ResetTimerA, and 
then waits for a natural atrial contraction, or for the timer to reach o. If the controller 
detects a natmal atrjal contraction (sa), then the controller skips its pacing of the atriwn. 
On the other hand, if TimerA reaches o first, then the controller goes to state PaceA, 
which causes a contraction in the atrium by setting pa =l. After an atrial contraction 
(either natural or paced), the controller resets TimerV in state Rese!TimerV, and then waits 
for a natural ventricular contraction, or for the timer to reach o. If a natural ventricular 
contraction occurs, the controller skips pacing of the ventricle. On the other hand, if 
TimerV reaches o first, then the controller goes to state PaceV, which causes a contraction 
in the ventricle by setting pv= 1 . The controller then returns to the atrial states. 

Most modern pacemakers can have tbe timer parameters programmed wjrelessly 
through radio signals so that doctors can try different treatments without having to surgi
cally remove, program, and reimplant the pacemaker. 

Tlris example demonstrates the usefulness of FSMs in describing a controller's 
behavior. Real pacemakers have controllers with tens or even hundreds of states to deal 
with various details that we left out of the example for simplicity. 

With the advent of low-power microprocessors, a trend in pacemaker design is that of 
implementing the FSM on a microprocessor rather than with a custom sequential circuit. 
Microprocessor implementation yields the advantage of easy reprogramming of the FSM, 
expandi ng the range of treatments with which a doctor can experiment. 



156 3 Sequential Logic Design: Controllers 

3.9 CHAPTER SUMMARY 
Section 3. 1 introduced the concept of sequentiaJ circuits, namely circuits that store bits, 
Such circuits thus have memory, and the cmrent values in such memory is known as state. 

Section 3.2 developed a series of increasingly robust bit storage blocks, including the SR 
latch, D latch, D flip-flop, and finally a register, which can store multiple bits. The 
section aJso i11troduced the concept of a clock, which synchronizes the loads of registers. 

Section 3.3 introduced finite-state machines (FSMs) for capturing the desired behavior of 
a sequential circuit, and a standard architecture able to implement FSMs, with an FSM 
implemented using the ru·chitecture known as a controller. Section 3.4 then described a 

process for converting an FSM to a controller implementation. Section 3.5 described 
severaJ timing issues related to the use of flip-flops, including setup time, hold time, and 

metastability, and the use of synchronizer flip-flops to reduce metastability problems. The 
section introduced asynchronous clear and set inputs to flip-flops, and described their use 

for initializing an FSM to its initial state. The section described the problem of output 
glitches and the use of registered outputs to eljminate the problem. Section 3.8 high
lighted a cardiac pacemaker and illustrated the use of an FSM to describe the 
pacemaker's behavior. 

Designing a combinational circuit begins by capturing the desired circuit behavior 
using either an equation or a truth table, and then following a several step process to 

convert the behavior to a combinational circwt. Designing a sequential circuit begins by 
capturing the desired circuit behavior a<; an FSM, and then fo llowing a several-step 

process to convert the behavior to a circuit consisting of a register and a combinational 

circuit, which together are known as a controller. Thus, conceptually, the knowledge in 
Chapters 2 and 3 can be used to build any digital c ircuit However, many digital c ircuits 
deal with input data that arc many bits wide, such as two 32-bit inputs representing two 

binary numbers. Imagine how complex the equations, trnth tables, or FSMs would be if 
they involved two 32-bit inputs. Fortunately, components have been developed specifi

cally to deal with data inputs and that therefore simplify the design process--components 
that will be described in the next chapter. 



3.10 EXERCISES 

An asterisk (*) indicates an especially challenging problem. 

SECTION 3.2: STORING ONE BIT-FLIP-FLOPS 

3.1 Compute the clock period for the following clock frequencies. 
(a) 50 kHz (early computers) 
(b) 300 MHz (Sony Playstation 2 processor) 
(c) 3.4 GHz (Intel Pentium 4 processor) 
(d) IO GHz (PCs of the early 2010s) 
(c) 1 THz (1 tcrahcrlz) (PC of the future?) 

3.2 Compute the clock period for the following clock frequencies. 
(a) 32.768 kHz 
(b) 100 MHz 
(c) 1.5 GHz 
(d) 2.4 GHz 

3.3 Compute the clock frequency for the follow ing clock periods. 
(a) I s 

(b) I ms 
(c) 20 ns 
(d) 1 ns 
(c) 1.5 ps 

3.4 Compute the clock frequency for the follow ing clock periods. 
(a) 500 ms 
(b) 400 ns 
(c) 4 ns 
(d) 20 ps 

3.10 Exercises 157 

3.5 Trace the behavior of an SR latch for the following s ituation: Q, S, and R have been 0 for a 
long time, then S changes to 1 and stays 1 for a long time, then S changes back to 0. Using 
a timing diagram, show the values that appear on wires S, R, t, and Q. Assume logic gates 
have a tiny nonzero delay. 

3.6 Repeat Exercise 3.5, but assume that S was changed to 1 just long enough for the signal to 
propagate through one logic gate, after which S was changed back to 0- in other words. S 
did not satisfy the hold time of the latch. 

3. 7 Trace the behavior of a level-sensitive SR latch (sec Figure 3. 16) for the input pattern in Figure 
3.94. Assume Sl, Rl , and Q arc initially 0. Complete the timing diagram, assuming logic 
gates have a tiny but nonzero delay. 

c __ ..... 
s 
R ____ _,n._ ___ _, 
S1 

R1 

Q 
Figure 3.94 SR latch input pattern timing diagram. 



158 3 Sequential Logic Design: Controllers 

3.8 Trace the behavior of a level-sensitive SR latch (sec Figw·e 3.16) for the input pattern in Figure 
3.95. Assume Sl, Rl, and Q arc initially 0. Complete the timing diagram, assuming logic 
gates have a tiny but nonzero delay .. 

c 
8 

A 

81 

R1 

a 
Figure 3.95 SR latch input pattern timing diagram. 

3.9 Trace the behavior of a level-sensitive SR latch (sec Figure 3. J 6) for the input pattern in Figure 
3.96. Assume Sl, Rl, and Q arc initially 0. Complete the tinting diagram, assuming logic 
gates have a tiny but nonzero delay. 

c 
8 
A 

81 

R1 

a 
Figure 3.96 SR latch input pattern timing diagram. 

3.10 Trace d1e behavior of a D latch (sec Figure 3.19) for the input pattern in Figure 3.97. Assume 
Q is initially 0. Complete the timing diagram, assuming logic gates have a tiny but nonzero 
delay. 

c __ _. 

D _j 
8 

A 

a 
Figure 3.97 D latch input pattern timing diagram. 



3.10 Exercises 159 

3. I I Trace the behavior of a D latch (sec Figure 3. 19) for the input patte rn in Figure 3.98. Assume 
Q is initially 0. Complete the timing diagram, assuming logic gates have a tiny but nonzero 
delay. 

c __J L_J I L 
D ~~~~r---1~~~~~~~~_,!""""l~~~~~
S 

A 

Q 

Figure 3.98 D latch input pattern timing diagram. 

3.12 Trace the behavior of an edge-triggered D flip-flop using a master-servant design (sec Figure 
3.25) for the input pattern in Figure 3.99. Assume each internal latch initially stores a 0. 
Complete the timing diagram, assuming logic gates have a tiny but nonzero delay. 

c __J 
D/Dm J 

Cm 

Om/Os 

Cs 

Os 

Figure 3.99 Edge-n·iggercd D flip-flop input pattern timing diagram. 

3.13 Trace the behavior of an edge-triggered D flip-flop us ing the master-servant design (see 
Figure 3.25) for the input pattern in Figure 3. 100. Assume each internal latch initially stores 
a 0. Complete the timing diagram, assuming logic gates have a tiny but nonzero delay. 

c _J L__J I L 
01om --~11~-----~n ____ _ 

Cm 
Qm/Ds 

Cs 

Os 

Figure 3.100 Edge-triggered D flip-flop input pattern timing diagram. 



160 3 Sequential Logic Design: Controllers 

3. 14 Compare the behavior of D latch and D flip-flop devices by completing the timing diagram in 
Figw-e 3.101. Assume each device initially stores a 0. Provide a brief explanation of the 
behavior of each device. 

c __J 
D 

O (D latch) 

0 (D flip-flop) 

LJ 

Figure 3.101 D latch and D flip-flop input pattern timing diagram. 

L 

3. 15 Compare the behavior of D latch and D flip- flop devices by completing the timing diagram in 
Figure 3.102. Asswne each device initially stores a 0. Provide a brief explanation of the 
behavior of each device. 

c_J L_J 
D~~~-~~~~ 

Q (D latch) 

0 (D tlip-flop) 

Figure 3.102 D latch and D flip-flop input pattern timing diagram. 

LJ L 

3. 16 Create a circuit of three level-sens itive D latches connected in series (the output of one is con
nected to the input of the next). Use a timing diagram to show how a clock with a long high
time can cause the value at the input of the first D latch to tr ickJe through more than one latch 
during the same clock cycle. 

3. 17 Repeat Exercise 3.16 using edge-triggered D flip-flops, and use a timing diagram to show 
how the input of d1e ftrst D flip-flop does not trickle through to the next flip-flop, no matter 
how long the clock signal is high. 

3. 18 A circuit has an input X that is con-
nected to the input of a D flip- flop. 
Using additional D flip-flops. complete 
the circuit so that an output Y equals the 
output of X's flip-flop but delayed by 
two clock cycles. 

3. 19 Using four registers, design a circuit 
that stores the four values present at an 
8-bit input D during the previous four 
clock cycles. The circuit should have a 
single 8-bit output that can be config
ured using two inputs s 1 and s 0 to 
output any one of the four registers. 
(Hint: use an 8-bit 4x I mux.) 

3.20 Co11sider three 4-bit registers connected 
as in Figure 3.103. Assume the initial 
values in tbe registers arc unknown. 
Trace the behavior of the registers by 
completing the tinting diagram of 
Figure 3.104. 

a3 a2 a1 ao 

13 12 11 IO 

c reg(4) 

03 02 01 00 

b3 b2 b1 bO 

I3 12 11 IO 13 12 11 
reg(4) 

reg(4) 

03 02 01 00 03 02 01 

c3 c2 c1 co d3 d2 d1 

Figure 3.103 Register configuration. 

IO 

00 

dO 



3.10 Exercises 161 

a3 .. ao-<~11 ..... l 1_4_,_I a_:_...l_s_._l _9 ..._I 1_s ._I 1 _.s 1_3_._l _3 _: _9 ..._I 1_.4 l._o_.l_o_: _o _._I 1_.._>_.l_1 _ 

c 
_ ___.n ___ n n n n n __ 

b3 .. b0 

c3 .. c0 

d3 .. d0 

Figure 3.104 4-bit register input pattern timing diagram. 

3.21 Consider three 4-bit registers connected as in Figure 3.105. 
Assume the initial values in the registers are unknown. Trace 
the behavior of the registers by completing the timing diagram 
of Figure 3.106. c 

a3 a2 a1 ao 

13 12 11 IO 

reg(4) 

03 02 0 1 00 

a3 .. ao<'-_11 ....... l 1__.4 l.__s ........ l _ 5_ 9 ..... l 1_5...._l 1_5 _3..._l _3 ...._I 9_.1_14 ........ 1 o__.l.__o_._J _o _._, 1 ...... J_2_._[ _1 _ b3 b2 b1 bO 

-~n......_~n......_~n n n n~-c 
13 12 I1 IO 

b3 .. b0 

C3 .. C0 

d3 .. d0 

reg(4) 

03 02 0 1 00 

c3 c2 c1 co 
13 12 I1 IO 

Figure 3.106 4-bit register input pattern timing diagram. 
reg(4) 

SECTION 3.3: FINITE-STATE MACHINES (FSMS) 

03 02 01 00 

d3 d2 d1 dO 

Figure 3.105 Register 
configuration. 

3.22 Draw a timing diagram (showing inputs, state, and outputs) for the flight-attendant call-button 
FSM of Figure 3.53 for the following scenario. Both inputs Call and Cncl are initially 0. 
Call becomes 1for2 cycles. Bod1 inputs arc 0 for 2 more cycles, then encl becomes 1 for 
I cycle. Both inputs are 0 for 2 more cycles, then bod1 inputs Call and encl become 1 for 
2 cycles. Both inputs become 0 for one last cycle. Assume any input changes occur halfway 
between two clock edges. 

3.23 Draw a timing diagram (showing inputs, state, and outputs) for the code-detector FSM of 
Figure 3.58 for the following scenario. Recall that when a button (or buttons) is pressed, a 
becomes 1 for exactly l clock cycle, no matter how long d1e button (or buttons) is pressed. 
Initially no button is pressed. The user d1eD presses buttons in the following order: red, green, 
blue, red. Noticing the final state of ilie system, can you suggest an improvement to the 
system to better handle such incorrect code sequences? 



162 3 Sequential Logic Design: Controllers 

3.24 Draw a state diagram for an FSM tJ1at has an input X and an output Y. Whenever X changes 
from 0 to 1, Y should become 1 for two clock cycles and tJ1en return to 0- even if X is still 
1. (Assume for tJlis problem and all other FSM problems that an implicit rising clock is 
ANDed with every FSM transition condition.) 

3.25 Draw a state diagram for an FSM with no inputs and three outputs x, y, and z. xyz should 
always exhibit the following sequence: 000, 001, 01 0, 100. repeat. The output should 
change only on a rising clock edge. Make 000 the initial state. 

3.26 Do Exercise 3.25, but add an input I that can stop the sequence when set to 0. When input I 
returns to 1, the sequence resumes from where it left off. 

3.27 Do Exercise 3.25, but add an input I that can stop tJ1c sequence when set to 0. When I 
returns to 1, the sequence starts from 000 again. 

3.28 A wristwatch display can show one of four items: the time, the alarm, the s topwatch, or the 
date, controlled by two signals sl and sO (00 displays the time, 01 the alarm, 10 the stop
watch. and 11 the date--assume sl and so control an N-bit mux tJ1at passes through the 
appropriate register). Pressing a button B (which sets B = 1) sequences tJ1e display to the next 
item. For exan1ple, if tJie presently displayed item is the date, tJ1e next item is the current 
time. Create a state diagram for an FSM describing tJlis sequencing behavior, having an input 
bit B, and two output bits sl and so. Be sure to only sequence forward by one item each 
time the button is pressed, regardless of how long the button is pressed- in otJ1er words, be 
sure to wait for tJ1e button to be released after sequencing forward one item. Use short but 
descriptive names for each state. Make displaying the time be the initial state. 

3.29 Extend the state diagram created in Exercise 3.28 by adding an input R. R=l forces the FSM 
to return to the state that displays the time. 

3.30 Draw a state diagran1 for an FSM with an input gent and three outputs x, y, and z. The xyz 
outputs generate a sequence called a Gray code in which exactly one of the three outputs 
changes from 0 to 1 or from 1 to 0. The Gray code sequence that the FSM should output is 
000, 010. 011, 001, 101, 111, 110, 100, repeat. The output should change only on a 
rising clock edge when tJ1e input gent = 1. Make the initial state 000. 

3.31 Trace through tJ1e execution of ilie FSM created in Exercise 3.30 by completing the tinling 
diagram in Figure 3.107, where C is the clock input. Assume tJ1e initial state is tJ1c state that 
sets xyz to 000. 

gent 

c 

x 
y 

z 

Rgure 3.107 FSM input pattern timing diagram. 



3.10 Exercises 163 

3.32 Draw a timing diagram for the FSM in Figure 3.108 with the FSM starting in state Wait. 
Choose input values such that the FSM reaches state EN. and returns to Wait.. 

a=1 
en=O 

a=O 
en=O 

Figure 3.108 FSM. 

Inputs; s,r 
Outputs: a.en 

a=O 
en=1 

3.33 For FSMs with the following numbers of states, indicate the smallest possible number of bits 
for a state register representing those states: 

(a) 4 
(b) 8 
(c) 9 
(d) 23 
(e) 900 

3.34 How many possible states can be represented by a 16-bit register? 

3.35 If an FSM has N states, what is the maximum number of possible transitions that could exist 
in the FSM? Assume that no pair of states bas more than one transition in the same direction, 
and that no state has a transition point back to itself. Assmning there are a large number of 
inputs, meaning the number of transitions is not !united by d1e number of inputs? Hint: try 
for small N, and then general izc. 

3.36 *Assuming one input and one output, how many possible four-state FSMs exist? 

3.37 *Suppose you are given two FSMs d1at execute concllrrently. Describe an approach for 
merging those two FSMs iJlto a single FSM with identical functionality as the two separate 
FSMs, and provide an example. If the first FSM has N states and the second has M states, 
how many states wi!J the merged FSM have? 

3.38 *Sometimes dividing a large FSM into two smaller FSMs results in simpler circuitry. Divide 
the FSM shown in Figure 3.111 into two FSMs, one containing GO- CJ, the other containing 
G4-G7. You may add additional states, transitions, and inputs or outputs between the two 
FSMs, as required. Hint: you will need to introduce signals between the FSMs for one FSM 
to tell d1e other FSM to go to some state. 



164 3 Sequential Logic Design: Controllers 

SECTION 3.4: CONTROLLER DESIGN 

3.39 Using the process for designing a controller, convert 
the FSM of Figure 3.109 to a controller, imple
menting the controller using a state register and 
logic gates. 

3.40 Usi11g the process for designing a controller, convert 
the FSM of Figure 3. l I 0 to a controller, imple
menting the controller using a state register and 
logic gates. 

3.41 Using the process for designing a controller, convert 
the FSM you created for Exercise 3.24 to a con
troller, implementing the controller using a state 
register and logic gates. 

3.42 Using the process for designing a controller, convert 
the FSM you created for Exercise 3.28 to a con
troller, implementing the controller using a state 
register and logic gates. 

3.43 Using the process for designing a controller, convert 
the FSM you created for Exercise 3.30 to a con-
troller, implementing the controller using a state 
register and logic gates. 

Figure 3.109 FSM example. 

Figure 3.110 FSM example. 

3.44 Using the process for designing a controller, convert the FSM in Figure 3.111 to a controller, 
stopping once you have created the truth table. Note: your truth table will be quite large, 
having 32 rows- you might therefore want to use a computer tool, like a word processor or 
spreadsheet, to draw the table. 

XYZ=1 10 xyz=010 XYZ=011 XYZ= 111 

Figure 3.111 FSM exan1ple. 

XYZ=101 

Inputs: g.r 
Outputs: x.,y.z 

g' 
xyz=0-01 



3.45 Create an FSM that has an input X and an output Y. 
Whenever X changes from 0 to 1, Y should become 
1 for five clock cycles and then return to 0-even if 
X is still 1. Using the process for designing a con
troller, convert the FSM to a controller, stopping 
once you have created the truth table. 

3A6 The FSM in Figure 3.1 12 bas two problems: one 
state has non-exclusive transitions, and another state 
has incomplete transitions. By ORing and ANDing 
the conditions for each state's transitions, prove that 

3.10 Exercises 165 

chese problems exist Then fix rhese problems by figure 3.112 FSM example. 
refining the FSM, taking your best guess as to what 
was the FSM creator's intent. 

3.47 Reverse engineer the poorly designed thrce-cycles-higb circui t in Figure 3.41 to an FSM. 
Explain why the behavior of the circuit, as described by the FSM, is undesirable. 

3.48 Reverse engineer the behavior of the sequential circuit sbown in Figure 3.113. 

Figure 3.113 A sequential 
circuit to be reverse engineered. 

s1 

Combinational logic 

SECTION 3.5: MORE ON FLIP-FLOPS AND CONTROLLERS 

3.49 Use a timing diagram to illustrate how metastability can yield incorrect output for the secure 
car key controller of Figure 3.69. Use a second timing diagram to show how the synchronizer 
flip-flop introduced in Figure 3.84 may reduce the likelihood of such incorrect output. 

3.50 Design a contro1ler with a 4-bit state register that gets synchronously initialized to state 1010 
when an input reset is set to 1 . 

3.51 Redraw the laser-timer controller timing d iagram of Figure 3.63 for the case of tbe output 
being registered as in Figure 3.88. 

3.52 Draw a timing diagram for three clock cycles of the sequence generator controller of Figure 
3.68, assuming that AND gates have a delay of 2 ns and inverters (including inversion bub
bles) have a delay of L ns. The timing diagram should show the incorrect outpucs that appear 
temporarily due to glitching. Then introduce registered outputs to the controller using flip
flops at the outputs, and show a new timing diagram, which should no longer have glitches 
(but the output may be shifted in time). 



166 3 Sequential Logic Design: Controllers 

~ DESIGNER PROFILE 

Brian got his bachelor's 
degree 111 electrica I 
engineering and then 
worked for several 
years. Realizing the 
future demand for digital 
design targeting an 
increasingly popular 
type of digital chip 
known as FPGAs (see 

Chapter 7). he returned to school to obtain a master's 
degree in electrical engineering, with a thesis topic 
targeting digital design for FPGAs. He has been 
employed at two different companies, and is now working 
a~ an independent digi tal design consultant. 

He has worked on a number of projects, including a 
system that prevents house fires by tripping a circuit 
breaker when electrical arcing is detected, a 
microprocessor architecture for speeding up the 
processing of digitized video, and a mammography 
machine for precise location detection of tumors in 
humans. 

One of the projects he has found most interesting was a 
baggage scanner for detecting explosives. " In that system, 
there is a lot of data being acquired as well as motors 
running, x-rays being beamed, and other things 
happening, all at the same time. To be successful , you 
have to pay attention to detail, and you have to 
communicate with the other design teams so everyone is 
on the same page." He found that project particularly 
interesting because "I was working on a small part of a 
very large, complex machine. We had to stay focused on 
our part of the design, while at the same time being 
mindful of how al l the parts were going to fit together in 

the end." Thus, being able to work alone as well as in 
large groups was important, requ1r111g good 
communication and team skills. And being able to 
understand not only a part of the system, but also 
important aspects of the other parts was also necessary, 
requiring knowledge of diverse topics. 

Brian is now an independent digital design consultant, 
something that many electrical engineers, computer 
engineers, and computer scientists choose to do after 
getting experience in their fie ld. " I like the flexibili ty tliat 
being a consultant offers. On the plus s ide, I get to work 
on a wide variety of projects. The drawback is that 
sometimes I only get to work on a small part of a project, 
rather than seeing a product through from start to finish. 
And of course being an independent consultant means 
there's less stability than a regulru· position at a company, 
but I don' t mind that." 

Brian has taken advantage of the flexibility provided by 
consulting by taking a part-t ime job teaching an 
undergraduate digital design course and an embedded 
systems course at a university. "I really enjoy teaching, 
and I have learned a lot through teaching. And I enjoy 
introducing students to the field of embedded systems." 

Asked what he likes most about the field of digital 
design, he says, "I like building products that make 
people's lives easier, or safer, or more fun. 11iat's 
satisfying." 

Asked to give advice to students, he says that one 
important thing is "to ask questions. Don't be afraid of 
looking dumb when you ask questions at a new job. 
People don't expect you to know everything, but they do 
expect you to ask questions when you arc unsure. 
Besides, asking questions is an important part of 
learning." 



4 
Datapath Compon ents 

4.1 INTRODUCTION 
Chapters 2 and 3 introduced increasingly complex building blocks with which to build 
digital circu its. Those blocks included logic gates, multiplexors, decoders, basic registers, 
and controllers. Controllers are good for implementing systems having control inputs. 
This chapter i11stead focuses on creating building blocks for systems having data inputs. 
Control and data inputs differ as follows: 

• Control: A control input is usually one bit and represents a particular event or 
command that influences or directs the system's mode of operation. 

• Data: A data input is usually multiple bits that collectively represent a single 
entity, like a 32-bit number from a temperature sensor or an 8-bit ASCII character, 
and that are operated on or transformed by the system. 

As an analogy, a television has control inputs coming from the remote control; those 
inputs control the TV's mode of operation, such as turning the volume up or changing the 
channel. A television also has data inputs coming from a video cable; those data inputs 
are operated on to create the video seen on the TV display. Another example is a hand
held calculator; a user inputs numbers (data input) and issues commands like add or 
multiply (control inputs) to operate on that data. 

Not all inputs are just control or just data- some inputs have features of both, just as 
humans can't be strictly divided into "tall" and "short" categories. 

While a controller is a good building block for systems having control inputs and 
outputs , new building blocks are needed for systems that operate on data. Such blocks are 
datapath components. A circuit of data.path components is known as a datapath . 

Datapaths can become quite complex, and therefore it is crncial to build datapaths 
from datapath components that each encapsulates an appropriately high level of function
ality. For example, if you had to build a bicycle, you would probably build it by 
combining tires, a frame, a seat, handlebars, and so on. Each of those components encap
sulates a high-level function of part of a bicycle. You started with a tire and not with 
rubber and glue. Rubber and glue make up the design of a tire, not the design of a bicycle. 
Likewise, when we design datapaths, we must have appropriately high-level datapath 
components- logic gates are too low-level. This chapter defines such datapath compo
nents a11d builds some simple datapaths. Chapter 5 will show how to combine datapaths 
and controllers to build even more capable digital systems. 

167 



168 4 Datapath Components 

4.2 REGISTERS 

An N-bit register is a sequential component that can store N bits. N is called the register 
width . Typical register widths are 8, 16, and 32 bits, but can be as small as 1 or can be 
arbitrarily large. The bits in a register commonly represent data, such as 8 bits repre
senting temperature d ata in binary. 

The common name for storing data into a register is loading; the names writing and 
storing are also used. The opposite action of loading a register is known as reading a 
register's contents. R eading consists merely of observing a register's outputs and is 
therefore is not synchronized with the clock. Furthermore, reading a register does not 
change the bits inside the register, just like reading this book does not change the words 
inside the book. 

Registers come in a variety of styles. The upcoming sections introduce some of the 
most common styles. Registers are the most fundamental datapath component, so 
several examples will be presented. 

Parallel-Load Register 

The most basic type of register, shown in Figure 3.36 in Chapter 3 , consists of a set of 
flip-flops that are loaded on every clock cycle. That basic register is useful as the state 
register in a controller, because a controller's state register should be loaded on every 
clock cycle. However, most other uses of registers require some way to control whether 
or not a register is loaded on a particular clock cycle- on some cycles the register 
should be loaded, whereas on other cycles the register should keep its previous value. 

Contr ol of the loading of a register can be achieved by adding a 2xl multiplexor in 
front of each flip -flop of a basic register as shown for the 4-bit register in Figure 4. 1 (a). 
When the register's load control input is o and the clock signal rises, each flip-flop 
stores its own Q value, as shown in Figure 4.1 (b). Because Q is a flip-flop's present con
tent, the contents of the flip -flops, and hence the register's contents, do not change when 
load is o. In contrast, when the load input is 1 and the clock signal rises, each flip
flop is loaded with a data input IO, Il, I2 , or I3- thus, the register is loaded with the 
data inputs when load is 1. 

A register with a load line that controls whether the register is loaded with ex.ternal 
inputs, with those inpms loaded in parallel, is called a parallel-wad register. Figure 
4.l(c) provides a block symbol for a 4-bit parallel-load register. A block symbol of a 
component shows a component's inputs and outputs without showing the component's 
internal details . 

.... WHY THE NAME "REGISTER"? 

Historically, the term "register" referred to a sign or 
chalkboard onto whjch people could temporarily write 
out cash transactions, and later perfonn bookkeeping 
using those transactions. The term generally refers to a 

device for storing data. In this context, since a 
co!Jcction of flip-flops stores data, the name "register" 
seems quite appropriate. 



Figure 4.1 4- bit parallel
load register: (a) internal 
design, (b) paths when 
load=O and l oad=l, 
(c) block symbol. 

I3 

0 
II 

'C 
ro 
.9 

13 

Example 4.1 Weight sampler 

12 I1 

(a) 

I2 I1 

Consider a scale used to weigh fru it at 
a grocery store . The scale may have a 
display that shows the present weight. 
We want to add a second display and 
a button that the user can press to 
remember the present weight (some
times called "sampling"), so that 
when the fruit is removed, the 

remembered weight continues to be 
displayed on the second display. A 
block diagram of the system is shown 
in Figure 4.2. 

Assume that the scale outputs 
the present weight as a 4-bit binary 
number, and the "Present weight" and 
"Saved weight,. displays automati
cally convert their input binary 
number to the proper displayed value. 
We can design the WeightSampier 
block using a 4-bit parallel-load reg-

4.2 Registers 169 

JO 

I3 12 11 IO 
load 

Q3 Q2 Q1 QO 

(c) 

IO I3 I2 I1 IO 

II 
'C 
ro 
E 

I Scale I Weight Sampler 
I I 

+ t i 
Save ' I 2.2 pounds I e b 

load 
13 12 11 IO 

Present weight elk --[> 03 02 0 1 00 
I I I I 

t 
I 3. 1 pounds I 
Saved weight 

Figure 4.2 Weight sampler implemented using a 4-bit 
parallel-load register. 

ister. We connect the button signal b to the load input of the register. The output connects to the 
"Saved weight" display. Whenever bis 1 , the weight value gets loaded into the register, and thus 
appears on the second display. When b returns to 0, the register keeps its value, so the second 
display continues to show the same weight even if other items are placed on the scale and the first 
display changes. This example involved a control input b, and also two 4-bit data inputs and 
outputs. 

• 



170 4 Datapath Components 

Buses. Data items consist of numerous bits. Building circuits operating on data items 
could therefore involve large numbers of wires to carry those bits. A group of N wires in a 
circuit that transport a data item is called a data bus or just bus. N is the width of the bus. 
Figure 4.2 has a 4-bit bus connecting the scale to the register, and a 4-bit bus connecting 
the register to the saved-weight display. 

figure 4.3 Multibit 
wire shorthand 
notation for 
represellting a bus. 

Drawing each bus wire of a circuit can result in a cluttered and hard-to-read drawing; 
even the very simple circuit drawing of FigW'e 4.2 shows signs of such clutter. Thus, 
buses are typically drawn using the shorthand notation in Figure 4.3. The bus is drawn as 
a single bolded line with a small angled line drawn through the bolded Line to denote mul
tiple bits. When the number of bits is unclear, the number can be written next to that 
small angled line. Example 4.2 will use this shmthand notation for buses. The notation is 
just for drawings; the actual number of wires in the circuit is unchanged. 

Id 
The simplified register component symbol in Figure 4.4 uses the shorthand notation 

for a bus. The simplified symbol also does not label the data inputs and outputs, and the 
component itself is not even labeled as a register- the fact that the component is a reg
ister is suggested by th e bus input, bus output, and the clock input symbol (the triangle). 

A common use of registers is to help reduce the actual nwnber of wires in a circuit. 

Figure 4.4 Simplified 
register symbol. 

Registers help by enabling multiplexing of M different data items over a single bus, with 
each data item stored in its own register, as will be illustrated in Examp le 4.2. 

Example 4.2 Automobile above-mirror display using parallel-load registers 
Chapter 2 described an example of a system that could display one of four 8-bit inputs, T, A, I, and 
M above a car's rearview mirror. The car's central computer was connected to the system using 32 
wires (4*8), which is a lot of wires to connect from the computer to the mirror. Instead, assume the 
computer connects to the mirror as in Figure 4.5, using an 8-bit bus (C), 2 control lines alaO that 
specify which data item should presently appear on C (displayjng T when ala0=00 , A when 
a l aO=Ol, I when ala0=10, and M when a l aO=ll), and a load control line load, for a total of 
I I lines rather than 32 lines. The computer can send the data items in any order and at any time. 

The above-mirror system should store data items in the appropriate register according to alaO 
when the items arrive, and thus the sys tem needs four parallel-load registers to store each data item. 
alaO will provide the "address'" that indicates which register to load, much like the address on an 

_(I)~ 
~ ::J 
"' a. ~ E _ T 
£; 8 

~-cl 
Figure 4.5 Above-mirror e;<Q 2x4 iO ~ ... 

0 !:: 8 ~i6" ... c 
display design. alaO, set u. Q) 

d1 
8-bit a. Q) <.> A by the car's central ao 4x1 vr cr 

"0 iO ~~ computer, determines i1 

which register to load with i1 8 
a1 d D 

C, while load=l enables d2 I 8 
such loading. xy, which i2 
are independent of alaO 8 
and are set by the user 

M 
pressing a mode button, 
determine which register 

8 
i3 s1 s 

to output to the display V . xt ty 



4.2 Registers 171 

envelope indicates which house should receive the envelope. As in the earlier example, inputs xy 
determine which value to pass through to the 8-bit display output D, with xy sequenced by the user 
pressing the a button named mode, which is not shown in the figm·e. 

The decoder decodes alaO to enable one of the four registers. The load line enables tJ1e 
decoder- if load is 0, no decoder output is I and so no register gets loaded. The multiplexer part 
of the system is the same as in the earlier example. 

Let's cons ider a sample sequence of inputs. Suppose initially that all registers are storing Os 
and xy=OO. Thus, the display will show 0. 1f the user presses the mode button four times, the 
inputs xy will sequence through 01, 1 0, 11, and back to 0 0, still displaying 0 for each press 
(because all registers contain Os). Now suppose that during some clock cycle, the car's computer 
sets a l a0=01, load=l, and C=00001010. Then register reg] will be loaded with 00001010. 
Because x y=OO, the display will s till show the contents of regO, and thus the display will show 0. 
Now, if the user presses tJ1e mode button, xy will become 0 1 , and the display will show the 
decimal value of regl's 0000101 0 value, which is ten in decimal. Pressing mode again will 
change xy to 10, so the display will show the contents of reg2. which is 0. At any time in tJ1e 
future, the car's computer can load tJ1e other registers or reload reg 1 witl1 new values, in any order. 
Note that the loading of the registers is independent from the displaying of those registers. 

This example involved control inputs aO, al. load. x, and y, data input C, and data output D. 

Example 4.3 Computerized checkerboard 
Checkers (known in some countries as "draughts'') is one of the world's most popular board games. 
A checkerboard consists of 64 squares, formed from 8 columns and 8 rows. Each player s tarts with 
l 2 checkers (pieces) on the board. A computerized checkerboard may replace tl1e checkers by using 
an LED (light-emitting diode) in each square. An on LED represents a checker in a square; an off 

LED represents no checker. For simplici ty of the example, ignore the issue of each player having 
his own color of checkers. An example board is shown in Figure 4.6(a). 

Figure 4.6 An electronic 
checkerboard: (a) eight 8-bit 
registers (R7 through RO) 
can be used to drive the 64 
LEDs, us ing one register per 
column, (b) detail of how 
one register connects to a 
column's LEDs and how the 
value 10100010 stored in 
that register would light 
three LEDs. 

8 

D 

e i2 i1 iO 3x 8 decoder 

microprocessor (a) 

O LEO . lit LED 

from 
microprocessor 

0 

0 

0 

0 

0 

from 
decoder 

(b) 



172 4 Oatapath Components 

A computerized checkerboard typically has a microprocessor that keeps track of where each 
piece is located, moves pieces according to user commands or according to a checker-playing 
program (when playing against the computer), and keeps score. 

Notice that the microprocessor must set values for 64 bits, one bit for each square. However. 
tJ1e inexpensive type of microprocessor used in such a device typically docs not have 64 pins. The 
microprocessor needs external registers to s tore mose bits that drive the LEDs. The microprocessor 
will write to those registers one at a time. The sequence of wri tes to the registers is so fast tJrnt an 
observer would see all tJ1e LEDs change at the same time, unable to notice that some LEDs are 
changing microseconds earlier than others. 

Let 's use one register per column, meaning eight 8-bit registers will be used in totaJ as shown 
below the checkerboard in Figure 4.6(a). We named the registers R7 through RO. Each register's 8 
bits of data correspond to a particular row in the register's column, indicating whether the respective 
LED is on or off, as shown in Figure 4.6(b). The eight registers arc connected to ilic microprocessor. 
The microprocessor uses eight pins (D) for data, three pins ( i 2, il, iO) for addressing ilie appro
priate register (which is decoded into a load line for each of tJ1c 8 registers}, and one pin (e) for the 
register load line (corrnected to tJ1e decoder's enable), for a total of 12 pins--far fewer than 64 pins 
if registers were not used. To configure ilic checkerboard for ilic beginning of a game, the micropro
cessor would perform the sequence of register writes shown in Figure 4.7. 

D-< 10100010Xo10000101)( 10100010Xo10000101)( 1010001o Xo10000101)( 10100010Xo10000101)

i2, i1 ,io -< 000 (RO) X 001 (R1) X 010 (R2) X 01 1 (R3) X 100 (R4) X 101 (RS) X 110 (R6) X 111 (R7) }-

e 

elk 

Figure 4.7 Timing diagram showing an input sequence mat initializes an electronic checkerboard. 

Figure 4.8 
Checkerboard 
and register 
contents after 
loading registers 
for initial checker 
positions. 

Q LED . lit LED 
On tJ1c first rising clock edge, 
RO gets loaded witJ1 
1 0100010 . On the second 
rising clock edge, RI gets 
loaded wiili 01000101. And 
so on. After eight clock 
cycles, the registers would 
contain the desired values, and 
the board's LEDs wouJd be lit 
as shown in Figure 4.8. 

• 



4.2 Registers 173 

.... HOW DOES IT WORK? COMPUTERIZED BOARD GAMES. 

Many of you have played a computerized board game, like 
checkers. backgammon, or chess, either using boards with 
small di.splays to represent pieces, or perhaps using a 
graphics program on a personal computer or website. The 
main method the computer uses for choosing among 
possible next moves is called lookahead. For the current 
configmation of pieces on the board, the computer 
considers all possible single moves that it might make. For 
each such move, it might also consider all possible single 
moves by d1e opponent. For each new configuration 
resulting from possible moves, die computer evaluates the 
configuration's goodness, or quality, and picks a move that 
may lead to the best configuration. The number of moves 
that the computer looks al1ead (one computer move. one 
opponent move, another computer move, another opponent 
move) is called the lookahead a111ow1t. Good programs 
might lookahead th.rec, four, five moves, or more. Looking 
ahead is costly in terms of compute time and memory- if 
each player has IO possible moves per twn, then looking 
ahead two moves results in 10*10 =100 configurations to 
evaluate; three moves results in 10*10*10=1000 
configurations, four moves in 10,000 configurations, and 
so on. Good game-playing programs will "pnme" 

Shift Register 

configurations that appear to be very bad and thus unl ikely 
to be chosen by an opponent, just as humans do, to reduce 
the configw-ations to be considered. Computers can 
examine millions of configurations, whereas humans can 
only mentally examine perhaps a few dozen. Chess, being 
perhaps the most complex of popular board games, has 
attracted extensive attention since the early days of 
computing. Alan Turing. considered one of the fatl1ers of 
Computer Science, wrote much about using computers for 
chess, and is credited as having written the first computer 
chess program in 1950. However, humans proved better 
than computer chess programs until 1997, when IBM's 
Deep Blue computer defeated the reigning world champion 
in a classic chess match. Deep Blue had 30 IBM RS-6000 
SP processors connected to 480 special purpose chess chips, 
and could evaluate 200 million moves per second, and hence 
many billions of moves in a few minutes. Today, chess 
tournaments not only match hwnans against computer 
programs, but also programs against programs, many such 
tournaments hosted by the International Computer Games 
Association. 

(Source: Compwer Chess History. by Bill Wall). 

One thing a designer might want to do with a register is to shift the register's contents to 
the left or to the right. Shifting to the right means moving each stored bit one position to 
the right. If a 4-bit register originally stores 1101, shi fting right would result in OllO, as 
shown in Figure 4.9(a). The rightmost bit (in this case a 1) was "dropped," and a o was 
"shifted into" the leftmost bit. To build a register capable of shifting to the right, the reg
ister's fl ip-flops need to include connections simi lar to those shown in Figure 4.9(b). 

A register capable of shifting its own contents is called a sh ift register. The design of 
a right shift register appears in Figure 4.10. The register has two control inputs, shr and 
shr_ in. shr=l causes a right shift on a rising clock edge, while shr=O causes the reg
ister to maintain its present value. shr _ in is the bit that should be shifted into the 
leftmost register bit during a shift operation. 

0 

Register contents shr_in 

,__~~--' before shift right "0--0--0--D 
Register contents 

~---~ after shift right 

(a) 

{b) 

Figure 4.9 Right shift example: (a) sample contents before and after a right shift, (b) bit

by-bit view of the shift. 



17 4 4 Datapath Components 

(a) 

Figure 4.10 Shift register: (a) implementation, (b) 
paths when shr=l, (c) block symbol. 

shr_in 
shr 

03 02 01 00 

(c) 

A rotate register is a slight variation of a shift register in which the outgoing bjt gets 
shifted back in as the incoming bit. So on a right rotate, the rightmost bit gets shifted into 
the leftmost bit, as shown in Figure 4.11.Tbe design for a rotate register is a slight molli
fication of the design of Figure 4.10. The rightmost flip-flop output, rather than the 
shr~in input, would be connected to the leftmost mux's il input. A rotate register also 
needs some way to get values into the register-either via a shift, or via parallel load. 

Register contents 
before shift right 

Register contents 
after shift right 

(a) 

DJ 
{b) 

Figure 4.11 Right rotate example: (a) register contents before and after the rotate, (b) bit
by-bit view of the rotate operation. 

Example 4.4 Above-mirror display using shift registers 
Example 4 .2 redesigned the connection between a car's 
central computer and an above-mirror display system to 
reduce the nwnbcr of wires from 32 down to 8+2+1=1 1 
by using an 8-bit data bus. However, even 11 wires is a lot 
of wires to have io nm from the computer to the mirror. 
Lefs reduce the wires even further by using shift registers 
in the above-mirror display system. The inputs to the 
above-mirror system fmm the car's computer will be one 
data bit c, two address lines alaO, and a shift line 
shift, for a total of only 4 wires. When the computer is 

This bundle 
should be 
thin- just a 
few wires, 

not eleven 
wires. 

figure 4.1 Serial communication 
enables thin cables. 



4.2 Registers 175 

Figure 4.12 Above-mirTor 
display design using shift 
registers to reduce the number 
of lines coming from the car's 

computer. The computer sets 
a l aO t-0 the desired register to 
load, and then holds 
shift=l for eight clock 

cycles. During those cycles, it 
sets c to the desired register 
contents bit-by-bit, one bit per 
clock cycle. The resu.lt is that 
the desi red regis ter is loaded 
with the sent 8-bit value. 

to write to one of the above-mirror system's registers, the computer sets alaO appropriately and 
then sets shift to 1 for exactly eight clock cycles. 

For each of those eight clock cycles, the computer will set c to one bit of the 8-bit data to be 
loaded, starting with the least-significant (rightmost) bit on the first clock cycle, and ending with 
the most-significant (leftmost) bit on the eighth clock cycle. The above-mirror system ca11 thus be 
designed as shown in Figme 4. 12. 

When shif t ::::l, the appropriate register gets a new value shifted in du.ring the next eight 
clock cycles. Thjs method achieves the same results as parallel loading but with fewer wires. 

This example demonstrates a form of communication between digital circuits known as serial 
communication, in which the circui ts communicate data by sending the data one bit at a time . 

• 
Multifunction Registers 

Some registers perform a variety of operations, also calledfimctions, like load, shift right, shift 
left, rotate right, rotate left, etc. The desired operation can be achieved by setting the register's 
control inputs. The following section introduces several such multifunction registers. 

Register with Parallel Load and Shift Right 
A popular combination of operations on a register is parallel load and shift. We can design 
a 4-bit register capable of parallel load and shift right as shown in Figure 4.13(a). Figme 
4.l3(b) shows a block symbol of the register. 

... COMPUTER COMMUN/CATIONS JN AN 
AUTOMOBILE USING SERIAL DATA TRANSFER 

Modern automobiles contain dozens of computers 
distributed throughout the car- some lmder the hood, 
some in the dashboard, some above tbe mirror, some 

in the door, some in the trunk, etc. Running wires 
throughout the car so those computers can 
conununicate is a challenge. Most automobile 
computers communicate serially, meaning one bit at a 

time, like the communication in Example 4.4. Serial 
communication reduces the number of wires. A 
popular serial communication scheme in automobiles 
is known as the "CAN bus," short for Controller Area 
Network, which is an international standard defined by 
ISO (International Standards Organization) standard 
munber 11898. 



176 4 Datapath Components 

shr_in 13 12 I1 

(a) 

IO 

shr_in 
s1 
so 

I3 I2 I1 IO 

Q3 Q2 Q 1 Qo 

(b) 

Figure 4.13 4-bit register with parallel Load and shift right operations: (a) internal design, (b) block 
symbol. 

The design uses a 4xl mux rather than a 
2xl mux in front of each flip-flop , because each 
flip-flop can receive its next bit from one of 
three locations. The fourth mux input is unused. 
The table in Figure 4.14 describes the register's 
behavior. Such a table listing the operation for 
each combination of a component's control 
inputs is called an operation table. 

Let's examine the mux and flip-flop of the 
rightmost bit. When sls0=00 , the mux passes 
the current flip-flop value back to the flip-flop. 

sl so 
0 0 

0 

0 

Operation 

Maintain present value 

Parallel load 

Shift right 
(Unused) 

Figure 4.14 Operation table of a 4-bit 
register with parallel load and shift 
right operations. 

causing the flip-flop to get reloaded with its current value on the next rising clock, thus 
maintaining the current value. When sls0=01 , the mux passes the external I O input to 
the flip-flop, causing the flip-flop to get loaded. When sls0=10, the mux passes the 
present value of the flip-flop output from the left, Ql , thus causing a right shift. slsO=ll 
is not a legal input to the register and thus should never occur; the mux passes Os in this 
case, thus clearing the flip-flop . 

..... UNUSED INPUTS 

The circuit in Figure 4.13 included a mux with 4 inputs, 

of which only 3 inputs were needed. Notice that we. 
actually set the unused input to a particular value, rather 
than simply leaving the input unconnected. Remember 
that the input is controlling transistors inside the 
component- if we don't assign a value to the input, will 

the internal transistors conduct or not conduct? We don't 

really know, and so we could get undesired behavior 
from the mux. Leaving iaputs unconnected should not be 
done. On t11e other hand, leaving outputs w1connectoo is 
no problem-an unconnected output may have a 1 or a 
0 that simply doesn't control anything else. 



4.2 Registers 177 

13 12 11 IO 

Shi in 13 l2 11 IO 
shr=in 
S1 
so 

03 02 0 1 QO 

(a) (b) 

Figure 4.15 4-bit register with parallel load, shift left, and shift right operations: (a) internal des ign, 
(b) block symbol. 

Register with Parallel Load, Shift Left, and Shift Right 
Adding a shift left operation to the above 4-bit register is straightforward and is shown in 
FigW'e 4.15. Instead of cmrnecting Os to the I3 input of each 4xl mux, we instead 
connect the output from the flip-flop to the right. The rightmost mux's I3 input would be 
connected to an additional input shl _in. 

The register has the operations shown in 
Figure 4. 16. 

Load/Shift Register with Separate Control 
Inputs for Each Operation 
Registers typically don't come with control 
inputs that encode the operation into the 
minimum number of bits like the control inputs 
on the registers designed above. Instead, each 
operation usually has its own control input. 

For example, a register 
with the operations of load, 
shift lef t, and shift right might 
have the control inputs and the 
operation table shown in 
Figure 4.17. The four possible 
operations (maintain, shift left, 
shift right, and load) require at 
least two control inputs; the 
figure shows that the register 

Id 

0 

0 
0 
0 

shr 

0 

0 

0 
0 

shl 

0 

1 
0 

0 

0 

S1 
0 

0 

so 
0 

0 

Maintain present value 
Parallel toad 

Shift right 

Shift left 

Figure 4.16 Operation table of a 4-bit 
register with parallel load, shift left, 
and shift right operations. 

Operation 

Maintain present value 

Shift left 
Shift right 
Shift right - shr has priority over shl 
Parallel toad 

Parallel toad - Id has priority 
Parallel toad - Id has priority 
Parallel load - Id has priority 

has three control inputs- ld, 
shr, and shl. 

Notice that the register 
designer must decide how the 

f igure 4.17 Operation table of a 4-bit register with separate 
control inputs for parallel load, shift left, and shift right. 



178 4 Datapath Components 

Figure 4.18 Truth tables 
Inputs Outputs Note 

describing operations of a 
Id shr shl s1 so Operation Id shr Shi Operation 

register with left/right shift 
and parallel load. along 0 0 0 0 0 Maintain value 0 0 0 Maintain value 

with the mapping of the 0 0 1 Shift left - 0 0 1 Shift left 

register control inputs to 0 0 0 Shift right 

~ 
0 1 x Shift right 

the internal 4x I mux select 0 1 0 Shift right 1 x x Parallel load 

lines: (a) complete 1 0 0 0 Parallel load 

operation table defining 1 0 0 Parallel load (b) 

the mapping of ld, s hr, 1 0 0 Parallel load 

and shl to sl and so, 1 0 Parallel load 

and (b) a compact version 

of the operation table. (a) 

register will respond if more than one control input is 1 . The operation table shows that if 
the user sets both shr and shl, shr gets priority. ld has priority over shr and shl. 

The internal design of such a register is similar to the load/shift register designed 
above, except that the three control inputs of 1 d, shl, and shr need to be mapped to the 
two control inputs sl and so of the earlier register. A simple combinational circuit can be 
used to perf01m such mapping, as shown in Figure 4.19. 

We can design that combinational circuit starting from a simple trnth table shown in 
Figure 4. 18(a). From the table, we derive the following equations for the register's combi
national circuit: 

sl ld 1 *shr 1 *shl + ld'*shr*shl' + l d ' *shr*shl 
s o ld ' *shr ' *shl + ld 

Replacing the combinational circuit box in Figure 4.19 by the gates described by the 
above equations would complete tl1e register's design. 

Register datasheets typically show the register operation table in a compact form, 
taking advantage of the priorities among the control inputs, as in Figure 4.18(b). A single 
X in a row means that row is actually two rows in the complete table, with one row having 
o in the position of the X, the other row having 1. Two Xs in a row means that row is 
actually four rows in the complete table, one row having oo in the positions of those Xs, 
another row having 01 , another 10, and another 11. And so on for three Xs, representing 

13 12 11 IO 

shr_in 

Id L shr_in 13 12 11 IO 

combi- s1 
shl_in 

sh Un 
shr so 

national 

shl circuit [> 03 02 01 QO 

[> 
03 02 0 1 QO 

Figure 4.1S A combinational circuit maps the control inputs ld, shr, and shl to the mux select 
inputs s l and so. 



4.2 Registers 179 

,... SERIAL COMMUNICATION IN DESKTOP COMPUTERS. 

A desktop PC must communicate data with other 
devices like printers, displays, keyboards, and 
cameras. In the past, communicating large amounts of 
data, like sending a file to a printer. could be done 
faster using parallel wires as supported by a PC's 
parallel port- shown in Figure 4.20. That parallel port 
has 8 output data lines (plus 4 output contml lines, S 
input lines, and 8 grounded lines). But parallel ports 
and plugs are big, cables with numerous internal wires 
are costly, and crosstalk problems (electromagnetic 
fields generated by a changing signal on one wjre 
interfering with the signal on a nearby wire) exist. As 
higher-speed circuits could be designecl over the years, 
communication clock frequencies could be made 
faster too. But transmitting data in parallel at high 
frequencies creates even more crosstalk problems. 
Transmitting data serially became more appealing, 
involving smaller ports and plugs, cheaper wires, and 

USB ports 
(a) 

fewer crosstalk problems that in turn enabled higher 
power and hence longer wires. The reduced crosstalk 
problems also enabled higher frequencies and hence 
faster communication. The popular USB interface is a 
serial commwiication scheme (USlJ is short for 
u11iversal serial bus) used to connect personal 
computers and other devices together by wire. 
Furthem10re, nearly all wireless conummication 
schemes, such as Wifi and BlueTooth, use serial 
communication, sending one bit at a time over a radio 
frequency. While data communication between 
devices may be serial, computations inside devices are 
typically done in parallel. Thus, shift registers arc 
commonly used inside circuits to convert internal 
parallel data into serial data to be sent to another 
device, and to receive serial data and convert that data 
into parallel data for internal device use. 

Parallel USB 

(b) 
Figure 4.20 Parallel versus serial communication in desktop computers: (a) a PC having a parallel port and 
six serial USB ports, (b) parallel and USB plugs/cables. 

8 rows. Note that putting higher-priority control inputs to the left in the table keeps the 
table's operations nicely o rganized. 

Register Oe"Sign Process 

Table 4.1 describes a general process for designing a register with any munber of functions. 

TABLE 4.1 Four-step process for designing a multifunction register. 

1. 

2. 

Step Description 

Detennine 
mux siz.e 

Create 11uix 

operation table 

Count d1e number of operations (don't forget the maintain present value 
operation) and add in front of each flip-flop a mux with al least that 
nwnber of inputs. 

Create an operation table defming the desired operation for each possible 
value of the mux select lines. 



180 4 Datapath Components 

TABLE 4.1 Four-step process for designing a multifunction register. 

3. Connect mux For each operation, connect the corresponding mux data input to the 
inputs appropriate extemal input or nip-flop output (possibly passing through 

some logic) to achieve the desired operation. 

4. Map comm/ lines Create a truth table that maps external control lines to the internal mux 
select lines, with appropriate priorities, and then design the logic to 
achieve that mapping 

We'll illustrate the register design process with an example. 

Example 4.5 Register with load, shift, and synchronous clear and set 
We want to design a register with the following operations: load. shift left. synchronous clear, and 
synchronous set, with unique control inputs for each operation (ld, shl, clr, set). The sy11chro· 
nous clear operation loads all Os into the register on the next rising clock edge. The synchronous 
set operation loads all ls into the register on the next rising clock edge. TI1e term "synchronous" is 
included because some registers come with asynchronous clear or set operations (sec Section 3.5). 
Following the register design method of Table 4. l , we perform the following steps: 

S tep I: Determine mux size. There are 5 oper
at ions- load, shift left, synchronous 
clear, synchronous set, and main.rain 
present value. Don't forget the main
tain present value operation; that 
operation is implicit. 

Step 2: Create mux operation table. We'll use 
the first 5 inputs of an 8x l mux for the 
desired 5 operations. For the remaining 
3 mux inputs, we choose to maintain 
the present value, though those mux 
inputs should never be utilized. The 
table is shown in Figure 4.20. 

Step 3: Connect mux inputs. We connect the 
mux inputs as shown in Figure 4.21 , 
which for simplicity shows only the 
nth flip-flop and mux of the register. 

Step 4: Map control lines. We'll give clr 
highest priority, followed by set, ld, 
and shl , so the register control inputs 
would be mapped to the 8x 1 mux 
select lines as shown in Figure 4.22. 

s2 

0 

0 

0 

0 

sl 

0 

0 

1 

0 

0 

so 
0 

D 

D 

D 

Operation 
Maintain present value 

Parallel load 

Shift left 

Synchronous clear 

Synchronous set 

Maintain present value 

Maintain present value 

Maintain present value 

Figure 4.20 Operation table for a register with 
load, shift, and synchronous dear and set. 

In 
1 0 

s2---~::---::::--:;--:---:;:--::---;---;;, 
s1 ---1.i 

so----~---~---~ 

D 

0 

Qn 

Figure 4.21 Nth bit-slice of a register with the 
following operations: maintain present value, 
parallel load, shift left, synchronous clear, and 
synchronous set. 



4.3 ADDERS 

4.3 Adders 181 

f igure 4.22 Truth table for Inputs Outputs 
the control lines of a register 

cir set Id s hl s2 s 1 so Operation 
with the Nth bit-slice shown 
in Figure 4.21. 

0 0 0 0 0 0 0 Maintain present value 

0 0 0 1 0 1 0 Shift left 

0 0 1 x 0 0 Parallel load 

0 1 x x 0 0 Set to all 1s 

x x x 0 1 Clear to all Os 

Looking at each output in Figure 4.22, we derive the equarions describing the circuit lhat maps 
the external control inputs to the mux select lines as follows: 

s2 clr' *set 
sl clr 1 *set 1 *ld 1 *shl + c l r 
so c lr ' *set'*ld + clr 

We could then create a combinatiorial circuit implementing those equations to map the external 
register control inputs to the mux select lines and hence to complete the register's design. 

• 
Some registers come with asynchronous clear and/or asynchronous set control 

inputs. Those inputs could be implemented by connecting them to asynchronous clear or 
asynchronous set i11puts that exist on the flip-flops themselves (see Section 3.5). 

Adding two binary numbers is perhaps the most conunon operation performed on data in 
a digital system. An N-bit adder is a combinational component that adds two N-bit data 
inputs A and B representing binary numbers, and generates an N-bit data output s repre
senting the sum and a I -bit output c representing the carry-out. A 4-bit adder adds two 4-
bit numbers and outputs a 4-bit sum and a carry bit. For example, 1111 + ooo 1 would 
result in a carry of 1 and a sum of o o o o--or 1 o o o o if you treat the carry bit and sum 
bits as one .5-bit result. N is the width of the adder. Designing fast yet size-efficient adders 
is a subject that has received considerable attention for many decades. 

Although it appears that an N-bit adder could be des igned by folJowing the combina
tional logic des ign process of Table 2.5 , building an N-bjt adder following that process is 
not practical when N is much larger than 8. To understand why, co11sider using that 
process to build a 2-bit adder, which adds two 2-bit numbers. The desired behavior can be 
captured as the tmth table in Figure 4.23. Each output could then be convetted to a sum
of-products equation and implemented as a two-level gate-based circuit. 

The problem is that the approach results in excessively large truth tables and too 
many gates for wider adders. A 16-bit adder has 16 + 16 = 32 inputs, meaning the truth 
table would have over four billion rows. A two-level gate-based in1plementation of that 
table would likely require millions of gates. To illustrate this point, we performed an 
experiment that used the standard combinatio11al logic design process to creare adders of 
increasing width, starting with I -bit adders on up. We used an advanced conunercial logic 



182 4 Oatapath Components 

Inputs Outputs Inputs Outputs 

a1 aO b1 bO c s1 so a1 ao b1 bO c s1 so 

0 0 0 0 0 0 0 1 0 0 0 0 1 0 

0 0 0 1 0 0 1 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 1 0 0 0 1 1 

0 0 1 0 0 0 1 0 0 

0 0 0 1 0 0 1 

0 0 0 0 

Figure 4.23 TrutJ1 table for a 2-bit adder. 

design tool, and asked the tool to create a design using two levels of logic (one level of 
AND gates feeding into an OR gate for each output) and using the minimum nwnber of 
transistors. 

The plot in Figure 4.24 sum-
marizes results. A 6-bit adder 
(N=6) required about 2,000 transis
tors, a 7-bit adder required 4,000 
transistors, and an 8-bit adder 
required 8,000 transistors. Notice 
how fast the number of transistors 
grows as the adder width is 
increased. This fast growth is an 
effect of exponential growth-for 
an adder width of N, the number of 
truth table rows is proportional to 
2N (more precisely, to 2N+N). We 
could not complete our experi
ments for adders larger than 8 
bits- the tool s imply could not 
complete the design in a reasonable 

10000 

8000 
~ 
0 6000 ]? 
(J) 
c 4000 
~ 
I-

2000 

0 
2 3 4 5 6 7 8 

N 

Figure 4.24 Why large adders aren't built using 
standard two-level combinational logic- notice the 
exponential growth. How many transistors would a 
32-bit adder require? 

amount of time. The tool needed 3 seconds to bui ld the 6-bit adder, 40 seconds to build 
the 7-bit adder, and 30 mjnutes for the 8-bit adder. The 9-bit adder didn't finish after one 
full day. Clearly, this exponential growth prohibits using the standard design process for 
adders wider than perhaps 8 to 10 bits. Looking at this data, can you preilict the number 
of transistors required by a 16-bit adder or a 32-bit adder using two levels of gates? From 
the figure, it looks like the number of transistors is doubling for each increase in N. 
Assuming the doubling trend continues for larger adders, then a 16-bit adder would have 
8 more doublings beyond the 8-bit adder, meaning multiplying the size of the 8-bit adder 
by 28=256. So a 16-bit adder would require 8000 * 256 =about two million transistors. A 
32-bit adder would require an additional 2 16= 65,536 doublings, me<ming about 2 million 
* 65,536 = over I 00 billio11 transistors. That's a ridiculous number of transistors just to 
add two numbers. We clearly need another approach for designing larger adders. 



4.3 Adders 183 

Figure 4.25 Adding two binary numbers by 
hand, column by colunrn: (a) rightmost 0 0 
column sums to 1 , with no carry (O) to the 

1 1 1 1 1 
next column, (b) second colw1m sums to 0 

0 1 0 0 0 0 0 0 0 with a 1 carried to the next colunm because + + + + 

O+ l +l "' 10 in base two, (c) third column 
is l+l+ l = 11, so the slun is 1 and a 1 is 
carried to the next column, (d) leftmost 
column sums to 0 with a final carry of 1. 0 1 0 1 0 1 0 

(a) (b) (c) (d) 

Adder- Carry-Ripple Style 

An alternative approach to the standard combinational logic design process for adding 
two binary numbers is to instead create a circuit that mimics how people add binary 
numbers by hand- namely one column at a time. Consider the addition of the binary 
number A = llll (15 in base ten) with B = OllO (6 in base ten), column by column, shown 
in Figure 4.25. 

For each column, three bits are added, resulting in a sum bit for the present column 
and a carry bit for the next column. The first column is an exception in that only two bits 
are added, but that column still results in a sum bit and a carry bit. The carry bit of the 
last column becomes the fifth bit of the sum. The sum for the above numbers is 10101 

(21 in base ten). 
We can create a combinational component to pe1fonn the required addition for a 

single column, and then use fous of those components to add the two 4-bit numbers. The 
inputs and outputs of such a component for a column are shown in Figme 4.26. Bear in 
mind that this method of creating an adder is intended to enable efficient design of wide 
adders such as a 32-bit adder. We illustrate the method using a 4-bit adder because that 
size adder keeps our figures small and readable, but if all we really needed was a 4-bit 
adder, the standard combinational logic design process for two-level logic might be 
sufficient. 

We' ll now design the components in each column of Figure 4.26. 

Figure 4.26 Usjng combinational 
components to add two binary 
numbers column by colunm. 

A; 

+ B: 0 

FA 

0 

o __ _ 

a Ci 

s FA 

0 

0 

HA 

SUM 



184 4 Datapath Components 

Inputs 

a b 

0 0 

0 

0 

Outputs 

co s 
0 0 
0 

0 

0 

Figure 4.27 Truth table 
for a half-adder. 

a b 

co s 

a b 

Half-adder 
(HA) 

co $ 

(a) (b) 

figure 4.28 Half-adder: (a) circuit, 
(b) block symbol. 

Half-Adder 
A half-adder is a combinational component that adds two bits (a and b), and outputs a 
sum bit (s) and can·y-out bit (co). (Note that we did not say that a half-adder adds two 2-
bit numbers- a half-adder merely adds two bits.) The component labeled HA in Figure 
4.26 is a half-adder. A half-adder can be designed using the straightforward combina
tional logic design process from Chapter 2 as follows: 

Step 1: Capture the function. A truth table easily captures the function. The truth table 
is shown in Figure 4.27. 

Step 2A: Create equations. The equations for each truth table output are co = ab and 
s = a ' b + ab' , which is the same as s = a xor b . 

Step 2B: Implement as a circuit. The circuit for a half-adder implementing the equa
tions is shown in Figure 4.28(a). Figure 4.28(b) shows a block symbol of a half-adder. 

Full-Adder 
Afull-adder is a combinational component that adds three bits (a, b, and ci) and outputs 
a sum bit (s) and a carry-out bit (co). (A full -adder does not add two 3-bit numbers-it 
merely adds three bits.) The three components labeled FA in Figure 4.26 are ful l-adders. 
A full-adder can be designed using the combinational logic design process as follows: 

Step 1: Capture the fllnction. A truth table captures the 
function easily, shown in Figure 4.29. 

Step 2A: Create equations. Equations for co and s can 
be derived from the truth table. For simplicity, we write c i 
as c. Algebraic methods can simplify the equations. 

co = a'bc + ab 'c + abc' + abc 
co = a •bc + abc + ab•c + abc + abc• + 

abc 
co (a'+a)bc + (b'+b)ac + (c'+c)ab 
co be + ac + ab 

s a'b'c + a 'bc' + ab'c' + a bc 
s a I (b ' C -+ be I) + a(b'c ' + be) 
s a' (b xor c ) + a (b xor c ) ' 
s a xor b xor c 

Inputs Outputs 

a b cl co s 
0 0 0 0 0 

0 0 0 

0 0 0 

0 0 

0 0 0 

0 1 0 

1 0 0 

Figure 4.29 Truth table for a 
full-adder. 



4.3 Adders 185 

Dw-ing algebraic simplification for co, each of the first tluee terms could be combined 
with the last term abc, because each of the first three terms differed from the last term in 
just one literal. We thus created three instances of the last term abc (which doesn't 
change the function) and combined them with each of the first three terms. Don't worry if 
you ca11't come up with that simplification on your own yet-Section 6.2 introduces 
methods to make such simplification straightforward. If you have read that section, you 
might try using a K-map (introduced in that section) to simplify the equations. 

Step 28 : Implement as 
a circuit. 
The circuit for a full-adder is 
shown in Figure 4.30(a). The ful l
adder's block symbol is shown in 
Figure 4.30(b). 

4-Bit Carry-Ripple Adder 
Three full-adders and one half-
adder can be connected as in 
Figure 4.31 to implement a 4-bit 
carry-ripple adder, which adds two 
4-bit numbers and generates a 4 -bit 

a b ci 

co s 
(a) 

a b ci 

Full,adder 
(FA) 

co s 

(b) 

sum. The 4-bit carry-tipple adder Figure 4.30 Full-adder: (a) circuit, (b) block symbol. 
also ge11erates a carry-out bit. 

A carry-in bit can be included on the 4-bit adder, which enables connecti11g 4-bit 
adders together to build larger adders. The carry-in bit is included by replacing the half
adder (which was in the rightmost bit position) by a full-adder, as in Figure 4.32. 

Let's analyze the behavior of this adder. Suppose that all inputs have been Os for a long 
time, meaning tbar s will be o o o o, co will be o, and all ci values of the full adders will 
also be o. Now suppose that A becomes 0111 and B becomes 0001 at the same time 
(whose s tun we know should be 01000). T hose new values of A and B will propagate 
through the full -adders. Suppose the delay of a full-adder is 2 ns. So 2 ns after A and B 

change, the sum outputs of all the full-adders will change, as shown in Figure 4.33(a). So 
s3 will become 0 +0 +0=0 (with co3 =0), s2 will become 1+0+0=1 (with co2 =0), sl will 
become 1 +0 +0=1 (with col=O), and sO will become 1 +1 =0 (with coO =l). But, 1111 + 
011 0 should not be 00110- instead, the sum should be 010 0 0. What went wrong? 

a3b3 a2 b2 a1 b1 aO bO 

a b ci a b ci a b ci a b a3a2a1 ao b3 b2b1 bO 

FA FA FA HA 4-bit adder 

co s co s co s co s co s3 s2 s1 so 

co S3 S2 s1 so 
(a) (b) 

Figure 4.31 4-bit adder: (a) carry-ripple design with 3 full-adders and I half-adder, (b) block symbol. 



186 4 Oatapath Components 

a3b3 a2 b2 a1 b1 aO bO cl 

a b Ci a b Ci a b Ci a b Ci a3a2a1 ao b3b2b1 bO 

FA FA FA FA 4-bit adder Ci 

co s co s co s co s co s3 s2 s1 so 

co s3 s2 S1 so 
(a) (b) 

Figure 4.32 4-bit adder: (a) carry-ripple implementation with 4 full-adders and a carry-in input, 
(b) block symbol. 

0 0 0 

ab ci 
FA 

co s 

1 0 0 

a b ci 

FA 

co s 
0 

:;.:m:;A:; 
cos cos 

0 1 

co3 O O s3 co2 1 S2 C01 1 S1 COO 0 SO 

ab ci 
FA 

co s 

0 0 

0 0 1 

ab ci 

FA 

co s 

0 

(a) 

:;.~ m :;.:, 
cos cos 
0 1 

1 0 1 

a b ci 

FA 

co s 
1 

0 {d) 

co1 0 

1 0 1 

ab Ci 

FA 

co s 
1 

0 

1 0 1 

a b ci 

FA 

co s 
1 

0 

1 1 0 

a b ci 
FA 

co s 

0 

1 0 

ab Ci 
FA 

co s 
1 

0 

1 0 

ab ci 

FA 

co s 
1 

0 

0111 +0001 

Output after 2 ns (1 FA delay) 

Output after 4 ns (2 FA delays) 

Output after 6 ns (3 FA delays) 

Output after 8 ns (4 FA delays) 

Figure 4.33 Example of adding 0111+0001usinga4-bit carry-ripple adder. The output will 
exhibit temporarily incon-ect ("spurious") results until the carry bit from the rightmost bit ha~ had a 
chance to "ripple" all the way through to the leftmost bit. 



The term .. ripple
carry" adder is 
actually more 
co111111011. I prefer 
the tenn "carry
ripple" for 
consistem naming 
with other adder 
rypes. like carry
select and carn· 
lookahead, which 
Chapter 6 
describes. 

4.3 Adders 187 

Nothing went wrong- the carry-ripple adder s imply isn' t done yet after just 2 ns. 
After 2 ns, coo changed from 0 to 1. We must allow time for that new value of coo to 
proceed through the next full-adder. Thus, after another 2 ns, sl will equal 1+0+1= 0 and 
co2 will become L So after 4 ns the output will be 001..00 as shown in Figure 4 .33(b). 

Keep waiting. After a third full-adder delay, the new value of co2 will have propagated 
through the next full-adder, resulting in s2 becoming 1+0+1=0 and co2 becoming 1. So 
after 6 ns, the output will be 00000 as shown in Figure 4.33(c). 

A little more patience. After a fourth full-adder delay, co2 has !'tad time to propagate 
through the last full-adder, resulting in s3 becoming 0+0+1=1 and co3 staying 0. Thus, 
after 8 ns the output will be 01000 as in Figure 4.33(d)-01000 is the correct result. 

To recap, until the carry bits had time to ripple through all the adders, from right to 
left, the output was not correct. The intermediate output values are known as spurious 
values. The delay of a component is the time required for the outputs to be the stable 

correct value after any change on the inputs. The delay of a 4-bit carry-ripple adder is 
equal to the delay of four full-adders, which is the time for the carry bits to ripple through 
all the adders- hence, the term carry-ripple adda 

People often initially confuse full-adders and N-bit adders. A full-adder adds 3 bits. 

In contrast, a 3-bit adder adds two 3-bit numbers. A full-adder produces one sum bit and 
one carry bit. In contrast, a 3-bit adder produces three sum bits and one carry bit. A full
adder is usually used to add only one column of two binary numbers, whereas an N-bit 
adder is used to add two N-bit numbers. 

A 11 N-bit adder often comes with a carry-in bit, so that the adder can be cascaded 
with other N-bit adders to fonn larger adders. Figure 4.34(a) shows an 8-bit adder built 
from two 4-bit adders. The carry-in bit (ci) on the right would be set to o when adding 
two 8-bit numbers. Figure 4.34(b) shows a block symbol of that 8-bit adder, and Figure 
4.34(c) shows a simplified block symbol that is commonly used. 

a7a6a5a4 b7b6b5b4 a3a2a1 ao b3b2b1 bO 

a3a2a1 ao b3b2b1 bO a3a2a1 ao b3b2b1 bO a7 .. ao b7 .. bO 

4-bit adder ci 4-bit adder ci 8-b it adder ci 

co s3 s2 s1 so co s3s2 s1 so co s7 .. so 

co s7 s6 s5s4 s3s2 s1 so 

(a) (b) (c) 
figure 4.34 8-bit adder: (a) carry-ripple implementation built from two 4-bit carry-ripple adders, 
(b) block symbol, (c) simplified block symbol. 

Example 4.6 DIP-switch-based adding calculator 
This example designs a simple calculator that can add two 8-b:it binary munbers and produce an 8-
bit result. The input binary numbers come from two 8-switch DIP switches and the output will be 
displayed using 8 LEDs, as illustrated in Figure 4.35. An 8-bit DIP (dual inline package) switch is 
a simple digital component having switches that a user can move up or down by hand; the up posi
tion outputs a 1 on the corresponding pin and down outputs a D. An LED (light-emitting diode) is a 
small light that illuminates when the LED's input is 1 , and is d ark when the input is 0. 



188 4 Datapath Components 

DIP 
switches o 

Figure 4.35 8-bit DIP-switch-based 
adding calculator. The addition 
2+ 3oo5 is shown. 

co 

a7 .. a0 

8-bit carry-ripple adder 

s7 .. so 

Ci 0 

CALC 

LEDs 

The calculator can be implemented using an 8-bit carry-ripple adder for the CALC block, as in 
Figure 4.35. When a user moves the switches on a DIP switch, the new binary values propagate 
through the carry-ripple adder's gates, generating spurious values until the cairy bits have finally 
propagated through the entire circuit, at which point the output stabilizes and the LEDs disp1ay the 
correct new sum. The spurious values are likely too fast to be visible on the LEDs by humans. 

To avoid the LEDs changing while the user is moving switches, we can introduce a button e 
(for '·equals") that indicates when the resul t should be displayed. The user presses e after config
uring both DIP switches as the new inputs to be sununed. We can connect the e input to the l oad 
input of a parallel load register as in fjgure 4.36. Wl1en a user moves switches on the DIP switches, 
intermittent values appear at the adder outputs , but are blocked at the register's inputs, as tine reg
ister holds its previous value and hence the LEDs djsplay that value. When the e button is pressed. 
then on the next clock edge the register will be loaded, and the LEDs will display the new result. 

Figure 4.36 8-bit DfP
switch-based adding 
calculator, using a register 
to block output changes as 
the user configures the 
switches. The LEDs only 
get updated after the button 
is pressed, which loads the 
output register. 

e 

a7 .. a0 

8-bit adder 

co s7 .. so 

8-bit register 

ci 0 

CALC 

Notice that the displayed value w ill be correct only if the sun1 is 255 or Jess. We could connect 
co to a ninth LED to display sums between 256 and 511. 

• 



4.3 Adders 189 

Delay and Size of a 32-Bit Carry-Ripple Adder 
Assuming full-adders are implemented using two levels of gates (ANDs followed by an 
OR) and that every gate has a delay of " I gate-delay," let's compute the total delay of a 
32-bit carry-ripple adder, and also compute the size of such an adder. 

To detennine the delay, note that the carry mtrnt ripple from the first full-adder to the 
32nd full-adder (referring to the adder in Figure 4.33 may help). The delay of the first full
adder is 2 gate-delays. The new carry must then ripple through the seco11d full-adder, resulting 
in another 2 gate-delays. And so on. Thus, the total delay of the 32-bit can-y-ripple adder is 64 
gate-delays. Supposing a gate-delay is 1 ns, then tbe total delay would be 64 ns. 

To determine the size, note that the full -adder in Figure 4.30 would require about 30 
transistors: about 12 transistors for the three 2-input AND gates (4 transistors each), 6 
transistors for the 3-input OR gate, and 12 for the 3-input XOR gate. Because the 32-bit 
adder uses 32 full-adders, the total size of the 32-bit carry-ripple adder is (12 transistors/ 
full-adder)*(32 full-adders)=384 transistors. That's a Jot less than the JOO bilLion transis
tors predicted from the data in Figure 4.24. 

The 32-bit carry-ripple adder has a long delay but a reasonable number of transistors. 
Section 6.4 shows to build faster adders at the expense of using some more transistors. 

Example 4.7 Compensating weight scale using an adder 
A scale. such as a bathroom scale, uses 

a sensor to determine the weight of an 
object (e.g., a person) on the scale. The 
sensor's readings for the same object 
may change over time due to wear and 
tear on the sensing system (such as a 
spring losing elasticity), resulting per· 
haps in reponing a weight that is a few 
pounds too low. Thus, the scale may 
have a knob that the user can turn to 
compensate for the low reported 
weight. The knob indicates the amount 
to add to a given weight before display-
ing the weight. Suppose that a knob can 
be set to change an input compensation 
amount by a value of 0, 1, 2, ... , or 7, as 
shown i11 Figure 4.37. 

We can implement the sys tem 
using an 8-bit carry-ripple adder as 
shown in the figure. On every rising 
clock edge, the display register will be 

loaded with the sum. of the currently 
sensed weight plus the compensation 
an10unt. 

0 
weight 
sensor 6rn1

2 ~ knob 
5 4 3 

00000 

a7 .. a0 b7 .. b0 

8-bit adder ci --o 

co s7 .. so 

elk +-----1 .. 1 
display register 

to display 

Weight 
Adjuster 

Figure 4.37 Compeosating scale: the dial outputs a 
number from 0 to 7 (OUO to 11 1), which gets added to 
the se11sed weight and then displayed. 

• 



190 4 Datapath Components 

Incrementer 
Sometimes a designer needs to just add a constant "l" to a number, rather than adding 
two general numbers. A constant is a nwnber that does not change in a circuit. For 
example, a designer may want a register to count up from 0 to 255, which involves adding 
1 to the register's current value and loading the result back into the regjster. The designer 
could use a carry-ripple adder to perfonn the addition, but an adder is designed to add any 
two numbers and thus has more gates than necessary to just add 1. A common component 
is thus an adder specifically designed just to add l to a number, known as an incrementer. 

a3 
0 
0 
0 
0 
0 
0 
0 
0 
1 

Inputs 

a2 

0 
0 
0 
0 

1 

0 
0 
0 
0 

a1 

0 
0 
1 
1 
0 
0 

1 

0 
0 
1 

0 
0 

aO 
0 
1 
0 
1 
0 
1 
0 
1 

0 
1 
0 

0 
1 
0 

Outputs 

co s3 s 2 s1 so 

0 
1 
0 
1 
0 

0 

1 
0 
1 
0 
1 
0 

0 

An incrementer can be designed 
using the combinational logic design 
process from Chapter 2. Design starts 
with the truth table sbown in Figure 
4.38. Each output row's values can be 
obtained simply by adding 1 to the 
corresponding input row binary 
number. We would then derive an 

equation for each output. It is easy to 
see from the table that the equation 
for cO is c0=a3a2a1a0. It is also 
easy to see that s0=a0'. We would 
derive equations for the remaining 
outputs. Finally, the equations would 
be converted to circuits. The resulting 
incrementer would have a total delay 
of only two gate-delays. However, as 
we saw for N-bit adders , larger 
numbers of inputs can lead to very 

Figure 4.38 Truth table for four-bit incrementer. 

large truth tables that result in unreasonably large circuits. 
As was the case for N-bit adders, we could design a more 

size-efficient incrementer by mimicking the way humans do 
addition by hand, as in Figure 4.39. However, note in the 
figure that adding 1 to a binary number involves only two 
bits per column, not three bits per column like when adding 
two general binary numbers . Recall that a half-adder adds 
two bits (see Section 4.3). Thus, a simple incrementer could 
be built using half-adders, as in Figure 4.40. 

a3 ao 

a a a a b 

HA HA HA HA 

figure 4.40 4-bit 
co s co s co s co s 

incrcmenter: (a) co s3 s2 sl so 
internal design, (b) 
block symbol. 

(a) 

carries: 0 1 1 

0 0 1 1 
unused~ 1 

00100 

Figure 4.39 Adding 1 to a 
binary number requires 

only 2 bits per column. 

+ + + ~ 
(jj a3 a2 a1 ao 
c +1 
<II 
E co s3s2 s1 so <II .... 
u 
~ 

(b) 



4.4 Comparators 191 

4.4 COMPARATORS 
Designs often need their circu.it to compare two binary numbers to determine if the 
numbers are equal or if one munber is greater than the other. For example, a system might 
sound an alann if a thermometer measuring human body temperature reports a tempera
ture greater than 103 degrees Fahrenheit (39.4 degrees Celsius). Comparator components 
perform such comparison of binary numbers . 

Equality (Identity) Comparator 

An N-bit equality comparator (sometimes called an identity comparator) is a combina
tional component that compares two N-bit data inputs A and B, and sets an output control 
bit eq to 1 if those two data inputs are equal. Two N-bit inputs, such as two 4-bit inputs 
A : a3a2ala0 and B : b3b2blb0, are equal if each of their corresponding bit pairs are 
equal. So A equals B if a3 =b3 , a2 =b2, al =bl , and aO =bO. For example if A is 1011 

and Bis 1 011, then A equals B. 
Following the combinational logic design process of Table 2.5, a 4-bit equality com

parator can be designed by fust capturing the function as an equation: 

eq = (a3b3+a3'b3' ) * (a2b2+a2'b2') * 
(albl+al 1 bl 1

) * (aobo +ao•bo•) 

Each term detects if the corresponding bits are equal, namely if both bits are 1 or 
both bits are 0. The expressions inside each of the parentheses describe the behavjor of an 

XNOR gate (recall from Chapter 2 that an XNOR gate outputs 1 if the gate's two input 
bits are equal), so the above equation can be replaced by the equivalent equation: 

eq = (a3 xnor b3 ) * (a 2 xnor b2 ) * (al xnor bl ) * (aO xno r bO) 

The equation can be converted to the circuit in Figme 4.4 l (a). 
Of course, a comparator could be designed starting with a truth table, but that would 

be cumbersome for a large comparator, with too many rows in the truth table to easily 
work with by hand. A tmth table approach enumerates all the possible situations for 
which all the bits are equal, s ince only those situations would have a 1 in the column for 
the output eq. For two 4-bit numbers, one such situation will be 00 00 =0000 . Another 
will be 000 1=0001 . Clearly, there will be as many situations as there are 4-bit binary 

a3 b3 a2 b2 a1 b1 ao bO 

a3a2a1 ao b3b2b1 bO 

4·bit equality comparator 

eq 

(b ) (c) 

Figure 4.41 Equality comparator: (a) internal design, (b) block symbol, (c) simplified symbol. 



192 4 Datapath Components 

numbers- meaning there will be 24=16 situations where both numbers are equal. For two 
8-bit numbers, there will be 256 equal situations. For two 32-bit numbers, there will be 
four billion equal situations. A comparator built with such an approach will be large if we 
don't mi1timize the equation, and that minimization will be hard with such large nwnbers 
of terms. The XNOR-based design is simpler and scales to wider inputs easily- widening 
the inputs from four bits to five bits involves merely adding one more XNOR gate to 
Figure 4.4l(a). 

Magnitude Comparator- Carry-Ripple Style 

An N-bit magnitude comparator is a combinational component that compares two N-bit 
data inputs A and B representing binary numbers, and outputs whether A>B, A=B, or A<B 
using three control signals AgtB, AeqB, and Al tB. 

We have already seen several times that designing certain datapath components by 
starting with a truth table involves too large of a truth table . Let's instead design a magni
tude comparator by conside1ing how htunans compare numbers by hand. Consider 
comparing two 4-bit numbers A: a3a2ala0=1011, B:b3b2blb0=1.001. We start by 
looking at the high-order bits of A and B, namely, a3 and b3. Since they are equal (both are 
1), we look at the next pair of bits, a2 and b2. Again, since they are equal (both are o ), we 
look at the next pair of bits, al and bl. Since al>bl (1>0), we conclude that A>B. 

Thus, comparing two binary numbers talces place by comparing from the high bit
pairs down to the low bit-pairs. As long as bit-pairs are equal, comparison continues with 
the next lower bit-pair. As soon as a bit-pair is different, a conclusio11 can be made that 
A>B if ai=l and bi=O, or that A<B if bi=l and ai= O. Based on this comparison con
cept, we can design a magnitude comparator using the structure shown in Figure 4.42(a). 

Each stage works as follows. ]fin _gt=l (meaning a higher stage determined A>B), 
this stage need not compare bits and instead just sets out _gt=l. Likewise, if in_ l t =l 
(meaning a higher stage determined A<B), this stage just sets out_l t =l. If in_eq=l 
(meaning higher stages were all equal), this stage must compare bits, setting the output 
out gt'"'l if a =l and b =O, setting out lt'"'l if a =O and b=l, and setting out eq=l 
if a ~d b both equal 1 or both equal O. - -

a3 b3 a2 b2 a1 b 1 ao b O 

+ + + + + + + + 
a b a b a b a b 

Igt __. in_gt out_gt in_gt out_gt in_gt out_gt in_gt out_gt Agt6 
leq in_eq out_eq in_eq out_eq in_eq out_eq in_eq out_eq AeqB 

lit in_lt out_it in_ It out_lt in_lt out_lt in_it out_lt AltB 

Stage3 Stage2 
(a} 

Stage1 StageO 

~ Jgt a3 a2a1 aO b3b2b1 bO 
AgtB 

Jeq 4-bit magnitude comparator AeqB 
I ll AltB 

(b) (c) 

Figure 4.42 4-bit magnitude comparator: (a) internal design us ing identical components in each 
stage, (b) block symbol, (c) simplified symbol without ripple inputs. 



4.4 Comparators 193 

We could capture the function of a stage's block using a truth table with S inputs . A 
simpler way is to capture the fu11ction as the following equations derived from the above 
explanation of how each stage works; the circuit for each stage would follow directly 
from these equations: 

out_gt in_gt + ( in_ eq * a * b I ) 

out lt in lt + ( in_ eq * a ' * b ) 
out_ eq "' in_ eq * (a XNOR b) 

~ 0 0 0 1 
a3 b3 a2 b2 a1 b1 ao bO 

+ + ' + + + + + 
a b a b a b a b 

19t0 
in_gt out_gt in_gt out_gt in_gt out_gt AgtB 

leq 1 in_eq out_eq in_eq out_eq in_eq out_eq AeqB 

llt~ in_lt out_lt in_lt out_ It in_lt out_ It AltB 

Stage3 Stage2 
(a) 

Stage1 StageO 

~ 0 1 
a3 b3 a2 b2 a1 b1 ao bo 

+ + t + + + + + 
a b a b a b a b 

lgt~ in_gt out_gt in_gt out_gt in_gt out_gt AgtB 
leq 1 in_eq out_eq in_eq out_eq in_eq out_eq AeqB 

mo in_lt out_ It in_ It out_lt in_lt out_ It AltB 

Stage3 Stage2 
(b) 

Stage1 StageO 

1 0 0 ~ 1 
a3 b3 a2 b2 a1 b1 ao bO 

+ + t + + + + + 
a b a b a b a b 

lgt~ in_gt out_gt in_gt out_gt out_gt AgtB 
leq1-. in_eq out_eq in_eq out_eq i _eq out_eq AeqB 

mo in_lt out_ It in_lt out_lt - It out_ It AllB 

Stage3 Stage2 Stage1 St ageO 
(c ) 

1 0 0 0 ~ 
a3 b3 a2 b2 a1 b1 ao bO 

+ + t + + + + + 
a b a b a b a b 

in_gt out_gt in_gt out_gt out_gt in_gt out gtB 
in_eq out_eq in_eq out_eq out_eq in_eq eqB 
in_lt out_lt in_lt out_lt out_lt in_lt ltB 

Stage3 Stage2 Stage1 StageO 
(d} 

Figure 4.43 The "rippling" within a magnitude comparator. 



194 4 Datapath Components 

Figure 4.43 shows how this comparator works for an input of A=1011 and B=1001. 

We can view the comparator's behavior as consisting of four stages: 

• In Stage] shown in Figure 4.43(a), we start by setting the external input Ieq=1, 

to force the comparator to actually do the comparison. Stage] has in_eq= l , and 
since a3 =1 and b3 =1, then out_eq wiJI become 1 , while out_gt and out_l t 
will become o. 

• In Stage2 shown in Figure 4.43(b), we see that s ince out_ eq of Stage] connects 
to in_eq of Stage2, then Stage2's in_eq will be 1. Since a2 =0 and b2 =0, then 
out_eq will become 1 , while out_gt and out_lt will be o. 

• In Sragel shown in Figure 4.43(c), we see that since Srage2's out_ eq is con
nected to Stagel's in_ eq, Stage l's in_ eq will be 1. Since a l =l and bl= O, 
out_gt will become 1 , while out_eq and out_lt will be o. 

• In StageO shown in Figure 4.43(d), we see that the outputs of Stagel cause 
StageO's in_gt to become 1, which directly causes StageO's out_gt to become 
1, and causes out_eq and out_lt to be o. Notice that the values of ao and bO 
are irrelevant. Since SrageO's outputs connect to the comparator's external out
puts, AgtB will be 1, while AeqB and AltB will be o. 

Because of the way the result ripples through the stages in a manner similar to a 
carry-ripple adder, a magnitude comparator built this way is often referred to as having a 
carry-ripple style implementation, even though what's rippling is not reaJly a "carry" bit. 

The 4-bit magnitude comparator can be connected straightforwardly with another 4-bit 
magnitude comparator to build an 8-bit magnitude comparator, and likewise to build any 
s ize comparator, simply by connecting the comparison outputs of one comparator (AgtB, 
AeqB, Al tB) with the comparison inputs of the next comparator ( I g t , Ieq, Il t). 

If each stage is built from two levels of logic, and a gate has a delay of " I gate
delay"), then each stage will have a delay of 2 gate-delays. So the delay of a carry-ripple 
style 4-bit magnitude comparator is ( 4 stages)*(2 gate-delays/stage)=8 gate-delays. A 32-
bit comparator built with this style will have a delay of (32 stages)*(2 gate-delays/ 
stage)=64 gate-delays. 

Example 4.8 Computing the minimum of two numbers using a comparator 

Figure 4.44 A 
combinational 
component to 
compute the 
minimum of two 
numbers: (a) 
internal design 

We want to design a combinational component that takes two 8-bit inputs A and B, and outputs an 
8-bit output C that is the minimum of A and B. We can use a magnitude comparator and an 8-bit 2x I 
multiplex(}r to implement this component, as shown in Figure 4.44. 

MIN A B 

8 8 

0 Igt A B 

1 Ieq 8-bit magnitude comparator 
lit 

8 

[1 IO 

8-bit 
2x1 mux 

A B 
Min 

c 

using a magnitude 
8 

comparator, (b) (b) 

block symbol. (a) 



4.5 Multiplier-Array-Style 195 

If A<B, the comparator's AltB output will be 1. In this case, we want to pass A through the 
mux, so we connect Al t B to the 8abit 2x I mux select input, and A to the mux's Il input. If AltB 
is 0, then either AgtB=l or AeqB=l. If AgtB=l. we want to pass B. If Aeq B=l, we can pass 
either A or B (since they are identical), and so let's pass B. We thus simply connect B to the I 0 

input of the 8-bit 2x I mux. ln other words, if A<B, we' ll pass A, and if A is not less than B, we'll 
pass B. 

Notice that we set the comparator's Ieq control input to 1 , and the Igt and Ilt inputs to 0. 
These values force the comparator to compare its data inputs. 

• 
4.5 MULTIPLIER-ARRAY-STYLE 

An NxN multiplier is a component that multiplies two N-bit input binary munbers A (the 
multiplicand) and B (the multiplier), and outputs an (N+N)-bit result. For example, an 
8x8 mllltiplier multiplies two 8-bit binary numbers and outputs a 16-bit result. Des igning 
an NxN multiplier in two levels of logic using the standard combinational design process 
will result in too complex of a design, as we've already seen for previous operations like 
addition and comparison. For multipliers with N greater than about 4, we need a more 
efficient method. 

We can create a reasonably sized multiplier by mimicking how hwnans perfo11n mul
tiplication by hand . Consider multiplying two 4-bit binary numbers 0110 and 0011 by 
hand: 

0110 

0011 

0110 

0110 

0000 

+0000 

(the top number is called the multiplicand) 
(the bottom number is called the multiplier) 
(each row below is called a partial product ) 
(because the rightmost bit of the multiplier is 1 , and 0110*1=0110) 

(because the second bit of the multiplier is 1, and <lllO*l=O l lO) 

(because the third bit of the multiplier is 0, and 0110*0=0000) 

(because the leftmost bit of the multiplier is o, and OllO*O=OOOO) 

00010010 (the product is the sum of all the partial products: 18, which is 6* 3) 

Each partial product is easily obtained by ANDing the present multiplier bit with the 
multiplicand. Thus, multiplication of t\vo 4-bit numbers A (a3a2ala0) and B 

(b3b2blb0) can be represented as follows: 

a3 a2 al ao 

x b3 b2 bl bo 

---------- - -------------------------
b0a3 b 0 a2 bOal bOaO (ppl ) 

+ bla3 bla2 blal blaO 0 (pp2) 
+ b2a3 b2a2 b2al b2a0 0 0 (pp3) 
+ b3a3 b3a2 b3al b3a0 0 0 0 (pp4) 

------------------------------------
p7 p6 p5 p4 p3 p2 pl p O 

Note that b oa o means b O AND a o . After generating the partial products (ppl, pp2, pp3, 
and pp4) by ANDing the present multiplier bit with each multiplicand bit, we merely 



196 4 Datapath Components 

a3 a2 a1 ao 

(b) p7 .. p0 

figure 4.45 4-bit by 4-bit array-style multiplier: (a) intemal design, (b) simplified block symbol. 

need to sum those partial products together. We can use three adders of varying widths for 
computing that sum. The resulting design is shown in Figure 4.45(a). 

This design for this 4-bit multiplier has a reasonable size, being about three times 
bigger than a 4-bit carry-ripple adder. The design has reasonable speed. The delay con
sists of l gate-delay for generating the partial products, plus the delay of the adders. If 
each adder is a carry-ripple adder, then rhe 5-bit adder delay will be 5*2=10 gate-delays, 
the 6-bit adder delay will be 6*2=12 gare-delays, and the 7-bit adder delay will be 
7*2= 14 gate-delays. If we assume that the total delay of the adders is simply the sum of 
the adder delays, then the total delay would thus be 1+1O+12+ 14=37 gate-delays. How
ever, the total delay of carry-ripple adders when chained together is actually a little less 
than the sum of delays- see Exercise 4. 15. 

Delays for larger multipliers, which will have an even longer chain of adders, will be 
even slower. Faster multiplier designs are possible at the expense of more gates. 

4.6 SUBTRACTORS AND SIGNED NUMBERS 
An N-bit subtractor is a combinational component that takes two N-bit data inputs A and 
B, representing binary numbers, and outputs an N-bit result S equaling A-B. 

Subtractor for Positive Numbers Only 
For now, let's assume we are onily dealing with positive numbers, so the subtractor's 
inputs are positive, and the result is always positive. Subtraction gets slightly more 
complex when negative results are considered, like 5- 7= -2, and thus far we haven 't dis
cussed representation of negative numbers. The result of subtraction always being 
positive could be the case, for example, when a system only subtracts smaller nwnbers 



4.6 Subtractors and Signed Numbers 197 

from larger numbers, such as when compensating a sampled temperature that will always 
be greater than 80 using a small compensation value that will always be less than 10. 

Designing an N-bit subtractor using the standard combinational logic design process 
suffers from the same exponential size growth problem as an N-bit adder, as discussed in 
Section 4.3. Instead, we can again build an efficient component by m imicking subtraction 
by hand. 

Figure 4.46(a) shows subtraction of 4-bit binary numbers "by hand." Starting with 
the first column, a is less than b (O < 1), necessitating a borrow from the previous 
column. The first column result is then 10- 1=1 (stated in base ten: two minus one equals 
one). The second column has a o for a because of the borrow by the first column, making 
a < b ( O < 1), generating a borrow from the third column- which must itself borrow 
from the fourth column. The result of the second column is then 10- 1=1. The third 
column, because of the borrow generated by the second column, has an a of 1, which is 
not less than b, so the result of the third column is 1-J.=0 . The fourth column has a = O 

due to the borrow from the third column, and since bis also 0, the result is o- o=o. 

1st column 2nd column 3rd column 4th column 
0 0 1 10 0 1 0 

0 % 10 % 1-0 % 0 % 1-0' 0 % 0 0 

i\ 0 i\ 0 ii 0 1 ii 0 

1 1 0 1 0 0 
(a) 

a3 b3 a2 b2 a1 b1 ao bO wi 

a b wi a b wi a b wi a b wi 

FS FS FS FS 

WO s 

WO s3 s2 s1 so 
(b) (c) 

figure 4.46 Design of a 4-bit subtractor: (a) subtraction "by hand". (b) borrow-ripple 
implementation with four full -subtractors with a borrow-in input wi , (c) simplified block symbol. 

Based on the above-described behavior, we could connect four "full-subtractors" in a 
ripple manner as shown in Figure 4.46(b), similar co a carry-ripple adder. A full-sub· 
tractor bas inpuc wi representing a borrow by the previous column, an output wo 
representing a borrow from the next column, and of course inputs a and b and output s. 
We use w's for the borrows rather than b's because bis already used for the inpuc; thew 
comes from the end of the word "borrow." We leave the design of a full-subtractor as an 
exercise for the reader. 

Example 4.9 DIP-swit ch-based adding/subtracting ca lculat or 
ln Example 4.6, we designed a simple calculator that could add two 8-bit binary numbers and pro
duce an 8-bit result, using DIP switches for inputs, and a register plus LEDs for output. Let's 
extend that calculator to allow the user to choose among addition and subtraction operations. We'll 



198 4 Oatapath Components 

Figure 4.47 8-bit DlP-switch
based adding/subtracting 
calculator. Control input f 
selects between addition and 
subtraction. 

A 

1 

0 

e 

DIP switches 

8 8 

B ci 
0 

8-bit adder 

co s 

8 
0 2x 1 

8 

8-bit register 

8 

1111111 

8 8 

A B wi 0 

8-bit subtractor 

WO s 

8 

CALC 

I ' LEDs 

inu-oduce a single-switch DIP switch that sets a signal f (for "function") as another system control 
input. When f = 0, the calculator should add; when f =1, the calculator should subU'act. 

One implementation of this calculator would use an adder, a subtractor, and a multiplexor, 
comprising a simple datapath as shown in Figure 4.47. The f input chooses whether to pass the 
output from tl1e adder or subtractor through the mux lo the register inputs. When the user presses e. 
eitl1cr the addition or subtraction result gets loaded into tl1e regis ter and displayed at tl1e LEDs. 

This example assumes the result of a subtraction is always a positive number, never negative. 
It also assumes that the result is always between 0 and 255. 

• 
Example 4.10 Color space converter-RGB to CMYK 

Computer monitors, digital cameras, scanners. printers, and other electronic devices deal with color 
images. Those devices treat an image as millions of tiny pixels (sho1t for " picture elements"), 
which arc indivisible dots representing a tiny pa1t of the image. Each pixel has a color, so an image 
is just a collection of colored pixels. A good computer monitor may support over I 0 million unique 
colors for each pixel. How docs a monitor create each unique color for a pixel? In a method used in 
what are known as RGB monitors, the monitor has three light sources inside- red, green, and blue. 
Any color of light can be created by adding specific intensities of each of the three colors. Thus, for 
each pixel, the monitor shines a specific intensity of red, of green, and of blue at that pixel's loca
tion on the monitor's screen, so that the tllrcc colors add together to create tl1e desired pixel color. 
Each subcolor (red, green, or blue) is typically represented as an 8-bit binary number (tl1t1s each 
ranging from 0 to 255), meaning a color is represented by 8+8+8=24 bits. An (R, G, B) value of (0. 
0, 0) represents black. (10, 10, 10) represents a very dark gray, while (200, 200, 200) represents a 
light gray. (255 , 0, 0) represents red, while (100, 0, 0) represents a darker (nonintcnsc) red. (255, 
255, 255) represents white. ( l 09, 35, 201) represents some mixture of the tllrcc base colors. Repre
senting color using intensity values for red. green, and blue is known as an RGB color space. 

RGB color space is great for computer monitors and certain od1cr devices, but not the best for 
some other devices like printers. Mixing red, green, and blue ink on paper will not result in white, 
but ratl1cr in black. Why? Because ink is not Light: rather, ink reflects light. So red ink reflects reel 
light, absorbing green and blue light. Likewise, green ink absorbs red and blue light. Blue ink 



4.6 Subtractors and Signed Numbers 199 

absorbs red and green light. Mix all three inks together on paper, and the mixture absorbs all light, 
reflecting none, thus yielding black. Printers therefore use a different color space based on the com
plementary colors of red/green/blue, namely, cyan/magenta/yellow, known as a CMY col-Or space. 
Cyan ink absorbs red. reflecting green and blue (the mixture of which is cyan). Magenta ink 
absorbs green light, reflecting red and blue (which is magenta) . Yellow ink absorbs blue, reflecting 
red and green (which is yellow). 

A color printer commonly has three 
color ink cartridges, one cyan, one magenta, 
and one yellow. Figure 4.48 shows the ink 
cartridges for a particular color printer. 
Some printers have a single cartridge for 
color instead of three, with that single car
tridge internally containing separated fluid 
compartments for the three colors. 

A printer must convert a received RGB 

image into CMY. Let's design a fast circuit 
to perform that conversion. Given three 8-
bit values for R. G, and B for a given pixel, 
the equations for C, M , and Y are s imply: 

c 
M 

255 
255 

y ~ 255 

R 
G 
B 

255 is the maximum value of an 8-bit num
ber. A circuit for suc h conversion can be 
built with subtractors as in Figure 4.49. 

Actually, the conversion needs to be 
slightly more complex. Ink isn't perfect, 
meaning that mixing cyan, magenta, and 
yellow yields a black that doesn't look as 
black as you might expect. Furthem1orc, 

Figure 4.48 A color printer mixes cyan, magenta, 
and yellow inks to create any color. The picture 
shows inside a color printer having those three 
colors' cartridges on the right, labeled C, M , and Y. 

Such printers may use black ink directly (the big 
cartridge on the left) , rather than mixing the three 
colors, to make grays and blacks. in order to create a 
better-looking black and to conserve the more 
expensive color inks. 

colored jnks are expensive compared to black ink. Therefore, color printers use black ink whenever 
possible. One way to maximize use of black ink is to factor out the black from the C, M, and Y 
values. In other words, a (C, M, Y) value of (250. 200. 200) can be thought of as (200, 200, 200) 
plus (50, 0, 0). 

The (200, 200, 200), which is a light gray, can be generated using black ink. The remaining 
(50, 0 , 0) can be generated using a small an10unt of cyan, and using no magenta or yellow ink at all, 
thus saving precious color ink. A CMY color space extended with black is known as a CMYK color 
space (the "K" comes from the last letter in the word "black." "K" is used instead of "B" to avoid 
confus ion with the "B" from "blue"). 

An RGB to CMYK converter can thus be 

described as: R G B 
>- 255 •a 255 8 255 8 
~ f 8 f 8 f 8 K = Minimum (C, M, Y} (.) 

C2 c K 
ffi I ~ I I ~ I ~ I M2 M K a: 

Y2 y K 8 8 8 
c M y 

Figure 4.49 RGB to CMY converter. 



200 4 Datapath Components 

C, M, and Y are defined as earlier. We thus create the 

darapath circuit in Figure 4.50 for cmwerting an RGB 
color space to a CMYK color space_ We've used the 
RGBtoCMY component from Figure 4.49. We've also 
used two il!lstances of the MIN component that we cre
ated in Example 4.8 to compute the minimum of two 

numbers: using two such components computes the 
minimum of three numbers. Finally, we use three more 
subtractors to remove the K value from the C, M, and 
Y values. In a real printer, the imperfections of ink and 
paper require even more adjusanents. A more realistic 
color space converter multiplies the R., G, and B values 
by a series of constants, which can be described us ing 
matrices: 

lmOO mO l m02 
I mlO mll ml2 
lm2 0 m2 1 m22 

Further discussion of such a matrix-based con
verter is beyond the scope of this example. 

R 8G 8 B 8 

R G B 
RGBto CMY 
c M y 

-8 8 8 8 
c M y 

Gf.J f" 
I MIN I 

8 K . 
l t t 

I - I I - I I - I 
~s 8 8 

C2 M2 Y2 K 

Figure 4.50 RGB to CMKY converter. 

:.:: 
>-
~ 
(,) 

.2 
co 
(.!) 
er: 

8 

Representing Negative Numbers: Two's Complement Representation 

We are 
introducing ten's 
complemem jusr 
.for intuition 
purposes-we'// 
actually be using 
rwo 's complemem. 

The subtracter design in the previous section assumed positive input numbers and posi
tive results. But in many systems, results may be negative, and in fact the input values 
may even be negative numbers. We thus need a way to represent negative numbers using 
bits. 

One obvious but not very effective representation is known as signed-magnitude rep
resentation. In this representation, the highest-order bit is used only to represent the 
number's sign, with o meaning positive and 1 meaning negative. The remaining low
order bits represent the magnitude of the number. In this representation, and using 4-bit 
numbers, 0111 would represent +7, while 1111 would represent - 7. Thus, four bits 
could represent - 7 to 7. (Notice, by the way, that both 0000 and 1 000 would represent 0, 
the fonner representing o, the latter - 0.) Signed-magnitude is easy for hwnans to under
stand, but doesn' t lead itself easily to the design of simple arithmetic components like 
adders and subtractors . For example, if an adder's inputs use signed-magnitude represen
tation, the adder would have to look at the highest-order bit and then internally perform 
either an addition or a subtraction, using different circuits for each. 

Instead, the most common method of representing negative numbers and perfonning 
s ubtraction in a digital system actually uses a trick that allows us to use an adder to 
perform s ubtraction. The key to p erforming subtraction using addition lies in what are 
known as complements. We' ll first introduce complements in the base ten number system 
j ust so you can familiarize yow·self with the concept, but bear in mi11d that the inte11tio11 
is to use complements in base two, not base ten. 



4.6 Subtractors and Signed Numbers 201 

Consider subtraction involving two single-digit base ten 
numbers, say 7~. The result should be 3. Let's define the 
complement of a single-digit base ten number A as the number 
that when added to A results in a sum of ten. So the comple
ment of I is 9, of 2 is 8, and so on. Figure 4 .51 provides the 
complements for the numbers l through 9. 

The wonderful thing about a complement is that you can 
use it to perform subtraction using addition, by replacing the 
number being subtracted with its complement, then by adding, 
and then by finally throwing away the carry. For example: 

1 - 9 

2- s 
3 - 7 

4 - 6 

s - s 
6 - 4 

7 - 3 

s - 2 
9 - 1 

7 - 4 ~> 7 + 6 = 13 ~> ±3 = 3 Figure 4.51 Complements 
in ba~e ten. 

We replaced 4 by its complement 6, and then added 6 to 7 
to obtain 13. Finally, we threw away the carry, leaving 3, which is the correct result. Thus, 
we petformed subtraction using addition. 

complements 

19 
2 8 

3 7 

4 6 

5 5 

6 4 

7 [ 13 
8 2 

s I I I 1 

I I I II I I I I I 
0 10 

10 

4 6 

7 

a ll~ 
!~~! 
I -4 6 I 
3 n + 13 

X3 
3 

7-4=3 7+6=1 3-3 

I I I I I I 
20 

Adding the complement results in an answer that is 
exactly 10 too much - dropping the tens column gives 
the right answer. 

Figure 4.52 Subtracting by adding- subtracting a nwnber (4) is the same as adding the munber's 

complement (6) and then dropping the carry, since by definition of the complement, the result will 
be exactly 10 too much. After all, that's how the complement was defined- the number plus its 
complement equals 10. 

A number line helps us visualize why complements work, as shown in Figure 4.52. 
Complements work for any number of digits. Say we want to perform subtraction using 
two two-digit base ten numbers, perhaps 55- 30. The complement of 30 would be the 
number that when added to 30 results in JOO, so the complement of 30 is 70. 55+ 70 is 
125. Throwing away the carry yields 25) which is the cotTect result for 55-30. 

So using complements achieves subtraction using addition. 
"Not so fast!" you might say. In order to determine the complement, don't we have to 

perfonn subtractioa? We know that 6 is the complement of 4 by computing l ~=6. We 
know that 70 is the complement of 30 by computing J00-30=70. So haven' t we just 
moved the subtraction to another step-the step of computing the complement? 

Yes. Except, it turns out that in base two, we can compute the complement in a much 
simpler way- jusr by inverting all the bits and adding I. For example, consider com-



202 4 Datapath Components 

Tivo 's complemelll 
can be computed 
simply by 
inverting the bits 
and adding 
I-thus avoiding 
the needjor 
s11btractio11 wlie11 
compllling a 
complemem. 

The highest-order 
bit in two's 
complemem acts 
as a sign bit: 0 
111eans p ositive, 
I means negative. 

puting the complement of the 3-bit base-two number 001. The complement would be the 
number that when added to 001 yields 1000-you can probably see that the complement 
should be 111. To check, we can use the same method for computing the complement as 
in base ten, computing the two's complement of 001 as 1000- 001=111. So 111 is the 
complement of o o 1. However, it just so happens that if we invert all the bits of o o 1 and 
add 1 , we get the same result! llwerting the bits of 001 yields 110; adding 1 yields 
110+1=111, which is the correct complement. 

Thus, to perfon11 a subtraction, say 011- 001, we would perform the following: 

011 - 001 

-> 011 + ( ( 001} I + 1 ) 
011 + ( 110 +1) 

= 011 + 111 
= 1010 (throw away the carry) 
-> 010 

That's the correct answer, and the method didn 't involve subtraction--0nly an invert and 
additions. 

We omit discussion as to why one can compute the complement in base two by 
inverting the bits and adding 1- for our purposes, we just need to know that the trick 
works for binary numbers. 

There are actually two types of complements of a binary number. T he type described 
above is known as the two's complement , obtained by inverting all the bits of the binary 
number and adding 1. Another type is known as the one's complement. which is obtained 
simply by inverting all the bits, without adding a 1. The two's complement is mucb more 
conunonly used in digital circuits and results in simpler logic. 

Two's complement leads to a simple way to represent negative nwnbers. Say we have 
four bits to represent numbers, and we want to represent both positive and negative num
bers. We can choose to represent positive numbers as 0000 to 0111 (0 to 7). Negative 
numbers would be obtained by taking the two's complement of the positive numbers, 
because a - bis the same as a + (- b). So - 1 would be represented by tiling the two's 
complement of 0001, or (000 1 ) '+1 = 1110+ 1 = 1111. Likewise, - 2 would be 
(0010)' +1=1101+1=1110. - 3 would be ( 0011) ' +1=1100+1 = 1101. And so on. 
- 7 would be (0111) ' +1=1000+1=1001. Notice that the two's complement of 0 000 

is 1111+1 = 0000. Two's complement representation has only one representation of 0, 
namely, o o o o (unlike signed-magnitude representation, which had two representations of 
0). Also notice that we can represent - 8 as 1000. So two's complement is slightly asym
metric, representing one more negative number than positive numbers. A 4-bit two's
complement number can represent any nwnber from -8 to +7. 

Say you have 4-bit numbers and want to store - 5_ - 5 would be (0101) 1 +1 = 
1010 +1 = 1011. Now you want to add - 5 to 4 (or 0100) . So you simply add 
1011 + o 1 oo = 1111, which is the correct answer of - I. 

Note that negative numbers aJl have a 1 in the highest-order (leftmost) bit; thus, the 
highest-order bit in two's complement is often referred to as the sign bit , 0 indicating a 
positive trnmber, 1 a negative nwnber. An N-bit binary number that only represents posi
tive numbers is called an unsigned number and can represent numbers from 0 to 2N -1. 
For example, an 8-bit unsigned munber can represent numbers from 0 to 255. An N-bit 
binary number that can represent positive or negative numbers is called a signed number 
(more specifically, a signed two's-complement number, which is the most common form 
and the only form this book uses)_ A signed number can represent numbers from -2N- I to 
+2N- 1- I. For example, an 8-bit signed number can represent numbers - 128 to +127. You 



This is a helpful 
a1'1d co111111011ly
"sed merhod when 
teaming flllo 's 
complemem: 
remember it. 

4.6 Subtractors and Signed Numbers 203 

can't tell whether a number like 1011 is a signed or unsigned number (or even a number 
at all) just by looking at it; somebody has to tell you what the bits represent. 

If you want to know the magnitude of a two's complement negative nwnber, you can 
obtain the magnitude by taking the two's complement again. So to determine what 
number 1111 represents, we can take the two's complement of 1 1 1 1 : ( 1111) '+1 = 

0000+1 = 0001. We put a negative sign in front to yield - 0001, or - I. 
A quick method for humans to mentally figure out the magnitude of a negative 

number in 4-bit two's complement (having a 1 in the high order bit) is to subtract the 
magnitude of the three lower bits from 8. So for 1111, the low three bits are 111 or 7, so 
the magnitude is 8- 7=1, which in turn means that 1111 represents - J. For an 8-bit two's 
complement number, we would subtract the magnitude of the lower 7 bits from 128. So 
10000111 would be -{128-7) = -121. 

To smnmarize, we can represent negative numbers using two's complement represen
tation. Addition of two's complement nwnbers proceeds unmodified- we just add the 
nmnbers. Even if one or both numbers are negative, we simply add the numbers . We 
perform subtraction of A - B by taking the two's complement of B and then adding that 
two's complement to A, resulting in A+ {- B). We compute the two's complement of B by 
simply inverting the bits of B and then adding 1. B could have originally been positive or 
negative: d1e two's complement correctly negates B in either case. 

Building a Subtractor Using an Adder and Two's Complement 

Knowledge of the two's complement representa
tion leads to a technique to subtract using an 
adder. To compute A - B, we compute A+ (- B), 

which is the same as A+ B ' + 1 because - B can 
be computed as B' + 1 in two;s complement. 
Thus, to perform subtraction we invert B and 
input a 1 to the carry-in of an adder, as shown in 
Figure 4.53. 

A 

A B 
Adder cin 

s 
Figure 4.53 Two's complement 
subtractor built with an adder. Adder/Subtractor 

An adder/subtractor component 
can be straightforwardly desig11ed, 
having a control input sub. When 
sub=l the component subtracts, 
but when sub= O the component 
adds. The design is shown in 
Figure 4.54(a). The N-bit 2x 1 mul
tiplexor passes B when sub= O, 

and passes B' when sub=l. sub 
is connected to c in also, so that 
c in is 1 when subtracting. Actu
ally, XORs can be u sed instead of 
the inverters and mux, as shown in 
Figure 4.54(b). When sub= O, the 

A 

A B 
Adder cin 

s 

sub 

(a) 

adde(s B inputs 

(b) 

Figure 4.54 Two's complement adder/subtracter using a 
mux, (b) alternative circuit for Busing XOR gates. 



204 4 Datapath Components 

output of XOR equals the other inp ut's value. When suh=1 , the output of the XOR is the 

inverse of the other i11put's value. 

Example 4.11 DIP-switch -based adding/subtracting calculator (continued) 

Let's revis it our DIP-switch-based adding/subtracting calculator of Example 4 .9. Observe that at 
any given time, the output displays the results of either the adder or subtractor, but never both 
simultaneously. Thus, we really don' t need both an adder and a subtractor operating in parallel; 
instead, we can use a single addcr/subtractor component. Assuming DIP switches have been set, 
setting f=O (add) versus f=l (subtract) should res ult in the following computations: 

0000 1111 + 00000001 (f=O) 

0000 1111 - 00000001 (f=l ) 

0000 1 11 0 

00010000 
00001111 + 11111 110 + 1 

We achieve this simply by connecting f to the sub input of the adder/subtractor, as shown in 
Figure 4.55. 

Figure 4.55 &-bit DIP
switch-based adding/ 
subtracting calculator, 
using an adder/subtractor 
and two's comlement 
nwnber representation. 

DIP switches 

A B 
1-+------1sub 8-bit adder/subtracter 

s 
8 

e 
8-bit register 

8 

QQlll l ILEDs 

CALC 

Let's consider signed munbers using two's complement. If the user is unaware that two' s com
plement representation is being used and the user will only be inputting positive numbers using the 
DIP switches, then the user should only use the low-order 7 swi tches of the 8-switch DIP inputs. 
leaving the eighth switch in the 0 position, meaning the user can only input numbers ranging from 
0 (00000000) to 127 (01111111). The reason tl1e user can't use the eight:b bit is that in two's 
complement representation, making the highest-order bit a 1 causes the number to represent a neg
ative number. 

If the user is aware of two's complement, then the user could use the DIP switches to represent 
negative numbers too, from - 1 (1111111 1) down to - 128 (10000 000). Of course, the user will 
need to check the leftmost LED to determine whether the output represents a posi tive number or a 
negative number in two's complement form. 

• 



4.6 Subtractors and Signed Numbers 205 

.... WHY SUCH CHEAP CALCULATORS? ECONOMY OF SCALE 

Several earlier examples dealt with designing simple 
calculators. Cheap calculators, costing less than a 
dollar, are easy to find. Calculators are even given 
away for free by many companies selling something 
else. But a calculator internally contains a chip 
implementing a digital circuit, and chips l\Onnally 
aren't cheap. Why are some calculators such a 
bargain? 

The reason is known as economy of scale, which 
means that products arc often cheaper when produced 
in large volwnes. Why? Because the design and setup 
costs can be amortized over larger numbers. Suppose 
it costs $1 ,000,000 to design a cnstom calculator chip 
and to setup the chip's manufacturing (not so 
mireasonable a number)-design and setup costs are 
often called 11011rec11rri11g engi11eeri11g, or NRE, 
costs. If you plan to produce and sell one such chip, 

Detecting Overflow 

then you need to add $1,000,000 to the selling price of 
dlat chip if you want to break even (meaning to 
recover your design and setup costs) when you sell d1e 
chip. If you plan to produce and sell 10 such chips, 
then you need to add S 1.000,000/ l 0 = $ 100,000 to the 
selling price of each chip. If you plan to produce and 
sell 1,000,000 such chips. then you need to add only 
$1,000,000/l,000,000 =SI to the selling price of each 
chip. And if you plan to produce and sell I0,000,000, 
you need to add a mere $1,000,000/10,000,000 = 
$0.10 "" 10 cents to the selling price of each chip. If 
the actual raw materials only cost 20 cents per chip, 
and you add anoilier 10 cents per chip for profit, then I 
can buy the chip from you for a mere 40 cents. And I 
can then give away such a calculator for free, as many 
companies do, as an incentive for people to buy 
somedling else. 

Display Chip (covered) Battery 

When performing arithmetic using fixed-width binary numbers, sometimes the result is 
wider than the fixed bitwidth, a situation known as overflow. For example, consider 
adding two 4-bit binary numbers Uust regular binary numbers for now, not two's comple
ment numbers) and storing the result as another 4-bit number. Adding 1111 ... 0001 
yields 10000- a 5-bit munber, which is bigger than the 4 bits available to store the 
result. In other words, 15+1=16, and 16 requires S bits in binary. We can easily detect 
overflow when adding two binary numbers simply by looking at the carry-out bit of the 
adder- a carry-out of 1 indicates overflow. So a 4-bit adder adding 1.111 + o o o 1 would 
output 1 + 0000, where the 1 is the carry-out- indicating overflow. 

When using two's complement numbers, detecting overflow is more complicated. 
Suppose we have 4-bit numbers in two's complement form. Consider the addition of two 
positive numbers, such as 0111 and 0001 in Figure 4.56(a). A 4-bit adder would output 
1000, but that is inc01Tect- the result of 7+1 should be 8, but 1000 represents - 8 in 
two's complement. 



206 4 Datapath Components 

The problem 1s that the largest 
positive number that a 4-bit two's 
complement number can represent is 
7. So when adding two positive num
bers, overflow can be detected by 
checking whether the result's most 
significant bit is 1. 

sign bits 

~ 1 
+ 0 0 

<D 0 0 0 

overflow 
(a) 

~ , ~ o 0 0 

+ 0 0 0 1 

@ 1 CD 1 
overflow no overflow 

(b) (c) 

Likewise, consider adding two If the numbers' sign bits have the same value, which 
negative numbers, such as 1111 and differs from the result's sign bit, overflow has occurred. 

1000 in Figure 4.56(b). An adder Figure 4.56 Two's complement overflow detection 
would output a sum of 0 111 (and a comparing sign bits: (a) when adding two positive 
carry-out of 1), which is incorrect: numbers, (b) when adding two negative numbers, (c) 
- 1 + - 8 should be - 9, but O 111 is + 7. no overflow. 
The problem is that the most negative number that a 4-bit two;s complement can repre
sent is - 8. Thus, when adding two negative numbers, overflow can be detected by 
checking whether the most s ignificant bit is a o in the result. 

Adding a positive with a negative, or a negative with a positive, can never result in 
overflow. The result will always be less negative than the most negative number or less 
positive than the most positive number. The extreme is the addition of - 8+ 7, which is - 1. 
Increasing - 8 or decreasing 7 in that addition still results in a number between - 8 and 7 . 

Thus, detecting overflow in two's complement involves detecting that both input 
numbers were positive but yielded a negative result, or that both input numbers were neg
ative but yielded a positive result. Restated, detecting overflow in two's complement 
involves detecting that the sign bits of both inputs are the same but differ from the result's 
s ign bit. If the sign bit of one input is a and the sign bit of the other input is b, and the 
sign bit of the result is r , then the following equation outputs 1 when there is ove1flow: 

overf low = abr' + a'b'r 

Though the circuit implementing the 
overflow detection equation is simple and 
intuitive, we can create an eve11 simpler 
circuit if the adder generates a carry-out. 
The sin1pler method merely compares the 
carry into the sign bit column with the 
carry-out of the sigllt bit column-if the 
carry-in and carry-out differ, overflow has 
occurred. Figure 4.57 illustrates this 
method for several cases. In Figure 
4.57(a), the carry into the sign bit is 1, 

whereas the carry-out is o. Because the 
carry-in and carry-out differ, overflow has 
occurred. A circuit detecting whether two 

1 
0 

+ 0 0 0 

0 1 0 0 0 
overflow 

(a) 

0 0 0 

+ 1 0 0 0 

1 0 
overflow 

(b) 

0 0 0 
0 0 0 

+O 

0 1 
no overflow 

(c) 

If the carry into the sign bit column differs from the 
carry-out of that column, overflow has occurred. 

Figure 4.57 Two's complement overflow 
detection comparing carry into and out of the 
sign bit column: (a) when adding two positive 
numbers. (b) when adding two negative numbers, 
(c) no overflow. 

bits differ is just an XOR gate, which is s lightly simpler than the circuit of the previous 
method. We omit discussion as to why this method works, but looking at the cases in 
Figure 4.57 should help provide tbe intuition. 



4.7 Arithmetic-Logic Units-ALUs 207 

4.7 ARITHMETIC-LOGIC UNITS-ALUS 

An N-bit arithmetic-logic unit (AL U) is a combinational datapath component able to 
perform a variety of arithmetic and logic operations on two N-bi t wide data inputs, gener
ating an N-bit data output. Example arithmetic operations include addition and 
subtraction. Example logic operations include AND, OR, XOR, etc. Control inputs to the 
ALU indicate which particular operation to perform. To understand the need for an ALU 
component, consider the following example. 

Example 4.12 Multi-function calculator without using an ALU 
Let's extend the earlier DIP-switch-based calculator to support eight operations, determined by a 
three-switch DIP switch that provides three inputs x, y, and z to the system. as shown in Figure 
4.58. For each combination of the three switches, we want to perform the operations shown in 
Table 4.2 on the 8-bit data inputs A and B, generating the 8-bit output on S. 

TABLE 4.2 Desired calculator operations 

Inputs Sample output if 
Operation A=00001 111, 

x y z B=00000101 

0 0 0 s A + B S=00010100 

0 0 1 s A - B 5=00001010 

0 1 0 s A + 1 5 =00010000 

0 1 1 s A 5 =00001111 

1 0 0 s A AND B (bitwise AND) 5=00000101 

1 0 1 s A OR B (bitwise OR) 5=00001111 

1 1 0 s A XOR B (bitwise XOR) 5=00001010 

1 1 1 s = NOT A (bitwise complement) 5 =11110000 

The table includes several bitwise operations (AND. OR, XOR, and complement). A bitwise 
operation applies to each corresponding pair of bits of A and B separately. 

We can design a datapath circuit for the calculator as shown in Figure 4.58, using a separate 
datapath component to compute each operation: an adder computes the addition, a subtractor com
putes the subtraction, an incrementer computes the increment. and so on. However, that datapath is 
very inefficient with respect to the number of wi1·es, power consumption, or delay. There are too 
many wires that must be routed to al l those components, and especially to the mux, which will have 
8*8 = 64 inputs. Furthem1ore, every operation is computed all the time, and that wastes power. 
Such a design is akin to a restaurant cooking every meal that a customer might order and then 
serving the customer just the one meal that the customer actualJy orders. 

Furthem1ore, imagine that the calculator deals not with 8-bit numbers, but instead with 32-bit 
numbers, and supports not just 8 operations but 32 operations. Then the design would have even 



208 4 Datapath Components 

Figure 4.58 8-bit DIP-switch-based 
multifunction calculator, using separate 
components for each function. 

DIP 
switches 0 

8 8 

A B 

"" ......J0D=±2=3f:::::l41:::::::l51:::t63-7~ A lot of wires. 

t-+-x~~~~--.~s2 
1-+Y...._ ____ --i s1 8-bit 8x 1 

t-+-2~~~~--.~so 
'--~~~-.--~~~~ 

8 
e 

8·bit register 
CALC 

Wasted 
power 

more wires (32:l<32 = 1024 wires at the mux inputs), and even more power consumption. Further
more. a 32x1 mux will require several levels of gates, because due to practical reasons, a 32-input 
logic gate (inside the mux) will likely need to be implemented using several levels of smaller logic 
gates. 

• 

We saw in the above example that using separate components for each operation is 
not efficient. To solve the problem, note that the calculator can only be configured to do 
one operation at a time, so there is no need to compute all the operations in parallel, as 
was done in the example. Instead, we can create a single component (an ALU) that can 
compute any of the eight operations. Such a component would be more area- and power
efficient, and would have Jess delay because a large mux would not be needed. 

Let's start with an adder as the base internal ALU design. To avoid confusion, the 
inputs to the internal adder are named I A and IB, short for " internal A" and "internal B," 

to distinguish those inputs from the external ALU inputs A and B. We start with the 
design shown in Figure 4.59(a). The ALU consists of an adder and some logic in front of 
the adder' s inputs , calJed an arithmetic/logic extender, or AL-extender. The purpose of the 



4.7 Arithmetic-Logic Units-ALUs 209 

A a? b7 a6 b6 ao bO ___ ... _ ... 
AL-extender 

x 
y AL-extender x 
z y 

z 
' ' ' ' ' TA TB ' ' ab ext ab ext ab ext cinext 

' Adder cin ' 

ia7 ib7 ia6 ib6 iaO ibO cin 
ALU (b) 

Figure 4.59 Arithmetic-logic unit: (a) ALU design based on a single adder, with an arithmetic/logic 
extender, (b) arithmetic/logic extender detail. 

AL-extender is to set the adder's inputs based on the values of the ALU's control inputs x, 

y, and z, such that the desired arithmetic or logic result appears at the adder's output. The 
AL-extender actually consists of eight identical components labeled abext, one for each 
pair of bits ai and bi , as shown in Figure 4.59(b). It also has a component cinext to 
compute the cin bit. 

Thus, we need to design the abext and cinext components to complete the ALU 
design. Consider the first four calculator operations from Table 4.2, which are aU arith
metic operations: 

• When x y z = ooo, S=A+B. So in that case, we want IA=A, IB:B, and cin=O. 

• When xyz= 001 , S=A-B. So we want IA=A, IB=B ', and c i n = l. 

• When xyz= 010 , S=A+ L So we want IA=A, IB= O, and cin=l. 

• When xyz= Oll, S =A. So we want I A=A, IB= O, and cin=O. Notice that A will 
pass through the adder, because A+ o + o =A. 

The last four ALU operations are all logical operations. We can compute the desired 
operation in the abext component, and input the result to IA. We then set IB to o and cin 
to 0, so that the value on I A passes through the adder unchanged. 

One possible design of abe.xt places an 8x 1 mux in front of each output of the abext 
and cinext components, with x, y, and z as the select inputs, in which case we would set 
each mux data input as described above. A more efficient and faster design would create 
a custom circuit for each component output. We leave the completion of the internal 
design of the abext and cinext components as an exercise for the reader. 

Example 4.13 redesigns the multifunction calculator of Example 4.12, this time uti
lizing an ALU. 



210 4 Oatapath Components 

Example 4.13 Multi-function calculator using an ALU 
Example 4.12 built an eight-function calculator without an ALU. The result was wasted area and 
power, complex wiring, and long de lay. Using the above-designed ALU, the calculator could 
instead be built as the datapath in Figure 4.60. Notice the simple and effi c ient design. 

Figure 4.60 8-bit DIP
switch-bascd multi
funct ion calculator using 
an ALU. 

4.8 SHIFTERS 

0 

DIP switches 

D ~~~~~~~ 0 ~~~~~~~~ 
8 8 

A B 

x A B 
y x 

ALU 
z 

y 
z s 

8 

e 

8 CALC 

, ,,,,, , , , ILEDs 

• 

Shifting is a common operation applied to data . Shifting can be used to rearrange bits of 
data. Shifting is useful for communicating data serially as was done in Example 4.4. 

Shifting is also useful for multiplying or dividing an unsigned binary number by a factor 
of 2. In base ten, you are familiar with the idea that multiply ing by JO can be done by 
simply appending a 0 to a number. For example, 53 times 10 is 530. Appe nding a 0 is the 
same as shifting left one position (and shifting in a 0). Li kewise, in base two, multiplying 
an unsigned binary number by 2 can be done by appending a 0, meaning shifting left one 

position. So 0 1 0 1 times 2 is 1010 . Fut1hennore, in base ten, multiplying by 100 can be 
done by appending two Os, meaning shifting left twice. So in base two, multiplying by 4 
can be done by shifting left twice. Shifting left three times in base two multiplies by 8. 
And so on. Because shifting an unsigned binary number left is the same as multiplying by 
2, shifting an unsigned binary number right is the same as dividing by 2. So 1 o1 o divided 
by 2 is 0101. 

Although shifting can be done using a shift register, sometimes we find the need to 
use a separate combinational component that performs the shift and that can also shift by 

different numbers of positions and in either direction. 



Simple Shifters 

figure 4.61 
Combinational 
shifters: (a) left 
shifter desig1t, 
with block 
symbol shown at 
bottom, (b) left 
shift or pass 
component, (c) 
left/right shift or 
pass component. 

4.8 Shifters 211 

An N-bit shifter is a combinational component that can shift an N-bit data input by a 
fixed amount to generate an N-bit data output. The simplest shifter shifts one position in 
one direction. A simple 4-bit shifter that shifts left one position lias a straightforward 
design consisting of just wires as shown in Figure 4.6 l(a). Note that the shifter has an 

additional input that is the value to shift into the rightmost bit. The notation "<<f' indi
cates a left shift ("<<") by 1 position; a right shift would use ">>." 

i3 i2 i1 iO i3 i2 i1 iO i3 i2 i1 iO 

in 
inR inl 

sh shL 
shR 

q3 q2 q1 qO 

$ q3 q2 q1 qO q3 q2 q1 qO 
(b} (e) 

(a) 

A more capable simple shifter can either shift one position when an additional input 
sh is 1 or can pass the inputs through co the outputs unshifted when sh is o. The des ign 
of such a shifrer uses 2xl muxes as shown in Figure 4.6l(b). An even more capable 
simple shifter shown in Figure 4 .6 l (c) can shift left or right one position. When both shift 
control inputs are o, the inputs pass through unchanged. shL= 1 causes a left shift, and 
shR= l causes a right shift. When both those control inputs are 1, the shifter could be 
designed to pass the inputs th.rough unchanged (not shown in the figure). A simple 
shifter's shift amount could be something other than 1; for example, a shifter component 
might shift right by two places, denoted as .. >>2." 

Example 4.14 Temperature averager 
Consider a system that reads the unsigned 
binary output T of a sensor such as a speed 
or temperature sensor in an aircraft. The sys· 
tem may sample the sensor several times a 
second and average recent samples (called a 
sliding average) to help compensate for sen· 
sor imperfections that cause occasional spu· 
rious sensor readings~ e.g., a speed sensor's 
last fou.r readings may be 202, 203, 235, 
202- that 235 reading is probably incorrect. 

Let's design a system that computes the 
average of four registers Ra, Rb, Re, and Rd, 
storing the result in a register Ravg and out
putting the result on output Tavg. The 
average is computed as (Ra+Rb+Rc+Rd) I 
4. Dividing by 4 is the same as shifting right Figure 4.62 Temperature averager using a right
by two. Thus, we can design the system as a shift-by-2 sirnple shifter component to divide by 4. 



212 4 Datapath Components 

datapath having three adders, a simple right shifter that shifts by two places (with a shift in value of 
O), and registers, as shown in Figure 4.62. 

This section stated that shifting was the same as multiplication or division by factors 
of 2 for unsigned numbers. Simple shifting would not accomplish such multiplication or 
division for signed numbers. For example, consider the signed 4-bit number 1010, 

meaning -6. Right shifting to try to divide by 2 would result in 0101 or +5, which is not 
the correct result of - 1, or 1111. Likewise, left shifting to try to multiply by 2 would 
result in 0100, or 4, rather than -4, or 1100. Solutions exist but are beyond the scope of 
this book. 

Strength Reduction. Multiplication by a constant number that is a power of 2 (2, 4, 8, 
16, etc.) can be done using left shifts, but systems commonly multiply by other constant 
numbers, such as by 5 or by 10. While a designer could use a multiplier component 
(desc1ibed in Section 4.5), multipliers use more transistors than shifters or adders. Thus, 
designers sometimes replace multiplications by a series of shifts and adds that compute 
rhe same result, because shifter components and adder components are small and fast 
compared to multipliers. Replacing costly operations by a series of less costly operations 
is known as strength reduction and is common in digital design as well as in soft ware 
compilation. For example, a system may require computing 5*C. A designer might 
rewrite that computation as 4*C + C, thus requiring a left-shift-by-2 component (for 4*C) 
and an adder, which together are still smaller and faster than a multiplier. 

Division is slightly harder to do precisely using shifts and adds but can still be done 
us ing a similar strength reduction approach. For example, C/5 is C*( J/5), and J/5 = 0.20. 
115 could be approximated by converting to a fraction that is close to 0.20 and that has a 
denominator that is a power of 2, such as l 021512 (0.199). Then the numerator could be 
computed as the sum of powers of two, i.e. , 102/512 is (64+32+4+2)/S 12. Therefore, C/S 
nearly equals C*(64+32+4+2)/512, or (C*64 + C*32 + C*4+C*2)/512. All the multipli
cations and divisions in that equabon can be achieved using left shifts or right shift.<;, i.e., 
((C<<6) + (C<<5) + (C<<2) + (C<<l )) >> 9. For even more accuracy, a larger denomi
nator (and hence numerator) could be used to get closer to 0.20. At some point, though, 
the number of shifts and adds may exceed the cost of a divider component. 

Example 4.15 Celsius to Fahrenheit converter 
We are given a digital thermometer that digitizes a temperature into an 8-bit unsigned binary num
ber C representing the temperature in Celsius. For example, 30 degrees Celsius would be digitized 
as 000111 10. We want to convert that temperature to Fahrenheit, again using 8 unsigned bits. The 
equation for converting is: 

F = C*9/ 5 + 32 

We can rewrite the equation as: 

F = C + C*4 / 5 + 32 

C* 4 / 5 is 4 * { C/ 5) . We saw above that C/ 5 can be closely approximated as: 

(C*64+C*32 +C*4 +C*2}/512 

The multiplication of the above equation by 4 to obtain 4 * (Cf 5) changes the denominator to 128. 
Thus, the equation for converting can be rewritten as: 

F = C+ ( C*64+C*32 +C*4+C*2 )/128+ 32 



The equation for F has been rewritten such that any 
multiplications or divisions are by a constant power of 2 
and are thus replaceable by shifts. 

The datapatb circuit implementing the rewritten 
equation is shown in Figure 4.63. Consider an input 
C=00011110 representing 30 degrees Celsius, which 
is 86 degrees accordi11g to the first conversion equation 
above. The circuit's "<<6,. shifter shifts the input 6 
places to the left; shifting 0001111 0 6 places left 
yields 10000000, which loses information (30*64 is 
nor just 128). To avoid information loss, we can increase 
the munber of internal wires- let's increase them to 16 
bits. AB wires and components in the figure arc thus 16 
bits wide. The input would be padded on the left with 
Os--padding means to fill values for the bits introduced 
when widening multibit data. The input C left-padded to 
16 bits would be 0000 0000 OOQl 11 1 0 (we added 
spaces just for readabjJity). The top four shifters and the 
top three adders of Figure 4.63 would thus compute: 

0000 0111 1000 0000 {C <<6) 

+ 0000 0011 1100 0000 (C <<5) 

+ 0000 0000 0111 1000 (C <<2) 

+ 0000 0000 0011 1100 (C <<1) 

0000 1011 .. 1111 0100 

4.8 Shifters 213 

c 
16 

F = C +{C'64+C*32+C•4+C*2)/128 + 32 

Figure 4.63 Celsius to Fahrenheit 
converter datapath using shifts and 
adds. 

The shift right by 7 would output 0000 0000 0001 0111. The adder that adds this resuli 
to the input C of 0000 0000 OOC>l 1110 would output 0000 0000 0011 0101. The bottom
most adder adds this result to the constant 32 (0000 0000 0010 0000) to yield the final output 
of 0000 0000 0101 0101. The Leftmost 8 bits can be dropped to yield the 8-bit output for F of 
01010101, which is 85 in binary- slightly off from the correct value of 86 due to the shift and 
add approximation approach, but close. A larger denominator (and hence numerator) in the approx
imation approach would yield higher accuracy at the expense of more shifts and adds . 

.... Fahrenheit versus Celsius- The U.S. and the Metric System 

The U.S. usually rep resents temperature using 
Fahrenheit. whereas most of the world uses the metric 
system's Celsius. Presidents and other U.S. leaders 
have desired to switch to the metric system for almost 
as long as the U.S. ha'i existed. and several acts have 
been passed over the centuries .. the most recent being 
the Metric Conversion Act of 1975 (amended several 
times since). The Act designates the 01etric system as 
the preferred system of weights and measures for U.S. 
trade and conunerce. Yet switching to metric has been 
slow, and few Americans today arc comfortable with 
metric. The problem with such a slow transition was 
poignantly demonstrated in 1999 when the Mars 

Climate Orbiter, costing several hundred million 
dollars, was destroyed when entering the Mars 
atmosphere too quickly. The reason: "a navigation 
error resulted from some spacecraft commands being 
sent in English units instead of being converted to 
metric uni ts." (Source: www.naqa.gov). I was an 
elementary school student in the 1970s when the U.S. 
had a big push to switch. Unfortunately, teaching of 
the metric system often focused not on the elegant 
metric system itself, but rather on converting from 
existing U.S .. units to metric units, e.g., I mile equals 
1.609 kilometers, and I gallon equals 3.785 liters. 
Many Americans thus found t11e metric system 
"difficult." No wonder. 



214 4 Datapath Components 

Barrel Shifter 

Choosing Bitwidths. As alluded to in previous examples, operating on N-bit nwnbers 
requires that some attention be paid to the bitwidths of internal wires and components. If 
two N-bit nwnbers are added together, the resulting value could require N+l bits. If two 
N-bit nwnbers are multiplied, the resulting value could require 2N bits. When multiplica
tion is performed using left shifts, bits may be dropped off of the left (meaning overflow); 
when division is perf onned using right shifts, bits may be dropped off of the right 
(meaning that rounding is occurring). For expected input value ranges, determining the 
minimum width of all internal wires and components requires mathematical analysis that 
is beyond the scope of this book. Instead, we describe a few introductory guidelines here. 

First, a designer can determine the maximum data value that would occur during 
computation and then make all the internal wires and components wide enough to support 
that maximum value. For example, the system described in Example 4 .15 involved com
puting C*64 +C*32+C*4 +C*2 fm a c possibly as large as 255, meaning the maximum 
data value could be 18,137, which would require 15 bits. In the example, we set all the 
internal wires and components to 16 bits. 

Second, if division will be done, it may be a good idea to do the divis ion as late as 
possible to minimize the rounding that might occur with each division. For example, if a 
is 001 0 and bis 0010 and if right shifts are used for division, then (a +b ) / 4 is 01 00 
shifted right twice, or 0001; instead, a / 4 + b/4 would yield 0010 shifted right twice 
plus 0010 shifted right twice, or 0000 + 0000 = 0000; the rounding errors of the 
earlier divisions caused a poor result. Example 4.15 multiplied the input by four different 
amounts, added the products, and then divided, i.e., (C*64 +C*32 +C*4+C*2) / 128 . The 
division could have instead been applied to each product first followed by addition, i .e., 
C*64 / 128+C*32 / 128+C*4 / 128 +C*2/128), which in fact would reduce to C/2+C/ 
4+C/ 32+C/ 64. While this equation looks simpler and would even use one less shifter, 
the result would have more rounding error. Of course, doing the division as late as pos
sible must be balanced with the need to prevent the intermediate sums from getting very 
large, which could result in very wide components and sets of wires. For example, adding 
800 numbers and then dividing by 2 might be better accomplished by adding perhaps 8 
numbers at a time and dividing each such stun by 2, then finally adding all the results. 

An N-bit barrel shifter is a general purpose N-bit shifter component that can shift any 
number of positions. For simplicity, consider only left shifts for the moment. An 8-bit 
barrel shifter can shift left by 1, 2, 3, 4, 5, 6, or 7 positions (and of course by 0 positions, 
meaning no shift is done). An 8-bit barrel shifter therefore requires 3 control inputs, say 
x , y, and z, to specify the distance of the shift. x y z =OOO may mean no shift, xyz=001 
means shift by l position, xyz= o 1. o means shift by 2 positions, etc. A barrel shifter could 
be useful to replace several shift components (such as the five shifters in Figure 4.63) by 
a single component to save transistors or wires (later chapters will show how to do tlrnt), 
or when the shift-amount is not known while the circuit is being designed. 

We could design such a barrel shifter using 8 distinct shifters: a I-place left shifter, a 
2-place left shifter, and so on. The 8 shifters' outputs would be connected to an 8-bit 8x l 
mux having xyz connected to its select lines, and the mux output would be the barrel 
shifter's output. While conceptually straightforward , such a design has problems similar 



4.9 Counters and Timers 215 

to building a multifunction ALU using a distinct component for each operation- too 
many wires, excessive power consumption, and potentially long delay. 

A more elegant design for an 8-bit barrel shifter ------
8
-i-1 ----~ 

consists of 3 cascaded simple shifters, as shown in l 
Figure 4.64. The first simple shifter can shift left four 
positions (or none). the second can shift left by two 
positions (or none), and the third by one position (or 
none). Notice that the shifts "add" to one 
another- shifting left by 2, then by 1, results in a 
total shift of 3 positions. Thus, configuring each 
shifter appropriately yields a total shift of any amount 
between zero and seven. Connecting the conrrol 
inputs xyz to the shifters is easy- just think of xyz 

as a binary number representing the amount of the 
shift: x represents shifting by four, y shifti ng by two, 
and z shifting by one. So we just connect x to the 
left-by-four shifter, y to the left-by-two shifter, and z 
to the left-by-one shifter, as shown in Figure 4.64. 

x---_ls_h _____ <~<-4 _____ i ..... n~O 
al 

Y---~ls_h ___ <,<_2 ___ i ..... nr.-o 

al 
z-..~1s_h ___ <_<_1 ___ i_,n~O 

8la 
Figure 4.64 8-bit barrel shifter (left 
shift only). 

The above design considered a barrel shifter that could only shift left. The design 
could easily be extended to support both left and right shifts. The extension involves 
replacing the internal left shifters by shifters that could shift left or right, each shifter 
having a control input indicating the direction. TI1e barrel shifter would also have a direc
tion control input, cmmected to each internal shifter's direction control input. 

Finally, the barrel shifter can easily be extended to support rotates as well as shifts. 
The extension would replace the internal shifters by rotators that could either shift or 
rotate, each having a control input indicating whether to shift or rotate. The barrel shifter 
would also have a shift-or-rotate control input, connected to each internal shifter 's shift
or-rotate control input. 

4.9 COUNTERS AND TIMERS 
An N-bit counter is a sequential component that can increment or decrement its own 
value on each clock cycle when a count enable control input is 1. Increment means to 
add I, and decrem,ent means to subtract 1. A counter that can increment its value is 
known as an up-counter, while a down-counter decrements its value. A 4-bit up-counter 
would thus count the following sequence: 0000, 000 1 , 0010, 0011, 0100, 

0101, 0110, 0 111 , 1000, 1 001 , 1010, 1011, 1100, 1101, 1110, 

1111, 0000, 0001, etc. Notice that a counter wraps around (also known as rolling 
over) from the highest value (1111) to 0. Likewise, a down-counter would wrap around 
from 0 to the highest value. A conu·ol output on the counter, often called terminal count 
or tc, becomes 1 during the clock cycle that the counter has reached its terminal 
(meaning "last" or "end") count value, after which the counter will wrap arow1d. 



216 4 Datapath Components 

Up-Counter 

Figure 4 .65 shows the block symbol of a 4-

bit up-counter. When clr=l, the counter's value 
is synchronously cleared to 0. When cnt=l, the 
counter increments its value on every clock 
cycle. When cnt=O, the counter maintains :its 
present value. clr has priority over cnt. On the 
cycle that the counter wraps around from 1111 

to 0000, the counter sets tc= l for that cycle, 
returning tc to o on the next cycle. 

An up-counter design is shown in Figure 4.66, 
using a parallel-load register to store the 
current count value and using an incrementer 
component to add l. to the current value. 
When c lr=l , the reg ister will be cleared to 0. 
When c nt= O, the register will maintain its 

present value due to ld being 0 . When 
cnt=l, the register will be loaded with its 
present value plus 1. Note that the 4-input 
AND gate causes tenninal count tc to 
become 1 when the counter reaches 1111. 

~cir 

-. cnt 4-bit up-counter 
_. tc C 

4 

Figure 4.65 4-bit up-counter block symbol. 

4-bit up=eounter 

cir 

4-bit register 

4 4 

4 

c 
A down-counter can be designed s imi

larly to an up-counter. The incrementer would 
be replaced by a decrementer. The terminal 
count tc should become 1 when the down-

Figure 4.66 4-bit up-counter internal design. 

counter reaches 0000 and would thus be implemented using a NOR gate rather than the 
AND gate in the up-counter- recall that NOR outputs 1 when all its inputs are Os. The 
reason the down-counter detects o o o o for tc rather than 1111 like the up-counter is 
because a down-counter wraps around after ooo o, as in the following count sequence: 
0100, 0011, 0010, 0001, 0000, 1111, 111 0, .... 

Example 4.16 Turnstile with display reset 
This example designs a system that displays the 
number of people who have passed through a 
turnstile. Turnstiles arc commonly found at 
entrances of amusement parks, sports stadilUns, 
and other facilities with controlled entrances. 
We'll assume tl1e turnstile outputs a pulse on a 
signal P whenever a person passes through. The 
system should output in binary the number of 
people that have passed through, and that output 
is connected to a display that will output that 
number in decimal. The system should also have 
a button to reset the display to 0. 

i-, • ~c-lr--------~ 
from 

turnstile P--- en! 32-bit up-counter 

tc elk--

unused 

I Display 8,406 

Figure 4.67 Turnstile display using an up
counter. 



4.9 Counters and Timers 217 

The system can be straightforwardly designed using an up-counter as shown in Figure 4.67. 
TI1e reset button connects to the up-counter's clear input. Assuming the pulse on P is one clock 
cycle in duration (see Chapter 3), then P can be connected to tbe up-counter's cnt input. We must 
have some idea of the maximum number of people that might pass tlu·ougb the turnstile between 
resets of the display, because we don't want the counter to wrap around. We might choose to use a 
32-bit counter to be safe, which can count up to about 4 billion people. The display would also have 

to be able to accept a 32-bit input and display tha t number in decimal. 
Note that a pulse on P must be only one clock cycle in duration for this design to work as 

desired. If a pulse on P for one person passing through the turnstile were longer than one clock 
cycle, the system would cotmt up once for every clock cycle that the pulse wa~ 1. 

• 

Up/Down-Counter 

An up/down-counter can count either up or down. 1t requires a control input d ir to indi
cate the count direction, in addition to the count enable control input cnt. dir=O will 
mean to count up and dir=l to count down. Figure 4 .6& shows the design of such a 4-bit 

up/down-counter. A 4-bit-wide 2xl mux passes either the decremented or incremented 
value, with dir selecting among the two- d i r =O (count up) passes the incremented 
value, and dir= l (count down) passes the decremented value. The passed value gets 
loaded into the 4-bit register if cnt=l. dir also selects whether to pass the NOR or 

AND output to the terminal count tc external output- dir=O (count up) selects the 
AND, while dir= l. (count dow n) selects the NOR. 

4-bit up/down-counter 

dif 
4-bit 2x1 

4 

cir 
cnt 4-bit register 

tc C 

Figure 4.68 4-bit up/down-counter design. 



218 4 Datapath Components 

Counter with Load 

A well-known 
coumer with load is 
the "program 
co11J11er" 11sed in a 
microprocessor. It 
holds the address of 
the currelll program 
i11str11ction, 11onnally 
counting up lo go lo 
the next instmction 's 
address, bw 
sometimes bei11g 
loaded 10 011 entirely 
new address due to a 
branch instruction. 

Counters often come with the 
ability to start counting from a par
ticular value, achieved by loading 
the counter's register with an input 
value. Figure 4.69 shows the design 
of a 4-bit up-counter with load. 
When control input ld is 1 , the 2x l 
mux passes the input L to the reg
ister; when ld is 0, the mux passes 
the incremented value. The design 
ORs the counter's ld and cnt 
signals to generate the load signal 
for the register. When cnt is 1, the 
incremented value will be loaded. 
When ld is 1 , the load data will be 
loaded. Even if cnt is o, ld= l 

causes the register to be loaded. A 

L 4 

Id 
4-bit 2x1 

4 

4-bit register 

4 4 

4 

c 4 

figure 4.69 Internal design of a 4-bit up-counter with 
parallel load. 

synchronous clear input is also provided, which has priority over load and count inputs 
because the register's clear input has priority over the register's load input. A down
counter or up/down-counter could similarly be extended to have a parallel load. 

Example 4.17 New Year's Eve countdown display 
Example 2.30 utiljzed a microprocessor to output the numbers 59 down to 0, and a decoder to illu
minate one of 60 lights based on that output. This example replaces the microprocessor by a down
counter with load to output 59 down to 0. Suppose we have an 8-bit down-counter available, which 
can count from 255 down to 0. We need to load 59 and then count down. Assume d1e user can press 
a button called restart to load 59 imo the counter, and then the user can move a switch count
down from the 0 position (don't count) to the I pos ition (count) to begin the colmtdown. The sys
tem implementation is shown in Figure 4.70. 

Happy 
0 New 

Year! 8 
co iO 

dO 
59 L 

c1 i1 d1 

~ c2 i2 d2 
OJ Id d3 "' c3 i3 ~ 

c4 i4 ••• 
0 cir c5 i5 c d58 ~ 

~ ~ c6 
d~9 

::s c7 
d60 0 

u 

d61 

fireworks 8-bit d62 
down- 6x64 
tountllr tc dcd d&3 

Figure 4.70 Happy New Year countdown system using a down-counter with load. 



4.9 Counters and Timers 219 

Some people mistakenly assume that the decoder could be eliminated by using a 60-bit counter 

instead of an 8-bit counter because there are 60 lights. However. a 60-bit counter would cowll the 
following sequence 59 (000 . .. 0001 11011), 58 (000 . .. 00011101 O), and so on. Those 
binary outputs connected directly to the lights would illuminate the lights differently than desired; 
rather than i!Juminaring one light at a rime, the approach would light multiple lights at a time. 

The tc signal Figure 4.70 will be 1 at the same time as the decoder's dO output. We've con

nected tc to an output called fireworks, which we'll assume activates a device that ignites 
fireworks. Note that after reaching 0 the counter will wrap around and continue counting from 255, 
254, and so on, until the countdown switch is set to the "don't count" position again. 

Oock Divider. One use of a counter is to 
convert one clock frequency into a lower fre-

1 
quency; a component that perfom1S such -- cnt 

conversion is known as a clock divider. 
Suppose we have a 512 MHz input clock (the 
fast clock), but want a 2 MHz clock signal (the 

-osc 
512MHz 

8-bit up-counter 

tc C 

p 
2MHz 

8 
(Ut'IUMd} 

slow clock). The fas t clock frequency should 
thus be divided by 256. We can convert the fast 
clock into a desired slow clock signal p by 

Figure 4.71 Clock divider. 

• 

using an 8-bit counter. The 8-bit counter wraps around every 256 cyc1es, at which time its 
terminal count output becomes 1 for one fast-clock cycle, so we simply connect the fast 

clock oscillator signal to the counter's clock input, set the counter's load input to 1, and 

then use the counter 's tc output as the slow-clock s ignal, as shown in Figure 4.71. 
A clock multiplier does the opposite of a clock divider, converting an input clock fre

quency into a higher frequency. Its design is more complex than a clock divider, involving 

something called a phased-lock loop, and is beyond our scope here. 
Sometimes the amount by which to divide the fast c lock frequency is not a power of 

2. Such clock division can be accomplished using a counter with parallel load, or with 
some external logic, as shown in the next example. 

Example 4.18 1 Hz pulse generator using a 60 Hz oscillator 
Jn the U.S., electricity to the home operates as an alternating current with a frequency of 60 Hz. 
Some appliances convert this signal to a 60 Hz digital signal, and then divide the 60 Hz digital sig
nal to a J Hz signal, to drive a clock or other device needing to keep track of time at the granularity 
of seconds. Unlike Example 4.1, we can't simply use a counter of a particular bitwidth, since no 

basic up-cmmter wraps around after 60 cycles- a 5-bit coLmter wraps around every 32 cycles, 
while a 6 -bit counter wraps every 64 cycles. 

Assume we have a 6-bit down-counter with parallel load. The desired clock divider can be 

designed by setting the counter's load input to the constant 59 (111011) aud using the t.c output 
to reload the register, as in Figure 4.72(a). When the counter counts down to 0, the circuit automat· 
ically reloads with 59. Two mistakes are common when considering this circuit. The first mistake is 
to believe 60 should be loaded rather than 59. We load 59 because the 0 value is counted too. Think 
of a smaller coLmt example like wanting to reach the temunal cotmt every 3 cycles: you'd load 2 
(not 3) so that the counter would count 2. I, 0, then 2, 1, 0, etc. The second mistake is to believe 
that this counter would skip the value 0 because of tc being 1 during that clock cycle. Take a 
moment to m1derstand the timing behavior. When the counter value is l and the next rising clock 

edge arrives, then slightly after that clock edge the counter value changes to 0 and tc becomes 1. 



220 4 Datapath Components 

osc 
60Hz 

1 11011 

• 
6-bit down-counter 

tc c 
,__ ___ p 

unused 
1 Hz 

osc 
60Hz 

cir 

cnt 6-bit up-counter 

tc c 

p 

(a) (b) 
Figure 4.72 Clock divider for a factor other than a power of 2: (a) using a 6-bit up
counter with synchronous clear, (b) us ing a 6-bit down-counter with parallel load. 

Thus, the counter stays at 0 until the next rising clock edge, at which time the 1 on tc causes a load 
of 59 back into the counter. 

An up-cow1ter could be used instead, again with tc co1mected to load. To obtain 60 cycles 
between counter wraparounds, we need to set the counter's load input to 63-59 "'4. People some
times mistakenly think that 63-60 = 3 should be loaded, but remember that the first value is counted 
too. Think of a smaller count example like wantimg to reach the terminal count every 3 cycles. 
You'd load 61 (not 60) so that the counter would collllt 61 , 62, 63, then 61 , 62, 63, etc. 

Alternatively, suppose we only have an up-counter with a synchronous clear input but without 
parallel load (counters without parallel load exist because they have fewer inputs , which may result 

in fewer wires or fewer pins). In this case, we could use external logic to generate a signal that will 
be 1 when the counter's value is 59. and connect that signal to the counter's synchronous clear 
input so that the value after 59 will be 0, as shown in Figw-e 4.72(b). Alternatively, a down-counter 
with synchronous clear could be used, in which case the external logic should detect 63- 59=4. 

I 

Using a Counter to Measure Time. A designer can use an up-counter to measure the 

time between events, such as the time between a first press of a button and a second press. 
The designer can create a circuit that initially clears the counter to 0. When the first event 
occurs, the circuit should set the counter's control input en t to 1. When the second event 
occurs, then the circuit should set cnt to o. The final value in the counter thus indicates the 

number of clock cycles that transpired between the first and second event. Multiplying this 
number by the clock period driving the counter yields the time that transpired. Suppose the 
cowlter's clock frequency is l kHz, meaning each cycle lasts l millisecond. If the final 
value in the counter is 526, then 526 milliseconds passed between events. Care must be 
taken to use a counter that is wide enough and/or a clock that is slow enough to ensure that 
the counter will not wrap around while measwing the time interval of interest. 

Example 4.19 Highway speed measuring system 
Many high ways and freeways have systems that measure the speed of cars at various parts of the 
highway and upload that speed information to a central computer. Such infonn ation is used by law 
enforcemem, traffic planners, and radio and Internet traffic reports. 



4.9 Counters and Timers 221 

One technique for measuring the speed of a car uses two sensors embedded under the road, as 
illustrated in Figure 4.74. When a car is over a sensor, the sensor outputs a 1; otherwise, the sensor 
outputs a 0. A sensor's output travels on underground wires to a speed-measuring computer box, 
some of which arc above the ground and others of which arc underground. The speed measurer 
determines speed by dividing the distance between the sensors (which is fixed and known) by the 
time taken by a vehicle to travel from the first sensor to the second sensor. If the distance between 
the sensors is 0.01 miles, and a vehicle takes 0.5 seconds to travel from the firs t to the second 

sensor, then the vehicle's speed is 0.0 l miles I (0.5 seconds * ( l hour I 3600 seconds)) = 72 miles 
per hour. 

To measure the time between the two sensors separated by 0.01 miles, we can construct a 
simple FSM that controls a 16-bit up-counter clocked at 1 kHz, as shown in Figure 4.74. Stale SO 
clears the counter to 0. The FSM transitions to state SJ when a car passes over the first sensor. SJ 

st~uts the counter counting up. The FSM stays in SI until the car passes over the second sensor, 
causing a transition to state S2. S2 stops the counting and computes the time using the counter's 
output C. The counter's I kHz clock means that each cycle is 0.00 I seconds. so the measured time 
would be C * 0.00 I s. That result would then be multiplied by (0.0 I miles) I (3600 seconds/hour) lo 

lili- HOW DOES IT WORK? CAR SENSORS IN ROADS. 

How docs a highway speed sensor or a traffic light car sensor know that 
a car is present in a particular lane? 1l1c main method today uses what's 
called an inductive loop. A loop of wire is placed just w1dcr the 
pavement- you can usually sec the cuts, as in Figure 4.73(a). That loop 
of wire has a particular "inductance," which is an electronics term 
describing the wire's opposition to a change in electric cu1Tent-highcr 
inductance means the wire has higher opposition to changes in current. 
It turns out that placing a big hunk of metal (like a car) near the loop of 
wire changes the wire's inductance. (Why? Because the metal disrupts 
t11e magnetic field created by a changing current in the wire-but that 's 
getting beyond our scope.) 1l1c traffic light control circuit keeps 
checking t11e wire 's inductance (perhaps by trying to change the current 
and seeing how much the current really changes in a certain time 
period), and if inductance is more than nom1al, the circuit asswncs a 
car is above the loop of wire. 

Many people think that the loops seen in the pavement are scales 
t11at measure weight- I've seen bicyclists jumping up and down on 
t11c loops trying to get a light to change. That doesn't work, but it 
suJc is entertaining to watch. 

Many others believe that small cylinders attached to a traffic light"s 
support arms, like that in Figure 4.73(b), detect vehicles. Those instead 
arc typically devices tllat detect a special encoded radio or infrared
light signal from emergency vehicles. causing the traffic light to tum 
green for the emergency vehicle (e.g., 3M's "Opticom" system). Such 
systems arc another cxan1ple of digital systems, reducing the time 
needed by emergency vehicles to reach the scene of an emergency as 
well as reducing accident~ involving t11e emergency vehicle itself 
proceeding through a traffic light, thus often saving lives. 

(a) 

(b) 

Figure 4.73 (a) Inductive loop for 
detecting a vehicle on a road, (b) 
emergency vehicle signal sensor for 
changing an intersection's traffic light 
to green for the approaching 
emergency vehicle. 



222 4 Datapath Components 

a' 

' I 
I 

' '"' Speed I S 
I lh~ 
L----------a Measurer 

(a) 

b' 
Speed 

Measurer 

cnt=1 cnt=O 
(compute time 

and output 
speed) 

(b} 

c 
16 

figure 4.74 Measuring vehicle speeds in a highway speed measuring system: (a) sensors in road feeding into the 
speed measming system, (b) state machine controlling an up-counter. 

Timers 

detem1ine a car's speed in miles per hour. We omit the implementation details of the speed compu

tation. 

• 

A timer is a sequentiaJ component that can be programmed to repeatedly generate a short 
pulse at a user-specified time interval such as every 300 milliseconds. The component is 
sometimes called a programmable interval timer. A timer has a base time unit such as 1 
microsecond. A designer programs the timer to a desired time interval by loading a binary 
number representing the desired multiplication of the base time unit. If a timer's base 
time unit is 1 microsecond and the designer wants the timer to pulse every 50 micrnsec
onds, the designer would load 50 into the timer. lf the designer wants a pulse every 300 
milliseconds, which means 300,000 microseconds, the designer would load the number 
300,000 into the timer. A timer's width is the bitwidth of the number than can be loaded; 
the width defines the maximum time interval of the timeJ. For example, a 32-bit timer 
with a base time of l microsecond has a maximwn interval of 231* l microseconds, or 
about 4,000 seconds. A timer has an enable control input that activates the timing 
function. 

A timer can be designed using a parallel-load down-counter and a register as in 
Figure 4.75(a), which shows the design for a 32-bit timer with a 1 microsecond base time 
unit. The register holds tbe multiplier number decremented by l to compensate for tbe 
fact that a down-counter includes 0 in its count; thus, a designer should only load a value 
greater than l (note: most timers actually require the user to subtract l from the number 
before loading; we include the - 1 inside the timer to make subsequent designs easier to 
understand). An input l oad set to 1 causes the register to be loaded with input M, and 
also loads the down-counter with input M. The down-counter is clocked by a 1 micro
second oscillator, which could be a standalone oscillator that is internal to the timer, or 
which could be derived by dividing the clock input of the timer. When enable is 1, the 
counter counts down once per microsecond until reaching 0, at which time the counter's 
tc output becomes l, causing the output Q to become l for one microsecond. The tc=l 
also causes the counter to be loaded again with the value held in the register. 



Figure 4.75 Timer: 
(a) internal design, 
(b) example timer output 
when enable<!. (c) block 

symbol. 
(a) 

load 

enable 

1 microsec 1-+---~ 
oscillator 

M 

-1 

32-bit register 

32-bit 
down-counter 

tc C 

4.9 Counters and Timers 223 

~ 
(b) 

32 

load 
M 

Mable 32-bit 
1-microsec 

Q timer 

(c) 

A timer "ticks" like a clock when enabled as shown in Figure 4_75(b). The period is 
M times the base time unit. The block symbol for a timer is shown in Figure 4.75(c). 

A timer is similar to an oscillator. One distinction is that a timer is typically program
mable whlle an oscillator is not, but the distinction is not very rigid and sometimes a 
timer is called a "programmable timer/osciUator." In tenns of usage, designers typically 
use an oscillator as the clock input of sequential components, whereas designers use a 
timer to generate events that are detected by an FSM's transition conditions and thus 
serve as inputs to a controller. 

Some variations of timers are commonplace. One variation is a timer with an addi
tional control input once; if that input is 1 , the timer stops when it reaches the end of its 
first interval, thus holding its Q output at 1 rather than pulsing Q and repeating_ Such a 
timer is refeITed to as a one-shot timer or simply a one-shot. Another variation is a timer 
having a second register that can be loaded with the time for which each pulse should be 
held high. For example, if a timer has a base unit of l microsecond, a multiplier register 
loaded with 500, and a time-high register loaded with 200, then the timer's output would 
be 1 for 200 microseconds, then o for 300 microseconds, then 1 for 200 microseconds 
again, and so on. This timer variation is known as a pulse-width modulator or PWM. The 
percentage of time spent high during each interval is known as the PWM's duty cycle; the 
above example 's duty cycle is 200/500 = 40%. 

Digital circuits are commonly used in systems that must sample inputs or generate 
outputs at specified time intervals. For example, an audio recording system (see Chapter 
1) may sample an input audio signal 44,000 times per second, a traffic light controller 
system may keep a green light on for 30 seconds, a laser surgery system may turn on a 
laser for 500 microseconds, or a video display system may write a new value to a point on 
the display (a pixel) every 0.1 microseconds. The circuits can use timer components to 
generate events that indicate when specific time intervals have passed. 



224 4 Datapath Components 

Example 4.20 Laser surgery system using a timer 

elk 

Chapter 3 introduced an example of a laser surgery system, illustrated again in Figure 4.76(a), that 
turned on a laser for a specific time interval. In that example, the desired time interval of 30 ns was 
achieved by introducing three states into an FSM that was clocked at 10 ns. What if the desired 
time interval was instead 300 ms? Introducing states for this interval and a 10 ns clock would 
require introducing 30 million states, which is clearly not practical for an FSM. Instead, we can use 
a timer. We connect a controller to a 32-bit I-microsecond timer as in Figure 4.76(b). We capture 
the behavior of the controller as the FSM in Figure 4.76(c); the timing behavior of this FSM is 
shown in Figure 4.76(d). The Off state loads the timer with 300,000. When the button is pressed, 
the FSM enters s tate Strl, which starts the timer; the timer will actually start on the next clock 
cycle. On that next clock cycle. the FSM enters state On and tmns on the laser. 300 ms later, the 
timer's output Q will become 1. On the next clock (10 ns later), the FSM enters state Off, which 
turns off the laser and also disables the timer. The next time the button is pressed, the process starts 
over again. 

Laser 
Surgery 
System 

(a) 
patient 

b 

elk 

Controller 
/ 

> ,,.,,,"'"' 
/ 

300,000 (in binary) 

Id M 

x 

(b) 

lnputs:b, 0 Outputs: Id, en, x ~o nn n h h n rLJL 
elk _JLJLJ LJ LJ LJI 

X=O 
ld=1 

X=O 
ld=O 
en=1 

(c) 

X=1 
ld=O 

Figure 4.76 Laser surgery system using a timer: (a) 
system overview, (b) connecting a controller with a 
timer, (c) controller's FSM, (d) timing diagram. 

I I ... I 

I I I 

Inputs; rn ! ! 
b ~~~~~ : : JL' 

: ~oom~ : 
Q : : ·~ : 

State I Off Off I Off I Off lstrt j On I ... I On j Off I 
I I 
I I 

Outputs: ______ _,! _ _, L 
X I I 

--!I r 
Id , ..... ---;--~-...... ~ 

en -----_..~ I iL 
d) 

Note that the system actually keeps the laser on for 300 ms plus 10 ns; this is an effect of 
using the external timer. and is not Likely to be significant for this particular system's desired time 
interval, 

• 



4.10 Register Files 225 

4.10 REGISTER FILES 

An MxN regi.~ter file is a datapath memory component that provides efficient access to a 
collection of M registers, where each registe1· is N bits wide. To understand the need for a 
register file component in building good datapaths, rather than just using M separate reg
isters, consider Example 4.13. 

Example 4.21 Above-mirror display system using 16 32-bit registers 
Recall the above-mirror display system from Example 4.2. Four 8-bit registers were multiplexed to 
an 8-bit output. Suppose instead that the system required sixteen 32-bit registers, to display more 
values, each of more precision. We would therefore need a 32-bit-wide 16x I multiplexor, as shown 
in Figure 4.77. From a purely digital logic perspective, the design is just fine. But in practice, that 
multiplexor is very i:nefficient. Count the number of wires that would be fed into that multi
plexor- 16x32 = 512 wires. That's a lot of wires to try to route from the registers to the muxes- try 

plugging 512 wires into the back of one stereo system for a hands-on demonstration. Having too 
many wires in a small area is known as routing co11gestio11. 

3 
~ 

.. w $ 

~~o dO ()) 0 
£v 
E«i 4x16 
e~ 
LL ()) 

u 

load 

4 

i3-i0 

d1 5 
e 

load re90 

too much 
fanout 

load reg15 

32 s3-s0 

t 
Figure 4.77 Above-mirror display des ign, assuming sixteen 32-bit registers. T he mux has too many 
i:nput wires, resulting in congestion. Also, the data lines Care fanned out to too many registers, 
resulti:ng in weak current. 

Likewise, consider routing the data input to all sixteen registers. Each data input wire is being 
branched into sixteen subwires. Imagine electric current being like a river of water- branching a 
main river into sixteen smaller rivers will yield much less water flow in each smaller river than in 
the main river. Likewise, branching a wire, known as f anout, can only be done so many times 
before the branched wires' currents arc too small to sufficiently control transistors. Furthermore, 
low-current wires may be very s low, so fanout can create long delays over wires too. 

The fanout and routing congestion problems illustrated in the previous example can be 
solved by observing that the system never needs to load more than one register at a time, 
nor read more than one register at a time eitber. An Mx.N register file solves the fanout and 
congestion problems by grouping the M registers into a single component, with that compo-



226 4 Datapath Components 

nent having a single N-bit-wide data input, and a single N-bit-wide data output. The wiring 
inside the component is done carefully to handle fanout and congestion. Figure 4.78 shows 
a block symbol of a l6x32 register file (16 registers, each 32-bits wide). 

Consider writing a value to a register in a reg
ister file. We would place the data to be written on 
the input W_data. We then need a way to indicate 
which register to w1i te this data into. Since there are 
16 registers, four bits are needed to specify a partic
ular register. Those four bits are called the reg1ster's 
address . We would thus set input W _ addr to the 
desired register's address. For example, to write to 
register 7, we would set W_addr= Olll. To indi
cate that we actually want to write on a particular 

32 

4 

W_data 
32 

R_data 

4 
R_addr~ 

R_en-
16x32 

register file 

figure 4.78 16x32 register file symbol. 

clock cycle (we woo't want to write on every cycle), we would set the input w _en to 1. The 
collection of inputs w _data, W _ addr, and w _en is known as a register file's write porl. 

Reading is similar. We would specify the register to read on input R _ addr, and set 
R _en= 1. Those values cause the register file to output the addressed register's contents onto 
output R _data. R _data, R _ addr, and R _en are known as a register file's read port. 

The read and write ports are independent of one another. During one clock cycle, we can 
write to one register and read from another (or the same) register. Such simultaneous reading 
<Uld writing works as follows. When the addresses appear at the register file's inputs, the register 
file will shortly afterwards (due to internal wire/gate delays) output the data corresponding to the 
read address. When the next rising clock edge arrives, the register file will shortly afterwards 
(due to internal delays) load the write data into the register con·esponding to the write address. 

Let's consider how to intemally design a register file. For simplicity, consider a 4x32 reg
ister file, rather than the l 6x32 register file described above. One internal design of a 4x32 
register file is shown in Figure 4.79. Let's consider the circuitry for writing to this register file, 
found in the left half of the figure. 1f w_en= O, the register file won' t write to any register, 
because the write decoder's outputs will be all Os. 1f W _ en= l , then the write decoder decodes 
W _ addr <Uld sets to 1 the load input of exactly one register. That register will be written on the 
next clock cycle with the value on w_ data. 

W_addr 

Figure 4.79 One possible 
internal design of a 4x32 W_en 

32 

dO 

2x4 

iO 

i1 

d1 

write 
decoder 

register file. 4x32 register file 

bus,, 32 
'-.,>¥o,-----~ R_data 

I I 

2x4 

iO 
i1 

read 
decoder 

R_addr 

r---+-t-+-1 d~ 

R_en 

~--------------------~ 



Such compo11e11ts 
are n lo re 

co111111011ly kn.own 
as "tri-state ' ' 
drivers ra/her 
than "three-stale." 
Bw "tri-state" 
is a reg istered 
tmdemarkof 
National 
Semica11d11cror 
Corp. , so rather 
than p111ti11g the 
required 
trademark symbol 
after every use of 
the tenn "tri
state," many 
d oc11me111s use 1/ie 
term "tllree 
s tare:· 

Notice the circled triangular one-input one-output 
component placed on the W _data line (there would actu
ally be 32 such components since W_data is 32 bits 
wide). That component is known as a driver, sometimes 
called a buffer, illustrated in Figure 4.80(a). A driver's 
output value equals its input, but the output is a stronger 
(higher current) signal. Remember the fanout problem 
described in Example 4 .21? A driver reduces the fanout 
problem. In Figure 4.79, the W_data lines only fanout to 
two registers before they go through the driver. Tbe 
driver's output then fans out to only two more registers. 
Thus, instead of a fanout of four, the W_ data lines have a 
fanout of only two (actually three if you count the driver 
itself). The insertion of drivers is beyond the scope of this 
book, and is instead a subject for a VLSI design book or 

4.10 Register Files 227 

Q=d 
(a ) 

C::;1;q::;d d q 
C=O: q='Z' d-, -q 

~/ 
like no connection 

(b) 

figure 4.80 (a) driver, (b) 
three-state driver. 

an advanced digital design book. But seeing at least one example of the use of a driver 
hopefully gives you an idea of one reason why a register file is a useful component- the 
component hides the complexity of fanout from a designer. 

To understand the read circuitry, you must first understand the behavior of another 
new component in Figure 4.79-the triangular component having two inputs and one 
output. That component is known as a three-state driver or three-state buffer, illustrated 
in Figure 4.80(b). When the control input c is 1, the component acts like a regular 
driver- the component's output equals its input. However, when the control input c is o, 
the driver's output is neither o nor 1 , but instead what is known as high-impedance, 
written as "Z." High-impedance can be thought of as no connection at all between the 
driver's input and output. "Three-state" means the driver has three possible output 
states- o, 1, and z. 

Consider the circuitry for reading from the register file, found in the right half of 
Figure 4.79. If R_en::; Q, the register file won't read from any register, since the read 
decoder's outputs will be all Os, meaning all the three-state drivers will output Zs, and 
thus the output R_data will be high-impedance. If R_en=l, then the read decoder 
decodes R _ addr and sets to 1 the control input of exactly one three-state driver, which 
will pass its register value through to the R _data output. 

Be aware that each shown three-state driver actually 
represents a set of 32 three-state drivers, one for each of 
the 32 wires coming from the 32-bit registers and going 
to the 32-bit R=data output. All 32 drivers in a set are 
controlled by the same control input. 

The wires fed by the various three-state drivers are 
known as a shared bus, as indicated in Figure 4.79 and 
detailed in Figure 4.81. A shared bus is a popular alter
native to a multiplexor when each mux daca input is 
many bits wide and/or when there are many mux data 

Figure 4.81 Each driver in 
inputs, because a shared bus results in less congestion. 

Figure 4.79 is actually 32 
Notice that the register file design scales well to drivers. 

larger nwnbers of registers. The write data lines can be 



228 4 Datapath Components 

driven by more drivers if necessary. The read data lines are fed from three-state drivers, 

and thus there is no congestion at a single multiplexor. The reader may wish to compare 
the register file design in Figure 4 .79 with the design in Figure 4 .5, which was essentially 
a poor design of a register file. 

Figure 4.82 provides example timing diagrams describing writing and reading of a reg
ister file. During cycle I, the contents of the register file are unknown, so the register file's 
contents are shown as "?." During cycle], we set W_data=9 (in binary, of course), 
w _ addr=3, and w _en= 1. Those values cause a write of 9 to register file location 3 on the 
first clock edge. Notice that we had set R _en= o, so the register file output~ nothing ("Z"), and 
the value we put on R _ addr does not matter (the value is a "don't care," written as "X"). 

I I I I I f 

elk _ c_yc_1e_ 1 -In cycle 2 n cycle 3 n cycle 4 n cycle 5 n cycle 6 n .... __ _ 
1 2 3 4 5 6 

W_dataX.__9_,tx..... 22 ! X x i x ! X 177 ! X .... _ss_s...,! _ _ _ 
I I I ! ! I 

W_addrX.___3_ !,_,X 1 j X X j X j X 2 i X..___3_j __ 
~---+----+-' ~ I I I I 

W_en _J • : I : : I ; ; 
I I . 1 I . I I 

R_data (,...-z-+-! - z--+-! -z-~ z I Xj2 ! ©~ss_s_ 

R_addr ( X ! X X ! X (3 ! ( 0 ( 1 ! X..___3 .,__j _ 

I ' I __ ,_, I ,....__;-----;----

R_en --------- ,..., ____ .., 

O:; . 
1: ? 
2: ? 
3: ? 

O:; . 
1· ? 

2: ? 
3: g 

o·~ 1: 22 
2: ? 
3: g 

Figure 4.82 Writing and reading a register file. 

o·~ 1: 22 
2: ? 
3: g 

o·~ 1; 22 
2: ? 
3: g 

O:; . 0:1. 1: 22 1: 22 
2: 177 2: 177 
3: g 3: 555 

During cycle2, we set W_data=22, w_addr=l, and w_en=l. T hese values cause a 
write of 22 to register file location l on clock edge 2. 

During cycle3, we set w_en=O, so then it doesn' t matter to what values we set 
W_data and W_addr. We also set R_addr=3 and R_en= l. Those values cause the reg
ister file to read out the contents of register file location 3 onto R_data, causing R_data 
to output 9. Notice that the reading is not synchronized to clock edge 3- R_data 
changes soon after R_en becomes 1. Examining the design of Figlffe 4.79 should make 
clear why reading is not synchronous- setting R _en to 1 simply enables the output 
decoder to turn on one set of the three-state buffers. 

During cycle4, we return R _en to 0. Note that this causes R _data to become "Z" 
agam. 

During cycle5, we want to simultaneously write and read the register file. We read 
location I (which causes R~dat.a to become 22) while simultaneously writing location 2 
with the value 177. 

Finally, during cycle6, we want to s imultaneously read and write the same register 
file location. We set R _ addr=3 and R _en= 1 , causing location 3 's contents of 9 to appear 
on R_data shortly after setting those values. We also set W_addr=3, W_data=555, and 



4.10 Register Files 229 

W _ en=1. On clock edge 6, 555 thus gets stored into location 3. Notice that soon after that 
clock edge, R _data also changes to 555. 

The ability to simultaneously read and write locations of a register fi le, even the same 
location, is a widely used feature of register files. The next example makes use of that feature. 

Example 4.22 Above-mirror display system using a 16x32 register file 
Example 4 .2 used four 8-bit registers for an above-mirror display system. Example 4.21 extended 
the system to use sixteen 32-bit registers, resulting in fanout and congestion problems. We can redo 
that example using a register file. The design is sttown in Figure 4.83. Since the system always out
puts one of the register values to the display, we tied the R _en input to I. Notice that the writing 

and reading of particular registers a.re independent of one another. 

Figure 4.83 Above-mirror 
display design, using a 

register file. 

~ to-~-A--32-~w_data 
~ 8 --,_-"--I W_addr 
E ~ load ec 
u. ~ ~--.w_en 

3 .,,..! 
32 D -· G R_data ....,....__ ........ Q i 

16x32 - 1 

9: Dl 
(/) tT 

~~ 
!! <p A~·:~ .:, I 

register file RA 

• 
A register file having one read port and one write port is sometimes referred to as a 

dual-ported register file. To make clear that the two ports consist of one read port and 
one write port, such a register file may be referred to as follows: dual-ported (I read, I 
wrire) register file. 

A register file may actually have just one port, which would be used for both reading 
and writing. Such a register file has only one set of data lines that can serve as inputs or 
outputs, one set of address inputs, an enable input, and one more input indicating whether 
we wish to write or read the reg ister file. Su:ch a register file is known as a single-ported 
register file . 

Multiported (2 Read, 1 Write) Register File. Many register files have three ports: one 
write port, and two read ports. Thus, in the same clock cycle, two registers can be read 
simultaneously, and another regis ter written. Such a register file is especially useful in a 
microprocessor, since a typical microprocessor instruction operates on two registers and 
stores the result in a third register, like in the instruction HRO <- Rl + R2." 

We can create a second read port in a register file by adding another set of lines, 
Rb_ data, Rb_ addr, and Rb_ en. We would introduce a second read decoder with inputs 
Rb_ addr and enable input Rb~en, a second set of three-state drivers, and a second bus 
connected to the Rb_ data output. 

Other R egister File Variations. Register files come in all sorts of configurations. 
Typical numbers of registers in a register file range from 4 to 1024, and typical register 
widths range from 8 bits to 64 bits per register, but sizes may vary beyond those ranges. 
Register files may have one port, two ports, three ports, or even more, but increasing to 



230 4 Datapath Components 

The most ports 
f" l'e seen on a 
register file in a 
product \\'as I 0 
read pon s and 5 
w rite ports. 

many more than three ports can slow down the register file's performance and increase its 

size significantly, due to the difficulty of routing all those wires around inside the register 
file. Nevertheless, you ' ll occasionally nm across register files with perhaps 3 write ports 
and 3 read ports, when concurrent access is critical. 

4.11 DATAPATH COMPONENT TRADEOFFS (SEE SECTION 6.4) 

For each datapath component introduced in previous sections, we created the most basic 
and easy-to-understand implementation. This section, which physically appears in the book 
as Section 6.4, describes alternative implementations of several datapath components. Each 
alternative trades off one design criteria for another- most of those alternatives trade off 
larger size in exchange for less delay. One approach to using this book involves studying 
those alternative implementations immediately after studying the basic implementations 
(meaning now). Another approach studies those alternative implementations later, after 
studying how to use datapath components during register-transfer level design. 

4.12 DATAPATH COMPONENT DESCRIPTION USING HARDWARE 
DESCRIPTION LANGUAGES (SEE SECTION 9.4) 

This section, which physically appears in the book as Section 9.4, shows how to use 
HDLs to describe several datapath components. One approach to using this book studies 
such HDL use now, while another approach studies such HDL use later. 

4.13 PRODUCT PROFILE: AN ULTRASOUND MACHINE 

If you or someone you know has ever had a baby, then you may have seen ultrasound 
images of that baby before he/she was born, like the images of a fetus' head in Figure 
4.84(a). 

(b) 

(a) 

figure 4.84 (a) Ultrasound image of a fetus, created 
using an ultrasound device that is si mply placed on the 
mother 's abdomen (b) and that forms the image by 
generating sound waves and listeni ng to the echoes. 
Photos courtesy of Philips Medical Systems. 



4.13 Product Profile: An Ultrasound Machine 231 

That image wasn't taken by a camera somehow inserted into the uterus, but rather by 
an ultrasound machine pressed against the mother's skin and pointed toward the fetus. 
Ultrasound imaging is now common practice in obstetrics- mainly helping doctors to 
track the fetus ' progress and correct potential problems early, but also giving parents a 
huge tluill when they get their first glimpse of their baby's head, hands, and little feet! 

Functional Overview 

This section briefly describes the key functional ideas of how ultrasound imaging works. 
Digital designers don't typically work in a vacuum- instead, they apply their skills to par
ticular applications, and thus designers typically learn the key functional ideas underlying 
those applications. We therefore introduce you to the basic ideas of ultrasound applications. 
Ultrasound imaging works by sending sound waves into the body and listening to the 
echoes that return. Objects like bones yield ctifferent echoes than objects like skin or fluids, 
so an ultrasound machine processes the different echoes to generate images like those in 
Figme 4.84(a)-strong echoes might be displayed as white, weak ones as black. Today's 
ultrasound machines rely heavily on fast digital circuits to generate the sounds waves, listen 
to the echoes, and process the echo data to generate good quality images in real time. 

Digital Signal Scan 
Transducer Beamformer Processor Converter 
((((( 
))))) 

Figure 4.85 Basic components of an ultrasound machine. 

Monitor 

Figme 4.85 illustrates the basic parts of an ultrasound machine. Let's discuss each 
part individually. 

Transducer 
A transducer converts energy from one form to another. You're certainly familiar with 
one type of transducer, a stereo speaker, which converts electrical energy into sound by 
changing the current in a wire, which causes a nearby magnet to move back and fo1th, 
wruch pushes the air and hence creates sound. Another familiar transducer is a dynamic 
microphone, which converts sound into e lectrical energy by letting sound waves move a 
magnet, which induces current changes in a nearby wire. In an ultrasound machine, the 
transducer converts electrical pulses into sound pulses, and sound pulses (the echoes) into 
electrical pulses, but the transducer uses piezoelectric crystals instead of magnets. 
Applying electric current to such a crystal causes the crystal to change shape rapidly, or 
vibrate, thus generating sound waves- typically in the l to 30 Megahertz frequency 
range. Humans can't hear much above 30 kilohertz-the term "ultrasound" refers to the 
fact that the frequency is beyond human hearing. Inversely, sound waves (echoes) hitting 
the crystal create electric cmTent. An ultrasound machine's transducer component may 
contain hundreds of such crystals, which we can think of as hundreds of transducers. 
Each such transducer is considered to form a channel. 



232 4 Datapath Components 

Real designers 
must often leam 
abow the domain 
f or which they will 
de.sign. Many 
designers 
consider such 
learning abow 
domains, like 
ultrasound, os one 
of the f ascir1ati11,s 
f eatures of the j ob. 

Beamformer 
A heamformer electronically "focuses" and "steers" the sound beam of an array of trans
ducers to or from particular focal points, without actually moving any hardware like a 
dish to obtain such focusing and steering. 

To understand the idea of beamforming. we must first understand the idea of additive 
sound. Consider two loud fireworks exploding at the same time, one I mile away from 
you, and the other 2 miles away. You ' ll hear the closer firework after about 5 sec
onds- assuming sound travels 0.2 miles/second (or l mile every 5 seconds)-a 
reasonable approximation. You'll hear the farther firework after about 10 seconds. So 
you'll bear "boom ... (five seconds pass) ... boom." However, suppose instead that the 
closer firework exploded 5 seconds later than the farther one. Then you' ll hear both at the 
same time- one big "BOOM!" That's because the two sounds add together. Now suppose 
there are 100 fireworks spread throughout a city, and you want all the sound from those 
fu'eworks to reach one particular house (perhaps somebody you don't like very much) at 
the same time. You can do this by exploding the closer fireworks later than the farther 
fu-eworks. If you time everything just right, that pruticular house wiU hear a tremendously 
loud single "BOOOOOM!!!!" probably rattling the house's walls pretty well, as if one 
huge firework had exploded. Other houses throughout the city will instead hear a series of 
quieter booms, since the timing of the explosions don't result in all the sounds adding at 
those other houses. 

Now you understand a basic principle of beamforming: If you have multiple sound 
sources (fireworks in our example, transducers in an ultrasound machine) in different 
locations, you can cause the sound to add together at any desired point in space, by care
fully timing the generation of sound from each source such that all the sound waves arrive 
at the desired point at the same time. In other words, you can electronically focus and 
steer the sound beam by introducing appropriate delays. Focusing and steering tbe sound 
to a particular point is useful because then that point will produce a much louder echo 
than all other points, so we can easily hear the echo from that point over all the echoes 
from other points. 

Figure 4.86 illustrates the concept of electronic focusing and steering, using two 
sound sources to focus and steer a beam to a desired point X. 

At the first time step (Figme 4.86(a)), the bottom source has begun transmitting its 
sound wave. After two time steps (Figme 4.86(b)), the top somce has begun transmitting 
its sound wave. After three time steps (Figure 4.86(c)), the waves from both sensors reach 
the focal point, adding together. They'll continue adding as long as the waves from both 
sources are in phase with one another. We can simplify the drawing by showing only the 
lines from the sources to the focal point, as shown in Figure 4.86(d). 

An ultrasound machine uses this ability to electronically focus and steer sound, in 
order to scan, point by point, the entire region in front of the transducers. The machine 
scans each point tens of times per second. 

Foe each focal point, the machine needs to listen to the echo that comes back from 
whatever object is located at the focal point, to determine if that object is bone, skin, 
blood, etc., utilizing the fact that each such object generates a different echo. Remember, 
the echo from the focal point will be louder than echoes from other points, because the 
sound adds at that point. We can use beamforming to also focus in on a particular point in 
space tbat we want to listen to. In the same way that we generated sound pulses with par-



focal 
point 

x • g 
::i 

"' 
~(. i 

sou;;d ~ 
wave 

(a) 

4.13 Product Profile: An Ultrasound Machine 233 

focal 
point 

·~ 1 
ii! 

(d) 

Figure 4.86 Focusing sound at a particular point using bcamforming: (a) first time step-only the 
bottom transducer generates sound, (b) second time step-the top transducer now generates SOlllld 
too, (c) third time step- the two sound waves add at the focal point. (d) an illustration showing 
that the top transducer is two time steps away from the focal point, while the bottom transducer is 
three time steps away, meaning the top transducer should generate sound one time step later than 
the bottom transducer. 

ticular delays to focus the sound on a particular point, likewise, to "listen" to the sounds 
from a particular point, we also want to introduce delays to the s ignals received by the 
transducers. That's because the sounds will arrive at the closer trnnsducers sooner than at 
the farther transducers, so by using appropriate delays, we can " line up" the s ignals from 
each transducer so that the sounds coming from the focal point all add together. This 
concept is shown in Figure 4 .87. 

Note that there will certainly be echoes from other points in the region, but those 
coming from the focal point will be much stronger-hence, the weaker echoes can be fil
tered out. 

• 

(a) (b) (c) 

~ 
I 

~ delay 1 
time step 

(d) 

JJL 
result without 

the delay 

Figure 4.87 Listening to sound from a particular point using beamforming: (a) first time step, 
(b) second time step-the top transducer has heard the sound first, (c) third time step-the bottom 
transducer hears the sound at this time, (d) delaying the top transducer by one time step results in 
the waves from the focal point adding, amplifying the sound. 



234 4 Datapath Components 

Sound waves are 
vibrations of air. water, 
or some other medium. 
tra1·eli11g at nearly a 
thousand miles per 
hour through air. Radio 
wai·es are 
electrom agnetic waves, 
requiring 110 such 
medium (they can 
tra1•el through space). 
and traveling at nearly 
a billion miles per hour 
(the speed of light in a 
11ac1111m). 

Notice that beamforming can be used to listen to a particular point even if the sounds 
coming from that point are not echoes coming back from our own sound pulses- the 
sound could be coming from the object at the point itself, s11ch as a car engine or a person 
talking. Beamforming is the electronic equivalent to pointing a big parabolic dish in a 
particular direction, but beamfom1ing requires no moving parts. 

Beamfomling is tremendously conunon in a wide variety of sonar applications, such 
as observing a fetus, observing a human heart, searching for oil underground, monitoring 
the surroundings of a submarine, spying, etc. Beamfomling is used in some hearing aids 
having multiple microphones, to focus in on the somce of detected speech- in that case, 
the beamforming must be adaptive. Beamforming can be used in muJtimicrophone cell 
phones to focus in on the user's voice, and can even be used in cellular telephone base 
stations (using radio signals, though, not sound waves) to focus a signal going to or 
conling from a cell phone. 

Signal Processor, Scan Com'erter, and Monitor 
The signal processor analyzes the echo data of every point in the scrumed region, by fil 
tering out noise (see Section 5.13 for a discussion on filtering), interpolating between 
points, assigning a level of gray to each point depending on the echoes heard (echoes cor
respondi11g to bones might be sbaded as white, liquid as black, and skin as gray, for 
example). and other tasks. The result is a gray-scale image of the region. The scan con
verter steps thmugh tllis image to generate tbe necessary signals for a black-and-white 
monitor, and the moni tor displays the image. 

Digital Circuits in an Ultrasound Machine's Beamfonner 

Much of the control and signal processing tasks in an ultrasound machine are carried out 
using software running on one or more microprocessors, typica!Jy special micro
processors specifically designed for digital signal processing, known as digital signal 
processors, or DSPs. But certain tasks are much more amenable to custom digital 
circuitry, such as those in the beamformer. 

Sound Ge neration and Echo Delay Circuits 
Beamforming during the sound genera- 1----------------:====:i 
tion step consists of providing appropriate 
delays to hundreds of transducers. Those 
delays vary depending on the focal point, 
so they can't be built into the transducers 
themselves. Instead, we can place a delay 
circuit in front of each transducer, as 
shown in Figure 4.88. For a given focal 
point, the DSP writes the appropriate 
delay value into each delay circuit, by 
writing the delay value on the bus labeled 
delay_ out, writing the "address" on the 
lines labeled addr, and enabling the 
decoder. The decoder will thus set the load 
line of one of the OutDelay components. 

start_ out 

s d ::;l . 0 
Id 

"' Out delay_ out 
::5 Delay fJ) 
a. DSP f5 
CD .... 
"' • 0 

Out 
Delay 

Figure 4.88 Transducer output delay circuits for 
two channels. 



4.13 Product Profile: An Ultrasound Machine 235 

After writing to every such component, the DSP staits all of them simultaneously by 
setting start_ out to 1. Each OutDelay component will, after the specified delay, pulse 
its o output, which we' ll assume causes the transducer to generate sound. The DSP would 
then set start~ out to o, and then listen for the echo. 

We can implemem the Ow Delay component using a down-counter with parallel load, 
as shown in Figme 4.89. The parallel load inputs Land ld load the down-counter with its 
count value. The cnt input commences the down-counting- when the counter reaches 
zero, the counter pulses tc. The data output of the counter is unused in this implementation. 

o.--~tc 

c 

s 

cnt 

down
counter 

Out Delay 

L. 1-.....,..."'+- d 

Id Id 

Figure 4.89 OutDelay circuit. 

start_ out 
~-~-~ delay_out 

s d ~....,..-
0 Out 

Delay Id 

Echo 
Delay ~ ..... ---- ro 

!_delayed adders 

Figure 4.90 Tranducer output and echo delay 
circuits for one channel. 

After the ultrasound machine sends out sound waves focused on a particular focal 
poim, the machine must listen to the echo coming back from that focal point. This lis
tening requires appropriate delays for each transducer to account for the differing 
distances of each transducer from the focal point. Thus, each transducer needs another 
delay circuit for delaying the received echo signal, as shown in Figure 4.90. The 
EchoDelay component receives on input t the signal from the transducer, which we'll 
assume bas been digitized into a stream of N-bit values. The component should output 
that signal on output t_delayed, delayed by the appropriate amount. The delay amount 
can be written by the DSP using the component's d and ld inputs. 

We can implement the EchoDelay com
ponent using a series of registe1·s, as shown 
in Figure 4.91. That implementation can 
delay the output signal by 0, 1, 2, or 3 clock 
cycles, simply using the appropriate select 
line values for the 4x 1 mux. A longer reg
ister chain, along with a larger mux, would 
suppott longer delays. The DSP configures 
the delay amount by writing to the top reg
ister, which sets the 4xl mux select lines. A 
more flexible implementation of the 
EchoDelay component would instead use a 
timer component. 

Echo Delay 

Figure 4.91 EchoDelay circuit. 



236 4 Datapath Components 

Summation Circuits-Adder Tree 
The output of each transducer, appropriately delayed, should be summed to create a 
single echo signal from the focal point, as was illustrated in Figme 4.87. That illustration 
had only two transducers, and thus only one adder. What if we have 256 transducers, as 
would be more Likely in a real ultrasound machine? How do we add 256 values? We 
could add the values in a linear way, as illustrated on the left side of Figme 4.92(a) for 
eight values. The delay of that circuit is roughly equal to the delay of seven adders. For 
256 values, the delay would roughly be that of 255 adders. That's a very long delay. 

We can do better by reorganizing 
how we compute the sum, using a con
figuration of adders known as an adder 
tree. In other words, rather than com
puting ((((((A+B)+C)+D)+E)+F)+G)+H, 
depicted in Figure 4.92(a), we could 
instead compute ((A+B)+(C+D)) + 
((E+F)+(G+H)), as shown in Figure 
4.92(b). The answer comes out the same, 
and uses the same number of adders, but 
the latter method computes four addi
tions in parallel, then two additions in 
parallel, and then performs a last addi
tion. The delay is thus only that of three 
adders. For 256 values , the tree's first 
level would compute 128 additions in 
parallel, the second level would compute 

A BCDEFGH A BC DE FG H 

7-adder 

figure 4.92 Adding many numbers: (a) linearly, 
(b) using an adder tree. Note that both methods 
use seven adders. 

64 additions, then 32, then 16, then 8 , then 4, then 2, and fmally l last addition. Thus, that 
adder n·ee would have eight levels, meaning a total delay equal to eight adder delays. That's 
a lot faster than 256 adder delays- 32 times faster, in fact. 

The output of the adder tree can be fed into a memory to keep track of the results for 
the DSP, which may access the res ults sometime after they are generated. 

Multiplier s 
We presented a greatly simplified version of 
beamforming above. In reality, many other 
factors must be considered during beam
forming. Several of those considerations can 
be accounted for by multiplying each 
channel with specific constant values, which 
the DSP again sets individually for each 
channel. For example, focusing on a point 
close to the handheld device may require us 
to more heavily weigh the incoming signals 
of transducers near the center of the device. 

A cbanne1 may therefore actually include a 
multiplier, as shown in Figure 4.93. The DSP 

start_ out 
~--'--~ delay_out s d._ __ 

Out 
Delay Id 

register 

Echo 
Delay -----~ 

Flgure 4.93 Channel extended with a 
multiplier. 

adders 



4.14 Chapter Summary 237 

could write to the register shown, which would represent a constant by which the transducer 
signal would be multiplied. 

Our introduction of the ultrasound machine is greatly simplified from a real machine, 
yet even in this s implified introduction, you can see many of this chapter's datapath com
ponents in use. We used a down-counter to implement the OurDelay component, and 
several registers along with muxes for the EchoDelay component. We used many adders 
to stun the incoming transducer signals. And we used a multiplier to weigh those 
incoming signals. 

Future Challenges in Ultrasound 
Over the past two decades, ultrasound machines have moved from mostly analog machines 
to mostly digital machines. The digital systems consist of both custom digital circuits and 
software on DSPs and microprocessors, working together to create real-time images. 

One of the main trends in ultrasound machines involves creating three-dimensional 
(3-D) images in real time. Most ultrasound machines of the 1990s and 2000s generated two
dimensional images, with the quality of those images (e.g., more focal points per image) 
improving during those decades. In contrast to two-dimensional ultrasound, generating 3-D 
images requires viewing the region of interest from different perspectives, just like people 
view things from their two eyes. Such generation also requires extensive computations to 
create a 3-D image from the two (or more) perspectives. The result is a picture like that in 
Figure 4.94. 

That's a fetus' face. Impressive, isn't it? Keep in 
mind that image is made solely from sound waves 
bouncing into a woman's womb. Color can also be 
added to distinguish among different fluids and tissues. 
Those computations take time, but faster processors, 
coupled with clever custom digital circuits, are 
bringing real-time 3-D ultrasound closer to reality. 

Another trend is toward making ultrasound 
machines smaller and tighter, so that they can be used 
in a wider variety of health care situations. Early 
machines were big and heavy, with more recent ones 
coming on rollable carts. Some recent versions are 

Figure 4.94 3-D ultra~ound image of 
a fetus's face. Photo courtesy of 
Philips Medical Systems. 

handheld. A related trend is making ultrasound machines cheaper, so that perhaps every 
doctor could have a machine in every exanilnation room, every ambulance could carry a 
machine to help emergency personnel ascertain the extent of certain wounds, and so on. 

Ultrasound is used for numerous other medical applications, such as imaging of the 
heart to detect artery or valve problems. Ultrasound is also used in various other applica
tions, like submru'ine region monitoring. 

4.14 CHAPTER SUMMARY 

This chapter began (Section 4. 1) by introducing the idea of new building blocks intended 
for common operations on multibit data, with those blocks known as datapath compo
nents. The chapter then introduced a number of datapath components, including registers, 



238 4 Datapath Components 

adders, comparators, multipliers, subtractors, arithmetic-logic units, shifters, counters, 
timers, and register files. For each component, the chapter examined two aspects: the 
internal design of the component, and the use of the component as part of a datapath to 
implement a desired system. 

The chapter ended (Section 4. 13) by describing some basic principles underlying the 
operation of an ultrasound machine, and showing how several of the datapath components 
might be used to implement patts of such a machine. One thing you might notice is how 
designing a real ultrasound machine would require some knowledge of the domain of 
ultrasound. The requirement that a software programmer or digital designer have some 
understanding of an application domain is quite common. 

In the coming chapter, you will apply your knowledge of combinational logic design, 
sequential logic design (controller design), and datapath components, to build digital cir
cuits that can implement general and powerful computations. 

4.15 EXERCISES 

An asterisk (*) indicates an especially challenging problem. 
For exercises relating to darapath components, each problem may indicate whether 

the problem emphasizes the component's internal design OT the component's use. 

SECTION 4.2: REGISTERS 

4. 1 Trace the behavior of an 8-bit parallel-load register with 8-bit input/, 8-bit output Q, and load 
control input l d by completing the timing diagram in Figure 4.95. 

I ---< 5 X'-_...JX 124 x 65 x 92 x 0 x 0 x 21 >-

Figure 4.95 Timing elk __ _. 

diagram. 
Q 

4.2 Trace the behavior of an 8-bit parallel-load register with 8-bit input / , 8-bit output Q, load 
cont.Fol input ld, and synchronous clear input c l r by completing the timing diagram in 
Figure 4.96. 

I ---< 5 x ___ ...Jx 124 x 65 x 92 x o x o x 2 1 >-
Id ___ __, 

cl( ----------------' 

elk figure 4.96 Timing ---' 
diag ram. 

Q 



4.1 5 Exercises 239 

4.3 Design a 4-bit register with 2 control inputs s l and sO; 4 data inputs !3, !2, Il. and I O; 
and 4 data outputs Q3, Q2, Ql, and QO. When slsO=OO. the register maintains its value. 
When slsO=O l , the register loads !3 ... I O. When slsO=l O, the register clears itself to 
0000. When slsO=ll, the register complements itself, so for example, 0000 would 
become 1 111, and 1010 would become 0101. (Component design problem.) 

4.4 Repeat the previous problem, but when s l sO=ll, the register reverses its bits, so 1110 

would become 0 111, and 1010 would become 0101. (Component design problem.) 

4.5 Design an 8-bit register with 2 control inputs s l and so , 8 data inputs 17 ... IO, and 8 data 
outputs Q7 ... QO. S1 S0=00 means maintain the present value, S l S O=Ol means load, and 
slsO=l O means c lear. slsO=l l means to swap d1e high nibble with the low nibble (a 
nibble is 4 bits) . so 11110000 would become 00001111, and 11000101 would become 
01011100. (Component design problem.) 

4.6 The radar gun used by a police officer outputs a radar signal and measures the speed of cars 
as they pass. However, when an officer wants to ticket an individual for speeding. be must 
save the measured speed of the car on d1e radar unit. Build a system to implement a speed 
save feature for the radar gw1. The system has an 8-bit speed input S, an input B from the save 
button on dle radar gim, and an 8-bit output D that will be sent to the radar 's gun s peed dis
play. (Component use problem.) 

4. 7 Design a system with an 8-bit input I that can be stored in 8-bit registers A, B, and/or C when 
input La, Lb, and/or L e is 1, respectively. So if inputs La and Lb are 1, then registers A and 
B will be loaded with input / , but register C will keep its current value. Furthermore, if input 
R is 1, then d1e register values swap such that A=B, B;C, and C=A. Input R has priority 
over the L inputs. The system has one clock input also. (Component use problem.) 

SECTION 4.3: ADDERS 

4.8 Trace tbe values appearing at the outputs of a 3-bit carry-ripple adder for every one full -adder
delay time period when adding 111 wid1 0 11. Assume all inputs were previously 0 for a 
Jong time. 

4.9 Assmni11g all gates have a delay of 1 ns , compute me longest time required to add two 
numbers using an 8-bit carry- ripple adder. 

4.10 Assuming AND gates have a delay of 2 ns, OR gates have a delay of l ns, and XOR gates 
have a delay of 3 ns, compute the longes t time required to add two numbers using an 8-bit 
carry-ripple adder. 

4. 11 Design a 10-bit carry-ripple adder using 4-bit carry-ripple adders. (Component use problem.) 

4.12 Design a system that computes the sum of three 8-bi t numbers, using 8-bit carry-ripple 
adders. (Component use problem.) 

4.13 Design an adder that computes the sum of four 8-bit nmnbers, using 8-bit carry-ripple adders. 
(Component use problem.) 

4.14 Design a digital thermometer system that can compe11Sate for errors in the temperature 
sensing device's output T, which is an 8-bit input to the system. The compensation amount 
can be positive only and comes to the system as a 3-bit binary number c, b , and a (a is tl1e 
least significant bit). which come from a 3-pin DIP switch. The system should output d1e 
compensated temperature on an 8-bit output U. (Component use probfem.) 

.us We can add dU'ee 8-bit munbers by chaining one 8-bit carry-ripple adder to d1e output of 
anodlcr 8·bit carry-ripple adder. Assuming every gate has a delay of 1 time-unit, compute d1c 
longest delay of this three 8-bit number adder. Hint: you may have to look carefully inside d1e 
carry-ripple adders, even inside the full-adders, to correctly compute the longest delay from 
any input to any output. (Component use problem.) 



240 4 Datapath Components 

SECTION 4.4: COMP ARA TORS 

4.16 Trace through the execution of the 4-bit magnitude comparator shown in Figure 4.43 when 
a=IS and b=l2. Be sure to show how the comparisons propagate thought the individual 
comparators. 

4 .17 Design a system tbat determines if three 4-bit numbers are equal, by cmmecting 4-bit magni
tude comparators together and using additional component~ if necessary. (Component use 
problem.) 

4.18 Design a 4-bit carry-ripple-style magnitude comparator that has two outputs. a greater-than or 
equal-to output gte, and a less-than or equal-to output 1 te. Be sure to clearly show the 
equations used in developing the individual 1-bit comparators and how ttiey are connected to 
fom1 d1e 4-bit circuit. (Component design problem.) 

4.19 Design a circuit that outputs 1 if the circuit's 8-bit input eq uals 99: 
(a) using an equality comparator, 

(b) using gates only. 
Hint: In the case of (b), you need only I AND gate and some inverters. (Component use 
problem.) 

4.20 Use magnitude comparators and logic to design a circuit d1at computes the minimum of three 
8-bit munbers. (Component use problem.) 

4.21 Use magnitude comparators and logic to design a circuit that computes the maximum of two 
16-bit numbers. (Component use problem.) 

4.22 Use magnitude comparators and logic to design a circuit d1at outputs 1 when an 8-bit input a 
is between 75 and JOO, inclusive. (Component use problenL) 

4.23 Design a human body temperature indicator system for a hospital bed. Your system takes an 
8-bit input representing a person's body temperature, which can range from 0 to 255. If the 
measured temperature is 95 or less, set output A to 1. If the temperature is 96 to 104, set 
output B to 1. If the temperature is 105 or above, set output C to 1 . Use 8-bit magnitude com
parators and additional logic as required. (Component use problem.) 

4.24 You are working as a weight guesser in an amusement park. Your job is to try to guess the 
weight of an individual before they step on a scale. If your guess is not within ten pounds of 
the individual's actual weight (higher or lower), the individual wins a prize. So if you guess 
85 and the actual weight is 95, the person does not win; if you'd guessed 84. the person wins. 
Build a weight guess analyzer system that outputs whcd1er the gness was within ten pounds. 
The weight guess analyzer bas an 8-bit guess input G, an 8-bit input from the scale W with 
the correct weight, and a bit output C that is 1 if the guessed weight was within the defined 
Limits of the game. Use 8-bit magnitude comparators and adclitional logic or components as 
required. (Component use problem.) 

SECTION 4.5: MULTIPLIER-ARRAY-STYLE 

4.25 Assuming all gates have a delay of 1 time-unit, which of the following designs will compute 
the 8-bit multiplication A *9 faster: 
(a) a circuit as designed in Exercise 4.45, or 
(b) an 8-bit array style multiplier with one input connecterl to a constant value of nine. 

4.26 Design an 8-bit array-style multiplier. (Component design problem. ) 

4.27 Design a circuit to computeF=(A*B*C)+3*D+12.A, B, C, andD are 16-bit inputs. and F 
is a 16-bit output. Use 16-bit multiplier and adder components, and ignore overflow issues. 



4.15 Exercises 241 

SECTION 4.6: SUBTRACTORS AND SIGNED NUMBERS 

4.28 Convert the following two's complement binary numbers to decimal numbers: 
(a) 00001111 
(b) I 0000000 
(e) 10000001 
(d) 111 J 1111 
(e) 10010101 

-t29 Convert the following two's complement binary numbers to decimal numbers: 
(a) 01001101 
(b) 000110(() 
(c) 11101001 
(d) 10101010 
(e) 11111 100 

4.30 Convert the followi11g two's complement binary nwnbers to decimal numbers: 
(a) 11 J 00000 
(b) 01111111 
(c) 11 110000 
(d) 11000000 
(e) 11100000 

4.3 1 Convert the following 9-bit two's complement binary numbers to decimal numbers: 
(a) Ol l l I I I l I 
(b) 11 11 11111 
( c) I 00000000 
( d) J I 0000000 
(e) 111111110 

4.32 Convert the following decimal numbers to 8-bit two's complement binary form: 
(a) 2 
(b) - 1 
(c) - 23 
(d) - 128 
(e) 126 
(f) 127 
(g) 0 

4.33 Convert the following decimal numbers to 8-bit two's complement binary form: 
(a) 29 
(b) 100 
(c) 125 
(d) - 29 
(e) - 100 
(f) - 125 

(g) - 2 

4.34 Convert the following decimal numbers to 8-bit two's complement binary form: 
(a) 6 
(b) 26 
(c) - 8 
(d) - 30 
(e) -60 
(f) - 90 



242 4 Datapath Components 

4.35 Convert the following decimal numbers to 9-bit two's complement binary fom1: 
(a) I 
(b) - 1 
(c) - 256 
(d) - 255 
(e) 255 
( f) -8 
(g) - 128 

4.36 Repeat Exercise 4 .14 except that the compensation amount can be positive or negative, 
coming to the system via four inputs d, c, b , and a from a 4-pin DIP switch (d is the most 
significani bit). The compensation amount is in two's complement form (so ihe person setting 
the DIP switch must know that). Design the circuit. What is the range by which the input 
temperature can be compensated? (Component use problem. ) 

4.37 Create the internal design of a full-subtractor. (Component design problem.) 

4.38 Create an absolute value component abs with an 8-bit input A that is a signed binary 1nm1ber, 
and an 8-bit output Q that is unsigned and that is the absolute value of A. So if the input is 
00001111 (+ 15) then the output is also 00001 111 (+15), but if the input is 1111 1111 
(- 1) then the output is 0000000 1 (+1). 

4.39 Using 4-bit subtractors, build a circuit that has three 8-bit inputs A, B, and C, and a single 8-
bit output F, where F=(A-B)-C. (Component use problem.) 

SECTION 4.7: ARITHMETIC-LOGIC UNITS-ALUS 

4.40 Design an ALU with two 8-bit inputs A and B, and control inputs x. y, and z. The ALU 
shouJd support the operations described in Table 4.3. Use an 8-bit adder and an arithmetic/ 
logic extender. (Component design problem.) 

TABLE 4.3 Desired ALU operations. 

Inputs 
Operation 

x y z 

0 0 0 S"' A - B 

0 0 1 S=A+B 

0 1 0 S=A " 8 

0 1 1 S =A l & 

1 0 0 S = A NAND B (bi twise NAND) 

1 0 1 S = A XOR B (bitwise XOR) 

1 1 0 S = Reverse A (bit reversal) 

1 1 1 S = Nar A (bitwise complement) 

4 .41 Design an ALU with two 8-bit inputs A and B, and control inputs x, y, and z. The ALU 
should support the operations described in Table 4.4. Use an 8-bit adder and an arithmetic/ 
logic extender. (Component design problem.) 



4.15 Exercises 243 

TABLE 4.4 Desired ALU operations. 

Inputs 
Operation 

x y z 

0 0 0 S=A+B 

0 0 1 S = A AND B (bitwise AND) 

0 1 0 S = A NANO B (bitwise NANO) 

0 1 1 S = A OR B (bitwise OR) 

1 0 0 S = A NOR B (bitwise NOR) 

1 0 1 S = A XOR B (bitwise XOR) 

1 1 0 S = A XNOR B (bitwise XNOR) 

1 1 1 S =NOT A (bi twise complement) 

4.42 An instructor teaching Boolean algebra wants to help her students learn and understand basic 
Boolean operators by providing the students with a calculator capable of performing bitwise 
AND. NANO, OR, NOR, XOR, XNOR, and NOT operations. Using the ALU specified in 
Exercise 4.41, build a s imple logic calculator us ing DIP switches for input and LEDs for 
output. The logic calculator should have three Df P switch inputs to select which logic opera
tion to perform. (Component use problem.) 

SECTION 4.8: SHIFTERS 

4.43 Design an 8-bit shifter that shifts its inputs two bits to the right (shifting in Os) when the 
shifter's shift control input is 1. (Compo11e11t design problem.) 

4.-4-4 Design a circuit that outputs the average of four 8-bit unsigned binary inputs 
(a) ignoring overflow issues, 
(b) using wider internal components or wires to avoid losing information due to overflow. 
(Component use problem.) 

4.45 Design a circuit whose 16-bit output is nine times its 16-bit input D representing an unsigned 
binary number. ignore overflow issues. (Co111po11ent use problem.) 

4.46 Design a special multiplier circuit that can multiply its 16-bit input by 2, 4, 8, 16, or 32, spec
ified by three inputs a, b, c (abc=OOO means no multiply, abc=OOl means multiply by 2, 
abc=OlO means by 4, abc=Oll means by 8. abc=lOO means by 16, abc=lOl means by 
32). Hint: A simple solution consists entirely of just one copy of a component from this 
chapter. (Component use problem.) 

4.47 Use strength reduction to create a circuit that computes P =27*Q using only shifts and adds. 
Pis a 12-bit output and Q is a 12-bit input. Estimate the transistors in the circuit and compare 
to the estimated transistors in a circuit using a multiplier. 

4A8 Use strength reduction to create a circuit that approximately computes P=( l/3)*Q using only 
shifters and adders. Strive for accuracy to the hundredths place (0.33). P is a 12-bit output 
and Q is a 12-bit input. Use wider internal components and wires as necessary to prevent 
internal overflow. 

4.49 Show the internal values of the barrel shifter of Figure 4.64, when / =011 00101, X=l, y=O, 
and z=l. Be sure to show how the input I is shifted after each internal shifter s tage. (Compo
nent design problem.) 



244 4 Oatapath Components 

4.50 Using the ban-el shifter shown in figure 4.64, what setlings of the inputs x , y, and z are 
required to shif t the input / left by s ix positions? 

SECTION 4.9: COUNTERS AND TIMERS 

4.5 1 Design a 4-bit up-counter that has two control inputs: cnt enables counting up. while 
clear synchronously resets the counter to all Os: 
(a) us ing a parallel load register as a building block, 
(b) using flip-flops and muxes by fo llowing the regis ter design process of Section 4.2. 
(Component design problem.) 

4.52 Design a 4-bit down-coumcr that has three control inputs: cnt enables counting up, clear 
synchronously resets d1c counter to all Os, and set synchronously sets the counter to all l s: 
(a) using a parallel load register as a building block, 
(b) using flip-flops and muxcs by following d1c register design process of Section 4.2. 
(Component design problem.) 

4.53 Design a 4-bit up-counter wid1 an additional output upper. upper outputs a 1 whenever the 
counter is within the upper half of the counter's range, 8 to 15. Use a basic 4-bit up-counter 
as a building block. (Co111pone11t desig11 proble111.) 

4.54 Design a 4-bit up/down-counter that has four control inputs: cnt_up enables counting up. 
cnt_down enables counting down, clear synchronously resets the counter to all Os. and 
set synchronously sets the counter to all ls. If two or more control inputs are 1. the counter 
retains its current count value. Use a parallel- load register as a building block. (Component 
design problem.) 

4.55 Design a circuit for a 4-bit dccremcnter. (Co111po11e11t desig11 problem.) 

4.56 Assume an electronic turnstile internally uses a 64-bit counter that counts up once for each 
person that passes through the turnstile. Knowing drnt California's Disneyland park attracts 
about 15,000 visitors per day, and assuming they all pass drnt one turnstile, how many days 
would pass before the counter would roll over? (Co111po11ent use problem.) 

4.57 Design a circuit tJ1at outputs a I every 99 clock cycles: 
(a) Using an up-counter with a synchronous clear control input, and using extra logic, 
(b) Using a down-counter with paral lel load, and using extra logic. 
(c) What arc the tradeoffs between the two designs from parts (a) and (b)? 
(Co111pone11t m e problem. ) 

4.58 Give the COlUll range for the following sized up-counters: 
(a) 8-bits, 12-bits, 16-bits, 20-bits, 32-bits, 40-bits, 64-bits, and 128-bits. 
(b) For each size of counter in part (a), assuming a l Hz clock, indicate how much time 

would pass before the counter wraps around; use the most appropriate units for each 
answer (seconds, minutes, holu-s, days, weeks, months, or years). 

(Compo11e11t use problem.) 

4.59 Create a clock divider that converts a 14 MHz clock into a I MHz clock. Use a down-counter 
with parallel load. Clearly indicate the width of the down-counter and the counter's load 
value. (Component use problem.) 

4.60 Assuming a 32-bit microsecond timer is available to a controller, and a controller clock fre
quency of I 00 MHz, create a controller FSM that blinks an LED by setting an output L to 1 
for 5 ms and then to 0 for 13 ms, and then repeats. Use the timer to achieve the desired 
timing (i.e .. do not use a clock divider). For this example, the blinking rate can vary by a few 
clock cycles. (Co111po11ent use problem.) 



4.1 5 Exercises 245 

SECTION 4.10: REGISTER FILES 

4.61 Design an 8x32 two-port (I read. I write) register file. (Component design problem.) 

4.62 Design a 4x4 three-port (2 read, I write) register file. (Component design problem.) 

4.63 Design a 10xl4 register file (one read port, one write port). (Componem design problem.) 

4.64 A 4x4 register file's four registers initially each contain 0101. 

(a) Show the input values necessary to read register 3 a:nd to simultaneously write register 3 
with the value 1110. 

(b) With these values, show the register file's register values and output values before the 
next rising clock edge, and after the next rising clock edge . 

..,._ DESIGNER PROFILE 

Roman began studying 
Computer Science in 
college due to his interest 
in software development. 
During his undergraduate 
studies, his interests 
expanded to also include 
the fields of digital design 
and embedded systems, 
which eventually led him 
to become involved in 

research developing new methods to help designers 
quickly build large integrated circuits (ICs). Roman 
continued his education through graduate studies and 
received his MS in Computer Science, after which Roman 
worked for both a large company designing ICs for 
consumer electronics, as well as a start-up company 
focusing on high·performan<:e processing. 

Roman enjoys working as both a software developer 
and hardware engineer and believes that "fundamentally 
software and hardware design are very similar, both 
relying on efficiently solving difficult problems. While 
good problem solving skills are important, good learning 
skills are also important." Contrary to what many students 
may believe, be points out that "learning is a fundamental 
activity and skill that does not end when you receive your 
degree. In order to solve problems, you often are required 
to learn new skills, adopt new programming languages 
and tools, and detemune if existing solutions will help 
you solve the problems yott face as an engineer." Roman 

poinis out that digital design has changed at a rapid pace 
over the last few decades, requiring engineers to learn 
new design techniques, learn new programming 
languages, such as VHDL or SystemC, and be able to 
adopt new technologies to stay successful. "As the 
industry continues to advance at such a rapid pace, 
companies do not only hire engineers for what they 
already know, but more so on how well those engineers 
can continue to expand their knowledge and learn new 
skills." He points out that "college provides students with 
an excellent opportunity to not only learn the essential 
information and skills from their course work but also to 
learn additional information on their own, possibly by 
learning different progranuning languages, getting 
involved in research, or working on larger design 
projects." 

Roman is motivated by his enjoyment of the work he 
does as well being able to work with other engineers who 
share his interests. " Motivation is one of the keys to 
success in an engineering career. While motivation can 
come from many different sources, finding a career that 
you are truly interested in and enjoy really helps. Co
workers are also a great source of motivation as well as 
knowledge and technical advice. Working as a member of 
a team that conununicates well is very rewarding. You are 
able to motivate each other and use your strengths along 
with d1e strengths of your co-workers to achieve goals far 
beyond that which you could aclueve on your own." 



This page intentionally left blank 



5 
Register-Transfer 
(RTL) Design 

Leve I 

5.1 INTRODUCTION 

Register· 
transfer 

level (RTL) 

Logic levei 

Figure 5. 1 Levels of 
digital design. 

Previous chapters introduced methods to capture behavior and to implement that behavior 
as a digital circuit. Chapter 2 introduced a method to capture basic combinational 
behavior using equations or trnth tables, and to implement that behavior as a circuit of 
two or more levels of gates. Chapter 3 introduced a method to capture basic sequential 
behavior using finite-state machines (FSMs), and to implement that behavior as a circuit 
having a register and combinational logic, w hich together are known as a controller. This 
chapter will focus o n capturing even higher-level sequential behavior, using a high-level 
state machine (HLSM) whose inputs , outputs, state actions, and transition conditions can 
all involve higher-level data types like binary numbers or integers rather than just the 
Boolean type used in FSMs. To implement such behavior, this chapter will introduce a 
method to convert a high-level s tate machine into a circuit consisting of a controller con
nected to a datapath, which together are known as a processor. The datapath is composed 
of datapath components defined in Chapter 4, including registers, adders, comparators, 
etc., custom connected such that the datapath can perform the specific operations defined 
by the high-level state machine. The controller sets the datapath's signals in each state 
such that the state's actions and transition conditions are carried out. 

The above discussion uses the tenn "higher-level," which should be explained. 
Digital designers commonly distinguish among the different levels shown in Figure 5.1. 
The more complex the building blocks, the higher the level of abstraction that the 
designer deals with. Connecting transistors into circuits to build gates or other compo
nents is called transistor-level design . Designing combinational or sequential circujts as 
in Chapters 2 and 3 involves circuits whose building blocks are primarily logic gates, and 
is thus called logic- level design . Designing processors involves circuits whose building 
blocks are registers and other datapath components, and involves transferring data from 
registers, through other datapath components like adders, and back to registers. Such 
design is thus called register-transfer level design or RTL desig11-which is the focus of 
this chapter. In the 1970s and 1980s, most digital design practice occuITed at tl1e logic 
level. Today, most practice is at the register-transfer level. Improving tools continue to 
move design practice to higher levels. Higher levels deal with fewer and higher-

247 



248 5 Register-Transfer Level (RTL) Design 

The tenn 
"microprocessor" 
became popular in 
the 1980s when 
programmable 
processors shrank 
from occupying many 
boards er chips down 
lo occupying just a 
single chip. "Micro" 
refers to being small. 

complexity building blocks, and thus can enable design of higher-complexity circuits 
with less time and effort. 

The name processor is best known from its use in the name microprocessor. A 
microprocessor is a programmable processor, which is a general predesigned processor 
created to carry out any desired computation {see Chapter 8). This chapter instead focuses 
on designing custom processors, which are processors each of whose design is special
ized to implement one specific computation, like converting a Celsius number to 
Fahrenheit. As such, custom processors can be extremely small, low-power, and fast com
pared to programmable processors. Custom processors and programmable processors 
often coexist in digital systems. For example, a TV set-top box may use a programmable 
processor to carry oll!t most of the functions related to changing channels, controlling 
volume, etc., but may use custom processors to very quickly decompress the video data 
that is streaming into the system and to quickly display that data on the TV screen. 

RTL design begins by capturing desired behavior. A formalism for capturing RTL 
behavior is a high-level state machine. 

5.2 HIGH-LEVEL STATE MACHINES 
Some behaviors are too complex to capture using just an 
equation, trnth table, or FSM. Consider capturing the 
behavior of a custom processor for a soda machine dispenser 
that dispenses a soda when enough money has been depos- c-. 
ited into the machine. A block diagram of the processor d 
system is shown in Figure 5.2. A coin detector provides the 

Soda 
dispenser 
processor 

processor with a I-bit input c that becomes 1 for one clock 
cycle when a coin is detected, and an 8-bit input a indicates 
the value in cents of the inserted coin, such as 25 cents 
{00011001) or 10 cems {00001010). Another 8-bit input s 

Figure 5.2 Soda dispenser 
block symbol. 

indicates the cost of a soda, such as 60 cents { o o 1111 o o ), which can be set by the 
machine owner. When the processor has detected that the total value of deposited coins 
equals or exceeds the cost of a soda {e.g., 25 + 25 + 10 >= 60), the processor should set 
an output bit d to 1 for one clock cycle, causing a soda to be dispensed (this machine has 
only one type of soda, and does not give change). Assume that the value a persists until 
the next coin is deposited, and that many clock cycles (e.g., thousands) occur between 
successive coins being deposited. 

An FSM is not sufficient for capturing the data aspects of this system's behavior. An 
FSM can only have Boolean (i.e., single-bit) inputs, not an 8-bit data input representing a 
binary number. An FSM has no convenient way of keeping track of the total data value of 
coins deposited so far. An FSM can only perform Boolean operations, not the data addi
tion operation (e.g., 25 + 10) required to keep track of the total value of coins deposited. 

A high-level state machine (HLSM) extends FSMs with the data features needed to 
capture more complex behaviors, including: 

• multibit data input5 and outputs rather than just single bits, 

• local storage, and 

• arithmetic ope rations like add and compare, rather than just Boolean operations. 



As a reminder, this 
book usually uses 
a Courier fom 
for names and 
constants 
represenring a b ir, 
and italics for 
other names. So 
"d" and "O" 
represenr bi I 
values, while "tm" 
and "O" represe/11 
nonnal data 
items. 

5.2 High-Level State Machines 249 

This chapter will use HLSMs whose local storage is loaded on rising clock edges. Also, 
each local storage i tem and multibit input or output is assumed to be unsigned, unless 
specifically denoted as "signed" (see Section 4.6). 

Figure 5.3 shows an HLSM describing 
the behavior of the soda dispenser processor. 
The HLSM initially sets output d to o and 
sets a local storage item tot to 0. The HLSM 
then waits in state Wait to detect a coin being 
deposited. When detected, the HLSM goes 
to state Add, which adds the coin' s value a to 
tot, after which the HLSM returns to Wait. If 
tot's value is less than the cost s of a soda 
(tot < s), the HLSM continues to wait for 
more coins. Otherwise, the HLSM goes to 
state Disp, which sets d to 1 to dispense a 
soda, after which the HLSM returns to state 
/nit to clear tot back to 0 and start over again_ 

Inputs: c (bit), a (8 bits), s (8 bits) 
Outputs: d (bit) // '1' dispenses soda 
Local storage: tot (8 bits) 

d;='O' 
tot:=O 

Soda Dispenser d:='1' 

Figure 5.3 Soda dispenser high-level s tate 
machine with non-FSM constructs highlighted. 

The state machine is not an FSM, because of reasons highlighted in the figure. One 
reason is because the state machine has inputs that are 8-bit types, whereas FSMs only 
allow inputs and 0U1tputs of Boolean types (a single bit each). Another reason is because 
the s tate machine declares local storage tot to store intermediate data, whereas FSMs 
don' t allow local data storage- the only "stored" item in an FSM is the state itself. A 
third reason i.s because the state actions and transition conditions involve data operations 
like tot := 0 (remember that tot is 8-bits wide), tot< s, and tot :=tot+ a (where the "+" is 
addition, not OR), whereas an FSM allows only Boolean operations like AND or OR. 

Tills chapter will use the following conventions for HLSMs, also used for FSMs: 

• Each transition is implicitly ANDed with a rising clock edge_ 

• Any bit output not explicitly assigned a value in a state is implicitly assigned a o. 
Note: this convention does not apply for rnultibit outputs. 

Th.is cliapter will also use the following conventions for HLSMs: 

• To distinguish between a bit o or 1 and a binary number 0 or 1, HLSMs will sur
round bit values with single quotes as in 'o ' and '1' . In Figure 5.3, note that the 
bit output d is assigned the bit ' o ' while the multibit storage tot is assigned 0 
(without quotes), which is the integer representation of the 8-bit binary number 
00000000 . Being 8 bits wide, tot could be assigned the number 0, l , 2, 3, ... , up 
to 255 . In contrast, being a bit, d can only be assigned '0' or '1'. To assign a 
multibit item with a multibit constant, double quotes will be used, e.g., 
tOt ~ II 00000000 11 • 

• To avoid confusion between arithmetic comparison and assignment, HLSMs will 
use " ==" for comparison and " :="for assignment. "="will not be used for either. 
ln Figure 5.3, note that assigning dis written as d := ' o' rather than as d = o, and 
assigning Toi is written as IDT := 0. If Tot had to be compared to s for equality on a 
transition, such comparison would be written as tot== s, making clear that tot is 



rYI 

elk 

250 5 Register-Transfer Level (RTL) Design 

being compared with s and not being a ssigned the value of s. Comparing for less 
than or equal to would be written as tot<=~. 

• Every HLSM multibit output is registered (see Chapter 3). As such, every HLSM 
multibit output X must have a storage item Xreg declared that is the same width as 
X. Writing to X is accomplished by writing to Xreg ; writes directly to X are not 
allowed. Xreg can be read; X cannot. If desired, a single-bit output B can be regis
tered by declaring a local s torage item Breg. 

To aid in understanding, an HLSM can include text that describes some aspect of the 
HLSM. Such texr is preceded by "//" and is known as a comment. One comment appears 
in Figure 5.3 to describe the behavior of output d. 

As was true for FSMs, capturing behavior as an HLSM can be challenging. As in 
Chapter 3 for FSMs, the capture process for HLSMs can be aided by first listing all pos
sible states (with some transitions included if helpful), then creating all possible 
transitions leaving each state, and finally by mentally executing the HLSM and refining it 
if necessary. The following example illustrates creation of an HLSM for a simple system. 

Example 5.1 Cyc les-high counter 

CountHigh 

32 

p 

This example captures an HLSM for a system having a bit input m and a 32-bit output P. The sys
tem should output the total number of clock cycles for which the input m is 1. For example, after 
powering on the system. if mis 0 for 20 cycles, then 1 for 15 cycles, then 0 for 12 cycles, and then 
1 for 3 cycles, the system output at that point should be 18 ( 15 + 3). P connects to a display that 
converts the 32-bit number into a displayed integer. Such a cycles-high counter system might be 
useful to determine the total time that a car·s brakes are applied. that a laser has been turned on, etc. 

Figure 5.4 Cycles-high 
counter block diagram. 

Figure 5.5(a) shows the first HLSM state S_Clr that initializes the output P to 0 by setting its 
storage item Preg to 0. Preg accomplishes the storage of the cycles-high count, and thus declaring 
another local storage item is not necessary. Figure 5.S(b) introduces a second state S=Wt that waits 
for m to be 1; transitions are shown for this state. Finally, Figure 5.S(c) introduces a third state 
S_/nc that increments Preg once for each clock cycle that mis 1 ; transitions are also shown for this 
state. The HLSM now has all possible transitions. Mentally executing the HLSM seems to validate 
that it correctly captures the desired behavior. 

CountHigh Inputs: m (bit) CountHigh Inputs: m (bit) CountHigh Inputs: m (bit) 
' Outputs: P (32 bits) Outputs: P (32 bits) Outputs: P (32 bits) 
~ L=al sloragec P<eg Local storage: Preg Local storage: Preg 

II Clear Preg to Os II Clear Preg to Os II Clear Preg to Os 
Prag := o Preg := 0 Preg := 0 

? m' // Wait form = '1' m· II Wait form = '1' 

? 
1 

/I Increment Preg 
nc Preg := Preg + 1 (c) (a) m (b) 

figure 5.5 HLSM for cycles-high counter: (a) initial state, (b) waiting form to be 1, (c) incrementing Preg when mis 1 . 

• 



5.2 High-Level State Machines 251 

Example 5.2 Laser-based distance measurer 

Many appiications require accurately measw·ing the distance of an object from a known point. For 
example, road builders need to accurately detem1ine the length of a stretch of road. Map makers 
need to accurately determine the locations and heights of hills and mountains and the sizes of lakes. 
A giant crane for constructing skyrise buildings needs to accurately detennine the distance of the 
sliding crane arm from the base. In all of these applications, stringing out a tape measure to 
measure the distance is not very practical. A better method involves laser-based distance 
measurement. 

In laser-based distance measurement, a laser is pointed at the object of interest. The laser is 
briefly turned on and a timer is started. The laser light, traveling at the speed of light, travels to the 
object and reflects back. A sensor detects the reflection of the laser light, causing the timer to stop. 
Knowing the time T taken by the light to travel to the object and back, and knowing that the speed of 
light is 3x I 08 meters/second, the distance D can be computed easily by the equation: 2D = T seconds 

* 3x 108 meters/second. Laser-based distance measurement is illustrated in Figure 5.6. 

Figure 5.6 
Laser-based 
distance 
meastu-ement. 

T (in seconds) 

D 

20 = T sec * 3x 108 m/sec 

Object of 
interest 

This example captures an HLSM to describe the behavior of a processor that controls a laser to 
compute distances up to 200{) meters. A block diagram of the system is shown in Figure 5.7. The 
system bas a bi t input B, which equals 1 when the user presses a button to start the measurement. 

Another bit input S comes from the sensor and is 1 when the reflected laser is detected. A bit 
output L controls the laser, turning the laser on when L is 1. Finally, an N-bit output D indicates the 
distance in binary, in units of meters- a display converts that binary number into a decimal number 

and displays the results on an LCD for the user to read. D will have to be at least 11 bits. since 11 
bits can represent the numbers 0 to 2047, and the system should measure distances up to 2000 
meters. To be safe, we'll make D 16 bits. 

Flgure 5.7 Blockdiagram 
of the laser-based 
distance measurer. 

from button 

to display 

B 

D 19 

L 
to laser 

Laset-based 
distance 
measuret s 

- from sensor 

To facilitate the creation of the state machine, we firs t enumerate the sequence of events that would 
typically occur in the measurement system: 

• The system powers on. Initially, the system's laser is off and the system outputs a distance of 0 
meters. 

• The system waits for the user to press button B to initiate measurement. 

• After the button is pressed, the system should turn the laser on. We' ll choose to leave the laser 

on for one clock cycle. 



252 5 Register-Transfer Level (RTL) Design 

• After the laser is twned on, the system should wait for the sensor to detect the laser's reflection. 

Meanwhile, the system should count how many clock cycles occur from the time the laser was 
turned on until the reflection is sensed. 

• After the reflection is se11sed, d1e system should use tl1e number of cycles that occurred since 
the laser was pulsed to compute the distance to the object of interest. The system shou1d then 
ren1m to waiting for the user to press the button again so that a new measurement can be taken. 

The above sequence guides our construction of 
an HLSM. We begin with an initial state named SO as 
shown in Figure 5.8. SO's task is to ensure that when 
the system powers on. the system does not output an 
incorrect distance, and the system does not turn the 
laser on. Note mat output D is not written directly, but 
rather the output's local storage Dreg is written 
instead. Recall that ilie assignment L : = ' O ' assigns 

the bit 0 to the one-bit output L, whereas the assign· 
ment Dreg :,,, 0 assigns the 16-bit binary number 0 
(which is actually 0000000000000000) to the 16· 

bit storage Dreg. 
After initialization, tl1e measurement 

DistanceMeasurer 
Inputs: B (bit), S (bit) 
Outputs: L (bit), D ( 16 bits) 
Local storage; Dreg 

~? 
L := 'O' /I laser off 
Dreg := 0 II distance is 0 

Figure 5.8 Partial HLSM for the 

distance measurer: Initialization. 

system waits for the user to press the button 
to initiate the measurement process. To 
perform the waiting, we add a state named SJ 

DistanceMeasurer 

as shown in Figure 5.9. The shown transi-

tions cause the state machine to remain in 
state SJ wflile B is 0 (i.e., while B' is true). 
Be aware that the L is implicitly assigned 0 
in this state, because of the convention that 
any single-bit output not explicitly assigned 

in a state is implicitly a~signed 0. On the 
other band , Dreg, corresponding to a local 
storage item , is unchanged in this state . 

B' // button not pressed 

L :='0' 
Dreg:= 0 

---? B 
I/button 
pressed 

Figure 5.9 Distance measurer HLSM (cont.): 
Waiting for a button press. 

When B becomes 1 , ilie 

laser should be turned on for 
D istanceMeasu rer 

one cycle. The HLSM should 
n·ansition to a state that turns 
the laser on, followed by a 
state that turns ilie laser off. 
We'll call the laser-on state S2 
and the laser-off state SJ. 
Figure 5.10 shows how S2 and 
SJ are introduced into the 
HLSM. 

L := 'O' 
Dreg :: 0 

B' 

L ;:;;; '1 ' 
/!laser on 

L ;:;;;'0 ' 
//laser off 

Figure 5.10 Distance measurer HLSM (cont.): Turning the laser 
on for one cycle. 

In state S3, the HLSM should wait until the sensor detects d1e laser's reflection (S). The state 
machine remains in SJ while Sis 0. The HLSM should meanwhile count the clock cycles bcl\vcen the 
laser being turned on and the laser's reflection being sensed. We can measw-e time by counting the 
nwnber of clock cycles and multiplying that number by the clock period (T = cycles counted * clock 

period). Thus, we introduce a lotttl St<Jrage item named Dctr to keep track of the cycles counted. The 
HLSM increments Dctr as Jong as the HLSM is waiting for the laser's reflection. (For sin1plicity, we 
ignore the possibility that no reflection is detected.) 1l1e HLSM must also initialize Dctr to 0 before 



Figure 5.11 
Distance 
measurer HLSM 
(cont.): Waiting 

for the laser 
reflection and 
counting clock 
cycles. 

5.2 High-Level State Machines 253 

DistanceMeasurer Inputs. B (bit), S (bit) Outputs: L (bit), D (16 bits) 
Local storage. Dreg. Dctr (16 bits) 

l := 'O' 
Dreg:= 0 

B' 

Dctr :=0 
II reset cycle 

count 

L := '1' 

S ' // no reflection 

L:= 'O' 
Dctr := Dctr + 1 
II count cycles 

counting; such initialization can be added to state SJ. With these modifications, the HLSM js seen in 

Figure 5. 1 I. 
Once d1e reflection is detected (S,,,1) , d1e HLSM should compute the distance D that is being 

measured. Figure 5.6 shows d1at 2* D = T * 3x 108 m/sec. We know that d1e time Tin seconds is Dctr 
* clock period. To simplify d1e calculation of D, assume me clock frequency is 3xl08 Hz (which is 
300 MHz), so me clock period is I I (3xl08) sec. Thus, 2*D = (Dctr f 3xl08) sec * 3x 108 meters/sec 
= Dctr meters, and so D = (Dctr I 2) meters. We'll pe1form mis calculation in a state nan1ed S4. TI1e 
final HLSM is shown in Figure 5.12. All possible transistions from each s tate have already been 

included. A mental execution seems to confirm that me HLSM behaves as desired. 

Figure 5.12 
Completed 
HLSM for 
me distance 
measurer, 
including 
calculation 
of D. 

DistanceMeasurer Inputs: B (bit), S (bit) Outputs: L (bit), D (16 bits) 
Local storage: Dreg, Deir (16 bits) 

L := 101 

Dreg:= o 
Dctr := 0 L := 101 Dreg := Octr/2 

Dctr := Dctr+ 1 // calculate D 

A laser-based distance measurer could use a faster clock frequency to measure distance with a 
greater precision than 1 meter. 

• 
The HLSM described above is just one type of FSM extension. Dozens of extended 

FSM varieties exist. The particular variety of HLSM described above and used 
throughout this chapter is sometimes called an FSM with data or FSMD. A different 
state machine variation that was previously popular was called algorithmic state 
machi11es , or ASMs. ASMs are similar to flowcharts, except that ASMs include a notion 
of a clock that enables transitions from one state to another (a traditional flowchart does 
not have an explicit clock concept). ASMs contain more "strncture" than a state machine. 
A state machine can transition from any state to any otheT state, whereas an ASM restricts 
transitions in a way that causes the computation to look more like an algorithm- an 
ordered sequence of instructions. An ASM uses several types of boxes, including state 
boxes, condition boxes, and output boxes. ASMs typically also allowed local data storage 
and data operations. The advent of hardware description languages (see Chapter 9) seems 
to have largely replaced the use of ASMs, because hardware description languages 



254 5 Register-Transfer Level (RTL) Design 

~ 
Dctr := Deir+ 1 

+ 
~·1 

Dctr := Dctr+1 

Figure 5.13 A storage 
update can be thought of 
as occuring on outgoing 
transitions. 

contain the constructs supporting algorithmic strncture, and much more. We do not 

describe ASMs further. 
In the HLSMs of this chapter, all writes to storage items in a state's actions are to 

storage items that are loaded on rising clock edges only. As such, wr iting a value to a 
storage item in a state's actions does not actually cause the storage item to be updated 

until the next rising clock edge. So the update occurs at the end of the s tate when the next 
rising clock edge causes a transition. For example, consider the state action "Deir:= Derr 
+ l" in state SJ of the distance measurer HLSM in Figure 5.12. When a clock edge 
causes a transition from S2 to SJ, Detr will initially be 0. While in S3 during that clock 

cycle, Dctr will still be 0. When the next clock edge arrives, Dctr will be updated to l 
(i.e., to Derr+ 1, meaning 0 + l = 1), and the HLSM will transition back to SJ if S is 0. 

Detr will remain l until the next clock edge, when it will become Deir + 1 = l + l = 2. A 
s imple way to visualize a state's local storage updates is to consider those updates as 
occuring on each outgoing trnnsition instead of in the state, as in Figure 5.13. Because 
local storage item updates occur at the end of a state when the next rising clock edge 
occurs, and because trans itions are taken on that same clock edge, then a transition whose 

condition uses the storage item uses the non-updated value. A common mistake is to 
assume the transition uses the updated value. 

For example, supp ose a system waits for an input control bit B to become 1 and then 
sets an output P to 1 for 50 cycles. Rather than us ing 50 states to set P high, an HLSM 
can use a local storage item. Figure 5.14(a) shows an HLSM using local storage lreg, for 

the case of setting the output P to 1 for 2 cycles rather than 50 so that the example is 
easier to understand. T he diagram for that HLSM in Figure 5.14(b) shows that SO's action 
of ]reg := 1 occurs at the same time as the transition to SJ during the next clock edge. 
Then, even though SJ's action is .!reg:= lreg +l, J remains l for the dW'ation of the clock 

cycle, and so the conditions on Si's transitions with Jreg<2 will be comparing 1<2. On 
the next clock cycle, the transition back to SJ will be taken and lreg will simultaneously 

be updated to 2 (remember, you can cons ider the storage update as occuring on the out
going transitions) . During that second cycle in SJ, the transition comparison will be 2<2, 

so on the next clock edge the transition to SO will be taken and lreg wiJJ simultaneously 
be updated with 3 (that value of 3 will never be used, and at the end of state SO, Jreg will 
become 1 again). 

Inputs: B (bit) 
Outputs: P (bit) II if B, 2 cycles high 
Local storage: Jreg (B bits) 

p := '0' 
Jreg := 1 

p := '1' 
Jreg := Jreg + 1 

(a) 

.-.n h ,... , h .-.. h .-.n 
elk~~~~ 

s__ri-i_L_L 
1 I 2 I 3 I 

Jreg~ 
p_j i ,...I __ 

' ' . 
(b) 

Figure 5.14 HLSM clocked storage update behavior~ (a) HLSM with storage Jreg, (b) SO's setti11g .!Joeg to 
J doesn't occur until the next clock edge, which is also when SJ is entered. Si's setting of Jreg:=Jreg+ I 
will set Jreg to 2, but not until the next edge, meaning Jreg<2 is false for the first SJ state. 



5.3 RTL Design Process 255 

Because the updates of a state's actions occur at the next clock edge, the order in 
which local storage item actions are listed in a state does not matter- all the updates 
occur simultaneously at the end of the state. For example, swapping two storage items A 
and B in a state could be achieved by "A := B" followed by "B :=A", or by .. B :=A" 
followed by "A := B." The results are identical in either listing of the actions- at the end 
of the state, A and B get updated with the previous values of B and A, respectively. Think 
of the updates being prepared in the state, but not actually occuring until the next clock. 
Figure 5. l4(b) shows the updates that are prepared in each state, with arrows indicating 
when the updates actually occur. 

5.3 RTL DESIGN PROCESS 

RTL design follows a two-step process, 
as was the case for combinational design 
in Chapter 2 and for sequential design in 
Chapter 3. The first step is to capture the 
des ired behavior, and the second step is 
to convert that behavior as a circuit. This 

chapter captures behavior using an 
HLSM; designers sometimes use other 
formalisms too. Converting an HLSM to 
a circuit is aided by the use of a standard 
processor architecture, similar to how 
converting an FSM to a circuit in Chapter 
3 was aided by the use of a standard con
troller architecture consisting of a state 
regis ter and combinational logic. A stan-

DP 
control External 

control~~---~ inputs 

inputs 

External 
control 

outputs 

Controller 

DP 
control 
outputs 

External data 
inputs 

t ... t 
Data path 

External data 
outputs 

figure 5.15 Standard processor architecture: 
controJJer/datapath pair. 

dard processor architecture is shown in Figure 5.15, consisting of a controller connected 
with a datapath. The datapath will have the ability to carry out each particular data oper
ation present in the HLSM, by having t11e necessary datapath components (e.g., if the 
HLSM requires an addition and a comparison, then the datapath will include an adder and 
a comparator). The controller will set the control input signals of the va.iious datapath 
components (e.g., the load control input of a register) to carry out the s pecific actions of 
each particular state and to transition to appropriate next states based on the control 
output signals of those datapath components. 

To help understand the controller/datapath pair in the standard processor architecture, 
consider the cycles-high counter from Example 5.1 , which is revisited in Figure 5.16. 
Figure 5.l6(a) shows the system block diagram and describes the system's desired 
behavior. As this chapter's convention is to always register data outputs, the figure 
already shows a register Preg connected to data output P. Figure 5.16(b) shows the 
desired behavior captured as an HLSM created in the earlier example. The behavior 
requires that the computation "Preg := Preg + l" be performed. As such, Figure 5.16(c) 
shows an adder whose two inputs are Preg and a constant l , and whose output is con
nected to Preg. Thus, computing "Preg := Preg + l" can be achieved simply by setting 
Preg's ld control input to 1. Furthermore, the required computation "Preg := O" can be 
achieved by setting Preg's clr control input to 1. Thus, the circuit of the adder and reg-



256 5 Register-Transfer Level (RTL) Design 

Figure 5.16 
Example requiring 
a controller and 
datapath pair: (a) 
desired behavior, 
(b) HLSM 
description of 
desired behavior 
(LocStr means 
Local storage), (c) 
datapath with 
potential to 
implement 
behavior, but 
requiring time
varying setting of 
the datapath 's 
control signals, (d) 
FSM showing 
datapath control 
signal values that 
should be set in 
each state to 
aclueve behavior. 

ister form a datapath that is capable of petforming the data computation required for the 
system's behavior. 

What is still needed is a component, denoted as "?" in the figure, to control that dat
apath to carry out the right computation at the tight time to achieve the desired cycles
high count behavior. That component is a contmller as shown in Figure 5.16(d). The con
troller's behavior is described as an FSM (as in Chapter 3) and is similar to the HLSM's 
behavior in Figure 5. 16(b), except that each desired data operation is replaced by control 
actions that use the datapath to carry out the desired data operation. Rather than "Preg := 
O," the controller's FSM executes the action "Preg_clr = 1," which clears the register. 
Rather than "Preg := Preg + l ," the controller's FSM execll!tes the action "Preg_ l d = 1," 
which loads Preg with Preg + l because that is how the datapath is set up. The controller 
thus uses the datapath to implement the overall desired system behavior. Using methods 
from Chapter 3, the FSM in Figure 5.16(d) could be converted to a circuit, thus com
pleting the design of the cycles-high count processor circuit. 

As seen in Figure 5.16, converting an HLSM to a controller and datapath circuit 
requires creating a datapath capable of carrying out the required data operations, con
necting the datapath to a controller block, and converting the HLSM into an FSM that 
describes the controller's behavior. 

First clear Preg to Os 

Then increment Preg for each 
clock cycle that m is 1 

CountHigh •• 

m 
Preg 

(a) p 

CountHigh lnputS'. m (bit) 
Outputs: P (32 bits) 
LcxStr. Preg (32 bits) 

//Clear Preg to Os 

Preg := O 

m' I/Wait for m='1' 

m 
I/Increment Preg 
Preg := Preg + 1 

(b) 

(c) 

CountHigh 

m 

m' 

m 

(d) 

CountHi.,.g_h ______ ~ 

000 ... 00001 

? 
eg_clr 

eg_ld 

DP 

l/Preg := 0 
Preg_clr = 1 
Preg_ld = 0 

l/Preg:=Preg+ 1 
Preg_clr = 0 
Preg_ld = 1 

Controller 

A B 
addl 

s 
32 

000 ... 0000 

p g_clr 

p g_ld 

DP 

A B 
add1 

s 
32 

32 
p 



Step 1: 
Capture 
behavior 

5.3 RTL Design Process 257 

Tims, an RTL design process consisting of first capturing desired behavior and then 
converting the behavior to a circuit is summarized in Table 5. I. 

Table 5.1 RTL design method. 

Step Description 

Capture a high-level 
state machine 

2
A Create a datapath 

Describe the system 's desired bel1avior as a high-level state machine. 
The state machine consists of states and transitions. The state machine 
is "high-level" because the trans ition conditions and the state actions 
are more than just Boolean operations on single-bit inputs and outputs. 

Create a datapath to carry out the data operations of the high-level 
state machine. 

Step 2: lB Connect the datapath Connect the datapath to a controller block. Connect external control 
Convert to to a co11troller inputs and outputs to the controller block. 

circuit Derive the 
2C controller's FSM 

Convert the high-level state machine to a finite-state machine (FSM) 
for the controller, by replacing data operations with setting and reading 
of control signals to and from the datapath. 

Another substep may be necessary, in which one selects a clock frequency. Designers 
seeking high performance may choose a clock frequency that is the fastest possible based 
on the longest register-to-register delay in the final circui t. Implementing the controller's 
FSM as a sequential circuit as in Chapter 3 would then complete the design. 

We'll provide a simple example of the RTL design process before defining each step 
in more detail. 

Example 5.3 Soda dispenser 

This example completes the des ign of the 
soda dispenser whose HLSM was cap
tured in Figure 5.3, which thus completed 
Step I of the RTL design process. 

Step 2A is to create a datapath. The 
datapath needs a register for the storage 
item tot, an adder connected to tot and a 
to compute tot + a. and a comparator 
connected to tor and s to compute tot<s. 
The resulting datapath appears in Figure 
5.17. 

Step 2B is to connect the datapath to 
a controller, as in Figure 5.18. Notice that 
the controller's inputs and outputs are all 
just one-bit signals. 

tot_ld 
tot_ cir 

tot_lt_s 

s 

1
1d 

lclr 
I 

~8 
I 

+ 
8-bit 

< 

Data path 

a 

t 
tot J 

+ 
) 8 , "a 

8-bit 
adder 

8% 

Figure 5.17 Soda dispenser datapath. 



258 5 Register-Transfer Level (RTL) Design 

c 

d 
tot_ Id 

tot_ cir 

s 
8 

c 

lnpllls: c. tot_lt_s (bit) 
Outputs: d, tot_ld, tot_clr (bit) 

Controller tot_lt_s Datapath 

Figure 5.18 Soda dispenser controller/ 
datapath pair. 

Controller d=1 

figure 5.19 Soda wspenser controller FSM. 

While an HL')M 
diagra111 uses ":= " 
and"= =" to 
distinguish 
assignment and 
equalicy. and uses 
" '/' " and"/" ro 
distinguish a bit I 
from an imeger I, an 
FSM diagram has 110 

need for such 
disti11c1io11s (equality 
is never checked, and 
evel)>thing is a bit) 
and thus for FSM 
diagrams we still use 
the style defined in 
Chapter 3. 

Step 2C is to derive the controller's FSM from the HLSM. The FSM has the same states and 
transitions as the HLSM, but utilizes the datapath to perform any data operations. Figure 5.19 
shows the FSM for the controller. In the HLSM, state /n it had a data operation of "tot := O" (tot is 
8 bits wide, so that assignment of 0 is a data operation). We replace that assignment by setting 
tot_c l r= l, which clears the tot register to 0. State Wait's transitions had d ata operations com
paring "tot < s." Now that a comparator exists to compute that comparison for the controller, then 
the controller need only look at the result of that comparison by using the signal tot_lt_s. State 
Add had a data operation of tot = tot + a. The datapath computes that addition for the controller 
using the adder, so the controller merely needs to set tot_ ld"' 1 to cause the addition resul t to be 
loaded into the tot register. 

To complete tbe design, we 
would implement the controller's 
FSM as a state register ru1d combi
national logic. Figure 5.20 shows a 
partial state table for the controller, 
with the states encoded as /nit: oo, 
Wait: 01, Add: 10, and Disp: 11. 

To complete the controller desigo, 
we would complete the state table, 
create a 2-bit state register, and 
create a circuit for each of the five 
outputs from the table, as dis
cussed in Chapter 3. Appendix C 
provides details of completing the 
controller's design. That appendix 
also traces through the functioning 

I 

'"' ~ 

-~ 
CG 

3 

u 
u 
<{ 

c. 
CJ> 

0 

s1 
0 

0 

0 
0 

0 

0 

0 

0 

1 

1 

0 
I 

so c 
~ 

I 
C/) 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 0 0 

••• 
1 0 0 . . . 

0 ~ 

n1 no d 
c 'o 
c. ::;-

0 1 0 0 1 

0 1 0 0 1 

0 1 0 0 1 

0 1 0 0 1 

1 1 0 0 0 

0 1 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

0 1 0 1 0 

• •• 
0 0 1 0 0 ... 

of the controller and datapath with Figure 520 Soda dispenser controller state table (partial). 
one another. 

We now discuss each RTL design method step in more detail, while illustrating each 
step with another example. 



5.3 RTL Design Process 259 

Step 2A-Creating a Datapath using Components from a library 

Given a high-level state machine, the RTL design process requires creating a datapath that 
can implement all the data storage and computations on data items present in the HLSM. 
Doing so will enable replacing the HLSM by an FSM that merely controls the datapath. 
The task of "creating a datapath" can be decomposed into several subtasks. 

Step 2A: Create a datapatb 

(a) Make all data inputs and outputs to be datapath inputs and outputs. 

(b) Instantiate a register component into the datapath for every declared local storage 

item in the HLSM. 

(c) Methodically examine each state action and each transition condition for data 

computations. Instantiate and connect datapath components to implement each 
data computation. Instantiate multiplexors in front of component inputs when 
muxes become necessary to share a component input among computations in dif
ferent states. 

bzstantiate means to add a new component into a circuit. Using the term "instan
tiate" rather than ' 'add" helps avoid possible confusion with the use of the term "add" to 
mean arithmetic addition (e.g., saying "we add two registers" could otherwise be con
fusing). An instantiated component is called an i11stance. A new component instance 
should be given a name that is tmique from any other datapatb component instance's 

name. So a new register instance might be named "Reg 1." Another register instantiated 
later might be named "Reg2." Actually, meaningful names should be used whenever pos
sible. One register might be "TemperantreReg" and anoth er register "HumidiryReg." 

A set of known components is needed to indicate what types of components can be 

instantiated. Such a set of allowable components is called a library. Chapter 4 described 
the des.ign and behavior of several datapatb components. Figure 5.21 shows a small 
library consisting of several such components, indicating the inputs and outputs of each 
component and a brief summaiy of each component's behavior. 

The first component in the library is an N-bit register with clear and parallel load 
functions . If the clock is rising (denoted as elk"), then clr=l cleaTs the register, while 
ld=l loads the register (if both are 1, clear has priority). The second component is an N
bit adder (without a carry output). The third component is an N-bit comparator with less
than, equals, and greater-than control outputs; that comparator assumes unsigned inputs. 
The fourth compo11ent is a shifter that can be instantiated as a left shifter or as a right 

Figure 5.21 A basic 
datapath component 
library. 

- cir I 
- Id reg 

Q 

c/kl\ and clr=1: 0=0 S = A+B 
elk/\ Md Id= 1: 0 =1 
else Q stays same 

l l 
A e I 

shift<UA 
Q 

(unsigned) shiftl 1; <<1 
A<B: ll=1 shiftl2: <<2 
A=B;eq=1 shiftR1:>>1 
A>B:gt= 1 

l t 
T1 IO 
mux2x1 

- soo 

S0=0:0=10 
s0=1:0=11 



260 5 Register-Transfer level (RTL) Design 

shifter, and that can be instantiated to shift a fixed number of places. The fifth component 
is an N-bit 2x I multiplexor. Each component can be instantiated as any bitwidth N; e.g., 
an 8-bit register or a 32-bit register can be instantiated. Note that the concept of a Library 
of datapath components differs from the familiar concept of a Library as a collection of 
books. In a library of books, checking out a book means removing the book from the 
librnry, meaning nobody else can then check out that same book; only one instance of the 
book exists. A library of datapath components, in contrast, is more like a library of elec
tronic books that can be printed out. Instantiating a component means creating a new 

occurrence of that component, much like one might print out a new copy of an electronic 
book- instantiating the component or printing a new copy of a book does not change the 
library of components or of electronic books. 

Figmc 5.22 provides several examples of converting (always occuring) actions into 
datapaths. Figure 5.22(a) indicates that the datapath should always compute "Preg := X + 

Y + Z." The corresponding datapath uses two adder instances and a register instance, con
nected such that the input to the register is X + Y + Z. The register 's load control input is 
hardwired to 1, meaning the register will be loaded on every clock cycle (for these exam
ples, the actions always occur on every clock cycle so the control inputs are hardwired to 
constants; for HLSMs, the control inputs will be set on a state-by-state basis depending 
on the actions of the state). 

x y z 

t t t 
Preg=X + Y +Z 

X+Y 

~ 
X+Y~ 
o-.c1r I 
1-. Id Preg 

DP Q 

p 

x 

t 
Preg = Preg + X 

Preg 

DP 

p 

.J <b) 
x 

~ + o-. crr 1 
1-. Id Preg 

Q 

x y z 

t t t 
Preg=X+Y; regO=Y+Z 

x y 

DP 

~ + 

t (c) 
z 

A 8 
add2 
s 

x y z 

t t t 

x y 
* (d) 

z 

A 8 
add1 
s 

A 8 
add2 
s 

11 10 
mux2x1 

k-+---- so Q 

0 

DP 

Figure 5.22 Simple examples using a datapath to perform computations on input data, with the desired 
behavior on top and the datapatJ1 (DP) on the bottom: (a) adding three values using two adders, (b) 
accumulating values using a register, (c) a two-output example, (d) an example requiring a mux. 



5.3 RTL Design Process 261 

Figure 5.22(b) indicates that the desired datapath behavior is adding the input X to 
register Preg on every clock cycle; the corresponding datapath thus connects X and the 
output of Preg to an adder, and connects the adder's output to Preg. Figure 5.22(c) indi
cates that the desired datapath behavior involves two distinct additions "X+Y" and "Y+Z" 
being computed for two distinct data outputs on each clock cycle; the datapath uses two 
adders and the shown connections. Finally, Figure 5.22(d) lists the desired behavior as 
loading Preg with Y+Z when the datapath control input k is 0, and jnstead loading Preg 
with X+Y when k is 1; the datapath uses two adders and uses a 2xl mux to route the 
appropriate adder output to Preg's input depending on the value of k. (In fact, an alterna
tive datapath could use just one adder, with a mux in front of each adder input to route the 
appropriate inputs to the adder depending on k.) 

When instantiating a new component for an HLSM's datapath, datapath control 
inputs must be introduced corresponding to the component's control inputs. For example, 
instantiating a register requires introducing two datapath control inpllts corresponding to 
the register's load and clear control inputs. Unique names should be given to each new 
datapath c.ontrol input, ideally describing which component the input controls and the 
control operation performed. For example, lf a register named Regl is instantiated, two 
new datapath control inputs must be added, possibly being named Reg 1 _Id and Reg I _cir. 
Likewise, control outputs of a component may be needed by the controller, like the output 
of a comparator, in which case those datapath control outputs should be given meaningful 
unique names too. 

Example 5.4 Laser-based distance measurer-Creating a data path 

We continue Example 5.2 by first creating a datapath for the HLSM of Figure 5.12. 
Step 2A-Create a datapath. We follow the subtasks of the create-a-datapath task to create 

the datapath shown in Figure 5.23: 

(a) Output Dis a data output (16 bits), so D becomes an output of the datapath, as shown in 
Figtue 5.23. 

(b) By convention of this chapter, every data output is registered, and thus a 16-bit register 
Dreg was declared as local storage. Dreg is now instantiated and cmmected to output D. A 
16-bit register is also instantiated for the 16-bit local s torage Dctr. Datapath control inputs 
are added for each register, with each input having a unique name: Dreg_clr and Dreg_ld 
for Dreg's control inputs, and Dctr _cir and Dctr _Id for Dctr's control inputs. 

(c) Because state SJ has the action "Dctr := Dctr + 1," a 16-bit adder is instantiated, whose 
inputs are Dct~s data output and a constant 1, and whose output is cormected to Dctr's 
data input. Because state S4 writes D with Dctr divided by 2, a 16-bit right-shift-by-I 



262 5 Register-Transfer level (RTL) Design 

Figure 5.23 Datapath for the 
laser-based distance 
measurer. 

Dreg_ cir 
Dreg_ld 

Dctr_clr 

Dctr_ld 

D 

-

1r 6 ~ 
A B 

Add1: add(16) 
s 
,-'16 

cir l 

Id Dctr: reg(16) 

> Q 

Datapath 

t 
i-15 I 

Shr1: shiftR1 (16) 
Q 

1 16 

cir I - Id Dreg: reg(16) 

[> Q 

f 16 

component (which achieves division by 2 as discussed 111 Chapter 4) 1s instantiated 
between Dctr and Dreg to implement the divide by 2. 

• 
Step 28- Connecting the Datapath to a Controller 

Step 28 of the RT L design process is straightforward. This step simply involves creating 
a controller component having the system's control inputs and outputs, and then con
necting the controller component with the datapath control inputs and outputs. 

Example 5.5 laser-based distance measurer- Connecting the datapath to a controller 

Continuing the RTL design process for the previous example proceeds as follows. 
Step 28-Connect the data1>ath to a controller. We connect the datapath to a controller as 

shown in Figure 5.24. We connect the control inputs and outputs B, L, and S to the controller, and 
the data output D to the datapath. We also connect the controller to the datapath control inputs 
Dreg_clr, Dreg_ld, Dcrr_clr, and Dcrr_ld. Normally we don't draw the clock generator component, 
but we've explicit ly shown the clock generator in the figure to make clear that the generator must be 
exactly 300 MHz for this pai1icular circuit. 

Figure 5.24 Controller/ 
datapath (processor) 
design for the laser-based 
distance measurer. 

from butto n 

to display 

B 

D,. 
/ 
16 

Controller 

...-> 

I 300 MHz Clock I 

L to laser -

Dreg_ cir s from sensor 

Drei:Ud 

Dctr_clr Datapath 

Dctr_ld 

> 

• 



5.3 RTL Design Process 263 

Step 2C-Deriving the Controller's FSM 

If the datapath was created correctly, then deriving an FSM for the controller is straight
forward. The FSM will have the same states and transitions as the HLSM. We merely 
define the controllers inputs and outputs to be the FSM's inputs and outputs (all will now 
be single bits), and replace any data computations in the HLSM's actions and conditions 
by the appropriate datapath control signal values. Remember, the datapath was created 
specifically to carry out those computations, and therefore we should only need to appro
priately configure the datapath control signals to implement each particular computation 
at the right time. 

Example 5.6 Laser-based distance measurer- Deriving the controller's FSM 

Continuing the RTL design process for the previous example proceeds as follows. 
Step 4-Derive the controller 's FSM. This step defines the behavior of the controller. The 

controller's behavior is defined by converting the HLSM from Figure 5.12 into an FSM, replacing 

the data operations, like "Dctr :"' O," by controller input and output signal assignments and condi
tions, like "Derr _ctr = I ," as shown in Figure 5.25. Notice that the FSM does not directly indicate 
the computations that are happening in the datapath. For example, S4 loads Dreg with Dctr/2, but 
the FSM itself only shows Dreg's load signal being activated. Thus, the overall system behavior can 
be detennined by looking at botl1 the controller's FSM and the datapath. 

Controller 

L - 0 
Dreg_clr = 1 
Dreg_ld = 0 
Dctr_clr = 0 
Dctr_ld = 0 
(laser off) 
(clear Dreg) 

Inputs: B, S Outputs: L, Dreg_clr, Dreg_ld, Dctr_clr, Dctr_ld 

L = O 
Dreg_clr = 0 
Dreg_ld = 0 
Dctr_clr = 1 
Dctr_ld = 0 
(clear count) 

L :;:;; 1 
Dreg_clr = 0 
Dreg_ld = 0 
Dctr_clr = 0 
Dctr_ld = 0 
(laser on) 

L - 0 
Dreg_clr = 0 
Dreg_ld = 0 
Dctr_clr = 0 
Dctr_ld = 1 
(laser off) 
(count up) 

L = 0 
Dreg_clr = 0 
Dreg_ ld = 1 
Dctr_clr = 0 
Dctr_ ld = 0 
(load Dreg with Dctr/2) 
(stop counting) 

Figure 5.25 FSM description of the controller for the laser-based distance measurer. The 
desired action in each state is shown in italics in the bottom row; the corresponding bit 
sign:il assigtunent that achieves that action is shown in oold. 



264 5 Register-Transfer Level (RTL) Design 

Controller Inputs: B, S Outputs: L, Dreg_cir, Dreg_ld, Dctr_clr, Dctr_ld 

L=O 
Dreg_clr = 1 
(laser off) 
(clear Oreg) 

Dctr_clr = 1 
(clear count) 

L= 1 
(laser on) 

L=O 
Dctr_ld = 1 
(laser off) 
(count up) 

Dreg_ld = 1 
Dctr_ld = 0 
(load Dreg with Dclr/2) 
(stop counting) 

Figure 5.26 FSM description of the controller for the laser-based distance measurer, using the 
convention that FSM outputs not expLicitly assigned a value in a state arc implicitly assigned 0. 

Recall from Chapter 3 that we typically follow the convention that FSM output signals not 
explicitly assigned in a state arc implicitly assigned 0. Following that convention, the FSM would 
look as in Figure 5.26. We may still choose to explictly show ilie assignment of 0 (e.g., L= 0 in 
state SJ) when dlat assignment is a key action of a state. The key actions of each state were bolded 

in Figme 5.25. 
We would complete the design by implementing this FSM, using a 3-bit state register and com

binational logic to describe the next state and output logic, as was described in Chapter 3. 

.... HOW DOES IT WORK?- AUTOMOTJVE ADAPTIVE CRUISE CONTROL 

The early :woos saw the advent of automobile cruise 
control systems that not only maintained a particular 
speed, but also maintained a pruticular distance from 
the car in front-thus slowing the automobile down 
when necessary. Such "adaptive" cruise control dms 
adapts to changing highway traffic. Adaptive cruise 
controllers must measure the distance to the car in 

5.4 MORE RTL DESIGN 

Additional Datapath Components for the Library 

front . One way to measure dlat distance uses a Jaser
based distance measurer, witl1 the laser ru1d sensor 
placed in the front grill of tl1e car. connected to a 
circuit and/or microprocessor that computes the 
distance. The distance is then input to the cruise 
control system, which determines when to increase or 
decrease tl1e automobile's speed. 

• 

The datapath componem library of Figure 5.21 included a few components. Chapter 4 
defined other components that are also conunonly fmmd in datapath component libraries. 
Figure 5.27 includes more such components that may exist in a library. One component is 
a subtractor; this particular subtractor used signed input and output numbers (a subtractor 
dealing with unsigned numbers is also possible). Another component is a multiplier; this 
multiplier deals with unsigned numbers (a multiplier for signed numbers is also possible). 
An absolute value component (designed in a Chapter 4 exercise) uses a signed number as 
input and outputs the number's magnitude as an unsigned number. An up-cowlter compo
nent is shown with synchronous clear and increment inputs; clear bas priority. A down-



Figure 5.27 
More datapath 
components for 
the library of 
Figure 5.21. 

S = A·B 
(signed) 

5.4 More RTL Design 265 

-. cir 
_. inc upcnt 

a 

P = A *B 0 = /Al c/kl\ and cir= 1: 0 =0 

W_d 

+-w a -. w-e 
4-- R~a AF 
_ A_e 

R d 
(unsigned) (unsigned) c/k/\ and ine= 1: 0=0+ 1 

else Q stays same 

c/k/\ and W_e= 1: 
RF{W_a)= W_d 

R_e=1: 
R_d = RF[R_a} 

counter component could be similarly included. Each component can be instantiated with 
an arbitrary width of N. The last component is a register file with one write port and one 
read port. The component can be instantiated with a width of N and with a number of 
words M; the width of the address inputs W_a and R_a will be log2(M), while W_d and 
R_d will have widths of N. 

RTL Design Involving Register files or Memories 

RTL designs commonly involve register file or memory components. Register files were 
introduced in Chapter 4. Memory will be discussed in Section 5.7; for now, consider a 
memory to be a register file with just one port. Register fi le and memory components are 
especially useful for storing arrays. 

All array in an HLSM is an ordered list of items, such as a list named A of four 8-bit 
numbers. Such a list might be defined in an HLSM as "Local storage: A[4](8-bjt)." List 
items can be accessed using the notation "A[i]" where i is known as the index. The 
indices stait with 0. For example, A[O] reads item 0, and A[3] reads item 3 (which is ach1-
ally the fourth and last item), while "A[l] := 8" writes 8 into item l. Indices must be 
within the allowed range; e.g., A[- 1] or A[4] are not allowed for array A above. If an 
HLSM executes the actions "A[O] := 9; A[l ] := 8; A[2] := 7; A[3] := 22", then the array 
will cons ist of the nwnbers <9, 8, 7, 22>, and "X := A[l ]" would set X to 8. An H LSM's 
inputs, outputs, or local storage items can he declared as arrays, which can lead to more 
readable HLSM descriptions for behaviors that deal with lists of items. 

During the RTL design process, an array can be mapped to an instantiated register 
file or memory component. T he following provides a basic example. 

Example 5.7 Array example using a register file 

Create an HLSM that declares an array A with four I I-bit words. lnitialize A[O] to 9, and A[I] to 
12. Then, if A[O] is 8, output A[I] on an I I-bit output P; otherwise, repeat the initialization. Note 
that this HLSM is not particularly useful and is used for example purposes only. 

Figure 5.28(a) shows an HLSM for the desired behavior. The array A is declared as local 
storage, and the array's items such as A[O] and A[!] can then be read and written like other local 
storage items. Note that the first state initializes the output Preg- good practice involves always ini· 
tializing outputs. 

Figure 5.28(b) shows a datapath for the HLSM. The datapath has a register file of the same 
dimensions as the array. It has 11 -bit constants 12 (which is actually 00 00 0001100), 9, and 8. 
Because the register file write input W_d at one time should get 9 and at anot11er time shouJd get 12, 



266 5 Register-Transfer Level (RTL) Design 

ArrayEx Inputs. (none) 
Outputs: P (11 bits) 

(a) 

'\.. Local storage: A[ 4J(1 1 bits) 
1'. Preg (11 bits) 

Preg := O 
A(O] := 9 

(A(O] == 8)' 

A[1] := 12 

Preg :: A[1) 

ArrayEx Inputs: A_eq_8 

(c) 

Outputs: A_s, A_WaO, ... 

X_ Preg_clr = 1 

A_eq_S 

A_s = O 
A_Wa1=0, A_Wa1 =0 
A_We = 1 

(A_eq_8)' 

A_s = 1 
A_Wa1 =0, A_Wa0= 1 
A_We= 1 

A_Ra1=0, A_Ra0=0 
A_Re = 1 

B Preg_ld = 1 

Controller 

I , 
I , 

I , , , , 

- 12 g 

11 t t 11 
r1 ro 

I s Amux 
- so Q 

t 8 
J WaO 

W_aW_d 11 t ~ Wa1 
t We = W_e A B 
J R,,o : A 

Acmp 
J Ra1 R_a RF[4](11) 

Re It ea at 
J Re 

~ • - p.-
Rd 

J.1-eq_B 
I 

I 

IF eg_clr_ 
cir I 

p. IF eg_ld 
Id Preg 
> Q 

~ DP 

(b) 
p 

, 11 

Figure 5.28 Example using an array and 
then a register file: (a) HLSM wid1 array A, 
(b) datapath with a register file to 

implement the array, (c) FSM for the 
datapath ·s controller. 

an I I-bit 2x I mux is instantiated in front of that input. A comparator is instantiated to compare the 
register file output to a constant 8. Preg is also instantiated for dle output P. Control ljnes are 

included for all the components and given unique names, like A_s for the select control input of the 
mux in front of d1e register file. Note that d1e 1 t and gt control outputs of the comparator arc 

unused. A controller is shown connected with the datapath. 
Figure 5.28(c) shows the FSM for the controller. The controller has a single input, A_eq_8. It 

has numerous outputs, A_s, A_WaO, .. ., Preg_ld (for space reasons, the figure lists only the first few; 
d1e outputs can be seen in Figure 5.28(b)). State lnitl clears Preg to 0 simply by setting Preg_clr 
to 1. The state then needs to get dle constant 9 at ilie input of d1e register file; dle state does so by 

settjng AMu.x's A_ s input to 0 so that the constant 9 will pass through the mux and to the register 

file's W _d input. The state also sets the register file write address to "oo·· by setting A_ Wal to O 
and A_ WaO to 0 , and enables a register file write by setting A _ We to 1. Thus, at the end of state 
lnitl, register 0 (which corresponds to A[O]) inside the register file will be loaded widl ilie constant 
9, and Preg will be cleared to 0. 



5.4 More RTL Design 267 

State lnit2 s imilarly sets up the register file for a write, but this time sets A_ s to 1 so that the 
constant 12 passes through, and sets the write address to "01" so that register 1 (A[!]) will be 
written. Furthermore, this state must set up the register file to read A[O] because the result is needed 
in the state's transition conditions. Thus, the s tate sets the read address lines to "00,. and enables a 
read by setting A_ Re to 1. Recall that reading a register file is not a synchronous operation. but 
rather the read data appears at the output shortly after the read enable is set to 1. That read data will 

propagate through d1e comparator, causing the co11U'ol line A_ eq_8 to become 1 or 0, and that 
value will be ready to be used by state lnit2's transitions when the next clock edge arrives. 

State Out/ sets up the register file to read address 0, and sets Preg_ ld to 1. Thus, a t the end 
of the state, Preg will be loaded with the value in register 0 (A[O]) of the register file. (Notice that 
the HLSM as defined would never actually reach state Ourl during execution: the HLSM is for 
example purposes only.) 

We could have created the HLSM with the first state having both the actions A[O] := 9 and 
A[ l] := 12. However, during inlplementation as a controller and datapaili, we would have noticed that 
the only register file available has only one write port, and thus we would have had to introduce a 
second i11itiali:zation state so drnt each state has no more d1an one write to tl1e register file. 

The previous example demonstrated basic use of a register file. The fol1owing 
example provides a more interesting use that illustrates the benefit of being able to index 
an array. The example also uses register files that exist external to the processor being 
designed. 

Example 5.8 Video compression- sum of absolute differences 

After a 2004 
11ai11ral disaster in 
fndonesia_, a TV 
news reporter 
broadcast from 
the scene by 
"camera phone." 
The video was 
smooth as long as 
the scene warn 't 
cha11sins 
significamly. 
When the scene 
cha11sed (like 
pa1111ing across 
the landscape), 
the video became 
very jerk)~the 
camera phone had 
to 1rammit 
complete pictures 
rather than jusr 
d(ff erences, 
resulting in fewer 
fimnes rrammiued 
over rhe limired 
bandwidth of the 
camera phone. 

Digitized video is becoming increasingly commonplace, like in the case of DVDs (see Section 6.7 
for further information on DVDs). A straightforward digitized video consists of a sequence of digi
tized pictures, where each picture js known as a frame. However, such digitized video results in 
huge data files. Each pixel of a frame is stored as several bytes, and a frame may contain about a 
million pixels. Assume then that each frame requires about 1 Mbyte, and video is played at approx
imately 30 frames per second (a normal rate for a TV), so that's I Mbyte/frame * 30 frames/sec= 
30 Mbytes/sec. One minute of video would requ ire 60 sec * 30 Mbytes/sec "' l.8 Gbytes, and 60 
minutes would require 108 Gbytes. A 2-hour movie would require over 200 Gbytes. That's a lot of 
data, more than can be downloaded quickly over the Internet, or stored on a DVD, which can only 
hold between 5 Gbytes and 15 Gbytes. In order to make practical use of digitized video wiili web 
pages, digital camcorders, cellular telephones, or even DVDs, we need to compress those files into 
much smaller files . A key technique in compressing video is to recognize that successive frames 
often have much similarity, so instead of sending a sequence of digitized pictures, we can send one 
digitized picture frame (a "base" frame), followed by data describing just the difference between 
the base frame and the next frame. \Ve cru1 send just the difference data for numerous frrunes, 
before sending another base frame. Such a method results in some loss of q11ality, but as long as we 
send base frames frequently enough, the quality may be acceptable. 

Of course, if there is much change from one frame to tlle next (like for a change of scene, or 
lots of activity) , we can't use the difference method. Video compression devices therefore need to 
quickly estimate the similarity between two successive digitized frames to determine whether 
frames can be sent using the difference method. A common way to determine tlle similarity of two 
frames is to compute what is known as the sum of absolute differences (SAD, pronounced "ess· 
aye-dee"). For each pixel in frame I, SAD involves computing difference between that pixel and the 
corresponding pixel in frame 2. Each pixel is represented by a number, so difference means the dif
ference in numbers. Suppose a pixel is represented with a byte (real pixels are usually represented 



268 5 Register-Transfer Level (RTL) Design 

Frame 1 

Digitized 
frame 1 

~ 
1 Mbyte 

{a) 

Frame 2 

Digitized 
frame 2 

~ 
1 Mbyte 

Frame 1 

Digitized 
frame 1 

~ 
1 Mbyte 

Frame 2 

._. 

(b) 

Difference of 
2 from 1 

CJ 
0.01 Mbyte 

Figure 5.29 A key principle of video compression recognizes that successive frames have 
much similarity: (a) sending every frame as a distinct digitized picture. (b) instead, 
sencLing a base frame and then difference data, from which tbe original frames can later be 
reconstrncted. If we could do this for IO frames, (a) would require I Mbyte * I 0 = l 0 
Mbytes, while (b) (compressed) wot~d require only 1 Mbyte + 9 * 0.01 Mbyte = 1.09 
Mbytes, an almost lOx size reduction. 

by at least three bytes), and the pixels at tl1e upper left of frames I and 2 in Figure 5.29(a) are being 
compared. Say frame I 's upper-left pixel has a value of 255. Frame 2's pixel is clearly the same, so 
would have a value of 255 also. Thus, the difference of these two pixels is 255 - 255 = 0. SAD 
would compare the next pixels of both frames in that row, finding the difference to be 0 agai11. And 
so on for all the pixels in that row for both frames, as well as the next several rows. However, when 
computing the difference of the leftmost pixel of the middle row, where that black circle is located, 
we see that frame I's pixel will be black, say with a value of 0. On the other hand, frame 2's corre
sponding pixel will be white, say with a value of255. So the difference is 255 - 0 = 255. Likewise, 
somewhere in tl1e middle of tl1at row, we'll fmd another difference, this time with frame l 's pixel 
white (255) and frame 2 's pixel black (0)-the difference is again 255 - 0 = 255. Note that only the 
difference. matters to SAD, not which js bigger or smaller, so we are actually looking at the absolute 
value of the difference between frame 1 and frame 2 pixels. Summing the absolute value of the dif
ferences for every pair of pixels resul ts in a number that represents the similarity of the two 
frames-0 means identical, and bigger numbers means less sirnjlar. If the resulting sum is below 
some tllJeshold (e.g., below 1,000), the video compression method might apply the metllod of 
sending the difference data. as in Figure 5.29(b)-we don' t explain how to compute the. difference 
data here, as that is beyond the scope of this example. If the sum is above the threshold, then the 
difference between tl1e blocks is too great, so the compression method might jnstead send d1e full 
digitized frame for frame 2. Thus. video with similarity among frames will achieve a higher com
pression than video with many differences. 

Actually, most video compression methods compute similarity not between two entire frames, 
but rather between corresponding l 6x 16 pixel blocks-yet the idea is the same. 

Computing the sum of absolute differences is slow on a microprocessor, so that task may be 
done using a custom digital circuit. while other tasks may remain on a microprocessor. For 
example. you might find an SAD circuit inside a digital camcorder, or inside a cellular telephone 
that supports video. Let's design such a circuit. A block diagram is shown in Figure 5.30(a). The 
circuit's inputs will be a 256-byte register file A , holding the contents of a 16x16 block of pixels of 
frame 1, and anotl1er 256-byte register file B, holding tl1e corresponding block of frame 2. Anotl1er 



I A 1 • <. RF[256)(8) ; 
SAD 

I B I-· < • 1 RF[256)(8) ; sad 

go 

(a) 

5.4 More RTL Design 269 

Inputs-. A, B (256)(8 bits); go (bit) 
Outputs: sad (32 bits) 
Local storage: sum, sadreg (32 bits); i (9 bits) 

~J!go 
~ 
oo~um:=O f t:=O 

S2 

k256 
sum:=sum+abs(A[i)·B[i)) 

'--r-' i := i + 1 

---~-' 

sadreg := sum 

(b) 

Figure 5.30 Sum-of-absolute-differences (SAD) component: (a) block diagram, and (b) 
HLSM . 

circuit input go tells the c ircuit when to begin computing. An output sad will present the result after 

some number of clock cycles. 
Step 1 of the RTL des ign process is to capture behavior with an HLSM. We can describe tJie 

behavior of the SAD component using the HLSM shown in Figure 5.30(b). We declare the inputs, 

outputs, and local registers sum and i. TI1e sum register will hold the running sum of differences; we 
make this register 32 bits wide. TI1e i register will be used to index into the current pixel in tJie 
block memories; i will range from 0 to 256, and tJierefore we' ll make it 9 bits wide. We also must 
declare the 32-bit storage item sadreg that registers the sad output. The HLSM initially waits for die 
input go to become 1. The HLSM then initializes registers sum and i to 0. The HLSM next enters 
a loop: if i is less d1an 256, die HLSM computes the absolute value of the difference of die two 
blocks' pixels indexed by i (the notation A{i} refers to register i of register file A), updates die 
running swn, increments i, and repeats. Otherwise if i is not Jess than 256, the HLSM loads sadreg 
with tJie sum, which now represents the final sum, and rcttu-ns to tJie firs t state to wait for tJ1e go 

signal to become 1 again. (TI1e reader may notice that HLSM did not follow good design practice by 
not initializing sadreg; a better HLSM would include a state before SO that initializes sadreg to 0). 

We re-emphasize that the order of storage update actions in a state does not impact the results, 
because all those actions occur simultaneously at the end of the state. For the state inside the loop, 

arranging the actions as "sum :=sum +abs( A/ i}-Bf i}); i := i + /"or as "i := i + I: sum :=sum + 
abs(Afi}-B[ij)" docs not impact the results. Either arrangement uses the old value of i. 

Step 2A of the RTL design process is to create a datapad1. We sec from the HLSM dtat we 
need a subtractor, an absolute-value component, an adder, and a comparison of i to 256. We build 
the datapath shown in Figw·e 5.31. The adder will be 32 bits wide, so the 8-bit input coming from 

the abs component will need to have Os appended as its high 24 bits. We have also introduced inter
faces to the external register files. Data inputs A_data and B_data come from each register file. 
Because both register files always have the same address read at the same time, we use data output 
AB_addr as the address for both registe r files. We also use a control output AB_rd as the read 
enable for both register files . 

Step 2B is to connect the datapath to a controller block, as shown in Figure 5.3 1. 



270 5 Register-Transfer Level (RTL) Design 

Figure 5.31 SAD 
datapath and 
controller FSM. 

go AB_rd 

+<256 i_lt_256 

SUffl4Uffl'tttbs(Afi) Bfi)) 
-~~ sum_ld= 1; AB_rd= 1 

~i_inc=1 
~-~ 

sael_Fe§ - suA'I 
- --.-- sadreg_ld=1 

Controller 

AB_addr A_ data B_data 

i_lt_256 It 
cm 8 8 

i_inc 

i_clr 

sum_ Id 

sum_ cir 

8 

sadreg_ld 

sad reg_ cir 

Datapath 

sad 

Step 2C is to convert d1e HLSM to an FSM. The FSM appears on the left side of Figure 5.31. 
For convenience, the FSM shows the original high-level actions ( crossed out), and the replacement 

by the FSM actions. 

To complete the design, we would convert the FSM to a controller implementation (a state reg
ister and combinational logic) as described in Ornpter 3. 

Comparing Microprocessor and Custom Circuit Implementations 
Example 5.8 stated that output sad will present the result some number of clock cycles 
after go becomes 1. Let's determine that number of cycles. After go becomes 1, the 
HLSM will spend one cycle initializing registeJs in SJ, then will spend two cycles in each 
of the 256 loop iterations (states S2 and SJ), and finally one more cycle to update the 
output register in state S4, for a total of I + 2*256 + 1 = 5 14 cycles. 

If the SAD algorithm ran on a microprocessor, the algorithm would likely need more 
than two clock cycles per loop iteration. It would need two cycles to load internal regis
ters, then a cycle for s ubtract, perhaps two cycles for absolute value, and a cycle for sum, 
for a total of six cycles per iteration. The custom circuit built in the above example, at two 
cycles per iteration, is thus about three times faster for computing SAD , assuming equal 
clock frequencies. Section 6.5 will show how to build a SAD circuit that is much faster. 

.... DIGITAL VIDEO- IMAGINING THE FUTURE. 

People seem to have an insatiable appetite for good
quality video, and thus much anention is placed on 
developing fast and/or power-efficient encoders and 
decoders for digital video devices, like DVD players and 
recorders, digital video cameras, cell phones supporting 
digital video, video conferencing units, TVs, TV set-top 
boxes, etc. It's interesting to think toward the 
future-assuming video encoding/decoding becomes 
even more powerful and digital communication speeds 

increase, we might imagine video displays (with audio) 
on our walls at home or work that continually display 
what's happening at another home (perhaps our mom's 
house) or at a partner office on the other side of the 
cow1try-like a virtual window to another place. Or we 
might imagine portable devices that enable us to 
continually see what someone else wearing a t iny 
camera-perhaps our child or spouse-sees. Those 
items could significantly change our living patterns. 



5.4 More RTL Design 271 

RTL Design Pitfall Involving Storage Updates 

A common mistake in creating an HLSM is assuming that a clocked storage item is 
updated in the state in which the item is written. Such an assumption is incorrect, and can 

lead to unexpected behavior when the HLSM reads the storage item in the same state, and 
likewise when the HLSM reads the storage item in a transition leaving that state. For 

example, Figure 5.32(a) shows a simple HLSM. Examine the HLSM and then answer the 

followi ng two questions: 

• What will be the value of Q after state A? 

• What will be the final state: C or D ? 

The answers may surprise you. The value of Q will not be 99; Q's value will actually 

be unknown. The reason is illustrated by the timing diagram in Figure 5.32(b). State A 

prepares to load a 99 into Ron the next clock edge, and prepares to load the value of storage 
item R into storage item Q on the next clock edge. When the next clock edge occurs, both 
those loads occur simultaneously. Q therefore gets whatever value was in R just before the 
next clock edge, which is unknown to us. 

(a) 

(b) 

Local storage: R, Q (8 bits) 

Figure 5.32 High-level state machine that behaves 
differently than some people may expect, due to 
reads of a clocked storage item in the same state as 
writes to that item: (a) HLSM, (b) timing diagram. 

Furthermore, the final state will not be D, but will rather be c. The reason is illus
trated by the timing diagram in Figure 5.32(b). State B prepares to load 100 into Ron the 

next clock cycle, and prepares to load the next srate based on the transition condition. R 
is 99, and therefore the transition condition R<IOO is tme, meaning the HLSM is prepared 
to make state C the next state, not state D. On the next clock edge, R becomes 100, and 

the next state becomes C. 

The key is to always remember that a state's actions prepare the values that will 
occur on the next rising clock edge- but those values don 't achwlly get loaded into 
storage items until that next clock edge. Thus, any expressions in a state 's actions or 

outgoing transition conditions will be using the previous values of storage items, not 

the values being assigned in that state itself. By the same reasoning, all the actions 

of a state occur simultaneously on the next clock edge. and thus could be listed in any 
order. 



272 5 Register-Transfer Level (RTL) Design 

Local storage: R, Q (8 bits) 

--
(a) 

elk 

A 

(b} 
Q 

Figure 5.33 HLSM that ensures 
storage item reads occur at least one 
state after writes: (a) HLSM, (b) 
timing diagram. 

Assuming that the designer actually wants Q to equal 99 and the fi nal state to be D, 
then a solution is to iusure that local storage writes occur at least one state before reads 
that rely on those writes. Figure 5 .33(a) shows a new HLSM in which the assignment of 
Q:=R has been moved to state B, after R=99 has taken effect. Furthermore, the HLSM has 
a new state B2 that simply waits for R to be updated with the new value before that value 
is read in the transition conditions. The timing diagram in Figure 5.33(b) shows the 
behavior that the designer expected. 

An aJtemative solution for the transition issue in this case would be to utilize com
parison values that take into account that the old value is being used. So instead of 
comparing R to 100, the comparisons might instead be to 99. 

RTL Design Involving a Timer 

RTL design commonly requires capturing behavior that uses explicit time intervals. For 
example, a design may have to repeatedly blink an LED off for l second and on for 1 
second. Determining when a time interval like 1 second bas passed can be achieved by 
pre-instantiating a 32-bit I-microsecond timer component T as in Figure 5.34(a). Then, 
an HLSM as shown in Figure 5.34(b) can declare a special item T as a timer, which can 
be loaded like a local storage item but which also has an enable input T _en and a rollover 
output T_Q implicitly associated with the item. The HLSM can make use of the declared 
timer to detect I-second intervals. The HLSM loads 1 second (1 ,000,000 microseconds) 
into the timer in state !nit by writing T := 1000000. The HLSM then enables the timer in 
state Off by setting T _en to 1 , and also sets output L to o to tum the LED off. The HLSM 
waits in that state until the timer's T _Q output becomes 1, which will happen after 1 
second. The HLSM then transitions to state On, which turns on the LED, and stays in that 
state until T _Q becomes 1 again, which will happen after another 1 second. The HLSM 
returns to state Off , staying there for 1 second again, and so on. (Note that this HLSM 



BlinkLed 

L 

T_M 32 

T_ld M 
load 
enable 32·bit 

T_Q 

(a) 

1-microsec 

0 timerT 

Blinkled 

L;='O' 
T:=1000000 

T_en;='O' 

5.4 More RTL Design 273 

Timer; T Outputs: L (bit) 

T_O r))T_O 
~ 

L;='O' L;='1' 
T _en:='1' T _en:='1' 

(b) 

Figure 5.34 Blinking LED example: (a) pre-instantiated timer, (b) HLSM making use of the timer 
to turn the LED off for t second ( t ,()()(),000 microseconds), t11en off for I second, and repeating. 

asswnes that the timer output T_Q stays 1 for only one clock cycle, which indeed is how 
the timer compnent was designed in Chapter 4.) 

The HLSM can be straighforwardly cooverted to a controller and datapath. The data
path would consist of just the timer component with the constant "l 000000" at the timer's 
data input. The controller would connect with the timer's control signals, and the con
troller's FSM would be identical to the HLSM except that the assig11ment T := 1000000 
would be replaced with T_ld = 1. 

The above example required only one time interval to be repeatedly measured 
throughout the HLSM, namely I second; as such, the timer component was ioitialized 
once and then enabled for the rest of the HLSM 's execution. However, a timer can also be 
used to measure different intervals in the same HLSM. For ex<unple, an alternative 
blinking LED example stays off for l second but then stays on for 2 seconds. Such 
behavior can be captured by repeatedly re-initializing the timer as shown in Figure 
5.35(b). The HLSM stays in state OffWait for l second, by loading l second (l ,000,000 
microseconds) into the timer in state Off/nit, and then by enabling the timer in state 
OfjWair and staying in that state until the timer's output T _Q becomes 1. Likewise, state 
On/nit loads 2 seconds into the timer, and state OnWait enables the timer and waits for 
the timer's output to become 1. Converting this HLSM to a processor would thus have the 
timer Tin the datapath. T_M would have a 2xl mux to route either 1000000 or 2000000 
to the timer's data input, thus completing the datapath. The controller would connect with 
the timer and mux control signals. Converting the HLSM to an FSM for the controller 
would consist merely of replacing the T assignments by the appropriate 2xl mux select 
line assignment and by setting T _ ld to 1. (Notice that each initialization state adds an 
extra clock cycle, which is likely not a problem for a blinking LED system but would 
need to be compensated for if a precise 3 second blinking period was required.) An alter
native solution could use two timers, one to compute the I-second interval, and the other 
for the 2-second interval. 



274 5 Register-Transfer Level (RTL) Design 

Blinkled 

L 

T_M 32 

T_ld M 
load 
enable 32-bi t 

T_Q 

(a) 

1-microsec 
Q timerT 

Blinkl ed 

l:='O' 
T :=1000000 

T_en:='O' 

L:='O' 
T_en:='1' 

Timer: T Outputs. L (bit) 

L:='1 ' 
T:=2000000 

T_en:='O' 

(b) 

L:='1' 
T_en:='1' 

Figure 5.35 Blinking LED example: (a) pre-instantiated timer, (b) HLSM making use of the timer to turn the 
LED on for I second (1 ,000,000 microseconds), then off for 2 seconds, and repeating. 

Button Debouncing 
Button debouncing is a typical task in RTL 
design that also illustrates the use of a timer. 
A button is an common input device to a 
digital ci:rcuit. ldeaJly, a button outputs 1 
when pressed, and outputs 0 when not 
pressed. Actually, though, a real button may 
output some spurious Os just after being 
pressed. The reason is because the button is a 
mechanical device, and pressing the button 
down down results in a small amount of 
bounce as the button settles in the down posi
tion. An analogy is dropping a hard ball such 
as a billiard ball or a bowling ball onto the 
floor- the ball will bounce sligh tly before 
coming to rest onto the floor. The bounce of a 
button is illustrated i11 Figure 5.36. Instead of 

button 

B B 
0 

Ideal: 9 ____ _.I 

Actual: 8 ___ _.rul 
bounce 

Figure 5.36 Button bounce. 

L 
L 

B becoming 1 and staying 1 when illitially pressed down, B changes to 1, then briefly 
changes back to o, then to 1, then o again, and finally settles at 1. Typical buttons may 
exhibit bounce for a few milliseconds after being pressed down. Bounce is a problem 
because the bouncing signal appears to be several distinct rapid button presses rather than 
just one press- the actual B signal in Figure 5.36 suggests that the button was pressed 
three times. A simple solution is to create a circuit that converts the actual B signal into 
the ideal B signal, a process known as button debouncing. 



5.4 More RTL Design 275 

Example 5.9 Button debouncer 

A button debouncer converts a s ignal like the actual B signaJ shown in Figure 5.36 into the ideal B 
signal of d1at figiire. One approach to designing a debouncer first notes drnt typical buttons bounce 
for onJy a few milliseconds. Thus, a debouncer could, upon detecting the change from 0 to 1 on an 
input Bin, set an output Bout to 1 and then hold that output 1 for at least, say, 20 milliseconds: the 
bouncing should complete well before those 20 milliseconds. This approach assumes that a button 
press will always last for at least 20 milliseconds, which is a reasonable asswnption for buttons 
pressed by humans (otherwise, this approach extends a shorter press into a longer 20-millisecond 
press). 

The desi!'ed behavior can be 
captmed as the HLSM in Figme 
5.37. Measuring 20 milliseconds in 
the Hl.SM is achieved by pre
instantiating a 32-bit microsecond 
timer component, and then using 
that component in ilie HLSM. 
State /nit loads the timer compo
nent with the value 20 mill iseconds 
(20,000 microseconds). State 

ButtonDebouncer Inputs: Bin (bit} Outputs: Bout (bit} 
Timer.T 

WaitBin waits for the button input 

Bout := '0' 
T:=20000 
T_en:='O' 

Bout:='O' 
T_en:='O' 

Bin to become 1, after which state Figure 5.37 Button debouncer. 
Wait20 sets Bout to 1, enables the 

Bout:= '1 ' 
T_en:='1' 

Bout:='1 ' 
T_en:='O' 

timer, and waits until the timer ourput T_Q becomes 1, thus waiting for 20 milliseconds regardless of 
the value of Bin. After the 20 milliseconds have passed, the HLSM enters state Whi/eBi11, which con· 
tinues to set Bout to 1 as long as Bin is still 1 . When Bin returns to 0 (meaning the button is 
released), the HLSM starts over again. 

• 
A Data-Dominated RTL Design Example 

Some systems have an extensive datapath and a relatively simple controller. Such a 
system is known as data-dominated system . In contrast, a system with a simple datapath 
and relatively complex conn·oller is known as a co11trol-domi11ated system . A data-domi
naced system may have only a few states, and in fact may have only one state. Within 
those few stares, however, may be extensive compucations. Nevertheless, the RTL design 
process can proceed as before. The following example illustrates the design of a daca
dominated system. 

Example 5.10 FIR fi lter 

A digital filter takes a stream of digital inputs 
and generates a stream of digital outputs with 
some feature of the input stream removed or mod
ified. A stream is a sequence of values separated 
by a fixed amount of time. Figure 5.38 shows a 
block diagram of a popular digital filter known as 
an FIR filter. Input X and output Y are N bits wide 
each, such as 12 bits each. As a filtering example, 

x-... / .... ~1 ~,./..,.~Y 

12 digital filter 12 
elk '> 

Figure 5.38 FIR filter block diagram. 



276 5 Register-Transfer Level (RTL) Design 

consider the following st ream of digital temperature values on X c oming from a car engine temper
ature sensor sampled every second: 180, 180, 181 , 240, 180, 181. That 240 is probably not an accu
rate measurement, as a car engine's temperature cannot jump 60 degrees in one second. A digital 
filter would remove such "noise" frorn the input stream, generating perhaps an output s tream on Y 
like: 180, 180, 181 , 181, 180, 181. 

An finite impulse response filter, or FIR filter (commonly pronounced by saying the letters "F'. 
" I" " R"). is a popular general digital filter design diat can be used for a variety of filtering goals. 
Figure 5.38 shows a block diagram of an FIR filter. The basic idea of an FIR filter is simple: the 
present output is obtained by multiplying the present input value by a constant, and adding that 
result to the previous input value times a constant, and adding that result to tl1e next-earlier input 
value times a constant, and so on. In a sense, adding to previous values in this manner results in a 
weighted average. Section 5.13 describes digital filtering and FIR filters in more detail. For the 
purpose of this exan1ple, we merely need to know that an FIR filter can be described by an equation 
with the following form: 

y(t) "'cOx x(t) + cl x x(t - 1) + c2x x(r - 2) 

An FIR filter with three terms as in the above equation is known as a 3-tap FIR filter. Real 
FIR filters typically have many tens of taps- we use only three taps for the ptupose of illustration. 
A filter designer using an FIR filter achieves a particular filtering goal simply by choosing the FIR 
filter 's constallfs; i.e., by selecting values for cO, cl, c2, etc. 

Figure 5.39 shows an HLSM for an 
FIR filter with a 12-bit input and output, 
thus fulfilling Step 1 of the RTL design 
process. Note the simpliciily of the 
HLSM, which has 01tly two states, and 
which actually spends all its time in just 
the second s tate FC (standing for "FIR 
Compute"). In addition to declaring the 

input X and output Y, the HLSM 
declares 12-bit local storage items xtO, 
xt 1, and xt2 for the three most recent 
input values; xtO will be for the current 
value, xtl for the value from time t-1 
(the previous clock cycle), and xt2 for 
the value from time t·2. It also declares 

Inputs: X ( 12 bits) Outputs: Y ( 12 bits) 
Local storage: xtO, xt1, xt2, cO, c1, c2 (12 bits}; 

Yreg (12 bits) 

~ 
Yreg := 0 Yreg := 
xtO := 0 cO*xtO + 
xt1 := 0 c1 *xt1 + 
xt2 := 0 c2*xt2 
cO := 3 xtO := X 
c1 := 2 xt1 := x.tO 

FIR filter c2 := 2 xt2 := xt1 

Figure 5.39 FIR filter HLSM. 

12-bit local storage items for the three filter constants cO, cl, and c2, and for the storage item Yreg 
associated with output Y. State lnir initializes the output by setting the output's storage i tem Yreg to 
0. The state also i11itializes the xt registers to Os. The state sets the c registers to hold the constants 
for this particular FIR filter, which for this filter are 3, 2, and 2. State FC computes the FIR equa
tion for the current values in the xt registers and sets Yreg to the computed value. That state also 
updates the xt registers, setting xtO to the current vaJue on input X, xtl to xtO, and xt2 to xtl. Recall 
that all those updates occur at the end of the state when the next rising clock edge arrives, and that 

all those updates occur s imultaneously. 
Step 2A is to create a datapath. Substep (a) involves making X a datapatb input and Ya data· 

path output. Substep (b) involves instantiating the seven local storage registers. Substep (c) involves 
examining state /nit and then instantiating constants 3, 2, and 2 at the inputs of the c registers. 
Examining state FC reveals the need to instantiate 3 multipliers and two adders , and to connect 
them as shown in the figure. That state also requires that the inputs of each xt register be connected 
as shown. 



figure 5.40 FIR 
filter datapath. 

3 

Datapath for 3-tap FIR filter 

5.4 More RTL Design 277 

2 2 

Step 2B connects the datapad1 to a controller, which ilie figure does not show but which 
follows similarly from previous examples. Figure 5.40 does show the control inputs to the registers 
that will be needed by the controller (the control inputs for xtl and xt2 are shown as " ... " to save 
space in the figure). 

Finally, Step 2C would convert the HLSM of Figure 5.39 into an FSM for the controller. State 
/nit would set the clear line for Yreg and each xr reg to 1, and would set the load line for each c 
register to 1. State FC would simply set the load line for Yreg and for each xt reg to 1 . 

Commonly an FIR filter should sample the input at a specified rate, such as once every 10 micro
seconds. A timer can be used for this purpose. The HLSM would be extended to configure, enable, 
and then monitor the timer as in earlier examples . 

• 
Comparing Microprocessor and Custom Circuit Implementations 
It is interesting to compare the performance of the circuit implementation of a 3-tap FIR 
filter wjth a microprocessor implementation. The datapath's critical path goes from the xr 
and c registers, through one multiplier, and through two adders, before reaching Yreg. For 
the circuit implementation, assume that the adder has a 2 ns delay. Also assume that 
chaining the adders together results in the delays adding, so that two adders chained 
together have a delay of 4 ns (detailed analysis of the internal gates of the adders could 
show the delay to acmally be slightly less). Assume the multiplier has a 20 ns delay. Then 
the critical path, or longest register-to-register delay (to be discussed further in Section 
5.5) would be from cO to Yreg, going through the multiplier and two adders as shown in 
Figure 5.40. That path's length would be 20 + 4 = 24 ns. Note that the path from cl to 
Yreg would be equally long, but not longer. A critical path of 24 ns means the datapath 
could be clocked at a frequency of l I 24 ns = 42 MHz. In other words, a new sample 
could appear at X every 24 ns, and new outputs would appear at Y every 24 ns. 

Now consider the circuit performance of a larger-sized filter: a I 00-tap FIR filter 
rather than a 3-tap filter. Asswne that l 00 multipliers are available- then the 100 multi
plications could occur simultaneously in 100 multipliers just as the 3 multiplications 
occurred simultaneously. Thus, the main perfotmance difference is that the circuit must 
add 100 values rather than just 3. Recall from Section 4.13 that an adder tree is a fast way 



278 5 Register-Transfer Level (RTL) Design 

1111- HOW DOES IT WORK?- VOICE QUALITY ON CELL PHONES. 

Cellular telephones have become commonplace over 
the past decade. Cell phones operate in environments 
far noisier than regular " landline" telephones, 
including noise from automobiles, wind, crowds of 
talking people, etc. Thus, filtering out such noise is 
especially important in cell phones. Your cell phone 
contains at least one, and probably more like several, 
microprocessors and custom digital circuits. After 
converting d1e analog audio signal from the 
microphone into a digital audio stream of bits, part of 

the job of those digital systems is to filter out the 
background noise from the audio signal. Pay attention 
next time you talk to someone using a cell phone in a 
noisy environment, and notice how much less noise 
you hear than is probably actually heard by the 
microphone. As circuits continue to improve in speed, 
size, and power, filtering will likely improve further. 
Some state-of-the-art phones may even use two 
microphones, coupled with beamfonning techniques 
(see Section 4.13), to focus in on a user's voice. 

to add many values. One hundred values will require a tree with 7 levels- 50 adclitions, 
then 25. then 13 (roughly), then 7, then 4, then 2, then 1. So the total delay would be 20 
ns (for the multiplier) plus seven adder-delays (7*2ns = 14 ns), for a total delay of 34 ns. 

For a microprocessor implementation, assume l 0 ns per instruction. Assume that 
each multiplication or addition would require two instructions. A 100-tap filter would 
need approximately 100 multiplications and 100 additions, so the total time would be 
(100 multiplications * 2 instr/mult + 100 additions* 2 instr/add) * 10 ns per instruction = 
4000 ns. In other words, the circuit implementation would be over 100 times faster (4000 
ns I 34 ns) than the microprocessor implementation. A circuit could therefore process 100 
times more data than a microprocessor implementation, resulting in better filtering. 

5.5 DETERMINING CLOCK FREQUENCY 

RTL design produces a processor circuit consisting of a datapath and a controller. Inside 
the datapath and controller are registers that require a clock signal. A clock signal bas a 
particular clock f requency, which is the nwnber of clock cycles per second, also known 
as Hertz (Hz). The frequency impacts how fast the circuit executes its specified task. 
Obviously, a lower frequency will result in slower execution, while a higher frequency 
will result in a faster execution. Conversely stated, a larger clock period (the duration of a 
clock cycle, which is the inverse of frequency) is slower, while a smaller period is faster. 

b 

Designers of digital circuits often want their cir
cuits to execute as fast as possible. However, a designer 
cannot choose an arbitrarily high clock frequency 
(meaning an arbitrarily small period). Consider, for 
example, the simple circuit in Figure 5.41 , in which 
registers a and b feed through an adder into register c. 
The adder has a delay of 2 ns, meaning that when the 
adder's inputs change, the adder's outputs wiJ! not be 
stable until after 2 ns- before 2 ns, the adder's outputs 
will have spurious values (see Section 4.3). If the 
designer chooses a clock period of 10 ns, the circuit 
should work fine. Shortening the period to 5 ns will 

Figure 5.41 Longest path is 2 ns. 
speed the execution. But shortening the period to l ns 
will result in incon-ect circuit behavior. One clock 



5.5 0 etermining Clock Frequency 279 

cycle might load new values into registers a and b. The next clock cycle will load register 
c 1 ns later (as well as loading a and b again), but the output of the adder won't be stable 
until 2 ns have passed. The value loaded into register c will thus be some spurious value 
that has no useful meaning, and will not be the sum of a and b. 

Tims, a designer must be careful not to set the clock frequency too high. To deter
mine the highest possible frequency, a designer must analyze the entire circuit and find 
the longest path delay from any register to any other register, or from any circuit input to 
any register. The longest register-to-register or input-to-register delay in a circuit is 
known as the circuit's critical path. A designer can then choose a clock whose period is 
longer than the circuit's critical path. 

Figure 5.42 illustrates a circuit with four possible paths from any register to any other 
register: 

• One path starts at register a, goes 
through the adder, and ends at register 
c. That path's delay is 2 ns. 

• Another path struts at register a, goes 
through the adder, then through the 
multiplier, and ends at register d. That 
path's delay is 2 ns + 5 ns = 7 ns. 

• Another path struts at register b, goes 
through the adder, through the multi

plier, and ends at register d. That 
path's delay is also 2 ns + 5 us= 7 ns. 

Max 
(2,7,7,5) 
= 7 ns 

5 ns 
delay 

• The last path starts at register b, goes 
through the multiplier, and ends at 
register d. That path's delay is 5 ns. 

figure 5.42 Determining the critical path. 

The longest path is thus 7 ns (there are two paths with that delay). Thus, the clock 
period must be at least 7 ns. 

The above analysis assumes that the only delay 
between registers is caused by logic delays. In reality, 
wires also have a delay. In the 1980s and 1990s, the 
delay of logic dominated over the delay of 
wires- wire delays were often negligible. But in 
modern chip technologies, the delay of wires may 
equal or even exceed the delay of logic, and thus wire 
delays cannot be ignored. Wire delays add to a path's 
length just as logic delays do. Figure 5.43 illustrates a 
path length calculation with wire delays included. 

Furthermore, the above analysis does not consider 

2 ns 

setup times for the registers. Recall from Section 3.5 Figure 5.43 Longest path is 3 ns, 
that tlip-flop inputs (and hence register inputs) must considering wire delays. 
be stable for a specified amount of time before a clock 
edge. The setup time also adds to the path length. 



280 5 Register-Transfer Level (RTL) Design 

Combinational logic 8 8 
d /----------- -, 

I \ 

1-----+-to~t-~ld ____ ~ Id ' 
c 

tot ------- io~ar- --- -
i-----;-~--~1--+---.i cir 

tot_lt_s (c) 

I I tot_lt_s 

Datapath 
s1 :: so 

'• 
State register 

(b) (a) 

• 

Figure 5.44 Critical paths 
throughout a circuit: (a) 
within a datapaili, (b) 
within a controller, (c) 
between a controller and 
datapath. 

,,~-------. 

'~ 

Even considering wire delays and setup times, designers typically choose a clock 
period that is still longer than the critical path by an amount depending on how conserva
tive the designer wants to be with respect to ensuring that the circuit works under a 
variety of operating conditions. Certain conditions can change the delay of circuit compo
nents, such as very high temperature, very low temperature, age, electrical interference, 
etc. Genernlly, the longer the period beyond the critical path, the more conservative the 
design. For example, a designer might determine that the critical path is 7 ns, but might 

choose a clock period of 10 ns or even 15 ns, the latter being very conservative. 
If desiring low power, a designer might choose an even lower frequency to reduce 

circuit power. Section 6.6 describes why reducing the clock frequency reduces power. 

When analyzing a processor (controller and datapath) to find the critical path, a 
designer must be aware that register-to-register paths exist not just within the datapath as 
in Figure 5.43(a), but also within the controller as in Figure 5.43(b), and between the con
troller and datapath as in Figw·e 5.43(c), and even between the processor and external 
components . 

.... CONSERVATIVE CHIP MAKERS, AND PC OVERCLOCK/NG. 

Chip makers usually publish their chips' maximwn 
clocking frequency somewhat lower than the real 
maximum- perhaps 10%, 20%, or even 3(}% lower. Such 
conservatism reduces the chances that the chip will fail in 
unanticipated situations, such as extremes of hot or cold 
weather, or slight variations in the chip manufacturing 
process. Many personal computer enthusiasts have taken 
advantage of such conservatism by "overclocking" their 
PCs, meaning setting the clock frequency higher than a 

chip's published maximum, by changing d1e PC's BIOS 
(basic input/output system) settings. Numerous websites 
post statistics on the successes and failures of people 
trying to overclock nearly every PC processor- it seems 
the norm is about 10%--40% higher than the published 
maxirnwu. We don' t recotmnend overclocking (for one, 
you may damage the microprocessor due to overheating). 
but it's interesting to see the common presence of 
conservative design. 



5.6 Behavioral-Level Design: C to Gates (Optional} 281 

The number of possible paths in a circuit can be quite large. Consider a circuit with 
N registers that has paths from every register to every other register. Then there are N*N, 
or N2 possible register-to-register paths. For example, if N is 3 and the three registers are 
named A, B, and C, then the possible paths are: A- >A, A- >B, A- >C, B->A, B- >B, 
B- >C, C- >A, C- >B, C- >C, for 3*3 = 9 possible paths. For N=50, there may be up 
to 2500 possible paths. Because of the large number of possible paths, automated tools 
can be of great assistance. Timing analysis tools automatically analyze all paths to deter
mine the longest path, and may also ensure that setup and hold times are satisfied 
throughout the circuit. 

5.6 BEHAVIORAL-LEVEL DESJGN: C TO GATES (O PTIONAL) 
As transistors per chip continue to increase and hence designers build more complex 
digital systems that use those additional transistors, digital system behavior becomes 
harder to understand. A designer building a new digital system may fmd it useful to first 
describe the desired system behavior using a programming language, like C, C++, or 
Java, in order to captme desired behavior correctly. Alternatively, the designer may use 
the high-level programming constructs in a hardware description language, like the 
VHDL or Verilog languages, to first capture the desired behavior correctly. Then, the 
designer converts that programming language description to an RTL design by first con
verting the description to an HLSM RTL description, and then proceeding with RTL 
design. Converting a system's programming language description to an RTL description 
is known as behavioral-level design. We' U introduce behavioral-level design using an 
example. 

Example 5.11 Sum of absolute differences in C for video compression 

Recall Example 5.8, which created a sum-of-absolute-differences component. That example started 
with an HLSM- but that HLSM wasn't very easy to understand. We can more easily describe the 
computation of the sum of absolute differences using C code as shown in Figure 5.45. 

That code is much easier to understand for most people than the HLSM in Figure 5.30. Thus, 
for some designs, C code (or something similar) is the most natural starting point. 

To begin the RTL design process, a designer can convert the C code to an HLSM like that in 
Figure 5 .30, and then proceed to complete the RTL design process and hence design the circuit. 

Figure 5.45 C program description 
of a sum-of-absolute-differences 
computation-the C program may 
be easier to develop and easier to 
understand than an HLSM. 

int SAD (byte A (256], byte B [256)) I I not quite C syntax 
{ 

uint sum; short uint i; 

sum = O; 

i = O; 
while {i < 256) { 

sum =sum + abs (A[ij - B[i)); 
i = i + 1; 

return (sum); 

• 



282 5 Register-Transfer level (RTL) Design 

It is instmctive to define a structured method for converting C code to an HLSM. Defining 
such a method makes it clear that C code can be automatically translated to either software 
on a programmable processor (such translation known as compilation), or ro a custom 
digital circuit (such translation known as synthesis). We point out that most designers that 
s tart with C code and then continue with RTL design do nor necessarily follow a particular 
method in performing such conversion. However, automated tools do follow a method 
having some similarities to the one described below. 

We also point out that the conversion method will sometimes result in "extra" states 
that you might notice could be combined with other states-these extra states would be 
combined by a later optimization step, though we' 11 combine some of them as the method 
proceeds. 

Consider three basic types of 
statements in C code- assignment 
statements, while loops, and condi
tion statements (if-then-else). 
Equivalent HLSM templates exist 
for each such statement. 

An assignment statement in C 
translates into one HLSM state. 
The state's actions execute the 
assignment as in Figure 5.46. 

An if-then statement in C 
translates into the HLSM structure 
of Figure 5.47. A state checks the 
condition of the if statement ~md 

has two transitions, one for the 
statement's condition being true, 
and the other for false. The true one 
points to the states for the then part 
of the statement. The false one 
points past those states to an end 
state. 

An if-then-else statement in C 
similarly translates to a state that 
checks the condition of the if state
ment, but this time pointing to states 
for the else part if the condition is 
false, as shown in Figure 5.48. 

The else part commonly con
tains another if statement because 
C programmers may have mul
tiple else if parts in a region of 
code. That if statement is trans
lated as described earlier. 

+ 
target = expression; + ~target := T expression 

Figure 5.46 HLSM template for assignment 
statement. 

cond' 

if (cond) { 
II then stmts (then stmts) 

+ 
(end) 

Figure 5.47 Template for if-then statement. 

if (cond) { 
II then stmts 

else { 
II else stmts 

} 

+ 

~ + (then stmts) (else stmts) 

(e"d)c?-J 
Figure 5.48 Template for if-then-else statement. 



5.6 Behavioral-Level Design: C to Gates (Optional} 283 

Finally, a while loop statement 
in C translates into states similar to 
an if-then statement, except that 
after executing the white's state
ments, if the while condition is tme, 
the state machine branches back to 
the condition check state rather 
than to the end state. The template 
appears in Figure 5.49. Only when 
the condition is false is the end state 
reached. 

while (cond) { 
II while stmts .. cond' 

(while stmts) 

~ 

(end) Q ---' 

Given these simple templates, 
a wide variety of C programs can 
be converted to HLSMs, and the 
RTL design process can then be 
used to convert those HLSMs to 
digital circuits. 

Figure 5.49 Template for while loop statement. 

Example 5.12 Converting an if-then-else statement to a state machine 

We are given the C-like code shown in Figure 5.SO(a), which computes the maximum of two 
unsigned data inputs X and Y. We can translate that code to an HLSM by first translating the if-tlle11-
else statement to states using the method of Figure 5.48, as shown in Figure 5.50(b). We then trans· 
late the then statements to states, and then the else statements, yielding the final state machine in 
Figure 5.50(c). 

Inputs: uint X, Y 
Outputs: uint Max 

if (X > Y) { 
,------------ ~ 

l__~~-==-~~--J 
} 

else { ,-------------, 
: Max = Y; : .. ____________ J 

(a) 

~ 
~ P >Y ~ 

(then stmts) (els~ stmts) 

(c) 

Figure 5.50 Behavioral-level design starting from C code: (a) C code for computing the max of two 
munbers, (b} translating the if-then-else statement to a high-level state machine, (c) translating the 
then and else statements to states. From the state machine in (c). we could use our RTL design 
method to complete the design. Note: max can be implemented more efficiently; we use max here 
to provide an easy-to-understand example. 

II 



284 5 Register-Transfer Level (RTL) Design 

Example 5.13 SAD C code to high-level state machine conversion 

We wish to convert the C program description of the sum-of-absolute-differences behavior in Fig· 
ure 5.45 to an HLSM. The code is shown in Figure 5.5 J(a), written as an infinite loop rather than a 
procedure call, and using an input go to inclicate when the system should compute the SAD. T he 

"while ( I)" statement, after some optimization, translates just to a transition from the last state back 
to the first state, so we'll hold off on adding that transition Lmtil we have fonned the rest of the state 
machine. We begin with the statement "while ( !go)," which, based on the template approach., trans· 
!ates to the states shown in Figure 5.Sl(b). Since the loop has no statements in the loop body, we 
can simplify the loop's states as shown in Figure 5.5l (c). Figure 5.51(e) also shows the states for 

the next two statements, which are assignment statements. Since those hvo assigrunents could be 
done simultaneously, we merge the two states into one, as shown in Figure 5.5 l (d). We then trans
late the next while loop, using the while loop template, to the states shown in Figure 5.51 (c) . We fill 
in the states for the while loop's statements in Figure 5.5 l (f), merging the two assignment state
ment states into one state since the assignments can be done simultaneously. Figure 5.5 l(t) also 

Figure 5.51 Behavioral· 
level design of dlc sum
of-absolute -difforences 
code: (a) original C 
code, written as an 
infinite loop, (b) 

translating the srarement 
' 'while (!go);" to a state 
machine, (c) simplified 
states for "while ( !go);" 
and states for the 
assignment statements 
that follow, (d) merging 
the two assignment 
states into one, (e) 
inse1ting the remplare 
for the next while loop, 
(f) inserting the states 
for that while loop, 
merging two assigmnent 
statements into one, (g) 
the final high-level state 
machine, with the 
"while (l)" included by 
transitioning from the 
last state back to the 
first state, and with 
obviously unnecessary 
states removed. 

Inputs: byte A(256),B(256] , ------------------. ,--------------, 

!~0'
10

')' U I bit go; 
Output: int sad 
main() 
{ i + ~/ ____ J 

uint sum; short uint i; ,-': 
,. I 

while (1){ / : 

} 

----------------- ,'' : ! while (!go); ~, : 
----------------- I 

SlJrYI = 0; : 
i = O; L _________ ---------

r ·;;;~;-(7~-256){ ________________ ! (b) 
I 
: sum = sum + abs(A[i) - S[i]); : 
I i = i + 1 · : 
-----------~-------------..,-----~ } : 

sad = sum; I 
I 
I 
I 

(a) 
I 
I 
I 
I 
I 
I 

I 
r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

i:=O / 
_______ i _, 

(i<256)' i 
: ,,,,,,,"' ,,. 

(c) 

(g) 

(d) 



5.7 Memory Components 285 

shows the state for the last statement of the C code, which assigns sad=sum. Finally, we e liminate 
obviously unnecessary empry srates. and add a transition frnm the last state to the first state to 
account for the entire code being enclosed in a "while (I)" loop. 

Notice the similarity between the HLSM in Figure 5.51(g) and the HLSM designed from 
scratch in Figure 5.30. 

We will need to map the C data types to bits at some point. For example, the C code declares 
i to be a short w1signed integer, which means 16 bits. So we could declare i to be 16 bits in d1e 
HLSM. Or, knowing the range of i to be 0 to 256, we could instead define i to be 9 bits (C doesn't 
have a 9-bit-wide data type). 

We could then proceed to design a controlle r and datapath from this HLSM. as was done in 
Figure 5 .31. Thus, we can translare C code ro a circuit by using a srraighrforward auromarable method. 

The previous example shows how C code can be converted to a custom digita l circuit 
using methods that are fully automatable. General C code can contain additional types of 
statements, some of which can be easily translated to states. For example, a for loop can 
be trans lated to states by first transforming the for loop into a while loop. A switch state
ment can be translated by first translating the switch statement to if then-else statements. 

Some C constructs pose problems for converting to a circuit, though. For example, 
pointers and recursion are not easy to trans late. Thus. tools that automate behavioral 
design from C code typically impose restrictions on the allowable C code that can be 
handled by the tool. Such restrictions are known as subu tti11g the language. 

While we have emphasized C code in this section, obviously any similar language, 
such as C++, Java, VHDL, Verilog, etc., can be converted to custom digital circuits- with 
appropr iate language subsetting. 

5.7 MEMORY COMPONENTS 

RTL design involves instantiating and connecting datapath 
components to form datapaths that are controlled by con
trollers. RTL design often utilizes some additional 
components outside the datapath and controller. 

One such component is a memory. An MxN memory 
is a memory component able to store M data items of N 
bits each. Each data item in a memory is known as a 
word. Figure 5.52 depicts the storage available in an Mx.N 
memory. 

Memory can be categorized into two groups: RAM 
memory, which can be written to and read from, and 
ROM memory, which can only be read from. However, as 
shall be discussed, the distinction between the two catego
ries is blurring due to new technologies. 

t2 
§ 

~ ... 
:E B 

Nbits 
wide each 

MxNmemory 

Figure 5.52 Logical view 
of a memory. 



286 5 Register-Transfer Level (RTL) Design 

Random Access Memory (RAM) 
A random-access memory (RAM) is logically the same as a register file (see Section 
4.10)-both are memory components whose words (each of which can be thought of as a 
register) can be individually read and written using address inputs. The differences 
between a RAM and a register file are: 

• Tbe size of M- We typically refer to smaller memories (from 4 to 512 or perhaps 
even 1024 words or so) as register files, and larger memories as RAMs. 

• The bit storage implementation- For large nwnbers of words, a compact imple
mentation becomes increasingly important. Thus, a RAM typically uses a very 
compact implementation for bit storage that will be described below, rather than 
using a faster but larger flip-flop. 

• The memory's physical shape- For large numbers of words, the physical shape of 
the memory's implementation becomes important. A tall rectangular shape will 
have some short wires and some long wires, whereas a square shape will have all 
medium-length wires. A RAM therefore typically has a square shape to reduce the 
memory's critical path. Reads are performed by first reading out an entire row of 
words from the RAM, and then selecting the appropriate word (column) out of 
that row. 

There is no clear-cut border between what defines a register file and what defines a 
RAM. Smaller memories (typically) tend to be called register files, and larger memories 
tend to be called RAMs. But you'll often see the tenns used quite interchangeably. 

A typical RAM is single-ported, with that p011 having both read and write capability 
(one at a time). Some RAMs are dual-ported. In contrast, register files are almost never 
single-ported. Furthermore, RAMs with more ports are much less common than for reg
ister files, because a RAM's larger size makes the delay and size overhead of extra ports 
much more costly. Nevertheless, conceptually, a RAM can have an arbitrary number of 
read ports and write ports, just like a register file. 

Figure 5.53 shows a block diagram for a 1024x32 
single-port RAM (M= 1024, N=32). data is a 32-bit
wide set of data lines that can serve either as input 
lines during writes 01· as output lines during reads. 
addr is a 10-bit input serving as the address lines 
during reads or writes. rw is a 1-bit control input that 
indicates whether the present operation shouJd be a 
read or a w1ite (e.g., rw= o means read, rw= 1. means 
write). en is a 1-bit control input that enables the 

32 
- , -

10 
, 

-
. 

data 

addr 
1024 x 32 

rw RAM 

en 

t> 
RAM for reading or writing- if we don' t want to Figure 5.53 1024x32 RAM 
read or write during a particular clock cycle, we set block symbol. 

en to o to prevent a read or write (regardless of the 
value of rw). 



5.7 Memory Components 287 

Let A= 1092 M 
wdata(N-1 wdata(N-2) wdata.O 

a(A-1 ) ••• 
I 

bit storage 
block 
(aka" cell ") 

word 

elk 
e d(M-1 )t----t=~ -~ ~--

en-+----' 
rw to all cells 

rdata(N-1) rdata(N-2) rdatao 

Figure 5.54 Logical internal structure of a RAM. 

Figme 5.54 shows the logical internal sbucture of an MxN RAM. "Logical" structure 
means that we can think of the structure being implemented in that way, although a real 
physical implementation may possess a djfferent actual structure_ (As an analogy, a 
logical structure of a telephone includes a microphone and a speaker connected to a 
phone line, although real physjcal telephones vary tremendously in their implementa
tions, including handheld devices, headsets, wireless connections, built-in answering 
machines, etc.) The main part of the RAM s tructure is the grid of bit storage blocks, also 
known as cells. A collection of N cells fo1ms a word, and there are M words. The address 
inputs feed into a decoder, eacll output of which enables all the cells in one word corre
sponding to the present address values. The enable input en can disable the decoder and 
prevent any word from being enabled. The read/write control input rw also connects to 
every cell to control whether the cell will be written with wdata, or read out to rdata. The 
data lines are connected through one word's cell to the next word's cell, so each cell must 
be designed to only output its contents when enabled and thus output nothing when dis
abled, to avoid interfering with another cell's output. 

.... WHY IS IT CALLED "RANDOM ACCESS" MEMORY? 

In the early days of digital design, RAMs did not exist. 
If you bad infomlation you wanted your digital circuit 
to store, you stored it on a magnetic drum, or a 
magnetic tape. Tape drives (and drmn drives too) had 
to spin the tape to get the bead, which could read or 
write onto the tape, above the desired memory 
location. If the head was currently above location 900, 
and you wanted to write to location 999, the tape 
would have to spin past 901, 902_ ... , 998, until 

location 999 was under the head. In olher words, the 
tape was accessed sequentially. When RAM was fiIBt 
released, its most appealing feature was that any 
"random" address could be accessed in the same 
amount of time as any other address- regardless of the 
previously read address. That"s because there is no 
"head" used to access a RAM, and no spirrning of 
tapes or drums. Th.us, the tenn "random access" 
memory was used, and bas stuck to this day. 



288 5 Register-Transfer Level (RTL) Design 

Notice that the RAM m Figure 5.54 has the 
same inputs and outputs as the RAM block diagram 
in Figure 5.53, except that the RAM in Figure 5.54 
has separate write and read data lines whereas 
Figure 5.53 has a single set of data lines (a single 
port). Figure 5.55 shows how the separate lines 
might be combined inside a RAM having just a 
single set of data lines . 

Bit Storage in a RAM 

••• 
data(N-1) datao 

Figure 5.55 RAM data input/output 
for a single port. 

The key feature disti nguishing RAM from a register file is the RAM 's compactness. 
Recall that Chapter 3 implemented a bit storage block using a D flip-flop. Because RAMs 
store large numbers of bits, RAMs utilize a bit storage block that is more compact, but 
slower, than a flip-flop. This section briefly describes the internal design of the bit storage 
blocks ins ide two popular types of RAM- static RAM and dynamic RAM. However, be 
forewarned that the internal design of those blocks involves elecb·onics issues beyond the 
scope of this book, and instead is within the scope of textbooks on VLSI or advanced 
digital design. Fortunately, a RAM component hides the complexity of its internal elec
tronics by using a memory controller, and thus a digital designer's interaction with a 
RAM remains as discussed in the previous section. 

Static RAM data data' 
Static RAM (SRAM) uses a bit s torage block 
having two inverters connected i n a loop as 
shown in Figure 5.56. A bit d will pass 
through the bottom inverter to become d ' , 
then through the top inve1ter to become d 
again- thus. the bit is stored in the inverter 
loop. Notice that this bit storage b lock has an 
extra line data' passing through it, compared 
with the logical RAM structure in Figure 5.54. 

word 0 
enable --t::t:=~=====~::t::r 

Writing a bit into this inverter loop is 
accomplished by setting the data line to the 
value of the desired bit, and data' to the 
complement. To store a 1, the memory con
troller sets data to 1 and data ' to o as in 
Figure 5.57. To store a o, the controller sets 
data to o and data' to 1. The controller 

Figure 5.56 SRAM cell. 

data 
1 
I 
I 
\ 

' 

then sets enable to 1 so both shown transis- word ~-...-......_ ____ ........., 
tors will conduct. The data and data 1 enable 

data' 

0 
I 
I 

I 
I 

values wjll appear in the inverter loop as figure 5.57 Writing a 1 to an SRAM cell. 
shown, overwriting any previous value. 



Reading the stored bit can be done by 
first setting the data and data ' lines both to 
1, which is an act !mown as precharging), and 
then set ting enable to 1. One of the enabled 
transistors will have a o at one end, causing 
the precharged 1 on the data or data' to 
drop to a voltage slightly Jess than a regular 
logic 1. Botl1 the data and data 1 lines 
connect to a special circuit called a sense 
amplifier that detects whether the voltage on 
data is slightly higher than data', meaning 
logic 1 is stored, or whether the voltage on 
data' is slightly higher than on data, 
meaning logic o is stored. Details of the elec-

tronics are beyond our scope. 
Notice that the bit storage block of Figure 

5.7 Memory Components 289 

data 
1 

data' 
1 

, -----1 0----- • 
[ ~~~ \ 

word _r_'\~J':41, _ 1 _____ I~,/,/<~ 
enable \ / 

To sense amplifiers 

Figure !i.58 Reading an SRAM. 

5.58 utilizes six transistors- two inside each of the two inverters, and two transistors 
outside the inverters. Six transistors are fewer than needed inside a D flip-flop. A tradeoff 
is that special circuitry must be used to read a bit stored in this bit storage block, whereas 
a D flip-flop outputs regular logic values directly. Such special circuitry slows the access 
time of the stored bits. 

SRAM maintains the stored bit as long as power is supplied to the transistors. The 
stored bit (except when wtitten) does not chLJnge- it is sta1ic (not changing). 

Dynamic RAM 
An alternative bit storage block used in RAM and popular for its compactness bas only a 
single transistor per block. Such a block utilizes a relatively large capacitor at the output 
of the transistor, as shown in Figure 5.59(a). The block is known as dynamic RAM 
(DRAM) because tbe stored bit changes as will be seen- the bit is dynamic (changing). 

Writing can occur when enable is 1. 

When enabled, da ta=l will charge the top 
plate of the capacitor to a 1 , while data=O 

will make the plate o. When enable is 
returned to 0 , a 1 on the top plate will begin to 
discharge across to the bottom plate of the 
capacitor and on to ground. Such discharging 
is the nature of a capacitor. However, the 
capacitor is intentionally designed to be rela
tively large, so that the discharge takes a long 
time, during which time the bit d is effectively 
considered as stored in the capacitor. Figure 
5.59(b) provides a timing diagram illustrating 
the charge and discharge of the capacitor. 

Reading can be done by first setting data 
to a voltage midway between o and 1, and 
then setting enabl e to 1. The value stored in 

data_J 

data 

d, 
capacitor 
/slowly 

cell 

f discharging 

(a) 

Figure 5.59 DRAM bit storage (a) bit 
storage block, (b) discharge. 



290 5 Register-Transfer Level (RTL) Design 

DRAM chips first 
appeared in the 
early 1970s. and 
could hold only a 
few thousand bits. 
Modem DRA.l11fs 
can hold many 
billions of bits. 

Using a RAM 

the capacitor will alter the voltage on the data line, and that altered voltage can be sensed 
by special circuits corrnected to the data line that amplify the sensed value to either a 
logic 1 or a logic 0 . 

It turns out that reading the charge stored in the capacitor discharges the capacitor. 
Thus, a DRAM must inunediately write the read bit back to the bit storage block after 
reading the block. A DRAM therefore contains a memory controller that automatically 
performs such a write back. 

Because a bit stored in the capacitor gradually discharges to ground, the RAM must 
ref resh every bit storage block before the bits completely discharge and hence the stored 
bit is lost. To refresh a bit storage block, the RAM must read the block and then write the 
read bit back to the block. Such refreshing may be done every few microseconds. The 
RAM must include a built-in memory controller that automatically performs these 
refreshes. 

Note that the RAM may be busy refreshing itself at a time that we wish to read the 
RAM. Furthermore, every read must be followed by an automatic write. Thus, RAM 
based on one-transistor plus capacitor technology may be s lower to access. 

Compared to SRAM, DRAM is even more 
compact, requiring only one transistor per bit 
storage block rather than six transistors. The 
tradeoff is that DRAM requires refreshing, which 
ultimately s lows the access time. Another 
tradeoff is that creating the relatively large capac
itor in a DRAM requires a special chip 
fabrication process, and thus incorporating 
DRAM with regular logic can be costly. In the 
1990s, incorporating DRAM with regular logic 
on the same chip was nearly unheard of. Tech
nology advancements, however, have led to 
DRAM and logic appearing on the same chip in 
more cases. 

Figure 5.60 graphically depicts the compact
ness advantages of SRAM over register files , and 
DRAM over SRAM, for storing the same number 
of bits. 

Mx N memory 
implemented as a: 

register 
file 

SAAM 

DRAM 

figure !i.60 Depiction of compacmess 
benefits of SRAM and DRAM (not to 
scale). 

Figure 5.61 shows timing diagrams describing how to write and read the RAM of Figure 
5.53. The timing diagram shows how to write a 9 and a 13 into locat ions 500 and 999 
during clock edges l and 2, respectively. The diagram shows how to read location 9 of the 
RAM in the next cycle, by setting addr=9, dnta=Z, and rw=O (meaning read). Shortly 
after rw becomes o, data becomes 500 (the value we had previously stored in location 9). 
Notice that we had to first disable the setting of data by setting it to Z (which can be 
accomplished using a three-state buffer) so as not to interfere with the data being read 
from the RAM. Also notice that this RAM 's read functionality is asynchronous. 



' I 

elk h h 
i ~ 

addr X 9 Ix 13 I x 9 

' i 

data 500 999 1 

rw __J 

en _J 

' 
1 mkans write ! 

I I 
I I 

hh 
:RAM{9] : RAM[13] I 

now equals 500 now equals 999 
(a ) 

5.7 Memory Components 291 

elk ---h h .... ___ n 
~setup ! 
~time : 

addr 

data 

rw 

~hold 1 '--:::::;:t--1. time • 
-~et up 

I I time 
I 
I 
I 
I 
I 
I 

{b) 

' I 
I 
, __ 
I 
I 

' I 
I 
I 

access 
time 

Figure 5.61 Reading and writing a RAM: (a) timing diagrams, (b) setup, hold, and access times. 

The delay between our setting the rw line to read and the read data stabilizing at 
the data output is lrnown as the RAM's access time or read time. 

The next example uses a RAM during RTL design. 

Example 5.14 Digital sound recorder using a RAM 

This example designs a system that can record sound digitally and that can play back that recorded 
sound. Such a recorder is found in various toys. in telephone answering machines. in cell phone 
outgoing announcements, and numerous other devices. An analog-to-digital converter is needed to 
digitize the sound, a RAM to store the digitized sound, a digital-to-analog converter to output the 
digitized sound, a three-state buffer to disable the data line going into the RAM, and a processor (to 
be designed) to control both converters and the RAM. Figure 5.62 shows a block diagram of the 
system. 

~ 
microphone 

analog= to= 
digital 

converter 

~----~ 

16 

ad_ld 

4096x16 
RAM 

<Q -0 
~ -g ~ as 

12 
Ra Rrw Ren 

processor da_id 

Figure 5.62 Utilizing a RAM in a di.gital smmd recorder system. 

digital=IO= 
analog 

converter 

~----~ 

wire 

speaker 



292 5 Register-Transfer Level (RTL) Design 

To store digitized sound, the processor block can 

implement the HLSM segment shown in Figure 5.63. 
The HLSM first intializes its internal address storage 
item a to 0 in state S. Next, in state T tbe HLSM loads a 
value into the analog-to-digital converter to cause a new 
analog sam ple to be digitized, and sets the three-state 

buffer to pass that digitized value to the RAM's data 
lines. That state also writes a to the local storage Rareg 
that exists for the RAM address Ra, and sets the RAM 
control lines to enable writing. Tbe HLSM then transi

tions to state U whose transitions check the value of a 
against 4095. That state also incre ments a. The HLSM 

Local storage: a, Rareg (12 bits) 

"\ a<4095 
S T 

Ren:= '1' 

returns to state T and hence continues writing samples digitized sound in RAM. 

into sequential memory addresses as long as the 
memory is not yet filled , meaning as long as a < 4095. Notice that the comparison is with 4095 
rather than with 4096. This is because the action in state U of a := a + 1 does not cause an update 
until the next clock edge, so the comparison a < 4095 on state U's outgoing transition uses the old 
value of a, not the incremented value (see Section 5.4 for further discussion). 

To playback the stored digitized sound. the processor 
can implement d1e HLSM segment shown in Figure 5.64. 

After initializing the local storage item a in state V, the 
HLSM enters state W. State W disables the three-state 
buffer to avoid interfering with the RAM's output data that 
will appear during RAM reads. State W also sets the RAM 
address lines, and sets the RAM control lines to enable 
reading. The read data will thus appear on the data lines. 
The next s tate X loads a value into the digital-to-analog 
converter to convert the data just read from RAM to the 

analog signal. That state also increments a. The HLSM 
returns to state W to continue reading, until the entire 
memory has been read. 

Read-Only Memory (ROM) 

Local storage: a, Aareg (12 bits) 

' 

figure 5.64 HLSM for playing sound 
from RAM. 

A read-only memory (ROM) is a memory that can be read from but not w1itten to. 
Because of being read-only, the bit-s torage mechanism in a ROM can be made to have 
several advantages over a RAM, including: 

• Compactness- A ROM's bit storage may be even smaller than that of a RAM. 

• Nonvolatility- A ROM 's bit storage maintains its contents even after the power 

supply to the ROM is shut off. When power is turned back on , the ROM's con
tents can be read again . ln contrast, a RAM loses its contents when power is shut 

off. A memory that loses its contents when power is shut off is known as volatile, 
while a memory that maintains its contents without power is known as 
nonvolatile. 



5.7 Memory Components 293 

• Speed- A ROM may be faster to read than a RAM, especially compaTed to a 
DRAM. 

Low-power- A ROM does not consume power to maintain its contents, in con
trast to a RAM. Thus, a ROM consumes less power than a RAM. 

Therefore, when the data stored in a memory will not change, a designer may choose 
to store that data in a ROM to gain the above advantages. 

Figure 5.65 shows a block symbol of a 1024x32 
ROM. The logical internal structure of an MxN ROM 
is shown in Figure 5.66. Notice that the internal 
structure is very similar to the internal structure of a 
RAM shown in Figure 5.54. Bit storage blocks 
forming a word are enabled by a decoder output, with 
the decoder input being the address. However, 

32 
-""""" ,' --1 data 

10 
__,,.._.~ addr 1024 x 32 

ROM 

- en 

because a ROM can only be read and cannot be Figure 5.65 1024x32 ROM block 
written, there is no need for an rw input control to symbol. 
specify read versus write, nor for wdata inputs to 
provide data being written. Also, because no synchro-
nous writes occw· in a ROM, the ROM does not have a clock input. In fact, not only is a 
ROM an asynchronous component, but in fact a ROM can be thought of as a combina
tional component (when we only read from the ROM; we'll see variations later). 

Some readers might at this point be wondering how a designer can write the initial 
contents of a ROM that will later be read. After all, if a designer can't write the contents 
of a ROM at all, then the ROM is really of no use. Obviously, there must be a way to 
write the contents of a ROM, but in ROM terminology, the writing of the initial contents 
of a ROM is known as ROM programming. ROM types differ in tbeir bit storage block 
implementations, which in turn causes differences in the methods used for ROM pro
gramming. We now desctibe several popular bit storage b lock implementations for ROM. 

Let A= 1092 M 

addrO aO 
.... addr1 a1 A x M d1 " "O ••• decoder I 
<tl 

~ addr(A-1) a (A-1) ••• 

e d(M-1) 

en 

data(N-1) data(N-2) datao 

Fi9ure 5_66 Logical internal struc ture of a ROM. 

bit storage 
block 
(a "cell") 

word 

data 
cell 

word word 
eliatiTe-enailie 

data 



294 5 Register-Transfer Level (RTL) Design 

ROM Types 

Mask-programmed ROM 
Figure 5.67 illustrates the bit storage cell for 
a mask-programmed ROM. A mask-pro
grammed ROM has it.s contents programmed 
when the chip is manufactured, by directly 
wiring ls to cells that should store a 1 , and 
Os to cells that should store a 0. Recall that a 
"1" is actually a higher-than-zero voltage 
coming from one of several power input pins 
to a chip- thus, wiling a 1 means wiring the 
power input pin directly to the cell. Like
wise, wiring a o to a cell means wiring the 
ground pin directly to the cell. Be aware that 

word 
enable 

data line 

cell 

0 data line 

cell 

Figure 5.67 Mask-programmed ROM cells: 
left cell programmed wit11 I , right cell with 0. 

Figure 5.67 presents a logical view of a mask-programmed ROM cell- the actual phys
ical design of such cells may be somewhat different. For example, a common design 
strings several vertical cells together to form a large NOR-like logic gate. We leave 
details for more advanced textbooks on CMOS circuit design. 

Wires are placed onto chips during manufacturing by using a combination of light
sensitive chemicals and light passed through lenses and "masks" that block the light from 
reaching regions of the chemicals. (See Chapter 7 for fmther details.) Hence the term 
"mask" in mask-programmed ROM. 

Mask-programmed ROM has the best com pactness of any ROM type, but the con
tents of the ROM must be known during chip manufacturing. This ROM type is best 
suited for high-volume well-established products in which compactness or very low cost 
is critical, and in which programming of the ROM will never be done after the ROM's 
chip is manufactured. 

Fuse-Based Programmable ROM~One·Time Programmable (OTP) ROM 
Figure 5.68 illustrates the bit storage cell 
for a fuse-based ROM. A f use-based ROM 
uses a fuse in each cell. A fuse is an elec-
trical component that initially conducts 
from one end to the other just like a wire, 
but whose connection from one end to the 
other can be destroyed ("blown") by 
passing a higher-than-normal current 
through the fuse. A blown fuse does not 
conduct and is instead an open circuit (no 
cormection). In the figure, the cell on the 
left has its fuse intact, so when the cell is 
enabled, a 1 appears on the data line. The 
cell on the tight has its fuse blown, so when 
the cell is enabled, nothing appears on the 
data line (special electronics will be neces-
sary to convert that nothing to a logic O). 

word 
enable 

data line data line 

cell cell 

fuse blown fuse 

Figure 5.68 Fuse-based ROM cells: left cell 
programmed with I, right cell with 0. 



5.7 Memory Components 295 

A fuse-based ROM is manufactured with all fuses intact, so the initially stored con
tents are all ls. A user of this ROM can program the contents by connecting the ROM to 
a special device known as a programmer, that provides higher-than-normal currents to 
only those fuses in cells that should store Os. Because a user can program the contents of 
this ROM, the ROM is known as a programmable ROM, or PROM. 

A blown fuse cannot be changed back to its initial conducting form. Thus, a fuse
based ROM can only be programmed once. Fuse-based ROM are therefore also known as 
one-time programmable (OTP) ROM. 

Erasable PROM=EPROM 
Figure 5.69 depicts a logical view of an 
erasable PROM cell. An erasable PROM, 
or EPROM, cell uses a special type of 
transistor, having what is known as a 
floating gate, in each cell. The details of a 
floating gate transistor are beyond the 
scope of this section, but briefly- a 
floating gate transistor has a special gate in 
which electrons can be "trapped." A tran
sistor with electrons trapped in its gate 
stays in the nonconducting situation, and 
thus is programmed to store a o. Other
wise, the cell is considered to store a 1. 

Special electronic circuitry converts sensed 
currents on the data lines as logic 1 or o. 

data line data line 

trapped electrons 

figure 5.69 EPROM cells: left cell 
progranuned with 1 , right cell with 0. 

An EPROM ceH initially has no electrons trapped in any floating gate transistors, so 
the initially stored contents are all ls. A programmer device applies higher-than-normal 
voltages to those transistors in cells that should store Os. That high voltage causes elec
trons to runnel through a small insulator into the floating gate region. When the voltage is 
removed, the electrons do not have enough energy to tunnel back, and thus are a·apped as 
shown in the right cell of Figure 5.69. 

The electrons can be freed by exposing the electrons 
to ultraviolet (UV) light of a pru1icular wavelength. The 
UV light energizes the electrons such that they tunnel back 
through the small insulator, thus escaping the floating gate 
region. Exposing an EPROM chip to UV light therefore 
"erases" all the stored Os, restoring the chip to having all 
ls as contents, after which it can be programmed again. 
Hence the tenn "erasable" PROM. Such a chip can typi
cally be erased and reprogrammed about ten thousand 
times or more, and can retain its contents without power 
for ten years or more. Because a chip usually appears 
inside a black package that doesn't pass light, a chip with 
an EPROM requires a window in that package through 
which UV light can pass, as shown in Figure 5.70. 

figure 5.70 The "window" 
in the package of a 
microprocessor that uses an 

EPROM to store programs. 



296 5 Register-Transfer Level (RTL) Design 

EEPROM and Flash Memory 
An electrically erasable PROM, or EEPROM, utilizes the EPROM programming method 
of using high voltage to trap electrons in a floating gate transistor. However, unlike an 
EPROM that requires UV light to free the electrons and hence erase the PROM, an 
EEPROM uses another high voltage to free the electrons, thus avoiding the need for 
placing the chip under UV light. 

Because EEPROMs use voltages for erasing, those voltages can be applied to spe
cific cells only. Thus, while EPROMs must be erased in their entirety, EEPROMs can be 
erased one word at a time. Thus, we can erase and reprogram certain words in an 
EEPROM without changing the contents of other words . 

Some EEPROMs require a special programmer device for programming, but most 
modern EEPROMs do not require special voltages to be applied to the pins, and also 
include internal memory controllers that manage tbe programming process. Thus, we can 
reprogram an EEPROM device's contents (or part of its contents) without ever removing 
the chip from its system- such a device is known as being in-system programmable. 
Most such devices can therefore be read and written in a manner very similar to a RAM. 

Figure 5.7 1 shows a block diagram of an 
EEPROM. Notice that the data lines are bidirectional, 
just as was the case for RAM. The EEPROM has a 
control input write. wri te=O indicates a read 
operation (when en=l), while write=l indicates 
that the data on the data lines should be programmed 
into the word at the address specified by the address 
lines. Programming a word into an EEPROM takes 
time, though, perhaps several dozens, hundreds, or 

32 
/ - / -

10 , 
, 

data 

addr 

en 1024 x 32 
EE PROM 

write 

busy 

t> 
even thousands of clock cycles. Therefore, Figure 5.71 1024x32 EEPROM 
EEPROMs may have a control output busy to indi- block symbol. 
cate that programming is not yet complete. While the 
device is busy, a circuit that writes to the EEPROM should not try writing to a different 
word; that write will likely be ignored. Most EEPROMs will load the data to be pro
grmruned and the address into internal registers, freeing the circuit that is writing the 
EEPROM from having to hold these values constant dming programming. 

Modern EEPROM s can be programmed hundreds of thousands to millions of times 
or more, and can retain their contents for several decades to one hundred years or more 
without power. 

While erasing one word at a time is fine for some applications that utilize EEPROM, 
other applications need to erase large blocks of memory quickly- for example, a digital 
camera application would need to erase a block of memory corresponding to an entire 
picture. Flash memory is a type of EEPROM i n which all the words within a large block 
of memory can be erased very quickly, typically simultaneously, rather than one word at 
a time. A flash memory may be completely erased by setting an erase control input to 
1. Many flash memories also allow only a specific region, known as a block or sector, to 
be erased while other regions are left untouched. 



5.7 Memory Components 297 

Using a ROM 
Below are examples of using a ROM during RTL design. 

Example 5.15 Talking doll using a ROM 

We wish to design a doll that speaks tJ1c message "Nice to meet you" whenever the doll's right arm 
is moved. A block diagram of tJ1e system is shown in Figure 5.72. A vibration sensor in tJ1e doll's 
right arm has an output v t11at is 1 when vibration is sensed. A processor detects the vibration and 
should then output a digitized version of the "Nice to meet you" message to a digital-to-analog con
verter attached to a speaker. The "Nice to meet you" message will be the prerecorded voice of a 
professional actress. Because that message will not change for the lifetime of the doll product, we 
can store that message in a ROM. 

4096 x 16 ROM 

processor da_ld 

digital-to
analog 

converter 

v 

Figure 5.73 shows an HLSM segment that 
plays the message after detecting vibration. The 
machine sta11s in state S, initializing the ROM 
address counter a to 0, and waiting for vibration 
to be sensed. When vibration is sensed, the 
machine proceeds to state T, which reads the 
cun-ent ROM location. The machine moves on to 
state U, which loads the digital-to-analog con
verter with the read value from ROM, 
increments a, and proceeds back to T as long as 
a hasn't reached 4095 (remember that the transi
tion from U uses the value of a before the 
increment. so should compare to 4095, not to 
4096). 

speaker 

vibration 
sensor 

Figure 5.72 Utilizing a ROM in a 
talking doll system. 

Local storage: a, Rareg (12 bits) 

' 

Figure 5.73 HLSM for reading the ROM. 

Because this doll's message will never change, we might choose to use a mask-programmed 
ROM or an arr ROM. We might utilize arr ROM during prototyping or during initial sales of tJ1e 
doll. and then produce mask-programmed ROM versions during high-volume production of the 
doll. 

• 



298 5 Register-Transfer Level (RTL) Design 

Example 5.16 Digital te lephone answering machine using a flash memory 

This example designs the outgoing announcement part of a telephone answering machine (e.g., 
"We're not home right now, leave a message"). T hat announcement should be stored digitally, 
should be recordable by the machine owner any mumber of times, and should be saved even if 
power is removed from the answering machine. Recording begins inuuediately after the owner 
presses a n~cord button, which sets a signal rec to l. 

Because we must 
be able to record the 4096 x 16 Flash 
announcement, we thus 
cannot use a mask
programmed ROM or 
OTP ROM. Be~ause 

removing power should 
not cause the 
announcement to be 
lost, we cannot use a 
RAM. Thus, we might 
choose an EEPROM or 

analog-to
digital 

converter 

~----~ 

16 

ad_ld 

c 
<I) 

Ra Rrw Ren er 

processor 

rec 

bu 

da_ld 

digital-to
analog 

converter 

'-------1 = record play @ i-------' 
L---------'~ 

microphone speaker 

a flash memory. We'll 
use a flash memory as 
shown in Figure 5.74. 
Notice that the flash 

Figure 5.74 Utilizing a flash memory in a digital answering machine. memory has tbe same 
interface as a RAM, 
except that the flash memory has an extra input named erase, which on this particular flash 
memory clears the contents of the entire flash. While the flash memory is erasing itself, the flash 
sets an output busy to 1. during which time we cannot write to the flash memory. 

Figure 5.75 shows an HLSM segment for 
recording tl1e annow1cement. The HLSM segment 
begins when the record button is pressed. State S 
activates the erase of the flash memory (er=l), 
and then state T waits for the erasing to complete 
(bu' ) . Such erasing should occur in just a few mil· 
liseconds, so that the start of the spoken 
announcement isn't missed. The HLSM then 
transitions to state U, which copies a digitized 
sample from the analog-digital converter to the 
flash memory, writing to the current address a. 

Local storage: a, Rareg (13 bits) 

bu 

ad_buf:='1' 
Rareg:=a 
Rrw:='1' 
Aen:='l ' 
a:=a+1 

State U a1so increments a. The next state V 
checks to see if the memory is filled with 
samples by checking if a < 4096, returning to in a flash memory. 

state U until the memory is filled. 
Notice that, unlike previous examples, this HLSM increments a before the state that checks for 

the last address (state V), so V's transitions use 4096, not 4095. We show this version just for 
variety. The earlier examples may be slightly better because they require that a and the comparator 
only be 12 bits wide (to represent 0 to 4095) rather than 13 bits wide (to represent 0 to 4096). 



5.8 Queues (FIFOs} 299 

This HLSM assumes that writes to the flash occur in one clock cycle. Some flash memories 
require more time for writes, asserting their busy output until the write has completed. For such a 
flash, we would need to add a state between states U and V, similar to the state T between S and U. 

To prevent missing sound samples while waiting, we might want to first save the entire sound 
sample in a 4096xl6 RAM, and then copy the entire RAt\1 contents to the flash. 

• 
The Blurring of the Distinction between RAM and ROM 

Notice that EEPROM and tlash ROM blur the distinction between RAM and ROM. Many 
modern EEPROM devices are writable just like a RAM, having nearly the same interface, 

with the only difference being longer write times to an EEPROM than to a RAM. How
ever, the difference between those times is shrinking each year. 

Further blurring the distinction are 11onvolatile RAM (NVRAM) devices, which are 
RAM devices that retain their contents even without power. Unlike ROM, NYRAM write 

times are just as fast as regular RAM- typically one clock cycle. One type of NYRAM 
simply includes an SRAM with a built-in battery, with the battery able to supply power to 
the SRAM for perhaps ten years or more. Another type of NYRAM includes both an 
SRAM and an EEPROM- the NYRAM controller automatically backs up the SRAM's 

contents into the EEPROM, typically just at the time when power is being removed. Fur
thermore, extensive research and development into new bit storage technologies are 
leading to NVRAMs that are even closer to RAM in terms of performance and density 
while being nonvolatile. One such technology is known as MAGRAM, short for magnetic 

RAM, which uses magnetism to store charge, having access times similar to DRAM, but 
without the need for refreshing, and with nonvolatility. 

Thus, digital designers have a tremendous variety of memory types available to them, 
with those types differing in their cost, performance, size, nonvolatility, ease of use, wtite 

time, duration of data retention, and other factors . 

5.8 QUEUES (FIFOs) 

Sometimes a designer's data storage needs spe
cifically require reading items in the same 
order that the items were written. For example, 
a busy restaurant may maintain a waiting list of 
customers- the host writes customer names to 
the rear of the list, but when a table becomes 
available, the host J"eads the next customer's 
name from the front of the list and removes 
that name from the list. Thus, the fil'st customer 
written to the list is the first customer read 
from the list. A queue is a list that is written at 
the rear of the list but read from the beginning 

back front 

,--; ,--; ,--; I D 
I I 1 I 1 I 

I 
I 11 I I I 
I 11 I 1 I , __ .J , __ .J , __ ...J 

write items 
to back 
of the queue 

read (and 
remove) items 
from front of 
the queue 

Figure 5.76 Conceptual view of a queue. 

of the list, with a read also removing the read item from the list, as illustrated in Figure 5.76. 
The common tenn for a queue in American English is a "line"- for example, you stand in 
a line at the grocery store, with people entering the rear of the line, and being served from 



300 5 Register-Transfer Level (RTL) Design 

PLEASE 
QUEUE 
FROM 
THIS 
END 

the front of the line. In British Eng lish, the word "queue" is used directly in everyday lan
guage (which sometimes confuses Americans who visit other English-speaking countries). 
Because th e first item written into the list will be the first item read out of the list, a queue is 
known as being first-in first-out (FIFO). As such, sometimes queues are called FIFO 
queues, although that tenn is redundant because a queue is by definition first-in first-out. 
The term FIFO itself is often used to refer to a queue. The term buffer is also sometimes 
used. A write to a queue is sometimes called a push or enqueue, and a read is sometimes 
called pop or dequeue. 

A queue can be implemented using a 
memory-either a register file or a RAM, 
depending on the queue size needed. 
When using a memory, the front and rear 
will move to different memory locations 
as the queue is written and read , as illus
trated in Figure 5.77. The figure shows an 
initially empty eight-word queue with 
front and rear both set to memory address 
0. The first sample action on the queue is 
a write of item A, which goes to the rear 
(address 0), and the rear increments to 
address 1. The next sample action is a 
write of item B, which goes to the rear 
(address 1 ), and the rear increments to 2. 
The next action is a read, which comes 
from the front (address 0) and thus reads 
out item A , and the front increments to l. 

Subsequent reads and writes continue 
likewise, except that when the rear or front 
reaches 7, its next value should be 0, not 8. 
In other words, the memory can be thought 
of as a circle, as shown in Figure 5 .78. 

Two queue conditions of interest: 

• Empty: no items are in the 
queue. This condition can be 
detected as front = rear, as seen 
in the topmost queue of Figure 
5.77. 

7 6 5 4 3 2 0 
r - - ... r-- ..... -- ... r -- .., r - - .., r-- .., r -- -. r - - ... 
t I 1 I 1 I 1 I 1 I I It I 1 I 
t I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 
I 1 1 t 1 11 t 1 11 11 1 1 I 
I I I I I 1 t I I I I I I I I I 
I I 1 I 1 It I 1 I I It I 1 I , __ ,, , __ ,, ·--.J , __ ,, , __ ,, , __ ,, , __ .,, , __ ,, 

r f 
7 6 5 4 3 2 0 

r f 
7 6 5 4 3 2 1 0 ,--. ,--. ,--. ,--. ,--. ,--. G G 

I I J 11 t 1 I I 11 I 

s~ : :: :: :: :: :: : B A 
I I I I 1 1 t I I 1 t I , __ J , _ _ J , __ J , __ j , __ j , __ J 

r 
7 6 5 4 3 2 0 

r 
Figure 5.77 Writing and reading a queue 
implemented in a memory causes the front (f) 
and rear (r) to move. 

0 
I 

: ,-- 7 
I I I 

I I I I 
J __ J I I 

I 

• Full: there is no room to add 
items to the queue, meaning 
there are N items in a queue of 
size N. This comes about when 
the rear wraps around and 
catches back up to the front, 
meaning front = rear. 

I I 
--. O' __ J 

2 ~ : : 6 Figure 5.78 
I __ J 

~-- , r- - i 
I I I I 

: : r --~ : : 
I I 1 I I I 
__ J I I '--

3 : : 5 

4 

Implementing a 
queue in a 
memory treats 
the memory a~ 
a circle. 



5.8 Queues (FIFOs} 301 

Unfortunately, notice that the conditions for detecting the queue being empty and the 
queue being full are the same- the front address equals the rear address. One way to tell 
the two conditions apa1t is to keep track of whether a write or a read preceded the front 
and rear addresses becoming equal. 

ln many uses of a queue, the circuit writing the queue operates independently from 
the circuit reading the queue. Thus, a queue implemented with a memory may use a two
port memory having separate read and write ports. 

8x1 6 register file 
All 8-word queue can be 

implemented using an 8-word 
two-port register fi le and addi-

w ta 16 16 data , 
wdata rdata 

, rda 

tional components, as depicted in 
Figure 5.79. A 3-bit up-counter 
maintains the front address while 
another 3-bit up-counter main
tains the rear address. Notice that 
these counters will naturally wrap 
around from 7 to O. or from 0 to 
7, as desired when treating the 
memory as a circle. An equality 
comparator detects whether the 
front counter equals the rear 
counter. A controller writes the 
write data to the register file and 
increments the rear counter 
during a write, reads the read data 
from the register tlle and incre
ments the front counter during a 

' ' 

.;... waddr raddr r-J-
_l_ t>r rd 11 

wr .... cir ..... c ir ------------ inc 
inc 

rd 3-bit 3-bit 

~ up counter up counter 
0 > rear > front ... 
c • reset 0 J J 0 

eq I = 
I full 

-

em ply - 8-word 16-bit queue 

Figure 5.79 Architecture of an 8-word 16-bit queue. 

read, and determines whether the queue is full or empty based on the equality comparison 
as well as whether the previous operation was a write or a read. We omit further description 
of the queue's controller, but it can be built by starting with an FSM. 

A circuit that uses a queue should never read an empty queue or write a full 
queue-depending on the controller design, such an action might just be ignored or might 
put the queue into a misleading internal state (e.g., the front and rear addresses may cross 
over). 

Many queues come with one or more additional control outputs that indicate whether 
the queue is half full or perhaps 80% full. 

Queues are commonplace in digital systems. Some examples include: 

• A computer keyboard writes the pressed keys into a queue and meanwhile 
requests that the computer read the queued keys. You migltt at some time have 
typed faster than your computer was reading the keys, in which case your addi
tional keystrokes were ignored- and you may have even heard beeps each time 
you pressed additional keys, indicating the queue was full. 

• A digital video camera may write recently captured video frames into a queue, 
and concurrently may read those frames from the queue, compress them, and store 
them on tape or another medium. 



302 5 Register-Transfer Level (RTL) Design 

• A computer printer may store print jobs in a queue while those jobs are waiting to 
be printed. 

• A modem stores incoming data in a queue and requests a computer to read that 
data. Likewise, the modem writes outgoing data received from the computer into 
a queue and then sends that data out over the modem's outgoing medium. 

• A computer network router receives data packets from an input port and writes 
those packets into a queue. Meanwhile, the router reads the packets from the 
queue, analyzes the address information in the packet, and then sends the packet 
along one of several output ports . 

Example 5.17 Using a queue 

Show the jntemal state of an 8-
word queue, and the popped data Initially empty 
values, after each of the follow- queue 
ing sequences of pushes and 
pops, assummg an initially 
empty queue: 

1. Push 9 , 5, 8, 5, 7 , 2, and 3. 

2. Pop 

3. Push 6 

4. Push 3 

5. Push4 

6. Pop 

Figure 5.80 shows the queue's 
internal states. After the first 
sequence of seven pushes (step I), 
we see that the rear address points 
to address 7. The pop (step 2) 
reads from the front address of 0, 
returning data of 9. The front 
address increments to l. Note that 
although the queue might still 
contain the value of 9 in address 
0, that 9 is no longer accessible 

1. After pushing 
9, 5, 8, 5, 7, 2, 3 

2. After popping 

3. After pushing 6 

4. After pushing 3 

dwing proper queue operation, 5. After pushing 4 
and thtLs is essentially gone. The 

7 6 5 4 3 2 0 
r-•• , .... r••• , .... r••• , •• ._ r••• , .... 
I I 1 I I I 1 11 I I I I 11 I 
I I 1 I 1 I 1 I I JI I 1 I 1 I 
I 11 11 1 1 11 11 1 1 11 I 
I 11 11 1 1 11 I I 1 1 1 t I 
I I 1 I 1 I 1 I 1 I I I 1 I 1 I , __ J , __ J , __ J , __ J , __ J , __ J , __ J , __ J 

r f 
7 6 5 4 3 2 0 

i~]GG0GGGG 
' 7 6 5 4 3 2 0 

1··10 G 0 G 0 Gr-;1 
, __ J , __ ..J 

7 6 5 4 3 2 0 

GGG0GGG !~~J 
f r 

7 6 5 4 3 2 1 0 

GGG0GGGG 
r f 

ERROR! Pushing a full queue 
results in unknown state 

push of 6 (step 3) increments the 
rear address, which wraps around 
from 7 to 0. The push of 3 (step 

Figure 5.80 Example pushes and pops of a queue. 

data: 
9 

full 

4) increment~ the rear address to 1, which now equals the front address, meaning the queue is now 
full. If a pop were to occur now, it would read the value 5. But instead, a push of 4 occurs (step 
5)-this push should not have been performed, because the queue is full. Thus, this push puts the 
queue into an erToneous state, and we cannot predict the behavior of any subsequent pushes or pops. 



5.9 Multiple Processors 303 

A queue could of course come with some error-tolenmce behavior built in, perhaps 
ignoring pushes when full, or perhaps returning some particular value (like 0) if popped 
when empty. 

5.9 MULTIPLE PROCESSORS 

RTL design can be aided by cap
turing behavior using multiple 
concurrently-executing HLSMs 
and converting those HLSMs to 
multiple processors. For example, 
consider the laser-based distance 
measurer from Example 5.13. The 

from ButtonDebouncer 
button 

- Bin Bout 

D 

B 

16 

to display 

L 

Laser·based to laser 

distance 
m€asurer s 

from sensor 

system has an input B from a Figure 5.81 A system with two concurrently-executing 
button. Section 5.4 explained that processors. 
button inputs may need to be 
debounced. Rather than attempting to modify the laser-based distance measurer;s HLSM 
of Figure 5 .12 to also perfonn button debouncing, a simpler approach is to build the 
system using two processors as shown in FigW"e 5.81. The button debouncer is a processor 
having a controller and datapath. Likewise, the laser-based distance measurer is another 
processor having its own controller and datapath. The first processor's output serves as the 
second processor's input, representing a debounced button input. 

As another example, recall 
the code detector of Example 3.6. 
The example assumed that the 
inputs from the buttons were each 
synchronized to the clock such 
that each unique press would 
result in the corresponding signal 
being l for exactly one clock BPS 

Code 
detector 

u 

Door 
lock 

cycle. Such synchronization was Figure 5.82 A system with multiple concurrently-executing 
achieved by designing a button processors. 
press synchronizer in Example 
3.9. The system could then be built as shown in Figure 5.82, with a button press synchro
nizer (BPS) processor instantiated for each input. The system thus consists of 5 BPS 
processors and one code detector processor (each of those processors happen to consist of 
just a controller and no datapath, but each is a processor nevertheless). 

Many different interfaces between processors are possible through the use of global 
items. A signal, register, or other component that is not inside a processor is called a 
global signal, a global register, or global component, respectively. Possible interfaces 
between processors include: 

• Control signal: The above examples represent the simplest interface between pro
cessors involving one processor writing a control output that another processor 
reads. The processors are said to share a global control signal. 



304 5 Register-Transfer Level (RTL) Design 

• Data signal: Another interface involves a processor writing a data output that the 
oth er processor reads. The processors share a global data signal. 

• Register: One processor may write to a global register that another processor 
reads. 

• Register file: One processor may connect to the write port of a global two-port 
(one-1·ead one-write port) register file while another processor connects to the read 
port. 

• Queue: One processor may connect to the write lines of a global queue, while 
another processor connects to the read lines. A processor should not write if the 
queue is full, and the other processor should not read if the queue is empty. A 
common version of this interface uses a one-word queue, effectively representing 
a register whose written contents must be read before the register can be written 
again. 

Even though the multiple processors (and global components) execute concurrently, 
they all use the same clock signal, and thus the processors are synchronized. Such syn
chronization avoids metastability issues in the interfaces between the processors 
(unsynchronized processors are also possible but are not considered in this book). 

Note that if a muJtiple processor system has an unregistered output of one processor 
connecting to an input of another processor, the system's critical path could be from a 
register of one processor to a regis ter of another processor. 

Example 5.18 Temperat ure statistics system using multiple processors 

Design a system with a 16-bit unsigned input Tfrom a temperature sensor, and a 16-bit output A. 

The system should sample T every 1 second. Output A should be computed every minute and 
should CiJUal the average of the most recent 64 samples. 

We could try to capture 
the behavior using a single 
HLSM, but that approach 
may lead to a complicated 
HLSM. Instead, we'll use 
two HLSMs that will be 
interfaced using a one-write
port one-read-port 64x 16 
register file. The first 
HLSM, Tsample, will write 
the sampled value into suc-

~ ~ T 
W_d 

W_a 
W_e 

Tsample 

> 

/ 

-
-

t 
TempStats 

W_d 
W_a R_a R_a 
W_e R_e R_e 

TRF 
RF{64}{16) 

Avg > R d 
I / R_d 

t> 
cessive register file 
addresses. The second Figure 5.83 A temperature statistics system. 

HLSM, Avg, will compute 

A 

the average of the register file's contents. Figure 5.83 shows a block diagram of the system. 

~ 

The procedure of defining the HLSMs would follow from previous examples and is not shown. 
There would be three top-level objects: a 64x 16 register file TRF, an HLSM Tsample, and an 
HLSM Avg. Hl..SM Tsample would declare a timer and a 6-bit local storage item addr, initia]jze the 
timer with I second, and then write input T to TRnaddr] every L second and increment addr (note 
that addr would wrap around from 63 to 0). HLSM Avg would declare a timer and a local storage 



5.10 Hierarchy-A Key Design Concept 305 

item .rum, i nitialize the timer with 60 seconds, and then compute the average every 60 seconds. 
Computing the average would be achieved by reading each word 0 to 63 of the register ftle TRF one 
at a time. adding each to .mm. To avoid overflow, sum might be made 32 bi ts wide. Then, d1e 
HLSM would divide me smn by 64 to compute me average, and would o utput the result on A. 
Recall that a one-read- port one-write-port register file can support both a read and a write operation 
in the same clock cycle, which is what allows the two HLSMs to access the register file 

independently. 
Notice how simple the design is when me sampling and averaging behaviors are kept separate . 

• 

Example 5.19 Digital camera with multiple processors and queues 

Section 1.3 introduced a digital camera example that consisted of three tasks: reading picture cle

ments from an image sensor, compressing those elements, and storing the results into a memory. 
Figure 5.84 shows processors for the mree tasks along wim interfaces between mem. Consider me 
interface between the Read and Compress processors. Assume Compress sometimes mns faster and 
sometimes runs slower depending on what item is being compressed. A queue is a good interface 

for such a situation. In this case, an 8-bit 8-word queue is used. When Read mns faster than Com
press, Read can push more items onto the queue (until the queue is full, at which point Read must 
wait lmtil me queue is not full) . When Compress runs faster than Read, Compress can pop more 
items (until me queue is empty, at which point Compress must wait for me queue to be not empty). 
The queue thus improves overall performance, while also ensuring that items are accessed by Com
press before being overwritten by Read. Similarly, a queue exists between Compress and Store. 

Read 
circuit 

rd ala 
rd 

Queue ty 
[8](8) emp 

Compress 
circuit ~ 

Queue 
[8](8) 

Figure 5.84 Tluee processor circuits and two queues in a digital can1era system. 

5.10 HIERARCHY-A KEY DESIGN CONCEPT 

Managing Complexity 

Store 
circuit 

Tluoughout this book, we have been utilizing a powerful design concept known as hier
archy. Hierarchy in general is defined as an organization with a few "things" at the top, 
and each thing possibly consisting of several other things. Perhaps the most widely 
known example of a hierarchy is a country. At the top is a country, which consists of 
many states or provinces, each of which in tum cons ists of many c ities. A three-level 

hierarchy involving a country, provinces, and cities is shown in Figure 5.85. 



306 5 Register-Transfer Level (RTL) Design 

Abstraction 

Figure 5.86 shows the same country, 
but this time showing only the top two 
levels of hierarchy-countries and prov
inces. Indeed, most maps of a country 
only show these top two levels (possibly 
showing key cities in each province/state, 
but certainly not all the cities)-showing 
all the cities makes the map far too 
detailed and cluttered. A map of a prov
ince/state, however, might then show all 
the cities within that state. Thus, we see 
that hierarchy plays an important role in 
understanding countries (or at least their 
maps). 

Likewise, hierarchy plays an impor
tant role in digital design. In Chapter 2, 
we introduced the most fundamental 
component in digital systems- the tran
sistor. In Chapters 2 and 3, we introduced 
several basic components composed from 
transistors, like AND gates, OR gates, 
and NOT gates, and then some slightly 

CityF 
"'O 
0 
s . 
0 
11> 
c.v 

CityG 

Figure 5.85 Three-level hierarchy example: a 
country, made up of provinces, each made up of 
cities. 

"'O 
0 
< 5· 
() 
(I) 

"'O 
0 
< 5· 
g 

more complex components composed Figure 5.86 Hierarchy showing just the top two 

from gates: multiplexers, decoders, flip- levels. 
flops, etc. In Chapter 4 , we composed the basic components into a higher level of compo
nents, datapath components, like registers, adders, ALUs, multipliers, etc. In Chapter 5, 
we composed earlier components into datapaths, composed controllers and datapaths, 
into processors, and created memories and queues from earlier components too. 

Use of hierarchy enables us to manage complex designs. Imagine trying to compre
hend the design of Figure 5.40 at the level of logic gates- that design likely consists of 
several thousand logic gates. Humans can't comprehend several thousand things at once. 
But they can comprehend a few dozen things. As the nwnber of things grows beyond a 
few dozen, we therefore group those things into a new thing, to manage the complexity. 
However, hierarchy alone is not sufficient- we must also associate an understandable 
meaning to the higher-level things we create, a task known as abstraction. 

Hierarchy may not only involve grouping things into a larger thing, but may also involve 
associating a higher-level behavior to that larger thing. So when we grouped transistors to 
form an AND gate, we didn' t j ust say that an AND gate was a group of transis
tors- rather, we associated a specific behavior with the AND gate, with that behavior 
describing the behavior of the group of transistors in an easily understandable way. Like
wise, when we grouped logic gates into a 32-bit adder, we djdn 't just say that an adder 
was a group of logic gates- rather, we associated a specific understandable behavior with 
the adder: a 32-bit adder adds two 32-bit numbers. 



5.10 Hierarchy-A Key Design Concept 307 

Associating higher-level behavior with a component to hide the complex inner details 
of that component is a process known as abstraction . 

Abstraction frees a designer from having to remember, or even understand, the low
level details of a component. Knowing that an adder adds two numbers, a designer can 
use an adder in a design. The designer need not worry about whether the adder internally 
is implemented using a carry-ripple design, or using some complicated design that is 
perhaps faster but larger. Instead, the designer just needs to know the delay of the adder 
and the size of the adder, which are further abstractions. 

Composing a Larger Component from Smaller Versions of the Same Component 
A common design task is to compose a larger version of 
a component from smaller versions of the same compo
nent. For example, suppose 3-input AND gates are 
available in a library, but a 9-input AND gate is needed 
in a design. A designer can compose several 3-input 
AND gates to form a 9-input AND gate as shown in 
Figure 5.87. A designer could compose OR gates into a 
larger OR gate, and XOR gates into larger XOR gates, 
similarly. Some compositions might require more than 
two levels-composing an 8-bit AND from 2-input 
ANDs requires four 2-input ANDs in the first level, two 
2-input ANDs in the second level, and a 2-input AND in 
the third level. Some compositions might end up with 

D-
/ 

Figure 5.87 Composing a 
9-input AND gate from 
3-input AND gates. 

extra inputs that must be hardwired co o or 1 - an 8-input AND built from 3-input ANDs 
would look similar to Figure 5 .87, but with the bottom input of the bottom AND gate 
hardwired to 1. 

A general rule to compose any size AND gate 
from any sizes of smaller AND gates is as follows: 
fill the first level with (the largest available) AND 
gates until the sum of the number of inputs equals 
the desired number of inputs, then fill the second 
level similarly (feeding first-level outputs to the 
second-level gates), until the last level has just one 
gate. Connect any unused AND gate inputs to 1. 

Composing NAND, NOR, or XNOR gates into 
larger gates of the same kind would require a few 
more gates to maintain the same behavior. 

Multiplexers can also be composed together 
to fonn a larger multiplexer. For example, suppose 
4xl and 2x l muxes were available in a library, but 
an 8xl mux was needed. A designer could 
compose the smaller muxes into an 8xl mux as 
shown in Figure 5.88. Notice that s2 seleccs 
among group iO-i3 and i4-i 7 , while sl and 
so select one input from the group. The select line 

4x1 
iO iO 

i1 i1 

i2 i2 d 

i3 i3 

2x1 
s1 so iO 

d 

4x1o i1 
i4 iO so 

i5 i1 

i6 i2 d 

i7 i3 

s1, ,so 

s1 so s2 

Figure 5.88 An Ex 1 mux composed 
from 4x I and 2x I muxes. 



308 5 Register-Transfer Level (RTL) Design 

values pass the appropriate input through to the output. For example, s2sls0 = 000 

passes iO through. s2:s1s0=100 passes i4 , and s2s1s0=111 passes i 7. 
A common composition problem is that of creating a larger memory from smaller 

ones. The larger memory may have wider words, may have more words, or both. 
As a11 example of needing wider words, suppose l 024x8 RO Ms are available in a 

library, but a l024x32 ROM is needed. Composing the smaller ROMs into the larger one 
is straightforward, as shown in Figure 5.89. Four l024x8 ROMs are needed to obtain 32 
bits per word. The l 0 address inputs are connected to all four ROMs. Likewise, the 
enable input is connected to all four ROMs. The four 8-bi t outputs are grouped into the 
desired 32-bit output. Thus, each ROM stores one byte of the 32-bit word. Reading a 
location such as loca6on 99 results in four simultaneous reads of the byte at location 99 
of each ROM. 

i ----------------------------------------------------: 
i; 10: addr addr : 
-o -------- -------- addr , 
ro 1024x8 1024x8 1024x8 1024x8 : 

ROM ROM ROM ROM : 
c en en : 
Cl) ----data -----data en data : 

8 

10 ~ 

.,.._ ::g 1024x32 ro 

~c 
Q) 

ROM 

data 

32 

8 8 

data (31 .. 0) 

figure 5.89 Compos ing a 1024x32 ROM from I024x8 ROMs . 

I 

8 

As an example of needing more words, suppose again that l024x8 ROMs are avail
able in a library, but this time a 2048x8 ROM is needed. The larger ROM has an extra 
address line because it has twice as many words to address as the smaller ROMs. Figure 
5.90 shows how to use two 1024x8 ROMs to create a 2048x8 ROM. The top ROM repre
sents the top half of the memory (1024 words), and the bottom ROM represents the 
bottom half of the memory (1024 words). The 11th address line (alO) enables either the 
top ROM or the bottom ROM- the other 10 bits represent the offset into the ROM. That 
11th bit feeds into a I x2 decoder, whose outputs feed into the ROM enables. Figure 5.91 
uses a table of addresses to show how the 11th bit selects among the two smaller RO Ms. 

Finally, since only one ROM will be active at any time, the output data lines can be 

tied together to form the 8-bit output, as shown in Figure 5.90. 



5.11 RTL Design Optimizations and Tradeoffs (See Section 6.5} 309 

r--------------------------------------11 : 
~ ...,.,..-+ __ a_9._.a_o ____ ....,~ addr a10a9a8 aO 

0 0 0 0 0 0 0 0 0 0 0 "' 1x2 dO 
dcd 

e d1 

1024x8 
ROM 

0 0 0 0 O O O O o o 1 addr 

0 0 0 0 0 0 0 0 0 1 0 1024x8 
data _......r ROM 

ai--· ____ ..... + 
L---~--------------, 

0111 1 111 11 0 
0111 1 111 11 1 

en data 

11 ~ 

addr 

1C>24x8 
ROM 

+- ~ ~ 2048x8 data 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 1 0 

addr 

1024x8 
ROM 

~c 
()) 

ROM 
0 

1111 1 111 11 1 
en data 

Figure 5.90 Composing a 2048x8 ROM from 
1024x8 ROMs. 

Figure 5.91 When composing a 2048x8 ROM from 
two 1024x8 RO Ms, we can use the highest address 
bit to choose among the two ROMs; the remaining 
address bits offset into the chosen ROM. 

Note that any bit could be used to select between the top ROM and bottom ROM . 
Designers sometimes use the lowest-order bit (aO) to select. The top ROM would thus 
represent all even addresses, and the bottom ROM would represent all odd addresses. 

If the desired ROM is four times larger than the available ROM, then two address 
lines would select from foW' ROMs via a 2x:4 decoder. If the desired ROM is eight times 
larger, then three address lines and a 3x8 decoder would be used. Other sizes follow 
similarly. 

The approaches for creating a ROM with wider words and with more words can be 

used together. Suppose a 4096x32 ROM is needed, but only 1024x8 RO Ms are available. 
A designer can first create a 4096x8 ROM by using four ROMs one on top of the other 
and by feeding the top two address lines to a 2x4 decoder to select the approp1iate ROM. 
The designer can then widen the ROM by adding 3 more ROMs to each row. 

Most of the datapath components in Chapter 4 can be composed into larger versions 
of the same type of component. 

5.11 RTL DESIGN OPTIMIZATIONS AND TRADEOFFS (SEE SECTION 6.5) 
Previous sections in this chapter described how to peiform register-transfer level 
design to create processors consisting of a controller and a datapath. This section, 
which physically appears in the book as Section 6.5, d escribes how to create proces
sors that are better optimized, or that trade off one feature for another (e.g., size for 
performance). One use of this book studies such RTL optimizations and tradeoffs 
immediately after introducing RTL design, meaning now. Another use studies them 
later. 



310 5 Register-Transfer Level (RTL) Design 

5.12 RTL DESIGN USING HARDWARE DESCRIPTION LANGUAGES (SEE 
SECTION 9.5) 

This section, which physically appears in the book as Section 9.5, describes use of HDLs 
during RTL design. One use of this book studies such HDL use immediately after intro
ducing RTL design (meaning now). Another use studies use of HDLs later. 

5.13 PRODUCT PROFILE: CELL PHONE 
A cell phone, short for "cellular telephone" and also known as a mobile phone, is a por

table wireless telephone that can be used to make phone calls while moving about a city. 
Cell phones have made it possible to communicate with dista nt people nearly anytime 
and anywhere. Before cell phones, most telephones were tied to physical places like a 
home or an office. Some c ities supported a radio-based mobile telephone system using a 
powerful central antenna somewhere in the city, perhaps atop a tall building. Because 
radio frequencies are scarce and thus carefully doled out by governments, such a radio 
telephone system could only use perhaps tens or a hundred different radio frequencies, 
and thus could not suppott large numbers of users. Those few users therefore paid a very 

high fee for the service, limiting s uch mobile telephone use to a few wealthy individuals 
and to key govemmeut officials . Those users had to be within a certain radius of the main 
antenna, measured in tens of miles, to receive service, and that service typically didn't 
work in another city. 

Cells and Basestations 

Cell phone popularity exploded in the 
1990s, growing from a few million users 
to hundreds of millions of users in that 
decade (even though the first cell phone 
call was made way back in 1973, by 
Martin Cooper of Motorola, the inventor 
of the cell phone), and today it is hard 
for many people to remember life before 
cell phones. The basic technical idea 
behind cell phones divides a city into 
numerous smaller regions, known as 
cells (hence the te rm "cell phone"). 
Figure 5.92 shows a city divided into 
three cells. A typical city might actually 
be divided into dozens, hundreds, or 
even thousands of cells. Each cell has its 
own radio antenna and equipment in the 

city 

basestation 
antenna 

' I 
' ' ' , 

.c:: _,,,, f'' 
Cl. ---

...----~--.-,o/~om ',,____ switching 
office 

regular 

• • ~----~ phone 
system 

figure 5.92 Phone] in cell A can use the same 
radio frequency as pho11eZ in cell C, increasing the 
number of possible mobile phone users in a city. 

center, known as a basestation . Each basestation can use dozens or hundreds of different 
radio frequencies. Each basestation antenna oll.ly needs to n·ansmit radio signals powerful 
enough to reach the basestation's cell area. Thus, nonadjacent cells can actually reuse the 
same frequencies, so the limited number of radio frequencies allowed for mobile phones 



5.13 Product Profile: Cell Phone 311 

can thus be shared by more than one phone at one time. Hence, far more users can be 
supported, leading to reduced costs per user. Figure 5.92 illustrates that phone] in cell A 
can use the same radio frequency as phone2 in cell C, because the radio signals from cell 
A don't reach cell C. Supporting more users means greatly reduced cost per user, and more 
basestations means service in more areas than just major cities. 

Figure 5.93(a) shows a typical 
basestation anten11a. The basesta
tion 's equipment may be in a small 
building or commonly in a small box 
near the base of the antenna. The 
antenna shown actually supp01ts 
antennas from two different cellular 
service providers~ne set on the 
top, one set just under, on the same 
pole. Land for the poles is expensive, 
which is why providers share, or 
sometimes find existing tall struc
tures on which to mount the 

antennas, like buildings, park light 
posts, and other interesting places 
(e.g., Figure 5.93(b)). Some pro
viders try to disguise their antennas 
to make them more soothing to the 
eye, as in Figure 5.93(c)- the entire 
tree in the picture is artificial. 

All the basestations of a service 
provider connect to a central 

(a) 

Figure 5.93 Basestations found in various locations. 

switching office of a city. The switching office not only Links the cellular phone system to 
the regular "landline" phone system, but also assigns phone calls to specific radio frequen
cies, and handles switching among cells of a phone moving between cells. 

How Cellular Phone Calls Work 

Suppose you are holding phone] in cell A of Figure 5.91. When you tum on the cell phone, 
the phone listens for a signal from a basestation on a control frequency, which is a special 
radio frequency used for communicating commands (rather than voice data) between the 
basestation and cell phone. If the phone finds no such signal, the phone reports a "No Ser
vice" error. If the phone finds the signal from basestation A, the phone then transmits its 
own identification (ID) number to basestation A. Every cell phone has its own unique ID 
number. (Actually, there is a nonvolatile memory card inside each phone that has that ID 
number- a phone user can potentially switch cards among phones, or have multiple cards 
for the same phone, switching cards to change phone numbers.) Basestation A communi
cates this ID number to the central switching office's computer, and thus the service 
provider computer database now records that your phone is in cell A. Your phone intermit
tently sends a control signal to remind the switching office of the phone's presence. 



312 5 Register-Transfer Level (RTL) Design 

If somebody then calls your cell phone's number, the call may come in over the regular 
phone system, which goes to the switching office. The switching office computer database 
indicates that your phone is in cell A. In one type of cell phone technology, the switching 
office computer assigns a specific radio frequency supported by basestation A to the call. 
Acmally, the computer assigns two frequencies , one for talking, one for listening, so that 
talking and listening can occur simultaneously on a cell phone- let's call that frequency 
pair a channel. The computer then tells your phone to carry out the call over the assigned 
channel, and your phone rings. Of course, it could happen that there are so many phones 
already involved with calls in cell A that basestation A has no available frequencies- in that 
case, the caller may hear a message incticating that user is unavailable. 

Placing a call proceeds similarly, but your cell phone initiates the call, ultimately 
resulting in assigned ractio frequencies again (or a "system busy" message if no frequen
cies are presently available). 

SuppQse that yotu phone is presently carrying out a call with basestation A, and that 
you are moving through cell A toward cell B in Figure 5.92. Basescation A will see your 
signal weakening, while basestation B will see your signal strengthening, and the two 
basestations transmit this information to the switching office. At some point, the 
switching office computer will decide to switch your call from basestation A to basesta
tion B. The computer assigns a new channel for the call in cell B (remember, adjacent 
cells use different sets of frequencies to avoid interference), and sends your phone a 
command (through basestation A, of course) to switch to a new channel. Your phone 
switches to the new charmel and thus begins communicating with basestation B. Such 
switching may occur dozens of times while a car drives through a city during a phone 
call, and is transparent to the phone user. Sometimes the switching fails , perhaps if the 
new cell has no available frequencies, resulting in a "dropped" call. 

Inside a Cell Phone 

Basic Components 
A cell phone requires sophisticated digital circuitry to catTy out calls. Figure 5.94 shows 
the insides of a typical basic cell phone. The printed-circuit boards include several chips 
implementing digital circuits. One of those circuits pe1forms analog-to-digital conversion 
of a voice (or other sound) to a signal stream of Os and ls, and another performs digital
to-analog conversion of a received digital strerun back to an analog signal. Some of the 
circuits, typically software on a microprocessor, execute tasks that manage the various 
features of the phone, such as the menu system, address book, games, etc. Note that any 
data that you save on your cell phone (e.g., an address book, customized ring tones, game 
high score infonnation, etc.) will likely be stored on a flash memory, whose nonvolatility 
ensures the data stays saved in memory even if the battery dies or is removed. Another 
important task involves responding to commands from the switching office. Another task 
ca1Tied out by the digital circuits is filtering. One type of filtering removes the carrier 
ractio signal from the incoming ractio frequency. Another type of filtering removes noise 



5.13 Product Profile: Cell Phone 313 

(a) (b) (c) 

Figure 5.94 Inside a cell phone: (a) handset, (b) battery and ID card on left, keypad and display in 
center, digital circuitry on a printed-circuit board on right, (c) tl1e two sides of the printed-circuit 
board, showing several rugital chip packages mounted on the board. 

from the digitized audio stream coming from the microphone, before transmitting that 
stream on the outgoing radio frequency. Let's examine filtering in more detail. 

Filtering and FIR Filters 
Filtering is perhaps the most common task performed in digital signal processing. Digital 
signal processing operates on a stream of digital data that comes from digitizing an input 
signal, such as an audio, video, or radio signal. Such streams of data are found in count
less electronic devices, such as CD players, cell phones, heart monitors, ultrasound 
machines, radios, engine controllers, etc. Filtering a data stream is the task of removing 
particular aspects of the input signal, and outputting a new signal without those aspects. 

A common filtering goal is to remove noise from a signal. You've certainly heard 
noise in audio signals- it's that hissing sound that's so annoying on your stereo, cell 
phone, or cordless phone. You've also likely adjusted a filter to reduce that noise, when 
you adjusted the " treble" control of your stereo (though that filter may have been imple
mented using analog methods rather than digital). Noise can appear in any type of signal, 
not just audio. Noise might come from an imperfect transmitting device, an imperfect lis
tening device (e.g., a cheap microphone), background noise (e.g., freeway sounds coming 
into your cell phone), electrical interference from other electric appliances, etc. Noise 
typically appears in a signal as random jumps from a smooth signal. 

Another common filtering goal is to remove a carrier frequency from a signal. A 
carrier frequency is a signal added to a main signal for the purpose of transmitting that 
main signal. For example, a radio station might broadcast a radio signal at l 02.7 MHz. 
102.7 MHz is the carrier frequency. The carrier signal may be a sine wave of a particular 
frequency (e.g., 102.7 MHz) that is added to the main signal, where tl1e main signal is the 
music signal itself. A receiving device locks on to the carrier frequency, and then filters 
out the carrier signal, leaving the main signal. 

An FIR filter (usually pronounced by sayin~ the letters "F' 'T "R"), short for "finite 
impulse response," is a very general filter design that can be used for a huge variety of fil
tering goals. The basic idea of an FIR filter is very simple: multiply tbe present input value 
by a constant, and add that result to the previous input value times a constant, and add that 



314 5 Register-Transfer Level (RTL) Design 

result to the next-earlier input value times a constant, and so on. A designer using an FIR 
filter achieves a particular filtering goal simply by choosing the FIR.filter's constants. 

Mathematically, an FIR filter can be described as follows: 

y(t)=cUxx(f) + c lxx(1- I ) + c2xx(f-2) + c3xx(1-3) + c4xx(t - 4) + ... 

I is the present time step. x is the input signal, and y is the output signal. Each term 
(e.g., cO*x(t)) is called a tap. So the above equation represents a 5-tap FIR filter. 

Let's see some examples of the versatility of an FIR filter. Asswne we have a 5-tap 
FIR filter_ For starters, to simply pass a signal through the filter uncha11ged, we set cO to 
l , and we set cl=c2=c3=c4=-0. To amplify an input signal, we can set cO to a number 
larger than 1, perhaps setting cO to 2. To create a smoothing filter that outputs the average 
of the present value and the past four input values, we can simply set all the constants to 
equivalent values that add to l, namely, cl=c2=c3=c4=c5=0.2. The results of such a filter 
applied to a noisy input signal are shown in Figure 5.95. To smooth and amplify, we can 
set all constants to equivalent values that add to something greater than 1, for example, 
cl=c2=c3=c4=c5= l , resulting in 5x amplificat ion. To create a smoothing filter that only 
includes the previous two rather than four input values, we simply set c3 and c4 to 0. We 
see that we can build all the above different filters just by changing the constant values of 
an FIR filter. The FIR filter is indeed quite versatile. 

-original 
1----1'~;iil~ltlw;::-;-----------i -&-noisy 

- fir_avg_out 

-1.s~----------------------------~ 

Figure 5.95 Results of a 5-tap AR filtel' with c0=cl=c2=c3=c4=-0.2 applied to a noisy signal. The 
original signal is a sine wave. The noisy signal has random jumps . The FIR output (fir_avg_out) is 
much smoother than the noisy signal, approaching the original signal. Notice that the FIR output is 
slightly shifted to the right. meaning the output is slightly delayed in time (probably a tiny fraction 
of a second delayed). Such s light shifting is usually not important to a particular application. 

That versatility extends even further. We can actually filter out a carrier frequency 
using an FIR filter, by setting the coefficients to different values, carefully chosen to filter 
out a particular frequency. Figure 5.96 shows a main signal, inl, that we want to transmit. 
We can add that to a carrier signal, in2, to obtain the composite signal, in_toEal. The 
signal in_toral is the signal that would be the signal that is transmitted by a radio st ation, 
for example, with inl being the signal of the music, and in2 the carrier frequency. 



5.13 Product Profile: Cell Phone 315 

Now say a stereo receiver receives that composite signal, and needs to filter out the 
carrier signal, so the music signal can be sent to the stereo speakers. To determine how to 
filter out the carrier signal, look carefully at the samples (the small filled squares in 
Figure 5.96) of that can;er signal. Notice that the sampling rate is such that if we take any 
sample, and add it to a sample from three time steps back, we get 0. That's because for a 
positive point, three samples earlier was a negative point of the same magnitude. For a 
negative point, three samples earlier was a positive point of the same magnitude. And for 
a zero point, three samples earlier was also a zero point. Likewise, addjng a carrier signal 

2.5~----------------------- -+- in 1 
21---------------------------1 

1.51----,.....-+-,,__-+-+--~--------------i 

0.5 1-f---l-.:~!:!\-\-+l--lr+.l-/--l-\--H---f\' ..... l.d--~1r----f--\-~'--\---/-ll--l--\-~~---l 

O!t'r..'-ilk-r#i-.-,IJ~~~=j.,...-""'1'1,-,4Jlc-1'r,n4r'~..dlrr~...._,,...;;.~-rl~lf-T~;'\.,ip----,;l-r-l"""'~ 

--0.5 1---\l~--\-l----\-1---1-+---l-l---+-+----\\~~l:+--H--+-'t-l-+--'l-\--l+-+~.-=:'-\--H 

-1 1---=:::..___.:::___::=..._____::::._~==-~-==-~-PL--l=~~ ...... ~~=l-~P-l 

-1.5t--------------------r-t---"r-+--t-r---~--~ 

-21-------------------------------------< 
- 2.5.._ _____________________________ __, 

Figure 5.96 Adding a main signal inl to a carrier s ignal in2, resulting in a composite signal in_total. 

sample to a sample three steps later also adds to zero. So to filter out the carrier signal, 
we can add each sample to a sample three time steps back. Or we can add each sample to 
112 times a sample three steps back, plus 1/2 times a sample three steps ahead. We can 
achieve this using a 7-tap FIR filter with the following seven coefficients: 0.5, 0, 0, l, 0, 
0, 0.5. Since that SlllllS to 2, we can scale the coefficients to add to 1, as follows: 0.25, 0, 
0, 0.5, 0 , 0, 0.25. Applying such a 7-tap FIR filter to the composite signal results in the 
FIR output shown in Figure 5.97. The main signal is restored. We should point out that 
we chose the main signal such that this example would come out very nicely-other 
signals might not be restored so perfectly. But the example demonstrates the basic idea. 

-21-----------------------.=..::.-------~ 

-2.5'----------------------------------' 

Figure 5.97 Filtering out the carrier signal using a 7-tap FIR filter with constants 0.25, 0, 0, 0.5, 0, 0, 
0.25. Tbe slight delay in the output signal typicaJJy poses no problem. 



316 5 Register-Transfer level (RTL) Design 

While 5-tap and 7-tap FLR filters can certainly be found in practice, many FIR filters 
may contain tens or hundreds of taps. FIR fil ters can certainly be implemented using soft
ware (and often are), but many applications require that the hw1dreds of multiplications and 
additions for every sample be executed faster than is possible in software, leading to custom 
digital circui t implementations. Example 5. 10 illustrated the design of a circuit for an FIR 
filter. 

Many types of filters exist other than FIR filters. Digital signal filtering is part of a 
larger field known ac; digital signal processing, or DSP. DSP has a rich mathematical 
fou ndation and is a fie ld of study in itself. Advanced fi ltering methods are what make cell 
phone conversations as clear as they are today. 

5.14 CHAPTER SUMMARY 

Section 5.1 introduced different levels of design and explained that digital design today is 

mostly done at the register-transfer level (RTL). Like combinational design in Chapter 2 and 
sequential design in Chapter 3, RTL design starts by capturing behavior and then involves 
converting that behavior to a circuit. Section 5.2 introduced the high-level state machine 
(HLSM) formalism for capturing RTL behavior. Section 5.3 introduced a procedure for 
converting an HLSM to a circuit consisting of a controller and datapath, which together are 
known as a processor. The datapaths used components defined in Chapter 4 capable of exe
cuting the HLSM's data operations, and the controller was built using methods from 
Chapter 3. Section 5.4 showed how RTL design could make use of register files and of 
timers, and also showed a data-oriented example. Section 5.5 showed how to set a circuit 's 
clock frequency based on the circuit's critical path. Section 5.6 demonstrated how a sequen
tial program like a C program can be conve1ted to gates using straightforward 
transformations that convert the C program into RTL behavior. Such conversion makes it 
clear that a digital system's functionality can be implemented as either software on a micro
processor or as a custom digital circuit (or even as both). The differences between 
microprocessor and custom circuit implementations relate to design metrics like system 
pe1fonnance, power consumption, size, cost, and design time. Modern digital designers 
must be comfortable migrating functionality between software on a microprocessor and 
custom digital c ircuiLc;, in order to obtain the best overall implementation with respect to 
constraints on design metrics. Section 5.7 introduced several memory components com
monly used in RTL design, including RAM and ROM components. Section 5.8 introduced 
a queue component that can be useful during RTL design. Section 5.9 provided a basic 
introduction to creating circuits consisting of multiple processor circui ts interacting with 
one another. Section 5 .10 discussed the concepts of hierarchy and abstraction, and provided 
examples of composing a component from smaJler components of the same kind. 

Chapters 1 through 5 emphasized straightforward design processes for increasingly 
complex systems, but did not emphasiz how to design op1imized systems. Optimization is 
the focus of the next chapter. 



5.15 Exercises 317 

5.15 EXERCISES 

For each exercise, unless otherwise indicated, assume that the clock frequency is much 
faster than any input events of interest, and that any inputs have already been debounced. 
An asterisk (*) indicates an especially challenging problem. 

SECTION 5.2: HIGH-LEVEL STATE MACHINES 

5. l Draw a timing diagram to trace the behavior of the soda dispenser lfLSM of Figure 5.3 for the 
case of a soda costing 50 cents and for the following coins being deposited: a clime ( l 0 cents), 
then a quarter (25 cents), and then another qua11cr. TI1c timing diagram should show values for 
all system inputs, outputs. and local storage items. and for the systems' current state. 

5.2 Capture the following system behavior as an HLSM. TI1e system counts d1e number of events 
on a single-bit input B and always outputs that number unsigned on a 16-bit output C, which 
is initially 0. An event is a change from 0 to 1 or from 1 to 0. Assume the system cOlUlt rolls 
over when the maximum value of C is reached. 

5.3 Capture the following system behavior as an HLSM. The system has two single-bit inputs U 
and D each coming from a button, and a 16-bit output C, which is initially 0. For each press of 
U, the system increments C. For each press of D, the system decrements C. If both buttons arc 
pressed, the system does not change C. The system docs not roll over; it goes no higher than 
than the largest C and no lower drnn C=O. A press is detected as a change from 0 to 1; dlc 
duration of d1at 1 docs not matter. 

5.4 Capture the following system behavior as an HLSM. A soda machine dispenser system has a 
2-bit control input Cl CO indicating the value of a deposited coin. Cl CO = 00 means no coin, 
01 means nickel (5 cents), 10 means dime ( l 0 cents), and 11 means quarter (25 cents); when 
a coin is deposited, the input changes to indicate the value of the coin (for possibly more than 
one clock cycle) and then changes back to 00. A soda costs 80 cents. The system displays the 
deposited amount on a 12-bit output D. TI1e system has a s ingle-bit input S coming from a 
button. If the deposited amount is less than the cost of a soda, S is ignored. Otherwise, if the 
button is pressed, the system releases a single soda by setting a single-bit output R to 1 for 
exactly one clock cycle, and the system deducts the soda cost from die deposited amount. 

5.5 Create a high-level slate machine that initializes a 16x32 register file's contents to Os, begin
ning the initialization when an input rst becomes 1. The register file docs 1101 have a clear 
input; each register must be individually written widl a 0. Do not define 16 states; ins tead, 
declare a local storage item so that only a few states need to be defined. 

5.6 Create a high-level state machine for a simple data encryption/decryption device. If a single-bit 
input b is 1, the device stores the data from a 32-bit s igned input /, referring to this as an 
offset value. If b is 0 and another single-bit input e is 1, then the device "encrypts" its input I 
by adding the stored offset value to / , and outputs this encrypted value over a 32-bit signed 
output J. If instead another single-bit input d is 1, dlc device "decrypts" the data on I by sub
tracting the offset value before outputting the decrypted value over J. Be sure to explicitly 
handlc all possible combinations of die three input bits. 

SECTION 5.3: RTL DESIGN PROCESS 

For problems in this section, unless otherwise stated, when converting an HLSM to a con
troller and datapath, derive the controller 's FSM as was done in Figme 5. 16 (i.e., don' t 
implement the FSM further), and only use datapath components from the datapath com
ponent library of Figure 5.21. 



318 5 Register-Transfer level (RTL) Design 

5.7 Create a datapath for the 
HLSM in Figure 5.98. 

5.8 Create a datapath for the 
HLSM in Figure 5.63. 

5.9 For the HLSM in Figure 
5.14, complete the RTL 
design process: 
(a) Create a datapath. 

Inputs-: A, B, C (16 bits); go, rst (bit) 
Outputs-: S (16 bits), P (bit) 
Local registers: sum, Sreg 

sum<5099 

(b) Connect the datapath to 
a controller. 

P:='1' (sum<5099) 

(c) Derive the controller's 
FSM. 

Figure 5.98 Sample high-level state machine. 

5.10 Given the HLSM in Figure 
5.99, complete tJ1c RTL design 
process to achieve a controller 
(FSM) connected witJ1 a datapath. 

5. 11 Given the partial HLSM in Figure 
5.75 for the system of Figure 5.74, 
proceed with the RTL design 
process to achieve a controller 
(partial FSM) connected with a 
data path. 

5.12 Use the RTL design process to 
create a 4-bit up-counter with 
input cnt (1 means count up), 
clear input clr, a terminal count 
output tc, and a 4-bit output Q 

Inputs: start(bit), data(8 bits), addr(8 bits), w_wait(bit) 
Outputs: w_data(B bits), w_addr(B bits), w_wr(bit) 
Local storage: w_datareg(8 bits), w_addrreg(8 bits) 

w_wait' 

w_wait 

w_wr:='1' w_datareg:=data 
w_addrreg:=addr 

Figure 5.99 HLSM. 

indicating the present count. Only use datapath components from Figure 5.2 1. After deriving 
the controller's FSM, implement the controller as a stale register and combinational logic. 

5.13 Use the RTL design process to design a system that outputs the average of the most recent two 
data input samples. The system has an 8-bit unsigned data input /, and an 8-bit unsigned 
output avg. The data input is sampled when a single-bit input S changes from 0 to 1. Choose 
internal bitwidths that prevent overflow. 

5.14 Use the RTL design process to create an alarm system that sets a single-bit output alarm to 
1 when the average tcmpcratw·e of four consecutive samples meets or exceeds a user-defined 
threshold value. A 32-bit unsigned input CT indicates the current temperature, and a 32-bit 
unsigned input WT indicates the warning thrcshhold. Samples should be taken every few clock 
cycles. A single-bit input clr when 1 disables the alarm and the sampling process. Start by 
capturing the desired system behavior as an HLSM, and then convert to a controller/datapath. 

5.15 Use the RTL design process to design a reaction timer system tJrnt measures the time elapsed 
between the illumination of a light and tJ1e pressing of a button by a user. The reaction timer 
has Ulfee inputs, a clock input elk, a reset input rst, and a button input B. It has three outputs, 
a light enable output /e11, a 10-bit reaction lime output rtime, and a slow output indicating that 
the user was not fast enough. The reaction timer works as follows. On reset, the reaction timer 
waits for 10 seconds before illuminating the light by setting fen to 1. The reaction timer then 
measures the length of time in milliseconds before the user presses the button B, outputting 
the time as a 12-bit binary number on rtime. lf tJ1e user did not press the button within 2 
seconds (2000 milliseconds), the reaction timer will set the output slow to I and output 2000 



5.15 Exercises 319 

on rtime. Assume that the clock input has a frequency of I kHz. Do not use a timer compo
nent in the datapath. 

SECTION 5.4: MORE RTL DESIGN 

For problems in dus section, unless otherwise indicated, allowable datapath components 
are from Figure 5.21 and Figure 5.27, and controller design can end after deriving the 
FSM. Use the RTL design process for problems that state the need to "design" a system. 

5.16 Create an FSM that interfaces with the datapath in Figure 5.100. The FSM should use the dat-
apath to compute the average value of the 16 32-bit clements of any array A. Array A is stored 
in a memory, with the first element at address 25. tJ1e second at address 26, and so on. Assume 
that putting a new value onto the address lines M_addr causes the memory to almost immedi
ately output the read data on the M_data lines. Ignore overflow issues. 

M_addr 

i Id ---+--·r--~--. 
i..::Clr - -+-- - • 
s_ld :=i:==~=F==~i::::::t::::::::::J:::::::J s_clr 

i_lt16 
a_ld --+---+- -+--+-------t-- t-- t---1-+' 
a_clr---t-----t==:::t------- r-- --jc:::t--' 

avg_ld ---+--------------,r-~~--, 
avg_clr---+---------------~ 

average 

Figure 5.100 Datapath capable of computing the average of 16 elements of an ainy. 

M_data 

5.17 Design a system that repeatedly computes and outputs the sum of all positive numbers within 
a 512-word register file A consisting of 32-bit signed munbcrs. 

5. 18 Design a system that repeatedly computes and outputs the maximum value found within a reg
ister tile A consisting of 64 32-bit unsigned numbers. 

5.19 Using a timer, design a system with single-bit inputs U and D corresponding to two buttons, 
and a 16-bit output Q which is initially 0. Pressing the button for U causes Q to increment, 
while D causes a decrement; pressing both buttons causes Q to stay the same. If a single 
button is held down, Q should then continue to increment or decrement at a rate of once per 
second as long as the button is held. Assume the buttons are already dcbounccd. Assume Q 
simply rolls over if its upper or lower value is reached. 

5.20 Using a timer, design a display system that reads the ASCII characters from a 64-word 8-bit 
register file RF and w1ites each word to a 2-row LED-based display having 32 characters per 
row, doing so 100 times per second. The display has an 8-bit input A for the ASCII character 
to be displayed, a single-bit input row where 0 or 1 denotes the top or bottom row respec
tively, a 5-bit input col that indicates a column in tJ1e row, and an enable input en whose 
change from 0 to 1 causes the character to be displayed in tJ1e given row and colmnn. The 
system should write RF{O] through RF[ LS] to row O's columns 0 to 15 respectively, and 
Rfll6] to RF{3 1] to row J. 



320 5 Register-Transfer level (RTL) Design 

5.21 Design a data-dominated system that computes and outputs the sum of the absolute values of 
16 separate 32-bit registers (not in a register file) storing signed munbcrs (do not consider how 
those numbers get stored). The computation of the smn should be done using a single equation 
in one state. The computation should be performed once when a single-bit input go changes 
from 0 to 1, and the computed result should be held at the output until the next time go 
changes from 0 to 1. 

SECTION 5.5: DETERMINING CLOCK FREQUENCY 

5.'.?.2 Assuming an inverter has a delay of I ns, all other gates have a delay of 2 ns, and wires have 
a delay of 1 ns, determine the critical path for the full-adder circuit in Figure 4.30. 

5.23 Assuming an inverter has a delay of I ns, all other gates have a delay of 2 ns, and wires have 
a delay of l ns, determine the critical path for the 3x8 decoder of Figure 2.62. 

5.24 Assuming an inverter has a delay of L ns, all other gates have a delay of 2 ns, and wires have 
a delay of 1 us, determine the critical path for the 4xl multiplexer of Figure 2.67. 

5.25 Assuming an inverter has a delay of I ns, and all other gates have a delay of 2 ns, determine 
the critical path for the 8-bit carry-ripple adder, assuming a design following Figure 4.31 and 
Figure 4.30, and: (a) assuming wires have no delay, (b) assuming wires have a delay of I ns. 

5.26 (a) Convert the laser-based distance measw·er's FSM in Figure 5.26 to a state register and 
logic. (b) Assuming all gates have a delay of 2 ns and the 16-bit up-counter has a delay of 5 
ns, and wires have no delay, determine the critical path for d1e laser-based distance measurer. 
(c) Calculate the corresponding maximum clock frequency for the circuit. 

SECTION 5.6: BEHAVIORAL-LEVEL DESIGN: C TO GATES (OPTIONAL) 

5.27 Convert the following C-like code, which calculates the greatest conunon divisor (GCD) of 
the two 8-bit numbers a and b, into a high-level state machine. 

Inputs : byte a, byte b, bit go 

Outputs: byte gcd, bit done 
GCD : 

whi le (1} 

while (!go ) ; 
done = O; 

while ( a != b ) 
if( a > b ) { 

a a - b ; 

e l se 
b = b - a ; 

gcd = a; 
done = l ; 

5.28 Use the RTL design process to convert the high-level state machine created in Exercise 5.27 
to a controller and a datapath. Design the datapath to structure, but design the controller to an 
FSM and then stop. 



5.15 Exercises 321 

5.29 Convert the following C-Iike code, which calculates the maxi1mun difference between any 
two numbers within an array A consisting of 256 8-bit values, into a high-level state machine. 

Inputs : byte a [256], bit go 
Outputs: byte max_diff, bit done 
MAX DIFF: 
while (1) { 

while (!go) ; 
done = O; 

i = 0 ; 
max = O; 

min = 255; II l argest 8-bit value 
while ( i < 256 ) { 

if ( a [i] < min ) { 
min = a [i] ; 

if ( a [i] > max ) { 
max a[iJ; 

i i + 1 ; 

max diff max - min; 
done = l ; 

5.30 Use the RTL design process to convert the high-level state machine created in Exercise 5.30 
to a controller and a datapath. Design the datapath to structure, but design the controller to tan 
FSM and then stop. 

5.3 l Convert the following C-like code, which calculates the number of times the value b is found 
within an array A consisting of 256 8-bit values, into a high-level state machine. 

Inputs : byte a[256], byte b, bit go 
outputs : byte freq, bit done 
FREQUENCY: 
while (1) { 

while ( !go) ; 
done = O; 

i = O; 
freq = O; 
while ( i < 256 ) { 

if ( a [iJ == b ) { 
freq = freq + l; 

done l ; 



322 5 Register-Transfer Level (RTL) Design 

5.32 Use the RTL design process to convert the high-level state machine you created in Exercise 
5.31 to a controller and a datapath. Design the datapath to strucnrre, but design the controller 
to the point of an FSM only. 

5.33 Develop a template for converting a do { } wbil e loop of the following form to a high-level 
state machine. 

do { 

II do whi le statements 

} while (cond) ; 

5.34 Develop a template for convertin g a for () loop of the following form to a high-level state 
machine. 

for (i=start; i<cond; i++) 
{ 

II for statements 

5.35 Compare the time required to execute the following computation using a custom circuit versus 
using a microprocessor. Asswne a gate has a delay of I ns. Assume a microprocessor executes 
one instruction every 5 ns. Assume that n=IO and m=5. Estimates are acceptable; you need 
not design the circuit, or determine exactly bow many software instructions will execute. 

for (i = O; i <n, i++) 

s = 0; 

for (j O; j < m, j ++) 

s = s + c[i]*x [i + j ] ; 

y[iJ s; 

SECTION 5.7: MEMORY COMPONENTS 

5.36 Calculate the approximate number of DRAM bit storage cells that will fit on an IC with a 
capacity of I 0 million transistors. 

5.37 Calculate the approximate number of SRAM bit storage cells that will fit on an IC with a 
capacity of I 0 million transistors . 

5.38 Summarize the main differences between DRAM and SRAM memories. 

5.39 Draw a circuit of transistors showing the internal s tructure for all the storage cells for a 4x2 
DRAM (four words. 2 bits each), clearly labeling all internal components and connections. 

SAO Draw a circuit of transistors showing the internal structure for all the storage cells for a 4x2 
SRAM (four words, 2 bits each), clearly IabeLing al l intemal components and corrnections. 

5.41 Summarize the main differences between EPROM and EEPROM memories. 

5.42 Summarize the main differences between EEPROM and flash memories. 

5.43 Use an HLSM to capture the design of a system that can save data samples and then play them 
back. The system has an 8-bit input D where data appears. A single-bit input S changing from 
0 to 1 requests that the current value on D (i.e. , a sample) be saved in a nonvolatile memory. 
Sample requests will not arrive faster than once per LO clock cycles. Up to 10,000 sampJes can 
be saved, after which sampling requests are ignored. A single-bit input P changing from 0 to 
I causes all recorded samples to be played back- i.e., to be written to an output Q one sample 
at a time in the order they were saved at a rate of one sample per clock cycle. A single-bit 



5.15 Exercises 323 

input R resets the system. clearing all recorded samples. During playback, any sample or reset 
request is ignored. At other times, reset has priority over a sample request. Choose an appro
priate size and type of memory, and declare and use that memory in your HLSM. 

SECTION 5.8: QUEUES (FIFOS) 

5.44 For an 8-word qi1eue. show the queue's internal state and provide the value of popped data for 
the following sequences of pushes and pops: (1) push A, B, C, D, E, (2) pop, (3) pop. (4) push 
U, V, W, X, Y, (5) pop. (6) push Z. (7) pop, (8) pop, (9) pop. 

5.45 Create an FSM describing the queue controller of Figure 5.79. Pay careful attention to cor
rectly setting the full and empty outputs. 

5.46 Create an FSM describing the queue controller of Figure 5.79, but with error-preventing 
behavior that ignores any pushes when the queue is full, and ignores pops of an empty queue 
(outputting 0). 

SECTION 5.9: MULTIPLE PROCESSORS 

5.47 A system S counts people that enter a store, incrementing the count value when a single-bit 
input P changes from 1 to 0. The value is reset when R js 1. The value is output on a 16-bit 
output C, which connects to a display. Furthem1ore, the system has a lighting system to indi
cate the approximate count value to the store manager, tu rning on a red LED (LR=l) for 0 to 
99, else a blue LED (LB=l) for 100 to 199, else a green LED (LG=l ) for 200 and above. 
Draw a block diagram of the system and its peripheral components, using two processors for 
the system S. Show the HLSM for each processor. 

5.48 A system S counts the cycles high of the most recent pulse on a single-bit input P and displays 
the value on a 16-bit output D, holding the value there until the nexf pulse completes. The 
system also keeps track of the previous 8 values, and computes and outputs the average of 
those values on a 16-bit output A whenever an input C changes from 0 to 1. The system holds 
that output value until die next change of C from 0 to 1. Draw a block diagran1 of the system 
and its peripheral components, using two processors and a global register file for the system. 
Show the HLSM for each processor. 

5.49 A keypad needs to be interfaced with a computer. The keypad has a 4-bit output K repre
senting the encoding of the key that was pressed and a single-bit output E that changes from 0 
to 1 when a key is pressed. The computer has a corresponding 4-bit input CK and single-bit 
input CE. However, sometimes the computer is busy with od1er tasks and takes some time to 
receive the key, so it has an output Cree that it sets to 1 for one clock cycle when the key 
value has been received. Design a systems S in between the keypad and computer d1at can 
buffer up to 32 key values while the computer is busy. St.ow a block diagram of S composed 
of two processors and a queue, along with interfaces to the keypad and computer, and show 
HLSMs for each processor. 

SECTION 5.10: HIERARCHY-A KEY DESIGN CONCEPT 

5.50 Compose a 20-input AND gate from 2-input AND gates. 

5.51 Compose a 16xl mux from 2xl muxes. 

5.52 Compose a 4x 16 decoder with enable from 2x4 decoders with enable. 

5.53 Compose a 1024x8 RAM using only 512x8 RAMs. 

5.54 Compose a 512x8 RAM using only 512x4 RAMs. 

5.55 Compose a I024x8 ROM using only 512x4 ROMs. 

5.56 Compose a 2048x8 ROM using only 256x8 ROMs. 

5.57 Compose a 1024x l6 RAM usjng only 51 2x:8 RAMs. 



324 5 Register-Transfer level (RTL) Design 

5.58 Compose a 1024x l2 RAM using 512x8 and 512x4 RAMs. 

5.59 Compose a 640x 12 RAM using only I 28x4 RAMs. 

5.60 *Write a program that takes a parameter N, and automatically builds an N-input AND gate 
from 2-input AND gates. Your program merely needs to indicate how many 2-input AND 
gates exist in each level, from which one could easily determine the connections. 

Chi-Kai started college as 
an engineering major, and 
became a Computer 
Science major due to his 
developing interests in 
algorithms and in net
works. After graduating, 
he worked for a Silicon 
Valley staitup company 
that made chips for com
puter networking. His first 

task was to help simulate those chips before the chips were 
built. For over 10 years now, he has worked on multiple 
generations of networking devices that buffer, schedule, 
and switch ATM network cells and Internet Protocol 
packets. "TI1e chips required to implement networking 
devices arc complex componenl~ that must all work 
together almost petfcctJy to provide the building blocks of 
telecommunication and data networks. Each generation of 
devices becomes successively more complex." 

When asked what skills are necessary for his job, Chi
Kai says "More and more, breadth of one's skill set 
matters more than depth. Being an effective chip engineer 
requires the ability to understand chip architecture (the big 
picture), to design logic, to verify logic. and to bring up 
the silicon in t11c lab. All these parts of the design cycle 
interplay more and more. To be truly effective at one 
particular area requires hands-on knowledge of the others 
as well. Also, each requires very different skills. For 
example, verification requires good software programming 
ability, while bring up requires knowing how to use a logic 
analyzer- good hardware skills." 

High-end chips, like those involved in networking, arc 
quite costly, and require careful design. "The software 
design process and the chip design process are 
fundaincntally different. Software can afford to have bugs 
because patches cai1 be applied. Silicon is a different 
story. TI1e one-time expenses to spin a chip arc on the 
order of $500,000. If t11crc is a show-stopping bug, you 
may need to spend anot11er $500,000. This constraint 
means the verification approach taken is quite 
different-effectively: t11erc can be no bugs." At the same 
time, these chips must be designed quickly to beat 
competitors to the market, making the job "extremely 
challenging and exciting." 

One of the biggest sw·prises Chi-Kai encountered in his 
job is the "incredible importance of good communication 
skills." Chi-Kai has worked in teams ranging from 10 
people to 30 people, and some chips require tcains of over 
LOO people. "Technically outstanding engineers are 
useless unless t11ey know how to collaborate with ot11crs 
and disseminate their knowledge. Chips arc only gelling 
more complex- individual blocks of code in a given chip 
have the same complexity as an entire chip only a few 
years ago. To architect, design, and implement logic in 
hardware requires the ability to convey complexity." 
Futt hcrmore, Chi-Kai points out that "just like any social 
entity, there arc politics involved. For ex<unple, people arc 
worried about aspirations for promotion, frnancial gain, 
and job security. In this greater context, the team still 
must work together to deliver a chip." So, contrary to the 
conceptions many people have of engineers, engineers 
must have excellent people skills, in addi tion to s trong 
technical skills. Engineering is a social discipline. 



6 
Optimizations and Tradeoffs 

6.1 INTRODUCTION 

The previous chapters described how to design digital circuits using straightforward tech
niques. This chapter will describe how to design better circuits. For our purposes, better 
means circuits that are smaller, faster, or consume Jess power. Real-world design may 
involve additional criteria. 

16 transistors 4 transistors 
w 2 gate·delays 1 gate·delay x 
y 

~D-F2 F1 
w 
x 
y 

F1 = wxy + wxy' F2 = wx 

(a) (b) 

20 

!!.? 15 
0 

Q) -.~ ·~ 10 
VI C 

~ 
.:.. 5 

• F1 

• F2 

1 2 3 4 
delay (gate-delays) 

(c) 

figure 6.1 A circuit transformation that improves both size and delay, called an optimization: 
(a) original circuit, (b) optimized circuit, (c) plot of size and delay of each circuit. 

Consider the circuit for the equation involving Fl shown in Figure 6. 1 (a). The cir
cuit's size, asswning two transistors per gate input and ignoring inverters for simplicity, is 
8 * 2 = 16 transistors. The circuit's delay, which is the longest path from any input to the 
output, is 2 gate-delays. We could algebraically transform the equation into that for F2 

shown in Figure 6. l (b). F2 represents the same function as Fl, but requires only 4 tran
sistors instead of 16, and bas a delay of only l gate-delay instead of 2. The transformation 
improved both size and delay, as shown in Figure 6. l (c). A transformation that improves 
all critetia of interest is called an optimization . 

Now consider the circuit for a different function in Figure 6.2(a), implementing the 
equation for Gl. The circuit's size (assuming 2 transistors per gate input) is 14 transistors, 
and the circuit's delay is 2 gate-delays. We could algebraically transform the equation 
into that shown for G2 in Figure 6.2(b), which results in a circuit having only 12 transis
tors. However, the reduction in transistors comes at the expense of a longer delay of 3 
gate-delays, as shown in Figure 6.2(c). Which circuit is better, the circuit for Gl or for 

325 



326 6 Optimizations and Tradeotfs 

A lradeoff 
improves some 
criteria at the 
expe11se of other 
criteria ofi11terest. 
A11 <Jptimizoti<m 
improves all 
criteria ofi111erest, 
or impro1•es some 
of those criteria 
without worse11i11g 
the others. 

w 
x 

w 

14 transistors 
2 gate-delays w---~ 

12 transistors 
3 gate-delays 

G1 =Wx+wy+z 

(a) 

G1 
x 

G2 = w(x+y) + z 

(b) 

G2 

20 

~15 
0 

Cl> Ci) 
.!::! 'iii 10 
(/) c 

! 5 

1 2 3 4 
delay (gate-delays) 

(c) 

Figure 6.2 A circuit transfonnation that improves size but worsens delay, called a tradeoff: 
(a) original circuit, (b) transfom1ed circuit, (c) plot of size and delay of each circuit. 

G2? The answer depends on whether the size or delay criteria is more important. A trans
formation that improves one criteria at the expense of another criteria is called a tradeoff. 

You likely perfonn optimizations and tradeoffs every day. Perhaps you regularly 
commute by car from one city to another via a particular route. You might be interested 
in two criteria: commute time and safety. Other criteria, such as scenery along the route, 
may not be of interest. Jf you choose a new route that improves both commute time and 
safety, you have optimized your commute. lf you instead choose a route that improves 
safety (e.g., avoiding a dangerous intersection) at the expense of increased commute time, 
you have made a tradeoff (and perhaps wisely so). 

Figure 6.3 illustrates optimizations 
versus tradeoffs for three different 
starting designs, involving the criteria of 
delay and size, smaller being better for 
each criteria. Obvious! y, optimizations 
are preferred over tradeoffs, since opti
mizations improve both criteria, or at 
least improve one criteria without wors
ening another c1iteria, as shown by the 
horizontal and vertical arrows in Figure 
6.3(a). But sometimes one criteria can't 

l / 
delay 

(a) 
delay 

(b) 

Figure 6.3 Optimizations (a), versus tradeoffs (b). 

be improved without worsening another criteria. For example, if a car designer wants to 
improve a car's fuel efficiency, the designer may have to make the car smaller- a tradeoff 
between the criteria of fuel efficiency and comfort. 

Some criteria commonly of interest to digital system designers include: 

• Performance: a measure of execution time for a computation on the system. 

• Size: a measure of the number of transistors, or silicon area, of a digital system. 

• Power: a measure of the energy consumed by the system per second, directly 
relating to both the heat generated by the system and to the battery energy con
sumed by computations. 

Dozens of other criteria exist. 
Optimizations and tradeoffs can be made throughout nearly all stages of digital 

design. This chapter describes some common optimizations and tradeoffs for typical cri
teria, at various levels of design. 



6.2 Combinational Logic Optimizations and Tradeoffs 327 

6.2 COMBINATIONAL LOGIC OPTIMIZATIONS AND TRADEOFFS 

Chapter 2 described how to design combinational logic, namely how to convert desired 
combinational behavior into a circuit of gates. Optimization and tradeoff methods can be 
applied to make those circuits better. 

Two-Level Size Optimization Using Algebraic Methods 

In the 1970s/ 
1980s. when 
transistors were 
costly (e.g., cents 
each), logic 
opti111iwtio11 was 
synonymous with 
size 111inimi:zatio11. 
which dominated 
digital design. 
Today 's cheaper 
transistors (e.g .. 
0.0001 cents each} 
make 
optimi:Ations of 
other criteria 
equally or more 
critical. 

Implementing a Boolean function using only two levels of gates- a level of AND gates 
followed by one OR gate-usually results in a circuit having minimum delay. Recall from 
Chapter 2 that any Boolean equation can be written in sum-of-products fom1, simply by 
"multiplying out" the equation- for example, xy ( w+z ) = xyw + xyz. Thus, any Boolean 
function can be implemented using two levels of gates, simply by converting its equation to 
stun-of-products form and then using AND gates for the products followed by an OR gate 
for the sum. 

A popular optimization is to minimize the number of transistors of a two-level logic 
circuit implementation of a Boolean function. Such optimization is traditionally called two
/eve/ logic optimization, or sometimes two-level logic minimization. We'll refer to it as two
level logic size optimization, to distinguish such optimization from the increasingly popular 
optimizations of peiformance and power, as well as from otber possible digital design 
optimizations. 

Optimizing size requires a method to detennine the number of transistors for a given 
circuit. A common method for qujckly estimating the number of transistors: 

• Assumes that every logic gate input requires two transistors. So a 3-input logic 
gate (whether an AND, OR, NAND, or NOR) would require 3 * 2 = 6 transistors. 
The circuits inside logic gates shown in Section 2.4 reveal why two transistors per 
gate input is a common assumption. 

• Ignores inverters when determining the number of transistors, for simplicity. 

The problem of two-level logic size optimization can be viewed algebraically as the 
problem of minimizing !he number of li1eraLs and 1erms of a Boolean equarion 1hat is in 
sum-of-products form. The reason the problem can be viewed algebraically is because, as 
shown in Chapter 2, a stun-of-products Boolean equation can be translated directly to a 
circuit using a level of AND gates followed by an OR gate. For example, the equation 
F = wxy + wxy' from Figure 6.1 (a) has six literals, w, x, y, w, x, and y', and two tenns, 
wxy and wxy' , for a total of 6 + 2 = 8 literals and terms. Each literal and each tenn trans
lates approximately to a gate input in a circuit, as shown in Figure 6.1 (a)- the literals 
translate to AND gate inputs, and the terms translate to OR gate inputs. The circuit thus 
has 3 + 3 + 2 = 8 gate inputs. With two transistors per gate input1 the circuit has 8 * 2 = 
16 transistors. The number of literals and terms can be minimized algebraically: 
F = wxy + wxy' = wx (y+y' } = wx. That equation has two literals, wand x, resulting in 
2 gate inputs, or 2 * 2 = 4 transistors, as shown in Figure 6.1 (b). Note that a one-tenn 
equation does not require an OR gate, so the term is not counted for the transistor esti
mate. Likewise, a one-literal tenn would not require an AND gate and so that literal 
would not be counted. 



328 6 Optimizations and Tradeoffs 

Example 6.1 Two-level log ic size optimization using algebraic methods 

Minimize the number of literals and tem1S in a two-level implementation of the equation 

F ~ xyz + xyz' + X'Y'Z' + X'Y'Z 

Minimization can be done using algebraic transformations: 

F xy ( z + z ' ) + x ' y ' ( z + :z ' ) 

F xy*l + x'y' *1 

F=xy+x'y' 

There doesn't seem to be any further minimization possible. Thus, the equation has been transformed 
from having 12 literals and 4 tenns (meaning 12 + 4 = 16 gate inputs, or 32 transistors), down to 

having only 4 literals and 2 tenns (meaning 4 + 2 "' 6 gate inputs, or 12 transistors). 
• 

The previous example showed the most common algebraic transfomrntion used to 
simplify a Boolean equation in sum-of-products f01m, a transformation that can be 
written as: 

ab + ab' = a (b + b' ) = a* 1 = a 

The transformation is sometimes called combining terms to eliminate a variable, 
and is known formally as the u11iti11g theorem. The previous example applied the trans
formation twice, once with xy being a and with z being b, and a second time with x' y' 
being a and with z being b. 

Sometimes a term must be duplicated to increase opportunities for combining terms 
to eliminate a variable, as illustrated in the next example. 

Example 6.2 Reusing a term during two-level logic size optimization 

Minimize the number of literals and terms in a two-level implementation of the equation 

F = x' y' z ' + x'y'z + x'yz 

You might notice two opportunities to combine tenns to eliminate a variable: 

l : X ' Y'Z' + x ' y ' z = X'Y' 

2: X 1 Y I Z + XI yz : XI Z 

Notice that the term x' y ' z appears in both opportunities, but that tem1 only appears once in the 
original equation. We'll therefore first replicate the tenn in the original equation (such replication 
doesn't change the function, because a ~ a + a) so that we can use the term twice when combin
ing terms to eliminate a variable, as follows: 

F X'Y'Z ' + X' Y'Z + x•yz 

F x'y'z ' + x' y 'z + x' y' z + x •yz 

F ~ x 1 y'( z+z' ) + x'z(y' +y) 

F x'y' + x'z 

• 



6.2 Combinational Logic Optimizations and Tradeoffs 329 

After combining terms to eliminate a variable, the resulting term might also be com
binable with other tenus to eliminate a variable, as shown in the following example. 

Example 6.3 Repeatedly combining terms to eliminate a variable 

Minimize the number of literals and terms in a two-level implementation of the equation 

G = xy'z' + xy•z + xyz + xyz ' 

We can combine the fi rst two terms to eliminate a variable, and the last two tem1s also: 

G xy• {z'+z) + xy (z+z') 

G xy• + xy 

We can combine the two remaining temlS to eliminate a variable: 

G = xy' + xy 

G = x (y' +y) 

G x 

In the previous examples, how did we "see" the opp01tunities to combine te1ms to 
eliminate a variable? The examples' original equations happened to be written in a way 
that made seeing tbe opp01tunities easy- terms that could be combined were side-by
side. Suppose instead the equation in Example 6.1 had been written as 

F = x'y'z + xyz + xy z ' + x 'y' z ' 

That's the same function, but the tetms appear in a different order. We might see that 
the middle two terms can be combined: 

F x'y'z + xyz + xyz' + x' y' z ' 

F x •y• z + xy{ z +z' ) + x 'y' z ' 

F x'y'z + xy + x 'y 'z ' 

But then we might not see that the left and right terms can be combined. We therefore 
might s top minimizjng, thinking that we had obtained a fully minimized equation. 

There is a visual method to help us see opportunities to combine terms to eliminate a 
variable, a method that the next section describes. 

A Visual Method for Two-Level Size Optimization-K-Maps 

Karnatigh Maps, or K-maps for short, are a visual method intended to assist humans to 
algebraically minimize Boolean equations having a few (two to four) variables. They actu
ally are not commonly used any longer in design practice, but nevertheless, they are a very 
effective means for understanding the basic optimization methods underlying today's auto
mated tools. A K-map is essentially a graphical representation of a truth table, meaning a 
K-map is yet another way to represent a function (other ways including an equation, truth 
table, and circuit). The idea underlying a K-map is to graphically place minte11ns adjacent 
to one another if those wntenns differ in one variable only, so that we can actually "see" the 
opportunity for combining terms to eliminate a variable. 



330 6 Optimizations and Tradeoffs 

In a K-map. 
ad;acem cells 
differ in exactly 
one variable. 

K-maps enable 
us to see 
opporrunities to 
combine terms 
ro eliminate a 
variable. 

Three-Variable K-Maps 
Figure 6.4 shows a K-map for the equation 

F = x 1 y 1 z + xyz + xyz' 

which is the equation from Example 6.1 but with 
terms appearing in a different order. The map has 
eight cells, one for each possible combination of 
variable values. Let's examine the cells in the top 
row. The upper-left cell corresponds to xyz=OOO, 

meaning x 'y' z'. The next cell to the right corre
sponds to xyz=OOl , meaning x ' y' z. The next 
cell to the right corresponds to xyz=Oll , meaning 
x 1 yz . And the rightmost top cell corresponds to 
xyz=OlO, meaning x 'yz ' . Notice that the 
ordering of those top cells is not in increasing 
binary order. Instead, the order is ooo, 001, 011, 

010, rather than ooo, 001, 010, 011. The 

+ x'y' z ' 

corresponds notice nol 
toxyz= OOO, I in order 

I 

F yz or x' y' z' I 

I , 
I 

x oo/ 01 11 10 

0 0 0 

0 0 
J \ 

~~---------------------J 
lreat Jell and right 

edges as adjacent too 
Figure 6.4 Three-variable K-map. 

ordering is such that adjacent cells differ in exactly one variable. For example, the cells 
for x ' y' z (001) and x•yz (011) are adjacent, and differ in exactly one variable, 
namely y. Likewise, the cells for x 1 y 1 z ' and xy 1 z 1 are adjacent, and differ only in 
variable x. The map is also assumed to have its left and right edges adjacent, so tbe 
rightmost top cell (010) is adjacent to the leftmost top cell (ooo)- note that those cells 
too differ in exactly one variable. Adjacent means abutted either horizontally or verti
cally, but not diagonally, because diagonal cells differ in more than one variable. 
Adjacent bottom-row cells also differ in exactly one variable. And cells in a column also 
differ in exactly one variable. 

A Boolean function can be represented as a K-map by placing ls in the cells corre
sponding to the function's rninterms. So for the equation F above, ls are placed in ceUs 
corresponding to minterms x' y' z, xyz , xyz •, and x' y' z ' , as shown in Figure 6.4. Os 
are placed in the remaining cells. Notice that a K-map is just another representation of a 
truth table. Rather than showing the output for every possible combination of inputs using 
a table, a K-map uses a graphical map. Therefore, a K-map is yet another representation 
of a Boolean function, and in fact is another standard representation. 

The usefulness of a K-map for size minimization is that, because the map is designed 
such that adjacent cells differ in exactly one variable, then we know that two adjace111 ls 
in a K-map indicate that we can combine the two minierms to eliminate a variable. In 
other words, a K-map lets us easily see when two tem1s can be combined to eliminate a 
variable. Such combining is indicated by drawing a circle around two adjacent 1 s, and 
then writing the term that results after the differing variable is removed. The following 
example illustrates. 



6.2 Combinational Logic Optimizations and Tradeoffs 331 

Example 6.4 Two-level logic size optimization using a K-map F yz 

The term "circle" 
is used eve11 
though the shape 
may be a11 oval or 
orher shape. 

Minimize the number of literals and terms in a two-level 
implementation of the equation 

F = xyz + xyz• + x•y 1 z• + x 1y•z 

Note that this is the same equation as in Example 6.1. The K
map representing the function is shov.rn in Figure 6.5. Adjacent 
ls exist at the upper left of the map, so we circle those ls to 
yield the term x' y ' - in other words, the circle is a shorthand 
notation for x ' y ' z ' + x' y' z = x' y ' . Likewise, adjacent 
l s exist at the bottom right cell of the map, so we draw a circle 
representing xyz + xyz ' ""xy. T11us, F "" x' y ' + x y . 

x 00 01 11 10 

0 0 0 

0 

x'y' xy 

Figure 6.5 Minimizing a three
variable function using a K-map. 

• 
Recall from Example 6.3 that sometimes terms can be repeatedly combined to elim

inate a variable, resulting in even fewer terms and literals. That example can be redone 
using a different order of simplifications as follows: 

G = xy•z• + xy'z + xyz + xyz' 

G x(y' z '+ y ' z + yz + yz ' ) 

G x (y' (z'+z) + y{z+z')) 

G x (y' +y) 

G = x 

Notice that the second line ANDs x with the OR of all possible combinations of vari
ables y and z. Obviously, one of those combinations of y and z will be true for any 
values of y and z, and thus the subexpression in parentheses will always evaluate to 1 , as 
was algebraically affirmed in the remaining lines above. 

In addition to helping us see when rwo min- G yz 
terms can be combined to eliminate a variable, K- x 
maps provide a graphical way to see when four 
minterms can be combined to eliminate two vari-
ables, as done above for G. We need to look for four 

0 

00 

0 

01 11 10 

0 0 0 

ls in adjacent cells, where the cells form either a 
rectangle or a square (but not a shape like an "L;o). 
Those four cells will have one variable the same Figure 6.6 Four adjacent ls. 

and all possible combinations of the other two vari-

x 

ables. Figure 6.6 sl1ows the above function G as a three-variable K-map. The K-map has 
four adjacent ls in the bottom row. The four minterms corresponding to those ls are 
xy' z', xy' z , xyz, and xy z ' - note that x is the same in all four min terms, while all 

four combinations of y and z appear in those minterms. A circle drawn around the 
bottom four ls represents the simplification of G shown in the equations above. The result 
is G = x. In other words, the circle is a shorthand notation for the algebraic simplification 
of G shown in the five equations above. 



332 6 Optimizations and Tradeoffs 

Always droll' 1he 
largest circles 
possible Jo cover 
rhe ls in a K-map. 

It 's OK to cover a 
J 1nore than once 
lo minimize 
11111liiple terms. 

Note that circles could have been drawn 
around the left two ls and the right two ls of the 
K-map as shown in Figure 6.7, resulting in G = xy' 
+ xy. Clearly, G can be further s implified to 
x (y' +y) =X. Thus, we should always draw the 
largest circle possible in order to best minimize the 
equation. 

As another example of four adjacent ls, con
sider the equation 

H = x'y'z + x'yz + xy' z + xyz 

Figure 6.8 shows the K-map for that equation's 
function. Circling the four adjacent ls yields the 
minimized equation H = z. 

Sometimes circles need to be drawn that 
include the same 1 twice. Consider the following 
equation: 

I = x'y'z + xy•z • + xy'z 
+ xyz + x yz' 

Figure 6.9 shows the K-map for that equation's 
function. A circle can be drawn around the bottom 
four ls to reduce those four mintenns to just x. But 
that leaves the single 1 in the top row, corresponding 
to minterm x ' y' z. That mintenn must be somehow 
included in the minimized equation, since leaving 
that minterm out would change the function. The 
minterm could be ORed with the equation, yielding 

G yz 

x 00 01 11 10 

0 0 0 0 0 

figure 6.7 Non-optimal circles. 

H yz 

x 

0 

00 

0 

0 

01 11 10 

figure 6.8 Four adjacent Is. 

yz y'z 

x 00 01 11 10 

0 0 0 0 

I = x + x • y • z, but that equation is not minimized Figure 6.9 Circling al twice_ 

because the original equation included minterm 

xy 

z 

x 

xy' z, and xy' z + x 'y' z = (x +x' ) y' z = y' z. On the K-map, a circle can be drawn 
around the top l that also includes the 1 in the cell below. The minimized function is thus 
I= x + y' z. 

Including a 1 twice in different circles doesn' t change the function , because doing 
so is the same as duplicating a min term. Duplicating a rninterm doesn't change the 
function, because a = a + a. The algebraic equivalent of the twice-circled 1 of Figure 
6.9 is: 

I x'y'z + xy •z • + xy'z + xyz + xyz' 

I x'y ' z + xy'z + x y 1 z 1 + xy'z + xyz + xyz' 

I (x'y'z + xy'z ) + (xy'z ' + x y' z + xyz + x y z'} 

I (y ' z ) + ( x ) 

The duplicated mintenn resulted in better optimization. 



Draw the /ewes/ 
c ircles possible , to 
minimize the 
1111mber of terms. 

6.2 Combinational Logic Optimizations and Tradeoffs 333 

On the other hand, there's no reason to circle l s more than once if the ls are already 
included in a minimized tem1. For example, the K-rnap for the equation 

J = x'y'z' + x'y'z + xy'z + xy z 

J yz x'y' y'z 

x 00 01 11 10 

0 0 xz 

0 0 

appears in Figure 6.10. There's no reason to draw the 
circle resulting in the term y ' z. The other two 
circles cover all the ls, meaning those two circles ' 
terms cause the equation to output 1 for alt the 
required input combinations. T he third circle just 
results in an extra term without changing d1e func
tion. Thus, not only should the largest possible 
circles be drawn to cover all the l s, but the fewest 
circles should be drawn too. 

Figure 6.10 An unnecessary term. 

As mentioned earlier, the left and right sides of a K-map are considered to be adja
cent. Thus, circles can be draw11 that wrap around the sides of a K-map. For example, the 
K-map for the equation 

K = xy ' z ' + x y z' + x'y'z 

appears in Figure 6 . 11 . The two cells in the corners K 
with ls are adjacent since the left and right sides of yz 

x'y'z 

x 
the map are adjacent, and therefore one circle can be r-0_0--.-~.rr-1_1-,-_1_0..., 
drawn that covers b-0th, resulting in the tenn xz ' . 0 0 0 0 

Sometimes a 1 does not have any adjacent ls. In 
that case, a circle is drawn around that single 1 , 

resulting in a term that is also a minternl. The term 
x' y' z in Figure 6. 11 is an example of such a term. Figure 6.11 Sides are adjacent. 

A circle in a three-variable K-map mus t involve 
one cell, two adjacent cells, four adjacent cells, or L yz 

eight adjacent cells. A circle can not involve only x 

three, five, six, or seven cells. The circle must repre
0 sent algebraic transfo1mations that eliminate variables 

appearu1g in all possible combinations, since those 
variables can be factored out and then combined to 

1 

00 

0 

r 
1 

01 11 

0 0 

-..., 

1 1 

a 1. Three adjacent cells don't have all combinations figure 6.12 Invalid circle. 
of two variables- one combination is missing. Thus, 

10 

0 

0 

xz' 

the circle in Figure 6.12 would not be valid, since it corresponds to xy' z ' + xy' z + xyz, 
which doesn' t simplify down to one term. To cover that function, two circles are needed, 
one around the left pair of ls, the other around the right pair. 

If all the cells in a K-map have ls, like for the E yz 

function E in Figure 6. 13, the11 there ai·e eight adja- x 
00 01 11 10 

0 1 

1 

cent ls. A circle can be drawn around those eight 
cells. Since thac circle represents the ORing of all 
possible combinations of the function's three vari
ables, and since obviously one of those combinations 
will be true for any combination of input values, the 
equation minimizes to just E = l. figure 6.13 Four adjacent ls . 



334 6 Optimizations and Tradeoffs 

Whenever in doubt as to whether a circle is valid, just remember that the circle 
represents a shorthand for algebraic transformations that combine terms to eliminate 
a variable. A circle must represent a set of terms for which all possible combinations 
of some variables appear while other variables are identical in all terms. The 
changing variables can be eliminated, resulting in a single term without those 
variables. 

Four-Variable K-Maps 
K-maps are also useful for minimizing four-variable 
Boolean functions. Figure 6.14 shows a four-variable 
K-map. Again, notice that every adjacent pair of 
cells in the K-map differs by exactly one variable. 
Also, the left and right sides of the map are consid
ered adjacent, and the top ;md bottom edges of the 
map are also adjacent-note that the left and right 
cells differ by only one variable, as do the top and 
bottom cells. 

The K-map in the figme has been filled in for the 
following equation: 

F = w'xy'z' + w'xy'z + w'x'yz 
+ w'xyz + wxyz + wx'yz 

F yz 

w x 

00 

01 

11 

10 

00 

0 

!.. 1 

0 

0 

01 11 10 

0 1 0 

1 1 0 

0 1 0 

0 1 0 

"'-"" yz 

Figure 6.14 Four-variable K-map. 

The ls in the map can be covered with the two circles shown in Figure 6. 14, 
resulting in the tenns w' xy ' and yz. The resulting minimized equation is therefore 
F = w 'xy' + yz. 

A circle covering eight adjacent cells would rep
resent all combinations of three variables, so 
algebraic manipulation would eliminate all three vaii
ables and yield one tem1. For example, the function in 
Figure 6. 15 simplifies to the single term z as shown. 

Legal-sized circles in a four-variable K-map are 
one, two, four, eight, or s ixteen adjacent cells. Cir
cling all sixteen cells results in a function that 
equals 1. 

Larger K-Maps 
K-maps for five and six variables have been pro
posed, but are rather cumbersome to use effectively. 
We do not discuss them further. 

A K-map can be drawn for a two-variable func
tion, as shown in Figure 6. 16. However, a two
variable K-map isn't particularly useful, because 
two-variable functions are easy to mmmuze 
algebraically. 

G yz 

w x 00 01 11 10 

00 0 ~ 1 0 

01 0 1 1 0 

11 0 1 1 0 

10 0 ~ 1,; 0 

z 

Figure 6.15 Eight adjacent cells. 

F z 
y 0 

'r--~~ 

0 

Figure 6.16 Two-variable K-map. 



6.2 Combinational Logic Optimizations and Tradeoffs 335 

Using a K-Map 
Given any Boolean function of three or four vruiables, the following method summarizes 
how to use a K-map to minimize the function: 

1. Convert the function's equation into sum-of-minterms form. 

2. Place a 1 in the appropriate K-map cell for each minterm. 

3. Cover all the ls by drawing the minimum number of larges£ circles such that 
every 1 is included at least once, and write the corresponding tem1. 

4. OR all the resulting terms to create the minimized function. 

The first step, converting to sum-of-mintenns form, can be done algebraical1y as in 
Chapter 2. Alternatively, many people find it easier to combine steps 1 and 2, by con
verting the function's equation to sum-of-products fonn (where each tenn is not 
necessarily a minterm), and then filling in the ls on the K-map corresponding to each 
term. For example, consider the four-variable function 

F = w'xz + yz + w•xy'z' 

The term w ' xz corresponds to the two lightly 
shaded cells in Figure 6.17, so ls are placed in those 
cells. The term yz corresponds to the entire dark-shaded 
column in the figure. The term w' xy' z ' corresponds to 
the single unshaded cell shown Qn the left with a 1. 

Minimization would proceed by covering the ls 
with circles and ORing all the terms. The function in 
Figure 6.17 is identical to the function in Figure 6. 14. 
for which the obtained minimized equation was 
F= w' xy' + yz. 

Example 6.5 Two-level logic size optimization using a three-variable 
K-map 

Minimize the following equation: 

G = a + a ' b ' c ' + b ( c • + be ' ) 

Let's begin by converting the equation to swn-of-products: 

G = a + a 1b 1c' + be' + be' 

We place ls in a three-variable K·map corresponding to 
each term as in Figure 6.18. The bottom row corresponds to 
the tenn a, the top left cell to term a ' b ' c ' , and the right 
column to the tenn be ' (which happens to appear twice in 
the equation). 

We then cover the l s using the two circles shown in 
Figure 6.19. ORing the resulting terms yields the mini
mized equation G = a + c I • 

F yz w'xz yz 
wx 00 10 

00 0 0 

•N 0 1 1 0 
>. x 
3 11 0 0 0 

10 0 0 0 

Figure 6.17 w' xz and y z terms. 

G be 

a 00 01 11 10 

0 1 0 0 1 

1 1 1 1 1 

figure 6.18 Tem1s on the K· map. 

G be 

a 

0 

Figure 6.19 A cover. 

c' 

a 

• 



336 6 Optimizations and Tradeoffs 

Example 6.6 Two-level logic size optimization using a four-variable K-map 

Minimize the following equation: 

H = a'b' (cd' + c'd') + ab'c'd' + ab'cd' + a'bd + a'bcd ' 

Converting to sum-of-produces form yklds 

H = a'b'cd ' + a'b'c ' d' + ab'c'd' + ab'cd' + a'bd + a'bcd' 

We fill in the l s corresponding to each tem1, resulting in 
the K-map shown in Figure 6.20. The tem1 a' bd corre
sponds to the two cells whose l s are in italics. All the 
other tenns are minterms and thus correspond to one 
cell. 

We cover d1e l s us ing circles as shown. One "cir
cle" covers fue four corners, resulting in fue term b 'd'. 
That circle may look strange, but remember that the top 
and bottom cells are adjacent, and the left and right cells 
are adjacent. Another circle results in the tenn a 'bd, 
and a iliird circle results in fue term a' be. The mini
mized two-level equation is therefore: 

H = b 'd' + a'bc + a ' bd 

H cd 

ab 

Figure 6.20 K-map example. 

b'd' 

a'bc 

a'bd 

There can be many different minimized equations for the same function. For 
example, note the balded 1 in Figure 6.20. We covered that 1 by drawing a circle that 
included t he 1 to the ]eft, yielding the term a' be. Alternatively, we could have drawn a 
circle that included the 1 above, yielding the term a' c d ' , resulting in the minimized 
equation 

H = b 1 d 1 + a 1 cd 1 + a 1 bd 

Not only does that equation represent the same function as the previous equation, that 
equation would also require the same number of transistors as the previous equation. 
Thus, we see that there may be multiple mi1timized equations that are equally good. 

Don't Care Input Combinations 

Sometimes, certain input combinations, known as don't care combinatfons, of a Boolean 
function are guaranteed to never appear. For those combinations , we don't care whether 
the function outputs a 1 or a o, because the function will never actually see those input 
values- the output fo r those inputs just doesn't matter. As an intuitive example, jf you 
become ruler of the world, will you live in a pa.lace or a castle? The output (your answer) 
doesn't matter, because the input (you becoming mler of the world) is guaranteed to 
never happen. 

Thus. when given a don't care input combin ation, we can choose whether to output a 1 

or a o for each input combination, such that we obtain the best minimization possible. We 
can choose whatever output yields the best minimization, because the output for those don't 
care input combinations doesn't matter, as those combinations simply won't happen. 



6.2 Combinational Logic Optimizations and Tradeoffs 337 

Algebraically, don' t care terms can be jntroduced into an equation during algebrruc 
minimization to create the opportunity to combine terms to eliminate a variable. As a 
simple example, consider a function F = xy' z ' , for which it is also guaranteed that the 
terms x 'y' z ' and xy' z can each never evaluate to 1. Notice that introducing the first 
don' t care tem1 to the equation would result in F = xy 1 z 1 + x 1 y 1 z 1 = (x+x 1 

) y 1 z 1 = 
y' z'. Thus, introducing that don't care term x' y ' z' into the equation yields a minimi
zation benefit. However, continuing by introducing the second don't care term does not 
yield such a benefit, so there is no need to introduce that term too. 

In a K-map, don't care input combinations can be F yz y'z' 

easily handled by placing an x in a K-map for each don't x 
care minterm. The Xs don't have to be covered with circles, 
but some Xs can be covered if doing so enables drawing 
bigger circles while covering the ls, meaning fewer literals 
will appear in the term corresponding to the circle. The 

0 

1 

oo I 01 

x 0 

1 x 

11 10 

0 0 

0 0 

above function F can be converted to the K-map shown in Figure 6.21 K-map with don' t 
Figure 6.21, having a 1 corresponding to xy' z ' when the cares. 
function must output 1, and having two Xs corresponding to 
x' y ' z ' and xy' z when the function may output 1 if that helps minimize the ftmction. 
Drawing a s ingle circle results ju the minimized equation F = y' z • . (Be careful in this 
discussion not to confuse the uppercase X, corresponding to a don' t care, with the lower
case x, correspondi11g to a variable.) 

Remember, don't cares don't have to be cov-
erecl. The cover in Figure 6.22 gives an example of a F yz y'z' unneeded 

wasteful use of don't cares. The circle covering the x 

bottom X, yielding term xy 1 , is not needed. That 
term is not wrong, because we don't care whether 
the output is 1 or o when xy ' z evaluates to 1. But 

0 

1 

00 

x 

1 

01 11 10 

0 0 0 

x 0 0 
that term yields a larger circuit because the resulting xy' 

equation is F = y' z' + xy ' . Since we don't care, it Figure 6.22 Wasteful use of Xs. 

is better to make the output o when xy' z is 1 to 
yield a smaller circuit. 

Example 6.7 Two-level logic size optimization with don't cares on a K-map 

Minimize the following equation 

F = a 1 bc 1 + abc 1 + a ' b'c 

given that terms a' be and abc are don' t cares. Intuitively, those don ' t cares mean that be can 
never be 11. 

We begin by creating the 3-variable K-map in Figure 6.23. 
We place ls in the three cells for the function's minterms. We 
then place Xs in the two cells for the don't cares. We can cover 

the upper-left 1 using a circle that includes an X. Likewise, 
including the two Xs in a circle covers the two ls on the right 
with a bigger circle. Tbe resulting minimized equation is F = 
a'c + b. 

F be a'c b 
a 00 01 

0 0 

0 0 

Figure 6.23 Using don't cares. 



338 6 Optimizations and Tradeotfs 

Without don' t cares, the equation would have minimized to F =a' b ' c +be'. A~swning two 
transistors per gate input ai1d ignoring inverters, the equation minimized without don't cares would 
require (3+2+2) * 2 = 14 traJJsistors (3 gate inputs for the first AND gate, 2 for the second AND gate. 
and 2 for the OR gate, times 2 transistors per gate input) . In contrast, the equation minimized with 
don't cares requires only (2 + 0 + 2)*2 = 8 tmnsistors. 

Example 6.8 Don't care input combinations in a sliding 
switch example 

Consider a s liding switch shown in Figure 
6 .24 that can be in one of fi ve positions, with 
three outputs x, y, and z indicating the posi
tion in binary. So xyz can take on the values 
of 001, 010, 011, 100, and 101. The 
othe r values for xyz are not possible, namely 

1 2 3 4 5 

••••• 1- r 1- 1 
x 

y 

z 

2,3,4, 
detector 

Figure 6.24 Sliding switch example. 

• 

G 

the values 000, 110, and 111, meaning or x' y' z', xyz'. and xyz. We wish to design combi
national log ic, with x, y, and z inputs, that outputs 1 if the switch is in posit ion 2, 3, or 4, corre
sponding to xyz values of 010, 011, or 100. 

A Boolean equation describing the desired log ic 
is: G = x' yz' + x' yz + xy' z ' . We can minimize 
the equation using a K-map as shown in Figure 6.25. 
The minimized equation that results is: G = xy 1 z ' + 
x•y. 

However, if don't cares arc cons idered, a s impler 
minimized equation can be obtained. In particular, we 
know that none of the three minterms x ' y' z ' , 
xyz ' . and xyz can ever be true, because the switch 
can only be in one of the above-stated five positions. 
So it doesn ' t matter whether a c ircuit outputs a 1 or a 0 
for those three other minterms. 

We can include these don't care input combina
tions a~ Xs on the K-map as shown in Figure 6.26. 
When covering the ls in the top right, a larger circle 
can now be drawn, resulting in the term y. When cover
ing the 1 at the bo ttom left, a larger circle can also be 
drawn, resulting in the term z ' . Although all Xs were 
covered in this example, recall that not all Xs need be 
covered. TI1e minimized equation that results is: 

G=y +z' . 

G yz 

x 00 01 11 10 x'y 

0 0 0 

Figure 6.25 Without don't cares. 

G yz y 
x 

0 

Figure 6.26 With don't cares. 

That minimized equation using don't cares looks a lot different than the minimized equation 
without don't cares. But keep in mind the c ircuit still works the same. For example, if the switch is in 
position 1, then xyz will be 001, so G = y + z' evaluates to 0 as desired. 

• 
Several common situations lead to don' t cares. Sometimes don ' t cares come from 

physical Limits on the inputs-a switch can't be in two positions at once, for example. ff 
you've read Chapter 5, then you may realize that another common situation where don't 



6.2 Combinational Logic Optimizations and Tradeoffs 339 

cares arise is in the controller of a datapath. If the controller isn't reading or writing to a 
particular memory or register file in a given state, then it doesn't matter what address 
appears at the memory or register file during that state. Likewise, if a mux feeds into a 
register and the controller isn't loading the register in a given state, then the mux select 
value is a don't care in that state because it doesn't matter which mux data input passes 
through the mux during that state. If a controller isn't going to load the output of an ALU 
into a register in a given state, then it doesn't matter what fu11ction the ALU computes 
during that state. 

Don't cares must be used with caution. The criteria of circuit size usually has to be 
balanced with other criteria, like reliable, error-tolerant, and safe circuits, when deciding 
whether to use don't cares. We must ask ourselves- is it ever possible that the input com
bination might occur, even in an error situation? And if it is possible, then should we care 
what the circuit outputs in that situation? 

Automating Two-Level Logic Size Optimization 

Visual Use of K-Maps Is Limited 

Although the visual K-map method is helpful in 
two-level optimization of three- and four-variable 
functions, the visual method is unmanageable for 
functions with many more variables. One problem 
is that we can't effectively visualize maps beyond 
5 or 6 variables. Another problem is that humans 
make mistakes, and might accidentally not draw 
the biggest circle possible on a K-map. Further
more, the order jn which a designer begins 
covering ls may result in a function that has more 
terms than would have been obtained using a dif
ferent order. For example, consider the function 
shown in the K-map of Figure 6.27(a). Starting 
from the left, a designer might first draw the circle 
yielding the term y' z ' , then the circle yielding 
x' y', then the circle yielding yz, and finally the 
circle yielding xy, for a total of four terms. The K
map in Figure 6.27(b) shows an alternative cover. 
After drawing the circle yielding the term y' z ' , 

the designer draws the circle yielding x' z, and 
then the circle yielding xy. The alternative cover 
uses onJy tluee terms instead of four. 

yz 

x 

0 
(a) 

y'r 

yz 

x 

0 
) (b 

1 

J 

y'z' 

00 

00 

1 

1 

01 11 10 

0 

x'y' yz xy 

01 11 10 

V" 1 1 0 
"-

0 1 1 "\ 
.) 

I 
x' z xy 

Figure 6.27 A cover is not 

necessarily optimal: (a) a four-term 
cover, and (b) a three-tem1 cover of 
the same function . 

Concepts Underlying Automated 1\vo-Level Size Optimization 
Because of the above-mentioned problems, two-level logic size optimization is done pri
marily using automated computer-based tools executing heuristics or exact algorithms. A 
heuristic is a problem solving method that usually yields a good solution, which is ideally 
close to the optimal, but nor necessarily optimal. An exact algorithm, or just algotithm, is a 



340 6 Optimizations and Tradeoffs 

"£xpa11di11g" 
seems like the 
wrong word to 
de!>cribe changing 
xyz toxy, 
because the tem1 
gets smaller. But 
xy coven more 
mintenns, so it is 
expanded. The K
map visuali::.ation 
shau/d make this 
poillt c/ear-xy ·s 
circle is biggec 

problem solving method that yields the optimal solution. An optimal solution is as good as 
or better than any other possible solution with respect to the criteria of interest. 

This section now defines some concepts underlying heuristics and exact algorithms 
for two-level logic size optimization. Those concepts will be illustrated graphically on K
maps, but such illustration is only intended to provide the reader with an intuition of the 
concepts- automated tools do nor use K-maps. 

Recall that a function can be written as a sum- F 
yz 

of-minterms equation. A minterm is a product tenn 
that includes all the function's variables exactly 
once, in either true or complemented form. The on
set of a Boolean fw1ction is the set of minterms that 
define when the function should evaluate to 1 (i.e., 
when the function is "on"). Cons ider the function 
F = x 'y' z + xyz ' + xyz , whose K-map repre
sentation is shown in Figure 6.28. F's on-set is 
{x 'y' z, xyz, xyz' } . The off-set of a Boolean 
function consists of all the minterms that define 
when the function should evaluate to 0. F's off-set 

x 

0 

00 

0 

0 

xyz 

xyz' 
xy 

Figure 6.28 Minterms (the three 
smaller circles) and implicants (all the 
circles). 

is { x' y' z ', x' yz ' , x 'yz, xy' z ' , xy' z} . Using compact min terms representation (see 
Section 2_6), the on-set is { 1,6, 7} and the off-set is { 0,2,3,4 ,5}. 

An implicant is a product term that may include fewer than all the function's vari
ables, but is a term tlrnt only evaluates to 1 if the fw1ction should evaluate to L The 

function F above has four implicants: x' y' z, xyz ' , xyz, and xy. Graphically, an impli
cant is any legal (but not necessarily the biggest possible) circle on a K-map, as shown in 
Figure 6.28. All minterms are obv iously implicants, but not all implicants are minterms. 

An implicant covers a minterm if the implicant evaluates to 1 whenever the minterm 
does. Implicant xy covers minterms xyz' and xyz of function F. Graphically, an impli
cant's circle includes the ls of the covered minterms. Replacing minterms in an equation 
by an implicant that covers those mintenns does not change the function. For function F, 

xyz' + xyz can be replaced by xy because xy covers those two minterms. A set of impli
cants that covers the un-set of a function (and covers no other mintenns) is known as a 
cover of the function or function cover. For the above function, one function cover is 
x' y' z + xyz + xyz' . Another cover is x 'y' z + xy. Yet another cover is x 'y' z + xyz 
+ xyz '+ xy. 

Removing a variable from a term is known as expanding the term, which is the same 
as expanding the size of a circle on a K-map. For example, the term xyz can be expanded 
by removing z, leadi11g to the term xy. If the original term is an in1plicant of a function, a 
new term obtained by expanding the original term may or may not be an implicant of the 
function. For example, for function F in Figure 6.28, expanding the tenn xyz to the term 
xy results in an implicant of the function. Expanding the tenn xyz • to xy also results in 
an implicant (the same one). But expanding xyz to xz (by eliminating y) does not result 
in an implicant- xz covers minterm xy' z , which is not in the function 's on-set. 

A prime implicant of a function is an in1plicant with the property that if any variable 
were eliminated from the implicant, the result would be a tem1 covering a minterm not in 
the function's on-set; a prime implicant cannot be expanded into another implicant. 
Graphically, a prime implicant corresponds to circles that are the largest pos -



6.2 Combinational Logic Optimizations and Tradeoffs 341 

sible-enlarging the circle further would result in covering Os, which changes the 
function. ln Figure 6.28, x 1 y' z and xy are prime implicants. Removing any variable 
from implicant x 'y' z would result in a term that covers a minterm that is not in the on
set. Removing any variable from implicant xy would also result in a term that covers 
minterms not in the on-set. On the other hand, xyz is not a prime implicant, because z 
can be Jemoved from that implicant without changing the function; xy covers minterms 
xyz and xyz ' , both of which are in the on-set. Likewise, xyz' is not a prime implicant, 
because z 1 can be removed. There is usually no need to cover a function with anything 
other than prime implicants, because a prime implicant achieves the same function with 
fewer literals than non-prime implicants. This is equivalent to saying that we should 
always dJaw the biggest circles possible in K-maps. 

A11 essential prime implicant is a prime implicant 
that is the only prime implicant that covers a particular 
minterm in a function's on-set. Graphically, an essen
tial prime implicant is the only circle (the largest 
possible, of course, since the circle must represent a 
prime implicant) that covers a particular 1. A nones
sential prime implicant is a prime implicant whose 
covered minterms are also covered by one or more 
other prime implicants. Figure 6.29 shows a function G 

that has four prime implicants, but only two of which 
are essential. x 'y ' is an essential prime implicant 
because it is the only prime implicant tliat covers 

not essential 
G yz y'z 

x 00 01 11 

0 0 

0 

'Y(y' 
essential xz 

not essential 

10 

0 

xy 
essential 

Figure 6.29 Essential prime 
implicants. 

minterm x' y ' z '. xy is an essential prime implicant because it is the only prime impli
cant that covers minterm xyz 1 • y' z is a nonessential prime implicant because both of its 
covered mintem1s aJe covered by other implicants (those other prime implicants may or 
may not be essential prime implicants). Likewise, xz is not essential. 

For the earlier function F in Figure 6.28, x' y' z is an essential prime implicant 
because it is the only prime implicant covering x 'y' z. xy is also an essential prime 
implicant because it is the only prime implicant that covers xyz (and likewise the only 
prime implicant that covers xyz ' ). 

The significance of essential prime implicants is that each essential prime implicant 
must be included in a function's cover, otherwise there would be some required minterms 
that would not be covered by any prime implicant. On the other hand, each nonessential 
prime implicant may or may not be included in function 's cover. In Figure 6.29, neither 
of the nonessential prime implicants, y' z and xz, must appear in the function 's cover. Of 
course, in this case, one of them must appear in the function cover in order to cover 
minterm xy' z (the bottom left 1 in the K-map), but neitJ1er of them individually is 
essential. 

The Tabular Method (Quine-McCluskey) 
Given the notions of prime implicants and essential pr ime implicants, an automatable 
approach for two-level logic s ize optimization is shown in Table 6.1, known as the 
tabular method. The method was originally developed by Quine and McCluskey and is 
commonly referred to as the Quine-McCluskey method. The method begins with a func
tion's minterms, which can be obtained algebraically from any equation describing the 



342 6 Optimizations and Tradeoffs 

TABLE 6.1 Automatable tabular method for two-level logic size optimization. 

Step Description 

Determine prime implicams Starting with mintenn implicants. methodically compare all pairs (actually, all 
pairs whose numbers of uncomplemente<I literals differ by one) to find 
opportunities to combine tem1s to eliminate a variable, yielding new implicants 
with one Jess literal. Repeat for new implicants. Stop when no implicants can be 
combined. All implicants not covered by a new implicant are prime implicants. 

2 Add essential plime implicants 
to the function's cover 

Find every mintenn covered by only one prime implicant, and denote that prime 
implicant as essential. Add essential prime implicants to the cover, and mark all 
mintenns covered by those implicants as already covered. 

3 Cover remaining minterms with Cover the remaining minterms using the minima] number of remaining prime 
nonessemial prime implicants implicants. 

function as shown in Chapter 2. The first step of the tabular method is to determine all 
prime implicants of the function by methodically comparing all pairs of implicants 
(starting with mintem1s) to find opportunities to combine terms to eliminate a variable. 
The second step finds the essential prime implicants among those prime implicants and 
includes them in the function's cover (because by definition, essential prime implicants 
must be included in the cover), and notes all the mintenns that are covered by those 
essential prime implicants. The last step covers remaining minterms using the fewest 
remaining prime implicants. The steps will be illustrated using the following function: 

F = x 1 y 1 z 1 + x 1 y 1 z + x •yz + xy'z + xyz' + xyz 

Step 1 finds all prime implicants. It begins by considering each minterm as an impli
cant; function F has 6 such implicants. The step compares every pair of implicants to 
detect opportunities to combine terms to eliminate a variable, as illustrated in Figure 
6.30(a). For example, the first implicant x 'y' z' is compared with each of the other 
implicants. When compared with the second implicant x' y' z , the result is 
x 1 y 1 z 1 + x 1 y 1 z = x' y' . On the other hand, when compared with the third jmpli
cant x' yz, no combining is possible (indicated by the word "No" in the figure); likewise, 
no combining is possible when compared with the other implicants ("No" is not shown 
for those). The second implicant is then compared with each of the third, fourth, fifth, and 
sixth implicants (it has already been compared with the first implicant). And so on for 
each of the remaining implicants. 

In doing these comparisons, one may notice that combining terms to eliminate a vari
able is only possible if the number of uncomplemented literals in the two implicants 
differs by exactly one. For example, x' y' z' has 0 uncomplemented literals and x ' y' z 
has l uncomplemented literal (z), so comparing those terms could possibly lead to them 
being combin ed. On the other hand, comparing x 1 y 1 z ' with x' yz, which has 2 uncom
plemented literals (y and z), makes no sense- those two tem1s can' t possibly differ by 
only l literal and thus they could never be combined. Likewise, comparing implicants 
witJ1 tJ1e same number of tmcomplemented literals makes no sense either because those 
implicants must have two (or more) variables whose complementing differs; e.g., x' yz 
and xy ' z each has 2 uncomplemented literals and thus tbe two terms can't possibly be 



Minterms 
(3-literal 

implicants) 

(3) x'yz 

(5) xy'z 

(6) xyz' 

(7) xyz 

xy'z'+x'.Yz: No 
.. ···•· 

2-literal 
implicants 

...... ~Y~'.~~Y~ .. '.'.' .. ~.Y.'. ...... (o. 1 ) x'y' 

(a) 

6.2 Combinational Logic Optimizations and Tradeoffs 343 

Min terms 
(3-literal 

implicants) 
2-literal 

implicants 
1-literal 

implicants 

o co> "y'r J T ............ co.11 "" 7 
(1) x'y'z J .................... (1,5) y'z .J 

~ 
··················· (1,3) x'z ./ 

(3) x'yz .J .............. (3, 7) yz .J 

2 (5) xy'z J ; ········· (5,7) xz .J 

(6) xyz' J r· (6, 7) xy 

3 (7) xyz .J 
(c) 

t 
Implicant's number of (b) (

d) Prime implicants: 
x'y', xy, z 

uncomp/emented literals 

figure 6.30 First step of tabular method for function F: (a) comparing all pairs of 3 -literal implicants (minterms) for 
opportmuties to combine temis to eliminate a variable, (b) comparison of two terms is actually only necessary if the 
number of uocomplemented literals in the temis differs by one, (c) repeating the comparisons for the new 2-literal 
implicant<;, (d) prime implicants are all implicants not covered by a lower-literal implicant. 

In digital design 
a111omatio11 (and in 
computer 
algorithms in 
general), skippi1rg 
items tha1 ca111101 
possibly lead to a 
good so/11tio11 is 
kno1rn as pnmi11g; 
think of all possible 
sol11tio11s as bei1rg 
the leaves of a 
tree's 
branches-skipping 
items is like 
pruning branches 
of the tree. 

combined. Thus, the minterms can be grouped according to their number of uncomple
mented literals as shown in fjgure 6.30(b), and then comparisons between i tems in 
groups whose number does not differ by exactly one can be skipped. 

Comparing a pair may lead to a new implicant. The implicants in the pair cannot pos
sibly be a prime implicants because each can be expanded into the new implicant. For 
example, x 'y' z ' and x' y' z cannot be prime implicants because each can be expanded 
into implicant x' y ' . A check mark can be placed next to each such implicant as in 
Figure 6.30(b). Furthermore, keeping track of which minterms are covered by which 
implicants will be helpful, so each minterm's number (see compact sum-of-minterms rep
resentation in Chapter 2) is shown in parentheses next to the minterm, and each new 
implicant has in parentheses the list of minterms that the implicant covers. 

The pairwise comparisons repeat for the new implicants; e.g., F's 2-literal implicants 
are compared as in Figme 6.3-0(c). Such comparisons again only compare implicants 
whose number of uncomplemented ljterals differs by exactly one. Furthermore, no com
parison is necessary between implicants having a different number of literals, such as 
between the 3-literaJ and 2-literal implicants , because such comparisons couldn' t possibly 
lead to tem1s being combined, due to the djfferent numbers of literals. 

The comparisons continue until no new implicants result. All unchecked implicants 
must be prime impl icants, because those implicants could not be expanded into another 
implicant. 

Step 2 determines all essential prime implicants and adds them to the function's 
cover. Determinjng essential prime implicants begins by creating a table as in Figme 
6.3l(a) with one column for each prime implicant (as detennined in Step l) and one row 
for each minterm. An "X" is placed in the table if the column's prime implicant covers 



344 6 Optimizations and Tradeoffs 

Prime implicants Prime implicants Prime implicants 

Minterms 
GV xv z 

Minterms (0, 1) 6,7) (1,3i5, Minterms 
@G)G) 

(0, 1) (6i7 1,3,5, 7) 

"(O)-x'y<;t.· ---1-- ... --.-·-x --

.-trJxy'.z.- ---x .. --.. ··--·- -._.--
"(o)-x'y'i"·· _.-x ---.. -----·-r ---
• -(1) xy'.z.- · -· · x _. --. _, -. _. -1· _ .-

- ·(o}1C'V'i:~· · .-x---,-t-· --- -x--

_-(i}xy'.z.- ··x.---f-··- .--... -
(3) x'yz x 

(5) xy'z x 

(6) xyz' x 

(7) xyz x x 

(a) 

•• (·3·),_ ......... , ,.__ __ __ .... _~ • ••. 
"YL - - • - - T 

. . fS)xY!z .• · · ·, -- _ .- -_ -"· __ -X _ ...,.... 
(6) xyz' x 

(b) 

·-{3)'-x:yz-- -.... ,+-· -.. x, •. 

_.(S)xY!z.- ' , __ -- -l.- ,_ .-X _ .-

(t;w·xyz~ -- _, __ ,._ --X--.. -·· ·------
T 

ftrxvz-,_ ·--------X ---''"x-----
(c) 

Figure 6.31 Second step of tabular method for function F: (a) the sole X (underlined) in the second row means that 

only prime implicant x' y ' covers mintcrm x 'y' z , so x ' y' is an essential prime implicant. The prime implicant is 
circled to indicate it being added to F's cover, and all its covered mintcm15' rows are crossed out to indicate those 
mintenns are now covered. (b) The fourth row also has a sole X, so prime implicant z is essential and thus added to 
the cover, and its covered mintemlS' rows are crossed out. (c) Prime implicant xy is also essential, so it is added and 
its rows crossed out. For F, the essential prime implicants cover all the mintem1s, and thus the method's third step is 
not needed. The final cover is F = X 'y' + xy + z. 

the row's minterm; keeping the List of minterm numbers with each prime implicant in 
Step 1 now makes it easy to determine which rninterms are covered by a prime implicant. 

Next, each row is examined to see if only one X exists in the row. Figure 6.3l(a) 
shows that the second row has a sole X, which means that prime implicant x' y' is the 
only prime implicant that covers minterm x 'y 1 z and is therefore an essential p1ime 
implicant. x 'y' is thus added to the function's cover, indicated by being circled. Now 
that x 'y ' is part of the function 's cover, both minterms covered by x' y' are covered 
(indicated by the vertical dotted line), and thus their rows can be crossed out of the table 
as shown. because those minterms no longer need to be considered. 

The search for rows with a sole X continues. A sole X is found in the fowth row, and 
thus prime implicant z is essential and so is added to the function 's cover, and its covered 
mintem1s' rows are crossed out. A sole X is then found in the fifth row, and thus prime 
implicant x y is essential and is similarly added to the cover and its row crossed out. 

Step 3 is to use the fewest remaining prime implicants to cover any remaining mint
erms. However, all mintenns were covered by Step 2; i.e., all rows have been crossed out. 
Thus, for this function, the essential prime implicants completely cover the function. The 
final minimized equation is therefore F = x' y' + xy + z. 

The reader may find it useful to minimize F using a K-map to help understand the 
minimizat ion achieved by the tabular method. 

Don '1 care minterms can be introduced into the tabular method by including them as 
function mintenns during Step 1 , which finds all prime implicants. However, Step 2 



6.2 Combinational Logic Optimizations and Tradeoffs 345 

would only include the function 's on-set mintenns and not the don't care minterms, 

because Step 2 finds essential prime implicants, which only relate to the on-set mintenns. 
Of course, those essential prime implicants may have been more expanded thanks to the 
presence of the don't care min terms in Step l. Likewise, Step 3 would only include on-set 
minterms because only those mintenns must be covered to provide a cover of the func
tion, but again, the prime implicants being used may have been more expanded thanks to 
don't care minterms in Step I. 

Methods that Enumerate All Mirttet ms or 
Compute All Prime Implicants May Be In efficient 
The tabular method works reasonably for functions with perhaps tens of variables. How
ever, for larger functions, just listing all the mintenns could result in a huge amount of 
data. A ftmction of 10 variables could have up to 2 10 minterms- that's 1024 mintenns, 
which is reasonable. But a function of 32 variables could have up to 232 minterms, or up 
to about four biUion minterms. Representing those minterms in a table requires prohibi
tive computer memory. And comparing those mintenns with other minterms could 
require on the order of (four billion)2 computations, or quadrillions of computations (a 
quadrillion is a thousand times a trillion). Even a computer perfonning l 0 billion compu
tations per second would require 100,000 seconds to pe1form all those computations, or 
27 hours. And for 64 variables, the numbers go up to 264 possible rninterms, or quadril
lions of rninterms, and quadrillions2 of computations, which could require a month of 
computation. Functions with 100 inputs, which are not uncommon, would require an 
absurd amount of memory, and many years of computations. Even computing all prime 
implicants, without first listing all minterms, is computationally prohibitive for many 
modem-sized fonctions. 

Iterative Heuristic for Two-Level Logic Size Optimization 
Because enumerating all minterms of a function , or even just all prime implicants, is pro
hibitive in terms of computer memory and computation time for functions with many 
variables, most automated tools use methods that instead iteratively transform the original 
function 's equation in an attempt to find improvements to the equation. Iterative improve
ment means repeatedly making small changes to an existing solution until the decision is 
made to stop, perhaps because changes are no longer yielding improvements, or perhaps 
because the tool has run for enough time. As an example of making small changes to an 
existing solution, consider the equation 

F = abcdefgh + abcdefgh '+ j klmnop 

Clearly, this equation can be reduced simply by combining the first two terms and 
removing variable h, resulting in F = abcdefg + j klmnop. However, enumerating 
the minterms, as required in the earlier-described size optimization methods, would 
have resulted in roughly 1000 minterms and then millions of computations to find the 
prime implicants. Such enumeration and computation are obviously not necessary to 
m1111mize this equation. An iterative improvement approach is better suited to this 
problem. 



346 6 Optimizations and Tradeotfs 

A simple iterative improvement heuristic that 
is reasonably effective uses repeated application 
of the expand operation. The expand operation 
removes a literal fro m a term. Trying all possible 
expands of every term may take too much 
compute time, and thus the heuristic randomly 
chooses which term to expand and randomly 
chooses how to expand that term. For example, 
cons ider the fu nction F = x' z + xy' z + xyz. A 
heuristic might try to expand the term x' z by 
removing x' , or by removing z . Note that 
expanding a term reduces the number of li t
erals- the concept that expanding a term reduces 
the number of literals in a term may take a whi le 
to get accustomed to. Thinking of K-map circles 
may help, as shown in Figure 6.32-the bigger 
the circle, the fewer the resulting literals . An 
expansion is legal if the new term covers only 
minterms in the func tion's on-set, or equivalently, 
does not cover a minterm in the fu nction 's off-set. 
ln other words, an expansion is legal if the new 

yz 

x 00 01 11 10 

0 0 
(a) 

0 0 

xy'z xyz 

yz 

x 00 01 

0 0 
(b) 

0 

xy'z xyz 

Figure 6.32 Expansions of term x' z 
in the fw1ctio11 F = x ' z + xy ' z + 
xyz: (a) legal, (b) not legal (because 
the expanded term covers Os). 

term is s till an implicant of the function. Figure 6.32(a) shows that expanding term 
x' z to z for the given function is legal because the expanded term covers only ls, 
whereas ex panding x ' z to x' is not legal because the expanded term covers at least 
one 0. If an expans ion is legal, the heuristic replaces the ori ginal term by the expanded 
term , and then searches for and removes any other term covered by the expanded term. 
ln Figure 6.32(a), the expanded term z covers terms xy ' z and xyz, so both those latter 
terms can be removed. 

The expand operation was illustrated on a K-map merely to aid in understanding the 
intuition of the operation- K-maps are nowhere to be found in heuristic two-level logic 
size optimization tools. 

As another example, consider the earlier ino·oduced function 

F = abcdefgh + abcdef gh'+ jklmnop 

A heuristic might randomly choose to first try expanding the first term abcdefgh. It 
might randomly try expanding that term to bcdefgh (i.e. , li teral a has been removed). 
However, that term covers the term a' bcdefgh, which covers mintenns that are not in 
the fu nction's on-set, so that expansion is not legal. The heuiistic might try other expan
sions, fi nding them not legal either, until the heuristic comes across the expansion to 
abcdefg (i.e., literal h was removed). That term covers only the minterms covered by 
abcdefgh and abcdefgh', both of which are clearly impl icants because they appear in 
the original function, and thus the new term must also be an impl icant. Therefore, the 
heuristic replaces the first term by the expanded term: 

F = abcdefgfi + abcdef gh'+ jklmnop 



6.2 Combinational Logic Optimizations and Tradeoffs 347 

The heuristic then searches for terms covered by the new expanded term, and removes 
such terms: 

F abcdefgfl + abedefgh' + jklmnop 

F abcdefg + j klmnop 

Thus, using just the expand operation, the heuristic improved the equation. There is no 
guarantee that the heuristic will find the above expansion that yields the size reduction, 
but for a relatively small amount of compute time- far less than required for exact two
level logic size optimization- the heuristic's random search is very likely to find that 
expansion. 

Example 6.9 Iterative heuristic for two-level logic size optimization using expand 

Minimize the following equation, which was also minimized in Example 6.4, using repeated random 
application of the expand operation: 

F = xyz + xyz' + x'y'z' + x' y'z 
In other words. the on-set consists of the min terms { 7, 6, 0, I } , and so the off-set consists of the min
terms { 2, 3, 4, 5 }. 

Suppose the heuristic randomly chooses to expand term xyz. The heuristic may try lo expand 
xyz to xy. ls that a legal expansion? xy covers minterms xyz' (minterm 6) and xyz (minterm 
7), both in the on-set. Thus, the expansion is legal, so the heuristic replaces xyz by xy, yielding 
the new equation 

F = xy~ + xyz' + x'y'z' + x' y'z 
The heuristic then looks for implicru1ls covered by the new implicant xy. xyz' is covered by 

xy, so the heuristic eliminates xyz ' , yielding 

F = x y + JEY!2! ' 1 x' y' z ' + x' y' z 
The heuris tic may continue trying to expand that first term. It may try expanding tl1e term from 

xy lox. The term x covers mintem1s xy' z' (mi nterm 4), xy' z (minlerm 5), xyz ' (minlerm 6), 
and xyz (minterm 7). The term x thus covers minlerms 4 and 5, which ru·e not in the on-set but 
instead are in the off-set. Thal expansion is not legal. The heuristic may try expanding xy to y, but 
again finds that expru1sion is not legal. 

The heuristic might then u·y lo expand next term, x ' y ' z ' , lo x' y ' . That expru1dcd term 
covers minterms x' y' z' (minlerm 0) and x' y' z (minlerm I), both in the on-set, so the expan
sion is legal. The heuristic thus replaces the original term by tl1e expanded term 

F = xy + x'y'~ + x'y'z 

The heuristic searches for other terms covered by the expanded term, and finds tl1at x' y' z is 
covered by x ' y ' , so removes x' y ' z to leave 

F = xy + x , Y' i x , 1 , z 

The heuristic may try expanding the term x' y' further, but will find that neither possible 
expansion (x' , or y') is legal. Thus, the above equation represents the minimized equation found 
by the heuristic. Notice tliat this happens lo be tl1e same result as obtained when minimizing the 
same initial equation in Example 6.4. 

• 



348 6 Optimizations and Tradeoffs 

In the previous example, even though the heuristic generated the optimally minimized 
equation, there is no guarantee that the results from the heuristic will always be optimal. 

More advanced heuristics utilize additional operations beyond just the expand opera
tion. One such operation is the reduce operation, which can be thought of as the opposite of 
expand. The reduce operation adds a literal to a given tem1. A reduction is legal if the equa
tion with the new term still covers the function. Adding a literal to a term is like reducing 
the size of a circle on a K-map. Adding a literal to a term reduces the number of minterms 
covered by the term, hence the name reduce. Another operation is irredundant, which 
removes a term entirely as long as the new equation still covers the ftmction. If so, the 
removed term was "redundant," hence the name in·edundant. 

A heuristic may iterate among the expand, reduce, irredundant, and other operations, 
such as in the following heuristic: Try IO random expansion operations, then 5 random 
reduce operations, then 2 irredundant operations, and tben repeat (jterate) the whole 
sequence until no improvement occurs from one iteration to the next. Modem two-level size 
optimization tools differ mainly in their ordering of operations and number of iterations. 

Recall that this section stated that modern heuristics don' t enumerate all the min
terms of a function's on-set, yet the previous example did enumerate all those 
minterms- actually, the on-set minterms were given in the initial equation. When the on
set minterms are not known, many advanced methods exist to efficiently represent a func
tion's on-set and off-set without enumerating the rnintenns in those sets , and also to 
quickly check if a term covers tenns in the off-set. Those methods are beyond the scope 
of the book, and are instead the subject of textbooks on digital design s ynthesis. 

One of the original tools that performed automated heuristics as well as exact two
level logic optinlization was called Espresso, developed at the University of California, 
Berkeley. The algorithms and heuristics in Espresso formed the basis of many modern 
commercial logic optimization tools. 

Multilevel Logic Optimization- Performance and Size Tradeoffs 

The previous sections discussed two-level logic size optimization. In practice, the speed 
of two levels of logic may not be necessary. Three, four, or more levels of logic may be 
acceptable if those additional levels reduce the amount of required logic. As a simple 
example, consider the equation 

Fl = ab + acd + ace 

This equation can 't be minimized for two-level logic. The resulting two-level circuit is 
shown in Figure 6.33(a). However, algebraic manipulation can be done to yield 

F2 = ab+ ac (d + e ) = a {b + c {d + e )) 

That equation can be implemented with the circuit shown in Figure 6 .33(b). The multi
level logic implementation implements the same function but results in fewer transistors, 
at the expense of more gate-delays , as illustrated in Figure 6.33(c). The multilevel imple
mentation thus represents a tradeojf when compared with the two-level implementation. 

Automated hewistics for multilevel logic optinlization iteratively transform the 
initial function' s equation, similar to the iterative improvement used by automatic heuris
tics for two-level logic size optimization. The multilevel heuristics may optimize one of 
the criteria (size or delay), possibly at the expense of the other criteria. 



22 transistors 
2 gate-delays a 

a 

b b 

a c 
c 
d 

F1 d 

a 
c e 
e 

F1 = ab + acd + ace 
(a) 

6.2 Combinational Logic Optimizations and Tradeoffs 349 

16 Iran sistors 
4 gate-delays 

F2 = a(b+c(d+e)) 
(b) 

F2 

20 
~ 

Q) £ 15 
NJ!l 
'(ii~ 10 

~ 
v 5 

• F1 

• F2 

1 2 3 4 
delay (gate·delays) 

(c) 

Figure 6.33 Using multilevel logic to tradeoff performance and size: (a) a two-level circuit, (b) 
multilevel circuit with fewer transistors but more delay, (c) illustration of the size versus delay 
tradeoff. Nwnbers inside gates represent transistor counts, estimated as 2 transistors per gate input. 

Example 6.10 Multilevel logic optimization 

Minimize the following function's circuit size, at the possible expense of increased delay. by alge
braically manipulating dlc initial equation. Plot the tradeoff of the initial and size-optimized circuits 
with respect to size and delay. 

F l = abed + abeef 

The circuit corresponding to the equation is shown in Figure 6.34(a). The circuit requires 22 transis
tors and has a delay of 2 gate-delays. 

a 
b 
c 
d 

a-+- -. 
b 
c 
e 
1-- -

22 transistors 
2 gate-delays 

F1 

F1 = abed + abcef 
(a) 

18 transistors 
3 gate-delays 

F2 = abc(d + ef) 
(b} 

F2 

1 2 3 4 
delay (gate-delays) 

(c) 

figure 6_34 Multilevel logic to trade off performance and size: (a) two-level circuit, (b) multilevel 
circuit with fewer transistors, (c) tradeoff of size versus delay. Numbers inside gates represent 
transistor counts. 

We can algebraically manipulate the equation by factoring out d1e abc tem1 from the two 
terms, as follows : 

F2 = abed + abcef = abc (d + ef) 

Th~ circuit for that equation is shown in Figure 6.34(b), The circuit requires only 18 transistors, 
but has a longer delay of3 gate-delays. The plot in Figure 6.34(c) shows the size and performance for 

each design. 



350 6 Optimizations and Tradeotfs 

If a circuit already has more than two levels, then sometimes multilevel logic optimi
zatio n c an reduce s ize without increas ing delay, by modifying logic that exists off the 
circuit's critical path. A circuit's critical path is the longest path from any input to the 
circuit's output. 

Example 6.11 Reducing noncritical path size with multilevel logic 

Use multilevel logic to reduce the size of the circuit in Figure 6.35(a), without extending the circuit's 
delay. ote that the circuit initially has 26 transistors. Furthem1ore, the longest delay from any input 
to the output is three gate-delays. That delay occurs through the critical path shown by the dashed 
line in the figure. 

26 transistors 22 transistors 

a 
3 gate-delays 3 gate-delays 

b 
a 25 • F1 

b 
~20 • F2 

c ~ 
c C1l ~ 15 

d F1 N --·- (/) 

e 
-4- : F2 "' ~ 10 

,,.; ~ 5 

f f 1 2 3 4 g g delay (gate-delays} 
F1 = (a+b)c + dig + etg F2 = (a+b)c + {d+e)tg 

(a) (b} (c) 

Figure 6.35 Multilevel optimization that reduces s ize without increasing delay, by altering logic on 
a noncritical path: (a) original circuit, (b) new circuit with fewer transistors but s~une delay, (c) il
lustration of the s ize optimization with no tradeoff of delay. 

The other paths through the circuit arc only two gate-delays. Thus, if we reduce the size of the 
logic for the noncritical paths and extend tJ10sc paths to tJu-ee gate-delays, the overall delay of the 
circuit would be unchanged. The noncritical parts of tbc equation for Fl in Figure 6.35(a) arc itali
cized. We can algebraically modify the noncritical parts by factoring out the tcm1 fg, resulting in the 
new equation and circuit shown in Figure 6.35(b). One of the modified paths is now also three gatc
dclays, so tJ1c circuit now has two equally long critical paths, both having three gate-delays. The 
resulting circuit has only 22 transistors compared to 26 in the original circuit, yet still has tbe same 
delay of three gate-delays, as illustrated in Figure 6.35(c). So overall, we·ve pcrfom1cd a size optimi
zation witJ1 no penalty in perfom1ru1ce. 

• 

Generally, multilevel logic opt1m1zatio n makes use of f actoring, s uc h as 
abc + abd = ab ( c+d) , to reduce the number of gates. 

Multilevel logic optimization is probably more commonly used by modem tools than 
two-level logic optimization. MultiJevel logic optimization is also extensively used by 

automatic tools that map circuits to FPGAs. FPGAs are discussed in Chapte r 7. 



6.3 Sequential Logic Optimizations and Tradeoffs 351 

6.3 SEQUENTIAL LOGIC OPTIMIZATIONS AND TRADEOFFS 

State Reduction 

Chapter 3 described the design of sequential logic, namely of controllers. When creating 
an FSM and converting the FSM to a controller's state register and logic, some optimiza
tions and tradeoffs can be applied. 

State reduction , also known as state min
imization, is an optimization that reduces 
an FSM's number of states without 
changing the FSM 's behavior. Reducing 
the number of states may reduce the size 
of the state register and combinational 
logic that implement the FSM. 

Reducing the number of states is pos
sible when the FSM contains states that 
are equivalent to one another. Consider 
the FSM of Figure 6.36(a), having input x 

and output y. States A and D are equjva
lent. Regardless of whether the present 
state is A or D, the outputs wi!J be iden
tical for any sequence of inputs. For 
example, if the present state is A and the 
input sequence for four clock edges is 
1, o, o, 1, the state sequence will be 
A, B, D , B, so the output sequence will be 
0, 1 , 0, 1. If instead execution starts in D, 

Inputs: x; Outputs: y 

Y=1 

Inputs; x; Outputs; y 

y=1 

if x = 1,0,0, 1 
then y = O, 1,0, 1 

(c) 

Figure 6.36 Equivalent FSMs; (a) originaJ FSM, 
(b) equivalent FSM with fewer states, (c) the 
FSMs are indistinguishable from the outside, 
providing identicaJ output behavior for any input 

the same input sequence wiJI result in a sequence. 
state sequence of D, B, D, B, so the 
output sequence will again be o, 1 , o, 1. Ill fact , for all possible input sequences, tl1e 
output sequence starting from state A wouJd be identical to the output sequence starting 
from state D. States A and D are thus equivalent. Thus, the FSM can be redrawn as in 
Figure 6.36(b). The FSMs in Figure 6.36(a) and (b) have exactly the same behavior- for 
any sequence of inputs, the two FSMs provide exactly the same sequence of outputs. If 
either FSM is encapsulated as a box as in Figure 6.36(c), the outside world cannot distin
guish between the two FSMs based on the generated outputs. 

Two states are equivalent if 

1. both states assign the same values to outputs, AND 

2. for all possible sequences of inputs. the FSM outputs will be the same starting 
from either state. 

If two states are equivalent, then one of the states can be removed from the FSM, and any 
transitions pointing to that state can instead point to the other state. 

For large FSMs, visual inspection to detect equivaJent states is not feasible- a more 
systematic and automatable approach is needed. 



352 6 Optimizations and Tradeoffs 

(b) G1 
Initial groups 

G2 

lnputS'. x: Outputs: y {A, D} {B, C} 

• t Figure 6.37 The . . . --. 
partitioning method for X=O 

A goes to Ar'(G1)'· 
D goes to 0.,(G1).: 

B goes to Dr'(G 1 )'. 
c goes to s:iG2).: 

s tate minimization: (a) . . 
lfli;ent same 

original FSM, (b) initial (a) 
(c) 

groups based on output 
X=1 

A goes to s :(G2l'. 
assignments, (c) che<:king 

y=1 
D goes to B\ G2}/ 

next state's group for each same same 
input value; B and C go to 
states in different groups 
so cannot be equ ivalent, (d) G 1 

New groups 
G2 G3 

(d) new prutition with B 
Inputs; x; Outputs; y 

{A, D} {B} {C} 
and C in different groups, t t t (e) checking next state -. -

A goes to A.'(G1)·. groups again yields no X=O D goes to O..\G1)/ 
One state groups; 

non-equivalent s tates nothing to check 

within a group, so A and D (e) same 
(f) ... 

are equivalent, ( t) new A goes to Br'(G2)·, Done: A and D FSM with D replaced X=1 D goes to B:(G2l/ 
y=1 are equivalent 

by A. same 

State Reduction Using the Partitioning Method 
A partitioning method can be used to find groups of equivalent states in an FSM. The 
method maintains a set of groups where states in different groups cannot be equivalent, 
whereas states in each group might be equivalent. 

The first step of the method is to partition states into groups based on the values they 
assign to outputs- states assigning the same values are placed into the same group. For 
the FSM of Figure 6.37(a), the initial groups are GJ : {A, D} (because A and D each 
outputs y = O) and G2: (B, C} (because each outputs y = 1 ) as shown jn Figure 6.37(b). 

The next step involves checking next states. The states within a group are examined. 
For each possible input value, the next state is listed for each state. If for the same input 
value, two states in a group go to states in different groups, then those two states crumot 
possibly be equivalent. Figure 6.3 7(c) starts with group G 1 (having s tates A and D ) ru1d 
shows that for x :;::; o, A goes to a state in group G 1, and D goes to a state in G 1; both go 
to states in the srune group, GI. For x = 1, A goes to a state in G2, and D goes to a state 
in G2; both go to states in the same group, G2. Thus, A and D might still be equivalent. 
Figure 6.37(c) proceeds to examine states in group G2 {having states B and C) and shows 

that for x = O, B goes to a state in OJ whereas C goes to a state in G2. Thus, B and C 
cannot possibly be equivalent, because for the same input value, they transition to s tates 
that have already been determined to not be equjvalent. 

Upon detecting that two states in a group are not equivalent, the method pa11itions 
the group into subgroups so that states determined to be non-equivalent are in separate 
groups, as in Figure 6.37(d). The step of checking next states then repeats, as shown in 
Figure 6.37(e). This time, the step does not find any non-equivalent states in a group. 
After such a pass through the step, the states within a group are known to be equivalent. 



6.3 Sequential Logic Optimizations and Tradeoffs 353 

For a group of equivalent states, one of the states can be selected to remain in the 
FSM. The other states and their outgoing transitions can be removed, Any transitions 
pointing to those removed states can be redirected to pojnt to the remaining state. Figw-e 
6.37(f) shows that the transition with conctition x ' pointing to state D is redirected to 
point to state A. Note that the transitions leaving a removed state need not be replaced; 
they are guaranteed to already exist on the remaining state, because state equivalence 
means that the remaining state has the same next state for each input value (i.e., the state 
has the same transitions) as did the removed state. 

A11 alternative state reduction method known as an i.mplication table method is com
monly found in digital design textbooks. However, we have found the partitioning method 
to be more intuitive while also being automatable. 

We now provide another example of state reduction. 

Example 6.12 Minimizing states in an FSM using the partitioning method 

This example minimizes the states in the FSM of Figure 6.38(a). The first step partitions the states 
according to their output assignments, yielding Gl={S3, SO, S4 I and G2={ S2, SJ j . 

The next step examines next states for each group. Starting with states in group GI, for X=O, S3 
goes to SJ (GJ), SO goes to S2 (G2), and S4 goes to S4 (Gl). Clearly SO cannot be equivalent to SJ or 
S4, because SO goes to a state in G2, while the S3 and S4 go to states in GI. Likewise, for X=l, SJ 
goes to SO (GI ), SO goes to SJ (G2), and S4 goes to SO (GI ), again showing SO to be non-equivalent 
to SJ and S4. 

Inputs: x; Outputs: y Inputs: x; Outputs: y 

x' 
x 

(a) (b) 

Figure 6.38 FSM state reduction example: (a) original FSM, (b) reduced FSM. 

Thus, the method partitions GI to yield new groups: GJ= {SJ,S4 ), G2,,,{S2,Sl), and GJ,,,{ SO}. 
The method dlen repeats the step that examines next states. For group GI, for X= 0, SJ goes to S3 
(GI), and S4 goes to S4 (GI). For x=l , SJ goes to SO (G3), and S4 goes to SO (CJ). Thus, SJ and S4 
still might be equivalent. For group G2, for X=O, S2 goes to SJ (Cl), and SJ goes to S4 (GJ). For 
x"'l, S2 goes to S2 (G2), and SJ goes to SJ (G2). Thus, SJ and S2 might still be equivalent. Group 
G3 has only one state so dlere is nothing to examine. Thus, this pass drrough the next state step 
found no non-equivalent states. Therefore, states S3 and S4 (which arc in group G/) arc equivalent, 
and states S2 and SJ (which are in G2) are equivalent. The resulting FSM is shown in Figure 6.38(b) . 

• 



354 6 Optimizations and Tradeoffs 

State Encoding 

Inputs; x; Outputs: z 

z=O 
Figure 6.39 A 15-state FSM. Z=1 

x 

~x 
,hz=O 

State reduction is typically performed using automated tools. For smaller FSMs, the 
tools may implement a method similar to the partitioning method. For larger FSMs, the 
tools may need to resort to heuristics to avoid inordinately large numbers of state 
compansons. 

Reducing the number of states does not guarantee a reduction of size of the resulting 
circuit. One reason is because reducing the states might not reduce the number of 
required state register bits- reducing the states from 15 down to 12 does not reduce the 
minimum state register size, which is four in either case. Another reason is because, even 
if the state reduction reduces the state register size, the combinational logic size could 
possibly increase with a smaller state register, due to the logic having to decode the state 
bits. Thus, automated state reduction tools may need to actually implement the combina
tional logic before and after state reduction, to determine if state reduction ultimately 
yields improvements for a particuJar FSM. 

State enc~ding is the task of assigning a unique bit representation for each state in an 
FSM. Some state encodings may optimize the resulting controller circuit by reducing 
circuit size, or may trade off size and performance in the circuit. We now discuss several 
methods for state encoding. 

Alternative Minimum-Bitwidth Binary Encodings 
Previously, we assigned a unique binary encoding to each state in an FSM using the 
fewest number of bits possible, representing a mininmm-bitwidth hillary encoding. If 
there were four states. we used two bits. If there were five, six, seven, or eight states, we 
used three bits. The encoding represented the state in the controller's state register. There 
are many ways to map minimum-bitwidth binary encodings to a set of states. Say we are 
given four states, A, B, C, and D. One encoding is A:OO, B:Ol, C:lO, D:ll. Another 
encoding is A:Ol, B:10, C:ll, D:OO. In fact, there are 4*3*2*1=4 ! (four factorial)= 
24 possible encodings into two bits (4 encoding choices for the first state, 3 for the next 
state, 2 for the next, and I for the last state) . For eight states, there are 8!, or over 40,000, 
possible encodings into three bits. For N states, there are NI (N factorial) possible encod
ings- a huge number for any N greater than 10 or so. One encoding may result in less 
combinational logic than another encoding. Automated tools may try several different 
encodings (but not all N! encodings) to reduce combinational logic in the controller. 



6.3 Sequential Logic Optimizations and Tradeoffs 355 

Example 6.13 Alternative binary encoding for three-cycles-high laser timer 

Example 3.7 encoded states using a straightfor
ward binary encoding, starting with 00, then 

01, then 10, and then 11. The resul ting design 
had 15 gate inputs (ignoring inverters). We can 
try instead the alternative binary encoding 
shown in Figure 6.40. 

Table 6.2 provides the truth table for the 
new encoding, holding the differences from the 
original encoding. 

The truth table yields the following equa

tions for the three combinational logic outputs 
of a controller: 

Figure 6.40 Laser timer s tate diagram with 
alternative binary state encoding. 

x = s 1 + so {note from the table that 
X=l if Sl=l or SO=l) 

nl sl'sOb' + sl'sOb + slsOb ' 
+ s lsOb 

TABLE 61 Truth table for laser timer 
controller with alternative encoding. 

nl = Sl'SO + slsO 

nl = so 

no sl'sO ' b + sl'sOb + sl'sOb' 

no Sl'SO ' b + Sl'sOb + Sl'sOb 
+ sl 'sOb' 

no = sl'b(sO' +sO) + sl'sO(b+b' ) 

no = Sl'b + Sl'SO 

The resulting circuit would have only 8 gate 
inputs: 2 for x. 0 for n l (nl is connected to so directly 
with a wire), and 4 + 2 for no. The 8 gate inputs are 
significantly fewer than the 15 gate inputs needed for 
the binary encoding of Example 3.7. This encoding 
reduces size without any increase in delay, thus repre
senting an optimization. 

One-Hot Encoding 

Off 

Onl 

On2 

On3 

Inputs 

sl so 

0 0 

0 0 

0 1 

0 1 

1 1 

1 l 

1 0 

1 0 

Outputs 

b x nl no 

0 0 0 0 

1 0 0 1 

0 1 1 l 

1 1 1 1 

0 1 1 0 

1 1 1 0 

0 1 0 0 

1 1 0 0 

• 

There is no requirement that a set of states be encoded using the fewest nmnber of bits. 
For example, four states A, B, C, and D could be encoded using three bits instead of 
just two bits, such as A:ooo, B:Oll, C:llO, D:lll. Using more bits requires a larger 
state register, but possibly less logic. A popular encoding scheme is called one-hot 
ellcoding, wherein the number of bits used for encoding equals the number of states, 
and each bit corresponds to exactly one state. For example, a one-hot encoding of four 
states A, B, C, and D uses four bits, such as A:ooo1, B:o o10 , C:o100, D:1000. The 



356 6 Optimizations and Tradeoffs 

main advantage of one-bot encoding is speed-because the state can be detected from 
just one b it and thus need not be decoded using an AND gate, the controller's next 
state and output logic may involve fewer gates and/or gates with fewer inputs, res ulting 
in a shorter delay. 

Example 6.14 One-hot encoding example 

Consider the simple FSM of Figure 6.41, 
which repeatedly generates d1e output 
sequence 0, 1, 1 , 1, 0, 1, 1, 1, etc. A 
straightforward minimal binary encoding is 
shown, which is then crossed out and replaced 
with a one-hot encoding. 

The binary encoding results in the tmth 
table shown in Table 6.3. The resulting equa
tions are: 

nl Sl'SO + slsO' 

no : SO I 

x = sl + so 

The one-hot encoding results in the 
truth table shown in Table 6.4. The resulring 
equations arc: 

n3 s2 

n2 sl 

nl = so 

no = s3 

X = S3 + S2 + Sl 

X=1 X=1 

figure 6.41 FSM for given sequence. 

TABLE 6.3 Truth table using 
binary encoding. 

Inputs Outputs 

sl so nl no x 

A 0 0 0 1 0 

B 0 1 1 0 1 

c j 0 I I j 

D l I 0 0 I 

Figure 6.42 shows the resulting circuits 
for each encoding. The binary encoding TABLE 6.4 Truth table using one-hot encoding. 
yields more gates but. more importantly, 
requires two levels of logic. The one-hot 
encoding in this example requires only one 
level of logic. Notice that the logic to gener
ate the next scare is jusc wires in this example 
(other examples may require some logic). 
Figure 6.42(c) illustrates that the one-hot 
encoding has less delay, meaning a faster 
clock frequency could be used for that cir
cuit. 

A 

B 

c 
D 

s3 

0 

0 

0 

1 

Inputs 

s2 s l so 

0 0 1 

0 1 0 

1 0 0 

0 0 0 

Outputs 

n 3 n2 nl no x 

0 0 1 0 0 

0 1 0 0 1 

1 0 0 0 1 

0 0 0 1 1 



figure 6.4Z Ooe
hot encoding can 
reduce delay: (a) 
minimum binary 
encoding, (b) one
hot encoding, (c) 
though total sizes 
may be roughly 
equal (one-hot 
encoding uses 
fewer gates but 
more flip-flops), 
one-hot yields a 

shorter critical 
path. 

s1 so 

(a) 

6.3 Sequential Logic Optimizations and Tradeoffs 357 

x 

s3 s2 s1 so 

(b) 

~8 :::s 
a. 
.£ 6 
~ 

• binary 

~ 4 one-hot • 

1 2 3 4 
delay (gate-delays) 

(c) 

• 

Example 6.15 Three-cycles-high laser t imer using one-hot encoding 

Example 3.7 encoded states using a 
straightforward binary encoding, start· 
ing with 00, then 01, then 10, and 

then 1 L This example uses a one-hot 
encoding of the four states, requiring 
four bits as shown in Figure 6.43. 

Table 6.6 shows a truth table for 
the FSM of Figure 6.43, us ing the 
one-hot encoding of the states. Not all 
rows are shown, since the table would 
then be too large. 

The last step is to design the 
combinational logic. Deriving equa
tions for each output directly from 
the table (assuming all other input 
combinations are don ' t cares), and 

minimizing those equations algebra
ically, results in the following: 

x = s3 + s2 + s l 

n3 = sz 

n2 "' sl 

nl SO*b 

no sO*b' + s3 

Tilis circuit would require 
3+0+0+2+(2+2) = 9 gate inputs. 

Inputs: b; Outputs: x 

Figure 6.43 One-hot encoding of laser time. 

TABLE 6.6 Truth table for laser timer controller with one· 
hot encoding. 

Inputs Outputs 

s3 s2 sl so b x n3 n2 nl no 

0 0 0 1 0 0 0 0 0 1 
Off 

0 0 0 1 1 0 0 0 1 0 

0 0 1 0 0 1 0 1 0 0 
Onl 

0 0 1 0 1 1 0 1 0 0 

0 1 0 0 0 1 1 0 0 0 
On2 

0 1 0 0 1 1 1 0 0 0 

1 0 0 0 0 1 0 0 0 1 
On3 

1 0 0 0 1 1 0 0 0 1 



358 6 Optimizations and Tradeoffs 

Thus, the c ircuit has fewer gate inputs than the original binary encoding's 15 gate inputs-but one 
must also consider that a one-hot encoding uses more flip-flops. 

More importantly, the circuit wi th one-hot encoding is slightly faster. The critical path for that 
circuit is n o = s O*b 1 + s3. The critical path for the circuit with regular binary encoding is 
n o = sl 'so ' b + slsO '. The regular binary encoded circuit requires a 3-input AND gate 
feeding into a 2-input OR gate, whereas the one-hot encoded circuit has a 2-input AND gate 
feeding in a 2-input OR gate. Because a 2-input AND actually has slightly less delay than a 3-input 
AND gate. the one-hot encoded circuit has a slightly shorter critical path. 

For examples with more states, the critical path reductions from one-hot encoding may be 
even greater, and reductions in logic size may also be more pronounced. At some point, 
of comse, one-hot encoding results in too large a state register- for example, an FSM 
with 1000 states would require a IO-bit state register for a binary encoding, but would 
require a 1000-bit state register for a one-hot encoding, which is probab ly too big to con
sider. In such cases, encodings may be considered that use a number of bits in between 
that for a binary encoding and that for a one-hot encoding. 

Output Encoding 
Output encoding uses the output values 
assigned in a state as the encoding for that 
state. For example, a problem might require 
repeatedly outputting the following sequence 
on a pair of outputs x and y: oo, 11, 10, 0 1.. 

That behavior can be captured using an FSM 
with four states A, B, C, and D, as shown in 
Figure 6.44. A straightforward binary encoding 
for those states would be A:oo, B:Ol , C:10, 
and D:ll., as shown in Figure 6.44. A con
troller for this system will have a two-bit state 
register, logic to determine the next state, and 

Inputs. none; Outputs: x, y 
xy=01 

xy=1 1 XV=10 

Figure 6.44 FSM for given sequence. 

logic to generate the output from the present state. In contrast, output encoding would 
simply use the output values of each state as the encoding of that state, meaning the 
encoding for the example would be A:oo , B:ll, C:lO, and D:Ol. Such an encoding will 
still resul t in a two-bit state register and logic to generate the next state, but there won't 
be logic to generate the output from the present state. 

Output encoding may reduce the amount of logic by eliminating tile logic that gener
ates the outputs from the present state encoding- that logic is reduced to just wires. 

Straightforward output encoding is possible if two conditions are satisfied: 

I . The FSM has at least as many outputs as needed for a binary encoding of the 
states, and 

2. The output values assigned by each state are unique. 

For example, if the FSM in Figure 6.44 had only the one output x, then output 
encoding would not work because there are too few outputs, so condition l above is not 
satisfied. Or, if the four states had output values of oo, 11, 01, 11, output encoding 
would not work because two of the states have output values (i.e., 11) that are not unique. 



6.3 Sequential Logic Optimizations and Tradeoffs 359 

If the number of outputs is less than the nwnber needed for a binary encoding of the 
states, or if the same output values are assigned in different states, a variation of output 
encoding can be used in which "dummy" outputs are added as needed. For example, if 
four states have outputs oo, 11, 01, 11, a dummy output could be appended so that the 
four states have outputs 000, 110, 010, 111. That third output's value is set to ensW'e 
that each state has a unique output value and hence a unique encoding. The dummy 
output is only used for state encoding purposes and never appears at the system's output. 
The first two bits can be directly connected to the outputs. 

In contrast, if the number of outputs exceeds the number needed for a binary 
encoding of the states, then a subset of outputs whose values are unique in each state 
could be used for the state encoding, thus reducing unnecessary state register bits. For 
example, if four states have output values 000011, 000110, 110000, and 011001, then 
the rightmost two bits could be used as the state encoding: 11, 10, oo, and 01. 

Note that output encoding can be used to eliminate controller output glitching as was 
discussed in Section 3.5, due to there being no logic between the state register bits and 
the outputs. 

Even if output encoding is not fully used, using output encoding for as many states as 
possible may still serve to reduce logic. For example, four states with outputs 00, 11, 01, 
11 might encode states as 00, 11, 01, and 10-only the last state's encoding differs from 
the output. 

Example 6.16 Sequence generator using output encoding 

Example 3. JO involve<! design of a sequence gener
ator for the sequence 0001, 0011, 1100, 1000 
on a set of four outputs, as shown in Figure 6.45. 
That example encoded the states using a two-bit 
binary encoding of A :00, B:Ol, C:lO, and D:l 1. 
This example instead uses output encoding. The 
four outputs are more than the minimum of two bits 
needed to encode the four states. Each state's output 
values are also uniqlte. Thus, output encoding can 
be considered for this example. 

Inputs-. none; Outputs: w, x, y, z 

wxyz=0001 wxyz=1000 

wxyz=0011 wxyz=1100 

figure 6.45 Sequence generator FSM. 

Table 6. 7 shows a partial truth table for TABLE 6.7 Partial truth table for sequence 
the sequence generator using output encoding. generator controller using output encoding. 
Notice that the outputs themselves w, x, y, and 
z don't need to appear in the table, as they will Inputs Outputs 
be the same as s3, s2, sl, and SO. We use a 
partial table to avoid having to show aJJ 16 

s3 s2 sl so n3 n2 nl no 

rows, and we assmne that all unspecified rows A 0 0 0 1 0 0 1 1 
represent don't cares. The table leads to the 

B 0 0 1 1 1 1 0 0 following equations for each output: 

n3 = sl + s2 c 1 1 0 0 1 0 0 0 

n2 !! Sl D 1 () 0 0 0 0 0 1 
nl sl'sO 

no sl'sO + s3s2' 



360 6 Optimizations and Tradeotfs 

We obtained those equations by look
ing at all the 1 s for a particular output, and 
visually determining a minimal input equa
tion that would generate those ls and Os 
for the other shown column entries (all 
other output values, not shown, arc don't 
cares). 

Figure 6.46 shows the fmal circuit. 
Notice that there is no output logic- tJ1e 
outputs w, x, y, and z connect directly lo 
tJ1e state register. 

.--~~~~~~~~~~~-+-~W g 11 
.--~~~~~~~~~---1~ x -ocn 

.--~~~~~~~~+-t~ Y c ~ 
z <h 

s3 s2 s1 

1 no 

Compared to the circuit obtained in 
Example 3.10 using binary encoding, tJ1c 
output encoded circuit in Figure 6.46 actu
ally appears to use more transistors, due lo 
using a wider state register. In otJ1cr exam
ples, an output encoded circuit might use 
fewer transistors. Figure 6.46 Sequence generator controller witJ1 

output encoding. 

• 
Whether one-hot encoding, binary encoding, output encoding, or some variation 

thereof results in the fewest transistors or a shorter critical path depends on the example 
itself, Thus, modern tools may try a variety of different encodings for a given problem to 
detennine which works best. 

Moore versus Mealy FSMs 
Basic Mealy Architecture 
The FSMs described in this book have thus far all been a type of FSM known as a Moore 
FSM. A Moore FSM is an FSM whose outputs are a function of the FSM's state. An 
alternative type of FSM is a Mealy FSM. A Mealy FSM is an FSM whose outputs are a 
function of the FSM's states and inputs. Sometimes a Mealy FSM results in fewer states 
than a Moore FSM, representing an optimization. Sometimes those fewer states come at 
the expense of timing complexities that must be handled, representing a tradeoff. 

Recall the standard controller archi-
tectme of Figure 3.60, reproduced in 
Figure 6.47. The architecture shows one 
block of combinational logic, responsible 
for converting the present state and 
external inputs into the next state and 
external outputs. 

Because a Moore FSM's outputs are 
solely a function of the present state (and 
not of the external inputs) , then the archi
tectme can be refined to have two 
combinational logic blocks: the next-state 

Controller 

Combinational 
FSM logic 
inputs s 

m 

m-bit 
elk state register 

N 

Figure 6.47 Standard controller 
architecture- general view. 

0 

FSM 
outputs 

m 



6.3 Sequential Logic Optimizations and Tradeoffs 361 

Meaty FSM adds this 

Output 
0 logic 

FSM 

I 
outputs 

,,,----... , 
'~ ,, Output 

--~ logic 0 
FSM 

outputs 

Next-state FSM Next-state 

inputs logic 
s 

inputs logic 
s 

Sta1e register 

N 

(a) (b) 

Figure 6.48 Controller architectures for: (a) a Moore FSM, (b) a Mealy FSM. 

logic block converts the present state and external inputs into a next state, and the output 
logic block converts the present state (but not the external inputs) into external outputs, as 
shown in Figure 6.48(a). 

In contrast, a Mealy FSM's outputs are a function of both the present state and the 
external inputs. Thus, the output logic block for a Mealy FSM takes both the present state 
and the external FSM inputs as input, rather than just the present state, as shown in Figw-e 
6.48(b)_ The next-stage logic is the same as for a Moore FSM, taking as input both the 
present state and the external FSM inputs. 

Graphically, the FSM output assignments of 
a Mealy FSM would be listed with each trnnsi
tion, rather than each state, because each 
transition represents a present s tate and a partic
ular input value. Figure 6.49 shows a two-state 
Mealy FSM with an input b and an output x. 
When in state SO and b = 0, the FSM outputs 

Inputs. b; Outputs: x 

/x=O 

b/X=1 

x = 0 and stays in state SO, as indicated by the Figine 6.49 A Mealy FSM associates 
transition labeled "b' / x = O". When in state SO outputs with transitions, not with states. 
and b = 1, the FSM outputs x = 1 and goes to 
state SI. The "/" is used simply to separate the 
transition's input conditions from the output assignments- the " /" does not mean 
"divide" here. Because the transition from SJ to SO is taken no matter what the input 
value, the trans ition is listed simply as " / x=O," meaning there is no input condition, but 
there is an output assignment. 

Mealy FSMs May Have Fewer States 
The seemingly minor difference between a Mealy and a Moore FSM, namely that a 
Mealy FSM's output is a function of the state and the current inputs, can lead to fewer 
states for some behaviors when captured as a Mealy FSM. For example, consider the 
simple soda dispenser controller FSM in Figure 6.50(a). Setting d = 1 dispenses a 



362 6 Optimizations and Tradeoffs 

Uke with Moore 
FSMs, we follow 
the convention 
that 1111assis 11ed 
owputs in a 
Mealy FSM state 
diag ram are 
implicitly 
assigned 0. 

Inputs: enough (bit) 
Outputs. d, clear (bit) 

d=1 

elk~ 
rh,• ! Inputs. enough -----'· ....... --

State: I I I W I W j D j I 

Outputs: clea~ ~ 
(a) 

Inputs: enough (bit) 
Outputs. d, clear (bit) 

I d=O, clear= 1 

elk _n_n_rj--fi-n--
Jnputs: enough rn .. __ _ 

State: I I I W I ~ j I I 

Outputs: ele: ~ 
(b) 

Figure 6.50 FSMs for the soda dispenser controller: (a) Moore FSM has actions in s tates, (b) 
Mealy FSM has actions on transitions, resulting in fewer states for this example. 

soda. The FSM starts in state /n il, which sets d = o and sets an output clear= 1 
which clears a device keeping count of the amount of money deposited into the soda 
dispenser machine. The FSM trans itions to state Wait, where the FSM waits to be 
informed, through the enough input, that enough money has been deposited. Once 
enough money has been deposited, the FSM transitions to state Disp, which dispenses 
a soda by setting output d=l , and the FSM then returns to state /n it. (Readers who 
have read Chapter 5 may notice this example is a simplified version of the soda 
machine example in Section 5.2; familiarity with that example is not required for the 
present discussion. ). 

Figure 6.SO(b) shows a Mealy FSM for the same controller. The initial state /nit has 
no actions itself, but rather has a conditionless transition to state Wait that has the initial
ization actions d = o and clear= 1. In state Wait, a transition with condition enough' 
retw11s to state Wait without any actions listed. Another transition with condition enough 
has the action d = 1 , and takes the FSM back to the /nit state. Notice that the Mealy FSM 
does not need the Disp state to set d = 1; that action occurs on a transition. Thus, the 
Mealy FSM has fewer states than the Moore FSM for this example. 

The Mealy state diagram in Figure 6.50(b) uses a convention s imilar to the conven
tion used for Moore FSMs in Section 3.4, namely that any outputs not explicitly assigned 
on a transition are implicitly assigned a o. As with Moore FSMs, we still set an output to 
0 explicitly if the assignment is key to the FSM's behavior (such as the assignment of 
d = o in Figure 6.50(b)). 



6.3 Sequential Logic Optimizations and Tradeoffs 363 

Example 6.17 Beeping wristwatch FSM using a Mealy machine 

Create an FSM for a wristwatch that can display one of four registers by setting two outputs sl and 
so, which control a 4x I multiplexer that passes one of the four registers through. The four registers 
correspond to the watch's present time (slsO=OO), the alann sening (01), the date (10), and a stop
watch (11). The FSM should sequence to the next register, in the order listed above, each time a but
ton b is pressed (asslllne b is synchronized with the clock as to be high for 01tly 1 clock cycle on 
each wlique button press). The FSM should set an output p to 1 each time the button is pressed, 
causing an audible beep to sound. 

Inputs; b; Outputs. s1 , so, p 

b'/s1S0=00, p=O 

b'/s1 s0=01, p=O 

(a) 
b'/s1s0=10, p=O 

b'/s1s0=11, p=O 

Figure 6.51 FSM for a wristwatch with beeping 
behavior (p=l) when button is pressed (b=l) ; 
(a) Mealy, (b) Moore. 

Inputs; b; Outputs; s1 , so, p 

b' 

b' 

b' 

(b ) 
b' 

Figure 6.5 l(a) shows a Mealy FSM describing the desired behavior. Notice that the Mealy FSM 
easily captures the beeping behavior, simply by setting p = 1 on the transitions that correspond to 
button presses. In the Moore FSM of Figure 6.SJ(b), we had to add an extra state in between each 
pair of s tates in Figure 6.51, with each extra state having the action P "' 1 and having a conditionless 
transition to the next state. 

Notice that the Mealy FSM has fewer states dmn d1e Moore machine. A drawback is that we 
aren't guaranteed that a beep will last at least one clock cycle, due to timing issues that we will 
describe. 

• 
Timing Issues with Mealy FSMs 
Mealy FSM outputs are not synchronized with clock edges, but rather can change in 
between clock edges if an input changes. For example, consider the timing diagram 
shown in Figure 6.50(a) for a soda dispenser's Moore FSM. Note that the output d 
becomes 1 nOT righr afrer the input enough became 1, but rather on the .firs! clock edge 
after enough became 1. In conn-as!, the tinting diagram for the Mealy FSM in Figure 



364 6 Optimizations and Tradeoffs 

Viewing the two 
.. o's" in the word 
Moore as states 
may help you 
rem.ember thaI a 
Moore FSM's 
actions occur in 
the states, while 
Mealv is 011 the 
tramitit>ll!. 

6.SO(b) shows that the output d becomes 1 right after the input enough becomes 1. 

Moore outputs are synchronized with the clock; in particular, Moore outputs only change 
upon entering a new state, which means Moore outputs only change slightly after a rising 
clock edge loads a new state into the state register. In contrast, Mealy outputs can change 
not just upon entering a new s tate, but also at any time tliat an input changes, because 
Mealy outputs are a function of both the state and the inputs. We took advantage of this 
fact to eliminate the Disp state from the soda dispenser's Mealy FSM in Figure 6.50(b). 
Notice in the timing diagram, however, that the d output of the Mealy FSM does not stay 
1 for a complete clock cycle. If we are unsure as to whether d's high time is long enough, 
we could include a Disp state in the Mealy FSM. That state would have a single transi
tion, with no condition and with action d = 1 , pointing back to state !nit. In that case, d 
would be 1 for longer than one clock cycle (but less than two cycles). 

The Mealy FSM feature of outputs being a function of states and inputs, which 
enables the reduction in number of states in some cases, also has an undesirable charac
teristic- the outputs may glitch if the inputs glitch in between clock cycles. A designer 
using a Mealy FSM should determine whether such glitching could pose a problem in a 
particular circuit. One solution to the glitching is to insert flip-flops between an asynchro
nous Mealy FSM's inputs and the FSM logic, or between the FSM logic and the outputs. 
Such flip-flops make the Mealy FSM synchronous, and the outputs will change at pre
dictable intervals. Of course, such flip-flops introduce a one clock cycle delay. 

Implementing a Mealy FSM 
A controller to implement a Mealy FSM is 
created in a way nearly identical to that of a con
troller for Moore FSMs as described in Section 

TABLE 6.8 Mealy truth table for soda 
dispenser 

Inputs Outputs 

3.4. The only difference is that when creating a 
truth table, the FSM outputs' values for all the 

s o enough no d c l ear 

/nit rows of a particular s tate won't necessarily be 
identical. For example, Table 6.8 shows a truth 

0 
0 

table for the Mealy FSM of Figure 6.50(b ). Wait 1 

0 
1 

0 

1 

1 
1 

1 

0 

0 
0 

0 

1 

1 
1 

0 

0 Notice that the output d should be o in s tate Wait 1 
~~~~~~~~'--~~~~~-

(so= 1) if enough= o, but should be 1 if 
enoug h = 1. In contrast, in a Moore trnth table, 
an output 's values are identicaJ with.in a given state. Given the truth table of Table 6.8, 
implementing the combinational logic would proceed in the same manner described in 
Section 3.4. 

Combining Moore and Mealy FSMs 
Designers often utilize FSMs that are a combination of Moore and Mealy types. Such a 
combination allows tbe designer to specify some actions in states, and others on transi
tions. Such a combination provides the reduced number of states advantage of a Mealy 
FSM, yet avoids having to replicate a state's actions on every outgoing transition of a 
state. This simplification is really just a convenience to a designer describing the FSM; 
rhe underlying implementation will be the same as for the Mealy FSM having replicated 
actions on a state's outgoing transitions. 



6.4 Uatapath Component Tradeoffs 365 

Example 6.18 Beeping wristwatch FSM using a Inputs: b; Outputs: s1, so. p 
combined Moore/Mealy machine 

Figure 6.52 shows a combined Moore/ 
Mealy FSM describing the beeping wrist

watch of Example 6.17. The FSM ltas the 
same number of states as the Mealy FSM 
in Figure 6.5 l(a), because d1e FSM still 
associates the beep behavior p= 1 with 
transitions, avoiding the need for extra 

states to describe the beep. But the com
bined FSM is easier to comprehend than 
the Mealy FSM, because the assigruncnts 
to s 1 s0 are associated with each state 

railier than being duplicated on every out
going transition. 

b'/p=O 

b'/p:O 

b'/p=O 

Figure 6.52 Combining 
Moore and Mealy 
FSMs yields a simpler 
wristwatch FSM. 

6.4 DATAPATH COMPONENT lRADEOFFS 

Faster Adders 

Figure 6.53 4-bit 
carry-ripple 
adder, with the 
longest path (the 
critical path) 
shown. 

Chapter 4 created several components that are useful in datapaths. That chapter created the 
most basic, easy-to-understand versions of those components. Th.is section describes 
methods to build faster or smaller versions of some of those components. 

Adding two numbers is an extremely common operation in digital circuits, so it makes 
sense to try to create an adder that is faster than a carry-ripple adder. Recall that a carry
ripple adder requires that the carry bits tipple through all the full-adders before all the 
outputs are correct. The longest path through the circuit, shown in Figme 6.53, is known 
as the circuit's critical path. Since each full-adder has a delay of two gate-delays, then a 
4-bit carry-ripple adder has a delay of 4 * 2 :: 8 gate-delays. A 32-bit carry-ripple adder's 
delay is 32 * 2 = 64 gate-delays. That's rather slow, but the nice thing about a carry-ripple 
adder is that it doesn't require very many gates. If a full-adder uses 5 gates, then a 4-bit 
carry-ripple adder requires only 4 * 5 = 20 gates, and a 32-bit carry-ripple adder would 
only require 32 * 5 = 160 gates. 

a3b3 al b1 ao bO ci 

co s3 s2 s1 so 



366 6 Optimizations and Tradeoffs 

A useful adder would be an adder whose delay is much closer to the delay of just S 
or 6 gate-delays, at the possible expense of more total gates. 

Two-Level Logic Adder 
One obvious way to create a faster adder at the expense of more gates is to use the earlier
defined two-level combinational logic design process. An adder designed using two levels 
of logic has a delay of only two gate-delays. That's certainly fast. But recall from Figure 
4.24 that building an N-bit adder using two levels of logic results in excessively large cir
cuits as N increases beyond 8 or so. To be sure you get this point, Jet's restate the previous 
sentence slightly: 

Building an N-bit adder using two levels of logic results in shockingly large circuits as N 
increases beyond 8 or so. 

For example, we esti mated (in Chapter 4) that a two-level 16-bit adder would require 
about 2 million n·ansistors, and that a two-level 32-bit adder would require about 100 
billion transistors. 

On the other hand, a7 a6 as a4 b7 b6 bS b4 a3 a2 a1 ao b3 b2 b1 bO 
building a 4-bit adder using 
two levels of logic results in a a3 a2 a1 aO b7 b6 b5 b4 a3 a2 a1 aO b3 b2 b1 bO 

4·bit adder ci 4-bit adder 

co s3 s2 s1 so co s3 s.2 s1 so 

co s7 s6 s5 s4 s3 s2 s1 so 

big but reasonably sized 
adder-about 100 gates, as was 
shown in Figure 4.25. A larger 
adder could be built by cas
cading such fast 4-bit adders 

Figure 6.54 8-bit adder built from two fast 4-bit adders. 
together. An 8-bit adder could 

Ci 

be built by cascading two fast 4-bit adders together, as shown in Figure 6.54. If eacb 4-bit 
adder is built from two levels of logic, then each 4-bit adder bas a delay of 2 gate-delays. 
The 4-bit adder on the right takes 2 gate-delays to generate the sum and carry-out bits, 
after which the 4-bit adder on the left takes another 2 gate-delays to generate its outputs, 
resulting in a total delay of 2 + 2 = 4 gate-delays. For a 32-bit adder built from eight 
4-bit adders, the delay would be 8 * 2 = 16 gate-delays, and the size would be about 
8 * 100 gates= 800 gates. That's much better than the 32 * 2 = 64 gate-delays of a carry
ripple adder, though the improved speed comes at the expense of more gates than the 
32 * 5 = 160 gates of the carry-ripple adder. Which design is better? The answer depends 
on a designer's requirements- the design using two-level logic 4-bit adders is better if the 
designer needs more speed and can afford the extra gates, whereas the design using carry
ripple 4-bit adders is better if the designer doesn't need the speed or can' t afford the extra 
gates. The two options represent a tradeoff. 

Carry-Lookahead Adder 
A carry-lookahead adder improves on the speed of a carry-ripple adder without using as 
many gates as a two-level logic adder. The basic idea is to "look ahead" into lower stages to 
detennine whether a carry will be created in the present stage. This lookahead concept is 
very elegant and genernlizes to other problems. We will therefore spend some time intro
ducing the intuition underlying lookahead. 

Consider the addition of two 4-bit numbers shown in Figure 6.55(b), with the carries 
in each column labeled co, c l , c2 , c3, and c4. 



6.4 Uatapath Component Tradeoffs 367 

a3 b3 a2 b2 a1 b1 ao bO cin carries: c4 c3 02 c1 oO 
~cin 

4-bit adder "/ b3 b2 b1 bO 
cout s3 s2 s1 so A + a3 a2 a1 ao 

oout S3 s2 s1 so 
(a) (b) 

a3 b3 a2b2 a1 b1 ao bO co 

FA 

c4 stage o 

cout 
(c) 

Figure 6_55 Adding two binary numbers by a naive inefficient carry-lookahead scheme-each stage 
looks at all earlier bits and computes whether the carry-in bit to that stage would be a 1. The longest 
delay is stage 3, which has 2 logic levels for the lookahead, and 2 logic levels for the full-adder, for 
a total delay of only four gate-delays. 

A Naive Inefficient Carry-Lookahead Scheme. One simple but inefficient carry-looka
head approach is as follows. Recall that the output equations for a full-adder having 
inputs a, b, and c, and outputs co and s, are 

s = a xor b xor c 

co = be + ac + ab 

So we know that the equations for cl, c2, and c3 in a 4 -bit adder will be 

cl 

c2 

c3 

coo 

col 

co2 

boco + a oco + aobo 

blcl + a lcl + albl 

b2c2 + a2c2 + a2b2 

In other words, the equation for the carry-in to a particular stage is the same as the equa
tion for the carry-out of the previous stage. 

We can substitute the equation for cl into c2's equation, resulting in: 

c2 blcl. + alcl + albl 

c2 bl (b oc o + aoco + aobo) + al (boco + aoco + aobo) + al.bl. 

c2 blbOcO + blaOcO + blaObO + albOcO + alaOcO + 
alaObO + al.bl 



368 6 Optimizations and Tradeoffs 

We can then substitute the equation for c2 into c3 's equation, resulting in: 

c3 = b2c2 + a2c2 + a2b2 
c3 = b2(blbOcO + blaOcO + blaObO + albOcO + alaOcO + 

alaObO + albl ) + a2(blbOcO + blaOcO + blaObO 
+ albOcO + alaOcO + alaObO + albl ) + a2b2 

c3 = b2blbOcO + b2blaOcO + b2blaObO + b2albOcO + 

b2ala0c0 + b2ala0b0 + b2albl + a2blb0c0 
+ a2blaOcO + a2blaObO + a2albOcO + a2alaOcO 
+ a2alaObO + a2albl + a2b2 

We'll omit the equation for c4 to save a few pages of paper. 
We could create each stage with the needed inputs, and include a lookahead logic 

component implementing the above equations, as shown in Figure 6.55(c). Notice that 
there is no rippling of carry bits from stage to stage~ach stage computes its own carry
in bit by "looking ahead" to the values of the previous stages. 

While the above demonstrates the basic idea of carry-lookahead, the scheme is not 
very efficient. cl requires 4 gates, c2 requires 8 gates, and c3 requires 16 gates, with 
each gate requiring more inputs in each stage. If we count gate inputs, cl requires 9 gate 
inputs, c2 requires 27 gate inputs, and c3 requires 71 gate inputs. Building a larger adder, 
say an 8-bit adder, using this lookahead scheme would thus likely result in excessively 
large size. While the presented scheme is therefore not practical, it serves to introduce the 
basic idea of carry-lookahead: each stage looks ahead at the inputs to tl1e previous stages 
and computes for itself whether that stage's carry-in bit should be 1 , rather than waiting 
for the carry-in bit to ripple from previous stages, to yield a 4-bit adder with a delay of 
only 4 gate-delays. 

An Efficil!nt Ca"y-Lookahead Scheme. A more efficient carry-lookahead scheme is 
as follows. Consider again the addition of two 4-bit numbers A and B, shown in Figure 
6.56(a). Suppose that we add each colwnn's two operand bits (e.g. , ao + bO) using a half
adder, ignoring the carry-in bit of that column. The resulting half-adder outputs (carry-out 
and sum) provide useful information about the carry for the next stage. In particular: 

• If the addition of ao with bO results in a carry-out of 1, then cl will be 1 regard
less of whether co is a 1 or o. Why'? If we add aO+bO+cO, then 1+1+0=10, 
while 1+1+1=11 (the"+" symbol represents add here, not OR)- both cases gen
erate a carry-out of 1. Recall that a half-adder computes its carry-out as ab. 

• If the addition of aO with bO results in a stun of 1, then cl will be 1 only if cO is 
1. In pruticular, if we add aO +bO +cO, then 1+0+1=10 and 0 +1+1=1 0. Recall 
that a half-adder computes its sum as a XOR b. 

In other words, cl will be 1 if aObO = 1 , OR if aO XOR bO = 1 AND cO = 1. The 
following equations describe the carry bits (the "+" symbol represents OR here, not add): 

cl aObO + (aO xor bO }cO 
c2 albl + (al xor bl }cl 
c3 a2b2 + (a2 xor b2 }c2 
c4 a3b3 + (a3 xor b3 }c3 



6.4 Uatapath Component Tradeoffs 369 

/'~Cln 1r·\ /···\. 

carries: c4 c3 c2 c1 ! co , c1 ~-.... tJ[' o \ 1 ' 1 \ 
I \ I \ I \ 

B· / b3 b2 b1: bO i_______ __ : 1 : : 1 : l ------- ..... : I 

A: + a3 a2 a 1 • ao • +• 1 • +: 1 • 
-----~.--· ~: ~: 

cout s3 s2 s1 \ so / \ O ,' \ 1 ,' 
\....._,,/ \ ... / ' .... / 

(a) if aObO = 1 if ao xor bO = 1 
then c1 = 1 then c1 = 1 if co = 1 

(call this G: Generate) (call this P: Propa9ate) 

a3 b3 a2 b2 a1 b1 aO bO cin 
,-
: ..--r----, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

'--

cout s3 

-----G.2----F>2 
c3 .. --·r··-······ 

I , 
I 

/ , , s2 (b) s1 so 

P3 G3 / P2 G2 P1 G1 
------------------·~---- ----------------- -- --------------

PO GO cO 

Carry-lookahead logic 
---------------- r ,, ,, 

Stage 4 , Stage 3 
1---- ___________________ Jt ________________ J~----

Stage 2 __________ J 

1 L __ _ 

c2 = G1 + P1GO + 
c3 = G2 + P2G1 + P2P1GO..., P2P1POcO 

cout = G3 + P3G2 + P3P2G1 + P3P2P1GO + P3P2P1 POcO 
(c) 

----, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Stage 1 ! 
------- ______ J 

Figure 6.56 Adding two binary numbers using a fast carry-lookahead scheme: (a) idea of usjng 
propagate and generate terms, (b) computing the propagate and generate terms and providing them to 
the carry-lookahead logic, (c) using the propagate and generate terms to quickly compute the carries 
for each column. The correspondence between cl. in figures (c) and (b) is shown by two circles 
connected by the line; similar correspondences exist for c2 and c3. 



370 6 Optimizations and Tradeoffs 

Why those names? 
When aObO= I , we 
know we should 
generate a I for 
cl. Whe11aOXOR 
bO = I . we know 
we should 
propagate the cO 
value as the ml11e 
of c1, 111ea11i11g cl 
sho11/d equal cO. 

A half-adder can be included in each stage to add the two operand bits for that 
column, as shown in Figure 6.56(b). Each half-adder outputs a carry-out bit (which is ab) 
and a sum bit (which is a XOR b). Note in the figme that for a given column, the half
adder's sum output merely needs to be XORed with the column's carry-in bit to compute 
that colunm's sum bit, because the sum bit for a colunm is just a XOR b XOR c (as 
described in Section 4.3). 

The carry-output of the half-adder can be named generate, symbolized as G-so GO 
means aObO, Gl means albl, G2 means a2b2, and G3 means a3b3. The sum output of 
the half-adder can be named propagate-so PO me<ms a o XOR bO, Pl means 
al XOR bl, P2 means a2 XOR b2, and P3 means a3 XOR b3. In short: 

Gi = aibi (generate) 
Pi "' ai XOR bi (propagare) 

The computation of the carry-lookahead, rnther than directly examining the operand 
bits of previous stages as in the naive lookahead scheme (e.g., stage 1 examining a o and 
bO), instead examines the half-adder outputs of the previous stage (e.g., stage I examines 
G O and PO) . Why? Because the lookahead logic will be simpler than in the naive scheme. 

The equations for each carry bit can be rewritten as follows: 

cl GO + POcO 
c2 Gl + Plcl 
c3 G2 + P2c2 
c4 G3 + P3c3 

Substituting as in the naive scheme yields the following carry-lookahead equations: 

cl GO + POcO 

c2 Gl + Plcl Gl + Pl (GO + POcO ) 

c2 Gl + PlGO + PlPOcO 

c3 G2 + P2c2 G2 + P2 (Gl + PlGO + Pl POcO) 
c3 G2 + P2Gl + P2PlGO + P2PlPOcO 

c4 G3 + P3G2 + P3P2Gl + P3P2PlGO + P3P2PlPOcO 

The P and G symbols represent simple terms: Gi = aibi, Pi= ai XOR bi. 
Figure 6.56(c) sbows the circuits implementing the can-y-lookahead equations for 

computing each stage's carry. 
Figure 6.57 shows a high-level view of d1e carry-lookahead adder's design from 

Figure 6.56(b) and (c). The four blocks on the top are responsible for generating the sum, 

a3t b3t a2t b2~ a1t b1t ao~ bO~ cot 

a b a b a b a b 

SPG block SPGblock SPG block SPG block 

p G cin p G cin p G cin p G cin 

Figure 6.57 High-level P3 G3 P2 P1 G1 PO GO 
look ahead logic 

view of a 4-bit carry- cout c3 c2 c1 
lookahead adder. cout s3 s2 s1 so 



6.4 Uatapath Component Tradeoffs 371 

propagate, and generate bits- let's call those "SPG blocks." Recall from Figure 6.56(b) 
that each SPG block consists of just three gates. The 4-bit carry-lookahead logic uses the 
propagate and generate bits to precompute the carry bits for high-order stages, usjng only 
two levels of gates. The complete 4-bit carry-lookahead adder requires only 26 gates: 
4*3=12 gates for the non-lookahead logic, and then 2+3+4+5=14 gates for the lookahead 
logic. 

The delay of this 4-bit adder is only 4 gate-delays- I gate through the half-adder, 2 
gates through the carry-lookahead logic, and 1 gate to finally generate the sum bit. Those 
gates can be seen in Figure 6.56(b) and (c). An 8-bit adder built using the same carry
lookahead scheme would still have a delay of only 4 gate-delays, but would require 68 
gates: 8*3=24 gates for the non-lookahead logic, and 2+ 3+4+5+6+ 7+8+9=44 gates for 
the lookahead logic. A 16-bit carry-lookahead adder would still have a delay of 4 gate
delays, but would require 200 gates: 16*3=48 gates for the non-lookahead logic, and 
2+3+4+5+6+7+8+9+ 10+11+12+13+14+15+16+17=152 gates for the lookahead logic. A 
32-bit carry-lookahead adder would have a delay of 4 gate-delays, but would req11ire 656 
gates: 32*3=96 gates for the non-lookahead logic, and 152+18+19+20+21+22+23+24+25 
+26+27+28+29+30+31+32+33=560 gates. 

Unfortunately, there are problems that make 
the size and delay of large carry-lookahead 
adders less atb·active. First, the above analysis 
counts gates but not gate inputs; gate inputs 
would better indicate the number of transistors 
needed. Notice in Figure 6.56 that the gates are 
wider in higher stages. For example, stage 3 has a 
4-input OR gate and 4-input AND gate, while 
stage 4 has a 5-input OR gate and 5-input AND 
gate as highlighted in Figw-e 6.58. Stage 32 of a 

Gates get bigger 
in each stage 

32-bit carry-lookahead adder would have 33- Figure 6.58 Gate s ize problem. 
input OR and AND gates, along with other large 
gates. Since gates with more inputs need more 
transistors, then in terms of transistors, the carry-lookahead design is actually quite large. 
Furthennore, those huge gates would not have the same delay as a 2-input AND or OR 
gate. Such huge gates are typically built using a tree of smaller gates, leading to more 
gate-delays. 

Hierarchical Carry-Lookahead A dders. Bujlding a 4-bit or even 8-bit carry-lookahead 
adder using the previous section's method may be reasonable with respect to gate sizes, 
but larger carry-lookahead adders begin to involve gates with too many inputs. 

A larger adder could instead be built by connecting smaller adders in a carry-ripple 
manner. For example, suppose 4-bit carry-lookahead adders are available. A16-bit adder 
can be built by connecting four 4-bit carry-lookahead adders, as shown in Figure 6.59. If 
each 4-bit carry-lookahead adder has a four gate delay, then the total delay of the 16-bit 
adder is 4+4+4+4=16 gate-delays. Compare this to the delay of a 16-bit carry-ripple 
adder- if each full-adder has a two gate-delay, then a 16-bit carry-ripple adder has a delay 
of 16*2=32 gate-delays. Thus, the 16-bit adder built from four carry-lookahead adders con
nected in a carry-ripple manner is twice as fast as the 16-bit carry-ripple adder. (Actually, 



372 6 Optimizations and Tradeoffs 

a15-a12 b15-b12 a11-a8 b11-b8 a7a6a5a4 b7b6b5b4 a3a2a1a0 b3b2b1b0 

a3a2a1a0 b3b2b1b0 a3a2a1 aO b3b2b1 bO a3a2a1a0 b3b2b1b0 a3a2a1a0 b3b2b1b0 

4-bit adder cin 4-bit adder cin 4-bit adder cin 4-bit adder cin 

cout s3 s2 s1 so cout s3 s2 s1 sO cout s3 s2 s1 sO oout s3 s2 s1 sO 

cout s15-s12 s11-s8 s7s6s5 s4 s3s2s1 so 

Figure 6.59 16-bit adder implemented using 4-bit adders connected in a carry-ripple manner. Can the 
delay of the rippling be avoided? 

careful observation of Figure 6.53 reveals that the catTy-out of a four-bit carry-lookahead 
adder would be generated in three gate-delays rather than four, resulting in even faster oper
ation of the 16-bit adder built from four carry-lookahead adders- but for simplicity, let's 
not look inside the components for such detailed timing analysis.) Sixteen gate-delays is 
good, but can we do better? Can we avoid having to wait for the carries to ripple from the 
lower-order 4-bit adders to the higher-order adders? 

In fact, avoiding the rippling is exactly what was done when developing the 4-bit carry
lookahead adder itself. Thus, we can repeat the same carry-lookahead process owside of 
the 4-bit adders, to quickly provide the carry-in values to the higher-order 4-bit adders. To 
accomplish this, we add another 4 -bit carry-lookahead logic block outside the four 4-bit 
adders, as shown in Figure 6.60. The carry-lookahead logic block has exactly the same 
internal design as was shown in Figure 6.56(c). Notice that the lookahead logic needs prop
agate (P) and generate (G) signals from each adder block. Previously, each input block 
output the P and G signals just by ANDing and XORing the block's a i and bi input bits. 
However, in Figure 6_60, each block is a 4-bit carry-lookahead adder. We therefore must 
modify the internal design of a 4-bit carry-lookahead adder to output its P and G signals, so 
that those adders can be used with a second-level carry-lookahead generator. 

Thus, let's extend the 4-bit carry-lookahead logic of Figure 6.56 to output P and G 

signals. The equations for the P and G outputs of a 4-bit carry-lookahead adder can be 
written as follows: 

P P3P2P1 PO 
G G3 + P3G2 + P3P2Gl + P3P2P1GO 

a15-a12 b15-b12 a11-a8 b11 -b8 a7a6a5a4 b7b6b5b4 a3a2a1 ao b3b2 b1 bO 

a3a2a1 ao b3b2b1 bO a3a2a1 ao b3b2b1 bO a3a2a1 ao b3b2b1 bO a3a2a1 ao b3b2 b1 bO 

4,bil adder cin 4=bit adder cin 4=bil adder cin 4=bit adder cin 

p G cout s3 s2 s1 so P G cout s3 s2 s1 so p G cout s3 s2 s1 so p G cout s3s2s1s0 

P3G3 P2G2 
4-bit rry-lo 

p G cout t3 Cl 

s15-s12 s11 -s18 s7-s4 s3-so 

Figure 6.60 16-bit adder implemented using four CLA 4-bit adders and a second level of lookahead. 



6.4 Uatapath Component Tradeoffs 373 

To understand these equations, recall that propagate meant that the output carry for a 
column should equal the input carry of the column (hence propagatiJ1g the carry through 
the column). For that to be the case for the carry-in and carry-out of a 4-bit adder, the first 
stage of the 4-bit adder must propagate its input carry to its output carry, the second stage 
must propagate its input carry to its output carry, and so on for the third and fourth stages. 
In other words, each internal propagate signal must be 1, hence the equation 
P = P3P2P1PO. 

Likewise, recall that generate meant that the output carry of a cohunn should be a 1 

(hence generating a carry of 1). Generate should thus be 1 if the first stage generates a 
carry (GO) and all t11e higher stages propagate the carry through (P3P2Pl), yielding the 
term P3P2PlGO. Generate shouJd also be a 1 if the second stage generates a carry and all 
higher stages propagate the carry through, yielding the term P3P2Gl. Likewise for the 
third stage, whose tem1 is P3G2. Finally, generate should be 1 if the fowth stage gener
ates a carry, represented as G 3. ORing all four of these terms yields the equation 
G = G3 + P3G2 + P3P2Gl + P3P2P1GO. 

We would then revise the 4-bit carry-lookahead logic of Figure 6.56(c) to include 
two additional gates in stage four, one AND gate to compute P = P3P2P1PO , and one OR 
gate to compute G = G3 + P3G2 + P3 P2Gl + P3 P2 Pl GO (note that stage four already has 
AND gates for each term, so we need only add an OR gate to OR the terms). For concise
ness, we omit a figure showing these two new gates. 

We can introduce additional levels of 4-bit carry-lookahead generators to create even 
larger adders. Figure 6.61 illustrates a high-level view of a 32-bit adder built using 32 
SPG blocks and three levels of 4-bit carry-lookahead logic. Notice that the carry-looka-

4-bit 
CLA 
logic 

4-bit 
CLA 
logic 

4-bit 
CLA 
logic 

4-bit 
CLA 
logic 

4-bit 
CLA 
logic 

Figure 6.61 View of multilevel carry-lookahead showing the tree structure, which enables fast 
addition with reasonable numbers and s izes of gates. Each level adds only two gate-delays. 



374 6 Optimizations and Tradeoffs 

head logic forms a tree. Total delay for the 32-bit adder is only two gate-delays for the 
SPG blocks, and two gate-delays for each level of carry-lookahead (CLA) logic, for a 
total of 2+2+2+2 = 8 gate-delays . (Actually, closer examination of gate delays within 
each component would demonstrate that total delay of the 32-bit adder is actually less 
than 8 gate-delays.) Carry-lookahead adders built from multiple levels of carry-lookal1ead 
logic are known as multilevel or hierarchical carry-lookahead adders. 

ln summary, the carry-lookahead approach results in faster addjtions of large binary 
numbers (more than 8 bits or so) than a carry-ripple approach, at the expense of more gates. 
However, by clever hjerarchical design, the carry-lookahead gate size is kept reasonab le. 

Carry-Select Adders 
Another way to build a larger adder from smaller adders is known as carry-select. Con
sider building an 8-bit adder from 4-bit adders. A carry-select approach uses two 4-bit 
adders for the )ugh-order four bits, labeled H/4_1 and H/4_0 in Figure 6.62 . H/4_1 
assumes the carry-in will be 1, while H/4 _0 assumes the carry-in will be o, so both gen
erate stable output at the same time that L04 generates stable output- after 4 gate-delays 
(assuming the 4-bit adder has a delay of four gate-delays). The L04 carry-out value 
selects among H/4_1 or H/4_0, using a 5-bit-wide 2x l multiplexer- hence the term 
carry-select adder. 

a7a6a5a4 b7b6b5b4 

a3a2a1 aO b3b2b1 bO 

a3a2a1 aO b3b2b1 bO 

Hl4_ 1 4-bit adder ci 

co s3s2 s1 so 

11 

a3a2a1a0 b3b2b1b0 

HI4_0 4-bit adder cin 

co s3s2s1 so 

JO 

0 L04 4-bit adder 

co s3s2 s1 so 

5-bit wide 2x1 mux S -------~ 
Q 

co s7s6s5s4 s3s2 s1 so 

Figure 6.62 8-bit carry-select adder implemented using three 4-bit adders . 

--, 

ci 

The delay of a 2xl mux is 2 gate-delays, so the total delay of the 8-bit adder is 4 
gate-delays for H/4_1 and H/4_0 to generate correct sum bits (L04 executes in parallel), 
plus 2 gate-delays for the mux (whose select line is ready after only 3 gate-delays), for a 
total of 6 gate-delays. Compared with a carry-lookahead implementation using two 4-bit 
adders, the carry-select adder reduced the total delay from 7 gate-delays down to 6 gate
delays. The cost is one extra 4-b it adder. If a 4-bit car1y-lookahead adder requires 26 
gates, then the design with two 4 -bit adders requires 2*26 = 52 gates, while the carry
select adder requires 3 *26 = 78 gates, plus the gates for the 5-bit 2x 1 mux. 



6.4 Uatapath ComponentTradeoffs 375 

A 16-bit carry-select adder can built using 4-bit carry-
lookahead adders by using multiple levels of multiplexing. 
Each nibble (four bits) has two 4-bit adders, one assuming 

• carry-lookahead 

• multilevel 
carry-lookahead 

• carry-select 
• carry· 

ripple 

delay 

a carry-in of 1, the other assuming o. NibbleO's carry-out Gl 

selects, using a multiplexer, the appropriate adder for ·iij 
Nibble!. Nibble J's selected carry-out selects the appro
priate adder for Nibble2. Nibble2's selected carry-out 
selects the appropriate adder for Nibble3. The delay of 
such an adder is 6 gate-delays for Ni bbl el , plus 2 gate
delays for Nibble2's selection, plus 2 gate-delays for 
Nibble3's selection- for a total of only 10 gate-delays. Figure 6.63 Adder tradeoffs. 

Cascading four 4-bit adders would yield 4+4+4+4 = 16 
gates-delays. The speedup of the carry-select version over the cascaded version would be 16 
I l 0 = 1.6. Total size would be 7*26 = 182 gates, plus the gates for the duee 5-bit 2x I 
muxes. Carry-select adders provide good speed for reasonable size. 

Figure 6.63 illustrates the tradeoffs among adder designs. Carry-ripple is the smallest 
but has the longest delay. Cany-lookahead is the fastest but has the largest size. Carry
select is a compromise between the two, involving some lookahead and some rippling. 
The choice of the most appropriate adder for a design depends on the speed and size con
straints of the design. 

Smaller Multiplier- Sequential (Shift-and-Add) Style 

An array-style multiplier can be fast, but may require many gates for wide-bitwidth (e.g., 
32-bit) multipliers. This section develops a sequential multiplier instead of a combina
tional one to reduce the size of the multiplier. The idea of a sequential multiplier is to 
keep a running sum of the partial products and compute each partial product one at a 
time, rather than computing all the partial products at once and summing them. 

Figme 6.64 provides an example of 4-bit multiplication. Assume the mnning of sum 
is initialized to 0000. Each step corresponds to a bit in the multiplier (the second 
number). Step l computes the partial product as 0110, which is added to the running swn 
of 0000 to obtain 00110. Step 2 computes the partial product as 0110 , which is added 
to the proper columns of the running sum of 00110 to obtain 010010. Step 3 computes 
the partial product as 0000, which are added to the proper columns of the running stun. 
Likewise for step 4. The final running sum is 00010010, which is the correct product of 
0110 and 0011. 

Step 1 

0 1 1 0 

x 001 1 

Step2 

0 11 0 

x 0 0 1 1 

Step 3 

0 1 1 0 

x 0 0 1 1 

Step4 

0 1 1 0 

x DO 11 

0 0 0 0 r 0 0 1 1 o~ 0 1 0 0 1 0 _r 0 0 1 0 0 1 0 (running s um) 
+ 0 1 1 0 + 0 1 1 0 + 0 0 0 0 + 0 0 0 0 (partial product} 
o o 1 1 o o 1 o o 1 o o o 1 o o 1 o o o -0 1 o o 1 o (riew runnin9 surn) 

Figure 6.64 Multiplication done by generating a part.ial product for each bit in the multiplier (the 
number on the bottom), accumulating the partial products in a nmning sum. 



376 6 Optimizations and Tradeoffs 

Computing each partial product is easy, requiring just the ANDing of the current 
multiplicand bit with every bit in the multiplier to yield the partial product. So if the 
current multiplicand bit is 1, the AND creates a copy of the multiplier as the partial 
product. If the current multiplicand bit is 0, the AND creates 0 as the partial product. 

The next thing to determine is how to add each partial product to the proper columns 

of the running smn. Notice that the partial product should be moved to the left by one bit 
relative to the running sum after each step. We can look at this another way- the running 
sum should be moved to the right by one bit after each step. Look at the multiplication 
illustration in Figure 6.64 until you "see" how the running sum moves one bit to the right 
relative to each partial product. 

Therefore, the rmming sum can be computed by initializing an 8-bit register to 0. 
Each step adds the partial product for the current multiplicand bit to the leftmost four bits 
of the running sum, and shifts the rwming sum one bit to the right, shifting a o into the 
leftmost bit. So the running sum register should have a clear fw1ction, a parallel load 
function, and a shift right function. A circuit showing the running sum register and an 
adder to add each partial product to that register is shown in Figure 6.65. 

The last thing to be determined is how to control the circuit so that the circuit does 
the right thing during each step, which is the purpose of controllers. Figure 6.66 shows 
an FSM describing the desired controller behavior of the sequential multiplier. 

In tenns of performance, the sequential multiplier requires two cycles per bit, plus I 
cycle for initialization. So a 4-bit multiplier would require 9 cycles, while a 32-bit multi-

multiplier multiplicand 

+ + + + 
~ 

multiplicand 

.... register (4) 
load 
r> 

I I I 

t + ~ i 
' t t + ~ mdld 

multiplier 4-bit adder 
El e mrld register ( 4) 
E load 
0 

mr3 I> 
0 

I I mr2 
mr1 + - mro 1 1t ,. 

rs load load rsclear -
:- clear running sum 

rsshr shr register (8) 
[> 

T 
start 

t 

product 

Figure 6.65 Internal design of a 4-bit by 4-bit sequential multiplier. 



6.5 RTL Design Optimizations and Tradeoffs 377 

mdld 

mrld 

mr3 
mr2 
mr1 
mro 
rs load 
rsclear 
rsshr 

start t 
Figure 6.66 FSM describing the controller for d1e 4 -bit multiplier. 

plier would require 65 cycles. The longest register-to-register delay is from a register 
through the adder to a register. If the adder is a carry-lookahead adder having only 4 gate
delays, then the total delay for a 4-bit multiplication would be 9 cycles * 4 gate-delays/ 
cycle = 36 gate-delays. The total delay for a 32-bit multiplication would be 65 cycles * 4 
gate-delays/cycle = 260 gate-delays. While slow, notice that this multiplier's size is quite 
small, requiring only an adder, a few registers, and a state-register and some control logic 
for the controller. For a 32-bit multiplier, the size would be far smaller than an array-style 
multiplier requiring 31 adders. 

The multiplier's design can be further improved by using a shifter in the datapath, but 
we omit details of that improved design. 

6.5 RTL DESIGN OPTIMIZATIONS AND TRADEOFFS 

Pipelining 

Chapter 5 described the RTL design process. While creating d1e datapath during RTL 
design, several optimizations and tradeoffs can be used to create smaller or faster designs. 

Microprocessors continue to become smaller, faster, 
and less expensive, and thus designers use micropro
cessors whenever possible to implement desired 
digital system behavior. But designers continue to 
choose to build their own digital circuits to imple
ment desired behavior of many digital systems, with 
a key reason for that choice being speed. One method 
for obtaining speed from digital circuits is through 
the use of pipelining. Pipelining means breaking a 
large task down into a sequence of stages such that 
data moves through the stages like parts moving 
through a factory assembly line. Each stage produces 
output used by the next stage, and all stages operate 

Without pipelining; 

With pipelining: 

I w1 I w2 I w3 I " Stage 1" 

~ I 02 I I 031 "Stage 2" 

Figure 6.67 Applying pipelining to 
dishwasrung: washing and drying 
dishes can be done concurrently. 



378 6 Optimizations and Tradeoffs 

concun-ently, resulting in better pe1formance than if data had to be fully processed by the 
task before new data could begin being processed. An example of pipelining is washing 
dishes with a friend, with you washing and your friend drying (Figure 6.67). You (the 
first stage) pick up a dish (dish 1) and wash it, then hand it to your friend (the second 
stage). You pick up the next dish (dish 2) and wash it concurrently to your friend drying 
dish l. You then wash dish 3 while your friend dries dish 2. Dishwashing this way is 
nearly twice as fast as when washing and drying aren't done concurrently. 

Consjder a system with data inputs W, X, Y, and z, that should repeatedly output the 
sum s = W + X + Y + z. The system could be implemented using an adder tree as shown 
in Figure 6.68(a). The fastest clock for this design must not be faster than the longest path 
between any pair of registers, known as the critical path. There are four possible paths 
from any register output to any register input, and each path goes through two adders. If 
each adder bas a delay of 2 ns, then each path is 2+2 = 4 ns long. Thus, the critical path 
is 4 ns, and so the fastest clock has a period of at least 4 ns, meaning a frequency of no 
more than l I 4 ns = 250 MHz. 

elk 
I I 

\ :.._ ~ Longest path 
\,,...__..._/ is 2+2 = 4 ns 

(J) I I 

C: \ + I I 

N \ \ f t So mininum clock 
period is 4 ns ------.. __ 
,- I 

clkJl_h_ 
I I 

elk 

s~ 
(a) 

I 

' ' .... 
1 

, '- Longest path 
/ -!;'' is only 2 ns 

pipeline 
~registers 

So mininum clock 
period is 2 ns 
j--- --j I 

clk__fL_fL_fL 

s~ 
(b ) 

figure 6.68 Non-pipelined versus pipelined datapaths : (a) four register-to-register paths of 4 ns each, 
so longest path is 4 ns, meaning minimwn clock period is 4 os, or 114 os = 250 MHz, (b) six 
register-to- register paths of 2 ns each, so longest path is 2 ns, meaning minimum clock period of 
2 ns , or 1/2 ns = 500 MHz. 

Figure 6.68(b) shows a pipelined version of this design. We merely add registers 
between the first and second rows of adders. Since the purpose of these registers is 
solely related to pipelining, they are known as pipeline registers, though their internal 
design is the same as any other register. The computations between pipeline registers 
are known as stages. B y inserting those registers and thus creating a two-stage pipeline, 
the critical path has been reduced from 4 ns down to only 2 ns, and so the fastest clock 
has a period of at least 2 ns, meaning a frequency of no more than 112 ns = 500 MHz.. 
In other words, just by inse11ing those pipeline registers, we've doubled the perfor
mance of the design! 



6.5 RTL Design Optimizations and Tradeoffs 379 

Latency versus Throughput 
The term "petfonnance" needs to be refined due to the pipelining concept. Notice in 
Figure 6.68(b) that the first result S(O) doesn ' t appear until after two cycles, whereas 
the design in Figure 6.68(a) outputs the first result after only one cycle, because data 
must now pass through an extra row of registers. The tenn latency refers to delay for 
new input data to result in new output data. Latency is one kind of performance. Both 
designs in the figure have a latency of 4 ns. Figure 6.68(b) also shows that a new value 
for S appears every 2 ns, versus every 4 ns for the design in Figure 6.68(a). The term 
throughput refers to the rate at which new data can be input to the system, and simi
larly, the rate at which new outputs appear fro m the system. The throughput of the 
design in Figure 6.68(a) is 1 sample every 4 ns, while the throughput of the design in 
Figure 6.68(b) is l sample every 2 ns. Thus, the petformance improvement of the pipe
lined design can be more precisely desctibed as having doubled The throughpw of the 
design. 

Example 6.19 Pipelined FIR fi lter 

Recall the 100-tap FIR filter from Example 5.8. We 
estimated that implementation on a microprocessor 
would require 4000 ns. while a custom digital circuit 
implementation would require only 34 ns. That cus· 
tom digjtal circuit util ized an adder tree, with seven 
levels of adders- 50 additions, then 25. the11 13 
(roughly). then 7, then 4, then 2, then 1. The total 
delay was 20 us (for d1e multiplier) plus seven adder
delays (7*2ns = 14ns), for a total delay of 34 ns. We 
can further improve the throughput of that filter using 
pipelining. Noticing that the multipliers' delay of 20 
ns is roughly equal to the adder tree delay of 14 ns, we 
decide to insert pipeline registers (50 of them since 
there are 50 multipliers feeding into 50 adders at the 
top of the adder tree) between the multipliers and 
adder tree, thus dividing the computation task into two 
stages, as shown in Figure 6.69. Tllose pipeline regis
ters shorten the critical path from 34 ns down to only 
20 ns, meaning we can clock the circuit fa~ter and 
hence improve the throughput. The throughput 
speedup of the unpipelined design compared to the 

Q) 
a> Vl 
.l9 c 
(/) 0 

N 

N 

pipeline --------registers 

(J) 

c 
-q-

x 
xt registers 

mult ipliers 
~-~ ~--

adder tree 

~.:·:.~ 

-------------~--------

Figure 6.69 Pipelined FIR filter. 

microprocessor implementation was 4000/34 = 117, while the throughput speedup of the pipelined 
design is 4000/20 = 200. The additional speedup is obtained mostly just by inserting some registers. 

Although we could pipeline the adder tree also, that would not gain higher throughput, since 
the multiplier stage would still represent the critical path. We can't clock a pipelined system any 
faster tlian the longest stage, since otherwise that stage would fail to load correct values into tl1e 
stage's output pipeline registers. 

The latency of the non-pipelined design is one cycle of 34 us. or 34 ns total. The latency of the 
pipelined design is two cycles of 20 ns, or 40 ns total. Thus, pipelining improves the throughput of 
this example at tl1e expense of latency, representing a tradeoff. 



380 6 Optimizations and Tradeotfs 

Concurrency 

A key reason for designing a custom digital c ircuit, rather than writing software that exe
cutes on a microprocessor, is to achieve improved performance. A common method of 
achieving performance in a custom digital circuit is through concurrency. Concurrency in 
digital design means to djvide a task into several independent subparts, and then to 
execute those subparts simultaneously. As an analogy, if we have a stack of 200 dishes to 
wash, we might divide the stack into I 0 sub-stacks of 20 dishes each, and then give 10 of 
our neighbors each a sub-stack. Those neighbors simultaneously go home, wash and dry 
their respective sub-stacks, and return to us their completed dishes. We would get a ten 
times speedup in dishwashing (ignoring the time to divide the stack and move sub-stacks 
from home to home). 

Several previous examples used concurrency already. For example, the FIR filter dat
apath of Figure 5.38 had three multipliers executing concurrently. 

The following example uses concurrency to create a faster version of an earlier 
example. 

Example 6.20 Sum-of-absolute-difference component with concurrency 

Figure 6.70 SAD 
datapath using 
concurrency for 
speed, along with 
the controller 
FSM. 

Example 5.8 designed a custom circuit for a sum-of-absolute-difference (SAD) component, and esti
mated that component to be three times faster than a software-on-microprocessor solution. Further 
improvement is possible. Notice that comparing one pair of corresponding pixels of two frames is 
independent of comparing another pair. Thus, such comparisons are an ideal candidate for concur
rency. 

We first need to be able to read tJ1e pixels concurrently. Concurrent reading can be achieved by 
changing the block memories A and 8 , which earlier were 256-byte memories. Instead, we can use 
16-word memories where each word is 16 bytes (the total memory size is sti ll 256 bytes). Thus, 
each memory read corresponds to reading an entire pixel row of a 16x 16 block. We can then con
currently determine the differences among all 16 pairs of pixels from A and 8 . Figure 6.70 shows a 
new datapath and controller FSM for a more concurrent SAD component. 

goAB_rd 

,.---... sum_clr=1 
_ _ _ i_clr=1 

i_lt_16 
-~- AB_rd=1 

sum ld=1 
--- i_inc~1 

sad_reg_ld=1 
-~-

Controller 

AB_addr AO BO A1 81 A14 814 A15 815 

i_lt_16 ••• 
i_inc 

Datapath 

sad 



6.5 RTL Design Optimizations and Tradeoffs 381 

The datapath consists of 16 subtracters operating concurrently on the 16 pixels of a row, fol
lowed by 16 absolute value components. The 16 resulting differences feed into an adder tree, whose 
result gets added with the present sum, for writi ng back into the sum register. The datapath com
pares its counter i with 16, since there are 16 rows in a block, and so d1e difference between rows 

must be computed 16 times. The controlling FSM loops 16 times to accumulate the differences of 
each row, and then loads the final result into the register sad_reg, which connects to the SAD com
ponent's output sad. 

The analysis after Example 5.8 estimated that a software solution would require about s ix cycles 
per pixel pair comparison. Since there are 256 pixels in a I6xl6 block. d1e software would require 
256 * 6 = 1536 cycles to compare a pair of blocks. The SAD circuit with concurrency instead requires 
only I cycle to compare each row of 16 pixels, which the circuit must de> 16 times for a block, 
resulting in only 16 * 1=16 cycles. Thus, the SAD circuit's speedup over software is 1536I16 = 96. 
In od1er words, the relatively simple SAD circuit using concurrency nms nearly 100 times faster than 
a software solution. That sort of speedup eventually translates to better-quality digitized video from 
whatever video appliance is being designed. 

• 
Pipelining and concurrency can be combined to achieve even greater performance 
improvements. 

Component Allocation 

When the same operation is used in two ilifferent states of a high-level state machine, a 
designer can choose to instantiate either two functional units with one for each state, or 
one functional unit that will be shared among the two states. For example, Figure 6. 71 
shows a portion of an HLSM with two states A and B that each have a multiplication 
operation. A designer can choose to use two distinct multipliers as shown in Figure 
6.7 l (a) (assume the t variables represent registers). The figure also shows the control 
signals that would be set in each state of the FSM controlling that datapath, with the tl 
register being loaded in the first state (tlld=l ), and the t4 register being loaded in the 
second state (t4 l d = l ). 

However, becat1se a state machine can't be in two states at the same time, the FSM 
will perform only one multiplication at a tin1e, so the one multiplier can be shared among 

~ -

0----0 A: (Sl=O; Sr=O; t1Id=1 ) 
B: (sl=1; sr=1; t41d=1) 

t := t2 * t3 t4 :=ts • tG 

Jf f FSM; (t1 ld=1) (t41d=1) 

t2 13 t5 t6 sl 2x1 2x1 sr Q) • 2 mul 
.!:! 

+ + + + 
(/) 

• 1 mul 

T. T. .~. delay 
(c) 

(a) (b) 

Figure 6.71 Two different component allocations: (a) two multipliers, (b) one multipljer, (c) the one· 
multiplier allocation represents a tradeoff of smaUer size for slightly more delay. 



382 6 Optimizations and Tradeoffs 

The terms 
"opera/or" and 
"operation" refer 
to behavior. like 
addition or 
11111/Jiplicario11. 
171e terms 
0 co111po11enl

01 and 
'f unctional unit ., 
refer lo a11 item i11 
a cirrnit, like an 
adder or a 
11111!1iplie1: 

the two states. Because fast multipliers are big, such sharing could save many gates. A 
datapath with only one multiplier appears in Figure 6.7 l(b). In each state, the controller 
FSM would configure the multiplexer select lines to pass the appropriate operands 
through to the multiplier, and to load the appropriate destination register. So in the first 
state A, the FSM would set the select line for the left multiplexer to o (sl=O) to let t2 
pass through and would set the select line for the right multiplexer to o (sr=O) to let t3 
pass through, in addition to setti11g tlld= 1 to load the result of the multiplication into 
the tl register. Likewise, the FSM in state B sets the muxes to pass ts and t6 , and loads 
t4. 

Figure 6.7 l (c) illustrates that the one-multiplier design would have smaller size at the 
expense of slightly more delay due to the multiplexers. 

A component library might consist of numerous different functional units that could 
potentially implement a desired operation. For a multiplication, there may be several mul
tiplier components: MULJ might be very fast but large, while MUL2 might be very small 
but slow, and MUL3 may be somewhere in between. There may also be fast but large 
adders, small but slow adders, and several choices in between. Furthermore, some compo
nents might support multiple operations, like an adder/subtractor component, or an ALU. 
Choosing a particular set of functional units to implement a set of operations is known as 
component allocation . Automated RTL design tools consider dozens or hundreds of pos
sible component allocations to find the best ones that represent a good tradeoff between 
size and pe1formance. 

Operator Binding 

figure 6.72 Two 
different 
operator 
bindings: (a) 
Binding I uses 
two muxes, (b) 

Binding 2 uses 
only one mux, 
(c) Binding 2 
represents an 
optimization 
compared to 
Binding I. 

Given an allocation of components, a designer must choose which operations to assign, or 
bind, to which components. For example, Figure 6. 72 shows three multiplication opera
tions, one in state A, one in state B, and one in state C. Figure 6.72(a) shows one possible 
mapping of multiplication operations to two multipliers, resulting in two multiplexers. 
Figure 6.72(b) shows an alternative mapping to two multipliers, which results in only one 
multiplexer, since the same operand (tJ) is fed to the same multiplier MULA in two dif
ferent states and thus that multiplier's input doesn't require a mux. Thus, the second 
mapping results in fewer gates, with no performance loss- an optimization, as shown in 

t1 := t2 * t3 t4 := 15 t t6 t? := t8 ,* t3 
I I 

\ ,,/ 
\ , , 
' / 

lf
t8i\\ (f 6 ~13 

sl 2x1 : lTx1 sr , , , , 

1~7 
l r 
~ 
T, 

(a) 

t1 := t2 . t3 t4 := t5 ·~t6 t? := t8 ; 13 
\ ' , ,;•"' 
', ,----~"""'----... 

' ,... ' ... , / " \ 

Qt rat Hjt3 tsj '! jts ·~ 
s1~ :: : t I I I 

~~ tn7 T. 
{b) 

• Binding 1 

• 9inding 2 

delay 
(c) 



6.5 RTL Design Optimizations and Tradeoffs 383 

Figure 6.72(c). Note that binding not only maps operators to components, but also 
chooses which operand to map to which component input; if we had mapped t 3 to the 
left operand of MULA in Figure 6.72(b), then MULA would have required two muxes 
rather than just one. 

Mapping a given set of operations to a particular component allocation is known as 
operator binding. Automated tools typically explore hundreds of different bindings for a 
given component allocation. 

Of course, the tasks of component allocation and operator binding are interdepen
dent. If only one component is allocated, then all operators must be bound to that 
component. If two components are allocated, then there are some choices in binding. If 
many components are allocated, then many more choices for binding exist. Thus, some 
tools will perform allocation and binding simultaneously, and other tools will iterate 
between the two tasks. Together, component allocation and operator binding are some
times referred to as resource sharing. 

Operator Scheduling 

Given a high-level state machine, additional states may be introduced to enable creating a 
smaller datapath. For example, consider the HLSM in Figure 6.73(a).The HLSM has three 
states, with state B having two multiplications. Since those two multiplications occur in the 
same state, and each state will be a single clock cycle, then two multipliers (at least) are 
needed in the datapath to support the two simultaneous multiplications in state B. But what 
if enough gates exist for only one multiplier? In that case, the operations can be rescheduled 
so that there is at most only one multiplication performed in any one state, as in Figure 
6.73(b). Thus, when components are being allocated, only one multiplier need be allocated 
as shown, and as was also done in Figure 6.7 l(b). The result is a smaller but slower design 
due to the extra state's clock cycle, as illustrated in Figure 6.73(c). 

Converting a computation from occurring concurrently in one state to occurring 
across several states is known as serializing a computation. 

Of course, the inverse rescheduling is also possible. Suppose we started with the 
HLSM of Figure 6. 73(b). If plenty of gates and available and improved performance are 

(some t1 := t2 • t3 (some 
operations) t4 := t5 • t6 operations) 

(a) 

(some t1 := t2 * 13 t4 := t5 • t6 
operations) ~-----~--r 

3-state schedule 
• 

• 4·state schedule 

delay 
(c) 

t2 t tst tt3 tt6 
sl 2x1 2x 1 sr 

* 

t1 t4 
(b) 

(some 
operations) 

Figure 6-73 Scheduling: (a) initial 3 -state schedule requires two multipliers, (b) new 4-state schedule 
requires onJy one multiplier, (c) new schedule trades off size for delay (extra state). 



384 6 Optimizations and Tradeoffs 

desired, the operations can be rescheduled such that the operations of states B2 and B are 

merged into the one s tate B, as in Figure 6.73(a). The result is a faster but larger design 
requiring two multipliers instead of one. 

Generally, introducing or merging s tates and assigning operations to those states are 

together a task known as operator scheduling. 
You may have noticed that operator schedu ling is interdependent with component 

allocation, which you may recall was interdependent with operator binding. Thus, the 
tasks of scheduling, allocation, and binding are all interdependent. Modem tools may 
combine the tasks and/or may iterate among the tasks several times in search of good 

designs. 

Example 6.21 Smaller FIR filter using operator scheduling 

Consider the 3-tap FIR filter of Example 5.10. That design had one state containing the key clatapath 
actions, as shown in Figure 6. 74(a). We could reduce the size of the datapath by scheduling t11e oper
ations acmss several states, such that at most one multiplication and one addition occurs per state, as 
shown in Figure 6.74(b). The first state loads the x registers with s amples- note t11at the ordering of 
those actions next to the state doesn't matter, since all the actions occur s imultaneously. That state 
also clears a new register named sum, which was introduced to keep track of the intermediace tap 
stuns to be computed in the later states. The second s tate computes t11e first tap of the filter result, the 
next state computes tlle second tap, and the next state computes the tllird tap. T he last state outputs 
the result, and then tlle HLSM returns to the first state again. 

Inputs: X (12 bits) 
Outputs: Y ( 12 bits) 
Local storage: xto. xt1, xt2, 

co, c1. c2 (12 bits); 
Yreg (12 bits) 

'Wv~i~o + 
c1 ~xt1 + 
c2~xt2 

xtO := X 
xt1 := xtO 
xt2 := xt1 

(a) 

Figure 6.74 HLSM for 3-tap FIR filter: (a) original 
state. (h) five. states with at most one add and one 
multiply per state, using register sum. The initial state 
is omitted from tlle figure for simplicity. 

Inputs. X (12 bits) 
Outputs. Y ( 12 b its) 
Local storage: xto, xt1, xt2, 

co, c1, c2 (12 bits): 
Yreg, sum (12 b!ts) 

sum := 0 
xtO := X 
xt1 := xtO 
xt2 := xt1 

sum := sum + cO"'xtO 

sum := sum + c1 "'xt1 

sum := sum + c2~xt2 

Yreg := sum 

(b) 

A new datapatll for this HLSM is shown in Figure 6.75, which can be compared with the orig· 
inal datapath of Figure 5.40 (the new datapath figure only shows control Lines that were added to 
the original datapath). The datapath requires only one multiplier and one adder, because there is at 
most one multiplication and one addition in any given state in Figure 6.74. The particular configu-



6.5 RTL Design Optimizations and Tradeoffs 385 

ration of the multiplier, adder, and register in Figure 6.75 is extremely common in signal processing 
circuits and is known as a multiply-accumulate (MAC) unit. The datapath multiplexes the inputs to 
the MAC unit. 

co 
xtO ..,4 

elk 

mul_s1 

SurYl_Clr' 

sum_ld 
I 
I 
I 

c1 

sum 

'------------------,j 

c2 

Serialized datapath 
for 3-tap FIR filter 

y 

Figure 6.75 Serial FIR filter datapatb. The components in the dashed box comprise what is known 
as a multiply-accumulate (MAC) component. 

The performance of the concurrent design of Example 5.10 was estimated assuming I ns per 
gate, 2 ns per adder, and 20 ns per multiplier. The <lesign had a critical path of 20 ns for the multiplier 
and then 4 ns for two adders in series, for a total of 24 ns. That was also the time between new results 
being taken in at the inputs and generated at the output: 24 ns. Using the more precise perfommnce 
measures of latency and throughput defined in Section 6.5, the concurrent design has a latency of 24 
ns (delay from input to output) and a throughput of l sample every 24 ns. The serial design has a crit
ical path equal to the delay through a mux, multiplier, and adder. Assuming two gate-delays for d1e 
mux, we obtain a delay of 2 us + 20 ns + 2 ns, or 24 us. The latency from input to output is five states, 
meaning 5 * 24 ns = 120 ns. The throughput is 1 sample every 120 ns. Thus, the concurrent 3-tap FIR 
filter has 120125 = 5 times faster latency, as well as 5 times faster throughpul compared to the serial 
FIR filter. Recall from Example 6.19 d1at a pipelined concurrent FIR filter has even faster throughput. 

The performance difference between serial and concurrent becomes even more pronounced for 
an AR filter with more taps. The latency of a concurrent 100-tap FIR filter was estimated i:n Section 
5.4 to be 34 ns (the delay is greater than the concurrent 3-tap filter because the 100-tap filter needs an 
adder tree). The serial design would still have a 24 us critical path, but would require 102 states (1 to 
initialize, 100 to compute the taps. and 1 to output), for a latency of 102 * 24 ns = 2448 ns. Tims, die 
latency speedup of the concurrent design would be 2448 I 34 = 72. 

We should also consider the size difference between the serial and concurrent designs. Let's 
assume for illustrative purposes drnt an adder requires approximately 500 gates and a multiplier 
requires 5000 gates. The serial design's one multiplier and one adder would thus require only 5500 
gates. For a 3-tap FIR filter, dle concurrent design's 3 multipliers and 2 adders would require 
5000*3 + 500*2 = 16,000 gates. For a 100-tap FIR filter, the concurrent design's 100 multipliers 
alone would require 100*5000 = 500,000 gates- I 00 times more gates than the serial desjgn. 



386 6 Optimizations and Tradeoffs 

Intuitively, these numbers make sense. A concurrent 
design for 100 taps uses about 100 times more gates (due to 
using 100 multipliers instead of just 1) compared to a serial 
design, yet achieves about 100 times better perfonnance (due 
to computing 100 multiplications concun-endy rather than 
computing one multiplication at a time) . 

Depending on perfom1ance needs and size constraints, a 
designer might consider designs in between the two extremes 
of serial and concw-rent. One such design would have two 
multipliers and would be roughly twice as big and twice as 
fast as the serial design. A design witJ1 ten multipliers would 

• concurrent FIR 

1 'ompmm;ses 

• serial 
FIR 

delay 

be roughly ten times as big and ten times as fast as the serial Figure 6.76 FIR design tradeoffs. 
design. Figure 6.76 illustrates tradeoffs among serial and 
concurrent designs for an FIR filter. T he above sections 
should have made it quite clear that RTL design presents an enormous range of possible solutions 
to the designer. A single high-level state machine can be implemented as any of a huge variety of 
possible implementations that differ tremendously in their sizes and performance. 

Moore versus Mealy High-Level State Machines 

In the same way that either a Moore or a Mealy FSM can be created (see Section 6.3), we 
can create Moore or Mealy high-level state machines. In the case of a high-level state 
machine, a Moore type can only have actions associated with the states, while a Mealy 
type can have actions associated with the transitions. As was the case with FSMs, a 
Mealy type may result in fewer states. Mixing Moore and Mealy types is commonly done 
in HLSMs. 

6.6 MORE ON OPTIMIZATIONS AND TRADEOFFS 

Serial versus Concurrent Computation 

Having seen in this chapter numerous examples of tradeoff techniques at various levels of 
design, we can detect a common theme underlying some of those tradeoffs. The common 
theme is that of serial versus concurrent computation. Serial means to perform tasks one 
at a time. Concurrent means to perform tasks at the same time. 

For example, in combinational logic design, we can reduce logic size by factoring 
out tenns. By factoring out terms, we are essentially serializing the computation, by com
puting the factored out terms first, and then combining the results with other terms. In 
datapath component design, we can improve an adder's speed by computing carries con
currently, rather than waiting for the carry to ripple serially. In RTL design, we can 
schedule operations across several states, serializing the operations to reduce size com
pared to concurrent operations in a single state. Example 6.20 and Example 6.21 both 
illustrated serial versus concurrent computation tradeoffs, for an SAD circuit and an FIR 
circuit, respectively. 



6.6 More on Optimizations and Tradeotfs 387 

Trading off between serial and concurrent computation is a fw1damental concept 
spanning all levels of digital design. As a general rule, a concurrent design is faster but 
larger, while a serial design is smaller but slower. 

Typically, numerous design options exist that span the rnnge in between fully serial 
and fully concurrent designs. 

Optimizations and Tradeoffs at Higher versus Lower Levels of Design 

As a general rule, the optimizations and tradeoffs made at the higher levels of design may 
have a much greater impact on design criteria than the optimizations and tradeoffs made 
at lower levels of design. For example, imagine wanting to drive to a city on the other 
side of the country in as little time as possible. We could reduce time by reducing the 
number of stops we make to eat, meaning we carry our own food in the car. We could 
also reduce time by reducing stops for fuel, meaning we use a car with the longest driving 
capacity per gas tank. Some people (not you, of course) might even consider driving 
faster than the legal speed limit. But those are not the first things you typicaJly think of 
when trying to reduce driving time for a cross-country trip. The most important decision 
is which route to take. One route might be 4000 miles long, while another route may be 
only 2000 miles. The high-level decision of which route to take has far more impact than 
all the lower-level decisions mentioned previously. Those lower-level decisions are only 
really useful to us if we made the right high-level decision, and then still want to reduce 
the time further. 

In digital design, optimiza
tion/tradeoff decisions at the 
higher levels (e.g., RTL decisions) 
may have a much larger impact 
than decisions at the lower levels ~ 

'iii 
(e.g., datapath component deci-
sions or multilevel logic 
decisions). For example, the RTL 
decision to build a serial or con
current FIR filter (Example 6.2 1) 
will have a far greater impact on 
circuit size and performance than 
the datapath-cornponent-level 
decision to use a carry-ripple or 
carry-lookahead adder, or the 
combinational-logic-level deci-

delay 
(a) 

land 

{b} 

figure 6.77 Higher- versus lower-level decisions: 
(a) higher-level decisions (denoted by the larger two 
circles) focus the design into a region, while lower-level 
decisions tune within the region, (b) spotlight analogy. 

sion to use two-level or multilevel logic. Those lower-level decisions merely tune the size 
and performance of the higher-level decision. Figure 6.77(a) illustrates this concept. An 
analogy might be a spotlight shining down on land, illustrated in Figure 6.77(b}-moving 
the spotlight left or right at high altitude (higher-level decisions) has a larger impact on 
which land region (possible solutions) is illuminated than do lower-altitude movements 
(lower-level decisions). 



388 6 Optimizations and Tradeoffs 

Algorithm Selection 

When attempting to implement a system as a digital circuit, perhaps the highest-level 
design decision, having therefore the most significant impact on design criteria like size, 
performance, power, etc., is the selection of an algorithm. An algorithm is a set of steps 
that solve a problem. The same problem can be solved by different algorithms. Algo
rithms for the same problem, when implemented as a digital circuit, may result in 
tremendously different perfonnance and/or size. Some algorithms may simply be better 
than others (optimization without much tradeoff), while other algorith ms may represent 
tradeoffs among performance, size, and other criteria. Selecting an algorithm for a digital 
design problem is perhaps the highest level of design, and can have the biggest impact on 
design criteria. For example, earlier examples showed various implementations of an FIR 
filter. But there are many other filtering algorithms that are very different from the algo
rithm used in FIR. Some algorithms may provide higher-quality filtering at the expense of 

more required computation; others may provide lower quality but need less computation. 
The following example illustrates algorithm selection. 

Example 6.22 Data compression using different table lookup algorithms 

\Ve wish to compress data being sent over a long-distance computer nenvork in order to achieve 
faster conummication by sending fewer bits. One method for such compression is to use short codes 
for frequently appearing data values. For example. suppose each data item is 32 bits Jong. We might 
analyze tl1e data we expect to send and find the 256 most frequently appearing data values. We could 
then assign a unique 8-bit code to each of those 256 values. When sending data over the network, we 
first send a bit indicating whether we are about to send an encoded 8-bit data item or a raw 32-bit 
data item- if the first bit is 1, that might mean encoded, and a 0 might mean raw. If all the data 
items being sent happen to be an10ng the top 256 most frequent ones, then we'd be sending 9 bits per 
data item ( 1 bit indicating whether encoded, plus 8 bits of encoded data) rather than 32 bits per data 
item- a compression of nearly 4x, which could translate to about 4 times faster coirununication. 

We might design the encoder using a 256-word O: OxOOOOOOOO ---
memory that s tores the 256 most frequent values in sorted 1 : oxooooooo1 ~ 
order, from smallest to largest in binary. The code would 2: OxOOOOOOOF ~ 
then be the address of that word in the memory. Figure 3: OxOOOOOOFF ~ 
6.78 shows san1ple contents of such a memory, in hexadec- ~ 
imaJ. The contents vary depending on the conununicating :)"" :J...4 

applications we are considering. 96; OxOOOOOFOA .-L96 
One algorithm for searching a list of values in a memory 128: OxOOOOFFAA . . -

.c 128 
is known as linear search. Starting at address 0, we compare ~ 
each memory word's contents with the data item we are ••• ~ 

looking for (known as the key), incrementing the address and iii 
repeating until we find a match, at wh.ich point we treat the ,§ 
address at which there was a match as the encoded value. If 255: OxFFFFOOOO 

we get to address 255 and don' t find a match, we will transmit 
the raw data. The linear search algorithm is a slow way to 
search a sorted list in memory. The algorithm requires 256 
reads and compares for data items that aren't in the memory, 
which may translate to 256 cycles. For data items that are in 
the memory, we would require on average 128 reads. 

256x32 memory 

figure 6.78 Searching a sorted 
memory for the key OxOOOOOFOA 
- Linear search requires 97 reads/ 
compares, binary search only 3. 



6.6 More on Optimizations and Tradeotfs 389 

A faster algoritlun for searching a list of items in a memory is known as binary search. We 
first sort the list and then store the list in the memory (we need only sort once). To look up an item. 
we start in the middle of the memory, meaning address 128, and compare that word's contents with 
the key. If the contents' value is less than 128, then we know that the key, if it exists in the memory, 
must be somewhere between 0 and 127. So we go to the middle of that range, meaning address 64, 
and again compare. If the value there is less than the key, we search 0 to 63; if greater, we search 
65- 127. So after each comparison, we decrease the remaining possible range of addresses in which 
the key lies by one half. Halving 256 repeatedly can only be done 8 times: 256, 128, 64, 32, 16, 8, 
4, 2, I . In other words, after at most 8 comparisons, we've either seen the key, or shrunk the range 
to I, meaning the key can' t be found in the memory. Binary search is 256/8 = 32 times faster than 
linear search when the key does not exist in the memory, and roughly that much faster when the key 
exists in the memory too. Yet binary search only requires a slightly smarter controller. 

The choice of algoritlun makes a big difference in performance for this example- a much 
bigger difference than is determined by, say, the speed of the comparator being used. 

• 
Power Optimization 

Power is becoming an important design criteria, both in high-end computing as well as in 
embedded computing. The unit of power is watts , which represents the energy per second 
(i.e., joules per second). In high-end computing, like desktop PCs, servers, or video-game 
consoles, the chips inside a computer consume a lot of power, causing the chips to 
become very hot. For example, a typical chip inside a PC may consume 60 watts- think 
about touching a 60-watt light bulb (but don't actually touch one) to understand how hot 
that is. Designing low-power chips reduces the need for expensive chip cooling methods 
beyond simple fans in high-end computing, and also reduces the electricity costs, which 
can be quite s ignificant for companies operating large numbers of computers. 

In embedded computing, even simple cooling methods likes fans may not be avail
able- a cell phone does not have a fan (if it did, people might find their tie or scarf 
getting stuck in that fan). Portab1e devices might have chips that run at only 1 watt or less. 

Furthermore, portable devices typically get 
their energy from batteries, and thus low-power 
chips are necessary to extend battery life-espe- e; 

0 
cially considering the fact that batteries are not C'I 

8 

E 
improving fast enough to keep pace with Q) 

:l 
increasing power consumption. By some mea- ~ 4 
sures, energy demand per chip is doubling about ~ 

2001 03 05 Oi' 09 

every three years (going along with Moore's 
Law). Figure 6.79 plots such energy demands 
compared to battery energy densities improving 
at their present rate of only about 8% per year. 

The increasing gap shown translates to shorter 
battery lifetimes for a device like a cell phone, 
or translates to bigger batteries. 

The most popular IC technology today uses 
CMOS transistors, and the biggest contributor to 

Figure 6.79 Battery energy density is 
improving more slowly than the increasing 
energy demands of digital chips. 

power consumption in CMOS is the switching of values from o to 1. l11e reason for this is 
that wires aren't perfect, having capacitance (we don't put a capacitor there on purpose- it 



390 6 Optimizations and Tradeoffs 

The chief 
technical officer at 
a major chip 
design company 
told me in 2004 
that, for the ir 
company . .. Power 
is e11emy number 
one." 

is simply a result of the fact that wires aren't perfect conductors of electricity). Switching 
the wire from 0 to 1 requires charging that capacitor. Switching from 1 back to 0 causes 
that charge to be discharged to ground. That switching results in power being consumed. 
This power is known as dynamic power, since this power comes from the chang1ng of 
signals ("d ynamic" means "changing"). Dynamic power consumption of a CMOS wire is 
proportional to the size of the capacitance (C) of the wire, multiplied by the voltage (V) 
squared, multiplied by the frequency at which the wire switches (j), namely 

P = k * CV2f (equation for CMOS dynamic power consumption) 

where k is some c011stant. Computing the dynamic power of a circuit is achieved by 
adding up the power computed by the above equation for every wire. 

Looking at the above equation, one can clearly see that lowering the voltage will 
cause the greatest reduction in dynamic power, because of the voltage having a quadratic 
(squared) contribution to dynamic power. Low-level circuit designers seek to reduce 
power by creating tran sistors that operate at the lowest voltage possible, to reduce the V 
term, and that have the smallest wire capacitance possible, to reduce the C term. Digital 
designers can therefore choose to utilize gates that operate with a lower voltage. 

Unfortunately, lower-voltage gates have a longer delay than higher-voltage gates, 
resulting in a tradeoff between power and performance. 

Anoth er way to reduce the dynamic power consumed by a circuit is to reduce the cir
cuit's clock frequency, which obviously reduces the f rerm for all the clock wires in the 
circuit, as well as for the many other wires that change oo each clock edge (like register 
wires and the logic connected to those registers ' outputs). But again, reducing tile clock 
frequency slows perfo1mance, resulting in a tradeoff between power and performance. 

Contrary to digital design in the 1980s and 1990s, power is a key challenge today. 
The reason is that IC makers have scaled IC voltage down nearly as low as possible, yet 
are putting more transistors on each IC every year due to shrinking of transistor sizes, 
meaning more wires switching on the same IC. And capacitance isn't decreasing at the 
same rate as transistor sizes. The result is that an IC conswnes more power as more tran
sistors are put on the IC, which can result in problems due to too much heat and fast 
battery energy consumption. 

Clock Gating (Advanced Technique) 
Assmning the C and V terms have been reduced to the greatest extent possible using tran
sistor-level design techniques, power can be reduced further by reducing f, the frequency at 
which wires switch. One method for reducing such power is known as clock gating. Clock 
gating is the disabling of the clock signal in regions of the chip that are not computing any
thing at a given time. Clock gating saves power because a significant percentage of the 
wires switching in a chip are the wires that distribute the clock to all the registers and flip
flops- perhaps 20%-30% of the power consumption is due to the clock signal switching 
throughout the chip. Clock gating reduces f without slowing the clock frequency itself. 

In clock gating, the clock signal is disabled by ANDing the clock signal w ith an 
enable signal thar is set in the state machine. Recall that a register with parallel load inter
nally reloads the same value from the register's flip-flops back into the flip-flops on a 
rising clock edge. Preventing the clock edge from appearing keeps the same values in the 
flip-flops. yielding the same net result- the register's contents don't change. 



elk 

6.6 More on Optimizations and Tradeotfs 391 

Clock gating is not something that digital designers typically do themselves. Rather, 
modem synthesis tools may allow us to specify clock enable and disable using special 
commands in each state. However, adding a gate on a clock signal delays the clock signal, 
resulting in clock signals in different patts of the circuit being slightly different from one 
another, an effect known as clock skew. The tools therefore automatically perform timing 
analysis to ensure that the clock skew does not change overall circuit behavior. Further
more, putting gates on a clock signal can reduce the sharpness of the clock edges, and so 
tools may use special gates. Nevertheless, the technique is widely used by low-power 
tools i11 practice. The next example illustrates clock gating. 

Example 6.23 Serial FIR filter with clock gating to reduce power 

n1 

We designed a serial FIR filter in Example 6.2 l. A five-state FSM controlled the datapath. The state 
machine loaded d1e three xt registers only in the fust state. state SJ, and loaded the yreg register only 
in the last state, state S5. Yet, the design routed the clock signal to all four registers utilizing four 
wires , labeled nl - n4 in Figure 6.80(a). Notice from the timing diagram at the top of the figure that 
nl - n4 change identically as d1e clock signal changes, and remember that every such change con
sumes dynamic power. 

co c2 

n2. n3 n4 

reg 

elk 
n1,n2, 

n3 
n4 

y_ld ~--------------------~ 
(a) 

x 

s1 

elk 

s5 

xtO 
co c2 

n2. n3 

y_ld ...... ____________________ ...... 

elk 

n1n~2·jl __ __.n._ __ _.n.__ __ _ 
n4 n n~ __ ll_ 

(b) 

figure 6.80 Clock gating: (a) the clock signal switches every cycle on all the heavily bolded wires, but d1e xt registers 
arc only loaded in state SJ , and tbe yreg in state 55- so most of the clock switching is wasted; (b) gating dle clock 
reduces the s witching on the clock wires. 



392 6 Optimizations and Tradeoffs 

Figure 6.80(b) shows a design using clock gating. The controller gates the clock to the xt reg
i.~ters by setting sl to 0 in all states but SJ. Likewise, the controller gates tJ1e clock to tbe yreg 
register by setting s5 to 0 in all s tates but s5. Notict: the significant decrease in signal switching on 
the clock's wires nl- n4, shown at the bottom of Figure 6.80. 

Low-power gates on noncritical paths 
Not alJ gates are equally fast. Engineers that build 
gates from transistors can make a gate faster by 
increasing the size of the gate's transistors, or by oper
ating ilie gate at a higher voltage. or by other means. 
Thus, one two-input AND gate might have a 1 ns 
delay, whjJe another two-input AND gate might have a 
2 ns delay. The latter AND may consume less power, 
due to its smaller size or lower voltage. 

To reduce the power consmn ed by a circuit, ilie 
entire circuit can use low-power gates, at ilie expense 
of slower performance, as illustrated in Figure 6.81. 

Alternatively, low-power gates can be put only on 
noncritical paths, so those paths are lengthened but to 
no longer than the critical path, as in the next example. 

Example 6.24 Reducing noncritical path power with multilevel logic 

Q5 
s: 
0 
a. 

• high-power gates 

• low-power gates 
on noncritical path 

delay 

low-power 
• gales 

Figure 6.81 Using low-power gates 
can reduce some power without 
changing delay. or reduce more 
power at the expense of delay. 

Example 6.11 reduced tJ1e size of a noncritical path by using multilevel logic. In this example, we 
instead reduce the power consumed by the noncritical path by usjug low-power gates. Assume that 
nomial gates have a delay of 1 ns and consume l nanowatt of power, and that low-power gates have 
a delay of 2 ns and consume 0.5 nanowatts of power. 

The left side of Figure 6.82 shows the same circuit from Example 6.1 l, having a critical path of 
3 gate-delays. Assume that all the gates are nonnal gates. meaning the critical path delay is 3 ns, and 
the total power consumption is 5 nanowatts. 

The lmttom two AND gates lie on two noncritical paths having delays of only 2 ns. We can thus 
replace those AND gates by low-power AND gates. The result is that the two paths' delays lengthen 
to 3 ns, so become equal to the critical path delay, but not longer. The result is also that the total 
power becomes only 4 nanowatts instead of 5 nanowatts (a 20% reduction). 

a 
b 

d 

e 

f 
g 

26 transistors 
3 ns delay 
5 nanowatts power 

nanowatts 

nanoseconds 

a 
b 

d 

e 

f 
g 

26 transistors 
3 ns delay 
4 nanowatts power 

Figure 6.82 Using low-power gates on noncritical paths. Nwubers inside a gate represent the 
gate's delay in nanoseconds and the gate's power consumption in nanowatts. 

• 



6.7 Product Profile: Digital Video Player/Recorder 393 

6.7 PRODUCT PROFILE: DIGITAL VIDEO PLAYER/RECORDER 

Digital Video Overview 

In the 1990s, the digitization of video became practical due to faster, smaller, and lower
power digital circui ts. Previously, video was largely captured, stored, and played using 
analog methods. Digitized video works by sampling an analog video signal and trans
forming the samples to digital values. Such digitization is similar to the audio digitization 
example from Figure l. l , but with some additional work. 

A video is actually a series of ~--------------~ 

quickly displayed still pictures, known as ~ ~ ~ 
frames, as shown in Figure 6.83(a). One 0

0 ° ~ ~ 
second of video might consist of about -
30 frames- the human eyes and brain 
see such a rapid seguence of frames as a (a) 
smooth, continuous video. 

A digital display may be divided 
into several hundred thousand tiny "pic
ture elements," or pixels . A typical size 
might be about 720 across and 480 
down. For each frame, a digitized sample 
captures several values for each pixel, 
like the intensity of the red, blue, and 
green components of the light at that 
pixel, converting analog measurements 
of those intensities into digital numbers. 
The result is the representation of a digi
tized frame as a (large) series of Os and 
ls, and the representation of a digitized 

I - p 

I 
(b) 

p 

I 

Figure 6.83 Video: (a) is a series of pictures, or 
frames, with much interframe redundancy, (b) 
can be constructed from I (intra) frames and P 
(predicted) frames, shown with relative b it 

encoding sizes. 

video as a large series of digitized frames. Digitized video can be transmitted, stored, 
replayed, and copied with mucb higher-quality than analog video. Furthermore, digitized 
video can be compressed, resul ting possibly in higher-quality video than analog video 
transmitted or stored using the same medium. 

DVD- One Form of Digital Video Storage 

Digital video discs (also known as digital versatile discs), or DVDs, store video in a 
digital format. First sold in 1997, DVDs replaced the analog video technology known as 
VHS tape. DVD players appear in home entertainment centers, personal computers, auto
mobiles (especially family-oriented vehicles), and even as stand-alone portable units. In 
200 I, consumer electronics companies introduced the first DVD recorder to market, 
allowing individuals to record television shows to special recordable DVDs. The popu
larity of DVDs compared to the previously popular analog-based VHS technology stems 
from several advantages, including better-quality video, no deterioration in video quality 
over time, and the ability to jump directly to particular parts in a video without having to 
sequentially forward or rewind. 



394 6 Optimizations and Tradeoffs 

DVDs store large amounts of data on a thin reflective layer of metal. Although the 
metal layer within a DVD looks flat from our perspective, there are actually billions of 
tiny pits on the metal layer that store the data. These pits, or lack of pits (called lands), 
store the binary data on the DVD. Figure 6.84 shows how a DVD player reads the infor
mation off a DVD. Using a very precise laser, the laser's light is focused onto the metal 
layer within the DVD. The metal layer reflects the light onto an optical sensor that can 
detect whether the light is reflected off of a pit or a land. By detecting the different 
regions, the optical sensor creates a stream of binary values as it reads the DVD. 

Spindle 

Optical 
Pickup Video Decoder 

1 
... 010100101100 ____ __,r 

Optical 
Sensor 

Monitor 

ml 

Figure 6.84 How a DVD player reads a DVD. The DVD player's optical pickup element shines a 
laser on the surface of the DVD. The DVD reflects the laser back to an optical sensor, and the e>ptical 
sensor uses the intensity of the reflected laser to output dlc sequence of Os and ls stored on the 
DVD. A video decoder circuit converts the binary data to a sequence of frames that hmnans interpret 
as a moving picture. 

The DVD's binary data is organized into a series of tracks that spiral outward from the 
center of the DVD. As the DVD player is reacting the data, the laser and optical sensor must 
slowly move outward from the center of the DVD to the outer edge. If a DVD is dual-lay
ered, the data on the disk's second layer is stored in a spiral that moves from the disk's outer 
to inner edge. The motivation for tbe second layer's reverse spiral is to prevent the laser and 
optical sensor from needing to reposition itself to the center of the ctisk after focusing on the 
second layer during a layer change. (You may have noticed a DVD pause momentarily at a 
ce1tain point in a movie during a layer change.) 

A single-layer single-sided DVD can store 4.7 gigabytes of data (meaning 37.6 giga
bits), but that amount is not enough for a movie unless the data is compressed. Consider 
a video with a resolution of 720 pixels by 480 pixels, usjng 24 bits of information per 
pixel, and displayed at 30 frames per second. One frame would require 720*480*24 = 
8,294,400 bits, or about 8 Mbits . One second of video, or 30 frames, would require 
30*8,294,400 = 248,832,000 bits, or about 250 Mbits. A 100-minute movie would thus 
require about 250 Mbits/sec * 100 min * 60 sec/min= 1500 Gbits. But a DVD can only 
hold 37.6 Gbits. To store a movie, a DVD must store the video in a compressed format. 



6.7 Product Profile: Digital Video Player/Recorder 395 

A DVD is only one of many different digital video storage media. Digitized video may 
be stored on any storage media capable of storing Os and ls in some form, such as on tape 
(used in many digital video cameras), on a flash memory (used in digital cameras and cell 
phones with video recording capability), on a CD, or on a computer hard drive. All such 
media are typically still quite limited and thus require compression methods. 

MPEG-2 Video Encoding- Sending Frame Differences Using I-, P-, and B-Frames 

MPEG-2 video compression was defined and standardized by the Motion Picture Expert 
Group in 1994 (as an improvement over the 1992 MPEG- 1 standard), and is used in DVDs, 
digital television, and numerous other digital video devices. MPEG-2 compression ratios 
range from 30: l to 100: l or more. The compression ratio is determine by dividing the 
number of bits of the digitized video before compression, by the number of bits after com
pression. So if a digitized video requires 400 gigabytes uncompressed but only 4 gigabytes 
compressed, the compression ratio would be 400/4 = 100: I . Note that packing 1500 Obits of 
a movie into 37.6 Obits would require a compression ratio of 1500 Obits/37.6 Obits= 40:1. 

The key observation leading to MPE0-2's compression method is that typically very 
little difference exists between two successive frames in a video- in other words, video 
typically has much interframe redundancy. For example, a frame may consist of a person 
standing in front of a mountain, as in Figure 6.83(a). The next frame (which represents 
perhaps l/30th of a second later) may be almost identical to the previous frame, except 
that the person's mouth has opened slightly. The next frame may still be almost identical, 
with the person's mouth opened slightly more. And so on. 

Therefore, MPE0-2 does not merely encode each frame as a distinct picture. Instead, 
to take advantage of the interframe redundancy, MPEG-2 may choose to encode each 
frame as one of the following: 

• An I-frame, or intracoded frame, is a complete picture. 

• A P-frame, or predicted frame, is a frame that merely describes the difference 
between the current frame and the previous frame. Thus, to derive the picture for 
this frame, one must combine the P-frame with the previous frame. 

For example, Figure 6.83(b) shows P-frames that contain only the differences from 
the previous frame. AP-frame will obviously require fewer bits than an I-frame. Example 
frame sizes might be about 8 Mbits for an I-frame, but only 2 Mbits for a P-frame. Thus, 
instead of representing 30 frames as 30 complete pictures (30 I-frames), a compression 
method might represent those frames using the following sequence of frames: I P P P P P 
P P P P P P P P P I P P P P P P P P P P P P P P. The compression ratio in this example 
would thus be 8 Mbits * 30 I (2 * 8 Mbits + 28 * 2 Mbits) = 240 / 72=3.3:1. Obviously, 
a picture created by combined predicted frames with a previous frame won't be a perfect 
representation of the original pictme, e.i:pecially if there is a lot of motion in the video. 
MPE0-2 thus trades off some quality for compression. 

To achieve even further reductions, MPE0-2 uses a third frame type: 

• A B-frame, or bidirectional predicted frame, is a frame that can store differences 
from previous and future frames. 

B-frames can tbus be even smaller than P-frames. An example B-frame size might be 
just 1 Mbit. 



396 6 Optimizations and Tradeoffs 

Example 6.25 Computin~ compression ratios involving 1-, P-, and B-frames 

Assume a JO.frame MPEG-2 sequence has the following frame sequence: I B B P B B P B B P B B 
PB B I BB PB BP BB PB BP BB. Assume average frame sizes of 8 Mbits for I-frames, 2 Mbits 
for P-frarnes, and l Mbit for B-frarnes. Compute the compression ratio. 

The compression ratio in this example would be 8 Mbits * 30 I (2 * 8 Mbits + 8 * 2 Mbits + 20 
* 1 Mbits) = 240 I 52 = 4.6 : I. 

The example sequence of frames is in fact fairly typical for MPEG-2 video, with I-frames occur
ring about every 12- 15 frames. 

• 
MPEG-2 video encoders may seek to create about 30 frames per second. With hun

dreds of thousands of pixels per frame that must be compared with another frame, 
MPEG-2 encoding requires a large amount of computation to determine which frames 

should be I, P, and B, and what should be the values for the P- and B-frames. Further
more, much of that computation will consist of the .same computation performed between 
corresponding regions of two frames. Thus, many MPEG-2 encoders utilize custom 
digital circuits to parallelize those computations at the expense of more hardware size. 
For instance, Example 6.20 built a sum-of-absolute-differences circuit using more paral
lelism than in Example 5.9, at the expense of a larger circujt size. Such a circuit would be 

useful in a video encoder needing to quickly determine whether a frame should be 
encoded as a P- or B-frame, or instead should be encoded as an I-frame. Additional cir

cuits might compute the actual values of P- and B-frames. 
Likewise, an MPEG-2 video decoder might use circuits to quickly recompose I-, P-, 

and B-frames back into fuJl-picture frames- although decoding MPEG-2 video is easier 
than encoding because the actual determination of P- and B-frame contents is only done 
during encoding; decoding merely needs to combine P- and B-frames with their sur
rotmding frames. 

Transfonning to the Frequency Domain for Further Compression 

OCT-Discrete Cosine Transform 
We saw in the previous section that sending a frame (P or B) that is just the difference 
from a previous or future frame can result in some compression. However, the compres
sion ratios achieved were only about 4:1. Recall earlier that a DVD needs perhaps a 40:1 
compression ratio to s tore a full-length movie. Thus, further compression is needed. 

MPEG-2 therefore further compresses each I-, P- and B-frame individually. The com
pression method involves applying what is known as a discrete cosine transfom1 to 8x8 
blocks of pixel values within each frame. The discrete cosine transform is also used in the 
well-known JPEG standard for compressing still images, like those in a digital camera. The 
discrete cosine transform , or DCT, transforms information from the spatial domain to the 
frequency domain. (The DCT is similar to another popular technique known as the fast 
Fourier transform, or FFT, also used for translating to the frequency domain.) 

Trans lating to the frequency domain is a powerful concept, which is widely used in 
digital signal processing. To understand this concept, consider wanting to digitally store the 
analog signal shown in Figure 6.85, using the fewest bits possible. Tbe s ignal is a l Hz 



6.7 Product Profile: Digital Video Player/Recorder 397 

cosine wave with an amplitude of 10. To store the signal digitally, we could sample the 
signal at frequent intervals, perhaps every millisecond, and record the measured signal value 
as a binary number, perhaps 8 bits wide. One second 
would thus result in 1000 * 8 = 8000 bits. On the 
other hand, we could just store the fact that the signal 
is a cosine wave with a frequency of l Hz and an 
amplirude of 10. If we store each of those numbers 
as an 8-bit value, then we only need to store 8 + 8 = 
16 bits. Sixteen bits is far Jess than 8000 bits. 

freq: 1 Hz 
,...- amp: 10 

time (s) 

Of course, not all signals that we want to digi- Figure 6.85 Digitizing signals by 

tize are simple cosine waves. But- and this is the translating to the frequency domain. 

key idea underlying frequency domain representa-
tion- we can approximate any original signal as a sum of cosine waves of different 
frequencies and amplitudes . If we break the original signal into small regions, we obtain 
even better approximation. For example, we might approximate one region as the sum of 
a 1 Hz cosine wave of amplitude 5 plus a 2 Hz cosine wave of amplirude 3. We might 
approximate another region as the sum of 50 different cosine waves of different frequen
cies and amplitudes. The smaller the region we consider, and the more different cosine 
wave frequencies we consider, the more accurate will be our approximation to the real 
signal. 

Rather than storing the actual frequencies along with the amplitudes of the cosine 
waves, we could instead decide only to consider using particular frequencies , such as: 
l Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, and so on. TI1en, we can s imply send the amplirudes of 
those particular cosine waves: (5, 3, 0, 0 , 0, ... ). Let's refer to these amplitudes as 
coefficients. 

The DCT in MPEG-2 converts an input 8x8 block, whose values represent pixel 
intensities, to an 8x8 block representing the coefficients of predetermined "frequencies." 
In the video domain, each frequency represents a different block pattern, with low fre
quency being an almost constant pattern and high frequency being a changing pattern 
(like a checkerboard). The DCT determines a set of coefficients such that adding the pre
determined patterns together with each pattern multiplied by its coefficient yields one 
resulting pattern very s imilar to the original input block. 

The equation for a two-dimensional DCT applied to an 8x8 block of nwnbers is: 

8 8 

F(u, v) = ~C(u)C(v) L L D[x, y]cos(rc(2X1 ~ l )u)c-0s(rc( 2-~~ l)v) 

x =Oy =O 

C(h) = l }zh :0 

1, otherwise 

The input is an 8x8 block, D [x, y} . The output is another 8x8 block, with F(u,v) com
puting the coefficient at row u , column v for the output block. 



398 6 Optimizations and Tradeoffs 

An MPEG-2 encoder may utilize custom digital circuits for fast OCT computation. 
Notice that computing each coefficient requires evaluating the rightmost term (let's call 
that term the inner tenn) 64 times, and that must be done for each of the 64 coefficients, 
meaning 64*64 = 4096 evaluations of the tenn. And that inner term itself requires several 
multiplications. Fwthenuore, the OCT operates on 8x8 blocks, but in a 720x480 I-frame 
there will be 5400 such blocks. Thus, the DCT for one I-frame could require 5400*4096 
= 22 million computations of the im1er term. And that encoding may have to occur at 30 
frames per second. You can begin to see wby an MPEG-2 encoder may need to use 
custom digital circuits to compute the OCT quickly, using extensive parallelism and pipe
lining to obtain the necessary performance. 

The DCT computation can be sped up fu1ther by precomputing the cosine terms of 
the inner term. Notice that the DCT computes two cosines based on the input values of u 
and x and the input values of v and y. However, because the DCT operates on 8x8 blocks, 
the variables u, v, x, and y only range in value from 0 to 7. Therefore, we can precompute 
the 64 possible cosine values needed for the OCT computation and store those values in 
an 8x8 table, which may be programmed into a ROM. We can then rewrite the DCT 
transfo1m as follows: 

8 8 

F(u, v) = iC(u)C(v) L I,D[x, y]cos[x, u]cos(y, v] 

x =Oy = O 

Using a ROM to store the precomputed cosine values speeds up the computation of 
the inner term of the OCT. 

Quantization 
Translating to the frequency domain using the DCT does not directly perform compres
sion- we merely converted an input 8x8 block to an output 8x8 block. That output 8x8 
block represents amplitudes of particular cosine wave frequencies. We can achieve com
pression by rounding those amplitudes, such that we use fewer bits to represent the 
amplitudes. For example, suppose we use 8 bits to represent the amplitude, meaning we 
can represent amplitudes ranging from 0 to 255. Suppose we only represent even ampli
tudes, meaning 2, 4, ... , 254. In that case, we can drop the lowest-order bit, in the 
representation of the amplitude, resulting in only 7 bits. The decoder would merely 
append a 0 to the 7-bit number to obtain an 8-bit number again. For example, the 8-bit 
number (}()()0111 1 would be compressed to the 7-bit number 0000111 with an implicit 0 
in the eighth bit. The decoder would expand that 7-bit number back to the 8-bit number 
00001110-notice that the decoded number is slightly different than the 01iginal, being 
14 rather than the original 15 (an example of why MPEG-2 compression loses some 
image quality). We could take this rounding concept further, only representing amplin1des 
that are multiples of 4 (thus dropping the two lowest-order bits, yielding a 6-bit represen
tation), or are multiples of 8 (dropping the three lowest-order bits, yielding a 5-bit 
representation). 00001111 might be represented as 0000 1 with three implicit Os, thus 
decoded back to 00001000. The decoded number of 8 is different from the original 
number 15 due to the rounding. 



6.7 Product Profile: Digital Video Player/Recorder 399 

The rounding described above, achieved by dropping low-order bits to achieve com

pression, is known as quantization . Notice the tradeoff- more rounding yields more 
compression, at the expense of accuracy. Fortunately, humans don't notice such rounding 
in the high-frequency components of the picture--our vision just isn't that precise. We 
also don't notice minor differences in the high-frequency components of sound--our 
hearing isn' t that precise. Think of a very high-pitched sound, so high it could perhaps 
break glass. You probably couldn't tell the difference between two such high-pitched 
sounds of slightly different frequencies- they are both just high. Likewise, our eyes can't 
detect slight rounding of color values in a highly complex scene. So MPEG-2 applies 

quantization more aggressively on the DCT output block's high-frequency coefficients 
than on the low-frequency coefficients. 

After quantization, the 64 values in the 8x8 block are treated as a list of 64 numbers. 
Those 64 numbers are then run-length encoded. Run-length en coding is a compression 
method that reduces consecutive occurrences of zeros by a number indicating the number 
of consecutive zeros rather than representing those zeros themselves. For example, con
sider wanting to represent the following 5 munbers: 0, 0, 0, 0, 24. If each value is 6 bits, 
the 5 11umbers require 5*6 = 30 bits. On the other hand, we could just send a pair of 

numbers, the first indicating the number of leading zeros, the second indicating the 
nonzero number. So 0, 0, 0, 0, 24 would be encoded as (4, 24~ leading zeros, followed 
by the number 24. If each value is 6 bits, the tun-length encoded version requires only 
2*6=12 bits. Any sequence of numbers could similarly be replaced by a sequence of 
number pairs. each pair replacing a sequence of zeros and a number. The sequence 0, 0, 
0, 0, 24, 0, 0, 8, 0, 0, 0, 0, 0, 0. 16 could thus be replaced by three pairs: (4, 24), (2, 8), 
(6, 16), reducing the nwnber of bits from 15*6=90 down to 6*6=36 bits. Note that the 
number of zeros at the beginning of the sequence or in between nonzero numbers may be 
zero, and the last number may be zero. For example, the sequence 2, 0, 0, 63, 2, 0, 0, 0, 
0, 0 could be encoded as (0,2), (2,63), (0,2), (4,0). 

Run-length encoding achieves good compression 011ly if there are many Os in the 
sequence of numbers. Fortunately, the nature of the DCT leads to many 0 numbers (not 
all cosine frequencies are needed to approximate a signal region, so those frequencies 
will have 0 coefficients), especially after quantization ( many coefficients are just small 
numbers, which become 0 during quantization). Thus, applying run-length encoding after 
quantization leads to further compression. 

Example 6.26 Computing compression ratios involving quantization and run-length encoding 

Continuing Example 6.25, assume that the 30-frame MPEC-2 sequence has the same frame 
sequence and average sizes as that example, but tl1at each frame is further compressed by OCT con
version to the frequency domain followed by quantization and nm-length encoding. Assume the 
OCT output block consists of 64 8-bit numbers, that quantization reduces the average number size to 
5-bit numbers, and that run-length encoding reduces the resulting number sequence size to 30% of 
its original size. 

The compression ratio would be 8 Mbits * 30 I 518 * 0.30 *(2 * 8 Mbits + 8 * 2 Mbits + 20 • 1 
Mbits) = 240 I 9.7 = 25: I . 



400 6 Optimizations and Tradeoffs 

Huffman Coding 
After run-length encoding, each block consists of a sequence of numbers. Some numbers 
will occur in that sequence more frequently than others. Huffman coding is a method of 
reducing the number of bits required to represent a set of values, by creating sh01ter encod
ings for the frequently occurring values, and longer encodings for the Jess frequent value. 

Huffman coding, a fonn of encoding known as entropy encoding, is another powerful 
concept in digital data compression. Suppose you wish to represent an original sequence 
of 16 numbers 0, 3, 3, 31, 0, 3, 5, 8, 9, 7, 15, 14, 3, 0, 3, 0 . Assuming 5 bits per number, 
a straightforward binary encoding would be: 00000 00011 00011. 11111 00000 

00011 00101, and so on, for a total of 16*5 = 80 bits. We can reduce this total by first 
observing that there are only 9 unique symbols: 0, 3, 5, 7, 8, 9, 14, 15, and 31. We really 
only need 4 bits to uniquely identify each symbol. We could thus assign the nine unique 
symbols to 4-bit encodings using the following definitions: 0=0000 , 3=0001, 5=0010, 

7=0011, ... , 31=1001. (note that the encodings are no longer the binary number represen
tations of the original numbers). Thus, the original sequence of numbers (0, 3, 3, 31, 0, 3, 
5, .. . ) would be encoded as 0000 0001 0001 1001 0000 0001. 0010 etc., for a 
total of 16*4 = 64 bits. The key observation here is that we can encode numbers using 
any arbitrary unique bit patterns we desire, as long as the encoder and decoder are both 
aware of the encoding definitions. 

We can take this definition concept a step further, by using encodings of different 
lengths. Observing that 3 and 0 occur more frequently than the other numbers, we might 
give 3 and 0 shorter encodings. So we might create the following encoding definitions: 
0=00, 3=10, 5=010, 7=0110 , 8=0111, 9=1100, 14=1101, 15=1110, 31=1111. How 
these definitions were created is just beyond the scope of this discussion, though it's really 
not bard to learn. Notice that the encodings are such that the shorter encodings do not 
appear at the left of any of the longer encodings. For example, o o does not appear at the left 
of any of the longer encodings, like 010, 0110, 0111, etc. This feature allows the decoder 
to know when it has reached the end of the code word-when the decoder has seen oo, it 
knows it has found an encoded 0 (because no other encoding starts with 00); when it sees 
10, it knows it has found a 3 (because no other encoding starts with 10). But when the 
decoder sees o 1, it must look at the next bit, and if it sees o 1 o, it knows it has found a 5 
(because no other encoding starts with o 1 o ). Using this variable-length encoding scheme, 
the original sequence (0, 3, 3, 31, 0, 3, 5, ... ) would be encoded as oo 10 10 1111 oo 
1 o o 1 o etc. We have inserted the spaces just for readability; the actual encoding would just 
be 00101011110010010 etc. The total number of bits would be 4 * 2 (for the four Os, 
encoded with the two bits oo) + 5 '* 2 (for the five 3s, encoded with the two bits 10) + 1 *3 
(for the one 5, encoded with the three bits 010) plus 6*4 (for the six remaining numbers 31. 
8, 9, 7, 15, and 14, each encoded as 4 bits), totaling 45 bits- much reduced from the orig
inal 80 bits required by the straightforward binary encoding. 

Huffman coding achieves good compression when some munbers occur much more 
frequently than other numbers in the sequence of nwnbers to be encoded. Fortunately, 
this is indeed the case after DCT, quantization, and run-length tasks are performed on a 
block of a frame. For example, there may be plenty of Os, ls, 2s, etc., and fewer occur
rences of higher numbers. 



6.7 Product Profile: Digital Video Player/Recorder 401 

Example 6.27 Computing compression ratios involving Huffman coding 

Continuing Example 6.26, assume dlat pairs of numbers after quantization and nm-length encoding 
are Huffman coded, and that such encoding reduces the number of bits by 50%. 

The compression ratio would thus be 240 I 0.50¥ 9.7 = 50: l. 

• 
Summary 
Summarizing MPEG-2 video encoding: 

• The use of I-, P-, and B-frames achieves compression by not resending redundant 
information of successive frames , but rather just sending the differences. 

• The DCT transforms 8x8 blocks of frames to the frequency domain, which doesn't 
achieve compression itself, but rather enables compression in the next steps. 

• Quantization achieves forther compression by reducing the number of bits needed 
to represent the DCT coefficients, through rounding. 

• Run-length encoding achieves further compression by replacing sequences of zero 
coefficients by a number indicating the number of such zeros. 

• Huffman coding achieves further compression by encoding frequently occwTing 
coefficient numbers with shorter encodings than less frequently occurring coeffi
cient numbers. 

The sequence of steps is shown graphically in Figure 6.86 . 

OCT ... 010100101 100101010 
101 011 11010101001001~ 
10010010001010111101 '---;====-...:L, 
10101000100010111011 ... 

Uncompressed 
digital video 

Figure 6.86 MPEG-2 video compression encoding overview. 

MPEG·2 video 
(compressed) 

Huffman ~ 
L_ _ _Qd '---""---' ... 010100101100 ... _ c rng . 

Our example compression ratio calculations yielded a ratio of about 50: 1. 111 fact , the 
compression ratio can be varied by varying each of the above steps. We can use fewer 
I-frames to achieve even higher compression at the cost of degraded video quality, or 
more I-frames for improved video quality at the cost of more bits. Likewise, we can vary 
the amount of quantization to trade off quality and compression ratio. Because a typical 
movie will have some slow-changing scenes and other rapidly changing scenes, and some 
complex colored frames and other simpler frames, the compression ratio for different 
parts of a video may actually vary. Notice the permeating presence of tradeoffs (primru.iJy 
between quality and compression ratio) throughout MPEG-2 encoding. 



402 6 Optimizations and Tradeoffs 

---ii Huffman h • decoding 
... 010100101100 .. '."'". --;:==:::::::::=.....!..., 

MPEG-2 Video 
(compressed) 

Run-length 
decodin Uncompressed 

digital video 
... 010100101100101010 
10101111010101001001~ 

Inverse L 10010010001010111101 
~_D_C_T_~j 10101000100010111011 ... 

Figure 6.87 MPEG-2 video decoding overview. 

0 

~~ 

[I] l1J::.. 
c:: O(S :::.... 

IJl c:: .!!! ---0 0 Q 
... ·- U) lij ~ 'tj 

@'~ 0 00 

(.) 

An MPEG-2 decoder merely needs to apply the above steps i11 reverse, as illus
trated in Figure 6.87, to convert an MPEG-2 stream of bits back into a serjes of 
pictures, or video. 

Clearly, MPEG-2 encoding and decoding require a lot of computations petformed at 
speeds fast enough to create smooth-looking, good-quality video. Custom digital circuits 
can help achieve those required speeds. 

6.8 CHAPTER SUMMARY 

Section 6.1 introduced the idea that sometimes a particular design criteria can be 

improved without hurting other criteria (optimization), but usually improving one c1iteria 
is done at the expense of another criteria (tradeoff). Section 6.2 discussed the problem of 
two-level logic size minimization, introducing K-maps as a visual method and an autom
atable tabular method, and then describing automatable heuristics for two-level as weU as 
multilevel logic size minimization. Section 6.3 discussed methods for optimization and 
tradeoffs in designing sequential logic, including state minimization, state encoding, and 
Moore versus Mealy type FSMs. Section 6.4 highlighted several alternative methods for 
implementing some datapath components, including a faster adder using carry-lookahead, 
and a smaller multiplier using sequential multiplication. Section 6.5 described methods 
for RTL optimizations and tradeoffs, including the powerful concepts of pipelining and 
concurrency as means of achieving good perfonnance, which is a key pmpose of digital 
design. TI1e section also described the RTL methods of component allocation, operator 
binding, and operator scheduling. Section 6.6 briefly surveyed some higher-level 
methods, including the general idea of serial versus concurrent computation, and the 
selection of efficient algorithms. The section also introduced some basic concepts of 
power reduction, including clock gating, and the use of low-power gates. 

As can be seen from this chapter, there are many methods for improving designs. 
Yet, this chapter just scratched the surface of such methods. An entire multibillion-dollar
per-year industry exists that specializes in making automated tools for converting behav
ioral descriptions of desired system functionality into highly optimized circuit 
implementations- that industry is known as electronic design automation (EDA) or as 
computer-aided design (CAD). This chapter hopefully gave enough exposure at least to 
understand the basic idea behind circuit optimization at various levels of design abstrac
tion, ranging from the gate level up to the RTL level and beyond. 



6.9 Exercises 403 

6.9 EXERCISES 

SECTION 6.1: INTRODUCTION 

6. I Define the terms '·optimization" and "tradeoff." 

6.2 A homeowner wishes to increase the amount of Light inside the house during the day, with the 

only criteria of illterest being the amount of light and the cost of electr icity. Describe how to 
increase the Light via: (a) an optimization, (b) a tradeoff. 

SECTION 6.2: COMBINATION AL LOGIC OPTIMIZATIONS AND TRADEOFFS 

6.3 Perfonn two-level logic size optimization for F(a,b,c ) ~ ab 1c +abc + a 1 be + abc 1 using 
(a) algebraic methods, (b) a K-map. Express the answers in sum-of-products form. 

6.4 Perfom1 two-level logic size optimization for F (a, b, e ) = a + a' b' e + a' e using a K-map. 

6.5 Perfom1 two-level logic size optimization for F (a, b, c, d ) "" a 1 be ' + abe 1 d ' + abd 
using a K-map. 

6.6 Perform two-level logic size optimization F (a, b, e, d ) =ab + a' b' d ' using a K-map. 

6.7 Perfonn two-level logic size optimization for F (a, b, c) ""a' b' c + abe, asswning input 
combinations a' be and ab' c can never occur (those two minterms represent don' t cares). 

6.8 Perform two-level logic size optimization for F (a, b, e, d ) = a ' be 'd + ab' ed', assuming 
that a and b can never both be 1 at the same time, and that c and d can never both be 1 at d1e 
same time (i.e., there are don't cares). 

6.9 Consider the function F (a, b, c ) =a ' c + ac +a' b. Using a K-map: (a) Determine which 
of the following temlS are implicants (but not necessarily prime implicants) of the equation: 
a 1 b 1 c 1

, a 1 b 1
, a•be, a•c, c, be, a 1 bc 1

, a•b. (b) Determinewhichof 
those terms are prime implicants of the function. 

6. JO For the fW1ctio n F (a, b, e ) = a' c + ac + a ' b , determine all prime implicants and all 
essential prime implicants: (a) using a K-map, (b) using ilie tabular med10d. 

6. I l For ilie equation F (a, b, c, d) = ab' c • + abc ' d + abed + a ' bed + a' bed', deter
mine all prime implicants and all essential prime implicants: (a) using a K-map, (b) using d1e 
tabular method. 

6.12 Use repeated application of the expand operation to heuristically minimize the equation 
F (a,b,c ) "' a'b'c + a'bc + abc.(a)Tryexpandingeachtermforeach variable. 
(b) Instead, determine a way to randomly choose an expand operation, and then apply 5 
random expands. 

6. 13 Use repeated application of the expand operation to heuristically minimize the equation 
F (a, b, c, d, e ) = abcde + abcde ' + abed' e '. (a) Try expanding each term for 
each variable. (b) Instead, determine a way to randomly choose an expand operation, and 
ilien apply 5 random expands. 

6. 14 Using algebraic methods, reduce the nwnber of gate inputs for the following equation by cre
ating a multilevel circuit: F(a,b,c,d,e,f,g) = abede + abed'e'fg + 
abed' e ' f 'g • . Assume only AND, OR, and NOT gates will be used. Draw the circuit for 
the original equation and for the multilevel circuit and clearly list the delay and number of 
gate inputs for each circuit. 



404 6 Optimizations and Tradeotfs 

SECTION 63: SEQUENTIAL LOGIC OPTIMIZATIONS AND TRADEOFFS 

6.15 Reduce tJ1e number of states 
for the FSM in Figure 6.88 
using tJ1e partitioning method. 

6.16 Reduce the number of states 
for tJ1e FSM in Figure 6.89 
using tlie partitioning metliod. 

6.17 Reduce the number of states 
for the FSM in Figure 6.90 
using the partitioning method. 

6.18 Compare tJ1e logic s ize 
(number of gate inputs) and 
the delay (number of gate
delays) of a straightforward 2-
bit binary encoding of the 
FSM in Figure 6.91 using a 3-
bit output encoding versus 
using a one-hot encoding. 

6.19 Compare the logic size 
(number of gate inputs) and tJ1e 
delay (number of gate-delays) 
of a minimal bitwidth state 
encoding versus an output 
encoding for tlie laser-based 
distance measurer FSM shown 
in Figure 5.26. 

6.20 Compare the logic size 
(number of gate inputs) and the 
delay (number of gate-delays) 
of a minimum binary encoding, 
an output encoding (if it is pos
s ible; if not, indicate why not), 
and a one-hot encoding of tJ1e 
laser timer FSM in Figure 3.47. 

Figure 6.88 
FSM 
example. 

xy=OO xy=01 

Inputs. x; Outputs: y 

y=1 y=1 

xy=10 xy=OO 

xy=10 xy=01 

Figure 6.89 Sequence detector for bit patterns 01 and 10. 

Inputs: i; Outputs: h j' 

Figure 6.90 FSM example. 

Inputs: none; Outputs: w,x,y 

wxy=100 wxy=010 wxy=001 wxy=OOO 

Figure 6.91 FSM example. 

6.21 Convert the Moore FSM for the code detector circuit shown in Figure 3.58 to the nearest 
Mealy FSM equivalent. 



6.9 Exercises 405 

6.22 Convert the Moore FSM in Figure 6.92 to the nearest Mealy FSM equivalent. 

en=O en=O 

Figure 6.92 FSM example. 

a=O 
en=O 

6.23 Convert the Mealy FSM in Figure 6 .93 to 
the nearest Moore equivalent. 

6.24 Convert the Mealy FSM in Figure 6.94 to 
the nearest Moore equivalent. 

G1 

g'r'/xyz: 110 

a=O 
en=O 

Inputs; s,r 
Outputs: a .en 

a=O 
en=1 

Inputs: s,r; 
Outputs: u,y 

s/u=1 
y=1 

figure 6.93 FSM example. 

Inputs; g,r 
Outputs: x,y,z 

g/xyz=111 

Figure 6.94 FSM example. 



406 6 Optimizations and Tradeoffs 

SECTION 6.4: DATAPATH COMPONENT TRADEOFFS 

6.25 Trace the execution of the 4-bit carry-lookahead adder shown in Figure 6.57 when a = 11 
(eleven) and b = 7. Show all the input and output values of the SPG blocks and of the carry
lookahead block initially and after each relevant number of gate delays. 

6.26 Trace the execution of the 4-bit carry-lookahead adder shown in Figure 6.57 when a = 5 and 
b = 4. Show all t11e input and output values of the SPG blocks and of the carry-lookahead 
block initially and after each relevant number of gate delays. 

6.27 Trace the execution of the 16-bit carry-lookahead adder built from 4-bit adders as shown in 
Figure 6.60 when a= 43690 and b = 21845. Do not trace jnternal behavior of the individual 
4-bit crury-lookahead adders. 

6.28 (a) Design a 64-bit hierarchical carry-lookahead adder using 4-bit carry-lookahead adders. (b) 
What is the total delay through the 64-bit adder? (c) What is the speedup of the carry· 
lookahead adder compared to a 64-bit carry-ripple adder: compute speedup as (slower time)/ 
(faster time). 

6.29 Design a 24-bit hierarchical carry-lookahead adder using 4-bit carry-lookahead adders. 

6.30 Design a 16-bit carry-select adder using 4-bit carry-ripple adders. 

SECTION 6.5: RTL DESIGN OPTIMIZATIONS AND TRADEOFFS 

6.31 The adder tree shown in 
Figure 6.95 is used to 
compute the sum of eight 
inputs on every clock cycle, 
where the sum is S :::: R + 
T + U + V + W + X + 
Y + Z. (a) Design a pipe
lined version of the adder tree 
to maximize the frequency at 
which the clock input can 
operate. (b) Create a timing 
diagram of die pipelined tree 
circuit showing ilie values of 
pipeline registers and the 
output register for the fol
lowing input values: R"'l , 
T=2, U=3, V=4, W=5, X=6, 
Y=7, and Z=8. (c) If the delay 

elk 

+ + 

Figure 6.95 Adder tree used to compute the sum of eight 
inputs every clock cycle . 

of an adder is 3 ns, compare the fastest clock frequency of the original circuit versus die pipe
lined circuit. (d) Again assuming 3 ns adders, compare the fastest latency and throughput 
values for the original circuit versus the pipelined circuit. 

6.32 (a) Convert the C-like code of Figure 6.96 to a high-level state machine. Ignore overflow. (b) 
Use the RTL design process shown in Table 5. l to convert the HLSM to a controller and a 
datapath. Design the datapath to structure, but design the controller to the point of an FSM 
only. (c) Redesign the datapath to allow for concurrency jn which four multiplications and 
two additions can be pcrfonned concurrently. Assume memory ports can be introduced as 
needed. (d) Assuming a multiplier delay is 4 ns and an adder delay is 2 ns, list the fastest 
clock period, latency. and ilirou8hput for the ori8inal design and for the more concurrent 
design, assuming the critical path is in the datapath. (e) Introduce more multipliers or adders 
and pipeline registers as needed to further improve the speed of the design, and compare the 
clock period, throughput, and latency with dle previous two designs. 



Inputs: byte a[256]. b [2 56] 

outputs: byte sum, byte c[256] 

MULT: 

int i=O; 

int sum = O; 

while ( i < 256 ) { 

c[i] a[i] * b[ i] ; 

sum = sum + c[ i ] ; 

i ++; 

Figure 6.96 C-like code. 

6.9 Exercises 407 

6.33 (a)Convert the C-like code in Figure 6.97 to a high-level state machine. Ignore overflow. (b) 
Use the RTL design process shown in Table 5.1 to convert the HLSM to a controller and a 
datapath. Design the datapath to structure, but design the controller to the point of an FSM 
only. (c) Redesign your datapath to al low for concurrency in which three comparisons, three 
additions, and three multiplications can be performed conclu-rently. 

Inputs: byte a[256J, byte b[256J, byte cy 
Output: byte sumx, byte sumy, byte c [2 56] 
MULT OR ADD: 
int i =O; 
int sumx 
int sumy 
while ( i < 

if( a[i] 
c [i] = 

O; 

O; 
256 ) { 
> 128 ) { 
a[i ] * b[i]; 

sumx = sumx + c[ i ] ; 

else { 
c [i] 

sumy 

i++; 

a[i J * (b [i] + cy) ; 
sumy + c[ i ] ; 

Figure 6.97 C-Like code. 

6.34 Redesign the datapath and controller designed in Exercise 6.33 by al lowing up to nine con
current additions and inscrtjng pipeline registers, updating the controller as necessary. 
Assumjng a comparator has a delay of 4 ns, an adder has a delay of 3 ns, and a multiplier has 
a delay of 20 ns, how long will the circuit take to firush its computation? 



408 6 Optimizations and Tradeotfs 

6.35 Given the HLSM in 

different designs: one ~B ,___ ___ (;:'\ ~ 
Figure 6.98, create two ~ 

optimized for minimum \J "' ~ 
circuit speed and the so= so•co s1 = s1 +sO*c1 

s2 = so•x2 
s3 = s2+so•c1 
s4 = sO*c1 

F = s3*s4*c2 
other optimized for 
minimum circuit size. Be 
sure to clearly indicate 
the component allocation, 

Figure 6.98 High-level state machine for Exercise 6.39. 

operator binding. and operator scheduling used to design the two circuits. 

SECTION 6.6: MORE ON OPT~llZA TIO NS AND TRADEOFFS 

6.36 Trace through the execution of the binary search algorithm when searching for the number 86 
in the following sorted list of 15 numbers: I, 10, 25, 62, 74, 75, 80, 84, 85, 86, 87, 100, l06. 
11 l, 121. How many comparisons were required to find the number using the binary search 
and how many compaiisons would have been required using a linear search? 

6.37 Trace through the execution of the binary search algorithm when searching for the number 99 
in the following list of 15 numbers: I, I 0, 25, 62, 74, 75, 80, 84, 85, 87, 99, I 00, I 06, I 11, 
121. How rmmy comparisons were required to look for the number using the binary search 
and how many comparisons arc required using a linear search? 

6.38 Trace through the execution of the binary search algorithm when searching for the number 
121 in the list of numbers from the previous example. How many comparisons were required 
to find the number using the binary search and how many comparisons are required using a 
linear search? 

6.39 Using the list of 15 numbers from Exercise 6.37, how many numbers can be found faster 
using a linear search algorithm compared with the binary search algorithm? 

6.40 Given the logic gate library in Figure 6.99, optimize the circuit in Figure 6. 100 by reducing 
power consumption without increasing the circuit's delay. 

Figure 6.99 Logic gate library. 2/0.5 format means 
2 ns dclay/0.5 nw power. 

Figure 6.100 Example circuit. 

h 



6.9 Exercises 409 

6.41 Given the logic gates shown in Figure 6.99, optimize the circuit in Figure 6.101 by reducing 
power consumption without increasing the circuit's delay. 

a 

b 

c 

d 

e 
f 
9 

h 

Figure 6.101 Example circuit. 

6.42 Given the logic gates shown in Figure 6.99, optimize the circuit in Figure 6.102 by reducing 
power consumption without increasing the circuit's delay. 

h 

Figure 6.102 Example circuit. 

6.43 Given the logic gates shown in Figure 6.99, optimize the circuit in Figure 6. 103 by reducing 
power consumption without increasing the circuit's delay. 

a 
b 
c 

e----------~ 

f -----~ 

9 
h 

y 

Figure 6.103 Example circuit. 



410 6 Optimizations and Tradeoffs 

.... DESIGNER PROFILE 

Smita has degrees in 
Electronics Engineering 
and in Computer Science, 
and has worked in the 
digital design field for 
nearly a decade. She spent 
a lot of time tlunking about 
the choice of a college 
major. "What major should 
1 invest my focus, energy, 
heart, and soul for what 
will be some of the most 

productive years of my life?" She chose engineering, for 
several reasons. "First, engineering is a career in 
itself- unlike some other majors, jobs specifically for 
engineering majors are out there. Wit11 engineering, I 
would learn the most valuable and universal of skills: 
problem solving. Second, engineers have many options. 
because engineen are highly valued for their problem 
solving skills by other professions, such as management 
consulting, marketing, and investment banking. And 
electrical and computer engineers can choose from a 
range of industries in which to work: telecommunications, 
image processing, medical devices, IC fabrication , and 
even banking. This was a phenomenal discovery for me!" 

Smita continued her education by doing graduate 
studies in Computer Science, researclung met110ds for 
automatically designing integrated circuits (IC) or 
chips-"a fascinating field because it involves a mix of 
hardware and software skills and knowledge. I continued 
in this profession after school and worked for a company 
that develops computer-aided design (CAD) software 

used by hardware designers wbo work wit11 a type of chip 
called an FPGA (field programmable gate aJTay). FPGAs 
can be used for an amazing variety of applications all t11e 
way from high-speed telecommunication chips to Iow
speed and low-cost chips that go into electronic toys and 
gam es. Our software saves designers many monilis or 
even years of time. In fact, without our software, it would 
be absolutely impossible for people to design most chips 
even if t11ey had a decade or more to do it." 

Snuta (shown mountain climbing above) loves her 
work. "My work is intellectually stimulating, and I have 
an opportunity to innovate, create, and actually build 
something really useful." She also enjoys the people
aspect of her work. "I work in teanlS of dynamic people 
because most projects, hardware or software, are done in 
teams of 3- 8 people these days. The people on my team 

are also my friends, and it's a lot of fun to work with 
them." 

In her decade of work so far, Smita has taken on some 
management responsibilities. "As manager of one of the 
four products that my company develops, I play a variety 
of different roles. I work witll my tean1 of 7 software 
developers to detemune what foatures to build in the 
product and how best to build those features. I work with 
the marketing and sales team to ttnderstand what the 
customers need and how best to message and position our 
product. Finally, I work with other groups that are 
involved in releasing a product - technical publications, 
application engineering, and product engineering. The 
diversity of my job makes it very interesting. 

Snuta enjoys the respect tllat engineers receive. "As an 
engineer, I am highly respected by customers, partner 
companies, and by our marketing and sales organizations 
because I have a deep understanding of our products. I 
really know my stuff since I built it, and I get recognized 
for it.'" And regarding the pay: "I get compensated very 
well for my skills." She also likes the lifestyle: "I get in to 
work around 10 a.m. and leave around 7 p.m. I don't have 

early morning meetings unlike the folks in marketil1g and 
sales, and I can work from home once a week or more 
often if I wish. This is also a great career for women- I 
can take t ime off and return to my job without much 
penalty when I have children. I can tailor my work hours 
as I need as my children are growing up. Lastly, I realize 
that I can move from engineering to <>ther functions such 
as marketing and sales, but not ilie other way arow1dl 
That's a great benefit of being an engineer- more options." 

Smita recommends that engineering and computer 
science students focus on certain things while in college. 

' ·First. get a good understanding of botll hardware and 
software. Systems are highly integrated today, and there 
are very few companies that develop one wit110ut paying 
very close attention to the other. For inst<mce, though I 
write software, I need to completely understand the 
hardware for which it will be used. My husband, on the 
other hand, designs tele.communication chips but works 
very closely with his software tean<, especially during the 
initial design stages when they decide what to implement 
in hardware versus software and how to design the 
hardware jnterface so that the software algoritluns work 
efficiently. 

"So, what do I mean by a goo<l understanding of 
hardware and software? In software, I think it is most 
important to develop good software 'habits.' Treat your 



.... DESIGNER PROFILE (continued) 

program like a well-landscaped garden- you want it to be 
beautiful and weed-free . Understand data structures well, 
and know when one is more appropriate than the other. 
Organize your code, be disciplined, cross the Ts and dot 
the Is, document diligently, have your code reviewed by 
friends. and finally, don't be afraid to throw away code 
and rewri te it if you discover a better way. 

"In hardware, understand the basics of logic design and 
then make sure you also understand the capacitive, 
inductive, and res istive properties of circuits since these play 

6.9 Exercises 411 

a big role in designing the high-speed circuits of today. 
"Other than these hardware and software skills, become 

adept at math and analysis. Learn to frame problems and 
break them down until you can solve them. Be 
experimental and try different tools and methods. Have a 
hypothesis and then go about proving or disproving it. If 
you haven't already, you will soon discover that 
engineering is not only fun, but also provides you with 
many fulfilling career opportunities- so stick with it and 
make the most of it!" 



This page intentionally left blank 



7 
Physical Implementation on 
IC s 

7.1 INTRODUCTION 

A digital circuit design that bas been created 
Belt Warn 

but just drawn, perbaps with pencil on paper or _k _+-. 

as a figure in this book, is merely a drawing. 
Designers must eventually implement that _P_....._ _ _ 
circuit on a real physical device, so that the 
device can be placed in an electronic product 

s to carry out the desired function. In other 
words, bow do designers get from Figure 
7 .1 (a), the seat belt warning light circuit that Digital circuit design 

Physical 
implementation 

on an IC 
(b ) was designed in Chapter 2, to Figure 7 .1 (b ), a f' 

71 
(a) 

physical implementation? 1gure . How do we get from (a) to (b)? 

Most digital circuits today are physically implemented using an integrated circuit 
device. An integrated circuit, or IC, refers to a piece of semiconductor material (typically 
silicon) existing inside of a package (typically plastic) like the package of Figure 7.l(b), 
with all the components of the circuit being integrated on the surface of the silicon. Such 
integration is in contrast to those components existing as separate components on a 
board- hence the term "integrated circuit." Because the piece of s ilicon is cut 
("chipped") from a larger wafer of silicon, an IC is commonly referred to as a chip. 

Designers can implement a circuit using a variety of available IC types. An JC type 
is a category of IC having specific features . Important features that distinguish IC types 
are the time and cost required to implement the circuit using that IC type. or in the speed, 
size, power consumption, and cost of the resulting IC. An analogy can be made with the 
various available car types, such as a sports car versus a family sedan; a sports car is 
faster but more expensive. Importantly, IC types differ in the steps required to convert a 
circuit into an implementation- those steps are known as the design flow. For example, 
Figure 7 .2 shows that designers might use an IC type like a full-custom IC or an ASIC 
(soon to be described) whose design flow requires that the designers spend millions of 
do!Jars and several months to manufacture a chip optimized for their circuit, or designers 
might use an IC type that is premade and that they can program in minutes. This chapter 
describes and compares several popular IC types for implementing digital circuits, 
including full-custom ICs, standard cell lCs, gate array ICs, FPGAs, PLDs, and logic I Cs. 

413 



414 7 Physical Implementation on I Cs 

BeltWarn 

.· FPGA company ... 

Figure 7 .2 Common design 
flows for different IC types: (a) 
digital des igners first create a 
desired circuit, (b) sorne IC 
types, like full -custom ICs or 
ASICs, involve manufacturing a 
new IC, i-equiring millions of 
dollars and many months, (c) a 
prognumnable IC type is 
premade and available off-the
shelf, costing tens of dollars and 
requiring j ust minutes. but 
resulting in bigger and slower 
circuit implementations. 

FPGA 

ASIC Cu~om ~ ............. -·· · ·· 

····-·-··-···· ·········-··· ··-~~ 

7.2 MANUFACTURED IC TYPES 
If designers are willing to wait months for a physical implementation of a digital circuit, and 
to spend millions of dollars for that physical implementation, then those designers might 
consider implementing the circuit using one of several IC types that require the manufac
turing of a new IC. 

Full-Custom Integrated Circuits 

One IC type is known as a full-custom IC. 
A f ull-custom JC is a chip created specifi
cally to in1plement the gates (actually, the 
transistors) of the desired circuit. The 
design flow for a full-custom IC is shown 
in Figure 7.3. Digital designers don't 
usually build full-custom ICs themselves, 
but rather they send the desired circuit to a 
group or company whose engineers spe
cialize in transforming digital circuits 
into full-custom !Cs. 

Those engineers, assisted by com
puter-aided design (CAD) tools, convert 
the desired digital circuit design into a 
circuit of transistors, and decide where to 
place each transistor on the surface of the 
chip, how to orient each transistor (e.g., 

k &lltWam 

(a) 

(d) 

wk~ 
~~w 

l (b) 

1~ ... , (<) 

Figure 7.3 Full-custom IC design flow: (a) 
desired circuit, (b) custom layout of gates and 
wires, (c) fabrication, (d) IC obtained. 

left to right, right to left, top to bottom, etc.), how big to make each transistor, how to 
place the wires that connect the transistors, and so on. All that information about how the 
transistors and wires should be layed out on a chip's surface is known as a layout. The 
full-custom IC engineers then send that layout information to a factory that specializes in 



A 2006 Samsung 
fab in Texas cost 
$3.5 billion; Jabs 
typically cost from 
SI bil/io11 to over 
SI 0 billion. 

Accordins to one 
sun1e); only abom 
10% of2002 
digital circuits 
were implememed 
as custom /Cs. 

7.2 Manufactured IC Types 415 

fabricating ICs, known as a fabrication plant, or Jab for short. Fabricating an IC is a 
complex error-prone process utilizing state-of-the-art photographic, laser, and chemical 
equipment that each can cost hundreds of millions of dollars. The transistors and wires 
are fo1med as dozens of Layers on the surface of a chip; the lower layers define the tran
sistors and connections within logic gates, while the upper layers define the wires that 
exist between gates . An IC may have tens of layers. Each layer requires a set of masks 
that allow light to reach specific regions of the chip to modify cl1emicals on the chip 
surface during the formation of layers. This cost for creating the masks required for IC 
fabrication is known as nonrecurring engi11eeri11g (NKE) cost. The cost is called non
recurring because it occurs once, before chips are made, and then does not recur, no 
matter how many chips are subsequently manufactured. Because a full-custom IC type 
requires masks to be made for every layer of the chip, the NRE cost for a full-custom IC 
type is very high, typically tens of millions dollars. The NRE cost can be recouped by 
adding some amount to the selling price of each chip manufactured. Thus, if a particular 
IC will have 10,000,000 copies made and sold, and the NRE costs totalled $100,000,000, 
then $10 could be added to the selling price of each chip to recoup the NRE cost. 

The time spent waiting for an IC to be manufactured also contributes to cost. In par
ticular, the setup of the layout and masks talces months. During that time, the product for 
which designers are manufacturing the chip may be losing market share to a competing 
product already being sold while the designers wait for their chip to be fabricated, trans
lating to Jost revenue, which can be thought of as a cost too-"time is money." 

The high cost of the full -custom IC type can be further increased due to what are 
known as respins. Fabricating an IC is referred to as a smcon sp in , named from the way 
that the silicon is melted and then spun before slicing the hardened silicon into wafers and 
then into chips. Because all the chip's layers are custom designed, the probability is high 
that engineers or tools will make a mistake somewhere in the transistors or wiring, such 
as placing two transistors too close together, resulting in interference. Therefore, after 
fabricating a full-custom IC, designers commonly find errors that necessitate refabri
cating the IC, known as a respin (pronounced as "ree-spjn"). Respins may happen two or 
three times or more, each time incuring some additional NRE cost and requiring weeks or 
months per respin, possibly losing more market share and thus costing even more. 

Needless to say, full-custom IC fabrication is uncommon. Designers choose to imple
ment a digital circuit on a full-custom IC when they absolutely require the IC type's small 
size, low power, or high performance, and when they can recoup the NRE costs due to 
high volumes, such as chips found inside calculators, wristwatches, mobile phones, or 
desktop PCs. Alternatively, designers may use a full-custom IC if cost is not tightly con
strained but maximum performance is a high priority, as might be the case in military or 
space applications. 

Semicustom (Application-Specific) Integrated Circuits- ASICs 

Because physical implementation on full -custom ICs is so costly and time-consuming, 
semicustom IC types evolved during the 1980s and 1990s to reduce tile costs and the time 
of fabricating a chip. These types are known as application-specific i11tegrated circu its , 
or A SJCs. An ASIC is somewhat customized, hence the tem1 semicustom, and the cus
tomization is specific for a paiticular circuit application, hence the term application-



416 7 Physical Implementation on I Cs 

specific. The distinction is akin to that between fuJl-custom and semicustom houses: The 
former involves custom-designing every aspect of a house and is thus expensive, time
consuming, and rare, while the latter involves adjusting a basic design (e.g., choosing 
between a larger family room or an additional bedroom) and is thus less costly, faster to 
build, and far more common. Two common ASIC types are standard cell and gate array. 

Standard Cell ASIC 
Standard cell is an ASIC type 
that reduces physical implemen
tation NRE cost and 
manufacturing time compared to 
full-custom ICs. Standard cell 
ASICs, sometimes called cell
based AS/Cs, use a collection 
(known as a library ) of previ
ously layed-out gates or pieces of 
logic, called cells, that must be 
instantiated and connected with 
wires to implement a circujt. 

A cell might be a 2-input 
AND gate, a 2xl mux, or a com
bination of gates like two 2-input 
AND gates connected to an OR 
gate co1mected to an inverter 
(called an AND-OR-INVERT, or 
AOI, cell). All cells are typically 
the same standard height (hence 

(d) 

BeltWarn 

k 
p 
s 

,/ 

DD--f?>
D~ 

\ I 

,__ __ c~~ ..... 11 .__lirl_ra_r.;..y _ ___. (b) 
x 

-------------~~U!!'~ 

)) months: 
~ cells and wiring) 

Figure 7.4 Standard cell ASIC design flow: (a) desired 
circuit, (b) cell library, (c) standard cell layout, (d) IC 
created by fabricating tbe cells and wires. 

the tenn standard cells), meaning they occupy the same vertical space in Figme 7.4(c), so 
cells can be placed in standard-height rows on a chip. A standard cell ASIC company pre
designs the layout for each cell, resulting in a collection or "library" of cell designs (the 
library exists in computer files). The seat belt warning light circuit in Figure 7.4(a) can be 
implemented as a standard cell ASIC by choosing appropriate cells from a cell library as 
in Figure 7.4(b), instantiating and wiring those cells as in Figure 7.4(c), and fabricating 
an IC as in Figure 7 .4( d). 

Designers themselves don' t typically choose standard cells and map tl1eir circuits onto 
those cells. Rather, automated tools convert the desired digital circuits into standard cells 
and output results in data files that are processed by fobs to control the fabrication process. 

A typical ceU library might contain hundreds or thousands of cells; the cell library 
shown in Figure 7.4(b ), having just five cells, is trivially small and for illustrative pur
poses only. A typical standard cell ASIC may have millions of cells, not just a few as 
in the figure. 

Compared to the full -custom IC type, the standard cell IC type is less optimized, 
because the cells are resb-icted in their size and variety, and their placement is restricted 

to predetermined standard-height rows. But standard cell ASICs require less NRE cost 
and time, because no transistor-level design or layout is necessary, as those were done 



7.2 Manufactured IC Types 417 

beforehand by the standard cell company. Furthermore, respins, though still occuring, are 

less frequent than with full-custom ICs. 
The task of conve1ting a desired digital circuit into a circuit using only components 

from a particular library (e.g., a particular standard cell library) is known as tech11ology 
mapping. The task of detem1ining where to place those components on a chip is known 
as placemellt, and the task of connecting those components by wires is known as routing. 
All three tasks are collectively known as physical design , and are typically carried out 
today by automated tools. 

Example 7.1 Implementing a half-adder using standard 
cells 

CO = ab s = a'b +ab' 

Using tbe standard cell library in Figure 7.4, this 
example implements a half-adder on a standard 
cell ASIC. Recall that the equations for a half
addcr are: co = ab, and s = a ' b + ab ' . Thus. 
the half-adder can be implemented using two 
inverter cells, dlfcc 2-input AND cells, and one 
2-input OR cell from the library. 

a --+---1 
b-~+4M 

co 
s 

The half-adder can be implemented using 
cells as shown in Figure 7.5, assuming each cell 
row can hold at most dlfee cells. 

cell row ------------ ---------------

cell row 

Figure 7.5 Half-adder on standard cells. 

BeltWarn 

k 
p 

/ s 

• 
Gate Arrays (Structured ASICs) 
A standard cell ASIC, whi le 
having lower NRE and involving 
less time than full-custom ICs, 
must still have all its layers fabri 
cated. A gate array ASIC 

involves a chip whose transistors 
are predesigned to form rows 
("atTays") of logic gates on the 
chip, as shown in Figure 7.6(b), 
meaning that only the wires 
remain to be fabricated. Creating 
the wires represents just the last 
steps of fabrication, and thus gate 
array technology eliminates much 
of the time and cost of fabricating 
a chip for a particular circuit. A 
gate array compan y predesigns 
and mass-produces the gate array 
chip. When a client wants a 
circuit on an IC, the company 
then customizes some of those 

(d) .......... ~. (c} 

~ustwiring) 
Figure 7.6 Gate array ASIC design flow: (a) desired 
circuit, (b) gate array before wires are added, (c) gate 
array after wires are added, thus implementing the desired 
circuit, (d) IC created by fabricating the wires. Note: real 
gate array ICs have millions of gates. 



418 7 Physical Implementation on I Cs 

chips for the client's circuit by fabricating the metal layers. Figure 7.6 iUustrates how the 
seat be lt warning light desired circuit in Figure 7.6(a) might be implemented using the 
gate array chip in Figure 7.6(b) consisting of a row of 2- input AND gates, a row of 2-
input OR gates, and a row of inverters. Figure 7.6(c) shows how to map the desired cir
cuit's 3-input AND gate using two of the gate array's avajJable 2-input AND gates, and 
how to map the desired inverter to one of the gate array inverters. The figme also shows 
how the desired wiring among the gate array's pins, the gate array AND gate, and the gate 
array inverter, might be implemented. T he remaining gates and pins on the gate array chip 
would be unutilized. Fabricating those wires would result in the IC being customized to 
the seat belt application (Figure 7. 6( d)). 

The actual mapping of the desired circuit to a gate array would typically be carried 
out by an automated tool. Designers almost never carry out that mapping manually, and in 
fact usually don ' t see that mapping in any form- the mapping is all done by tools, 
resulting in large data files that can be processed by other tools at a fab to create the nec
essary masks and to control the fabrication process. 

A typical gate atTay chip may hold millions of gates; the gate atTay shown in Figure 
7.6, having about ten gates, is trivially smaU and is for illustration purposes only- gate 
arrays with only JO gates do not exist. For designs with only a few gates, logic ICs or 
PLDs, described in Section 7.4, might be used instead. 

Compared to standard cell ASICs, gate anay ASICs involve less NRE and require 
less time. However, gate array ASICs are Jess optimized. Comparing Figure 7.4(c) and 
Figure 7.6(c) illustrates that standard cell ASIC flexibility of choosing and placing cells 
results in a more compact design, with fewer gates and fewer wires, d1an gate array 
ASICs. Notice that the gate array implementation in Figure 7.6 utilizes an extra level of 
logic than the original circuit, has longer wires, and has wasted area due to unused 
gates and pins. 3x to Sx speed and size differences between standard ceUs and gate arrays 

are common. 
In the 2000s, the term structured ASIC began to replace the term "gate array" in 

practice. A structured ASIC usually supplements arrays of gates with other components 
on the chip, such as microprocessors, RAMs, and other higher-level system building 
blocks. The term platform ASIC is also sometimes used. 

Example 7.2 Implementing a half-adder on a gate array co = ab 

This example implements a half-adder circuit on 
the gate array chip of Figure 7.6. Recall that the a 

b --+-e--!H 
equations for a half-adder circuit are: co = ab, 
and s "" a ' b + ab ' . Thus. one AND gate is 
needed for co, and two inverters, two AND 
gates, and one OR gate for s. The gate array 
chip in Figure 7.6 has three AND gates, three 

s = a'b +ab' 

OR gates, and three inverters, so d1e chip has Gate array 
enough gates to implement the desired circuit. 

The implementation of the half-adder circuit Figure 7.7 Half-adder on a gate array ASIC. 
on the gate array chip a~ shown in Figure 7. 7. 

co 

$ 

• 



7.2 Manufactured IC Types 419 

Implementing Circuits Using Only NAND Gates 
Recall from Chapter 2 that CMOS transistors more efficiently implement NANO and 
NOR gates rather than AND and OR gates. The underlying reason was that pMOS 
transistors conduct ls well but not Os, while nMOS transistors conduct Os well but not 
ls. Therefore, gate arrays typically contain NANO or NOR gates rather than AND and 

OR gates, and standard cell circuits are more efficient if implemented using NANO or 
NOR cells rather than AND and OR cells. Furthermore, creating a gate array is easier 
using just one type of gate, like just NANDs, or just NORs , rather than having to 
decide how many AND gates, OR gates, and NOT gates to pre-instantiate in the 

arrays. Thus, given the preference for NANO or NOR gates in CMOS ASIC types, a 
method is needed for converting AND/OR circuits to NANO c ircuits o r to NOR 
circuits. 

Fortunately, converti ng any AND/OR circuit to a NAND-onJy circuit is possible 
because NANO is a universal gate, as was mentioned in Section 2.8. A universal gate 
is a logic gate type that can implement any Boolean function using some number of 
gates of that one type only. One way to understand NAND's universal ity is to recog
nize that a NOT gate, an AND gate, or an OR gate can be implemented by substituting 
each gate with an equivalent circuit of NAND gates. Therefore any circuit of NOT, 
AND, or OR gates can be implemented using just NANO gates. 

To implement a NOT gate using 
NANO gates, we can substitute the NOT 
gate with a two-input NANO gate having 

its two inputs tied together, as shown in 
Figure 7 .8. The truth table in the figure 
shows that the NANO gate with its 
inputs tied together acts the same as an 
inverter. When the input x is o, both 

inputs of the NANO gate are 0, causing 
the NANO gate to output 1. When the 
input x is 1, both inputs of the AND 

gate are 1, causing the NANO gate to 
output o. 

An AND gate can be implemented 
using NANO gates by substituting the 
AND gate with a NANO gate followed 
by a NOT gate (implemented as a two
input NANO gate with its inputs tied 
together), as in Figure 7.9. This works 
because given inputs a and b, the first 

NANO computes (ab } ', and then the 
NOT gate computes (ab) ' ' = ab, 

which is AND. 

Inputs Output 

x a b F 

0 0 0 1 

1 1 1 0 

Figure 7.8 Implementing NOT using NAND. 

Figure 7.9 Implementing AND using NANDs. 



420 7 Physical Implementation on I Cs 

An O R gate can be implemented using 

NAND gates by substituting the OR gate 
with a NAND gate having each input 
inverted (by 2-input NAND gates with 
inputs tied together), as in Figure 7 .10. 
This works because given inputs a and b, 
the circujt of NAND gates in the figure 
computes (a'b') '· By DeMorgan's Law, 
that expression equals a ' ' + b' ' , which 
simplifies to a + b, which is OR. 

F = (a'b')' = a"+b" = a+b 

figure 7.10 Implementing OR using NANDs. 

When replacing a circuit originally 
having AND/OR/NOT gates by a circuit having only 
NANO gates using the above substitutions, some signals 

may get double-inverted- a signal feeds into an inverter 
and then immediately into another inve1ter. Double
inverting a signal yields the original signal, so double 
inversions can be replaced by a wire, as in Figure 7. l l. 
Such elimination reduces the number of transistors and 
reduces a circuit's delay, without changing the circuit's 
function. 

Figure 7.11 Double 
inversion becomes a wire. 

Example 7.3 Implementing a half-adder's sum circuit using only NANO gates 

a 
b 
a 

b 

Figure 7. l2(a) shows the sum circuit for a half-adder (see Section 4.3), using AND, OR, and NOT 
gates. We can implement that circuit using only NAND gates by substituting each gate with an 
equivalent NAND circuit, as shown ill Figure 7.l2(b). 

double inversion 

a a 
b b 

a a 

b 
b 

double inversion 
(a) (b) (c) 

Figure 7.12 Implementing a half-adder's sum circuit using NAND gates only: (a) ori.ginal AND/OR/ 
NOT circuit, (b) circuit obtained after substituting equivalent NAND c ircuits for each gate, (c) circuit 

after eliminating double inversions. 

After the substitutions, note that there are two signals that are double-inverted. Eliminating the 
double inversions results in the circuit shown in Figure 7 .12( c ). 

• 



When converting AND/OR/NOT circuits 
to NANO circuits by hand, some people find 
it easier to simply draw inversion bubbles 
rather than the NANO-based inverters, as 
shown in Figure 7.13. Then, double inversion 
bubbles on a signal cancel each other. Any 
remaining isolated inversion bubbles become 
a NAND-based NOT gate. Thus, the circuit in 
Figure 7 .13, which uses inversion bubbles, 
would end up identical to the circuit in Figure 
7.12(c). 

If NANO gates with only a specific 
number of inputs are available, such as NANO 
gates with 2 inputs being the only gates avail
able, then we can first modify the AND/OR 
circuit to use only 2-input AND/OR gates. 

a 

b 

a 

b 

7.2 Manufactured IC Types 421 

double inversion 

double inversion 

figure 7.13 Drawing inverters as 
inversion bubbles during 
conversion to NAND. 

Such conversion is done by composing larger AND and OR gates from smaller AND and 
OR gates, respectively, as discussed in Section 5.10. After the conversion to smaller 
gates, the conversion to NANO gates can proceed as described earlier. 

Implementing Circuits Using Only NOR Gates 

Converting AND/OR/NOT circuits to NOR gate circuits is similru· to converting to 
NANO circuits, because a NOR gate is also a w1iversal gate. The process of transforming 
a circuit into NOR gates replaces each AND, OR, and NOT gate with the equivalent 
NOR-based circuits shown in Figure 7.14. A NOT gate can be replaced with a two-input 
NOR gate with the inputs tied together. An OR gate is replaced with a NOR gate fol
lowed by an inverter, yielding (a+b ) ' ' = a+b. An AND gate is replaced with a NOR 
gate having inverted inputs, yielding (a' +b') ' = a' ' *b' ' = ab (notice the use of 
DeMorgan's Law). 

--aV a· 

:Q-ab 
figure 7.14 NOR gate equivalencies. 

a ab 
b 



422 7 Physical Implementation on I Cs 

Example 7.4 Implementing a half-adder's sum circuit using only NOR gates 

An earlier example implemented a half-adder's sum output using NAND gates: this example 
instead uses NOR gates. The half-adder's sum circuit is shown again in Figure 7. I S(a). Each NOT, 
AND, and OR gate is replaced by its equivalent NOR circuit in Figure 7.15(b), using inversion 
bubbles ins tead of NOR-based NOT gates for convenience. 

double inversion 

a a a 

b b 
b s s 
a a a 
b b b 

double inversion 
(a) {b) (c) 

Figure 7.15 Implementing an AND/OR/NOT circuit using NORs only: (a) original circuit, (b) circuit 
obtained by substin1ting AND/OR/NOT gates with equivalent NOR circuits, using inversion bubbles 
for ease of drawing, (c) final circuit after eliminating double inversions and replacing standalone 
inversion bubbles with NOR-based NOT gates. 

We eliminate double inversions, and replace stand-alone inversion bubbles by NOR-based 
NOT gates, as shown in Figure 7.15(c) 

• 
The half-adder's sum c ircuit was implemented with fewer NANO gates than NOR 

gates. Depending on the originaJ circuit, the reverse could be true. NANO gates are 
well-suited to circuits in the sum-of-products form. NOR gates are well-suited to cir
cuits in product-of-s ums form (a level of OR gates feeding into a single AND gate). 

Gate array and standard cell libraries typically include additional components, 
beyond just NANO or NOR gates, that have efficient CMOS implementations. For 
example, one popular such component is known as AND-OR-INVERT, or AOJ for short. 
Such a component has two 2-input AND gates (tlrns four inputs total), feeding into a 
2-input NOR gate. That circuit can be efficiently designed using CMOS transistors. Thus, 
a tool would strive to utilize AOI components, and other compact available components 
in a library, as much as possible to improve implementation perfonnance and size. 

Example 7.5 Implementing the seat belt warning light on a NOR-based gate array 

This example implements the BeltWa m circuit of Figure 7. l (a) using the NOR-based gate array of 
Figure 7.16(a). Noticing tl1at the gate array has only 2-input NOR gates, we first convert the Belt
Warn circuit to use AND/OR gates with 2 inputs only, as shown in Figure 7.16(b). We then convert 
the AND/OR circuit to the NOR-only circuit in Figure 7.16(c), using the equivalencies in Figure 



7.3 Off-The-Shelf Programmable IC Type-FPGA 423 

f>f>f>-

k ------ 0-, -.... I '-..., / was 
",, 

' \ w 
k 

________________________ 

vvv- k 
(b) p 

s 

(a) 
(c) 

(d) 

f igure 7.16 lmplementing the BeltWam circuit on a NOR-based gate array IC: (a) original gate array, 
(b)-(c) converting d1e desired circuit to two-input NOR gates only, (d) final gate array with wires. 

w 

7.14, and using inversion bubbles rather d1an NOR-based inverters. A double inversion exists on die 
wire from input s, so we eliminate those two inversions. Note that we do not eliminate the double 
inversion between points 3 and 4 in Figure 7.16(c), because the first inversion is part of a NOR 
gate-eliminating that first inversion would convert the NOR gate to an OR, defeating our goal of 
having NOR gates only. 

After converting remaining standalone inversions to NOR-based inverters, we map the circuit 
to d1e gate array·s 2-ioput NOR gates as in Figure 7.16(d)- we numbered the NOR gates of Figure 
7.16(c) and (d) to show the correspondence between d1e two circuits. 

• 

7.3 OFF-THE-SHELF PROGRAMMABLE IC lYPE- FPGA 

Manufactured IC types require at least a few weeks, and often several months, to convert 
a desired digital circuit design into a physical IC. What if a designer is developing a 
circuit that should be implemented today, or the designer simply does not wish to incur 
the NRE cost, complexity, and risk of manufacturing an IC? In those cases, the designer 
can use one of several off-the-shelf programmable IC types. An off·the·shelf IC is pre
manufactured and available for purchase, from a store or more commonly (in the case of 
ICs) by shipment from a vendor. A programmable IC is an off-the-shelf IC that imple
ments a desired circuit simply by storing a particular sequence of bits into the IC's 
memory. Programmable ICs have the drawback of worse performance, size, and power 
compared to custom or sernicustom manufactured lCs. However, the implementation on a 
programmable IC can be ready iJ1 just minutes, with no NRE cost or other complexities of 
manufacturing an IC, and these benefits may outweigh the drawbacks. 



424 7 Physical Implementation on I Cs 

Field
programmable 
gore armys 
(FPGAs) have no 
"gate arrays" 
inside 1/iem-rhe 
name is there due 
ro historical 
reasons. 

Lookup Tables 

The key idea 
underlying 
FPGAs is thar a 
memory wilh 
N address lines 
can implement 
any combinational 
Junction with 
N inpllts. 

The most popular type of programmable IC is 
known as a field-programmable gate array, or 
FPGA, which consists of numerous configurable 
logic blocks and programmable interco1mects, 
which shaJI be introduced shortly, that can be pro
grmruned to implement a desired circuit An FPGA 
company prefabricates an FPGA chip, meaning that 
the chip contains all tbe transistors and all wires that 
the chip will ever have, likely using a full-custom IC 
type. A designer buys those FPGA chips, and then 
programs the chips to implement the desired circuit. 

--
Figure 7.17 F PGA chips. 

To program in this context means to download a series of bits into the chip's memo
ries- not to be c.onfused with writing high-level software programs like C or C++ code. 
Programming an FPGA occurs in the field, meaning in a designer;s lab, or office, or 
home, as opposed to in a fabrication plant. Hence the words "field-progranunable;; in the 
name. Furthermore, programming typically takes only seconds, or perhaps minutes at 
most. Figure 7 .17 shows some FPGA chips. The chip at the top, with its front and back 
shown, measures about three quarters of an inch on each s ide. The chip on the bottom is 
about l inch on each side. 

The term "gate array" is there in the name because, when FPGAs first became 
popular in the mid-l 980s, they were marketed as an altemative to the gate array IC type, 
which was very popular at that time. Tims, an FPGA was a semicustom IC (nearly syno
mous with "gate array" at that time) that could be progranuned in the field instead of at a 
fabrication plant. However, be forewarned that the internal design of al1! FPGA chip looks 
nothing like a gate array- the naming is somewhat unfortunate. 

The two basic types of components ins ide an FPGA are lookup tables and switch 
matrices. Those components are replicated thousands of times in regular patterns inside 
an FPGA_ We now describe each type of component. 

A basic idea underlying FPGAs is that a memory can implement combinational logic. 
More specifically, a 1-bit-wide memory with N address lines, and hence 2N words, can 
implement any Boolean combinational function of N vaiiables. 

Recall that a memory configured to be read will output the contents of the word cor
responding to the present address at the memory's address lines. So if a 4x l memory's 
address lines a laO are 00, the memory will output the contents of word 0. If the address 
lines are o 1, the memory outputs the contents of word 1. Likewise, 1 o outputs word 2, 
and 11 outputs word 3. 

Implementing a Boolean fw1ction with a memory can therefore be done simply by con
necting tbe function's inputs to the memory address lines. and storing a o or 1 in each 
memory word to match the desired function output value for each combination of input 
values. For example, consider the function F (x, y } = x' y' + xy. The truth table for the 
function is shown in Figure 7 .18(a). To implement the example function, we can connect x 
and y to a 4xl memory's address lines al and ao, respectively, and based on the truth table, 
we store a 1 in word 0, a o in word I, a o in word 2, and a 1 in word 3- specifically, we 



7.3 Off-The-Shelf Programmable IC Type-FPGA 425 

F = x'y' + xy F = x'y' + xy 
G = xy' " ... ~ 4x2 M~. 

x 
0 

0 
1 

1 

4x1 Mem. 4x1 Mem. 
y F 
0 

0 
0 0 

1- rd 1- rd 

------ --~m 0 1, 
---y 0 0 \ 
---2 0 2 0 : 
---3- 1 X=O 

a1 
3 1/ 

x - a1 I 

y - ao D - ao o: 
f F 

y=O 
F=1 

/ \ 

FG / I' _x___;y;........i-,..=-.,.._, / 1 - rd 0 10 
oor1o y' 1 00 
0 i 0 0 i 2 01 

I I 

0 i 0 1 i 3 10 
• • x-a1 
\~~-~/ y- ao 0 1 DO 

(a) {b) (c) (d) 
F G 
(e) 

Figure 7.18 Implementing logic functions using a memory: (a) 2-input fw1ction tmd1 table, (b) 

corresponding memory contents and connections, (c) the proper output appears for the given input 
values, (d) two functions having the same two inputs, (c) memory contents for the t\.VO functions. 

store the truth table output values in the memory. The memory then implements the desired 
function, as shown in Figure 7.18(b). For example, when xy=OO, we want the output to be 
1. Figure 7.18(c) shows that when xy= OO, the memory's address lines will be oo, and thus 
the memory will output the contents of word 0, which is the value 1, as desired. 

A memory with M bits per word, rather than just l bit per word, can implement M 
functions that have the same inputs. For example, consider the two functions F (x, y ) = 

x' y' + xy and G (x, y) = xy'. The trllth table for these two functions is shown in 
Figure 7.17(d). A 4x2 memory, which has 2 bits per word, can implement those two func
tions, as shown in Figure 7.18(e). 

A memory used to implement a combinational circuit is known in FPGA termi
nology as a lookup table, or LUT. When used as a lookup table, a memory is typically 
referred to by the number of inputs (address lines) and the number of outputs (bits per 
word), rather than by the number of words and the nwnber of outputs. For example, an 

8x2 memory being used as a lookup table is referred to as a "3-input 2-output lookup 
table," rather than as an 8x2 lookup table. An FPGA typically consists of large numbers 
of same-sized LUTs. 

From this point forward, we will assume the memory is configured for read, and thus 
we won't show the read line set to 1. 

Example 7.6 Implementing the seat belt warning light with a lookup table 

This example uses a lookup table to implement the seat belt warning light circuit from Figure 7.1. 
whose circuit appears in Figure 7. I 9(a) and whose equation is 

w = kps' 

We first generate the truth tab le for the function, which is shown in Figure 7 .19(b ). Because 
the circuit has three inputs, d1e circuit will require a 3-input l--0utput lookup table (memory). 



426 7 Physical Implementation on I Cs 

Figure 7.19 FPGA design flow: (a) desired 
circuit, (b) c ircuit's truth table, (c) 

k 
p 
s 

implementing the truth table in an FPGA (c) 
lookup table. 

Belt Warn 

8x1 Mem. 

0 0 
1 
2 
3 

a2 
4 a1 

ao 5 

IC 

6 
7 

0 
0 
0 

0 
0 
1 
0 

D 

w 

k p s w 
~-

0 0 0 ( Q I 

0 0 1 0 

0 1 0 0 

0 1 1 0 

0 0 0 

0 1 0 

0 

(b) 
\ 0 ) 
-- ~ 

~· rogramm1ng 
(seconds) 

~ 
We connect the inputs to d1e memory's address lines, and store the truth table in d1e memory, 

as in Figure 7. I 9(c), thlts implementing the desired function. 
If the 3-input I-output memory is an IC, then the implementation is comple te, and we can insert 

the IC into the electronic system with which the IC should interact. 

• 

You've just seen an example of a very simple programmable IC- a memory. A memory 
chip with N address lines and hence 2N words, and with M bits per word, can implement 

M different Boolean functions of the same N inputs. A designer can purchase a memory 
chip before it is needed in a design, and then the designer can "program" the memory 
chip to implement a desired Boolean function. 

Mapping a Circuit among Multiple Lookup Tables 

Unfortunately, using a memory to implement a Boolean function is inefficient for func
tions with numerous inputs. For example, while a 4-input function would need only a 
16-word memory, a 12-input function would require a 4-Kword memory ; a 32-input 
function would require a 4-billion-word memory. The needed memory size grows the 
same as the size of the function 's truth table, which grows as 2,v, where N is the number 
of function inputs. In short, a truth table is not an efficient Boolean function represen
tation for functions with numerous inputs, and thus a lookup table is not an efficient 
implementation for functions with numerous inputs. For example, the function 
F = abc + def + ghi, shown in Figure 7 .20(a), has 9 inputs. Implementing the 



a-~r=="=-... 

b 
C-r-L---' 
d-'---..----.... 
e 
I -r-,____., 
g-i.-.r---.... 
h 

(a) 

c 
d 

F e 
f 
g 
h 

7.3 Off-The-Shelf Programmable IC Type-FPGA 427 

512x1 Mem. 

F 
8x1 Mem. 

(b) (c) 

Figure 7.20 Dividing a many-input circuit among smaller lookup tables reduces total lookup table 
size: (a) a 9-input circuit, (b) the circuit mapped to four 3-input I-output lookup tables, (c) the four 
1-input 1-output lookup tables are much smaller tl1an a 9-input I-output lookup table. 

function on a single lookup table would require a table with 29 = 512 words. However, 
one can partition the circuit into subcircujts such that each subcircuit has 3 inputs and 
l output- the first subcircuit computes abc, the second def , the third ghi, and the 
fourth ORs the outputs of the first three subcircuits to generate the output P. Each sub
circuit could be implemented using a 3-input I-output lookup table (i.e., an 8x 1 
memory). The resulting implementation would have four 3-input I -output lookup 

tables, as shown it1 Figure 7 .20(b) . The total words for that four-LUT implementation 
would be a mere 8 + 8 + 8 + 8 = 32 words- far less than the 5 I2 words required for a 

single 9-input lookup table. Figure 7.20(c) shows the relative sizes of one 512-word 
memory and four 8-word memories; the memory sizes are drawn to scale. Notice the 
reduction in size obtained by using multiple small lookup tables. 

As a result, FPGAs typically contain large numbers of small lookup tables, rather 
than a small number of large lookup tables. Researchers have conducted numerous 
studies on thousands of typical circuits, and found that lookup tables with 3 to 6 inputs 
seem to be most efficient for most circuits. An FPGA typically has one size of LUT 
that is replicated thousands of times. 

Therefore, a circuit being mapped to an FPGA must be partitioned into subcircuits 
such that each subcircuit can be mapped to one of the small lookup tables in an FPGA. 
Such partitioning is handled by tools and forms part of the technology mapping task for 

FPGAs; we' ll consider such partitioning here to gain insight into the behavior of such 

tools. If an FPGA uses 3-input I -output lookup tables, then the circuit must be partitioned 
into subcircuits each having 3 inputs (or less) and I output. For example, consider the 

circuit shown in Figure 7.2l (a). That circuit can't be mapped to a 3-input I-output lookup 
table because the circuit ha<> 4 inputs. The circuit must therefore be partitioned into two 

sub-circuits, as shown by the dashed circles in Figure 7.21 (b). The first subcircuit's 
output, labeled as t, computes t = abc. The second subcircuit's output computes 

F = t + de ' . The circuits are mapped to two lookup tables as shown in Figure 7.2l(c). 
The first lookup table is programmed to implement the first subcircui t, namely t = abc. 
Likewise, the second lookup table is programmed to implement the second subcircuit, 
namely F = t + de 1 • The two lookup tables with the shown connections thus imple
ment the desired circuit. 



428 7 Physical Implementation on I Cs 

a - -+-- ---r 
b - ..+--- ---l 
c - -t-----t __ 

(a) 

~-------:.;;-;.....,-a----•----

a -..+---:"-! 
b------i 
c --+----i 

' ~---~----~ ,, 

a 
b 
c 

3 inputs 
1 output 
t = abc 

,_ 
3 inputs --, __ 
1 output 
F = t +de' 

(b) 

8x1 Mem. 

- o 
1 

2 

3 
a2 
a1 4 
ao s 

6 
7 -... __ - -

0 
0 

0 

0 

0 

0 

0 
1 

--
D 

(c) 

8x1 Mem. 

0 0 
0 

2 1 
0 

1 
1 
1 __ 7 
1 

D 

Figure 7.21 Partitioning a circuit onto two lookup tables: (a) desired circuit, (b) circuit partitioned into subcircuits 
with at most 3 inputs and l output, (c) subcircuits mapped to two 3~input I-output lookup tables. 

Example 7.7 Mapping a circuit to 3-input 1-output lookup tables 

(a) 

This example maps the circui t shown in Figure 7 .22(a) onto a minimum number of 3-input I-output 
lookup tables. The first step is to partition the circuit into subcircuits having three (or fewer) inputs 
and one output. Such a partitioning is shown in Figure 7.22(b). Subcircuit I has three inputs a, b , 
and c , and one output labeled t. Subcircuit 2 has three inputs c, e, and f, and one output labeled u. 
Subcircuit 3 has three inputs t , d , and u, and one output Y. 

(b) 

a 
b 
c 

e 
f 
d 

--~ 
8x 1 Mem. 

0 0 

1 0 
2 0 
3 0 

a2 4 0 -a1 ~ 
ao s 0 .. 

6 1 
7 0 

D 

t 

8x1 Mem. 8x 1 Mem. 

0 0 0 0 

1 0 1 1 

2 0 2 1 

3 0 .....- a2 3 1 
a2 4 0 1 a1 ..... a1 4 
ao s 0 ,.. ao s 1 

6 0 6 1 
7 1 7 1 

D D 

lu u 
(c) 

Figure 7.22. Mapping a circuit onto a minimum number of 3-input I-outp ut lookup tables: (a) desired circuit, (b) circuit 
partitioned into subcircuits with ar most 3 inpurs and l outpur, (c) subcircuirs mapped to three 3· input l·output lookup 
tables. 

Figure 7.22(c) shows three lookup tables that implement those three subcircuits. The first 1ookup 
table implements t = ab * c' (the 1 in word 6 corresponds to abc '). The second lookup table 
implements u = cef . The third lookup table implements Y = t+d+u, thus completing the circuit 
implementation. 

J! 



7.3 OH-The-Shelf Programmable IC Type-FPGA 429 

A circuit mapped to lookup tables may not always fully utilize the lookup tables. 
ln particular, if partitioning leads to a 2-input subcircuit rather than a 3-input subcir
cuit, then mapping that subcircuit to a 3-input lookup table will utilize on ly two of 
the lookup table's address inputs; the third input, namely a2, c~m be set to o, which 
means that only words 0 to 3 of the lookup table will be used. The following example 
illustrates such an underutilized lookup table. 

Example 7.8 Mapping that results in an underutil ized lookup table- Extended seat belt warning light 

This example maps the circuit of Figure 7.23(a), which is the extended seat belt example from 
Example 2.8, onto a minimum number of 3-input !-output lookup tables. Because the circuit has 
fou r inputs, mapping the circuit to 3-input I-output lookup tables requires first partitioning the 
circuit into 3-input subcircuits; such a partitioning is shown in Figure 7.23(b). While the first sub
circuit has 3 inputs, the second subcircuit has only 2 inputs. 

k - +---1 
p - +----t 
s 

(a) 

.-------. ........ ~ ---_,-----------
... - ~: 

8x1 Mem. 

0 0 
...... 1 0 

k - +-....,...::..;..i 
p _ +-.,..._--t 
s 

(b) 

2 
3 

k a2 
p-.. a1 4 

s ao s 
6 
7 ... __ _ 

0 
0 

0 
0 
1 

0 
- ----

D 
x 

(c) 

8x1 Mem. 

0 0 

2 

0 a2 3 
a1 4 

ao s 
6 

- _ ... 7 

1 

1 

1 

0 
0 
0 
0 

D 

Figure 7.23 Mapping a circuit onto lookup tables sometimes yields underutilized lookup tables: (a) desired circuit, (b) 
circuit partitioned into two subcircuits, one subcircuit having only two inputs, (c) subcirmits mapped to two 3-input ! 
output lookup tables; the second lookup table has its a2 address line set to 0, so only the first four words arc used. 

Figure 7.23(c) shows the mapping of those subcircuits to lookup tables. The first lookup table 
implements the first subcircuit, x = kps' . The secor1d lookup table implements the second sub
circuit, w = x + t. Because the second subcircuit has only two inputs, we set address line a2 of 
the lookup table to 0, and connect t11c two inputs x and t to the lower two address lines. Because 
a2 is always 0, words 4 to 7 of t11c lookup table will never be accessed. We've programmed those 
words as Os, but tllcy arc shown in italics to indicate t11at those words will never be accessed. The 
values of x and t will cause either word 0, 1, 2. or 3 to be read. Those words have been pro
grammed to implement the OR function to achieve x + t. 

• 



430 7 Physical Implementation on I Cs 

Sometimes a circuit has a gate with four or more inputs. Clearly, s uch a circuit 

cannot be directly partitioned into subcircuits with three or fewer inputs. The solution 
is to replace the 4-input gate by an equivalent set of gates having fewer inputs . Tech
nology mapping tools commonly first modify a circuit into a functionality equivalent 
circuit by decomoposing gates having three or more inputs into an equivalent set of 

2-input gates, before trying to partition the circuit into subcircuits. Example 7.9 will 
perform some initial decomposition before pru1itioning. 

RecaJl that a memory with M bits per word can implement M functions of the 

same inputs. Researchers have investigated how many bits per word a lookup table 
should have to accomodate most circuits efficiently, and have found that two bits per 

word is efficient for many circuits. The remainder of this chapter will thus use 3-
input 2 -output lookup tables . 

Mapping a c ircuit onto 3-input 2-output lookup tables is s imilar to mapping to 3-
input I -output lookup tables , except that when partitioning into subcircuits, each sub

circuit may have up to two outputs rather than just one output, as in the followi ng 

example. 

Example 7.9 Mapping a 2x4 decoder to 3-input 2-output lookup tables 

This example implements a 2x4 decoder, without enable, using 3-input 2-output lookup tables. A 
2x4 decoder has two inputs, il and iQ, and four outputs, dO, dl, d.2, and d3. The equations for 
the outputs are dO = i l ' iO ', dl=il' iO, d2=ili0 ' , and d3= i li0. Figure 7.24(a) shows a 
circuit for a 2x4 decoder. and also shows a partitioning of the circuit into subcircults having two 
inputs each (which is less than the maximum of three inputs) and having two outputs each. 

Figure 7.24 Mapping a 
2xA decoder to hvo 3-
input 2-output lookup 
tables: (a) desired circuit, 
(b) mapping to two lookup 
tables. Italicized bits are i1 

unused. 
iO 

(a) 

8x2Mem. 

0 10 
1 

2 

3 o a2 
4 

i1 ---·a1 
iO ao 5 

6 
7 

01 

00 
00 

00 
00 

00 
00 

D1 DO 

dO d1 
(b) 

8x2 Mem. 
0 00 
1 

2 

6 
7 

00 

10 
01 

00 
00 
00 
00 

D1 DO 

d2 d3 

Because the two subcircuits in Figure 7 .24(a) have only two inputs each, the lookup tables imple
ment those subcircuil~ using the top halves of the lookup tables' words; the bottom halves are wmsed, 
as shown in Figure 7.24(b). For the used words, both bit~ of each word are used. 

• 



7.3 OH-The-Shelf Programmable IC Type- FPGA 431 

Just as earlier examples showed that a subcircui t with fewer than three inputs results 
in unused lookup table words, likewise a subcircuit with fewer than two outputs wiU 
result in an unused lookup table column (meaning an unused LUT output), as in the fol
lowing example. 

Example 7.10 Mapping problem that decomposes a large gate, and that has unused LUT outputs 

This example implements the c ircuit shown in Figure 7 .25(a) using two 3-input 2-output lookup 

tables. The first step is to try to partition the circuit into subcircuits such that each group has at most 
3 inputs and 2 outputs. However, the 4-inpul AND gate prevents such partitioning, because what

ever subcircuit that gate is in will have at least four inputs. TI1al problem can be remedied by first 

decomposing lhal gate into two smaller gates, while maintaining the same functionality, as shown in 
Figure 7.25(b). The circuit can then be partitioned into two subcircuits, each with 3 inputs and I 

output, as shown in the figure. 

8x2 Mem. 

0 00 
1 00 
2 00 

00 
00 

(a) ------ 3 ---------------- ~ = ~ 4 

F 

c-- ao 5 
6 
7 

00 
00 
01 

I 

e-------.:...---' /-...... ......... ______ , -----0-------------
(b) e 

(c) 

8x2 Mem. 

0 00 
1 

2 
3 

a2 
4 a1 

ao 5 
6 
7 

10 

00 
10 

00 
10 

10 
10 

D1 DO 

F 

Figure 7.25 Mapping a circuit onto 3-input 2-output lookup tables: (a) original c ircuit, (b) 
transformed c ircuit that decomposes the 4- input AND gate into two-input gates, with the 
parti tioning into 3-input I-output subc ircuits shown, (c) mapping of each subcircuit to a lookup 
table, with each subcircuit 's function converted to programmed bits in the lookup table. Italic ized 

bits arc unused. 

The subcircuits can then be mapped onto two 3-input 2-output lookup tables as shown in Figure 
7.25(c). Notice that the first lookup table's Dl output is unused, and the second lookup table 's DO 

output is also unused; those columns have been programmed with Os, and arc shown in italics to indi

cate that those bits will never be accessed. The first table's DO column implements t = abc. The 

second table's U I coltunn implements F = td + e . 

• 
An FPGA may have hundreds or thousands of lookup tables, and thus can implement 
large amounts of combinational logic. 



432 7 Physical Implementation on I Cs 

Programmable Interconnects (Switch Matrices) 

PO 
P1 
P2 

P3 
P4 

Earlier examples used custom connections between lookup tables, but the point of FPGAs 
is that the entire chip is prefabricated, even the wires. FPGAs thus come with program
mable interconnects, often called switch matrices, which can be programmed to create 
the connections among lookup tables. Figure 7 .26(a) shows a simple FPGA chip with five 
inputs (P0-P4) , two 3-input 2-output LUTs, one 4-input 3-output switch matrix, and two 
outputs (QO, QI). All three of the left LUT's inputs come from the external inputs PO, P 1, 
and P2-that LUT's inputs can't be changed. However, the right LUT's inputs may come 
from either the left LUT's outputs, or from the external inputs P3 and P4. The s witch 
matrix determines which of those connections will be made. 

The switch matrix's internal design appears in Figure 7.26(b). Ir consists of three 4x l 
multiplexers (muxes}-tbe bottom multiplexor is omitted from the drawing to save space. 
The cop mux connects the switch matrix output oO to one of the matrix's four inputs. The 
second mux connects the output ol to one of the matrix's four inputs. The bottom mux 
(not drawn) connects o2 to one of the matrix's four inputs. A two-bit memory (which is 
actually a 2-bit register, but called a memory for consistency with the memory inside a 
lookup table) holds the two bits that set each mux's two select lines. Thus, we can 
program the desired connections s:imply by writing the appropriate bits into those two 2-
bit memories. Notice that each switch matrix output can be configured independently of 
the other. In fact, we could even make the same input appear at two or three outputs, 
though that's probably not useful i n this FPGA architecture. 

-------

We'll illustrate the use of the switch matrix with an example. 

FPGA 

8x2Mem. 8x2 Mem. 

0 00 0 00 
1 00 1 00 
2 00 2 00 
3 00 3 00 

a2 ~ a2 
4 a1 4 00 ....- a 1 00 

ao 5 00 ~ ao 5 00 
6 00 6 00 
7 00 7 00 

D1 DO Switch D1 DO 

IL. matrix 
1 1 mo D oo 

m1 D m2 o1 -
m3 O o2 I- .. .. ---· . .. ... ---------.... 

(a) 

-
:: 

... ... 

QO 

Q1 .• • .. • ... 
-~ 

Switch 
12-ft mf m.I matrix 

mo i0s1 so 
m1 
m2 i1 4x1 

d i2 m3 mux 
i3 

2-bit mem. 

t t 
i0s1 so -......._ i1 4x1 d --- i2 mux - i3 

. .. 
12-bit mem.I 

Likewise tor 02 ... 

(b) 

oo 

o1 

02 -

figure 7.26 A simple FPGA architecture; (a) an FPGA that includes a switch matrix, and (b) the 
switch matrix 's i.nternals showing two 4x I muxes controlled by two 2-b:it registers. Note: real 
FPGAs have hundreds of lookup tables and switch matrices, not just a few. 



FPGA 
8x2 Mem. 

0 00 

1 00 

2 00 
0 

x (kps~ ----

3 00 
k PO a2 
p p1 a1 4 00 

s P? ao 5 00 
6 01 

7 00 

7.3 Off-The-Shelf Programmable IC Type-FPGA 433 

8x2 Mem. 

0 00 
1 01 

2 01 
3 01 

a2 
4 00 a1 

ao 5 00 
6 00 

7 00 

01 DO 

.___.._Qo w ..._ ___ 01 
.• 

Switch 
matrix 

oO 

t P3+-------ePoj.,[]j~ 
O P4+-----~~TI~...l.J.!!.Y-'"~""""' 

...... 
10 

Likewise for 02 .. -. 
0=2'+-1~ 

(a) (b) 

Figure 7.27 Lnplcmenting the extended scat belt warning light circuit on the FPGA fabric having a switch 
matrix: (a) external connections and programmed bits, (b) a look inside the switch matrix, showing the 
programmed connections. Italicized bits in dle lookup tables are mmsed. 

Example 7.11 Extended seat belt warning light on an FPGA with a switch matrix 

This example implements the exte11ded seat belt warning light system of Example 7.6, which com
putes w = kps' + t, on the FPGA in Figure 7.26 having a switch matrix. We connect k , p , and 
s to the FPGA pins going to dle left lookup table, and we program that lookup table to implement 
the function x = kps', as shown in Figw"C 7.27(a). The right lookup table should compute 
w = x + t . This subcircuit has only two inputs, so we need to set the right lookup table's a2 
input to 0 . We do so by setting pin P4 to 0 , and then by passing dlat 0 to switch matrix output o O, 
by progranmling 11 into oO's two-bit memory. oo is connected to a2, thus causing a2 to have dle 
value 0, as desired. 

Likewise, we need to sei the righi lookup table's al input to x , which appears at dle DO ouiput 
of ihe left lookup table. We do this by programming 0 0 inio the 2-bit memory for switch matrix 
output o 1. We set the right lookup table's ao input to t by programming 1 0 for switch matt·ix output 
02 . Figure 7.27(b) shows how the programming of the 2-bit memories inside the switch matrix 
creates the desired connections. We then progran1 the right lookup table to implement the function x 
+ t, as shown in Figure 7.27(a). 

• 
Notice that, in the last few examples, to implement a desired circuit, we merely had to 
program different bits into the lookup tables and switch matrices. That's the appeal of 
FPGAs- they implement our circuit just by programming. 



434 7 Physical Implementation on I Cs 

CLB 
FPGA 

8x2 Mem. 
0 00 

00 
2 00 
3 00 

PO a2 
4 00 

P1 a1 
P2 ao 5 00 

6 00 
7 00 

CLB output 
flip-flop • •• 

1-bit 
CLB output 

configuration,· 
. 

memory 

P3 

Switch 
matrix 

---r----t:::::::!.....+l mo IQQ'.] 00 

m1 rnni 
-+--------~ m2 i.QQ.i o1 

P4 -+----------ti..i m3 [QQ] 02 

CLB 

8x2 Mem. 

0 00 
00 

2 00 

00 

00 
00 

00 
00 

.._~T-~~~~QO 

~------t•Q1 

Figure 728 An FPGA with configurable logic blocks (CLBs), which contain flip-flops along 
with a lookup table.The configuration memory bit cells in the figure all contai:n Os. 

Configurable Logic Block 

In the previous section, the illustrated FPGAs were missing a critical element needed to 
implement general circuits, namely, flip-flops. Flip-flops enable implementing sequential 
circuits on FPGAs. 

FPGAs may include a flip-flop with each outpur of a lookup table-two flip-flops in 
the case of a 2-output lookup table. The lookup table and its flip-flops together are known 
as a configurable logic block , or CLB. A simple CLB is shown in Figure 7.28. Each con
figurable logic block has a 3-input 2-output lookup table, and has two outputs and two 
flip-flops. Each flip-flop is loaded every clock cycle with the corresponding lookup table 
output. Each output of the CLB can be configured to come either from the output' s flip
flop, or directly from the corresponding lookup table output. That configuration is done 
by programming a I-bit memory (which itself is a flip-flop, but we'll call it a memory to 
avoid confusion), shown in Figure 7.28, that controls a 2x l mux for each CLB output. 

The output flip-flops enable implementation of sequential circuits, such as circuits 
having registers, on the FPGA. Mapping a circuit onto 3-input 2-output CLBs involves 
partitioning the circuit into subcircuits having three or fewer inputs and two or fewer out
puts, as for LUTs, but with the option that the outputs may come from a flip-flop in the 
circuit. The partitioning must ensure that the only place that a flip-flop appears in a sub
circuit is immediately before the output of the output, because that is where the flip-flops 
exist in the CLBs. 



a---.-.-1 
b -~-r---1 

c 

{a) 

a PO 
b P1 
c P2 

CLB 
8x2 Mem. 

0 00 
01 

2 00 

3 01 
a2 

4 a1 00 

aO 5 01 
6 10 
7 01 

7.3 Off-The-Shelf Programmable IC Type- FPGA 435 

FPGA 
CLB 

8x2 Mem. 

0 00 
01 
01 

v 01 

10 
11 

11 
11 

'-~-n-~--11:::::::::~00 F 

------.n1 G 

(b) 
Figure 7.29 Implementing a sequential circuit on an FPGA: (a) desired sequential circuit, partitioned into subcircuits 
suitable for mapping onto CLBs, (b) programmed FPGA. 

Example 7.12 Implementing a sequential circuit on an FPGA 

This example implements the sequential circuit shown in Figure 7.29(a), having two flip-flops in 
the circuit, on the FPGA of Figure 7.28. The first step is to partition the circuit into subcircuits 
having three or fewer inputs and two or fewer outputs each, ensuring that the circuit's flip-flops 
only appear at the outputs of subcircuits, as shown in Figure 7.29(a). Based on that partitioning and 
the shown mapping to CLBs, we connect a , b, and c to the left lookup table in Figure 7.29(b). The 
left lookup table's Dl. output computes abc ' , labeled as t in the figure. In the desired circuit of 
Figure 7.29(a), that value t feeds into a flip-flop (whose output is labeled u), and thus ju Figure 
7.29(b) we program the CLB's Dl output to come from the CLB's Dl flip-tlop rather than from Dl 
directly. The left lookup table's DO output computes c- note that the wire for c represents a simple 
"pass through,. function, which can be programmed into the LUT just like a more complex func
tion. In this case, because c is connected to address Line aO , a 1 is programmed into the DO column 
for any word whose address has ao = 1. In the desired circuit, that value c then feeds into a flip
flop (whose output is labeled v), and thus we program the CLB 's DO output to come from the flip
flop, as shown. 

The desired circuit of Figure 7.29(a) shows v connecting directly to external output G. However, 
the FPGA has no means for directly cormecting the left CLB 's DO output to an external output pin. 
Instead, we can create the desired com1ection by passing v to the switch matrix output o O, which con
nects to the right lookup table's a2 input, and we then program that lookup table's Dl column to pass 
v through, by programming a 1 into any word whose address bas a2 = L Pin Ql thus represents 



436 7 Physical Implementation on I Cs 

output G. Likewise, output F is computed by passing the appropriate value through the switch matrix 
and progranuning the DO column of the right lookup table to implement the desired OR function. 

Care should be taken to avoid confusing the output flip-flops themselves and the 
CLB output configuration "memories." The configw·ation memories store bits that 
program the FPGA to implement the desired circuit before circuit operation, while the 
output flip-flops s tore the bits that the circuit loads during circuit operation. 

The storage elements for the lookup table, the CLB output configuration, and the 
switch matrices, are cotlectively known as an FPGA's configuration memory, although that 
"memory'' is comprised of numerous smaller memories and even registers or tlip-ftops. 

Overall FPGA Architecture 

Grid of CLBs and Switch Matrices 
A commercial FPGA contains hw1dreds or even 
thousands of CLBs and switch matrices, arranged 
in a regular pattern on the chip. A sample 
arrangement is shown in Figure 7.30. CLBs 
connect with horizontal and vertical routing 
channels where wires exist, and those wires 
connect to switch matrices. A sample connection 
of a CLB to the wires in channels is shown for 
the top center CLB. The channels consist of tens 
of wires, represented in the figure just as single 
balded wires. 

CLBs and switch matrices in commercial 

FPGAs are more complex than described in this Figure 7.30 FPGA architecture. 
chapter. For example, CLBs may contain two 
lookup tables, or direct connections to adjacent CLBs to support carry chains of carry
ripple adders. Switch matrices may contain more inputs and outputs and more flexible 
switching options. 

Furthermore, commercial FPGAs commonly include large embedded RAM memo
ries for data storage, and embedded multipliers or multiply-accumulate units for fast 
multiplications. Memory and muJtiplcation operations are common in digital circuits, and 
so including RAM and multipliers results in faster and more compact implementation of 
those operations, and avoids occupying large numbers of CLBs and switch matrices that 
otherwise would be required to implement those operations. The RAMs and multipliers 
would be distributed throughout the FPGA fabric of Figure 7 .30; thern may be tens or 
hundreds of each in a single FPGA. 

Programming an FPGA 
One may wonder how to get the program bits into the configuration memories of an 
FPGA. The configuration memories are all the lookup table memories, the switch 
matrix memories, and the CLB-output configuration memories. Conceptually, pro
gramming is enabled by the FPGA having all the configuration memory bit cells 
connected as one big shift register (see Chapter 4). That shift register's bit cells are 



7.3 Off-The-Shelf Programmable IC Type-FPGA 437 

spread out across the chip, so they don't represent a traditional register whose bits are 

usually in one place, but thinking of them as a shift register helps understand their 
connect ivity. Actually, bit cells connected as a shift register are typically referred to 
as a sca11 chain . The FPGA will have an extra input pin for programming that serves 
as the shift input for the scan chain. Another extra input pin indicates that program

ming is taking place. During programmjng, the bits necessary to implement the 
desired circuit are shifted into the scan chain. Remember that the configuration 
memory bit cells only get written during programming of the FPGA-during normal 
FPGA operation, those cells become read-only. 

Automated tools that program FPGAs start with a file containing the bits to be 
shifted into the scan chain- that file is known as a bit file or bitstream. The tool that 
creates the bit file obviously must know th e purpose of every bit in the scan chain, so 
such tools will generate a different bit file for different FPGA devices. 

Example 7.13 Programming an FPGA 

Tilis example demonstrates programnling a specific FPGA for the desired circuit of Example 7.12. 
Figure 7 .29 from that example already showed the required contents of the configuration memory 
on the FPGA to implement the desired circuit. Figure 7.31 replicates the contents, dlis time iJlus
trating the manner in which the FPGA has the configuration memory bits connected as a scan 
chain, using a thick dotted line. 

Figure 7.31 Programming an FPGA: 
all configuration memory bit cells 
exist in a scan chain. The bottom 
shows a bit file's contents that would 
be shifted in during 
programming- some relationships 
between d1e file's bits and 

configuration memory bit cells are 
shown. 

CLB 
FPGA 

CLB 

Pin .. ........ 8x2.M~m ... 
Pclk 0 .I) fQ 

.......... ..... 82<2.M~m:·. 
" 0 ·0 10 

PO 
P1 
P2 

Qii 
2 (Hi 
3 ~H 

a2 
4 () lo a1 

ao 5 ()11 
6 1i (j 
7 Pli 

01 / oo 

·.. Switch i 
"·" .. !!latrix [ 

'----''t;::-- --t::::::!..--.J mo "rnru qo 
------m1 ........ : 

P3 -+-----'-'..;.'~-- m2 '·~ ~1 

P4 ',, ',.., m3 :rnf]'o2 

~ii 
o: i 

v o: i 
~+-11.i 

~: 0 
Li 
~: i 

7 ~\1 

' \ 
\ 

' ' ' \ 
........ , ', \ 

' ' \ ,," ' ... ,., '\ 
Bit file contents: 0000001 o 01010101 1 1 00 01 1 o 00001111 0111011 1 o o 



438 7 Physical Implementation on I Cs 

The bottom of the figure shows the contents of a bit file that could be used to program the 
FPGA to implement the desired circuit. The bit file is determined simply by following the dashed 
line that represents the scan chain, placing ls and Os into the bit file as they appear in the figure. 
The spaces in the bit file are for readability of the figure , and would not actually exist in a bjt file . 

• 
How Many Gates Does an FPGA Implement? 
We usually think of a digital circuit's s ize using the notion of "gates" to represent design 
size. A design with 3000 gates is likely bigger than a design with 2000 gates. Of course, 
whether that statement is true depends on the type of gates used in each design (e.g., 
because XOR gates are bigger than NAND gates, 2000 XOR gates may actually be 
bigger than 3000 NAND gates), as well as the number of foputs to each gate (a 20-input 
gate is bigger than a 2-input gate). Thus, a cotrunon method of indicating design size for 
a circuit approximates the number of 2-input NAND gates that would be required to 
implement the circuit. So when we say that a circuit consists of 3000 gates or 2000 gates, 
we typically mean that if those circuits were implemented using 2-input NAND gates, 
they would require 3000 2-input NAND gates and 2000 2-input NAND gates, 
respectively. 

FPGAs have lookup tables and switch matrices inside, not gates. FPGA sizes are 
therefore typically reported by considering how large a circuit made up of 2-input NAND 
gates could be implemented using the FPGA architecture. FPGA vendors may report 
FPGA size by saying a patticular FPGA has a "density of 100,000 system gates" or 
"100,000 typical gates." These numbers are approximations, and many people view such 
reported numbers very skeptically (because sometimes companies like to exaggerate). 
FPGA vendors might also describe FPGA size as the number of "logic blocks" or 
"lookup tables," which is useful when comparing sizes of FPGAs having the same types 
of logic blocks or lookup tables. 

7.4 OTHER OFF-THE-SHELF IC lYPES 
This section describes other IC types for physically implementing digital circuits. Some 
of those types are older types that are still useful for particular situations. Others are 
newer types that are beginning to gain popularity. 

Off-the-Shelf Logic (SSI) IC 

Sometimes a designer needs to implement a circuit having just a few gates. In these cases, 
using an FPGA may be overkill, as FPGAs typically support thousands or millions of 
gates. Likewise, using an ASIC would also be overkill. For cases where only a few gates 
are needed, a designer might instead use one or more off-the-shelf logic ICs. 



An Appo/o rocket carried 
astrona11ts to Ille moon. 
Neil An11s1ro11g 's famous 
words upon srepping 01r 

the 1110011, .. One small 
srep for man, one giam 
leap for ma11ki11d," were 
supposed To be "for « 
man" (NASA claimed 1ilat 
sratic obscured the word 
"a"). Most people 
understood Neil's 
meaning a11yway. 

A /,ogic JC typically contains a few, perhaps 
ten or Jess, gates connected di rectly to the IC's 
pins, as shown in Figure 7.32. The IC shown has 
four AND gates and 14 pins. One pin is for power 
to the IC (known as VCC), the other for ground 
(GND) (see Chapter 2). The remaining pins 
connect to the four AND gates in the IC, as s hown 
in the figure. Different logic ICs have gate types 
other than AND, such as OR, NANO, NOR, or 
NOT. To build a small circuit from these off-the
shelf logic ICs, we would s imply place the ICs on 
a board and connect the appropriate pins. ICs with 
only a few gates are known as small-scale inte
gration chips, or SSI chips. 

7400 ICs 

7.4 Other Off-The-Shelf IC Types 439 

vcc 
114 113 112 111 110 I9 IS 

I1 I2 13 I4 15 16 17 
GND 

Figure 7.32 Example logic IC. 

The most popuJar off-the-shelf SSI 
!Cs are known generally as i 400-
series ICs. A 7400 IC typically con
tains four to six logic gates, and about 

/'IL ~14 t't. ~ j4L ·14 ffc - · 
.f' 

14 pins. A particuJar 7400 IC is 
shown in Figure 7.31. The IC mea

sures about 112 inch across. The IC 
package shown has two rows, or lines, 
of pins, and is thus known as a dual 
i11line package, or DIP. 

7400 ICs first became available in 
the early 1960s . T he original 7400 
chip had four NANO gates, and cost 
about $1000 each, in 1962. That's 
right- $1000. And that's in 1960s' 
dollars, when a U.S. engineer eamed 
only about $10,000 per year. The 
price dropped significantly during that 
decade. thanks in large pait to the use 
of huge numbers of the devices by the 
U.S. Minuteman Missile and the 
Apollo rocket programs, and bas con
tinued to drop since then d ue to 
cheaper transistors and huge volumes. 
Today, you can buy 7400-series ICs 
for just tens of cents each. 

Parts with different gates have 

different part numbers. Table 7 .1 
shows some commonly used 7400 
parts from Fairchild's 74LSOO sub-

' -F" 
' . .. . 

113., 1". ~ ~ ' • 

"L • 

Fi gure 7.31 7400-series IC. 

Table 7.1: Commonly used 7400-series ICs. 
Part Description Pins 

74LSOO Four 2-input NAND 14 

74LS02 Four 2-input NOR 14 

74LS04 Six inverters 14 

74LS08 Four 2-input AND 14 

74LSIO Three 3-input NAND 14 

74LS l l Three 3-input AND 14 

74LSL4 Six inverters (Schmitt trigger) 14 

74LS20 Two 4-input NAND 14 

74LS27 Three 3-input NOR 14 

74LS30 One 8-input NAND 14 

74LS32 Four 2-input OR 14 

74LS74 Two D flip-flop, positive edge 14 
triggered, with preset and reset 

74LS83 4-bit binary full-adder 16 

74LS85 4-bit magnitude comparator 16 

Source: www.digikey.com 



440 7 Physical Implementation on ICs 

family of the 7400 series. ln addition to basic gaces, the table shows ICs with D flip-flops, 
full-adders, or a magnitude comparator. Parts also exist for XOR, XNOR, buffers, 
decoders, multiplexers, up-counters, up-down-counters, and more. 

There arc several different subfamilies of 7400-series parts-parts from a subfamily 
can be used with other parts from the subfamily, but generally not with parts from other 
subfami lies. The reason is that the voltage and current setting of a subfamily are designed 
such that the ICs can be connected without requiring adjusting the voltage and current 
between lCs. The 74 series (e.g., 7400, 7402, etc.), is the basic subfamily, based on a type 
of transistor known as TTL-designers using logic ICs today only use 74-series !Cs if 
they must i.megrate with old designs, and typically don't use the series for new designs. 
The 74LS subfamily (e.g., 74LSOO, 74LS02) uses a special type of TTL technology 
known as Schottky that results in lower power and slightly higher speed than the 74 
series-the "L" in the name means "low-power," the "S" means "Schottky." The 74H C 
subfamily uses high-speed (denoted by the " H'') CMOS (denoted by the "C") transistors. 
The 74F subfamily was introduced by Fairchild, consisting of fast (hence the "F") 

advanced Schottky TTL logic. Numerous other 7400 subfamilies exist. 
Furthermore, additional series of off-the-shelf SSI !Cs exist in addition to the 7400 

series. Another popular series is the 4000 series of I Cs, a CMOS series that evolved in the 
1970s as a low-power alternative to the TTL-based 7000 series. More series exist too. 

Example 7.14 Seat belt warning implementation using off-the-shelf 7400 I Cs 

Using 74LS-serics ICs shown in Table 7.1, physically implement the scat belt warning light circuit 
of Figure 7. I, shown again in Figure 7 .32(a). We could implement the inverter using a 74LS04. The 
74LS08 has 2-input AND gates, and we need a 3-input AND gate. A simple solution is to decom
pose the 3-input AND into two 2-input ANDs, as shown in Figure 7.32(b). The final 
implementation is shown in Figure 7.32(e). 

Figure 7.32 Implementing the seat 
belt warning circuit with 74LS
series ICs: (a) desired circuit. (b) 
circuit transformed to use 2-input 
AND gates, (c) circuit mapped to 
two 74LS ICs. Additional 
connections not shown would be 

power to the 114 pins and ground 

to the /7 pins on each IC. 

--------------., 
I 
I 
I 
I 
I 
IW 
I 
I 
I 
I 
I 
I 
I 
I 
I _____________ _! 

(a) 

-------------------~ 
(b) 

114 113 112 111 110 l9 l8 

11 12 

I k--
p--;----' 

114 113 

s 

13 14 15 16 17 

~ 
I 

112 111 110 19 18 

74LS04 IC 

11 12 13 14 15 16 17 

(c) ------------------------------------

lw 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



7.4 Other Off-The-Shelf IC Types 441 

Preferably, we would implement the circuit using just one IC, to reduce board size, cost, and 
power. Converting the circuit to use only one type of gate, like NAND gates only, or NOR gates 
only. could result in just one IC. For example, if we could convert to 3-input NOR gates, we could 
use the 74LS27 chip. We start by converting the circuit to NORs only, as in Figure 7.33(a). We 
remove the double invers ion, and replace the single inversions by 3-input NOR gates. The imple
mentation using a single 74LS27 IC is shown in Figure 7.33(c). 

Figure 7.33 Implementing the seat 
belt warning circuit with one 74LS 
IC, namely, the 74LS27 consisting 
of three 3-input NOR gates: (a) 
desired circuit transformed to NOR 
gates with invers ion bubbles, (b) 
circuit with double inversions 
eliminated and single inversions 
replaced by I-input NOR gates. (c) 
circuit mapped to a 74LS27 chip. 
Additional connections not shown 

would be power to the 114 pin, and 

ground to the / 7 pin. 

(a) 
------------------; 
0 

I -------------------
(b) 

Simple Programmable Logic Device (SPLDI 

r-----------------------------------1 
s I ,-, I w 
~--~ 

114 113 112 111 110 19 18 

k 
74LS27 IC 

p 

11 12 13 14 15 16 u 
O • ~ • I 

(c) 

A programmable logic device, or PW, is an IC that can be configured to implement a 
variety of logic functions , ranging from tens of gates to thousands of gates. PLDs became 
popular in the 1970s (thus predating FPGAs), because PLDs could implement far more 
functionality in a single IC than was possible using SSI ICs. 

A PLD device contains a prefabricated circuit with a set of external inputs feeding 
into a large AND-OR circuit structure, with the special feature of allowing the user to 
configure (via "programming") which external inputs connect to the AND gates. For 
example, Figure 7.34 shows a basic PLD with three inputs feeding into three AND gates 
followed by an OR gate. The inputs feed into the AND gates in both true and comple
mented forms. Each wire feeding into each AND gate passes through a programmable 
node, which can either pass tbe node's input to the node's output, or disconnect the 
node's input from the node's output. Thus, by programming the nodes, a PLD can imple
ment any 3-term function of three inputs. 

The programmable node design varies among types of PLDs. Figure 7.35 shows 
two types. The type shown in Figure 7.35(a) is fuse-based PLD. A fuse conducts like a 
wire, unless the fuse is "blown," meaning a higher-than-nonnal current is passed 



442 7 Physical Implementation on I Cs 

11 12 13 

\J PLO IC 
------------~----------------------J 

programmable nodes 

figure 7.34 A basic example of a programmable 
logic device. (AND gates are wired-AND.) 

0 1 

programmable node 

\ 

(a)____r::;:]_ -0-
~ 

" unblown" fuse " blown" fuse 

lffil ~ 
(b)~~ 
Figure 7.35 Two types of programmable 
nodes: (a) fuse based, (b) memory based. 

through the fuse, causing the fuse to literally burn up and break. A blown fuse obvi
ously does not conduct electricity. The type shown in FigLue 7.35(b) is based on 
memory and a trans istor- programming a 1 into the memory causes the transistor to 
conduct, while progranuning a o causes the transistor to not conduct. We omit the 
details of how to program the fuses or program the memories themselves. Memory

based PLDs can usually be reprogrammed, i n contrast to fuse-based PLDs that can 
only be programmed once, and that are known as one-time programmable (OTP) 
devices. Fuse-based PLDs are popular in e lectrically noisy applications, like space 
applications, since memories can have their contents changed from radiation in space. 

They are also popular in applications demanding high security, since malicious enemies 
can't reprogram the device. Memory-based devices are more common, however, since 
they can be reprogrammed and thus reduce costs when we make design changes. T he 
memories used are almost always nonvolatile, meaning the memories don ' t need power 
to retain their s tored bits. (See Section 5 .? for more information on nonvolatile 
memories.) 

You might be wondering how those AND gates work when the programmable node 
is programmed to disconnect an input. In other words, how does the AND gate treat an 

input with no connection- as a 0 , a 1, or something else? Actually, PLDs don't use 
normal AND gates. Instead, PLDs typically use what is known as "wired-AND." 
ExplairLing how wired-AND works is beyond the scope of this book, and instead the 
subject of a course on transistor-level circuits. For our purposes, we can think of a wired
AND gate as an AND gate that simply ignores unconnected inputs. 



Real PLDs have more inputs, gates, and 
outputs than shown in Figure 7.34. PLO struc
ture drawings thus benefit from a more 
concise way of drawing the circuits. A concise 
method of drawing PLDs is shown in Figure 
7.36. Such a drawing doesn't show the pro
grammable nodes, and simply utilizes an "x" 
to incticate a connection. In the drawing, wires 
that cross each other are not connected unless 
an "x" exists at the crossing. Furthennore, 
such a drawing uses a single wire to represent 
all the AND gate inputs, representing the 
wired-AND. The figure shows how such a 
drawing would indicate the connections 
needed to generate the term I 3 *I 2 ' . The "x'' 
on the left represents 12' feeding into the top 
AND gate. The "x" on the right indicates 13 

feeding into the top AND gate. 

Example 7.15 Seat belt warning light using a simple PLO 

TIUs example implements the seat belt warning 

light system of Figure 7. I using the PLO of 
Figure 7.36. We can do so by programming the 
PLO as shown in Figure 7.37. We generate the 
desired term kps ' by programming d1e connec
tions for the top AND gate as shown. 

We want the bottom two AND gates to 
output Os so iliat ilie OR gate's output equals the 
top Al"iD gate's output. We can achieve Os by 
ANDing an input with its complement- the result 

of a* a ' is always 0 . The figure shows two ways 
of achieving a 0 , with the middle gate using just 
one of the inputs, and ilie bottom gate using all 
three inputs. 

7.4 Other Off-The-Shelf IC Types 443 

11 12 13 

Figure 7.36 Simplified PLO drawing. 

k p s 

figure 7.37 Seat belt warning system 
on a simple PLD. 

01 

w 

• 
PLDs typically have more than just one output. Figure 7.38(a) shows a PLO with two 
outputs instead of just one. Each output is an OR of up to three terms. 

Many PLDs have a D flip-flop that stores each output's bit, and the PLD's output pin 
can be programmed to connect either from the OR gate output or from the flip-flop 
output, known as combinational or registered output, respectively. A PLO supporting 
combinational/registered output is shown in Figme 7.38(b). 



444 7 Physical Implementation on I Cs 

I1 12 I3 

--- ------------------~ 
.-'-~.--"'--.r.....__. I 

I 
I 
I 
I 
I 
I 
I 
101 

I 
I 
I 
I 
I 

_____________________ f>_1:_Q_!<;:J 
(a) 

11 12 13 

---------------------------- ------~!-_Q_!<2~ 
(b) elk 

Figure 7.38 PLD: (a) with two outputs, (b) with programmable registered outputs. 

01 

02 

Another extension is to allow the PLD output to be either the true or complemented 
value of the OR gate or flip-flop output, using a 2x1 mux controlled by a programmable 
bit. Yet another extension is for the output to feed back to the input array. One use of 
feedback is to implement functions with more terms, achieved by feeding back the com
binational output value. Another common use of feedback, achieved by feeding back the 
registered output, is to implement a state register and control logic (i.e. , a controller)- the 
AND array gets its inputs from the registered outputs and external inputs, and the OR 
gates then generate the external outputs and the next values for the state register. 

Some PLDs have not only a programmable AND array, but also a programmable OR 
array, meaning the OR gate can get its inputs from any of the AND gates. 

SPLD versus PAL versus GAL ver sus PLA 
Like so many names in the rapidly evolving field of computer technology, names for 
PLDs are somewhat confusing. OriginaJJy, in the 1970s, PLDs cons isted of program
mable AND arrays and programmable OR arrays, and were known as programmable 
logic arrays, or PI.As. In the mid-1970s, a company named AMD (Applied Micro 
Devices, Inc.) developed PLDs that instead had OR gates with fixed rather than program
mable inputs, as in Figure 7.38 and the other PLO figures in this chapter, and referred to 
such devkes as programmable array logic , or PALs ("PAL" is a registered trademark of 
AMO). PALs were originally fuse-based and hence one-time-programmable. A company 
named Lattice Semiconductor Corporation developed a PLO using a memory-based pro
grammi11g approach rather than fuses, resulti ng in reprogrammability, and referred to 
such devices as generie array logic, or GAL (which are registered trademarks of Lattice 
Semiconductor Corporation). As PLDs became more complex (as the next section 
describes), PLDs based on PAL or GAL architectures (PLA architectures seem to be rare) 
became known as simple PLDs, or SPLDs, to contrast them with the more complex PLD 
varieties. Today, numerous companies manufacture SPLDs, and often state that their 
SPLD architecture is based on "PAL" or "PAIJGAL" architectures, with the distinction 
between PAL and GAL not seemingly relevant in that context. SPLDs typically support 
tens of logic gates to hundreds of logic gates. 



7.4 Other Off-The-Shelf IC Types 445 

Complex Programmable Logic Device (CPLD) 

As IC transistor densities grew in the 1980s, companies began to build PLDs to support 
thousands of gates. However, the PLD archi tecture described in the previous section does 
not scale well to thousands of gates- who needs one big huge circuit of two-level logic? 
Instead, architectmes evolved that consisted of numerous SPLDs on a single device, con
nected using switch matrices (also known as programmable interconnect)- see Section 
7.3 for details on switch matrices. These devices today are known as complex PWs, or 
CPWs. CPLDs can typically implement designs with thousands of gates. 

SPLDs versus CPLDs versus FPGAs 
What's the difference among SPLDs, CPLDs, and FPGAs? In general, the term SPLD is used 
for devices that support tens of gates to hundreds of gates, CPLD for devices that support 
thousands of gates, and FPGAs for devices that support tens of thousands of gates to millions 
of gates. 

Furthennore, today's SPLDs and CPLDs are almost always nonvolatile, meaning they 
can store their program even after power is removed, whereas FPGAs are almost always 
volatile, meaning they Jose their program when power is removed- and thus must include 
external circuitry that stores the program in nonvolatile memory and that programs the 
FPGA from that memory on power up of the FPGA. FPGAs today are volatile in part 
because nonvolatile memory technology is hard to incorporate with fast logic technology on 
the same chip, resulting in slower circuit performance and Jess efficient use of area. How
ever, conceptually, any of SPLDs, CPLDs, and FPGAs could be made to be volatile or 
nonvolatile, and today some companies do offer nonvolatile FPGAs-those companies focus 
on low power, and on space applications and other electrically noisy environments that can 
cause undesired changes in volatile memory. 

FPGA-to-Structured-ASIC Flows 

An interesting new technology that has evolved in the early 2000s is that of creating an 
ASIC directly from an FPGA-based design. Many designers use FPGAs for ASIC proto
typing. They use automated tools to implement their circuit on FPGAs, and they then 
extensively test the circuit in the circuit's environment, for example, in a prototype digital 
video player or a prototype satellite communication chip. The FPGA-based prntotype 
may be larger, costlier, and more power-hungry than an ASIC-based implementation, but 
can be ·useful for detecting and correcting errors in the circuit, for creating other compo
nents and software that interact with the circuit, and for demonstrating the eventual 
product. Once satisfied with the circuit, automated tools could be used to reimplement the 
circuit on an ASIC. The ASIC implementation traditionally did not utilize any infonna
tion from the FPGA implementation. 

Implementing large circuits on ASICs is a difficult task, even with automated tools. 
Nonrecurring engineering costs may exceed millions of dollars, and fabricating the IC 
may take months. Furthermore, any problem with the fabricated ASIC may require a 
second fabrication cycle, requiring additional weeks or months. Problems may arise in 
the ASIC that didn't appear in the FPGA due to the new implementation of the circuit as 
an ASIC-perhaps timing problems might arise, for example, due to the circuit being 
placed and routed in a completely different fashion than was done in the FPGA. 



446 7 Physical Implementation on I Cs 

To ease the migration of a circuit from FPGA to ASIC, some FPGA vendors offer a 
structured ASIC approach. In this particular structured ASIC approach, a tool converts the 
FPGA implementation to an ASIC implementation, in contrast to converting the original 
circuit to an ASIC implementation. In other words, the stmctured ASIC will reflect the 
lookup table and switch matrix structure of the original FPGA. However, the structured 
ASIC wiJ] not be progranunable, and thus will have faster lookup tables and faster switch 
matrices, because their contents will have been "hardwired" into the ASIC. The structured 
ASIC's lower layers can be prefabricated, with only wires left to be completed to implement 
a particular circuit. The result is less NRE cost (tens of thousands of dollars rather than mil
lions) and shorter time-to-silicon (weeks rather than months), as well as less chance of 
unforeseen problems. The drawback is that the structured ASIC will be larger, slower, and 
more power-hungry than a traditional cell-based ASIC, but still better than an FPGA, gen
erally about 2x smaller, faster, lower-power, and cheaper than an FPGA. 

7.5 IC TRADEOFFS, TRENDS, AND COMPARISONS 
As is the case when designing a digital circuit (as discussed in Chapter 6), phys ically 
implementing a circuit on an IC presents designers with numerous tradeoffs among 
design metrics. Common metrics. include performance, s ize, power, cost, and time to 
availability. Figme 7.39 illustrates some of the tradeoffs among various IC types 
described in this chapter. 

t;; 
.Qi 

~ 
~-/ , 

,' 

.{~gic 
IC 

~ 
~ - Quicker availability 
.!!/ 
la ---- Lower NAE cost 

LU 
Faster performance -- ~ 
Smaller size _. Qi 
Lower power -. .g 
Lower unit cost - 3' 
More capacity ---- ~· 

Q. 

Off-the-shelf ~ 

• FPGA 

• SPLD/CPLD 
Programmable 

0 0 
0 0 

0.05 0.5 
200 100 
10 5 
20 20 

0.001 0 .1 

Manufactured ~ 

• Gate array (structured) ASIC 

6 12 (months) 

50 150 (M$) 

3 5 (GHz) 
10 4 1 (sq mm) 
0.1 0.05 0.01 (W) 

3 0 .5 ($) 

0.5 2 (B gates) 

Sample values 

figure 7.39 Tradeoffs among various IC types. Sample values for various metrics are 
also sbown. For example, pcrfomiam;e for an SPLD/CPLD might be 0.05 GHz, but 3 
GHz for a standard cell ASIC. Actual values can vary tremendously from those shown. 



7.5 IC Tradeotts, Trends, and Comparisons 447 

Tradeoffs Among IC Types 

Generally, a circuit implemented on IC types towards the right of the figure will have 
faster performance, smaller size, lower power, and lower unit cost (meaning lower cost 
per chip). For example, for a given circuit, a standard cell ASIC will be faster, smaller, 
and lower power than a gate array ASIC, because the cells can be chosen and placed to 
match the circuit, meaning there may be fewer cells and shorter wires. Likewise, a gate 
array ASIC uses gates rather than slower/larger/higher-power lookup tables, and wires 
rather than slowernarger/higher-power switch matrices. The circuit of Figure 7.24(a) 
could be implemented in a gate array ASIC with performance involving just a few gate 
delays from input to output, but when mapped to the FPGA of Figure 7.28, that circuit 
would have a longer delay- the inputs would pass through the left CLB's lookup table 
(which may have a delay of two gate-delays), through the left CLB's output muxes 
(another two gate-delays), through the switch matrix (another two gate-delays), through 
the right CLB's lookup table (another two gate-delays), and finally through the right 
CLB's output muxes, resulting in a total of ten gate-delays. In terms of size, a gate array 
implementation of the circuit of Figure 7 .24(a) would require about 20 transistors, 
whereas the FPGA implementation using two CLBs and a switch matrix would require 
several hundred transistors. Some studies report that FPGAs are approximately 10 times 
slower, are 10-30 times bigger, and consume about IO times more power, than ASIC 
implementations of the same circuit. However, these overheads are decreased compared 
to the previous decade, and the overheads are decreasing further as commercial FPGAs 
continue to mature. 

Uait cost (which does not include NRE cost) is reduced towards the right of the 
figure, in part because IC cost is closely related to silicon size. Furthermore, for a given 
size chip, IC types to the right can implement larger circuits (i.e., the IC has more 
capacity) because the chip is optimized for the given circuit. 

However, a circuit implemented on IC types towards the left of the figure will gener
ally have quicker availability and lower NRE cost. For example, a gate array ASIC only 
requires wires to be fabricated and may thus be available in a few weeks and involve NRE 

costs of perhaps one million dollars, whereas a standard cell ASIC requires all layers to 
be fabricated , which may require several months and incur NRE costs of tens of millions 
of dollars. Likewise, an FPGA is prefabricated and thus may be immediately available if 
already stocked in a Jab or may require only a few days to order from a vendor, and has 
no NRE costs, whereas a gate array ASIC re£Juires a few weeks and NRE costs of perhaps 
one million dollars. 

Figure 7 .39 also makes a clear distinction between manufactured versus off-the-shelf 
IC types, because the difference in metric values between those two categories can be 
enonnous, much like the difference between vehicles in the categories of aircraft versus 
automobiles. For ex.ample, while NRE costs are in the range of millions of dollars in the 
manufactured IC category, namely full-custom costing perhaps $150 million, standard 
cell $50 million, and gate array $1 million, they reduce to $0 for the off-the-shelf IC cat
egory. Likewise, while time to availability for the manufactured IC category is measured 
in months or weeks, the off-the-shelf IC types reduce it to just minutes or sec
onds-effectively zero time. 



448 7 Physical Implementation on I Cs 

Example 7.16 Choosing an IC type 

Consider a company that has a text encrypter circuit that will be used in three different projects A, 
B, and C. 

• Project A involves putting the circuit into I 00 million mobile phones; encryption speed must 
be 2.5 GHz, and each chip can be priced up to SS. 

• Project B involves putting the circuit into 10,000 medical devices; encryption speed must be 
1 MHz, and each chip can be priced up to $50. 

• Project C involves putting the circuit into 10(),000 automobiles; encryption speed must be 10 

MHz, and each chip can be priced up to SlO. 

Suppose that alJ other factors are ignored, and that the company must choose from among standard 
cell ASIC, gate array ASIC, or FPGA IC types only. Considering the sample metric values shown 
in Figure 7.39, which IC type is best for each project? 

For project A, the only IC type with at least 2.5 GHz speed is standard cell ASIC. The SSO 
million in NRE cost can be amortized over the I 00 million chips by adding jttst S0.50 to the price 
of each chip, which when added to the SI tmit cost results in a price of $1.50 per chip, much less 
than the limit of SS. Thus, project A should use standard cell ASICs. 

For project B, any of the three IC types meets the speed requirement of 1 MHz. The $50 
milJion of NRE for a standard cell AS IC amortized over 10,000 chips would itivolve adding $5,000 
to the price of each chip, which clearly exceeds d1c limit of $50 per chip. Even the ~ 1 million of 
NRE for a gate array ASIC would require adding $100 to the price of each ch.ip, which is still too 
much. Fortunately, the FPGA has no NRE cost, and a unit cost of $20, which is less than tl1e $50 
limit per chip. Thus, project B should use FPGAs. 

For project C, all three IC types meet the speed requirement of IO MHz. Amortizing standard 
cell NRE would result in too high a chip price. Amortizing the gate array ASIC NRE of $1 million 
over l 00,000 chips would add $10 per chip, which when added to the $1 unit cost would result in SI l 

per chip, slightly exceeding the SIO per chip Limit. However, the un1t cost per FPGA chip is $20. Thus, 
none of the three IC types meets project C's price per chip requirement, but the gate array IC type 
comes very close, and is thus the best implementation choice. 

IC Technology Trend- Moore's law 
Unders tanding the trends of IC 
technologies requires knowledge 

of Moore's Law. Moore's Law 
roughly states that IC capacity 

doubles every 18 months. Figure 

7.40 plots such doubling, begin

ning with about 10 milLon 
transistors per IC in 1997. The 
plot uses a logarithmic scale for 
the y-axis- each tick mark on the 
y-axis represents IO times more 
than the previous tick mark. The 
growth rate is astounding- ICs 

~ 
(J) 

-~ 100,000 

1 10,000 
0 

Qi 1,000 
a. 
(J) 
...:. 

100 £ 
(J) 

·u; 
c 10 
~ 

w _('\C) _('\~ _('\co _('\~ ~"!- ~~ ,co 
{!i q,cr 'Ver q,cr q,cr q,C) q,C) q,Cl 

Figure 7.40 The trend of increasing transistors per IC. 



In a 2004 speech, 
an Im el vice
preside11t 
suggested tlzat we 
might now 
consider 
transisto rs as 
esse11tially f ree. 

In the early 1980s. 
many people 
predicted that 
f eature si;.es could 
not shrink below 
I 111iciv11. 2010 
feature si;.es are 
about 0.020 
111iciv11s. A s Neils 
Bohr said, 
"Prediction is 
l'el')' d(fjic11lt, 
especially about 
the f 11111re." 

7.5 IC Tradeoffs, Trends, and Comparisons 449 

are predicted to increase from 10 million transistors in 1997 to over 10 billion transistors 
in 20 15. That means that the 20 15 IC would hold 1000 times more transis tors than the 
1997 IC. In other words, the 2015 IC would be as powerful as about 1000 1997 !Cs. This 
increasing capacity trend has also resulted in the cost per transistor dropping at nearly the 
same astounding rate. The increasing capacity is made possible by decreasing the 
smallest size of the individual parts within a chip, like the size of a single wire or of a 
transistor's gate, known as a chip's feature size. Feature sizes in the 1980s were on the 

order of I micrometer (known as a micron), shrinking to 0.35 microns by 1995, and 0.1 8 
microns by 2000 (around which time people began referring to feature s ize by nanome
ters rather than micrometers). Feature size shrinking continued to 90 nanometers by 

around 2003, then 65 nm by 2005, and 45 nm by 2007. Further shrinking may occur 
down to 32 nm by 20 J 0, and 22 nm by 201 2. 

The IC capacity trend has many implications. One implication is that digital 
designers can create massively parallel designs that use huge numbers of functional units 
and registers, to create high-performance systems not previously practical. The number of 
required transistors for such designs might have been considered absurd just a decade ear
lier. Another implication is that the size overhead of FPGAs compared to ASICs (about 
IOx) becomes less relevant, making FPGAs an increasingly popular choice in more sys
tems . Yet another implication is that designers increasingly need automated tools to help 
build these multimillion transistor circuits, and may increasingly wish to use RTL and 
even higher levels of design (e.g .. C-based design) as the method for describing circuits, 
leaving the remaining design steps to tools. Smaller feature s izes also make layout more 
challenging (the closer items are, the more that can go wrong), which has increased stan
dard cell ASIC NRE costs from tens of thousands of dollars in the 1980s to tens of 
millions of dollars in the 20 lOs. 

At some point, Moore's Law must come to an end, because transistors cannot shrink 
to an infinitely small size. When that end will occur has been a subject of debate for many 
years. Some people claim Moore·s Law is already slowing down and will perhaps end a 

couple decades into the 2000s . 

.... HOW DOES IT JJ'ORK?- INCREil1El\'TALLJ' SCALING DOWN CHIP FEATURES 

Moore's Law is enabled by chip feature sizes being 
made smaller every few years. A common question is: 
"Why don't chip makers just jump forward and make 
the smallest features now, rather than reducing feature 
sizes incrementally each year?" Part of the answer is 
that each incremental reduction creates a new set of 
problems that must be solved before the next 
incremental reduction can be considered, such as 
problems related to reliably creating smaller wires, 
updating tools to consider more and stricter layout 
rules when items are placed closer together on a chip, 
and testing chips for correctness even though tJ1ere are 
more components on each chip and those components 
are less accessible from the chip's pins. These 

problems are tackled by 
thousands of researchers 
and engineers around tJ1e 
world, and solutions 
evolve slowly, often by 
improvements built on 
previous solutions. The solutions also require the more 
powerful computers enabled by a current generation of 
chips. An analogy is tJ1at of building a pyramid-only 
by standing on what is already built can one proceed 
to build the next higher level. 

"If I have see11f11rther it is by s tanding 011 

the shoulders of g iants." Isaac Newton. 



450 7 Physical Implementation on I Cs 

The advent of ICs containing a billion transistors has led to ICs that contain what 
used to exist on multiple ICs. Thus, a single IC may contain dozens or hundreds of micro
processors, custom digital circuits, memories, buses, etc. An IC with nwnerous 
processors, custom circuits, and memories is known as a sy stem-on-a-chip, or SOC. 

Relative Popularity of IC Types 

/ 11 2002 alone, 
nearly 80 billio11 
!Cs (of all types) 
were produced. 
(Source: JC 
/mights McClea11 
Rep ort, 2003.} 

ASSPs 

One may wonder about the relative popularity of IC types. Several ways exist to measure 
the popularity of an IC type. 

One measure is each type's annual revenues. One 2007 study of IC sales reported 
$15.3 billion in total revenues with the following revenue percentages for different IC 
types: Full-custom-19%, standard cell- 54%, gate an-ay- 3%, FPGA/PLD- 24%. 
Another measure is the number of design starts for each IC type, which is the number of 
unique circuits implemented in each IC type, regardless of how many copies are made. A 
2008 study reported about 3,000 ASIC design starts, versus about 100,000 FPGA design 
starts. Numbers from different studies vary, and there are many other measures that could 
be considered; these numbers are provided just to give a general feel for the popularity of 
the various IC types. 

The tools used to map digital designs to physical implementations, collectively 
known as electronic d esign automation tools, or EDA, themselves form a market with 
revenues of $4 billio11 in 2008, employing about 30,000 people worldwide (source: EDA 
Consortium, 2009). 

Rising ASIC NRE costs (from tens of thousands of dollars in the 1980s to tens of mil
lions of dollars in the 2000s) have lead to the increasing popularity of ASSPs. An 
application specific standard product, or ASSP, is an off-the-shelf IC that targets a par
ticular application domain, such as the video processing domain or the network 
processing domain, b11t that is intended to be sold to a variety of different companies 
("users") who each will program and configure the device for their specific products. In 
contrast, ASICs are typically created by one company ("user") for a single device, and 
FPGAs are not focused on a particular application domain. For example, an ASSP for 
video processing might contain custom digital circuits optimized for high-speed low
power video compression and decompression (known as codecs)-such ASSPs often 
contain codecs for a wide variety of protocols (e.g., MPEG 2, MPEG 4, H.264, etc.) 
because the platform could be used in different products supporting different standards. 
An example is the Nexperia platform from Philips. One user may program the ASSP for 
use in a TV set-top box, while another user may place the ASSP in a security camera. As 
another example, an ASSP may focus on network processing, such as Intel 's IXP device, 
which is programmed by different users to implement network gateways, routers, 
switches, wireless access points, and more. ASSPs typically include microprocessors and 
other programmable items (even FPGA fabrics) that can be programmed to customize the 
ASSP for a particular product. 

Thus, the high NRE cost of building the ASSP IC, which may itself be created using 
full-custom, standard-cell ASIC, or some other IC type, can be amortized by the comp
pany that builds the ASSP over larger quantities of ICs due to being used by numerous 



7.5 IC Tradeoffs, Trends, and Comparisons 451 

user companies in numerous products. Furthermore, ASSP users (distinct from the ASSP 
builder) obtain quicker avai lability of the IC and incur less risk, with drawbacks including 
a less optimized design. A 2008 study reported ASSP annual revenue to be about $60 bil
lion, compared to about $20 billion for ASlCs. 

IC Types versus Processor Varieties 

IC types and processor varieties are orthogonal implementation features. Two implemen
tation features are orthogonal if we can select each independently (in mathematics, 
orthogonal means forming a right angle). Several processor vaiieties can each implement 
a desired system function, including a custom processor (i.e., a circuit created by a 
designer to implement a particular function, such as video compression) or a program
mable processor (often called a microprocessor). 

Figure 7 .41 illustrates that the choice of processor variety is independent of the 
choice of IC type. Point 1 represents the choice of implementing desired system func
tionality using a custom processor circuit with a full-custom IC type. That choice 
results in a highly optimized design. Point 2 represents the choice of implementing a 
custom processor circuit on an FPGA. While the circuit may be optimized, the FPGA 
IC type results in a less-optimized implementation (compared to fu ll-custom) but easier 
design overall. 

Point 3 represents the choice 
of implementing system func-
tionality as software executing on 
a programmable processor, where 
the programmable processor is 
implemented in standard cells. 
Point 4 represents the choice of 
implementing software on a pro
grammable processor that is 

Custom • (2) 
processor More optimized 

• (1) 

Easier design 

/ 
Programmable 

implemented on an FPGA. While processor • (4) • (3) 

that concept may seem strange, a 
programmable processor is just 
another circuit, so that circuit can 
be mapped to an FPGA just like 
any other circuit. Programmable 
processors mapped to FPGAs, 
known as soft core processors, 
are in fact becoming quite pop
ular, because a designer can 
choose how many processors to 

PLO FPGA Gate Standard Full-custom 
array cell 

figure 7.41 IC types and processor varieties are 
orthogonal implementation features. Four of the above 
ten possible choices are shown. 

put on a single IC (perhaps the designer wants 9 programmable processors on one IC), 
and because a designer can put single-purpose processors alongside programmable pro
cessors-all without having to fabricate a new IC. 

Of course, programmable processors can often be pmchased as off-the-shelf ICs, 
so a designer using a programmable processor may not have to worry about the pro
cessor's IC type. But increasingly, designers must place a programmable processor 



452 7 Physical Implementation on I Cs 

within their own IC , coexisting with other processors. When a programmable processor 
coexists on an IC along with other processors (programmable or custom), that program
mable processor is called a core. A hard core is built into the chip's hardware, while a 
soft core (mentioned above) is programmed onto the existing hardware (typically 
FPGA hardware). 

The rise of cores in the 1990s and 2000s has Jed to a new processor type known as 
customized programmable processors or applicatifm-speciftc i11structi011-set processors 
(ASJPs), wherein a designer can extend a base programmable processor to have custom 
datapath components and custom instructions that provide improved performance for a 
particular application or application domain. The newly-created ASIP can then be imple
mented alongside other circuits or cores on an ASIC or FPGA. 

Our discussion of IC types and processor varieties has thus far assumed just one type 
of each item (e.g., one type of FPGA). In reality, each item itself has many types. For 
example, dozens of different types of FPGAs are available, varying in their size, speed, 
power, cost, etc. Likewise, dozens of different types of programmable processors are 
available, also varying in those features. And we know that we can create different types 
of custom processors, varying also in their size, speed, power, etc. Thus, each point in 
Figure 7 .39 and Figure 7 .41 is actually a large collection of points chat spread out in dif
ferent directions on the plots, and may even overlap with other types. Furthermore, other 
IC types as well as processor varieties exist and continue to evolve. 

We also point out that a single IC may actually incorporate several different IC 
types. So a single IC may have some circuits created us ing full-custom IC type, and 
other circuits created using ASIC or even FPGA types. Likewise, a single processor 
may have different parts implemented in different IC types. For example, a common 
situation js for a programmable processor to have its datapath implemented as a full
custom IC type, but its controller implemented in an ASIC type- the reason being that 
the datapath is very regular, while the controller is mostly unstructtu-ed combinational 
logic. 

In short, des igners have a huge number of choices in choosing processor varieties 
and IC types to implement their systems. 

FPGAs alongside Microprocessors 

This chapter has introduced FPGAs primarily as an alternative to mrumfactured ICs such 
as ASICs. Today, FPGAs are also viewed as ru1 alternative to microprocessors in com
puting platfonns. ln particulru-, some computations can be performed faster on an FPGA 
than on a microprocessor. For example, multiplying 20 pairs of 4-bit numbers might 
require about 200 clock cycles on a microprocessor, as each multiplication requires 
instructions to fetch , multiply, and store the data and those instructions execute (mostly) 
sequentially. However, multiplying those 20 pairs of numbers could require just one clock 
cycle on an FPGA if the FPGA had capacity for 20 multipliers- all 20 multiplications 
could be done in parallel. Even if the FPGA clock cycle were 10 times slower than the 
microprocessor's clock cycle, the net result would still be a 20x speedup ((20011)/10) on 
the FPGA. Many computing domains, such as biological computing, financial computing, 
and video processing, process streams of data that lend themselves well to computing on 



7.6 Product Profile: Giant LED-Based Video Display with FPGAs 453 

FPGAs. Thus, computer makers today increasingly provide support for adding FPGAs 
alongside microprocessors, and thus many desktop computers, server computers, and 
supercomputers today come with hardware and software support for FPGAs. Further
more, new compilers exist that can translate high-level progrnm code like C++ code into 
circuits on FPGAs. Thus, creating digital circuits is no longer just the domain of "hard
ware" engineers; it is becoming part of the domain of "software" engineers too. 

7.6 PRODUCT PROFILE: GIANT LED-BASED VIDEO DISPLAY WITH FPGAS 

In the late 1990s and 2000s, giant color video displays became popular at sport stadiums, 
car dealerships, casinos, freeway billboards, and various other locations. Most such video 
displays utilize a huge gtid of light-emitting diodes (LEDs) driven by digital circuits. 

A light-emitting diode (LED ) is a semiconductor device that emits light when current 
passes through the device. In contrast, a traditional "incandescent" light bulb emits light 
when current passes through the bulb's internal filament, which is a high-resistance wire 
that heats up and glows when current flows through the wire- the wire, however, doesn' t 
burn because it is enclosed in a vaccum or jnert gas within the bulb. Because LED light 
comes from a semiconductor material and not from a hot g lowing filament in a bulb, LEDs 
use less power, last longer, and can handle vibrations that would break: a regular light bulb. 

LEDs have long been used to 
display simple device status (e.g., on 
or off), text messages, or even simple 
graphics. However, until recently, 
LEDs were only available in white, 
yellow, red, and green colors, and 
were not very bright. Thus, earlier 
LED video displays were typically 
small, used only a single color, and 
were designed for indoor use. How
ever, with the development of the blue 
LED in 1993, and the development of 
brighter LEDs, full-color LED dis
plays evolved that can display video 
in much the same way as a computer 

--
r ··~~· . 
~ ··I 

. _·_J· : 

·a. 
Traffic light using 
incandescent light 

and red plastic cover 

Traffic light made f rom 
several hundred red LEDs 

Figure 7.42 LEDs arc replacing incandescent 
bulbs in traffic lights , as well as other areas. 

monitor or television, even in sunny outdoor environments. In fact, LEDs, being a semi
conductor technology, have been improving at a rate similar to transistors (which also use 
semiconductor technology). The improvement has followed what is known as Haitz's 
Law (the LED equivalent of Moore's Law), stating that the LED "flux per package" 
doubles every 18- 24 months, which has been the case for several decades. Due to this 
improvement, many people predict that LEDs will replace incandescent light bulbs for 
home and office lighting. LEDs have already begw1 to replace incandescent bulbs in 
traffic lights, as illustrated in Figure 7.42. LED-based flashlights are now commonplace. 



454 7 Physical Implementation on I Cs 

Figure 7.43(a) shows a large LED video display capable of displaying full-color video 
on a 15-yard-by-8-yard screen. Because each LED is relatively large ( I/8th of an inch 
wide, for example) i11 comparison to the pixels of a computer moaitor, one has to stand 
several feet away from the LED display to view the image without noticing the individual 
LEDs. If we look closer at the LED display, as seen in Figw·e 7 .43(b), we can see the indi
vidual lines of the displays. If we look even closer at the display, we can finally see the 
individual LED s within the display, as shown in Figure 7.43(c ). That figure shows that the 
LEDs are clustered into groups of red, green, and blue LEDs-each cluster represe11ts one 
pixel. For the LED video display shown in Figure 7.43 , each cluster of LEDs consists of 
five LEDs: two red, two green, and one blue LED. Giant video displays are indeed 
intended to be viewed from a distance, so most viewers don't see the individual LEDs. 

Assume we want to create an LED video display capable of displaying a 720x480 
pixel video, where each pixel simply consists of one red, one green, and one blue LED. If 
each LED cluster has a width of just over 3/8 inch ( 10 millimeters) and a height of 3/8 
inch, our display will be roughly 24 feet wide and 16 feet high. Furthermore, our display 
will contain over one million individual LEDs, because 720 * 480 = 345,600 pixels, and 
the three LEDs per pixel results in 1,036,800 LEDs. 

Controlling every LED using a single digital circuit would require millions of output 

pins and miles of wire to connect all of the LEDs. Instead, as depicted in Figure 7 .44, an 
LED video display is constructed of smaller and smaller components. T he LED ctisplay 
consists of an array of smaller components called panels, shown in Figure 7.44(a). The 
panels are large display components typically designed in a modular fashion such that 
display manufacturers can easily create custom-size video displays and repair broken 
components within a display simply by replacing individual panels. The LED dis play 
panels are further divided into LED modules that control the physicaJ LEDs, shown in 
Figure 7.44(b). An LED module is the basic display component and, depending on the 
design of the module, can control anywhere from a few hundred to a couple thousand 
LEDs. For example, in designing a 720x480 pixel display, we may want to use an array 
of 6x6 panels, where each panel consists of an array of 5x5 LED modules. Each LED 

(a) 

figure 7.43 LED video display: (a) a large LED display (about IO yards wide and 5 yards tall), (b) a 
closer view showing about l square yard, (c) a very close view showing about l square inch- 16 
"pixels" can be seen, each pixel having 2 red (upper-left and lower-right of pixel), 2 green (upper
right and lower-left of pixel), and l blue LED (center of pixel). 



7.6 Product Profile: Giant LED-Based Video Display with FPGAs 455 

,,.. ' 
' ' 

Panel Panel Panel \ 
I 
\ 

' ' \ ' Panel Panel Panel Panel \ 
\ 

' ' 

Panel Panel Panel Panel 

(a) 

Module 

000 
000 

Module ... ..... .......... 

8 -,~~:-~Red 

OOO 0 Cluster 
-------""' Green 

(b) (c} 

Figure 7.44 LED videQ displays are designed hierarchically: (a) the LED display consists of several 
larger panels, which can be composed to create different-sized displays, and which can be 
individually replaced to repair broken panels, (b) each panel consists of several smaller LED 
modules, responsible for controlling the individual pixels, and (c) each pixel consists of a cluster of 
red, green, and blue LEDs. 

module would then need to control an array of 24x l6 pixels, where each pixel is com
posed of three LEDs. 

The LED video display operates by dividing the incoming video stream into separate 
streams for each panel. The panels further process the video stream by clividing the 
incoming video stream into even smaller stre ams for the LED modules. Finally, the LEDs 
modules display the video frames by controlling the LEDs co output the correct colors for 
each pixel, or LED cluster. 

LED Module 
The LED module controls the 
individual LEDs within the 
video display by turning the 
LEDs on and off at the proper 
times to c reate the final color 
images. Because each LED 
module can consist of thousands 
of LEDs, directly controlling 
each LED would require too 
many wires. Instead, as shown 
on Figure 7 .45, the LEDs within 
the LED module are cotmected 
in a matrix with a sjngle control 
wire for each row and three 
control wires for each column 
(one wire for each colored LED 

LED Module 
Controller 

R1 

R2 

R3 

C1 C1 C1 C2 C2 C2 
(R) (G) (B) (R) (G) (B) 

Figure 7.45 LED module circuit consisting of a matrix of 
red (R), green (C), and blue (B) LEDs controlled by the 
LED module controller. Rl /R2/R3 are rows I through 3, 
and Cl/C2 are colunms I and 2- thus the matrix sJ10wn is 
2x3 pixels, or 6 pixels total. with 18 LEDs total (3 LEDs 
per pixel). 

within the LED cltisters). In the figure, the LED module controller controls an array of 
2x3 pixels, where each pixel consists of three individual LEDs, for a total of 18 LEDs. 
But as shown, the controller uses only 9 wires to control those 18 LEDs. The wire saving 
using this row and column approach becomes even more significant for more pixels. An 
LED module with 24x l6 pixels and tluee LEDs per pixel would have 24* 16*3 = 1152 
LEDs, but the controller would require onJy 16 wires (one per row) plus 24*3 wires 



456 7 Physical Implementation on I Cs 

The largest LED 
display in 2()()4 
wa.r 135 feet wide 
by 26 feet /all, 
built 11si11g 10 
large FPGAs, 323 
moderate-size 
FPCAs, 333 flash 
memories. and 
3800 PLDs. 
(Source: Xcel! 
Journal, \Vint er 
2004.) 

(three per column), for a total of only 88 wires. The LED module controller djsplays a 
video image by sequentially scanning, or enabling, each row and displaying the pixel 
values for each column within the video image. Using trus technique, only one row of 
LEDs is illuminated at any given time. However, the LED module scans the rows quickly 
enough that the human eye perceives all rows as being illuminated. 

The LED module must control the LEDs to create the desired color for each pixel. 
Each pixel within a video frame is typically represented using an RGB color space. An 
RGB (red/green/blue) color space is a method to create any color of light by adding spe
cwc intensities, or brightnesses, of red, green, and blue colors. Each pixel within a video 
frame may be represented as three 8-bit binary numbers, where each 8-bit number speci
fies the intensity of the red, green, or blue colors. Thus, for each color, the LED module 
must be able to provide 256 distinct brightness levels. However, an LED by itself only 
supports two values: on and off, or full intensity and no intensity. 

To support 256 brightness levels, the LED module controller uses pulse width modu
lation. In pulse-width modulation (also known as PWM), a controller drives a wire with 
a 1 value for a specific percentage of a time period- the signal being 1 is known as a 
pulse, the duration of the 1 is known as the pulse's width, and the percentage of the 
period spent at 1 is known as the duty cycle. When that pulse drives an LED, a wider 
pulse causes the LED to appear brjghter to the human eye. Figure 7 .46 illustrates how the 
LED module controller uses pulse width modulation to support various brightness levels 
for the LEDs. To illmninate an LED at full brightness, the controller simply drives the 
LED with 1 for the entire period, as shown in Figure 7.46(a). To illuminate the LED at 
half brightness, the controller uses a pulse Vlith a 50% d11ty cycle, as shown in Figure 
7.46(b). For 25% brightness, the controller sets the pulse to 1 for 25% of the period, 
meaning a 25% duty cycle, as shown in Figuse 7.46(c). For an LED video display, the 
LED module controller divides the length of time each row is scanned into 255 time seg
ments, and controls the biightness of the LEDs by turning each LED on for 0 to 255 time 
segments, thereby supporting 256 levels of intensity. 

I 
Period 1 

I 
Period 2 

I 
Period 3 

I 
Period 4 

I 
I I I I I 
' 4 .... 4 ... . -4 ... . 4 .... 
I I I I I 
I I I I I 

(a) J 
I I I 

L I I I 
I I I 
I I I 

I I I I I 
I I I I I 

(b)~ I I I I 
I 

I 
I I I I 

(c)J! h h h 
I I I I 

! : : : 
Figure 7.46 Pulse width modulation can be used to c reate various LED brightness levels: (a) for full 
brightness, the LED is always on, (b) for half brightness, the LED is turned on 50% of the time, and 
(c) for quarter brightness, the LED is turned on 25% of the time. 

Because an LED module controller must provide precisely timed signals at a fast 
rate, custom processors are commonly used rather than jus t microprocessors. FPGAs are 
a conunon choice for implementi:ng those custom processor circuits in LED video dis
plays, for several reasons. First, FPGAs are fast enough to support the required scan rates. 
Second, the circuit on the FPGAs can be easily changed, making it possible for the 



7.8 Exercises 457 

display manufactmer to fix bugs in the circuit, and even upgrade the circuit, without 
requiring the high cost of c reating a new ASIC. Third, the displays themselves are fairly 
large, expensive, and consume much power, and therefore the larger size, higher cost, and 
more power consumption of FPGAs compared to ASlCs do not impact the overall dis
play's size, cost, and power too significantly. 

7.7 CHAPTER SUMMARY 

Section 7. l discussed the idea that circuits must be mapped to a physical implementation 
so that those circuits can be inserted into a real system. Section 7.2 introduced some IC 
types that require that a new chip be fabricated to implement our circuit. A full-custom IC 
type gives the most optimized implementation, but is expensive and time-consuming to 
design. Semicustom IC types g ive very good implementations while costing less and 
taking less time to design, tluough the predesigning of the gates or cells that will be used 
on the IC. Section 7 .3 described the increasingly popular IC type of FPGAs, and showed 
how a c ircuit could be mapped onto a set of programmable lookup tables and switch 
matrices. Section 7.4 highlighted several other lC types, includ ing off-the-shelf SSl/MSI 
!Cs, and programmable logic devices. Section 7.5 provided some data showing the rela
tive popularity of the IC types described in the chapter. 

An interesting trend in physical implementation is tbe trend toward programmable 
ICs (FPGAs in particular). Implementing functionality on an FPGA involves the task of 
downloading a bitstream into the FPGA IC device. One might notice the similarity of that 
task with the task of implementing functionality on a microprocessor, which also involves 
downloading bits into an IC device. Thus, the difference between software on a micropro
cessor and custom digital circuits continues to be blurred-especially when one considers 
that modem FPGAs can also include one or several microprocessors within the same IC. 
For more infonnation on the blurring, see "The Softening of Hardware," F. Vahid, IEEE 
Compwer, April 2003, and also " It 's Time to Stop Calling Circuits Hardware," F. Vahid, 
IEEE Computer, September 2007. 

7.8 EXERCISES 

SECTION 7.2: MANUFACTURED IC TYPES 

7. l Explain why a gate array IC type has a shorter production time than a full -custom IC type. 

7.2 Explain why the use of NAND or NOR gates in a CMOS gate array circuit implementation is 
typically preferred over an AND/OR/NOT implementation of a circuit. 

7.3 Draw a gate array IC having three rows, the first row having four 2-input AND gates, tJ1e 
second row having four 2-input OR gates, and the third row having four NOT gales. Show 
how 10 instantiate wires to the gate array to implement the function F {a , b, c) = abc + 
a'b'c'. 

7.4 Assume that a s tandard cell library has a 2-input AND gate, a 2-input OR gate, and a NOT 
gate. Use a drawing to show how to instantiate and place standard cells on an IC and wire 
them together to implement the function in Exercise 7.3. Draw your cells tJ1e same size as the 
gates in Exercise 7.3, and be sure your rows arc of equal size. 

7.5 Draw a gate array IC having three rows, the first row having four 2-input AND gates, the 
second row having four 2-input OR gates, and the third row having four NOT gates. Show 



458 7 Physical Implementation on ICs 

how to instantiate wires to the gate array to implement the equation F (a, b, c, d) =a' b + 
Cd+ C'. 

7.6 Assume that a standard cell library has a 2-input AND gate, a 2-input OR gate, and a OT 
gate. Use a drawing to show how to instantiate and place standard cells on an TC and wire 
them together to implement the function in Exercise 7.5. Be sure to draw your cells the same 
size as the gates in Exercise 7.5, and be sure your rows are of equal size. 

7.7 Consider the implementations of a half-adder with a gate array in Figure 7.7 and wid1 standard 
cells in Figure 7.5. Assume d1at each gate or cell (including inverters) has a delay of I ns. 
Also assume that every inch of wire (for each inch in your drawing, not on an actual IC) bas 
a delay of 3 ns (wires are relatively slow in the era of tiny fast transistors). Estimate the delay 
of the gate array and the standard cell circuits. 

7.8 For your solutions to Exercise 7.3 and Exercise 7.4, a~sume that each gate and cell has a delay 
of l ns, and that every inch of wire (for each inch in your drawing, not on an actual IC) con-e
sponds to a delay of 3 ns. Estimate d1e delays of the gate array and standard cell circuits. 

7.9 Draw a circuit using A D, OR, and NOT gates for the following equation: F (a, b, c ) 
a 'be + abc' . Place inversion bubbles on that circuit to convert the circuit to: 
(a) NAND gates only, 
(b) NOR gates only. 

7.10 Draw a circuit using AND, OR, and NOT gates for the following equation: F (a. b, c) = abc 
+ a ' + b' + c ' . Place inversion bubbles on that circuit to convert the circuit to: 
(a) NAND gates only, 
(b) NOR gates only. 

7. 11 Draw a circuit using AND, OR, and Nar gates for the following equation: F (a, b, c ) 
(ab+ c) (a' + d ) + c'. Convert the circuit to a circuit using: 

(a) NANO gates only, 
(b) NOR gates only. 

7.12 Draw a circuit using AND, OR, and NOT gates for the following equation: F (w, x, y, z ) = 
(w + x) (y + z) + wy + xz. Convert the circuit to a circuit using: 

(a) NANO gates only, 
(b) NOR gates only. 

7.13 Draw a circui t using AND, OR, and Nar gates for the following equation: F (a, b, c, d ) 
(ab) ( b' + c) + (a 'd + c' ) . Convert the circuit to a circuit using: 

(a) NAND gates only, 
(b) NOR gates only. 

7.14 Show how to convert the following gates into circuits having only 3-input NANO gates: 
(a) A 3-input AND gate. 
(b) A 3-input OR gate. 
(c) A Nar gate. 

7 .15 Assume that a standard cell library consists of 2-input and 3-input NANO gates with a delay 
of I ns each, 2-input and 3-input AND and OR gates witJ1 a delay of 1.8 ns each. and a NOT 
gate with a delay of I ns. Compare the number of transistors and the delay of an implementa
tion using only AND/OR/Naf gates with an implementation using only NAND gates for the 
function: F (a, b, c) =ab' c + a' b. For calculating the size of an implementation, assume 
that each gate input requires two transistors. 

7. J 6 Assume that a standard cell library consists of 2-input AND and OR gates wid1 a delay of l ns 
each, 3-input AND and OR gates with a delay of 1.5 ns each, and a NOT gate wid1 a delay of 
I ns. Compare the number of transistors and the delay of an implementation using only 
2-input AND/OR gates and NOT gates with an implementation using only 3-input AND/OR 



7.8 Exercises 459 

gates and NOT gates for the function: F (a, b, e) = abe + a' b' e + a' b' e'. For cal
culating tJ1e size of an implementation, assume mat each gate input requires two transistors. 

7 . 17 Assume a standard cell library consisting of 2-input NANO and NOR gates with a delay of 
I ns each, and 3-input AND and NOR gates with a delay of 1.5 ns each. Compare the 
number of transistors and the delay of an implementation using only 2-input AND/NOR 
gates with an implementation using only 3-input NANO/NOR gates for the function: 
F (a, b, e) = a' be + ab' e + abe'. For calculating tJ1e size of an implementation, 
assume that each gate input requires two transistors. 

SECTION 7.3: PROGRAMMABLE IC TYPE-FPGA 

7.18 Show how to implement on a 3-input 2-output lookup table the function F (a, b, el =a+ be. 

7.19 Show how to implement on two 3-input 2-output lookup tables the function F (a, b, e, d) = 
ab+ ed. Assume you can connect the lookup tables in a custom manner (i.e., do not use a 
switch matrix, just directly connect your wires). 

7.20 Show how to implement on two 
3-input 2-output lookup tables tJ1c fol 
lowing function: F (a, b, e, d ) = 
a ' bd + b ' ed ' . Assume the two 
lookup tables arc connected in the 
manner shown in Figure 7.47. You 
may not need to use every lookup 
table output. 

7.21 Show how to implement on two 3-
input 2-output lookup tables the fol
lowing functions: F (X, y, z) = x' y 
+ xyz' and G (w, x, y, z ) = w' x' y 
+ w ' xyz ' . Assume tJ1c two lookup 
tables arc cormcclcd in tJ1c manner 
shown in Figure 7.4 7. 

7.22 Show how to implement on two 

8x2 Mem. 8x2 Mem. 

0 0 
1 1 
2 2 
3 ---- 3 ---- a2 4 ~ a2 4 - a1 5 -a1 5 - ao 6 

,_. ao 6 
7 7 

d1 dO d1 dO 
I l-

~ ~ 
Figure 7.47 Two 3-input 2-output lookup tables 
implemented using 8x2 memory. 

3-input 2-output lookup tables the following functions: F (a, b, e, d ) = abe + d and G = a'. 
You must implement both F and G with only two lookup tables connected in the manner 
shown in Figure 7.47. 

7.23 Implement a 2-bit comparator that compares two 2-bit numbers and has three outputs indi
cating greater-than, less-tJ1an, and equal-to, using any number of 3-input 2-output lookup 
tables and custom connections among the lookup tables. 

7.24 Show how to implement a 4-bit can·y-ripplc adder using any number of 3-input 2-input 
lookup tables and custom connections among the lookup tables. Hint: map one full-adder to 
each lookup table. 

7.25 Show how to implement a 4-bit carry-ripple adder using any number of 4-inpul ! -output 
lookup tables and custom connections among the lookup tables. 

7 .26 Show how to implement a comparator that compares two 8-bit numbers and has a s ingle 
equal-to output, using any number of 4-input I-output lookup tables and custom connections 
among the lookup tables. 

7 .27 Show the bit file necessary to program the FPGA fabric in Figure 7 .31 to implement the func
tion F {a, b, e, d) =ab+ cd, where a, b, e, and d arc external inputs. 

7 .28 Show the bit file necessary to program the FPGA fabric in Figure 7 .31 to implement tJ1e func
tion F (a, b, e, d) =abed, where a, b, e, and dare external inputs. 



460 7 Physical Implementation on I Cs 

7.29 Show the bit file necessary to program the FPGA fabric in Figure 7.31 to implement the func
tion F (a. b. c, d) = a ' b' + c 1 d, where a. b, c, and dare external inputs. 

SECTION 7.4: OTHER IC TYPES 

7.30 Use any combination of 7400 ICs listed in Table 7.1 to implement the function F ( a, b. c, d ) 
=ab+ ed. 

7 .31 Use any combination of 7400 I Cs listed in Table 7 .1 to implement the function F ( a, b. c, d) 
= abc + ab' c' + a' bd + a' b' d ' . 

7.32 By dr awing Xs on the circuit, program the PLD of Figure 7.38(a) to implement a full-adder. 

7.33 By drawing Xs on the circuit, program the PLD of Figure 7.38(a) to implement a 2-bit 
equality comparator. Assume the PLO has an additional 1 4 input. 

7.34 *(a)Design a PLD device capable of supporting a 2-bit carry-ripple adder. By drawing Xs on 
your PLD circuit, program the PLD to implement the 2-bit carry-ripple adder. 
(b) Using a CPLD device consisting of several PLDs from Figure 7.38(a) and assuming you 

can connect the PLDs in a custom manner, implement the 2-bit carry-ripple adder by 
drawing Xs on the PLDs. 

(c) Compare the size of your PLD and the CPLD by determining the gates required for both 
designs (make sure you compare the number of gates within the PLD and CPLD and not 
the munber of gates used for your implementation). 

SECTION 7.5: IC TYPE COMPARISONS 

7.35 For each of the system constraints below, choose the most appropriate technology from 
among FPGA, standard cell, and full-custom IC types for implementing a given circuit. 
Justify your answers. 
(a) The system must exist as a physical prototype by next week. 
(b) The system should be a-; small and low-power as possible. Short design time and low cost 

are 1101 priorities. 
(c) The system should be reprogrammable even after the final product has been produced. 
(d) The system should be as fas1 as possible and should conswue as little power as possible, 

subject to being completely implemented in just a few months. 
(e) Only five copies of the system will be produced and we have no more than $1000 to spend 

on all the ICs. 

7.36 Which of the following implementations are not possible? (1) A custom processor on an 
FPGA. (2) A custom processor on an ASIC. (3) A custom p rocessor on a full-custom IC. (4) 
A programmable processor on an FPGA. (5) A programmable processor on an ASIC. (6) A 
progranuuable processor on a full-custom IC. For each, explain your answer. 



8 
Programmable Processors 

8.1 INTRODUCTION 

Seat belt 
warning light 

single-purpose 
processor 

Digital circuits designed to perform a single processing task, such as a seat belt warning 
light, a pacemaker, or an FIR filter, form a common class of digital circuits. A circuit per
fonning a single processing task is a single-purpose processor. Single-purpose 
processors represent a class of digital circui ts enabling tremendously fast or power-effi
cient computation. However, another class of digital ci rcuits, known as programmable 
processors, is also popular. Programmable processors are largely responsible for the com
puting revolution that has taken place in the past several decades, leading to wbat many 
call the infonnation age. A programmable processor, also known as a general-purpose 
processor, is a digital circuit whose particular processing task is stored in a memory 
rather than being built into the circuit itself. The representation of that processing task in 
the memory is known as a program . Figure 8. 1 illustrates single-purpose versus general
purpose processors. A designer could create a custom digital circuit for a seat belt 
warning light system (Chapter 2) or an FIR filter system (Chapter 5), or instead could 
program a general-purpose processor circuit to implement those systems. 

3-lap FIR filler 
single-purpose processor 

Seat belt 3-tap FIR filter 
warning light program 

program 

Controller 

Control unit 
~ 

·~ Datapath 

Other 
programs 

Figure 8.1 Single-puipose versus general-puipose processors . General-purpose processor 

461 



462 8 Programmable Processors 

Some programmable processors, like the well-known Intel Pentium processor or 
Sun's Spare processor, are intended for use in desktop computers. Other programmable 
processors, like ARM, MIPS, 805 l, and PIC processors, which are widely known in the 
design community but Jess known by the general public, are intended for embedded com
puring systems like cellular telephones, automobiles, video games, or even tennis shoes 
with blinking lights. Some programmable processors, like the PowerPC, are intended for 
both desktop and embedded domains. 

A benefit of a programmable processor is chat its circuit can be mass-produced and 
then programmed to do almost anything. Thus, a particular programmable desktop pro
cessor can nm Windows 7, Windows XP, Linux, or some new operating system. That 
same processor can run application programs like word processors, spreadsheets, video 
games, and web browsers. Likewise, a particular programmable embedded processor can 
be used in a cell phone, automobile, video game, or tennis shoe by programming the pro
cessor for the desired processing task. Mass-production results in low costs due to 
amortization of design costs (see "Why such cheap calculators?" in Chapter 4 for a dis
cussion of amortization). 

Of course, because programmable processors are mass-produced and then used for a 
wide variety of applications, there aren't as many unique programmable processor 
designs as there are single-purpose processor designs. There are also far fewer program
mable processor designers than there are single-purpose processor designers. 
Nevertheless, even though you may never desjgn a programmable processor as part of a 
job, it is interesting and enlightening to understand how such a programmable processor 
works. Some people argue that designers who understand how a processor works are 
better software programmers. And technology trends have led to the situation of 
designers being able to create semicustom processors ("application-specific" processors) 
that have just the right architectw·e for one or a small number of applications, making 
knowledge of programmable processor designs important. Finally, there are indeed 
people who do design programmable processor architectures. 

This chapter shows how to design a simple programmable processor using the previ
ously-described digital design methods. The purpose is mainly to demystify these devices 
and to provide an insight on how programmable processors work. Real mass-produced pro
cessors are designed using different methods, and their designs can be much more complex 
than the design described in this chapter- learning about those processors' designs is the 
subject of many textbooks on computer architecture. 

8.2 BASIC ARCHITECTURE 

Basic Datapath 

A programmable processor consists of two main parts: a datapath and a control unit. This 
section provides a general introduction to those two parts, and then a later section pro
vides a more detailed look at those parts. 

Processing generally consists of transforming input data into output data. For example, a 
seat belt warning system reads bit data from sensors representing whether a seat belt is 
fastened and whether a person is sitting in a seat, u-ansforms that data by computing a 
new bit indicating whether to tum on a warning light, and writes that new data to a 



8.2 Basic Architecture 463 

warning light. An FIR filter reads data representing the most recent set of input signal 
samples, transfonus that data by performing multiplies and adds, and writes new data to 
an output representing the filtered signal. The transformations take place inside a pro
cessor's datapath, which consists of several parts. 

A data memory contains the progranunable pro
cessor's input and output data. Components external 
to the prncessor, such as sensors or ilisplays, may also 
access that memory to write or read that data, perhaps 
through a second memory port (not shown). For 
example, an FIR filter system may have a component 
that writes digitized signal values to a particular word 
in the data memory, which the processor can read. To 
process that data, a programmable processor needs to 
be able to load data from the data memory into one of 
several registers (typically a register file) within the 
processor, needs to be able to feed data from some 
subset of registers through functional units that can 
perform transformation operations (typically an 
ALU) with results stored back into a register, and 
needs to be able to store data from a register back into 
data memory. Therefore, a progranunable processor 
needs the basic circuit shown in Figure 8.2, having a 
data memory, register file, and ALU, cogether com
prising a datapath. The basic datapath shown in 
Figure 8.2 can perform the following possible data-
path op erations in a given clock cycle: 

Contains input! 
~-----~ output 

n-bit 
2x 1 

ALU 

data from/to 
other 

---. components 

Figure 8.2 Basic datapath of a 
programmable processor. 

• Load operation: This operation loads (reads) data from any location in the data 
memory into any register in the register file. A load operation is illustrated in 
Figure 8.3(a). 

• ALU operation: This operation transfonus register data by passing any two regis
ters through the ALU configured for any of the ALU 's supported operations, and 
back into any register of the register file. An ALU operation is illustrated in 
Figme 8.3(b). Typical ALU operations include addition, subtraction, logical 
AND, logical OR, etc. 

• Store operation: This operation stores (writes) data from any register in the register 
file to any data memory location. A store operation is i11ustrated in Figure 8.3(c). 

Each such operation requires the appropriate setting of the control inputs of the data 
memory, mux, register file, and ALU- those control inputs will be shown sh01tly. For 
now, just fruniliarize yourself with the basic datapath's abilities. Notice that the datapath 
in Figure 8.2 cannot directly operate on data memory locations with the ALU in one 
clock cycle, because the data must fast be read into the register file, which itself requires 
a clock cycle, before the data can be operated on by the ALU. A datapath that requires all 



464 8 Programmable Processors 

Data memory D 

n-bit 
: 2x1 . 

Register file RF 

ALU 

(a) 

T 
Regi~ter tile RF 

ALU . 
(b) 

n-bit 
2x1 

Register file RF 

ALU 

(c ) 

Figure 8.3 Basic datapat11 operations: (a) load (read), (b) ALU operation (transform), and 
(c) store (write). 

data to first pass through the register file before that data can be transformed by the ALU 
is known as a load-store architecture. 

Example 8.1 Understanding datapath operations 
Which of the following arc valid single-clock-cycle datapath operations for the datapath of Figure 
8.2? 

1. Copy data from a data memory location into a register file location. 

2. Read data from two data memory locations imo two register file locations. 

3. Add data from two data memory locations and store the result in a register file location. 

4. Copy data from one register file location to another register file location. 

5. Subtract data in a register file location from a data memory location, storing the result in a 
register file location. 

( 1) is a valid operation, known as a load operation. (2) is not a valid operation. The datapath 
does not support reading more than one data memory location during a datapath operation, and it 
does not support writing to more than one register file location during an operation. (3) is not a 
valid operation. The datapad1 does not support reading two data memory locations during one oper
ation, and furthermore does not have connections directly from the data memory to the ALU to 
perform the add. (4) is a valid operation. The ALU can be configured to simply pass one of its 
inputs dlfougb to the output (perhaps by adding 0) and storing the result in tl1e register file . (5) is 
not a valid operation. A read data memory location cannot be fed directly to the ALU- there is no 
such connection in the datapath. Values read from data memory must be loaded into the register file 
first. 

• 



8.2 Basic Architecture 465 

Basic Control Unit 
Suppose the basic datapath of Figure 8.2 should perfonn the simple processing task of 
adding data memoty location 0 and data memory location 1 together, and writing the result 
in data memory location 9- in other words, computing D[9] = D[O] + D[l]. This processing 
task can be achieved by "instructing" the datapath to perfonn the following operations: 

• load datapath memory location 0 to register RF[O] (i.e., RF[O] = D[O]), 

• load datapath memory location l to register RF[ l ] (i.e., RF[ ! ]= D[l]), 

• perfonn an ALU operation that adds RF[O] and RF[ 1] and writes the result back 
into RF[2] (i.e., RF[2] = RF[O] + RF[l]), and 

• store RF[2] into data memory location 9 (i.e., D[9} = RF[2}). 

Note that any registers in the register file could be used rather than RF[O], RF[ l], and 
RF[2]. 

If D[O] contained the value 99 (in binary, of course), and D[l] contained the value 
102, then after carrying out the above operations, D[9] would contain 201. 

You might think that having to instruct the datapath to perfonn four distinct opera
tions is a rather cumbersome way of adding two data items. A custom digital circuit to 
implement D[9] = D[O] + D[l ] could just feed D[O] and D[l] through an adder whose 
output connects to D[9 } , thus avoiding the four operations involving the register file and 
ALU. This simple example demonstrates the basic tradeoff of single-purpose versus pro
grammable processors- programmable processors have the drawback of computation 
overhead because they have to be general, but they provide the benefits of a mass
produced processor that can be programmed to do almost anything. 

A method is needed to describe 
the sequence of operations- RF[O] = 
D[O], then RF[l]=D[l] , then RF[2] = 
RF[O] + RF[l], then D[9] = 
RF[2]-that should execute on the 
datapath. Such a description of 
desired processor operations uses 
i11stntctio11s, and a collection of 
instructions is known as a program. 
The desired program is stored in 
another memory called the instruc
tion m emory. A later section 
describes how to represent those 
instructions. For now, assume that the 
four instnictions are somehow stored 
in locations 0, I, 2, and 3 of the 
instruction memory I shown in 
Figure 8.4. 

Instruction memory I 

O; RF[O]=D[O] 
1: RF[1 ]=0[1] 
2; RF[2]=RF[O]+RF[1] 
3: D(9]=RF(2] 

1 

PC I~ 
Controller 

> 
Control unit 

:6 
'll 
Q. 

!1i 
'll 
l:3 
Q) 

~ -g 
c:: 
0 -
c 
.!Q 
'll c:: 

.12> 
CJ) 

Data memory D 

n-bit 
2x 1 

Register file RF 

ALU 

Datapath 

figure 8.4 The control unit in a programmable processor. 



466 8 Programmable Processors 

The processor's control unit reads each instruction from instruction memory, and exe
cutes that instruction using the datapath. To execute the above simple program, the conh·ol 
unit repeatedly performs the following tasks, known as stages, each stage requiring one 
clock cycle. 

1. Fetch: The control unit starts by reading ("fetching") the cutTent instruction into a 
local register called the instruction register or IR. The current instruction's 
address in the instruction memory is kept in a register called the program coullter 
or PC. The first instruction fetched for the above example will be RF[O] = D[O], 
which will be placed into the IR. 

2. Decode: The control unit then determines ("decodes") what operation this instmc
tion is requesting. For the above example, the decode stage will determine that the 
instruction in the IR is requesting a datapath load operation. 

3. Execute: The control unit carries out ("executes") the instruction 's requested data
path operation by setting the datapath's control lines appropriately. For the above 
example's first instruction RF[O] = D[O]. the control unit would set the control 
lines of the datapath to read D[O], set the 2xl mux in front of the register file to 
pass the read data, and set the register file to store that data into RF[O]. 

Thus, the basic stages that the control mlit carries out for the first instruction are: fetch, 
decode, and execwe, requiring three clock cycles to complete just that first instruction. 

Because the instruction locations are us1ially in sequence, the PC can be imple
mented using a simple up-counter to proceed from one instruction to the next instruction 
of the program- hence the name "program counter." The processor starts with PC= 0, so 
the instruction in /[0] represents the first instruction of the program. 

Figure 8.5 illustrates the three stages of executing the program's first instruction, 
namely RF[O] = D[O]. Figure 8.5(a) shows the first stage fetching J[O)'s content, which is 
the instruction RF[O] = D[O], into the IR. Figure 8.5(b) shows the second stage decoding 
the instruction and tbus detennining that the instrnction is a load instruction. Figure 
8.5(c) shows the third stage executing the ins truction by configuring the datapath to read 
the value of D[O] and storing that value into RF[O]. If D[O] contained 99, then RF[O] wilt 
contain 99 after completion of the execute stage. The first instmction thus required three 
clock cycles to complete. 

The control unit then fetches the next instruction, which is in l [ l ], decodes that 
instruction, and executes that instmction. Thus after three more clock c ycles, the instmc
tion RF[ l] = D[l] completes. The control unit then fetches the next instruction, which is 
in /[2], decodes that instruction, and executes that instruction. So after three more clock 
cycles, the instruction RF[2] = RF[O] + RF[l] completes. Finally, the control unit fetches 
the next instruction, which is in 1(3], decodes that instruction, and executes that instn.ic
tion. So after another three clock cycles, the instruction D[9] = RF[2] completes. The four 
instructions thus require 4*3 = 12 clock cycles to run to completion on the progranunable 
processor. 



8.2 Basic Architecture 467 

------------------------------------------------, 
Instruction memory I 

0; R FT Ql.~ffl'-o .... 

I 
I 
I 

,----------------------i-------------------------~ 
1: R 1]=0[1] : Instruction memory I : 

I I 

2; R {2]=RF[O]+R [1] 
3: 9]=RF[2] 

! O: RF[O]=D[O] , ______________________ :._ _________________________ _ 

: 1: RF[1]=D(1] : Instruction memory I 

Controller 

: 2: RF[2]=RF[O]+RF[1] I Q; RF[O]=D[O] 
! 3; D(9]=RF[2] 1: RF[1]= 0[1 ] 
l '---7"""'-- --,---' 
: 2: RF[2]: Rf[O]+RF[1] 
l 3: D[9]=RF[2] 
I 
I 

IR 
F[O]=D[O] 

C troller 

I 
I 
I 
I 
I 

~--+~>+-~~~~ · 

Register fi le RF 
AF[O): ?? 99 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Control unit " load" ! 
-------------------------, Controller .!!l , 

(a) : (ll I 

L_~-~~t~~~~~~t ______________ _, .~ ALU ! 
(b) I I 

I I 

: Control unit Datapath ' 
I : l-------------------------------------------------

(c) 

Figure 8.5 Three stages of processing one instruction: (a) fetch, (b) decode, (c) execute. 

The control urnt will require a controller, 
like those described in Chapter 3. After initial
izing the PC to 0, the controller repeateclly 
performs the fetch, decode, and execute 
steps- note that a controller appears inside 
the control unit in Figure 8.4. Figure 8.6 
shows an FSM for that controller. The con
troller increments the program counter after 
fetchi ng each instruction in state Fetch, so that 
the next fetch state will fetch the next instruc
tion (notice that PC gets incremented at the 
end of the fetch stage in Figure 8.5(a)). We 'll 
describe the actions of the Decode and 
Execwe states later. 

~fl,;' ___ _ 
~ Fetch IR=I[PC] 

PC=O PC=PC+ 1 

Controller 

Figure 8.6 Basic controller states. 

Thus, the basic parts of the control unit include the program counter PC, the instruc
tion register JR, and a controller, as illusu-ated in Figure 8.4. In previous chapters, the 
nonprogrammable processors consisted only of a controller and a datapath. Notice that 
the programmable processor instead contains a control unit, which itself consists of some 
registers and a controller. 



468 8 Programmable Processors 

To summarize, the con trol unit processes each instruction i n three stages: 

1. Fetching the instruction by loading the current i nstruction into IR and mcre
menting the PC for the next fetch, then 

2. Decoding the instruction to determine its operation, and final ly 

3. Execwing the operation by setting the appropriate control lines for the datapath, if 
applicable. If the operation is a datapath operation, the operation may be one of 
three possible types: 

(a)loading a data memory location into a register file location, 

(b )transforming data using an ALU operation on register file locations and writing 
results back to a register file location, or 

(c)storing a register file location into a data memory location. 

Example 8.2 Creating a simple sequence of instructions 
Create a set of instructions for the processor in Figure 8.4 to compute D[3] "" D[O] + D[ I]+ D[2]. 
Each instruction must represent a valid single-clock-cycle datapatb operation. 

We might start with three operations that read d1e data memory locations into register file 
locations: 

0. RF[3] = D[O] 

1. RF[4] "" D[l] 

2. RF[2] = D[2] 

Note that we intentionally chose arbitrary register locations, to make clear that any available rcgis· 
ters can be used. 

Next, the three values need to be added and the result stored in a register file location, such as 
in RF[l]. [n other words, the following operation should be perfom1ed: R[l] = R[2] + R(3] + R[4]. 
However, the datapath of Figure 8.4 cairnot add three register file locations in a single operation, 
but railier can only add two locations. Instead, ilie desired addition computation can split into two 
datapath operations: 

3. R[l] = R[2] + R[3] 

4. R[l] = R[l] + R[4] 

Finally, ilie result can be written into D[3] : 

5.D[3] = R[I] 

Thus, the program consists of the six jnstructions appearing above, which would appear in instruc
tion memory locations 0 through 5. 

• 
Example 8.3 Eva luating the time to carry out a program 

Determine the number of clock cycles required for ilie processor of Figure 8.4 to execute the six
instruction program of Figure 8.2. 

The processor requires 3 cycles to process each instruction: I cycle to fetch the instruction, 1 
to decode the fetched instruction, and 1 to execute ilie instruction. At 3 cycles per instruction, the 
total cycles for 6 instructions is: 6 instr "' 3 cycles/instr= 18 cycles. 

• 



8.3 A Three-Instruction Programmable Processor 469 

8.3 A THREE-INSTRUCTION PROGRAMMABLE PROCESSOR 

A First Instruction Set with Three Instructions 

The way instructions are represented in the instruction memory, and the list of allow
able instructions, are known as a programmable processor's instruction set. 
Instruction sets typically reserve a certain number of bits in the instruction to denote 
what operation to perform. The remaining bits specify additional information needed 
to perform the operation, such as the addresses of the registers that are involved in the 
operation. This section defines a simple instruction set having just three instructions, 
each instrnction being 16 bits wide (with 1he processor's instruction memory I being 
16 bits wide). The most significant (meaning leftmost) 4 bits identify the operation, 
and the least significant 12 bits identify tbe register file and data memory addresses, 
as follows: 

• Load instruction-0000 r 3r 2r 1r 0 d 7d 6d5d4d3 d2d 1d0 : This insm1ction specifies 
a move of data from the data memory location whose address is specified by 
the bits d7d6d5d4d3d2d 1d0 into the register-file register whose location is speci
fied by the bits r3r2r1r0. For example, the instruction "oooo 0001 00000000" 

specifies a move of data memory location 0, or D[O], into register file location 
l, or RF[l]-in other words , that instruction represents the operation RF[l] = 
D[O]. Likewise, "oooo 0011 00101010" specifi es RF[3J = D[42]. We've 
inserted spaces between some bits for ease of reading by you the 
reader- those spaces have no other significance and would not exist in the 
instruction memory. 

• Store instruction-0001 r3r2r 1r 0 d7d6d 5d4d3d2d 1d 0: This instruction specifies 
a move of data in the opposite direction as the instruction above, meaning a 
move from the register file to the data memory. So " 0001 0000 00001001" 

specifies D[9 J=RF[O]. 

• Add instruction-0010 ra3ra2ra1ra0 rb3rb2rb1 rh0 rc3rc2rc1rc0 : T his instruc
tion specifies an addition of two register-file registers specified by rb3rb2rb 1rb0 

and rc3rc2rc1rc0, with the result stored in the register-file register spec ified by 
ra3ra2ra 1rao. For example, "0010 0010 0000 0001" specifies the ins truction 
RF[2] = RF{O] + RF(l] _ Note that add is an AL U operation. 

None of these instructions modifies the contents of the instructions' source oper
ands. In other words, the load instruction copies the contents of the data memory 
location to the specified register, but leaves the data memory location itself 
unchanged. Likewise, the store instruction copies the specified register to data 
memory, but leaves the register's contents unchanged. The add instruction reads its rb 
and re registers without changing them. Note also that the instruction merely contains 
the addresses of registers (or memory); the registers themselves are in the register file. 

Using this instrnction set, the desired computation D[9] = D[O] + D[ I] can be written 
as the program shown in Figure 8. 7. 



470 8 Programmable Processors 

Notice that the first four 
bi ts of each instruction are a 
binary code that indicates the 
instruction 's operation. Those 
bits are known as the instruc
tion's operation code or 
opcode. "oooo" means a 
move from data memory to 
register file, "o o o 1" means a 
move from register file to 
data memory, and "0010" 

means an add of two regis
ters, based on the instruction 
set defined in the bulleted list 
above. The remaining bits of 
the instmction represent oper
a11ds , which indicate what 
data to operate on. 

The above-defined three
instruction instruction set can 
be used to write programs to 
perform other computations, 
such as D[S] = D(SJ + D[6] + 
D [7]. Such a program is 
shown in Figure 8.8. The 
number before the colon rep
resents the instruction's 

Desired program 
0: RF[O)=D[OJ 
1: RF[1 )=D[1 ) 
2: RF[2)=RF[O]+RF[1 J 
3: 0 (9]=RF[2} 

t 
Instruction memory I 

O: 0000 0000 00000000 
1: 0000 0001 00000001 
2: 0010 0010 0000 0001 
3 : 0001001000001001 

PC 

~ 
Controller 

Control unit 

~ 
!tl 

~ 
~ 
OJ 
£ 
'E 
c: 
0 

Computes 
0 (9)= 0 (0)+ 0(1] 

Data memory D 

Datapath 

n·bit 
2x 1 

ALU 

Figure 8.7 A program that computes D[9] = D[O] + D[l] 
us ing a given instruction set . The spaces between the 
instruction memory's bits arc for readability only- those 
spaces don't exist in the memory. 

address in the instruction memory I. The text following the two forward slashes (//) rep
resents a comment, and is not part of an instruction. Examining the program instrnction 
by instruction reveals that the program computes the desired result. 

Machine Code versus Assembly Code 
The instrnctions of a program exist in 
instruction memory as Os and 1 s. A 
program represented as Os and ls is 
known as machine code. Wtiting and 
reading programs represented as Os and 
l s are tasks that humans are not particu
larly good at. We humans can't 
understand those Os and 1s easily, and 
thus will make plenty of mistakes when 
writing s uch programs. Thus, early 
computer programmers developed a tool 
known as an as11emb[er (which itself is 
just another program) to help humans 
write programs. An assembler allows us 

O; 0000 0000 00000101 II RF[O) = 0 (5) 

1: 0000 0001 00000110 II RF[1] = 0 (6) 

2 : 0000 001 o 00000111 II RF"[2) = D(?] 

3: 0010 0000 0000 0001 II RF(o] = RF[o] + RF[l] 

II which is 0 (5]+0[6] 

4: 0010 0000 0000 0010 II RFlOJ = RF(O] + RF(2) 

II now 0(5)+0 [6)+0(7) 

5: 0001 0000 00000101 II 0 [5] = RF(O] 

figure 8.8 A program to compute 
D[5]=D[5]+D[6]+D[7] using the three-instruction 

instruction set. 



8.3 A Three-Instruction Programmable Processor 471 

to write instructions using mnemonics , or symbols, that the assembler automatically 
translates to machine code. Thus, an assembler may support the three-instmction instruc
tion set using the following mnemonics: 

• Load instruction-MOY Ra, d: Specifies the operation RF[a] = D[d]. a must be 
0, 1, ... , or 15- so RO means RF[O], RI means RF[l], etc. d must be 0, 1, .. ., 255. 

• Stor e instrnction- MOV d, Ra: Spedfies the operation D[d] = RF[a]. 

• Add instruction- ADD Ra, Rb, Re: Specifies the operation RF[a] = RF[b] 
+RF[c]. 

Using those mnemonics, the program in Figure 8.7 for D[9] = D[O] + D[J ] could be 
rewritten as follows: 

0: MOY RO, O 

J:MOVRl , 1 

2: ADD R2, RO, R 1 

3: MOY 9, R2 

That program js much easier to understand than the Os and ls in Figme 8.7. A 
program written using mnemonics that will be translated to machine code by an assem
bler is known as assembly code. Hardly anybody writes machine code directly these days. 
An assembler would automatically translate the above assembly program to the machine 
code shown in Figure 8.7. 

You might be wondering how the assembler can distinguish between the load and 
store insttuctions above, wben the mnemonics for both instmctions are the 
same- "MOV." The assembler distinguishes those two types of instructions by examining 
the first character after the mnemonic "MOV"- if the first character is an "R," then that 
operillld is a register, illld thus that instrnction must be a load instruction. 

Control Unit and Datapath for the Three-Instruction Processor 

From the definition of the three-instrnction instruction set and an understanding of the 
basic control unit and datapath architecture of a programmable processor as shown in 
Figure 8.4, a complete digital circwt for a three-instrnction programmable processor can 
be designed. The design process is similar to the RTL design process of Chapter 5 . 

..,_ COMPUTERS WITH BLINKING LIGHTS. 

Big computers shown in the movies often have many 
rows of small blinking lights. ln the early days of 
computing, computer programmers programmed using 

machine code, and they entered that code into the 

instruction memory by flipping switches up and down 

to represent Os and ls. To enable debugging of the 

program, as weU as to show the computed data. those 
early computers used rows of lights- on lights meant 

ls, off lights meant Os. Today, nobody in their right 
mind would try writing or debugging a program by 
using machine code. So computers today look like big 

boxes- with no rows of lights. But big plain boxes 
don' t make for interesting backgrow1ds in movies, so 

movie makers continue to use movie props with lots of 

blinking lights to represent computers- lights that arc 

useless. but entertaining. 



472 8 Programmable Processors 

The process begins with a 
high-level state machine 
description of the system, 
shown in Figure 8.9. Assume 
that op is shorthand for 
/R[lS .. 12], meaning the left
most four bits of the instruction 
register. Likewise, ra means 
/R[l 1..8], rb means /R[7 .. 4], re 

means /R[3 .. 0] , and d means 
/R[7 . .Q]. 

The next step in the RTL 
design process is to create the 
datapath. The datapath was 
already created in Figtu·e 8.4, 
which is refined in Figure 8.10 
to show every control signal 
from the controller. The refined 
datapath has control signals for 

Load Store 

RF[ra]:=D[d) D[d]:=RF[ra] 

IR:=l[PC] 
PC:=PC+1 

Add 

RF(ra] := 

RF(rb]+ 

RF[rc] 
Figure 8.9 High-level state machine description of a three
instruction programmable processor. 

each read and write port of the register file. The register file has 16 registers because the 
instructions have only 4 bits with which to address registers. The datapath has a control 
signal to the ALU called a l u_sO- assume that the simple AL U adds its inputs when 

alu_so = 1, and just passes input A when alu_so = o. The datapatl1 has a select line 
for the 2x 1 mux in front of the register file's write data port. Finally, control signals are 

_... #BOOTING" A COMPUTER. 

Turning on a personal computer causes the operating 
system to load, a process lrnown as "booting" the 
computer. The computer executes instmctions 
beginning at address 0, which usually has an 
instruction that jwnps to a built-in small program that 
loads d1e operating system (the small program is often 
called the basic input/output system, or BIOS). Most 
computing dictionaries state that the tenn "to boot" 
originates from me popular expression "to pull oneself 
up by one's bootstraps:' which means to pick yourself 
up without any help, though obviously you can't do 
this by grabbing onto your own bootstraps and 
pulling- hence the cleverness of the expression. Since 
the computer loads its own operating system, the 
computer is ju a sense picking itself up without any 
help. The term "bootstrap" eventually got shortened to 
''boot." A colleague of ruine who has been arotmd 

computing a long time claims a different origin. One 
way of loading a program into me instruction memory 
of early computers was to create a ribbon with rows of 
holes. Each row might have enough room for, say, 16 
holes, mus each row would represent a 16-bit machine 
instruction- a hole meant a 0, no hole a 1 (or vice 
versa). A programmer would punch holes in me ribbon 
to store the program on die 1ibbon (using a spe.cial 
hole-punching machine), and men feed me ribbon into 
a computer"s ribbon reader, which would read the rows 
of Os and ls and load those Os and ls into the 
computer's instruction memory. Those ribbons might 
have been several feet Jong, and looked a lot like the 
straps of a boot, hence the !em1 "bootstrap," shortened 
to "boot.'" Whichever is the actual origin, we can be 
fairly sure the term "boot" comes from the bootstraps 
on the boots we wear on our feet. 



8.3 A Three-Instruction Programmable Processor 473 

D_addr8 
addr rd data addr D 

D_rd 
rd 16 D_wr 256x16 
wr 

IR W_data R_data 

id 
16 

16 u 
"Q 

~ :1 1 0 
s 16-bit 

2x 1 
16 

RF_W_addr 4 W_data 

RF_W_wr 
w_addr 

RF_Rp_addr 4 
W_wr 

Controller RF_R rd 
Rp_addr 

16x16 - Rp_rd 
RF_Rq_addr 4 

Rq_addr 
RF 

RF_R rd - Rq_rd 

16 Rp_data Rq_data 

16 16 

so 

Control unit Datapath 16 

Figure 8.10 Refined datapath and control unit for the three-instruction processor. 

included for the data memory, which has a single address port, and can thus support only 
a read or a write, but not both simultaneously. The data memory has 256 words, since the 
instruction only has 8 bits with which to address the data memory. 

The datapath is now able to carry out all of the load/store operations and arithmetic 
operations needed for the HLSM from Figure 8.9. The RTL design process proceeds by 
connecting the datapath with a controller. Figure 8.10 shows those connections, as well as 
the c01mections of the controller to the PC and JR registers in the control unit, and to the 
instruction memory /. 

The last step of the RTL design process is to derive the controller's FSM. The FSM is 
straightforwardly achieved by replacing the high-level actions of the HL SM in Figure 8.9 by 
Boolean operations on the controller's input and output lines, as shown in Figure 8.11. 
Remember that op, d, ra, rb, and re are shorthand notations for /R[l5 ... 12], 
/R[7 ... 0], /R[ll...8], IR[7 ... 4], and IR[3 ... 0], respectively. The controller's design could be 
completed by converting the FSM to a state register and combinational logic using the 
methods from Chapter 3. 

The resulting design represents a simple but complete programmable processor. 



474 8 Programmable Processors 

Figure 8.11 FSM for the 
three-instruction processor's 
controller. 

PC_ clr=1 

Fetch IR. l [PC] PC. PC+ 1 
---..-~--' l_rd=1 PC_inc= 1 

IR_ld=1 

~ Op=OOOO op=0001 Op=0010 

• Load Store Add 

RF[1a]. D[dj 
D_addr=d 
D_rd= 1 
RF _s=1 
RF _W_addr=ra 
RF_W_wr=1 

O[dj. RF[1a] 
D_addr=d 
D_wr=1 
RF_s=X 
RF _Rp_addr=ra 
RF _Rp_rd=1 

RF[1a) .- R F[1bj+ 

RF[1c] 
RF _Rp_addr=rb 
RF _Rp_rd= 1 
RF_s=O 
RF _Rq_addr=rc 
RF _Rq _rd=1 
RF _W_addr=ra 
RF_W_wr= 1 
alu_s0=1 

Let's trace through the controller's FSM behavior to see how a program would 

execute on the three-instruction processor. Remember the FSM conventions that all tran
sitions are implicitly ANDed with a rising clock edge, and that any control signal not 
explicitly assigned a value in a state is implicitly assigned a o. 

• The FSM initially starts in state /nit, which sets PC_ clr = 1, causing the PC reg
ister to be cleared to 0. 

• The FSM on tl1e next clock cycle enters the Fetch state, in which the FSM reads 
tlle instruction memory I at address 0 (because PC is 0) and loads the read value 
into IR- that read value wlll be the instntction that was in IIO]. At the same time, 
the FSM increments the PC's value. 

• The FSM on the next clock cycle enters the Decode state, whlch has no actions 
but which branches on the next clock cycle to one of three states, Load, Store , or 
Add, depending on the values of the highest fow· bits of the IR register (i.e. , 

depending on the current instmction's opcode). 

• In the Load state, the FSM sets the data memory address lines to the low eight bits 
of the IR and sets the data memory read enable to 1, sets the 2x 1 mux 's select line 
to pass the data memory output to the register file, and sets the register file write 
address to ra (whlch is /R[l 1 .. . 8]) and the write enable to 1, catLsing whatever gets 
read from the data memory to be loaded into the appropriate register in the reg
ister file. 

• Likewise, the Store and Add states set the control lines as needed for the store and 

add operations. 

• Finally, the FSM returns to the Fetch state, and begins fetchlng the next 
instruction. 



8.4 A Six-Instruction Programmable Processor 475 

Notice that because the Store state does not write to the register file, then the value of 
the register file's mux select lines don't matter, so that state assigns RF_ s = X in that 
state, meaning the signal's value does not matter. Using such don' t care values (see 
Section 6.2) can help to minimize the logic in the controller. 

You may wonder why the Decode state is necessary when that state contains no 
actions-couldn't Decade's transitions instead originate from state Ferch? Recall from 
Section 5.2 that register updates listed in a state do not actually occur until the next clock 
edge, meaning that transitions originating from a state use the previous register values. 
Thus, we could not have originated Decade's transitions from the Fetch state, because 
those transitions would have been using the old opcode in the instrnction register IR, not 
the new value read during the Fetch state. 

8.4 A SIX-INSTRUCTION PROGRAMMABLE PROCESSOR 

Extending the Instruction Set 

Clearly. having only a three-instrnction instruction set limits the behavior of the pro
grams. The only thing instructions can do is add numbers. A typical programmable 
processor may have 100 or more instructions to support a wider variety of programs. This 
section introduces three new instructions to illustrate how the programmable processor's 
instruction set can be expanded with more instmctions. 

The first new instruction can load a constant value into a register-file register. For 
example, consider wanting to compute RF[O] = RF[1] + 5. The S is a constant. A con
stant is a value that is part of a program, not a value to be found in data memory. An 
instruction is thus needed that can load a constant into a register, e.g., to support an 
instruction like RF[2] = 5. A new instruction can be introduced with the following 
machine and assembly code rep1·esentations: 

• Load-constant instruction-0011 r 3r2r 1r0 c7c&C5c4c3c2c1c0: specifies that the 
binary number represented by the bits c7c6c5c4c3c2c 1c0 should be loaded into the 
register specified by r3r2r 1r0 . The binary number being loaded is known as a con
.Hant. For example, "0011 0010 00000101" specifies the instruction RF[2] = 5. 
The mnemonic for this instruction is: 

MOV Ra, #c- specifies the operation RF[a] = c 

a can be 0, l , ... ,or 15. Assuming two's complement representation (see Section 4.6), c 
can be - 128, - 127, . .. , 0, ... , 126, 127 . The"#" is a special symbol that enables the assem
bler to distinguish this instruction from a regular load instruction. 

Another new instruction performs subtraction of two registers, similar to addition of 
two registers, having the following machine and assembly code representations: 

• Subtract iastruction-0100 ra3ra2ra1ra0 rb3rb2rb 1rb0 rc3rc2rc1reo: specifies 
subtraction of two register-file registers specified by rb3rb2rb 1rb0 and rc3rc2rc1rc0 , 

with the result stored in the register-file register specified by ra3ra1ra 1 ra0. For 
example, ''0100 C>OlO OC>OO 0001" specifies the instruction 
RF[2] = RF[O] - RF[l]. The mnemonic for this instmction is 

SUB Ra, Rb, Re- specifies the operation RF[a] = RF[b] - RF[c] 



476 8 Programmable Processors 

A third new instruction allows the program to jump to other parts of a program: 

• Jump-if -zero instruction-0101 ra3ra2ra1ra0 o7o<>'°5o4o3o2o 1o0 : specifies that if 
the contents of the register specified by ra3ra2ra1ra0 are 0, the PC should be loaded 
with the curre11t value of PC plus o7o6o5o4o3o2o1o0 , which is an 8-bit number in 
two's complement form representing a positive 01· negative offset amount. For 
example, "0101 0011 11111110" specifies that if the value in RF[3] is 0, then 
the PC should be set to PC - 2. The mnemonic is 

D1PZ Ra, offset- specifies the operation PC= PC+ offset if RF[ a] is 0. 

Negative jump offsets are commonly 
used to jmplement a loop. The 8-bit 
offset can specify an offset forward by 
127 addresses, or backward by 128 
addresses (- 128 to + 127). 

Table 8.1 summarizes the six
instruction instruction set. A program
mable processor typically comes with a 
databook that lists the processor's 
instructions and the meaning of each 
instruction, using a format similar to the 
format of Table 8.1. Typical program
mable processors have dozens or 
hundreds of instructions. 

Extending the Control Unit and Datapath 

TABLE 8.1 Six-instruction instruction set. 

Instruction Meaning 

MOV Ra, d RF(a] = D(d] 

MOV d, Ra D[d] "'RF[a] 

ADD Ra, Rb, Re RF[a] = RF[b]+RF[c] 

MOVRa,#C RF[a] = C 

SUB Ra, Rb, Re RF( a] = RF(b]-RF(c] 

JMPZ Ra, offset PC,,,PC+-0ffset if RF[a],,,Q 

The three new instructions require some extensions, shown in Figure 8.12, to the control 
unit and datapath of Figure 8.10. First, the load constant instruction requires that the reg
ister file be able to load data from IR[7 ... 0], in addition to data from data memory or from 
the ALU output. Thus, the register file's multiplexer is widened from 2x I to 3x I, another 
mux control signal is added, and a new signal coming from the controller labeled 
RF_ W_data is added, which will connect with /R[7 ... 0]. These changes are highlighted 
by the dashed circle labeled 'T' in Figure 8.12. 

Second, the subtract instruction requires using an A LU capable of subtraction, 
so another ALU control signal is added, highlighted by the dashed circle labeled "2" 
in the figure. Third, the jump-if-zero instrnction requires that the ability to detect if 
a register is zero, and the ability to add /R[7 ... 0] to the PC. Thus, a datapath compo
nent is inserted to detect if tl1e register file's Rp read port is all zeros (that 
component would just be a NOR gate) , labeled as dashed-circle "3a" in the figure. 
The PC register is upgraded so it can be loaded with PC plus /R[7 ... 0], labeled as 
"3b" in the figure. The adder used for this also subtracts l from the sum, to compen
sate for the fact that the Fetch state already added 1 to the PC. 



addr rd data 

16 

16 
PC IR 

cir up Id 

:!:::! . c:i, 16 :!:::! I ' I (.) . (.) !! 0. . 0. . . \ . 
IR(7 .. 0J 

Controller 

Control unit 

8.4 A Six-Instruction Programmable Processor 477 

D_addr 8 
---,....~ addr 
D_rd 
,._;;:;;..._--~ rd 
D_wr 
---~--- wr 

D 

256x16 

·w_·crara·"R'_· .... ~·"' 
• • ••• • • • •• '---=,---=y~-... ., ..,..... _ __. .. . ..... 

•• • 1 -• 
•••• 8 16 •• 
: RF_W data 

1 1 
16-bit 

16 

. . 
: 

0 .... 

RF _W_addr 4 W_data 

RF_W_wr 
W_addr 

RF _Rp_addr 4 
W_wr 

RF _Rp_rd 
Rp_addr 

16x 16 
RF _Rq_addr 4 

Rp_rd RF 

RF _Rq_rd 
Rq_addr 

Rq_rd 

RF _Rp_zero 
16 16 

A B 
ALU .. ..,. . 

•••••• :.·· Datapath 16 

Figure 8.12 
Control unit and 
datapatb for the 
six-instruction 
processor_ 

s1 so ALU operation 

0 0 pass A through 

0 A+B 
0 A- B 

--~ ..-----. I_rd: 1 
Fetch PC_int=1 

D_addr: d 
D_rd=1 
RF_s1=0 
RF_s0=1 
RF _W_addr=ra 
RF_W_wr=1 

D_addr: d 
D_wr=1 
RF_s1=X 
RF_sO=X 
RF _Rp_addr=ra 
RF_Rp_rd=1 

PC_clr=1 IR_ld: 1 

Add 

RF _Rp_addr: rb 
RF_Rp_rd=1 
RF_s1=0 
RF_S0=0 
RF _Rq_add=rc 
RF_Rq_rd=1 
RF_W_addr_ra 
RF_W_wr"'l 
a/u_s1=0 
alu_s0= 1 

Load
constant 

RF _s1 : 1 
RF_sO=O 
RF _W_addr=ra 
RF_W_wr=1 

Figure 8.13 Control unit 
and datapatb for the six
instruction processor. 

RF _Rp_addr:rb 
RF _Rp_rd=1 
RF _s1 =0 
RF _s0=0 
RF _Rq_addr=rc 
RF _Rq_rd=1 
RF _W_addr=ra 
RF_W_wr"' l 
alu_s1 =1 
alu_s0=0 

RF _Rp_addr=ra 
RF _Rp_rd=1 

Jump-if
zero-jmp 

PC_ld=1 

0 
iii 
N 

I 
c.. 
a: 
u_I 
er: 



478 8 Programmable Processors 

The FSM for the controller within the control unit must also be extended to handle the 
three additional instrnctions, as in Figure 8.13. The /nit and Fetch states stay the same. The 
FSM has three new transitions from the Decode state for the three new instruction opcodes. 
A minor revision was made to the Load, Store, and Add states' actions (the new actions are 
italicized) because the register file mux now has a mux with two select lines instead of just 
one. Likewise, the Add state actions were revised to configure the ALU with two control 
lines instead of one. The FSM bas four new states, Load-constant, Subtract, Jump-if-zero, 
and Jump-if-zero-jmp, for the three new instructions. Those new states perform the fol 
lowing functions on the datapath: 

• The Load-consram state configures the register file mux to pass the RF_ \¥ _data 
signal, and configures the register fi le to write to the address specified by ra 
(which is /R[ l l.. .8]). 

• The Subtract state performs the same actions as in the Add state, except the state 
configures the ALU for subtraction instead of addit ion. 

• The Jump-if-zero state configures the register file to read the register specified 
by ra onto read port Rp. If the value of the read register Rp is all Os, 
RF_Rp_zero will become 1 (and o otherwise). Thus, the state has two out
going transitions. One transition will be taken if RF _Rp_zero is o, meaning the 
read register was not all Os- that transition takes the FSM back to the Ferch 
state, meaning no actual jump occurs. The other transition will be taken if 
RF_ Rp _zero is 1, meaning the read register was all Os. That transition goes to 
another state, Jump-if-zero-jmp, which actually carries out the jump. That state 
carries out the jwnp simply by setting the load line of the PC. 

Notice that with the addition of a Jump-if-zero instruction, the processor may require 
up to four cycles to complete an instmction. In patticular, when the ra register of a Jump
if-zero instruction is all Os, then an extra state is needed to load the PC with the address 
of the instmction to which to jump. 

8.5 EXAMPLE ASSEMBLY AND MACHINE PROGRAMS 

This section provides an example of assembly
language programming of the six-instruction 
processor to perfonn a particular task. The 
section shows how the assembly code would be 
converted to machine code by an assemblel'. An 
assembler would make use of the table shown in 
Table 8.2, which summarizes the mapping of 
instructions to opcodes. 

TABLE 8.2 Instruction opcodes. 

Instruction Opcode 

MOVRa, d 0000 

MOV d, Ra 0001 

ADD Ra, Rb, Re 0010 

MOV Ra, #C 001 1 

SUB Ra, Rb, Re 0100 

JMPZ Ra, offset OLOI 



8.5 Example Assembly and Machine Programs 479 

MOV RO, #0; II initialize result to 0 

MOV R1 , #1 ; II constant 1 for incrementing result 

MOV R2, 4; II get data memory location 4 

JMPZ R2, lab1 ; II if zero, skip next instruction 

ADD RO, RO, R1; II not zero, so increment result 

lab1 :MOV R2, 5; II get data memory location 5 

JMPZ R2, lab2; II if zero, skip next instruction 

ADD RO, RO, R1 ; //not zero, so increment result 

lab2:MOV 9, RO; II store result in data memory location 9 

(a) 

0011 0000 00000000 

0011 0001 00000001 

0000 0010 00000100 

0101 0010 00000010 

0010 0000 0000 0001 

0000 0010 00000101 

0101 0010 00000010 

0010 0000 0000 0001 

0001 0000 00001001 

(b) 

Figure 8.14 A program to count the number of nonzero numbers in D[4] and D[5], storing the result 
in Dl9]: (a) assembly code, and (b) corresponding machine code generated by an assembler. The 
spaces in the machine code's 16-bit instructions arc there for your convenience as you read this 
book; actual machine code has no such spaces. 

Example 8.4 Assembly and machine programs for a simple program 
Write a program that counts the number of words that arc not equal to 0 in data memory locations 4 
and 5, and that stores tJ1e result in data memory location 9. Thus, the possible results that would be 

stored in location 9 are zero, one, or two. 

Using the instruction set of Table 8.2, we can write an assembly program as shown in Figure 
8. l 4(a). The program maintains the count in register RO, which the program initializes to 0. The 
program may need to add I to this register later, so the program loads the value 1 into register RI. 
The program next loads data memory location 4 into register R2. The program then jumps to the 
instruction labeled as lab/ if the value of R2 is zero. If R2 is not zero, the program will execute an 
add instruction that adds one to register RO, and will then proceed to the instruction labeled lab/ 
since that instmction is the next instmction. The instrnction labeled labl loads data memory loca
tion 5 into register R2. The program jumps to the instruction labeled lab2 if R2 is zero. If R2 is not 
zero, the program executes an add instruction that adds one to register RO, and tJ1cn proceeds to the 
next instruction, which is the instruction labeled /ab2. Tiiat instruction stores ilic contents of reg

is ter RO to data memory location 9. 
In writing the assembly program, we arbitrarily chose the registers used to store the result, ilie 

constant I , and the value read from ilic data memory. We could have used any registers for those 
purposes. For example, we could have used register R7 to hold the result, meaning all occurrences 
of RO in the code would instead have been R7. Furthermore, in writing the assembly program, we 
arbitrarily chose the labels lab / and lab2. Other nan1cs for tJ1osc labels could have been used, such 

as skip/ and done, or Fred and George. Descriptive labels are preferred to help people reading the 
assembly code to understand tJ1c program. 

An assembler would automatically convert t11e assembly code to the machine code shown in 
Figure 8.14(b). For each assembly instruction, t11e assembler determines the specific instruction 
type by looking at the mnemonic as well as the operands if necessary, and then outputs the appro
priate opcode bits (four bits) for that instruction type, as defined in Table 8.2. For example. the 
assembler would examine the first instruction " MOV RO, #0" and thus know from t11e fast three 
letters MOV that t11is is one of the data movement instructions. The assembler would examine the 
operands and, seeing RO, would determine this is either a regular load or a load-constant instruction. 



480 8 Programmable Processors 

Finally, the assembler would detect the "#" and conclude this is a load-constant instrnction, thus 
outputting the opcode O O 11 for a load-constanr instruction as shown in the first machine instruc
tion of Figure 8.14(b). 

The assembler convens the operands to bits also, converting RO of the fust instruction to 
0000, and " #Q" to 00000000, as shown in the first machine instruction of Figure 8.14(b). 

The JMJ>Z instruction requires some extra handling. The assembler recognizes this as a j ump

if~<,ero instruction and thus outputs the opcode 0101. The assembler converts the first operand R2 
to 0 010. The assembler then reaches the second operand labl and does not know what bits to 
output, since the assembler doesn't yet know the address of dle instruction labeled lab] because the 
assembler hasn't reached that instruction yet in the program. To solve this problem, many assem
blers actually make two passes over the assembly code: during the first pass, the assembler creates 
a table of all labels and their addresses, and then on the second pass the assembler outputs machine 
code. Such an assembler would therefore know during dle second pass that the instruction labeled 
lab] is at an address two addresses beyond the first JMPZ instruction- specifically, that the lab/ 
instruction is at address 5, while the JMPZ instruction is at address 3 (asswning that the first 
instruction is at address 0. not I). Thus, the assembler would output an offset of 2 to jump forward 
2 addresses to the instrnction labeled lab/. Notice that the labels lab] and lab2 do not appear in the 
machine code-they are merely a convenience construct dlat the assembler provides for the 
assembly-language programmer. 

• 

8.6 FURTHER EXTENSIONS TO THE PROGRAMMABLE PROCESSOR 

Instruction Set Extensions 

Extending the instruction set with further instructions would require similar types of 
extensions and modifications to the control unit, datapatb, and FSM. A programmable 
processor might contain dozens more data movement instmctions that move data 
between data memory and the register file, or between registers. For example, a processor 
might have instructions for copying the contents of one register to another (e.g., MOV RO, 
Rl , which would copy Rl 's contents into RO), and would carry out that instruction using 
a state that reads the sow-ce register, passes the read value through the ALU unchanged, 
and writes the ALU output to the destination register. As another example, a processor 
might have instructions that would use the contents of a register as the address from 
which to read data memory, known as indirect addressing. 

A programmable processor would also contain dozens of arithmetic/logic instruc
tions that perform arithmetic ancl logic operations on registers in the register file. For 
example, a processor might include not just add and subtract instrnctions, but also incre
ment, complement, decrement AND, OR, XOR, shift left, shift right, and other 
instructions that could be carried out by an ALU. 

A programmable processor would furthennore contain severalftow-of-control instruc
tions that determine the next value of the PC. For example, a processor might include not just 
a jump-if-zero instruction, but also a jump-if-not-zero, an unconditional jwnp, an indirect 
jwnp, and perhaps even jump-if-negative and similar such instructions. Fwthennore, a pro
cessor may include instructions that can jump farther than just a small offset from the current 
PC, and perhaps even to an absolute address rather than an offset address. 



8.6 Further Extensions to the Programmable Processor 481 

Input/Output Extensions 256x16 D 

Section 1.3 introduced a basic microprocessor --r-- addr O: 
~rd 1------1 

having eight inputs IO, 11, ... , fl, and eight outputs ____ wr 1 :1------1 

PO, PI, ... , Pl. The basic programmable processor 
of Figure 8.12 can be extended to implement such 

external inputs and outputs. One method for such an 
extension utilizes a specially designed data 
memory. In that data memory, the last 16 words of 
the memory are replaced by direct connections to 
the input and output pins, as illustrated in Figure 
8.15. The data memory stores locations 0 through 
239 in a normal RAM. Location 240, however, is 
actually a special word whose high 15 bits are all Os, 
and whose lowest bit comes from a flip-flop loaded 
every cycle with the value on external input pin JO. 
Thus, reading location 240 wilJ result in either 
oo . . . 01 (integer 1), or oo ... oo (integer 0), 
depending on the value appearing at JO. Likewise, 

2: 

239: 

240:[£>2~~0 -------rn 
241 :i __ ~~..::Q. -....----11 

248: 

255: 

W_data R_data 

Figure 8.15 Connecting to 
external pins. 

location 241 is connected to pin I 1, location 242to12, and so on, with location 247 connected 
to fl. Locations 248 through 255 are connected to pins PO through Pl, except the pins are con
nected to those locations' flip-flop outputs rather than inputs. For example, writing to location 
255 writes the flip-flop with either o or 1 (only the low-order bit matters during the write), and 
that fljp-flop dtives external output pin Pl. This approach of accessing inputs and outputs as if 
they were data memory locations is known as memory-mapped 110. Thus, an assembly
language programmer can read or write a microprocessor's external data pins simply by 
reading or writing particular data memory locations. 

Example 8.5 Motion-in-the-dark detector in assembly language 
Section 1.3 included an example, illustrated in Figure 1.24, that utilized a microprocessor to imple
ment a motion-in-the-dat'k detector. That section utilized C code to compute the expression 

PO "' IO && ! I L This example shows the underlying assembly code that implements that C 
expression. Assuming that the microprocessor's external pins JO ... Il and PO ... Pl are mapped to 
data memory locations as in Figure 8. 15, the expression can be programmed in assembly as follows: 

0: MOV RO, 240 
I: MOV RI , 241 
2: NITT RI , RI 
3: AND RO, RO, Rl 
4: MOV 248, RO 

Perfonnance Extensions 

II move D[240], which is the value at pin IO, into RO 
//move D[241], which is that value at pin II, into RI 
If compute !II , assuming existence of a complement instruction 
II compute IO && !II , assuming an AND instruction 
II move result to 0[248], which is pin PO 

• 

One difference between real processors and the bask processor architecture in this 
chapter is that many real processors are pipelined (see Section 6.5). The basic three
instruction processor utilized a controller with three stages: fetch , decode, and execute. 



482 8 Programmable Processors 

By inserting appropriate pipeline registers tluoughout the design and modifying the con
troller appropriately, the fetch, decode, and execute stages can be pipelined. In other 
words, as the control unit decodes instruction l, the control unit could be simultaneously 
fetching instruction 2. Next, as the control unit executes instruction 1, the control unit 
could be decoding instruction 2, and fetching instruction 3. Thus, rather than processing 
one instruction every 3 cycles, the control unit could be processing one instmction every 
cycle. Each instruction still takes 3 cycles to process (3-cyde latency), but the pipelining 
results in single-cycle throughput. The net result would be that programs would execute 
three times faster. 

Another extension involves creating deeper pipelines. Thus, rather than just three 
stages (fetch, decode, execute), the stages might be divided into stages of even finer gran
ularity (e.g., fetch , decode, read operands, execute, store results). Creating finer grained 
stages may shorten the longest register-to-register delay, which enables a faster clock fre
quency. The net result would again be faster program execution. 

Another extension involves having multiple ALUs in the datapath. The control unit 
may then perform multiple ALU operations simultaneously in the data.path. One form of 
this extension involves a processor whose instmction set uses instructions with multiple 
opcodes and associated operands in a single instruction, known as a very large instruc
tion word (VLJW) processor. Another forn1 uses a processor with a control unit that reads 
in multiple instructions simultaneously and then assigns those instructions to execute 
simultaneously on available ALUs, known as a superscalar processor. A high-end 
desktop processor may support perhaps 5 simultaneous instructions. with perhaps l 0 
stages of pipelining. Thus, at any moment, such a processor may be in the middle of pro
cessing 5* JO = 50 different instructions. Needless to say, modem processor architectw·es 
can become quite complex. 

This chapter described the basic idea of how a programmable processor's design 
works and how the design could be extended to support a fuller instruction set. We leave 
the role of describing a complete processor, as well as modern processor design tech
niques for improved performance (such as pipelining, caching, etc.), to textbooks on 
computer architecture. 

8.7 CHAPTER SUMMARY 
Section 8 .. 1 stated that programmable processors are widely used for implementing a 
system;s desired functionality, due in palt to their easy availability and short design time 
(design consists of writing programs). Section 8.2 provided the basic architecture of a 
progranuuable processor, consisting of a general-pw-pose datapath having a register file 
and ALU; a control unit having a controller, PC, and JR; and memories for storing the 
progran1 and the data. The control unit would fetch the next instruction from program 
memory, decode the instruction, and then execute the instruction by configuring the data
path to carry out the instruction's specified operation. Section 8.3 designed a simple 
three-instruction programmable processor and showed how a program would be repre
sented as Os and ls (machine code) in the processor's program memory. Section 8.4 
designed a six-instruction processor and discussed how further extens ions could be made 
to add more instrnctions and hence achieve a more complete processor architecture. 
Section 8.5 provided an example of assembly and machine code for the six-instruction 



8.8 Exercises 483 

processor. Section 8.6 discussed a few extensions to the programmable processor archi

tecture such as memory-mapped 1/0. 
Programmable processors are typically produced in huge quantities, nwnbering in 

the tens of millions or even billions, and so tremendous attention is given to their design. 
Readers should realize that the programmable processor designs in this chapter are 
extremely simplistic and used for illustration purposes only. Yet, seeing even the sim
plistic designs hopefully provides an understanding of the principle of how a 
programmable processor works. Modem commercial processors are based on the same 
principles-instructions a.re stored as machine code in program memory, control units 
fetch, decode, and execute the jnstructions, and data.paths support the operations of the 
instructions using register files and ALUs. Modern processors just do a much better job, 
using concurrency, pipelining, and many oth er techniques to obtain high clock frequen
cies and fast program execution. 

8.8 EXERCISES 

SECTION 8.2: BASIC ARCHITECTURE 

8.1 If a processor's program counter is 20 bits wide, up to how ma11y words can the processor's 
instruction memory hold (ignoring any special tricks to expand the instruction memory size)? 

8.2 Which of the following are legal single-cycle datapath operations for the datapath jn Figure 
8.2? Explain your answer. 
(a) Copy data from a memory location into another memory location. 
(h) Copy two register locations into two memory locations. 
(c) Add data from a register tile location and a memory location, storing the result in a 

memory location. 

8.3 Which of the following are legal single-cycle datapath operations for the datapath in Figure 
8.2? Explain your answer. 
(a) Copy data from a register file location into a memory location. 
(h) Subtract data from two memory locations and store the result in another memory location. 
(c) Add data from a register ti.le location and a memory location, storing the result in the same 

memory location. 

8.4 Assume we are using a dual-port memory from which we can read two locations simultane
ously. Modify the datapaih of the programmable processor of Figure 8.2 to support an 
instruction that performs a11 ALU operation on any two memory locations and stores the result 
in a register file location. Trace through the execution of this operation, as illustrated in Figure 
8.3. 

8.5 Determine the operations reqltired to instruct the datapath of Figtue 8.2 to perform the opera
tion: D(8] = (D(4] + D[5]) - D[7], where D represents the data memory. 

SECTION 83: A THREE-INSTRUCTION PROGRAMMABLE PROCESSOR 
8.6 U a processor's instruction has 4 bits for the opcode, how many possible instructions can the 

processor suppo1t? 

8.7 What does the followi11g assembly program, which uses the three-instruction i11struction set of 
this chapter, compute? MOV R5. 19; ADD R5, R5. R5: MOV 20, R5. 



484 8 Programmable Processors 

8.8 What does the following assembly program, which uses the three-instruction instruction set of 
this chapter, compute? MOV R4, 20; MOV R9. 18; ADD R4, R4, R9; MOV R5, 30; 
ADD R9, R4. R5; MOV 20, R9. 

8.9 Using the three-instruction instruction set of this chapter, write an assembly program that 
updates the data memory Das follows: D[O] =D[O] + D[ l]. 

8.10 Using the three-instruction instruction set of this chapter, write an a~sembly program that 
updates the data memory Das follows: D[4] =D[ l]*2+D[2]. 

8.11 Convert the following assembly progran1 to machine code based on the three-instruction 
instruction set of this chapter: MOV R5, 19; ADD R5, R5, R5: MOV 20, R 5. 

8.12 List the basic register/memory transfers and operations that occur during each clock cycle for 
the following program, based on the three-instruction instruction set of this chapter: 
MOV RO, J; MOV Rl, 9; ADD RO, RO, RI. 

SECTION 8.4: A SIX-INSTRUCTION PROGRAMMABLE PROCESSOR 

8.13 List the basic register/memory transfers and operations that occur during each clock cycle for 
the following program, based on the six-instrnction instruction set of this chapter, assuming 
that the content of D[9] is 0: MDV R6, #I: MOV R5, 9; JMPZ R5. labell; ADD R5, R5. R6; 
Jabeil: ADD R5, R5, R6. What is the value in R5 after the program completes? 

8.14 Add a new instruction to the six-instmction instruction set of this chapter that performs a 
bitwise AND of two registers and stores the result in a third register. Extend the datapath, the 
control uni t, and the controller's FSM as needed. 

8.15 Add a new instruction to the six-instruction instruction set of this chapter that performs an 
unconditional jump (jumps always) to a location specified by a 12-bit offset. Extend the data
path, the control unit, and the controller's FSM as needed. 

8.16 Add a new instruction to the six -instruction instrnction set of this chapter that perfom1s a jwup 
if two registers are equal, to a location specified by a 12-bit offset. Extend the datapath, the 
control uni t, and the controller's FSM as needed. 

8.17 Using the six-instl'Uction instruction set of this chapter, write an assembly program for the C 
code in Figure 8.16, which computes the sum of the first N numbers, where N is another name 
for D [9]. H int: Use a register to first store N. 

i=l; 

SUM= O ; 

while ( i ! =N) 

sum sum + i; 

i = i ... 1 ; 

Figure 8.16 C code. 

&. I & Using the extended instruction set you designed in Exercise &.16, write a:n assembly program 
for the C code in Exercise 8.17. 

SECTION 8.5: EXAMPLE ASSEMBLY AND MACHINE PROGRAMS 

8.19 Define two new data movement instructions for the six-instruction instruction set of this 
chapter. Extend the datapath, the control unit, and the controller's FSM as needed. 

8.20 Define two new arithmetic/logic instructions for the six-instruction instruction set of this 
chapter. Extend the datapath, the control unit, and the controller's FSM as needed. 



8.8 Exercises 485 

8.21 Define two new flow-of.control instructions for the six-instruction instruction set of this 
chapter. Extend tbe datapath, the control unit, and the controller's FSM as needed. 

8.22 Assuming that the microprocessor's external pins 10 .. .17 and PO ... P7 are mapped to data 
memory locations as in Figure 8.15 and an AND instruction has been added to the six· 
instruction instruction set of this chapter, create an assembly program that will output 0 on P4 
if all eight inputs 10 ... /7 are l s. 

Carole grew up in a country 
where the best students went to 
engineering school, as 
engineering was highly respected. 
"I was good in school, so 
engineering seemed like a natural 
option. I was also very interested 
m building thin gs, and very 
curious about how one builds new 
things- so I was attracted to 

engineering at an early age, around 10 years of age." 

Carole has worked at Intel for 15 years. She was one of 
the original architects of the popular MMX (multimedia 
extension of the Intel architecture) part of Pentium 
processors. " It was fascinating to learn the algorithms 
used to compress video and audio, and to invent new 
instructions for the Intel Architecture to nm these 
applications efficiently. It is not always easy for processor 
architects to quantify t11e benefits of new features, and to 
motivate the expense in silicon area (or chip die size) for 
oew instructions. In the case of multimedia applications, 
t11e benefits are well understood: running a video clip at a 
few frames per second, or rutming it in real time (about 30 
frames per second) makes a huge, visible difference to 
everyone." As is the case with so many engineers, sbc is 
very proud of what she accomplished: "When t11e first 
Pentium processor with MMX came up, it was really 
rewarding to tllink that a small piece of my mind was in 
all of these machines nmning video real time popping up 
everywhere." 

Carole was also one of the architects on the Intel I 
Hewlett-Packard team that defined t11e Itanium computer 

architecture. "This was a unique opportunity to define a 
processor 'from scratch.' Technically this was a very 
challenging project, and working with so many top-notch 
architects was very enriching. But I also learned what it 
takes to build somet11ing big, involving a very large team, 
and two large companies. The two companies had different 
cultures, different methodologies, and reconciling the 
differences was sometimes more challenging than solving 
the technical problems. But this is all part of 'building 
things,' and dus was a great lesson in leadership." 

What Carole likes most about her career is "d1e 
constant change. After 22 years as a computer architect, I 
am still doing new things every day. Computer science is 
a work in progress, and it offers new opportunities that 
one has to grab, and run wid1. This is where the fun is." 

Asked to give some advice to students, Carole suggests 
two things: 

• "Stay at school as Jong as possible. Get a PhD if you can. 
To be able to adapt to constant change, you will need a 
very robust, and U1eoretica1 foundation. Only learning 
how to do things is not enough: it will get you a job for 2 
years, but then your skills will be obsolete." 

• "Be open for change. It is important to build an in-deptll 
expertise in one area; in my case. it is computer arclutec
ture. But one bas to be ready to use this expertise in 
many different projects, with different people, and more 
and more in different parts of the world. Fifteen years 
ago multimedia applications were tlle focus of many 
computer architects. Today it is bioinformatics and data 
mining. Change requires a Jot of work to learn new 
domains, but not adapting to change is not an option." 



This page intentionally left blank 



9 
Hardware Description 
Languages 

9.1 INTRODUCTION 1 

Earlier chapters drew circuits that were designed. For 
example, Chapter 2 designed an automatic door 
opener circuit and drew the circuit shown in Figure 
9.1. A drawing has more information than is neces
sary to describe the circuit, such as information about 
the location of the i nputs and outputs. In Figure 9 .1 , 
the inputs are located on the left and the output is 
located on the right. The c input is located on the 
top, the h input in the middle, and the p input on the 
bottom. The drawing also gives infonnation about 

DoorOpener 

c 

h 

p 

Figure 9.1 Drawn circuit 

the size and location of the components in the circuit: the inverter is at the top, the OR 
gate below the inverter, the AND gate on the right, and each component is about a half 
inch by a half inch. The drawing gives infonnation about the wires too: the wire from the 
inverter goes to the right, then down, then to the right again, for ex.ample. However, all 
that infonnation about the drawing is really irrelevant, and has nothing to do with how the 
design will be physically implemented. When a circuit is drawn, all that information must 
be defined, even if arbitrarily. A drawing of a circuit is commonly referred to as a circuit 
schematic. 

A problem with drawing circuits arises with larger circuits. Does the schematic in 
Figure 9.2 mean anything to you? That schematic has just a couple dozen compo
nents- what if there were a couple thousand components, as is quite common? Drawing a 
large circuit would require tremendous effort to figure out how to place each component in 
the drawing, and how to route wires among the components. And if a tool generated the 
circuit, the tool would have to spend compute time to figure out a visually appealing way to 
draw the circuit (rather than a spaghetti-like mess), and such computation is time
consmuing and still may not result in a readable drawin$. Furthermore, the files used to 
store schematics would be very large, as those files would contain all that extra infonna
tion about the location and size of every component. All that extra effort, file size, and time, 

I Substamial content or this chapter was conrributed by Roman Lysecky. 

487 



488 9 Hardware Description Languages 

(a) 

c 

h 

p 

Figure 91 Schematics become hard to read beyond a dozen or so co111ponents- d1e graphical 
information be<:omes a nuisance rather than an aid. 

would be needed for something that is really not very useful- humans can't comprehend 
circuit drawings of more than perhaps a few dozen gates, so what is the point of drawing 
such circuits? What is needed is a way to just describe the circuit itself- what are the 
inputs and outputs, what components exist, and what are the connections, without any of 
the graphical information like where each component is drawn or how big the component 
is drawn. Ideally, this description would be in a textual language so that people could type 
such descriptions with a computer keyboard just like they type email messages and C 
programs. 

The circuit in Figure 9.3(a) could be descr ibed using the textual language of English 
as in Figure 9.3(b). We've given names to each gate in the circuit and to the internal wires 
in Figure 9.3(a). 

Of course, English is not a good language if a computer tool will be used to read in 
the description- a computer tool requires a language with a precise syntax and precise 
meaning for every language construct. Computer-readable languages thus evolved in the 

DoorOpener 
Inv_ 1 

(b) We'll now describe a circuit whose name is DoorOpener. 
The external inputs are c, h, and p, which are bits. 
The external output is I, which is a bit. 

We assume you know the behavior of these components: 
An inverter, which has a bit input x, and bit output F. 
A 2-input OR gate, which has bit inputs x and y, and bit output F. 
A 2-input AND gate, which has bit inputs x and y, and bit output F. 

The circuit has internal wires n1 and n2, both bits. 
The DoorOpener circuit internally consists of: 

Figure 9.3 Describing a circuit using a 
textual language rather than a graphical 
drawing~ (a) schemaric, (b) texrual 
description in the English language. 

An inverter named Inv_ 1, whose input x connects to 
external input c, and whose output connects to n1. 

A 2-input OR gate named OR2_ 1 , whose inputs connect to external 
inputs h and p, and whose output connects to n2. 

A 2-input AND gate named AND~_ 1, whose inputs connect to n1 
and n2, and whose output connects to external output I. 

That's all. 



9.2 Combinational Logic Description Using Hardware Description Languages 489 

1970s and 1980s for describinz hardware circuits. Such languages became known as 
hardware descriptimz languages, or HDLs. Hardware description languages not only 
enable describing the structural interconnections of components, but also include methods 
to describe the behavior of components themselves. Modem digital design relies heavily 
on the use of HDLs at all stages of design. 

This chapter provides a brief introduction to the most popular hardware description 
languages- VHDL, Verilog, and SystemC- but to thoroughly leam each language, one 
may want to consul t textbooks specifically dedicated to each language. Each section of 
this chapter can be covered immediately after corresponding earlier chapters (Section 9.2 
after Chapter 2, Section 9.3 after Chapter 3, Section 9.4 after Chapter 4, and Section 9.5 
after Chapter 5)- o r these sections may be covered all at once after completing those 
earlier chapters. Furthermore, each section has three patts, one for VHDL, one for Ver
ilog, and one for SystemC. Each of those parts is independent of the other parts of the 
section, so a reader interested only in one of the HDLs, say Verilog, can read only the 
Yerilog pruts of each section, skipping the VHDL or SystemC parts. 

A reader interested in comparing the three HDLs may read the sections of all three 
HDLs. In doing so, you may notice that the HDLs have similar capabilities, differing pri
marily in their syntax. Thus, after learning one HDL thoroughly, a designer can likely 
learn other HDLs qu ickly. 

9.2 COMBINATIONAL LOGIC DESCRIPTION USING 
HARDWARE DESCRIPTION LANGUAGES 

Structure 

This chapter's introduction sought to describe a circuit using a textual language. This 
section shows how some different HDLs describe circuits. The term stntcture is some
times used to refer to a circuit, with structure meaning an interconnection of component. 

VHDL 
Figure 9.4(c) shows a VHDL description of the DoorOpener circuit -0f Figure 9.4(a). For 
convenience, the English description appears in Figure 9.4(b), along with the correspon
dence between the English description and the VHDL description. 

The description begins with an entity declaration, whic,h defines the design's name 
and the design's inputs and outputs, known as port"8. An entity declaration says nothing 
about the internals of the design- just the design's name and interface. The description 
lists the port names and defines their type, which in this case is type std_logic. That type 
means a bit, but isn't built into VHDL (the predefined bit type in VHDL is too limited, 
for reasons beyond this section's scope). Using srd_logic requires including the state
ments: "library ieee; use ieee.std_logic_l 164.all;" at the top of the file, which indicate 
that a library named ieee of predefined items will be used, in particular all the items 
within a package named std_logic_ l 164, which defines s1d_logic among other things. 

The description continues with an architecture definition, which describes the inter
nals of the design. The description names the architecture CircuiT, but other names are 
possible like DoorOpenerCircuit, DoorOpenerStrucTUre, S1ructure, or even Fred. 
Descriptive names that help in understanding the architecture are preferred. The architec-



490 9 Hardware Description Languages 

c 

h 

p 

DoorOpener 
lr1v_1 

OR2_ 

(a) 

library ieee; 
use i eee.std_logic_ll64.all; 

--·entity DoorOpener is 
_///_- port_! . c, h, p: in std_logic; 

_,-- ----- _, f: out std logic 
We'll now describe a circuit whose name is DoorOpener. ----------~~)//- -

The external inputs are c, h, and p, which are bits.---- / .eiid DoorOpener; 
The external output is f, which is a bit. ----------------/-

archi tect ure Circuit of DoorOpener is 
We assume you know the behavior of these components: -----·component Inv 

An inverter, which has a bit input x, and bit output F. ------- port (x: in std_ logic; 
A 2-input OR gate, which has bit inputs x and y, ---- F: out std_logic) ; 

and bit output F. ------- end component; 
A 2-input AND gate, which has bit inputs x and y,-, ---- component OR2 

and bit output F. ',,, port (x, y: in std_l ogic; 
'-,, F: out std logic) ; 

The circuit has internal wires n1 and n2, both bits.-, '----, end component; -
'-,, 'componen t AND2 

The DoorOpener circuit internally consists of: --------<'-, port (x, y: in std_l ogic: 
Aninverternamedlnv_1,whose inputxconnectsto , , ' , , '',, F: out std_logic); 

external input c, and whose output connects to n1. ', ',, .... ,, end component: 
A2-input 0Rga1enamed0R2_1, whoseinputs ' , '',, ',, 'signal nl,n2: std_logic; -- internal wi res 

connect to external inputs h and p, and whose out"Pul_ ',, ' , 
connects to n2. '',, '-l:>egin 

A2-inputANDgatenamedAND2_1,whose inputs--,_ '-,,,'' Inv_l: Inv port map (x=>c, F'=>nl ) ; 
connectton1 andn2,andwhoseoutputconnectsto ------, ' · OR2_1: OR2 port map (x=>h,y=>p,F=>n2 ) ; 
external output!. ---AND2 1: AND2 por t map (x=>nl.,y=>n2,F=>f ) ; 

That's all. ------------------------------------------- - end Circuit; 

(b) (c) 

Figure 9.4 Describing a circuit using a textual language rather than a graphical drawing: (a) schematic, (b) textual 
description in the English language. (c) textual description in the VHDL language. Bolded words are reserved words 
inVHDL. 

ture starts by declaring what components the design will be using- those components 
must be defined elsewhere in the description's file or in another file. Those components' 

definitions will be discussed later. Each component declaration must define tbe inputs and 
outputs of each component, and those inputs and outputs must match the component's 
entity declaration (found elsewhere) exactly. 

The description then includes a declaration of the design's internal signals nl and n2, 

which are essentially internal wires. Next to that declaration, the description includes an 
example of a YHDL comment: "-- internal wires". Comments start with"--" followed by 
any text on the rest of the line. That text is ignored by YHDL tools, but is useful to people 
who read the description. 

FinaUy, the description instantiates the circuit's components and defines those com
ponents' connections using port maps. For example, the statement "Jn.v_ I: Inv porT map 

(x= >c, F=>nl );" instantiates a component named Inv_/ , which is a component of type 



9.2 Combinational Logic Description Using Hardware Description Languages 491 

Inv (declared earlier in the VHDL description), and indicates that Inv _l's input x connects 
to c and that Inv _J's output F connects to n J, which is an internal signal. A more concise 
port map notation omits the port names: "Inv_ ]: Inv port map (c, nl);"-the order of the 
signals in the port map of Inv corresponds to the order of the ports in the component def
inition of Inv. Subsequent examples will use this more concise notation. 

The bold words in the description represent reserved words, also known as keywords , 
in VHDL. Reserved words cannot be used for names of entities, architectures, signals, 
instantiated components, etc., as those words have special meaning that guide VHDL 
tools to understand our descriptions. 

Summarizing, the YHDL structural description bas an entity that describes the design's 
name, its inputs, and its outputs; a declaration of what components will be used; a declara
tion of internal signals; and finally, an instantiation of all components along with their 
interconnections. 

The entity jus t defined could then be used as a component in another entity. 

Verilog 
Figure 9.S(c) shows a YeriJog description of the DoorOpener circuit of Figure 9.S(a). For 
convenience, the English description also appears in Figure 9.S(b), along with the corre
spondence between the English description and the Yerilog description. 

The description begins by defining modules for an inverter Inv, a 2- input OR gate 
OR2, and a 2-input AND gate AND2. We'll skip discussion of those modules, and begin 
our discussion with the definition of the fourth module DoorOpener. 

The description declares a module named DoorOpener. T he module declaration 
defines a design's name and the names of that design's inputs and outputs, known as 
ports. The module declaration says nothing about the internals of the design or the 
ports-just the design's name and inteiiace. 

The description then defines the type of each port, assigning the types input and 
output in this example. 

The description then includes a declaration of the design's internal wires, named nl 
and n2. 

Finally, the description instantiates the circuit's components and defines those com
ponents' connections. For example, the statement "Inv J nv _ l ( c, nl );" instantiates a 
component named lnv_J, which is a component of type Inv. The connections to the inputs 
and outputs of the instantiated components are specified in the order in which the compo
nent's modules declare the inputs and outputs. ln the instantiation of Jnv_J, the input c is 
connected to the input x of the Inv component, and the wire nl is connected to output F 
of the component. In Yerilog, the module does not need to specify the interface of a com
ponent within the module instantiating the component. For example, the DoorOpener 
module does not include a declaration of which components it will instantiate or any 
information regarding those components. The components, of course, must be defined 
elsewhere, perhaps earlier in the same file as shown in Figure 9.S(c), or perhaps in 
another file. For reference purposes, the exan1ple shown here provides incomplete speci
fications for the Inv, AND2, and OR2 components in order to clearly show the ports and 
interface for these components. In place of specifying the internal behavior of these com
ponents, we s imply included an example of a Verilog comment. A comments sta1ts with 
"/!' and then can be followed by any text on the rest of the line. 



492 9 Hardware Description Languages 

c 

h 

p 

DoorOpener 
lnv_1 

(a) 
, module Inv(x, F); 

We'll now describe a circuit whose name 1s DoorOpener. 1 /' input x; 
The external inputs are c, h, and p, which are bits. \ / o utput F; 
The external output is f, which is a bit., \ / I I deta ils not shown 

'\. \ / \ endmodule 

We assume you know the behavior of thesewmpon'e,rµ{ \,/ mod':1le OR2 (x, Y, F); 

An inverter, which has a bit input x, and bit OiJ.tput F.\_,,-" \ input x, Yi 
A 2-input OR gate, which has bit inputs x and'y,, ,/ \ \ output F: 

and bit output f. \ \ \ I I details not show-n 

A 2-input AND gate, which has bit inputs~ and y, ~'~----\ \ endmodul e 
and bit output F. \ -\~--\module AND2 (x, y, F ) ; 

', \ \ i nput x, Yi 

The circuit has internal wires n1 and n2, both bits.',, ',, \ \ output F: 
' , \ \ I I deta ils not shown 

' ,,, \ \ ' ...;i- d 1 The DoorOpener circuit internaiiy consists of: , \ ~n'F'o u e 
An inverter named Inv_ 1, whose input x connects to ,, '',, \ \ '· 

external inpulc, andwhoseoulpulconnecls ton1. ' ,,, ',, ~~':1le DoorOpener (c, h , p, f ): 
A 2-input OR gate named OR2_ 1, whose inputs ... __ ' ,, ' ,, \, input c, h • P; 

connect to external inputs hand p, and whose outp'ttk ' , , ',, output f: 
..... ' ' . connects to n2. --... ,, ',, wire n l , n2; 

A 2-input AND gate named AND2_ 1, whose inputs---- ''-<Inv Inv_ 1 ( c, nl) ; 
connect to n1 and n2, and whose output connects to --------- OR2 OR2_ 1 {h, p, n2 ) : 
external output t. -- AND2 AND2 _ l ( nl, n2, f l ; 

Thars all. -------------------------------------------- endmodule 

{b) (c) 

Figure 9.5 Describing a c ircuit using a textual language rather than a graphical drawing: 
(a) schematic, (b) textual description in the English language, (c) textual description in the 
Verilog language. Bold words are reseJ'ved words in Verilog. 

The bold words in the description represent reserved words, also known as keywords, 
in Ve1ilog. We cannot use reserved words for names of modules, ports, wires, instantiated 
components, etc., as those words have special meaning that guide Verilog tools to under
stand our descriptions . 

Summarizing, the VeriJog strnctural description has a module that describes the 
design name, lists the module's inputs and out puts, and specifies the type for each input 
and output; a declaration of internal wires; and finally, an instantiation of all components. 
along with their interconnections. 

SystemC 
Figure 9.6(c) shows a SystemC description of the DoorOpener circuit of Figure 9.6(a). 
For convenience, the English description also appears in Figure 9.6(b), along with the 
correspondence between the English description and the SystemC descriptio11. The 



DoorOpener 
lnv_1 

c 

h 

p 

OR2_ 

(a) 

9.2 Combinational Logic Description Using Hardware Description Languages 493 

#include • systemc.h" 
; #include " inv.h" 
/; #include "or2 .h• 

//,#include "and2. h" ,, , 
11 I 

'" ----------ftf - SC_MODULE (Door-Opener ) 
We'll now describe a circuit whose name is DoorOpener. f!/ { 

The external inputs are c, h, and p, which are bits.-------f,------- sc_in<sc_logic> c, h, p : 
The external output is f, which is a bit.--------------,'------- sc_out<sc_lo-gic> f: 

// internal wires 
We assume you know the behavior of these components: ,1 sc_signal<sc_logic> nl, n2: 

An inverter, which has a b~ input x, and bit output F. / I I component declarations 
A 2-input OR gate, which has bit inputs x and y, / Inv Invl; 

and bit output F. /
1 

OR2 OR2_1 ; 

A 2-input AND gate, which has bit inputs x and y, ,./ AND AND2 1; 
and bit output F. /' I I compo~ent instantiations 

1
/ / SC CTOR (Door-Opener ) : Inv 1 ("Inv l " ) , 

The circuit has internal wires n1 and n2, both bits/ // ,~OR2_1 ( "OR2 l" ) , AND2 -1 ( "AND2 l" ) 
",,,,-' ,. ........ , ... ..., 

The DoorOpener circuit internally consists of: , / ,,..-~:..-!:--· Inv 1. x I cl : 
f' ,A-e,... / -

An inverter named Inv_ 1, whose input x connects to""-:::" / Inv_ 1. F <n1 l ; 
external input c, and whose output connects to n1,/" ..L~-------·OR2_1 . x (hl ; 

A 2-input OR gate named OR2_ 1, whose inputs.~-:.------;-;, OR2_1. y (p) ; 
connec1 to external inputs hand p, and whose output/ OR2 1. F (n2 l ; 
connects to n2. ,/ ------- AND2 1. x ( nl ) ; 

A 2-input AND gate named AND2_1 , whose inputs-"-:.--------- AN02:::1. y ( n2 ) ; 
connec1 to n1 and n2, and whose output connects to AND2 1. F ( f ) ; 
external output f. 

That's all. --------------------------------------------- } ; 

(b) (c) 

Figure 9.6 Describing a circuit using a tcx:tual language rather than a graphical drawing: (a) schematic, (b) textual 
<lcscription in the English language, (c) textual description in the SystemC language. Bold words are reserved words 
in SystemC. 

SystemC language is bujlt on top of the C++ programnting language, but it is not neces
sary to be an expert C++ programmer to use SystemC. However, it is important to keep in 
mind that certain restrictions exist as a result, such as not using C++ keywords to name 
modules, ports, signals, etc. 

Before defining the circuit behavior, we must include the statement " # i nclude 

"systemc. h"" at the top of each SystemC file. The description begins with an 

SC_MODULE declaration, which defines the design's name, in this case DoorOpener. 
The module declaration says nothing about the internals of the design- just the design's 
name. Within the module description, the input and output ports of the design are speci
fied, using the sc_i11<> and sc_out<> statements respectively. The description lists the 
port names and defines their types, which in this case is type sc_logic, which specifies a 
single bit. 



494 9 Hardware Description Languages 

The description then includes a declaration of the design's internal signals, specified 
as sc_signal, which are essentially internal wires. Next to that declaration, the description 
includes an example of a SystemC comment: "//internal wires". A comment starts with 
"II' and then can be followed by any text on the rest of the line. 

The module then declares what components the design will be using. The SystemC 
module does not need to specify the interface of the components, but rather just the type 
of component as well as a unique name for each component within the design. 

The module defines a constructor function SC_CTOR that is responsible for instanti
ating and connecting the components within the SystemC design. The constructor 
function talces as an argument the name of the current SystemC module, which in this 
case is DoorOpener. Following the SC_CTOR statement after the colon is a list of com
ponent instantiations. The SystemC module's instantiations are used to call the 
constructor functions of each component being instantiated. However, we point out that 
the connections between the individual components are not specified at this point. 
Instead, the statements within the constructor finally define the connections between the 
components. For example, the statement "lnv_ l.x(c); lnv_l.F(n l );" connect the inverter 
Inv_J's input x to external output c and the inve1ter's output F to internal signal nl. In 
SystemC, the module does not need to specify the interface of a component within the 
module. The components, of course, must be completely defined elsewhere, perhaps 
earlier in the same file or in another file. In our SystemC DoorOpener description, the 
descriptions for the Inv, AND2, and OR2 components are specified in other SystemC files. 
In order to use those components, we must include a statement at the beginning of the 
current file, indicating where we can find this description. For example, our DoorOpener 
description includes the statement "#include " inv.h'"', and the description of the compo
nent Inv can be found within that file. 

The bolded words in the description represent reserved words, also known as key
words, in SystemC atld C++. We cannot use reserved words for names of modules, ports, 
signals, instantiated components, etc., as those words have special meaning that guide 
SystemC and C++ tools to understand our descriptions. 

Summarizing, the SystemC structural description has: a module that defines the 
design name; a list of inputs and outputs of the module specifying their types, a declara
tion of i11ternal signals; a declaration of components providing the name for each 
component, a constructor function instantiating the module's components, and finall y, the 
components' intercon11ections. 

Combinational Behavior 

HDLs typically support the ability to describe the internals of a design as behavior rather 
than as a circuit. This ability enables description of the bottom-level building-block com
ponents used in a design, such as the combinational behavior of an AND gate or OR gate. 

VHDL 
Figure 9.7 contains a behavioral description of a 2-input OR gate, which was used as a 
component in Figure 9.4(c). The description begins with the declarations necessary to use 
std_logic. It then declares the entity with the name OR2 as having two input pons x and y 
and having output port F, all of type std_logic which means bit. 



9.2 Combinational Logic Description Using Hardware Description Languages 495 

The description then defines an archi
tecture named behavior for OR2. That 
architecture consists of a process, which is 
the VHDL construct that describes 
behavior. The process declaration is "pro
cess(x,y )", which means the process should 
execute from beginning to end whenever x 
or y changes. In other words, the process is 
sensitive to x and to y, which comprise the 
process' sensitivity list . A process body 
(the part between the process's begin and 
end) can contain sequential statements, 
like sequential statements in C but with a 
different syntax. The process shown has 
only one such statement, assigning the 
value of "x or y" to F. "or" is a built-in 
operator in VHDL, making the internal 
description of the OR gate simple. 

As another example of a behavioral 
description, let's revisit the DoorOpener 
example from Figure 9.4(c), for which we 
created an architecture having a structural 
description. We can alternatively create an 
architecture having a behavioral descrip
tion. (In fact, a VHDL entity may have 
multiple architecture descriptions for that 
same entity.) Assuming the same entity 
declaration as in Figure 9.4(c), an alterna
tive architecture definition is shown in 
Figure 9.8. The behavior consists of a 
process that is sensitive to inputs c, h, and 
p. When the process executes (which is 
whenever c, h, or p changes), then the 
process executes its one statement, which 
updates the value off 

library ieee; 
use i eee.std_ logic_ll64 . all; 

entity OR2 is 
port (x, y: in std_ logic; 

F: out std_logic 
) ; 

end OR2; 

architecture behavior of OR2 is 
begin 

process (x, y ) 
begin 

F <; x or y ; 
end process; 

end behavi or; 

Figure 9.7 Behavioral VHDL description of 
an OR gate. 

architecture beh of DoorOpener is 
begin 

process (c, h, p ) 
begin 

f <; not (c ) and (h or p ) ; 

end process ; 
end heh; 

Figure 9.8 Behavioral VHDL description of the 
DoorOpener design. 

In designing the DoorOpener circuit, we might start with the behavioral description, 
and run a simulation to verify correct behavior. We might then create a structural descrip
tion, and run simulation again to verify that the circuit bas the same fw1ctionality as the 
behavior. In fact, tools exist that automatically convert such behavior to a circuit. 

When desc1ibing a combinational circuit's behavior, care must be taken to include all 

the circuit's inputs in the process's sensitivity list. Omitting an input is not a VHDL error, 
but such omission is a mistake that results in different behavior than combinational 
behavior- with an input omitted, the output does not change when that input changes, 
meaninz there must be some storage in the circuit. 



496 9 Hardware Description Languages 

Verilog 
Figure 9.9 contains a behavioral description of a 2-input OR 
gate, which was used as a component in Figure 9.5. The 
description begins by declaring the module named OR2 and 
specifying that the module has three ports named x, y, and 
F The description then defines tllat the ports x and y are 
both inputs and the port Fis an output. The description then 
defines the output F to be a reg output. In Verilog, a port is 
by default assumed to be a wire , which does not store 
values. Instead, wires can only create connections between 

module OR2(x,y,F ) ; 
inpu t x, y; 
output P; 
reg F ; 

alway s @ (x or y) 
b e g i n 

F <= x 
e nd 

endmodu le 

I y; 

components. If we want to assign a value co an output port, Figure 9.9 Behavioral Vcrilog 
we must define the port to be a reg, which indicates the description of an OR gate. 
output port stores the values assigned to the port. The 
Verilog code for the design continues with an always procedure that defines a block of code 
that will be repeatedly executed whenever a change occurs on an input i11 the block's input 
list. The always procedure declaration is "always @(x or y)", which means the procedure 
should execute from beginning to end whenever x or y changes. In other words, the proce
dure is sensitive to x and y. x and y comprise the procedure's sensitivity list. The always 
procedure's statements (the part between the procedure's begin and end) can contain 
sequential statements, like sequential statements in C but with a different syntax. The block 
shown has only one such statement, assigning the value of "x I y" to F, where "I" is a built
in Verilog operation to compute an OR 

As another example of a behavioral descrip-
tion, let's revisit our DoorOpener example from 
Figure 9.5(c), for which we created a structural 
Verilog description. We can alternatively create a 
behavioral description. Figure 9 .10 presents a 
behavioral Verilog description of the DoorOpener 
circuit. The module declaration is similar to the 
structural description of Figure 9.5(c), but in the 
behavioral description we need to declare the 
output f as a reg. The behavior consists of an 

module DoorOpener(c,h,p,f); 
input c, h, p; 
o u t put f; 
reg f; 

a lways @ (c o r h o r p ) 
~egin 

t <= 1-cl & (h I P > ; 
end 

end:module 

always procedure sensitive to inputs c, h, and p . Figure 9.10 Behavioral Verilog 
When the procedure executes (which is whenever descrjption of the DoorOpener design. 
c, h, or p changes), then the procedure executes a 
single statement that updates the value off, by assigning the value " (-c) & (h Ip)'', where 
" - " " & ;, and "I'; perform the invert AND and OR operations respectively 

' 1 ' ) , • 

In designing the DoorOpener circuit, we might start with the behavioral description 
and run a simulation to verify correct behavior. We might then create a stmctural descrip
tion and run a simulation again to verify that the circuit has the same functionality as the 
behavior. In fact, tools exist that automatically convert such behavior to a circuit. 

When describing a combinational circuit's behavior, care muse be taken to include all 
the circuit's inputs in the procedure's sensitivity list. Omitting an input is not a Verilog 
error, but such omission is a mistake that results in different behavior than combinational 
behavior- with an input omitted, the output does not change when that input changes, 
meaning there must be some storage in the circuit. Verilog provides a means of avoiding 
such a mistake. The sensititivy list can be specified merely as "always @(*)'', which 
means that the procedure is sensitive to all items that are read in the procedure. 



9.2 Combinational Logic Description Using Hardware Description Languages 497 

System C 
Figure 9 .1 1 contai11s a SystemC behavioral 
description of a 2-input OR gate, which 
you ' ll recall we used as a component in 
Figure 9.6(c). The SystemC description 
declares the module with the name OR2 
and has two input ports x and y and one 
output port F, all of type sc_logic , indi
cating that each input and output is an 
individual bit. The module defines the con
structor function SC_CTOR that consists of 
a single process named comblogic defined as 
a SC_METHOD. SC_METHOD is one 
SystemC construct that describes behavior. 
The process declaration here is 
"SC_METHOD (comblogic); sensitive<< x 
<< y;", which means the process will 
execute the circuit behavior described in the 

#include "systemc .h" 

SC MODULE (OR2) 
( -

sc_in<sc_logic> x, y; 
sc_out<sc_logic> F; 

SC CTOR (OR2) 
{ -

SC_METBOD (comblogi c ) ; 
sensitive << x << y; 

void comblo9ic ( ) 
{ 

} 
} j 

F.write (x.rea.d () I y. read () ); 

Figure 9.11 Behavioral SystemC description of 
an OR gate. 

function comblogic whenever x or y changes. In other words, the process is sensitive to x 
and y. The process body is defined in the func tion comblogic and is declared as "void 
comblogic()". The process function (the part between the open brace"(" and close brace 
")") can contain sequential statements, like sequential statements in C or C++ but some
times with different syntax. The process shown has only one such statement, writing the 
value of "x.read() I y.read()" to F, where "I" executes an OR operation. In SystemC, the 
current value of an input port can be read using the read() function and an output port can 
be written using the write() function. While other methods of accessing the input and 
output ports are possible, the read() and write() functions are recommended. 

As another example of a behavioral #include "syst emc . h" 
description, let's revisit our DoorOpener 
example from Figme 9.6(c), for which 
we created a structural SystemC 
description. We can alternatively create 
a behavioral description. Figure 9 .12 
presents a behavioral SystemC descrip
tion of the DoorOpener circuit. The 
module declaration is the same as the 
structural description of Figw-e 9.6(c). 
The behavior consists of a single pro
cess, named comblogic, that is sensitive 
to inputs c, h, and p. When the process 
executes (which is whenever c, h, or p 
changes), then the process executes its 
one statement, which updates the value 
off by assigning the value "(-c. read()) 
& (h.read() I p.read())", where "-" per-

SC MODULE (Door Opener ) 
( -

se_in<se_logie> c, h, p; 
sc_out<sc_logic> f; 

SC CTOR (Door Opener ) 
{ -

SC_METBOD (combl ogic ) ; 
sensitive << c << h << p; 

void comblogic ( ) 
{ 

} 
} ; 

£.write (( -c. read ( )) t (h. read () I 
p. read () ) ) ; 

figure 9.12 Behavioral SystemC description of the 
DoorOpener design. 



498 9 Hardware Description Languages 

Testbenches 

forms an invert operation, "&" performs an AND operation, and "I" performs an OR 
operation. 

In designing the DoorOpener circuit, we might start with the behavioral description, 
and nm a simulation to verify correct behavior. We might then create a stmctural descrip
tion, and run simulation again to verify that the circuit has the same functionality as the 
behavior. In fact, tools exist that automatically convert such behavior to a circuit. 

One of the main uses of an HDL is that of simulating a new design to ensure that the 
design is cmrect. To simulate a design, we need to set the design's inputs to certain 
values, and then check that the design's outpu t values are what we expect them to be. A 
system that sets input values and checks output values is known as a testbench . We now 
show how to create an HDL testbench to test our DoorOpener circuit. 

VHDL 
Figure 9.13 shows a VHDL 
testbench for the DoorOpener 
design of Figure 9.4(c). 
Notice that the entity, named 
Tes1bench, has no ports- the 
entity is self-contained, 
requiring no inputs and gener
ating no outputs. The 
architecture declares the com
ponent that we plan to 
test- namely, the Door-
Opener component. The 
architecture instantiates one 
instance of the DoorOpener 
component, which is named 
DoorOpenerl. A single 
process in the architecture sets 
the inputs of the component 
and checks for correct output. 
This testbench tries all pos
sible cases of the three inputs, 
of which there are eight cases. 
Many components have too 
many inputs to try all possible 
cases- in that situation, we 
might try border cases (e.g., 
all Os, alt l s) and then some 
random cases. 

Each case sets the three 
inputs of the component to a 
particular input combination, 

library ieee; 
use ieee.std_logic_l164.all; 

entity Testbench is 
end Testbench; 

architecture behavi or of Testbench is 
component DoorOpener 

port ( c, h, p: i n std_logic; 
f: out std_ logic 

) ; 

end c omponent ; 
signa1 c, h , p, f : s t d_ logi c; 

begin 
Door Openerl: Door Opener port map (c,h,p,f ) ; 

process 
begin 

•• case o 
C <= I 0 I j h <= IQ I i p <= I 0 I i 

wait for 1 ns ; 
assert (f='O' ) report "Case 0 failed"; 

-- case 1 
c <= '0' i h <= '0 ' ; p <= 'l'; 
wait for 1 ns ; 
assert (f=' l ' ) repoi-t "Case 1 failed"; 
•• (cases 2 · 6 omi t t ed f r om figur e ) 
-- case 7 
c <= I l'; h <= I 1 I ; p <= f .l_ I ; 

wait for 1 ns ; 
assert (f=' O' ) i-epo i-t "Case 7 failed"; 

wait ; -- process does not wake up again 
end process; 

end behavior; 

Figure 9.13 Behavioral VHDL description of DoorOpener 
testbench. 



9.2 Combinational Logic Description Using Hardware Description Languages 499 

and waits for those values to propagate through the component- we arbitrarily wait 
for l ns of simulated time, but could have picked any time, since we didn' t actually create 
a time delay within the component. But we do have to wait for some time, as YHDL sim
ulation is defined such that no signal is updated instantaneously, but rather after an 
infinitel y small period of simulated time. After waiting, each case checks for the correct 
value on the output f, using an assert statement. If the condition of the assert statement 
evaluates to true, simulation proceeds to the next statement. But if the condition evaluates 
to false, the c01Tesponding error message will be reported and the simulation will 
terminate. 

Verilog 
Figure 9.14 shows a Verilog test
bench for the DoorOpener design of 
Figure 9.S(c). Notice that the module, 
named Testbench, bas no ports-the 
module is self-contained, requiring 
no inputs and generating no outputs. 
The module first declares three regis
tered signals c, h, and p and a single 
wire f T he signals c, h, and p are 
declared as reg because we must 
assign values to the signals that will 
be connected to the inputs of the 
design being tested. However, 
because we do not need to assign a 
value to the output being monitored, 
the signal f is declared as a wire. The 
testbench then instantiates one 
instance of the DoorOpener compo
nent, named DoorOpenerl, and 
connects the inputs and outputs of the 

module Testbench; 
reg c, h, P i 
wire f; 

DoorOpener DoorOpenerl (c, h, p, f ); 

initial 
begin 

I I c ase o 
c <= O; h <= O; p <= O; 
#1 $diaplay ( " f = %b", f l ; 
11 case 1 
c <= O; h <= O; p <= l; 
#1 $diaplay ( 11 f = %b 11 , f); 
/ / (cases 2 · 6 omit t ed from 
11 case 7 
c <= l; h <= l; p <= l; 
#1 $diaplay ( " f = %b", f ) ; 

end 
endmodule 

figure ) 

Figure 9.14 Behavioral Verilog description of 
DoorOpener testbench. 

component to the internal wires. The testbench then contains an initial procedme that 
defines a block of code that will be executed only once when execution of the testbench 
begins. The initial procedure sets the inputs of the DoorOpener component and displays 
the resulting value of the component's output. This testbench tries all possible cases of 
the three inputs, of which there are eight cases. Many components have too many inputs 
to try all possible cases- in that situation, we might try border cases (e.g., all Os, all ls) 
and then some random cases. 

Each case sets the three inputs of the component to a particular input combination, 
and waits for those values to propagate through the component- we arbiU'arily wait for l 
unit of simulated time using the delay control statement "#/", but we could have picked 
any length of time, since we didn't actually create a time delay within the component. 
The Verilog language does not define standard time units, such as nanoseconds, but 
instead simply defines time in tenns of time units, which a designer can use within a sim
ulation environment. We do have to wait for some time, as the assignments within the 
testbench are nonblocking statements that are not updated until the current simulation 



500 9 Hardware Description Languages 

time completes. After waiting, each case outputs the value of the output f using a $aisplay 
statement. TI1e statement "$display('f = %b ", / )" outputs the value off in binary. For 
example, if the value of/ is 1, then the display statement will output "f =I". The display 
s tatement consists of a format stt'lng followed by a comma-separated List of wires, regis
ters, or ports. Within the format string of our display statement, the %b indicates that the 
value of the signal specified after the fonnat string will be displayed in binary. After sim
ulation has finished, we can compare the values output during simulation to the expected 
values, to determine if our circuit is working correctly. 

SystemC 
Figure 9.15 shows a SystemC test
bench for the DoorOpener design 
of Figme 9.6(c). Notice that the 
module, named Testbench, has du·ee 
output ports, c_r, h_t, and p_t, and 
one input port f _t. In SystemC, we 
design the testbench circuit as a 
separate module that connects to the 
design we are testing. Therefore, for 
every input p01t on the circuit being 
tested, our testbencb will have a 
corresponding output port. Like
wise, for every output port on 
the circui t being tested, om test
bench will have a corresponding 
input port. The testbench module 
defines a single process named 
1estbench_proc. The testbench 
process is de fin ed as an 
SC_THk.EAJJ, which is similar to 
an SC_METHOD process except 
that the SC_THREAD allows us to 
use the wait() function within the 
process body to control the timing 
behavior of the process. In contrast, 
SystemC does not allow use of the 
wait() function within an 
SC_METHOD process. The test
bench process controls the inputs of 
the circuit being tested and checks 
for correct output. This testbench 
tries all possible cases of the 
DoorOpener's three inputs, of 
which there are eight cases. Many 
components have too many inputs 

#include "syst emc.h" 

SC MODULE (Testbench ) 
{ -

sc_out<sc_logic> c_t , h_t , p_ t; 
sc_in<sc_l ogic > f_t; 

SC CTOR (Testbench) 
{ -

SC_THREAD (testbench_pr oc ) ; 
} 

void testbench_proc ( ) 
{ 

} 
} i 

I/ case 0 
c_ t.write {SC_ LOGIC_ O) ; 
h_ t.write (SC_ LOGIC_ O) ; 
p_ t.write {SC_ LOGIC_ O) ; 
wait (l , SC_ NS); 
assert ( f _ t. read ( ) SC_ LOGIC_ O l ; 

II case 1 
c_ t.write (SC_ LOGIC_ O) ; 
h_ t.write {SC_ LOGIC_ O) ; 
p_ t.wri te (SC_ LOGIC_ l ) ; 
wait (1 , SC_ NS); 
assert ( f _ t. read {) == sc_ LOGIC_ l ) ; 

II (cases 2 - 6 omit ted f rom f igur e ) 
II case 7 
c_ t.wri t e {SC_ LOGIC_ l ) ; 
h_ t.write (SC_ LOGIC_ l ) ; 
p_ t.write {SC_ LOGIC_ l ) ; 
wait (1 , SC_ NS) i 

assert ( f _ t. read ( ) SC LOGIC O ) ; 

sc_stop ( ); 

Figure 9.15 Behavioral SystemC description of 
DoorOpener testbench. 



9.3 Sequential Logic Description Using Hardware Description Languages 501 

to try all possible cases- in that situation, we might try border cases (e.g., all Os, all ls) 
and then some random cases. 

Each case sets the three inputs of the DoorOpener circuit to a particular input combi
nation, and waits for those values to propagate through the component- we arbitratily 
wait for 1 ns of simulated time, but could have picked any time, since we didn' t actually 
create a time delay within the component. But we do have to wait for some time, as 
SystemC simulation is defined such that no signal or port is updated instantaneously, but 
rather after an infinitely small period of simulated time. After waiting, each case checks 
for the correct output by reading the portf_r using an assert s tatement. If the condition of 
the assert statement evaluates to true, simulation proceed5 to the next statement. But if the 
condition evaluates to false, simulation will stop and the corresponding error message 
will be reported. 

In SystemC, values such as 0 and 1 are integer values and not logic values. Instead, 
SystemC defines the values SC_LOGIC_O and SC_LOGIC_ l that correspond to the logic 
values of o and 1, respectively, which we used in the description. 

9.3 SEQUENTIAL LOGIC DESCRIPTION USING 
HARDWARE DESCRIPTION LANGUAGES 

Register 
The most basic component in sequential logic is a regis ter. We now show how to model a 
basic register in HDLs. 

VHDL 
Figure 9.16 shows a basic 
4-bit register in V HDL. 
The register is identical to 
that described in Figure 
3.36. The entity defines 
the data input I and the 
data output Q, as well as 
the clock input elk. The 
input I and output Q of this 
design correspond to 4-bit 
values. Instead of using 4 
individual inputs and 4 
individual outputs of types 
std_logic, the entity's I and 
Q po11s are defined as 
srd_logic_vecror. A std_ 

:library i eee; 
use i eee.std_logic_ ll64.all; 

entity Reg4 is 
port ( I : in std_logic_vector (3 downto O); 

Q: out std_logic_ vec t or ( 3 downto O) ; 
elk: in std_logi c 

) ; 
end Reg4; 

architecture behavi or of Reg4 is 
begin 

process (c l k ) 
begin 

if ( clk~'l' and clk 1 event ) then 
Q <= I ; 

end if; 
end process ; 

end behavior; 

logic_vector is a vector, or f igure 9.16 Behavioral VHDL description of a 4-bit register. 
array, of multiple srd_logic 
elements. For example, the type declaration "std_logic_vector(3 downto O)" defines a 4-
bit vector of std_logic elements, where the bit positions within the vector are numbered 
from 3 to 0. The downto keyword defines the ordering of the elements within the vector, 
indicating that element 3 is located in the lefunost position. The statement "/<= "1000'"' 



502 9 Hardware Description Languages 

would thus assign the value 1 to posttJon 3 of the vector I and the value 0 to the 
remaining three positions. When assigning a value to a std_logic_vector, the vector's 
value must be specified within double quotations. For example, the decimal value 5 
would be specified as a 4-bit std_logic_vector as "0101". 

The architecture describes the register behaviorally, using a process statement. The 
process is sensitive to its elk input only. Because the process should only update its output 
during a rising clock edge, the process need not execute if input I changes. If elk changes, 
the process begins executing its statements. The first statement checks whether the 
process began executing due to a rising clock edge (O to 1), as opposed to a falling clock 
edge (1 to o). The statement checks for a rising edge by checking whether the elk input 
just changed (clk'evenl) and that change was to a 1 (elk='/'). If the process began exe
cuting due to a rising clock edge, then the process updates the register's contents using 
the statement "Q <= /''. For a falling clock edge, the process will begin executing, check 
the if statement condition, and then reach the end of the process and hence stop executing 
without updating Q. Ideally, VHDL would have a way to begin executing a process only 
on a rising clock edge, but YHDL has no such feature. 

In VHDL, output ports are a type of signal, and signals have memory in simulation. 
Thus, assigning l to Q causes Q to retain the new value, even when the process stops exe
cuting, thus implementing the storage part of the register. 

Verilog 
Figure 9.17 shows a basic 4-bit register in Verilog. 
The register is identical to that described in Figure 
3.36. The module defines the data input land the data 
output Q, as well as the clock input elk. The input I 
and output Q of this design correspond to a 4-bit 
value. Ins tead of using 4 individual inputs and 4 indi
vidual outputs, the module's I and Q ports are defined 
as vectors. For example, the type declaration "input 
[3:0] r defines a 4-bit input vector where the bit posi
tions within the vector are numbered from 3 to 0. The 

module Reg4(I, Q, elk ) ; 
input (3 : 0] I; 
input elk; 
output ( 3:0 ) Q; 
reg ( 3:0) Q; 

always @ (posedge elk) 
begin 

Q <:= I; 
end 

endmodule 

"[ 3:0 ]" defines the ordering of the elements within Figure 9.17 Behavioral Verilog 
the vector, indicating that element 3 is located in the description of a 4-bit register. 
leftmost position. The statement "1<=4'b/OOO" would 
thus assign the value 1 to position 3 of the vector I and the value 0 to the remaining three 
positions. When assigning a value to a vector, we must specify the number of bits within 
the value, the base of the value, and the value itself. For example, the decimal value 5 
would be specified as the 4-bit binary value 4"hOJOI. 

The module describes the reg]ster behaviorally, using an always procedme. The pro
cedure block is sensitive to the positive edge Gf the elk input, specified using the posedge 
keyword. Because the module should only update its output during a rising clock edge, 
the always procedme need not execute if I changes. On the positive edge of the clock, the 
procedure updates the register's contents using the statement "Q <= /". Because we 
defined the output Q as a reg, assigning I to Q causes Q to retain the new value, even 
when the procedure is done executing, thus implementing the storage part of the register. 



Oscillator 

9.3 Sequential Logic Description Using Hardware Description Languages 503 

System C 
Figure 9 .18 shows a basic 4-bit register in SystemC. 
The register is identical to that described in Figure 
3.36. The module defines the data input I and the 
data output Q, as well as the clock input elk. The 
input I and output Q of this design correspond to a 
4-bit value. Instead of using 4 individual inputs and 
4 individual outputs of type sc_logic, the module's I 
and Q ports are defined as sc_lv, which stands for 
logic vector. An sc_lv is a vector of multiple 
sc_logic elements. For example, the type declara
tion "sc_lv<4>" defines a 4-bit vector of sc_logic 
elements where the bit positions within the vector 
are numbered from 3 to 0. ln SystemC, the o rdering 
of the elements within the vector is defined such 
that the leftmost position is the most significant bit. 
For example, the s tatement " [< = "1000"" would 
thus assign the value 1 to position 3 of the vector I 
and the value 0 to the remaining three positions. 
When assigning a value to an sc_ lv, the vector's 
value must be specified within double quotations. 

#include "systemc.h" 

SC MODULE (Reg4 ) 
{ -

SC in<SC lv<4> > I; 
SC_OUt<BC_lV<4> > Q; 
sc_in<sc_logic> elk; 

SC CTOR (Reg4 ) 
{ -

SC_METHOD (seq_logic ) ; 
sensitive_pos << elk ; 

void seq logic () 
{ -

} 
} ; 

Q. write ( I. read ( ) ); 

Figure 9.18 Behavioral SystemC 
description of a 4-bit register. 

For example, the decimal value 5 would be specified as a 4-bit sc_lv as "0101 , .. Notice 
that in defining the input port for I , we included a space between the two closing angle 
brackets, "> >"- that space is required in SystemC. 

The module consists of a single process named seq_logic that is sensitive to the pos
itive edge of the elk input. The positive edge is specified using the sensitive_pos 
statement for defining the sensitivity list. Bcause the module sho uld only update its 
output during a rising clock edge, the seq_logic process need not wake up if l changes. 
On the positive edge of the clock, the regis ter updates the register's contents using the 
statement "Q. write(J.read() )". 

ln SystemC, output ports are a type of signal, and signals have memory. Thus, 
assigning I to Q causes Q to retain the new value, even when the process is done exe
cuting, thus implementing the storage part of the register. 

VHDL 
The register presented in Figure 9.16 has a clock input. We thus need to define an oscil
lator component that generates a clock s ignal. Figure 9.19 illustrates an oscillator 
described in VHDL. The entity defines one output, elk. The architecture consists of a pro
cess, but notice that the process does not have a sensitivity list. By default, such a process 
executes its statements as if they were enclosed in an infinite loop. So the process sets the 
clock to o, waits until IO ns of simulated time passes, sets the clock to 1 , waits another 10 
ns of simulated time, goes back to the first s tatement in the process that sets the clock 
to o, and so on. The output waveform for such an oscillator will be identical to tbe wave
form shown in Figure 3.29. 



504 9 Hardware Description Languages 

The wait for statement in YHDL tells 
the simulator the amount of simulated time 
that the process should wait. A process 
without a sensitivity list must have at least 
one wait s tatement, otherwise the simulator 
will never finish simulating that process 
(because the process is in an implicit infi
nite loop), and rhus the simulator will 
never get a chance to update outputs or to 
simulate other processes. On rhe other 
hand, a process wilh a sensitivity list 
cannot include wait statements, because by 
definition the sensitivity list defines when 
the process should execute. 

Verilog 
The register presented in Figure 9 .17 has a 
clock input. We thus need to define an 
oscillator component that generates a clock 
signal. Figure 9.20 illustrates an oscillator 
described in Yerilog. The module defines 
one output, elk. The module cons ists of an 
always procedure, but notice that the 
always procedure does not have a sensi
tivity list. By default, such a procedure 
executes its staremenrs as if tbey were 
enclosed in an infinire loop. Assuming we 
are using a rime scale of nanoseconds, the 
always procedure secs the clock co o, delays 
for I 0 ns of simulated time, sets the clock 
to 1, delays for another JO ns of simulated 
time, goes back to the first statement in the 
procedure that sets the clock to o, and so 
on. The output waveform for such an oscil-
lator will be identical to the wavefonn 
shown in Figme 3.29. 

library ieee; 
use ieee.st d_logic_ l l 64.al l; 

entity Osc ia 
port (elk: out std_logi e ) ; 

end Ose; 

architecture behavior of Osc is 
begin 

process 
begin 

elk <= 'o'; 
wait for 10 ns ; 
elk <= 'l'; 
wait for 10 ns ; 

end process ; 
end behavior; 

Figure 9.19 VHDL oscillator descriptic>r1. 

module Osc (elk) ; 
output elk; 
reg elk; 

always 
begin 

e l k <= O; 
#10; 
elk <= l; 
#10; 

end 
endmodule 

Figure 9.20 Verilog 
oscillator description. 

The delay control statement, specified with the # character, tells the simulator the 
amount of simulated time that the procedure should delay. A procedure withoUT a sensi
rivity list must have ar least one delay comrol starement, otherwise the simulator will 
never finish simulating that procedure (because the procedure is in an implicit infinite 
loop), and thus the simulator will never get the chance co updare outputs or co simulate 
ocher procedures. On the other hand, a procedure with a sensitivity List cannot include 
delay control srarements, because by definition rhe sensitivity list defines when the proce
dure should awake. 



Controllers 

9.3 Sequential Logic Description Using Hardware Description Languages 505 

System C 
The register presented in Figure 9 .18 has a 
clock input. We thus need to define an oscil
lator component that generates a clock 
signal. Figure 9.21 illustrates an oscillator 

described in SystemC. The module defines 
one output, elk. The module consists of a 
single process, named seq_logic , imple
mented as an SC_THREAD. By default, an 
SC_THREAD process is only executed 
once. In order to ensure the process executes 
continuously, we enclose the statements of 
the process in an infinite loop, implemented 
using the statement "while(1rue)". Thus, the 
loop will execute the statement included 
within the braces forever. During execution, 
the process sets the clock to o, suspends exe
cution for l 0 ns of simulated time, sets the 

clock to 1 , sleeps another 10 ns of simulated 
time, sets the clock to o, and so on. The 

#include "sys temc.h" 

SC MODULE (Osc) 
{ -
sc_out<sc_lo~ic> e l k; 

SC CTOR (Osc) 
{ -

SC_THREAD (seq_logic) ; 
} 

void seq_l ogic( ) 
{ 

} 
}; 

while (t rue) { 
c l k. write (SC_LOGIC_ O) ; 
wait ( l O, SC_ NS ) ; 
c l k. write (SC_ LOGIC_l ) ; 
wait ( l O, SC_ NS ) ; 

figure 9.21 SystemC oscillator 

output wavefonn fm such an oscillator will description. 

be identical to the waveform in Figure 3.29. 
The wait() function in SystemC tells 

the simulator the amount of simulated time that the process should wait. For example, the 
statement "wai1(JO, SC_NS);" will suspend the execution of the process for 10 ns. An 
SC_THREAD process explicitly implementing an infinite loop must h ave at least one wait 
statement, otherwise the simulator would never finish simulating that process (because 
the process is in an infinite loop). and thus the simulator could not update outputs or sim
ulate other processes. 

Recall that a common type of sequential circuit is a con.troll er, which implements a finite-state 
machine. The controller consists of a state registe r and combinational logic. 

VHDL 
Figure 9 .22 shows one way to model a controller in VHDL. The controller modeled is for 
the FSM shown in Figure 3.47. The VHDL entity, named Laser1imer, defines the con
troller's inputs and outputs. 

The VHDL architecture describes the behavior of the entity. The architecture consists 
of two processes, one modeling the state register, the other modeling the combinational 
logic, that fonn the standard controller architecture from Figure 3.59'. 

The first process describes the controller's state register. That process, named starereg, is 
sensitive to inputs elk and rsl. If the rst input is enabled, then the process asynchronously 
sets the currentsrate signal to the FSM's initial state, S_Off. Otherwise, if the clock is rising, 
the process updates the state register with the next state. 



506 9 Hardware Description Languages 

The currentsiate and nextstate 
signals are defined as a user-defined 
type named staterype. statetype is 
defined by the type statement and 
specifies the possible values a 
signal of that type can represent. 
The type declaration of statel)pe 
consists of the names of all the 
states in the controller, S_Off, 
S_Onl, S_On2, and S_On3. 

The second process describes 
the controller's combinational 
logic. That process, named comb
logic, is sensitive to the inputs to 
the combinational logic of Figure 
3.59, namely the external inputs (in 
this case, b) and the state register 
outputs (currentstate). When either 
of those items change, the process 
sets the FSM's outputs , in this case 
x, with the appropriate value for 
the clU'rent state. The process also 
detennines what the next state 
should be , based on the current 
state and the values of inputs (i.e., 
the conditions on the FSM transi
tions). The next state will be 
loaded into the state register by the 
state register process on the next 
rising clock edge. 

Notice that the architecture 
declares two signals, currentstate 
and nextstate. Signals are visible 
across all processes in an architec
ture. The currentstate signal 
represents the actual s torage of the 
state register. The nextstate signal 
represents the value corning from 
the combinational logic and going 
to the state register. Notice also 
that the architecture declares those 

library ieee; 
use ieee . std_ logic_ l l 64.al l 

entity LaserTimer is 
port (b: in s t d_ logi c; 

x: out std_logic ; 
elk, rst: in std logic 

) ; 
end LaserTimer; 

arehiteeture behavior of LaserTimer is 
t}'I>e statetype is 

{S_ Off , S_ Onl, S_ On2, S_ On3); 
signal currentstat e, nextstate: 

s tatetype; 
begin 

statereg: process (c l k, rst) 
begin 

if {rst ='l') then -- intial state 
curr entstate <= S_Off; 

elsif (clk= ' l' and clk'event) then 
curr entstate <= nextstate; 

end if; 
end proeess ; 

combl ogic: process (cur rentstate, b) 
begin 

case current state is 
when S Of f "'> 

x <= ' 0'; -- laser off 
if ( b= I Q I ) then 

nextstate <= S_Off; 
else 

nextstate <= S_ Onl; 
end if ; 

when S Onl => 

x <= ' l'; · · laser on 
nextstate <= S_ On2 ; 

when s On2 oo> 
x <= ' l'; -- laser still on 
nextstate <= S_On3; 

when S On3 => 

x <= 'l '; lase r still o n 
nextstate <= S_Off; 

end case ; 
end proeess ; 

end behavior ; 

Figure 9.22 Behavioral VHDL description of the 
LaserTimer controller. 

s ignals as type statetype, defined in the architecture as a type whose value can be either 
S_Off; S_Onl , S_On2, or S_On3. 

Verilog 
Figi1re 9.23 shows one way to model a controller in Verilog. The controller modeled is for 
the FSM shown in Figure 3.47. The Yerilog module, named LaserTimer, defines the con
troller's inputs and outputs . 



9.3 Sequential Logic Description Using Hardware Description Languages 507 

The module consists of two 
procedures, one modeling the state 
register, the other modeling the 
combinational logic, that together 
form the standard controller archi
tecture from Figure 3.59. 

The state register procedure is 
sensitive to the positive edge of the 
rst input and the positive edge of the 
elk input. The state register has an 
asynchronous reset signal and in 
order to model the asynchronous 
reset, the state register procedure 
must be sensitive to the positive edge 
of the rst input. On the positive edge 
of the rst input, the procedure will 
wake asynchronously and sets the 
currentstate signal to the FSM's 
initial state, S_Off. On the rising 
edge of the clock input, elk, if the 
reset input is not enabled, the proce
dure updates the state register with 
the nextstate value detennined by 
the combinational logic procedure. 

In Verilog, we explicitly specify 
the size of the state registers as well 
as define the FSM's state encodiJ1gs. 
Within the LaserTtmer module, we 
declare four parnmeters S _Off, 
S_Onl, S_On2, and S_On3, which 
specify the encodings. For example, 
"S_Off = 2'b00" defines the state 
name S_Ojf and assigns the 2-bit 
value "00" as the encoding of this 
state. We can then ref er to this state 
throughout the module using S_Off 
instead of using specific bit values. 
While not required to define a state 
macrillle, using parameters increases 
the readability of a design and makes 
revisions to the FSM easier. Because 

module LaserTimer(b, x, e l k, rst ) ; 
input b, elk, rst; 
output x; 
reg x; 

:parame ter s Off 2 'bOO, 
2 'bO l , 

2 'blO, 
2 'bll ; 

s Onl 
s On2 
s On3 

reg (1:0] currentstate; 
r e g ( 1: 0 ) nextstate; 
II state register procedure 
always @ (poaedge rst o r poaedge 
:begin 

if (rst==l ) II initial state 
currentstate <= S_Off; 

else 
currentstate <= nextstate; 

end 
II combinational l ogic procedure 
alway s @ ( * ) 

:be gin 
c a s e (currentstate ) 

s Off: begi n 
-x <= O; II laser off 
if (b==O ) 

nextstate <= S_Off; 
else 

nextstate <= S_Onl; 
e nd 
s Onl! begin 
-x <= l; II laser on 
nextstate <= S_On2; 

e nd 
s On2: begin 
-x <= l; II laser still on 
nextstate <= S_On3; 

end 
S On3: begin 
-x <= l; / / laser still on 
nextstate <= S_Of f; 

e nd 
endcase 

e nd 
endmodule 

Figure 9.23 Behavioral Verilog description of the 
LaserTimer controUer. 

e l k ) 

the LaserTimer's FSM has four states, we need a 2-bit state register and thus declare the cur
rentstate and nextstale signals as 2-bit registers. 

The second procedure is the combinational procedure implementing the contrnl logic 
of the FSM. That procedure is sensitive to all the items it reads (specified by the"*"). which 
are the inputs to the combinational logic of Figure 3.59, namely the external inputs (in this 
case, b) and the state register outputs (currentstate). When either of those items change. the 



508 9 Hardware Description Languages 

procedure sets the FSM's outputs, in this case x, with the appropriate value for the current 
state. The procedure also determines the next state based on the current s tate and the values 
of inputs (i.e., the conditions on the FSM transitions). The next state will be loaded into the 
state register by the state register procedW'e on the next positive clock edge. 

Notice that the module 
declares two signals currenr
state and nextstate. Signals 
are visible across all proce
dures in a module. The 
currentstate signal repre
sents the actual storage of 
the state register. nextstate 
represents the value coming 
from the combinational logic 
going to the state register. 

SystemC 
Figure 9.24 shows one way 
to model a controller in Sys
temC, for the FSM in Figure 
3.47. The module, named 
LaserTimer, defines the con
troller's inputs and outputs. 

The module consists of 
two processes, one modeling 
the state register named 
statereg, the other process 
modeling the combinational 
logic named comblogic, that 
f01m the standard controller 
architecture of Figure 3.59. 

The state register 
process is sensitive to the 
positive edge of the rst input 
and the positive edge of the 
elk input. The state register 
has an asynchronous reset 
signal. In order to model the 
asynchronous reset, the state 
register process is sensitive 
to the positive edge of the rst 
input. On the positive edge 
of the rst input, the process 
will wake asynchronously 
and sets the currentstate 

#include "systemc.h" 

enum s tat etype { S_Of f, s _Onl, S_ On2, S On3 }; 

SC MODULB (LaserTimer ) 
{ -

sc_in<sc_logic> b, elk, rst; 
sc_out<sc_logic> x; 
sc_signal<statetype> curr entstate, nextstat e; 

SC_CTOR (LaserTimer) { 
SC_MBTHOD (sta tereg); 
aenaitive_pos << r st << elk ; 
SC_MBTHOD (comblogic ) ; 
sensitive << currentstate << b; 

void s tatereg () { 
if ( rst. read () SC LOGIC 1 ) 

curre n tstate S_Off; //-initial state 
else 

curre n t state nextstate; 

void comblogi c {) 

} 
} ; 

switch (currentstate) 
case s Off: 

x .write (SC_ LOGIC_ O); / /laser o ff 
if ( b.read( ) == SC_LOGIC_ O ) 

next state S_Of f; 
else 

next state 
break; 

case s Onl: 

S_Onl ; 

x.write (SC_ LOGI C_ l); / /laser on 
nextstate s_on2; 
break; 

case s On2 : 
x.write (SC_ LOGI C 1); I I laser s till on 
next s tate 
break; 

case S On3: 

S_On3; 

x.write (SC_ LOGI C l); / /laser s t ill o n 
next state 
break; 

s_off ; 

Figure 914 Behavioral SystemC description of the Laser1imer 
controller. 

signal to the FSM's initial state, S_Off. On the rising edge of the clock input, elk, if the 
reset input is not enabled, the process updates the state register with the nextstate value 
determined by the combinational logic process. 



9.4 Datapath Component Description Using Hardware Description Languages 509 

The currentstate and nextstate signals are defined as a user-defined type, named state
type. statetype is defined by the enum statement and specifies the possible values a signal 
of that type can represent. The enum declaration for statetype consists of the names of all 
the states in the controller, s_qg; S_Onl , S_On2, and S_On3. 

The second process, named comblogic, is sensitive to the inputs to the combinational 
logic of Figure 3.59, namely tbe external inputs (in this case, b) and the state register 
outputs (currenlstare). When either of those items change, the process sets the FSM's out
puts, in this case x , with the appropriate value for the current state. The process also 
determines what the next state should be, based on the current state and the values of 
inputs ( i.e., the conditions on the FSM transitions). The next state will be loaded into 
the state register by the state register process on the next rising clock edge. Within the first 
state, we determine the next state depending on the value of input b by perfonning the 
comparison "b.read() == SC_ LOGJC_O". Note that the compari son for equality uses 
the syntax"==". A common mistake is to use"=" instead, which means assignment rather 
than equality. 

Notice that the module declares two sc_signals: currenrsrare and nexrstare. Signals are 
visible across all processes in a module. T he currentsfate signal represents the actual 
storage of the state register. Tbe nextstate signal represents the value coming from the 
combinational logic and going to the state register. Notice also that the architecture 
declares those s ignals as a type stafetype, defined in the architecture as a type whose value 
can be either S_Off, S_Onl , S_On2, or S_On3. 

9.4 DATAPATH COMPONENT DESCRIPTION 
USING HARDWARE DESCRIPTION LANGUAGES 

Full-Adders 

This section shows how to describe a full-adder behaviorally in an HDL. Recall from 
Figure 4 .31 that a full-adder is a combinational circuit tbat adds three bits (a , b, and ci) 
and outputs a sum ( s) and a carry-out (co) bit. 

VHDL 
Figure 9.25 shows a full
adder described behav
iorally in YHDL. The 
VHDL entity, named 
Ful/Adder, defines the 
full-adder's three inputs 
a, b, and ci and two 
outputs sand co. 

The architecture 
describes the behavior of 
the full-adder. The archi
tecture consists of one 
process describing the 
combinational behavior 
of the full-adder. The 

library ieee; 
use i eee.std_logi c _ ll64.all ; 

entity FullAdder is 
port ( a, b, ci~ in std_logic; 

s, co: out std_logic 
) : 

end FullAdder; 

architecture behavior of FullAdder is 
beg; in 

process (a, b, ci) 
begin 

s <= a xor b xor ci; 
co <= (b and ci ) or (a and ci) or (a and bl; 

end process ; 
end behavior; 

Figure 9.25 Behavioral VHDL description of a full-adder. 



510 9 Hardware Description Languages 

process is sensitive to all three inputs (a , b, and ci) of the full-adder. When any of the 

inputs change, the process executes its two statements updating the values for the sum (s) 
and carry-out (co). 

Verilog 
Figure 9.26 shows a full-adder 
described behaviorally in Yer

ilog. The Yerilog module, 
named Ful/Adder, defines the 
full-adder's three inputs a, b, 

and ci and two outputs s and 
co. 

The module describes the 
behavior of the full-adder and 

module Full Adder (a, b, ci, s, co) ; 
input a, b, ci; 
output s, co; 
reg s, co; 

always @ ( • ) 
begin 

s <= a A b A c i ; 
co <= (b & ci) I ( a & ci } I (a & b ) ; 

end 
endmodule 

consists of a single always 
procedure describing the com- Figure 9.26 Behavioral Verilog description of a full-adder. 

binational behavior of the 

full-adder. The procedw-e is 

sensitive to all items read, which in this case are the three inputs (a , b, or ci) of the full
adder. When any of the inputs change, the procedure executes its two statements updating 
the values for the sum (s) and carry-out (co). 

SystemC 
Figure 9.27 shows a full-adder 
described behaviorally in Sys
temC. The SystemC module, 

named Ful/Adder, defines the 
full-adder's three inputs a, b, 
and ci and two outputs s and 
co. 

The module describes the 
behavior of the full-adder and 
consists of a single process, 
named comblogic, describing 

the combinational behavior of 
the full-adder. The process is 
sensitive to all three inputs (a, 
b, or ci) of the full-adder. 

When any of the inputs 
change, the process executes 
its two statements updating 
the values for the sum (s) and 
carry-out (co). 

#include "syst emc . h" 

SC MODULE (Full Adder ) 
{ -

sc_in<sc_logic> a , b , ci; 
sc_out<sc_logic> s, co; 

SC CTOR (Full Adder ) 
{ -

SC_METHOD (combl ogic ) ; 
sensi tive << a << b << ci; 

void comblogic ( ) 
{ 

} 
}; 

s .write (a.read ( ) Ab .read ( ) A ci .read ( )) ; 
co.write ( (b. read () & c i.read O) I 

(a. read () & ci .read ( )) I 
(a. read ( ) & b .read( ))) ; 

Figure 9.27 Behavioral SysternC description of a full-adder. 



9.4 Datapath Component Description Using Hardware Description Languages 511 

Carry-Ripple Adders 

This section shows how to structW'ally describe the 4-bit carry-ripple adder of Figure 4.32 
using the full-adder designed in the previous section. 

VHDL 
Figure 9.28 is a YHDL 
description of a 4-bit carry
tipple adder with a carry-in. 
The Y HDL entity, named 
Cany RippleAdder4, has two 
4-bit inputs a and b, and a 
carry-in input ci. The carry
ripple adder outputs a 4-bit 
sum s and a final carry-out 
co. 

The architecture struc
turally describes the carry
ripple adder composed of 
four fu11-adders. T11e archi
tecture begins by declaring 
the component FullAdder, 
which was described in the 
previous section. The design 
has three internal signals, 
col, co2, and co3, that are 
used for internal connection 
between the full-adders. The 
architecture then instantiates 

library ieee; 
use ieee.std_logi c_ll64.all; 

entity CarryRippl eAdder4 is 
port {a: i n std_l ogic_vector {3 downto O) ; 

b: in std_l ogic_vector {3 downto DJ ; 
c i: in std_logic; 

) ; 

s: out std_logic_vector(3 downto O) ; 
co: out std_logic 

end CarryRippleAdder4; 

architecture structure of CarryRippleAdder4 is 
component Full Adder 

port ( a, b, ci: in std_logic; 
s, co : out std_logic 

) i 

end component; 
signal col, co2, co3: std_logic; 

begin 
FullAdderl: FullAdder 

port map (a ( O) , b ( OJ, ci, s ( 0 ) , col ) ; 
Ful1Adder2: FullAdder 

port map (a(l ) , b (l), coJ., s(l ) , co2); 
Ful1Adder3: FullAdder 

port map (a (2 ) , b (2), co2, s(2 ) , co3 ) ; 
Ful1Adder4: FullAdder 

port map (a(3 ) , b {3), co3, s(3 ) , co) ; 
end struccure; 

four FulLAdder components. Figure 918 Structural VHDL description of a 4-bit carry-ripple 
In VHDL, each instantiated adder. 
component must have a 
unique name. The four Ful/Adder components in this design are uniquely identified by 
the names Ful/Adderl , FullAdder2, Fu/1Adder3, and Ful!Adder4. 

In VHDL, the s1d_logic_vec1or type provides a convenient method of specifying 
ports or signals consisting of multiple bits. However, a design may need to access the 
individual bits of these vectors. The individual bits of a s1d_logic_vec1or can be accessed 
by specifying the desired bit position within parentheses after the vector's name. For 
example, to access bit 0 of the 4-bit input a of this design, one would use the syntax 
"a(O)". In defining the connections to the instantiated components in the carry-ripple 
adder, individual bi ts of the inputs a and b and output s are accessed using this syntax. 
The fust full-adder, FullAdder 1, connects bit 0 of the inputs a and b as well as the carry
ripple adder's catTy-in ci to the full-adder's three inputs. The s output of Ful!Adderl is 
connected to bit 0 of the 4-bit adder's sum output s, represented as s(O) . The design then 
connects the carry-out bit of Ful!Adderl to the internal signal col, which is subsequentiy 
connected to the carry-in input of the next full-adder FullAdder2. The component connec
tions of the remaining three full-adders are connected in a similar manner, with the 



512 9 Hardware Description Languages 

exception of the last full-adder in the carry-ripple chain. The carry-out from that last full
adder Ful1Adder4 is connected to the carry-out output co of the carry-r ipple adder. 

Verilog 
Figure 9.29 is a Verilog descrip
tion of a 4 -bit carry-ripple adder 
with a carry-in. T he Verilog 
module, which is named 
CarryRippleAdder4, has two 4-
bit inputs a and b, and a carry-in 
input ci. The carry-ripple adder 
outputs a 4-bit sum s and a fmal 
carry-out co. 

The module structurally 
describes the carry-ripple adder 
composed of four full-adders. 
The design has three internal 

module CarryRippleAdder4(a, b, ci, s, co ) ; 
input [3:0 ] a; 
input [3:0 ] b; 

input ci; 
output [3:0 ) s; 
output co; 

wire col, co2, co3; 

FullAdder FullAdderl (a [ o] , b[O ] , ci, 
s (O J , col) ; 

FullAdder Ful1Adder2 (a ( l ] , b [1] ' col , 
s ( 1 ) , co2 ) ; 

FullAdder Ful1Adder3 (a(2 ) , b[2)' co2 , 
s (2 ] , co3 ) ; 

FullAdder Ful1Adder4 (a (3 ] , b (3 ) ' co3 , 

wires, col , co2, and co3, that are endmodule 
s (3 ) , co) ; 

used for internal ~onnection 
between the full-adders. The figure 9.29 Structural Verilog description of a 4-bit carry
module instantiates four Full- ripple adder. 

Adder components. In Verilog, 
each instantiated component must have a unique name. The four Fu/IAdder components 
in this design are uniquely identified by the names Ful/Adderl , FullAdder2, Ful/Adder3, 
and FulLAdder4. 

In Verilog, vectors provide a convenient method of specifying ports or signals con
s isting of multiple bits. However, a design may need to access the individual bits of these 
vectors. The individual bits of a vector can be accessed by specifying the desired bit posi
tion within brackets after the vector's name. For example, to access bit 0 of the 4-bit input 
a of this design, one would use the syntax .. a[O]". In defining the connections to the 
instantiated components in the carry-ripple adder, individual bits of the inputs a and band 
outputs are accessed using this syntax. The first full-adder, Ful/Adderl, connects bit 0 of 
the inputs a and b as well as the carry-ripple adder's carry-in ci to the full-adder's three 
inputs. The s output of Ful/Adderl is connected to bit 0 of the 4-bit adder's sum output s, 
represented as s[Oj. The design then connects the carry-out bit of Ful/Adderl to the 
internal signal col , which is subsequently connected to the carry-in input of the next full
adder Ful/Adder2. The component connections of the remaining three fuJJ-adders are 
connected in a similar manner, with the exception of the last full-adder in the carry-tipple 
chain. The carry-out from the last full-adder Ful/Adder4 is connected to the carry-out 
output co of the carry-ripple adder. 

SystemC 
Figure 9.30 is a SystemC description of a 4-bit can-y-ripple adder with a carry-in. The 
SystemC module, named CarryRippleAdder4, has two 4-bit inputs a and b, and a carry-in 
input ci. The carry-ripple adder outputs a 4-bit sum s and a final carry-out co. 



9.4 Datapath Component Description Using Hardware Description Languages 513 

The module stmcturally 
describes the cany-ripple 
adder composed of four fu ll
adders. The design has three 
internal signals, col, co2, and 
co3, that are used for internal 
connection between the full
adders. The module first 
instantiates four Ful/Adder 
components. In SystemC, 
each instantiated component 
must have a unique name. 
The four FullAdder compo
nents in this design are 
uniquely identified by the 
names F ul!Adder _ 1, 
FullAdder _2, Ful!Adder_3, 
and Ful!Adder _ 4. 

Previously, we defined 
multiple-bit inputs as an 
input vector using the sc_lv 
type. However, SystemC 
does not support connecting 
individual bits within a signal 
or port of type sc_lv in a 
structural description. In om 
CarryRippleAdder4 design, 
we instead defined the inputs 
and ou tputs a, b, and s as 
arrays of sc_logic with four 
elements each, rather than 
using type sc_lv. The indi
vidual bits of the array can be 
accessed by specifying the 
desired bit position within 
brackets after the array's 
name. For example. to access 

# include "systemc. h " 
lt incl ude 0 fulladder . h" 

SC MODULE (CarryRippl eAdder4 ) 
{ -

sc_ in<s c _logic > a [4 ] ; 
sc_in<sc_logic > b [4 ] ; 
sc_in<sc_logic > c i ; 
sc_out<sc_logic> s[4 ] ; 
SC_ OUt<SC_logic > co; 

sc_signal<sc_logic> col , co2, co3; 

FullAdder Ful lAdd er_ l; 
FullAdder Ful 1Add er_ 2; 
FullAdder Ful1Add er_ 3; 
FullAdder Ful 1Add er_ 4; 

SC_CTOR (CarryRippl e4 ) : 

} 
} ; 

FullAdder_ l("Ful lAdder_ l" ) , 
Ful1Adder_ 2 ("Ful1Adder_ 2 " ) , 
Ful1Adder_ 3 ("Ful 1Adder_ 3 " ) , 
FullAdder _ 4 ( "FullAdder _ 4 " ) 

FullAdder_ l . a (a [ O]) ; Ful l Adder_l . b(b [ O]) ; 
Ful l Adder_ l . ci (ci ) ; FullAdder_l .s (s [O] ) ; 
FullAdder_ l . co (col ) ; 

Ful1Adder_ 2 . a (a [ l ]) ; Fu11Adder_2.b(b [ l ]) ; 
Ful1Adder_ 2 . ci (col ) ; Ful1Adder_2.s(s [ l )) ; 
Ful1Adder_ 2 . co ( co2 ) ; 

Ful1Adder_ 3 . a (a [ 2 ]) ; Ful1Adder_3.b(b [2 ]) ; 
Ful1Adder_ 3 . ci ( co2 ) ; Ful1Adder_3.s(s [ 2)) ; 
Ful1Adder_ 3 . co ( co3 ) ; 

Ful1Adder_ 4 . a (a [ 3 ]) ; Ful1Adder_4 .b(b [ 3 ]) ; 
Ful1Adder_ 4 . ci ( co3 ) ; Ful1Adder_4.s(s ( 3 )l ; 
Ful1Adder_ 4 . co ( co) ; 

Figure 9.30 Structural SystemC description of a 4-bit carry
ripple adder. 

bit 0 of the 4-element input array a of this design, one would use the syntax "a[O]" . In 
defining the connections to the instantiated components in the carry-ripple adder, indi
vidual b its of the inputs a and b and output s are accessed using this syntax. The first full 
adder PullAdder _I connects bit 0 of the inputs a and b as well as the carry-ripple adder's 
carry-in ci to the full-adder's three inputs. The s output of Ful!Adder _I is connected to bit 
0 of the 4-bit adder's sum output s, represented as s[Oj. The design then connects the 
carry-out bit of Ful/Adder_l to the internal signal col that is subsequently connected to 
the catTy-in input of the next fuJl-adder FullAdder_2. The component connections of the 
remaining three fu ll-adders are connected in a similar manner, with the exception of the 
last full-adder in the carry-ripple chain. The carry-out from the last full -adder 
Fu I/Adder_ 4 is connected to the carry-out output (co) of the carry-ripple adder. 



514 9 Hardware Description Languages 

Up-Counter 

This section shows how to stntcturally describe the 4-bit up-counter of Figure 4.66. 

VHDL 
Figure 9.31 is a VHDL 
description of a 4-bit up-
counter. The entity, 
named UpCounter, 
defines the counter's 
inputs and outputs, con
sisting of a clock input 
elk, a count enable 
control input cm, the 4-
bit count value C, and a 
terminal count output tc. 

The UpCounter's 
architectme structurally 
describes the design con-
sisting of three 
components, namely 
Reg4, Inc4, and AND4. 
Reg4 is a 4-bit parallel
load register with a load 
control input Id. lnc4 is a 
4-bit incrementer. AND4 
is a four-input AND gate 
that will output 1 when 
all four inputs are 1. The 
architecttu·e further spec
ifies two signals, tempC 
and incC, used as 
internal wires within the 
structural description. 

The architecnire 
instantiates each of the 
three components and 
specifies the connec-
tions among them. 
Reg4 is the only 

library ieee; 
use 1 eee . std_ logic_ l l 64.all; 

entity UpCounter is 
port ( elk: in s t d_ logic; 

cnt: in s t d_ logic; 

) ; 

C: out std_logi c _vector(3 downto O) ; 
tc: out s t d_ logic 

end UpCounter ; 

architecture 
component 

port ( 

structure of UpCount er is 
Reg4 
I: in std logic vector(3 downto O) : 
Q: out std_logi;_vector ( 3 downto O); 
elk , ld: in std_logic 

l ; 
end component; 
component Inc4 

port ( a: in std_ logic_ vector(3 downto O) ; 
s: out std_logic_vector ( 3 downto O} 

) i 

end component; 
component AND4 

port ( w,x,y,z: in std_logic; 
F: out std_logic 

) ; 
end component; 
signal tempC: std_logi c _vector (3 downto O} ; 
signal incC: std_logic_vector (3 downto O); 

begin 
Reg4_1: Reg4 port map ( incc , tempC, elk, cnt) ; 
Inc4 1: Inc4 port map ( tempc, incC ) ; 
AND4 1: AND4 port map ( tempC(3 ) , tempC (2) , 

tempC(l ) , tempc (o), tc); 

outputC: process ( tempC) 
begin 

C <= t empC ; 
end process ; 

end structur e; 

figure 9.31 Structural VHDL description of 4-bit up-counter. 

sequential component within the up-counter and thus the elk input only needs to be 
connected to the clock input of the register. The up-counter's counting is controlled 
by connecting the count enable input cnt to the load enable Id of the register. The 
output Q of Reg4_1 is connected to the internal signal tempC, which connects the reg
ister' s output to both the lnc4_ 1 and AND4_ 1 components. l nc4_ 1 receives the 
current count from the tempC connection and outputs the incremented count on its 
output s, which is connected to the other internal signal incC. The incC signal con
nects rhe incremented count from lnc4 _1 to the parallel load input I of Reg4 _I. The 



9.4 Datapath Component Description Using Hardware Description Languages 515 

current count is also connected to the four inputs of the AND4_ 1 component. 
AND4_ J's output F is connected to the counter's terminal count output tc. 

The UpCounter design must connect the output of the 4-bit register to the incre
menter, the AND gate, and the counter's output p011 C. VHDL does not allow connecting 
multiple signals or ports within the port map of an instantiated component. Therefore, the 
architecture uses the rempC signal to connect Reg4 _l 's output to both the AND4 _I and 
lnc4_1 components . We still need to connect the register's output to the output port C. 
The architecture makes this connection by specifying a process, named outputC, that is 
used to connect the output of the register to the output port C. The outputC process is 
sensitive to the signal tempC, previously used as an internal wire between the three com
ponents. Whenever 1empC changes, which corresponds to a change in the up-counter's 
stored count, the ou1putC process assigns the new count to the output port C. 

Verilog 
Figw-e 9.32 is a Verilog description of a 
4-bit up-counter. The module 
UpCounter defines the counter's inputs 
and outputs, consisting of a clock input 
elk, a count enable control input cnt, the 
4-bit count value C, and a terminal 
count output tc. 

The UpCounter's module structur
ally de.scribes the design using three 
components Reg4, lnc4, and AND4. 
Reg4 is a 4-bit parallel load register 
with a load control input Id. l nc4 is a 4-
bit incrementer. AND4 is a four-input 
AND gate that will output 1 if and only 
if all fow- inputs are 1. The module 
further specifies two 4-bit wires, tempC 
and incC, used as internal wires within 
the stmctural description. 

The module instantiates each of 
the three components and specifies the 
connections between them. Reg4 is 
the only sequential component within 
the up-counter, and thus the elk input 
only needs to be connected to the 
clock input of the register. We control 
the up-counter's counting by con
necting the count enable input, cnr, to 
the load enable, Id, of the register. The 
output Q of Reg4_ 1 is connected to 
the internal signal tempC, which con

module Reg4(I, Q, e l k, l d ) ; 
input (3:0] I ; 
input e l k, l d; 
output (3~ 0 ) Q; 
II detai ls not shown 

enclmodule 

module Ine4 (a , s ) ; 
input [3:0 ) a; 
output (3: 0) s; 
II detai ls not s h own 

enclmodule 

module AND4(w, x ,y, z ,F) ; 
input w, x, y, z ; 
output F; 
II detai ls not shown 

enclmodule 

module UpCount er (elk, ent, C, te ) ; 
input e l k , cnt ; 
output (3: 0) C; 
reg [ 3 : OJ C; 

output t c; 

wire 
wire 

Reg4 
Inc4 
AND4 

(3: OJ t empC; 
[3 :O ] ineC; 

Reg4_ l (i neC, tempC, elk, cnt); 
Inc4_ l (tempC, incC) ; 
AND4_ l (tempC (3) , tempC (2), 

tempc (1) , tempc [ OJ , tc) ; 

always @ ( t empC) 
begin 

C <= t empC; 
end 

enclmodule 

nects the register's output to both the figure 9.32 Structural Verilog description of 4-bit up· 
lnc4_ 1 and AND4_1 components. counter. 
lnc4_1 receives the current count 
from the tempC connection and outputs the incremented count on its output s , which is 



516 9 Hardware Description Languages 

connected to the other internal signal incC. The incC signal connects the incrememed 
count from lnc4 _ J to the parallel load input 1 of Reg4 _ J. The current count is also con
nected to the four inputs of the AND4_ 1 component. The AND4_ J's output F is then 
connected to the counter's te rminal count output tc. 

The UpCounter design must connect the output of the 4-bit register to the incre
menter, the AND gate, and the counter' s output port C. Therefore, the module uses the 
remp C signal to connect Reg4_ J's output to both the AND4_ 1 and l nc4_ 1 
components . 

We still need to 
connect tl1e register 's 
outpu t to the output port C. 
The module makes this con
nection by specifying a 
procedure that is used to 
connect the output of the 
regis ter to the output port 
C. The procedure is sensi
tive to the s ignal rempC, 
previous ly used as an 
internal wire between tlle 
tllree components. When
ever tempC changes, which 
corresponds to a change in 
the up-counter's stored 
count, the procedure 
assigns the new count to the 
output port C. 

SystemC 
Figure 9.33 is a SystemC 
description of a 4-bit up
counter. T he SystemC 
module, named UpCou11ter, 
defines the counter 's inputs 
and outputs, consisting of a 
clock input elk, a count 
enable control input cnt, the 
4-bit count value C, and a 
terminal count output tc . 

The UpCounter's module 
structurally describes tl1e 
design consisting of three 
components Reg4, Jnc4, and 

#include "syst emc .h" 
#include "reg4 . h" 
#include "inc4 . h" 
#include "and4 . h" 

SC_ MODULE (UpCounter) 
{ 

sc_in<sc_logic > elk , cnt; 
sc_out<sc_ lv<4> > C; 
SC_OUt<SC_logic > t c; 

sc signal<sc lv<4> > tempc, incC; 
sc=signal<sc= logic> t empC_b [4); 

Reg4 Reg4_1; 
Inc4 Inc4 _ l ; 
AND4 AND4 _ l ; 

SC_CTOR (UpCounter) Reg4_ l ( " Reg4_ 1"), 
Inc4_ l ( " Inc4_ 1") , 
AND4 _ l ( "AND4 1 " ) 

{ 
Reg4_1.I ( i ncC) ; Reg4_ 1 .Q ( tempC) ; 
Reg4_ 1.clk (clk) ; Reg4_ 1.ld (cnt ) ; 

Inc4_1.a ( t empC) ; I nc4_1.s (i ncC) ; 

AND4 l.w (tempC b (O)) ; AND4_ 1. x (tempC_ b (l]) ; 
AND4=1.y (t emp C=b (2)); AND4_1. z ( tempC_b [3)) ; 
AND4_1 .F (t c); 

SC_METHOD (comblogic) ; 
sensitive << tempC; 

void comblogic( ) 
{ 

} 
} ; 

tempC_ b [O) tempC. read () (O J ; 
tempC_ b [ l ) = tempC .read () (1) ; 
tempC_b [2 ) • tempC .read () (2 ) ; 
tempC_ b [3] = tempC. read () (3 ); 
C. write (tempC) ; 

AND4. Reg4 is a 4-bit parallel Figure 9.33 Stnictural SystcmC description of 4-bit up-counter. 
load register with a load 
control input id. lnc4 is a 4-bit incrementer. AND4 is a four-input AND gate that will output 
1 if and only if all four inputs are 1. The module further specifies two 4-bit s ignals, tempC 



9.5 RTL Design Using Hardware Description languages 517 

and incC, used as internal wires within the structural description. Additionally, the module 

defines a four-element array of sc_/ogic signals named tempC_b used to access the indi
vidual bits within the 4-bit vector tempC. 

The module first instantiates each of the three components and then specifies the con
nections between them. Reg4 is the only sequential component within the up-counter, and 
thus the elk input only needs to be com1ected to the clock input of the register. We control 
the up-cowlter's counting by connecting the count enable input, cnt, to the load enable, Id, 
of the register. The output Q of Reg4 _l is connected to the internal signal tempC, which 
connects the register 's output to lnc4 _l. Jnc4 _l receives the current count from th~e ;empC 
connection and outputs the incremented count on its output s , which is connected to the 
internal signal incC. The incC signal connects the incremented count from lnc4_1 to the 
parallel load input I of Reg4 _I. T he current count is also connected to the four inputs of the 
AND4_1 component using the tempC_h array to access the individual bits. The AND4_J's 
output Fis then cmrnected to the counter's terminal count output tc. 

The UpCounter design must connect the output of the 4-bit register to the incre
menter, the AND gate, and the counter's output port C. Therefore, the module uses the 
tempC signal to connect Reg4_J's output to the lnc4_1 component and uses the rempC_b 

array to connect Reg4_J's output to the AND4_1 component. Thus, we still need to 
connect the register's output to the output port C and assign the individual bits of the reg
ister's output to the tempC_b array. The module makes these connections by defining a 
process, named comblogic, that is sensitive to the s ignal tempC. Whenever tempC 
changes, which corresponds to a change in the up-counter's stored count, the comblogic 
process assigns the new count to the output port C. Additionally, the process assigns the 
bits within vector tempC to the individual sc_logic signals within the tempC_b array. In 
order to access the individual bits of the vector signal tempC, we use the syntax, 
"tempc. read () [ o J ". 

9.5 RTL UESIGN USING HARDWARE DESCRIPTION LANGUAGES 

This section demonstrates how to create RTL descriptions using HDLs. HDLs will 
describe the starting point of RTL design, namely high-level state machines (HLSMs), 
and the ending point of RTL design, namely connected controllers and datapaths (proces
sors). RTL designers will c01ru11011ly create a testbench to test the HLSM description, and 
then use that same testbench for the controller/datapath description, thus helping to verify 
that the designer created a correct controller/datapath implementation. 

High-Level State Machine of the Laser-Based Distance Measurer 

This section shows how to create an HDL description for the laser-based distance mea
surer HLSM from Figure 5.12. 

VHDL 
Figure 9.34 presents a YHDL description of an HLSM for the laser-based djstance mea
surer. Two new ieee library packages are used, std_logic_arith and std_logic_unsigned, 
which support arithmetic operations (like addition) on s1d_logic_vec1or items repre
senting unsigned binary numbers. The entjty, named LaserDis1Measurer, defines the 



518 9 Hardware Description Languages 

library IEEE; 
use I EEE.STD_ LOGIC_ l l 64.ALL; 
use IEEE . STD_ LOGIC_ ARITH . ALL; 
use IEEE.STD_LOGIC_ UNSIGNED.ALL; 

entit y LaserDist Mea surer is 

) ; 

p o rt ( 
e l k, rst 
B , S 
L 
D 

in 
in 
out 
out 

std_logic; 
std_logic; 
std l ogic; 
std=logic_ vector 

( 15 downto O) 

end Las erDi stMea s u rer ; 

architecture behavior of 
La ser Di s t Measur er is 

type stat etype is (SO , Sl,S2,S3,S4 ) ; 
signa1 St ate , Stat eNex t : stat etype; 

signa1 Dctr, DctrNext : 
s t d_ logic_ vector (lS downto O); 

signa1 Dr eg, DregNext : 
s t d_ logic_ vector (lS downto O); 

constant u ZERO : 
s t d_ logi c _vector (lS downto 0) 

:= "000000000 00 00000 " ; 
constant u ONE 

std_ logic_vector (lS downto O) 
. - "0000 0000000 000 01 " ; 

begin 

Regs: process (c l k, r st ) 
begin 

if ( rst = 'l') then 
Sta te <= SO; 
Dctr <;: U_ ZERO ; 
Dreg <= U_ ZERO ; 

elsif (c l k' event and c l k=' l' ) t hen 
Sta te <= StateNext; 
Dctr 
Dreg 

end if ; 
end process; 

<= DctrNext; 
<= DregNext; 

CombLogic: procesa (State , Dct r, B, S ) 
begin 

case State i s 
when SO => 

L <= • o •; -- laser o ff 
Dr e g Next <= U_ ZERO; --clr D 
Dctr Next <= U_ ZERO; --clr Dctr 
Stat eNext <= Sl; 

when Sl => 
Dctr Next <= U_ ZERO; ··clr Dctr 
~ <= ' 0 ' ; -- laser o ff 

if (B = 'l' ) then 
Stat eNext <= S2 ; 

else 
StateNext <= S l ; 

end if ; 
when 52 => 

~ <= 'l' ; ··laser on 
Dctr Next <= U_ ZE RO; 
Stat eNext <= S3; 

when S3 => 
~ <= •o • ; -- laser off 
DctrNext <= Dctr + l; 

if ( s = 'l ' ) then 
Stat eNext <= S4; 

else 
Stat eNext <= S3 ; 

end if ; 
when S4 => 

Dctr Next <= Dctr ; 
DregNext <= SHR{Dctr, U_ ONE) ; 
L <= " 0 ' i 

Stat eNex t <= Sl; 
when others => 

Dr egNext <= U_ ZERO; 
Dctr Next <= U_ ZE RO; 
:... <= ' 0 ' ; 
Stat eNext <= SO; 

end case; 
end process ; 

--assign Dreg output to D out put 
D <= Dr eg; 

end beha vior ; 

Figure 9.34 Behavioral VHDL description of an HLSM of the laser-based distance measurer. 

inputs and outputs, including a user-pressed button input B, a laser sensor lnput S, a laser 
control output L, and a 16-bit output D for the distance measured. 

The u se statemen t specifies which packages will be used within a design. The 
package ieee.std_logic_arith defines the unsigned type as well as a set of operations and 
fm1cti011s that can be performed 011 unsigned values. 

The entity also de fines a clock input elk and reset input rst. We assume that the clock 
input is 300 MHz, as was assumed in the laser-based distance measurer design from 



9.5 RTL Design Using Hardware Description languages 519 

Chapter 5. We omit details of generating the 300 MHz oscillator (see Section 9.3 for an 
example of describing an oscillator). 

The YHDL architecture describes the behavior of the entity. The description defines 
constants U_ZERO and U_ONE for 16-bit numbers 0 and 1, respectively. As was the case 
for an FSM, the description for the HLSM defines two signals for the state register: a 
current state signal Slate, and a next state signal StareNexr. Furthermore, the description 
declares current and next signals for every other register too, thus declaring signals Dctr 
and DctrNext, and Dreg and DregNext. 

As was the case for describing an FSM, the description for the HLSM uses two pro
cesses, one for all registers, and one for all combinational logic. The register process is 
sensitive to the reset and clock inputs, and has an asynchronous reset that clears all the 
current register signals. On a rising clock, the register process updates the current register 
signals with the next register signals. 

The combinational logic process is sensitive to all items that it reads. The process 
consists of a case statement carrying out the HLSM's actions and transitions. The process 
reads the current register signals and writes the next register signals; current register 
signals are never written and next register signals are never read by the process. 

The HLSM for the laser-based distance measurer perfonns two arithmetic operations, 
addition and shifting. Incrementing the counter signal Deir in state SJ is done using the 
syntax "DctrNext < = Dctr + 1 ;". State S4 calculates the distance D by dividing the value 
of Dctr by 2. However, this division is achieved using a right-shift-by-one operation. Per
fonning the shift and assigning the value to the output D is done using the statement 
"DregNext <= SHR(Dclr, U_ ONE);". The function SHR(), defined widun the 
ieee.sTd_logic_arith package, shifts the first parameter Dclr by the amount specified by 
the second parameter U_ ONE, where U_ONE is a constant defined earlier in the 
architecture. 

Finally, the output of Dreg is pennanently assigned to the output D using the state
ment "D <= Dreg;''. Note that the statement is not contained inside a process. The 
statement is known as a concurrent signal assignment. The statement executes whenever 
a signal on its right side changes. 

The two-process approach to describing an HLSM can be thought of as follows. The 
combinational logic process computes the inputs of all registers by reading current reg
ister vaJues, performing combinational operations like addition, and writing to the next 
register signals. When a rising clock arrives, the register process updates the current con
tents of all registers with the next register values. 

Verilog 
Figure 9 .35 presents a Verilog description of an HLSM for the laser-based distance mea
surer. The module, named LLlserDistMeasurer, defines the inputs and outputs, including 
a user-pressed button input B, a laser sensor input S, a laser control output L, and a 16-bit 
output D for the distance measured. 

The module also defines a clock input elk and reset input rst. We assume that the 
clock input is 300 MHz, as was assumed in the laser-based distance measurer design in 



520 9 Hardware Description Languages 

module LaserDi stMeasurer (clk ,rst,B,S,L,D); 
input elk, rst , B, S; 
output L; 
output (15 :0) D; 
reg L; 
reg [1 5 : OJ D; 

parameter so = 3'b000, 
Sl 3'b001, 
S2 3'b010, 
S3 3'b011, 
S4 3'bl00; 

reg [2 :0) State, StateNext; 
reg [1 5:0] Dct r, DctrNext; 
reg [15: 0] Dreg, DregNext; 

//Regi sters 
always@(posedge elk , posedge rst) begin 

if (rst == 1) begin //asynchr. reset 
State <= SO; 
Dctr <= O; 
Dreg <= O; 

end 
else begin 

Stat e <; StateNext; 
Dctr 
Dreg 

end 

<= DctrNext ; 
<; DregNext; 

end 

always @(Dr eg) begin 
D <= Dreg; 

end 

//Combinational logic 
always@(State, Dctr, B, S) begin 

case (State) 
SO: begin 

L <= O; //Laser off 
DregNext <= O; //clr D 
Stat eNext <= Sl; 
Dctr Next <= O; 

end 
Sl: begin 

Dctr Next <= O; 
L <= O; 

if ( B 1) 

Stat eNext <= S2; 
else 

StateNext <= Sl; 
end 
S2: begin 

L <= l; //Laser on 
Dctr Next <= O; 
Stat eNext <= S3; 

end 
S3: begin 

L <= O; //Laser off 
DctrNext <= Dctr + l; 

if ( S == 1 ) 

StateNext <= 84; 
else 

StateNext <= 53; 
end 
S4: begin 

DregNext <~ Dctr >> l; 
StateNext <= Sl; 

end 
endcase 

end 
endmodule 

Figure 9.35 Behavioral Verilog description of an HLSM of the laser-based distance measurer. 

Chapter 5. We omit details of generating the 300 MHz clock (see Section 9.3 for an 
example of describing an oscillator). 

The Yerilog module behaviorally describes the LaserDisrMeasurer's HLSM. As was 
the case for describing an FSM, the module declares two signals for the state register: 
State for the current state, and StateNext for the next state. Furthermore, the description 
declares current and next signals for every other register too, thus declaring Dctr and 
DctrNext, and Dreg and DregNext. 

As was the case for describing an FSM, the description for the HLSM uses two pro
cedures, one for all registers, and one for all combinational logic. The register procedure 
is sensitive to the reset and clock inputs, and nas an asynchronous reset that clears all the 
current register signals. On a rising clock edge, the register procedure updates the current 
register signals with the next regis ter signals. 



9.5 RTL Design Using Hardware Description languages 521 

The combinational logic procedure is sensitive to all items that it reads. The proce
dure consists of a case statement carrying out the HLSM's actions and transitions. The 
procedure reads the current register signals and writes the next regjster signals; current 
register signals are never written and next register s ignals are never read by the procedure. 

The HLSM for the laser-based distance measurer performs two arithmetic operations, 
addition and shifting. Incrementing the counter signal Dctr in state SJ is done using the 
syntax "DctrNext < = Dctr + 1 ;". State S4 calculates the distance D by dividing the value 
of Dctr by 2. However, this division is achieved using a r ight-shift-by-one operation. Per
fonning the shift and assigning the value to the output D is done using the statement 
"DregNext <= Dctr >> I". The operator">>" shifts the value of left parameter Dctr by 
the amount specified by the right parameter 1. 

Finally, the output of Dreg is permane11tly assigned to the output D using an always 
procedure sensitive to Dreg and executing the statement "D <= Dreg;". Thus D is 
updated whenever Dreg changes, so D will always equal Dreg. 

The two-procedure approach to describing an HLSM can be thought of as follows. 
The combinational logic procedure computes the inputs of all registers by reading current 
register values, performing combinational operations like addition, and writing to the next 
register signals. When a rising clock arrives, the register procedure updates the current 
contents of all registers with the next register values. 

SystemC 
Figure 9.36 presents a SystemC description of an HLSM for the laser-based distance mea
surer. The module, named LaserDisrMeasurer, defines the inputs and outputs, including a 
user-pressed button input B, a laser sensor i_nput S, a laser control output L, and a 16-bit 
ourput D for the distance measured. 

The module also defines a clock input elk and reset input rst. We assume that the clock 
input is 300 MHz, as was assumed in the laser-based distance measurer design in Chapter 5. 
We omit details of generating the 300 MHz clock (see Section 9.3 for an example of 
describing an oscillator). 

The SystemC module behaviorally describes the LaserDistMeasurer's HLSM. As 

was the case for describing an FSM, the module declares two signals for the state register, 
State for the current state, and StateNext for the next state. Furthermore, the description 
declares current and next signals for every other register too, thus declaring Dctr and 
DctrNe.xt, and Dreg and DregNext. 

As was the case for describing an FSM, the description for the HLSM uses two pro
cesses, one for all registers, and one for all combinational logic. T he register process is 
sensitive to the reset and clock inputs, and has an asynchronous reset that clears all the 
current register s ignals. On a rising clock, the register process updates the current register 
signals with the next register signals. 

The combinational logic process is sensitive to all items that it reads. T he process 
consists of a case statement carrying out the HLSM's actions and transitions. The proce
dure reads the current register signals and writes the next register signals; current register 
signals are never written and next register signals are never read by the procedure. 

The HLSM for the laser-based distance measurer perfom1s two arithmetic operations, 
addition and shifting. Incrementing the counter signal Dctr in state SJ is done using the 
syntax "DcrrNext. write( Derr.read() + l);". State S4 calculates the distance D by dividing 



522 9 Hardware Description Languages 

#include •sy s t emc.h" 

enum statetype { so, Sl, S2, S3, S4 } ; 

SC MODULE (LaserDist Measu rer ) 
{ -

sc in<sc logic> elk, rs t ; 
sc-in<sc-logic> B, S; 
SC- OUt<SC logic> L ; 
sc=out<sc=uint<l6> > D; 

sc signal<statet ype> State, StateNext; 
sc- signal<sc uint<l 6 > > Dctr, DctrNext; 
sc=signal<sc= uint<l 6> > Dr eg, DregNext; 

SC CTOR (LaserDistMeasurer) 
{ -

SC_ METHOD (Regs) ; 
sensitive << clk. pos ( ) ; 

SC METHOD (CombLogic) ; 
sensitive << Stat e << B << S << Dctr; 

SC_ METHOD (Output ) ; 
sensitive << Dr eg; 

void Regs () { 
if (rat . read ( ) == SC_ LOGIC_ l ) { 

S t ate.write (SO ) ; 
Dct r .write ( O) ; 
Dreg .write ( O) ; 

} 
else{ 

State.write (Stat eNex t. read () ); 
Dct r .write (DctrNext .read() ) ; 
Dreg .write (DregNext .read( )) ; 

void CombLogic( l{ 
switch (State) { 

case SO : 
L .write (SC LOGIC O) ; // l aser off 
StateNext . Write (Sl); 
break; 

case Sl: 
DctrNext.write (O) ; / / clr c o unt 
if (B . read () == SC_ LOGI C_ l) { 

StateNext .write (S2); 
} 
break; 

case S2 : 
L. write (SC LOGIC 1 ) ; // l aser on 
StateNext. Write (S3 ) ; 
break; 

case S3 : 
L. write (SC LOGIC O) ; / / l aser off 
Dct rNext. write (Dc tr. read () +l ); 
if (S. read ( ) == SC LOGI C 1 ) 

StateNext.write( S4); -
else 

StateNext.write (S3); 
break; 

case S4 : 
DregNext.write 

( (Dctr. read ( )>>l)); 
StateNext.write (Sl) ; 
break; 

void output ( ){ 
D. write (Dreg .read ()); 

} ; 

Figure 9.36 Behavioral SystemC description of an HLSM of the laser-based distance measurer. 

the value of Derr by 2. However, this division is achieved using a right-shift-by-one oper
ation. Pe1fonning the shift and assigning the value to the output D is done using the 
statement "DregNext.write(Dct1:read()>>l);" . The operator ">>" shifts the value of the 
left parameter Derr.read() by the amount specified by the right parameter I . 

Finally, the output of Dreg is permanently assigned to the output D using a process 
sensitive to Dreg and executing the statement "D.write(Dreg. read());". Thus Dis updated 
whenever Dreg changes, so D will always equal Dreg. 

The two-process approach to describing an HLSM can be thought of as fo llows. The 
combinational logic process computes the inputs of all registers by reading current reg
ister values, performing combinational operations like addition, and writing to the next 
register s ignals. When a rising clock arrives, the register process updates the current con
tents of all registers with the next register values. 



9.5 RTL Design Using Hardware Description Languages 523 

Controller and Data path of the Laser-Based Distance Measurer 

VHDL 
Figure 9.37 is a VHDL 
description of the laser
based distance measurer 
controller/datapath from 
Figure 5.24. The entity, 
named LaserDistM easure 

defines the inputs and out
puts, including a user
pressed button input B, a 
laser sensor input S, a laser 
control output L, and a 16-

bit output D for the dis
tance measured. The entity 
also defines a 300 MHz 
clock input elk and reset 
input rst for the design's 
controller. 

The LaserDistMea-
sure r's architecture 
strncturally describes the 
connections of the con
troller and d ata path 
components. The architec
ture instantiates two 
components. LDM_Con
rroller _ 1 is the controller 
for the laser-based distance 
measurer, and LDM_Data
parh_ l is the datapath for 
this design. The architec
ture connects the entity's 
elk, rsr. B, and S inputs to 
the inputs of 
LDM_Coniroller_ l and 
connects the controller's 
laser control output to the 
corresponding output port 

library IEEE ; 
use I EEE . STD_ LOGIC_ l l 64.ALL; 

entity La ser DistMea sur er is 
port ( 

elk , rst : i n 
B, S 
L 
D 

in 
: out 
: out 

std_ logi c; 
std_logi c; 

s td_ logi c; 

s t d_ logic_ vecto r ( lS downto O ) 
) ; 

end LaserDist Measurer; 

architecture struct u r e of LaserDist Measurer is 
component LDM Contro ller 
port ( elk, r ; t in s td_l ogic; 

B, s : in s td_l ogic; 

) ; 

L : out s t d_ logic; 
Dr eg_ c lr , Dreg_ld o u t s t d_ logi c; 
Dctr _ c lr , Dct r _ld : o u t s t d_ logi c 

end component ; 

component LDM Datapath 
port ( elk : in s t d_ logic; 

Dreg_clr , Dreg_ld : in s t d_ logi c; 
Dct r _clr , Dctr_ld : in s t d_ logic; 
D : out std_logi c_ vector (l S downto O) 

) ; 

end component ; 

signal Dreg_clr , Dreg_ld 
signal Dct r _clr , Dctr l d 

std_ logic ; 
std_ logic ; 

begin 
LDM Contr oller 1 : LDM Cont roller 

port map ( elk , r s t, B, s, L, 
Dreg_clr , Dreg_ ld, Dctr_clr, 

Dctr_ld ) ; 

LDM_Da t apa th_l : LDM_Da tapa th 
port map elk, Dreg_ c l r, Dreg_ ld , 

Dctr_clr , Dctr_ld, D) ; 
end structure ; 

Figure 9.37 Structural description of top-level VHDL description 
of laser-based distance measurer. 

L. Addi tionally, the four signals D reg_clr, Dreg_ld, Dctr _cir, and Dctr _Id connect the con
troller's four control signals to the four inputs of LDM_Datapath_ I. The 
LaserDistMeasurer datapath has a single output D , providing the distance measured, that is 
connected to the output port D of the entity. 



524 9 Hardware Description Languages 

Figure 9.38 is a YHDL description of the LaserDistMeasurer 's datapath component 
shown in Figure 5.23. The entity, named LDM_Datapath , defines a clock input elk, four 
control inputs Dreg_clr, Dreg_ld, Detr _cir, and Derr _Id, and a 16-bit distance output D. 

The architecture defines three components, a 16-bit register, a 16-bit right shifter 
that shifts right by one position, and a 16-bit adder. The architecture instantiates a reg
ister component named De tr, an adder component named Add 1, a shifter component 
Shif tRight, and another register Dreg. Detr's instantiation connects the datapath's 
Deir _cir and Detr _Id inputs to Detr's clear and load control inputs. Detr's output Q is 

Figure 9.38 Structural 
VHDL description of the 
laser-based distance 
measurer's datapath. 

library IEEE; 
use IEEE.STD_LOGIC_ll64.ALL; 

entity LDM_ Datapath is 
port ( elk : in std_logie; 

Dreg_elr, Dreg_ld : in std_logic ; 
Dctr_clr, Dctr_ld : in std_logic; 
D : out std_logie_veetor(lS downto 0) 

) ; 
end LDM_Datapath; 

architecture structure of LDM_ Datapath is 

component Reg16 
port ( I : in std_ logic_vector(lS downto 0) ; 

Q : out std_logie_veetor(lS downto O); 
elk, clr, ld : in s t d_ logic 

) ; 

end component ; 
component ShiftR1_ 16 

port ( I: in std_logic_vect or(lS downto 0); 
S: out std_logi c_vector(lS downto O) 

) ; 

end component; 
component Addl6 

port ( A, B: in std_logic_vector(lS downto 0); 
S: out std_logi c_veetor(lS downto 0) 

) ; 
end component ; 

signal tempC: 
signal addC : 
signal shiftc 

std_ logic_ vector(lS downto OJ; 
std_logie_veetor(lS downto O); 
std_logie_veetor(lS downto O); 

constant U_ONE: std_logie_veetor(lS downto 0) 
: • " 0000000000000001 "; 

begin 
Dctr: Regl6 

port map (addC, tempC , elk, Dctr_clr , Dctr_ld); 
Addl : Add16 

port map (U_ ONE, tempC, addC); 
ShiftRight: Shi ftR1_16 

port map (tempC, shiftC); 
Dreg: Regl6 

port map (shiftC, D, e l k, Dreg_elr, Dreg_ld); 

end structur e ; 



9.5 RTL Design Using Hardware Description languages 525 

library ieee ; 
use ieee . std_logi c _ ll64.all ; 

entity LDM Controll e r is 
port ( ~lk , rst : in std_ l o gic; 

B, S : in s t d_ logi c; 
L: out s t d_log i c; 
Dr eg_ c l r, Dr eg_ l d : out std_l o gic; 
Dctr_c lr , Dc tr_ld: out std_l o gic 

) ; 
end LDM_ Cont roller; 

architecture behavior of LDM Controlle r is 

type s t a t etype is (SO , Sl , S2, S3, S4 ) ; 
signal current state , nex t state : stat etype; 

begin 
s tat ereg : process (clk, rst ) 
begin 

if ( r s t=' l' ) then 
currentst a t e <= SO; -- init i al s tate 

elsif (clk= ' l ' and clk' event ) then 
currentstat e <= nextstate ; 

end if ; 
end process ; 

Figure 9.39 Behavioral VHDL description of laser-based 
distance measurer's controUer. 

cornblogic: process (currentstat e , B, S) 
begin 

L <= • or; 

Dreg_clr <= ' 0 '; 
Dreg_ ld <= 'o' ; 
Dct r _clr <= ' 0' ; 
Dct r _ ld <= 'O'; 
case c urrentstat e is 

when s o => 
L <= '0'; -- laser off 
Dreg_ c l r <= ' l '; -- clr Dreg 
nextstate <=; Sl; 

when Sl => 
Dctr_ c l r <= ' l '; 
if ( B='l ') then 

nex tstate <= 52; 
else 

n extsta te <= 51; 
end if; 

when S2 => 

clr count 

L <= 'l'; laser on 
n e x tstate <= 53; 

when S3 => 
L <= 'O'; laser off 
Dctr l d <= 'l ' ; count up 
if (S='l ') then 

n e x tstate <= 54; 
else 

n extstate <= 53; 
end if ; 

when S4 => 
Dreg_ l d <= 'l' ; -- l oad Dreg 
Dctr ld <= ' O' ; -- stop count 
n ext:state <= Sl; 

end case ; 
end process ; 

end b e havior ; 

then connected to the architecture 's internal signal tempC that connects the count value 
to the ShiftRighr shifter 's input. The shifted count is then connected to the input of the 
Dreg register using the internal signal sh(ftC. The instantiation of the Dreg register con
nects the register 's clear and load control inputs to the datapath's D reg_clr and D reg_ ld 
input ports . Finally, the register 's data output Q is connected to WM_datapath.'s mea
sured distance output D. 

Fig ure 9.39 is the VHDL description of the laser-based distance measurer's FSM con
troller described in Figure 5.26. The entity, named LDM_Controller, defines a clock input elk, 
a reset signal rst, a user-pressed button input B, a laser sensor input S, and five output control 
signals, L, Dreg_clr, Dreg_ld, Dctr_ch; and Dctr_ld. The output Lis used to tum the lase1· on 
and off, where if L is 1 , the laser is on. The four other output si~nals are used to control the RTL 
design's datapath components. 

The VHDL arch itecture describes the behavior of the entity. Similar to the controller 
design shown in Figme 9.22, the architecture consists of two processes, one modeling the 



526 9 Hardware Description Languages 

state register, the other modeling the combinational logic. The state register process, 
named statereg , is sensitive to inputs elk and rst. If rs/ is 1, then the process asynchro
nously sets the curren tstate signal to the FSM' s initial state, SO. Otherwise, if the clock is 
rising, the process updates the state register with the next s tate. 

The second process, named comblogic, is sensitive to the inputs to the combinational 
logic, namely, tbe external inputs B and S, and the state register output currenlState. 
When either of those items change, the process sets the FSM's outputs- in this case L, 
Dreg_c!t; Dreg_ld, Dctr_clr, and Dctr_ld- with the approp1iate value for the current 
state. In the controller example of Figure 9.22, the FSM's output x was defined within the 
case statement for all possible states. With five outputs that must be defined in the 
LDM_Controller and five possible states, assigning the values to all outputs in each 
s tate would be cumbersome. Furthermore, finding a mistake and making correc
tions or modifications to the controller would become difficult in a larger FSM consisting 
of more states and having many more outputs. The comblogic process uses a different 
approach, in which a default value for the outputs is first assigned and only the deviations 
from the defaults are assigned later. The comblogic process first assigns a default value of 
o to all five outputs. The process then evaluates the current s tate and assigns the values to 
the outputs only when the output should be 1. The process also assigns the value 0 to 
several signals when these assignments are needed to clearly indjcate the behavior of the 
controller (they are redundant but help make the description easier to understand). 

The process also determines what the next s tate should be, based on the cun·e11t state 
and the values of inputs B and S. The next state will be loaded into the state regis ter by 
the state register process on the next rising clock edge. 

Verilog 
Figure 9.40 is a Verilog 
description of the laser-based 
distance measurer controller/ 
datapath from Figure 5.24. The 
module, named LaserDistMea
surer, defines the inputs and 
outputs, including a user
pressed button input B, a laser 
sensor input S, a laser control 
output L, and a 16-bit output D 
for the distance measured. The 
module also defines a 300 
MHz clock input elk and reset 
input rst for the design's 
controller. 

module LaserDistMeasurer(clk,rst,B,S,L,D) ; 
input elk, rst, B, S; 
output L; 
output [15:0) D; 

wire Dreg_ clr, Dreg_ld; 
wire Dctr_clr, Dctr_ld; 

LDM Controller 
LDM Controller l (clk, rst, B, s, L, 

Dreg_clr, Dreg_ld, 
Dctr_clr, Dctr_ld) ; 

LDM_Datapath 
LDM_Datapath_l(clk, Dreg_clr, Dreg_ld, 

Dctr_clr, Dctr_ld, D) ; 
endmodule 

figure 9.40 Structural description of top-level Verilog 
description of laser·bsed distance measurer. 

The LaserDistMeasurer structurally describes the connections of the controller and 
datapath components. The module instantiates two components. LDM_Conrroller _ l is 
the controller for the laser-based distance measurer, and WM_Datapath_l is the datapath 
for this design. The architecture connects the module's elk, rst, B, a11d S inputs to the 
inputs of LDM_Controller_l and connects the controller's laser control output to the cor
responding output port L. Additionally, the four internal wires, Dreg_clr, Dreg_ld, 



9.5 RTL Design Using Hardware Description Languages 527 

Deir _cir, and Derr _Id, connect the controller's four control signals to the four i_nputs of 
LDM_Datapath_J. The LaserDistMeasurer datapath has a s ingle output D, providing the 
distance measw-ed, that is connected to the output port D of the module. 

Figw-e 9.41 is a 
Yerilog description of the 
lnserDisrMeasurer's data
path component sbown in 
Figure 5.23. The module, 
named LDM_Da1aparh, 

defines a clock input elk, 
four control inputs Dreg_clr, 
Dreg_id, Derr _cir, and 
Detr _id, and a 16-bit dis
tance output D. 

The datapath defines 
three components, a 16-bit 
register, a 16-bit adder, and 
a 16-bit right shifter that 
shifts right by one position. 
The datapath module 
instantiates a register 
named Detr, an adder 
named Add 1, a shifter 
named ShiftRight, and 
another register named 
Dreg. The module connects 
the datapath's Dctr_clr and 
Detr _id inputs to Detr's 

clear and load control 
inputs, respectively. The 
counter's count output C is 
then cormected to the 16-
bit internal wire tempC that 

module Addl6 (A, B, S) ; 
input (l5:0) A, B; 
output [15:0] S; 
//details not shown 

endmodule 

module Regl6 ( I, Q, elk, elr, ld); 
input (lS:OJ I; 
input elk, elr, ld; 
output [15:0] Q; 

II details not shown 
endmodule 

module ShiftRl 16 (I, S); 
input [l5: o) I; 
output [15:0] S; 
I I details not shown 

endmodule 

module LDM_Datapath(clk, Dreg_clr, Dreg_ld, 
Dctr_clr, Dctr_ld, D); 

input elk; 
input Dre9_clr, Dre9_ld; 
input Dctr clr, Dctr ld; 
output [15~0 ] D; -

wire (15:0) addC, tempC, shiftC; 

Regl6 Dctr(addC,tempC,clk,Dctr_clr,Dctr_ld); 
Addl6 Addl(l, tempc, addC) ; 
ShiftR1_16 ShiftRight (tempC, shiftC) ; 
Regl6 Dreg(shiftC,D,clk,Dreg_clr,Dreg_ld) ; 

endmodule 

Figure 9.41 Structural Verilog description of the laser-based 

distance measurer's datapath. 

connects the count value to the ShiftRight shifter's input. The shifted count is then con
nected to the input of the Dreg register using the internal 16-bit wire shiftC. The module 
connects the Dreg register's clear and load control inputs to the datapath's Dreg_clr and 
Dreg_id input ports. Finally, the register's data output Q is connected to LDM_datapath's 
measured disrance output D. 

Figure 9.42 is the Verilog description of the laser-based distance measurer's FSM con
troller described in Figure 5.26. The module, named LDM_Conrroller, defines a clock input 
elk, a reset signal rst, a user-pressed button input B, a laser sensor input S, and five output 
control signals, L, Dreg_ell; Dreg_id, Detr _cfr, and Derr _ld. The output Lis used to turn the 
laser on and off, where if L is 1, the laser is on. The fom other output signals are used to 
control the RTL design's datapath components. 

The Yerilog module behaviorally describes the LaserDistMeasurer's FSM. Similar to 
the controller design shown in Figw-e 9.23, the module consists of two procedures, one 



528 9 Hardware Description Languages 

module LDM Controller 
(elk, rst , B, S, L, Dreg_clk , 
Dreg ld , Dctr clr , Dctr l d ); 

input-elk, rst~ B, S; -
output L; 
output Dr eg elk, Dreg ld; 
output Dctr=clr , Dctr=ld; 
reg L ; 
reg Dreg clr , Dreg ld; 
reg Dct r=clr, Dctr= ld; 

parameter so 3'b000 , 
Sl 3'b001, 
S2 3 'b010, 
S3 3 •bo11, 
84 3'bl 00 ; 

reg (2:0 ] State; 
reg (2:0 ] Stat eNext; 

always @(posedge rst or posedge elk) 
begin 

if {rst==l ) 
State <= SO; II ini tial state 

else 
State < = StateNext; 

end 

Figure 9.42 Behavioral Verilog description of laser
based distance measurer's controller. 

always @(State or B or S) 
begin 

L <= O; 
Dreg_clr <= O; 
Dreg l d <= O; 
Dctr-clr <= O; 
Dctr=ld <= O; 
case (State ) 

SO: begin 
L <= O; II l aser o ff 
Dreg_clr <= l; II clr Dreg 
StateNext <= Sl ; 

end 
Sl: begin 

Dctr clr <= l; II clr count 
if CB==l) 

S tateNext <= S2; 
else 

S tateNext <= S l; 
end 
S2: begin 

L <= l ; II laser o n 
StateNext <= S3; 

end 
S3: begin 

L <e O; II laser off 
Dctr ld <= l· /I count 
if cs .. =1) 

S tateNext <= 84; 
else 

S tateNext <~ 83; 
end 
84: begin 

Dreg_ l d <= l· /I l oad 
Dctr ld <= O; // stop 
StateNext <= S l ; 

end 
endcaae 

end 
endmodule 

up 

Dreg 
count 

modeling the state register, the other modeling the FSM's control logic. The state register 
procedure is sensitive to the positive edge of the reset input, rst, and the positive edge of 
the clock input, elk. If the rsr input is enabled, then the procedure asyncluonously sets the 
currentstate signal to the FSM's initial state, SO. Otherwise, on the rising edge of the 
clock, the procedure updates the state register with the next state. 

The second procedure is sensitive to the inputs to the combinational logic, namely, 
the external inputs B and S, and the state register output currentstate. When either of 
those items change, the procedure sets the FSM's outputs, in this case L, Dreg_clr, 
Dreg_ld, Dctr _cir; and Dctr _Id, with the appropriate value for the cunent state. lo the 
controller example of Figure 9.22, the FSM's output x was defined within the case state
ment for all possible states. With five outputs that must be defined in the WM_Con1roller 
and five possible states, assigning the values to all outputs in each state would be cumber
some. Fwthennore, finding a mistake and making corrections or modifications to the 
controller would become very difficult in a larger FSM consisting of more states and 
having many more outputs. Instead, the procedure uses a different approach, in which a 



9.5 RTL Design Using Hardware Description Languages 529 

default value for all the outputs is first assigned and only the deviations from the defaults 
are assigned later. The procedure first assigns a default value of 0 to all five outputs. The 
procedure then evaluates the current state and assigns the values to the outputs only when 
the output should be 1 . The procedure also assigns the value o to several signals within 
the case statements to clearly indicate the behavior of the controller (those assignments 

are redundant but help make the description easier to understand). 
The procedure also deterntines what tile next state should be, based on the current 

state and the values of inputs B and S. The next state will be loaded into the state register 
by the state register procedure on the next positive clock edge. 

SystemC 
Figure 9.43 is a SystemC 
description of the laser-based 
distance measurer shown in 
Figure 5.24. The module, 
named LaserDistMeasurer, 
defines the inputs and outputs, 
including a user-pressed button 
input B, a laser sensor input S, a 
laser control output L, and a 16-
bit output D for the distance 
measured. The module also 
defines a 300 MHz clock input 
elk and reset input rst for the 
design's controller. 

The LaserDistMeasurer 
srructurally describes the con

nections of the controller and 
datapath components. The 
architecture instantiates two 
components. LDM_ Con
troller_ l is the controller for 
the laser-based distance mea
surer, and LDM_Datapath_ l is 
the datapath for this design. 
The module connects the 
module's elk, rsr, B, and S 
inputs to the i np ut s of 
LD M _ Comroller_ l and con
nects the controHer's laser 
control output to the corre
sponding output port L. 
Additionally, the four internal 
wires, D reg_c/r, Dreg_ld, Dclr _ 
cir, and Derr _ld, connect the 

#include "systemc.h" 
#include '' LDM Cont.rol ler . h '' 
#include "LDM_ Datapath.h" 

SC MODULE (LaserDistMeasurer) 
{ -

} ; 

sc_in <sc_logic> e l k, r st; 
sc_iD<SC_logi C> B, S; 
SC_OUt <SC_logic> L; 
s c _ou t <sc_uint <l6> > D; 

sc_signal<sc_logic > Dr eg_ clr, Dreg_ld; 
sc_signal<sc_logic> Dctr_ c l r, Dct.r_ld ; 

LDM_ Cont roller LDM_ Controller_l ; 
LDM_Datapath LDM_ Datapath_ l; 

SC_CTOR {Laser Dist Measurer) : 
LDM_Contr oller_l ( "LDM_Contr o l ler_l " ), 
LDM_Datapath_l { "LDM_Datapat h_ l 11) 

LDM_Controller_l.clk (c lk) ; 
LDM_Controller_l.rst (rst ) ; 
LDM_Controller_l.B(B) ; 
LDM_Controller_l.S(S ) ; 
LDM_Cont.roller_l.Dreg_clr (Dr eg_ c l r ) ; 
LDM_Controller_l.Dreg_ld (Dreg_ld ) ; 
LDM_Controller_l.Dctr_clr (Dct.r_ c l r ) ; 
LDM_Controller_l.Dctr_ld (Dct r _ld ) ; 
LDM_Da tapath_l. clk(clk) ; 
LDM_Datapath_l.Dreg_clr(Dreg_clr ) ; 
LDM_ Datapath_ l .Dreg_ld (Dreg_ld ) ; 
LDM_Dat.apath_l.Dctr_clr(Dctr_clr ) ; 
LDM_Datapath_l.Dctr_ld (Dctr_ld ) ; 
LDM_Dat.apath_l.D (D); 

Figure 9.43 Structural description of top-level SystemC 
description of laser-based distance measurer. 

controller's four control signals to the four inputs of WM_Dara-parh_l. The LaserDisr-



530 9 Hardware Description Languages 

Measurer datapath has a single output D, providing 
connected to the output port D of the module. 

the distance measured, that ts 

Figure 9.44 is a SystemC descrip-
tion of the LaserDistMeasu re r 's 
datapath component shown in Figure 
5.23. The module, named WM_Data
parh, defines a clock input elk, four 
control inputs Dreg_clr, Dreg_ld, 
Dcrr_clr, and Dctr _ld, and a 16-bit 
distance output D. 

The datapath includes three com
ponents, a 16-bit adder, a 16-bit 
register, and a 16-bit right shifter that 
shifts rigbt by one position. The data
path module instantia tes an adder 
named Addi, a register named 
Derr, a register named Dreg, and a 
shifter named ShiftRight. The module 
connects the datapath's Dctr _cir and 
Dctr_ ld jnputs to Dctr's clear and 
load control inputs, respectively. The 
counter' s count output C is then con
nected to the 16-bit intemal signal 
tempC that connects the count value 
to the ShiftRight shifter 's input. The 
shifted count value is then connected 
to the input of the Dreg register using 
the internal signal shiftC. The module 
connects the Dreg register's clear and 
load control inputs to the datapath ;s 
Dreg_clr and Dreg_ld input ports. 
Finally, the register's data output Q is 
connected to LDM_datapath's mea
sured distance output D . 

# include "syst eme .h" 
# include "addl6.h" 
# include " regl6.h" 
# include "shiftrl 16.h" 

SC MODULE (~DM Datapath) 
{ - -

sc_in<sc_logic> elk ; 
se_in<se_logie> Dreg_ clr , 
sc_in<sc_logic> Det r _ clr , 
sc_out<sc_uint<l6> > D; 

Dr eg_ ld ; 
Detr _ ld ; 

sc_signal<sc_uint<l 6> > tempC; 
sc_signal< sc_uint<l 6> > addC ; 
sc_signal<sc_uint<l 6> > s hi ftC; 

} i 

Add l6 Addl ; 
Regl6 Dc t r ; 
Regl6 Dreg; 
ShiftR1_16 ShiftRight; 

sc_CTOR (LDM_ Datapat h ) 
Det r ( "Detr") , 
Dreg ( "Dr eg") , 
Addl ( "Addl" ) , 
ShiftRight ( "Shif t Right" ) 

Addl .A ( 1); 
Addl .B ( t empC); 
Addl . B ( addC) ; 

Det r. I ( add C) ; 
Dct r.Q ( t empC); 
Dct r. el k (elk); 
Dct r.cl r (Dctr_c l r ) ; 
Detr .ld(Det r _ ld) ; 

ShiftRi ght. I {temp C) ; 
ShiftRight.S(shi f t C) ; 

Dreg. I ( s h ift Cl ; 
Dreg.Q ( D) ; 
Dreg. el k (elk ); 
Dreg.clr (Dr eg_ c l r ) ; 
Dreg.ld(Dreg_ ld) ; 

Figure 9.44 Strncn1ral SystemC description of the 
laser-based distance measurer's datapatb. 



lt include '' systemc. h n 

enum stat etype { SO , S l , S2 , S3, S4 }; 
SC MODULE (LDM Contr o ller ) { - -

sc_in<sc_logic > elk , rst, B , S; 
se_out<se_logie> L; 
sc_out<sc_logic> Dreg_clr , Dr eg_ l d ; 
sc_out<sc_logic> Dct r _clr , Dctr _ l d ; 

ac_aignal<s tatetype> Stat e , S t ateNext; 

SC CTOR (LDM Contr oll er) 
{ - -

SC_METHOD (s tate r eg) ; 
sensitive << clk .pos () ; 

SC_METHOD (cornbl ogic ) ; 
sensitive << Stat e << B << S ; 

void s t atereg () { 
if ( rst. read (} • =SC LOGIC 1 ) 

State SO ; II init ial state 
els:e 

Stat e StateNe x t; 

9.5 RTL Design Using Hardware Description languages 531 

void combl ogic () { 
L.write (SC_ LOGI C_ O); 
Dreg_ c l r.write (SC_LOGIC_O) ; 
Dr eg_ ld.write (SC_ LOGIC_O ); 
Dctr_ c l r.write (SC_LOGIC_ O) ; 
Dctr_ ld.write (SC_ LOGIC_O ) ; 

} 
}; 

switch (State ) { 
case SO : 

L. write (SC_ LOGIC O) ; I I laser o f f 
Dreg_clr.write (SC_ LOGI C_ OJ ; 
Stat eNext .wri te (S l ); 
break ; 

case Sl: 
Dctr_clr.write (SC_ LOGI C l) ; 
if (B. read () == SC_ LOGI C_ l ) 

S t a t eNext.write (S2 ) ; 
else 

St a t eNext.write (Sl ) ; 
break ; 

case 82 : 
L. write (SC_ LOGIC_l ) ; II laser on 
Stat eNext .wri te (S 3 ); 
break ; 

case 83 : 
L. write (SC_ LOGIC O) ; II laser o f f 
Dctr_ld.write (SC_LOGIC_ l ) ; 
if (S. read () == SC_ LOGIC_ l ) 

S t a t eNext.writ e (S4 ) ; 
else 

S t a t eNext.write (S3 ) ; 
break ; 

case S4: 
Dreg_ld.write (SC_LOGIC_ l ) ; 
Dct r_ld .write (SC_LOGIC_ O) ; 
Stat eNext .write (S l ) ; 

break ; 

Figure 9.45 Behavioral SystemC description of laser-based distance m easurer's con troller. 

Figure 9.45 is the SystemC description of the laser-based distance measurer 's FSM 
controller described in Figure 5.26. The module, named LDM_Comroller, has a clock 
input elk, a reset signal rst, a user-pressed button input B , a laser sensor input S, and five 
output control signals, L, Dreg_clr, Dreg_ld. Derr _cir, and Derr _Id. The output L is used 
to tw11 the laser on and off; where is L is 1, the laser is on. The four other output signals 
are used to control the RTL design's datapath components. 

The SystemC module behaviorally describes the LaserDisrMeas urer's FSM. Similar 
to the controller design shown in Figure 9.24, the module consists of two processes, one 
modeling the state register, the other modeling the FSM's control logic. The state register 
process, named statereg, is sensitive to the positive edge of the reset i nput rst and the pos
itive edge of the clock input elk. If the rst is enabled, then the process asynchronously sets 



532 9 Hardware Description Languages 

the currents/ate to the FSM's initial s tate, SO. Otherwise, on the rising edge of the clock, 

the process updates the state register with the nextstate. 
The second process, named comblogic, is sensitive to the inputs to the combinational 

logic, namely, the external inputs B and S, and the state register output currentstate. 
When either of those signals changes, the process sets the FSM's outputs, in this case L, 
Dreg_ch; Dreg_ld, Deir _cir, and Deir _Id, witb the appropriate value for the current state. 
In the controller example of Figure 9.24, the FSM's output x was defined within the case 
statement for all possible states. With five outputs that we must define in the 
LDM_Controller and five possible states, assigning the values to all outputs in each state 

would be cumbersome. Furthermore, finding a mistake and making corrections or modi
fication to the controller would become very difficult in a larger FSM consisting of more 
s tates and having many more outputs. Instead, the process uses a different approach, in 
which a default value for the all outputs is first assigned and only the deviations from the 
defaults are assigned later. The process first assigns a default value of O to all five out
puts. The process then evaluates the CW'rent s tate and assigns the values to the outputs 
only when the output should be 1 . The process also assigns the value 0 to several s ignals 
within the case statements; however, these assjgnments are included only to clearly indi

cate the behavior of the controller (they are redundant but help make the description 
easier to understand}. 

The process also determines w hat the next state should be, based on the current state 
and the values of inputs B and S. The next state will be loaded into the state register by 
the state register process on the next positive clock edge. 

9.6 CHAPTER SUMMARY 

This chapter stated that hardware description languages (HDLs) are widely used in 
modern digital design. The chapter introduced three popular HDLs: VHDL, Verilog, and 
SystemC. The chapter introduced those HDLs primarily through the use of examples, 
illustrating how each HDL might be used to describe combinational logic, sequential 

logic, datilpath components, and RTL behavior and structure. To become proficient at the 
use of HDLs, a more thorough study of a particular HDL might be helpful. This chapter 

also illustrated the point that the three different HDLs have several aspects in common. 

9.7 EXERCISES 

The following exercises can be completed using any of the HD Ls described i_n this 
chapter. The solution to Exercise 9 .1 is needed in order to solve many of the remaining 

exercises. 

SECTION 9.2: COMBINATIONAL LOGIC DESCRIPTION USING HARDWARE 
DESCRIPTION LANGUAGES 

9. 1 (a) Create combinational behavioral HDL descriptions of /r111, AND2, AND3, OR2, and OR3 
gates , such that those gates can then be used as components in another design. Use names a. 
b, and c for inputs (as needed) and F for the output. (b) Create a testbench for the AND3 gate 
to test its correctness. 



9.7 Exercises 533 

9.2 (a) Create combinational behavioral HDL descriptions for NAND2 and XOR2 gates, where 
each gate has two inputs a and b and a single output F. (b) Create a separate testbench for 
each. 

9.3 Show that the parity generator equation of Example 2.19 correctly generates the desired parity 
bi t, by first capturing the equation as combinational behavior in an HDL, creating a testbench 
that tests all possible input combinations, and then showing that simulation yields correct 
output value for each input combination. 

9.4 For the seat belt warning light system in Example 2.7: (a) create a combinational HDL 
description using the given equation, (b) create a testbcnch to test the description, checking 
all possible combinations of input values, (c) s imulate the system using your testbench, and 
verify that tJ1e output values are correct (d) create a structural HDL description of tJ1e given 
circuit, (e) reuse the testbcnch to test the structural description. 

9.S Example 2.12 algebraically transformed one equation into another. Show iliat those two equa· 
lions represent tl1c same function by using simulation. First, create a combinational 
behavioral description of the initial equation. Second, create a combinational behavioral 
description of tJ1e final equation. Third. create a testbench mat tests all possible combinations 
of input values and show mat simulation yields identical output values for both equations. 

9.6 For the 2x4 decoder in Figure 2.62, but extended witl1 an enable input: (a) create a structural 
HDL description of me given circuit, (b) create a tes tbench to test tl1c structural description, 
testing all possible input combinations, (c) s imulate to verify correct behavior. 

9.7 For t11e 4x 1 mux in Figure 2.67: (a) create a structural HDL description of the given circuit, 
(b) create a testbench to test the structural description; do not test all possible input eombina· 
lions, but rather a few input cases for each possible combination of the select control inputs. 
(c) simulate to verify correct behavior. 

9.8 

9.9 

Create a behavioral HDL description of a 2x 1 
multiplexor described in Figure 2.54. Then, 
create a structural HDL description that com· 
bines tJ1ree 2x I multiplexors to create a 4x 1 
multiplexor as shown in Figure 9.46. 

Create a combinational behavioral HD L dcscrip· 
tion of an 8-bit 4x l multiplexor. Be sure to 
specify me input and output ports using a mul· 
tiple-bit data type. 

9. l 0 Clearly explain the difference between a s truc
tural HDL description and a behavioral HDL 
description. Explain the benefits of using each. 

9. 1 I Explain why a combinational behavioral HDL 
description must include all the combinational 
circuit's inputs in a sensitivity list. In particular, 
explain why omitting an input actually describes 
a sequential circuit. 

iO 

i1 

12 

13 

2x1 
iO 

i1 

so 

2x1 
iO 

so 

d 

d 

2x1 
10 

11 

so 

s1 

4x1 

d d 

Figure 9.46 4x I multiplexor composed 
of three 2x I multiplexors. 

SECTION 9.3: SEQUENTIAL LOGIC DESCRIPTION USING HARDWARE DESCRIP· 
TION LANGUAGES 

9.12 (a) Create a behavioral HDL description of a 32-bit basic register (no load or clear control 
inputs). (b) Create a tcstbcnch to test me description for some random data input values. 
(c) Simulate the system to demonstrate correct behavior. 



534 9 Hardware Description Languages 

9.13 (a) Create a behavioral HDL description of the sequence generator of Figure 3.66. (b) Create 
a testbench; with no inputs, the testbench will not have to set input values and instead will 
just let the clock run. (c) Simulate the system to show that it generates the correct repeating 
sequence. 

9.14 (a) Create a behavioral HDL description of the flight attendant call button system of Figure 
3.53. (b) Create a testbench to test various sequences of the call and cancel buttons being 
pressed (there are many possibile sequences; you can't test all of t11em). (c) Simulate the 
system to show correct behavior. 

SECTION 9.4: DATAPATH COMPONENT DESCRIPTION USING HARDWARE 
DESCRIPTION LANGUAGES 

9.15 (a) Create a behavioral HDL description of an 8-bit parallel load register with load and clear 
control inputs (both synchronous: clear has priority over load). (b) Create a testbench to test 
the description, testing load, clear, simultaneous load/clear, and holding the register value. 
(c) Simulate the system to demonstrate correct behavior. 

9.16 Create a behavioral HDL description of an 8-bit 
register with two control inputs sO and s/ having 
the control behavior described in Figure 9.47. 

9.17 Create a structural HDL description of a half-adder. 

9.18 Create a structural HDL description of a 4-bit cany
ripple adder without a carry input. Fi.rs! create a 
behavioral description of a full-adder, and then use 
the full-adder component in your carry-ripple adder 

description. 

s1 so Operation 

0 0 Maintain present value 

0 Parallel load 

0 Shift right 

Rotate right 

figure 9.47 Register operation table. 

9.19 Create a structural HDL description of the counter circuit in Figure 4.69. Be sw·e to first 
create a behavioral HDL description of each component used in your structural HDL design. 

9.20 Create a structural HDL description of the 4-bit adder/subtractor circuit in Figure 4.54(b). Be 
sure to first create a behavioral HDL description of each component used in your structural 
HDLdesign. 

SECTION 9.5: RTL DESIGN USING HARDWARE DESCRIPTION LANGUAGES 

9.21 (a) Create a behavioral HDL description of t11e high-level state machine for the cycles-high 
counter of Example 5. 1. (b) Create a testbench and simulate the system for some sample 
input sequences and verify correct behavior. (c) Create a structural HDL description for the 
datapath of the cycles-high cotmter in Figure 5.16(d). (d) Create a controller FSM and 
connect it to the datapath as in Figure 5.16(d). (e) Use the earlier testbench to simulate the 
contrnller/datapath system to verify correct behavior. 

9.22 For the soda dispenser exan1ple used throughout Chapter 5: (a) create a behavioral HDL 
description of the HLSM, (b) c reate a testbench and s imulate the system for some sample 
input sequences and verify correct behavior, (c) create a s tructural HDL description for the 
datapath, (d) create a controller FSM and connect it to the datapath. (e) use the earlier test
bench to simulate the controller/datapath system to verify correct behavior. 

9.23 Starting from the C description shown in Figure 9.48, create an RTL design of a greatest 
conunon divisor (GCD) calculator that takes as input two 16-bit inputs a and b, an enable 
input go, and a 16- bit output D. When go is '1 ', t11e GCD calculator will compute the greatest 
conunon divisor and output lhe GCD on the output D. (a) Convert d1e C to a high-level state 
machine captured behaviorally in an HDL, (b) create a testbench and simulate for various 



9.7 Exercises 535 

input values, (c) create a controller and datapath HDL description, (d) simulate using the 
same testbench. 

uint GCD(uint a, uint b ) //not quite C syntax 
{ 

while ( a ! = b ) 
if (a>bl { 

a = a - b; 
else { 

b = b - a; 

retur n (a); 

Figure 9.48 C program description of a greatest common divisor calculator. 



This page intentionally left blank 



A 
Boolean Algebras 

This appendix is reproduced with permission from the textbook Introduction to Digital 
Systems by Ercegovac. Lang, and Moreno, ISBN 0-471-52799-8. John Wiley and Sons 
publishers, 1999. 

Boolean algebras is an important class of algebras that has been studied and used exten
sively for many pmposes (see Section A.5). The switching algebra, used in the 
description of switching expressions discussed in Section 2.4, is an instance (an element) 
of the class of Boolean algebras. Consequently, theorems developed for Boolean algebras 
are also applicable to switching algebra, so they can be used for the transfom1ation of 
switching expressions. Moreover, certain identities from Boolean algebra are the basis for 
the graphical and tabular techniques used for the minimization of switching expressions. 

In this appendix, we present the definition of Boolean algebras as well as theorems 
that are useful for the transformation of Boolean expressions. We also show the relation
ship among Boolean and switching algebras; in patticular, we show that the switching 
algebra satisfies the postulates of a Boolean algebra. We also sketch other examples of 
Boolean algebras, which are helpful to further understand the properties of this class of 
algebras. 

A.1 BOOLEAN ALGEBRA 

A Boolean algebra is a tuple {B, +, •}, where 

• B is a set of elements; 

• +and • are binary operations applied over the elements of B, 

satisfying the following postulates: 

Pl; If a, b E B, then 

(i) a+ b = b +a 

(ii) a · b ~ b · a 

That is, + and • are conunutative. 

537 



538 A Boolean Algebras 

P2: If a, b, c E B, then 

(i) a+ (b · c) =(a+ b) · (a+ c) 

( ii) a · (h + c) = (a · b) + (a · c) 

P3: The set 8 has two distinct identity elements, denoted as 0 and 1, s uch that for 
every element in B 

(i) 0 + a = a + 0 = a 

(ii) 1 · a = a · 1 = a 

The elements 0 and l are called the additive identity element and the multiplicative 
identity element, respectively. (These elements should not be confused with the inte
gers 0 and 1.) 

P4: For every element a E B there exists an element a' , called the complement 
of a, such that 

(i) a+ a' = l 

( ii) a· a' = 0 

The symbols + and • should not be confused with the arithmetic addition and m ulti
plication symbols. However, for convenience + and • are often called "plus" and "times," 
and the expressions a+ b and a · b are called "sum" and "product," respectively. 
Moreover, +and • are also called .. OR" and "AND," respectively. 

The elements of the set B are called constants. Symbols representing arbitrary ele
ments of B are variables. The symbols a, b, and c in the postulates above are variables, 
whereas 0 and l are constants. 

A precedence ordering is defined on the operators: • has precedence over +. There

fore, parentheses can be eliminated from products. Moreover, whenever single symbols 
are used for variables. the symbol • can be eliminated in products. For example, 

a+ (b · c) can be written as a+ be 

A.2 SWITCHING ALGEBRA 

Switching algebra is an algebraic system used to describe switching functions by means 
of switching expressions. In this sense, a switching algebra serves the same role for 
switching functions as the ordinary algebra does for arithmetic functions. 

The switching algebra of the set of two elements B = { 0, 1} , and two operations 
AND and OR defined as follows: 

AND I 0 I 

~ 
~ 

OR I 0 I 

ili 
These operations are used to evaluate switching expressions, as indicated in Section 2.4. 



A.2 Switching Algebra 539 

Theorem 1 
The switching algebra is a Boolean algebra. 
Proof We show that the switching algebra satisfies the postulates of a Boolean algebra. 

Pl: Commutativity of(+),(•). This is shown by inspection of the operation tables. 
The commutativity property holds if a table is symmetric about the main 
diagonal. 

P2: Distributivity of ( +) and (•). Shown by perfect induction, that is, by consid
ering all possible values for the elements a, b, and c. Consider the following 
table: 

abc I a+ be I (a+ b)(a + c) 

000 0 0 

()()] 0 0 

010 0 0 

011 1 I 

100 l I 

:~~ I I 
II I I I 

Because a + be = (a + b )( b + c) for all cases, P2(i) is satisfied. A similar 
proof shows that P2(ii) is also satisfied. 

P3; Existence of additive and multiplicative identity element. From the operation 
tables 

O+ l =l+O= 

Therefore, 0 is the additive identity. Similarly 

0·1=1·0=0 

so that l is the multiplicative identity. 

P4: Existence of the complement. By perfect induction: 

a a' a+ a' 0· a' 

I 0 I () 

0 I I () 

Consequently, l is the complement of 0, and 0 is the complement of 1. 

Because all postulates are satisfied, the switching algebra is a Boolean algebra. As a 
result, all theorems true for Boolean algebras are also trne for the switching algebra. 



540 A Boolean Algebras 

A.3 IMPORTANT THEOREMS IN BOOLEAN ALGEBRA 

We now present some important theorems in Boolean algebrn; these theorems can be 
applied to the transformation of switching expressions. 

Theorem 2 Principle of Duality 
Every algebraic identity deducible from the postulates of a Boolean algebra remains valid if 

• the operations + and • are interchanged throughout; and 

• the identity elements 0 and 1 are also interchanged throughout. 

Proof The proof follows at once from the fact that for each of the pos tulates there is 
another one (the dual) that is obtained by interchanging + and • as well as 0 and 1. 

This theorem is useful because it reduces the number of different theorems that must 
be proveD: every theorem has its dual. 

Theorem 3 
Every element in B bas a unique complement. 

Proof Let a E B ; let us assume that a' 1 an d a' 2 are both complements of a. Then, 
using the postulates we can perform the following transformations: 

I I 1 a I= a I. by P3(ii) (identity) 

= a'1 · (a+ a'2) by hypothesis (a 
, 

2 is the complement of a) 

= a'1 · a + a '1 · a'2 by P2(ii) (distributivity) 

=a · a·, + a'1 · a'2 by Pl (ii) (commutativity) 

= 0 + a'1 · a'2 by hypothesis (a' 1 is the complement of a) 

= a'1 · a'2 by P3(i) (identity) 

Cba11ging the index 1 for 2 and vice versa, and repeating all steps for a' 2, we get 

I I I 

a2=a2·a1 

= a'1 • a'2 by P l(ii) 

and therefore a' 2 = a' 1 

The uniqueness of the complement of an element allows considering ' as a unary 
operation called complementation. 

Theorem 4 
For any a e B 

1. a+ I = 
2. a· 0=0 

Proof Using the postulates, we can perform the following transformations: 



Case ( 1): 

Case (2): 

A.3 Important Theorems in Boolean Algebra 541 

by 

a+ I = I · (a+ I) P3(ii) 

= (a+ a' )· (a+ I ) P4(i) 

= a+ (a' · I) P2(i) 

= a+a' 

= I 

a· 0 = O+ (a· 0) 

= (a· a' ) +(a · 

= a· (a' + 0) 

= a· a' 

= 0 

0) 

P3(ii) 

P4(i) 

by 

P3(i) 

P4(ii) 

P2(ii) 

P3(i) 

P4(ii) 

Case (2) can also be proven by means of Case (1) and the principle of duality. 

Theorem 5 
The complement of the element I is 0, and vice versa. That is, 

1. O' = I 
2. I' = 0 

Proof By Theorem 4, 
0 + l = l and 

0 . l = 0 

Because, by Theorem 3, the complement of an element is unique, Theorem 5 follows. 

Theorem 6 Idempotent Law 
For every a E B 

1. a+ a = a 

2. a· a = a 

Proof 
( I): 

(2): duality 

by 

a+a = (a+a)· P3(ii) 

= (a + a) · (a+ a' ) P4(i) 

=(a+(a· a')) P2(i) 

= a+O 

=a 

P4(ii) 

P3(i) 



542 A Boolean Algebras 

Theorem 7 Involution Law 
For every a e B , 

(a' )' = a 

Proof From the definition of complement (a' )' and a are both complements of a' . 
But, by T heorem 3, the complement of an element is un ique, which proves the theorem. 

Theorem 8 Absorption Law 
For every pair of elements a, b e B , 

1. a+a· b=a 

2. a · (a + b) = a 

Proof 
( 1 ): by 

a+ ab = a· l +ab P3(i i) 

(2): duality 

Theorem 9 

= a( l + b) 

= a(b+ I) 

=a. 

= a 

For every pair of elements a, be B , 

1. a + a' b = a + b 

2. a(a' + b) = ab 

Proof 

P2(i i) 

P l ( i) 

Theorem 4 ( I ) 

P3(ii) 

(I): by 

a+a' b = (a+a' )(a+b) P2(i) 

(2): duality 

Theorem 10 

= 1 · (a+ b) P4(i) 

= a+b P3(ii) 

ln a Boolean algebra, each of the binary operations ( +) and ( · ) is associative. That is, for 
every a, b, c e B , 

1. a+(b+c) = (a+b)+c 

2. a(bc) = (ab)c 

T he proof of this theorem is quite lengthy. The interested reader should consult the 
further readings suggested at the end of this appendix. 



A.3 Important Theorems in Boolean Algebra 543 

Corollary I 

1. The order in applying the + operator among n elements does not matter. For 
example, 

a+~+ [c+(d+ e)]} = {f(a+b)+c]+d}+e 

= {a+[(h+c)+d]}+e 

= a+b+c+d+e 

2. The order in applying the • operator among n elements does not matter. 

Theorem 11 DeMorgan's Law 
For every pair of e lements a, b E B 

1. (a+b)' =a'b' 

2. (ab)' = a' + b' 

Proof 
We first prove that (a+ b) is tbe complement of a' b'. By the definition of the comple
ment (P4) and its uniqueness (Theorem 3), this corresponds to showing that 
(a+ b) +a' b' = l and (a+ b )a' b' = 0. We do this proof by the following 
transformations: 

by 

(a+b)+a' b' = [(a+b)+a' ][(a+b)+b'] P2(i) 

= [(b+a)+a' ][(a+b)+b'] Pl (i) 

= [b +(a+ a' )][a+ (b + b' )] associativity 

= (b+ l )(a+l) 

= l · 

= l 

by 

P4(i) 

Theorem 3 ( l ) 

idempotency 

(a+ b)(a' b') = (a' b' )(a+ b) commutativity 

= (a' b' )a+ (a' b' )b distributivity 

= (b' a' )a+ (a' b' )b commutativity 

= b' (a' a)+ a' (b' b) associativity 

= b' (aa') +a' (bb') commutativity 

= b' · 0 + a' · 0 P4(ii) 

= 0 + 0 Theorem 3 (2) 

= 0 Theorem 5 (I) 

By duality, (a· b)' = a' + b' 



544 A Boolean Algebras 

Theorem 12 Generalized DeMorgan's Law 

Let {a, b, ... , c, d} be a set of elements in a Boolean algebra. Then, the following 
identities hold: 

I. (a+b ... +c+d)' =a' b' ... c'd' 

2. (ab .. . cd)' = a' + b' + ... + c' + d' 

Proof By the method of finite induction. The basis is provided by Theorem 11, which 
corresponds to the case with two e lements. 
Inductive step: Let us assume that DeMorgan's Law is true for n elements, and show that 

it is true for n + l e lements. Let a, b, ... , c be then e lements, and d be the (n + l )st 
element. Then, by associativity and the basis, 

(a + b + ... + c + d)' = [ (a + b + ... + c) + d]' 

= (a+b+ .. . +c)'d' 

By the induction hypothesis 

(a+ b + ... c)' = a' b' ... c' 

Thus 

(a+b+ ... c+d)' =a' b' ... c' d' 

DeMorgan's theorems are useful in manipulating switching expressions. For 
example, finding the complement of a switching expression containing parentheses is 
achieved by applying DeMorgan's Law and the Involution L1w repeatedly to bring all (' ) 
inside the parentheses. That is, 

[(a+ b' )(c' + d' ) + (f + g)' ]' = [(a+ b' )(er + d' )]' [([' + g)' ]' 

= [(a+b' )' +(c' +d' r ]' (f +g) 

= (a' b + cd)(f' + g) 

The symbols a, b, c, ... appearing in theorems and postulates are generic vari
ables. That is, they can be substituted by complemented variables or expressions 

(formulas) without changing the meaning of these theorems. For example, DeMorgan's 
Law can read as 

(a' +b' ) 1 =ab 

or 

[(a+b)'+c']' =(a+b)c 

We bave described a general mathematical system, called Boolean algebra, and 
established a basic set of algebraic identities, true for any Boolean algebra, without actu
ally specifying the nature of the two binary operations, (+) and (•). In Chapter 2, we 
presented an algebra useful for the representation of switching functions by switching 
expressions. 



A.5 Further Readings 545 

A.4 OTHER EXAMPLES OF BOOLEAN ALGEBRAS 

There are other algebras that are also instances of Boolean algebras. We now summa
rize the two most commonly used ones. 

Algebra of Sets. The elements of B are all subsets of a set S (the set of all subsets of S 
is denoted by P(S)), and the operations are set-union (u) and set-intersection(("\). That is, 

M = (P((S), (u, ("\))) 

The additive identity is the 1f1Pty set, denoted by Q>, and the multiplicative identity 
is the set S. The set P(S) bas 21 elements, where ISi is the number of elements of S. 

It can be shown that every Boolean algebra has 2
11 

elements for some value n >0 . 
Venn diagrams are used to represent sets as well as the operations of union and inter

section. Consequently, since the algebra of sets is a Boolean algebra, Venn diagrams can 
be used to iUustrate the theorems of a Boolean algebra. 

Algebra of Logic (Propositio11al Calculus). In this algebra, the elements are T and F 
(trne and false), and the operations are LOGICAL AND and LOGICAL OR. lt is used to evaluate 
logical propositions. This algebra is isomorphic with the switching algebra. 

A.5 FURTHER READINGS 

The topic of Boolean algebras has been extens ively studied, and many good books on the 
subject exist. The following is a partial list, in which the reader can obtain additional 
material that goes significantly beyond the limited treatment of this appendix: Boolean 
Reasoning: The l ogic of Boolean Equations by F. M. Brown, Kluwer Academic Pub
lishers, Boston, MA, 1990; Introduction to Switching and Automata Theory by M. A. 
Harrison, McGraw-Hill, New York, 1965; Switching and Automata Theory by Z. Kohavi, 
2nd. ed., McGraw-Hill, New York, 1978; Switching Theory by R. E. Miller, Vols. I and 2. 
Wiley, New York, 1965; lmroduction to Discrete Srrucwres by F. Preparata and R. Yeh, 
Addison-Wesley, Reading, MA, 1973; and Discrete Mathematical Structures by H. S. 
Stone, Science Research Associates, Chicago, IL, 1973. 



This page intentionally left blank 



B 
Additional Topics 
Number Systems 

B.1 INTRODUCTION 

1n Bin a ry 

Chapter I introduced the concept of binary or base two numbers. The chapter showed 
how one could convert a decimal integer to binary through the addition method or the 
divide-by-two method. However, numbers used in digital design may not always be whole 
numbers. 

Consider a doctor who uses an in-ear digital thermometer that works in Celsius 
wuts to check whether a patient's body temperature is normal. We know that a human's 
normal body temperature is 37 degrees C (98.6 degrees F) . If the thermometer's tem
perature sensor outputs integer values, then a readout of 37 C corresponds to an actual 
temperature anywhere between 36.5 C and 37.4 C , assuming the temperature sensor 
rounds its output to the nearest integer. Clearly, a more precise temperatme readout is 
preferable to tell if a patient's temperature is abnormal. A readout of 37 C may mean 
that the patient has a normal body temperature or it may mean that the patient is close 
to having a fever. In order to be useful, the thermometer should output fractional com
ponents of the temperature so th at the doctor can differentiate between 37.0 C and 37.9 
C, for example. 

Thls appendix discusses how real numbers (as opposed to just whole numbers) are 
represented in binary, and discusses methods that modern digital designers use to work 
with real numbers. 

B.2 REAL NUMBER REPRESENTATION 

Jus t as Chapter 1 looked closely at how integers are represented in decimal before 
moving on to binary numbers, understanding how real numbers are represented in 
decimal can illunlinate how real numbers are represented in binary. 

Chapter 1 showed that each digit in a number had a ce1tain weight that was a power 
of 10. T he ones place had a weight equal to 10° = 1, the tens place had a weight equal to 
101=10, the hundreds place had a weight equal to 102 = 100, and so on. If a decimal 

547 



548 B Additional Topics in Binary Number Systems 

Generally. the 
poi Tll used to 
separate the whole 
part of the number 
from the fractional 
part is called a 
radix point, a tenn 
applicable to any 
base. 

number had an 8 in the hundred' s place, a 6 in the ten's place, and a 0 in the one's place, 
the value of the number can be calculated by multiplying each digit by its weight and 
adding them together: 8* 102 + 6* I01 + O* 10° = 860. T his calculation is easy since people 
commonly manipulate decimal nmnbers. 

The same concept of weights for 
each digit can be extended to the frac-
tional components of the number. 
Consider the decimal number 
"923.501." The dot in the middle of 
the digits is the decimal point. The 
decimal point separates the fractional 
component of the number from the 
whole part. While the weights of each 
digit in the whole part of the number 

9 2 3 • 5 0 

Figure B.1 Representing real nwnbers in 
base 10. 

are increasing powers of I 0, the weights of the fractional digits are decreasing powers of 
IO, so the digits have fractional weights (e.g., 10-1=0. l and 10-2 = 0.01). Therefore, the 
digits "923.501" represent 9*102 + 2*101 +3*10° + 5*10- 1 + O*l0-2 + 1*10-3, as shown 
in Figure B. l. 

We can represent real numbers in 
binary in a similar manner. Instead of 
a decimal point, real binary numbers 
feature a binary point. Digits to the 
right of the binary point are weighted 
with negative powers of 2. For 
example, the binary number 10.110 l 
equals l *21 + 0*2° + l*T1 + l *T2 + 
O*Z-3 + l *2-4, or 2.8125 in decimal, as 

0 • 1 0 

Figure 8.2 Representing real numbers in 
base 2. 

shown in Figure B.2. 
You may be comfortable cow1ting up by powers of two 

(1, 2, 4, 8, 16, 32, etc.). Counting down by powers of two 
may be difficult to memorize, but the numbers can be 
derived by dividing by 2: 1, 0.5, 0.25, and so on . Table B.I 
illustrates this pattern. 

The addition method used in Chapter l to convert 
decimal integers to binary is also a suitable method for 
converting real numbers, requiring no modifications other 
than needing to work with negative powers of two. 

Table B.1 Powers 
of two. 

Power Value 

22 4 

21 2 

20 I 

2- • 0.5 

Example 8.1 Converting real numbers from decimal to binary with the 
addition method 

2-2 

2-3 

0.25 

0.125 
Convert the number 5.75 to binary using the adilition method. 

To perform this conversion, we follow the process described 
in Chapter 1. The conversion is detailed in Figure B .3. 

2-4 0.0625 

2-5 0.03125 



Put 1 in highest place 
Pla~e 8 too big, but 4 works, pu11 there. 

1 in place 2 too big (4+2>5.75), put o. 
1 in place 1 is OK (4+1 < 5.75), put 1. 

1 in place 0.5 is OK (5+0.5 < 5.75), put 1 

1 in place 0.25 is OK (5.5+0.25 = 5.75) 
5. 75 reached, so done. 

B.2 Real Number Representation 549 

Binary 

0 O • O O (current value: 4) -----
4 2 0.5 0.25 

O 1 • O O (current value: 5) 

4 2 0.5 0.25 

0 • 1 O (current value: 5.5) -----
4 2 0.5 0 .25 

_ ~ _ ._1 __ 1_ (current value: 5.75) 

4 2 0.5 0.25 

Figure 8.3 Convening the decimal number 5.75 to binary using the addition method. 

The alternative method in Chapter l for converting a decimal number to a binary 
number, namely the divide-by-2 method, can be adapted to work with decimal numbers. 
We first separate the whole part of the number from the fractional part, and perl'orm the 
divide-by-2 method on the whole part by itself. Second, we take the fractional part of the 
number and multiply it by 2. After multiplying the fractional part by two, we append the 
digit in the one's place of the product after the binary point in the converted nwnber. We 
continue multiplying the fractional part of the product and appending one's place digits 
until the fractional part of the product is 0. 

For example, let's convert the decimal number 9.8125 to binary using the divide-by-
2 method variant. First, we convert 9 to binary, which we know is 100 1. Next, we take 
the fractional part of the number, 0.8125, and multiply by 2: 0.8125*2 = l.625 . The one's 
digit is a l, therefore we write a 1 after the binary point of the converted number: 
1001.1. Since the fractional part of the product is not 0, we continue multiplying the 
fractional part of the product by 2: 0.625*2 = l.25. We append a 1 to the end of our con
verted number, giving us 1 001. 11, and we continue multiplying by 2: 0.25*2 = 0.5. 
Now we append a o to the end of our converted number, yielding 1 0 01.110. We mul
tiply by 2 again: 0.5*2 = 1.0. After appending the 1 to our converted number, we are left 
with 1oo 1 . 11o1. Since the fractional part of the last product is 0, we are fmisbed con
verting the number and thus obtain 9.8 125 10 = 1001. ll.012• 

A decimal real number can often require a very long sequence of bits after the binary 
point to represent the number in binary. ln digital design, we are typically constrained to 
a finite number of b its available to store a number. As a result, the binary number may 
need to be truncated, and the binary munber becomes an approximation. 



550 B Additional Topics in Binary Number Systems 

B.3 FIXED POINT ARITHMETIC 
If we fix the binary point of a real number in a certain posi
tion in the number (e.g., after the 4th bit), we can add or 
subtract binary real numbers by treating the numbers as inte
gers and adding or subtracting normally. The process is 
known as fixed point arithmetic. In the resulting sum or dif
ference, we maintain the binary point's position . For example, 
assume we are working with 8-bit numbers with half of the 
bits used to represent the fractional part of the number. 
Adding ioo1 . 0010 (9. 125) and 0011.1111 (3.9375) can 

1 1 1 1 1 
001.0010 

+0011.111 1 

1101.000 1 

Figure 8.4 Adding two 
fixed point numbers. 

be done simply by adding the two numbers as if they were integers. The stun, shown in 
Figure B.4, can be converted back to a real number by maintaining the binary point's 
position within the sum. Converting the sum to decimal verifies that the calculation was 
correct: I *23 + I *22 + 0*21 + I *2° + O*Z-1 + O*T2 + O*T3 + l *Z-4 = 8 + 4 + l + 0.0625 
= 13.0625. 

Multiplying binary real numbers is also straightforward 
and does not require that the binary point be fixed. We fit-st 
multiply tl1e two numbers as if they were integers. Second, we 
place a binary point in the product such that the precision of 
the product is the sum of the precisions of the rn ultiplicand and 
multiplier (the two numbers being multiplied), just like what is 
done when we multiply two decimal numbers together. Figure 
B.5 shows how we nilght multiply the binary numbers OJ.10 
(1.5) and 11.01 (3.25) using the partial product method 
described in Chapter 4. After calculating the product of the 
two nwnbers, we place a binary point in the appropriate loca-

0 1 . 1 0 
x 1 1.0 1 

0 1 1 0 
0 0 0 0 

0 1 1 0 
+ 0 1 1 0 

0 1 0 0.1 1 1 0 

Figure B.5 Multiplying 
two fix:ed point numbers. 

tion. Both the multiplier and multiplicand feature two bits of precision; therefore the 
product must have four bits of precision, and we insert a binary point to reflect this. Con
verting the product to decimal verifies that the calculation was correct: 0*23 + l *22 + 0*21 

+ 0*2° + 1*2-1 + 1 *2-2 + l*Z-3 + 0*2-4 = 4 + 0.5 + 0.25 + 0 .125 = 4.875. 
The previous example was convenient 

in that we never had to add four ls 
together in a column when we sununed up 
the partial products. To make the calcula
tions simpler and to allow for the pat1ial 
product summation to be implemented 
using full-adders, which can only add three 
ls at a time, we add the partial products 
incrementally instead of all at once. For 
example, let's multiply 1110. 1 (14.5) by 
0111. i (7.5). As seen in Figure B.6, we 
begin by generating partial products as 
done earlier. However, we add partial prod
ucts immediately into partial product sums, 

1 1 1 0.1 multiplicand 
x 0 1 1 1 . 1 multiplier 

1 1 1 o 1 partial product 1 (pp1) 
-'-+-'1-'1'--1""-0"-'-1 --pp2 
1 o 1 o 1 1 1 pps1 = pp1 + pp2 

-'+-'1-'1,_1.:,_.=;0..,:1 ___ pp3 
1 1 o o 1 o 1 1 pps2 = pps1 + pp3 

~+~1_1_1,;,,,.;;.0 ...;1 __ ~pp4 
1 1 o 1 1 -0 o 1 1 pps3 = pps2 + pp4 

_+_o_o_o_o_o ____ pp5 
0 1 1 0 1 1 0 0.1 1 product = pps3 + pp5 

Figure 8.6 Multiplying two fixed point 
numbers using intermediate partial products. 

labeled pps in the figure. Eventually, we find that the product is 01101100 .11, which 



8.4 Floating Point Representation 551 

corresponds to the correct answer of 108.75. You may want to try adding the five partial 
products together at once instead of using the intermediate partial product sums to see 
why this method is useful. 

Before proceeding to binary real number division, we will introduce binary integer 
division, which was not discussed in previous chapters. 

We can use the familiar process of long 
division to divide two binary integers. For 
example, consider the binary division of 
101100 (44) by 10 (2). The full calculation is 
shown in Figure B.7. Notice how the procedure 
is exactly the same as decimal long division 
except that the numbers are now in binary. 

Dividing binary real numbers, like multipli
cation, also does not require that the binary point 
be fixed. However, to simplify the calculation, 
we shift both the dividend and divisor;s binary 
points right until the divisor no longer has a frac
tional part. For example, consider the division of 
1 . O 1 2 ( 1.25) by O . 1 2 (0.5). The divisor, O . 1 2, 

has one digit in its fractional part; therefore we 
shift the dividend and divisor's binary points 
right by one digit, changing ow- problem to 
10. 1 2 divided by 1 2 . We now treat the nwnbers 

divisor 1 

1 o 1 1 o quotient 
0 j 1 o 1 1 o o dividend 

~~1 0 1 
- 0 0 

0 1 1 

- 1 0 

1 0 
-1 0 

0 0 
- 0 0 

O remainder 

figure B.7 Dividing two binary integers 
using Jong division. 

as integers (ignoring the binary point) and can divide them using the long division approach. 
Trivially, 101/12 is 1012. We then restore tile binary point to where it was in the dividend, 
giving us the answer 10. 1 2 or 2.5. 

Why does shifting the binary point not change the answer? In general, shifting the 
radix point right by one digit is the same as multiplying the number by its base. For 
binary numbers, shifting the binary point right is equivalent to multiplying the number by 
2. Dividing two numbers will give you the ratio of the two numbers to each other. Multi
plying the two numbers by the same number (by means of shifting the binary point) wiU 
not affect that ratio, since doing so is equivalent to multiplying the ratio by 1. 

Fixed point numbers are sim ple to work with, but are limited in the range of numbers 
that they can represent. For a fixed number of bits, increasing the precision of a nwnber 
comes at the expense of the range of whole numbers that we can use, and vice versa. 
Fixed point numbers are suitable for a variety of applications, such as a digital thermom
eter, but more demanding appLcations need greater flexibility and range in their real 
number representations. 

B.4 FLOATING POI NT REPRESENTATION 

When working with decimal numbers, we often represent very large or very small 
numbers by using scientific notation. Rather than w1iting a googol as a l with a hundred 
Os after it, we could write 1.0* 10100

. Instead of 299,792,458 mis, we could write the 
speed of light as 3.0* 108 mis, as 2.998*108

, or even 299.8*106
. 



552 B Additional Topics in Binary Number Systems 

If such notation could be translated into binary, we would be able to store a much 
greater range of numbers than if tl1e binary point were fixed. What features of this nota
tion need to be captured in a binary representation? 

First is the whole and fractional part of the 
number being multiplied by a power of 10, which 
is called the mantissa (or significant!) , as shown in 
Figure B.8. We do not need to store the whole part 
of the number if we make sme the number is in a 
certain form. We call a number written in scientific 
notation normalized if the whole part of the 
number is greater than 0 but less than the base. In 
the previous speed of light examples, 3.0* 108 and 

+ 3.0 * 108 

/ -- "" \ \ exponent 
sign mantissa base 

Figure B.8 Parts of a number in 
scientific notation. 

2.998* l 08 are normalized since 3 and 2, respectively, are greater than zero but less than 
IO. The number 299.8* 106, on the other hand, is not normalized because 299 is greater 
than I 0. If a binary real number is normalized, then the whole part of the mantissa can 
only be a 1. To save b its, we can safely assume that the whole part of the mantissa is l 
and store only the fractional part. 

Second is the base (sometimes refetTed to as the radix) and the exponent by which 
the mantissa is multiplied, shown in Figure B.8. Calling 10 the base is no accident- the 
number is the same as the base of the entire number. In binary, the base is naturally 2. 
Knowing this, we do not need to store the 2. We can simply asswne that 2 is the base and 
store the exponent. 

Third, we must capture the sign of the number. 

The IEEE 754-1985 Standard 

The Institute of Electrical and Electronic Engineers (IEEE) 754- 1985 standard specifies a 
way in which the three values described above can be represented in a 32-bit or a 64-bit 
binary number, refen-ed to as single and double precision, respectively. Though there are 
other ways to represent real numbers, the IEEE standard is by far the most widely used. 
We refer to these numbers as fWating point numbers. 

The IEEE standard assigns a 
certain range of bits for each of 
the three values. For 32-bit num
bers, the first- most 
significant- bit specifies the 
sign, followed by 8 bits for the 
exponent, and the remaining 23 
bits a.re used for the mantissa. 
This ruTa11gement is pictured in 
Figure B.9. 

0 

sign exponen1 mantissa 

figure B.9 Bit arrangement in a 32-bit floating point 
number. 

The s ign bit is set to 0 if the number is positive, and the bit is set to l if the number is 
negative. The mantissa bits are set to the fractional patt of the mantissa in the original 
number. For example, if the mantissa is 1.10 11, we would store 1 0 1 1 followed by 19 
zeroes in bits 22 to 0. As pait of the standard, we add 127 to the exponent we store in the 
exponent bits. Therefore, if a floating point number's exponent is 3, we would store 130 in 



8.4 Floating Point Representation 553 

the exponent bits. If the exponent was - 30, we would store 97 in the exponent bits. The 

adjusted number is called a biased exponent. Exponent bits containing all Os or all ls have 
special meanings and cannot be used. Under these conditions, the range of biased exponents 
we can write in the exponent bits is 1 to 254, meaning the range of unbiased exponents is 
-126 to 127. Why don't we simply store the exponent as a signed, two;s complement number 

(discussed in Section 4.8)? Because it turns out that biasing the exponents results in simpler 
circuitry for comparing the magnitude (absolute value) of two floating point numbers. 

The IEEE standard defines certain special values if the contents of the exponent bits 
are uniform. When the exponent bits are all Os, two possibilities occur: 

1. If the mantissa bits are all Os, then the entire number evaluates to zero. 

2. If the mantissa bits are nonzero, then the number is not norm alized. That is, the 
whole part of the mantissa is a binary zero and not a one (e.g. O . 1 0 11). 

When the exponent bits are all l s, two possibilites occur: 

1. If the mantissa bits are all Os, then the entire number evaluates to + or - infinity, 
depending on the sign bit. 

2. lf the mantissa bits are nonzero, then the entire "nwnber" is classified as not a 
number (NaN). 

There are also specific classes of NaNs, beyond the scope of this appendix, that are 

used in computations involving NaNs. 
With this information, we can convert decimal real numbers to floating point num

bers. Assuming the decimal number to be convetied is not a special value in floating 

point notation, Table B.2 describes how to perform the conversion. 

Table B.2 Method for converting real decimal numbers to floating point 

Step Description 

1 Convert the number from base Use the method described in Section B.2. 
JO to base 2. 

2 Convert the munber to Initially multiply the number by 2°. Adjust d1e binary point 
normalized scientific notation. and exponent so that the whole part of the number is 12. 

3 Fill in the bir fields. Set the sign, biased exponent. and mantissa bits 
appropriately. 

Example B.2 Converting decimal real numbers to floating point 
Convert the following numbers from decimal to IEEE 754 32-bit floating point: 9.5, infinity, and 
- 52406.25 * 10-2. 

Let's follow the procedure in Table B.2 to convert 9.5 to floating point. In Step I, we convert 

9.5 to binary. Using the subtraction method, we find that 9.5 is 1001 .1 in binary. To convert the 

number to scientific notation per Step 2, we multiply the number by 2°. giving 1001 . 1 * 2° (for 
readabili ty purposes, we write d1e 2° part in base JO). To normalize d1e number, we must shift d1e 



554 B Additional Topics in Binary Number Systems 

binary point left by three digits. In order not to change the value of the number after moving the 
binary point, we change the 2 's exponent to 3. After Step 2, our number becomes 1 . OOll * 23

• 

In Step 3, we put everything together into the properly formatted sequence of bits. The sign bit 
is set to 0, indicating a positive number. The exponent bits are set to 3+127=130 (we must bias the 
exponent) in binary, and the mantissa bits are set to 0011 2, which is the fractional part of the man
tissa. Remember that the 1 to the left of the binary point is implied since the number is nonualized. 
The properly encoded number is shown in Figure B.10. 

Now let's convert infinity to a 
floating point number. Since infinity 
is a special value, we cannot employ 
the method we used to convert 9.5 to 
floating point. Rather, we fill in the 
three bit fields with special values 
indicating that the number is infinity. 
From the discussion of special values 
above, we know that the exponent 
bits should be all Is and the mantissa 
bits should be all Os. The sign bit 
should be 0 since infinity is positive. 
Therefore, the equivalent t1oating 
point number is 0 11111111 
00000000000000000000000. 

Converting - 52406.25 * I o-2 

to floating point is straightforward 
using the method in Table B.2. For 
Step I, we convert the number to 
binary. Recall that we represent the 

Step 1: Convert to binary 
9.510 <=> 1001.12 

Step 2: Convert lo normalized scientific notation 
1001.1<=>1001.1*20 <=> 1.0011. 23 

~ To normalize, move binary 
point 3 digits left & add 3 to exponent 

&~:::;~ 
0 10000010 00110000000000000000000 

sign exponent 
(biased) 

mantissa 

Figure B.10 Representing 9.5 as a 32-bit t1oating point 
number, most significant bit first. 

sign of the number using a single bit and not using two's complement representation, so we 
only need to convert 52406.25 * w-2 to binary and set tbe sign bit to indicate that the nmnber 
is negative. The number 52406.25 * w-2 evaluates to 524.0625. Using the subtraction or 
divide-by-2 method we know that 524 is 1000001100 in binary. The fractional part, 0.0625, 
is conveniently 2-4. Thus 524.0625 is 1000001100. 0001 in binary. In Step 2, we write the 
number in scientific notation: 1000001100. 0001 * 2°. We must also normalize the nmnber 
by shifting the binary point left by 9 digits and compensating for this shift in the exponent: 
1. 0000011000001 * 29

. Finally, we combine the sign (I since the original number is nega
tive), biased exponent (9 + 127 = 136), and fractional part of the mantissa into a floating point 
number: 1 10001000 00000110000010000000000. 

Example B.3 Converting floating point numbers to decimal 
Convert the number 110010111010101 00000000000000000 from IEEE 754 32-bit floating 
point to decimal. 

To perform this conversion, we first split the number into its sign, exponent, and mantissa 
parts: 1 10010111 01010100000000000000000. We can inunediately see from the sign bit 
that the munbcr is negative. 

Next, we convert the 8-bit exponent and 23-bit mantissa from binary to decimal. We find 
that 10010 I 11 is 151. We unbias the exponent by subtracting 127 from 151, giving an unbiased 
exponent of 24. Recall that the mantissa in the pattern of bits represents the fractional part of the 



8.4 Floating Point Representation 555 

mantissa and is stored without the leadjng l from the whole part of the mantissa (assuming the 
original number was normalized). Restoring the I and adding a binary poim gives us the number 
1.01010100000000000000000. wh.ich is the same number as 1.010101. By applying weights to 
each digit, we see that l.010101 = 1 *2° + O*T1 + I *T2 + O*Z-3 + I *Z-4 + O*Z-5 + I *Z-6 

:::::: 

1.328125. 
With the original sign, exponent, and mantissa extracted, we can combine them into a single 

number: - l.327125 * 224
. We can multiply the number out to - 22,265,462.784, which is equivalent 

to - 2.2265462784 * I 07. 

The format for double prec1s1on 
(64-bit) floating point numbers is 
similar, with three fields having a 
defined number of bits. The fust, 
most significant bit represents the 
sign of the number. The next 11 
bits hold the biased exponent, 

bit 1 63 1 62 I 61 I .. -I s3 I s2 I s 1 I so I -. · I 
sign exponent mantissa 

Figure B.11 Bit arrangement in a 64-bit floating point 
number. 

0 

and the remaining 52 bits hold the fractional part of the mantissa. Additionally, we add 
1023 to the exponent instead of 127 to fonn the biased exponent. This arrangement is pic
tured in Figure B. l I. 

Floating Point Arithmetic 
Floating point arithmetic is beyond the scope of this text, but we will provide a brief over
view of the concept. 

Floating point addition and subtraction must be performed by first aligning the two 
floating point numbers so that their exponents are equal. For example, consider adding 
the two decimal numbers 2.52* 102 + 1.44* l 0 4

. Since the exponents differ, we can change 
2.52*102 to 0.0252*104

. Adding 0.0252*104 and 1.44*104 gives us the answer 
1.4652* 104

• Similarly, we could have changed 1.44* 104 to 144* 102
• Adding 144* 102 and 

2.52* 102 gives us the sum 146.52* 102
, which is the same number as our first set of calcu

lations. An analogous situation occurs when we work with floating point numbers. 
Typically, hardware that performs floating point arithmetic, often referred to as afloati11g 
point unit, will adjust the mantissa of the number with the smaller exponent before 
adding or subtracting the mantissas (with their implied Is restored) together and pre
serving the common exponent. Notice tl1at before the addition or subtraction is 
perfonned, the exponents of the two munbers are compared. This comparison is facili 
tated through the use of the sign bit and the biased exponent as opposed to representing 
the exponent in two's complement fonn. 

Multiplication and division in floating point require no such alignments. Like in 
decimal multiplication and division of numbers in scientific notation, we multiply or 
divide the mantissas and add or subtract the two exponents, depending on the operation. 
When multiplying, we add exponents. For example, Jet's multiply 6.44* 107 by 5 .0* 10-3. 

Instead of trying to multiply 64,400,000 by 0.005, we multiply the two mantissas together 
and add the exponents. 6.44*5.0 is 32.2 and 7+(- 3) is 4. Thus the answer is 32.2* 104

• 

When dividing, we subtract the exponent of the divisor from the dividend's exponent. 
For example, lef s divide 31.5* 10-4 (dividend) by 2.0* 10- 12 (divisor). Dividing 31.5 by 
2.0 gives us 15.75. Subtracting the divisor's exponent from the dividend's gives 



556 B Additional Topics in Binary Number Systems 

-4 - (- 12)=8. T hus the answer is 15.75* 108. Floating pojnt djvision defines results for 

several boundary cases such as dividing by 0, which evaluates to positive or negative 
infinjty, depeniling 011 the sign of the ruvidend. Dividing a nonzero number by infinjty is 
defined as 0, otherwise dividing by infinity is NaN. 

8.5 EXERCISES 

SECTION B.1: REAL NUMBER REPRESENTATION 

B. I Convert the following numbers from decimal to binary: 
(a) 1.5 
(b) 3.125 
(c) 8.25 
(d) 7.75 

B.2 Convert the following numbers from decimal to binary: 
(a) 9.375 
(b) 2.4375 
(c) 5.65625 
(d) 15.5703 125 

SECTION B.3: FIXED POINT ARITHMETIC 

B.3 Add the following two unsigned binary numbers using binary addition and convert the result 
to decimal: 
(a) 1 011 1. 001 +1010 . 11 0 
(b) 0110 1. 100 + 10100 . 1 01 
(c) 1 0110.l + llO.Oll 

(d) 1101 . 111+10011 . 0111 

SECTION B.4: FLOATING POINT REPRESENTATION 

B.4 Convert the following decimal numbers to 32-bit floating point: 
(a) - 50,208 
(b) 42.427523 * 103 

(c) - 24,551 ,152 * 10-" 
(d) () 

B.5 Convert the following 32-bit floating point numbers to decimal: 
(a )o10011 00010110110101 10000101 1 000 
(b)01001100010110110101 001000000000 
(c ) o11111 11111000110000000000000000 
(d ) 010011 01000110101000101000000000 



c 
Extended 
Example 

C.1 INTRODUCTION 

RTL Design 

Chapter S included an RTL desjgn example of a soda illspenser processor. The example 
started with a hlgh-level state rnachlne, created the datapath 's structure, and then 
described the controller using a firute-state machine. The controller was not further 
design to structure, as such design was the subject of Chapter 3. This appendix completes 
the RTL design by desigrung the controller's FSM down to a state register and gates, 
resulting in a comp'Jete custom-processor implementation of a controller and a datapath. 
The appendix traces through the behavior of the complete implementation. The purpose 
of demonstrating tills complete design is to give the reader a clear understandjng of how 
the controller and d atapath work together. 

s 
8 

Soda 
dispenser 
processor 

a 
8 

The block symbol for the soda dispenser processor 
appears. in Figure C. l. Recall that the soda ctispenser has 
three inputs c, s, and a. The 8-bit input s represents the 
cost of each bottle of soda. The l -bit input c is 1 for one 
clock cycle when a coin is inserted. Additionally, the d 
value on 8-bit input a inilicates the value of the coin that 
was inserted. The soda dispenser features one output d 
used to inilicate when soda should be ilispensed. The I - Figure C.1 Soda dispenser 
bit output d is 1 for one clock cycle after the value of the 
coins inserted into the soda dispenser is greater than or 
equal to s. The soda dispenser does not give change. 

block symbol. 

Chapter 5 developed the high-level state machlne seen in Figure C.2. The HLSM was 
then converted into a contro!Jer (represented behaviorally as an FSM) and datapath, 
shown in Figure C.3. 

The datapath supports the data operations necessitated by the hlgh-level state 
machlne, inclurung resetting the value of tot (tot= 0 in the /nit state), comparing whether 
tot is less than s (for the transitions from the Wait state), and adding tot and a (in the 
Add state). 

557 



558 C Extended RTL Design Example 

Figure C.3 Soda 
dispenser: (a) 

controller 
(described 
behaviorally) and 
(b) datapath 
(structure). 

The controller FSM is similar to the 

high-level state machine, but is modified to 
control the datapath and accept status input 
from the datapath (i.e., tot_ l t = s) rather 
than pe1forming data operations directly. 

The controller and datapath are shown in 
Figure C.3. 

Inputs: c, tot_lt_s {bit) 
c Outputs: d, tot_ld, tot_clr (bit) tot_ Id 

d 

tot_lt_s -
Controller d=1 

(a) 

C.2 DESIGNING THE SODA DISPENSER CONTROLLER 
Using the controller design process introduced 
in Chapter 3, we can complete the design of the 
controller. The steps are as follows: 

Capture the FSM. The FSM for the soda dis 
penser's controller was created during Step 4 of 
the RTL design method. The controller's FSM 
is shown in Figure C.3(a). 

Set up the architecture. As indicated by the 
controller's FSM, the state machine's architec

ture has 2 inputs (c and tot_lt_s) and 3 
outputs (d, tot_ ld, and tot_ c lr). We will 
use two bits to represent the controller's states, 
naming the current state signals s1 and so, and 
the next state signals nl a11d :no. The co1i·e
sponding controller architecture is shown in 
Figure C.4. 

Input c (bits), a (8 bits), s (8 bits) 
Outputs: d (bit) 
Local registers. tot (8 bits) 

Figure C.2 Soda dispenser high·l~~e1 
state machine. 

s a 

tot_ld 
Id 

tot_ cir tot 
cir 

8 
8 8 8 

tot_lt_s 
8-bit 

< 

Datapath 8 

(b) 

c - Combinational d toU 
logic -d 

tot_ cl 

tot_lt _s 

D.L 
-

sd tso no 

elk State register 

Controller 
t • 

Figure C.4 Standard controller architecture 

for the soda dispenser. 



C.2 Designing the Soda Dispenser Controller 559 

Encode th e states. A straightforward encoding of the soda dispenser's four states is: 
/nit: 00, Wait: 01 , Add: 10, and Disp: 11. 

Fill in the tntth table. From th e controller architecture set up above, we know that the 
truth table must have 4 inp uts (c, tot_lt_s, sl, and so) and 5 outputs (d, tot_l d, 
tot_clr, nl, and no). With 4 inputs, the table will have 24 = 16 rows as in Figure C.5. 

Figure C.5 The soda dispenser 
controller' s truth table. 

I 
I 

I 

~ 

""' llj 

~ 

:g 
~ 

Q. 

c5 

s1 
0 
0 
0 
0 
0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

Inputs 

so c 

0 0 
0 0 
0 1 
0 1 

1 0 

1 0 

1 1 

1 1 

0 0 
0 0 
0 1 

0 1 
1 0 
1 0 
1 1 

1 1 

By examining the outputs specified in the 
controller FSM, duplicated for convenience in 
Figure C.6, we can fill in the d, tot_ld, and 
tot clr columns in the truth table. For 
example, Figure C.6 shows that when the con
troller FSM is in state /nit, d =O, tot_c l r =l , 
and tot_ ld is implicitly 0. Thus, for rows in 
the tmth table that correspond to state lnit 
-namely the four rows where sls0=00, since 
we chose " oo" as the encoding for the lnit 
state- we set the d column too , the tot_clr 
colwnn to l, and the tot_l d colwnn to o. 

We fill in the next state columns nl and no 
based on the transitions specified in the con-

Outputs 

tot_lt_s d tot_ld tot_ cir n1 
0 
1 

0 
1 

0 

1 

0 

1 

0 

1 

0 

1 

0 
1 

0 

1 

0 0 1 0 
0 0 1 0 
0 0 1 0 

0 0 1 0 

0 0 0 1 

0 0 0 0 

0 0 0 1 

0 0 0 1 

0 1 0 0 
0 1 0 0 
0 1 0 0 
0 1 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 

Inputs: c. tot_lt_s (bit) 
Outputs. d, tot_ld. tot_clr (bit) 

d=1 

Figure C.6 Soda dispenser controller 
FSM with state encodings. 

no 
1 

1 

1 

1 

1 

1 

0 

0 

1 

1 

1 

1 

0 
0 
0 
0 

troller FSM and the state encoding chosen in the earlier step. For example, consider the 
Wait state. As indjcated in Figure C.6, the FSM transitions to the Add state when c =l. 
Thus, for rows where slsOc=Oll (slsO=Ol corresponds to the Wait state), we set the 
nl column to 1 and the no column too (n1n 0=10 c01responds to the Add state). When 
c =O, tl1e FSM transitions to the Disp state if tot_lt_s=O or remains in the Wait state of 
tot_ l t _ s = 1. We represent the transition from Wait to Disp in the t rnth table by setting 



560 C Extended RTL Design Example 

nl to 1 and nO to 1 (Disp) in the row where sls0=01 (Wait), c =O, and tot_ l t _ s = O. 

SimilaJ'ly, we rep!'esent the transition from Wait back to Wait by writing nln0 =01 where 
sls0= 01., c =O, and tot_ lt _ s = l. We then examine the remaining transitions in a 
similar way, filling in the appropriate values for n l and no until all transitions are 
accounted for. The completed truth table is shown in Figure C.5. 

Implement the Combinatimzal Logic. For each of the truth table's outputs, we write the 
corresponding Boolean equation. From the truth table we obtain the following equations: 

d = slsO 

tot ld = slsO' 
tot clr = sl'sO' 
nl sl'sOc'tot l t s' + sl'sOc 

no 
no 

sl'sO ' + sl ' sOc' + slsO' 

sO' + sl'sOc' 

Note that the first fow· equations derived from 
the truth table are already minimized. The fifth 
equation, corresponding to no, can be minimized to 
so' + sl 'soc' through algebraic methods, or 
by using a K-map as shown in Figure C.7. K-maps 
were discussed in Chapter 6. 

G s1s0 

c 00 01 11 10 

0 

1 

s1's0c' sO' 

Figure C.7 K-map for output no. 



C.2 Designing the Soda Dispenser Controller 561 

Using techniques discussed in Chapter 2, we convert the above Boolean equations 
into an equivalent two-level gate-based circuit. 111is conversion is straightforward since 
the Boolean equations are already in sum-of-products form. The final sequential con
troller circuit and the datapath for the soda dispenser is shown in Figure C.8. 

Combinational logic 8 8 

tot 
c 

tot_lt_s 

tot_lt_s 8 

Datapath 
s1 so 

State register 

Figure C.8 Final implementation of the soda machine controller with datapath. 



562 C Extended RTL Design Example 

C.3 UNDERSTANDING THE BEHAVIOR OF THE 
SODA DISPENSER CONTROLLER AND DATAPATH 

This section examines how the controller and datapath designed for the soda dispenser 
interact to form a working implementation of the initial high-level state machine. 

Figure C.9 illustrates the behavior of the soda dispenser controller and datapath, 
including initialization and how the soda dfapenser behaves when a user inserts a quarter 
into the system. The 5 clock cycles shown are labeled 1 through 5 in Figure C.9(a). We'll 
assume that the cost of a soda can is 60 cents and that the soda dispenser's controller is in 
the !nit state during the first clock cycle. Let's examine what occms in each clock cycle: 

• Initially, in clock cycle 1, the controller is in the /nit state, shown in Figure C.9(b). 
When in state /nit, the controller sets d to o, tot_ld to o, and tot_clr to 1. 

Additionally, the controller sets the next state signals nlnO to 0 1 , corresponding 
to the Wail state. In the datapath, the value of tol and 101+a is unknown, denoted 
by " ??". Notice that even though the controller set tot_clr to 1 during this 
clock cycle, the Tot register will not be cleared immediately (asynchronously). 
Rather, Tot will be cleared shmtly after the next clock cycle, a synchronous 
behavior. Finally, notice that the price of the soda, s, is set to 60 cents and the 
coin input signals, c and a, are initially 0 and 0, respectively. 

• Figure C.9(c) shows the soda dispenser in clock cycle 2. The controller is now in 
the Wait state. Accordingly, the controller sets d, tot_ld, and tot_clr to o. 
The value of rot is cleared, and shortly afterwards, two signals, tot_ l t _ s and 
Tot+a, take a known value. The datapath's comparator sets tot_lt_s to 1 since 
the total, 0, is Jess than the price of soda, 60. The datapath 's adder sets interme
diate signal tot+a to 0 since 101 and a are now known. The next state signals 
remain set to 01 (Wait) since c is o and tot_lt_s is 1. 

• Figure C.9(d) shows the soda dispenser in clock cycle 3. During the third clock 
cycle, the user inserts a quarter into the soda dispenser, as indicated by c 
becoming 1 and a becoming 25. Shortly after a changes, the adder's output 101+a 

changes to 25, the sum of tot and a. Since c is 1, the controller sets the next state 
to 10 (Add). The values of d , tot_ld, and tot_clr remain the same since the 
controller's state has not changed since the previous (2nd) clock cycle. 

• In clock cycle 4, shown in Figure C.9(e), the controller is in the Add state and sets 
tot_ ld to 1 while keeping d and tot_ clr at 0. As was the case with tot_ clr 
during the /nit state, tot will not be updated until the next clock cycle. The con
troller will unconditionally return to state Wair, setting nlnO to o 1 (Wait). 



Combinational logic 

c 0 

tot_lt_s 

State register 

(a) 

Combinational logic 

0-> 1 
c 

tot_tt_s 

s1 

State register 

C.3 Understanding the Behavior of the Soda Dispenser Controller and Oatapatn 563 

s 60 s 60 o a 

8 Datapath 8 
Combinational logic 

8 Datapath 8 

c () 

tot_lt_s 

tot_lt_s ?? !Ol_lt_s ??->0 
s1 

S1ate register 

(b) (c) 

3 4 5 

elk 

state (s1 sO) Figure C.9 Soda 
dispenser 
operation from 
initialization to 
inserting a 
quarter: (a) 
timing diagram, 
(b)-(e) signal 
values during 

clock cycles 
1-4. 

"' (ij 
c 
C> 
«n 
.<= 
ro 
a. 
(II 

(ij 
0 

c I 

I 

Id -- - ---tot_ I 

I 

tot cir ------' 
- I 

tot _lt_s 
I 

-----..I-------I 

tot ?? 25 

a 0 25 25 25 

tot+a ?? 25 25 50 

s 60 I 6Q I 60 I 60 I 
I I I I 60 

~- ·~· 
s 160 0->25 l a f 
....... T _______ T,___, Combinational logic 

8 Datapal h 8 o d 

1-0:..·.:;.> 1""'+'10:,:l..:l"'"d--+-+-l td 

to l_ lt_s l>->25 

(d) 

1->0 
c 

tot_lt_s 

sl 

1--0-+to_1~_e1r __ t-t-1clr 

State register 

0 1 
Wait 

tot_lt_s 

(e) 

Datapath 



564 C Extended RTL Design Example 

• In dock cycle 5, shown in Figure C.10, the controller sets d , tot_ld, and 
tot_ clr to o since the controller is in the Wait state. The tot register loads the 
vaJue of tot+a, storing 25. Shortly afterwards, tot+a changes to 50 to reflect the 
new value of rot; however, 50 is not loaded into tot, as tot will only perform a load 
synchronous to the rising edge of the clock signal. 

The addition procedure demonstrated in clock cycles 3 through 5 is repeated for each 
coin inserted until enough change has been inserted to cover the cost of a soda, as indi
cated by input signal s. 

figure C.10 Operation 
of d1e controller and 
datapath: clock cycle 5. 

c 0 

tot_lt_s 

Combinational logic 

sl so 01 Walt 

State register 

01 
Wait 

8 

tot_lt_s 

Datapath 

8 

25->50 



C.3 Understanding the Behavior of the Soda Dispenser Controller and Oatapatn 565 

Figure C. l l details the behavior of the soda dispenser when the user has inserted 
enough change into the machine to cause a soda to be dispensed. In the timing diagram 
shown in Figure C. l l (a), we duplicate clock cycle 5 from Figure C.9(a) as a point of ref
erence. During the next few dozen clock cycles, we assume that the user has inserted a 
nickel followed by a quarter. As a result, the register to! will contain the value 55 
(25 + 5 + 25 cents). Let's examine the behavior of the soda dispenser when the user inserts 
a dime into the machine: 

• In Figure C.ll(b), corresponding to clock cycle 100, the soda dispenser's con
troller is in the Wail state. Assuming the user inserts a dime into the soda 
dispenser, the c input will become high for one clock cycle and the a input will 
change to 10, the value of a dime. Sh01tly after a changes, the intermediate signal 
tot+a changes to 65(55+10). With c asse1ted, the next state sjgnals nlnO become 
10 (Add). 

• ln clock cycle 101, shown in Figure C.11 (c), the controller is in the Add state and 
asserts tot_ld. The register 101 will not load a new total until the rising edge of 
the next clock cycle. The controller unconditionally sets the next state to 01 

(Wait). 

• F igure C.l l (d) shows the status of the soda dispenser in clock cycle 102, where 
the controller is in the Wait state. As indicated by the arrows in Figure C.l l(a), 
tot_ ld being asserted on the rising edge of the clock causes tot to load the value 
on its input, which is 65. Shortly after tot loads a new value, the comparator's 
output tot_ l t _ s changes from 1 to o to reflect the fact that to! (65) is not Jess 
than s (60) . Since the controller is in the Wail state, and since both c and 
tot_lt_s are o, the controller sets the next state signals to 11 (Disp). Notice 
that prior to the next state signals settling on the Disp state, the next state was Wait 

for a brief period of time. Depending on the time required for signals to propagate 
through the datapath and controller, certrun signals may initially contain unex
pected values, but these signals will eventually settle to their expected values. We 
can avoid any problems associated with this period of uncertainty by selecting a 
clock period that is long enough to allow our circuit's intennediate signals to 
settle into a stable state and stay stable Jong enough to comply with any setup 
times required by our circuit's sequential components. 

• ln Figure C. l l (e), the controller is in the Disp state. The controller asserts d, indi
cating to some outside component that a soda should be dispensed. The controller 
will unconditionally transition to the /nit state, where che initialization procedure 
shown in Figure C.9 is repeated (partially shown in clock <:ycle 104 of Figure 
C.ll(a)). 

We see that the controller and datapath work together to implement the behavior of 
the original high-level state macrune. 



566 C Extended RTL Design Example 

t>->1 
c 

tot_lt_s 

D 
c 

tot_lt _s 

Combinational logic 

Sl 

State register 

(a) 

Combinational logic 

Sl 

State register 

a Datapath 8 

(b) 

100 

1->0 
c 

tot_lt_s 

Comb1national logic 

Sl 

State register 

Clk ~-~~- I 

state (s1s0) ~::::: • ~~~a~it_,•\""_~-::.,,~.,;_-_""'.,,..._....:..:..:=-..,..._..::..:..::.c......,, 
I 

next state (n 1 nO) Wait )C:::: Add I 

I 

d -----t-------+----~---+-~--~ 
I 

C --------:------- I 

tot Id -l-~-----.-..' ___ .., 
- I I 

tot_clr -l------=l=' ===:i:::==P.~--:---r 

tot_lt_s =:L~~~~~-+' --=::,-4-----::-::--l.ird~~~:+=~=+:~~= 
tot ~-----:::t' ::::5::5:::=::t::::::::=::::tl'::::::==i==6=5=::t:::::6::5::::: 
a 2s , ----2s, 10 i O 10 

tot+a Tof ====~o=,c==6:::s:==F=6~s==;t:;::::::1s:==F=1~s==F=1==s=== 
=-----:::L::::==i===:i:..::==:::i::===::i=== s ~=====-i _ 6_0 _ ___ 6_0 ___ 6_0 _ _ _ 6_0 _ ___ 6_0_ 

,...s .... _s_o _____ 1_0_ ..... a...,~T 
a Datapath a 0-> 1 d 

0 
c 

tot_lt_s 

65->75 

(d) 

State register 

o tot Id 

0 tot cir 

00 
/nit 

0 

a Datapath 8 

(c) 

Figure C.11 Soda 
dispenser 
operation when 
sufficient change 

has been inserted: 
(a) timing 
diagram, (b)-(e) 
signal values 
during clock 
cycles 100- 103. 

10 a 

8 Datapath a 

(e) 



Index 

Numerics 
4000 series !Cs 440 
68HC I I 25 
7400-scrics ICs 439 
74F res 440 
74HC !Cs 440 

A 
A2D (analog to digital) 9 
Absorption 542 
Abstmction 247, 307 
Access Lime (RAM) 291 
Actions (in a state) 254 
Active low 92 
Actuator 9 
Adaptive cruise control. 264 
Adder 259, 365. 377 
Adder tree 236 
Addition method 14. 547 
Address 170. 226 
Aircraft lavatory '>ign example 59 
Algebra 43 
Algorithm 339. 388 
Algorithmic state machines 253 
Allocation 382 
ALU 207 
ALU operation 463 
always procedure (in Verilog) 496 
Amp 36 
Analog 9 
Analog signal 4, 5 
Analog-to-digital conversion 6, 9 
Analog-to-digital converter 291 
AND 43. 53 
AND gate 48, 8 I , 307 
AND-OR-I VERT 416 
AOI 422 
AOI (standard cell) 416 
Application !>pccific standard product (ASSP) 450 
Application-specific instruction-set processor (ASIP) 452 
Application-specific integrated circuit (ASIC) 415 
Application-specific processors 462 
Architecture (in VHDL) 489 
Arithmetic comparison 249 
Arithmetic/logic extender 208 
Arithmetic/logic instruction 480 
Arithmetic-logic unit 207 

ARM processor 40 
Array 501 
Array-style multiplier 375 
ASCII 10, 67 
ASIC 415, 446 
ASIP 452 
ASM~ 253 
Assembler 470 
A'\scmbly code 47 I 
Assembly program 5 I 
Assert 93 
a'\sert (in VHDL) 499 
assert statement (in SystemC) 501 
Assertion 95 
Assignment 249 
Associative property 55 
ASSP 450 
Asynchronoui. circuit 117 
A'\ynchronous input 148 
Asynchronous reset 150 
Asynchronous set 150 
Atmel 25 
Audio recording 5 
Automata 126 
Average 2 I I 
AVR 25 

B 
Barre l shifter 2 14 
Base ten 11 
Bascstation 3 10 
Basic SR latch 107 
Beamformcr 232 
Behavioral-level design 281 
Bell. Alexander Graham 8 
Biased exponent 553 
Binary 37. 547 
Binary number I I 
Binary number, conve11ing to 14 
Binary point 548 
Binary prefix 21 
Binary representation 4 
Binary search 389 
Bind 382 
BIOS 472 
Bit 4 
Bit file 437 

567 



568 Index 

Bit storage 106 
Bit storage block 288 
Bit storage block (in DRAM) 289 
Bit storage block (in SRAM) 288 
Bitstream 437 
Bitwidth 214 
Bitwise operation 207 
block (in flash memory) 296 
Block symbol 168 
Boole, George 43 
Boolean algebra 43, 52, 537 
Boolean function 61 , 83 
Boolean logic 43 
Boolean logic gates 46 
Boolean operators 43 
Boolean variable 43 
Booting 472 
Bounce 274 
Buffer 227 
Buffer (queue) 300 
Bus 170 
Bus (shared) 227 
Button 10 
Button debounce 274 
Byte 21 

c 
C (program language) 23, 24, 25, 424 
C program 50 
C programming Language 281 
C++ (program language) 424 
Calculator 205 
CANbus 175 
Canonical form 69, 94 
Capture 73 
Carrier frequency 313 
Carry chain 436 
Carry-lookahead adder 366, 374, 375, 377 
Carry-ripple J 94 
Carry-ripple adder 365, 375, 436 
Carry-select adder 374, 375 
CD (compact disl) 7 
CeU (in a memory) 287 
CeU (in an ASIC) 416 
Cellphone 7,278, 310 
Cell-based ASIC 416 
CcUs (cell phone regions) 310 
Celsius 213 
Channel 41 
Chip 39, 40, 413 
Circuit 26, 62 
Cir<;uit delay 91 
CLB (conflgural>le logic block) 434 
Clear 216 
Clear (flip-flop input) 149 

Clock 117, 170 
Clock cycle 117 
Clock divider 219 
Clock edge 114, 127 
Clock frequency 278 
Clock multiplier 219 
Clock period 278 
Clock signal 113, 278 
CMOS 47, 80 
CMOS transistor 40, 389 
CMY color space 199 
CMYK color space 199 
Codec 450 
Color space converter 198 
Combinational circuit 35 
Combinational component (ROM) 293 
Combinational logic 505 
Combinational logic optimization 95 
Combining terms to eliminate a variable 328 
Comment (in SystemC) 494 
Comment (in Verilog) 491 
Comment (in VHDL) 490 
Commutative property 55 
Commutativity 539 
Comparator 191, 259 
Compilation 282 
Complement 53, 60, 20 I 
Complement property 25, 56 
Complementation 540 
Complete (set of gates) 82 
Complete (transitions) 142 
Complex PLD 445 
Component 259 
Component (in VHDL) 490 
Component allocation 382 
Compose 307 
Compression 7, 27 
Computer 4 
Concurrent 386 
Concurrent signal assignment 519 
Condition 126 
Conductor 41 
Configurable logic block 434 
Configuration memory 436, 437 
Constant 190, 475, 538 
Control input 92, 167, 173 
Control unit 466 
Control-dominated system 275 
Controller 132, 167, 168, 247, 255, 505 
Controller Area Network 175 
Convert 73 
Core 452 
Cmmter 215 
Cover (of a function) 340 
Covers 340 



CPLD 445 
Critical path 91 , 279, 304, 350 
Crosstalk 179 
Cruise control 264 
Current 36 
Custom processor 248 
Cycle 117 

D 
D latch 112 
D2A (digital to analog) 9 
Data bus 170 
Data input 92. 167 
Data memory 463 
Data movement instmction 480 
Data-dominated system 275 
Datapath 167, 198, 200, 207, 210, 212, 213, 247, 255, 

259, 463 
Datapath component 167, 259, 365 
Datapath operations 463 
Datasbect J 46 
Debouncing (a button) 274 
Decimal nwnber 11 
Decimal point 548 
Decode 466 
Decoder 79, 84, 92, 17 l 
Decrement 21 5 
Decrementer 216 
Delay 91, 187 
Delay control statement (in Verilog) 504 
DeMorgan's Law 58, 59, 61, 82, 543 
Demultiplexer 93 
Dequeue 300 
Design flow 413 
Design start 450 
Deterministic FSM 142 
Digital camera 27 
Digital circuit 4 
Digital filter 275 
Digital picture 8 
Digital signal 4 
Digital system 4, 9 
Digital-to-analog conversion 7 
Digital-to-analog converter 9, 291 
Digitization 6 
Digitized audio 6 
Digitized video 8, 393 
DIP 439 
DIP switch 15, 187 
Directed edge 126 
Discrete signal 4 
Discrete transistor 38 
display statement (in Verilog) 500 
Distributive property SS 
Distributivity 539 

Divide 210 
Divide-by-2 method 19, 547 
Divide-by-n method 20 
Don't care 336, 344, 475 
Double precision 552 
Down-counter 215, 216 
downto (in VHDL) 501 
Drain (of a transistor) 4 1 
DRAM 289, 299 
Driver 227 
Dropped bit (when shifting) 173, 214 
Dual ioline package (DIP) 187, 439 
Duality 540 
Dual-ported register file 229 
Duty cycle 223 
DVD 267 
DVD (digital video disc) 7 
Dynamic 289 
Dynamic microphone 5 
Dynamic power 390 
Dynamic RAM (DRAM) 289 

E 
Economy of scale 205 
EDA 450 
Edge (clock) 114 
Edge (s tate diagram) 126 
Edge-triggered D flip-flop 114 
EEPROM 296, 299 
Electric potential 36 
Electrically erasable PROM 296 
Electromagnetism 5 
Electron 36 
Electronic design automation (EDA) 450 
Embedded computin,g system 462 
Embedded multiplier 436 
Embedded RAM 436 
Embedded system 4 
Enable 85, 92, 111 
Encode ll 
Encoder 93 
Encoding 9, 133 
Energy 389 
ENIAC 38 
Enqueue 300 
Entity ( in VHDL) 489 
EPROM 295 
Equality 82 
Equality comparator 191 
Equation 62 
Equivalent states 35 1 
Era.~able PROM (EPROM) 295 
Espresso 348 
Essential prime implicant 341 , 343 
Even parity 66 

Index 569 



570 Index 

Event !07, 167 
event (in VHDL) 502 
Exact algorithm 339 
Excitation table 120 
Exclusive (transitions) 142 
Exclusive OR 81 
Execute 466 
Expand operation 346 
Expanding (a tenn) 340 
Expression 62 

F 
Fabrication plant (fab) 415 
Factoring 350 
Fahrenheit 213 
Falling edge-triggered flip-flop 116 
Fanout 225 
Feature size 449 
Field programmable gate array 424 
FIFO (first-in first-out) 300 
FIFO queue 300 
Filter 278 
Filtering 313 
Finite Impulse Response tilter 276 
Finite-state automata 126 
Finite-state machine 124, 126. 505 
FIR filter 276, 313, 384, 391 
FIR filter (pipelined) 379 
First-in first-out (FIFO) 300 
Fixed-point arithmetic 550 
Flash memory 296 
Floating point number 552 
Flop 116 
Flow-of-control instruction 480 
FPGA 424, 445, 446, 448 
Frame 393 
Frame (video) 267 
Frequency 117 
FSM 124, 126 
FSM with data 253 
FSMD 253 
FuU-adder 184 
Full-custom IC 414 
Full-subtractor 197 
Function cover 340 
Functions (of a register) 175 
Fuse-based PLD 441 
Fuse-based ROM 294 

G 
GAL (generic array logic) 444 
Gate 46 
Gate (of a transistor) 41 
Gate array 424 
Gate array ASIC 417, 448 

Gate delay 91 
Gated D Latch 112 
Gated SR latch 111 
Gbyte 21 
General-purpose computer 4 
General-purpose processor 461 
Generate 370 
Generic array logic (GAL) 444 
Gigabyte 21 
Glitching 15 l 
Global register 303 
Global signal 303 
Google 12 
Ground 36, 439 

H 
Haitz 's Law 453 
Half-adder 184, 190. 417 
Hard core 452 
Hardware description language (HDL) 489 
HDL x, 95, 489 
Hertz 118, 278 
Heuristic 339 
Hex 16 
Hexadecimal 16 
Hierarchical carry-loolcahead adder 374 
Hierarchy 305 
High-level state machine 248 
HLSM 248 
Hold time 146 
Hz (Hertz) 118 

IC 39, 40, 413 
IC capacity 448 
IC type 413 
Idempotent 541 
Idempotent law 58 
Identity comparator 191 
Identity element 538 
Identity property 56 
If-then statement 282 
If-then-else statement 282 
Implicant 340 
Implication table 353 
Increment 215 
lncrementer 190 
Indirect addressing 480 
initial procedure (in Verilog) 499 
Initial state 126, I 50 
Input (in Verilog) 491 
Instance 259 
Instantiate 259 
Instruction memory 465 
Instruction register 466 



Instruction set 469 
Instructions 465 
Insulator 4 1 
in-system programmable EEPROM 296 
Integrated circuit 39. 413 
L1tel 40 
Intel Atom processor 39 
Luci Celeron processor 40 
Interval timer 222 
Lwerse 53, 60 
Lwersion bubble 76 
lJwerter 4 7 
Involution 542 
Lwolution law 58 
IR (instruction register) 466 
lrredundant operation 348 
ISO 175 
iterative improvement 345 

J 
JK flip-flop 120 

K 
Kamaugh maps 329 
Kbyte 2 1 
Keypad 77 
Keyword 494 
Keywords 491 
Kilby, Jack 39 
Kilobyte 21 
K-maps 329 

L 
Laser surgery 123 
Laser-based di stance measurement 25 1 
Latch 107 
Latency 379, 385 
Layer (in IC fabrication) 415 
Layout (of transistors on chips) 41 4 
Leas t-significant bit 11, 175 
LED 187, 453 
Legal expansion 346 
Level of abstraction 247 
Level-sensitive D latch 112 
Level-sensitive SR latch 111 
Library 259, 4 16 
library (in VHDL) 489 
Light sensor LO 
Light-emitting diode (LED) 187, 453 
Linear search 388 
Literal 55 
Load operation 463 
Loading (a register) 168 
Load-store arclutecture 464 
Local storage ( in HLSM) 248 

Logic gate 43, 46 
Logic IC 439 
Logic-level design 247 
Lookahead (in computerized games) 173 
Lookup table (LUT) 425 
LSI 39 
LUT (lookup table) 4 25 

M 
MAC (multiply-accumulate) 385 
Machine code 470 
Magnetic RAM (MAGRAM) 299 
Magnitude comparator 192 
MAGRAM (magnetic RAM) 299 
Mantissa 552 
Mapping 61 
Mask (in IC fabrication) 41 S 
Mask-programmed ROM 294 
Mass-production 462 
Master (in flip-flops) 114 
Master-servant (in flip-flops) 114 
Master-slave (in flip- flops) 115 
Maxtem1 70 
Mbyte 21 
Mealy FSM 360 
Mean time between failure (MTBF) 149 
Megabyte 21 
Memory 105, 122, 285 
Memory-based PW 442 
Memory-mapped I/O 481 
Metal oxide semiconductor (MOS) 42 
Metastabili ty 146 
Metastable state 147 
Metric system 213 
Meucci, Antonio 8 
Micron (micrometer) 449 
Microphone 5 
Microprocessor 22, 24, 25, 248 
Microprocessor implementation 277 
Minimum-bitwidtb binary encoding 354 
Mintem1 69, 340 
MIPS 26 
Mnemonics 47 l 
Mobile phone 7 
Module (in Verilog) 491 
Moore FSM 360 
Moore. Gordon 40 
Moore's Law xiv, 40, 448 
MOS 42 
Most-sjgnificant bit 11 
Motion sensor I 0 

Index 571 

Motion-in-the-dark detector example 22, 26 
Motion-in-the-dark example 49 
MP3 7 
MSI 39 



572 Index 

MTBF (mean time between failures) 149 
Multifunction register 175 
Multilevel carry-lookahead adder 374 
Multiple processors 303 
Multiplexer 86, 92, 171 
Multiplexor 260 
Multiplication 212 
Multiplier 195 
Multiplier (sequential) 375 
Multiply 210 
Multiply-accumulate 436 
Multiply-accumulate (MAC) 385 
Multiported register file 229 
Mux (multiplexer) 86 

N 
NaN (not a number) 553 
NAND gate 80, 83 
NAND gates. implementing circuits as 4 19 
Negative edge-triggered flip-flop 116 
Negative number 202 
Negative numbers 200 
Nexperia platfom1 (Philips) 450 
nMOS 91 
nMOS transistor 41 
Noise 313 
Nondeterministic FSM 142 
NonrecutTing engineering 205 
Non-recurring engineering (NRE) cost 4 15 
Nonvolatile memory 292, 445 
Nonvolatile RAM 299 
NOR gate 80, 82, 83 
NOR gates, implementing circuits as 421 
Normalized 552 
NOT 44, 53 
NOT gate 47 
Noyce, Robert 39 
NRE 205, 415, 448 
Null clements 58 
NVRAM (nonvolatile RAM) 299 

0 
Octal number 19 
Odd parity 67 
Off-set (of a Boolean function) 340 
Off-the-shelf 22 
Off-the-shelf IC 423 
Ohm 36 
Ohm's Law 36 
One's complement 202 
One-shot (timer) 223 
One-time progrrumnable (OTP) 442 
One-time programmable (OTP) ROM 294 
On-set (of a Boolean function) 340 
Opcode 470 

Operands 470 
Operation code 470 
Operation table 176 
Operator binding 383 
Operator scheduling 384 
Optimal solution 340 
Optimization 325 
OR 44. 53 
OR (in VHDL) 495 
OR gate 47, 81 
Orthogonal 45 I 
Oscillate 117 
Oscillation I 09 
Oscillator l 17, l 18, 223 
Output (in Verilog) 491 
Overclocking (in PCs) 280 
Overflow 205 
Oxide 41 

p 

Padding 213 
PAL (programmable array logic) 444 
Paral lei port 179 
Parallel-load register 216 
Parasitics 91 
Parity 66, 82 
Partitioning 27 
Partitioning method 352 
Pattern detector 74 
PC (program counter) 466 
Perfonuance 326, 379 
Period J 17 
Phased-lock loop 219 
Physical design 417 
PIC microprocessor 25 
Pipeline 482 
Pipeline register 378 
Pipeline stage 378 
Pipelining 377 
Pixel 198 
PLA (pmgranunable logic array) 444 
Placement (during implementation on ICs) 41 7 
Platform ASIC 418 
PLD (progranunable logic device) 441 
Pop (a queue) 300 
Port 226 
Port (in V HDL) 489 
Port map (in VHDL) 490 
posedge ( in Verilog) 502 
Positive edge-triggered flip-flop 116 
Postulate 55 
Power 326, 3&9 
Power supply 41 
Prechargi ng (in RAM) 289 
Primary-secondary (in flip-flops) 115 



Prime 53 
Prime implicant 340, 342 
Priority encoder 93 
Process (in VHDL) 495 
Processing 462 
Processor 24 7, 248 
Processor architecture, standard 255 
Processor, custom 248 
Processor, programmable 248 
Product term 55 
Product-of-maxterms 70 
Product-of-sums 422 
Program 22, 461, 465 
Program counter 466 
Programmable array logic (PAL), 444 
Programmable IC 423 
Programmable interconnect 432 
Programmable interval timer 222 
Programmable logic array (PLA) 444 
Programmable logic device (PLD) 441 
Programmable processor 248, 46 1 , 469 
Programmer (for a ROM) 295 
Programming (a ROM) 293 
Programming language 281 
PROM (progranunable ROM) 295 
Propagate 370 
Pruning 343 
Pulse 113 
Pulse-widtl1 modulation (PWM) 456 
Pulsc-widtl1 modulator 223 
Push (a queue) 300 
PWM 223,456 

Q 

Quartz L 18 
Queue 299, 305 
Quine-McCluskey 341 

R 
Race condition 110 
Radio frequency identification tag 18 
Radix 552 
Radix point 548 
RAM 286,299 
Random-access memory (RAM) 286 
read function (in SystcmC) 497 
Read port 226 
Read time 291 
Reading (a register) 168 
Read-only memory (ROM) 292 
Real number 547 
Reduce operation 348 
reg (in Vcrilog) 496, 499 
Register 120, 168, 259, 501 
Register (pipeline) 378 

Register file 225, 286, 304 
Register operations 175 
Register width 168 
Registered output 152, 250 
Register-transfer level design ix, 247 
Relay 37 
Reserved word 494 
Reserved words 491 
Reset 108 
Reset (flip-flop input) 149 
Reset (of a controller) 151 
Resistance 36 
Resource sharing 383 
Rcspin (in IC fabrication) 415 
Reverse engineer 93 
Reverse engineering 140 
RFID 18 
RGB color s pace 198 
Ris ing edge 124 
Rising edge-triggered flip-flop 116 
Roll over (of a counter) 2 15 
ROM 292 
ROM programming 293 
Rotate 215 
Rotate register 174 
Rounding 214 

Index 573 

Routing (during implementation on !Cs) 417 
Routing congestion 225 
RTL design ix, 247, 255 

s 
SAD (sum-of-absolute-differences) 267 
Sample 9 
Sampling 6, 169 
Scan chain 437 
SC_CTOR (in SystemC) 494 
Schematic 487 
Schematic capt1.1re 94 
sc_in (in SystemC) 493 
sc_logic (in Sys tcmC) 493 
SC_LOGIC_O (in Sys tcmC) 501 
SC_LOGIC_I ( in SystcmC) 501 
sc_lv (in SystemC) 503 
SC_METHOD (in SysternC) 497 
SC_MODULE (in SystcmC) 493 
sc_out (in SystemC) 493 
sc_signal (in SystcmC) 494 
SC_ THREAD ( in SysternC) 500 
Scat belt warning light example 422, 433, 440, 443 
Seatbelt warning light 50 
Select input (of a mux) 86 
Semiconductor 42 
Scmicustom processors 462 
Sense amplifier 289 
Sensitive (in SystemC) 497 



574 Index 

Sensitive (in VeriJog) 496 
Sensitive (in VHDL) 495 
sensitive_pos (in SystemC) 503 
Sensitivity List (in Verilog) 496, 504 
Sensitivity list (in VHDL) 495, 504 
Sensor 9 
Sequential circuit 35 
Sequential multiplier 375 
Serial 386 
Serial communication 175, 179 
Serializing 383 
Servant 114 
Set (a latch) I 09 
Set (flip-flop input) 149 
Setup time 146 
Seven-segment display 72 
Shannon, Claude 45 
Shared bus 227 
Shift 210 
Shift register 173, 436 
Shifter 2 1l , 21 4, 259 
Shifting (a register) 173 
Shifts and adds 212 
Shockley, William 38 
SHR (in VHDL) 519 
Sign bit 202 
Signal (in VHDL) 490 
Signed number 202, 212 
Signed-magnitude representation 200 
Significand 552 
Silicon 40, 42 
Silicon dioxide 41 
Silicon Valley 42 
Simple PLD 444 
Simulation 94 
Simulator 94 
Single precision 552 
Si11gle-purpose processor 461 
Size 326 
Sliding average 211 
Small-scale integration 439 
soc 450 
Socia machine dispenser 248 
Soft core (on an FPGA) 451 
Software 22 
Solid state 39 
Source (of a transistor) 41 
Spin (in IC fabrication) 415 
SPLD 444 
Spurious value 187 
SRAM 288 
SSI 39 
SSI chip 439 
Stable 108 
Stage (of a pipeline) 378 

Stages 466 
Standard architecntrc (for sequential circuit) 132 
Standard <:ell ASIC 416, 448 
Standard representation 68 
State 122 
State diagram 124 
State encoding 354 
State minimization 351 
State reduction 35 I 
State register 132, 168, 505 
State table 135 
Static 289 
Static RAM 288 
std_logic (in VHDL) 489 
std_logic_l 164 (in VHDL) 489 
std_logic_arith (in VHDL) 517 
std_logic_unsigned (in VHDL) 5J7 
std_logic_vector (in VHDL) 501 
Stepper motor 138 
Store operation 463 
Storing (i11 a register) 168 
Storing a bit 106 
Stream 275 
Strucnire 489 
Structured ASIC 418, 446 
Subtraction method 16 
Subtractor 196 
Sum 53 
Sum of absolute differences (SAD) 281 
Smn of mintem1s 7 1 
Swn of-absolute differences (SAD) 267 
Smn-of-minterms 69, 340 
Swn-of-products 55, 69, 74, 327, 422 
Superscalar processor 482 
Switch 36 
Switch matrix 432 
Switching algebra 537, 538 
Synchronized processors 304 
Synchronous circuit I 17 
Synchronous clear 180, 216 
Synchronous reset 150 
Synchronous set 150, 180 
Synthesis 282 
System-on-a-chip (SOC) 450 

T 
T flip-tlop 120 
Tabular method 341 
Tap (in FIR filter) 31 4 
Tbyte 21 
Technology mapping 417. 427 
Telephone & 
Tcrabyte 21 
Term 55 
Terminal count 215 



Testbench 498 
Theorems (of Boolean algebra) 58 
Three-state buffer 227, 290. 29 1 
T hree-state driver 227 
Throughput 379, 385 
Timer 222 
Timing diagram 24. 47. 125 
Toggle 105, 120 
Top-down design xi 
Tradeoff 326, 465 
Tradcoffs 447 
Transducer 9, 231 
Transistor 38 
Transistor-level design 247 
Transition 126 
Transparent D latch 112 
Transparent latch 111 
Truth table 47, 62. 66. 68. 135 
Tunnel 295 
Turing. Alan 173 
Two's complement 202 
Two-level circuit 74 
Two-level logic 74, 182 
Two-level logic minimization 327 
1\vo-lcvcl logic optimization 327 
Two-level logic size optimization 327 
type (in VHDL) 506 

u 
Ultrasound 231 
Ultraviolet (UV) light 295 
Unconnected output 176 
Unicode 10 
Uniting theorem 328 
Universal gate 83, 419 
Universal serial bus 179 
Unsigned number 202, 212 
Unused input 176 
Up/down-counter 217 
Up-counter 2 15 
USB 179 
use (in VHDL) 518 
UV light 295 

v 
Vacuum tube 38 
Variable 54, 538 
Very large instruction word (VLfW) processor 482 
Video compression 267 
VLfW 482 
VLSI 39 
Volatile memory 292 
Voltage 36 
Volts 36 

w 
wait for (in VHDL) 504 
wait function (in SystemC) 500, 505 
Watt 389 
Waveform 94 
Weight (of a digit in a number) 11 
Western Union 8 
While loop statements, 283 
Width (of a bus) 170 
Width (of a register) 168 
Width (of a timer) 222 
Width (of an adder) l8 I 
Wire (in Verilog) 49 1, 496 
Word (in memory) 285 
Wrap around (for a counter) 215 
write function (in SystemC) 497 
Write port 226 
Writing (a register) 168 

x 
XNOR gate 81, 82 
XOR gate 81,82 

z 
Zero-delay (gates) 9 I 

Index 575 


	Title
	Contents
	Preface
	Chapter 1: Introduction
	Chapter 2: Combinational Logic
	Chapter 3: Sequential Logic Design: Controllers
	Chapter 4: Datapath Components
	Chapter 5: Register-Transfer Level (RTL) Design
	Chapter 6: Optimizations and Tradeoffs
	Chapter 7: Physical Implementations on ICs
	Chapter 8: Programmable Processors
	Chapter 9: Hardware Description Language
	Appendix A: Boolean Algebras
	Appendix B: Additional Topics in Binary Number Systems
	Appendix C: Extended RTL Design Example
	Index



